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Editorial on the Research Topic

Omics-based approaches in stroke research

Stroke remains a leading cause ofmortality and disability worldwide, posing substantial

challenges to healthcare systems and necessitating innovative research approaches (1).

Traditional epidemiological and clinical studies have provided significant insights into

stroke risk factors and outcomes (2). However, the advent of omics technologies, including

genomics, transcriptomics, proteomics, metabolomics, and radiomics, has revolutionized

our ability to understand the molecular underpinnings of stroke (3–5). Omics-based

studies have led to the discovery of potential biomarkers that can aid in early detection,

risk stratification, and monitoring of stroke patients (6–9). Furthermore, these approaches

can uncover novel therapeutic targets, facilitating personalized treatment strategies and the

repurposing of existing drugs for stroke management (10).

The Research Topic “Omics-based Approaches in Stroke Research” in Frontiers in

Neurology comprises nine articles that leverage omics technologies to advance stroke

research. This editorial frames the goals and findings of this research, highlighting their

contributions to our understanding of stroke risk, prognosis, and recovery.

Chen et al. used Mendelian randomization (MR) techniques (11) to investigate the

causal associations of serum urate (SUA) with stroke risk and prognosis. They found that

genetically predicted higher SUA levels increased the risk of any stroke and ischemic stroke

(IS) while simultaneously improving post-stroke recovery outcomes. This dual effect was

mediated, in part, by systolic and diastolic blood pressures, underscoring the intricate

interplay between metabolic and cardiovascular factors in stroke pathophysiology. These

findings highlight the importance of considering both the detrimental and protective

roles of metabolic factors like SUA in stroke management and rehabilitation strategies.

Hu et al. explored the causal relationship between the IgD-CD24-B cell absolute count

(IgD-CD24-AC) and IS, along with the potential mediating role of ascorbic acid 2-sulfate

(AA2S). Using an MR approach with Genome Wide Association Study data, they found

that higher IgD-CD24-ACwas associated with an increased IS risk. Additionally, AA2Swas

found to mediate a small portion of this effect, suggesting its involvement in the pathway

linking IgD-CD24-AC and IS. These insights into the immune mechanisms underlying IS

highlight potential targets for immune-based therapies in precision medicine. Wu et al.

examined the causal relationship between hemoglobin concentration and stroke using a

two-sample MR approach. Analyzing data from the UK Biobank, the FinnGen R9, and

MEGASTROKE consortia, they found a negative association between hemoglobin levels

and stroke risk. Specifically, higher hemoglobin was linked to a lower risk of overall

stroke, IS, and cardiogenic stroke. These findings underscore the potential protective role
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of hemoglobin concentration in stroke prevention and highlight

the importance of managing hemoglobin levels in stroke

risk reduction.

Zhang et al. investigated the role of peripheral T cells and their

receptor repertoire in predicting outcomes of acute spontaneous

intracerebral hemorrhage (SICH). Analyzing peripheral blood

mononuclear cells from 45 ICH patients compared to healthy

controls, they found that ICH was associated with reduced T cell

abundance, heightened T cell activation, and altered T cell receptor

(TCR) repertoire. Significant correlations between TCR diversity

and clinical outcomes suggest that TCR repertoire profiling could

serve as a potential biomarker for assessing ICH prognosis and

highlight the need for further research into T cell mechanisms

in brain injury and repair. Wang et al. explored the prognostic

value of the albumin-corrected anion gap (ACAG) in patients

with aneurysmal subarachnoid hemorrhage (aSAH). Comparing

the predictive efficacy of ACAG and the standard anion gap (AG) in

predicting 30-day mortality among 710 aSAH patients, they found

that ACAG is positively correlated with mortality and performs

better than AG alone in predicting outcomes. This comprehensive

prognosticmodel showed improved predictive accuracy, suggesting

that ACAG is a valuable tool for assessing risk and tailoring

treatment strategies in aSAH patients. Stańczak et al. investigated

whether circulating microRNA (miRNA) profiles could predict

the hemorrhagic transformation (HT) risk after thrombolytic

treatment in acute IS patients. Analyzing plasma samples from

patients who developed HT and those who did not, they identified

trends in miRNA expression changes. Notable findings included

differential expression patterns that could potentially be used to

predict HT risk, although further validation with larger samples

is needed. This study highlights the potential of miRNA profiling,

combined with additional biomarkers identified using other omics

approaches, to enhance prediction models for thrombolysis-

associated complications in stroke patients.

Li et al. evaluated the effectiveness of radiomics models

derived from non-contrast CT (NCCT) and CT angiography

(CTA) images in predicting early hematoma expansion (HE) in

patients with SICH. Analyzing data from 182 patients, they created

radiomics models based on NCCT and CTA images and found

that these models exhibited superior performance compared to

the CTA spot sign, a standard clinical marker. These results

suggest that radiomics models based on NCCT and CTA are

effective for predicting HE and may reduce the need for CTA,

thereby lowering patient exposure to radiation and contrast agents.

Nie et al. developed a radiomics model based on perivascular

adipose tissue (PVAT) surrounding carotid plaques to differentiate

symptomatic from asymptomatic plaques. Analyzing data from 203

patients with carotid plaques, they created a radiomics signature

(RS) model that demonstrated high diagnostic performance,

significantly outperforming traditional models. This RS model

based on PVAT is a valuable tool for assessing plaque risk and

could enhance risk stratification for carotid atherosclerotic disease.

Zhao et al. reviewed the significant advancements and applications

of artificial intelligence in the neuroimaging and rehabilitation of IS

patients. They highlighted that integrating radiomics with machine

learning significantly enhances the predictive accuracy for acute

IS outcomes. Radiomics models, utilizing imaging features from

diffusion weighted imaging and NCCT, improve prognosis and risk

assessment, especially after mechanical thrombectomy.

In summary, the Research Topic “Omics-based approaches

in stroke research” provides a comprehensive overview of recent

advancements in this field. The nine studies included in this topic

highlight the potential of omics technologies to elucidate stroke

mechanisms, discover new biomarkers, and enhance prognostic

models. These findings emphasize the need for continued research

to validate and implement these insights in clinical settings. We

anticipate that this Research Topic will inspire further studies and

contribute to the development of more personalized and effective

stroke therapies and management strategies.
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Initial experience with radiomics 
of carotid perivascular adipose 
tissue in identifying symptomatic 
plaque
Ji-Yan Nie 1,2, Wen-Xi Chen 1,2, Zhi Zhu 1,2, Ming-Yu Zhang 1,2, 
Yu-Jin Zheng 1* and Qing-De Wu 1*
1 Department of Radiology, Shunde Hospital of Guangzhou University of Traditional Chinese Medicine, 
Shunde, China, 2 Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China

Background: Carotid atherosclerotic ischemic stroke threatens human health 
and life. The aim of this study is to establish a radiomics model of perivascular 
adipose tissue (PVAT) around carotid plaque for evaluation of the association 
between Peri-carotid Adipose Tissue structural changes with stroke and 
transient ischemic attack.

Methods: A total of 203 patients underwent head and neck computed 
tomography angiography examination in our hospital. All patients were divided 
into a symptomatic group (71 cases) and an asymptomatic group (132 cases) 
according to whether they had acute/subacute stroke or transient ischemic 
attack. The radiomic signature (RS) of carotid plaque PVAT was extracted, and 
the minimum redundancy maximum correlation, recursive feature elimination, 
and linear discriminant analysis algorithms were used for feature screening and 
dimensionality reduction.

Results: It was found that the RS model achieved the best diagnostic performance 
in the Bagging Decision Tree algorithm, and the training set (AUC, 0.837; 95%CI: 
0.775, 0.899), testing set (AUC, 0.834; 95%CI: 0.685, 0.982). Compared with the 
traditional feature model, the RS model significantly improved the diagnostic 
efficacy for identifying symptomatic plaques in the testing set (AUC: 0.834 vs. 
0.593; Z  =  2.114, p  =  0.0345).

Conclusion: The RS model of PVAT of carotid plaque can be used as an objective 
indicator to evaluate the risk of plaque and provide a basis for risk stratification 
of carotid atherosclerotic disease.

KEYWORDS

carotid atherosclerosis, perivascular adipose tissue, radiomics, stroke, transient 
ischemic attack

1 Introduction

Carotid atherosclerotic disease is the main cause of ischemic stroke, accounting for 
about 34% of ischemic stroke (1). The guidelines for the prevention and treatment of Stroke 
in China 2021 recommend carotid endarterectomy or carotid artery stenting for patients 
with more than 50% carotid artery stenosis to prevent stroke. However, the degree of carotid 
artery stenosis does not completely match the occurrence of stroke (2), and there is currently 
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a lack of objective indicators to assess the risk of stroke in carotid 
plaque. Head and neck computed tomography angiography (CTA) 
is the first line non-invasive imaging method for carotid 
atherosclerosis (3). Radiomics analysis of carotid plaques based on 
CTA has made some progress in identifying carotid plaques at high 
risk of stroke. However, automatic segmentation of carotid plaques 
is challenging due to the complex composition of plaques and the 
limited number of pixels in CTA images. As a consequence, the 
radiomic signature (RS) model derived from these segmentations 
often exhibits low performance and lacks universality (4). Vascular 
inflammation can drive atherosclerotic plaque rupture and 
thrombosis, leading to the occurrence of adverse cardiovascular and 
cerebrovascular events (5). A considerable body of recent research 
(6–10) has demonstrated that perivascular adipose tissue (PVAT) 
can be automatically segmented by applying a threshold range of 
−190 to -30HU on CTA, enabling the monitoring of vascular 
inflammation and identification of symptomatic plaques. Numerous 
studies (11–14) have also indicated that the pericoronary adipose 
tissue RS model exhibits excellent performance in identifying and 

predicting symptomatic plaques; however, there is limited literature 
available regarding carotid artery investigations.

In this study, we used radiomics analysis combined with machine 
learning methods to establish an RS model based on the PVAT of 
carotid plaques combined with traditional patient characteristics and 
investigated its performance in distinguishing symptomatic and 
asymptomatic carotid plaques.

2 Materials and methods

2.1 Study population

This was a retrospective study involving patients who underwent 
head and neck CTA at our hospital from April 2021 through February 
2023 (Figure 1). All patients were divided into a symptomatic group 
and an asymptomatic group according to whether they had clinical 
symptoms within 2 weeks before CTA examination and/or whether a 
head MRI showed acute/subacute stroke (15). Clinical symptoms 

FIGURE 1

Flowchart. CTA, computed tomography angiography; TIA, transient ischemic attack, RS, radiomic signature.
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included classic TIA (transient ischemic attack) and anterior 
circulation (carotid territory) ischemic stroke, as well as monocular 
symptoms ipsilateral (16) to the carotid plaque (amaurosis or retinal 
artery occlusion). Classic TIA is defined as an abnormal focal 
neurological deficit lasting less than 24 h. Complete ischemic stroke 
presents with the sudden onset of a focal neurologic deficit lasting 
>24 h (17). The patient’s age, gender, body mass index (BMI), history 
of hypertension, diabetes, hyperlipidemia, smoking history, history of 
antihypertensive drugs, and history of antiplatelet drugs were collected.

Inclusion criteria: (1) extracranial carotid atherosclerosis; 
Exclusion criteria: (1) ischemic stroke or TIA caused by 
non-extracranial carotid atherosclerosis (intracranial arterial stenosis 
>50%, cardiogenic type, lacunar type, unknown cause, cryptogenic 
type) (18–24); (2) ischemic stroke or TIA occurred more than 2 weeks 
before CTA examination; (3) posterior circulation symptoms; (4) 
history of stenting, stripping or thrombectomy of cervicocerebral 
artery; (5) Cerebral hemorrhage, meningioma, craniotomy, 
arteriovenous fistula, temporal lobectomy, moyamoya disease, 
reversible cerebral vasoconstriction syndrome, arteritis; (6) Carotid 
artery dissection, aneurysm and web; (7) poor image quality, 
incomplete image, image cannot be transmitted; and (8) incomplete 
clinical information of patients. This study has been approved by the 
Ethics Committee of Shunde Hospital, Guangzhou University of 
Traditional Chinese Medicine (Ethics Review approval: KY-2022010).

2.2 CT scanning parameters

Head and neck CTA was performed using a third-generation 
dual-source CT (Somatom Force, Siemens). The patient was placed in 
a supine position with head advanced and calm breathing. The 
scanning direction was the foot–head direction, and the scanning 
range was from the level of the sternal Angle to the skull dome. A 
measure of 50 mL of ioversol (Bayer, Germany, iodine concentration 
370 mg/mL) was injected via the cubital vein with a high pressure 
syringe at a rate of 5 mL/s, and 40 mL of normal saline was injected at 
the same flow rate. The ROI was drawn at the descending aortic arch 
using contrast agent tracking technology. The trigger threshold was 
100HU, and the scan was delayed for 3–4 s after the trigger. The tube 
voltage was 90–100 KVp, and the tube current was adaptive.

2.3 Plaque data analysis

All CTA data were transferred to head and neck CTA AI system 
(Shukun Technology, Beijing, China) for plaque localization and 
analysis on curved planar reconstruction images. The symptomatic 
group selected the narrowest carotid plaque on the symptomatic side, 
and the asymptomatic group selected the narrowest carotid plaque. 
According to the location of the plaque, the plaque was divided into 
left carotid artery plaque and right carotid artery plaque. The degree 
of plaque stenosis was automatically calculated.

Plaque thickness was measured as the maximum axial size of the 
plaque on a single axial slice, representing its maximum thickness. 
Plaque length was defined as the distance from the origin of the plaque 
to the distal end. The remodeling index was calculated by averaging 
the maximum external vessel diameter of the plaque over the normal 
diameter of the proximal and distal regions.

Plaques were classified into three types based on the presence or 
absence of calcification: calcified plaque, non-calcified plaque, and 
mixed plaque. The presence of plaque ulceration was identified by the 
spread of a contrast agent deep into the plaque on multiple slices from 
different imaging perspectives. High-risk plaque is defined as having 
two or more of the following features: positive remodeling index >1.1, 
punctate calcification (with a diameter < 3 mm, occupying <1/4 of the 
lumen’s diameter, and a CT value >130HU), low-density plaque (a 
non-calcified plaque with a CT value <30HU and an area of 1mm2 
within the plaque), and the napkin ring sign (a contrast agent ring 
encircling a low-density plaque component, along with contrast agent 
in the surrounding vascular lumen).

2.4 Segmentation of plaque PVAT

ROI segmentation of the PVAT of extracranial carotid plaques was 
performed using perivascular fat analysis software (Shukun 
Technology, Beijing, China). The measurement was centered on the 
carotid bifurcation, extending 2 cm in the superior and inferior 
directions for a total length of 4 cm. The PVAT width was equivalent 
to the diameter of the carotid artery beyond the outer wall of the 
carotid artery vessel. The software automatically segmented adipose 
tissue with an attenuation value of −190 HU to −30 HU along the 
target length and width of the carotid artery vessel (25, 26) (Figure 2).

2.4.1 Fat attenuation index analysis of plaques
The Fat Attenuation Index (FAI) surrounding atherosclerotic 

plaques was assessed using specialized perivascular fat analysis 
software (Shukun Technology, Beijing, China). The length of “Stenosis 
FAI” is measured on the narrowest cross-sectional slice of the plaque, 
while the length of “Stenosis range FAI” is measured along the entire 
extent of the plaque, from its origin to the distal end. Both FAI 
measurements have a width equivalent to the diameter of the carotid 
artery beyond the outer wall of the carotid artery vessel. The software 
automatically segmented adipose tissue with an attenuation value of 
−190 HU to −30 HU along the target length and width of the carotid 
artery vessel, following which the software automatically computes the 
average density of the perivascular fat encompassing the plaque 
(Figure 2).

2.5 RS extraction and selection of plaque 
PVAT

2.5.1 RS extraction
ROI of all plaque PVAT was imported into Shukun AI Scientific 

Research Platform (Beijing, China) for RS extraction. A total of 1874 
RS were extracted from the ROI of each plaque PVAT. These included 
360 first-order features, 14 shape features, 480 gray level co-occurrence 
matrix (GLCM), 280 gray level dependence matrix (GLDM), 320 gray 
level run length matrix (GLRLM), 320 gray level size zone matrix 
(GLSZM), and 100 neighborhood gray tone difference matrix 
(NGTDM).

2.5.2 RS selection and model construction
All the extracted features were imported into uAI Research Portal 

software (version 1.1, United, China) for feature selection and model 
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construction. (1) The minimum redundancy maximum relevance 
(MRMR) algorithm is utilized to calculate the redundancy and 
relevance between each feature and the target variable, symptomatic 
plaques. Subsequently, 100 features are selected. A recursive feature 
elimination (RFE) algorithm selects feature subset by eliminating 
features with small contributions to prediction ability step by step. It 
determines the most important features for the prediction task by 
recursively training the model and evaluating feature importance. 
The RFE has been applied to select the most important features, 
resulting in 48 features, comprising 16 first-order features, 7 CLCM 
features, 6 GLDM features, 3 GLRLM features, 10 GLSZM features, 
4 NGTDM features, and 2 shape features. (2) Linear discriminant 
analysis (LDA) is employed to reduce the dimensionality of the 
selected imaging features to 20 target dimensions. By using an mRMR 
algorithm, RFE algorithm, and LDA together, we can achieve several 
objectives: improving the effectiveness of feature selection, removing 
redundant and noisy features, extracting features with high 
classification ability, and reducing dimensionality. Through the 
comprehensive application of these methods, more robust and 

superior feature subsets can be obtained, which is helpful for better 
image-based radiomic analysis and model construction. (3) Machine 
learning models, including Bagging DecisionTree, XGBOOST, 
Random Forest, Support Vector Machine (SVM), and Quadratic 
Discriminant Analysis (QDA), are constructed Model 1 (RS model). 
The patients were divided into training set (n = 163) and test set 
(n = 40) according to the ratio of 8:2.

2.6 Statistical analysis

The data analysis was performed using SPSS 25.0, MedCalc 
22.014, and uAI Research Portal software (version 1.1, United, China). 
Kolmogorov–Smirnov was used to test the normality of measurement 
data. Continuous variables were expressed as mean ± SDs or median 
and interquartile range as appropriate. Categorical variables were 
reported as count and percentage. Continuous variables were 
compared with the Student t-test or Mann–Whitney test. Categorical 
variables were compared using χ2 or the Fisher exact test. Univariate 
logistic regression was employed to analyze the correlation between 
the traditional features of each patient and symptomatic plaques. 
Features with p < 0.05  in the univariate logistic regression were 
included in the multivariate logistic regression analysis for 
further analysis.

In order to investigate if carotid PVAT imaging RS provides 
additional value in diagnosing symptomatic plaques compared to 
traditional plaque analysis, two models were developed. Model 2 
(Traditional model) included different clinical and conventional CTA 
imaging features between symptomatic and asymptomatic patient 
groups in a multivariate logistic regression analysis. Model 3 
(Combined model): Model 2 was enhanced by incorporating the 
Model 1. The machine learning algorithm parameters used in both 
models were identical to those in Model 1. Area Under the Curve 
(AUC) was used to evaluate the ability of the two groups of models to 
identify symptomatic plaques. The deLong test was used to compare 
the differences between AUCs. p < 0.05 was considered statistically 
significant (Figure 3).

3 Results

3.1 Characteristics of the study patients

This study included a total of 203 patients, with an average age of 
71.87 ± 9.63 years and a total of 115 men. Among them, there were 71 
cases in the symptomatic group and 132 cases in the 
asymptomatic group.

In the multivariate logistic regression analysis, it was found that 
the proportion of positive remodeling in the symptomatic group was 
higher than that in the asymptomatic group (97.2% vs. 84.8%, 
p = 0.017). Additionally, the proportion of statin use in the 
symptomatic group was significantly lower than that in the 
asymptomatic group (15.5% vs. 47%, p < 0.001).

Other factors such as age, gender, BMI, history of hypertension, 
diabetes mellitus, hyperlipidemia, smoking history, history of 
antihypertensive drugs, history of antiplatelet drugs, plaque location, 
degree of plaque stenosis, plaque length, plaque thickness, 

FIGURE 2

Carotid Plaque PVAT Segmentation Image. The Carotid Artery 
Straightening Image reveals a calcified plaque located at the 
bifurcation of the carotid artery. The red line was centered on the 
carotid bifurcation, extending 2  cm in the superior and inferior 
directions for a total length of 4  cm (L). The PVAT width of two red 
lines is equivalent to the diameter of the carotid artery beyond the 
outer wall of the carotid artery vessel (d). The software automatically 
segmented adipose tissue with an attenuation value of −190 HU to 
−30 HU along the target length and the width of the carotid artery 
vessel is visualized using a blue-green pseudocolored map.
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remodeling index, FAI at the most stenosis of the plaque, FAI within 
the stenosis of the plaque, conformal remodeling, low-density 
plaque, punctate calcification, napkin ring sign, and high-risk plaque 
distribution, plaque type, and plaque ulcer did not show statistically 
significant differences in the multivariate regression analysis 
(p > 0.05) (Table 1).

3.2 RS model of carotid PVAT

The RS model showed the highest diagnostic performance in 
identifying symptomatic plaques within the Bagging Decision Tree 
model, achieving an AUC of 0.837 (95%CI: 0.775, 0.899) in the 
training set and an AUC of 0.834 (95%CI: 0.685, 0.982) in the testing 
set. These results were significantly better than the performances of 
the XGBOOST, Random Forest, SVM, and QDA models (p < 0.05) 
(Figure 4; Table 2).

3.3 RS combined with the traditional model

Figure 5 depicts the diagnostic performance of traditional feature 
models and the RS model in identifying symptomatic plaques across 
different sets of data. In the training set, the traditional feature model 
achieved an AUC of 0.725 (95%CI: 0.695, 0.791), while in the testing 
set, the AUC was 0.593 (95%CI: 0.438, 0.749). Upon incorporating the 
RS model into the traditional feature model, the AUC in the training 
set improved to 0.831 (95%CI: 0.765, 0.896), and in the testing set, it 
reached 0.82 (95%CI: 0.675, 0.965).

Through the Delong test, it was determined that the combination 
of the RS model with the traditional feature model yielded a 
significantly higher AUC for distinguishing symptomatic plaques 
compared to using the traditional model alone (AUC: 0.82 vs. AUC: 
0.593; Z = 2.822, p = 0.0048). Furthermore, when used independently, 
the RS model demonstrated a superior AUC in differentiating 
symptomatic plaques compared to the traditional model (AUC: 0.834 
vs. AUC: 0.593; Z = 2.114, p = 0.0345).

4 Discussion

This study confirms that the RS model, based on carotid PVAT, 
has demonstrated significant improvement over the current traditional 
models in distinguishing symptomatic plaques. The RS model, relying 
on carotid PVAT, exhibited a higher AUC in the discrimination of 
symptomatic plaques (AUC: 0.834; 95% CI: 0.685, 0.982), compared 
to the traditional model (AUC: 0.593; 95% CI: 0.438, 0.749).

CT-based radiomics has been shown to be  able to accurately 
classify diseases by extracting a large number of quantitative radiomics 
features that are invisible to the human eye (27). In this study, the 
diagnostic performance of the RS model, based on carotid PVAT, in 
distinguishing symptomatic plaques was evaluated in both the training 
set (AUC: 0.837; 95% CI: 0.775, 0.899) and the testing set (AUC: 0.834; 
95% CI: 0.685, 0.982). In a study conducted by Chen et al. (4), which 
included 60 symptomatic and 84 asymptomatic individuals based on 
the occurrence of ischemic stroke or TIA within a 2 week period, the 
RS model based on carotid plaque PVAT demonstrated an AUC of 
0.740 (95% CI: 0.644, 0.835) in the training set and 0.618 (95% CI: 

FIGURE 3

A flow chart of the model development process. Collect clinical and radiological information of patients, analyze and extract traditional features of 
carotid artery plaques. Based on head and neck CTA, segment the PVAT of carotid artery plaques, extract radiomics features, and use algorithms such 
as minimal redundancy maximal relevance, recursive feature elimination, and linear discriminant analysis for feature selection and dimensionality 
reduction. Construct a machine learning model for identifying symptomatic plaques using radiomics features, traditional features (clinical + traditional 
radiological features), and a combination of radiomics and traditional features. CTA, computed tomography angiography; PVAT, perivascular adipose 
tissue.
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0.440, 0.794) in the testing set (4). The relatively higher ROC 
performance observed in our study compared to Chen et al. may 
be attributed to the fact that Chen et al. extracted PVAT pixel values 
from the surrounding adipose tissue around the maximum stenosis 
level of the carotid plaque, resulting in fewer PVAT pixel values and a 

2D image. Consequently, the performance of their RS model was 
relatively lower.

Recently, progress has been made in utilizing carotid plaque RS 
to differentiate symptomatic plaques. Xia et al. conducted a study 
on 179 patients with 219 carotid plaques, stratifying them into a 

TABLE 1 Traditional characteristics of the patient.

Characteristic
ALL 

patients
Symptomatic Asymptomatic

Univariate 
analysis

Multivariate

OR (95% CI) p value

Clinical characteristics

Age, y, mean ± SD 71.87 ± 9.63 72.38 ± 9.54 71.59 ± 9.7 0.579

No. of men, n (%) 115 (56.7) 39 (54.9) 76 (57.6) 0.717

BMI, kg/m2, mean ± SD 23.34 ± 3.12 22.8 ± 2.83 23.63 ± 3.24 0.073

Risk factors

Hypertension, n (%) 155 (76.4) 55 (77.5) 100 (75.8) 0.785

Diabetes mellitus, n (%) 72 (35.5) 28 (39.4) 44 (33.3) 0.386

Hyperlipidemia, n (%) 50 (24.6) 19 (26.8) 31 (23.5) 0.605

Smoking, n (%) 55 (27.1) 24 (33.8) 31 (23.5) 0.115

History of medications

Antihypertension 

use, n (%)

155 (76.4) 55 (77.5) 100 (75.8) 0.785

Statin use, n (%) 73 (36) 11 (15.5) 62 (47) < 0.001 4.950 (2.336, 10.492) <0.001

Antiplatelet use, n (%) 90 (44.3) 32 (45.1) 58 (43.9) 0.877

Quantitative plaque characteristics

Diameter stenosis, %, 

mean ± SD

34.31 ± 22.95 32.08 ± 21.55 35.51 ± 23.67 0.31

Lesion length, mm, mean ± 

SD

1.08 ± 7.68 1.02 ± 7.53 11.07 ± 7.78 0.462

Plaque thickness, mm, 

mean ± SD

3.45 ± 1.47 3.25 ± 1.28 3.56 ± 1.56 0.154

Remodeling index, 

mean ± SD

1.40 ± 0.25 1.43 ± 0.25 1.39 ± 0.25 0.224

Stenosis FAI, HU, 

mean ± SD

−65.29 ± 13.83 −63.02 ± 14.31 −66.51 ± 13.46 0.087

Stenosis range FAI, HU, 

mean ± SD

−66.06 ± 0.89 −63.99 ± 12.87 −67.18 ± 12.41 0.086

Quantitative plaque characteristics

Positive remodeling, n (%) 181 (89.2) 69 (97.2) 112 (84.8) 0.016 0.102 (0.016, 0.671) 0.017

Low-attenuation 

plaque, n (%)

23 (11.3) 10 (14.1) 13 (9.8) 0.366

Spotty calcification, n (%) 129 (63.5) 54 (76.1) 75 (56.8) 0.007 0.220 (0.040, 1.205) 0.081

Napkin-ring sign, n (%) 10 (4.9) 3 (4.2) 7 (5.3) 0.736

High-risk plaque, n (%) 126 (62.1) 54 (76.1) 72 (54.5) 0.003 1.839 (0.328, 10.308) 0.488

Plaque ulcer, n (%) 39 (19.2) 13 (18.3) 26 (19.7) 0.811

Plaque location(L), n (%) 100 (49.3) 40 (56.3) 60 (45.5) 0.139

Plaque Type, n (%) 0.773

Calcified plaque, n (%) 114 (56.2) 42 (59.2) 72 (54.5)

Non-calcified plaque, n (%) 14 (6.9) 4 (5.6) 10 (7.6)

Mixed plaque, n (%) 75 (36.9) 25 (35.2) 50 (37.9)

BMI, body mass index. Data are displayed as mean (SD) or number (percent).

12

https://doi.org/10.3389/fneur.2024.1340202
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Nie et al. 10.3389/fneur.2024.1340202

Frontiers in Neurology 07 frontiersin.org

FIGURE 4

Receiver operating characteristic (ROC) curves of radiomic signature in identifying symptomatic plaques in different models.

TABLE 2 Predictive ability of all radiomics models.

Model
Training cohort Testing cohort

AUC (95% CI) SPE SEN ACC AUC (95% CI) SPE SEN ACC

Bagging decision-tree 0.837 (0.775, 0.899) 0.811 0.702 0.773 0.834 (0.685, 0.982) 0.731 0.714 0.725

XGBOOST 0.79 (0.717, 0.863) 0.821 0.596 0.742 0.816 (0.675, 0.957) 0.808 0.643 0.75

Random forest 0.897 (0.85, 0.944) 0.849 0.754 0.816 0.79 (0.64, 0.94) 0.808 0.643 0.75

SVM 0.762 (0.685, 0.839) 0.774 0.614 0.718 0.83 (0.694, 0.965) 0.643 0.769 0.725

QDA 0.765 (0.686, 0.843) 0.821 0.698 0.687 0.819 (0.665, 0.972) 0.714 0.692 0.7

AUC, area under the curve.

FIGURE 5

Receiver Operating Characteristic (ROC) curves demonstrate the diagnostic performance of symptomatic plaques in different feature sets.
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TIA group and a non-TIA group according to the presence or 
absence of TIA after CTA examination (28). Their RS model for 
distinguishing the TIA group yielded a maximum AUC of 0.746 in 
the testing set. Our study shows an RS model based on carotid 
PVAT with a testing set AUC of 0.834, thus indicating superior 
diagnostic performance compared to Xia et al.’s study on a carotid 
plaque RS model. This suggests that the carotid PVAT-based RS 
model has the potential to provide additional benefits in identifying 
symptomatic plaques.

A large study showed (29) that long-term achievement of low 
LDL-C levels, as low as less than 20 mg per deciliter (<0.5 mmol 
per liter), was associated with a reduced risk of cardiovascular 
outcomes without significant safety concerns in patients with 
atherosclerotic cardiovascular and cerebrovascular disease. The 
lower proportion of statin use in the symptomatic group than in 
the asymptomatic group in this study may be due to the higher 
incidence of ischemic stroke or TIA in patients who do not receive 
statin therapy.

There was no significant difference in FAI at the narrowest 
point of the plaque and within the stenosis of the plaque between 
the two groups, which may be related to the fact that most of the 
patients in this study were elderly with an average age of 
71.87 ± 9.63 years. FAI is used to dynamically monitor vascular 
inflammation (5) by measuring the mean density of adipose tissue 
on CT to reflect the change in lipid content. The patients in this 
study have a long history of atherosclerosis, PVAT of carotid 
plaque has gone into the chronic phase, lipid fibrosis and 
microvascular remodeling occur, and the dynamic change of lipid 
content is small (11, 30), so the ability of FAI to dynamically 
monitor vascular inflammation is limited (11). At the same time, 
Serum C reactive protein (CRP) is a marker of systemic 
inflammation and is associated with an increased risk of stroke and 
unstable carotid atherosclerotic plaques (31). However, high-
sensitivity CRP is usually driven by other inflammatory conditions 
such as infection, arthritis, etc., and cannot specifically reflect the 
local inflammation of carotid atherosclerosis. PET is considered to 
be the most reliable non-invasive imaging modality for vascular 
inflammation. However, its clinical application is limited due to its 
low spatial resolution, high radiation exposure, and high cost. In 
our study, the RS of carotid PVAT was available, and the diagnostic 
efficacy of the RS model of carotid PVAT in identifying 
symptomatic plaques was 0.745. RS analysis can accurately 
capture the texture changes of PVAT and reflect the level of 
vascular inflammation.

The carotid plaque PVAT extracted in this study was extended 
2 cm above and below the center of the carotid segment bifurcation, 
with a total of 4 cm as the longitudinal measurement distance. Because 
of the vascular shear stress (32), the vast majority of extracranial 
carotid plaques were distributed at the carotid bifurcation, and the 
plaques of the cases included in this study were distributed within 
2 cm above and below the carotid bifurcation. Second, there was little 
fat distribution around the carotid artery, and the plaques of the cases 
included in this study were distributed in the range of 2 cm above and 
below the carotid bifurcation. This study referred to the method of 
extracting the proximal 4 cm PVAT of the coronary artery with peri-
coronary fat and appropriately increased the collection range of the 
PVAT of carotid plaques to ensure the accuracy of RS extraction in 
PVAT. Third, Oikonomou et al. (25) showed that perivascular FAI at 

4 cm proximal to the right coronary artery can reflect global coronary 
inflammation and predict cardiac mortality. In our study, PVAT at 
4 cm of the carotid bifurcation also has the potential to represent the 
risk of vascular inflammation at the carotid bifurcation plaque and the 
whole carotid artery segment.

This paper has the following limitations: (1) This paper adopts 
the mainstream method used in current related research to identify 
symptomatic plaques, but it lacks a gold standard. In the future, 
we aim to collect plaque samples through carotid artery stripping and 
other procedures to accurately identify culprit plaques; (2) The lack 
of external validation datasets to evaluate the diagnostic efficacy of 
machine learning models; and (3) As symptomatic and asymptomatic 
determination of plaques happens before CTA exams, it would have 
selection bias towards the model performance in the real clinical 
settings. In the next step of our research, we will conduct a prospective 
study on patients undergoing head and neck CTA to explore the 
association between PVAT imaging-based radiomics of carotid 
plaques and the occurrence of acute ischemic cerebrovascular events.

5 Conclusion

The RS model of carotid plaque PVAT, when combined with the 
traditional feature model, demonstrates a significant improvement in 
the diagnostic performance for identifying symptomatic plaques 
compared to the traditional feature model alone. This indicates that 
the RS model of carotid plaque PVAT can serve as an objective 
indicator for evaluating plaque risk, providing a basis for risk 
stratification, as well as the diagnosis and treatment of carotid 
atherosclerotic diseases.
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3Department of Radiology, Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, China, 4Precision

Health Institution, GE Healthcare, Shanghai, China

Background and purpose: This study aimed to investigate the e�cacy

of radiomics, based on non-contrast computed tomography (NCCT) and

computed tomography angiography (CTA) images, in predicting early hematoma

expansion (HE) in patients with spontaneous intracerebral hemorrhage (SICH).

Additionally, the predictive performance of these models was compared with

that of the established CTA spot sign.

Materials andmethods: A retrospective analysis was conducted usingCT images

from 182 patients with SICH. Data from the patients were divided into a training

set (145 cases) and a testing set (37 cases) using random stratified sampling.

Two radiomics models were constructed by combining quantitative features

extracted from NCCT images (the NCCT model) and CTA images (the CTA

model) using a logistic regression (LR) classifier. Additionally, a univariate LR

model based on the CTA spot sign (the spot sign model) was established. The

predictive performance of the two radiomics models and the spot sign model

was compared according to the area under the receiver operating characteristic

(ROC) curve (AUC).

Results: For the training set, the AUCs of the NCCT, CTA, and spot sign

models were 0.938, 0.904, and 0.726, respectively. Both the NCCT and CTA

models demonstrated superior predictive performance compared to the spot

sign model (all P < 0.001), with the performance of the two radiomics models

being comparable (P = 0.068). For the testing set, the AUCs of the NCCT, CTA,

and spot sign models were 0.925, 0.873, and 0.720, respectively, with only the

NCCT model exhibiting significantly greater predictive value than the spot sign

model (P = 0.041).

Conclusion: Radiomics models based on NCCT and CTA images e�ectively

predicted HE in patients with SICH. The predictive performances of the NCCT

and CTA models were similar, with the NCCT model outperforming the spot

sign model. These findings suggest that this approach has the potential to

reduce the need for CTA examinations, thereby reducing radiation exposure

and the use of contrast agents in future practice for the purpose of predicting

hematoma expansion.

KEYWORDS

intracerebral hemorrhage, hematoma expansion, radiomics, computed tomography,

spot sign
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Introduction

Spontaneous intracerebral hemorrhage (SICH) is a prevalent

subtype of stroke, accounting for∼10%−15% of all strokes. Unlike

ischemic stroke, SICH leads to more severe disability and higher

mortality rates, with nearly 40% mortality within the first month

(1). Early hematoma expansion (HE) occurs in ∼30% of SICH

patients and is strongly associated with unfavorable outcomes (2).

Studies have shown that, for every 1mL increase in bleeding,

the risk of death or disability increases by ∼5% (3). Therefore,

the accurate identification of patients at risk of HE is crucial in

clinical settings.

Several imaging markers have been proven to serve as reliable

predictors for determining HE: these include an irregular shape,

the island sign, hypodensities within the hematoma, the blend

sign, the black hole sign, and the swirl sign on non-contrast

computed tomography (NCCT), as well as the spot sign on

computed tomography angiography (CTA) (4–10). In particular,

the CTA spot sign has been widely adopted as a benchmark for

prediction of HE in clinical practice. However, these markers

are susceptible to subjective interpretation influenced by the

researcher’s experience, and many lack sufficient sensitivity. For

example, despite the promising performance of the CTA spot sign,

the pooled sensitivity values reported in three previous meta-

analyses are only 0.53, 0.62, and 0.57 (11–13). In other words, these

predictors are suboptimal for accurately predicting HE. Therefore,

in this study, we aimed to explore a more sensitive, objective, and

convenient approach.

Radiomics, an emerging field of research, utilizes data

mining algorithms to extract quantitative features from

medical images (14). It has garnered significant attention

in oncological investigations (15, 16). Recently, researchers

have explored the potential of radiomics in predicting the

expansion of intracerebral hemorrhage (17–19). Their studies

have demonstrated the effectiveness of radiomics models in

predicting HE, surpassing conventional radiological and clinical

models. However, these previous studies have focused solely

on NCCT data. In clinical practice, multimodal CT images,

such as CTA images, are available for patient evaluation. CTA

images not only reveal hidden vascular information within the

hemorrhage but also enhance changes in the image construct.

Considering these advantages, we hypothesized that a radiomics

model based on CTA images would outperform models based

on other image types. Therefore, in this study, we aimed to

develop separate radiomics models based on NCCT and CTA

images to predict HE. Additionally, we aimed to evaluate their

predictive performance by comparing them with the established

spot sign.

Abbreviations: AUC, area under the curve; CTA, computed tomography

angiography; HE, hematoma expansion; ICC, intraclass correlation

coe�cient; LASSO, least absolute shrinkage and selection operation;

LR, logistic regression; NCCT, non-contrast computed tomography;

ROC, receiver operating characteristic; SICH, spontaneous intracerebral

hemorrhage; VOI, volume of interest.

FIGURE 1

Flowchart of patient enrolment and exclusion criteria.

Materials and methods

Patients

This retrospective study enrolled patients with SICH who

were admitted to Northern Jiangsu People’s Hospital via the

emergency department between December 2015 and December

2020. Patients eligible to participate were those with SICH aged 18

years or older who underwent initial NCCT followed by cranial

CTA within 6 h of symptom onset and follow-up NCCT within

36 h. Patients with traumatic brain injury, secondary intracerebral

hemorrhage resulting from an aneurysm, vascular malformation,

brain tumor, or hemorrhagic transformation of infarction, as well

as those with infratentorial hematoma or primary intraventricular

hemorrhage, those who underwent surgical intervention before

follow-up NCCT, and those with CT images with artifact, were

excluded from the study. A flowchart illustrating the patient

selection process is shown in Figure 1.

This retrospective study was approved by the hospital’s ethics

committee, and the requirement for informed consent was waived.

Image acquisition

Image acquisition was performed using a 64-row, 128-slice

scanner (Optima CT660, GE Healthcare, Chicago, IL, USA) and

an 80-row, 160-slice scanner (uCT 780, UIH, Shanghai, China).

The scanning protocols for the Optima CT660 scanner consisted

of a tube voltage of 120kV, automatic tube current, a collimation

width of 64mm, a scanning field of 250mm, and slice thickness

and interslice spacing of 5mm and 0.625mm for NCCT and CTA,

respectively. For the uCT 780 scanner, the scanning protocols

consisted of a tube voltage of 120kV, automatic tube current, a

collimation width of 40mm, a scanning field of 300mm, and slice

thickness and interslice spacing of 5mm and 0.5mm for NCCT and

CTA, respectively. The scanning range extended from the base to

the top of the skull. Test bolus technology was utilized to determine
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the appropriate CTA acquisition time. During CTA, 50–70mL of

iodixanol (Xiansu, Yangtze River Pharmaceutical Co, Ltd, Jiangsu,

China; 320mg I/mL) was intravenously injected at a rate of 5

mL/s via a power injector through the antecubital vein. All images

were transferred to the post-processing workstation AW4.7 (GE

Healthcare, USA).

Radiological analysis

Automated hematoma recognition was performed on initial

and follow-up CT images using the Stroke VCAR software package

on the AW4.7 workstation; this assisted in segmenting hematoma

areas and measuring hematoma volume. In this study, HE was

defined as an increase in hematoma volume of ≥ 6mL or

≥ 33% on follow-up CT compared to initial CT (20). Based

on this criterion, all patients were categorized as either HE or

non-HE. For SICH patients with intraventricular hemorrhage

extension, the classification was independently verified by two

physicians, one with 3 years and the other with 15 years of

experience in radiodiagnosis, and their determinations were found

to be consistent.

