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Editorial on the Research Topic
Pharmacological actions of drugs in the brain: exploring the intricacies
and potential therapeutic applications

The brain’s intricate and dynamic nature has made it a focal point of pharmacological
research, with the goal of understanding how various drugs interact with its complex systems
(Agid et al., 2007). This Research Topic, “Pharmacological Actions of Drugs in the Brain:
Exploring the Intricacies and Potential Therapeutic Applications,” brings together a diverse
Research Topic of 13 articles, each shedding light on different aspects of this field. Notably, this
Research Topic is part of a Research Topic dedicated to theMediterraneanNeuroscience Society
Conference 2023, held in Tunis, Tunisia (MNS, 2023). These studies explore themechanisms by
which drugs modulate brain activity and behavior, offering insights into potential therapeutic
avenues for a range of neurological and psychiatric conditions.

The first study in this Research Topic by Maric et al. explores the neural substrate for
ghrelin’s effects on ingestive, motivated, and anxiety-like behaviors, tracing its journey from
the stomach to the locus coeruleus. This study highlights the complexity of gut-brain
interactions and the potential of targeting such pathways for therapeutic interventions in
conditions such as anxiety and eating disorders, with a degree of sex divergence.

In another significant contribution, Karimi et al. investigate the effects of umbelliprenin,
a natural coumarin product, on mitigating autistic-like behaviors in a mouse model of
maternal separation stress. The study’s findings, which involve the modulation of
MECP2 expression and oxidative stress, underscore the therapeutic potential of
targeting epigenetic and oxidative pathways in autism spectrum disorders.

Traditional Chinese medicine (TCM) has long been a source of pharmacological
exploration, and the review by Lv et al. investigates into the pharmacological mechanisms
of antidepressant active ingredients in TCM. By focusing on adult hippocampal neurogenesis,
this review provides a comprehensive overview of how ancient medicinal practices could be
integrated within modern neuroscience, in order to address depression.
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Anesthesia, a cornerstone of modern medicine, also features
prominently in this Research Topic. Huang et al.’s brief research
report reveals how propofol-induced anesthesia directly inhibits
glutamatergic neurons in the lateral hypothalamus, offering new
insights into the neural mechanisms underlying anesthetic states
and their potential long-term effects on brain function.

The role of oxidative stress in brain pathology is further explored
by Zhu et al., who demonstrate the protective effects of Edaravone
dexborneol in experimental subarachnoid hemorrhage. This study
contributes to the growing body of evidence supporting the Keap1/
Nrf2 signaling pathway as a target for neuroprotective strategies.

Depression, a leading cause of disability worldwide, is examined
in the context of gut-brain interactions by Li et al., who show how
quercetin reshapes gut microbiota and modulates brain metabolism
to regulate depression-like behaviors. This research underscores the
importance of considering the gut-brain axis in developing novel
antidepressant therapies.

The neurobiological effects of drugs also extend to substance
abuse, as demonstrated by Govender et al., who investigate the
impact of ibogaine on myelination markers following morphine
administration. Their findings suggest a potential role for ibogaine
in addressing the neurobiological underpinnings of addiction and its
associated neural changes.

Hudetz’s study on macrostimulation and anesthetic state-
dependent, effective connectivity of cortical neurons offers a
novel approach to understanding how anesthesia alters neural
circuits, with implications for improving anesthesia techniques
and patient outcomes.

The therapeutic potential of natural compounds is further
explored in the mini review by Wang et al., which examines the
antidepressant activity of mushroom and fungus extracts in rodent
models. This scoping review highlights the promise of these natural
products in developing new treatments for depression.

Alotaibi et al. investigate the neurotoxic effects of pyrethroids
and the protective role of chitosan-encapsulated curcumin
nanoparticles, using a combination of morphometric,
immunofluorescence, and in silico approaches. Their study
provides valuable insights into the potential of nanoparticle-based
therapies in neurodegenerative diseases.

The complex pharmacological effects of stimulant medications in
adults with ADHD are explored by Thunberg et al., who provide a
nuanced analysis of the categorical and dimensional aspects of these
effects. Their work contributes to a better understanding of how
stimulants affect brain function in both affected and healthy populations.

Finally, Yang et al. present a systematic review on the roles and
mechanisms of natural herbal extracts in treating cerebral ischemia,

offering a comprehensive overview of how these extracts can be
harnessed to protect the brain from ischemic damage.

Closing this Research Topic, Li et al. explore the neuroprotective
effects of lutein, demonstrating its ability to inhibit glutamate-induced
apoptosis in HT22 cells via the Nrf2/HO-1 signaling pathway. This
study reinforces the potential of targeting oxidative stress pathways in
developing therapies for neurodegenerative diseases.

Together, these 13 articles not only deepen our understanding of
the pharmacological actions of drugs in the brain, but also highlight
the potential for developing new therapeutic strategies to address a
range of neurological and psychiatric disorders. The insights gained
from these studies are poised to inform future research and clinical
practice, paving the way for more effective treatments and better
patient outcomes.

We hope that more discussion and insights will be presented at
the next Mediterranean Neuroscience Society Conference 2025, held
in Crete, Greece. For more details, please visit https://www.
medneuroscisociety.org/.
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From the stomach to locus
coeruleus: new neural substrate
for ghrelin’s effects on ingestive,
motivated and anxiety-like
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Mohammed Asker1, Stina Börchers1,2, Lauren Bellfy3,4,
Suyeun Byun2, Janine L. Kwapis3,4 and Karolina P. Skibicka1,2,4*
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of Nutritional Sciences, Pennsylvania State University, State College, PA, United States, 3Department of
Biology, Pennsylvania State University, State College, PA, United States, 4Huck Institutes of the Life
Sciences, Pennsylvania State University, State College, PA, United States

Ghrelin, a stomach-derived orexigenic hormone, has a well-established role in
energy homeostasis, food reward, and emotionality. Noradrenergic neurons of
the locus coeruleus (LC) are known to play an important role in arousal, emotion,
cognition, but recently have also been implicated in control of feeding behavior.
Ghrelin receptors (the growth hormone secretagogue receptor, GHSR) may be
found in the LC, but the behavioral effects of ghrelin signaling in this area are still
unexplored. Here, we first determinedwhether GHSR are present in the rat LC, and
demonstrate that GHSR are expressed on noradrenergic neurons in both sexes.
We next investigated whether ghrelin controls ingestive and motivated behaviors
as well as anxiety-like behavior by acting in the LC. To pursue this idea, we
examined the effects of LC GHSR stimulation and blockade on food intake,
operant responding for a palatable food reward and, anxiety-like behavior in
the open field (OF) and acoustic startle response (ASR) tests in male and female
rats. Our results demonstrate that intra-LC ghrelin administration increases chow
intake andmotivated behavior for sucrose in both sexes. Additionally, females, but
not males, exhibited a potent anxiolytic response in the ASR. In order to determine
whether activation of GHSR in the LC was necessary for feeding and anxiety
behavior control, we utilized liver-expressed antimicrobial peptide 2 (LEAP2), a
newly identified endogenous GHSR antagonist. LEAP2 delivered specifically into
the LC was sufficient to reduce fasting-induced chow hyperphagia in both sexes,
but food reward only in females. Moreover, blockade of GHSR in the LC increased
anxiety-like behavior measured in the ASR test in both sexes. Taken together,
these results indicate that ghrelin acts in the LC to alter ingestive, motivated and
anxiety-like behaviors, with a degree of sex divergence.

KEYWORDS

ghrelin, hindbrain, locus coeruleus (LC), food motivation, anxiety-like behavior, LEAP2
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1 Introduction

The orexigenic peptide ghrelin is mainly produced by the
stomach and acts on the brain to promote feeding behavior
(Wren et al., 2000). Ghrelin acts via the growth hormone
secretagogue receptor (GHSR), which is abundantly expressed in
brain regions known to regulate homeostatic and hedonic feeding
(Kojima et al., 1999). For example, the receptor is found in the
hypothalamus and brainstem areas, as well as areas within the
mesolimbic pathway (Zigman et al., 2006). Peripherally
administered ghrelin has consistently been shown to increase
appetite in satiated rodents and humans, and ghrelin injections
into discrete regions such as the arcuate nucleus (Arc), lateral
hypothalamus (LH), ventral tegmental area (VTA) or the nucleus
of the solitary tract (NTS) are potently orexigenic (Tschop et al.,
2000; Abizaid et al., 2006; Faulconbridge et al., 2008; Egecioglu et al.,
2010; Skibicka and Dickson, 2011; López-Ferreras et al., 2017;
Hyland et al., 2020; Barrile et al., 2023; Wald et al., 2023).
Furthermore, ghrelin signaling at the level of the mesolimbic
system enhances the motivation for food as well as substances of
abuse (Jerlhag et al., 2009; Skibicka et al., 2011; You et al., 2022a; You
et al., 2022b). Thus, ghrelin has a well-established role in
maintaining energy homeostasis and driving motivated behaviors
beyond nutritional needs (Andrews, 2011; Skibicka and Dickson,
2011; Menzies et al., 2013).

Ghrelin release is stimulated by metabolic stress and negative
energy status, however psychological stressors such as restraint and
social defeat have been demonstrated to also trigger ghrelin secretion
(Asakawa et al., 2001; Cummings et al., 2001; Kristenssson et al.,
2006; Patterson et al., 2013; McKay et al., 2021). Ghrelin is therefore
suggested to be the interface between metabolic disorders and stress
response-related mood disorders such as anxiety and depression
(Chuang and Zigman, 2010). In line with this, calorie restriction and
exogenous ghrelin injections have both been shown to be anxiolytic
(Lutter et al., 2008; Alvarez-Crespo et al., 2012; Toufexis et al., 2016;
Borchers et al., 2022a). Although some contradictory reports
indicate an anxiogenic effect following ghrelin administration
(Asakawa et al., 2001; Carlini et al., 2002), implying that there
might be a bidirectional effect depending on experimental
conditions, namely, the access to food, it is clear that the ghrelin
system is a key component of emotionality responses. The precise
mechanisms by which ghrelin controls mood remains unknown, but
several brain regions important for regulation of emotional
reactivity express the ghrelin receptor (Zigman et al., 2006;
Alvarez-Crespo et al., 2012). Moreover, microinjections of ghrelin
targeting the amygdala, hippocampus or dorsal raphe nucleus affect
anxiety-like behaviors (Carlini et al., 2004).

Locus coeruleus (LC), however, is an unexplored substrate for
ghrelin’s effects on behavior. One previous study mapping out brain
nuclei accessible to ghrelin present in the cerebrospinal fluid (CSF)
reported uptake of fluorescein-labeled ghrelin in the LC (Cabral
et al., 2013). The LC is a small nucleus located deep in the brain stem,
well-established as the major source of norepinephrine (NE) in the
brain and critically involved in arousal, cognition and emotionality
control (Poe et al., 2020). Yet, more recent work has also put forth
the idea that the LC is involved in control of feeding behavior - LC
activity is suppressed during feeding and in turn, LC stimulation
suppresses food intake in mice (Sciolino et al., 2022). While this

work puts LC on the map of brain substrates of food intake control,
it remains to be shown which metabolic or endocrine signals feed
into this brain region to allow its participation in food intake control.
Given the role of LC in regulation of emotionality and feeding
behavior control, along with the key role of ghrelin in both
processes, and the fact that at least CSF ghrelin can access the
nucleus, LC emerges as a potential direct brain target of ghrelin. To
our knowledge, however, the ability of ghrelin to directly act in the
rat LC and functional implications of this action have not yet been
reported. In the present study, we investigated the LC as a potential
novel target for ghrelin’s behavioral effects linked to appetite control,
motivated behavior and emotional reactivity inmale and female rats.
We first sought to confirm the presence of GHSR in the LC of both
sexes. Next, we determined the effects of LC GHSR pharmacological
activation on food intake andmotivated behavior for sucrose inmale
and female rats. Moreover, we determined whether ghrelin signaling
in the LC modulates anxiety-like behavior, in both sexes. Finally, in
order to determine whether LC GHSR activity is necessary for
feeding and anxiety behavior control, we evaluated whether
blockade of ghrelin receptors in the LC alters feeding, motivated,
and anxiety behaviors. To increase the endogenous and
physiological relevance of this question we utilized the newly
identified endogenous GHSR antagonist - liver-expressed
antimicrobial peptide 2 (LEAP2) (Ge et al., 2018; Schalla and
Stengel, 2019). Endogenous LEAP2 levels in plasma are
modulated by feeding status, such that they decrease during
fasting and rise after feeding (Mani et al., 2019). It is a
competitive antagonist and an inverse agonist of GHSR (Wang
et al., 2019; M’Kadmi et al., 2019), making it a potent inhibitor of
ghrelin signaling, yet still relatively unexplored.

2 Materials and methods

2.1 Animals

Female and male Sprague Dawley rats (8 weeks old upon arrival;
Charles River Laboratories, Wilmington, MA and Charles River
Laboratories, Italy) were individually housed on a 12-h light/dark
cycle with ad libitum access to chow (PicoLab Rodent Diet 5053) and
water. Drug injections and testing were performed during the light
cycle. In the agonist experiments food was removed from the home
cage at the time of drug injection, based on our previous findings
that ghrelin’s anxiolytic effect may be abolished if rats are allowed to
feed between ghrelin administration and anxiety testing (Alvarez-
Crespo et al., 2012). In the antagonist experiments where overnight
fasting was applied, the animals were food deprived at the onset of
the dark cycle prior to drug injection and behavioral testing. After
behavioral testing, rats were returned to their home cage with free
access to chow, and food intake was measured 1 or 24 h after being
returned. To test the effect of intra-LC ghrelin on the intake of
palatable food, a high-fat high-sugar diet (HFHS, in-house made by
mixing equal weight of lard and sugar) was offered together with
chow and measured after 24 h. All procedures conformed to and
received approval by Institutional Animal Care and Use Committee
at the Pennsylvania State University and the Animal Welfare
Committee of the University of Gothenburg, Sweden, Ethical
permit # 137/15.
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2.2 Stereotaxic surgery

Animals were anesthetized with an intraperitoneal injection of
an anesthetic cocktail composed of ketamine (90 mg/kg),
acepromazine (0.64 mg/kg), and xylazine (2.7 mg/kg). Analgesia
(carprofen, 5 mg/kg) and local anesthesia (bupivacaine,
2.5 mg/kg) were administered subcutaneously prior to surgery.
Guide cannula (26 gauge, 3 mm CC; P1 Technologies) targeting
the LC were implanted (±1.3 mm frommidline, 9.8 mm posterior to
bregma, 5.2 mm ventral to skull, with injector aimed 7.2 mm ventral
to skull; Paxinos and Watson, 2005) and affixed to the skull with
bone screws and dental cement. Rats were given at least 1 week to
recover from surgery before the start of behavioral testing.

2.3 In situ hybridization using RNAscope

In situ hybridization (ISH) using RNAscope™ Multiplex
Fluorescent v2 kit (Advanced Cell Diagnostics) was utilized to
determine presence of Ghsr (RNAscope™ Probe-Rn-Ghsr1a-C2,
431,991-C2) and Th (RNAscope™ Probe-Rn-Th, 314,651) mRNA
in brain sections. To allow detection of colocalization, the two target
probes were assigned to different probe channels and fluorophores.
Fresh frozen brains were sectioned, and 12 μm thick coronal sections
containing LC were collected and fixed in 4% formalin for 15 min at
4°C. Following two quick washes in PBS, brain slices were
dehydrated in 50%, 70% and 2 × 100% ethanol (5 min each).
Hydrogen peroxide was dropped on the slides and washed off
after 10 min. Treatment with protease IV followed (30 min) and
was washed away with PBS for a total time of 15 min. Target probes
and negative control probes were applied directly on the sections to
cover them completely and incubated at 40°C for 2 h in a
hybridization oven. Following, slides were incubated with
preamplifier and amplifier probes (AMP1, 40°C for 30 min;
AMP2, 40°C for 15 min). Next, the HRP signal was developed
(HRP-C1 and Opal dye 520; HRP-C2 and Opal dye 570). Finally,
brain sections were incubated for 30 s with DAPI and followed by
mounting medium for fluorescence (Vectashield). Slides were
imaged with Olympus BX53 fluorescent microscope with cellSens
imaging software.

2.4 RNA extraction and gene expression

Total RNA was extracted from the LC using the RNeasy Micro
kit (Qiagen). cDNAwas synthesized using the High-Capacity cDNA
Reverse Transcription kit (Applied Biosystems). TaqMan gene
expression kits and PCR reagents were used to quantify relative
mRNA levels of GHSR (Ghsr, Rn00821417_m1) relative to rat β-
actin (Actb, Rn00667869_m1). Relative mRNA expression was
calculated using the comparative ΔΔCt method as previously
described (Livak and Schmittgen, 2001).

2.5 Drugs

Ghrelin (Tocris) and rat LEAP2 (Phoenix Pharmaceuticals)
were dissolved in artificial CSF (aCSF; Tocris), which was also

used for the vehicle condition. Aliquots were stored at −20°C.
Drugs were infused into the LC at a volume of 0.3 μL (flow rate
0.5 μL/min) and behavioral testing was conducted 20 min later,
throughout the study. Ghrelin (1 μg) was administered
unilaterally to ad libitum-fed rats at a dose that has previously
been shown effective at increasing feeding behavior when injected
into discrete brain sites (Schéle et al., 2016; López-Ferreras et al.,
2017; Le May et al., 2019). LEAP2 (2.5 μg per hemisphere) was
administered bilaterally to rats that were fasted overnight. The dose
was derived from one of the few papers published with central
injection of LEAP2, and a pre-print confirming the effectiveness on
food intake based on a dose-response study (Islam et al., 2020;
Tufvesson-Alm et al., 2023). We used low volumes for our
parenchymal injection to the LC to prevent diffusion to the
adjacent fourth ventricle, and spread to other brain areas that
could be important for the observed behavioral effects. The
antagonist (LEAP2) was injected bilaterally so that the activity
from one hemisphere would not compensate for the loss of
activity in the other. For all the experiments carried out in this
study, rats were returned to their home cage with free access to chow
after the behavioral testing. Acute food intake was measured after
1 h in the cage. In the case of all behavioral tests (operant
conditioning, OF, ASR), drug injections were performed
according to a cross-over balanced experimental design for each
treatment separately. All conditions were separated by a minimum
of 48 h wash out period and run in a counterbalanced manner (each
rat received all conditions on separate testing days).

2.6 Operant conditioning

One distinctive aspect of reward is the motivation to self-
administer or work for the reward (i.e., “wanting” the reward).
The motivation to obtain a sucrose pellet (45 mg, Bio-serv) was
assessed using the progressive ratio (PR) operant conditioning
procedure (Hodos, 1961), a test measuring the number of lever
presses that a rat is willing to execute to acquire a food reward. To
prevent neophobia, rats were offered 3 sucrose pellets in their home
cage the day before training was initiated. Training and testing were
conducted in rat conditioning chambers (Med Associates) as
described previously (Dickson et al., 2012). Rats were first trained
on a 30-min fixed ratio schedules (FR1 followed by FR3 and FR5),
where the cost of receiving one pellet equaled to 1, 3 and 5 presses on
the active lever respectively. A minimum of 30 presses on the active
lever per session was required for advancement to the next schedule.
Finally, the rats were trained in 60-min PR conditioning sessions
where the response requirement increased according to the
following equation: response ratio = [5e(0.2 × infusion
number)]—5 through the following series: 1, 2, 4, 9, 12, 15, 20,
25, 32, 40, 50, 62, 77, 95, 118, 145, 178, 219, 268, 328. The effect of
drugs on food motivated behavior was tested with the PR schedule.
Horizontal activity was measured with the use of infrared beams in
the operant chambers. Food-seeking was measured by infrared
beams that were responding to head entries into the pellet
receptacle. The effect of ghrelin injection on food motivation was
tested in ad libitum fed rats, while the effect of LEAP2 was tested in
overnight fasted rats. This to ensure that the antagonist is applied
when endogenous ghrelin levels are higher.
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2.7 Open field

The open field test (OF) is based on the animal’s conflicting
innate tendencies to avoid the open spaces and explore the novel
environment. Administration of anxiolytics has been shown to
increase time spent in the center of the open field, and decrease
thigmotaxis (Walf and Frye, 2007). Here, rats were placed in the
center of a brightly lit arena with dark walls (43.2 × 43.2 cm; Med
Associates) and allowed to explore freely during 30 min. The
animal’s position and movement were detected by a grid of
photocells covering the arena, and the behavior was scored
automatically using Med-Associates Activity Monitor software.

2.8 Acoustic startle response

The startle reflex is a primitive motor response to a sudden,
intense stimulus, which is amplified in states of anxiety and
diminished with anxiolytic drugs. In contrast to the open field
test, the acoustic startle procedure can assess anxiety-like
behavior without the influence of exploratory behavior and
locomotor activity, components which may be affected by
energy status and sex, and confound the interpretation of the
results (Borchers et al., 2022). Testing was conducted in the SR-
LAB startle response system (San Diego Instruments), a
soundproof chamber with a cylindrical animal enclosure
connected to a piezoelectric motion sensor that records the
startle response. Rats were placed in the acrylic cylinder (9 cm
in diameter) and habituated with a background white noise
(50 dB) for 5 min. Following habituation, the SR Lab Software
delivered acoustic stimuli bursts of 90, 95 or 105 dB (50 ms each)
in a randomized pattern (10 times for each intensity) with inter
stimulus intervals ranging between 20 and 40 s. Chambers were
brightly lit during testing (500 lux illumination), as bright light
acts as an unconditioned anxiogenic stimulus in rats (Walker and
Davis, 1997). The peak amplitude response (in millivolts) to each
sound stimulus (in dB) was averaged across the 10 repetitions and
used as the dependent measure.

2.9 Tissue collection

Male and female rats were decapitated after light isoflurane
anesthesia, and brains were rapidly removed, flash-frozen in
isopentane, and stored at −80°C until processing. Half of the
rats were fasted overnight prior to the euthanasia, while the
other half had free access to chow, the groups were matched by
body weight. Using a cryostat, coronal sections (12 μm thick) at
the level of the LC were collected and slide-mounted for
RNAscope in situ hybridization, micropunches of the LC were
collected in test tubes for gene expression analysis, and sections
were examined to ensure correct cannula placement. The rats that
had cannulas placed outside of the LC in either hemisphere, were
excluded from all behavioral analyses. ForGhsr expression studies,
in addition to brains from rats used for behavioral testing, brains
were also collected from a separate animal cohort matched for age,
in order to increase the number of samples for reliable gene
analysis.

2.10 Statistical analysis

All data are presented as mean ± SEM. Statistical significance
was analyzed by two-factor repeated measures ANOVA with post
hoc Holm–Sidak’s multiple comparison test when appropriate
(GraphPad Prism 8 Software, Inc). To control for total
locomotor activity in the OF, an analysis of covariance
(ANCOVA) was performed using the car package for R (v.
4.3.1). p-values lower than 0.05 were considered statistically
significant.

3 Results

3.1 Fluorescent in situ hybridization and
qPCR show Ghsr expression in the rat LC

To determine the presence of Ghsr in the LC and the presence of
Ghsr1a transcript on LC noradrenergic neurons we performed
RNAscope in situ hybridization (Figure 1A; representative image of
a coronal brain section 9.8 mm posterior to bregma). Expression of
Ghsr mRNA (green) was observed throughout the LC (Figures 1B, C).
Ghsr was present on LC neurons that express tyrosine hydroxylase
mRNA (Th) (magenta) in female (Figure 1B) andmale (Figure 1C) rats,
indicating presence of the ghrelin receptor on noradrenergic neurons.
Moreover, we utilized real time quantitative PCR tomeasure themRNA
levels of Ghsr in ad libitum fed and fasted male and female rats. The
gene expression analysis revealed that there was no effect of fasting on
Ghsr expression, in either sex. However, the expression was sexually
dimorphic, such that males had higher levels of ghrelin receptors in the
LC [two-factor ANOVA: interaction F(1, 79) = 0.001968, p = 0.9647,
effect of fasting F(1, 79) = 0.04919, p = 0.8250, effect of sex F(1, 79) = 5.118,
p = 0.0264; Figure 1D].