To evaluate the presence of the CTA spot sign in CTA

images, two other neuroimaging diagnostic physicians, one with

2 years and the other with 20 years of experience, conducted

independent assessments. Any discrepancies were resolved through

joint discussion to reach a consensus. Both readers were blinded to

all clinical information. Subsequently, a binary logistic regression

(LR) model for the CTA spot sign (the spot sign model) was

developed. The assessment included evaluating the location, shape,

intraventricular hemorrhage extension, swirl sign, blend sign,

black hole sign, and island sign, all of which were documented.

Hematoma locations were classified as lobar or deep (involving the

basal ganglia and/or thalamus) based on the location of the main

body of the hematoma. The shape of the hematoma was recorded

as either irregular or regular (5).

Radiomics analysis

Lesion segmentation
To mitigate the influence of varying slice thickness and

interslice spacing across different CT scanners, as well as the

distinctions between CTA and NCCT images, all original CTA

images were reconstructed with a consistent slice thickness and

interslice spacing of 5mm, matching that of the NCCT images.

Subsequently, both the NCCT and the reconstructed CTA images

for the enrolled patients were exported in DICOM format and

transferred to the DARWIN intelligent research platform (Yizhun

Medical AI technology, Beijing, China, https://arxiv.org/abs/2009.

00908). A volume of interest (VOI) for the hematoma wasmanually

delineated and segmented layer by layer in the NCCT images,

following the boundary of the hematoma from top to bottom.

This delineation was then applied to the CTA images, with

necessary adjustments made to derive the tailored VOI (Figure 2).

Segmentation of the hematoma VOIs was independently carried

out by the aforementioned two neuroimaging diagnosticians.

Feature extraction and selection

A total of 120 quantitative features were extracted from

each VOI in the original images using the pyradiomics package

(http://pyradiomics.readthedocs.io/en/latest/index.html). In

addition, seven filters were employed to transform the original

images to capture additional information. These filters included

the exponential filter, gradient filter, local binary pattern filter,

logarithm filter, square filter, square root filter, and wavelet filter.

Collectively, these processes resulted in the extraction of 1,688

candidate features. The candidate features were then categorized

into three groups based on their relevance to (1) shape, (2) first-

order statistics (histogram features), and (3) second-order statistics

(texture features). The intraclass correlation coefficient (ICC) was

computed to assess the reproducibility of feature extraction. Only

features with an ICC >0.75 were included for further analysis.

To address the issue of redundant features, ANOVA F-test

statistic was employed to select the top 100 features. Prior to

feature screening, all features were standardized using Z-scores.

The selected features were sorted based on their F-values, with

higher values indicating lower p-values. Subsequently, the least

absolute shrinkage and selection operation (LASSO) LR algorithm

was employed to further reduce data redundancy and identify stable

features through the use of non-zero coefficients. To ensure an

unbiased comparison between the two models, an equal number

of features were also selected using LASSO. Considering the

relationship between the sample size and the number of features,

we set this number at 10 on empirical grounds.

Model construction

To ensure the integrity of the data distribution and minimize

the introduction of bias during data processing, data from all

patients were randomly stratified into a training set and a testing

set in a ratio of 4:1. This approach maintained the consistency of

data distribution between the two sets.

The features selected from both NCCT and CTA images were

utilized to train the radiomics prediction models in conjunction

with the widely used and effective LR machine learning classifier

(21). The prediction capabilities of the constructed models were

subsequently evaluated using an independent testing set. The

predictive performances of the two radiomics models (the NCCT

model and CTA model) were then compared with that of the spot

sign model.

Statistical analysis

An independent samples t-test or Mann–Whitney U-test was

employed for continuous variables, and the chi-squared test was

adopted for categorical variables. Continuous variables are reported

in the form of mean± standard deviation, and categorical variables

are summarized in the form of count (percentage). The predictive

performance of each model in estimating hematoma enlargement

was evaluated via receiver operating characteristic (ROC) curve

analysis. The area under the curve (AUC) values of the ROC curves
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FIGURE 2

Schematic diagram of hematoma segmentation: (A) NCCT image; (B) reconstructed CTA image of the same patient. CTA, computed tomography

angiography; NCCT, non-contrast computed tomography.

were compared using the DeLong test. Statistical significance was

determined when the bilateral p < 0.05. All statistical analyses

were conducted using the SPSS software package (version 25.0),

and the MedCalc software package (version 18.11.3) was utilized

to generate and compare the ROC curves.

Results

Patient characteristics

Following the aforementioned criteria, 182 patients diagnosed

with SICH were included in this study. Based on the follow-up CT,

these patients were categorized into the HE group (67 cases) or the

non-HE group (115 cases). Table 1 presents the statistical analysis

of relevant factors, revealing a significant difference between theHE

group (4 cases) and the non-HE group (0 cases) in terms of the

pre-onset use of anticoagulants (warfarin) (P = 0.017). However,

no significant differences between the two groups were observed

in terms of gender, age, systolic blood pressure, diastolic blood

pressure, or the use of antiplatelet drugs (aspirin) (all P > 0.05).

Radiological characteristics and the spot
sign model

Statistically significant differences between the HE and non-HE

groups were observed in the initial volume, shape, swirl sign, blend

sign, black hole sign, island sign, and CTA spot sign (P < 0.05).

However, there was no significant disparity between the two groups

in time from symptom onset to baseline CT (P > 0.05) (Table 1).

A random stratified sampling approach was employed to divide

the data from the 182 patients into a training set (145 cases) and a

testing set (37 cases). These sets were then submitted independently

to univariate analysis, and no significant differences in radiological

characteristics between them were found (all P > 0.05). In both

the training set and the testing set, the HE group displayed larger

initial volume and a higher likelihood of exhibiting the blend sign

and the CTA spot sign (all P < 0.05). In the training set, irregular

shape (P = 0.015), the swirl sign (P = 0.046), and the island sign

(P = 0.042) were associated with hematoma enlargement. In the

testing set, there was a significant difference between the two groups

in terms of location of the hematoma (P = 0.038). However, when

hematoma location and the black hole sign were examined within

their respective sets, no statistically significant differences were

found between the two groups within either the training set or the

testing set (all P > 0.05). Detailed results are presented in Table 2.

A binary LR model was constructed to analyze the CTA spot

sign as a predictor of HE. In the training set, the AUC, sensitivity,

specificity, and accuracy were 0.726, 0.528, 0.924, and 0.779,

respectively. In the testing set, the AUC, sensitivity, specificity, and

accuracy were 0.720, 0.571, 0.870, and 0.757, respectively (Table 3).

Construction and validation of radiomics
models

Following the aforementioned screening methods, 10 optimal

radiomics features were extracted from the NCCT and CTA images

(Figure 3 illustrates feature selection using LASSO regression). The

remaining features were employed to construct radiomics models

in combination with the LR machine learning classifier, using a

five-fold cross-validation approach (Figure 4). In the training set,

the NCCT model achieved an AUC of 0.938, sensitivity of 0.849,

specificity of 0.924, and accuracy of 0.897. Similarly, the CTAmodel

yielded an AUC of 0.904, sensitivity of 0.774, specificity of 0.902,

and accuracy of 0.855. In the testing set, the NCCT model achieved
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TABLE 1 Comparison of demographic, clinical, and baseline radiological characteristics between the HE group and the non-HE group.

HE group (n = 67) non-HE group (n = 115) p-value

Gender (male/female) 45/22 73/42 0.615#

Age (y) 60.6± 13.0 59.1± 13.5 0.466∗

Systolic blood pressure (mmHg) 160.2± 25.2 160.3± 24.5 0.968∗

Diastolic blood pressure (mmHg) 91.4± 16.6 90.4± 14.1 0.685∗

Use of anticoagulants (warfarin) 4 (6.0) 0 (0) 0.017
#

Symptom onset to baseline CT (h) 3.17± 1.28 3.47± 1.37 0.226∗

Use of antiplatelets (aspirin) 5 (7.5) 3 (2.6) 0.244#

Location (deep/lobe) 39/28 82/33 0.071#

Intraventricular hemorrhage extension 15 (22.4) 20 (22.1) 0.409#

Initial volume (mL) 43.3± 24.9 27.5± 17.1 <0.001
∗

Shape, irregular 38 (56.7) 42 (36.5) 0.008
#

Swirl sign 26 (38.8) 24 (20.9) 0.009
#

Blend sign 24 (35.8) 15 (13.0) <0.001
#

Black hole sign 9 (13.4) 5 (4.3) 0.027
#

Island sign 14 (20.9) 9 (7.8) 0.010
#

CTA spot sign 36 (53.7) 10 (8.7) <0.001
#

#Chi-squared test, with percentages in parentheses. ∗Independent samples t-test or Mann–Whitney U-test; data reported are the mean ± standard deviation. Boldface indicates statistical

significance. HE, hematoma expansion.

TABLE 2 Comparison of radiological characteristics between the HE group and the non-HE group in the training and testing sets.

Training set (n = 145) Testing set (n = 37) p-value

HE (n = 53) non-HE (n = 92) p-value HE (n = 14) non-HE (n = 23) p-value

Location (deep/lobe) 34/19 65/27 0.418# 5/9 17/6 0.038
# 0.311#

Intraventricular

hemorrhage extension

11 (20.8) 16 (17.4) 0.616# 4 (28.6) 4 (17.4) 0.445# 0.679#

Initial volume (mL) 42.6± 25.7 26.6± 16.1 <0.001
∗ 45.9± 22.1 31.1± 20.8 0.048

∗ 0.245∗

Shape, irregular 30 (56.6) 33 (35.9) 0.015
# 8 (57.1) 9 (39.1) 0.328# 0.785#

Swirl sign 21 (39.6) 22 (23.9) 0.046
# 5 (35.7) 2 (8.7) 0.080# 0.192#

Blend sign 18 (34.0) 13 (14.1) 0.005
# 6 (42.9) 2 (8.7) 0.035

# 0.974#

Black hole sign 6 (11.3) 4 (4.3) 0.209# 3 (21.4) 1 (4.3) 0.142# 0.651#

Island sign 10 (18.9) 7 (7.6) 0.042
# 4 (28.6) 2 (8.7) 0.173# 0.648#

CTA spot sign 28 (52.8) 7 (7.6) <0.001
# 8 (57.1) 3 (13.0) 0.008

# 0.485#

#Chi-squared test, with percentages in parentheses. ∗Independent samples t-test or Mann–Whitney U test; data reported are the mean± standard deviation. Boldface test statistical significance.

CTA, computed tomography angiography; HE, hematoma expansion.

an AUC of 0.925, sensitivity of 0.786, specificity of 0.913, and

accuracy of 0.865. Similarly, the CTA model resulted in an AUC of

0.873, sensitivity of 0.714, specificity of 0.913, and accuracy of 0.838

(Table 3).

Comparison of the models on predictive
performance

As illustrated in Table 4 and Figure 5, for the training set, both

the NCCTmodel and the CTAmodel resulted in significantly larger

AUCs compared to the spot sign model (all P < 0.001), while no

statistically significant difference was observed between the NCCT

model and the CTA model (P = 0.068). For the testing set, the

NCCT model resulted in a larger AUC than the spot sign model

(P = 0.041), while no significant difference was found between the

NCCT model and the CTA model, or between the CTA model and

the spot signmodel (all P> 0.05). Figure 6 showcases a comparison

of two SICH cases (with and without the spot sign). The radiomics

models could successfully predict HE, even in cases where the spot

sign was absent.

Discussion

HE is a dynamic process influenced by active bleeding and

serves as an important variable associated with clinical prognosis.

Frontiers inNeurology 05 frontiersin.org21

https://doi.org/10.3389/fneur.2024.1332509
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Li et al. 10.3389/fneur.2024.1332509

TABLE 3 Predictive performance of three models for HE in the training and testing sets.

AUC (95% CI) Sensitivity Specificity Accuracy

Training set Spot sign model 0.726 (0.646, 0.797) 0.528 0.924 0.779

NCCT model 0.938 (0.886, 0.971) 0.849 0.924 0.897

CTA model 0.904 (0.844, 0.947) 0.774 0.902 0.855

Testing set Spot sign model 0.720 (0.549, 0.855) 0.571 0.870 0.757

NCCT model 0.925 (0.790, 0.986) 0.786 0.913 0.865

CTA model 0.873 (0.722, 0.959) 0.714 0.913 0.838

AUC, area under the curve; CI, confidence interval; CTA, computed tomography angiography; HE, hematoma expansion; NCCT, non-contrast computed tomography.

FIGURE 3

Feature selection using LASSO regression: the loss path of LASSO (A, C), and the regression coe�cients of LASSO (B, D), for (A, B) the NCCT model

and (C, D) the CTA model. CTA, computed tomography angiography; LASSO, least absolute shrinkage and selection operation; NCCT, non-contrast

computed tomography.

In this study, we developed two radiomics models using NCCT and

CTA images to anticipate HE and examined their performance in

comparison to the CTA spot sign model. Our findings indicated

that both radiomics models were effectively predictors of HE,

demonstrating comparable performance. However, it is noteworthy

that the NCCT radiomics model outperformed the traditional spot

sign model in its predictive capabilities.

Initially, quantitative CT densitometry of hematoma through

NCCT was utilized to predict ICH enlargement (22). However, this

method provided limited information. Subsequently, dual-energy

CT analysis of iodine concentration within the hematoma emerged

as an improved approach for predicting HE. This analysis also led

to the proposal of diffused leakage, indicating that the extravasation

of contrast agents was not solely responsible for the aggregation

observed within the hematoma (23). The advent of texture analysis

and radiomics feature analysis in neuroimaging further contributed

to the field. For instance, texture analysis parameters such as

variance and uniformity demonstrated the ability to independently

forecast HE following Laplacian of Gaussian operator filtering

processing (24). Other researchers have subsequently demonstrated

the predictive value of radiomics features for hematoma growth as

well (17, 18).

Consistent with previous research findings (10, 25), our

results reaffirmed the CTA spot sign as a well-established

imaging marker for independently predicting HE in patients

with ICH, demonstrating higher specificity than sensitivity.

The appearance of the spot sign is believed to stem from

contrast extravasation caused by ongoing bleeding from
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FIGURE 4

The remaining features of LASSO regression screening and the ranking of weight coe�cients output by the corresponding LR classifier under (A) the

NCCT model, (B) the CTA model. CTA, computed tomography angiography; LASSO, least absolute shrinkage and selection operation; LR, logistic

regression; NCCT, non-contrast computed tomography.

TABLE 4 Comparison of the three models on predictive performance for

hematoma expansion.

Training set Testing set

NCCT model vs. CTA model 0.068 0.440

NCCT model vs. Spot sign model <0.001 0.041

CTA model vs. Spot sign model <0.001 0.182

Boldface indicates statistical significance. CTA, computed tomography angiography; NCCT,

non-contrast computed tomography.

ruptured blood vessels (26). Meta-analyses have indicated

that the sensitivity of the spot sign is ∼53% (11), highlighting

the fact that a significant portion of expanded hematomas

may not exhibit this characteristic. Our study indicated that

the radiomics models exhibited superior sensitivity to the

spot sign.

In contrast to previous studies (17–19), our study utilized

multimodal CT images and compared these with the spot

sign. Prior research has demonstrated the superior predictive

performance of the spot sign compared to NCCT signs (27),

such as the blend sign. Hence, our initial assumption was that

the CTA model would outperform the NCCT model. However,

our findings contradicted this hypothesis. We speculate that these

results may be attributed to the infiltration of contrast medium

into hematomas during active bleeding, which occurs during

CTA scans. Comparatively, the diffusion of contrast medium

within the expanded hematoma weakens the disparities in CT

values among each voxel, as well as the discrepancies in certain

texture features. Consequently, the radiomics of the expanded
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FIGURE 5

Comparison of ROC curves between the two radiomics models and the spot sign model for (A) the training set and (B) testing set. CTA, computed

tomography angiography; NCCT, non-contrast computed tomography; ROC, receiver operating characteristic.

FIGURE 6

A comparison of two spontaneous intracerebral hemorrhage cases (with and without the spot sign) according to radiomics models. Case 1 with CTA

spot sign, a 49-year-old woman: (A) initial NCCT; (B) CTA showed spot sign (white arrow); (C) follow-up CT revealed HE. Case 2 without CTA spot

sign, a 55-year-old man: (D) initial NCCT; (E) CTA did not show spot sign; (F) follow-up CT still revealed HE. Both radiomics models provided

successful predictions for these cases. HE, hematoma expansion; NCCT, non-contrast computed tomography; CTA, computed tomography

angiography.
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hematoma exhibited similarities to those of stable hematomas in

the CTA model.

This study has elucidated the value of radiomics as a predictive

tool for HE, particularly in the significant number of patients

who lack the spot sign. Additionally, radiomics models offered

objectivity and convenience, unlike the spot sign, determination

of which may be influenced by experiential bias. Integrating

radiomics into clinical practice, specifically by utilizing NCCT-

based radiomics models, could yield commendable predictive

efficacy for HE, potentially reducing the need for unnecessary CTA

examinations. This approach could consequentlymitigate radiation

exposure and minimize contrast agent usage.

Several limitations should be noted with respect to our study.

First, certain patients were excluded due to either having undergone

surgical treatment before follow-up CT or displaying motion

artifacts. This exclusion could potentially have introduced biases

into the results. Second, although manual segmentation of VOIs

showed good reproducibility, automatic segmentation techniques

may offer increased speed and accuracy, especially for larger sample

sizes. Third, our sample size was limited due to the relatively

small number of patients who underwent concurrent NCCT and

CTA examinations, necessitating further validation in multi-center

studies with larger cohorts.

Conclusion

This study validated the predictive capability of radiomics

models utilizing NCCT and CTA images for SICH expansion.

Remarkably, our NCCT radiomics model exhibited superior

performance compared to the spot sign model and was comparable

to our CTA radiomics model. This has implications in terms

of reducing the need for CTA examinations, thereby mitigating

radiation exposure and contrast agent utilization. We firmly

believe that radiomics analysis will play a crucial role in future

clinical practice, aiding in treatment decisions for high-risk patients

susceptible to HE.
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repertoire is associated with the 
outcomes of acute spontaneous 
intracerebral hemorrhage
Rui Zhang 1,2, Li Wang 1, Jiapo Zhang 2, Xiufang Zhang 2 and 
Peng Wang 1*
1 Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 
China, 2 Department of Emergency Medicine, Xiang’an Hospital of Xiamen University, School of 
Medicine, Xiamen University, Xiamen, Fujian, China

Systematic immune responses have been identified in patients with acute 
spontaneous intracerebral hemorrhage (ICH). T cells have been established to 
participate in central nervous system damage and repair following brain injury. 
However, their contribution to the prognosis of patients with ICH remains to 
be elucidated. In this study, peripheral blood mononuclear cells (PBMCs) were 
collected from 45 patients with acute spontaneous ICH (<24  h from symptom 
onset). Our results exposed significant negative correlations between hematoma 
volume/white blood cell (WBC) density and Glasgow Coma Scale (GCS) score. 
Contrastingly, lymphocyte density was negatively correlated with hematoma 
volume and positively correlated with GCS score. Moreover, flow cytometry 
determined that ICH activated T cells despite their proportion being lower in 
blood. Afterward, immune repertoire sequencing (IR-seq) revealed a significant 
decrease in VJ, VDJ usage, and TCR clonotypes in ICH patients. Finally, variations 
in the complementarity-determining region 3 (CDR3) amino acid (aa) were also 
detected in ICH patients. This study reveals the occurrence of peripheral T-cell 
diminishment and activation in response to acute hematoma. ICH lesion also 
alters the T cell receptor (TCR) immune repertoire, which is associated with 
patient prognosis.
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Introduction

Acute spontaneous intracerebral hemorrhage (ICH) is a prevalent type of stroke 
(10%–15% of all strokes) that afflicts approximately 2 million people worldwide annually (1). 
It elevates intracranial pressure and induces neurologic deficits, leading to high morbidity and 
mortality due to limited therapeutic approaches, and only one-fifth of survivors regain their 
independence after 6 months (2). Accumulating evidence suggests that surgical removal of the 
blood clot does not benefit patients (2, 3). Consequently, there is an urgent need to discover 
novel approaches in order to enhance functional recovery.

Despite being “immune privileged,” T cells are implicated in cognitive and social brain 
function under both physiological and pathological conditions (4). Hematoma formation 
disrupts the blood–brain barrier (BBB), resulting in inflammatory responses and lymphocyte 
extravasation from peripheral blood into the central nervous system (CNS), eventually 
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eliciting brain injury (5). Compelling evidence indicates that the 
activity of infiltrating T cells unequivocally contributes to the 
progression of neuroinflammation following CNS injury (6). However, 
the potential mechanisms underlying the infiltration and role of T 
cells in ICH are currently underexplored. Recent studies present two 
conflicting hypotheses (beneficial or harmful) regarding the effect of 
T cells after CNS injury, potentially attributed to the type of infiltrating 
T cells and the stage of the disease (5, 7, 8).

As is well documented, the levels of various T cell subsets 
(including regulatory T cells and helper T 17 cells) and cytokines 
(including IL-6, IL-17, IL-23, TNF-α, IL-4, IL-10, and TGF-β) are 
higher in the peripheral blood of ICH patients (9). However, the 
crosstalk between T cells, cytokines, and clinical outcomes in ICH 
patients remains elusive. The origin and type of T cells can 
be identified via T cell receptor (TCR) immune repertoire sequencing 
(IR-seq) using next-generation sequencing (NSG) (10). TCR is 
composed of variable (V), diversity (D), joining (J), and constant (C) 
domains, wherein the area from the terminus of the V domain to the 
beginning of the J domain is referred to as the complementarity-
determining region 3 (CDR3) (11). CDR3 is a critical area that 
recognizes and binds specific antigens, thereby determining TCR 
specificity and clonotype (12, 13). Our previous studies inferred that 
T cells can sense external stimuli and preserve endogenous 
homeostasis, leading to the reconstitution of the TCR repertoire 
under disease status (14–16). Nevertheless, fluctuations in the TCR 
repertoire and its association with outcomes in ICH have not been 
elucidated so far.

According to the findings of previous studies, we hypothesized an 
essential evolution of the TCR repertoire in response to ICH-induced 
immune abnormalities. In the present study, the correlation between 
the total number of different peripheral blood cells and hematoma 
volume/Glasgow Coma Scale (GCS) score was initially assessed. 
Briefly, peripheral blood mononuclear cells (PBMCs) from patients 
with ICH and healthy controls were collected to measure the T cell 
state via flow cytometry. Then, NGS was utilized to monitor the profile 
of the TCR repertoire in ICH-associated PBMCs within 24 h from 
symptom onset. Our work identified a shift in the TCR repertoire in 
ICH, which is closely associated with patient prognosis.

Materials and methods

Subjects

This study belongs to basic experimental research. A total of 45 
patients (26 male and 19 female; mean age = 59.9 ± 12.4 years) diagnosed 
with acute spontaneous ICH (<24 h from symptom onset) were 
admitted to the Department of Emergency Medicine, Xiang’an Hospital 
of Xiamen University from May 2021 to May 2022. All patients 
underwent head CT scan (Supplementary Figure S1) and GCS 
evaluation within 6 h of hospital admission. Exclusion criteria were (a) 
non-parenchymal hemorrhages (isolated subarachnoid hemorrhage, 
epidural or subdural hematoma), (b) ICH attributed to a clearly defined 
cause (trauma, structural vascular lesions, neoplasms, vasculitis, 
infection), (c) unavailable head CT scan within 6 h, (d) prior 
administration of drugs or surgical intervention before hospital 
admission, (e) infectious, autoimmune and chronic disease. The volume 
of the hematoma was calculated as previously described using CT 

images by two experienced neurologists (17). A major proportion 
(>90%) of patients belong to hypertension with basal ganglia hematoma. 
For biological experiments, the samples were randomly selected from 
these patients. Additionally, 10 healthy individuals (5 males and 5 
females; mean age = 60.2 ± 7.8 years) without clinical signs of ICH were 
included as controls. The study protocol was approved by the 
Institutional Ethical Commission for the School of Medicine at Xiamen 
University. Written informed consent was obtained from all participants 
in accordance with the principles of the Declaration of Helsinki.

PBMCs collection and flow cytometry

Human blood samples were collected in EDTA-treated 
anticoagulant tubes from ICH patients within 24 h after ICH onset. 
For PBMC isolation, blood and Ficoll (Solarbio Life Sciences, Beijing, 
China) were mixed (volume ratio 1:1) and centrifuged at 1,000 g for 
30 min. Then, the isolated cells were washed 3 times, followed by 
staining with fluorescently conjugated antibodies against FITC-CD3 
(clone: OKT3) and PE-CD38 (clone: HIT2) from BioLegend. Lastly, 
the stained cells were examined using a BD Aria III machine and 
analyzed with FlowJo software 10.6.2 version (TreeStar).

Immune repertoire sequencing and data 
analysis

Total RNA was isolated from PBMCs using a SPARKeasy RNA 
Extraction Kit (Sparkiade Biotechnology Co., Ltd., Shandong, China) 
according to the manufacturer’s specifications. A Transcriptor First 
Strand cDNA Synthesis Kit (LABLEAD, Beijing, China) was employed 
to reverse-transcribe RNA to cDNA using a T1000 Thermal Cycler 
(Bio-Rad Inc., Hercules, CA). For TCR immune repertoire library 
construction, a two-round nested amplicon PCR was performed using 
specific primers as previously described. Purified amplicons were 
paired-end sequenced (PE150) on the Illumina HiSeq X Ten platform 
(Illumina, San Diego, CA).

For immune repertoire data analysis, Blast Plus was utilized to 
identify TCR β chain V, D, and J genes in each sequence based on the 
TCR reference genome sourced from the International 
Immunogenetics Information System (IMGT)/GeneDB database. 
VDJmatch 1.2.2, VDJtools 1.2.1 package and VDJdb were used to 
identify the usage and clonotype of V, D, and J genes. The motif of 
CDR3 aa was identified using the ggseqlogo 0.1 package.

Statistical analysis

Statistical analyses were conducted using Prism 8.0 software 
(GraphPad Software), and data were presented as means ± standard 
deviations (SD). For immune repertoire data, a normality check has 
been done using Shapiro–Wilk test. The results showed that immune 
repertoire data (frequency, clonotypes, Chao1 and Gini coefficient) 
followed normal distribution. The two-tailed unpaired Student’s 
t-test was used for the comparison of two independent groups. 
Correlation analysis was performed using Spearman’s rank 
correlation test. p values less than 0.05 were considered 
statistically significant.
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Results

Acute spontaneous ICH reduces T-cell 
abundance in PBMCs

Emerging evidence supports the notion that the hematoma 
volume reflects the severity and the prognosis of ICH. Indeed, our 
results demonstrated a negative correlation between GCS score and 
hematoma volume (Figure  1A). Interestingly, the GCS score was 
negatively correlated with the total count of WBC/neutrophils 
(Figures  1B,C) and positively correlated with lymphocyte counts 
(Figure  1D) in ICH-associated PBMCs. Similarly, a negative 
correlation was identified between hematoma volume and the 
lymphocyte count (Figure 1E). However, the total number of other cell 
subsets was not associated with GCS score or hematoma volume 
(Supplementary Figure S2). Moreover, flow cytometry determined a 
substantial decrease in the proportion of T cells and an increase in that 
of activated T cells (Figures 1F,G).

The patterns of V, D, and J genes in ICH

PBMC IR-seq from 10 control and 10 ICH patients were used to 
detect the TCR repertoire, yielding 4.35 × 106~7.93 × 106 productively 
TCR β chain blast reads per sample, with matching rates within the 
range of 65.03%~90.34% (Supplementary Table S1). A total of 52~58 V 
genes and 13~14 J genes were identified across all samples. Generally, 
the type and top usages of V/J were similar between the two groups 
(Figures 2A,B). On the other hand, significant differences were noted 
in the frequency of TRBV6-2, TRBV5-8, and TRBV6-9 (Figures 2C,D). 
Besides, the composition of paired VJ and VDJ usages was also 

analyzed. A total of 535~618 VJ usages and 821~1,107 VDJ usages 
were detected across all samples. Importantly, ICH significantly 
limited the frequency of several VJ and VDJ usages (Figures 2E,F). 
While a total of 32,123~76,735 CDR3 aa were identified, few CDR3 aa 
frequencies were significantly different between the control and ICH 
groups (Figure 2G).

ICH decreases the diversity of the T cell 
immune repertoire

The types of CDR3aa clonotype represent the diversity of the TCR 
immune repertoire. Of note, ICH markedly decreased the clonotype 
of V, J, VJ, VDJ, and CDR3aa despite their usage frequencies being 
comparable (Figures 3A–E). Subsequently, multiple parameters were 
used to evaluate the richness and diversity of the TCR immune 
repertoire. Chao1 index and Gini coefficient indicated a lower CDR3 
aa abundance in ICH-associated PBMCs (Figures 3F–H). Likewise, 
Hill analysis, Rarefaction analysis, and Rank-Abundance analysis also 
identified a lower diversity of TCR clonotypes in PBMCs from ICH 
patients (Figures 3I–K). Furthermore, similar CDR3aa were clustered 
to compare their expression between the two groups. As anticipated, 
there was a significantly sparse distribution in the ICH group 
(Figure 3L).

TCR diversity is associated with the 
outcome of ICH

Principal component analysis revealed that ICH resulted in a 
significantly different CDR3 aa profile characterized by a 

FIGURE 1

ICH leads to abnormal peripheral T-cell responses. (A) Correlation analysis between GCS score and hematoma volume. n  =  38. (B–D) Correlation 
analysis between the count of WBCs/neutrophils/lymphocytes and GCS score. n  =  45. (E) Correlation analysis between the lymphocyte count and 
hematoma volume. n  =  45. (F) Representative flow cytometry image of CD3-positive cells and the expression levels of CD3-gated CD38. n  =  8. (G) The 
percentage and CD38 fluorescence intensities of T cells. Data represent the results of three to five independent experiments. **p  <  0.01.
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centralized distribution, signaling aberrant composition of CDR3 
aa clonotypes (Figure 4A). Noteworthily, a substantial increase in 
CDR3 aa length was found after ICH, although the usages of V 
and J genes were similar across different CDR3 aa lengths 
(Figures 4B,C). Furthermore, the specific motif in high-frequency 
CDR3 aa (top  50%) was examined. Of note, a significantly 
different CDR3 motif was identified in the ICH group (Figure 4D). 
However, the proportion of high-frequency CDR3 aa was 
comparable between the two groups (Supplementary Figure S3). 
To investigate the correlation between the profile of CDR3 aa and 
outcomes of acute spontaneous ICH, correlation analyses of 
clonotype or chao1 of CDR3 aa and GCS score or hematoma 
volume were executed. On the one hand, a significant positive 
correlation was observed between CDR3 aa diversity and GCS 
score (Figures 5A,B). On the other hand, a negative correlation 
was identified between CDR3 aa diversity and hematoma volume 

(Figures  5C,D). These results collectively indicated that TCR 
diversity is a potential marker for assessing ICH prognosis.

Discussion

The CNS parenchyma is considered a lymphocyte-free 
organ, but T cells are found in the meninges and have been 
speculated to influence brain function. Emerging evidence 
insinuates that T cells extravasate from blood vessels into CNS 
through a chemokine gradient after ICH, similar to the mechanism 
by which they infiltrate peripheral tissues. Nonetheless, the precise 
role of T cells in brain function and recovery remains unknown. 
Earlier studies evinced that the TCR immune repertoire plays a 
pivotal role in monitoring the immune microenvironment. 
Accordingly, the identification of the TCR immune repertoire 

FIGURE 2

The usage of V gene, J gene and CDR3 aa. (A) The distribution of the top 10  V and J genes. n  =  10. (B) Heatmaps of hierarchical clustering of V and J 
gene. n  =  10. (C,D) Volcano plots of frequency of the V and J genes. n  =  10. (E–G) Volcano plots of frequency of VJ combinations, VDJ combinations, 
and CDR3 aa. n  =  10. Data represent the results of three to five independent experiments.
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offers a strategy to track alterations in the peripheral immune 
microenvironment in ICH.

Herein, the immune response in ICH-associated blood was 
evaluated. The current study identified a significant correlation 
between the lymphocyte count and symptoms after the onset of ICH, 
suggesting that ICH can drive a shift in the distribution of peripheral 
T cells, consistent with the results of prior investigations (9, 18). 
Indeed, severe brain injury modulates the immune response. However, 
the precise mechanism by which neurogenic pathways are involved 
remains undefined. Lymphopenia may be ascribed to spleen shrinkage 
owing to the synergy between the sympathetic and hypothalamus-
pituitary–adrenal axis (18).

A huge pool of evidence indicates that lymphocytes infiltrate 
into the brain immediately after a stroke (5). Nonetheless, to date, 
no specific cell population has been identified as a dominant 
pathogenetic initiator of stroke. While accumulating evidence 
supports the notion that T cells play a pathological role in brain 
injuries, the interactions between T cells and brain-intrinsic cells 
in the brain are poorly understood. Our results revealed the 
peripheral landscape of TCR change after ICH. Due to TCR 
tracking the origin of T cell development, the effect of ICH on 
adaptive immunity could be  monitored by TCR repertoire. 
Moreover, we will find the more clues of the specific T cells in brain 

injury or repair. The deep mechanism that how the T cells modulate 
CNS pathological process can be investigated in our further work. 
A challenge in the identification of a specific T cell subset is 
determining the factor that triggers T cell diapedesis across the 
BBB into the lesion site. Recently, regulatory T cells, identified as 
an immunosuppressive T cell population, have been described as 
a central cerebroprotective modulator after stroke, targeting 
multiple inflammatory pathways via the IL-10 signaling 
pathway (19). Thus, it is of paramount importance to investigate 
T-cell transformation for the development of an effective 
immunotherapeutic strategy for ICH patients.

A recent study documented an antigen-independent mechanism 
of T cell neuroprotection after brain injury. A T cell adoptive treatment 
in major histocompatibility complex class II (MHC II)-deficient mice 
markedly alleviated neuronal damage after injury via MYD 88 and 
IL-4-mediated neuroprotection (20). Although the beneficial effect 
was independent of TCR-MHC II interaction, T cells may infiltrate 
the brain after CNS injury via multiple mechanisms (both antigen-
dependent and antigen-independent). The availability of antigens or 
peptides released from the site of brain lesions has been theorized to 
endow T cells with neuroprotective functions (21). Therefore, tracking 
TCR repertoire after ICH may offer valuable insights into identifying 
the origin and function of T cells.

FIGURE 3

A significantly decreased TCR diversity was identified in ICH. (A,B) Clonotype of the V and J genes. n  =  10. (C) Representative circle plot of paired VJ 
combinations. (D,E) Clonotype of VJ and VDJ combinations. n  =  10. (F–H) Clonotype, Chao1, and Gini coefficient of CDR3 aa. n  =  10. (I–K) Hill analysis, 
Rarefaction analysis, and Rank-Abundance analysis of CDR3 aa. n  =  10. (L) Heatmap of the hierarchical clustering of similar CDR3 aa clusters. n  =  10. 
*p  <  0.05, **p  <  0.01. Data represent the results of three to five independent experiments.
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Our study revealed an intact TCR profile of V, J, VJ, VDJ, and 
CDR3 aa distribution in peripheral blood after ICH. Besides, a 
centralized clonotype and length CDR3 with chaotic CDR3 motif aa 
were found in the TCR repertoire, in line with the findings of previous 
studies reporting that ICH induced a significant decrease in the 
number of peripheral T cells. The shift in the TCR repertoire is 
indispensable for antigen recognition after ICH. In addition, notable 
relationships were discovered between CDR3 diversity and GCS score 
or hematoma volume, indicating that the TCR repertoire may serve 
as a biomarker for ICH symptoms and prognosis. Undoubtedly, the 
ICH-responsive TCR repertoire provides valuable clues on the origin 
of T cells, which enhances our understanding of the functions of T 
cells in brain injury. However, the mechanisms that govern TCR 
reconstitution in CNS damage and repair remain to be unraveled, 
warranting further studies.
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FIGURE 4

ICH results in CDR3 aa reconstitution. (A) PCA analysis of CDR3 aa. n  =  10. (B) Comparison of clonotypes of different CDR3 aa lengths. n =  10. (C) The 
spectratype of the V and J genes in different CDR3 aa lengths. n  =  10. (D) High-frequency (top 50%) CDR3 aa motifs. Data represent the results of three 
to five independent experiments.

FIGURE 5

TCR diversity predicts ICH severity. (A,B) Correlation analysis between Chao1, clonotype of CDR3 aa, and GCS score. n  =  10. (C,D) Correlation analysis 
between Chao1, clonotype of CDR3 aa, and hematoma volume. n  =  10. Data represent the results of three to five independent experiments.
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Stroke is the second leading cause of death worldwide, with ischemic stroke 
accounting for a significant proportion of morbidity and mortality among stroke 
patients. Ischemic stroke often causes disability and cognitive impairment in 
patients, which seriously affects the quality of life of patients. Therefore, how to 
predict the recovery of patients can provide support for clinical intervention in 
advance and improve the enthusiasm of patients for rehabilitation treatment. With 
the popularization of imaging technology, the diagnosis and treatment of ischemic 
stroke patients are often accompanied by a large number of imaging data. Through 
machine learning and Deep Learning, information from imaging data can be used 
more effectively. In this review, we  discuss recent advances in neuroimaging, 
machine learning, and Deep Learning in the rehabilitation of ischemic stroke.

KEYWORDS

ischemic stroke, rehabilitation, artificial intelligence, MRI, CT

1 Introduction

1.1 Epidemiology of ischemic stroke

Stroke stands as the second leading cause of global mortality and a primary contributor 
to disability and cognitive impairment (1). Stroke is classified into ischemic stroke and 
hemorrhagic stroke. Among these, ischemic stroke prevails. Approximately 9.5 million cases 
of ischemic stroke were reported globally in 2016 (2). In addition, 2.7  million people 
succumbed to ischemic stroke each year worldwide (3). Thromboembolism remains the 
leading cause of most ischemic strokes, primarily attributed to large artery atherosclerosis and 
cardiac conditions, particularly atrial fibrillation (4).

1.2 The application of artificial intelligence in the field of 
stroke

Artificial Intelligence (AI) technology is a rapidly advancing field. In the realm of brain 
diseases, AI is widely employed for the detection, segmentation, classification, and 
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identification of large vessel occlusion (LVO) in both hemorrhagic and 
ischemic strokes. Tang et al. (5) proposed a computer-aided detection 
scheme that detects early-stage ischemic strokes with small lesions 
through image feature analysis. The use of this method was found to 
improve stroke detection by healthcare professionals. The diagnosis of 
LVO is particularly crucial for selecting patients suitable for 
mechanical thrombectomy. An artificial neural network (ANN) 
algorithm developed by Chen et al. (6) demonstrated a high predictive 
accuracy of 0.820 for LVO, surpassing other prehospital prediction 
models. Additionally, research suggests that radiomics scores serve as 
independent prognostic indicators for the outcomes of acute ischemic 
stroke (7). Pfaff et al. (8) indicated that the e-ASPECTS software can 
be  utilized to predict adverse outcomes after mechanical 
thrombectomy. Furthermore, survivors of strokes often experience 
upper limb motor deficits and achieve limited functional recovery 
within 6 months post-stroke. Many studies suggest the widespread 
application of robots in assisting patients with motor function 
rehabilitation (9). The utilization of artificial intelligence for the 
accurate analysis of medical images and clinical data, enabling rapid 
and precise identification of cerebrovascular disease types and 
etiologies. This facilitates the development of personalized treatment 
and rehabilitation plans, ultimately leading to improved patient 
survival rates and quality of life (10).

1.2.1 Related research trends
As depicted in Figure 1, articles related to ischemic stroke have 

shown an upward trend in the past 15 years. With the rapid 
development and widespread application of Artificial Intelligence in 
the field of medicine, research in this area has experienced an 
explosive growth in the last 3 years. Furthermore, it is evident that 
there are only 337 articles specifically focused on evaluating the 
prognosis or rehabilitation of ischemic stroke, constituting a small 
fraction of the overall literature. In comparison to prognosis 
prediction, more studies are concentrated on the detection of ischemic 
stroke itself.

1.2.2 Detection modalities
As illustrated in Figure 2, articles pertaining to the application 

of Artificial Intelligence in ischemic stroke have been summarized 

and categorized based on different data types. It is noteworthy that 
the prediction of ischemic stroke using medical imaging data 
emerges as the most prominent area of focus. A significant 
proportion of articles also revolves around prognostic evaluations 
based on the mRS scale.

1.3 Article retrieval

To gather relevant papers for our study, a comprehensive search 
strategy was devised, employing various combinations of the 
following keywords: “stroke,” “ischemic stroke,” “prognosis,” 
“rehabilitation,” “Deep Learning,” “machine learning,” and “Artificial 
Intelligence.” Considering technological advancements and updates, 
we restricted the publication timeframe to the past 15 years. Using 
PubMed, Embase, Web of Science, and the Cochrane Library for the 
search, we initially included all articles reporting on ischemic stroke 
patients. This yielded 337 articles. After a meticulous review of 
abstracts and full texts, we first excluded articles not aligned with the 
research theme, then eliminated those without full texts, and finally 
removed articles not utilizing Artificial Intelligence for predicting 
ischemic stroke prognosis or rehabilitation. The selected literature 
focused on key technologies, resulting in a final set of 49 articles on 
Artificial Intelligence predictions of ischemic stroke prognosis or 
rehabilitation as our references. The paper selection process is 
illustrated in Figure 3.