3.2 Pharmacological activation of LC GHSR
stimulates food intake and food motivation
in male and female rats

Acute intra-LC ghrelin injection (1 μg) led to a significant increase
in chow intake 1 h post injection [two-factor ANOVA for acute chow
intake: interaction F(1, 15) = 1.199, p = 0.2909, effect of drug F(1, 15) =
9.161, p = 0.0085, effect of sex F(1, 15) = 2.227, p = 0.1563, Figure 2A].
This hyperphagia persisted longer in females, which still had a greater
chow intake at 24 h post ghrelin injection. Two-factor ANOVA
revealed no significant effect of drug or sex, but a significant
interaction between these two factors [two-factor ANOVA for 24 h
food intake: interaction F(1, 17) = 8.890, p = 0.0084, effect of drug F(1,
17) = 3.228, p = 0.0902, effect of sex F(1, 17) = 1.587, p = 0.2248;
Figure 2B]. The effects of ghrelin on food intake weremeasured in a free
choice paradigm, hence the animals were offered a palatable HFHS diet
together with the chow. Here, ghrelin treatment did not affect HFHS-
diet intake at any of the measured time points in either sex; [two-factor
ANOVA for acuteHFHS intake: interaction F(1, 17) = 0.2277, p= 0.6393,
effect of drug F(1, 17) = 0.1358, p = 0.7171, effect of sex F(1, 15) = 0.0019,
p = 0.9654, Figure 2C], [two-factor ANOVA for 24 h HFHS intake:
interaction F(1, 17) = 0.0295, p = 0.8655, effect of drug F(1, 17) = 0.0738,
p = 0.7890, effect of sex F(1, 17) = 0.5072, p = 0.4860, Figure 2D].
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FIGURE 1
Ghsr are expressed inmale and female LC, on noradrenergic neurons. RNAscope in-situ hybridization was used to determine expression of theGhsr
on Th neurons in LC. Representative image of Th mRNA (magenta) and cell nuclei (blue; DAPI) at the level of the LC in coronal brain sections of rats (A).
Co-localization indicates expression of GHSR1 (green) on Th-expressing cells (magenta) in the LC of female (B) andmale (C) rats. qPCR performed on LC
micropunches of ad libitum fed and fasted animals revealed that males expressed more Ghsr in the LC, but that the expression was unaffected by
feeding status in both sexes (D). Image corresponds to bregma −9.84 in Paxinos and Watson’s Rat Brain Atlas, fifth edition. LC, locus coeruleus; Me5,
mesencephalic trigeminal nucleus; MPB, medial parabrachial nucleus; Th, tyrosine hydroxylase; Dapi, 4′,6-diamidino-2-phenylindole; Ghsr1a, growth
hormone secretagogue receptor 1a; 4V, fourth ventricle.
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Applying ghrelin to the LC in ad libitum fed rats increased motivated
behavior for a food reward–as evidenced by the higher amount of
sucrose pellets earned [two-factor ANOVA: interaction F(1, 16) = 1.174,
p = 0.2946, effect of drug F(1, 16) = 16.51, p = 0.0009, effect of sex F(1, 16) =
0.000, p > 0.999; Figure 2E) due to the increased effort (active lever
presses) rats were willing to expend for the reward [two-factorANOVA:
interaction F(1, 14) = 0.003, p = 0.9549, effect of drug F(1, 14) = 9.263, p =
0.0088, effect of sex F(1, 14) = 0.141, p= 0.7125; Figure 2F]. The effect was

specific to motivated behavior, as food seeking (Figure 2G) and
locomotor activity (Figure 2H) were not affected, although there was
a trend for effect of ghrelin on food seeking behavior [two-factor
ANOVA: effect of drug F(1, 16) = 3.214, p = 0.0919]. Both male and
female rats responded to a similar extent as there was no significant
drug-sex interaction for any parameters measured during operant
testing.

3.3 Blocking LC GHSR suppresses food
intake and food motivation with a different
latency in male and female rats

Acute intra-LC LEAP2 injection (2.5 μg per hemisphere) in
overnight fasted rats, significantly reduced feeding in both males and
females when chow was offered to them 1 h after the antagonist
administration and measured 1 h later [two-factor ANOVA:
interaction F(1, 18) = 0.1608, p = 0.6932 effect of drug F(1, 18) = 11.27,
p = 0.0035, effect of sex F(1, 18) = 4.103, p = 0.0579; Figure 3A]. However,
in a separate experiment when the pellets were returned to the animals
2 h after injection, post hoc analysis revealed that this hypophagia was
only present in females [two-factor ANOVA: interaction F(1, 17) = 1.786,
p = 0.1991, effect of drug F(1, 17) = 3.753, p = 0.0695, effect of sex F(1, 17) =
17.13, p = 0.00079; Figure 3B]. At 24 h post injection, there were no
effects of LEAP2 on chow intake [two-factor ANOVA: interaction F(1,
17) = 1.473, p = 0.2414, effect of drug F(1, 17) = 0.7907, p = 0.3863, effect of
sex F(1, 17) = 21.69, p = 0.0002; Figure 3C]. Intra-LC LEAP2 injection
reduced motivated behavior in females as indicated by fewer sucrose
rewards earned [two-factor ANOVA: interaction F(5, 30) = 0.5021, p =
0.7722, effect of drug F(1, 6) = 6.442, p = 0.0442, effect of time F(5, 30) =
13.33, p < 0.0001; Figure 3D] throughout the entire test. There was a
trend to reduction of lever presses [two-factor ANOVA: interaction F(5,
30) = 1.195, p = 0.3354, effect of drug F(1, 6) = 4.046, p = 0.0910, effect of
time F(5, 30) = 8.772, p < 0.0001; Figure 3E]. The interval between the
number of presses required for each consecutive reward is amplified,
creating a large variability for this parameter. However, since there was a
clear reduction in the number of rewards that the females were willing to
work for, we conclude that therewas a drug effect onmotivated behavior.
Food seeking was not affected [two-factor ANOVA: interaction F(5, 30) =
0.8984, p = 0.4949, effect of drug F(1, 6) = 0.1929, p = 0.6759, effect of time
F(5, 30) = 21.51, p < 0.0001; Figure 3F]. Locomotor activity was also
unaltered by the drug [two-factor ANOVA: interaction F(5, 30) = 1.514,
p = 0.2152, effect of drug F(1, 6) = 3.184, p = 0.1246, effect of time F(5, 30) =
18.39, p < 0.0001; Figure 3G]. In contrast to the consistent effect in
females, behavior of LEAP2-injected male rats in the progressive ratio
operant test was not significantly affected [two-factor ANOVA for
rewards earned: interaction F(5, 40) = 1.908, p = 0.1146, effect of drug
F(1, 8) = 0.9255, p = 0.3642, effect of time F(5, 40) = 10.48, p < 0.0001;
Figure 3H; two-factor ANOVA for lever presses: interaction F(5, 40) =
1.228, p = 0.3141, effect of drug F(1, 8) = 0.2433, p = 0.6351, effect of time
F(5, 40) = 8.664, p < 0.0001; Figure 3I; two-factor ANOVA for food
seeking: interaction F(5, 40) = 1.415, p = 0.2371, effect of drug F(1, 8) =
1.246, p = 0.2932, effect of time F(5, 40) = 11.89, p < 0.0001; Figure 3J].
Horizontal locomotor activity was not affected either [two-factor
ANOVA: interaction F(5, 40) = 1.114, p = 0.3539, effect of drug F(1,
8) = 0.9553, p = 0.3539, effect of time F(5, 40) = 27.87, p < 0.0001,
Figure 3K].

FIGURE 2
Ghrelin acts in the LC to increase chow intake and food reward in
both female and male rats. Intra-LC administration of ghrelin (1 μg)
ghrelin increased chow intake acutely in both males and females (A),
while at 24 h only females consumed more chow (B). HFHS-diet
intake remained unchanged 1 h (C) and 24 h (D) after ghrelin injection.
In a progressive ratio operant schedule, ghrelin increased the amount
of sucrose rewards earned (E) and the number of active lever presses
to obtain the reward (F), without changing food seeking (G) or
locomotor activity (H) in either sex. F, females; M, males; HFHS diet,
high-fat high-sugar diet. Data are expressed as mean ± SEM. #p < 0.1,
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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FIGURE 3
Acute pharmacological blockade of ghrelin signaling in the LC decreases food intake in both sexes, but food reward only in females. LEAP2 is
anorexic in both sexes when chow is offered within 1 h post intra-LC injection (A), but reduces chow intake in females only, when offered 2 hours post
injection (B). The anorexic effect of LEAP2 is absent in both sexes 24 h post intra-LC injection (C). In females, intra-LC microinjection of LEAP2 (5 μg)
decreased the number of sucrose pellets earned (D) and the number of lever presses for the rewards in a 60-min progressive ratio operant test (E).
Food seeking (F) was unchanged while locomotor activity was significantly reduced during the first 10 min and last 30 min of the test (G). In contrast to
females, acute pharmacological blockade of LC GHSR did not affect the number of sucrose pellets earned (H) or active lever presses (I) in males. Food
seeking was also not significantly altered (J). Locomotor activity in males was also not affected by the drug, (K). LEAP2 = liver-expressed antimicrobial
peptide 2. Data are expressed as mean ± SEM. #p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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3.4 Activation of LC GHSR alters anxiety-like
behavior in a sex-specific manner

Initially, OF was used to determine the effects of intra-LC injection
of ghrelin on anxiety-like behavior. In our paradigm, we withheld chow
from the animals immediately before the drug injection, and did not
return it until after behavioral testing, as our previous work indicates
that offering food after ghrelin injections confounds the effect of this
peptide on anxiety (Alvarez-Crespo et al., 2012). Interestingly, ghrelin
treated females showed a potentially heightened anxiety-like behavior,
based on less time spent in the center of the OF (Holm Šídák’s multiple
comparisons test: p = 0.0259 Figure 4A).Males on the other hand, spent
more time in the center of the OF after ghrelin injection, indicating a
decreased anxiety-like behavior (Holm Šídák’s multiple comparisons
test: p = 0.0018, Figure 4A). Two-factor ANOVA indicated a significant
interaction between sex and drug effect [F(1, 22) = 17.97, p = 0.0003], and
no effect of drug [F(1, 22) = 0.2143, p = 0.6479] or sex [F(1, 22) = 0.7939,
p = 0.3826] separately. While there was no significant change in
locomotor activity in either sex, male rats appeared to move more,
suggesting that the time spent in the center might be confounded by
changes in general locomotor activity rather than emotional reactivity.

Two-factor ANOVA indicated no significant effects for distance moved
in center [two-factor ANOVA: interaction F(1, 15) = 2.298, p = 0.1503,
effect of drug F(1, 15) = 2.166, p = 0.1618, effect of sex F(1, 15) = 0.284, p =
0.6018; Figure 4B], nor total distance moved [two-factor ANOVA:
interaction F(1, 15) = 0.6912, p = 0.4188, effect of drug F(1, 15) = 0.3461,
p=0.5651, effect of sexF(1, 15) = 0.6594, p=0.4295; Figure 4C]. To explore
the influence of locomotion on anxiety behavior in OF statistically, we
performed an ANCOVA and determined the relationship between the
total distance travelled in the arena and time in the center of the open
field. In males, the covariate, total distance did influence time spent in
the center of the open field [F(1,21) = 12.863, p < 0.001]. There was no
significant effect of the treatment on the time spent in the center after
controlling for the effect of total locomotor activity [F(1,21) = 0.010, p =
0.9204]. In females on the other hand, neither total locomotor activity
nor treatment had a significant relationship to the time spent in the
center with F(1,13) = 0.997, p = 0.3362 and F(1,13) = 0.897, p = 0.3606,
respectively. Overall, the ANCOVA results indicated that the effect of
treatment was not significant after controlling for total activity in both
sexes. In order to further separate potential influence of locomotion
from assessment of anxiety-like behavior we performed the ASR test.
The ASR clearly revealed an anxiolytic effect of ghrelin in females, and

FIGURE 4
Ghrelin delivered to the LC alters anxiety-like behavior in a context-specific and sex-divergent manner. Intra-LC administration of ghrelin (1 μg)
decreased the time females spent in the center, and conversely increased the time males spent in the center of the OF (A). Distance moved in center (B)
and total distancemoved (C) remained unchanged, although a non-significant trendwas detected inmales. An anxiolytic effect of ghrelin was detected in
the ASR test, where startle amplitude was significantly lower in ghrelin treated females (D) at the highest sound intensity. The treatment did not alter
the startle response inmales at any sound intensity (E). LEAP2, liver-expressed antimicrobial peptide 2; F, females; M,males. Data are expressed asmean ±
SEM. #p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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as expected an effect of the increasing sound intensity, which plays the
role of an anxiogenic stimulus in the ASR test [two-factor ANOVA:
interaction F(2, 22) = 5.092, p = 0.0152, effect of drug F(1, 11) = 8.003, p =
0.0164, effect of sound F(2, 22) = 26.270, p < 0.0001; Figure 4D]. Inmales,
there was no drug effect at any sound intensity [two-factor ANOVA:
interaction F(2, 32) = 0.0119, p = 0.9881, effect of drug F(1, 16) = 0.0201,
p = 0.8890, effect of sound F(2, 32) = 60.03 p < 0.0001; Figure 4E].

3.5 Intra-LC administration of LEAP2 exerts
an anxiogenic effect

To determine if ghrelin signaling in the LC is necessary for
anxiety-like behavior, we exposed fasted rats to the OF and ASR tests
after LEAP2 administration. LEAP2 did not alter time spent in the
center [interaction F(1, 16) = 2.285, p = 0.1502, effect of drug F(1, 16) =
0.939, p = 0.3468, effect of sex F(1, 16) = 0.241, p = 0.6301; Figure 5A],
distance moved in center [interaction F(1, 15) = 0.0407, p = 0.8428,
effect of drug F(1, 15) = 1.637, p = 0.2202, effect of sex F(1, 15) = 0.395,

p = 0.5388; Figure 5B] nor total distance moved in the OF
[interaction F(1, 15) = 0.124, p = 0.7294, effect of drug F(1, 15) =
0.918, p = 0.3531, effect of sex F(1, 15) = 0.106, p = 0.7484; Figure 5C].

As fasting and manipulating ghrelin signaling may influence
locomotor activity, we performed an ANCOVA for time spent in
the center with total distance travelled in the open field as a covariate.
The covariate, total locomotion, was significantly related to the time
males spent in the center of the OF (F(1,17) = 14.139, p < 0.001). After
controlling for locomotion, there was no significant effect of LEAP2 on
the time spent in the center of the OF (F(1,17) = 0.024, p = 0.8783).
Similar to males, an effect of total locomotion on time spent in the open
areas of the OF (F(1,11) = 42.03, p < 0.0001) was found in females.
LEAP2 treatment had no effect on the time spent in the center of theOF
after controlling for locomotion (F(1,11) = 0.849, p = 0.3764). Therefore,
LEAP2 did not have an effect on anxiety-like behavior in the OF after
adjusting for locomotion, in either sex.

In contrast, LEAP2 was clearly anxiogenic in both females
(Figure 5D) and males (Figure 5E) when tested in the ASR. A
two-factor repeated measures ANOVA for the female data indicated

FIGURE 5
Acute pharmacological blockade of GHSR increases anxiety-like behavior in male and female rats. Intra-LC microinjection of LEAP2 (5 μg) did not
change time spent in center (A), locomotor activity in center (B), or total distance moved (C) in the OF test. However, an anxiogenic effect of ghrelin
receptor blockade in LC was detected in the ASR test, where startle amplitude, was significantly increased in LEAP2 treated females (D) and males (E).
LEAP2 = liver-expressed antimicrobial peptide 2; F, females; M, males. Data are expressed as mean ± SEM. #p < 0.1, *p < 0.05, **p < 0.01, ***p <
0.001, ****p < 0.0001.
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an effect of sound intensity [F(2, 18) = 26.23, p < 0.0001], drug [F(1,
9) = 10.50, p < 0.0101] and a strong trend for an interaction between
the two factors [F(2, 18) = 3.371, p < 0.0571]. In males, two-factor
repeated measures ANOVA revealed an effect of sound intensity
[F(2, 18) = 8.914, p < 0.002], drug [F(1, 9) = 8.882, p < 0.0154] and a
significant interaction [F(2, 18) = 8.914, p < 0.002].

4 Discussion

In the present study, we set out to determine whether ghrelin
action in the LC is necessary and sufficient for control of ingestive,
motivated, and emotionality behaviors. To achieve this, we
investigated the behavioral outputs of pharmacological activation
and inhibition of ghrelin receptors in the LC. We found that GHSR
are present on noradrenergic cells in the LC of male and female rats,
with higher levels in males. We show that intra-LC-injected ghrelin
acutely increases food intake and also motivated behavior for
sucrose. In contrast, blockade of GHSR, by intra-LC
LEAP2 microinjections performed in fasted rats in order to
ensure high levels of endogenously produced circulating ghrelin,
resulted in decreased feeding and reduced food reward in females,
while males only presented with transiently suppressed food intake.
Activation of LC ghrelin receptors was anxiolytic in female rats, as
indicated by decreased startle responses in the ASR test. Conversely,
blockade of LC ghrelin receptors was anxiogenic in females. In
males, activation of LC ghrelin receptors had no effect on behavior
in the ASR test, however blockade was anxiogenic. These data
indicate that the LC is a novel brain area key to ghrelin’s effects
on ingestive, motivated, and emotionality behavior, with some sex
divergence in these effects.

Ghrelin has a well-established orexigenic effect, consistently
demonstrated in the literature by peripheral injections and direct
application to a variety of GHSR expressing brain areas
(Faulconbridge et al., 2008; Egecioglu et al., 2010; Skibicka and
Dickson, 2011; Mason et al., 2014; Wald et al., 2023). Here, we show
that exogenous ghrelin increases chow intake and food motivated
behavior at the level of LC as well. Acutely, we find no sex differences
in chow intake measured over 1 h, nor motivated behavior for a
sucrose pellet. Surprisingly, at 24 h post injection our analysis
indicates an interaction between sex and treatment for the
orexigenic effect, as females still had a significantly higher chow
intake when measured the day after intra-LC injection. According to
studies done in male rodents, most of ghrelin’s hyperphagic effect
takes place within 3 h, and central injection of ghrelin is reported to
have no effect on feeding at 24 h post drug application in males
(Faulconbridge et al., 2003; Skibicka et al., 2012). The more
persistent effect on food intake that we describe in the current
study is unusual but consistent with data from ghrelin injections into
the LH, which exert a female-specific hyperphagia 24 h after
administration (López-Ferreras et al., 2017). In contrast to the
current results, we previously found the expression of Ghsr in the
LH is higher in females (Börchers et al., 2022b). Notably, while intra-
LC ghrelin increased the motivation to work for a sucrose pellet, it
did not induce HFHS-intake in a free choice paradigm. Previous
reports have demonstrated that central injection of ghrelin mainly
induces a preference for chow over lard and sucrose (Schéle et al.,
2016), and increases motivated behavior similarly for regular chow

and palatable treats (Bake et al., 2019). Results of ghrelin receptor
blockade at the level of LC unveiled further differences between
sexes. While LEAP2 was effective in reducing fasting-induced intake
and fasting-potentiated food reward in females at all tested time
points, it had a transient effect on ingestive behavior in males.
Moreover, motivated behavior was not significantly affected by
LEAP2 in males, suggesting that the ghrelin system is necessary
in females but not males in LC for control of food motivated
behavior. It is likely that in males, fasting-induced activity at
other ghrelin receptor-expressing brain sites is sufficient to
compensate for the blocked ghrelinergic signaling from the LC
(Zigman et al., 2006; Skibicka et al., 2011; Mason et al., 2014;
Uriarte et al., 2019), or that there may be sex differences in one
or several of the molecular components of the ghrelin-axis at the
level of LC. Previous work from our group, and others, suggests that
the ghrelin axis is sexually dimorphic in rats–females have much
higher circulating ghrelin levels at baseline and after overnight
fasting, less hepatic LEAP2, and higher ghrelin receptor
expression in emotionality-influencing brain areas (Borchers
et al., 2022a; Smith et al., 2022). Here, we demonstrate sex
differences in Ghsr expression in the LC, with higher levels
expressed in males, providing a potential explanation and
molecular basis to the observed behavioral differences in
response to LEAP2. The ghrelin receptor has a high constitutive
activity, allowing it to maintain energy homeostasis without ghrelin
binding (Fernandez et al., 2018). LEAP2 is a competitive antagonist
and an inverse agonist of the GHSR, and sexually dimorphic
expression of the receptor in the LC is very likely to influence
pharmacological response at this site (M’Kadmi et al., 2019).
However, a future dose-response study is needed to confirm this
hypothesis, along with complementary analysis of the other
components of the ghrelin axis.

Consistently with the sex divergent effects on feeding, we show a
female-specific anxiolysis after intra-LC administration of ghrelin as
indicated by the ASR test. This supports the hypothesis that female
rats are more sensitive to the anxiolytic effects of ghrelin signaling, as
a survival mechanism during periods of negative energy balance
(Borchers et al., 2022a). The ability of the brain to integrate internal
physiological drives, such as hunger, with external stimuli is essential
for survival. LC is important for regulation of arousal, and is
activated by unexpected sensory events to direct attention to
potentially threatening stimuli in the environment (Aston-Jones
and Cohen, 2005). Psychiatric disorders linked to stress and
hyperarousal, namely, post-traumatic stress disorder (PTSD),
anxiety and major depression are more prevalent in women than
men (McLean et al., 2011; Olff, 2017; Li et al., 2022). Interestingly,
there are well-established sex differences in the anatomy and
physiology of the LC, biasing female rodents towards increased
arousal and dysregulation by stress (Bangasser et al., 2016). Hunger
state has been shown to affect LC response to unexpected stimuli, as
a light flash evoked a greater activation of LC-NE neurons in fasted
mice compared to satiated mice (Sciolino et al., 2022). Additionally,
the LC has been implicated in the control of fear-induced
suppression of eating through co-release of NE and glutamate in
response to threatening stimuli (Yang et al., 2021). It is therefore
conceivable that ghrelin, the circulating hunger hormone, modulates
LC activity to address hunger rather than fear when appropriate, and
that sensitivity in this system is higher in females.
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Some studies indicate that plasma ghrelin may not access many of
the brain regions expressing GHSR (Cabral et al., 2014; Perello et al.,
2019). However, the ability of endogenous ghrelin to reach its receptors
at the LC level is supported by its location next to the fourth ventricle,
along with the finding that systemic ghrelin administration increases
CSF ghrelin (Uriarte et al., 2019), and one previous report showing the
uptake of CSF ghrelin in the LC (Cabral et al., 2013). Our in-situ
hybridization and qPCR results confirm that GhsrmRNA is present in
the LC. The Ghsr-expressing cells were distributed within the entire
nucleus and lacked any evident cluster organization in both sexes.
Importantly, we show that Ghsr is co-expressed with Th, placing the
receptor on norepinephrine-producing cells in the LC. The LC is the
major source of noradrenergic ascending fibers to the forebrain, but
investigations into the role of brain NE circuits in feeding have not
conveyed uniform results. For instance, catecholamine projections from
the (NTS) to the (Arc) were shown to stimulate feeding, while activating
projections to the parabrachial nucleus (PBN) suppress feeding (Roman
et al., 2016; Aklan et al., 2020). Moreover, lesions of the ventral
noradrenergic bundle result in hyperphagia, while the effect on
ingestive behavior following the interruption of projections of the
dorsal noradrenergic bundle is less clear (Ahlskog and Hoebel, 1973;
Sahakian et al., 1983). One previous study indirectly supports a potential
functional interaction of ghrelin with catecholaminergic neurons:
Chuang et al. found that ghrelin signaling in Th-expressing neurons
was sufficient to mediate ghrelin’s orexigenic, antidepressant-like, and
stress-induced food-reward behavior (Chuang et al., 2011). The authors
discuss the probable involvement of GHSR in VTA for the effects
observed in their Th-cre mouse model, however the exact neural site
responsible for the phenotype was not investigated in this study. Put
together with our results, it is intriguing to speculate that the direct
action of ghrelin on GHSR-TH neurons in the LC could be mediating
this stress-associated feeding behavior. However, Sciolino et al. recently
demonstrated that activation of noradrenergic neurons in the LC
attenuates food intake, and identified a circuit from the LC to LH
that modulates feeding and anxiety-like behavior (Sciolino et al., 2022).
It is possible that ghrelin receptors and ghrelin provide an upstream
signal suppressing noradrenergic neurons and the LC-LH circuits.
Future studies using viral tracing could indicate whether GHSR can
be found on these specific neurons. However, given the broad and
relatively uniform distribution of Ghsr expression throughout the LC it
is likely that ghrelin indeed controls this circuit. The central role of the
LC in integrating physiological drives and external stimuli, underscores
its position as a pivotal brain structure in orchestrating complex
behaviors necessary for survival. Here, we identify the LC as a novel
target site for ghrelin’s influence on the brain. Our investigation sheds
light on how the stomach, through the actions of ghrelin, can exert
direct effect on behaviors that the LC governs, providing an important
link between energy homeostasis and emotional states. Ghrelin-
signaling pathways also affect motivation and ingestion of artificial
rewards (Jerlhag et al., 2009; Jerlhag et al., 2010), and the LC plays an
important role in substance abuse disorder (Van Bockstaele et al., 2010),
making it compelling to speculate that GHSR signaling in the LC could
also mediate reward for substances of abuse. Importantly, our study
highlights sex-specific responses to ghrelin signaling in the LC, offering
a framework for further investigation into the underlying neural
circuitry and the molecular pathways driving these divergent effects.
Given the involvement of both ghrelin and LC-NE in stress-related
psychiatric disorders, along with the presence of sex-specific differences

in these systems, it is crucial to gain a comprehensive understanding of
their interaction. This knowledge could potentially contribute to the
development of sex-tailored therapies for eating- and anxiety disorders.
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Depression is characterized by prominent indicators and manifestations, such as
anhedonia, which refers to the inability to experience pleasure, and persistent
feelings of hopelessness. In clinical practice, the primary treatment approach
involves the utilization of selective serotonin reuptake inhibitors (SSRIs) and related
pharmacological interventions. Nevertheless, it is crucial to recognize that these
agents are associated with significant adverse effects. Traditional Chinese
medicine (TCM) adopts a multifaceted approach, targeting diverse
components, multiple targets, and various channels of action. TCM has
potential antidepressant effects. Anomalies in adult hippocampal neurogenesis
(AHN) constitute a pivotal factor in the pathology of depression, with the
regulation of AHN emerging as a potential key measure to intervene in the
pathogenesis and progression of this condition. This comprehensive review
presented an overview of the pharmacological mechanisms underlying the
antidepressant effects of active ingredients found in TCM. Through
examination of recent studies, we explored how these ingredients modulated
AHN. Furthermore, we critically assessed the current limitations of research in this
domain and proposed novel strategies for preclinical investigation and clinical
applications in the treatment of depression in future.