1.4 The purpose of this article

While existing literature has summarized the research progress of 
AI in the field of ischemic stroke, most of it has focused primarily on 
pre-treatment prediction. For instance, Sheth et al. (11) provided an 
overview of common machine learning methods and their 
applications in detecting large vessel occlusion, intracranial 
hemorrhage, and infarct lesions. Soun et  al. (12) systematically 
introduced AI methods in imaging and available public and 
commercial platforms, summarizing the applications of AI in acute 
stroke detection and prediction. Despite the detailed content, it did 
not address the prognosis of stroke patients, which is precisely the 
focal point of concern for most clinical professionals and patients. 
Ragoș et  al. (13) summarized the evaluation of ischemic stroke 
outcomes using MRI radiomics and predictive models. However, 
relying solely on radiomic evaluation is too narrow, and the described 
imaging methods are not comprehensive enough. Shafaat et al. (14) 
evaluated the efficacy of machine learning in predicting the prognosis 
of ischemic stroke patients, overlooking research using methods such 
as Deep Learning and other AI techniques in this direction. Rüdiger 
von Kummer and colleagues summarized the progress of CT and MRI 
brain imaging technologies in acute ischemic stroke (15). This review 
focuses exclusively on CT/CTA and MRI/MRA imaging. With the 
advancement of Artificial Intelligence, many new technologies with 
greater potential applications have emerged. For instance, there is an 
urgent need to investigate the application value of CTP in ischemic 
stroke. Therefore, this article aims to systematically evaluate the 
potential applications of Artificial Intelligence in predicting the 
prognosis of ischemic stroke patients in the field of neuroimaging, 
primarily using CT and MR imaging.

FIGURE 1

Number of published studies on ischemic stroke in the past 15  years.
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2 Progress in predicting the 
rehabilitation of ischemic stroke based 
on artificial intelligence of neuroimaging

2.1 Radiological manifestations of ischemic 
stroke

The current diagnostic approach for stroke relies on CT and MRI 
imaging. MRI has higher sensitivity and specificity for diagnosing 
ischemic stroke, but due to factors such as longer imaging times and 
higher costs, CT-based imaging techniques remain the preferred 
method for diagnosing ischemic stroke. Vascular imaging through CT 
and MRI aids in identifying the extent of ischemia and the location of 
arterial occlusion. Furthermore, the results of radiological 
examinations play a crucial role in determining the treatment 
approach for ischemic stroke patients, providing support for 
interventions like thrombolysis and thrombectomy.

2.2 Ischemic stroke treatment

Treatment methods include intravenous thrombolysis, intra-
arterial thrombolysis, mechanical thrombectomy, etc. (16). Currently, 

thrombolytic therapy is the most used treatment for ischemic stroke. 
The basic principle involves the activation of plasminogen into 
plasmin by the binding of the thrombus to fibrin, and plasmin breaks 
down fibrinogen and fibrin, dissolving the thrombus and allowing 
reperfusion of the ischemic brain (17). Intravenous thrombolysis is 
established for patients within 4.5 h of stroke onset. If symptoms 
appear within 6–8 h, mechanical vascular recanalization through stent 
retriever and/or thrombus aspiration is recommended.

2.3 Methods for evaluating prognosis in 
ischemic stroke

2.3.1 Modified Rankin scale
The modified Rankin Scale (mRS) is the most widely used 

measure for assessing the outcomes of acute ischemic stroke in 
research, clinical trials, and national and local quality improvement 
registries. It reflects the quality of life as assessed by both patients and 
healthcare professionals. In certain situations, an mRS score of 5 
(bedridden, requiring constant care, and severe disability) is 
considered more severe than an mRS score of 6 (death) (18). However, 
studies indicate that among patients who have undergone 
hemicraniectomy, over 50% experience moderate to severe disability 

FIGURE 2

Pie chart of classes of studies included in this review.
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postoperatively, yet remain satisfied with their life status (19). In 
clinical practice, achieving an mRS score between 0 and 2 (indicating 
functional independence) is generally considered a treatment success. 
Additionally, monitoring changes in the degree of disability is crucial. 
For instance, recovering to a mRS score of 3 is considered better than 
death or the need for nursing home care (mRS score of 5). Such 
transitions in disability levels can significantly reduce healthcare 
costs (4).

2.3.2 Muscle strength assessment
The severe impairment of limb function caused by stroke 

significantly affects the quality of life of stroke patients. The recovery 
of post-stroke patients is correlated with the location and size of the 
infarction. Among them, the primary issue is the motor dysfunction 
caused by damage to the corticospinal tract and brain motor centers 
(20). Therefore, improving the muscle strength of patients is an 
important indicator for assessing the quality of life of stroke patients. 
Li et al. developed a rehabilitation program for the self-care ability of 
Acute Ischemic Stroke (AIS) patients based on six levels of commonly 
used muscle pain assessment methods in clinical practice. This 
program showed improvement in patients’ muscle strength, quality of 

life, and self-care ability by the third month (21). Fugl-Meyer and 
others devised a measurement method for functional recovery after 
cerebrovascular accidents, utilizing an accumulated numerical scoring 
system. They conducted a 1-year follow-up study on hemiplegic 
patients, ultimately achieving quantitative assessment of patients’ 
physical functions. This made the scale suitable for statistical analysis 
in both research and clinical settings (22).

2.3.3 Imaging-based rehabilitation assessment
The degree of early ischemic changes on CT is correlated with 

stroke severity scores, such as NIHSS and serves as a predictive 
indicator of clinical outcomes. CTA and CT Perfusion (CTP) imaging 
are methods used to determine the collateral circulation blood flow 
status in patients, aiding in the selection of suitable candidates for 
intra-arterial treatment (23, 24). Patients with poor CTA collateral 
status tend to have a poorer prognosis even after reperfusion therapy 
(25). Early improvement in neurological function can often lead to a 
favorable prognosis, even without additional reperfusion therapy 
following intravenous tPA administration (26). The extent of collateral 
circulation may also help in selecting patients who benefit from 
reperfusion therapy beyond the current time windows for both 

FIGURE 3

Flow chart of paper selection process.
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intravenous and intra-arterial treatments (27). Several studies indicate 
that positive results in DWI are associated with specific clinical 
features, including longer duration of symptoms, motor deficits, 
aphasia, and large vessel occlusion on Magnetic Resonance 
Angiography (MRA) (28–30). Importantly, research suggests that 
positive DWI results play a crucial role in prognosis. Specifically, these 
studies show a higher risk of recurrent ischemic events in patients 
with abnormal findings on DWI scans during transient ischemic 
attacks (TIA) compared to those without abnormalities (30).

2.4 Artificial intelligence-based prediction 
of stroke prognosis using CT

Distinguishing ischemic stroke from hemorrhagic stroke remains 
challenging solely through clinical means. Brain CT imaging becomes 
pivotal in aiding differential diagnosis. Non-enhanced CT scans swiftly 
and intuitively assist clinicians by showcasing distinct radiological 
features between ischemic and hemorrhagic strokes. Apart from aiding 
in the differential diagnosis of hemorrhagic stroke, non-enhanced CT 
scans are also useful in evaluating the extent of early ischemic damage. 
Early non-enhanced CT signs of ischemia encompass sulcal effacement 
and decreased attenuation (31), leading to a loss of gray-white matter 
differentiation. In some patients, early signs of cerebral ischemic 
changes, such as loss of gray-white matter differentiation, is suffice for 
diagnosing ischemic stroke. However, these changes are subtle, 
particularly within the initial few hours of stroke onset, making the loss 
of gray-white matter differentiation challenging to discern (4). In 
general, non-enhanced CT scans exhibit a sensitivity of approximately 
52% in detecting substantial ischemic parenchymal changes (32).

CT angiography (CTA) is a perfusion contrast tracking technique 
capable of displaying major vessels from the aorta to the cranial apex 
within 15 s (33). CTA boasts superior spatial resolution, surpassing 
most MRI vascular imaging sequences. It reveals the location and size 
of occlusive thrombi and provides information regarding collateral 
blood supply to the ischemic area. CTA exhibits a sensitivity of 
95–99% in detecting significantly narrowed or occluded vessels (34). 
It can determine occlusion locations within 24 h of symptom onset 
and aid in deciding the suitability for mechanical thrombectomy (35). 
Besides routine CTA, multiphase CTA, involving imaging before and 
after contrast passing through different arteries and veins in the brain, 
can assess collateral circulation status, aiding in evaluating patients 
suitable for mechanical thrombectomy (36). CTA facilitates 
assessment of cerebral blood flow and identification of tissue areas at 
risk of infarction and potential recovery zones (37).

CT perfusion imaging (CTP) is a medical imaging technique that 
utilizes continuous CT scans of the region of interest to observe 
changes in contrast agent concentration, thus obtaining time-density 
curves of the region of interest, indirectly reflecting changes in organ 
perfusion (38). CTP offers advantages of rapid imaging, effectively and 
quantitatively reflecting changes in local tissue blood perfusion, and 
is widely used clinically for the examination of cerebral ischemia (39). 
Therefore, CTP enables the evaluation of ischemic tissue, aiding in the 
timely restoration of normal blood supply.

The head CT scan is the preferred diagnostic method for the 
initial assessment of suspected stroke patients, as shown in Figure 4. 
Over time, CT can capture the difference in the image of the patient’s 
brain. CT scans are widely available, cost-effective, and provide rapid 

results. Modern CT scanners can examine the entire brain in less than 
1 s. However, it is difficult to differentiate between acute ischemic 
stroke (AIS) and intracerebral hemorrhage (ICH) based solely on 
clinical presentation. In CT images, acute ICH is characterized by a 
higher density shadow that appears brighter than normal brain tissue.

2.4.1 The application of machine learning in 
stroke

In 2019, Xie et al. incorporated CT, CTA, and perfusion CT data 
from 512 patients with acute ischemic stroke. Seven binomial GBM 
and XGB prediction models were developed using 23 features at 
admission, to predict patients’ mRS scores at 90 days. After adding the 
24-h NIHSS score, the results of the study showed that the predictive 
performance of the models was significantly improved with the 
addition of the 24-h NIHSS score, with AUCs ranging from 0.794 to 
0.873 for the XGB model and 0.811 to 0.866 for the GBM model. The 
conclusions of the study suggest that machine learning can be used to 
predict the outcome of rehabilitation in stroke patients, with initial 
imaging information is sufficient, the inclusion of 24-h information 
improves accuracy, and consideration of recanalization status helps 
assess treatment risk and benefit (40).

In 2020, Wen et al. incorporated clinical information and NCCT 
and CTA data from January 30, 2017, to January 2, 2019. These data 
were obtained within 24 h after symptom onset in patients with MCA 
territory infarction. Their aim was to develop a model based on 
radiomic features to predict the development of malignant MCA 
infarction (mMCAi) in stroke patients. Patients were randomly 
divided into a training group (n = 87) and a validation group (n = 39). 
A total of 396 texture features were extracted from each NCCT image 
of 126 patients. Using least absolute shrinkage and selection operator 
regression analysis to reduce the feature dimensions, precise radiomic 
features were constructed based on the remaining texture features. 
Subsequently, a radiomic feature model was built using multivariate 
logistic regression, and its performance was evaluated using 
AUC. Decision curve analysis (DCA) was employed to assess the 
clinical efficiency of radiomic features in predicting mMCAi by 
calculating the net benefit within a threshold probability range. They 
then developed a model combining radiomic features and the Alberta 
Stroke Program Early CT Score (ASPECTS) based on NCCT to 
predict mMCAi. The predictive model demonstrated excellent 
performance, with AUCs of 0.917 and 0.913 for the training and 
validation sets, respectively. Furthermore, DCA validated the clinical 
effectiveness of the predictive model in distinguishing mMCAi and 
non-mMCAi patients within a threshold probability range of 
0.067–1 in the training set and 0.046–1 in the validation set (41).

In 2021, Cheng et al. included CT and CTA data from 135 patients 
with large vessel occlusive stroke who underwent reperfusion therapy 
between 2015 and 2019. The aim was to explore the correlation 
between different CT-ASPECTS (Alberta Stroke Program Early CT 
Score) methods, follow-up CT-ASPECTS, and prognosis. Researchers 
calculated the relative differences in Hounsfield Units (HU) between 
different regions of the ischemic hemisphere and the average HU of 
the contralateral hemisphere, expressed as a percentage difference. The 
NCCT, CTA-arterial, and CTA-venous datasets were evaluated in a 
random order and validated by two expert readers after correctional 
segmentation. ROC curve analysis was used to assess the ability of 
different CT-ASPECTS patterns to identify patients with favorable 
outcomes. Researchers found that CTA-venous-ASPECTS was almost 
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perfectly correlated with follow-up CT-ASPECTS, outperforming 
other CT examinations. The 90-day mRS scores were significantly 
associated with CTA-venous-ASPECTS. ROC analysis defined the 
optimal accuracy and cutoff points for parameters related to the 
90-day mRS score. The results indicated that CTA-venous-ASPECTS 
had the highest area under the curve (AUC: 0.82; 95%CI: 0.75–0.89; 
p < 0.001). This study suggests that CTA-venous-ASPECTS is almost 
perfectly correlated with the final infarct size and significantly 
associated with the 90-day mRS score (42).

In 2022, Potreck et al. included 136 stroke patients with major 
segment occlusion of MCA that occurred between March 2015 and 
December 2019. Two raters assessed ASPECTS on acute and follow-up 
NCCT, and a machine-learning algorithm evaluated the ASPECTS 
scale on NCCT (e-ASPECTS). A third radiologist used the MCA 
territory collateral score (also known as the Tan scoring system) to 
assess collateral status on the CT angiogram. The results indicate that 
inter-rater reliability depends on the duration of stroke symptoms in 
patients (OTI), with lower reliability observed in the hyperacute 
group, yielding ICC = 0.54, while higher reliability is seen in groups 
with longer time windows, yielding ICC = 0.74. The consistency 
between acute and follow-up ASPECTS improves with prolonged 
time, and there is a negative correlation between OTI time and 
ASPECTS. The collateral status serves as a predictor for favorable 
clinical outcomes, especially in hyperacute stroke. In conclusion, the 
accuracy and reliability of NCCT-ASPECTS are influenced by time, 

and collateral status on CT angiography may enhance the prediction 
of clinical outcomes (43).

In 2022, a study included data from 39 patients with AIS caused 
by LVO and poor reperfusion after mechanical thrombectomy (MT) 
from a stroke database between January 2015 and December 2019. 
The multimodal stroke protocol included non-contrast-enhanced 
computed tomography (NECT), CTP, and CTA in sequence. The 
ASPECTS score was used to assess whether early ischemic changes 
were present on baseline NECT. Three different automated perfusion 
software solutions (A: RAPID, B: Brainomix e-CTP, C: Syngo.via) 
were used to assess poor reperfusion. Low-perfusion volumes (HV) 
with Tmax >6 s were compared with the final infarct volume (FIV) on 
follow-up CT after futile reperfusion at 36–48 h. The study divided 
patients into high and low Hyperintense Rim (HIR) groups based on 
the median ratio of low-perfusion intensity (HIR, tissue volume ratio 
for Tmax >10 s and Tmax >6 s). Subgroup analyses of FIV (feature 
importance value) were conducted for favorable and unfavorable 
HIR. HIR was correlated with baseline clinical and outcome 
parameters using Pearson correlation. The study found a good 
correlation between HV and FIV with no significant difference. 
However, in cases with infarct volumes exceeding 150 mL, the 
performance of automated software solutions often declined. 
Subgroup analysis showed that patients with HIR ≥ 0.6 typically had 
underestimated FIV. However, in the subgroup with favorable HIR, 
there was a trend of overestimating FIV. Software packages A and B 

FIGURE 4

The CT images of two ischemic stroke patients undergoing thrombectomy (A) a 73-year-old male patient with an NIHSS score of 24 at the onset; and 
(B) a 78-year-old male patient with an NIHSS score of 14 at the onset.
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showed good correlation between HV and FIV with no significant 
difference, while only software package C significantly overestimated 
FIV. The mRS score of 0–3 at 3 months was significantly higher in the 
favorable HIR group than in the unfavorable group. Lower HIR was 
associated with a higher Alberta Stroke Program Early CT Score 
(ASPECTS). In conclusion, the performance of automated perfusion 
software solutions in predicting FIV after futile reperfusion was good, 
with a decrease in accuracy for large infarcts exceeding 
150 mL. However, FIV may be  significantly overestimated or 
underestimated depending on HIR, and the Syngo software package 
showed the widest range of performance (44).

In 2023, Xiang et al. collected one-stop CTP imaging data from 
54 patients with AIS at Handan Central Hospital. The data included 
non-contrast CT scans, CTA, Tmax maps, and CBF maps before and 
after conservative treatment and mechanical thrombectomy. Among 
the 54 patients, 15 underwent both CTP and MRI examinations. The 
post-processing method involved transferring CTP data to Artificial 
Intelligence software to obtain pseudo-colored images, ischemic core 
volume, and areas of abnormal perfusion. Additionally, Artificial 
Intelligence software was utilized to acquire intracranial arterial CTA 
images. The results revealed that patients treated with mechanical 
thrombectomy guided by CTP imaging had significantly improved 
NIHSS scores compared to the conventional treatment group, and 
this difference was statistically significant (p < 0.005). In one case 
assessed with Artificial Intelligence-assisted CTP imaging, the 
ischemic core volume was greater than that displayed by DWI, while 
in the remaining 13 patients; the ischemic core volume was smaller 
than the DWI-displayed ischemic core volume. The team concluded 
that mechanical thrombectomy guided by CTP imaging can extend 
the treatment window for AIS-LVO patients. AI-assisted CTP 
diagnosis can facilitate rapid assessments independent of radiologists, 
but it may pose challenges in determining the ischemic core 
volume (45).

In 2023, Weng et  al. included 97 stroke patients. The team 
extracted vascular structural features from CTA images and stroke 
location features from DWI images to comprehensively characterize 
the lesions. The 97 cases were randomly divided into a cross-validation 
set, independent test set 1, and independent test set 2 for model 
validation. The results showed that the proposed model achieved good 
predictive performance on two independent test sets, with 
classification accuracies of 85.19 and 81.25%, respectively (46).

In 2023, Zhang et al. collected clinical data and NCCT images 
from 240 patients with AIS. Using 3D Slicer, they manually segmented 
the infarct lesions and performed feature extraction on CT images and 
regions of interest (ROI). After normalizing clinical and radiological 
features, surplus features were eliminated using the Kruskal-Wallis 
test. Through triple cross-validation and grid search, the research team 
selected the optimal hyperparameters for the Support Vector Machine 
(SVM) model. The dataset was divided into 3-fold in each of the three 
cross-validation runs, forming three prediction models. The average 
performance metrics for these three models included accuracy, 
sensitivity, specificity, F1 score, and AUC. After an in-depth analysis 
of 1,454 texture features extracted from NCCT images of 240 AIS 
patients, it was found that the classification model integrating clinical 
and radiomic data performed the best, with an AUC of 0.857, accuracy 
of 84.8%, and sensitivity of 93.8%. In comparison, models using only 
clinical or radiomic features showed lower performance with AUCs 
of 0.705 and 0.643, respectively. These study results suggest that 

integrated models combining multiple types of data are more reliable 
in predicting clinical outcomes for AIS patients (47).

In 2023, Brugnara et al. conducted a study on acute ischemic 
stroke patients undergoing imaging examinations and EVT. They 
utilized e-ASPECTS (Brainomix) for automatic assessment of 
ASPECTS on 1 mm slices, and visual inspection was conducted by 
experienced radiologists (AE, with 2 years of experience) and 
committee-certified neuroradiologists (UN, with 8 years of clinical 
experience). Statistical analyses were performed using Logistic 
regression and ordinal Logistic regression. Model performance was 
evaluated through ROC curves, and the significance of differences 
between models was assessed using the DeLong test. Machine learning 
model performance was assessed through random forest variable 
importance. In the entire study cohort, 38% of patients exhibited 
favorable clinical outcomes, while 26% experienced adverse outcomes 
at 90 days. Multivariate regression model results indicated that cortical 
atrophy was independently predictive of favorable clinical outcomes. 
The predictive performance of the machine learning model 
significantly outperformed other models, achieving an AUC of 0.775. 
Further analysis validated the importance of cortical atrophy across 
different models. The study results suggest that cortical atrophy is an 
independent predictor of clinical prognosis in acute ischemic stroke 
patients (48).

In 2023, Shen et al. included 44 consecutive patients with AIS who 
underwent endovascular treatment. Clinical data, including baseline 
mCTA, mRS, and follow-up MRI after treatment, were collected. They 
utilized a multi-scale three-dimensional CNN, inputting NCCT, 
arterial phase peak CTA, and CTA+ images. The F-STROKE software 
was used to calculate subsequent infarct core (IC) volume based on 
DWI. Data analysis was conducted using SPSS and MedCalc software. 
Among the 44 AIS patients receiving endovascular treatment, 61.4% 
achieved a favorable outcome. The NIHSSpre at admission and 
mCTA-estimated IC volume were independently correlated with the 
functional outcome of AIS patients after mechanical thrombectomy. 
Patients with a favorable prognosis had lower NIHSSpre and smaller 
mCTA-estimated IC volume (20.3 ± 12.2 vs. 43.9 ± 23.5, p = 0.001), and 
a higher proportion of good collateral status (66.7 vs. 22.4%, p = 0.016). 
The integrated model showed the best performance, with an area 
under the ROC curve of 0.874. The mean onset-to-door time (ODT) 
and door-to-puncture time (DPT) were 75.6 and 16.3 min, 
respectively, with a successful reperfusion rate of 17.7%. Bland–
Altman plots and intraclass correlation coefficient (ICC) assessment 
indicated an acceptable level of consistency between mCTA-estimated 
IC volume and follow-up IC volume. The optimal threshold for 
predicting performance was mCTA-estimated IC 
volume ≤ 40.3 mL. The study also focused on the handling of 
hemorrhagic transformation (HT) regions. Deep Learning techniques 
were employed to extract volume data from mCTA. The mCTA-
estimated IC volume may have potential value in predicting follow-up 
infarct and clinical outcomes in AIS patients treated with endovascular 
therapy (49).

The main information of the above included literatures is shown 
in Table 1.

2.4.2 The application of deep learning in stroke
In 2019, Hilbert et al. collected CTA data from 1,526 ischemic 

stroke patients. Various preprocessing techniques were applied to the 
images, including dimension reduction using Maximum Intensity 
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Projections (MIPs) and rigid registration using Elastix software. 
Additionally, they developed a Structured Receptive Field Neural 
Network (RFNN) model and incorporated unsupervised pretraining 
in a stack denoising autoencoder (AE) experiment to learn the 
encoding part of the AE network. Machine learning models based on 
20 radiographic biomarkers manually scored by experts from the MR 
CLEAN Registry core laboratory were constructed. Logistic regression 
(LR) models and random forest classifiers (RFC) were utilized and 
compared with standard Deep Learning (DL) models (ResNet). Three 
training methods were devised using four balanced groups for cross-
validation in 1,301 patients. Gradient-weighted class activation 
mapping (Grad-CAM) was employed for visualization to elucidate the 
contribution of convolutional feature maps in the input space. 
Ultimately, two visualization models were developed for predicting 
mRS and mTICI outcomes. The Deep Learning models exhibited 
superior performance in the cross-validation folds of four functional 
outcomes, yielding an average AUC of 0.71, and achieved an average 
AUC of 0.65 across all reperfusion folds, surpassing models based on 
traditional radiographic biomarkers. The AUC values for LR and RFC 
methods were 0.68 and 0.66, respectively, for favorable functional 
outcomes. However, for reperfusion prediction, both LR and RFC 
yielded an AUC of 0.52. In conclusion, the RFNN-ResNet model 
achieved the highest average AUC without pretraining with emission, 
while RFNN-ResNet-AE fine-tuning excelled in mTICI prediction. 
Their Deep Learning methods outperformed traditional approaches 
and can predict stroke outcomes without necessitating image 
annotation, offering faster processing speed. By enhancing the model, 
interpretability of the predictions was improved (50).

In 2021, Hokkinen et al., included data from 117 suspected stroke 
patients with CTA and follow-up data after admission. Preprocessing 
was done using 3D Slicer images and a trained and validated 3D CNN, 
evaluating the accuracy of outputs for two clinical time windows (0–6 
and 6–24 h). The accuracy of CNN was assessed through visual 
evaluation of ASPECTS anatomical regions, validating the matching 
accuracy of the CNN in lesion location and final infarct location, 
compared with ischemic changes marked by radiologists. Finally, the 
performance of CNN and CTP-RAPID in determining eligibility for 
Endovascular Treatment (EVT) was compared, considering factors 
such as ischemic core volume and patient age. Using a manually fitted 
linear model, the research team assessed the segmented volume 
output derived from CNN and CTP-RAPID ischemic core volume for 
predicting final infarct volume. Pearson correlation coefficients were 
used to assess the correlation between them, and Bland–Altman plots 
were used to show the agreement between estimated infarct volume 
and final infarct volume, as well as the volume derivation between 
CNN and CTP-RAPID. The results showed that in the early 0–6 h time 
window, CNN had a correlation of r = 0.43 (p = 0.002) with final infarct 
volume, while CTP-RAPID had a correlation of r = 0.58 (p < 0.001). In 
the late 6–24 h time window, both CNN (r = 0.67, slope 1.2, p < 0.001) 
and CTP-RAPID (r = 0.82, slope 1.4, p < 0.001) showed significantly 
increased correlation. Compared to CTP-RAPID, CNN had a 
sensitivity of 0.38 and specificity of 0.89. The study suggests that 
CTA-based CNN, in patients successfully receiving EVT treatment, 
can detect anterior circulation ischemic stroke in the late time window 
(6–24 h) and has a moderate correlation with final infarct volume (51).

In 2021, Hokkinen et  al. included 83 patients who received 
thrombolytic treatment or supportive care for CTA. They saved the 
images to a server and performed precise segmentation of the infarct 

area using the 3DSlicer image processing and visualization platform. 
The accuracy of the lesion location predicted by CNN was evaluated 
in comparison with the ASPECTS anatomical regions, and a detailed 
comparison was made with the CTP-RAPID software. By calculating 
a linear regression model and Pearson correlation coefficient (r) 
between the two, the results showed that the sensitivity of the CNN 
output was 0.71, specificity was 0.87, and accuracy was 0.80. For 
patients who did not receive thrombolytic treatment, there was 
excellent correlation between the final infarct volume and the 
estimated values from CNN output and CTP-RAPID, with correlation 
coefficients of r = 0.89 (95% CI 0.80–0.95) and r = 0.92 (95% CI 0.83–
0.97), respectively. There was also a good correlation between the 
CNN output and CTP-RAPID ischemic core volume (r = 0.89, 95% CI 
0.82–0.94). The conclusion of the study is that CTA-based CNN 
software demonstrates good estimation capabilities for infarct core 
volume in follow-up imaging studies, and its output exhibits 
significant correlation with CTP-RAPID ischemic core volume (52).

In 2021, Hakim et al. summarized the results of the ISLES 2018 
challenge, which was participated in by 24 teams, and which included 
CTP and DWI images of 103 patients with acute large artery occlusion 
and anterior circulation ischemic stroke. Of these 103 patients were 
divided into two groups, 40 for the lesion-free test set and 63 for the 
training set. The data consisted of (1) CTP source data; (2) perfusion 
maps post-processed using the standard thresholding method 
(RAPID), i.e., cerebral blood flow (CBF), cerebral blood volume, mean 
passage time, and time to peak; (3) DWI lesion segmentation in a 
binary form; and (4) the DWI images themselves. Teams used different 
thresholds to calculate the mean and standard deviation of the Dice 
similarity coefficient (DSC), the mean absolute volume difference 
(VD), the accuracy and recall, including the Dice score, the Hausdorff 
distance (HD), the mean and absolute lesion VD, the accuracy, the 
recall, and the mean symmetry plane distance. Comparisons of 
non-normally distributed data, including comparisons of HD and 
mean symmetric surface distance, were performed using the Wilcoxon 
signed rank test to identify the best performing cases for each team. 
Results showed that among the best performing cases, the median 
DWI capacity was 7.2 (IQR) and the median absolute VD was 26.41. 
The study conclusions suggest that CTP-based machine learning 
methods can more accurately predict infarcted tissue (53).

In 2022, Ramos et al. conducted a comprehensive analysis of CTA 
data from 3,279 patients who underwent acute ischemic stroke 
EVT. They utilized two training model approaches, one based on 
radiomics and another combining imaging with clinical information. 
After preprocessing the data, 1,260 features were computed in 70 
regions of the brain map, which were then reduced to 68 features. 
Training was carried out using the ResNet10 architecture for up to 75 
epochs, incorporating transfer learning with an additional 50 epochs, 
and enhancing weights by adding SE modules before the fully 
connected layer. The results revealed that 37% of patients exhibited 
modified Rankin Scale (mRS) ≤ 2  in terms of favorable functional 
outcomes, while 60% achieved improved Thrombolysis in Cerebral 
Infarction (eTICI) ≥ 2b in terms of reperfusion. At 90 days, 37% of 
patients had good functional outcomes, and 60% showed favorable 
reperfusion after treatment. In predicting functional outcomes, the 
radiomics method performed the best in clinical experiments, 
achieving an AUC of 0.81. The study suggests that a single Deep 
Learning method (ResNet10) performed relatively poorly in 
predicting favorable functional outcomes. The combined approach of 
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TABLE 1 Summary of papers on machine learning for CT on rehabilitation of Ischemic stroke.

PMID 30354266 32733197 34392005 34709408 35645395

YEAR 2019 2020 2021 2022 2022

LEARNING 

APPROACH

machine learning machine learning machine learning machine learning machine learning

PRIMARY AUTHOR Xie Y Wen X Cheng X A Potreck Iris Muehlen

DISEASE Acute Ischemic Stroke Malignant middle cerebral 

artery infarction (mMCAi)

large-vessel occlusion stroke Acute Stroke Symptom-onset Large Vessel Occlusive Stroke and Poor 

Revascularization

DATA VOLUME CT, CT angiography (CTA), and perfusion 

CT data from 512 patients.

A total of 396 texture features 

were extracted from each 

NCCT image from the 126 

patients

135 patients undergoing reperfusion 

therapy.

136 patients with stroke 

involving occlusion of the main 

segment of the Middle Cerebral 

Artery (MCA)

39 patients underwent mechanical thrombectomy 

(MT) due to acute ischemic stroke (AIS) caused by 

anterior circulation large vessel occlusion (LVO) and 

impaired blood flow reconstruction.

DATA TYPE Basis of Imaging, Demographic, and Clinical 

Information

NCCT、CTA different CT modalities NCCT NECT、CTP、CTA

METHODS Gradient Boosting Machine model based on the radiomics 

signature and Alberta Stroke 

Program Early CT Score 

(ASPECTS) based on NCCT

Automated ASPECTS for multi-

modality CT

NCCT-ASPECTS Three Automated Perfusion Software Applications

RESULTS In predicting mRS greater than 2, XGB and 

GBM have AUCs of 0.746 and 0.748, 

respectively. After incorporating the 24-hour 

NIHSS score, XGB's AUC increases to 0.884, 

and GBM's AUC increases to 0.877. 

Reperfusion status has a certain impact on 

predictions; XGB's AUC increases to 0.807 in 

non-reperfused patients but decreases to 

0.670 in reperfused patients, while GBM's 

AUC increases to 0.781 in non-reperfused 

patients but decreases to 0.655 in reperfused 

patients. For predicting mRS greater than 0, 

XGB's AUC ranges from 0.794 to 0.873, and 

GBM's AUC ranges from 681.1 to 762.3. 

Considering the 24-hour NIHSS score, XGB's 

AUC ranges from 0.794 to 0.873, and GBM's 

AUC ranges from 0.811 to 0.866.

Their predictive model exhibits 

outstanding performance, with 

AUCs of 0.917 and 0.913 for 

the training and validation sets, 

respectively. Additionally, 

Decision Curve Analysis 

(DCA) validated the clinical 

effectiveness of the predictive 

model in distinguishing 

between mMCAi and non-

mMCAi patients, with 

probability threshold ranges of 

0.067–1 in the training set and 

0.046–1 in the validation set.

Researchers found a nearly perfect 

correlation between CTA-venous-

ASPECTS and follow-up CT-

ASPECTS, which outperformed other 

CT scans. The 90-day Modified 

Rankin Scale (mRS) scores were 

significantly associated with CTA-

venous-ASPECTS. ROC analysis 

defined the optimal accuracy and 

cutoff points for parameters associated 

with the 90-day MRS score.

In different time windows, there 

are variations in inter-rater 

reliability among patients. 

Consistency among 

professionals is highest for 

moderate treatment times. The 

presence of collateral circulation 

is associated with favorable 

treatment outcomes, and the 

pre-intervention ASPECTS is a 

crucial predictor, especially 

when treatment initiation 

exceeds 200 minutes. The Tan 

score is also effective for ultra-

acute strokes (OTI < 100 min).

Overall, there was good correlation without significant 

differences between the HVs and the FIVs with package 

A (r = 0.78, p < 0.001) being slightly superior to B and C. 

However, levels of agreement were very wide for all 

software applications in Bland-Altman analysis. In cases 

of large infarcts exceeding 150 mL the performance of 

the automated software solutions generally decreased. 

Subgroup analysis revealed the FIV to be generally 

underestimated in patients with HIR ≥ 0.6 (p < 0.05). In 

the subgroup with favorable HIR, however, there was a 

trend towards an overestimation of the FIV. Nevertheless, 

packages A and B showed good correlation between the 

HVs and FIVs without significant differences (p > 0.2), 

while only package C significantly overestimated the FIV 

(−54.6 ± 56.0 mL, p = 0.001). The rate of modified 

Rankin Scale (mRS) 0−3 after 3 months was significantly 

higher in favorable vs. unfavorable HIR (42.1% vs. 

13.3%, p = 0.02). Lower HIR was associated with higher 

Alberta Stroke Program Early CT Score (ASPECTS) at 

presentation and on follow-up imaging, lower risk of 

malignant edema, and better outcome (p < 0.05).

(Continued)
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TABLE 1 (Continued)

CONCLUSIONS Machine learning can be employed to predict 

the recovery outcomes of stroke patients. 

Initial imaging information is sufficient, and 

incorporating 24-hour information enhances 

accuracy. Considering reperfusion status aids 

in assessing treatment risks and benefits.

Imaging features from 

radiomics can serve as tools for 

predicting the risk of mMCAi.

CTA-venous-ASPECTS exhibits the 

highest area under the curve. This 

study indicates a nearly perfect 

correlation between CTA-venous-

ASPECTS and the final infarct size, 

along with a significant association 

with the 90-day MRS score.

The sensitivity of NCCT in 

detecting rapid stroke progression 

decreases. In ASPECTS 

assessments based on both 

manual and machine learning 

approaches, the reliability and 

consistency of scores between 

acute and follow-up ASPECTS 

decrease during short-term OTIs. 

In cases of hyperacute stroke, the 

status of collateral circulation in 

CT angiography may contribute 

to improving the prediction of 

clinical outcomes and explaining 

the reasons for reperfusion 

failure.

HIR can serve as a valuable parameter for outcome 

prediction and aid in deciding whether to proceed with 

MT in delicate situations.

PMID 37287309 36934582 37437435 37581657 37607843

YEAR 2023 2023 2023 2023 2023

LEARNING 

APPROACH

machine learning machine learning machine learning machine learning machine learning

PRIMARY AUTHOR Xiang S Weng S Zhang L Brugnara G Shen GC

DISEASE Ischemic Stroke Patients with Large Vessel 

Occlusion beyond the Therapeutic Time 

Window

ischemic stroke Acute ischemic stroke acute ischemic stroke estimated infarct core volume in the patients with acute 

ischaemic stroke

DATA VOLUME 54 patients were retrospectively divided into 

two groups based on the treatment methods: 

the mechanical thrombectomy group had 21 

patients and the conservative treatment 

group had 33 patients

CTA and MRI images from 97 

patients

Clinical data and NCCT (non-contrast 

computed tomography) images from 

240 patients with acute ischemic 

stroke (AIS).

A total of 1103 consecutive 

patients, who underwent 

endovascular treatment (EVT) 

for occlusion in the territory of 

the middle cerebral artery, were 

included.

44 patients undergoing endovascular treatment.

DATA TYPE CTA CTA、DWI Non-contrast computed tomography native cranial computed 

tomography (NCCT)

mCTA

METHODS machine learning model machine learning model Support vector machine machine learning models multi-scale three-dimensional convolutional neural 

network

(Continued)
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TABLE 1 (Continued)

RESULTS In patients treated with mechanical 

thrombectomy guided by CTP imaging, the 

post-treatment NIHSS scores were 

significantly better than those in the 

conventional treatment group, with statistical 

significance (P < 0.005). In one case assessed 

using artificial intelligence-assisted CTP 

imaging, the infarct core volume was larger 

than that shown by DWI, while in the 

remaining 13 patients, the infarct core volume 

was smaller than that indicated by DWI.

On two independent test sets, 

the accuracy (ACC) for the 

cross-validated dataset using 

the Adboost method was 

0.8519, while the ACC for the 

independent test set using the 

SRC method was 0.8125.

A total of 1454 texture features were 

extracted from NCCT images. In the 

test cohort, ROC analysis revealed that 

the radiomics model and the fusion 

model exhibited AUCs of 0.705 and 

0.857, respectively. The fusion model 

demonstrated an accuracy of 84.8% 

and sensitivity of 93.8%.

38% of patients exhibited 

favorable clinical outcomes, 

while 26% experienced adverse 

outcomes at 90 days. The 

predictive performance of the 

machine learning model is 

significant, with an AUC of 

0.775.

The area under the ROC curve is 0.874. The mean 

onset-to-door time (ODT) and door-to-puncture time 

(DPT) are 75.6 and 16.3 minutes, respectively, with a 

successful reperfusion rate of 17.7%. The optimal 

threshold for predicting performance is an estimated 

infarct core volume ≤40.3 ml based on mCTA.

CONCLUSIONS Artificial intelligence-assisted CTP diagnosis 

can facilitate rapid assessments independent 

of radiologists, but it may pose challenges in 

determining infarct core volumes.

This machine learning 

approach can effectively explore 

and accurately quantify features 

related to stroke prognosis, 

including vascular structure 

and stroke location.

The model based on NCCT radiomics 

and machine learning has high 

predictive efficiency for the prognosis 

of AIS patients receiving conventional 

treatment, which can be used to assist 

early personalized clinical therapy

Cortical atrophy emerges as an 

independent predictor of 

clinical prognosis in patients 

with acute ischemic stroke. The 

machine learning model 

demonstrates exceptional 

performance when 

comprehensively considering 

both clinical and imaging 

parameters.

mCTA-estimated IC volume might be promising for 

predicting the prognosis, and assisting in making 

individualized treatment decision in patients with AIS
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clinical and radiomics data demonstrated good performance in 
predicting patient functional outcomes (54).

In 2022, Winder et al. conducted a study involving 145 patients 
with acute ischemic stroke who underwent ERASER thrombectomy 
or other treatments. The research utilized AnToNIa software for 
perfusion imaging analysis, processing CT perfusion maps (CTC), 
mean square deviation, and baseline average images. Block-cyclic 
singular value decomposition, truncation threshold at 15%, and 
automatically calculated arterial input function were employed for 
deconvolution to generate residue curves (RC), thereby creating 
perfusion parameter maps for CBF, cerebral blood volume (CBV), 
mean transit time (MTT), and time to peak (Tmax). Additionally, 
brain tissue masks were generated. NCCT images underwent 
segmentation using AnToNIa and ITK-SNAP software tools, and 
registration to the baseline average image was performed using the 
SimpleITK and ANTs software packages. In the machine learning 
phase, each dataset underwent masking of the ipsilateral hemisphere, 
and CTC and RC data were cropped to 32 time points of interest, 
followed by corresponding processing. The tissue outcome prediction 
phase included model training, model testing, binarization, and 
statistical evaluation steps. Using Deep Learning models, image 
analysis was performed on 222 patients from the I-KNOW multicenter 
and remote ischemic preprocessing, training with TensorFlow and 
Python. The study evaluated the radiological outcomes of a subset of 
patients receiving intravenous rtPA and compared the performance of 
different models. The results showed that, compared to other models, 
CNNdeep performed better with an AUC of 0.88 ± 0.12, demonstrating 
significant differences from GLM, CNNTmax, and ADCthres. Overall, 
using multiple biomarkers as inputs in Deep Learning models 
achieved better predictive performance (55).