KEYWORDS

depression, traditional Chinese medicine, antidepressant, adult hippocampal
neurogenesis, pharmacological mechanism

1 Introduction

Major depressive disorder (MDD), widely known as depression, represents a psychiatric
condition characterized by enduring mood deterioration and diminished capacity for
experiencing pleasure. It stands as a significant contributor to global suicide rates. The
World Health Organization reports that over 350 million individuals worldwide currently
suffer from depression, with an average global incidence rate of approximately 4.4%. By
2030, depression is projected to become the leading disease in terms of global medical burden
and serves as the largest non-fatal health loss factor universally (Rehm and Shield, 2019;
Bayes et al., 2020). Primary treatment approaches for depression in clinical practice involve
the utilization of selective serotonin reuptake inhibitors (SSRIs), which specifically inhibit the
reabsorption of 5-hydroxytryptamine (5-HT; serotonin), thereby prolonging and enhancing
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the effects of serotonin, resulting in an antidepressant response
(Perez-Caballero et al., 2014; Bi et al., 2022). However, SSRIs are
associated with adverse reactions, including nausea, headaches,
sexual dysfunction, and weight gain. Additionally, most
treatments encounter issues such as delayed effects and high
non-response rates (Wang et al., 2019; Qu et al., 2021; Wei et al.,
2022). Therefore, the development of more effective and safer
antidepressants has become an urgent concern. Traditional
Chinese medicine (TCM) exhibits characteristics such as a multi-
component, multi-targeted, and multifaceted nature, making it
highly suitable for depression treatment. Certain active
ingredients derived from TCM have demonstrated significant
antidepressant effects with minimal toxic side effects (Chi et al.,
2019), indicating their potential for further research in the field of
anti-depression.

Adult hippocampal neurogenesis (AHN) encompasses the
entire process of neural stem cell (NSC) proliferation and
division within the hippocampus, leading to the formation of
neural progenitor cells (NPCs). These NPCs migrate to specific
functional regions, undergo plasticity changes and differentiation,
and establish synaptic connections with other neurons, ultimately
promoting the production of neural function (Kuhn et al., 2018).
The relationship between AHN and MDD is of considerable
importance, and investigating antidepressant treatments that
target the regulation of AHN holds promise for future
advancements in antidepressant therapies (Sahay and Hen, 2007).
Therefore, it is meaningful to design new treatment strategies for
MDD patients and developing depression treatments to
regulate AHN.

This review was aimed to provide an academic exposition on the
physiological process of AHN and its association with the
pathological mechanism of MDD. Additionally, it was also aimed
to summarize and analyze the underlying mechanisms through
which currently utilized active ingredients in TCM regulate AHN
for the treatment of MDD. The objective of this review is to establish
a scientific foundation for further basic research and clinical
applications in this field.

2 Adult hippocampal neurogenesis

The hippocampus is closely intertwined with brain regions
implicated in emotion, such as the amygdala and anterior
cingulate cortex, and plays a fundamental role in regulating the
hypothalamic-pituitary-adrenal (HPA) axis. It is crucial for
emotional regulation and for understanding the development of
depression (Schumacher et al., 2018; Tartt et al., 2022). Under
normal physiological conditions, at least two parts of the adult
mammalian brain exhibit sustained neurogenesis. They are the sub
vehicular zone (SVZ) located in the later vehicle and the sub
granular zone (SGZ) situated in the dentate gyrus (DG) of the
hippocampus. Adult hippocampal SGZ NSCs are mainly located
between the DG gate and the granulosa cell layer, and are usually in a
resting state. When neural stem cells are stimulated, they gradually
develop into immature neurons. After a series of processes, they
develop into mature neurons, establish synaptic connections with
adjacent neurons, and ultimately integrate into the functional neural

circuits reflected in the hippocampus (Christian et al., 2014; Yao
et al., 2016).

From a microscopic perspective, In the adult hippocampus,
NSCs are responsible for generating new neurons. In rodents,
NSCs in the hippocampus possess characteristics similar to
astrocytes, with radiating protrusions extending to the DG
granular cell layer. Therefore, these hippocampal NSCs are
commonly referred to as radial glial-like cells (RGL, Type
1 cells). Activation of Type 1 cells results in the production of
intermediate progenitors (Type 2 cells). Type 2 cells then
differentiate into neuroblast-like cells (Type 3 cells). After several
weeks or even months of maturation, Type 3 cells gradually develop
into functional granular neurons (Kempermann et al., 2015;
Llorens-Martín et al., 2016; Moss et al., 2016; Sánchez-Huerta
et al., 2016; Pilz et al., 2018; Li et al., 2021).

3 Pathological connection between
AHN and MDD

3.1 Hippocampal abnormalities

Pathological abnormalities in the hippocampus have been
extensively investigated in relation to MDD (Belleau et al.,
2019). A study conducted a comparative analysis of Magnetic
Resonance Imaging (MRI) results between MDD patients and a
healthy control group, unveiling a reduction in the volume of the
left hippocampal CA3 and CA4 regions, alongside an elevation in
the volume of the right hippocampal amygdala transition area
(HATA) (Sun et al., 2023). Another report identified hippocampal
atrophy in MDD patients experiencing anhedonia, specifically in
the left CA1 and DG subfields, which may be associated with the
lack of pleasure endemic to MDD (Wu et al., 2023). Furthermore,
MDD patients exhibit diminished Gray Matter Volume (GMV) in
the left hippocampus (Brosch et al., 2022). In this investigation,
multimodal MRI techniques were employed to scrutinize
connectivity patterns in individuals diagnosed with MDD. The
findings revealed a significant decrease in the strength of
connections within the right hippocampal sub-regional network
and the temporal cortex, extending into the insula and basal
ganglia. Additionally, the study observed a negative correlation
between the degree of depression and functional connectivity (FC)
in various brain regions, including the right cornu ammonis 1,
right fusion, right HATA, and bilateral basal ganglia (Shengli et al.,
2022). Nevertheless, hippocampal volume atrophy is intrinsically
linked to a decline in neurogenesis, degeneration of cellular
dendrites, and damage to granulosa cell dendrites (Schoenfeld
et al., 2017). MDD-related atrophy in hippocampal volume
manifests in the brain tissue, resulting in a reduction of
hippocampal granule neurons and a decline in the extent of the
neurogenic niche. As the brain region of AHN, pathological
damage in the hippocampus plays a pivotal role in the
progression of MDD. Furthermore, neuropathological damage
within the hippocampus serves as a foundation for neurogenic
impairment, while angiogenesis and an upsurge in hippocampal
volume are vital physiological processes contributing to AHN
occurrence (Berger et al., 2020).
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3.2 Stress and adult hippocampal
neurogenesis

Stress is widely acknowledged as a characteristic physiological
and psychological response to both favorable and unfavorable
circumstances. Prolonged stress constitutes a significant
contributing factor in the development of mental disorders,
including depression (Mahar et al., 2014). In rodent models,
chronic stress is often employed as a model for depression due to
its capacity to induce depression-like behaviors such as learned
helplessness, anhedonia, and social withdrawal (Schoenfeld et al.,
2017). Additionally, stress can inflict damage upon hippocampal
neurons (Liu et al., 2021) and cause inflammatory cell infiltration
within the hippocampus (Yan et al., 2021), directly or indirectly
participating in depression onset. Studies have reported that severe
and intense stress can impede AHN within the brain (Cameron and
Glover, 2015), while acute or chronic stress during adulthood can
hinder the regeneration and survival of new neurons within the DG
region of the hippocampus (Garza et al., 2012). Moreover, stress can
disrupt AHN by activating the HPA axis pathway and increasing the
expression of stress-related hormones (Petrik et al., 2012).
Activation of AHN can regulate excessive secretion of the HPA
axis and alleviate the stress response (Snyder et al., 2011).

3.3 Neuroinflammation and adult
hippocampal neurogenesis

Neuroinflammation refers to the inflammatory response
occurring within the central nervous system, which can originate
from various pathological injuries, including stress, infection,
trauma, and ischemia. This process involves the production of
pro-inflammatory cytokines, such as interleukin-1β (IL-1β),
interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), along
with reactive oxygen species from innate immune cells within the
central nervous system (Leng and Edison, 2021).
Neuroinflammation represents a significant pathogenic factor in
MDD, as substantial evidence supports the association between
depression and the inflammatory process. Inflammation amplifies
susceptibility to depression, and the usage of pro-inflammatory
drugs heightens the risk of depression among individuals with
the disorder (Kohler et al., 2016). Studies have demonstrated that
administration of antidepressants reduces peripheral levels of
inflammatory cytokines in individuals diagnosed with depression
(Liu et al., 2020). The abnormal activation of microglia, resident
macrophages within the central nervous system, is responsible for
the production of several inflammatory and cytotoxic mediators
associated with neuronal dysfunction and brain damage (Woodburn
et al., 2021). Microglia express various receptors, including Toll-like
receptors (TLRs), with TLR4 being the primary receptor for
lipopolysaccharide (LPS). The activation of TLR4 induces
downstream transcription factors such as nuclear factor (NF-κB)
and the Nod-like receptor pyrin domain 3 (NLRP3), resulting in an
increased expression of proinflammatory cytokines and the onset of
neuroinflammation (Colonna and Butovsky, 2017).
Neuroinflammation can regulate every step of adult neurogenesis,
including cell proliferation, differentiation, migration, survival of
newborn neurons, maturation, synaptogenesis, and neuritogenesis,

when triggered by various immune components such as activated
glia, cytokines, chemokines, and reactive oxygen species. Pro-
inflammatory cytokines, including IL-6, IL-1β, and TNF-α, can
influence the regulation of proliferation, neuronal cell fate, and
neuronal differentiation in the context of hippocampal neurogenesis
(Green and Nolan, 2014). Additionally, impaired AHN function is
closely intertwined with microglial polarization. Stress-induced
abnormal activation of microglia can impair the physiological
process of neurogenesis, thereby leading to depression-like
behavior. Reducing excessive neuroinflammation can ameliorate
impaired neurogenesis and serve as a treatment for depression
(Amanollahi et al., 2023; Chen et al., 2023).

3.4 Role of HPA axis in adult hippocampal
neurogenesis

The HPA axis, a pivotal component of the neuroendocrine
system orchestrating stress responses, plays a crucial role in the
regulation of AHN. Activation of the HPA axis triggers the release of
corticotropin-releasing hormone (CRH) from the paraventricular
nucleus (PVN) in the hypothalamus, which in turn stimulates the
secretion of corticotropin (ACTH) from the anterior pituitary gland.
Subsequently, ACTH prompts the adrenal cortex to release cortisol
(CORT) into the bloodstream (Frankiensztajn et al., 2020). In
patients with depressive symptoms, an overactive HPA axis is
associated with elevated levels of CRH, ACTH, and
glucocorticoids (GCs), resulting in disrupted negative feedback
and consequent pituitary and adrenal gland enlargement, as well
as hypercortisolemia (Wang et al., 2021). Research indicates that the
excessive activity of the HPA axis inhibits AHN through the
activation of glucocorticoid receptors (GRs) and
mineralocorticoid receptors by released GCs. However,
antidepressant treatments have shown the ability to regulate HPA
axis activity and promote AHN (Anacker et al., 2011; Anacker et al.,
2013).

3.5 Autophagy and adult hippocampal
neurogenesis

Autophagy, the principal intracellular degradation mechanism
responsible for delivering cytoplasmic components to lysosomes for
breakdown, serves a broader purpose than mere material removal. It
acts as a dynamic circulatory system that generates fresh building
blocks and energy, vital for cellular regeneration andmaintenance of
homeostasis (Mizushima and Komatsu, 2011). Dysregulation of
autophagy pathways has been observed in the development of
depression, indicating its significant involvement in the pathology
of nervous system disorders. Promising results from clinical and
preclinical studies targeting autophagy regulation have been
reported (Jia and Le, 2015; Gassen and Rein, 2019). Notably,
autophagy is closely intertwined with AHN in depression models,
wherein chronic stress-induced decline in AHN is mediated by
autophagic death of NSCs (Jung et al., 2020). The intervention of
CORT triggers the upregulation of autophagy-related gene 5
(ATG5), leading to excessive neuronal autophagy in the DG. It
results in heightened degradation of brain-derived neurotrophic
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factor (BDNF) and a significant reduction in the proliferation of
NSCs, NPCs, and neuroblasts. Consequently, the survival and
migration of new immature and mature neurons within the DG
are impaired. Conversely, downregulation of neuron
ATG5 promotes AHN and ameliorates depressive-like behavior
in mice (Zhang et al., 2023). Furthermore, the absence of nuclear
receptor binding factor 2 (NRBF2), an autophagy-related factor,
disrupts autophagy flux in adult NSCs, compromising AHN and
inducing a depression-like phenotype. On the contrary,
overexpression of NRBF2 in adult NSCs within the DG region
mitigates AHN impairment and treats depression (Zhang et al.,
2023) (Figure 1).

3.6 Effects of antidepressant therapy on
adult hippocampal neurogenesis

The hippocampus, as a NSC niche, facilitates neurogenesis
throughout adulthood. Dysfunction of the hippocampus due to
aging, injury, depression, or neurodegenerative diseases can lead
to cognitive decline, significantly affecting the quality of life for
individuals. Antidepressant treatments hold promise in directly or
indirectly promoting AHN and alleviating depressive symptoms
(Kot et al., 2022). SSRIs, commonly prescribed antidepressants, exert
their effects by selectively blocking the reuptake of 5-HT, thereby

prolonging and enhancing its activity (Perez-Caballero et al., 2014;
Bi et al., 2022). Physical activity is another intervention capable of
regulating emotional responses and effectively alleviating adverse
emotions, including depression (Pearce et al., 2022). Both SSRIs and
physical activity have been shown to promote AHN, contributing to
their antidepressant mechanisms (Micheli et al., 2018). Recent
studies have demonstrated that exercise improves anxiety
performance in postmenopausal mice by fostering nerve
regeneration in the DG region (Kang et al., 2023). Fluoxetine, a
selective SSRI is widely used in clinical practice, ameliorates
depression-like behavior by enhancing neurogenesis in a mouse
model of Parkinson’s disease (Mendonça et al., 2022a). Additionally,
fluoxetine regulates negative behavior during the mouse estrus cycle
by increasing AHN (Yohn et al., 2020). Importantly, when normal
AHN processes were disrupted using genetic and radiological
methods, the therapeutic effect of fluoxetine significantly
diminished, highlighting the indispensable role of AHN in
antidepressant treatment (Santarelli et al., 2003; Perera et al.,
2011). Metformin, a first-line treatment for type 2 diabetes,
controls blood sugar levels by suppressing liver gluconeogenesis
and affecting glucose metabolism through various mechanisms
(LaMoia and Shulman, 2021). It has also been explored for its
potential in treating depression. Previous reports suggest that
metformin can modulate gut microbiota and autophagy, offering
therapeutic benefits for depression. Compared to other oral

FIGURE 1
Adult Hippocampal Neurogenesis and Its Relationship with Depression. Below are markers that highlight the specificity of neurogenic processes.
HPA: hypothalamic-pituitary-adrenal. DCX: doublecortin. GFAP: glial fibrillary acid protein. NeuN: neuronal nuclei. Sox2: sex determining region Y-box2.
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hypoglycemic drugs, metformin demonstrates a reduced risk of
depression and potential efficacy as an antidepressant (Yu et al.,
2022; Mendonça et al., 2022b; Yang et al., 2022). Recent studies have
revealed that metformin improves depressive-like behavior by
promoting AHN (Lv et al., 2023).

In conclusion, a strong correlation exists between AHN and
multiple pathogenic pathways associated with MDD. Impaired
AHN functionality plays a pivotal role in the development and
progression of MDD. Approaches aimed at promoting AHN have
exhibited significant therapeutic benefits in preclinical trials for
intervening in MDD. Consequently, enhancing AHN has
emerged as a prominent area of study for advancing
antidepressant medications.

4 Mechanism of active ingredients of
TCM in promoting AHN in
antidepressants

4.1 Regulation of the BDNF signaling
pathway

BDNF is a growth factor extensively investigated for its
involvement in neuronal maturation, synapse development, and
synaptic plasticity within the brain (Björkholm and Monteggia,
2016). According to the neurotrophic hypothesis, reduced BDNF
expression leads to neuronal atrophy, diminished synaptic plasticity,
and contributes to the pathogenesis of depression (van Zutphen
et al., 2019). Conversely, optimizing BDNF levels enhances synaptic
plasticity and remodeling, mitigates neuronal damage, and
ameliorates depressive symptoms (Phillips, 2017). The BDNF/
tyrosine kinase receptor B (TrkB) signaling pathway plays a
critical role in antidepressant interventions. BDNF facilitates
AHN through TrkB regulation, promoting the differentiation and
maturation of cortical progenitor cells into neurons during
embryonic development (Bartkowska et al., 2007; Donovan et al.,
2008). Several studies have reported on the modulation of the BDNF
signaling pathway by bioactive components of TCM that foster
AHN and alleviate depression.

Oroxylin A, the primary active compound extracted from
Scutellariae radix (Sajeev et al., 2022), intricately regulates the
BDNF/TrKB pathway, fostering AHN and exerting an
antidepressant effect (Wu et al., 2022). Camellia assamica var.
Kucha (Kucha), a Chinese tea cultivated in Yunnan Province,
contains theacrine, a caffeine-like compound and the principal
purine alkaloid. It manifests its antidepressant properties by
precisely modulating the phosphodiesterase-4 (PDE4)/cyclic
adenosine monophosphate (cAMP)/cAMP response element-
binding (CREB)/BDNF/TrKB signaling pathway, thereby
promoting AHN (Sheng et al., 2020; Ouyang et al., 2021).

Cucurbitacin B, primarily derived from Cucumis melo L (Dai
et al., 2023), exhibits an antidepressant effect by ameliorating
depression-like behavior in mice. Mechanistic investigations have
unveiled its involvement in promoting BDNF/TrKB pathway
activity and neurogenesis (Ge et al., 2023). Quercetin, abundantly
present in various vegetables and fruits, possesses diverse beneficial
pharmacological effects (Di Petrillo et al., 2022). In a murine model
of depression induced by chronic unpredictable cold stress (CUMS),

quercetin administration fosters AHN and treats depression
through the Forkhead box transcription factor G1 (FoxG1)/
BDNF/TrKB signaling pathway (Ma et al., 2021).

Xanthoceraside, a triterpenoid saponin extracted from
Xanthoceras sorbifolia Bunge (Zhou et al., 2022), activates the
BDNF signaling pathway and AHN, thus alleviating CUMS-
induced depression (Guan et al., 2021). Water extracts of Panax
ginseng and Polygala tenuifolia also exhibit antidepressant effects by
modulating the BDNF/TrKB signaling pathway and promoting
AHN (Jiang et al., 2021a). Chronic social distress (CSDS) is often
employed in preclinical studies to induce animal models of
depression that resemble human depressive mood (Yoshida et al.,
2021). Recent reports have demonstrated that CSDS inhibits AHN
by impairing the BDNF/TrKB signaling pathway in the
hippocampus of mice. However, intervention with Ginsenoside
Rb1 can alleviate these pathological phenomena (Jiang et al.,
2021b). Another active compound derived from Panax ginseng
C.A. Meyer, Ginsenoside Rh2, improves depressive behavior in
mice by positively modulating the BDNF/TrKB signaling
pathway (Shi et al., 2022).

Paeonia lactiflora Pall, a commonly used antidepressant in
TCM, contains the water-soluble monoterpene glycoside
paeoniflorin, which exhibits various pharmacological activities
(Zhou et al., 2020). Recent studies have unveiled that
paeoniflorin alleviates CUMS-induced inhibition of AHN by
promoting the expression of the BDNF/TrKB signaling pathway
(Chen et al., 2019). Echinacoside, a natural phenylethanoid
glycoside extracted from Cistanche Tubulosa (Li et al., 2022),
exerts an antidepressant effect by augmenting the activity of the
BDNF/TrKB signaling pathway, regulating M1/M2 polarization of
microglia, and inhibiting neuroinflammation (Lu et al., 2023).

Cryptotanshinone, a natural quinone diterpenoid extracted
from Salvia miliorrhiza, employs the BDNF/TrKB and NFκB
signaling pathways to promote AHN and inhibit
neuroinflammation[], thus exerting its antidepressant mechanism
(Wang et al., 2021). Naringin, a bioflavonoid identified from
Tangerine Peel, promotes AHN and treats depression by
activating the CREB signaling pathway (Gao et al., 2022).
Pterostilbene, an active ingredient derived from Dragon’s blood,
fosters AHN through the BDNF/extracellular signal-regulated
kinase (ERK)/CREB signaling pathway, thereby improving
depressive-like behavior in mice subjected to chronic
unpredictable stress (CUS) (Yang et al., 2019).

4.2 Inhibition of neuroinflammation

Neuroinflammation plays a pivotal role in the pathogenesis of
MDD. Excessive neuroinflammatory responses have been shown to
hinder AHN, while inhibiting neuroinflammation promotes AHN
and ameliorates depressive-like behavior. Thymoquinone, a
bioactive compound found in Nigella sativa, effectively
suppresses neuroinflammation in the hippocampus and
amygdala, promoting AHN and restoring BDNF levels, thus
facilitating neurogenesis (Nazir et al., 2022). Hesperidin, a
flavanone glycoside abundantly present in citrus fruits such as
lemon, sweet orange (Citrus sinensis), and grapefruits (Hajialyani
et al., 2019), exerts antidepressant effects through its
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anti-inflammatory and antioxidant properties, stress reduction,
attenuation of cell apoptosis, and enhancement of neurogenesis
(Kwatra et al., 2020). Porphyran, an active component isolated from
Porphyra haitanensis, mitigates exaggerated inflammation induced
by LPS in the hippocampus, restores the activity of the BDNF
signaling pathway, fosters AHN, and improves depressive behavior
in mice (Yi et al., 2021). Patchouli alcohol, the principal active
ingredient of Patchouli, inhibits NLRP3 inflammasomes and
ameliorates microglia-mediated disturbances in neurogenesis (He
et al., 2023). Akebia saponin D, a triterpenoid saponin derived from
the rhizome of Dipsacus asper (Yang et al., 2021), reprograms
neurogenic microglia via the peroxisome proliferator-activated
receptor-gamma (PPAR-γ) pathway, rescues hippocampal
neurogenesis impaired by Chronic Mild Stress (CMS), and
enhances AHN (Zhang et al., 2023). Ginsenoside Rg1 and
Ginsenoside Rb1, major components of Panax ginseng C.A.
Meyer, exert their antidepressant effects by downregulating
neuroinflammation and promoting AHN (Jiang et al., 2020).
Similarly, Ginsenoside Rb1 utilizes PPAR-γ mediated activation
of microglia to improve AHN in depression treatment (Zhang
et al., 2021). Silymarin, a derivative derived from milk thistle
seeds, has long been used in the treatment of hepatic ailments
(Gillessen and Schmidt, 2020). In the treatment of depression,
empirical data suggests that Silymarin and Silymarin
nanoparticles may exert their therapeutic effects through their
antioxidant and anti-inflammatory mechanisms, while also
promoting neurogenesis in the prefrontal cortex and
hippocampus (Ashraf et al., 2019). Berberine, an isoquinoline
alkaloid extracted from the Chinese herb Coptis chinensis and
various Berberis plants, (Song et al., 2020), inhibits
NLRP3 inflammasomes to mitigate neuroinflammatory responses,
enhances synaptic plasticity and neurogenesis, and improves
neuronal degeneration, thereby exhibiting its antidepressant effect
(Qin et al., 2023).

4.3 Regulation of the HPA axis

The HPA axis, a vital component of the neuroendocrine system,
is closely associated with AHN and the pathophysiology of
depression. Formononetin, a phytoestrogen obtained from the
Chinese medicinal herb Red Clover (Yu et al., 2022), promotes
AHN by modulating serum CORT levels and hippocampal GR
expression in a mouse model of CORT-induced depression (Zhang
et al., 2022). Puerarin, a phytoestrogen extracted from Pueraria
plants (Zhang et al., 2019), holds potential for treating depression-
like behavior induced by ovariectomy, with mechanisms involving
the inhibition of HPA axis hyperactivity, regulation of BDNF
expression, and promotion of AHN (Tantipongpiradet et al.,
2019). The Ethanol Extract of Dipterocarpus alatus alleviates
HPA axis hyperactivity induced by Unpredictable CMS (UCMS)
and regulates BDNF and CREB expression levels (Daodee et al.,
2019). The Flower Essential Oil of Tagets Minuta promotes
neurogenesis through the modulation of the HPA axis and the
BDNF/protein kinase B (Akt)/ERK2 pathway (Birmann et al., 2022).
Leonurine, a prominent bioactive constituent derived from Herba
leonuri (Zhao et al., 2021), promotes axonal growth and

neurotrophic activity in cultured PC12 cells through the
regulation of the GR/SGK1 signaling pathway (Meng et al., 2019).

4.4 Adjustment of the PI3K/Akt signaling
pathway

The Phosphatidylinositol 3-kinase (PI3K)/protein kinase B
(Akt) signaling pathway represents a crucial regulatory cascade
governing cell growth, proliferation, migration, metabolism, and
survival (Wang et al., 2022). Targeted modulation of the PI3K/Akt
signaling pathway has shown antidepressant effects, as both patients
with MDD and animal models exhibit downregulation of PI3K and
Akt expression. Moreover, targeted regulation of the PI3K/Akt
signaling pathway demonstrates an antidepressant effect (Zhang
et al., 2021). Furthermore, this pathway plays a role in promoting
AHN by facilitating cellular growth and survival in response to
growth factors (Chen et al., 2020). Xiaoyaosan, a compound widely
employed in TCM, serves as an exemplary representative due to its
multiple targets and pathways that contribute to its antidepressant
properties (Chen et al., 2022). In a recent study, it was discovered
that the ethyl acetate fraction of Xiaoyaosan can treat depression by
regulating the PI3K/Akt signaling pathway, reducing neuronal
apoptosis, and fosters neurogenesis, thereby effectively treating
depression (Zeng et al., 2022). The PI3K/Akt signaling pathway
also mediates the neuroprotective effect of Akebia saponin D and the
antidepressant effects of Baicalin by safeguarding neural stem/
precursor cells against inflammatory effects mediated by
microglia and stimulating their proliferation and neuronal
differentiation, respectively (Liu et al., 2022). Baicalin, isolated
from Scutellaria baicalensis, possesses antidepressant properties
due to its association with hippocampal neurogenesis. Previous
studies have demonstrated that Baicalin has the ability to
modulate the PI3K/Akt/glycogen synthase kinase-3β (GSK3β)/β-
catenin pathway, thereby stimulating AHN and eliciting
antidepressant effects (Zhao et al., 2020). Moreover, Baicalin has
been shown to promote AHN, and alleviate inflammation-induced
pain-related depression through Akt-mediated AHN (Fang et al.,
2020). Additionally, Baicalin facilitates neuronal differentiation and
survival through the Akt/FoxG1 pathway, contributing to its
antidepressant effects (Zhang et al., 2019).