In 2022, Jabal et al. included 443 patients with AIS who underwent 
thrombectomy. Quantitative imaging features were extracted from 
clinical information and CT images using the e-Stroke software. The 
features were categorized into four classes, and additional new features 
were extracted. Machine learning (ML) algorithms, including k-Nearest 
Neighbors, Random Forest (RF), Gradient Boosting (GB), and Extreme 
Gradient Boosting (XGBoost), were constructed using the Scikit-learn 
library. The algorithms were optimized through the Optuna framework 
to differentiate and segment ASPECTS and output the total volume, 
volume for each ASPECTS region, and total e-ASPECTS volume. 
Simultaneously, the e-CTA software was used to identify the location of 
large vessel occlusion and quantify the volume percentage of collateral 
circulation defects to the total volume, as well as the absolute volume of 
vascular density defects in the MCA region relative to the contralateral 
hemisphere. Results showed that 101 patients had a favorable functional 
outcome (mRS-90 ≤ 2), while 192 patients had an unfavorable functional 
outcome (mRS-90 > 2). Non-enhanced CT imaging features associated 
with a favorable outcome included larger e-ASPECTS, larger brain 
volume, smaller cortical cerebrospinal fluid volume, smaller lateral 
ventricle volume, smaller acute ischemic volume, and smaller non-acute 
ischemic volume. Regarding imaging features, the XGBoost model 
performed the best with an AUC of 79%. Considering both clinical and 
radiological features, XGBoost remained the optimal model with an AUC 
of 80%. After Bayesian hyperparameter tuning and 10-fold stratified 
cross-validation, the optimized XGBoost model demonstrated a final 
performance on the patient test set with an AUC of 84%, accuracy of 77%, 
F1 score (mRS ≤ 2) of 67%, and F1 score (mRS > 2) of 82% (56).

In 2022, Amador et al. conducted a study on acute ischemic stroke, 
retrospectively collecting baseline CTP images from 147 patients. They 
preprocessed the images using the AnToNIa perfusion analysis software, 
which included motion correction, baseline correction, time smoothing, 
and interpolation. Building upon the preprocessing, they employed a 
Deep Learning approach to automatically identify the arterial input 
function (AIF). This involved architectures such as U-Net and temporal 
convolutional networks, directly utilizing the raw 4D CTP images for 
spatiotemporal analysis to predict treatment-dependent lesion outcomes 
in AIS patients. The study employed a 10-fold cross-validation scheme 
and, based on follow-up lesion volumes, trained, and evaluated the 
proposed Deep Learning method alongside a Tmax thresholding 
approach. All Deep Learning models underwent training for 100 epochs, 
and three performance evaluation metrics proposed by Winzeck et al. 
(57) were used for analysis. The results indicated that the 3D + time 
model performed the best in predicting stroke lesions, with a DSC of 
0.30, a HD of 9.5 mm, and a volume error of 3.0 mL. In contrast, the 
performance of the Tmax thresholding method was the poorest, with a 
DSC of 0.24, HD of 14.4 mm, and volume error of 86.8 mL. The 
2D + time model and the baseline method exhibited slightly lower 
average performance but were still considered acceptable, with an 
average volume error of 21.9 mL (58).

In 2023, Wouters et al. included 228 acute ischemic stroke patients 
with 127 in the training set and 101 in the validation set. They utilized 
CTP data from the MRCLEAN trial-derived cohort for training a DL 
model, and internal validation was performed after integrating clinical 
data. External validation used an independent dataset from the CRISP 
study. The study compared the performance of the DL model with the 
RAPID software, which uses deconvolution/thresholding methods, in 
predicting final infarct volume. Additionally, analyses of patient 
reperfusion grades, lesion growth rates, and relevant statistical analyses 
were conducted. The results showed that, in the analysis of 108 patients 
based on baseline CTP and actual infarct volume using RAPID, the DL 
model outperformed the RAPID software, with a mean absolute 
difference (MAD) of 34.5 mL (SD 29.4), compared to RAPID software’s 
MAD of 52.4 mL (SD 49.8) (p < 0.01). For the 19 patients with 
intermediate reperfusion in the MR CLEAN study, the DL model had 
a MAD of 36.7 mL (SD 38.3), with no significant difference compared 
to the fully or non-reperfused groups (p = 0.64). ROC curve analysis 
indicated an optimal threshold for infarct growth at 0.36, with a 
median growth rate of 2.7 mL/h in patients with HIR < 0.36 and 
8.5 mL/h in patients with HIR ≥ 0.36 (p < 0.01) (59).

The main information of the above included literatures is shown 
in Table 2.

2.5 Artificial intelligence-based prediction 
of stroke prognosis using MRI

MRI has various imaging sequences, such as diffusion-weighted 
MRI, perfusion MRI, T2 sequences, etc., which can assess different 
structural and functional features of brain tissue. Diffusion MRI can 
detect cytotoxic edema, which is the most sensitive core indicator of 
ischemic stroke. In the region of cytotoxic edema, water molecules 
move from extracellular space to intracellular space, and diffusion is 
restricted. Diffusion-weighted imaging can detect ischemic injury 
within minutes after the onset of ischemic stroke, showing a significant 
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TABLE 2 Summary of papers on deep learning for CT on rehabilitation of Ischemic stroke.

PMID 31707199 34868662 34164743 33957774 35432171

YEAR 2019 2021 2021 2021 2022

LEARNING APPROACH deep learning deep learning deep learning deep learning deep learning

PRIMARY AUTHOR Hilbert A Hokkinen L Hokkinen L Hakim A Ramos LA

DISEASE Acute Ischemic Stroke anterior circulation ischemic stroke anterior cerebral circulation ischaemic stroke Acute Ischemia Acute Ischemic Stroke

DATA VOLUME the MR CLEAN Registry dataset with 

1301 patients

117 suspected stroke patients. 83 consecutive stroke cases undergoing 

thrombolytic therapy or alternative 

treatments

Among 103 patients with acute 

anterior circulation ischemic stroke 

due to large vessel occlusion, 40 

constituted the lesion-free test set, 

while the remaining 63 formed the 

training group.

3279patients from the MR CLEAN 

Registry

DATA TYPE Clinical variables and radiological 

image biomarkers (including age, 

pre-stroke mRS, NIHSS, occlusion 

location, ASPECTS, etc.)

CTA CTA CTP、DWI radiomics features、 images and the 

clinical data

METHODS Residual Neural Network (ResNet) Convolutional neural network(CNN) convolutional neural network Machine learning method 3D deep learning models、machine 

learning models

RESULTS Deep learning models demonstrated 

superior performance in functional 

outcome (average AUC of 0.71) and 

reperfusion (average AUC of 0.65).

The final infarct volume correlation 

for the Convolutional Neural 

Network (CNN) was r=0.43, while for 

CTP-RAPID, it was r=0.58. Within 

the 6-24 hour time window, both 

CNN (r=0.67, slope 1.2) and CTP-

RAPID (r=0.82, slope 1.4) showed a 

significantly increased correlation. 

Compared to CTP-RAPID, CNN 

demonstrated a sensitivity of 0.38 and 

specificity of 0.89.

The sensitivity, specificity, and accuracy of 

the CNN stand at 0.71, 0.87, and 0.80, 

respectively. The correlation coefficient with 

manual segmentation is 0.83. For patients 

not subjected to thrombolytic therapy, 

noteworthy correlations emerge between the 

CNN output and CTP-RAPID estimated 

values, with correlation coefficients of r=0.89 

and r=0.92, respectively. Additionally, a 

robust correlation of r=0.89 is observed 

between the CNN output and CTP-RAPID 

ischemic core volume.

In the best-performing cases, the 

median DWI volume was 7.2 (IQR), 

with a median absolute vascular 

density (VD) of 26.41

Combining image data with clinical 

data did not yield a significant 

improvement in mRS prediction 

(mean AUC of 0.81 vs. 0.80) 

compared to using clinical data alone, 

irrespective of the approach. 

However, for predicting reperfusion, 

a significant enhancement was 

observed with the combination of 

image and clinical features (mean 

AUC of 0.54 vs. 0.61), with the deep 

learning approach achieving the 

highest AUC.

CONCLUSIONS n our dataset, automated image 

analysis using deep learning methods 

demonstrates superior performance 

in predicting stroke outcomes, with 

the potential to enhance treatment 

selection.

A CTA-based CNN method had 

moderate correlation with final 

infarct volumes in the late time 

window in patients successfully 

treated with EVT.

The CNN software based on CTA can 

provide robust estimates of infarct core 

volume. The infarct volume derived from 

CNN exhibits a strong correlation with the 

ischemic core volume from CTP-RAPID.

Machine learning methods may 

predict infarcted tissue from CTP 

with improved accuracy compared 

with threshold-based methods used 

in clinical routine.

The integration of radiomics and 

deep learning image features with 

clinical data significantly improves 

the prediction of favorable 

reperfusion.

PMID 36408399 35665041 36103772 34587794

(Continued)
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TABLE 2 (Continued)

YEAR 2022 2022 2022 2023

LEARNING APPROACH deep learning deep learning deep learning deep learning

PRIMARY AUTHOR Winder AJ Jabal MS Amador K Wouters

DISEASE acute ischemic stroke estimated infarct core volume in the 

patients with acute ischaemic stroke

spatio-temporal convolutional neural 

networks

Acute Ischemic Stroke

DATA VOLUME 145 patients with acute ischemic 

stroke who underwent intravenous 

thrombolysis treatment, following the 

conventions of scientific literature

293 patients undergoing 

thrombectomy.

147 patients from the multicenter, 

prospective ERASER study

228 acute ischemic stroke patients 

with 127 in the training set and 

101 in the validation set.

DATA TYPE CT CT/CTA CTP CTP

METHODS DCN multi-scale three-dimensional 

convolutional neural network

4D CT perfusion imaging using spatio-

temporal convolutional neural networks

DL model with the RAPID software

RESULTS DCN: 0.287, RDF: 0.262, Tmax-

thresholding: 0.249, deconvolved 

residual curves: 0.286, source 

concentration-time curves: 0.296

In a cohort of 101 patients, favorable 

outcomes (mRS-90 ≤ 2) were 

observed, while 192 patients 

experienced unfavorable outcomes 

(mRS-90 > 2). The XGBoost model 

demonstrated optimal performance 

when considering both imaging 

features and clinical considerations, 

achieving AUCs of 79% and 80%, 

respectively. Following optimization, 

the final performance of the XGBoost 

model on the patient test set was 

characterized by an AUC of 84%, 

accuracy of 77%, F1 score (mRS ≤ 2) 

of 67%, and F1 score (mRS > 2) of 

82%.

The 3D+time model demonstrates optimal 

performance, boasting a Dice Similarity 

Coefficient (DSC) of 0.30, Hausdorff 

Distance (HD) of 9.5 mm, and a volume 

error of 3.0 mL. In contrast, the Tmax 

threshold method exhibits the least favorable 

performance, with a DSC of 0.24, HD of 14.4 

mm, and a volume error of 86.8 mL. The 

2D+time model, while displaying slightly 

lower average performance, still maintains 

acceptability, with an average volume error 

of 21.9 mL.

The results showed that, in the 

analysis of 108 patients based on 

baseline CTP and actual infarct 

volume using RAPID, the DL model 

outperformed the RAPID software, 

with a mean absolute difference 

(MAD) of 34.5 ml (SD 29.4), 

compared to RAPID software's MAD 

of 52.4 ml (SD 49.8) (p < 0.01). For 

the 19 patients with intermediate 

reperfusion in the MR CLEAN study, 

the DL model had a MAD of 36.7 ml 

(SD 38.3), with no significant 

difference compared to the fully or 

non-reperfused groups (p = 0.64).

CONCLUSIONS Through DCN, utilizing features 

optimized from source 

concentration-time curves, the best 

predictions for tissue outcomes are 

provided.

The value of machine learning lies in 

integrating essential clinical 

information and automated imaging 

features for predicting functional 

outcomes three months after 

mechanical thrombectomy.

4D CTP datasets include more predictive 

information than perfusion parameter maps, 

and that the proposed method is an efficient 

approach to make use of this complex data

ROC curve analysis indicated an 

optimal threshold for infarct growth 

at 0.36,
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high signal (60). Studies have indicated that the sensitivity of MRI in 
diagnosing acute ischemic stroke is 83% (61). Traditional MRI 
sequences, such as T1, T2, and FLAIR, become sensitive to ischemic 
changes after a net increase in brain tissue water content, allowing 
detection of ischemic changes hours after symptom onset (62). 
Perfusion-weighted imaging (PWI) can provide an assessment of 
cerebral blood flow perfusion. By combining information from PWI 
and DWI sequences, the size and location of the ischemic penumbra 
can be evaluated.

MRI vascular imaging is a powerful tool for detecting vascular 
stenosis or occlusion, but it is more time-consuming than CTA and 
may not be  available around the clock or in emergencies at all 
hospitals. Despite its limitations, MRA has unique advantages in 
diagnosing stenosis, occlusion, etc. In most studies, MRA has a 
sensitivity and specificity close to 100% for detecting carotid artery 
occlusion (63). If MRA shows no stenosis or stenosis less than 70%, 
further diagnostic evaluation is usually not necessary.

MRI has been used as a preferred modality for the treatment and 
secondary prevention of acute ischemic stroke, as show in Figure 5. 
While CT is most commonly employed for assessing acute stroke 
patients, the high signal-to-noise ratio and the ability to identify 
damaged brain tissue make MRI a crucial imaging modality for stroke 
diagnosis, prognosis, and prevention. Evaluation of ischemic stroke 
typically involves multiple imaging parameters, with changes in 
cerebral blood flow being a primary pathological alteration in 
ischemic stroke. MRI sequences, such as dynamic contrast-enhanced 
perfusion, can estimate the penumbral tissue, which is at risk of 
infarction without reperfusion treatment but has not yet undergone 
irreversible damage. Additionally, it can assess cerebral vascular 

reserve (CVR) to better select cerebrovascular intervention measures. 
CVR is defined as the ability to increase CBF in response to vascular 
dilation stimuli. In patients with reduced CVR, there is often an 
increased risk of stroke when CVR is diminished, especially in those 
with chronic cerebrovascular diseases. Arterial spin labeling (ASL) is 
an enhanced MRI sequence used to measure CBF, offering a promising 
technique for evaluating acute ischemic stroke and potentially 
identifying patients at higher risk of future strokes (64).

2.5.1 The application of machine learning in 
stroke

In 2005, Gottup et al. collected MRI data from 14 patients with 
acute stroke. The performance was measured using AUC. Three 
different implementations of the instance-based method—k-NN, 
Gaussian weighted, and constant radius search classification—were 
applied for data analysis. The results indicated that the performance 
of the optimal k-NN and Gaussian weighted algorithms did not shown 
a significant difference, but both were markedly superior to the 
constant radius implementation. Through a qualitative analysis of the 
distribution of instances in the feature space, it was observed that 
non-infarct instances tended to cluster together, while infarct 
instances were more dispersed in the feature space. Additionally, the 
analysis suggested the existence of feature space regions occupied 
exclusively by infarct instances, which were not present for non-infarct 
instances (65).

In 2015, Kim et al. enrolled 35 ischemic stroke patients with visual 
field defects (VFD) caused by posterior cerebral artery (PCA) 
infarction. All these patients underwent MRI scans. After transforming 
the lesion locations into standard maps, the ischemic lesion area range 

FIGURE 5

The MRI images at the onset of ischemic stroke for two patients, both of whom underwent rehabilitation training after their conditions stabilized, are 
presented. (A) A 57-year-old female patient, post-rehabilitation Berg Balance Scale score of 2, Functional Independence Measure (FIM) score of 6, and 
Modified Barthel Index of 3. (B) A 72-year-old male patient, post-rehabilitation Berg Balance Scale score of 0, FIM score of 1, and Modified Barthel 
Index of 0.
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(rEILs) for each cortical area was measured. Significant improvement 
in VFD was defined as a provisional improvement of 20% 3 months 
after the stroke. The performance of clinical and radiological variables 
in predicting significant improvement was measured using support 
vector machines. Clinical variables, baseline visual field scores, lesion 
volumes, and rEIL were compared between the significantly improved 
and less improved groups. Support vector machines with a linear 
kernel were employed to train and validate the prognostic classifier. 
The results showed that left PCA infarction, pre-stroke MRI time, and 
rEIL in the tongue, corpus callosum, and cuneal cortex were good 
prognostic indicators for lateralized VFD. Compared to clinical 
variables, the combination of rEIL in various cortical subregions 
demonstrated a better predictive effect on lateralized VFD. Adding 
rEIL to other variables improved the prognostic prediction of 
lateralized VFD (66).

In 2020, Grosse et al. included 99 patients with acute ischemic 
stroke for multi-parametric MRI data. They used the AnToNIa 
software tool for apparent diffusion coefficient (ADC) map calculation, 
intraslice motion correction of PWI sequences, and atlas-based 
methods for automatic extraction of arterial input functions, among 
other preprocessing steps. Perfusion parameter maps were computed 
using a block-circulant singular value decomposition method, and the 
FLAIR dataset was segmented. Image registration to the Montreal 
Neurological Institute (MNI) brain atlas was performed, and a 
combination of LR and RF algorithms was used for mixed tissue 
outcome prediction. Twenty-one prediction models were evaluated 
using Receiver Operating Characteristic Area Under the Curve (ROC 
AUC), Dice similarity index, sensitivity, and specificity. Single-sided 
paired t-tests were employed to assess Dice and ROC AUC values, and 
the average and median of local LR model coefficients were calculated 
for each MNI structural brain region. The study results demonstrated 
that the mixed LR model performed best in terms of the average ROC 
AUC value (0.872 ± 0.092), while the mixed RF model was optimal for 
the average Dice coefficient (0.353 ± 0.220). The mixed LR model 
showed the highest average values for ROC AUC and Dice coefficient, 
followed by the mixed RF model. The mixed model significantly 
improved the effect size at the 0.01 level, including ROC AUC and 
Dice values. The mixed LR model had the highest average values for 
ROC AUC, Dice coefficient, sensitivity, and specificity, followed by 
local LR, mixed, and local RF models, as well as global LR and RF 
models (67).

In 2021, Hamann et al. included clinical and imaging data from a 
cohort of 222 patients who underwent EVT for acute ischemic stroke 
caused by middle cerebral artery (MCA)-M1 occlusion at the Bern 
University Hospital between January 2012 and August 2017. The data 
used for predictive analysis was limited to diffusion-weighted and 
perfusion images. Imaging data underwent post-processing using the 
Acute Stroke Care plugin of Olea Sphere. A predictive model for 
favorable functional outcomes was developed using clinical variables 
and magnetic resonance imaging features based on regions of interest 
(ROIs). The study assessed the predictive capability of different patient 
characteristics and imaging variables, both individually and in 
combination, and evaluated overall performance based on the AUC 
values and Brier scores for the entire test set. The results indicated a 
successful revascularization rate of 78%, with 54% of patients 
achieving a favorable outcome (modified Rankin Scale score 0–2). 
Small infarct size was associated with a favorable functional outcome, 
while older age was related to a reduced chance of favorable outcomes 

and functional improvement. The use of isolated imaging information 
as a predictor for functional outcomes showed relatively poor 
performance. No significant differences were observed between the 
predictive variable sets when imaging variables were added to patient 
characteristics (68).

In 2022, Graaf et  al. analyzed patients who had successful 
reperfusion in the MR CLEAN registry center from March 2014 to 
November 2017. Initially, they constructed a multivariable ordinal 
regression model to predict functional outcomes measured by the 
mRS at 90 days. Four groups of predictive factors were included: 
baseline patient factors, imaging factors, treatment factors, and 
postoperative factors (i.e., adverse events). Each group of predictive 
factors was incrementally added to the basic model, which only 
included baseline patient factors, and the overall explained variance 
of the most comprehensive model was subsequently evaluated. The 
results indicated that the most important predictive factors for mRS 
were baseline patient factors and postoperative factors. Among 
patients with successful reperfusion, the five most important 
individual predictive factors for functional outcomes at 90 days were 
pre-stroke mRS, baseline NIHSS, symptomatic intracranial 
hemorrhage (sICH), age, and pneumonia. Stroke patients with sICH 
had a 54% lower probability of functional independence compared to 
those without sICH, and patients with pneumonia had a 21% lower 
probability of functional independence than those without 
pneumonia. This study suggests that both patient and postoperative 
factors are crucial predictors of successful reperfusion outcomes in 
ischemic stroke patients (69).

In 2021, Abedi et  al. developed classification models for six 
prediction windows by incorporating MRI data from 7,144 patients 
with acute ischemic stroke. Three algorithms, LR, XGB, and RF, were 
employed in the study. The research data were randomly split into 80: 
20 training and testing sets, using RF and LR as baseline metrics. Ten 
repetitions of 5-fold cross-validation (CV) training were performed. 
Among the 7,144 patients meeting inclusion criteria, 5,347 did not 
experience a stroke after 2 years, 605 died within 1 month, 1,380 died 
within 1 year, and 1,797 died within 2 years. On the test dataset, the 
average Area Under the Receiver Operating Characteristic curve 
(AUROC) ranged from 0.76 to 0.81. The RF-based model performed 
best in the 1-month window (AUROC = 0.82), with the highest 
Negative Predictive Value (NPV) of 91.1 for shorter prediction 
windows. The RF model achieved the highest PPV at the 6-month 
window (0.92), while the XGB-based model had the highest accuracy 
(precision of 0.89) in the 1-month window. Age, hemoglobin levels, 
and BMI were identified as the top three relevant factors across 
different prediction windows, with average overall importance scores 
of 96.3, 68.2, and 55.5%, respectively (70).

In 2022, Elsaid et al. recruited 354 patients using a systematic 
random technique (every three admissions) from the Stroke and 
Intensive Care Unit (ICU) at Zagazig University Hospital in Egypt. 
The included data comprised routine MR and diffusion-weighted 
images for each patient. The team optimized several machines 
learning algorithms, including LRC, SVC, RFC, GBC, and 
MLPC. They evaluated the predictive performance of the models 
using ROC and explored the interactions among predictive factors 
using Generalized Additive Models (GAM). The results indicated a 
19.8% occurrence rate of HT in ischemic stroke patients. Infarct size, 
cerebral microbleeds (CMB), and NIHSS were identified as the best 
predictors for HT. RFC and GBC outperformed LRC and MLPC 
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significantly. SVC performed better than LRC and MLPC but lacked 
statistical significance. There was no significant difference between 
LRC and MLPC (71).

In 2022, Guo et  al. conducted a comprehensive analysis by 
including 156 patients with 88 DSC-PWI images. They preprocessed 
the DSC-PWI data and assessed the role of Dynamic R2* (DRF) in the 
diagnosis and prognosis prediction of ischemic stroke patients. The 
study segmented DSC-PWI images into N 3D images and calculated 
the performance of brain tissue DRF through four combination 
methods. Ten machine learning models, including SVM, Decision 
Tree (DT), Adaboost Classifier (Ada), Neural Network (NN), and 
others, were used for performance evaluation based on AUC, with 
AUC calculated using 10-fold cross-validation. Analysis of 78 
DSC-PWI images detected 50 cases of ischemic stroke, including 60 
patients with NIHSS scores of 95 and 66 patients with mRS scores less 
than 2 at 101 days. In terms of feature extraction, which included 
First_order, GLCM, GLDM, GLRLM, GLSZM, NGTDM, etc., the p 
values ranged from 0.0123 ± 0.0144. The p value for DRF significantly 
correlated with NIHSS assessment was 8324.0 ± 0232.0, totaling 156. 
For outcome prediction, 144 significant DRFs were extracted with a p 
value of 9203.0 ± 0238.0, including First_order, GLCM, GLDM, 
GLRRM, GLSZM, NGTDM, etc. Reduction in dimensions through 
PCA, ICA, t-SNE, IOSMAP, and UMAP methods resulted in R values 
of 0.110 ± 0.121, 0.140 ± 0.079, 0.110 ± 0.121, 0.294 ± 0.139, and 
0.098 ± 0.133, respectively. The conclusion states that the study results 
indicate that different feature extraction and dimensionality reduction 
methods can achieve better performance in the detection, assessment, 
and outcome prediction of ischemic stroke. In some cases, features 
selected by Lasso demonstrated superior performance, increasing 
AUC for stroke detection by 19.4% (from 0.731 to 0.925), NIHSS 
assessment by 20.1% (from 0.652 to 0.853), and prognosis prediction 
by 14.9% (from 0.679 to 0.828) (72).

In 2022, Li et al., conducted a study involving 260 patients with 
acute ischemic stroke, incorporating a total of 620 DWI images. 
Initially, neuroradiologists selected ROIs, followed by ROI 
segmentation and normalization preprocessing. They integrated a 
SVM algorithm with a Least Absolute Shrinkage and Selection 
Operator (LASSO) regression model and optimized model parameters 
through 10-fold cross-validation. The predictive performance of the 
machine learning model was assessed using AUC of ROC curve. The 
study results revealed that among the 260 patients with acute ischemic 
stroke, there were 109 and 46 cases of favorable outcomes in the 
training and test sets, respectively. The LASSO regression model 
identified four features, with the highest-weighted coefficient 
attributed to “sqyareriit-IV.” ROC curve analysis demonstrated that in 
the training set, the AUC for predicting the prognosis after mechanical 
thrombectomy was 0.945 (95% CI: 0.890–0.975), and in the test set, it 
was 0.920 (95% CI, 0.849–0.981) (73).

In 2023, Luo et al. conducted a study analyzing 132 patients with 
Basilar Artery Occlusion (ABAO), randomly dividing them into a 
training group (n = 106) and a test group (n = 26). They extracted 1,130 
radiomic features from DWI images and employed the Least Absolute 
Shrinkage and Selection Operator (LASSO) regression method for 
feature selection. Radiomic and clinical models were constructed 
using SVM, and the models were evaluated using ROC and decision 
curves. The results indicated that AUC of the ROC curve for the 
radiomic-clinical model was 0.897 in the training group and 0.935 in 
the test group. The AUC for the radiomic model was 0.887 in the 

training group and 0.840 in the test group. The AUC for the clinical 
model was 0.746 in the training group and 0.766 in the test group. 
Importantly, the AUC of the radiomic-clinical model was significantly 
greater than that of the clinical model (74).

In 2023, Xu et al. included 314 patients with acute corpus callosum 
infarction (CC). Basic clinical and radiological information was 
obtained through the Electronic Medical Records (EMR) management 
system. Neuroimaging evidence was collected from MRI, MRA, or 
CTA. For patients diagnosed with CC infarction 1 year after onset, the 
team used the Behavioral Risk Factor Surveillance System (BRFSS) 
questionnaire to identify subjective cognitive decline (SCD). The team 
established seven machine learning models, including XGBoost, LR, 
LightGBM, AdaBoost, GNB, CNB, and SVM. They compared the 
predictive performance of these models using different metrics. The 
results indicated that the LR model outperformed the other six 
machine learning models in predicting SCD after CC infarction. 
Through LASSO and SHAP analyses, the team identified the top nine 
important predictive factors from the LR model output. Additionally, 
they discovered factors independently associated with cognitive 
outcomes (75).

In 2023, Wang et al. conducted a study involving 2015 patients 
who experienced ischemic strokes within 650 h. The study utilized 
MRI images and follow-up data. NeuBrainCARE software was 
employed to manually measure the infarct volume, represented by the 
ADC. Additionally, two radiologists assessed the burden of small 
vessel disease (SVD). The researchers employed a bidirectional 
stepwise regression method to select indicators in the LR model and 
applied three machine learning algorithms (Gaussian process 
regression, random forest, and extreme gradient boosting) to establish 
predictive models. The results indicated that the LR model (SVO-AIS) 
achieved an AUC of 0.86 [0.78–0.94] for favorable outcomes and an 
AUC of 0.88 [0.8–0.96] for good outcomes. The LR model (LAA-AIS) 
had AUC values of 0.73 [0.54–0.91] for favorable outcomes and 0.75 
[0.59–0.91] for good outcomes. The GPR model (SVO-AIS) achieved 
an AUC of 0.86 [0.77–0.95] for favorable outcomes and an AUC of 
0.86 [0.77–0.96] for good outcomes. The GPR model (LAA-AIS) had 
AUC values of 0.65 [0.47–0.83] for favorable outcomes and 0.66 [0.49–
0.84] for good outcomes. The GOA-RF model (SVO-AIS) 
demonstrated an AUC of 0.85 [0.75–0.94] for favorable outcomes and 
0.84 [0.74–0.94] for good outcomes. The GOA-RF model (LAA-AIS) 
achieved AUC values of 0.66 [0.49–0.84] for favorable outcomes and 
0.68 [0.51–0.86] for good outcomes. The GOA-XGBoost model 
exhibited AUC values of 0.87 [0.79–0.96] for favorable outcomes and 
0.85 [0.76–0.94] for good outcomes. In the LAA-AIS population, the 
AUC values were 0.91 [0.84–0.97] for favorable outcomes and 0.90 
[0.83–0.97] for good outcomes (76).

In 2023, Yu et al. investigated the demographic characteristics, 
clinical data, and MR data of 180 patients with AIS. They manually 
delineated ROI for acute ischemic lesions on DWI images using 
MRIcron software. The data from all modalities, including ADC, 
FLAIR, SWI, and T1-2w, were aligned with the DWI images using 
SPM1 software. Radiomic analysis was performed on the MRI data of 
the five modalities, extracting a total of 946 features per image. 
Additionally, 14 shape features of the lesion regions were extracted. 
The scikit-learn package was utilized for feature selection using the 
recursive feature elimination (RFE) method. Ultimately, 16 image 
features were selected for training machine learning models, including 
SVM, RF, LightGBM, CatBoost, and XGBoost. Statistical analysis was 
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conducted using SPSS 21.0. The results showed that out of 148 
patients, 83 (56.1%) had a favorable prognosis, while 65 (43.9%) had 
an unfavorable prognosis. For each MRI modality, three optimal 
radiomic features (DWI, ADC, FLAIR, SWI, and T1w) and one 
optimal feature related to lesion shape were selected as key features in 
the machine learning models. The accuracy of the models was as 
follows: SVM model, 79%; RF model, 82%; LightGBM model, 83%; 
CatBoost model, 81%; and XGBoost model, 80%. This study revealed 
the potential value of a multimodal radiomic approach in accurately 
predicting the clinical outcomes of patients with AIS (77).

In 2023, Lee et al. included 3,687 patients with acute ischemic 
stroke, along with their MRI and relevant clinical information. The 
Rankin scale, assessed by neurologists, was used for outcome 
evaluation. The team employed multiple imputation by chained 
equations (MICE) to handle outliers and missing data and normalized 
the data using MinMaxScaler. They developed models based on three 
algorithms: random forest, XGBoost, and LGBM. The TreeSHAP 
method was used to calculate interaction effects between features. 
Model performance was evaluated using AUC-ROC, revealing that 
30.4% of patients had unfavorable outcomes, with external validation 
data showing rates of 37.2 and 29.1%. The AUROC for the internal test 
set, external validation sets A and B were 0.790, 0.791, and 0.873, 
respectively, while the Brier scores were 0.172, 0.202, and 0.141. In 
summary, the models demonstrated overall good performance (78).

In 2023, Weng et al. included 97 stroke patients with CTA and 
MRI images. Preprocessing of CTA and DWI images was conducted 
in MATLAB 2019. For CTA images, the processing involved feature 
extraction for 116 brain regions, image registration, segmentation of 
cerebral vessels using the Unet model, and calculation of vascular 
volume and length features. For DWI image processing, it included 
location feature extraction, image registration, and manual marking 
of stroke lesions by radiologists on the itk-snap platform. By 
multiplying the brain matrix and position matrix, the stroke regions 
for each area were obtained, and the proportion of stroke regions in 
the entire brain area was calculated. Subsequently, a machine learning 
model was established, utilizing a classification model based on the 
sparse representation method for feature selection and classification. 
The research results indicated that, on two independent test sets, the 
ACC of the cross-validation dataset using the Adboost method was 
0.8519, while the ACC for the independent test set using the SRC 
method was 0.8125. This study suggests that the machine learning 
approach is effective in extracting and accurately quantifying features 
related to stroke prognosis, including vascular structure and stroke 
location (46).

The main information of the above included literatures is shown 
in Table 3.

2.5.2 The application of deep learning in stroke
In 2018, Nielsen et al. conducted a detailed analysis of a multi-

center study involving 222 patients from the I-KNOW consortium 
and remote ischemic pre-conditioning for MRI. The study included a 
subgroup of patients receiving intravenous rtPA treatment (n = 187) 
and the imaging results of 35 untreated patients. In the training phase, 
a CNN was trained using TensorFlow 2.7.9 to automatically identify 
initial arterial input functions. Deconvolution was performed using 
concentration curve parameters to obtain average microvascular 
transit time and cerebral blood flow. CNNTmax was used to assess the 
accuracy of Tmax and was compared with regression methods using 

generalized linear models (GLM) to predict the risk of infarction at 
the individual voxel level. The final infarction prediction performance 
was evaluated by AUC from T2-FLAIR scans. Patients receiving 
intravenous treatment were divided into independent training (158 
cases) and test sets (29 cases) to evaluate the model’s performance in 
independent patients. Follow-up infarctions were assessed by four 
radiology experts 1 month after stroke. The 35 untreated patients 
underwent post-training, resulting in CNNdeep-rtPA. Differences 
were assessed through post-training of CNNdeep. The new model was 
evaluated on 29 patients in the trial group who received intravenous 
rtPA treatment, and AUC and final infarct area were compared. The 
results showed that CNNshallow tended to overestimate the final 
lesion volume, while CNNTmax predicted a lower risk of infarction. 
In contrast, CNNdeep provided better visual predictions. CNNdeep 
had an AUC of 0.88 ± 0.12, significantly better than CNNshallow 
(0.85 ± 0.11), GLM (0.78 ± 0.12), CNNTmax (0.72 ± 0.14), and 
ADCthres (0.66 ± 0.13). There was a significant difference between 
CNNdeep and GLM (p = 0.005), CNNTmax (p < 0.003), and ADCthres 
(p < 0.0001), while the difference between CNNdeep and CNNshallow 
was not significant (p = 0.063) (79).

In 2018, Pinto et al. included MRI images and clinical information 
from 75 ischemic stroke patients who underwent mechanical 
thrombectomy from the ISLES2017 dataset. Using a Deep Learning 
architecture that combines U-net with two-dimensional Gated 
Recurrent Units (GRU), the study integrated clinical information at 
the population level and analyzed it using the Thrombolysis in 
Cerebral Infarction (TICI) scale. The study experimented with cross-
validation on the training set and compared its results with a baseline 
architecture that did not include any clinical metadata. This research 
innovatively combined imaging and non-imaging clinical data in a 
Deep Learning architecture and, through the development of a 
customized loss function, incorporated clinical information in both 
the learning and prediction phases. This approach more accurately 
predicted different outcome scenarios. The study evaluated the 
performance of the method using five metrics (Dice similarity 
coefficient, accuracy, recall, Hausdorff distance, and average 
symmetric surface distance). In the end, the method achieved a Dice 
score of 0.29 ± 0.22, Hausdorff distance of 47.17 ± 22.13, ASSD of 
7.20 ± 4.14, precision of 0.26 ± 0.23, and recall of 0.61 ± 0.28 (80).

In 2019, King et al. included MR images from 444 patients. They 
employed a multi-atlas skull stripping algorithm for skull stripping. 
By aligning brain images to the centerline of the axial plane, the study 
proposed a Deep Learning model, compared it with several 
benchmark models, and introduced an improved model. The 
performance of these models was evaluated through multiple 
validations, using metrics such as AUC, accuracy, and overlap 
coefficient. Here are the AUC and overlap coefficient results: 2D CNN: 
AUC of 0.783 ± 0.030, overlap coefficient of 0.728. 3D CNN: AUC of 
0.799 ± 0.029, overlap coefficient of 0.717. Unitary CNN-Opposite: 
AUC of 0.871 ± 0.024, overlap coefficient of 0.811.SR-KDA: AUC of 
0.788 ± 0.031, overlap coefficient of 0.679. Results for accuracy and 
recall are as follows: 2D CNN: Accuracy of 0.211, recall of 0.700. 3D 
CNN: Accuracy of 0.220, recall of 0.693. Unitary CNN-Opposite: 
Accuracy of 0.222, recall of 0.799. SR-KDA: Accuracy of 0.671, recall 
of 0.171. Experimental evidence suggests its optimal performance 
when trained with opposite patches. Through visualizing the results 
of the deep CNN, the study provides a detailed analysis of the model’s 
performance in large infarcts and specific scenarios. Overall, this deep 
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TABLE 3 Summary of papers on machine learning for MRI on rehabilitation of Ischemic stroke.

PMID 15811787 26606516 33152045 33220140 34266905

YEAR 2005 2015 2020 2021 2022

LEARNING APPROACH machine learning machine learning machine learning machine learning machine learning

PRIMARY AUTHOR Christian Gottrup Bum Joon Kim Grosser M Janne Hamann Rob A van de Graaf

DISEASE Acute Strok Cerebral Infarction acute ischemic stroke stroke patients with middle cerebral artery-M1 

occlusions and early thrombectomy

ischemic stroke

DATA VOLUME magnetic resonance imaging of 14 patients with 

acute stroke

Thirty-five cases of ischemic infarction patients with 

visual field defects (VFD) due to posterior cerebral 

artery (PCA) infarction

weighted MRI data from 99 

patients.

222 patients with acute ischemic stroke due to 

middle cerebral artery (MCA)-M1 occlusion 

who received EVT

A cohort of 3180 patients 

who successfully 

underwent reperfusion

DATA TYPE mri MRI weighted MRI datasets magnetic resonance imaging features. data from the MR 

CLEAN Registry

METHODS k-NN, Gaussian weighted, and constant radius 

search classification.

Support Vector Machine global machine learning 

model

different machine-learning models and A multivariate ordinal 

regression model

RESULTS Optimal k-NN and Gaussian weighted 

algorithms exhibit no significant performance 

difference, yet both are notably superior to the 

constant radius implementation

The occurrence of left PCA infarction, pre-onset 

MRI duration, and reil in the tongue, corpus 

callosum, and cuneal cortex are indicative of a 

favorable prognosis for lateral visual field defects 

(VFD). When compared to clinical variables, the 

combination of rEIL in various cortical subregions 

demonstrates a superior predictive effect for lateral 

VFD. The inclusion of rEIL in other variables 

improves the prognosis prediction for lateral VFD.

The ensemble LR model 

performed optimally with 

the highest mean ROC AUC 

value (0.872±0.092), while 

the ensemble RF model 

excelled with the highest 

mean Dice coefficient 

(0.353±0.220).

The successful reperfusion rate reached 78%, 

with favorable outcomes observed in 54% of 

patients (Modified Rankin Scale score 0-2).

CONCLUSIONS The team has concluded that the IB method can 

be employed for predicting the ultimate 

infarction in patients with acute ischemic 

stroke. However, further efforts are necessary to 

make it applicable in a clinical setting.

The team has derived estimates of rEIL that provide 

valuable information about the location of ischemic 

lesions. rEIL accurately predicts significant 

improvements in VFD, and the conclusion is 

reinforced when combined with other variables, 

enhancing predictive capabilities.

Compared to a single global 

machine learning model 

trained on voxel 

information independent of 

brain location, a locally 

trained machine learning 

model provides more 

accurate predictions of 

lesion outcomes.

There exists a correlation between small 

infarct lesions and favorable functional 

outcomes, while age is associated with 

decreased chances of favorable outcomes and 

functional improvement. Standalone 

radiological information as a predictor for 

functional outcomes exhibits relatively poor 

performance. Upon incorporating imaging 

variables into patient characteristics, no 

significant differences were observed among 

the predictive variable sets.

PMID 34218182 36504664 36143010 36055039 36804312

YEAR 2021 2022 2022 2022 2023

LEARNING APPROACH machine learning machine learning machine learning machine learning machine learning

PRIMARY AUTHOR Abedi V Ahmed F Elsaid Guo Y Li Y Luo Y

(Continued)
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TABLE 3 (Continued)

DISEASE acute ischemic stroke ischemic stroke Ischemic Stroke acute ischemic stroke acute basilar artery 

occlusion

DATA VOLUME Clinical data from a cohort of 7144 patients 

retrieved from the database.

360 ischemic stroke patients were enrolled, and a 

continued investigation was conducted with a subset 

of 354 individuals.

88 DSC-PWI images from 

156 patients.

A total of 260 stroke patients undergoing 

mechanical thrombectomy at our hospital 

were randomly divided into a training set 

(n=182) and a test set (n=78) in a 7:3 ratio.

A total of 132 patients 

were randomly allocated 

into a training group (n = 

106) and a test group (n = 

26).

DATA TYPE MRI T2 diffusion-weighted MRI DSC-PWI DWI dwi

METHODS EHR generalized additive modeling (GAM) Ten machine learning 

models

Combining machine learning with radiomics 

features

radiomics-clinical 

machine learning model

RESULTS The model's average AUROC ranges from 0.76 

to 0.81, with the Random Forest model excelling 

in a one-month window (AUROC=0.82). 

Shorter prediction windows show high Negative 

Predictive Values (NPV), peaking at 91.1. The RF 

model has the highest Positive Predictive Value 

(PPV) in a six-month window (0.92), while the 

XGBoost-based model achieves the highest 

accuracy in a one-month window (precision of 

0.89). Age, hemoglobin levels, and BMI 

consistently rank as the top three influential 

factors across different prediction windows, with 

average overall importance values of 96.3%, 

68.2%, and 55.5%, respectively.

The rate of hemorrhagic transformation (HT) in 

ischemic stroke patients was 19.8%.

The R values of 

dimensionality reduction 

features (DRF) obtained 

through methods such as 

First_order, GLCM, GLDM, 

GLRRM, GLSZM, and 

NGTDM using PCA, ICA, 

t-SNE, ISOMAP, and 

UMAP were 0.110 ± 0.121, 

0.140 ± 0.079, 0.110 ± 0.121, 

0.294 ± 0.139, and 0.098 ± 

0.133, respectively.

In the training set, the AUC for predicting 

post-mechanical thrombectomy outcomes was 

0.945 (95% CI: 0.890–0.975), while in the test 

set, it was 0.920 (95% CI: 0.849–0.981).

The area under the ROC 

curve (AUC) of the 

radiomics-clinical model 

was 0.897 in the training 

group and 0.935 in the 

test group. For the 

radiomics model alone, 

the AUC was 0.887 in the 

training group and 

0.840 in the test group. 

The clinical model 

achieved an AUC of 

0.746 in the training 

group and 0.766 in the 

test group.

CONCLUSIONS The machine learning model successfully 

predicted outcomes for stroke patients across 

different time periods and highlighted the 

crucial role of these factors in predicting 

mortality rates.

The team identified cerebral microbleeds, NIHSS, 

and infarct size as predictors of HT. The optimal 

predictive models were RFC and GBC, revealing the 

ability to capture non-linear interactions among 

predictive factors.

In the detection, assessment, 

and outcome prediction of 

ischemic stroke, employing 

various feature extraction 

and dimensionality 

reduction methods can 

achieve satisfactory 

performance.

A model based on radiomic and machine 

learning features exhibits high predictive 

efficiency for the prognosis of acute ischemic 

stroke after mechanical thrombectomy.

The radiomics-clinical 

machine learning model 

based on DWI 

demonstrated satisfactory 

performance in predicting 

preoperative ineffective 

reperfusion in ABAO 

patients.

PMID 37416313 36650639 36699499 37745661 36934582

YEAR 2023 2023 2023 2023 2023

LEARNING APPROACH machine learning machine learning machine learning machine learning machine learning

PRIMARY AUTHOR Xu Y Wang X Yu H Lee J Weng S

DISEASE corpus callosum infarction acute ischemic stroke acute ischemic stroke acute ischemic stroke ischemic stroke

(Continued)
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TABLE 3 (Continued)

DATA VOLUME A total of 314 patients with acute corpus 

callosum infarction (CC)

A total of 573 patients were included in the study, 

comprising 398 with small-vessel occlusion (SVO) 

and 175 with large artery atherosclerosis (LAA) 

acute ischemic stroke (AIS).

148 patients with acute 

ischemic stroke due to 

anterior circulation artery 

occlusion.

3,687 patients were in one group, and there 

were 250 and 110 patients in the other two 

groups for validation.

CTA and MRI images 

from 97 patients

DATA TYPE Neuroimaging modalities such as MRI, MRA, 

or CTA were employed for neuroimaging 

assessments

DWI multi-modal MRI radiomics MRI and associated clinical information. CTA、DWI

METHODS interpretable machine learning-derived early 

warning strategy

Logistic regression (LR) and machine learning (ML) machine learning based on 

multi-modal MRI radiomics

ML algorithms machine learning-based 

method

RESULTS The predictive performance of the LR model for 

SCD after CC infarction surpasses that of the 

other six machine learning models. Through 

LASSO and SHAP analyses, nine key predictive 

factors were identified in the LR model output. 

Additionally, factors independently associated 

with cognitive outcomes were revealed.

In brief, the LR model for small-vessel occlusion 

acute ischemic stroke (SVO-AIS) demonstrated 

excellent outcome AUC of 0.86 [0.78–0.94] and 

good outcome AUC of 0.88 [0.8–0.96]. For the LR 

model in large artery atherosclerosis acute ischemic 

stroke (LAA-AIS), the AUCs were 0.73 [0.54–0.91] 

for excellent outcomes and 0.75 [0.59–0.91] for good 

outcomes. The GPR model for SVO-AIS exhibited 

AUCs of 0.86 [0.77–0.95] for excellent outcomes and 

0.86 [0.77–0.96] for good outcomes, while the GPR 

model for LAA-AIS had AUCs of 0.65 [0.47–0.83] 

for excellent outcomes and 0.66 [0.49–0.84] for good 

outcomes. The GOA-RF model for SVO-AIS 

achieved AUCs of 0.85 [0.75–0.94] for excellent 

outcomes and 0.84 [0.74–0.94] for good outcomes. 

The GOA-RF model for LAA-AIS showed AUCs of 

0.66 [0.49–0.84] for excellent outcomes and 0.68 

[0.51–0.86] for good outcomes. The GOA-XGBoost 

model displayed AUCs of 0.87 [0.79–0.96] for 

excellent outcomes and 0.85 [0.76–0.94] for good 

outcomes, with AUCs of 0.91 [0.84–0.97] for 

excellent outcomes and 0.90 [0.83–0.97] for good 

outcomes in the LAA-AIS population.

Among 148 patients, 83 

(56.1%) had a favorable 

prognosis, while 65 (43.9%) 

had an unfavorable 

prognosis. The accuracy of 

the SVM model was 79%, 

the RF model was 82%, the 

LightGBM model was 83%, 

the CatBoost model was 

81%, and the XGBoost 

model was 80%.

In the patient cohort, 30.4% experienced 

unfavorable outcomes, with external validation 

data showing rates of 37.2% and 29.1%, 

respectively. The internal test set, external 

validation sets A and B demonstrated AUROC 

values of 0.790, 0.791, and 0.873, while the 

Brier scores were 0.172, 0.202, and 0.141, 

respectively.

On two independent test 

sets, the accuracy (ACC) 

for the cross-validated 

dataset using the Adboost 

method was 0.8519, while 

the ACC for the 

independent test set using 

the SRC method was 

0.8125.

CONCLUSIONS The combination of the LR model and SHAP 

interpreter can assist in achieving personalized 

risk predictions and, given its suboptimal long-

term efficacy, may serve as a decision tool for 

early intervention.

Various small vessel disease (SVD) markers carry 

different prognostic weights in acute ischemic stroke 

(AIS) patients. Only the SVD burden accurately 

predicts the prognosis of small-vessel occlusion 

acute ischemic stroke (SVO-AIS) patients.

The potential value of a 

multimodal radiomic 

approach in accurately 

predicting clinical outcomes 

in patients with acute 

ischemic stroke (AIS). It 

aids in preventing mental 

disorders following a stroke.

With the aid of the SHAP method, we can 

attain an in-depth understanding of how 

critical features contribute to model 

predictions and how changes in these features 

influence such predictions

This machine learning 

approach can effectively 

explore and accurately 

quantify features related 

to stroke prognosis, 

including vascular 

structure and stroke 

location.
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CNN is considered the best tissue outcome prediction model with 
significant performance advantages (81).

In 2020, Yu et al. included 182 patients with acute ischemic stroke 
for MRI analysis. Initially, segmentation of T2-weighted fluid-
attenuated inversion recovery images was performed by 
neuroradiologists. Subsequently, image registration and normalization 
were carried out using SPM12 software, and preprocessing of images 
was done with the Tmax and ADC segmentation from RAPID software. 
The study employed a neural network with U-Net architecture and 
calculated various performance metrics, including DSC, Positive 
Predictive Value (PPV), sensitivity, specificity, lesion volume error, etc., 
for the Deep Learning model, Tmax, and ADC threshold methods. 
Data analysis was conducted using Stata version 0.70. In this study, the 
Deep Learning model exhibited a median area under the curve of 0.92 
(IQR, 0.87–0.96). Using a threshold of 0.50, the median DSC overlap 
for this model was 0.53 (IQR, 0.31–0.68), with a sensitivity of 0.66 (IQR, 
0.38–0.86), specificity of 0.97 (IQR, 0.94–0.99), PPV of 0.53 (IQR, 
0.28–0.74), volume error of 9 mL (IQR, −14-29), and absolute volume 
error of 24 mL (IQR, 11–50). The study concluded that the Deep 
Learning model appears to successfully predict infarct lesions from 
baseline imaging without the need for reperfusion information and 
performs comparably to existing clinical methods (82).

In 2020, Debs et al. included 109 patients with cerebral arterial 
occlusion who underwent thrombectomy for MRI and follow-up 
FLAIR imaging. They employed Olea Sphere software for circular 
singular value decomposition, extracting parameter maps from 
DSC-PWI images. In image processing, FSL was used to remove the 
skull and normalize the images, ensuring standardization across 
patients. Experts manually labeled lesions on baseline DWI and final 
FLAIR images using 3D Slicer. Three models were established: a 
“universal” model trained on the entire cohort without considering 
reperfusion status, a “reperfusion” model trained only on reperfusion 
patients, and a “non-reperfusion” model. These models, based on the 
U-Net architecture, received five inputs (DWI, ADC, Tmax, CBF, and 
CBV) and generated probability maps for lesions, healthy tissue, and 
background. The final infarct was defined by setting a threshold of 0.5. 
Result assessments included metrics such as DSC, accuracy, recall, 
volume similarity (VS), HD, and AUC. In non-reperfusion patients, 
the non-reperfusion model predicted an infarct volume of 39.7 mL 
with a DSC of 68%. In reperfusion patients, the reperfusion model 
predicted an infarct volume of 17.5 mL with a DSC of 89%. 
CNN-based models demonstrated excellent AUC values, with 0.87 for 
reperfusion patients and 0.81 for non-reperfusion patients. The study 
concluded that incorporating reperfusion status into training 
enhances model performance, and CNN outperforms clinical models. 
Predicting the final infarct plays a crucial role in evaluating treatment 
efficacy (83).

In 2020, Osama et  al. included DWI and PWI data from 43 
patients with acute ischemic stroke. They constructed a neural 
network model based on multi-parameter feature embedding (PMFE-
SN) and applied it to predict the outcomes of acute ischemic stroke 
treatment. By preprocessing the images and employing two twin 
convolutional neural networks to build Siamese networks, effective 
feature extraction for samples of the same or different categories was 
achieved. At the output layer, the extracted features were normalized 
using cosine similarity, and training was performed with the 
backpropagation algorithm and stochastic gradient descent to 
minimize the binary cross-entropy loss function. The study extensively 

used various evaluation metrics, including Mean Absolute Error 
(MAE), macro-average F1 (F1macro), macro-average precision 
(Pmacro), macro-average recall (Rmacro), Matthews Correlation 
Coefficient (MCC), and AUC. The results showed a significant 
improvement in evaluation metrics for PMFE-SN compared to 
traditional random forest methods. Pmacro increased from 0.152 to 
0.258, Rmacro increased from 0.21 to 0.31, F1macro increased from 
0.18 to 0.28, and MCC increased from 0.04 to 0.09. The overall AUC 
value increased from 0.50 for the random forest method to 0.81. The 
research conclusion explicitly stated that PMFE-SN demonstrated 
excellent performance in predicting categories with both few and 
numerous samples (84).

In 2021, Bo et al. randomly selected 50 patients admitted to the 
hospital from January 2019 to January 2021. They conducted an 
analysis of the impact features of MRI on critically ill patients with 
cerebral infarction using CNN and explored the clinical application of 
Artificial Intelligence-assisted systems in imaging. Additionally, they 
established a CNN Artificial Intelligence system for learning and 
training, utilizing the CNN system to extract data such as pixel 
grayscale statistics, regional feature descriptions, and local region 
gradient analysis. The data were then computed using computer 
technology. Comparing the segmentation results, it was found that the 
segmentation Dice coefficient of U-Net without additional supervision 
was 81.74 ± 0.40%, and P-Net’s Dice coefficient was 86.39 ± 0.31%. In 
the first stage, DPA-UNet was 83.52 ± 0.31%, in the second stage, it 
was 88.29 ± 0.27%, and in the third stage, it was 91.74 ± 0.12%. There 
was no significant difference between the data sets. A higher Dice 
coefficient indicates more accurate segmentation. Through the 
analysis of T1WI, contrast-enhanced T1WI, and T2WI images, 
significant differences were found between GLSZM and ALL, GLRLM, 
MGLSZM, and GLSZM (85).

In 2021, Ma et al. selected 36 patients diagnosed with lacunar 
cerebral infarction (LCI) between February 2019 and June 2020 as the 
study subjects. The objective was to explore the MRI features using the 
fuzzy local information C-means clustering (FLICM) image 
segmentation method and to analyze the risk factors for recurrent 
stroke in patients with lacunar infarction. The study, based on the 
FLICM algorithm, introduced the Canny edge detection algorithm, 
and Fourier shape descriptors to optimize the algorithm. The research 
investigated the differences in Jaccard coefficient, Dice coefficient, 
peak signal-to-noise ratio (PSNR), structural similarity index measure 
(SSIM), processing time, and segmentation accuracy between the 
optimized FLICM algorithm and other algorithms when segmenting 
brain tissue MRI images. Patients were categorized into a control 
group (no recurrent stroke, 20 cases) and a stroke group (recurrent 
stroke, 16 cases) based on whether they experienced another stroke. 
The study compared the differences in MRI features between the two 
groups and utilized logistic multivariate regression analysis to identify 
risk factors for recurrent stroke after lacunar infarction. The results 
showed that, under the same noise conditions, the optimized FLICM 
algorithm exhibited higher Jaccard coefficient, Dice coefficient, PSNR, 
and SSIM values when segmenting brain tissue compared to other 
algorithms. Additionally, age and a history of hypertension were 
identified as risk factors for recurrent stroke after lacunar 
infarction (86).

In 2021, Tolhuisen et  al. included 316 FU-DWI (Follow-Up 
Diffusion Weighted Imaging) data from the HERMES, ISLES, and MR 
CLEAN-NOIV databases. They transformed DWI images into 
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standard MNI space using the SPM8 toolbox. A Deepmedic network 
was trained on the DWI images from the HERMES dataset, with the 
data split into training set (70%), validation set (10%), and test set 
(20%). The trained network was then applied to other datasets. 
Simultaneously, they manually adjusted using ITK-SNAP, and 
developed and optimized a Convolutional Autoencoder (CAE) using 
the Keras library. The study aimed to accurately predict functional 
independence within 90 days using mRS scores. They optimized SVM 
by adjusting the kernel type, coefficient (gamma), and regularization 
parameter (C). Feature normalization was performed on all features 
using scikit-learn’s “RobustScaler” function, with 80% of DWI images 
used for 5-fold cross-validation. The remaining 20% of images were 
used to test the final classifier’s performance by evaluating AUC of 
ROC curve. DeLong’s test was applied for pairwise comparisons and 
to test for statistical differences. The study results demonstrated that 
the AUC values for the CAE and radiomics feature-based classifier 
were 0.88 and 0.81, respectively, while the FIV-based classifier had an 
AUC value of 0.79. The SVM classifier based on radiomics features 
achieved the highest accuracy of 0.80, whereas the SVM classifier 
based on FIV had the highest recall of 0.73 (87).

In 2022, Zeng et al. included 711 ischemic stroke patients admitted 
between March 1, 2017, and December 31, 2020, as the training group. 
Additionally, they included 140 ischemic stroke patients admitted to 
the same hospital between January 1, 2021, and May 1, 2021, as the 
testing group. Patients were assessed with NIHSS scores on admission 
and on the seventh day (classified as stage 1 if NIHSS <5 and stage 2 
if NIHSS ≥5). The testing group underwent MRI within 24 h to 7 days 
after a subacute stroke episode and received thrombolysis. The 
researchers converted DICOM DWI to NIfTI format, removed DWI 
artifacts, corrected image alignment using 3Dslicer, normalized 
images, and adjusted pixel size using SimpleITK. The data were 
divided into eight models (Models A-H) based on admission NIHSS 
and NIHSS on the seventh day. They employed 3D CNN models 
(Models E-G) based on input DWI with pixel and preprocessing 
strategies. The performance of different models was compared using 
the DeLong test (p < 0.05, statistically significant), and AUC was 
evaluated after exporting results. Model E demonstrated the highest 
AUC in the testing set, particularly in predicting NIHSS stage on 
admission. Model A performed best in predicting NIHSS stage on 
admission when a subsequent ischemic stroke occurred, with Model 
D correctly predicting all cases of subsequent ischemic stroke in later 
cycles. For predicting NIHSS stage on the seventh day of 
hospitalization, Model E had the highest AUC, with relatively higher 
AUC in predicting NIHSS stage on the seventh day in patients with 
anterior circulation ischemic stroke and relatively lower AUC in 
predicting NIHSS stage on the seventh day in patients with posterior 
circulation ischemic stroke (88).

In 2022, Wong et al. included 875 patients with acute ischemic 
stroke (700 in the training set and 175 in the testing set) with DWI 
and MRI data. They manually segmented acute infarct volumes 
using MRIcro, selecting eADC to confirm the diffusion-restricted 
portion of the infarct, and extracting image volumes in Matlab 
using SPM12 tools. Subsequently, they employed a Deep Learning 
model, training a group convolutional neural network with U-Net 
architecture and Dice loss function, incorporating augmentations 
like rotation and reflection for segmentation. Evaluation metrics 
such as Dice scores, precision, and recall were compared with 
manual labels. Additionally, a multivariate logistic regression model 

was constructed to assess the predictive impact of topological 
infarct volume on 90-day mRS outcomes. In the testing data, the 
model without data augmentation achieved a Dice score of 0.85, 
precision of 0.83, and recall of 0.89. The model with data 
augmentation had a Dice score of 0.84, precision of 0.84, and recall 
of 0.89. Using each output for 30 fine brain regions to predict the 
mRS achieved an AUC of 0.80 and accuracy of 0.75 (89).

In 2022, Nazari-Farsani et al. included 455 patients with acute 
ischemic stroke, and obtained DWI and PWI images. They initially 
preprocessed the images using SPM12 software and then applied a 3D 
Attention Gated (AG) U-net model with Rectified Linear Unit (ReLU) 
activation function and ADAM optimizer. The model was subjected 
to 5-fold cross-validation using a hybrid loss function. The evaluation 
metrics included AUC, sensitivity, specificity, DSC, volume error, 
absolute volume error, and Jaccard index. Statistical analysis was 
conducted using the Scipy package in Python. The results showed that 
the median AUC of the DCNN model was 0.91 (IQR: 0.84–0.96). 
Using a probability threshold of 0.5, the median sensitivity, specificity, 
and Jaccard index were 0.60 (IQR: 0.16–0.84), 0.97 (IQR: 0.93–0.99), 
and 0.50 (IQR: 0.21–0.70), respectively. The DCNN model’s median 
DSC was 0.50, while the ADC threshold method had a median DSC 
of 0.18 (p < 0.01). The predicted volume by the model exhibited a high 
correlation with the actual lesion volume, with a correlation coefficient 
of 0.73 (p < 0.001) (90).

In 2022, Moulton et al. included patients suspected of large vessel 
occlusion and candidates for reperfusion therapy with DWI. They 
preprocessed the images using techniques such as skull stripping, 
manual correction, and normalization. High-level feature sets were 
generated using VGGNet, and the model was trained and evaluated 
through internal training-validation sets and LOCO cross-validation. 
Adam optimizer and binary cross-entropy loss function were 
employed during model training. The analysis involved 322 patients, 
with 113 from the Pitié-Salpêtrière registry, 94 from the Insulin Stroke 
Trial, and 115 from six centers in the ASTER trial. Significant 
differences were found in stroke-to-needle time (p = 0.008) and stroke 
side (p < 0.001). The Deep Learning ensemble model performed the 
best, with an accuracy of 0.79, AUC of 0.83, sensitivity of 0.67, 
specificity of 0.87, PPV of 0.79, and NPV of 0.78. The conclusion 
suggests that the model has potential applications in predicting long-
term functional outcomes in stroke patients and could be used as a 
patient stratification strategy for neuroprotective and rehabilitation 
therapies (91).

In 2023, Lv et al. included 282 patients with 50% stenosis of the 
internal carotid artery for MRI 1 week later. They preprocessed 
DICOM images, applied convolution, utilized max-pooling layers, and 
fully connected layers to output images. Features from different 
modalities were concatenated, and a Fully Connected (FC) layer was 
created in the corresponding dimension of the channel to obtain 
classification results. In statistics, the loss function allows the 
evaluation of the difference between the true and predicted values. 
They measured the performance of common machine learning 
methods based on the random forest, logistic regression, and XGBoost 
concepts in predicting recurrent stroke. The models were trained to 
minimize the differences between model values and actual values. 
Results showed that the AUC values for four different modalities were 
62.2, 68.9, 65.4, and 60.4%, respectively. The AUC for T2WI modality 
was 8.5% higher than that for the ADC modality. ADC modality 
performed relatively worse, being 11.6% lower than the FLAIR 

56

https://doi.org/10.3389/fneur.2024.1367854
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Zhao et al. 10.3389/fneur.2024.1367854

Frontiers in Neurology 24 frontiersin.org

modality, which exhibited better performance. The AUC values for the 
three algorithms were 50.6, 64.8, and 66.8%, with XGBoost achieving 
an AUC of 66.8% (92).

In 2023, Ye et al. conducted a study involving 441 patients with 
acute ischemic stroke. They utilized MRI and grouped the patients 
based on the prognosis NIHSS scores. The ITK-SNAP 6.0.3 software 
was employed to independently segment ROIs in the images, 
generating three-dimensional structural data of the lesions. 
Subsequently, radiomic features of each annotated lesion were 
extracted using radiomics analysis tools (Pyradiomics software 
package), resulting in a total of 17 clinical features and 851 radiomic 
features. After preprocessing steps such as data imputation, denoising, 
standardization, filtering, concatenation, and balancing, they 
constructed a multi-level cascaded Deep Learning ensemble (EDL) 
model, combining ensemble learning and Deep Learning. The 
optimized Deep Learning ensemble (OEDL) model was established 
by introducing the big bang optimization algorithm (BBOA). Model 
training was carried out on a Linux workstation equipped with a GPU, 
utilizing the Python 3.7 platform and TensorFlow 2.8 framework, with 
70% of the data allocated for the training set and 30% for the test set. 
The statistical analysis of clinical, radiomic, performance prediction, 
and comparative results showed that Macro-AUC, ACC, Macro-R, 
Macro-P, and Macro-F1 achieved values of 97.89, 95.74, 94.75, 94.03, 
and 94.35%, respectively. In comparison, the EDL method 
demonstrated a Macro-AUC of 96.68% and ACC of 92.55%. The 
OEDL method achieved a Macro-AUC of 97.89% and ACC of 95.74%. 
The SMOTEENN-based mixed sampling method exhibited the best 
classification performance, with Macro-AUC, ACC, Macro-R, 
Macro-P, and Macro-F1 reaching 97.89, 95.74, 94.75, 94.03, and 
94.35%, respectively (93).

The main information of the above included literatures is shown 
in Table 4.

2.6 The potential applications of other 
imaging modalities in ischemic stroke

2.6.1 Positron emission tomography
Positron emission tomography scans, employing oxygen-15 

technology, provide information about glucose and oxygen 
metabolism abnormalities, ranging from the penumbra to ischemic 
tissue (94). With PET, it is possible to assess CBF reserve capacity in 
carotid atherosclerosis, aiding in the planning of future intervention 
strategies (95). In addition, TSPO PET can provide detailed 
information about metabolic and molecular changes during the 
neuroinflammatory phase after a stroke. However, the gold standard 
for TSPO PET quantification involves a 90-min scan and continuous 
arterial blood sampling, which is undoubtedly challenging in routine 
clinical practice. Artem Zatcepin and colleagues developed a machine 
learning-based algorithm to establish a simplified TSPO quantification 
method that can be  easily implemented in clinical settings (96). 
Measurements of brain metabolism can provide new kinds of data for 
deep learning models, especially those based on computer vision. By 
combining metabolic and anatomic information, we can provide a 
more comprehensive picture of brain injury and build a more accurate 
predictive model of recovery. The detection of the brain metabolism 
of patients during rehabilitation can not only provide potential 
information support for the adjustment of rehabilitation measures, but 

also provide data sources for the construction of deep learning models 
containing temporal information.

2.6.2 Single photon emission computed 
tomography

Ongoing advancements in SPECT instrumentation have 
facilitated the clinical application of several new technologies, 
including semiconductor Cadmium Zinc Telluride (CZT) detectors, 
absolute quantification of radiopharmaceutical uptake, multi-bed 
position whole-body SPECT acquisition, and novel non-parallel-hole 
collimators (97). The application of SPECT allows for the detection of 
cerebral blood flow reserve capacity in patients with carotid 
atherosclerotic disease, aiding in the formulation of future intervention 
plans (95). Using the acetazolamide challenge test, SPECT can also 
assess the decline in vascular reserve function. This information can 
be  used to predict whether patients undergoing carotid 
endarterectomy will experience ischemia. SPECT is capable of 
characterizing the content of atherosclerotic plaques, including 
oxidized low-density lipoprotein and apoptotic bodies (98). 
Furthermore, SPECT can provide detailed information about 
metabolic and molecular changes (99). Based on these characteristics, 
SPECT has long been used for the evaluation of brain ischemia 
recovery (100). SPECT is currently used to explore the mechanism by 
which thalamic injury leads to a decline in word retrieval ability 
during brain ischemia recovery (101). Similarly, SPECT is also used 
to assess mid-term motor recovery after cerebral infarction (102). In 
summary, AI models based on SPECT have the potential for 
quantitative assessment of recovery progress.

2.6.3 Dual-energy computed tomography
There has been some progress in the application of DECT in 

ischemic stroke. In a study by Na-Young Shin and colleagues, it was 
demonstrated that the collateral circulation status recorded by DECT 
could serve as a useful indicator for predicting the clinical prognosis 
of acute stroke patients (103). Additionally, Wang et  al. (104) 
confirmed that DECT has certain value in the early diagnosis and 
prediction of intracranial hemorrhage after mechanical thrombectomy 
in patients with acute ischemic stroke. Furthermore, due to the 
advantages of dual-energy CT in measuring bone and muscle, it can 
be used to assess the recovery of motor function in stroke patients 
after rehabilitation therapy. This enables timely adjustments to the 
rehabilitation plan (105, 106).

3 Discussion

3.1 Existing methods

In current Artificial Intelligence-related research, due to clinical 
practical needs and challenges in data acquisition, researchers 
primarily utilize CT and MRI imaging modalities to assess ischemic 
stroke. Among these, MRI is undoubtedly the most widely used 
imaging modality. Although MRI has certain limitations for patients 
with metallic implants or claustrophobia, it can detect ischemic lesions 
earlier and more sensitively through diffusion-weighted imaging. The 
multiple imaging modalities of MRI also enable researchers to acquire 
more medical information, constructing more robust models. Another 
primary imaging modality without a doubt is CT. CT, as a simple, 
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TABLE 4 Summary of papers on deep learning for MRI on rehabilitation of ischemic stroke.

PMID 29720437 30568631 31131293 32163165

Year 2018 2018 2019 2020

Learning approach Deep learning Deep learning Deep learning Deep learning

Primary author Nielsen A Pinto A Ho KC Yu Y

Disease Acute ischemic stroke Stroke lesion Ischemic stroke Acute ischemic stroke

Data volume A total of 222 patients were included, with 187 

receiving rtPA treatment (recombinant tissue-

type plasminogen activator).

75 ischemic stroke patients divided into two groups: training (n = 43) 

and testing (n = 32),

444 patient MR images were retrieved and 

examined from the University of California-Los 

Angeles picture archiving and communication 

system between December 2005 and December 

2015.

182 patients with acute ischemic 

stroke, in accordance with the 

conventions of scientific literature.

Data type MRI MRI MRI, Handcrafted features derived from 

perfusion images.

MRI

Methods CNNdeep Adopting a deep learning architecture that combines U-net with two-

dimensional Gated Recurrent Units (GRU), following the pattern of 

nature.

Deep convolution neural networks (CNNs) Neural network

Results The AUC for CNNdeep is 0.88, surpassing the 

generalized linear model with an AUC of 0.78, 

CNNTmax with an AUC of 0.72, ADCthres with 

an AUC of 0.66, and substantially outperforming 

CNNshallow with an AUC of 0.85.

In accordance with the conventions of Nature: Dice Similarity 

Coefficient (DSC): Baseline 0.34 ± 0.22, Proposal 0.35 ± 0.22; Hausdorff 

Distance: Baseline 35.09 ± 17.27, Proposal 31.38 ± 15.81; Average 

Symmetric Surface Distance (ASSD) series: Baseline 6.08 ± 5.27, 

Proposal 5.55 ± 5.00; Precision: Baseline 0.37 ± 0.29, Proposal 0.41 ± 0.30; 

Recall: Baseline 0.54 ± 0.26, Proposal 0.47 ± 0.24.

Our deep CNN model improves feature 

learning, achieving an AUC of 0.871 ± 0.024, 

outperforming existing models for tissue fate.

The curve of 0.92, DSC of 0.53, and 

volume error of 9 mL.

Conclusions The notable improvement in prediction accuracy 

enhances the potential for automated decision 

support, offering personalized treatment plan 

recommendations, surpassing the current state-

of-the-art.

Leveraging deep learning for stroke outcome prediction, the study 

demonstrates promising outcomes on the ISLES 2017 dataset while 

indicating avenues for potential enhancements in clinical applications.

Our study utilizes deep learning techniques for 

predicting stroke tissue outcomes, advancing 

magnetic resonance imaging perfusion analysis 

toward becoming an operational decision 

support tool for guiding stroke treatment.

The deep learning model accurately 

predicted infarct lesions without 

reperfusion information, performing 

similarly to current clinical methods.

PMID 33450521 33105609 34385896 34887708

Year 2021 2020 2021 2021

Learning approach Deep learning Deep learning Deep learning Deep learning

Primary author Debs N Osama S Bo Y Chunli Ma

Disease Acute ischemic stroke Acute ischemic stroke Cerebral infarction Lacunar cerebral infarction

Data volume 109 patients, including 35 without reperfusion. 43 samples from the ISLES 2017 dataset. 50 patients with cerebral infarction were selected 

randomly.

36 patients with lacunar myosphere 

infarction (no recurrence in the 

control group, n = 20, recurrence in 

the stroke group, n = 16).

(Continued)
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TABLE 4 (Continued)

PMID 29720437 30568631 31131293 32163165

Data type Baseline diffusion and perfusion-weighted 

magnetic resonance imaging (MRI)

DWI、PWI MRI MRI

Methods Convolutional neural networks (CNN) Parallel multi-parametric feature embedded siamese network (PMFE-

SN)

Convolutional neural network (CNN) Deep learning algorithm

Results The peak values of DSC (Dynamic Susceptibility 

Contrast) in reperfused and non-reperfused 

patients were 0.44 ± 0.25 and 0.47 ± 0.17, 

respectively. The Area Under the Curve (AUC) 

for reperfused patients was 0.87 ± 0.13, while for 

non-reperfused patients, it was 0.81 ± 0.13. The 

AUC for the perfusion-diffusion mismatch model 

was 0.73 ± 0.14.

PMFE-SN exhibits a significant improvement compared to traditional 

random forest methods. Pmacro increased from 0.152 to 0.258, Rmacro 

improved from 0.21 to 0.31, F1macro rose from 0.18 to 0.28, and MCC 

increased from 0.04 to 0.09. The overall AUC value elevated from 0.50 

with the random forest method to 0.81.

In the absence of additional supervision, U-Net 

exhibited a segmentation Dice coefficient of 

81.74 ± 0.40%, while P-Net demonstrated a Dice 

coefficient of 86.39 ± 0.31%. The first stage of 

DPA-UNet yielded a Dice coefficient of 

83.52 ± 0.31%, the second stage achieved 

88.29 ± 0.27%, and the third stage reached 

91.74 ± 0.12%. There were no significant 

differences observed among the data sets.

The optimized FLICM algorithm, 

under the same noise conditions, 

exhibits higher Jaccard coefficient, 

Dice coefficient, PSNR, and SSIM 

values in the segmentation of brain 

tissues compared to other algorithms. 

Furthermore, age and a history of 

hypertension are identified as risk 

factors for recurrent strokes following 

lacunar infarction.

Conclusions Utilizing a convolutional neural network (CNN)-

based model demonstrates superior performance 

compared to the perfusion-diffusion mismatch 

model commonly employed in clinical settings.

PMFE-SN demonstrates exceptional performance in predicting 

categories with both fewer and more samples, delving into pre-and 

post-treatment clinical data. Exploring the use of additional similarity 

metrics in this context could contribute to a comprehensive 

enhancement of predictive accuracy for outcomes in acute ischemic 

stroke treatment.

Utilizing CNN to analyze features in MRI 

images of critically ill cerebral infarction 

patients, we have identified an image diagnostic 

method that mitigates subjective visual 

judgment errors to a certain extent. The 

introduction of a deep supervision mechanism 

enhances the recognition capabilities of U-Net, 

holding significant importance for the accurate 

extraction and reconstruction of MRI images in 

patients with cerebral infarction.

The optimized FLICM algorithm 

demonstrates effective segmentation 

of brain MRI images, with age and a 

history of hypertension identified as 

risk factors for recurrent strokes in 

lacunar infarction patients. This study 

provides valuable insights for the 

diagnosis and prognosis of lacunar 

infarction

PMID 35892499 35887776 35545938 36481696

Year 2022 2022 2022 2023

Learning approach Deep learning Deep learning Deep learning Deep learning

Primary author Tolhuisen ML Zeng Y Wong KK Nazari-Farsani S

Disease Acute ischemic stroke Ischemic stroke Acute ischemic stroke Ischemic stroke

Data volume 316 follow-up DWI datasets sourced from the 

HERMES, ISLES, and MR CLEAN-NOIV 

databases.

851 patients (711 in the training set and 140 in the test set) 875 patients (n = 700 in the training group, 

n = 175 in the test group)

445 patients

Data type FU-DWI DWI MRI, DWI PWI

Methods Deep learning network CNN A rotation-reflection equivariant model was 

developed based on U-Net and grouped 

convolutions.

Deep convolutional neural network 

(DCNN)

(Continued)

59

https://doi.org/10.3389/fneur.2024.1367854
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Z
h

ao
 et al. 

10
.3

3
8

9
/fn

eu
r.2

0
24

.13
6

78
54

Fro
n

tie
rs in

 N
e

u
ro

lo
g

y
fro

n
tie

rsin
.o

rg

TABLE 4 (Continued)

PMID 29720437 30568631 31131293 32163165

Results The AUC values for the CAE and radiomic 

features classifier are 0.88 and 0.81, respectively, 

while the classifier based on FIV achieves an AUC 

value of 0.79. The SVM classifier based on 

radiomic features attains the highest accuracy at 

0.80, whereas the SVM classifier based on FIV 

achieves the highest recall at 0.73.

Following the conventions of scientific writing: The proposed model 

exhibits improved performance in predicting NIHSS stages on the 7th 

day of hospitalization compared to admission (best AUC 0.895 vs. 

0.846). Model D, trained on DWI images, achieved the best AUC of 

0.846 in predicting NIHSS stages at admission. Model E, also trained on 

DWI images, achieved the best AUC of 0.895 in predicting NIHSS 

stages on the 32nd day of hospitalization. The model demonstrates 

favorable performance in predicting NIHSS stages on the 7th day of 

hospitalization for both anterior and posterior circulation strokes, with 

best AUCs of 7.0 and 905.0, respectively.

The segmentation model achieved Dice scores of 

0.88 (training) and 0.85 (testing). The AUC for 

predicting modified Rankin Scale outcomes 

based on refined stroke volumes in 30 brain 

regions was 0.80, with an accuracy of 0.75.

The model achieved a median AUC of 

0.91. Using a threshold of 0.5 for 

infarction probability, median 

sensitivity and specificity were 0.60 

and 0.97 respectively, while the 

median DSC was 0.50, and the 

absolute volume error was 27 mL.

Conclusions The prediction of functional outcomes should not 

solely rely on FIV; FU-DWI images should 

capture additional prognostic information

Our 3D-CNN model efficiently predicts stroke-related neurologic 

damage using DWI images, demonstrating outstanding performance in 

predicting NIHSS stages on the 7th day of hospitalization. It holds 

potential clinical decision-making value in subgroup analysis.

We developed a rotation-reflection equivariant 

deep learning model to effectively segment acute 

ischemic stroke lesions in diffusion-weighted 

imaging, showcasing competitive performance 

in well-balanced testing cases across different 

vascular territories. Moreover, when integrated 

with clinical factors, the model exhibited high 

accuracy and AUC in predicting 90-day 

modified Rankin Scale outcomes.

An AG-DCNN using diffusion 

information alone upon admission 

was able to predict infarct volumes at 

3–7 days after stroke onset with 

comparable accuracy to models that 

consider both DWI and PWI.

PMID 36169033 36908778 37416306

Year 2023 2023 2023

Learning approach Deep learning Deep learning Deep learning

Primary author Moulton E Lv P Ye W

Disease Post-stroke Carotid atherosclerotic stenosis Acute ischemic stroke

Data volume 322 patients from the ASTER and 

INSULINFARCT trials as well as the Pitié-

Salpêtrière registry.

Patients with 50% stenosis in 282 internal carotid arteries 441 patients with acute ischemic stroke, 17 

clinical features and 19 radiomic features were 

included.

Data type DWI MRI Clinical and radiomics features

Methods Convolutional neural networks (CNN) Multi-modality fused network Optimized ensemble of deep learning (OEDL) 

method.

(Continued)

60

https://doi.org/10.3389/fneur.2024.1367854
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Zhao et al. 10.3389/fneur.2024.1367854

Frontiers in Neurology 28 frontiersin.org

feasible, and cost-effective diagnostic method, is widely favored among 
clinicians and emergency patients. CT enhancement or perfusion 
imaging methods performed on the basis of routine CT scans have 
been proven to have a powerful detection and evaluation effect.

Currently, the number of studies based on machine learning and 
deep learning is roughly equal. In terms of machine learning, 
modeling based on image texture features remains popular among 
researchers. Meanwhile, methods for extracting image texture 
features are applicable to various MRI sequences and facilitate the 
integration of information from different sequence images. However, 
this method requires the annotation of regions of interest (ROIs) to 
ensure consistency, leading to a significant amount of manual 
annotation and inspection of images, making it difficult to include a 
large number of samples in this type of research. Additionally, it is 
noteworthy that there are very few studies in rehabilitation-related 
machine learning research that adopt entirely new algorithms. 
Researchers still use several classical machine learning algorithms for 
modeling and determine the best model after comparing using a 
single evaluation parameter (usually AUC). Research related to deep 
learning has been rapidly growing in recent years. Both methods of 
data annotation are used by researchers. Firstly, studies based on deep 
learning can, like those based on texture analysis, use only ROIs for 
classification after re-annotation. This method constrains the data 
acquisition range through prior knowledge, which can effectively 
improve the model’s accuracy under normal circumstances. Another 
method directly uses 3D brain images. Unlike the ROI annotation 
method, this method greatly expands the source of information. For 
strokes, this method incorporates not only information related to the 
severity of the injury within the ROI (usually the lesion) but also 
extracts information such as the relative extent and spatial location 
of the damage. This may predict the patient’s recovery status by 
evaluating potential compensatory capabilities. More importantly, 
using 3D images to build models eliminates the need for manual 
annotation, greatly reducing the difficulty of expanding the sample 
size and helping to improve the robustness of the model. Although 
neural network structures are more flexible compared to machine 
learning, researchers still prefer to use neural networks that have 
shown good performance on other types of datasets, rarely adjusting 
the neural network structure based on task characteristics. This 
means that there is still significant room for improvement in stroke 
rehabilitation research based on deep learning.

3.2 Summary

Ischemic stroke can lead to serious consequences, including 
permanent brain damage and neurological deficits. Therefore, 
reducing and preventing neural damage caused by strokes has always 
been a focal point of research. Assessing the long-term and short-
term recovery of patients through imaging enables the early 
identification of those requiring intervention and facilitates 
adjustments to rehabilitation plans based on imaging evaluation 
results, thereby enhancing patient quality of life. As one of the 
non-invasive diagnostic methods capable of acquiring a large amount 
of medical information, AI-based neuroimaging has demonstrated 
its ability to assess the long-term and short-term recovery of stroke 
patients. This suggests that AI-based neuroimaging holds potential 
for guiding rehabilitation programs. Therefore, conducting T
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neuroimaging follow-up during therapy and using AI methods to 
clarify the qualitative and quantitative relationships between 
rehabilitation interventions and neuroimaging is an area worthy of 
further exploration by researchers.
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Background: To investigate the causal associations of serum urate (SUA) with 
stroke risk and prognosis using Mendelian randomization (MR) and the potential 
mediating role of stroke risk factors in the causal pathways.

Methods: We used the random-effects inverse variance weighting (IVW) 
as our primary method. We  initially performed two-sample univariable MR 
(UVMR) to identify the causal associations of SUA (n  =  437,354) with any stroke 
(AS, FinnGen: n  =  311,635; MEGASTROKE: n  =  446,696), ischemic stroke (IS, 
FinnGen: n  =  212,774; MEGASTROKE: n  =  440,328), intracranial hemorrhage 
(ICH, FinnGen: n  =  343,663; ISGC: n  =  3,026), functional outcome after ischemic 
stroke at 90d (n  =  4,363), and motor recovery within 24  months after stroke 
(n  =  488), and then multivariable MR (MVMR) to estimate the direct causal 
effects of SUA on these outcomes, adjusting for potential confounders. Finally, 
we further conducted a two-step MR to investigate the potential mediating role 
of body mass index (BMI), systolic blood pressure (SBP), diastolic blood pressure 
(DBP), and estimated glomerular filtration rate (eGFR) in the identified causal 
pathways.