4.5 Regulation of the microbiota-gut-brain
axis

The gut microbiota, an intricate internal metabolic organ
comprised of over 1014 bacteria and weighing approximately
0.3% of an individual’s body weight, has garnered recognition for
its significant role. Emerging research highlights a profound
correlation between the gut microbiota and the central nervous
system (Xiao et al., 2020). The bidirectional communication
between the brain and gut microbiota has captivated scientific
interest due to its disruption being identified as a pivotal driver
in the development of depression (Du et al., 2020). Notably, the
microbiota-gut-brain axis exerts influence on hippocampal
neurogenesis by modulating serum metabolite levels (Siopi et al.,
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2020), while antidepressants have demonstrated efficacy through
this axis (Bi et al., 2022).

Eucommia cortex polysaccharides represent the principal
active constituents derived from Eucommia cortex (Sun et al.,
2022). In a recent preclinical investigation, it was discovered that
Eucommia cortex polysaccharides mitigate the release of
bacterial-derived LPS, inhibit the TLR4/NFκB/MAPK signaling
pathway mediated by microglia, and promote AHN (Wang et al.,
2023). Inulin, originally extracted from Inula helenium, bestows
various beneficial effects upon the body (Illippangama et al.,
2022). In a mouse model of chronic unpredictable mild stress
(CUMS)-induced depression, disruptions in intestinal
microbiota, compromised intestinal barrier integrity, altered
levels of short-chain fatty acids (SCFAs), and elevated
circulating LPS were observed, resulting in excessive activation
of neuroinflammation, impairment of hippocampal
neurogenesis, and synaptic plasticity. Inulin intervention
ameliorated these pathological phenomena and reversed the
depression-like behavior induced by CUMS (Wang et al.,
2023). Diosgenin, one of the primary bioactive compounds
found in fenugreek seeds (Arya and Kumar, 2021), shows
promise in rectifying gut microbiota imbalances, regulating
HPA axis secretion levels, upregulating hippocampal BDNF
signaling pathway expression, promoting AHN, and treating

depression (Cui et al., 2023). Consequently, the microbiota-
gut-brain axis assumes a pivotal role for antidepressant
interventions, mediating the augmentation of AHN through
active ingredients found in TCM.

4.6 Regulation of the Wnt/β-catenin
signaling pathway

TheWnt/β-catenin pathway plays a critical role in the process of
embryonic development and the maintenance of tissue equilibrium
in adult organisms. Dysregulation of Wnt/β-catenin signal
transduction often accompanies major disorders (Liu et al.,
2022). It is widely postulated that Wnt signaling exerts influence
on the delicate balance between NSC proliferation and
differentiation through transcriptional co-activators, particularly
β-catenin, during brain development and adult tissue homeostasis
maintenance. Alterations in Wnt signaling have been implicated in
developmental abnormalities and neurological diseases. Employing
theWnt/β-catenin pathway as a therapeutic approach for depression
and the facilitation of AHN has yielded promising outcomes (Gao
et al., 2021).

Crocin, a hydrophilic carotenoid synthesized in the flowers of
the Crocus genus (Boozari and Hosseinzadeh, 2022), has

FIGURE 2
Mechanism of Regulating Adult Hippocampal Neurogenesis by Active Ingredients of Traditional Chinese Medicine in Antidepressant. Active
ingredients extracted from Traditional Chinese Medicine promote AHN by regulating various signaling pathways, such as BDNF signaling pathway, PI3K/
Akt signaling pathway, and Wnt/β-catenin signaling pathway, as well as by inhibiting neuroinflammation and modulating the HPA axis and microbiota-
gut-brain axis. BDNF: Brain-derived neurotrophic factor. PI3K: Phosphatidylinositol 3-kinase. Akt: Protein kinase B. AHN: Adult hippocampal
neurogenesis. NF-κB: Transcription factor nuclear factor. NLRP3: Nod-like receptor thermal protein domain 3. CRH: Corticotropin releasing hormone.
ACTH: Corticotropin. CORT: Cortisol. LPS: Lipopolysaccharide. RGL: Radial glial-like cells. HPA: hypothalamic-pituitary-adrenal.
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TABLE 1 Mechanism of action of active ingredients in traditional Chinese medicine.

Active
ingredients
of TCM

CAS
NO.

Molecular
formula

Main
sources

Modeling
method

Behavioral
testing
evaluation

Mechanism of action/
main indicators

References

Oroxylin A 480-11-5 C16H12O5 Scutellariae radix CUMS OFT, FST,
TST, SPT

BDNF/TrkB system
participates in promoting
AHN and antidepressant
processes

Sajeev et al. (2022),
Wu et al. (2022)

Theacrine 2309-49-1 C9H12N4O3 Camellia
assamica var.
Kucha

CWIRS +
CUMS

FST, TST, SPT,
SMAT

Regulating the PDE4/cAMP/
CREB/BDNF/TrkB pathway
to promote AHN

Sheng et al. (2020),
Ouyang et al. (2021)

Cucurbitacin B 6199-67-3 C32H46O8 Cucumis melo L CUMS OFT, FST,
TST, SPT

Promote BDNF/TrkB
pathway activity and
neurogenesis

Dai et al. (2023), Ge
et al. (2023)

Quercetin 117-39-5 C15H10O7 Widely
distributed in
fruits and
vegetables

CUMS OFT, SPT, TST Regulating the FoxG1/CREB/
BDNF pathway to
promote AHN

Ma et al. (2021), Di
Petrillo et al. (2022)

Ginsenoside Rb1 41753-
43-9

C54H92O23 Panax ginseng
C.A. Meyer

CSDS SIT, SPT, FST Enhancing BDNF signaling
cascade and promoting AHN

Jiang et al. (2021b)

Ginsenoside Rh2 78214-
33-2

C36H62O8 Panax ginseng
C.A. Meyer

CUMS FST, TST, OFT Positive regulation of BDNF/
TrKB signaling pathway

Shi et al. (2022)

paeoniflorin 23180-
57-6

C23H28O11 Paeonia lactiflora
Pall

CUMS SPT Promote the expression of
BDNF/TrKB signaling
pathway to alleviate AHN
inhibition caused by CUMS

Chen et al. (2019),
Zhou et al. (2020)

Echinacoside 82854-
37-3

C35H46O20 Cistanche
tubulosa

CUMS OFT, FST,
TST, SPT

Enhance the activity of
BDNF/TrKB signaling
pathway and regulate M1/
M2 polarization of microglia
and inhibit
neuroinflammation

Li et al. (2022), Lu
et al. (2023)

Cryptotanshinone 35825-
57-1

C19H20O3 Salvia
miltiorrhiza

CUS SPT, FST,
FUST, LAT

Through BDNF/TrKB and
NFκB signaling pathway to
promote AHN and inhibit
neuroinflammation

Wang et al. (2021b)

Naringin 10236-
47-2

C27H32O14 Tangerine peel CORT TST, OFT, FST Activating the CREB
signaling pathway to
promote AHN

Gao et al. (2022)

Pterostilbene 537-42-8 C16H16O3 Dragon’s blood CUS SPT, OFT, FST,
NSFT

Promoting AHN through the
BDNF/ERK/CREB signaling
pathway

Yang et al. (2019)

Thymoquinone 490-91-5 C10H12O2 Nigella sativa UCMS FST, EPM, SIT,
NSFT

Inhibiting
neuroinflammation in the
hippocampus and amygdala
and restoring BDNF levels

Nazir et al. (2022)

Hesperidin 520-26-3 C28H34O15 lemon, sweet
orange (Citrus
sinensis), and
grapefruits

RS + LPS EPM, OFT, TST,
FET, SPT

Anti inflammation,
antioxidant stress, alleviating
cell apoptosis, and
promoting neurogenesis

Hajialyani et al.
(2019), Kwatra et al.
(2020)

Porphyran 11016-
36-7

C26H44O27S2
−2 Porphyra

haitanensis
LPS FST, TST, OFT Suppress NFκB/

NLRP3 inflammatory
signaling pathway, restores
BDNF signaling pathway
activity, promotes AHN

Yi et al. (2021)

Patchouli alcohol 5986-55-0 C15H26O patchouli CMS SPT, TST, FST,
OFT, LAT, Coat
score

Inhibition of
NLRP3 inflammasome and
improvement of microglia
mediated neurogenic
disorders

Lee et al. (2020), He
et al. (2023)

(Continued on following page)
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TABLE 1 (Continued) Mechanism of action of active ingredients in traditional Chinese medicine.

Active
ingredients
of TCM

CAS
NO.

Molecular
formula

Main
sources

Modeling
method

Behavioral
testing
evaluation

Mechanism of action/
main indicators

References

Akebia saponin D 39524-
08-8

C47H76O18 Dipsacus asper CMS SPT, OFT, FST Through PPAR-γ Pathway
reprogramming of
neurogenic microglia to
restore hippocampal
neurogenesis

Yang et al. (2021),
Zhang et al. (2023c)

Ginsenoside Rg1 22427-
39-0

C42H72O14 Panax ginseng
C.A. Meyer

CSDS SIT, SPT,
TST, FST

Downregulation and
upregulation of
neuroinflammation in
neurogenesis

Jiang et al. (2020)

Ginsenoside Rb1 41753-
43-9

C54H92O23 Panax ginseng
C.A. Meyer

CMS TST, FST Through PPAR-γ Mediated
activation of microglia and
improvement of AHN

Zhang et al. (2021a)

Berberine 2086-83-1 C20H18NO4
+ Coptis chinensis CORT OFT, TST,

FST, SPT
Inhibiting the activation of
NLRP3 inflammasomes
reduces neuroinflammatory
responses and improves
neuronal degeneration by
promoting synaptic plasticity
and neurogenesis

Song et al. (2020), Qin
et al. (2023)

Formononetin 485-72-3 C16H12O4 Herb Red Clover CORT SPT, FST, LAT Reduced serum
corticosterone levels,
upregulated protein
expression levels of GR and
BDNF in the hippocampus,
and promoted neurogenesis
in the hippocampus

Yu et al. (2022b),
Zhang et al. (2022)

Puerarin 3681-99-0 C21H20O9 Pueraria plants Ovariectomy TST, FST Relieve excessive activation
of HPA axis and regulate
BDNF expression level,
promoting AHN

Zhang et al. (2019a),
Tantipongpiradet
et al. (2019)

Leonurine 24697-
74-3

C14H21N3O5 Herba leonuri CORT Not Applicable Regulating the GR/
SGK1 signaling pathway

Meng et al. (2019),
Zhao et al. (2021)

Xiaoyaosan ethyl
acetate fraction

Not
Applicable

Not Applicable Xiaoyaosan CUMS SPT, ST,
NFST, TST

Promote hippocampal
neurogenesis, reduce
neuronal apoptosis, and
regulate PI3K/Akt pathway
activity

Zeng et al. (2022)

Akebia saponin D 39524-
08-8

C47H76O18 Dipsacus asper LPS SPT, FST, EPM,
NORT, MWM

Neuroprotective effects are
mediated through the PI3K/
Akt signaling pathway,
protecting neural stem/
precursor cells from the
inflammatory effects
mediated by microglia and
stimulating their
proliferation and neuronal
differentiation

Liu et al. (2022a)

Baicalin 21967-
41-9

C21H18O11 Scutellaria
baicalensis

CORT SPT, OFT, TST,
FST, NSFT

Activating AHN and
antidepressant effects
through the PI3K/AKT/
GSK3β/β-catenin pathway

Zhao et al. (2020)

Baicalin 21967-
41-9

C21H18O11 Scutellaria
baicalensis

CFA SPT, TST, Splash
test

Alleviation of inflammatory
pain related depression
through Akt mediated adult
hippocampal neurogenesis

Fang et al. (2020)

Baicalin 21967-
41-9

C21H18O11 Scutellaria
baicalensis

CUMS SPT, OFT, TST Promoting neuronal
differentiation and survival
through the Akt/
FOXG1 pathway, thereby
exerting antidepressant
effects

Zhang et al. (2019b)
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exhibited the capacity to enhance AHN and induce
antidepressant effects by modulating the Wnt/β-catenin
signaling pathway (Tao et al., 2023). Similarly, Baicalin has
demonstrated its ability to counteract depression-like behavior
induced by CUMS in mice by finely modulating the Wnt/β-
catenin signaling pathway and promoting AHN (Xiao et al.,
2021) (Figure 2; Table 1).

5 Discussion

MDD is a debilitating, chronic, and recurrent mental illness
characterized by profound emotional distress, feelings of
inadequacy, somatic discomfort, disturbances in sleep or
appetite, and an elevated susceptibility to suicidal attempts
and actions (Xia et al., 2023). Despite its substantial impact
on individuals and society, the pathophysiology of MDD
remains enigmatic, and effective interventions are limited,
posing an enduring challenge in contemporary medicine
(Chen et al., 2022). TCM encompasses a myriad of
components, targets, and pathways that harbor potential
therapeutic benefits. Moreover, bioactive constituents derived
from TCM possess the capacity to engender AHN through
diverse signaling pathway, including BDNF, PI3K/Akt, and
Wnt/β-catenin, as well as via the modulation of
neuroinflammation and the intricate interplay within the HPA

and microbiota-gut-brain axes. These bioactive entities hold
immense promise for the treatment of MDD.

Nevertheless, current research predominantly relies on
animal or cellular models, lacking sufficient exploration into
the clinical efficacy of TCM active ingredients in alleviating
depression among MDD patients. Additionally, numerous
bioactive compounds sourced from TCM encounter challenges
such as instability, poor solubility, and limited ability to traverse
the blood-brain barrier. The precise targeting of organs
implicated in MDD by these bioactive agents also remains
uncertain. Furthermore, several Chinese herbal medicines lack
well-defined quality control standards, impeding the assurance of
chemical component stability and consistency, thereby
constraining their clinical utility and hindering the
investigation of their pharmacological mechanisms. Most
notably, there exists a paucity of research pertaining to the
specificity of TCM active ingredients in relation to AHN,
warranting further scrutiny to ascertain the ability of these
bioactive moieties to efficaciously target AHN.

Therefore, future research endeavors should concentrate on
expanding clinical observations regarding the efficacy and
adverse reactions of TCM active ingredients in treating MDD
patients, while concurrently ameliorating the quality control
standards of TCM. Moreover, considerable efforts ought to be
devoted to enhancing the exploration of targeted delivery systems
for TCM that augment drug concentration and duration of action

TABLE 1 (Continued) Mechanism of action of active ingredients in traditional Chinese medicine.

Active
ingredients
of TCM

CAS
NO.

Molecular
formula

Main
sources

Modeling
method

Behavioral
testing
evaluation

Mechanism of action/
main indicators

References

Inulin 9005-80-5 Not Applicable Inula helenium CUMS TST, FST, OFT,
EPM, MBT

Regulate intestinal
microbiota disorder and
SCFAs levels, protect
intestinal barrier, inhibit
neuroinflammation, promote
AHN, and restore synaptic
plasticity

Illippangama et al.
(2022), Wang et al.
(2023b)

Diosgenin 512-04-9 C27H42O3 Fenugreek seeds CRS SPT, FST Improve intestinal
microbiota imbalance,
regulate HPA axis secretion
level, upregulate
hippocampal BDNF
signaling pathway
expression, and
promote AHN

Arya and Kumar
(2021), Cui et al.
(2023)

Crocin 42553-
65-1

C44H64O24 Crocus genus CUMS SPT, FST, TST Through Wnt/β-catenin
signaling pathway promotes
AHN and exerts
antidepressant effects

Boozari and
Hosseinzadeh (2022),
Tao et al. (2023)

Baicalin 21967-
41-9

C21H18O11 Scutellaria
baicalensis

CUMS TST, EPM, SPT Adjusting Wnt/β-catenin
signaling pathway,
activating AHN

Xiao et al. (2021)

Note:CUMS, chronic unpredictable mild stress; CWIRS, chronic water immersion restraint stress; CSDS, Chronic social defeat stress; CUS, Chronic unpredictable stress; RS, Restraint stress;

LPS, Lipopolysaccharide; CFA, Freund’s adjuvant; CRS, Chronic restraint stress; SIT, Social Interaction Test; LAT, Locomotor activity test; NSFT, Novelty-suppressed feeding test; ST, Splash

test; NORT, Novel object recognition test; MWM, Morris water maze; MBT, Marble burying test; OFT, Open field test; TST, Tail suspension test; FST, Forced swimming test; SPT, Sucrose

preference test; SMAT, Spontaneous Motor Activity Test; BDNF, Brain-derived neurotrophic factor; TrKB, tyrosine kinase B; AHN, Adult hippocampal neurogenesis; PDE4,

Phosphodiesterase-4; cAMP, Cyclic adenosine mono—Phosphate; CREB, cAMP response-element binding; FoxG1, Forkhead box transcription factor G1; EPM, Elevated Plus Maze; NF-κB,
Nuclear transcription factor-κB; NLRP3, Nucleotide-binding oligomerization domain-like receptor protein 3; PPAR-γ, Peroxisome proliferator-activated receptor-gamma; GR, Glucocorticoid

receptor; SGK1, Serum-inducible and glucocorticoid-inducible kinase 1; PI3K, Phosphatidylinositol 3-kinase; Akt, Protein kinase B; GSK3β, Glycogen synthase kinase-3b; HPA, Hypothalamic-

pituitary-adrenal; SCFAs, Short-chain fatty acids; TCM, traditional chinese medicine.
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within the central nervous system, thereby heightening the
therapeutic effects of bioactive constituents in target organs.
Additionally, the integration of multiple omics techniques can
enrich our understanding of the intricate pathways involved in
the promotion of AHN by TCM active ingredients, thus
fortifying the connection between AHN and MDD. Finally,
the incorporation of antagonists or reverse validation
methods, such as gene knockout strategies, can facilitate the
elucidation of the mechanisms through which Chinese herbal
active ingredients regulate AHN. Extensive work would be
required in clinical and preclinical studies to unravel the
underlying mechanisms by which antidepressant treatments
regulate AHN. It is of great significance for the development
of TCM as a therapeutic modality for MDD.
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Umbelliprenin via increase in the
MECP2 and attenuation of
oxidative stress mitigates the
autistic-like behaviors in mouse
model of maternal separation
stress

Parnian Karimi, Mehryar Shahgholian Ghahfarroki,
Zahra Lorigooini, Mehrdad Shahrani and Hossein Amini-Khoei*

Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical
Sciences, Shahrekord, Iran

Introduction: Autism spectrum disorder (ASD) is a complex neurodevelopmental
condition. Maternal separation (MS) stress is an early-life stress factor associated
with behaviors resembling Autism. BothMECP2 and oxidative stress are implicated
in the pathophysiology of Autism. Umbelliprenin (UMB) is a coumarin compound
with various pharmacological properties. Our study aimed to investigate the
potential effects of UMB in mitigating autistic-like behaviors in a mouse model
subjected to MS stress, focusing on probable alterations in MECP2 gene
expression in the hippocampus.

Methods:MS paradigmwas performed, andmicewere treatedwith saline or UMB.
Behavioral tests consisting of the three-chamber test (evaluating social
interaction), shuttle box (assessing passive avoidance memory), elevated plus-
maze (measuring anxiety-like behaviors), and marble-burying test (evaluating
repetitive behaviors) were conducted. Gene expression of MECP2 and
measurements of total antioxidant capacity (TAC), nitrite level, and
malondialdehyde (MDA) level were assessed in the hippocampus.

Results: The findings demonstrated that MS-induced behaviors resembling
Autism, accompanied by decreased MECP2 gene expression, elevated nitrite,
MDA levels, and reduced TAC in the hippocampus. UMB mitigated these autistic-
like behaviors induced by MS and attenuated the adverse effects of MS on
oxidative stress and MECP2 gene expression in the hippocampus.

Conclusion: In conclusion, UMB likely attenuated autistic-like behaviors caused
byMS stress, probably, through the reduction of oxidative stress and an increase in
MECP2 gene expression.
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maternal separation stress, Autism spectrum disorder, umbelliprenin, MeCP2, oxidative
stress
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Introduction

Autism spectrum disorder (ASD) encompasses a diverse range of
neurodevelopmental disorders characterized by challenges in social
communication and interaction, as well as repetitive and restricted
patterns of behavior and interests (Wen et al., 2017). Various factors
such as epigenetic, metabolic, and environmental conditions are ASD
pathogenic factors (Faras et al., 2010). Previous studies have determined
that neonatal exposure to psychosocial difficulties, such as maternal
separation (MS) stress, significantly disrupts brain development,
consequently increasing susceptibility to neuropsychiatric disorders
(Amiri et al., 2016; Amini-Khoei et al., 2019). Ample evidence has
been demonstrated that MS could lead to neurotransmission,
neuroendocrine, and neurostructural alterations in the central
nervous system (CNS) (Gildawie et al., 2021). It has been well-
determined that MS via neurotransmission and neurostructural
modifications in the brain provoked autistic-like behaviors in
rodents, indicating that the MS paradigm could be considered as an
experimental model of Autism in rodents (Mansouri et al., 2021; Farzan
et al., 2023; Khaledi et al., 2023; Moghaddam et al., 2023; Yadollahi-
Farsani et al., 2023). MS, with its abovementioned changes in the
hippocampus, causes mood-behavioral disorders (Arabi et al., 2021).
Studies on autistic patients represented irregular hippocampal patterns
(Xu et al., 2020). Studies on the experimental models have determined
hippocampal alterations in Autism, indicating the pivotal role of the
hippocampus in the pathophysiology of ASD (Zhong et al., 2020; Lee
et al., 2023). Methyl-CpG-Binding Protein 2 (MECP2) regulates
neurons that modulate social interactions (Pejhan and Rastegar,
2021). Some cases of neurodevelopmental disorders like Autism and
Rett syndrome may be linked to mutations or dysregulation of the
MECP2 gene (Zoghbi, 2005; Calfa et al., 2011), suggesting thatMECP2
is involved in the pathophysiology of Autism (Neul, 2022). MECP2
regulates neurophysiological functions implicated in developing
neurons and synaptic plasticity (Sánchez-Lafuente et al., 2022).
Specifically, researchers have observed that methylation at a specific
region of the MECP2 gene, which causes a decrease in the level of
MECP2 protein in the brain, is associated with Autism (Neul, 2022).
Preclinical studies have determined that hippocampal MECP2
knockdown provoked autistic-like behaviors in rats (Choi et al.,
2022). Thus, MECP2 could consider as a new target to introduce
new agents as well as explore the efficacy of therapeutics in ASD.

Coumarins are natural benzopyrene derivatives abundantly
present in various plant sources (Iranshahi et al., 2009; Shakeri
et al., 2014). They possess a wide range of pharmacological activities.

Umbelliprenin (UMB) is a sesquiterpene Coumarin compound
found in Ferula species. Extensive research has demonstrated that UMB
possesses various pharmacological properties (Hashemzaei et al., 2020).
Numerous studies have confirmed its diverse effects, including
antioxidative, neuroprotective, proapoptotic, and anti-inflammatory
properties (Hashemzaei et al., 2015). Researchers have investigated
its impact on neuropathic pain and found that it effectively mitigates
oxidative stress while providing neuroprotection (Shahraki et al., 2020).
Additionally, UMBhas shown anti-inflammatory properties and acts as
a modulator of cytokine secretion (Khaghanzadeh et al., 2017).

In this study, we aimed to investigate the potential of UMB to
mitigate autistic-like behaviors in a mouse model ofMS stress, with a
specific focus on assessing its effect on the alterations of MECP2
gene expression in the hippocampus.

Materials and methods

Animals and maternal separation paradigm

Pregnant Naval Medical Research Institute (NMRI) mice were
obtained from the Institute Pasteur in Iran. The animals were housed in
laboratory conditions with standard parameters, including a 12-hour
light/dark cycle (with lights turned on at 8:00 a.m.), a consistent
temperature of 21°C ± 2 °C, and free access to food and water. The
birthday (pups with an average weight of about 3 g) was designated as
postnatal day (PND) 0. From PND2, the neonates were separated from
their mothers for 3 h each day (from 10 a.m. to 1 p.m.) until PND14.
Subsequently, the neonates were returned to their mothers’ cages until
PND25 (Lorigooini et al., 2020a). To avoid the litter effect, pups of each
mouse were accidentally numbered on PND 25 and were randomly
assigned to the experimental groups. Forty-five maternally separated
male mice were randomly divided into three groups (n = 15).
Additionally, fifteen NMRI male mice not exposed to the MS model
were selected as the control group. By establishing a bilateral alpha of
0.05 and a confidence interval of 90%, 15mice were considered for each
experimental group based on a sample size calculation formula (Chen
et al., 2022).

Study design

All agents were administered via the intraperitoneal (i.p.) route
for seven consecutive days from PND 51–53 until PND 58–60. The
behavioral experiments related to autistic-like behaviors were
conducted immediately after the treatments were completed and
carried out between 09:00 a.m. and 05:00 p.m. (light phase). Finally,
the mice were sacrificed under deep anesthesia using diethyl ether,
and their hippocampi were dissected for molecular analysis
(Lorigooini et al., 2021). The dose and administration time were
selected based on previous studies and our pilot study (Rashidi et al.,
2018; Shahraki et al., 2020).

The control group (Group 1) received normal saline (1 mL/kg).
The second to fourth groups consisted of the MS mice treated with
normal saline (1 mL/kg), UMB (12.5 mg/kg), and UMB (25 mg/kg),
respectively. It has been established that animals display low subject-
to-subject variation (Jiang et al., 2017). To minimize animal
suffering and diminish the number of mice used, based on the
formula introduced by Charan et al., five mice in each group is the
satisfactory limit and, therefore, can be considered an adequate
sample size to see the effect of the drug in animal studies (Charan
and Kantharia, 2013). Since behavioral tests impose different levels
of stress on animals, to minimize the impact of stress reactivity, from
15 mice in each experimental group, five mice were subjected to the
three-chamber sociability test, five mice were subjected to the shuttle
box test, and five mice subjected to the EPM and MBT (7).

Behavioral tests

Evaluation of sociability and social preference
indexes

The three-chamber test was employed to assess social behaviors.
A plexiglass box was divided into three chambers: a central section
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and two side chambers. During the habituation, sociability, and
social preference phases, mice freely explored the box. In the
habituation phase, mice were placed in the central chamber for
5 min to acclimatize to the environment. Two cylindrical wire cages
were placed in the two side chambers for the sociability phase. In the
next step, one wire cage contained a stranger of the same sex and age
mouse (novel mouse 1 or social stimulus 1), and the time spent
exploring each chamber was measured for 10 min. The other wire
cage remained empty. The time spent directly interacting with the
social stimulus and the empty chamber (non-social stimulus) was
recorded. The sociability index (SI) was calculated as (social
stimulus 1 - non-social stimulus)/(social stimulus 1 + non-social
stimulus). For the social preference index (SPI), another unfamiliar
mouse (new mouse 2 or social stimulus 2) was placed in a different
empty wire cage, and the time spent in each chamber was recorded
for 10 min. The SPI was determined using the following formula:
(social stimulus 2 - social stimulus 1)/(social stimulus 2 + social
stimulus 1) (Amini et al., 2023; Pang et al., 2023).

Evaluation of passive avoidance memory
The shuttle box is a device used to assess passive avoidance

memory. The mice were placed in the box, and adaptation of the
mice was completed over the first 2 days. Mice were allowed to
explore the apparatus for 5 min. On the third day, the mice were
placed in the bright chamber, and after 2 min, the door was
opened. The door was closed when the mice entered the dark
section, and an electrical shock (1 mA/second) was administered.
The dark chamber latency was recorded as the initial latency
(T1). The same procedure was repeated on the fourth day without
the electrical shock, and the second latency was recorded (T2)
(Farzan et al., 2023).

Evaluation of repetitive behaviors
The Marble Burying Test (MBT) assessed repetitive behaviors in

rodents. For the test, eachmouse was placed in a clean cage containing
20 marbles arranged in a uniform grid pattern on fresh, unscented
mouse bedding material with a depth of 5 cm and allowed to explore
for 20 min. The number of marbles buried (covered with at least two-
thirds of the bedding) was then calculated and recorded for each
mouse. To avoid any potential bias, the test cage and marbles were
carefully cleaned with 70% ethanol between each test, and fresh
bedding material was used for each test (Farzan et al., 2023).

Evaluation of anxiety-like behavior
The Elevated Plus Maze (EPM) is an appropriate test for

assessment of rodents’ anxiety-like behavior. The maze was
constructed from black opaque Plexiglas and consisted of two
open arms (30 × 5 cm) and two closed arms (30 × 5 × 15 cm),
which were connected by a central platform (5 × 5 cm). During
the test, each mouse was individually placed in the center of the
maze, facing one of the closed arms, for 5 min, allowing it to
explore the maze. The time spent in each arm, including the
open and closed arms, and the number of entries into each arm
were recorded. An arm entry was defined as placing all four
paws into an arm (Sadeghi et al., 2023). In addition, the anxiety
index was calculated as follows: Anxiety Index = 1 − ([Open arm
time/Test duration] + [Open arms entries/Total number of
entries]/2) (Moreno-Martínez et al., 2022). After each trial,

the maze was cleaned with 70% ethanol to eliminate any
odor cues left by the mice. The test was conducted in a quiet
environment with controlled lighting conditions to minimize
external disturbances.

Nitrite assay
Initially, the mice were anesthetized with diethyl ether and

sacrificed, and the hippocampus was removed and immediately
placed into liquid nitrogen. The Griess reaction method was used to
assess the nitrite level. Hippocampal homogenates were prepared, and
nitrite concentrations were determined using a colorimetric assay based
on the Griess reaction. In brief, 100 μL of samples were loaded into each
well and mixed with 100 μL of Griess reagent. After 10 minutes of
incubation at room temperature, the automated plate reader measured
the absorbance at 540 nm. The nitrite level was determined using a
standard curve of sodium nitrite (Sigma, United States of America) and
reported as micromole per mg protein (Wopara et al., 2021).

Measurement of malondialdehyde (MDA) level
The MDA level in the hippocampus was measured using the

previously described method. To do this, 100 μL of hippocampus
supernatant aliquots were mixed with 900 μLs of Tris-KCl buffer, and
then 500 μL of 30% TCA was added. Afterward, 500 μL of
thiobarbituric acid (TBA) (0.75%) was added and permitted to be
heated in a water bath at 80 C for 45 min. Themixture was centrifuged
(3,000 rpm g, 5 min), and the supernatant’s absorbance was read at
562 nm using an ELISA reader. The MDA level is reported as a
nanomole of MDA per mg protein (Nagababu et al., 2010).

Measurement of total antioxidant capacity (TAC)
The ferric-reducing ability of plasma (FRAP) method was used

to determine the TAC in the hippocampus. This method measured
TAC in the hippocampal samples using the previously reported
method at 37°C and pH 3.6. After 30 min, absorbance was measured
and registered as a percentage of the combined ferric reducing/
antioxidant potency of the antioxidants in protein, with the findings
given as micromol Fe2+/mg protein (Benzie and Strain, 1999;
Nasiri-Boroujeni et al., 2021).

Quantitative Real-Time polymerase chain reaction
(qRT-PCR)

The gene expression ofMECP2 in the hippocampus wasmeasured
using Real-Time PCR. After collecting the hippocampal tissue, total
RNA was extracted using RNX-plus. The RNA was then reverse-
transcribed into cDNAusing a PrimeScript RT reagent kit (Takara Bio,
Inc., Otsu, Japan). Gene-specific primers and a fluorescent probe for
MECP2were designed and optimized. Real-time PCR was done on the
cDNA samples using a light cycler instrument (Roche Diagnostics,
Mannheim, Germany) (Takara Bio). The results were analyzed using
the 2−ΔΔCT method to calculate the relative gene expression levels of
MECP2 in the hippocampus. The housekeeping gene B2Mwas used as
a reference gene to normalize the gene expression levels (Omidi-Ardali
et al., 2019; Lorigooini et al., 2021). Table 1 presents primer sequences.

Data analysis
Kolmogorov–Smirnov test was applied to evaluate the normal

distribution of data, resulting in parametric data. Brown-Forsythe
test was used for the evaluation of data homogeneity. Data were

Frontiers in Pharmacology frontiersin.org03

Karimi et al. 10.3389/fphar.2023.1300310

36

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1300310


expressed as mean ± S.E.M and analyzed with one-way variance
analysis (ANOVA) followed by Tukey’s post hoc test. Results were
deemed statistically significant at p < 0.05.

Results

Effects of UMB on passive avoidance
memory in the shuttle box test

The results indicated no notable difference among the experimental
groups in the initial phase (T1) of the shuttle box test. However, in the
second phase of the test (T2), the results showed a marked reduction in
the MS group compared to the control group (p < 0.01). We observed
that UMB at doses of 12.5 and 25 mg/kg significantly increased
T2 compared to the saline-treated MS group (p < 0.05) (Figure 1).

Effects of UMB on repetitive behavior in the
marble burying test

The study’s findings revealed that the MS group had a
significantly higher number of buried marbles than the control
group (p < 0.001). However, the number of marbles buried was
decreased considerably in the MS mice treated with UMB at a dose
of 12.5 mg/kg (p < 0.01) and UMB at a dose of 25 mg/kg (p < 0.001)
compared to the saline-treated MS mice (Figure 2).

Effects of UMB on sociability and social
preference indexes in the three-chamber
test

Findings showed that the MS group exhibited a significant
reduction in their SI (p < 0.01) compared to the control
group. However, when MS groups were treated with UMB at
doses of 12.5 and 25 mg/kg, their SI improved significantly (p <
0.01) compared to the saline-received MS mice (Figure 3).
Additionally, we observed that SPI was decreased considerably in
the MS group compared to the control group (p < 0.001). When MS
groups were treated with UMB at doses of 12.5 and 25 mg/kg, their
SPI significantly increased compared to the saline-treated MS
animals (p < 0.05).

Effects of UMB on the open arms entries and
time in the EPM test

The findings from the EPM test are presented in Figure 4. The
MS group demonstrated a pronounced reduction in open-arm
entries compared to the control group (p < 0.01). Treatment of
the MS group with UMB at doses of 12.5 mg/kg (p < 0.05) and
25 mg/kg (p < 0.01) resulted in a significant increase in the number
of open-arm entries compared to the saline-treated MS mice.
Additionally, the time spent in open arms was significantly lower
in the MS group compared to the control group (p < 0.001).
However, administering UMB at a dose of 12.5 mg/kg (p < 0.01)
and 25 mg/kg (p < 0.05) to the MS group resulted in a significant
increase in the time spent in open arms compared to the saline-
treated MS mice. Furthermore, results showed that the MS group
had a higher anxiety index compared to the control mice (p < 0.001).
Treatment of MS mice with UMB at doses of 12.5 (p < 0.01) and
25 mg/kg (p < 0.001) significantly decreased anxiety index compared
to the saline-treated MS mice.

TABLE 1 primer sequences.

Gene Forward Reverse

MECP2 TGTATGATGACCCCACCT
TGCC

TCCCTCTCCCAGTTACCG
TGAA

B2m CGTGATCTTTCTGGTGCT
TGTC

GGAAGTTGGGCTTCC
CATTCT

FIGURE 1
The effect of UMB on the initial and step-through latencies in the
passive avoidance response in the shuttle box test. Values were
calculated for a sample of 5 mice and reported as the mean ± S.E.M.
The statistical analysis employed a one-way ANOVA followed by
Tukey’s post-test. **p < 0.001 in compared to the control group, &p <
0.05 in compared to the saline-treated MS group.

FIGURE 2
The effect of UMB on the number of marbles buried. The values
were calculated for a sample of 5 mice and reported as the mean ±
S.E.M. The statistical analysis employed a one-way ANOVA followed
by Tukey’s post-test. ***p < 0.001 compared to the control
group and &&p < 0.01 and &&&p < 0.001 compared to the saline-treated
MS group.
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Effects of UMB on nitrite levels in the
hippocampus

The results indicated a significant increase in nitrite levels in the
hippocampus tissue of the MS group compared to the control group
(p < 0.05). Treatment of MS mice with UMB at a dose of 12.5 mg/kg
(p < 0.05) and UMB at a dose of 25 mg/kg (p < 0.01) resulted in a
significant decrease in nitrite levels compared to the saline-treated
MS mice (Figure 5).

Effects of UMB on MDA levels in the
hippocampus

Based on the results shown in Figure 6, the MDA level of the
hippocampus was significantly increased in the MS group
compared to the control group (p < 0.05). Treatment of MS
mice with UMB at doses of 12.5 and 25 mg/kg (p < 0.05) resulted
in a significant decrease in the MDA levels compared to the
saline-treated MS mice.

FIGURE 3
The effect of UMB on sociability index and social preference index. The values were calculated for a sample of 5 mice and reported as the mean ±
S.E.M. The statistical analysis employed a one-way ANOVA followed by Tukey’s post-test. **p < 0.01 and ***p < 0.001 compared to the control group and
&p < 0.05 and && p < 0.01 compared to the saline-treated MS group.

FIGURE 4
The effect of UMB on the open arms entries and time spent in open arms in the EPM. Values were calculated for a sample of 5 mice and reported as
the mean ± S.E.M. The statistical analysis employed a one-way ANOVA followed by Tukey’s post-test. **p < 0.01 and ***p < 0.001 in comparison to the
control group, &p < 0.05, &&p < 0.01 and &&&p < 0.001 in comparison to the saline-treated MS group.
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Effects of UMB

on TAC in the hippocampus Results showed that the TAC in the
hippocampus of the MS group significantly decreased compared to
the control group (p < 0.01) (Figure 7). Treatment of MS mice with
UMB at a dose of 25 mg/kg resulted in a significant increase in the
TAC compared to the saline-treated MS mice (p < 0.05).

Gene expression of MECP2 in the hippocampus following
administration of UMB Figure 8 shows the effects of UMB on the
gene expression of MECP2 in the hippocampus. The results
showed that the gene expression of MECP2 in the
hippocampus of the MS group significantly decreased
compared to the control group (p < 0.05). Treatment of MS
mice with UMB at doses of 12.5 and 25 mg/kg resulted in a

significant increase in the gene expression of MECP2 in
the hippocampus compared to the saline-treated MS mice
(p < 0.05).

Discussion

The present study examined the effects of UMB on the
manifestations of autistic-like behaviors following the MS
paradigm. Our findings revealed that MS resulted in autistic-like
behavior, as evidenced by a decrease in secondary delay time in the
shuttle box test, indicating impaired passive avoidance memory.
There was also an increase in the number of hidden marbles in the

FIGURE 5
The effect of UMB on the nitrite levels in the hippocampus.
Values were calculated for a sample of 5 mice and reported as the
mean ± S.E.M. The statistical analysis employed a one-way ANOVA
followed by Tukey’s post-test. *p < 0.05 compared to the control
group, &p < 0.05 and &&p < 0.01 in compared to the saline-treated MS
group.

FIGURE 6
The effect of UMB on the MDA level in the hippocampus. Values
were calculated for a sample of 5 mice, reported as the mean ± S.E.M.,
and analyzed by one-way ANOVA followed by Tukey’s post hoc test.
*p < 0.05 compared to the control group and &p < 0.05 in
compared to the saline-treated MS group.

FIGURE 7
The effect of UMB on the TAC in the hippocampus. Values were
calculated for a sample of 5 mice, reported as the mean ± S.E.M., and
analyzed by one-way ANOVA followed by Tukey’s post hoc test. **p <
0.01 compared to the control group and &p < 0.05 in compared
to the saline-treated MS group.

FIGURE 8
The effect of UMB on the gene expression of MECP2 in the
hippocampus. Values were calculated for a sample of 5mice, reported
as the mean ± S.E.M., and analyzed by one-way ANOVA followed by
Tukey’s post hoc test. *p < 0.05 compared to the control group
and &p < 0.05 in compared to the saline-treated MS group.
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MBT, demonstrating repetitive behaviors. Additionally, the three-
chamber test’s sociability and social preference indexes were
reduced, suggesting impaired social interaction. Furthermore,
there was a decrease in the number and duration of entries in
the EPM, reflecting anxiety-like behaviors.

Moreover, we found that autistic-like behaviors are associated
with decreased MECP2 gene expression, TAC, and increased MDA
and nitrite levels in the hippocampus, indicating an oxidative stress
state and neurodevelopmental failure.

Investigating the potential effects of UMB, we observed that
UMB significantly attenuated the autistic-like behaviors induced by
MS. Furthermore, it increasedMECP2 gene expression. It mitigated
oxidative stress markers in the hippocampus.

ASD encompasses a range of neurodevelopmental
alterations, and its prevalence is significantly rising worldwide
(Selamet and Usta, 2023). Recent studies have elucidated the
involvement of multiple environmental and genetic factors in
the pathogenesis of ASD (Lipkin et al., 2023). Early detection of
Autism can facilitate timely interventions and treatments,
improving outcomes (Juruena et al., 2020). The lack of
effective treatments, alongside the fact that current
therapeutic approaches exhibit partial efficacy and present
notable side effects, creates a pressing need to investigate new
effective and safe agents for the management of Autism (Vivanti
et al., 2014).

Given the incomplete understanding of the pathophysiology of
Autism, researchers are actively exploring potential pathways and
mechanisms involved in this complex disorder. One pathway of
interest is the MECP2 pathway. Consequently, in this study, we
investigated the therapeutic potential of UMB, aiming to elucidate
its effect on autistic-like behaviors following the MS paradigm.

Recent investigations have unveiled the profound influence of early-
life stress on developing neurodevelopmental abnormalities (Farzan
et al., 2023). Furthermore, mounting evidence suggests that early-life
stress can contribute to the manifestation of psychiatric disorders and
behavioral impairments, including depression, anxiety, and Autism
(Amiri et al., 2016; Lorigooini et al., 2020b; Pitsillou et al., 2020).
Račekov et al. reported reduced neurogenesis across various brain
regions in animals subjected to early postnatal stress (Račeková
et al., 2009). In this regard, it has been determined that Autism is
associated with decreased neurogenesis in the brain (Bicker et al., 2021).
There is growing evidence that ELS, such as MS, is related to the
development of ASD (Farzan et al., 2023; Khaledi et al., 2023; Makris
et al., 2023). In this regard, it has been demonstrated that MS in animal
models induces autistic-like behaviors such as repetitive behaviors,
anxiety-like behaviors, memory impairment, and social interaction
impairments (Mansouri et al., 2020). Chang et al. revealed an
increase in the number of buried marbles in the MBT in mice
exhibiting autistic-like features (Chang et al., 2017). In line with the
studies mentioned earlier, we showed that maternally separated mice
buried more marbles than the control group.

Furthermore, Varadinova et al. observed that in autistic mice,
secondary delay in the shuttle box test decreased compared to the
control group (Varadinova et al., 2019). Our result showed that
maternally separated mice have a lower secondary delay time in the
shuttle box than the control mice. Previous studies have reported a
decrease in the number and duration of entries in the open arms of
EPM forMSmice (Tallarico et al., 2023). Consistent with these findings,

our study revealed that MSmice exhibited reduced time and number of
entries into the open arms of the EPM. Previous studies have shown
that mice with autistic-like features display diminished social
interactions, such as lower sociality and social preference indexes,
suggesting impaired social communication (Yin et al., 2023). In line
with these findings, our study revealed that mice subjected to MS
exhibited reduced social communications and connected less with their
counterparts compared to the control group. Emerging evidence
suggests a role of oxidative stress in the pathophysiology of various
neurodevelopmental disorders like ASD (Cipolla and Lodhi, 2017) with
particular relevance toASD (Nadeem et al., 2019). Oxidative stress plays
a crucial role in triggering neuroinflammation, which is considered a
major contributing factor to ASD (McDougle and Carlezon, 2013).
Consistent with these studies, our study revealed a significant decrease
in brain antioxidant capacity, as well as an increase in nitrite and MDA
levels in the hippocampus.

MECP2 alteration has been involved in a range of
neurodevelopmental disorders like ASD (Wen et al., 2017;
Alexander-Howden et al., 2023; Li et al., 2023). Notably,
MECP2 mutations have been extensively described in Rett
syndrome, Autism, intellectual disability, and early-onset
psychosis (Couvert et al., 2001; Chahrour and Zoghbi, 2007).
Furthermore, functional protein alterations resulting from
mutated MECP2 have been linked to distinct
neurodevelopmental impairments in Rett syndrome and ASD,
which are connected with autistic characteristics (Shahbazian
et al., 2002; Shibayama et al., 2004). Our findings align with
these reports, demonstrating a significant reduction in MECP2
gene expression in the hippocampus of MS mice. One limitation of
our study is that we only evaluated MECP2 at the gene level.
AssessingMECP2 at the protein level using Western blotting, IHC,
or ELISA is suggested for future studies. Another limitation of this
study is that we did not examine the effects of umbelliprenin in
autistic-like behaviors following MS in female mice.

UMB, a member of the coumarin family, has been determined to
exert neuroprotective effects through its antioxidative properties
(Sharifi et al., 2020; Fiorito et al., 2022). Recent studies have
elucidated its anti-inflammatory, anticancer, immune-modulatory,
analgesic, and neuroprotective attributes (Hashemzaei et al., 2015;
Rashidi et al., 2018). Ample evidence has corroborated its
antioxidative and anti-inflammatory effects (Shakeri et al., 2014).

In the present study, we found that the administration of UMB
to the MS mice led to the attenuation of autistic-like behaviors, as
indicated by an increase in the social preference index and sociability
index in the three-chamber test, an increase in the time and number
of entrances to the open arm in the EPM test, an increase in the
second delay in the shuttle box test, and a decrease in the number of
buried marbles in the MBT. These behavioral tests showed that, at
least partially, UMB mitigated autistic-like behaviors following MS.
Furthermore, we found that following the administration of UMB,
the levels of nitrite and MDA significantly decreased in the
hippocampus of the MS mice. In addition, UMB significantly
increased total antioxidant capacity in the hippocampus of MS
mice. In the case of MECP2 gene expression, our results showed
that UMB significantly increased the gene expression of MECP2 in
the hippocampus of MS mice. However, further studies are
warranted to evaluate the exact mechanism underlying the effects
of UMB in autistic-like behaviors.
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Conclusion

In conclusion, our results suggest that an increase in the
oxidative stress markers and a decrease in the gene expression of
MECP2 in the hippocampus contributes, at least partly, to the
manifestation of autistic-like behaviors observed following the
MS paradigm. We concluded that UMB probably, partially at
least, via attenuation of oxidative stress and increase in the gene
expression of MECP2 in the hippocampus attenuated the autistic-
like behaviors following MS stress in male mice.
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Propofol is the most widely used intravenous general anesthetic; however, the

neuronal circuits that mediate its anesthetic effects are still poorly understood.

Glutamatergic neurons in the lateral hypothalamus have been reported to

be involved in maintenance of arousal and consciousness. Using Vglut2-

Cre transgenic mice, we recorded this group of cells specifically and found

that propofol can directly inhibit the glutamatergic neurons, and enhance

inhibitory synaptic inputs on these cells, thereby reducing neuronal excitability.

Through chemogenetic interventions, we found that inhibition of these neurons

increased the duration of propofol-induced anesthesia and reduced movement

in the animals after the recovery of right reflex. In contrast, activating this group

of cells reduced the duration of propofol anesthesia and increased the animals’

locomotor activity after the recovery of right reflex. These results suggest that

propofol-induced anesthesia involves the inhibition of glutamatergic neurons in

the lateral hypothalamus.

KEYWORDS

anesthesia, propofol, lateral hypothalamus, glutamatergic neurons, hM4Di receptors

Introduction

Intravenous general anesthetics are of great significance to modern surgical operation.
Propofol is the most widely used intravenous anesthetic and is characterized by its favorable
recovery profile (Choi et al., 2017; Mehta et al., 2017). A great deal of effort has gone into
dissecting the neural circuitry and molecular targets underlying the effects of intravenous
general anesthetics including propofol. Many studies have reported that propofol functions
directly through generating a wide range of inhibitory impacts on neocortical regions,
such as frontal cortex and entorhinal cortex (Li et al., 2016; Kobayashi and Oi, 2017;
Luo et al., 2019). It is widely considered that these inhibitory effects might be attributed
to that propofol could activate γ-aminobutyric acid type A receptors (GABAARs) and
thus increase the inhibitory inputs (Reine et al., 1992; Chen et al., 1999; Jeong et al.,
2011). Despite the pioneering work, the neuronal circuits and molecular targets that
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mediate anesthetic effects of propofol are still not completely
understood. A systematic understanding of the anesthetic
mechanism of propofol will contribute to the development of
new anesthetics.

It has been reported that the cortical activities are tightly
regulated by multiple subcortical arousal- and sleep-promoting
brain regions. In fact, general anesthetics may act either by
inhibiting subcortical arousal- promoting systems or activating
sleep-promoting systems in the brain. For example, sevoflurane
could inhibit the wakefulness-promoting neurons, such as
dopamine D1 receptor-positive neurons in the nucleus accumbens
(Bao et al., 2021), hypocretinergic neurons in the lateral
hypothalamus (LH) (Kelz et al., 2008) and medial parabrachial
neurons (Xu et al., 2020). Additionally, general anesthetics
including dexmedetomidine, isoflurane, ketamine and propofol
also activate sleep-promoting neurons such as the supraoptic
nucleus to contribute to their anesthetic action (Jiang-Xie et al.,
2019; Hua et al., 2020).

It should be noted that glutamatergic neurons in the LH
have been reported to be involved in maintenance of arousal.
Chemogenetic activation of LH glutamatergic neurons induced an
increase in arousal that lasted for 6 h. In contrast, suppression of LH
glutamatergic neuronal activity caused a reduction in wakefulness
(Wang et al., 2021). Although the crucial role of the glutamatergic
neurons in the LH in the maintenance of wakefulness has been
established, it is still unclear whether propofol affects the activity
of these neurons. Here, we have discovered a direct inhibition of
glutamatergic neurons in the LH by propofol, which is involved in
its anesthetic action. These results unveil a novel neural mechanism
underlying the anesthetic effects of propofol and provide the targets
for research and development of new anesthetic drugs.

Results

Propofol generates hyperpolarization of
the wakefulness-related glutamatergic
neurons in the LH

To visualize glutamatergic neurons in the LH, AAV2/9-EF1α-
DIO- mCherry was injected into the LH of vGlut2-Cre mice to
label the glutamatergic neurons with the mCherry. To further
validate the specificity of the mCherry expression, we used
fluorescence in situ hybridization (FISH) to detect the vesicular
glutamate transporter 2 (VGLUT2, encoded by Slc17a6), and found
that mCherry is selectively expressed in Slc17a6-positive neurons
(Figures 1A, B).

We initially explored the effect of the propofol on the
glutamatergic neurons in the LH (Figure 1C). The glutamatergic
neurons were specifically recorded from the brain slices. The
voltage-clamp recordings were performed to test the effects of
propofol on the holding currents of glutamatergic neurons. Bath
application (1–50 µM, 1 min) of propofol induced outward
currents in the recorded glutamatergic neurons. The amplitude
of outward currents induced by propofol was concentration-
dependent (Figures 1C, D).

Next, we investigated whether propofol directly affects
membrane intrinsic properties. To test this, the hold currents

were recorded in the presence of tetrodotoxin (TTX, 1 µM) to
block action potentials-dependent synaptic transmissions. Under
this condition, we found that propofol still induced outward
currents in the glutamatergic neurons (Figure 1E), suggesting
that propofol directly influences the membrane properties of the
glutamatergic neurons.

Additionally, propofol (10 µM) significantly reduced the firing
rates of these neurons in response to inward current stimuli
(Figures 1F, G). In sum, these data suggest that propofol suppresses
the excitability of the glutamatergic neurons in the LH.