Results: Genetically predicted elevated SUA levels were significantly associated 
with increased risk of AS (meta-analysis: OR  =  1.09, 95% CI [1.04–1.13], p  =  3.69e-
05) and IS (meta-analysis: OR  =  1.10, 95% CI [1.01–1.19], p  =  0.021) and with 
improved poor functional outcome after ischemic stroke at 90d (OR  =  0.81, 
95% CI [0.72–0.90], p  =  1.79e-04) and motor recovery within 24  months after 
stroke (OR  =  1.42, 95% CI [1.23–1.64], p  =  2.15e-06). In MVMR, SBP and DBP 
significantly attenuated the causal effects of SUA on AS, IS, and functional 
outcome after ischemic stroke at 90d and motor recovery within 24  months 
after stroke. Further mediation analyses showed that SBP mediated 52.4 and 
34.5% of the effects of SUA on AS and IS, while DBP mediated 28.5 and 23.4% of 
the causal effects, respectively.

Conclusion: This study supports the dual role of genetically predicted SUA 
in increasing stroke risk, especially ischemic stroke risk, and in improving 
functional outcome and motor recovery. SBP and DBP are key mediators lying 
on the causal pathways of SUA with AS and IS.
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uric acid, stroke, blood pressure, genetic instrumental variables, Mendelian 
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1 Introduction

Stroke is the major cause of mortality and disability worldwide, 
imposing a substantial challenge to human health. Despite considerable 
efforts dedicated to stroke prevention and treatment, its prevalence and 
disability rates remain high, signaling ongoing gaps in understanding 
and management strategies for stroke. Serum urate (SUA), the final 
output of purine metabolism, possesses pro-oxidant and antioxidant 
dual properties and may exert complex biological effects in our body. 
Observational studies showed that high SUA levels may indirectly 
contribute to stroke by inducing inflammatory responses, promoting 
oxidative stress, and triggering endothelial dysfunction (1–3). 
Additionally, SUA is also implicated in increasing thrombosis risk, 
which may impact the occurrence of cardiovascular disease (4). 
However, some studies have argued that the link between SUA and 
stroke is still a “pseudo-association” as hyperuricemia is closely 
associated with other stroke risk factors such as hypertension and 
obesity; thus, whether or not SUA affects stroke is controversial (5, 6). 
Furthermore, interventions aimed at reducing SUA did not prevent the 
onset and progression of cardiovascular disease, which further raises 
doubts about a direct link between SUA and stroke (7). On the other 
hand, there are conflicting findings regarding the influence of SUA on 
stroke prognosis (8–10). Therefore, it is necessary to conduct a more 
in-depth investigation into the causal association of SUA with stroke 
risk and prognosis as well as to unravel their precise mechanisms.

Conventional epidemiologic studies are susceptible to 
unaccounted confounders, excessive adjustment for mediators, or 
reverse causality, potentially leading to bias in the established causal 
associations. Mendelian randomization (MR) is an emerging approach 
for causal inference assessment that cleverly exploits the random 
distribution of genetic variants as instrumental variables (IVs) at 
conception to simulate the “random assignment” of participants in 
randomized controlled trials (RCTs) and aims to identify the 
differential risk of disease between genetic variant carriers and 
non-carriers (11). Due to genetic variation being inherited at birth and 
remaining stable throughout our lifespan, associations obtained from 
MR are less susceptible to causal inversions and unaccounted 
confounders compared to traditional observational studies. This study 
employed a two-sample MR to identify causal associations of SUA 
with stroke, post-stroke functional outcome, and motor recovery. 
Additionally, we  further performed a two-step MR to explore the 
potential mediating roles of mediators in the identified causal 
pathways, which may contribute to enhancing our understanding of 
the mechanisms linking SUA to stroke risk and prognosis.

2 Methods

2.1 Study design

The workflow is visually presented in Figure 1. We initially performed 
a two-sample univariable MR (UVMR) to identify potential causal 
associations of SUA levels with stroke, post-stroke functional outcome, 
and motor recovery. A multivariable MR (MVMR) was then utilized to 
estimate the direct causal effects of SUA on these outcomes, adjusting for 
potential confounders. Moreover, we  conducted a two-step MR to 
investigate the potential mediating role of body mass index (BMI), systolic 
blood pressure (SBP), diastolic blood pressure (DBP), and estimated 
glomerular filtration rate (eGFR) in the identified causal pathway. This 

MR study is based on publicly available published GWAS summary 
statistics, and all necessary ethical approval and informed consent were 
obtained for the original study.

2.2 Genetic instrument selection

SUA was included as exposure in this study, with its genome-wide 
association study (GWAS) dataset obtained from Barton AR et al.’s 
further analysis of the UK Biobank data involving 437,354 individuals 
of European ancestry (12). The SUA levels were measured by uricase 
PAP analysis, and the processed data were expressed as per standard 
deviation (1-SD = 80.3 μmol/L) of increase. We selected significant 
(p < 5 × 10−8) and independent (r2 < 0.001 and a distance window of 
10,000 kb) single nucleotide polymorphisms (SNPs) as genetic IVs for 
SUA. Subsequently, SNPs in palindromes and those that were closely 
linked to outcome (p < 5 × 10−5) were excluded. We further filtered out 
the SNPs with the MR Steiger test, which primarily affected the 
outcomes, rather than the exposures. Moreover, we  calculated 
F-statistics to evaluate the potential bias caused by weak instruments 
using the following formula: F N k k R R= − −( ) × −( )1 1

2 2
/  , 

where N , k , and R2 are sample size, number of IVs, and variance 
explained by all IVs, respectively (13). 
R EAF EAF beta2 2

2 1= × × −( )× , where EAF  are effect allele 
frequency and beta are exposure effect. Any IV with an F-value below 
10 suggests weakness and was excluded (13). Proxy SNPs were not 
available for our analysis. All genetic IVs used to proxy for SUA are 
listed in Supplementary Table S2.

2.3 Outcome data sources

Our outcomes included any stroke (AS), ischemic stroke (IS), 
intracranial hemorrhage (ICH), post-stroke functional outcome, and 
motor recovery. GWAS data for AS (39,818 cases, 271,817 controls), 
IS (10,551 cases, 202,223 controls), and ICH (3,749 cases, 339,914 
controls) were obtained from the FinnGen Consortium (14). AS 
included any stroke, mainly IS, transient ischemic attack (TIA), 
hemorrhagic stroke, and subarachnoid hemorrhage. IS referred to any 
ischemic stroke excluding all hemorrhages, and ICH specifically 
denoted all cases of hemorrhage excluding IS and TIA. These diseases 
were principally defined based on ICD diagnosis codes at the time of 
discharge or death. We additionally obtained GWAS for AS (40,585 
cases and 406,111 controls) and IS (34,217 cases and 406,111 controls) 
from the MEGASTROKE consortium, and ICH (1,545 cases and 
1,481 controls) from the ISGC consortium (15, 16). GWAS summary 
data for functional outcome after ischemic stroke at 90d were derived 
from the Genetics of Ischemic Stroke Functional Outcome 
(GISCOME) network, which included 4,363 individuals of European 
ancestry (17). Functional outcome was assessed using the modified 
Rankin Scale (mRS) approximately 90 days after the stroke. The mRS 
score of 0–1 is defined as a good functional outcome (1,796 cases) and 
scores of 2–6 are considered poor functional outcomes (2,567 cases). 
Functional outcomes, adjusted for age, sex, ancestry, and baseline 
stroke severity as assessed by the National Institutes of Health Stroke 
Scale (NIHSS), were used for discovery analyses, while those 
unadjusted for baseline NIHSS were utilized for validation analyses. 
GWAS data for post-stroke motor recovery were obtained from 
further analysis of the Vitamin Intervention for Stroke Prevention 
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(VISP) dataset by Aldridge CM et  al., including 488 European 
individuals (18). This study applied the NIHSS subscores 5A/5B and 
6A/6B to assess motor drift scores of limb motor weakness at six time 
points over 24 months. A drift score decrease of ≥1 vs. < 1 at each time 
point was taken as the study outcome. Detailed information on 
outcomes is presented in Supplementary Table S1.

2.4 Statistical analysis

We initially performed UVMR analyses, and the multiplicative 
random-effects inverse variance weighting (IVW) was adopted as 

our primary method to identify the causal associations of SUA on 
stroke, post-stroke functional outcome, and motor recovery, 
respectively. In the assumption that all IVs were valid, the IVW 
could provide the most robust estimate for MR (19). Complementary 
analyses to examine the consistency of the results included 
MR-Egger, weighted median, and MR pleiotropy residual sum and 
outlier (MR-PRESSO). MR-Egger regression incorporated an 
intercept term, which still yielded a reliable causal estimate even if 
all the IVs were invalid. Additionally, the weighted median method 
could provide a consistent estimate when the assumption of over 
50% IVs validity was fulfilled. Cochran’s Q statistical tests were 
utilized to detect heterogeneity in estimates among SNPs, while the 

FIGURE 1

Study workflow overview. (A): Causal associations of serum urate with stroke, functional outcome, motor recovery by UVMR analyses; (B): Two-step 
MR. UVMR, univariable Mendelian randomization; MVMR, multivariable Mendelian randomization; IVs, instrumental variables.
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intercept derived from MR-Egger assessed horizontal pleiotropy. A 
significance level of p < 0.050 indicated the presence of heterogeneity 
or horizontal pleiotropy. Moreover, we performed the MR-PRESSO 
test to detect and correct horizontal pleiotropy outliers by removing 
them. To control for false-positive results due to multiple testing, the 
p-value for Bonferroni-corrected IVW was set at p < 0.006 (0.050/9 
outcomes). The nominally significant p-value was defined as 
0.006 ≤ p < 0.050, indicating suggestive evidence for potential 
causality. We  further utilized the online tool1 to estimate the 
statistical power for various outcomes. A higher power value 
indicates a greater certainty in detecting significant effects.

For significant causality in UVMR, we applied the random-effects 
IVW model within the MVMR analysis. This approach adjusted for 
potential confounders such as BMI, eGFR, SBP, and DBP, enabling us to 
estimate a direct causal effect. To further ensure the reliability of our 
findings, we conducted sensitivity analyses using MR-Egger and weighted 
median methods. These analyses were particularly important due to the 
close metabolic relationship between hyperuricemia, BMI, and eGFR, as 
well as the fact that elevated SUA levels independently contribute to high 
blood pressure, a significant risk factor for cardiovascular disease. To 
explore the potential effects of mediators in this causal pathway, 
we further performed a two-step MR analysis. In step 1, UVMR was 
performed to estimate the indirect effects of SUA on the mediators (β1), 
and in step 2, we conducted MVMR to estimate the indirect effects of 
mediators on stroke, post-stroke functional outcome, and motor recovery 
after adjusting for SUA (β2). Finally, we estimated the significance of 
mediating effects (β1*β2) using the delta method, and then, their 
proportion in the total effect was calculated as 
proportion% = (β1*β2)/β*100%, where β was the total causal effect of 
SUA on stroke, post-stroke functional outcome, or motor recovery.

All analyses were conducted by using the “TwoSampleMR 
(version 0.5.6),” “MR-PRESSO (version 1.0),” “MVMR,” and 
“MendelianRandomization (version 0.8.0)” packages in R (version 
4.3.1; The R Foundation for Statistical Computing).

3 Results

3.1 Univariable MR analysis

We performed UVMR to identify the causal associations between 
genetically predicted SUA and stroke, functional outcome after ischemic 
stroke at 90d, and motor recovery within 24 months after stroke, as well 
as to estimate their total causal effects. As shown in Figure  2 and 
Supplementary Table S3, the primary random-effects IVW in the UVMR 
analysis showed credible evidence that genetically predicted higher SUA 
levels were associated with increased risk of AS and IS, the results from 
the FinnGen and MEGASTROKE consortiums were highly consistent, 
and further meta-analysis of their IVW results indicated that each 1-SD 
increase in genetically predicted SUA was associated with a 9% higher risk 
of developing AS (OR = 1.09, 95% CI = 1.04–1.13, p = 3.69e-05; I2 = 25%, 
pheterogeneity = 0.250) and IS (OR = 1.10, 95% CI = 1.01–1.19, p = 0.021; 
I2 = 56%, pheterogeneity = 0.130). However, no significant causal association 
between SUA and ICH was shown in the FinnGen and ISGC consortiums, 
nor their meta-analysis (OR = 0.99, 95% CI = 0.90–1.10, p = 0.910; I2 = 0%, 

1 https://sb452.shinyapps.io/power

pheterogeneity = 0.700). Significantly, we found that higher SUA levels were 
negatively linked to poor functional outcome after ischemic stroke at 90d, 
with each 1-SD increase in genetically predicted SUA levels being linked 
to a 19% lower risk of poor functional outcome (OR = 0.81, 95% CI = 0.72–
0.90, p = 1.79e-04), and this result was consistent with the unadjusted 
NIHSS data (OR = 0.82, 95% CI = 0.73–0.91, p = 1.72e-04). Additionally, 
our results also indicated a positive correlation between higher SUA levels 
and motor recovery within 24 months after stroke, with each 1-SD 
increase in genetically predicted SUA levels associated with a 42% 
improvement in motor recovery (OR = 1.42, 95% CI = 1.23–1.64, 
p = 2.15e-06).

Sensitivity analysis methods, including MR-Egger, weighted median, 
and MR-PRESSO, were conducted to assess the robustness of the results. 
Although some of the sensitivity analysis methods did not yield 
significance estimates consistent with IVW, particularly MR-Egger, 
we noted the direction of causal estimates for the majority of them that 
were consistent with IVW (Figure  2 and Supplementary Table S3). 
Notably, no evidence of horizontal pleiotropy was found in any of the 
MR-Egger intercept tests, all of which were above 0.05 (Figure 2 and 
Table 1). In addition, we further performed MR-PRESSO analysis and 
found some outliers (Supplementary Table S3). Following excluding these 
outliers, UVMR analyses were repeated to obtain the final estimates. 
Finally, we performed reverse UVMR analyses, wherein no evidence of 
bidirectional causal associations of SUA levels with AS, IS, ICH, poststroke 
functional outcomes, or motor recovery were detected 
(Supplementary Table S4).

3.2 Multivariable MR analysis

After adjusting for BMI and eGFR using MVMR, the causal effect 
of SUA on AS and IS remained significant, but the estimates were 
attenuated or no longer significant after adjusting for SBP and 
DBP. Furthermore, after adjusting for BMI, eGFR, SBP, and DBP, the 
causal effect of SUA on functional outcome and motor recovery was 
no longer significant (Figure 3 and Supplementary Table S5).

3.3 Mediation analysis

Two-step MR was utilized to conduct mediation analyses aimed 
at investigating whether the identified causal effect of SUA on stroke 
(FinnGen data), post-stroke functional outcomes (adjusted for 
NIHSS), and motor recovery could be mediated by SBP, DBP, BMI, or 
eGFR. Of note, our study revealed that SBP and DBP exerted 
proportionally mediating effects on the causal associations of SUA 
with AS and IS. Specifically, SBP was found to mediate 52.4% (95% CI: 
45.8–74.4%, p = 1.67e-08) and 34.5% (95% CI: 32.0–46.4%, p = 1.45e-
04) of the causal effects of SUA on AS and IS, respectively, while DBP 
mediated 28.5% (95%CI: 27.3–32.4%, p = 3.80e-05) and 23.4% 
(95%CI: 22.5–23.6%, p = 0.003) of the causal effects on AS and IS, 
respectively (Figure 4 and Supplementary Table S6).

4 Discussion

To investigate the causal associations and mechanisms of SUA on 
stroke, post-stroke functional outcome, and motor recovery, 
we performed this MR study utilizing large-scale, publicly available 

68

https://doi.org/10.3389/fneur.2024.1359292
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://sb452.shinyapps.io/power


Chen et al. 10.3389/fneur.2024.1359292

Frontiers in Neurology 05 frontiersin.org

GWAS summary data. Four critical findings emerged from our 
analysis: (1) Genetically predicted elevated SUA levels were 
significantly causally associated with an increased risk of AS and IS, 
and these associations remained significant even after adjusting for 
BMI and eGFR. (2) SBP and DBP were identified as critical mediators 
in the causal pathways linking SUA to AS and IS. (3) Elevated SUA 
levels were found to lower poor functional outcomes after 90d of 
ischemic stroke and also contributed to motor recovery within 
24 months after stroke. (4) There was no evidence of a significant 
causal association between SUA and ICH. Additionally, sensitivity 
analyses suggested consistent estimates and effect directions for 
almost all outcomes, and no horizontal pleiotropy was found.

Previous observational studies have explored the link between 
SUA and stroke but yielded conflicting conclusions (6, 20, 21). 
Epidemiologic studies often struggle to fully exclude confounders and 
address reverse causality, which may be key drivers of inconsistent 
conclusions. MR using genetic variants as IVs to proxy for different 
phenotypes contributes to maximizing control for confounders and 
avoids reverse causality interference, thus providing more reliable 
causal inferences. A recent MR study suggested that higher SUA levels 
would increase AS risk, with each 1-SD (80.3 μmol/L) increase in 
genetically predicted SUA levels being associated with an 11% increase 
in the risk of developing AS (22). Our MR analyses using GWAS data 
from different sources yielded similar results. The subsequent 

FIGURE 2

Two-sample univariable MR to identify the causal associations of SUA with stroke, post-stroke functional outcome, and motor recovery.
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meta-analysis of the IVW estimates derived from these analyses 
obtained a more significant OR estimate and a narrower 95% 
confidence interval. IS is the primary subtype of AS, and evidence 
from two previous MR studies involving SUA and IS did not support 
a causal association among them (23, 24). These were contradictory 

to our findings. Given that our MR extracted more eligible IVs 
(310–314 vs. 28 SNPs) and employed GWAS summary data only from 
European ancestry, this enhances the reliability of our findings. 
Additionally, the study further indicated that there was no causal 
association between SUA and ICH. Therefore, a previous observational 

TABLE 1 Heterogeneity and horizontal pleiotropy in the causal associations of SUA with stroke, post-stroke functional outcome, and motor recovery as 
detected using IVW and MR-Egger.

Outcome nSNP Heterogeneity (IVW) Pleiotropy (MR-Egger) R2 sums F-statistic 
mean

Power (%)

Cochran’s Q p-value Intercept p-value

Finngen_AS 308 432.378 3.01E-06 0.001 0.403 0.063 89.323 99.8

MEGASTROKE_AS 311 364.981 0.017 0.001 0.246 0.072 101.626 83.5

Finngen_IS 314 351.563 0.066 0.005 0.255 0.065 89.940 95.6

MEGASTROKE_IS 310 357.255 0.030 0.001 0.369 0.072 101.838 83.5

Finngen_ICH 311 289.661 0.791 0.000 0.936 0.073 102.223 4.8

ISGC_ICH 106 17.331 1.000 0.006 0.592 0.032 131.441 3.3

Functional outcome 

adjusted NIHSS

178 45.992 1.000 0.004 0.522 0.105 263.976 62.0

Functional outcome 

unadjusted NIHSS

180 49.019 1.000 0.005 0.392 0.105 262.607 56.5

Motor recovery 72 5.836 1.000 −0.012 0.518 0.087 541.893 20.4

SUA, serum urate; Finngen_AS, Finngen for any stroke; MEGASTROKE_AS, MEGASTROKE for any stroke; Finngen_IS, Finngen for ischemic stroke; MEGASTROKE _IS, MEGASTROKE 
for ischemic stroke; Finngen_ICH, Finngen for intracranial hemorrhage; ISGC_ICH, ISGC for intracranial hemorrhage; NIHSS, National Institute of Health Stroke Scale.

FIGURE 3

Multivariable MR to analyze the causal effects of SUA on stroke, post-stroke functional outcome, and motor recovery after adjusting for confounders 
and to estimate their direct effects. SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI, body mass index; eGFR, estimated glomerular 
filtration rate.
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study reported that a positive relationship of stable high SUA with 
ICH risk but not with IS may have been coincidental (21).

Currently, there is a lack of consensus on the exact role of SUA in 
stroke prognosis (25, 26). In a recent MR study, SUA was not found to 
be causally associated with poor functional prognosis (mRS > 2) at 90d 
after ischemic stroke (27). However, our MR analysis, using GWAS 
data defining mRS > 1 as poor functional outcome, identified a 
significant and negative causal association between SUA and poor 
functional prognosis in ischemic stroke patients at 90d. Prior meta-
analysis suggested a non-linear (U-shaped) association between SUA 
and the risk of poor functional outcomes after ischemic stroke (28). 
This complex relationship between SUA and post-stroke functional 
prognosis may be the key factor contributing to this contradictory 
result. Additionally, our MR analyses found a positive causal 
association between SUA and motor recovery within 24 months after 
stroke. This is consistent with previous findings that SUA exerted 
antioxidant properties and potential neuroprotective effects (29). 
However, further studies are still required to fully grasp the complexity 
and potential non-linear relationship between SUA and post-
stroke prognosis.

Through this study, we have found that SUA has dual effects, with 
elevated SUA being a risk factor for AS and IS, while also exerting a 
protective effect on post-stroke functional outcome and motor 
recovery. However, the exact mechanism between them remains 
ambiguous. Numerous studies suggest that hyperuricemia plays an 
important role in the etiology of hypertension, which is the leading 
risk factor for stroke (30, 31). Our further mediation analyses 
identified SBP and DBP as key mediators lying on the SUA to AS and 
IS are causal pathways, which is consistent with the result previously 
reported by Chaudhary NS et al. (31). Additionally, blood pressure is 
the primary driver of maintaining cerebral perfusion. Sustaining 
appropriate blood pressure in the early stages of ischemic stroke is 
beneficial for cerebral perfusion and aids in neurological function 
recovery. These factors, in turn, positively influence stroke prognosis 
(32). Of note, although we failed to detect the mediating effect of 
blood pressure in the pathway of SUA on stroke prognosis, the 
influence of SUA on post-stroke functional outcome and motor 
recovery became non-significant after adjusting for SBP and DBP 

using MVMR. This evidence provided insights into the role of SUA in 
the pathogenesis and rehabilitation of stroke and may benefit future 
research and clinical practice.

Overweight is also a well-known risk factor for stroke. Our 
analyses revealed that BMI did not act as a mediator or attenuate the 
impact of SUA on AS and IS, suggesting that SUA increases the stroke 
risk and may be independent of BMI. It is important to note that being 
overweight is not always detrimental. Some studies have suggested 
that being overweight indicated the presence of more nutritional 
reserves, which could potentially help counteract post-stroke 
hypermetabolic depletion, thus translating into a protective factor 
against poor functional outcomes (33, 34). This might be a potential 
explanation for our finding that the causal effect of SUA on post-
stroke functional outcome and motor recovery became non-significant 
after adjusting for BMI. Additionally, impaired kidney function is an 
independent risk factor for stroke and is linked to more severe stroke 
and worse outcomes (35). In our analysis, we also found that eGFR 
attenuated the causal effect and significance of SUA on IS. Although 
further mediation analysis failed to yield a significant mediating effect, 
it still implied that the improvement of post-stroke functional 
outcome and the promotion of motor recovery by SUA may rely on 
favorable renal function.

Our study holds several strengths as follows. First, the study 
employed MR to investigate the causal association between SUA 
and stroke risk and prognosis, which minimized bias from 
confounders and reverse causality, thus providing credible causal 
inferences. Second, our efforts identified the dual effects of SUA 
on stroke risk and prognosis, and a series of replication analyses, 
GWAS meta-analyses, and sensitivity analyses observed similar 
results, ensuring the robustness of the findings. Finally, potential 
mechanisms of stroke risk factors in causal pathways were 
explored by MVMR and mediation analyses, and this insight may 
guide the development of targeted intervention and 
prevention strategies.

The study also has some limitations. First, the potential pleiotropy 
is an inherent limitation of MR analysis. Despite performing strict 
selection criteria for genetic IVs and examining for outliers and 
horizontal pleiotropy, pleiotropy may still be  present and could 

FIGURE 4

Two-step MR estimates of causal effect proportions mediated by SBP and DBP in SUA on any stroke and ischemic stroke pathways.
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introduce bias into our results. Second, it is necessary to point out the 
genetic variation differences that exist among different races, which 
may introduce heterogeneity into the causal estimates. Although the 
incidence of stroke is also high in the Asian region (36–38), 
considering that our study mainly involves participants of European 
descent, this may limit the generalization of our findings to other 
races and populations. Third, in this study, we noted a 43.6% sample 
overlap in SUA and eGFR GWAS datasets, potentially impacting the 
accuracy of MVMR and mediation analysis. Due to the absence of 
independent GWAS datasets excluding UK Biobank, we evaluated 
the robustness of our findings by estimating potential bias and type 
I error rate. The finding indicates that a 43.6% overlap might cause a 
bias ranging from 0.007 to 0.008 and increase type I  error rates 
between 0.19 and 0.27. Although the bias suggests a somewhat 
reliable result, the elevated type I error rates, substantially above the 
5% standard threshold, indicate a heightened risk of false positives. 
Future studies with non-overlapping samples are required to 
corroborate and reinforce our conclusions. Finally, limited by the 
GWAS data, we were unable to stratify SUA levels or explore trend 
relationships between SUA and stroke risk and prognosis. In future 
studies, a more comprehensive collection of SUA data and more 
in-depth analysis will contribute to further insight into the potentially 
complex associations between them.

In conclusion, our MR study supports a dual role for genetically 
predicted SUA in increasing the risk of stroke, especially ischemic 
stroke, and in improving post-stroke poor functional outcome and 
motor recovery. Moreover, we provide credible genetic evidence that 
SBP and DBP mediate considerable proportions of the causal effects 
of SUA on AS and IS. These findings contribute to a deeper 
understanding of the underlying mechanisms that link SUA to stroke 
risk and prognosis.
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Background: The relationship between hemoglobin concentration and stroke 
has garnered significant interest in the research community. However, findings 
from published observational epidemiological studies on this relationship 
have been inconclusive. By using publicly available genome-wide association 
study (GWAS) aggregated statistics, a two-sample Mendelian randomization 
analysis is conducted to explore the causal relationship between hemoglobin 
concentration and stroke.

Methods: Summary statistics data from UK Biobank for hemoglobin concentration 
and from the FinnGen R9 and MEGASTROKE consortium for stroke are used. 
A series of quality control steps are taken to select eligible instrumental SNPs 
closely related to exposure. In order to make the conclusion more robust and 
reliable, several robust analysis methods are employed including inverse variance 
weighted, weighted median, MR-Egger regression, which are based on different 
assumptions of two-sample MR Analysis. Meanwhile, sensitivity analyses such 
as pleiotropy test and MR-Egg regression, are performed to mitigate horizontal 
pleiotropy and heterogeneity.

Results: The two-sample Mendelian randomized study indicates a negative 
association between hemoglobin concentration and stroke, suggesting that 
hemoglobin concentration acts as a protective factor against stroke. From 
the FinnGen database, there is a negative association between hemoglobin 
concentration and stroke, with an odds ratio (OR) of 0.82 and a 95% confidence 
interval (CI) of 0.73–0.92, p  =  0.0006. Similarly, the MEGASTROKE database 
findings reinforce this observation. The negative association between 
hemoglobin concentration and stroke (OR: 0.91, 95%CI: 0.83–1.00, p =  0.040), 
ischemic stroke (OR: 0.87, 95%CI: 0.79–0.96, p  =  0.004), and cardiogenic 
stroke (OR: 0.82, 95% CI: 0.69–0.99, p  =  0.039) further suggests that higher 
hemoglobin levels might confer a protective effect against these conditions.

Conclusion: Hemoglobin concentration serves as a protective factor against 
stroke, and managing abnormal hemoglobin levels can effectively reduce the 
incidence of stroke.
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two-sample Mendelian randomization, hemoglobin concentration, ischemic stroke, 
stroke, Cardioembolic stroke

OPEN ACCESS

EDITED BY

Shubham Misra,  
Yale University, United States

REVIEWED BY

Cyprien Rivier,  
Yale Medicine, United States
Sun Ha Jee,  
Yonsei University, Republic of Korea
Canfei Zhang,  
The First Affiliated Hospital of Henan 
University of Science and Technology, China

*CORRESPONDENCE

Wenbao Wu  
 wuwenbao1983@163.com

†These authors share first authorship

RECEIVED 25 October 2023
ACCEPTED 15 April 2024
PUBLISHED 25 April 2024

CITATION

Wu W, Fan D, Que B, Chen Y and Qiu R (2024) 
Investigation on the relationship between 
hemoglobin concentration and stroke risk: a 
bidirectional Mendelian randomization study.
Front. Neurol. 15:1327873.
doi: 10.3389/fneur.2024.1327873

COPYRIGHT

© 2024 Wu, Fan, Que, Chen and Qiu. This is 
an open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Original Research
PUBLISHED 25 April 2024
DOI 10.3389/fneur.2024.1327873

74

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2024.1327873%EF%BB%BF&domain=pdf&date_stamp=2024-04-25
https://www.frontiersin.org/articles/10.3389/fneur.2024.1327873/full
https://www.frontiersin.org/articles/10.3389/fneur.2024.1327873/full
https://www.frontiersin.org/articles/10.3389/fneur.2024.1327873/full
https://www.frontiersin.org/articles/10.3389/fneur.2024.1327873/full
https://www.frontiersin.org/articles/10.3389/fneur.2024.1327873/full
mailto:wuwenbao1983@163.com
https://doi.org/10.3389/fneur.2024.1327873
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2024.1327873


Wu et al. 10.3389/fneur.2024.1327873

Frontiers in Neurology 02 frontiersin.org

1 Introduction

Stroke, a leading causes of death and long-term disability, 
continues to pose a significant global health burden. Although 
advancements in secondary stroke prevention and diagnostic and 
treatment protocols have contributed to minimizing acute ischemic 
stroke occurrences, the incidence of stroke remains high (1). Effective 
interventions targeting stroke risk factors have proven successful in 
reducing stroke incidence (2). Traditionally, various cardiovascular 
risk factors, such as hypertension, diabetes, and hyperlipidemia have 
been closely associated with the development of stroke (3). However, 
with the advancement of research as well as technology, new 
biomarkers have attracted the attention of scientists, including 
hemoglobin concentration.

The relationship between hemoglobin concentration and stroke is 
still of interest, but it remains uncertain. Observational studies have 
demonstrated a complex relationship between hemoglobin 
concentration and stroke (4). High hemoglobin concentration is seen 
in conditions like polycythemia vera (5), chronic obstructive 
pulmonary disease (6) and plateau erythrocytosis (7). Numerous 
studies have shown that high hemoglobin concentrations increased 
the blood clotting tendencies and thrombosis risk. Clinical evidence 
has linked polycythemia vera to thrombosis, including stroke (8), 
suggesting that high hemoglobin concentration is a risk factor for 
stroke. Hemoglobin is a key oxygen-carrying molecule in the blood, 
the relationship between stroke and anemia can be partially explained 
by a direct link between the central nervous system, blood supply, and 
oxygen delivery to tissues (9). Consequently, anemia is also a risk 
factor for ischemic stroke and is associated with a higher mortality 
rate after hospitalization (10). The relationship between anemia and 
increased mortality or disability in patients with various types of 
stroke, including ischemic stroke, cerebral hemorrhage, and 
subarachnoid hemorrhage, has been investigated (11). However there 
is inconclusive evidence regarding the correlation, positive or negative, 
between hemoglobin concentration and stroke.

Randomized controlled Trails (RCTs) are the gold standard for 
establishing causal relationships in epidemiological studies. However, 
due to medical ethical restrictions and high costs, conducting certain 
RCTs can be challenging. In contrast, observational studies are widely 
used in initial causal exploration due to their relatively simple design 
and ease of implementation. However, confounding factors and 
inversion of causality often limit the ability to infer causality. 
Mendelian randomization (MR) principles address these challenges 
by utilizing genotypes as instrumental variables to investigate genetic 
traits and their associations, thereby allowing for the study of genetic 
interactions and causal inference (12). Therefore, genotypes can 
be used as instrumental variables to study intermediate phenotypes to 
infer causal associations with disease states, avoiding the influence of 
confounding factors and reverse causal associations (13). The rapid 
development of genome-wide association studies (GWAS) has led to 
the increasing application of MR analysis, using single nucleotide 
polymorphisms (SNPs) that are strongly correlated with phenotypes 
as instrumental variables (12).

In the present study, MR analyses are performed to elucidate 
whether hemoglobin concentration has a causal effect on stroke. 
Specifically, correlational MR analyses are conducted to investigate the 
relationship between hemoglobin concentration and stroke, utilizing 
hemoglobin concentration as an exposure tool for genetic variation 
and stroke as the outcome. The aim was to obtain causal estimates and 

determine whether hemoglobin concentration is negatively or 
positively associated with stroke.

2 Methods

2.1 Study design

A two-sample MR approach is employed using summary statistics 
data from UK Biobank for hemoglobin concentration, and from the 
FinnGen R9 and MEGASTROKE consortium for stroke. The use of 
these datasets was in accordance with appropriate patient consent and 
ethical approval. The present study was approved by the ethics 
committee of Longyan First Hospital (Ethics number: 2022022). The 
specific process is illustrated in the Figure 1.

2.2 Outcome data sources

Summary-level data for stroke were obtained from the FinnGen 
R9 and MEGASTROKE, FinnGen R9 consortium which including a 
total of 306,377 individuals of European ancestry, consisting of 39,818 
stroke cases and 271,817 controls (13). Moreover, in the 
MEGASTROKE Consortium’s meta-analysis of genome-wide 
association study (GWAS) data, stroke data were collected, which 
included stroke subtypes and stroke information in Europeans (40,585 
cases, 406,111 controls) (14). The sources and detailed information of 
this data are presented in Table 1.

2.3 Instrumental variable selection

Hemoglobin concentration as exposure data (containing 
13,791,467 SNPs) in a population of 350,474 European ancestry is 
selected from the UK Biobank dataset (15). Among these SNPs, 
71,104 SNPs are identified robustly associated with hemoglobin 
concentration (p < 5×10–8) (16). To ensure the independence of the 
hemoglobin concentration instrumental variables, we  applied 
clumping with an r2 threshold<0.001 and a clump window of 
10,000 kb based on the 1,000 genomes linkage disequilibrium (LD) 
reference panel of only Europeans (17). After implementing the 
correlation settings, we  identified 287 SNPs that were used as 
instrumental variables for the exposure. We calculated the F-statistics 
of these 287 SNPs to assess the strength of genetic variation, and all 
F-statistics were found to be  more than 10. Details of the SNPs 
associated with the hemoglobin concentration are presented in 
Supplementary Table S1. 255 and 275 exposure SNPs were obtained 
from the instrumental variables for stroke outcome data in 
Supplementary Tables S2, S3. After conducting a harmonize check, 
we removed some SNPs due to palindromic alleles and compatibility 
issues with other alleles. After the above operations, we obtained SNPS 
suitable for MR analysis, which are detailed in 
Supplementary Tables S4, S5.

2.4 Pleiotropy assessment

To identify and exclude possible pleiotropic associations between 
instrumental variables and other phenotypes, all SNPs are searched 
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using the human genotype–phenotype association database 
(PhenoScanner V2)1 to detect possible pleiotropy (18). Through this 
analysis, it’s found that that some of the SNPs related to hemoglobin 
concentration were also associated with various stroke risk factors, 
including hypertension, diabetes, dyslipidemia, heart disease, 
smoking, alcohol consumption, overweight or obesity, platelet 
aggregation, etc. By controlling for confounding factors that may 
affect stroke outcomes, specific SNPs can be  identified to serve as 
instrumental variables. Detailed information regarding these SNPs 
can be found in Supplementary Tables S6–S11.

1 http://www.phenoscanner.medschl.cam.ac.uk

2.5 Statistical analysis

To assess the associations between hemoglobin concentration 
and stroke, multiple statistical methods including inverse variance 
weighted (IVW), MR-Egger regression, weighted median 
approaches were used to examine the potential causal association. 
The IVW method uses a meta-analysis approach combined with 
Wald estimates for each SNP, to estimate the causal relationship 
between hemoglobin concentration and stroke (12). In the absence 
of horizontal pleiotropy, the IVW method provides unbiased 
results. The weighted median method weights the estimates of 
causal effects at each locus of genetic variation and enhance the 
accuracy and robustness of causal inference (19). The MR-Egger 
regression method corrects for horizontal pleiotropy by estimating 

FIGURE 1

The study flow chart.

TABLE 1 Stroke subtypes and data sources.

Outcome Sample size (cases/
controls)

Ancestry Significance level Data sources

Stroke 39818/27181 European 5e−8 https://www.finngen.fi/fir9.

finngen.fi

Stroke 40585/406111 European 5e−8 MEGASTROKE Consortium 

(ebi-a-GCST005838)

Ischemic stroke 34217/406111 European 5e−8 MEGASTROKE Consortium 

(ebi-a-GCST005843)

Cardioembolic stroke 7193/406111 European 5e−8 MEGASTROKE Consortium 

(ebi-a-GCST005842)

Large artery stroke 4373/406111 European 5e−8 MEGASTROKE Consortium 

(ebi-a-GCST005840)

Small vessel stroke 5386/192662 European 5e−8 MEGASTROKE Consortium 

(ebi-a-GCST005841)
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the bias weight, which enhances the accuracy and reliability of 
Mendelian randomization analysis (20). We  employed both the 
MR-Egger method and outlier (MR-PRESSO) method to test for 
horizontal pleiotropy. Furthermore, a ‘leave one out’ analysis was 
conducted to examine whether the causal relationship between 
exposure and outcome was influenced by a single SNP. Odds ratios 
(ORs) for stroke were calculated per one standard deviation (SD) 
increase in genetically predicted hemoglobin concentration in all 
analyses. All SNPs that had a significant effect on hemoglobin 
concentration at the genome-wide significance levels were used for 
sensitivity analysis. All statistical analyses were two-sided and 
performed in R 4.3.0 software (R Foundation for Statistical 
Computing, Vienna, Austria). MR analyses were performed using 
the TwosampleMR (version 0.5.7), Mendelian Randomization 
(version 0.5.7), and MR-PRESSO (version 1.0) packages. P < 0.05/5 
(with Bonferroni corrections) was statistically significant with 
p-value between 0.05 and 0.01 as suggestively significant. 
We interpreted the results not solely based on p-values but also 
considered the strengths of the associations and the consistency 
across sensitivity analyses.

3 Results

3.1 Exploration of the causal relationship 
between hemoglobin concentration and 
stroke

The associations between hemoglobin concentration and stroke 
are shown in Figure  2. This study found a negative association 
between genetically predicted hemoglobin concentration and 
stroke, including ischemic stroke and cardiogenic stroke. Significant 
causal relationships were identified using the Inverse Variance 
Weighted (IVW) method. The results from different MR methods 
are as follows: Firstly, data from FinnGen demonstrated a significant 
negative association between hemoglobin concentrations and 
stroke, with an odds ratio (OR) of 0.82 (95% confidence interval 
[CI]: 0.73 to 0.92) and a p-value of 0.0006. Secondly, findings from 
MEGASTROKE also reveal a negative correlation between 
hemoglobin concentration and stroke (OR: 0.91, 95% CI: 0.83–1.00, 
p = 0.040). This association is observed for both ischemic stroke 
(OR: 0.87, 95% CI: 0.79–0.96, p = 0.004) and cardiogenic stroke 
(OR: 0.82, 95% CI: 0.69–0.99, p  = 0.039) (detail in 
Supplementary Table S12). Notably, even after applying Bonferroni 
correction, hemoglobin concentration remains significantly 
negatively correlated with ischemic stroke. Thus, it’s revealed that 
hemoglobin concentration can reduce the incidence of stroke, 
suggesting that hemoglobin concentration is a protective factor 
against stroke. The scatter plot indicates that the hemoglobin 
concentration is negatively correlated with any stroke, ischemic 
stroke and cardiogenic stroke in the MEGASTROKE database 
(shown in Figure 3). The funnel plot indicates no heterogeneity 
between hemoglobin concentration and different stroke subgroups. 
The leave-one-out plot also indicates the stability of this study 
model. When hemoglobin concentration is analyzed against stroke 
in the FinnGen R9 database, there is heterogeneity (Q = 181.427, 
p < 0.05),suggesting that our MR-Egger method did not outperform 
the inverse variance weighting method (16), as is shown in Figure 4.

3.2 Exploration of the causal relationship 
between stroke and hemoglobin 
concentration

To establish a causal relationship between hemoglobin 
concentration and stroke, a reverse Mendelian randomization (MR) 
study is conducted. The reverse MR results indicate no significant 
association between hemoglobin concentration and the various types 
of stroke (available in the Supplementary Tables S13–S18). Based on 
the IVW results, it can be concluded that there is no causal relationship 
between hemoglobin concentration and different subtypes of stroke. 
The specific findings are as follows: Any stroke: OR 1.13, 95% CI: 
0.90–1.41, p = 0.288;Ischemic stroke: OR 1.01, 95% CI: 0.80–1.27, 
p = 0.922;Large artery stroke: OR 0.99, 95% CI: 0.98–1.00, p = 0.421; 
Cardioembolic stroke: OR 1.11, 95% CI: 0.91–1.35, p = 0.312. For the 
Small vessel stroke subtype, an MR analysis was conducted without 
SNP after applying a strong correlation threshold of p  < 5e-08. 
Subsequently, an MR analysis is performed between Small vessel 
stroke and hemoglobin concentration, setting a p-value threshold of 
p < 5e-06. The results of this analysis also show that there is no causal 
relationship between the two variables (OR: 1.00, 95% CI: 0.99–1.01, 
p = 0.671). These results indicate that there is no significant evidence 
to suggest a causal relationship between hemoglobin concentration 
and these specific stroke subtypes. Furthermore, employing 
bidirectional MR analysis, it is observed that hemoglobin 
concentration exhibits a negative correlation with stroke, particularly 
ischemic stroke.

4 Discussion

The present MR study of hemoglobin concentration and stroke 
makes use of the summary statistics of hemoglobin concentration 
from the UK Biobank consortium, and from the FinnGen R9 and 
MEGASTROKE consortium for stroke. A two-sample MR analysis is 
carried out to investigate the potential causal association between 
these two factors. Novel findings demonstrate a negative causal 
relationship between hemoglobin concentration and stroke, 
particularly ischemic stroke. Additionally, the results suggest that 
hemoglobin concentration acts as a protective factor against stroke, 
providing the first indication of its potential role in stroke prevention.

A large number of observational studies have examined the 
relationship between hemoglobin concentration and stroke, but there 
is no uniform interpretation of their relationship (21). Previous 
studies have suggested that hospitalized patients with high hemoglobin 
concentration are more likely to have a stroke than those with low 
hemoglobin concentration (22). Lee et al. found that an elevation in 
Hb concentration from the normal range to high levels was associated 
with an increased risk of stroke (hazard ratio [95% confidence 
interval]: 1.10 [1.02–1.35]) (23). The increased risk is attributed to 
high hemoglobin levels causing elevated blood viscosity and a higher 
propensity for thrombosis. Excess hemoglobin can also damage the 
endothelium of blood vessels, leading to artery walls thickening and 
an increased risk of arterial narrowing, all contributing factors to the 
stroke risk. On the other hand, low hemoglobin concentration can 
cause anemia, insufficient oxygen supply to the brain and some 
cardiovascular and cerebrovascular problems. Observational studies 
have shown an association between low hemoglobin concentrations 
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and a higher likelihood of stroke occurrence (8). Therefore, it is very 
necessary to elucidate the causal relationship between hemoglobin 
concentration and stroke. This two-sample Mendelian randomization 
study shows that hemoglobin concentration is negatively correlated 
with stroke, challenging the previous view that high hemoglobin 
concentration is more likely to cause stroke.

Anemia, characterized by low hemoglobin levels, a prevalent 
condition and recognized as the fifth major cardiovascular risk factor. It 
affects individuals across all age groups, including children, adults, and 
the elderly. The relationship between anemia and stroke has been 
extensively discussed in clinical practice and research, with studies 
exploring this relationship even in pediatric populations. For example, 
studies have indicated that low hemoglobin concentration is a major risk 
factor for increased stroke risk in children with sickle cell anemia (24). 
Maguire et  al. have demonstrated that iron deficiency anemia was a 
significant risk factor for stroke in otherwise healthy young children (25). 
The youth population can experience both hypoproliferative anemia and 

hyperproliferative anemia, which are linked to cerebrovascular diseases. 
These diseases range from transient ischemic attacks to ischemic stroke 
and hemorrhagic stroke (26). In adults, low hemoglobin levels have been 
associated with an increased risk of stroke in both men and women, 
irrespective of their gender. Panwar et al. demonstrated that the likelihood 
of stroke in women increased by a factor of 0.59 for every unit decrease in 
hemoglobin levels (4). The study also indicates that a gradual decline in 
hemoglobin levels over time may elevate stroke risk, with a Hazard Ratio 
(HR) of 4.12 (95% Confidence Interval: 1.50, 11.28) in men (27). In the 
study investigating the connection between chronic kidney disease and 
stroke, it is found that individuals with anemia had a significantly higher 
risk of stroke compared to those without anemia (HR 5.43; 95% CI 2.04 
to 14.41) (28). Research conducted on the elderly population has 
demonstrated a negative correlation between hemoglobin levels and 
stroke. Additionally, it has been found that low hemoglobin status is an 
independent predictor of both short-term and long-term mortality (29). 
Another study also shows that decreased in-hospital hemoglobin is 

FIGURE 2

MR estimates from different methods for assessing the causal effect of hemoglobin concentration on stroke (pval was the value pval after MRpresso).

78

https://doi.org/10.3389/fneur.2024.1327873
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Wu et al. 10.3389/fneur.2024.1327873

Frontiers in Neurology 06 frontiersin.org

independently associated with increased stroke events in older patients 
(30). The aforementioned study on low hemoglobin concentration and 
stroke risk further supports the claim that our two-sample Mendelian 
randomization indicates a negative correlation between hemoglobin 
concentration and stroke. Raphae S Barlas et al. conducted a meta-analysis 
on the relationship between anemia and stroke, the study found strong 
evidence that anemia patients had a higher risk of stroke, with a negative 
correlation between hemoglobin concentration and stroke incidence (31).

The relationship between hemoglobin concentration and stroke has 
been observed to exhibit a J or U-shaped curve. This means that the risk 
of stroke tends to increase at both low and high hemoglobin levels (32–
34). However, the present Mendelian randomization study demonstrates 

that hemoglobin concentration is a protective factor against stroke. 
Similarly, increasing hemoglobin concentration to the normal range in 
cases of anemia may also reduce the occurrence of stroke. Earlier studies 
have also indicated that reducing hemoglobin concentrations from the 
high range to the normal range reduces the risk of stroke (hazard ratio 
[95% confidence interval]: 0.80 [0.60–0.97]), and improving anemia to 
the normal range also reduces the risk of all-cause stroke (hazard ratio 
[95% confidence interval]: 0.81 [0.69–0.94]) (23).

This study provides a significant advantage as it is the first to establish 
a causal relationship between hemoglobin concentration and stroke using 
MR Analysis. Furthermore, it is the first time that hemoglobin 
concentration is used as a protective factor against stroke. This approach 

FIGURE 3

The causal effect of hemoglobin concentration on stroke (MEGASTROKE).

FIGURE 4

The causal effect of hemoglobin concentration on stroke (FinnGen R9).
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allows doctors to eliminate the influence of confounding factors and 
establish a reverse causal reasoning. To ensure the reliability of our 
findings, genetic variation data is collected from the largest available UK 
Biobank meta-analysis on hemoglobin concentration and from the 
FinnGen R9 and MEGASTROKE consortium for stroke. The selection of 
instrumental variables strengthens the MR Analysis. Measures are also 
taken to detect and exclude horizontal pleiotropy through MR-Egger 
regression intercept item tests. Additionally, a two-sample MR Design is 
employed, using non-overlapping exposures and summarizing results at 
a level data to minimize bias and increase the validity of the conclusions.

There are some limitations of the MR analysis that need to 
be considered. This study considers the heterogeneity of the included 
population, taking into account factors such as education level, 
cultural background, and living habits that may impact the 
experimental results. Further investigation is needed to explore the 
causal relationship between education level, living habits, and stroke. 
Additionally, since the study only includes European individuals, it is 
important to examine the potential causal relationship between racial 
differences and stroke, which should be a focus of future research.

5 Conclusion

This study conducted a two-sample MR Study and successfully 
identified a causal relationship between hemoglobin concentration 
and stroke. Then, with stroke as the exposure factor and Hb as the 
outcome, we reevaluated the causal relationship between them. The 
findings indicate a potential protective effect of higher hemoglobin 
levels against stroke. However, further large sample multi-center 
randomized clinical studies are needed to validate these results. The 
study also highlights the importance of considering the impact of 
hemoglobin concentration on stroke, particularly in the management 
of anemia patients. This highlights the need for increased attention to 
hemoglobin levels in the context of stroke prevention and treatment.
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Effects of immune cells on 
ischemic stroke and the 
mediating roles of metabolites
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Objective: Previous studies have not shown an association between IgD-CD24-
B-cell absolute count (IgD-CD24-AC) and ischemic stroke (IS). Our study aimed 
to assess the causal effect of IgD-CD24-AC on IS and to explore the role of 
ascorbic acid 2-sulfate (AA2S) as a potential mediator.

Methods: Our study was based on the largest available genome-wide association 
study (GWAS). Inverse variance weighting (IVW), MR–Egger, weighted median 
(WMN), simple mode, and weighted mode methods were used to assess causal 
effects, with IVW as the primary outcome. Subsequently, we further performed 
a two-step MR analysis to evaluate whether AA2S mediated this causal effect. In 
addition, several sensitivity analyses were conducted to evaluate heterogeneity, 
including Cochran’s Q test, the MR–Egger intercept test, the MR-PRESSO global 
test, and the leave-one-out analysis.

Results: Using the IVW approach, the risk ratio of IgD-CD24-AC to IS was estimated 
to be 1.216 (95% CI = 1.079–1.371, p = 0.001). This result was supported by the WMN 
method (OR = 1.204, 95% CI = 1.020–1.421, p = 0.028) and the MR–Egger method 
(OR = 1.177, 95% CI = 0.962–1.442, p = 0.133). We also observed the same trend with 
the simple model and weighted model. Furthermore, the proportion of genetically 
predicted IgD-CD24-AC mediated through AA2S levels was 3.73%.

Conclusion: Our study revealed a causal relationship between IgD-CD24-AC 
and IS, a small part of which was mediated by AA2S. These findings offer critical 
insights for developing immune-targeted therapies in the future and lay a strong 
foundation for advancements in precision medicine.

KEYWORDS

Mendelian randomization, ischemic stroke, IgD-CD24-AC, AA2S, metabolite, 
immunology

1 Introduction

Ischemic stroke (IS) is caused by an obstruction, generally from a blood clot, in the brain’s 
blood vessels (1). It is characterized not only by its high prevalence and mortality rates but also 
by being a significant contributor to disability and mortality among middle-aged and elderly 
populations, representing a formidable global health challenge (2–5). IS has been demonstrated 
to induce the release of inflammatory mediators, subsequently eliciting an immune response 
(6). IS can induce neuroinflammation characterized by impaired immune cell function, 
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highlighting the pivotal role of immune responses in the outcomes of 
IS (7, 8). Furthermore, the effects of various immune cells on ischemic 
strokes are complex and exhibit contradictory aspects (9). B cells play 
an important role in this process among the various immune cells. 
Following an ischemic event, there is a notable accumulation of B cells 
in the affected area, where they actively engage in the immune 
response (10, 11). A previous Mendelian randomization (MR) study 
revealed that distinct B-cell subtypes exhibit differential impacts on 
IS, and this study posits that specific B-cell phenotypes, such as 
CD24+ B-cell phenotypes, potentially confer neuroprotection, in 
contrast to IgD+CD24-B cells, which may predispose individuals to a 
heightened risk of IS (12). Although this investigation offers 
preliminary insights, the intricate interplay and roles of IgD and CD24 
phenotypes within the context of IS have yet to be comprehensively 
delineated, underscoring the critical necessity for this research.

The IgD-CD24-B-cell absolute count (IgD-CD24-AC) reflects the 
absolute count of B cells that are devoid of surface expression of both 
immunoglobulin D (IgD) and CD24 proteins. IgD, a marker protein 
on the surface of B cells, is usually associated with the immune 
response (13). CD24, an additional surface marker, is generally related 
to B-cell energy metabolism and selective developmental processes 
(14, 15). In recent years, a large number of scholars have focused on 
the function of the IgD and CD24 proteins on the surface of B cells in 
neurological diseases. Recent MR studies demonstrated that the 
absence of IgD protein in B cells elevates the risk for small-vessel 
stroke (16), with IgD protein negativity also displaying a positive 
correlation with the incidence of large-vessel and large-vessel 
atherosclerotic stroke (LAS) (17). Furthermore, an immunological 
analysis of individuals suffering from traumatic brain injury (TBI) 
revealed a universal increase in the number of IgD-CD24-B cells 
across all examined patients (18). In a cross-sectional study, 
investigators observed a significant increase in IgD- and CD24-
expressing B cells among individuals diagnosed with myalgic 
encephalomyelitis/chronic fatigue syndrome (ME/CFS) (19). 
Moreover, contemporary Mendelian randomization (MR) studies 
have furnished compelling evidence, notably one such study 
illustrating that IgD+CD24-B cells significantly amplify the risk 
associated with the onset of Alzheimer’s disease (20). Similarly, an 
additional recent MR investigation revealed an increased risk for 
Parkinson’s disease development in the presence of IgD-CD24-B cells 
(21). Although these findings do not directly address the specific 
effects of IgD and CD24 deficiency on IS, they highlight the complexity 
of immune responses mediated through the IgD and CD24 proteins 
and their potential impact on neurological disorders.

Previous studies have shown that metabolites act as mediators that 
can reveal the relationship between genetic variation and disease, 
leading to a deeper understanding of the biological pathogenesis of 
human disease (22). Ascorbic acid 2-sulfate (AA2S), a phase II 
metabolite of ascorbic acid, is synthesized catalytically by 
sulfotransferases originating from the liver, exhibiting widespread 
distribution in the body (23), and is excreted mainly in the urine (24). 
Consequently, the concentration of AA2S could serve as an indicator 
of the metabolic processing of ascorbic acid (AA) (25). AA has a 
variety of physiological functions in the body, such as preventing the 
formation of oxygen free radicals, regulating inflammatory factors, 
reducing inflammatory cell infiltration, reversing endothelial 
dysfunction, enhancing microcirculation, and relieving 
microinflammatory conditions (26). Regarding the immune system, 

AA is a powerful first-line antioxidant with multifaceted roles. For 
example, it regulates the function of both innate and adaptive immune 
cells (27). It improves plasma cell differentiation by altering epigenetic 
patterns (28). It also acts as a cofactor in various biosynthetic pathways 
and influences redox pathways in the immune system (29, 30). 
Previous studies have shown that AA lowers the risk of IS by 
protecting the cardiovascular system against atherosclerosis through 
its anti-inflammatory, antioxidant, and endothelium-protective 
effects. In contrast, elevated levels of AA2S may suggest excessive AA 
depletion, which in turn increases the risk of IS (31, 32). Earlier 
Mendelian randomization studies revealed causal effects of AA2S 
levels on 26 disease traits across 12 categories in humans (33). 
However, this study did not identify a relationship between AA2S 
levels and IS. Accordingly, based on these findings, we postulate that 
the levels of AA2S could mediate the relationship between 
IgD-CD24-AC and IS.

Conventional observational epidemiological studies have 
numerous limitations in studying etiology and inferring causality due 
to confounding factors such as reverse causality and potential 
confounders (34). Therefore, a new design is needed to avoid or 
minimize these biases. Similar to randomized controlled trials (RCT), 
Mendelian randomization (MR) is a novel method for exploring 
causal relationships between exposures and outcomes (35). As a 
powerful statistical tool, it is used to infer causal relationships between 
exposures and outcomes (36). It provides a novel approach to 
exploring the relationship between IgD-CD24-AC and IS and its 
underlying mechanisms by exploiting genetic variability. The MR 
study design follows the Mendelian “random assignment of parental 
alleles to offspring,” which avoids the interference of reverse causation 
bias and potential confounding factors, allowing us to make more 
robust causal inferences (37, 38). Previous studies have assessed the 
causal effects of various types of biomarkers (including circulating 
markers, cerebrospinal fluid markers, and gut microbiota markers) on 
neurological diseases through MR analysis (39–41). Moreover, with 
the increasing abundance of genome-wide association study (GWAS) 
data, MR analysis methods will be a key driver of progress in the field 
of neurology (42). Thus, it was essential to use the MR method to 
explore the effects of immune cells and metabolites on IS. The 
objectives of our study were (i) to determine whether IgD-CD24-AC 
is causally associated with IS and (ii) to assess the extent to which 
AA2S mediates the effect of IgD-CD24-AC on IS by mediation analysis.

2 Methods

2.1 Study design

A convincing Mendelian randomization (MR) design must meet 
three basic assumptions to ensure its scientific validity and 
effectiveness: (1) a significant association exists between the genetic 
instrumental variable and the exposure variable; (2) the genetic 
instrumental variable is independent of confounders, and (3) the 
genetic instrumental variable affects the outcome only through the 
exposure (43). Among these assumptions, the first hypothesis 
represents the causal hypothesis, while the second and third 
hypotheses collectively refer to pleiotropy (44), which can be tested 
using a range of statistical methods. In our study, we initially analyzed 
the effects of immune cells and metabolites on IS. Subsequently, 
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we explored the mutual causality between IgD-CD24-AC, AA2S, and 
IS by screening single nucleotide polymorphisms (SNPs) from 731 
immune cells, 1,400 metabolites, and the FinnGen database using 
Mendelian randomization. These SNPs were defined as instrumental 
variables (IVs) (45). Figure 1 illustrates the flowchart of our analyses.

2.2 GWAS summary data sources

Data on IgD-CD24-AC were procured from a 2020 investigation 
conducted by Orrù et al. (46). The inquiry meticulously scrutinized 
731 immunophenotypes, encompassing an array of parameters: 192 
relative cell counts (RC), 32 morphometric attributes (MP), 118 
absolute cell counts (AC), and 389 instances of median fluorescence 
intensity (MFI), the latter delineating the magnitude of surface antigen 
presence. Overall, this research revealed 122 substantial independent 
association signals distributed across 70 genetic loci, revealing 53 
hitherto undiscovered loci and elucidating the molecules and 
mechanisms involved in the regulation of 459 cellular attributes. 
Furthermore, flow cytometry was used to determine 118 absolute cell 
counts (ACs), 389 median fluorescence intensities (MFIs) indicative 
of surface antigen levels, 32 morphological parameters (MPs), and 192 
relative cell counts (RCs). The MFI indicates protein expression levels 
in designated cell subpopulations and reflects the median fluorescence 
emitted by a targeted protein. For example, the trait “IgD-CD24-B-
cell” represents a negative B-cell for both IgD and CD24. These GWAS 
data include 3,757 nonoverlapping European individuals, including 
22 million SNPs, and were tested for correlations after controlling for 
covariates such as age, age2, and sex.

Our data on AA2S come from the study by Chen (47), the most 
comprehensive survey of genetic loci for blood metabolites to date. 
Chen conducted a series of large GWASs, including the testing of 

1,091 metabolites and 309 metabolite ratios in 8,299 individuals from 
the Canadian Longitudinal Study of Aging (CLSA) cohort. Of the 
1,091 metabolites tested, 850 had known properties in eight super 
pathways (i.e., lipids, amino acids, xenobiotics, nucleotides, cofactors 
and vitamins, carbohydrates, peptides, and energy). The residual 
cohort of 241 molecular entities was categorized as either unknown 
or possessing partial characterization. These metabolites were 
subjected to stringent Bonferroni correction and adjusted for the total 
number of metabolites tested (p < 5 × 10−8/1,091 = 4.58 × 10−11). AA2S 
is metabolized via the super-pathway of vitamin C. The metabolism 
of AA2S was also determined by Bonferroni correction 
(p < 5 × 10−8/1,091 = 4.58 × 10−11).

To minimize sample overlap, we utilized IS data from the FinnGen 
consortium (Round 10)1 as our outcomes. A total of 374,631 controls 
and 1,485 patients with IS were included in our research; all of the 
participants were of European descent. The FinnGen study is a large-
scale genomics initiative that has analyzed over 500,000 Finnish 
biobank samples and correlated genetic variation with health data to 
understand disease mechanisms and predispositions. The project 
involves collaboration between research organizations and biobanks 
in Finland and international industry partners (48).

2.3 Instrumental variable selection and 
data harmonization

For MR analyses, the genetic variants utilized must 
be  representative of the characteristics of IgD-D24-AC and 

1 https://www.finngen.fi/en

FIGURE 1

The flowchart of our MR analysis. IgD-CD24-AC, IgD-CD24-B-Cell absolute count, AA2S, Ascorbic Acid 2-Sulfate.
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AA2S. Based on previous similar studies (49, 50), we selected single 
nucleotide polymorphisms (SNPs) with p values less than (1 × 10−5) as 
instrumental variables (IVs) to make them more informative. 
Furthermore, SNPs that exhibited a linkage disequilibrium (LD) 
coefficient (r2) of less than 0.001 and those positioned more than 
10,000 kilobases apart were chosen to ensure independence. To 
quantify the strength of the IV, we calculated the F value using the 
genetic variance (R2), total sample size (N), and number of IVs (k) 
with the formula F = R2(N − k − 1)/k(1 − R2), where the genetic 
variance is considered weak when the F statistic is less than 10, which 
may bias the results (51, 52). Due to the binary nature of the outcomes 
being investigated, ratio estimates had to be transformed to produce 
the appropriate odds ratios (OR) and 95% confidence intervals (53).

2.4 Statistical analysis

All analyses were conducted using R version 4.3.2.2 The “Two 
Sample MR package” (54) (version 0.5.9) was used for the analyses. 
Additionally, the MR-Pleiotropy RESidual Sum and Outlier 
(MR-PRESSO) and robust adjusted profile score (MR. RAPS) methods 
were applied using the R packages “MRPRESSO” and “MR.raps.” 
Moreover, the statistical power for MR was calculated using mRnd.3

2.5 Mediation analyses

Figure 2 presents an analysis schematic. We conducted two-sample 
bidirectional Mendelian randomization to evaluate the reciprocal 
causality between IgD-CD24-AC and the IS (Figure 2A), which was 
referred to as the total effect (beta. all).

The causal relationship between IgD-CD24-AC and IS was 
assessed through a suite of methods: inverse variance weighting 
(IVW) (35), weighted median (WMN) (55), MR-Egger (56), and 
simple model and weighted model (57). Employing the IVW 
approach, which aggregates Wald ratio estimates of each instrumental 
SNP through a meta-analysis-like methodology, allowed for precise 
effect estimation. The results are reported as beta values with 95% 
confidence intervals (CIs) for standard errors and odds ratios (ORs) 
for continuous outcomes. For binary outcomes, p < 0.05 was 
considered nominally significant. The MR–Egger method, 
complemented by weighted median, weighted modal, and simple 
modal analyses, was used to assess multivariate validity as a 
Supplementary Method to bolster the reliability of IVW findings. A 
principal advantage of the weighted median approach lies in its ability 
to yield consistent causality estimates, even when more than 50% of 
the instrumental variables are invalidated (55).

An investigation into whether AA2S mediated the causal pathway 
from IgD-CD24-AC to IS outcomes (Figure 2B), which was involved 
in conducting mediation analyses, was performed using a two-step 
MR. The overall effect can be broken down into indirect (mediated) 
and direct effects (58). Therefore, the impact of IgD-CD24-AC on IS 
was divided into two components: (1) the direct effect of 

2 https://www.r-project.org/

3 https://cnsgenomics.shinyapps.io/mRnd/

IgD-CD24-AC on IS (direct effect in Figure 2B) and (2) the indirect 
effect of IgD-CD24-AC on IS mediated by AA2S (beta1 × beta2 in 
Figure 2B). Subsequently, we calculated the percentage of mediated 
effects by dividing the indirect effect by the total effect. Additionally, 
we used the delta method to calculate 95% confidence intervals (59).

2.6 Sensitivity analyses

Heterogeneity markers from the IVW and MR–Egger approaches 
(Cochran Q-derived p < 0.05) were utilized as indicators of potential 
pleiotropy (60–62). By contrasting the Egger intercept term with the null 
result, MR–Egger analysis was able to evaluate directional pleiotropy 
(55). In addition, the MR-PRESSO test was used to assess the total 
pleiotropy of the studies and to identify any SNPs that were unusual or 
showed horizontal pleiotropy. To ensure the robustness of the effects, 
the MR analysis included an assessment before and after the removal of 
outlier SNPs (56, 62). If an outlier SNP was detected (p < 0.05), it was 
excluded, and the causal and sensitivity analyses were reconducted using 
a random-effects model to ensure the reliability of the results.

3 Results

3.1 Primary results

Among 731 immune cells and 1,400 metabolites, 30 immune cell 
features were initially identified as being associated with IS by the 
IVW method (Supplementary Figure S1), as well as 36 metabolites 
(Supplementary Figure S2). After performing a two-step MR analysis 
(Figure  1) and sensitivity analyses, it was finally determined that 
IgD-CD24-AC was associated with IS and that AA2S acted as 
its mediator.

FIGURE 2

Graphs illustrate the associations examined in this study. (A) Total 
effect “beta. All” of IgD-CD24-AC with ischemic stroke. (B) Total 
effect de-composed as (i) mediated effect using a two-step 
approach “beta12”  =  beta1  ×  beta2 (where “beta1” is the total effect of 
IgD-CD24-AC on AA2S and “beta2” is the effect of AA2S on ischemic 
stroke effect) (ii) direct effect  =  “total effect” − “mediated effect” 
(beta. All-beta12). The mediated ratio is the indirect effect divided by 
the total effect. IgD-CD24-AC, IgD-CD24-B Cell absolute count, 
AA2S, Ascorbic Acid 2-Sulfate.
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3.2 Association of IgD-CD24-AC with IS

Characteristics of significant SNPs with genome-wide associations 
in Supplementary Table S2. All SNPs used to measure IgD-CD24-AC 
exposure had F values greater than 10. We  identified 18 SNPs as 
instrumental variables. Our results revealed a causal effect of 
IgD-CD24-AC on IS. As shown in Figures 3A, 4, the positive correlation 
between IgD-CD24-AC and the IS was broadly and consistently 
demonstrated across all five MR analysis methods. Employing the IVW 
approach, the risk ratio of IgD-CD24-AC to IS was estimated to 
be 1.216 (95% CI = 1.079–1.371, p = 0.001). This result was supported by 
both the weighted median method (OR = 1.204, 95% CI = 1.020–1.421, 
p = 0.028) and the MR–Egger method (OR = 1.177, 95% 

CI = 0.962–1.442, p = 0.133). The same trend was also observed in the 
simple and weighted models. The detailed results are displayed in 
Figure 5.

3.3 Association of IgD-CD24-AC with AA2S

Supplementary Table S4 contains Characteristics of significant 
SNPs with genome-wide associations and the F-statistics for all SNPs 
utilized in MR studies that were larger than 10. Figure 3B shows that 
genetically predicted IgD-CD24-AC was positively linked and trended 
consistently with AA2S risk using the five MR analysis methods., 
we discovered that genetically predicted IgD-CD24-AC was positively 

FIGURE 3

Scatter plot of genetic association between IgD-CD24-AC, AA2S, and IS. (A) Association of IgD-CD24-AC with IS; (B) Association of IgD-CD24-AC with 
AA2S; (C) Association of AA2S with IS. The slope and direction of the straight line represent the magnitude and direction of the causal relationship. 
IgD-CD24-AC, IgD-CD24-B Cell absolute count, AA2S, Ascorbic Acid 2-Sulfate.
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linked and trended consistently with AA2S risk using the five MR 
analysis methods. Specifically, the IVW method estimated the ratio of 
initial IgD-CD24-AC to IS risk to be 1.057 (95% CI = 1.006–1.111, 
p = 0.028). The weighted median (OR = 1.065, 95% CI = 0.998–1.137, 
p = 0.057) and MR–Egger (OR = 1.074, 95% CI = 0.990–1.165, p = 0.106) 
estimates were consistent. The detailed results are shown in Figure 5.

3.4 Association of AA2S with IS

The SNP data can be found in Supplementary Table S5. Every 
genetic tool linked to AA2S is listed here at the genome-wide 
significance level (p < 5 × 10−5). The results from the genetic prediction 
using the IVW method showed a strong positive association between 
AA2S and IS (OR = 1.140, 95% CI, 1.020–1.275; p = 0.021). As shown 
in Figure  3C, all four of the remaining methods had consistent 
estimation directions. Figure 5 shows the detailed results.

3.5 Proportion of the association between 
IgD-CD24-AC and IS mediated by AA2S

The link between IgD-CD24-AC and the IS is mediated by 
AA2S. According to our research, AA2S was responsible for 3.73% of 
the elevated risk of IS linked to IgD-CD24-AC (mediator ratio: 3.73%; 
−3.88, 11.3%). Figure 6 displays the results.

3.6 Sensitivity analysis

We performed a series of sensitivity analyses to identify and 
address the existence of heterogeneity and pleiotropy in causality 
estimation. Neither the Cochran’s Q test nor the MR-Egger intercept 
showed evidence of heterogeneity in causality between these SNPs. 
We  assessed potential horizontal pleiotropy in our study, which 
showed no horizontal pleiotropy. In addition, no influential SNPs were 

FIGURE 4

Forest plot of genetic association between IgD-CD24-AC and IS.
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detected in the “leave-one-out” analysis when any of the SNPs were 
excluded sequentially. The distribution of the funnel plots was also 
symmetrical. These results indicate that all SNPs were significant for 
causality and that there was no heterogeneity or pleiotropy 
(Supplementary Table S6; Supplementary Figures S3, S4).

4 Discussion

In this study, we primarily identified 30 immune cells and 36 
metabolites associated with IS. Then we used available genome-wide 
association study (GWAS) data with MR analysis to investigate the 
association between IgD-CD24-AC and IS and examined whether this 
causality was mediated through AA2S. The results showed that 
genetically predicted IgD-CD24-AC levels were significantly 
associated with an increased risk of IS (a 21.6% increase in AA2S risk 
for every 1 SD increase in IgD-CD24-AC) and that 3.73% of this effect 
was mediated through AA2S. This study represents a pioneering effort 
to systematically delineate the causal relationship between 
IgD-CD24-AC and IS and to confirm the role of AA2S as a mediator.

One of the vital pathological mechanisms of acute IS is the 
dysregulation of inflammatory and adaptive immune responses (63, 

64). The immune response is frequently associated with oxidative 
stress (65), which is a state of cellular damage resulting from the 
overproduction of reactive oxygen species (ROS). When ROS 
concentrations exceed the ability of antioxidants to maintain redox 
balance, cellular and vascular damage occurs (66). Abnormalities in 
energy metabolism and brain tissue infarction caused by IS increase 
ROS levels in the affected area, causing the release of inflammatory 
factors, which stimulate an immune response (67–69). Previous 
studies have suggested that a compromised blood–brain barrier after 
an IS may facilitate the entry of B cells and other peripheral immune 
cells into damaged brain tissue (10, 11). However, the specific effects 
of the absence of IgD and CD24 proteins on the surface of B cells on 
IS and the underlying mechanisms are unclear, suggesting the need to 
explore further the nuanced roles of IgD and CD24 in IS. Previous 
research has indicated that CD24 functions as a growth-promoting 
factor and can trigger adenosine monophosphate kinase (AMPK) 
activation via phosphorylation, which is one of the critical signals in 
the overall metabolic pathway (70). Cells can activate this pathway 
under hypoxic conditions to boost ATP production and maintain 
energy balance. Furthermore, research has shown that when this 
enzyme is deactivated, CD24 expression decreases (15). IgD is crucial 
for regulating both innate and adaptive immune responses (13). If IgD 

FIGURE 5

Forest plot to visualize the causal effects of AA2S with IgD-CD24-AC and ischemic stroke. IgD-CD24-AC, IgD-CD24-B Cell absolute count, AA2S, 
Ascorbic Acid 2-Sulfate.

FIGURE 6

Schematic diagram of the AA2S mediation effect. IgD-CD24-AC, IgD-CD24-B Cell absolute count, AA2S, Ascorbic Acid 2-Sulfate.
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is not present on the B-cell surface, it can lead to maladaptive 
immunity. Research has demonstrated that dysfunctional immune 
processes can result in a greater likelihood of experiencing stroke (63). 
In addition, IgD transmits regulatory signals at the B-cell receptor 
(BCR) to promote the formation of protective immunoglobulins, 
which helps to prevent autoimmune reactions and prevent early 
apoptosis (71). Studies in mouse models have highlighted the role of 
IgD in preventing premature differentiation of B cells into short-lived 
plasma cells (72). Thus, CD24 is crucial for B-cell selection and 
development (14). B cells that do not express CD24 and IgD not only 
have a weaker immune response but also a shorter lifespan. This study 
confirmed that the risk of IS increases with an increase in the number 
of IgD-CD24-B cells. One possible mechanism is the impaired energy 
metabolism of immune cells and reduced immune response capacity 
due to the absence of CD24 and IgD, which consequently elevates the 
risk of IS.

The strength of our study lies in the utilization of comprehensive, 
up-to-date data on 731 immune cells, 1,400 metabolites, and various 
IS datasets from multiple databases. Through magnetic resonance 
analysis, we hypothesize that the presence of IgD and CD24 on B 
immune cells elevates the risk of IS. AA2S, a metabolite of AA, has 
been shown in early animal experiments to possess weaker 
antioxidant properties compared to AA (73). Some experiments 
suggest that AA may mediate the interaction between immune cells 
and disease through complex mechanisms (31, 32). However, 
research on the correlation between AA2S and immune cells remains 
limited. Our findings indicate that the antioxidant effect of AA2S 
diminishes as its levels increase, thus elevating the risk of IS. This 
aligns with the correlation between IgD-CD24-AC and IS. Further 
mediation analyses have demonstrated that AA2S leads to increased 
levels of IgD-CD24-AC, heightening the risk of IS by 3.73%. Although 
the percentage is relatively small and other mediators that have not 
yet been investigated may also have a role, this is still clinically 
significant. This study provides theoretical support for strategies to 
prevent, reverse, and mitigate IS. It also highlights the dual role of 
AA2S in increasing IS risk, both directly and mediated by 
IgD-CD24-AC. These insights are crucial for the development of 
targeted immune therapies and for establishing a solid foundation for 
the advancement of precision medicine.

There are several limitations in this study. Our findings should 
be interpreted cautiously when applying them to ethnicities other than 
European populations due to the limited SNP data available. Second, 
despite our attempts to identify and remove abnormal variations, 
we cannot entirely exclude the potential influence of pleiotropy on our 
findings. In our study, we utilized summary-level statistics instead of 
individual-level data. Hence, we could not investigate causal relationships 
between subgroups such as females and males in more depth. The 
genetic prediction rate of IS mediated by AA2S levels in our study was 
3.73%, indicating a very low level of prediction. More research is needed 
to investigate and measure more potential mediators in the future.

5 Conclusion

Our study identified a causal relationship between the Absolute 
Count of IgD-CD24-B cells and IS, a small part of which is mediated 
by AA2S levels. These findings offer critical insights for developing 
immune-targeted therapies in the future and lay a strong foundation 
for advancements in precision medicine.
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Circulating miRNA profiles and 
the risk of hemorrhagic 
transformation after thrombolytic 
treatment of acute ischemic 
stroke: a pilot study
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Medical University of Gdańsk, Gdańsk, Poland, 4 Laboratory for Regenerative Biotechnology, 
Department of Biotechnology and Microbiology, Gdańsk University of Technology, Gdańsk, Poland, 
5 Department of Biotechnology and Microbiology, Gdańsk University of Technology, Gdańsk, Poland, 
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Background: Hemorrhagic transformation (HT) in acute ischemic stroke is likely 
to occur in patients treated with intravenous thrombolysis (IVT) and may lead 
to neurological deterioration and symptomatic intracranial hemorrhage (sICH). 
Despite the complex inclusion and exclusion criteria for IVT and some useful 
tools to stratify HT risk, sICH still occurs in approximately 6% of patients because 
some of the risk factors for this complication remain unknown.

Objective: This study aimed to explore whether there are any differences in 
circulating microRNA (miRNA) profiles between patients who develop HT after 
thrombolysis and those who do not.

Methods: Using qPCR, we quantified the expression of 84 miRNAs in plasma 
samples collected prior to thrombolytic treatment from 10 individuals who 
eventually developed HT and 10 patients who did not. For miRNAs that were 
downregulated (fold change (FC) <0.67) or upregulated (FC >1.5) with p <  0.10, 
we investigated the tissue specificity and performed KEGG pathway annotation 
using bioinformatics tools. Owing to the small patient sample size, instead of 
multivariate analysis with all major known HT risk factors, we  matched the 
results with the admission NIHSS scores only.

Results: We observed trends towards downregulation of miR-1-3p, miR-133a-
3p, miR-133b and miR-376c-3p, and upregulation of miR-7-5p, miR-17-3p, 
and miR-296-5p. Previously, the upregulated miR-7-5p was found to be highly 
expressed in the brain, whereas miR-1, miR-133a-3p and miR-133b appeared to 
be specific to the muscles and myocardium.

Conclusion: miRNA profiles tend to differ between patients who develop HT 
and those who do not, suggesting that miRNA profiling, likely in association with 
other omics approaches, may increase the current power of tools predicting 
thrombolysis-associated sICH in acute ischemic stroke patients. This study 
represents a free hypothesis-approach pilot study as a continuation from our 
previous work. Herein, we  showed that applying mathematical analyses to 
extract information from raw big data may result in the identification of new 
pathophysiological pathways and may complete standard design works.
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1 Introduction

Ischemic stroke was found to have an incidence of 7.6 million 
individuals worldwide in 2019, resulting in 63.48 million disability-
adjusted life years (DALYs) and 3.29 million deaths. Ischemic stroke 
is a devastating neurological condition characterized by brain tissue 
damage caused by sudden obstruction of blood flow in the cerebral 
arteries (1, 2). Treatment in the acute phase aims to restore blood flow 
through intravenous thrombolysis and mechanical thrombectomy. 
The former method, which is used in up to 25% of patients, involves 
the administration of tissue-type plasminogen activator (rtPA), which 
promotes the formation of plasmin, a proteolytic enzyme. Plasmin 
breaks the crosslinks between fibrin molecules, leading to thrombus 
dissolution and restoration of blood flow (3, 4).

Hemorrhagic transformation (HT), which involves the 
extravasation of blood across a disrupted blood–brain barrier into the 
brain parenchyma, is one of the most common complications of 
ischemic stroke (5). According to the European Cooperative Acute 
Stroke Study (ECASS), HT can be categorized based on its intensity 
and radiological features into small petechial hemorrhagic infarction 
(HI1), confluent petechial hemorrhagic infarction (HI2), small 
parenchymal hemorrhage (PH1) (<30% infarct, mild mass effect), and 
large parenchymal hemorrhage (PH2, >30% infarct, marked mass 
effect) (6). Depending on its severity, HT may remain asymptomatic; 
however, if it is sufficiently large to exert a mass effect on brain tissue 
outside the infarct, it may cause neurological deterioration (7). 
Autopsy studies revealed hemorrhagic transformations in 18–42% of 
patients with acute ischemic stroke, and clinical assessment indicated 
symptomatic intracerebral hemorrhage after intravenous thrombolysis 
in approximately 6% of patients (8, 9).

Several studies aim at pinpointing reliable predictors of 
hemorrhagic transformation. The established clinical risk factors 
include baseline National Institutes of Health Stroke Scale (NIHSS) 
score, systolic and diastolic blood pressure, atrial fibrillation, 
antiplatelets use, age, and time from onset to treatment and 
hyperglycemia among others (10, 11). Radiological determinants of 
increased risk of hemorrhagic transformation include a large infarct 
size, early ischemic changes visible on computed tomography (CT), 
and absent or poor collaterals (10, 12). Among identified blood 
biomarkers, matrix metalloproteinase-9 (MMP-9), ferritin, and 
cellular fibronectin (c-Fn), as well as the neutrophil-to-lymphocyte 
ratio (NLR) and high-density lipoprotein (HDL), have been 
extensively studied across multiple experiments (13, 14).

Recent advances in artificial intelligence (AI) and omics have 
fostered their application in the search for novel HT biomarkers and 
predictive models. Machine learning methods have been used to 
develop predictive models based on clinical data and laboratory test 
results (15). In our previous study, we  explored a hypothesis-free 
approach using MS proteomic data to identify new biomarkers (16). 
In that study, 15 proteins detected in the blood collected prior to rtPA 
treatment were unique to patients who developed HT.

MicroRNAs (miRNAs) are small non-coding RNA molecules 
composed of approximately 22 nucleotides that are known for their 
regulatory roles in various biological processes, mainly through the 
post-transcriptional regulation of gene expression (17). Their stability 
and detectability in various tissues, including blood, have attracted 
significant attention in the last decade, leading to their exploration as 
potential diagnostic and prognostic biomarkers, particularly in 
oncology (18). Circulating miRNAs have also emerged as valuable 
tools in stroke medicine. Numerous studies have identified miRNAs 
as diagnostic markers for ischemic stroke, with hsa-let-7e-5p, 
hsa-miR-124-3p, hsa-miR-17-5p, and hsa-miR-185-5p showing 
consistent differential expression (19). Furthermore, the combination 
of miR-124-3p, miR-125b-5p, and miR-192-5p expression has been 
shown to predict the extent of neurological deterioration in ischemic 
stroke patients treated with rtPA (20). In another study, miR-21-5p, 
miR-206, and miR-3123 were implicated in predicting the risk of 
hemorrhagic transformation in patients with cardioembolic stroke 
(21). Additionally, the assessment of RNA markers, including 
miRNA-23a, miRNA-193a, miRNA-128, miRNA-99a, miRNA-let-7a, 
miRNA-494, miRNA-424, and the long non-coding (lnc)RNA H19, 
has been shown to improve the prediction of symptomatic intracranial 
hemorrhage (sICH) after rtPA (22).

The findings of the above studies suggest that quantitative miRNA 
and proteomic data may increase the current power of the tools for 
predicting thrombolysis-associated sICH in patients with acute 
ischemic stroke [as we showed in our previous study (16)]. However, 
the main objective of the presented studies is to demonstrate a 
methodology for and the feasibility of such an approach. This pilot 
study only aimed to identify potential miRNAs indicative of an 
increased risk of HT occurrence.

2 Methods

2.1 Study population

This research is a continuation of our previous study on 
biomarkers of rtPA-associated intracranial hemorrhage in acute 
ischemic stroke (16). Participants were recruited between March 2019 
and April 2022 from among patients at the Stroke Comprehensive 
Center of the Department of Adult Neurology, University Clinical 
Center, Medical University of Gdansk.