Propofol enhances the GABAergic
inhibitory inputs on glutamatergic
neurons

The activity of individual neurons as well as neural network
is tightly controlled by the synaptic transmissions. Thus, we next
explored whether propofol influences the synaptic transmissions
of the glutamatergic neutrons in the LH. We firstly recorded
the spontaneous excitatory postsynaptic currents (SEPSCs) in
the presence of GABAA receptor antagonist bicuculline. The
glutamatergic neurons of the LH exhibited a continuous level
of fast excitatory synaptic events. Bath application of propofol
did not affect the amplitude and frequency of SEPSCs in these
glutamatergic neurons (Figures 2A, B).

To test the regulation of GABAA receptor-mediated
spontaneous inhibitory postsynaptic currents (SIPSCs) by
propofol, we blocked the ionotropic glutamate receptors by using
6-cyano-7-nitroquinoxaline-2, 3-dione (CNQX) and DL-2-amino-
5-phosphonopentanoic acid (AP5). After recording stable baseline
of SIPSCs, bath application of propofol remarkably increased the
frequency and amplitude of these currents (Figures 2C, D). These
results indicate that propofol increases inhibitory inputs of the
glutamatergic neurons without affecting their excitatory inputs.

Chemogenetic inhibition of
glutamatergic neurons in the LH
facilitates induction of and prolongs
emergence from propofol anesthesia

To investigate the behavioral consequences of chemogenetic
inhibition of glutamatergic neurons in the LH, AAV-DIO-hM4Di-
mCherry was injected into the LH of vGlut2-Cre mice to inhibit
glutamatergic neurons. Whole-cell recordings of hM4Di-mCherry-
positive glutamatergic neurons from acute brain slices showed a
decreased number of action potentials with bath-applied clozapine
N-oxide (CNO), implying that CNO was sufficient to inhibit
hM4Di-mCherry-positive neurons in the LH (Figures 3A, B).
The hM4Di-mCherry and mCherry were restrictedly expressed
in the LH (Figures 3C, D). Compared with those in the vehicle
group, chemogenetic inhibition of glutamatergic neurons in the
LH decreased the duration of propofol (10 mg/kg, i.v.)-induced
loss of right reflex (LORR) (Figures 3E, F). Even after they
recovered from LORR, the locomotion of the mice with CNO
injection was impaired for several minutes following propofol
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FIGURE 1

Propofol induces hyperpolarization of the glutamatergic neurons in the LH. (A,B) Fluorescence in situ hybridization (FISH) to detect the vesicular
glutamate transporter 2 (VGLUT2, encoded by Slc17a6), noting that mCherry is selectively expressed in Slc17a6-positive neurons. (C) Schematic
diagram for recording glutamatergic neurons in the LH (Left). Example electrophysiological traces before, during and after bath application of the 10
and 50 µM propofol (Right). (D) Effects of propofol on the holding currents of glutamatergic neurons in the LH. (E) Effects of propofol on the
holding currents in the presence of TTX (1 µM) to block action potentials-dependent synaptic transmissions. (F,G) Effects of propofol on the firing
rates of glutamatergic neurons in response to inward current stimuli. ∗∗∗P < 0.001.

injection compared with control group (Figure 3G). These results
suggest that glutamatergic neurons in the LH are involved in the
propofol anesthesia.

We further detected the changes in neuronal activity in the
LH region by c-Fos staining. Compared with the mCherry group,
when LH glutamatergic neurons were inhibited by CNO during
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FIGURE 2

Effects of propofol synaptic transmissions of the glutamatergic neurons in the LH. (A) An example electrophysiological trace showing the SEPSCs of
the glutamatergic neurons before and during bath application of the propofol. (B) Effects of propofol (10, 30, and 50 µM) on the frequency (top) and
amplitude (down) of the SEPSCs. (C) An example electrophysiological trace showing the SIPSCs the of glutamatergic neurons before and during bath
application of the propofol. (D) Effects of propofol (10, 30, and 50 µM) on the frequency (top) and amplitude (down) of the SIPSCs. ∗,∗∗,∗∗∗P < 0.001.

anesthesia, c-Fos positive neurons were significantly reduced
(Figures 3H, I). These results further suggest that chemogenetic
intervention affecting propofol anesthesia may indeed be inhibiting
the neural activity in the LH region.

Activation of the glutamatergic neurons
in the LH delays induction of and
accelerates emergence from propofol
anesthesia

Next, we want to know the behavioral effects of chemogenetic
activation of glutamatergic neurons in the LH on the
propofol anesthesia. Using whole-cell recordings in the acute
brain slices, bath-applied CNO increased the firing rates of

hM3D-mCherry-positive glutamatergic neurons, implying
that CNO can activate hM3D-mCherry-positive neurons
(Figures 4A, B). AAV-DIO-hM3D-mCherry and AAV-DIO-
mCherry were restrictedly injected into the LH of vGlut2-Cre
mice (Figures 4C, D). At the behavioral level, chemogenetic
activation of glutamatergic neurons in the LH increased the
duration of propofol-induced LORR (Figures 4E, F). Additionally,
the locomotion with CNO injection in the mice with expression
of hM3D-mCherry was also enhanced after they recovered from
LORR compared with mCherry group (Figure 4G). In particular,
there was a 57 and 26% increase in motor speed at 3 min (mCherry:
1.4 m/min; hM3D-mCherry: 2.2 m/min) and 5 min (mCherry:
3.8 m/min, hM3D-mCherry: 4.8 m/min) after recovery of the
righting reflex, respectively. These data suggest that activation of
the glutamatergic neurons in the LH delay the propofol anesthesia.
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FIGURE 3

Chemogenetic inhibition of glutamatergic neurons in the LH facilitates induction of propofol anesthesia. (A,B) Effect of CNO on the firing rates of
the hM4D-mCherry-positive neurons in the LH. (C) Bilateral injection of viruses into the LH region of vglut2-Cre mice. (D) Expression of the
hM4D-mCherry and mCherry was restricted to cells in the LH. (E) A representative image showing the cannula implanted in the LH.
(F) Chemogenetic inhibition of glutamatergic neurons in the LH decreased the duration of propofol (10 mg/kg, i.v.)-induced loss of LORR. (G) Effect
of chemogenetic inhibition of glutamatergic neurons on locomotion of the mice following recovery of the LORR. (H) Representative images
showing the c-Fos expression in the LH after application of CNO in the mCherry and hM4D-mCherry groups. The inset is an enlarged view of c-Fos
expression in the LH. (I) Effect of chemogenetic inhibition on the c-Fos expression in the LH. ∗,∗∗P < 0.001.
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FIGURE 4

Stimulation of glutamatergic neurons in the LH delays induction of propofol anesthesia. (A,B) Effects of CNO on the firing rates of the
hM3D-mCherry-positive neurons in the LH. (C) Bilateral injection of viruses into the LH region of vglut2-Cre mice. (D) Representative images
illustrating the expression of the hM3D-mCherry and mCherry in the LH. (E) The cannula for application of CNO implanted within the LH.
(F) Activation of glutamatergic neurons by CNO in the LH decreased the duration of propofol (10 mg/kg, i.v.)-induced loss of LORR. (G) Effects of
chemogenetic activation of glutamatergic neurons on locomotion of the mice following recovery of the LORR. (H) Representative images showing
the c-Fos expression in the mCherry and hM3D-mCherry groups. The inset is an enlarged view of c-Fos expression in the LH. (I) Effect of
chemogenetic activation of glutamatergic neurons on the c-Fos expression in the LH. ∗,∗∗P < 0.001.

The changes in neuronal activity in the LH were also
detected by c-Fos staining. After chemogenetic activation of LH
glutamatergic neurons during anesthesia, c-Fos positive neurons

were significantly increased (Figures 4H, I). These data imply that
chemogenetic activation of LH neurons might affect the propofol
anesthesia.
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Discussion

Glutamatergic neurons in the LH play an important role
in maintenance of wakefulness (Wang et al., 2021). Propofol-
anesthetic effects are associated with the glutamatergic neurons
in the LH, as chemogenetic inhibition of these neurons increases
the duration of propofol-induced LORR and vice versa. These
effects of propofol were partially mediated by its inhibitory effects
on the glutamatergic neurons in the LH. In sum, these findings
may provide novel mechanisms underlying the anesthetic effect
of propofol.

In the neocortex and subcortical hippocampus, propofol exerts
a direct effect on the cell bodies of excitatory neurons, leading
to neuronal hyperpolarization and downregulation of excitability
(Xu et al., 2014; Li et al., 2016; Kobayashi and Oi, 2017; Luo
et al., 2019). Additionally, propofol can enhance inhibitory inputs,
thereby suppressing the activity of these brain regions (Chen et al.,
1999; Jeong et al., 2011; Wakita et al., 2013). Consistently, we
observed that propofol also inhibits glutamatergic neurons in the
LH through both direct and indirect mechanisms. However, further
investigation is needed to identify how propofol affects ion channels
in the LH. In addition, we mainly used mice to study the effects of
propofol. The investigation of propofol’s mechanism of action via
the LH in humans necessitates further research.

The wakefulness is regulated by multiple subcortical arousal-
promoting systems, such as the acetylcholinergic neurons in
the basal forebrain, serotonin neurons in the dorsal raphe,
noradrenergic neurons in the locus ceruleus, dopaminergic
neurons in the ventral tegmental area and lateral hypothalamus
(Brown et al., 2012; Zeitzer, 2013; Venner et al., 2016; Horner
and Peever, 2017; Scammell et al., 2017). While the sleep-
promoting systems, such as the ventrolateral preoptic nucleus and
supraoptic nucleus, inhibit the wakefulness-promoting nuclei and
consequently induce the transitions from wakefulness to sleep
(Szymusiak et al., 2007; Szymusiak and McGinty, 2008; Brown
et al., 2012). It has been reported that anesthetics could inhibit the
wakefulness-promoting neurons, including dopamine D1 receptor-
positive neurons in the nucleus accumbens, orexinergic neurons in
the hypothalamus and medial parabrachial neurons contribute to
its anesthetic action (Kelz et al., 2008; Xu et al., 2020; Bao et al.,
2021). It should be noted that propofol also inhibited the release of
wakefulness-promoting neurotransmitters such as dopamine and
acetylcholine during anesthesia (Gamou et al., 2010). Additionally,
propofol suppresses the excitability of cholinergic neurons in
basal forebrain and noradrenergic neurons in the locus ceruleus
(Chen et al., 1999, 2018). The present study demonstrates
that propofol inhibits the wakefulness-promoting glutamatergic
neurons in the LH effectively and contributes to it anesthetic
action. These findings combined with previous research support
that wakefulness-promoting systems serve as crucial targets for
propofol to induce anesthesia.

The LH contains several types of neurons, forming complex
microcircuits. The local neural circuits mainly consist of
hypocretinergic neurons-glutamatergic neurons-hypocretinergic
neurons, which increases the output of hypocretinergic neurons
to promote arousal by positive feedback, and hypocretinergic
neurons-GABAergic neurons-melanin-concentrating hormone
neurons (Li et al., 2002; Bonnavion et al., 2016). Propofol inhibits

glutamate neurons, and may indirectly reduce the activity of
hypocretinergic neurons, thereby reducing arousal levels. Of
course, the effect of propofol on other neurons has not been
reported, and further research is needed in the future. Additionally,
the present study did not compare the effects of local injection of
saline and CNO in the LH brain region on animal behavior, and
the role of local injection of CNO remains to be investigated.

Materials and methods

Animal surgery

All mouse care and experimental procedures were approved
by the North Sichuan Medical College Guide for the Care and
Use of Laboratory Animals. Male adult vGlut2-Cre C57/BL6 mice
were used in patch-clamp and behavioral experiments. Vglut2-
Cre mice (Stock No: 016963) were obtained from the Jackson
Laboratory (USA). All mice were housed in an environment
with 12 h light/dark cycle and food and water ad libitum. Mice
were anesthetized with isoflurane and placed in the stereotaxic
apparatus. For pharmacological application of the CNO, a cannula
was implanted into separately in the LH region on each side
(bregma: AP = −1.50 mm; ML = ± 1.15 mm; DV = −4.7 mm).
The cannulas were affixed to the skull by dental cement, and the
incision was closed.

For chemogenetic inhibition and activation experiments,
Cre-inducible AAV2/9-EF1α-DIO-hM3D-mCherry (BrainVTA
Technology Co. Ltd., China) and AAV2/9-EF1α-DIO-hM4D-
mCherry (BrainVTA Technology Co. Ltd., China) were bilaterally
injected into the LH (bregma: AP = −1.50 mm; ML = ± 1.15 mm;
DV = −4.8 mm) of the vGlut2-Cre mice, respectively, with a total
volume of about 200 nL. hM4D and hM3D are mutant of Gi-
coupled M4 muscarinic receptors and Gq-coupled M3 muscarinic
receptors, which are selectively stimulated by the CNO, but not the
endogenous acetylcholine, and thus lead to inhibit and activate the
neurons, respectively.

Drug application in vivo

The method for drug microinjection was line with the previous
study (He et al., 2016). CNO (5 µM, 200 nl) and saline were
administrated by an inserted cannula and the syringe pump
(Harvard apparatus) with a rate of 100 nl/min. After injection, the
inserted cannula was left for additional 2 min to allow for diffusion.
Propofol (10 mg/kg, i.v.) was administrated via tail-vein injection.
Propofol was injected at 18:00, during which mice spent most time
in wakefulness.

Behavioral tests

Mice were tested for LORR by gently placing them on their
backs. Mice were assessed as positive for LORR if they made no
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obvious attempt to right themselves. During anesthesia, behavioral
videos of the animals were recorded. The animals’ movement
speed was calculated by employing a customized Matlab script for
offline tracking of their body, thereby providing insights into their
locomotor activity.

Histological identification

After completion of the behavioral tests, mice were anesthetized
and perfused with saline followed by 4% paraformaldehyde. The
brains were placed in 30% sucrose and 4% paraformaldehyde
solution for dehydration. Brain sections were prepared and stained
with DAPI, and the track of cannula and viral expressions
can be identified. The mice with incorrect injection sites were
excluded from data analysis. For FISH experiments, brains were
sectioned into 14 µm coronal slices, and FISH was carried out
by using RNAscope Multiplex Fluorescent Assays V2 (Advanced
Cell Diagnostics). The probe Slc17a6 (319171, ACD) was used for
detecting vGlut2.

Brains were sectioned into 40 µm coronal slices using a freezing
microtome (CM 3050S, Leica). Sections containing the LH were
incubated in blocking solution (Beyotime, China) with 1% Triton
X-100 at 37◦C for 25 min. After that, the sections were incubated in
primary antibodies at 4◦C overnight. Primary antibody (rabbit anti-
c-fos, 1:1000, ab190289, Abcam) were applied. Then, the sections
were washed with PBS, transferred into secondary antibody (Alexa
Flour 488 donkey anti-rabbit IgG, 1:500, Invitrogen) in PBS and
incubated at room temperature for 2 h. Fluorescence images were
taken using a microscope digital slide scanner (SlideView VS 200,
Olympus). The number of c-Fos positive neurons were counted
in the LH region.

Whole-cell patch clamp recordings

vGlut2-Cre transgenic mice were used in patch camp
recordings. Brains were removed after decapitation and placed into
solution containing 110 mM NMDG, 110 mM HCl, 2.5 mM KCl,
1.2 mM NaH2PO4, 25 mM NaHCO3, 25 mM Glucose, 10 mM
MgSO4, 0.5 mM CaCl2 (pH 7.2–7.4, saturated with 95% O2 and
5% CO2). A total 350 µm-thick sections containing LH were
cut by an oscillating tissue slicer. Sections were incubated for
15 min at 32◦C cutting solution and then transferred to ACSF
(120 mM NaCl, 2.5 mM KCl, 1.2 mM NaH2PO4, 25 mM NaHCO3,
25 mM Glucose, 10 mM MgSO4, 2 mM CaCl2, adjusted to pH
7.2–7.4) saturated with 95% O2 and 5% CO2 before recording
(30◦C). Sections were removed to the recording chamber, where the
oxygenated ACSF was continuously perfused during the whole-cell
recording sessions.

Whole-cell recording was carried out in mCherry-expressing
cells of LH. Glutamatergic cells were identified by a microscope
equipped with differential contrast optics and an infrared video
imaging camera. Recordings were performed with glass pipettes
(4–6 M�) filled with an solution containing 125 mM potassium
gluconate, 20 mM KCl, 10 mM Hepes, 1 mM EGTA, 2 mM
MgCl2•6H2O, 4 mM ATP (pH 7.2–7.4). HEKA EPC-10 amplifier
was used for recording of the signals with digitalizing at 10 kHz

and filtering at 2 kHz. Data were further acquired and analyzed by
using PATCHMASTER and IGOR 5.0 software.

To test the effects of propofol on activity of glutamatergic
neurons in the LH, inward currents were injected to depolarize
the membrane potential to −55 mV and evoke tonic firing. After
recording baseline, propofol was perfused for 1 min and followed
with washed out.

Data analysis

Data were presented as the means ± S.E.M. Student’s
t-test, one-way repeated-measures’ analysis of variance, two-way
repeated-measures’ analysis of variance, and Fisher’s protected least
significant difference post-hoc testing were conducted for statistical
analyses. Significant differences were accepted as P < 0.05.
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in rats

Bozhi Li†, Yuqi Yan†, Tiange Zhang, Hanfang Xu, Xiaofeng Wu,
Gaolei Yao, Xingze Li, Can Yan* and Li-Li Wu*

Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of
Chinese Medicine, Guangzhou, China

Quercetin, an abundant flavonoid compound in plants, is considered a novel
antidepressant; however, its mechanisms of action are poorly understood. This
study aimed to investigate the therapeutic effects of quercetin on chronic
unpredictable mild stress (CUMS)-induced depression-like behaviors in rats
and explore the underlying mechanisms by combining untargeted
metabolomics and 16S rRNA sequencing analysis of brain tissue metabolites
and gut microbiota. Gut microbiota analysis revealed that at the phylum level,
quercetin reduced Firmicutes and the Firmicutes/Bacteroidetes (F/B) ratio and
enhanced Cyanobacteria. At the genus level, quercetin downregulated 6 and
upregulated 14 bacterial species. Metabolomics analysis revealed that quercetin
regulated multiple metabolic pathways, including glycolysis/gluconeogenesis,
sphingolipid metabolism, the pentose phosphate pathway, and coenzyme A
biosynthesis. This modulation leads to improvements in depression-like
phenotypes, anxiety-like phenotypes, and cognitive function, highlighting the
therapeutic potential of quercetin in treating depression.
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Introduction

Depression is a complexmental disorder that causes 10% of global disability. Its primary
symptoms include low mood, anxiety, anhedonia, and cognitive impairment (Cruz-Pereira
et al., 2020). Recently, notably during the COVID-19 pandemic, the incidence andmortality
rates of depression have continuously increased, becoming an increasingly heavy burden on
individuals and society. Depression is linked to reductions in brain monoamine
neurotransmitters (serotonin, norepinephrine, and dopamine), changes in brain
neurotrophic factor levels, abnormal activation of the hypothalamic-pituitary-adrenal
axis, and immune system dysregulation. In addition to these factors, many recent
studies have found that abnormalities in the gut microbiota are significant factors in
developing depression (Jiang et al., 2015; Averina et al., 2020; Huang and Wu, 2021). The
gut, known as the “second brain,” can regulate human emotions and feelings through the
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gut-brain axis. The gut microbiota, known as the “second genome”
of the body, functions in symbiosis with the host and has major
impacts. Therefore, regulating the gut microbiota is an innovative
therapy for complex central nervous system (CNS) disorders,
although the precise mechanism of the brain-gut axis remains to
be elucidated.

Clinical depression treatment in clinical practice mainly relies
on medication, with numerous antidepressants applied since the
introduction of the first antidepressant in the 1950s (Hammen,
2018). However, these antidepressant drugs often fail to alleviate
depression symptoms completely and may lead to severe drug
dependence and side effects (Bschor et al., 2014; Solem et al.,
2017). Plant-derived compounds are being evaluated for clinical
depression treatment. Quercetin is a neuroprotective flavonoid
found in flowers, leaves, and fruits. It is primarily transformed in
the gut by the gut microbiota and absorbed by the human body
(Russo et al., 2012). Research has revealed that quercetin can
improve gut microbiota dysbiosis, promote gut microbial balance,
restore gut barrier structure and function, and exhibit biological
activities such as anti-inflammatory, antioxidant, and antiviral
effects (Horowitz and Zunszain, 2015; Suganthy et al., 2016;
Babaei et al., 2018; Ulusoy and Sanlier, 2020). It also
demonstrates potential pharmacological activities against mental
disorders (Chen et al., 2022). Moreover, compared to traditional
antidepressants, quercetin has several advantages: 1) Multiple
mechanisms of action: Numerous studies have reported that
quercetin may exert its antidepressant effects via various
mechanisms, such as antioxidation, anti-inflammation,
neuroprotection, and modulation of the neurotransmitter system
(Sah et al., 2011; Yang et al., 2020; Zhang et al., 2020; Şahin et al.,
2020; Ma et al., 2021); 2) Fewer side effects and non-addictive:
Quercetin is associated with fewer side effects and lacks the addictive
potential of traditional antidepressants, which are often linked to
significant side effects (Bschor et al., 2014; Solem et al., 2017). As a
natural compound, quercetin is generally considered safer, has
milder side effects, and there are no reported cases of addiction,
making it potentially a safer option for long-term use (Kashyap et al.,
2019; Ulusoy and Sanlier, 2020); 3) Additional health benefits: In
addition to its potential antidepressant properties, quercetin offers a
range of other health advantages, such as lowering the risk of
cardiovascular diseases, exhibiting anticancer effects, and
boosting immune function (Li et al., 2016; Rauf et al., 2018;
Hosseini et al., 2021). However, how quercetin modulates the
“microbiota-gut-brain” axis to treat depression remains
unknown. Consequently, it is essential to further investigate the
regulatory effects of quercetin on the brain and gut microbiota and
explore its antidepressant mechanism.

Metabolomics is a novel technology that utilizes various modern
analytical techniques to determine dynamic changes in small-
molecule metabolites in biological organisms, thereby
characterizing and deciphering the status of life activities. It can
more accurately and directly reflect the terminal and phenotypic
information of biological systems, providing a new perspective for
understanding the multi-factor mechanisms of diseases and
comprehensively evaluating drug effects (Gu and Tong, 2020).
Herein, 16S rRNA full-length sequencing and liquid
chromatography-mass spectrometry (LC-MS) were employed to
conduct untargeted metabolomic analysis of brain tissue

metabolites and microbiota analysis of gut microbiota in rats to
investigate the mechanism by which quercetin acts on the
microbiota–gut–brain axis to regulate gut microbiota and brain
metabolism and alleviate depression (Figure 1A).

Materials and methods

Experimental animals

Adult male Wistar rats (weighing 180–220 g) with specific
pathogen-free (SPF) status were acquired from the Experimental
Animal Center of the Southern Medical University in Guangzhou,
China (license number: SCXK 2016-0041). All experiments
involving animals adhered to the guidelines outlined in the
“Regulations on the Management of Laboratory Animals” issued
by the Ministry of Science and Technology of the People’s Republic
of China. Ethical approval for this research was obtained from the
Animal Experiment Ethics Committee of Guangzhou University of
Chinese Medicine.

Animal model

Prior to the commencement of the experiment, the rats were
subjected to a 1-week acclimatization period in a controlled
environment. This environment was maintained under a 12-h
light/dark cycle, at a constant temperature of 23°C ± 2°C and a
relative humidity of 60% ± 5%. To mitigate stress responses, rats
were allowed unrestricted access to food and water. Subsequently, all
rats underwent the sucrose preference (SP) test (SPT) to determine
their individual responsiveness. Rats with aberrant baseline sucrose
consumption were systematically removed from further analyses
based on specific criteria. These criteria included low (<60%) SP,
positional preference (showing a pronounced inclination to drink
from a specific location), minimal water intake (indicating a lack of
preference between sucrose solution and pure water), and excessive
water intake (total water consumption exceeding twice the mean
water intake of all rats). All rats were housed individually
throughout the SPT to ensure isolation and accurate data
collection. After SPT, the rats were randomly allocated to the
control (CON), model (chronic unpredictable mild stress
[CUMS]), and quercetin (QUE) groups, each consisting of
12 rats. The rats in the CON group were provided unrestricted
access to both food and water, adhering to a 12-h light/dark cycle
where the lights were illuminated from 8:00 to 20:00). Furthermore,
the rats in the CON group were maintained at a temperature of
23°C ± 2°C, and any supplementary stressors were intentionally
eliminated from the experimental conditions experienced by the
rats. These rats were housed in cages with four rats per cage and
accommodated in Room A to facilitate breeding. However, the rats
belonging to the experimental groups, excluding the CON group,
were exposed to the 12 stressors constituting the CUMS protocol. To
ensure individualized housing, each rat was placed in a separate cage
and subsequently transferred to Room B. The stressors included in
the experimental design involved various challenges. These
conditions included food deprivation (12 h), water deprivation
(12 h), simultaneous deprivation of both food and water (24 h),
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imposition of restraint stress (12 h), exposure to damp bedding
(10 h), engagement in overcrowded conditions (10 h), exposure to
overnight intermittent light (300 times/min, 5 h), white noise

exposure (85 dB, 5 h), engagement in thermal swimming (45°C,
5 min), engagement in cold swimming (4°C, 5 min), exposure to foot
shocks (1 mA, 2 s per trial, ten trials in 5 min), and continuous light

FIGURE 1
Summary of experimental procedure and results (A) Overview of behavioral analysis, gut microbiota analysis, and brain metabolism (prefrontal
cortex, hippocampus, and hypothalamus) analysis in the CON, CUMS, and QUE groups of rats. CON, Control; QUE, Quercetin; CUMS, Chronic
Unpredictable Mild Stress; SPT, Sucrose Preference Test; EPMT, Elevated Plus-Maze Test; FST, Forced Swim Test; MWM, Morris WaterMaze. (B)
Experimental rat modeling and behavioral test workflow.
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exposure during the night (20:00 to 8:00, 12 h). The stressors were
randomly administered as 1-2 types daily, without repetition, within
3 days and continued for 8 weeks. The entire stress process is
illustrated in Figure 1B.

Administration method

From the day the stress application commenced, the rats in each
group received intragastric administration for 8 weeks and ceased
when the stress application was terminated. Rats in CON and CUMS
groups received a daily dose of 5 mL/kg of pure water via intragastric
administration. In contrast, rats in the QUE group received a daily
dose of 50 mg/kg quercetin via intragastric administration.

Behavioral tests

SPT
The SPT test was utilized to assess anhedonia, a key

manifestation of depression-like behaviors, by examining the
preference of rats for sucrose solution versus water. To maintain
controlled conditions, all rats were individually housed during the
experiment. The SPT involved four phases: 48-h sucrose training,
36-h baseline test, 24-h phase of food and water deprivation, and 12-
h session dedicated to the actual SPT. In the final phase of the
experiment, the rats were given unrestricted access to equal volumes
of pure water and 1% sucrose solution for 12 h. The calculation of
basic SP was conducted using the following formula: sucrose
consumption/total liquid consumption × 100%. To assess SP, an
SPT was performed in the model group after an 8-week duration.
Themodel group was subjected to SPT for 12 h after a 24-h period of
food and water deprivation.

Elevated plus-maze test
The EPMT is a critical tool for assessing anxiety-like behaviors

in rodents. This methodology involved measuring the duration of
stay and the number of entries into the open and closed arms of the
maze, thereby facilitating a detailed analysis of anxiety-related
behaviors. The maze was composed of a central area measuring
15 × 15 cm, from which two open arms measuring 15 × 48 cm and
two closed arms measuring 15 × 48 × 40 cm. The experimental setup
involved raising the apparatus to a height of 36 cm above the
ground. For the testing process, the rat was positioned in a
specific orientation to face the designated side of the maze. The
open arms, positioned in the central area, were the focus of the test.
The movements of the rats were recorded for 5 min using a camera.
Multiple parameters were systematically measured to assess the
anxiety-like levels exhibited by each rat. These parameters
consisted of the following: 1) the time spent and percentage of
time spent in the open arms, indicating the duration of the rat stay in
the open arms and the percentage of the total testing period allocated
to the open arms; 2) the distance traveled and percentage of the
distance covered in open arms, denoting the total distance covered
by the rat along with the percentage of that distance covered in the
open arms; 3) the number of entries and percentage of entries made
by the rat into the open arms, representing the total number of

entries made by the rat into the open arms and the corresponding
percentage of total entries during the test.

Forced swimming test
The FST was used to evaluate depression-like behaviors in rats

bymeasuring their immobility time in water. The test was conducted
in a transparent cylindrical tank as the swimming chamber and was
characterized by the following dimensions: 30 cm in diameter,
100 cm in height, and a water depth of 35 cm. To ensure
consistency, the water temperature was maintained at 25°C ±
1°C. To facilitate acclimatization to the laboratory environment,
the rats were positioned in the apparatus room for 1 h before the
experiment. The order of testing was randomized for each
group. During the test, the experimenter gently held the rat by
the tail, approximately two-thirds of the base, and slowly placed it
into the swimming chamber. The behavior of each rat was recorded
using a camera for 6 min. Subsequently, the experimenters, who
were unaware of the group assignments, manually recorded the
immobility time of each rat during the last 5 min of the test.
Immobility manifests when a rat assumes a floating position on
the water surface, displaying a lack of limb movement or subtle
paddling motions with its forepaws and tail to sustain the head
above the water.

Morris water maze test
The evaluation of spatial learning and memory in rats was

conducted by applying the MWM test. This experimental
approach involved quantifying the time and path chosen by the
rats while navigating through a water maze to locate a hidden
platform. The test had two stages: the acquisition navigation trial
and the spatial probe trial, which lasted 6 days at 25°C. The water
pool was uniformly partitioned into four quadrants, and the
platform was strategically positioned at the center of one of the
quadrants. The camera system displayed above the maze recorded
rat movement trajectories synchronously. The acquisition
navigation test was used to evaluate the capacity of rats to
acquire spatial learning and memory in the water maze. This
evaluation was conducted over 5 days, with four daily training
sessions and a 30-min interval between sessions. Throughout the
training sessions, a single quadrant was randomly selected as the
starting point for the rat, which was subsequently placed in water.
Upon successful ascent onto the hidden platform, the rat was
afforded 10 s to remain there. Conversely, if the rat could not locate
the platform within 120 s, appropriate guidance was provided to
direct the rat towards the platform, thereby allowing it to stay there
for 10 s. An image-tracking system was utilized to document the
latency period of the rats in successfully locating the platform
during the experiment. The spatial probe trial measured rats’
spatial memory retention to find the platform after learning.
On the 6th day of the experiment, the hidden platform was
extracted from the water, and the rat was submerged with its
orientation directed towards the pool wall at a randomly chosen
entry point. To assess its performance, the number of crossings of
the platform of the rat within 120 s, the time spent and distance
traveled in each specific quadrant with the platform, and the time
and distance percentages in each specific quadrant were measured
during the test.
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Z-score calculation of behavioral analysis
We utilized the standard z-score method to normalize the raw

behavioral data. Z-scores serve as a statistical representation
indicating the number of standard deviations (σ) that a given
observation (X) deviates from the mean (μ) of the control
group. Mathematically, the Z-score can be calculated using the
formula Z = (X-μ)/σ (Guilloux et al., 2011). Many research
efforts have utilized Z-scores to explore emotional behaviors in
rodent models (Labots et al., 2016; Labots et al., 2018; Torrisi et al.,
2021). Based on behavioral observations of rats at different time
points and across sexes, Jean-Philippe Guilloux and colleagues have
suggested that Z-scores of rodent emotions might be one of the most
direct indicators reflective of human emotional states (Guilloux
et al., 2011). The CON group served as the control group, and
Z-scores were calculated for all the groups. The directionality of the
scores was adjusted to ensure that an increase in the score values
reflected an increase in the corresponding dimension. ZSPT refers to
SP, which measures the preference for sucrose. ZEPMT represents the
Z-score for EPMT results, including measures of time and distance
in the open arms, the number of entries into the open arms, and
their corresponding ratios. ZFST is the Z-score of FST, which
measures immobility time. ZMWM indicates the Z-score for the
MWM test results, including the total distance traveled, platform
crossings, time and distance spent in the target quadrant, and their
respective ratios. Zdepression = (–ZSPT + ZFST)/2 was used to assess
depression-like behaviors in rats. Zanxiety = –ZEPMT used to evaluate
anxiety-like levels in rats. Zcognize = ZMWM used to assess cognitive
function in rats.

Collection of fresh samples of Rat hippocampus,
prefrontal cortex, hypothalamus tissues, and
colonic content

1) Preparation: The rats were subjected to intraperitoneal
administration of 1% pentobarbital sodium (0.3 mL/100 g) for
anesthesia. 2) Dissection: After anesthesia, the chest and
abdominal cavities of the rats were dissected to fully expose the
heart. Following perfusion with physiological saline through the
heart, the rats were decapitated, the rats’ brains were quickly
removed from the skull and immediately placed on an ice tray.
3) Identification of Brain Regions: The three brain regions of interest
were identified based on anatomical landmarks consistent with
established brain atlases. The HIP was located using its distinct
C-shape structure, the PFC was identified by its anterior position
relative to the frontal lobe, and the HYP was located using key
anatomical landmarks such as the optic chiasm at the anterior end,
the mammillary bodies at the posterior end, and the hypothalamic
sulci at the lateral boundaries. 4) Region Isolation: Each brain region
was carefully dissected out. The tissue was then rapidly frozen using
liquid nitrogen to halt any enzymatic activity. Simultaneously,
colonic contents were collected. All samples were immediately
placed to 2 mL EP tubes and promptly frozen using liquid
nitrogen. Subsequently, the samples were securely stored
at −80°C for future use.

DNA extraction and 16S rRNA gene
sequence analysis

Total microbial genomic DNA from colonic content samples
was extracted using the E.Z.N.A.® Soil DNA Kit according to the

protocol provided by the manufacturer’s instructions (Omega Bio-
Tek, Norcross, GA, United States). To assess the quality and
concentration of DNA, a combination of methods was employed,
including 1.0% agarose gel electrophoresis and a NanoDrop® ND-
2000 spectrophotometer (Thermo Scientific, United States).
Subsequently, the DNA samples were securely stored at −80°C
for subsequent use. A PCR thermocycler, specifically the ABI
GeneAmp® 9700 model manufactured by ABI (CA, United
States), was utilized to amplify the hypervariable region V3-V4 of
the bacterial 16S rRNA gene. This amplification was performed
using specific primer pairs 338F (5′-ACTCCTACGGGAGGCAGC
AG-3′) and 806R (5′-GGACTACHVGGGTWTCTAAT-3′) (Liu et
al., 2016). The PCR reaction was conducted in triplicate with a
reaction mixture composed of 5 × Fast Pfu buffer (4 μL), 2.5 mM
dNTPs (2 μL), each primer at a concentration of 5 μM (0.8 μL), Fast
Pfu polymerase (0.4 μL), template DNA (10 ng), and sufficient
ddH2O to reach a final volume of 20 µL. Each sample was
amplified in triplicate. The PCR product was extracted from a
2% agarose gel and purified using an AxyPrep DNA Gel
Extraction Kit (Axygen Biosciences, Union City, CA, United
States). The extraction process followed the precise guidelines
provided by the manufacturer. Subsequently, the purified PCR
product was quantified using Quantus™ Fluorometer (Promega,
United States). The raw FASTQ files were de-multiplexed using an
in-house Perl script, followed by the application of fastp version
0.19.6 (Chen S. et al., 2018) for quality filtering. The resulting files
were subsequently merged using FLASH version 1.2.7 (Magoč and
Salzberg, 2011).

Metabolite extraction and (UHPLC-MS/
MS) analysis

Precise measurement of a 50 mg solid sample was conducted
before proceeding with metabolite extraction. The extraction
process involved using a 400 µL solution consisting of methanol
and water in a ratio of 4:1 (v/v). To ensure accurate
quantification, an internal reference, L-2-chlorophenylalanin,
was added at a concentration of 0.02 mg/mL. The mixture was
allowed to settle at −10°C and was subsequently treated using the
high-throughput tissue crusher Wonbio-96c (Wanbo
Biotechnology Co., LTD., Shanghai, China) at a frequency of
50 Hz for 6 min. To further enhance the extraction process,
ultrasound was performed at 40 kHz for 30 min at 5°C. The
samples were carefully stored at −20°C for 30 min to facilitate
protein precipitation. After centrifugation for 15 min at 13,000 g
and 4°C, the resulting supernatant was meticulously transferred
into sample vials for subsequent LC-MS/MS analysis. As an
integral step in the system conditioning and quality control
(QC) protocol, a pooled QC sample was prepared by uniformly
combining equal volumes of all individual samples. The QC
samples underwent the same disposal and testing procedures as
those used for the analytical samples. These samples, which
represent the entire set of samples, were injected into the system
at regular intervals (every eight samples) to ensure the stability
of the analysis. The UHPLC-Q Exactive system manufactured by
Thermo Fisher Scientific served as the platform for LC-MS
analysis. Upon the successful completion of mass
spectrometry detection, the raw data obtained from LC/MS
analysis were preprocessed using the specialized software
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Progenesis QI, developed by Waters Corporation (Milford,
USA). Subsequently, a three-dimensional data matrix in CSV
format was generated and exported. To identify metabolites,

extensive searches were conducted using recognized databases,
such as Metlin (https://metlin.scripps.edu/), HMDB (http://
www.hmdb.ca/), and the Majorbio Database.

FIGURE 2
Behavioral test results in rats. (A) Sucrose preference (%) in SPT, n = 12; (B) Time spent in open arms (s) in EPMT, n = 12; (C)Distance traveled in open
arms (mm) in EPMT, n= 12; (D) Trajectory plot in EPMT; (E) Immobility time (s) in FST, n = 12; (F) Escape latency (s) in MWM, n= 12; (G)Number of platform
crossings in MWM; (H) Trajectory plot on the sixth day in MWM; (I) Zdepression, n = 12; (J) Zanxiety, n = 12; (K) Zcognize, n = 12. Data are presented as
mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001 compared to CON group; #p < 0.05, ##p < 0.01, ###p < 0.001 compared to CUMS group.
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Statistical analysis
The analysis of 16S rRNA gene sequence data involved calculating

rarefaction curves and measuring alpha diversity, such as
Chao1 richness, Good’s coverage, observed OTUs, and Shannon
index. These calculations were performed using Mothur v1.30.1
(Schloss et al., 2009). To assess the similarity between microbial
communities across different samples, principal coordinate analysis
(PCoA) was conducted using the Vegan v2.5-3 package, with Bray-
Curtis dissimilarity serving as the basis for comparison. Significant
differences between sample groups were determined using the
ANOSIM test. Using the Kruskal-Wallis test, along with linear
discriminant analysis (LDA) effect size (LEfSe) (Segata et al., 2011)
(http://huttenhower.sph.harvard.edu/LEfSe), the bacterial taxa (ranging
from phylum to genera) exhibited significant variations across the
various groups. The inclusion criteria for these taxa were an LDA score
exceeding 2 and a p-value lower than 0.05.

In the analysis of metabolomics data, the R package ropls
(Version 1.6.2) was employed to conduct principal component
analysis (PCA) and orthogonal partial least squares-discriminant
analysis (OPLS-DA). The model stability was assessed using a 7-
cycle interactive validation approach. Additionally, Students’ t-tests
and fold difference analysis were performed to further investigate
the data. Differentially abundant metabolites were identified by
evaluating the variable importance in projection (VIP) values
derived from the OPLS-DA model and the p-value derived from
Student’s t-test. Metabolites exhibiting VIP values exceeding 1 and
p-values lower than 0.05 were considered to show significant
differences. In addition, pathway enrichment analysis for the
identified differentially abundant metabolites was performed
using MetaboAnalyst 3.0 (http://www.metaboanalyst.ca/), whereas
KEGG (http://www.kegg.jp) was used to identify the pathways
associated with these metabolites.

The remaining data underwent statistical analysis using SPSS
22.0 software. Various statistical tests were used, such as one-way
ANOVA, LSD, Welch test, Games-Howell test, Mauchly sphericity
test, Greenhouse-Geisser correction, and Spearman’s correlation
analysis. The analysis considered data normality and
homogeneity of variance using relevant statistical approaches for
each case. To report the results, the mean ± SEM was used, and
statistical significance was established at a p-value below 0.05,
indicating the presence of significant differences between the
groups. Co-occurrence networks were constructed to delve into
the internal community connections among the samples. The co-
occurrence network was established to investigate the
interrelationships between the different data components. A
correlation coefficient greater than 0.6 or less than −0.6 and a
p-value less than 0.05 indicate a statistically significant and
robust association between two network nodes.

Results

QUE improves depressive-like behaviors and
enhances cognitive function in CUMS rats

Anhedonia, anxiety-like behaviors, and depression-like
behaviors in rats were evaluated using SPT, EPMT, and FST,
respectively. The experimental SPT data demonstrated a notable

decline in SP among rats in the CUMS group relative to that in the
CON group (p = 1.3669E-7 < 0.001). Conversely, rats in the QUE
group exhibited a notable elevation in SP compared to the CUMS
group (p = 0.000776 < 0.001, Figure 2A). Furthermore, the EPMT
results demonstrated a significant reduction in both the time spent
and distance traveled in the open arms among the rats in the CUMS
group compared to those in the CON group (p = 0.003401 < 0.01, p =
0.001325 < 0.01, respectively). Nonetheless, upon QUE intervention,
a notable increase was observed in both the time spent and the
distance traveled in the open arms (p = 0.049647 < 0.05, p =
0.015838 < 0.05, respectively), as demonstrated in Figures 3B, C,
D1–D3. The FST results revealed that rats in the CUMS group
exhibited a notable increase in immobility time (p = 0.001059 < 0.01)
compared to the CON group. Conversely, compared to the CUMS
group, rats in the QUE group displayed a marked reduction in
immobility time (p = 0.018093 < 0.05, Figure 2E).

The MWM test was used to assess the learning and spatial
memory functions of the rats. In the first 5 days of the place
navigation test, the data did not meet the assumption of
sphericity based on Mauchly’s sphericity test (p = 0.001017 <
0.001). As the training days increased, the escape latency to the
platform decreased in all three groups (p = 6.9155E-16 < 0.001).
During the first 5 days of the place navigation test, rats in the CUMS
group took significantly more time to reach the hidden platform
than those in the CON group (p = 3.8633E-7 < 0.001). However,
after the QUE intervention, the time to reach the platform decreased
significantly (p = 0.000046 < 0.001, Figure 2F). On the 6th day of the
spatial probe test, the CUMS group displayed a substantial decrease
in platform crossings (p = 0.013412 < 0.05). In contrast, after QUE
treatment, the number of platform crossings in the QUE group
significantly increased (p = 0.024810 < 0.05, Figures 2G, H1–H3).
These results suggest that CUMS impairs spatial memory and that
QUE intervention improves it in rats.

Zdepression was used to assess depression-like phenotypes in
rats, Zanxiety was employed to evaluate anxiety-like phenotypes,
and Zcognize was deployed to measure cognitive function. The
results indicated that compared to the CON group, rats in the CUMS
group displayed a significant increase in Zdepression and Zanxiety
scores (p = 3.8744E-9 < 0.001 and p = 0.001302 < 0.001, respectively)
and a notable decrease in Zcognize scores (p = 0.000434 < 0.001).
After intervention with QUE, rats in the QUE group demonstrated a
remarkable reduction in Zdepression and Zanxiety scores (p =
0.000022 < 0.001 and p = 0.044008 < 0.05, respectively),
accompanied by a substantial increase in Zcognize scores
(Figures 2I–K).

These results indicate that QUE effectively alleviates depressive-
like and anxiety-like behaviors in rats, improves learning and spatial
memory function, and enhances cognitive abilities.

Impact of quercetin intervention on brain
tissue metabolic profiles

To investigate the effects of CUMS and QUE intervention on the
metabolic profile of rat brain tissues, we performed an untargeted
metabolomic analysis of PFC, HIP, and HYP tissues. Six
multivariate OPLS-DA models were constructed, with the
following parameters R2X = 0.413, R2Y = 0.999, Q2 = 0.587
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(CUMS vs. CON, HIP), R2X = 0.494, R2Y = 0.99, Q2 = 0.747 (CUMS
vs. QUE, HIP), R2X = 0.435, R2Y = 0.999, Q2 = 0.53 (CUMS vs. CON,
HYP), R2X = 0.289, R2Y = 0.99, Q2 = 0.81 (CUMS vs. QUE, HYP),
R2X = 0.419, R2Y = 0.998, Q2 = 0.577 (CUMS vs. CON, PFC) and
2X = 0.312, R2Y = 0.976, Q2 = 0.662 (CUMS vs. QUE, PFC). These
models demonstrated good stability and predictive abilities. The
OPLS-DA model score plots (Figures 3A–F) displayed distinct
separation of the metabolic profiles of the rat brain tissues (PFC,
HIP, and HYP), indicating significant differences in the metabolites
among the three groups. The permutation test results (Figures
3G–L) demonstrate that the models did not overfit.

As revealed in the volcano plots (Figures 4A–F), differential
metabolites were screened based on the VIP values and Student’s
t-test p-values derived from the OPLS-DA model. Metabolites with
VIP>1 and p < 0.05 were considered differentially expressed. In the

PFC, 175 differential metabolites were identified, including 87 in the
CON vs. CUMS comparison, 88 in the CUMS vs. QUE comparison,
and 12 shared in the CUMS vs. CON and QUE vs. CUMS
comparisons. Among these, eight metabolites exhibited opposite
regulatory trends, including sphingosine, phosphoenol pyruvate,
and D-glycerate 2-phosphate (Figures 4G,H, Supplementary
Table S1). In HIP, 163 differential metabolites were identified,
including 93 in the CON vs. CUMS comparison, 70 in the
CUMS vs. QUE comparison, and 13 shared in the CUMS vs.
CON and QUE vs. CUMS comparisons. Among these,
11 metabolites exhibited opposite regulatory trends, including
glyceric acid and fructose 1,6-bisphosphate (Figures 4K,L,
Supplementary Table S2). In the HYP, 229 differential
metabolites were identified, including 99 in the CON vs. CUMS
comparison, 130 in the CUMS vs. QUE comparison, and 29 shared

FIGURE 3
Effects of QUE on the metabolic profile of the brain in CUMS rats. (A–F)OPLS-DA Score Plots for CON vs. CUMS and CUMS vs. QUE in the PFC, HIP
and HYP. (G–L) OPLS-DA replacement test (200 times) for CON vs. CUMS and CUMS vs. QUE in the PFC, HIP and HYP.
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in the CUMS vs. CON and QUE vs. CUMS comparisons. Among
these, 18 metabolites exhibited opposite regulatory trends, including
fructose 1,6-bisphosphate, pantothenic acid, and phosphoenol
pyruvate (Figures 4N,O, Supplementary Table S3).

To further elucidate the potential pathways affected by
quercetin, we performed metabolic pathway annotations for the

common differential metabolites (metabolites altered by quercetin
treatment) in the CUMS vs. CON and QUE vs. CUMS groups using
the KEGG and HMDB databases. Subsequently, pathway
enrichment and topology analyses were conducted using the
Python software package sciPy.stats, and the main metabolic
pathways involving differential metabolites were identified using

FIGURE 4
Key differentialmetabolites andmetabolic pathways. (A–F) Volcano plots of differential metabolites comparing CON vs. CUMS andCUMS vs. QUE in
the PFC, HIP, and HYP. (G–I) Venn diagrams of differential metabolites, heatmap of common differential metabolites, and KEGG topological analysis in
the PFC comparing CON vs. CUMS and CUMS vs. QUE. (K–M) Venn diagrams of differential metabolites, heatmap of common differential metabolites,
and KEGG topological analysis in theHIP comparingCON vs. CUMS andCUMS vs. QUE. (N–P)Venn diagrams of differential metabolites, heatmap of
common differential metabolites, and KEGG topological analysis in the HYP comparing CON vs. CUMS and CUMS vs. QUE.

Frontiers in Pharmacology frontiersin.org09

Li et al. 10.3389/fphar.2024.1362464

61

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1362464


Fisher’s exact test. The results revealed that two metabolic pathways,
glycolysis/gluconeogenesis and sphingolipid metabolism, in the PFC
(Figure 4I), two metabolic pathways, glycolysis/gluconeogenesis and
pentose phosphate pathway, in the HIP (Figure 4M), and two
metabolic pathways, glycolysis/gluconeogenesis and pantothenate
and CoA biosynthesis, were significantly perturbed in the HYP
(Figure 4P). These pathways are significant targets of quercetin’s
activity, and their enhanced metabolites are the key differential
metabolites (Supplementary Figure S2).

Regulatory effects of quercetin on the gut
microbiota in depression-like rats

We used 16S rRNA gene sequencing of colonic content samples
from the three rat groups to assess gut microbiota changes after CUMS
modeling and quercetin administration. After sequence optimization,
QC, and rarefaction, 1,111,576 feature sequences were obtained, with an

average of 46,316 effective sequences per sample. These feature
sequences were classified into 1,019 Operational Taxonomic Units
based on 97% sequence similarity. Alpha diversity analysis results
disclosed that the ace, Chao1, and Sobs indices in the gut
microbiota of CUMS rats were significantly lower than those in the
CON group (Figures 5A–C), indicating that CUMS intervention
significantly reduced microbial community richness. The QUE
group depicted an upward trend compared with the CUMS group,
but the difference was not statistically significant. We further assessed
the beta diversity of the microbial community using PCoA based on
Bray-Curtis dissimilarity. The PCoA results (Figure 5D) and intergroup
differences test (R = 0.266, p < 0.05, Figure 5E) demonstrated that the
gut microbiota of each group clustered significantly, and significant
differences existed in the microbial composition and structure among
the groups. Additionally, the clustering trend of the QUE group was
similar to that of the CON group, indicating that CUMS significantly
changed the gut microbial community structure and that quercetin
regulated the gut microbiota of CUMS rats.

FIGURE 5
Effects of Quercetin on the Gut Microbiota of CUMS Rats. (A) ACE index. (B) Chao1 index. (C) Sobs index. (D) PCoA analysis. (E) In the anosim
similarity analysis, R > 0 indicates larger inter-group differences than intra-group differences. (F) Barplot of gut microbiota abundance at the phylum level.
(G) Barplot of gut microbiota abundance at the genus level.
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To further analyze the specific effects of the CUMS model and
quercetin intervention on the rat gut microbiota, we examined the
composition and abundance changes of gut microbial taxa in each
group. At the phylum and genus levels, we retained the top 10 and
20 species with the highest abundance, respectively, to calculate the
relative abundance and then plotted the relative abundance using a
stacked bar chart (Figures 5F,G). At the phylum level, Firmicutes,
Bacteroidota, and Proteobacteria were the dominant phyla,
accounting for over 98% of the total relative abundance. Compared

to the CON group, the gut of CUMS rats had more Firmicutes, less
Bacteroidota, and a higher Firmicutes/Bacteroidota (F/B) ratio.
Quercetin intervention reversed this trend (Figure 5F). At the genus
level, changes in the gut microbial community of CUMS rats mainly
involved a decrease in Lactobacillus, norank_f__Muribaculaceae,
Lachnospiraceae_NK4A136_group, and Psychrobacter, and an
increase in Turicibacter, norank_f__norank_o__Clostridia_UCG-014,
Romboutsia, UCG-005, and Monoglobus. Quercetin intervention
counteracted these changes (Figure 5G).