Before recruitment, approval was obtained from The Independent 
Bioethics Committee for Scientific Research at the Medical University 
of Gdańsk in Poland. This study was conducted in accordance with 
the principles outlined in the World Medical Association Declaration 
of Helsinki. All subjects were informed of the purpose and course of 
the study and signed an informed consent form.

For patients with acute stroke, a pretreatment MRI protocol 
(described in Section 2.2) was performed, in addition to the collection 
of two blood samples: plasma in an EDTA-coated tube and serum in 
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a silica clot activator (Becton Dickinson Vacutainer). However, only 
plasma samples were used for further analyses. Upon confirmation of 
ischemic stroke diagnosis and patient adherence to thrombolysis 
inclusion criteria according to the stroke guidelines, alteplase was 
administered intravenously at a standard dose of 0.9 mg/kg. 
Subsequently, patients were assigned to either the HT or control 
group, based on follow-up MRI scans on day 5–9 after the treatment. 
In the initial cohort of 94 patients admitted for acute stroke, 56 
received intravenous rtPA, met the standard inclusion and exclusion 
criteria, and had no contraindications for MRI. Due to limited funding 
during this phase of the study, 10 patients with HT were selected for 
further analysis and matched with 10 non-HT controls based on 
comparable risk factors for hemorrhagic transformation (NIHSS 
score, Oxfordshire Community Stroke Project classification) and 
similar miRNA profiles (age and sex).

The Propensity Score Matching method, which incorporates the 
k-nearest neighbor (k-NN) algorithm without replacement, was used 
to select a well-matched control group (non-HT) with a distribution 
of baseline characteristics similar to that of the HT group. The analysis 
was conducted using the MatchIt library in R software (23).

2.2 Brain imaging

Pretreatment MRI was performed using a Siemens Healthcare 
GOBrain application on a 1.5 T MRI-scanner (Siemens Magnetom 
Aera), comprising axial T2-weighted fluid attenuation inversion 
recovery, axial diffusion-weighted imaging (b-values 0,800 s/mm) with 
apparent diffusion coefficient maps, axial T2*-weighted, and sagittal 
T1-weighted images. These scans were used to assess the infarct 
volume and were analyzed by radiologists using the syngo.via software. 
The follow-up MRI scan was taken using the same 1.5 T Siemens 
device, but the protocol was expanded compared to the initial one and 
additionally included the following sequences: axial susceptibility-
weighted imaging, sagittal T2-weighted, axial diffusion tensor 
imaging, and 3D axial T1-weighted sequences.

2.3 miRNA quantification

Plasma samples previously stored at deep-freezing temperatures 
(−80°C) were used for miRNA quantification. Briefly, plasma miRNAs 
were isolated using the miRNeasy Serum/Plasma Advanced Kit (Cat. 
no. 217204; Qiagen, Hilden, Germany). cDNA was synthesized using 
a miRCURY LNA RT Kit (Cat. no. 339340; Qiagen, Hilden, Germany). 
Each sample contained miRNA corresponding to 16 μL of plasma 
sample, 1 x buffer, 1 x miRCURY RT Enzyme mix, synthetic RNA 
spike-ins. All cDNA samples were synthesized from a master mix of 
reagents. Samples were incubated for 60 min at 42°C followed by 
incubation for 5 min at 95°C. The efficiency of miRNA isolation and 
cDNA synthesis was evaluated by PCR analysis of exogenous synthetic 
miRNAs (Cat. no. 339390; Qiagen, Hilden, Germany). DNA isolation 
and cDNA synthesis were successful in all samples.

The quantification of 84 miRNAs was performed using the Serum/
Plasma Small Focus miRCURY LNA Panel (cat. no. 339325; Qiagen), 
which comprised 84 human miRNAs curated by the manufacturer 
based on their highest expression in serum and plasma samples 
obtained from healthy individuals and those afflicted with various 

conditions. The LC96 Roche platform was used. The same panel was 
used to determine the occurrence of hemolysis. The determinant that 
indicated an increased risk of hemolysis exceeded the value of dCq = 7, 
which was the difference between the value of miR-23a, which is 
constant in the blood, and the value of miR-451a, which is specific to 
red blood cells. The miRNA analyses were performed at the 
Department of Molecular Biotechnology and Microbiology of Gdansk 
University of Technology.

2.4 Statistical analysis and results 
exploration

Normalized miRNA expression was calculated as 2-(Cq(miRNA) - Cq(mean 

of references)). The fold change was calculated for each miRNA as the 
quotient of the mean normalized expression in the HT and 
non-HT groups.

The Yuen–Welch t-test permutation was applied to compare the 
trimmed means of the two study groups. The number of permutations 
was set to 1,000 with a random seed of 123  in the R program. A 
10%-trimmed mean value was established. To address the issue of 
multiple hypothesis testing, p-values were adjusted using the 
Benjamini-Hochberg correction method. All statistical analyses were 
performed using R software version 3.6.3.

A multifactor analysis allowed us to control for confounding 
factors. However, the sample size in the present study was too small to 
achieve statistical validity; (24) therefore, we  limited our single-
factor analysis.

To assess miRNA tissue/organ specificity, we utilized the TissueAtlas 
(24). Subsequently, the significant miRNAs were subjected to functional 
analysis using DIANA mirPath v.3 (25). To identify miRNA target genes, 
we selected TarBase v.7.0, a database of experimentally validated miRNA-
gene interactions (26). The tool was set to annotate target genes to Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways, with results 
merging set to a pathway union (27).

3 Results

3.1 Patients’ characteristic

Of 75 patients with acute ischemic stroke treated with intravenous 
thrombolysis, 25 were excluded because of incomplete data. Among 
the remaining 50 patients, HT was detected in 10. All patients with 
HT experienced stroke in the anterior circulation territory and none 
had lacunar strokes. As this was only the pilot phase of the study, HT 
was not differentiated into symptomatic or asymptomatic. Ten patients 
with anterior circulation and non-lacunar stroke who developed HT 
were matched with 10 patients without HT, as described in the 
Methods section. The clinical and demographic characteristics of the 
patients selected for further investigation are presented in Table 1. The 
complete dataset is shown in Supplementary Table S1.

3.2 miRNA isolation and cDNA synthesis

To estimate the RNA isolation efficiency, UniSp2, UniSp4, and 
UniSp5 spike-ins were added to the plasma samples, which allowed for 
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FIGURE 1

Graph showing the difference in the Cq values of miR-23a and miR-451a (dCq) in the analyzed samples. The red line indicates the value of dCq above 
which there is an increased risk of hemolysis.

the comparison of RNA isolation between samples after RT-qPCR. RNA 
isolation efficiency remained stable across all samples, with UniSp2 
presenting a minimum quantification cycle (Cq) value of 22.01 and a 

maximum Cq value of 19.47 for samples 108 and 160, respectively. In 
addition, UniSp4 (present at a 100-fold lower concentration than 
UniSp2) and UniSp5 (present at a 100-fold lower concentration than 

TABLE 1 Demographical and clinical characteristics of patients selected for miRNA analysis.

Patients with HT (n =  10) Patients without HT (n =  10)

Age, median (IQR) 77.5 (60.75–86.25) 80 (76.00–85.5)

Sex, female /male, n (%) 3 (30%) / 7 (70%) 5 (50%) / 5 (50%)

NIHSS on admission, median (IQR) 8 (4.25–11.00) 5 (4.25–10.75)

Stroke subtype according to OCSP, n (%)

  PACS 7 (70%) 7 (70%)

  TACS 3 (30%) 3 (30%)

 Baseline infarct volume (IQR) 12.14 (0.0–19.35) 25.92 (11.30–42,52)

 Systolic blood pressure on admission, median (IQR) 159.5 (150.00–165.25) 167 (150.5–179.50)

 Diastolic blood pressure on admission, median (IQR) 79 (71.25–90.00) 82.5 (74.5–90.00)

Comorbidities, n (%)

  Atrial Fibrillation 1 (10%) 4 (40%)

  Diabetes 2 (20%) 1 (10%)

  Hypertension 9 (90%) 8 (80%)

  Hyperlipidemia 9 (90%) 4 (40%)

  Antiplatelets use 4 (40%) 6 (60%)

  Active smoking 3 (30%) 4 (40%)

Type of HT according to ECASS, n (%)

  HI1 7 (70%) –

  HI2 2 (20%) –

  PH1 1 (10%) –

  PH2 0 (0%) –

 NIHSS on discharge, median (IQR) 1.5 (0–2.75) 0.5 (0–1.75)

IQR, interquartile range; OCSP, oxfordshire community stroke project (classification); PACS, partial anterior circulation stroke; TACS, total anterior circulation stroke; ECASS, European 
cooperative acute stroke study (classification); HI1, hemorrhagic infarction type 1; HI2, hemorrhagic infarction type 2; PH1, parenchymal hematoma type 1.
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UniSp4) were detected in all samples. Similarly, cDNA synthesis 
efficiency was assessed using the UniSp6 spike-in, which was amplified 
with the min Cq value of 19.11 and max Cq value of 18.56 among 
all samples.

3.3 Hemolysis in samples

Based on the analysis of the differences in the Cq values of 
miR-23a and miR-451a, it was noticed that in six samples, the 
probability of hemolysis increased (the dCq value was higher than 7). 
In four samples we observed the hemolysis marker at values between 
7.26 and 7.76 and in two samples at values of 8.43 and 8.68 (the exact 
values of dCq for each sample are presented in the Figure 1). However, 
since low levels of hemolysis are difficult or impossible to eliminate in 
clinical practice and we cannot determine the degree of hemolysis 
based on these results, while our samples were not highly hemolyzed, 
we decided to continue the research using these samples.

3.4 miRNA differential expression

The miRNAs hsa-miR-30c-5p, hsa-miR-103a-3p, and hsa-miR-
23a-3p were selected as reference miRNAs to calculate the relative 
expression of plasma miRNAs. Normalized results of miRNA 
quantification are provided in Supplementary Table S2. When the 
mean Cq of the reference miRNAs was calculated, sample no. 47 was 
found to be an outlier. The mean Cq value for the reference miRNAs 
was 34.67, while the lowest mean Cq value among the other samples 
was 30.03. Thus, the levels of miRNAs in this sample were notably 
lower, which resulted in the lack of detection of several plasma 
miRNAs. This led us to exclude sample 47 from further analyses.

Of the 84 assessed miRNAs, 12 were excluded from further analyses 
due to missing data in more than 50% of the samples and one was 
excluded due to non-specific amplification. In our study, “missing data,” 
referred to situations in which the concentration of genetic material was 
so low that we were unable to detect it. Following normalization of 
miRNA levels, differential expression was calculated. The results are 

FIGURE 2

Plot of log2(FC) against –log10(p-value) for all analyzed miRNAs. The values presented on the plot were calculated using the p-values obtained after 
performing Permutation Yuen-Welch t test. A blue line represents the level of p-value  =  0.1. Red lines indicate the range of FC  <  0, 67 or  >  1, 5.
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shown in Figure 2. Thirteen miRNAs reached a Permutation Yuen-
Welch t-test p-value <0.10, with five having a p-value <0.05. However, 
after Benjamini and Hochberg correction for multiple testing problems, 
none of the analyzed miRNAs had a p-value <0.05.

Regarding the magnitude of difference between the HT and non-HT 
groups, miRNAs with a fold change (FC) in relative expression (FC) <0.67 
were considered downregulated in HT, while miRNAs with FC >1.5 were 
deemed upregulated. Owing to the nature of the pilot study, the level of 
significance was set to 0.10. Using the commonly encountered value of 
0.05 could potentially result in the pilot study being underpowered (28). 
The results of the statistical analysis of all miRNAs with a complete set of 

data are provided in Supplementary Table S3. Sources for the analysis are 
avaliable in online repository: https://github.com/barbara-kolodziej-
gumed/Circulating-miRNA-profiles-and-the-risk-of-HT-after-rtPA.

The analysis included two previously described stroke biomarkers, 
hsa-miR-124-3p and hsa-miR-17-5p. The concentration of hsa-miR-
124-3p was so low in 12 samples that quantitative determination was 
not possible. For hsa-miR-17-5p, no statistically significant differences 
were found between the HT and non-HT groups.

MiRNAs with p-values <0.1 and FC <0.67 or > 1.5 are listed in 
Table  2. Specifically, hsa-miR-133b, hsa-miR-376c-3p, hsa-miR-
133a-3p, and hsa-miR-1-3p were downregulated, whereas 

FIGURE 3

Box plots of miRNA expression in HT and non-HT group. Only results with p  <  0.1 and FC >1.5 or  <  0.67 are presented.
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hsa-miR-17-3p, hsa-miR-296-5p and hsa-miR-7-5p were upregulated 
in the ICH group. The distributions of their values in the HT and 
non-HT groups are shown in Figure 3.

Next, the TissueAtlas was used to determine whether these seven 
miRNAs exhibited specificity to any organ or tissue. Specifically, 
miR-133b, miR-1-3p, and miR133a-5p appeared to be predominantly 
present in muscles and myocardium, miR-7-5p was found to be abundant 
in the brain, miR-376c-3p in the brain, bone, and tunica albuginea, and 
miR-17-3p in muscle and thyroid tissues, whereas miR-296-5p levels were 
uniform across all the investigated tissues (Supplementary Table S4).

Subsequently, the DIANA miR path tool was used to assess the 
potential functional roles of the seven miRNAs. The KEGG pathways 
significantly associated with the investigated miRNAs are shown in 
Figure 4. These pathways include those associated with cell adhesion 
molecules, fatty acid synthesis, and metabolism, as well as those 
associated with signal transduction, amino acid metabolism, and 
pathways explored in carcinogenesis.

4 Discussion

This pilot study highlighted the differences in circulating miRNA 
profiles between patients who developed HT and those who did not. 

We hypothesized that miRNA profiling and other omic approaches 
may increase the predictive power of thrombolysis-associated sICH 
in acute ischemic stroke; however, this requires further investigation. 
This study was a free hypothesis-approach pilot study based on 
previous work from our group, in which we showed that applying 
mathematical analyses to extract information from raw big data may 
result in the identification of new pathophysiological pathways and 
may complete standard design work.

Despite the low number of patients investigated in this study and 
the restricted miRNA panel, to the best of our knowledge, this study 
still reveals the broadest panel of miRNAs that might play a role in 
hemorrhagic transformation associated with the thrombolytic 
treatment of acute ischemic stroke.

The miRNAs miRNA-1, −133a and −133b, which were 
downregulated in HT patients, are known to be  present in 
abundance in both skeletal and cardiac muscle (29). They have 
further been reported to be elevated in the circulation following a 
myocardial infarction (30). Notably, miR-133b alone has been 
found to be a risk factor for cardiovascular disease (31). Another 
miRNA downregulated in HT, miR-376c, has been extensively 
studied as a cancer modulator, with evidence supporting a role in 
both cancer suppression and progression (32). In neonatal hypoxic–
ischemic encephalopathy, miR-376c demonstrates protective effects 
against oxygen–glucose deprivation-induced cell injury (33). One 
of the upregulated miRNAs, miR-296-5p, has previously been found 
to be present at high levels in deep venous thrombosis patients. 
Interestingly, in a mouse model, its elevation inhibited deep venous 
thrombosis by suppressing S100A4 expression, which influences the 
release of prothrombosis-related factors (34). Therefore, the 
observed increase in the level of this miRNA in patients with HT 
after intravenous thrombolysis in our study is of particular interest. 
MiR-17-3p is a member of the miR-17/92 cluster and plays a role in 
cell cycle regulation, proliferation, and apoptosis. It is frequently 
dysregulated in cardiovascular, immune, and neurodegenerative 
diseases (35). Notably, in a mouse model, miR-17-3p overexpression 
suppressed cardiomyocyte apoptosis induced by oxygen–glucose 
deprivation and reperfusion (36).

The last upregulated miRNA, miR-7-5p, is highly expressed in the 
brain and is involved in cerebral cortex development. It has also been 
shown to play a role in neurodegenerative diseases, neuroinflammation, 
and mental disorders (37). In rodent models, miR-7-5p expression was 
found to be  downregulated in the brain following focal ischemia. 
Interestingly, administration of miR-7 mimic resulted in smaller infarct 
volume and better functional recovery, supposedly by repressing 
α-synuclein (38). Among the imRNAs excluded from the differential 
expression analysis due to low signal intensity, hsa-miR-124-3p was 
identified as potentially important. This miRNA is downregulated in 
ischemic stroke (39), which could explain its undetectable expression 
in our samples.

The detected trends in miRNA expression aligned with patterns 
observed in various cardiovascular diseases and the 
pathophysiological mechanisms associated with ischemic stroke. 
Implementing our proposed methodology in a large-scale study 
could facilitate the identification of significant biomarkers indicative 
of the risk of hemorrhagic transformation. Broadening the 
spectrum of analyzed miRNAs through either an expanded qPCR 
panel or small RNA sequencing would further enrich the study and 
potentially deepen our understanding of the pathophysiology of 
hemorrhagic transformation.

TABLE 2 miRNAs with p  <  0.05 and FC >1.5 or  <  0.67.

miRNA FC in relative 
expression of 
miRNAs in HT 
compared to 

non-HT

Permutation 
Yuen-Welch t 
test p-value

Adjusted 
p-value

hsa-miR-133b 0.23 0.005 0.284

hsa-miR-376c-3p 0.52 0.008 0.284

hsa-miR-296-5p 1.85 0.020 0.462

hsa-miR-17-3p 2.01 0.026 0.462

hsa-miR- 1-3p 0.51 0.057 0.474

hsa-miR-133a-3p 0.36 0.065 0.474

hsa-miR-7-5p 1.96 0.081 0.474

Downregulated miRNAs are marked in blue, upregulated ones in red.

FIGURE 4

KEGG pathways annotated to the 7 investigated miRNAs.
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4.1 Limitations

In this miRNA analysis, owing to the small sample size, a 
multiple regression model that included the baseline 
characteristics of the patients used in the matching process was 
not calculated. The small size of the recruited study group 
resulted in none of the adjusted p-values being <0.1. Therefore, 
based on the obtained results, it is not possible to definitively 
determine which miRNAs may serve as markers of HT after rtPA 
treatment for stroke. This article is a pilot study and primarily 
serves as a description of miRNA measurement methods in 
clinical practice. It should also be noted that the quality of the 
results may also be influenced by hemolysis, which was observed 
in six samples. However, in clinical practice, the risks of 
suboptimal collection and handling of biological materials must 
be  considered. Therefore, these samples were included in 
our analysis.

5 Conclusion

The quantitative determination of miRNA expression in HT 
and non-HT patients serves as a complement to our previous 
analysis (16) and may potentially expand the predictive power of 
currently used calculators for thrombolysis-associated HT in acute 
ischemic stroke based on clinical and neuroimaging data; however, 
further studies are needed to verify this idea. We found differences 
in the blood concentrations of seven miRNAs, and further analysis 
of the available miRNA databases revealed that miR-296-5p was 
most directly linked to the occurrence of HT. However, owing to 
the small sample size, these results may only be considered as a pilot 
for any major study. Overall, this study shows that analyzing 
datasets for a sufficiently large number of patients using a 
hypothesis-free approach could be  used to identify complex 
pathophysiological associations that may be  unachievable in 
standard-design studies.
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Background: Aneurysmal subarachnoid hemorrhage (aSAH) patients typically

have poor prognoses. The anion gap (AG) has been proven to correlate with

mortality in various critically ill patients. However, hypoalbuminemia can lead

to underestimations of the true anion gap levels. This study was conducted to

verify the prognostic value of single AG and albumin-corrected anion gap (ACAG)

among aSAH patients.

Methods: Significant factors in the univariate logistic regression analysis

were included in the multivariate logistic regression analysis to explore the

risk factors for mortality in aSAH patients and to confirm the independent

relationship between ACAG and mortality. The restricted cubic spline (RCS)

was used to visually show the relationship between ACAG level and mortality

risk of aSAH patients. The predictive model for mortality was developed by

incorporating significant factors into the multivariate logistic regression analysis.

The prognostic value of ACAG and the developed model was evaluated by

calculating the area under the receiver operating characteristics curve (AUC).

Results: Among 710 aSAH patients, a 30-day mortality was observed in 20.3%

of the cases. A positive relationship was demonstrated between the ACAG

level and mortality in aSAH patients using the RCS curve. The multivariate

logistic regression analysis helped discover that only six factors were finally

and independently related to mortality of aSAH patients after adjusting for

confounding e�ects, including the Hunt–Hess scale score (p = 0.006), surgical

options (p < 0.001), white blood cell count (p < 0.001), serum chloride levels

(p = 0.023), ACAG (p = 0.039), and delayed cerebral ischemia (p < 0.001). The

AUC values for the AG, albumin, and ACAG in predicting mortality among aSAH

patients were 0.606, 0.536, and 0.617, respectively. A logistic regression model,

which includes the Hunt–Hess scale score, surgical options, white blood cell

count, serum chloride levels, ACAG, and delayed cerebral ischemia, achieved an

AUC of 0.911 for predicting mortality.

Conclusion: The ACAG is an e�ective prognostic marker for aSAH patients. A

prognostic model incorporating ACAG could help clinicians evaluate the risk of

poor outcomes among aSAH patients, thereby facilitating the development of

personalized therapeutic strategies.
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1 Introduction

With a reported annual incidence of 9.1 per 100,000

people in the world, aneurysmal subarachnoid hemorrhage

(aSAH) is a type of hemorrhagic stroke with mortality

ranging from 8.3% to 66.7% (1, 2). The high mortality of

aSAH patients is attributable to both the initial severity

of hemorrhage and the subsequent complications during

hospitalizations (3). Acid-base disturbance and electrolyte

disorder are prevalent among aSAH patients and correlate

with the prognosis of aSAH patients (4–6). Evaluating the

risk and severity of these disturbances is helpful for clinicians

in the risk stratification of aSAH patients and for correcting

these disturbances.

As an index for diagnosing and distinguishing metabolic

acidosis, the anion gap (AG) is a comprehensive and readily

available marker of acid-base balance calculated based on the

following formula: AG = [Na+ (mmol/L) + K+ (mmol/L)] –

[Cl−(mmol/L) + HCO−
3 (mmol/L)]. The AG has been considered

a marker of tissue hypoperfusion and has been confirmed to be

associated with mortality due to various diseases, including acute

pancreatitis, acute myocardial infarction, congestive heart failure,

and sepsis (7–11). However, AG levels can be underestimated

with hypoalbuminemia. To address this, the albumin-corrected

anion gap (ACAG) was developed to more accurately reflect

true AG levels by accounting for the influence of albumin on

measuring the true level of AG. Although some studies have

explored the value of AG in risk stratification for stroke patients,

including those diagnosed with ischemic stroke, intracerebral

hemorrhage, or intracerebral infarction (12–14), only two studies

have confirmed that AG is effective in the risk stratification of

subarachnoid hemorrhage patients. These studies did not evaluate

the accurate prognostic value of ACAG or establish a prognostic

model incorporating it (15, 16). Therefore, we conducted this

study to compare the different prognostic values between AG

and ACAG and to develop a prognostic model for aSAH patients

using ACAG.

2 Materials and methods

2.1 Patients

Patients confirmed with ruptured aneurysms and those

receiving treatments in the West China Hospital, Sichuan

University, between 1 January 2017 and 31 June 2019 were

enrolled in this observational study. Some aSAH patients were

excluded from this study to ensure the reliability of the conclusions:

(1) patients transferred from other medical centers or admitted

to our hospital 48 h after the onset of typical symptoms for

aneurysm rupture (n = 8) and (2) patients without a history

of albumin, AG, or other needed laboratory values (n = 27).

A total of 710 aSAH patients were eventually enrolled in the

study after screening (Figure 1). This observational study was

conducted with the approval of the ethical review board of

West China Hospital (2021–1684) and abided by the Declaration

of Helsinki.

FIGURE 1

Process of aSAH patients screening.

2.2 Data collection

Demographical information, including age, gender, history

of smoking, history of alcoholism, and history of comorbidities

such as diabetes mellitus and hypertension, was recorded. Initial

blood pressure on admission and conventional clinical scores

specified on aSAH patients, including the World Federation

Neurosurgical Society (WFNS) score, the Hunt–Hess scale score,

and the modified Fisher (mFisher) scale score, were collected.

Information such as the location of the aneurysm, the presence

of multiple aneurysms, and the occurrence of intraventricular

hemorrhage was confirmed based on radiological findings. The

values of white blood cell count, hemoglobin, albumin, serum

creatinine, blood urea nitrogen, serum sodium, serum potassium,

serum chloride, serum calcium, and serum AG were collected

from laboratory records analyzing the first blood sample after

admission (within 6 h after admission). Delayed cerebral ischemia

was diagnosed based on the following process: the existence

of a new focal functional defect (hemiplegia, aphasia, apraxia,

hemianopsia, or neglect) or a decrease in the Glasgow Coma

Scale (GCS) by at least two points, excluding other causes of

secondary neurological deterioration such as fever, infectious

complications, hydrocephalus, seizures, respiratory failure, or

electrolyte disorders. The primary outcome of this study was 30-day

mortality. The follow-up using telephone interviews lasted until 1

month after the aneurysm rupture.

2.3 Statistical analysis

Continuous variables were shown as mean ± standard

deviation (normally distributed variables) and median

(interquartile range) (non-normally distributed variables).

Categorical variables were shown as counts (percentages). Patients

were divided into two groups (survivors and non-survivors) based

on their 30-day survival. Differences in the variables between

these two groups were compared using χ
2 tests or the Fisher

test (categorical variables), the Independent Student’s t-test
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TABLE 1 Baseline characteristics of included aSAH patients.

Variables Overall patients
(n = 710)

Survivors (n = 566,
79.7%)

Non-survivors
(n = 144, 20.3%)

p

Age (year) 55 (49–65) 55 (48–64) 61 (51–69) 0.003

Male gender (%) 245 (34.5%) 196 (34.6%) 49 (34.0%) 0.892

Smoking (%) 125 (17.6%) 104 (18.4%) 21 (14.6%) 0.286

Alcoholism (%) 107 (15.1%) 89 (15.7%) 18 (12.500%) 0.334

Diabetes mellitus (%) 34 (4.8%) 29 (5.1%) 5 (3.5%) 0.407

Hypertension (%) 306 (43.1%) 251 (44.3%) 55 (38.2%) 0.183

Systolic blood pressure (mmHg) 146 (129–166) 147 (129–165) 141 (126–168) 0.491

Diastolic blood pressure (mmHg) 85 (76–95) 85 (76–95) 86 (78–95) 0.318

WFNS 2 (2–4) 2 (1–4) 4 (4–5) <0.001

Hunt Hess 2 (2–3) 2 (2–3) 4 (3–4) <0.001

mFisher 4 (2–4) 3 (2–4) 4 (3–4) <0.001

Location (%) 0.091

Anterior circulation 655 (92.3%) 527 (93.1%) 128 (88.9%)

Posterior circulation 55 (7.7%) 39 (6.9%) 16 (11.1%)

Multiple aneurysm (%) 68 (9.6%) 50 (8.8%) 18 (12.5%) 0.182

Laboratory examination

White blood cell (109/L) 10.34 (7.99–13.52) 9.90 (7.71–12.48) 13.20 (9.70–17.25) <0.001

Hemoglobin (mg/L) 125 (110–136) 125 (110–135) 125 (111–138) 0.530

Albumin (mg/dL) 3.97 (3.50–4.28) 3.99 (3.54–4.28) 3.94 (3.38–4.25) 0.182

Serum creatinine (mg/L) 57 (49–70) 56 (48–66) 68 (55–81) <0.001

Blood urea nitrogen (mg/L) 4.33 (3.50–5.50) 4.30 (3.40–5.40) 4.50 (3.67–5.84) 0.027

Sodium (mol/L) 139.6 (137.3–142.9) 139.5 (137.3–142.1) 140.8 (137.3–146.2) 0.002

Potassium (mol/L) 3.76 (3.50–4.08) 3.76 (3.51–4.07) 3.78 (3.43–4.11) 0.757

Chloride (mol/L) 101.9 (98.5–105.6) 101.7 (98.5–105.0) 103.5 (99.2–110.4) <0.001

Calcium (mol/L) 2.16± 0.13 2.16± 0.12 2.15± 0.15 0.621

AG (mol/L) 19.63± 3.55 19.32± 3.27 20.85± 4.26 <0.001

ACAG (mol/L) 20.78 (18.65–23.00) 20.60 (18.40–22.58) 21.85 (19.35–24.68) <0.001

Intraventricular hemorrhage (%) 309 (43.5%) 232 (41.0%) 77 (53.5%) 0.007

Delayed cerebral ischemia (%) 117 (16.5%) 68 (12.0%) 49 (34.0%) <0.001

Surgical options <0.001

None 113 (15.9%) 44 (7.8%) 69 (47.9%)

Clip 524 (73.8%) 463 (81.8%) 61 (42.4%)

Coil 73 (10.3%) 59 (10.4%) 14 (9.722)

Length of ICU stay (day) 3 (0–9) 3 (0–9) 4 (0–10) 0.119

Length of hospital stay (day) 12 (9–19) 13 (10–19) 7 (3–13) <0.001

WFNS, World Federation of Neurosurgical Societies; mFisher, modified Fisher; AG, anion gap; ACAG, albumin corrected anion gap.

(normally distributed variables), and the Mann—Whitney U-test

(non-normally distributed variables). The restricted cubic spline

(RCS) was used to visually demonstrate the relationship between

the ACAG level and the mortality risk of aSAH patients. The

multivariate logistic regression analysis included significant factors

in the univariate logistic regression analysis to explore risk factors

for mortality in aSAH patients and to confirm the independent

relationship between ACAG and mortality. The predictive model

for mortality was developed by incorporating significant factors

into the multivariate logistic regression analysis. The prognostic

value of ACAG and the developed model was evaluated by

calculating the area under the receiver operating characteristics

curve (AUC). The Z test was used to compare the AUC between

the model and other scores.
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FIGURE 2

(A) Unadjusted association between ACAG and the mortality of aSAH patients. (B) Adjusted association between ACAG and the mortality of

aSAH patients.

A two-sided p < 0.05 was defined as statistically significant.

Analyses were performed using SPSS 22.0Windows software (SPSS,

Inc., Chicago, IL) and R software (Version 3.6.1).

3 Results

3.1 Baseline comparison between survivors
and non-survivors

A total of 144 aSAH patients experienced 30-day mortality,

including 710 patients with a mortality rate of 20.3% (Table 1).

Non-survivors had older age (p = 0.003), higher WFNS score

(p < 0.001), higher Hunt-Hess score (p < 0.001), and higher

mFisher score (p < 0.001) than survivors. Compared to the

survivors, laboratory examinations showed that white blood cell

count (p < 0.001), serum creatinine (p < 0.001), blood urea

nitrogen (p = 0.027), serum sodium (p = 0.002), serum chloride

(p < 0.001), AG (p < 0.001), and ACAG (p < 0.001) were all

higher in the non-survivors. In contrast, the albumin level did

not show statistical significance between the survivors and the

non-survivors. Compared to the survivors, the non-survivors had

a higher incidence of intraventricular hemorrhage (p = 0.007),

delayed cerebral ischemia (p < 0.001), and a longer length of

hospital stay (p < 0.001).

3.2 Association between ACAG and the
mortality of aSAH patients

The positive relationship between the ACAG level and the

mortality of aSAH patients is demonstrated using the unadjusted

RCS curve shown in Figure 2A. The univariate logistic regression

indicated that age (p = 0.001), WFNS score (p < 0.001), Hunt–

Hess scale score (p < 0.001), mFisher scale score (p < 0.001),

white blood cell count (p < 0.001), serum creatinine (p = 0.007),

blood urea nitrogen (p = 0.046), serum sodium (p < 0.001),

serum chloride (p < 0.001), ACAG (p < 0.001), intraventricular

hemorrhage (p = 0.007), delayed cerebral ischemia (p < 0.001),

surgical options (p < 0.001) were significantly correlated with

the mortality of aSAH patients (Table 2). The multivariate logistic

regression discovered that only six factors were finally and

independently related to the mortality of aSAH patients after

adjusting for confounding effects, including Hunt-Hess scale score

(p = 0.006), surgical options (p < 0.001), white blood cells (p

< 0.001), serum chloride (p = 0.023), ACAG (p = 0.039), and

delayed cerebral ischemia (p < 0.001). After adjusting for the other

five significant factors, the relationship between the ACAG level

and the mortality of aSAH patients was still positive, as shown

in Figure 2B.

3.3 Prognostic value of ACGA in aSAH
patients

The AUC values for the AG, albumin, and ACAG in

predicting the mortality of aSAH patients were 0.606, 0.536,

and 0.617, respectively (Figure 3A; Table 3). The AUC values

for conventional scoring systems, including the WFNS, Hunt–

Hess, and mFisher scale scores, were 0.804, 0.817, and 0.616.

A logistic regression model composed of the Hunt–Hess scale

score, mFisher scale score, white blood cell count, serum chloride

levels, ACAG, and delayed cerebral ischemia achieved an AUC
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TABLE 2 Univariate and multivariate logistic regression analysis of risk factors for mortality in aSAH patients.

Unadjusted analysis Adjusted analysis

OR 95% CI P-value OR 95% CI P-value

Age 1.026 1.01–1.043 0.001 1.019 0.996–1.043 0.110

Male gender 0.974 0.662–1.432 0.892

Smoking 0.758 0.456–1.262 0.287

Alcoholism 0.766 0.445–1.318 0.335

Diabetes mellitus 0.666 0.253–1.752 0.410

Hypertension 0.776 0.533–1.128 0.184

Systolic blood pressure 0.998 0.991–1.006 0.676

Diastolic blood pressure 1.008 0.995–1.020 0.221

WFNS 2.749 2.289–3.301 <0.001 1.079 0.684–1.704 0.744

Hunt Hess 3.925 3.098–4.973 <0.001 2.277 1.275–4.114 0.006

mFisher 1.646 1.334–2.032 <0.001 1.340 0.923–1.967 0.129

Location

Anterior circulation 1.000 Reference

Posterior circulation 1.689 0.915–3.118 0.094

Multiple aneurysm 1.474 0.831–2.614 0.184

White blood cell 1.177 1.129–1.228 <0.001 1.127 1.065–1.196 <0.001

Hemoglobin 1.002 0.994–1.011 0.621

Serum creatinine 1.008 1.002–1.013 0.007 1.004 0.992–1.012 0.515

Blood urea nitrogen 1.064 1.001–1.132 0.046 0.905 0.773–1.023 0.199

Sodium 1.076 1.045–1.107 <0.001 0.984 0.896–1.078 0.725

Potassium 1.384 0.973–1.969 0.070

Chloride 1.073 1.046–1.100 <0.001 1.101 1.015–1.198 0.023

Calcium 0.666 0.159–2.784 0.577

ACAG 1.158 1.097–1.222 <0.001 1.088 1.006–1.181 0.039

Intraventricular hemorrhage 1.655 1.145–2.390 0.007 1.016 0.502–2.07 0.966

Delayed cerebral ischemia 3.777 2.463–5.794 <0.001 4.571 2.517–8.398 <0.001

Surgical options

None 1.000 Reference

Clip 0.084 0.053, 0.133 <0.001 0.075 0.039–0.14 <0.001

Coil 0.151 0.076, 0.303 <0.001 0.122 0.046–0.298 <0.001

WFNS, World Federation of Neurosurgical Societies; mFisher, modified Fisher; ACAG, albumin corrected anion gap.

of 0.911, which was significantly higher than that of the WFNS

score (Z = 6.305, p < 0.001), the Hunt–Hess scale score (Z

= 6.028, p < 0.001), the mFisher scale score (Z = 12.212,

p < 0.001), and single ACAG (Z = 10.466, p < 0.001). The

nomogram and calibration plot for this model are shown in

Figures 3B, C.

4 Discussion

The prevalence of delayed cerebral ischemia and mortality

was 16.5% and 20.3%, which was similar to the recently reported

incidence (17–20). The high mortality rate makes risk evaluation

crucial. As a readily available marker of acid-base balance, AG
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FIGURE 3

(A) The receiver operating characteristic curve of the prognostic model for the mortality of aSAH patients. (B) Nomogram of the prognostic model

for the mortality of aSAH. (C) Calibration plot of the prognostic model for the mortality of aSAH.

TABLE 3 Value of the predictive model and ACAG for predicting the mortality of aSAH patients.

30-day mortality

AUC 95% CI Sensitivity Specificity Youden
index

Cut o�

Anion gap 0.606 0.551–0.662 0.354 0.853 0.208 22.6

Albumin 0.536 0.480–0.592 0.855 0.236 0.091 32.6

ACAG 0.617 0.563–0.670 0.347 0.848 0.195 23.8

WFNS 0.804 0.760–0.848 0.806 0.728 0.533 4

Hunt Hess 0.817 0.774–0.859 0.819 0.701 0.521 3

mFisher 0.616 0.567–0.664 0.667 0.534 0.200 4

Predictive model 0.911 0.884–0.935 0.833 0.860 0.694 0.208

AUC, area under the receiver operating characteristic curve; CI, confidence interval; WFNS, World Federation of Neurosurgical Societies; ACAG, albumin corrected anion gap.

The predictive model was composed of Hunt Hess, surgical options, white blood cell, serum chloride, ACAG, delayed cerebral ischemia.

may be beneficial for the risk evaluation of prognoses among

aSAH patients. The results of this study showed that, among

aSAH patients, the non-survivors had higher levels of AG and

ACAG than the survivors. The accuracy of ACAG in predicting

the mortality of aSAH patients was higher than that of the

original AG. As a marker identifying metabolic acidosis, the AG

increased due to the overproduction of organic acids or the

reduced renal excretion of anion (21). It is worth noting that

aSAH leads to acidosis through multiple mechanisms, including

hypoxia of cerebral tissue, accumulation of acidic metabolites, and

other electrolyte disorders such as hypokalemia and hypocalcemia

(4–6). Additionally, impaired renal function, which is commonly

observed among aSAH patients, causes the accumulation of acidic

metabolites (22–24). Therefore, the increased AG after aSAH may

comprehensively reflect the abnormal metabolic state and renal

dysfunction and thus contribute to the higher risk of mortality.

Additionally, it could be deduced that elevated serum sodium levels

cause an increase in AG based on the following formula: AG =

[Na+ (mmol/L) + K+ (mmol/L)] – [Cl−(mmol/L) + HCO−
3 (25).

The detrimental effect of hypernatremia on the prognosis of aSAH

patients has been proven by several studies (6, 26–28). Finally,

high serum AG levels have been found to be related to a high

level of inflammatory biomarkers, including white blood cells and

C-reactive protein (29). The inflammatory response after aSAH

plays an important role in the pathophysiological process of brain

injury and extracranial organ dysfunction (30–33).

Although many studies have explored the prognostic value

of AG in various diseases, including acute pancreatitis, acute

myocardial infarction, congestive heart failure, and sepsis,

they have not compared the distinct impacts of single AG

vs. ACAG (7–11). AG levels are often underestimated in

cases of hypoalbuminemia, which commonly occurs during

hospitalizations of aSAH patients (34). This underestimation

may obscure the actual effect of acidosis on the prognosis of

aSAH patients. Moreover, two recent studies that used AG for

risk stratification in subarachnoid hemorrhage patients did not

explore the supplementary effect of albumin correction or develop

a prognostic model using ACAG (15, 16). The prognostic value

of the ACAG was higher than that of the single AG in our study.

When the measured AG is at the same level, a lower albumin

level indicates a higher ACAG. This finding indicates that a

high ACAG also partially reflects the effect of hypoalbuminemia

on the prognosis of aSAH patients. Previous studies showed

that hypoalbuminemia is associated with poor prognosis and

complications after aSAH, including pneumonia, cerebral

vasospasm, and delayed cerebral ischemia (35–38).

In addition to the AG, blood gas analysis could also be used

to evaluate acid-base disturbances. The result of the blood gas
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analysis could be disturbed by compensatory respiratory alkalosis.

Compared with the blood gas analysis needing arterial puncture,

the AG is less expensive and more easily available in situations with

limited resources (39). After being corrected using the albumin,

the ACAG is useful for clinicians when evaluating the risk of poor

prognosis among aSAH patients with relatively fewer resources.

Some limitations of this study should be noted. First, only the

ACAG at admission was recorded, and any changes in ACAG were

not tracked over time, so we could not evaluate the prognostic

value of ACAG at different time points or ACAG changes among

aSAH patients. Second, the record of blood lactate levels in

our patient cohort was not complete, limiting our ability to

compare the different values of lactate and ACAG. Third, only

the survival outcome (30-day mortality) was analyzed; however,

no other outcomes, including functional status and long-term

cognitive status, were analyzed. The association between functional

outcome and ACAG has been analyzed in our preliminary

study, but we found that ACAG was not effective in predicting

the functional outcome and thus did not include these results.

Fourth, some confounders influencing the level of AG were

not analyzed, including renal excretory function, the intravenous

infusion volume, and the use of dehydration drugs. Fifth, some

aneurysm-related morphological information, such as aneurysm

size and aneurysm shape, was not collected. Our developed model

may be improved after adding these variables. Finally, this study

was conducted using the data from a single medical center in the

southwestern region of China, highlighting the need for future

studies in other regions and with larger sample sizes to validate

our findings.

5 Conclusion

The ACAG is a prognostic marker for aSAH patients and

could guide clinicians in correcting acid-base imbalances.

A prognostic model incorporating ACAG could help

clinicians evaluate the risk of poor outcomes among aSAH

patients, thereby facilitating the development of personalized

therapeutic strategies.
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