FIGURE 6
Analysis of differentially abundant bacteria in the gut microbiota of CUMS rats regulated by quercetin intervention. (A) Enriched microbial taxa
dendrogram generated from LEfSe analysis. (B) Histogram depicting the distribution of differentially abundant bacteria based on LDA scores. (C)
Significantly differentially abundant phyla with reversed abundances by quercetin intervention at the phylum level (Kruskal–Wallis H test). (D) Top
10 genera with reversed abundances by quercetin intervention at the genus level (Kruskal–Wallis H test). (E) Sankey diagram illustrating the
significantly differentially abundant genera with reversed abundances by quercetin intervention at the genus level.
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To identify statistically different biomarkers in the CUMS group
and further determine the significant markers affected by quercetin
intervention (QUE), we performed LEfSe and Kruskal–Wallis rank-
sum test analyses. LEfSe analysis revealed 106 differentially
abundant species from the phylum to the genus level (LDA
score >2) (Supplementary Table S4, Figures 6A,B), with
53 species at the genus level and 5 species at the phylum level
(Figures 6A,B). Based on the LEfSe analysis results, we further
compared the differential markers among the CON, CUMS, and
QUE groups using the Kruskal-Wallis rank sum test. At the phylum
level, we identified five differentially abundant taxa with opposite
trends in CON vs. CUMS and QUE vs. CUMS, among which
Firmicutes and Cyanobacteria were statistically significant
(Figure 6C, Supplementary Table S5). At the genus level, we
identified 20 differentially abundant taxa with opposite trends in

CON vs. CUMS and QUE vs. CUMS. Among these, Romboutsia,
Turicibacter, Monoglobus, Jeotgalicoccus, Staphylococcus, and
Erysipelotrichaceae_UCG-003 were significantly increased in the
CUMS group but decreased significantly after quercetin
intervention. In contrast, Bifidobacterium, Faecalibaculum, and
Pygmaiobacter decreased significantly in the CUMS group but
increased significantly after quercetin intervention
(Supplementary Table S6). The top 10 differentially abundant
genera with statistical significance are displayed in Figure 6D.
Furthermore, we categorized these 20 differentially abundant
genera based on their taxonomy at the class, order, and phylum
levels and depicted a Sankey plot (Figure 6E). Among them,
16 genera belonged to the phylum Firmicutes; two belong to the
phylum Actinobacteria, one belongs to the phylum Proteobacteria,
and one belongs to the phylum Cyanobacteria.

FIGURE 7
Correlation between behavioral metrics, differential metabolites, and gut differential microbiota. (A) Spearman’s correlation analyses between the
behavioral Z scores of rats and key differential metabolites in the PFC, HIP, and HYP. (B) Spearman’s correlation analyses between the behavioral Z scores
of rats and differential bacteria at the genus levels. (C) Spearman’s correlation analyses between differential bacteria at the genus level and key differential
metabolites in the PFC, HIP, and HYP. (D) Mantel test of the correlation between differential bacteria at the genus level and key differential
metabolites in the PFC, HIP, and HYP. (E) Network circle of the Spearman’s correlation between the behavioral Z scores of rats and key differential
metabolites in the PFC, HIP, and HYP, along with differential bacteria at the genus level.
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Correlation analysis of behavioral Z scores
with key differential metabolites in brain
regions and gut microbiota

To understand how quercetin regulates the “microbiota-gut-
brain” axis to treat depression, we conducted a series of correlation
analyses to explore the relationships among behavioral phenotypes,
brain regionmetabolites, and gut microbiota from three dimensions:
depression-like behaviors, anxiety-like behaviors, and cognitive
function in rats. First, we performed Spearman’s correlation
analyses between the behavioral Z-scores of rats and key
differential metabolites (Figure 7A) and differentially abundant
taxa at the phylum (Supplementary Figure S1B) and genus levels
(Figure 7B). Next, we conducted correlation analyses between the
differentially abundant taxa at the phylum and genus levels and the
key differential metabolites separately (Supplementary Figures S1C,
S7C). Subsequently, Mantel tests were performed to analyze the
correlation between differentially abundant taxa at the genus level
and key differential metabolites (Figure 7D). Finally, we examined
the relationships among the behavioral Z-scores, key differential
metabolites, and differentially abundant taxa using Spearman’s
correlation analyses and constructed correlation network
diagrams (Figure 7E). Correlation coefficients (r) were used to
assess the degree of correlation, where |r| > 0.6 indicated a
strong correlation, 0.4 < |r| ≤ 0.6 indicated a moderate
correlation, 0.3 < |r| ≤ 0.4 indicated a weak correlation; and |r| ≤
0.3 indicated no correlation (Akoglu, 2018; Schober et al., 2018). We
focused on results showingmoderate to strong correlations (i.e., |r| >
0.4) in our study.

Correlation analysis of behavioral Z scores and key
differential metabolites

Behavioral Z-scores were highly correlated with key differential
metabolites, and several behavioral indices were highly linked to
enriched differential metabolites in key pathways (Figure 7A).
Specifically, Zdepression was negatively correlated with
sphingosine in the PFC (r = −0.596, p = 0.002) and positively
correlated with D-glycerate 2-phosphate in the PFC (r = 0.434, p =
0.033), fructose 1,6-bisphosphate in the HIP (r = 0.643, p = 0.0006),
fructose 1,6-bisphosphate in the HYP (r = 0.612, p = 0.001), and
pantothenic acid in the HYP (r = 0.456, p = 0.024). Zanxiety was
positively correlated with fructose 1,6-bisphosphate in the HIP (r =
0.625, p = 0.001). Zcognize was positively associated with
sphingosine in the PFC (r = 0.416, p = 0.042) and negatively
correlated with D-glycerate 2-phosphate in the PFC (r = −0.445,
p = 0.029), and fructose 1,6-bisphosphate in the HIP (r = −0.418, p =
0.041). These correlations imply potential associations between
specific metabolites in different brain regions and behavioral
phenotypes, highlighting the importance of these metabolites in
modulating depression-like behaviors, anxiety-like behaviors, and
cognitive function in rats.

Correlation analysis of behavioral Z scores and
differential bacteria (phylum and genus level)

As revealed in Figure 7B, Zdepression in rats exhibited high
correlations with several differential bacterial genera: Zdepression
was negatively correlated with Bifidobacterium (r = −0.789, p =
4.46E-06) and Psychrobacter (r = −0.620, p = 0.001), representing

nine bacterial genera; Zdepression was positively correlated with
Turicibacter (r = 0.450, p = 0.027) and Staphylococcus (r = 0.663,
p = 0.0004).

There were also correlations between Zanxiety, Zcognize, and
different bacterial genera. These results suggest potential
associations between specific bacterial genera and behavioral
phenotypes, indicating the possible involvement of gut
microbiota in modulating depression-like behaviors, anxiety-like
behaviors, and cognitive function in rats.

Correlation analysis of key differential metabolites
and differential bacteria (at the phylum and genus
levels) in colonic contents

First, we performed a correlation analysis between key
differential metabolites and taxa at the phylum level
(Supplementary Figure S1C). The results demonstrated no
significant correlation between the key differential metabolites
and taxa at the phylum level. We then explored the correlation
between the key differential metabolites and taxa at the genus level.
The specific results of Spearman’s correlation analysis (Figure 7C)
were as follows: In the PFC, sphingosine was positively correlated
with Bifidobacterium (r = 0.502, p = 0.012) and norank_f__UCG-
010 (r = 0.536, p = 0.006); D-glycerate 2-phosphate was negatively
correlated with Harryflintia (r = −0.580, p = 0.002), Pygmaiobacter
(r = −0.507, p = 0.011), unclassified_f__Ruminococcaceae
(r = −0.506, p = 0.011), norank_f__UCG-010 (r = −0.550, p =
0.005), and norank_f__Oscillospiraceae (r = −0.566, p = 0.003). In
the HIP, fructose 1,6-bisphosphate was negatively correlated with
Bifidobacterium (r = −0.725, p = 6.02E-05), Faecalibaculum
(r = −0.747, p = 2.74E-05), NK4A214_group (r = −0.425, p =
0.038), Psychrobacter (r = −0.479, p = 0.017), unclassified_f__
Ruminococcaceae (r = −0.501, p = 0.012), and norank_f__UCG-
010 (r = −0.473, p = 0.019), and positively correlated with
Turicibacter (r = 0.526, p = 0.008) and Staphylococcus (r = 0.525,
p = 0.008). Glyceric acid was negatively linked to norank_f__UCG-
010 (r = −0.442, p = 0.030). In the HYP, fructose 1,6-bisphosphate
was negatively connected to Bifidobacterium (r = −0.587, p = 0.002),
Defluviitaleaceae_UCG-011 (r = −0.459, p = 0.023), norank_f__
norank_o__Gastranaerophilales (r = −0.511, p = 0.010),
Psychrobacter (r = −0.627, p = 0.001), unclassified_f__
Ruminococcaceae (r = −0.576, p = 0.003), norank_f__UCG-010
(r = −0.650, p = 0.0005), Coriobacteriaceae_UCG-002 (r = −0.597,
p = 0.002), Faecalibaculum (r = −0.501, p = 0.012), and norank_f__
Oscillospiraceae (r = −0.532, p = 0.007); it was positively correlated
with Romboutsia (r = 0.423, p = 0.039), Turicibacter (r = 0.566, p =
0.003), and Staphylococcus (r = 0.692, p = 0.0001). Pantothenic Acid
was negatively correlated with Bifidobacterium (r = −0.541, p =
0.006) and Coriobacteriaceae_UCG-002 (r = −0.522, p = 0.008) and
positively correlated with Staphylococcus (r = 0.443, p = 0.029).
Notably, fructose 1,6-bisphosphate, a key metabolite shared by HIP
and HYP, was correlated with the differential taxa (Figures 7C, E).
We then performed a Mantel test to assess the overall correlation
between differential taxa in the gut and brain metabolites. The
results demonstrated the strongest correlation between the
differential taxa and metabolites in the PFC, followed by HYP,
and the weakest correlation was observed in the HIP. Turicibacter
was correlated with metabolites in all three brain regions
(Figure 7D). Finally, we constructed a Spearman’s correlation
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network graph (Figure 7E) between behavioral Z-scores, key
differential metabolites in the PFC, HIP, HYP, and gut
differential taxa.

Discussion

Depression, a prevalent mental condition with a complex and
heterogeneous pathogenesis, severely affects society. Traditional
antidepressant drugs have certain limitations in treating
depression and often have side effects. Consequently, the search
for safer and more effective natural alternatives has become a hot
topic of current research. Quercetin, a plant-based flavonoid, has
been reported to have antidepressant properties; however, its
mechanisms are unknown.

In this study, we established a Chronic Unpredictable Mild
Stress (CUMS) rat model, renowned for its widespread use,
reliability, and efficacy in chronic stress research in animals
(Antoniuk et al., 2019; Lages et al., 2021). However, it is crucial
to acknowledge that, similar to the human condition, not all animals
subjected to the CUMS protocol develop depressive-like symptoms.
(Castro et al., 2012; Marcolongo-Pereira et al., 2022). Some studies
have introduced susceptible and resilient subgroups to explore the
effects of these individual differences. Nonetheless, difficulties and
controversies persist in empirically defining vulnerability versus
resilience among animals (Willner, 2017), with CUMS stress
potentially altering resilience in rats (Liu et al., 2023). Our study
concentrated on the general modulatory effects of quercetin on
depressive-like phenotypes induced by CUMS, without making
specific distinctions between individual resilience and
susceptibility. Further research is necessary to elucidate the
specific manifestations in, and differences between, susceptible
and resilient rats. We conducted metabolomics analysis of three
brain regions (PFC, HIP, and HYP) and 16s rRNA sequencing
analysis of the colon contents to assess the effect of quercetin on
depression-like behaviors in rats. Our findings indicate that
quercetin may be involved in reshaping gut microbiota,
regulating brain metabolism, and thereby ameliorating depressive
behaviors in rats (Supplementary Figure S2).

Increasing evidence suggests a close association between
carbohydrate metabolism and depression, with abnormalities in
carbohydrate metabolism being observed in the PFC (Baxter
et al., 1989; Kennedy et al., 2001; Hennings et al., 2012; Li et al.,
2015; Yao et al., 2023), HIP (Cherix et al., 2022), and HYP (Al-
Massadi et al., 2021) of depression patients or depression-like
animal models. This study found that quercetin may ameliorate
depression-like behaviors in CUMS rats by modulating glycolysis/
gluconeogenesis and the pentose phosphate pathway. Notably,
quercetin strongly altered the glycolysis/gluconeogenesis pathway
in all three brain areas. D-glycerate 2-phosphate was discovered as a
critical differential metabolite in quercetin’s modulation of
glycolysis/gluconeogenesis in the PFC. D-glycerate 2-phosphate is
an intermediate product of glycolysis that, under the catalysis of
enolase, can be converted into phosphoenolpyruvate and
subsequently transformed into pyruvate by pyruvate kinase,
leading to ATP production and playing a crucial regulatory role
in depression (Ma et al., 2018; Lin et al., 2022). In our study, the level
of D-glycerate 2-phosphate was significantly elevated in CUMS rats,

and quercetin intervention significantly reduced its level, suggesting
that CUMS might disrupt its breakdown, causing abnormal
glycolysis/gluconeogenesis and subsequent depression-like
behaviors. These findings were supported by the correlation
analysis (Figure 7A), which demonstrated a positive correlation
between D-glycerate 2-phosphate and Zdepression and a negative
correlation between D-glycerate 2-phosphate and Zcognition. In
HIP and HYP, fructose 1,6-bisphosphate was identified as a key
differential metabolite in quercetin’s regulation of glycolysis/
gluconeogenesis. In glycolysis, fructose 1,6-bisphosphate is an
intermediate product that aldolase can cleave into
dihydroxyacetone phosphate and glyceraldehyde 3-phosphate,
which contribute to the onset and treatment of depression
(Birkmayer, 1996; Demarin et al., 2004; Ma et al., 2018; Wang
et al., 2021; Cho et al., 2022; Lin et al., 2022). We observed a
significant increase in fructose 1,6-bisphosphate levels in the HIP
and HYP of CUMS rats, which was reversed by quercetin
intervention. Moreover, a strong positive correlation was
observed between fructose 1,6-bisphosphate and Zdepression
(Figure 7A), indicating that CUMS might induce the abnormal
cleavage of fructose 1,6-bisphosphate, leading to disrupted
glycolysis/gluconeogenesis and subsequent depression-like
behaviors. Quercetin’s regulation of fructose 1,6-bisphosphate
cleavage improved abnormal glycolysis/gluconeogenesis and
alleviated depression-like behaviors. Furthermore, the pentose
phosphate pathway in HIP is affected by quercetin, with
glycerate being a key differential metabolite. Glycerate can be
converted into 2-phosphoglycerate through the action of
glycerate 2-kinase, and 2-phosphoglycerate is a key compound
involved in glycolysis. Through catalysis by various enzymes, 2-
phosphoglycerate completes glycolysis and produces ATP, thus
playing a crucial role in regulating depression (Ma et al., 2018;
Cho et al., 2022; Lin et al., 2022). Quercetin significantly lowered
D-glycerate 2-phosphate in the PFC, fructose 1,6-bisphosphate and
glycerate in the HIP, and fructose 1,6-bisphosphate in the HYP,
improving carbohydrate metabolism and alleviating depression-
like behaviors.

The lipid composition of the brain may affect perception and
emotional behavior, potentially causing depression and anxiety
disorders (Adibhatla and Hatcher, 2008; Yadav and Tiwari, 2014;
Kornhuber et al., 2015). We discovered the potential regulatory
effects of quercetin on brain lipid metabolism in CUMS rats,
focusing on the PFC sphingolipid metabolism pathway, in which
sphingosine is a significant differential metabolite. When correlated
with behavioral indicators in rats, an elevation in sphingosine levels
in the PFC was associated with reduced depression-like behaviors
and improved cognitive function (Figure 7A), signifying its high
relevance to depression-like behaviors. Sphingosine is a crucial
intermediate in the sphingolipid metabolic pathway that links
ceramides and 1-phosphosphingosine. Ceramidase degrades
neuroceramides into sphingosine, which sphingosine kinases
phosphorylate into 1-phosphosphingosine. Recent studies have
highlighted the importance of neuroceramides and 1-
phosphosphingosine in brain health (van Kruining et al., 2020).
Numerous studies have reported the involvement of 1-
phosphosphingosine in various neurological and psychiatric
disorders, including Alzheimer’s disease (He et al., 2010; Asle-
Rousta et al., 2013; van Kruining et al., 2020), depression, and

Frontiers in Pharmacology frontiersin.org14

Li et al. 10.3389/fphar.2024.1362464

66

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1362464


anxiety (Jang et al., 2011). In our study, the CUMS group exhibited a
significant reduction in sphingosine levels in the PFC, indicating
abnormal sphingolipid metabolism. However, quercetin
administration substantially increased sphingosine levels in the
PFC, further regulating neuroceramides and 1-
phosphosphingosine levels, ultimately improving sphingolipid
metabolism and alleviating depression-like behaviors.

Furthermore, quercetin reduced the levels of pantothenic acid in
the HYP of CUMS rats, thereby modulating the biosynthesis
pathway of pantothenic acid and coenzyme A (CoA).
Pantothenic acid is a universal precursor of CoA, an essential
cofactor in glucose, lipid, and protein metabolism (Leonardi
et al., 2005; Jonczyk et al., 2008). There have been no direct
reports on the association between pantothenic acid, CoA, and
psychiatric disorders. However, our findings suggest that
quercetin may indirectly ameliorate depression-like phenotypes
by lowering hypothalamic pantothenic acid levels and improving
pantothenic acid and CoA biosynthetic metabolism.

It is well known that the stability of the gut microbiota is crucial
for maintaining host health, and gut dysbiosis is an important
pathogenic factor in depression (Bosch et al., 2022; Radjabzadeh
et al., 2022). In our study, we analyzed the changes in the gut
microbiota in response to quercetin treatment in CUMS rats and the
associations between gut microbiota alterations and brain
metabolism changes to explore the potential mechanism by
which quercetin exerts its therapeutic effects on depression-like
phenotypes through the microbiota-gut-brain axis. We found that
the α-diversity index of the gut microbiota in CUMS rats was
significantly reduced, and quercetin treatment reversed this
change (Figures 5A–C). β-Diversity analysis displayed that the
microbial structure after quercetin intervention resembled that of
the CON group (Figures 5D,E). These results indicate that in CUMS
rats, quercetin can ameliorate gut microbiota dysbiosis and restores
stability. The Firmicutes/Bacteroidetes (F/B) ratio, comprising the
Firmicutes and Bacteroidetes phylum, affects gut microbiota
homeostasis. In our study, the Firmicutes phylum in the colonic
contents of rats significantly increased after CUMS stress, resulting
in an elevated F/B ratio. However, quercetin intervention led to a
marked decrease in the Firmicutes phylum and a subsequent
reduction in the F/B ratio. The relationship between the F/B ratio
and depression remains controversial due to the heterogeneity and
complexity of depression (Jiang et al., 2015; Chen Z. et al., 2018;
Barandouzi et al., 2020). Nevertheless, there is a wealth of reliable
evidence that supports our findings. Jeffery et al. reported that the F/
B ratio was significantly increased in patients with irritable bowel
syndrome (IBS), obesity, and depression, accompanied by anxiety
and depression-like behaviors (Jeffery et al., 2012). De Palma et al.
demonstrated that transplantation of high F/B ratio feces induced
anxiety and depression-like behaviors in mice (De Palma et al.,
2017). Furthermore, at the genus level, quercetin reversed the
changes in the abundance of 20 gut microbial genera in CUMS
rats, which were highly correlated with depression-like phenotypes
in rats (Figure 7B). Among them, 16 genera belong to the Firmicutes
phylum, including Romboutsia, Turicibacter, and Faecalibaculum.
Previous studies have linked Romboutsia and Turicibacter to
circulating inflammation (IL-1β) and behavioral outcomes
(hypersomnia and anxiety-like behavior), indicating that an
increase in Romboutsia and Turicibacter exacerbates

inflammation and anxiety-like behavior (Grant et al., 2021).
Faecalibaculum produces short-chain fatty acids that are vital for
improving cognitive function (D’Amato et al., 2020). Consistent
with these findings, we found that quercetin significantly reduced
Romboutsia and Turicibacter in the gut of CUMS rats and
significantly increased Faecalibaculum, which reduced depression-
like behaviors. Correlation analysis revealed that Romboutsia was
positively correlated with 1,6-fructose diphosphate in HYP,
Turicibacter was positively correlated with 1,6-fructose
diphosphate in HIP and HYP, and Faecalibaculum was
negatively correlated with 1,6-fructose diphosphate in HIP and
HYP (Figure 7C). This indicates that Romboutsia, Turicibacter,
and Faecalibaculum, regulated by quercetin, may further affect
brain glucose metabolism, thereby potentially alleviating
depression-like behaviors. Bifidobacterium, a member of the
Actinobacteria phylum, is a well-studied probiotic known to
improve depression-like behaviors in hosts (Ohland et al., 2013;
Abildgaard et al., 2017a; Abildgaard et al., 2017b; Pinto-Sanchez
et al., 2017). Our study found that quercetin increased
Bifidobacterium abundance in CUMS rats, thereby potentially
improving the depressive symptoms. Notably, Bifidobacterium
was positively correlated with sphingosine in the PFC and
negatively correlated with 1,6-fructose diphosphate and
pantothenic acid in HIP and HYP. This suggests that quercetin
may regulate the PFC sphingosine metabolism and the sugar
metabolism in the HIP and HYP by modulating the
Bifidobacterium in the gut, thereby potentially improving
depression-like phenotypes. Moreover, 17 other genera, including
norank_f__UCG-010 and Psychrobacter, were identified as the key
targets of quercetin in the gut microbiota of CUMS rats, particularly
due to their strong correlation with brain metabolites (Figure 7C).
However, these genera have not been thoroughly associated with
depression, and their mechanisms require further studies.

In summary, our study provides new findings supporting the role of
quercetin in alleviating depression-like phenotypes via multiple
mechanisms. 1) Quercetin may regulate key metabolic pathways in
the brain regions (PFC, HIP, and HYP) to alleviate depression-like
behaviors induced by CUMS. 2) Quercetin may restore the gut
microbiota balance by targeting specific bacteria (Romboutsia,
Turicibacter, Faecalibaculum, and Bifidobacterium), contributing to
its antidepressant effects. 3) Due to the correlation between
behavioral changes, metabolite levels, and bacterial abundance in
rats, quercetin may act on the microbiota-gut-brain axis to intervene
in depression-like behaviors. Our findings provide information on the
antidepressant potential and its possible mode of action, emphasizing
the gut-brain relationship in depression treatment.

Limitations

1) We focused on the general effects of quercetin on the depressive-
like phenotypes induced by CUMS in animal models, without making
specific distinctions between individual resilience and susceptibility. 2)
Our study utilized male rats, a choice that may not fully represent the
female population. Given that depression is more prevalent in female
population, it is essential that future research further incorporates
considerations of gender differences. 3) This study identified
potential metabolic pathways targeted by quercetin; however, the
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specific mechanisms of action remain unclear. Further experimental
research is required to investigate the detailed metabolic processes
involved in these pathways. 4) We discovered several microbial targets
that may be influenced by quercetin, including bacteria like norank_f__
UCG-010, Psychrobacter, unclassified_f__Ruminococcaceae, and
Staphylococcus. However, limited data are available for many of
these targets, necessitating further exploration and in-depth studies.
5) Our results suggested an association between quercetin and
alterations in the gut microbiota and metabolic profile; however,
they did not definitively prove causation. Further research, including
longitudinal studies and experimental interventions, is needed to
elucidate the potential causal mechanisms underlying these
observations. 6) Our attempt to explore the targets of quercetin in
the microbiota-gut-brain axis is a step towards understanding the
complex and multifaceted mechanisms of this axis. However, further
research is needed to understand the effects of quercetin on the
microbiota-gut-brain axis.
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Introduction: The synthetic pyrethroid derivative fenpropathrin (FNE), a
commonly used insecticide, has been associated with various toxic effects in
mammals, particularly neurotoxicity. The study addressed the hallmarks of the
pathophysiology of Parkinson’s disease upon oral exposure to fenpropathrin
(FNE), mainly the alteration of dopaminergic markers, oxidative stress, and
molecular docking in rat models. In addition, the protective effect of
curcumin-encapsulated chitosan nanoparticles (CRM-Chs-NPs) was
also assessed.

Methods: In a 60-day trial, 40 male Sprague Dawley rats were divided into
4 groups: Control, CRM-Chs-NPs (curcumin-encapsulated chitosan
nanoparticles), FNE (15 mg/kg bw), and FNE + CRM-Chs-NPs.
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Results: FNE exposure induced reactive oxygen species generation, ATP
production disruption, activation of inflammatory and apoptotic pathways,
mitochondrial function and dynamics impairment, neurotransmitter level
perturbation, and mitophagy promotion in rat brains. Molecular docking analysis
revealed that FNE interacts with key binding sites of dopamine synthesis and
transport proteins. On the other hand, CRM-Chs-NPs mitigated FNE’s toxic
effects by enhancing mitochondrial dynamics, antioxidant activity, and ATP
production and promoting anti-inflammatory and antiapoptotic responses.

Conclusion: In summary, FNE appears to induce dopaminergic degeneration
through various mechanisms, and CRM-Chs-NPs emerged as a potential
therapeutic intervention for protecting the nervous tissue microenvironment.

KEYWORDS

curcumin-encapsulated chitosan nanoparticles, dopamine, fenpropathrin, mitochondrial
dynamics, antioxidant activity, anti-inflammatory activity, antiapoptotic activity

1 Introduction

Pyrethroids, widely used for their insecticidal properties, raised
great concern due to their potential role in disrupting crucial cellular
processes by impairing mitochondrial dynamics (Gajendiran and
Abraham, 2018). The residues of pyrethroids can alter
mitochondrial morphology, dynamics, and function, impairing
energy production and cellular homeostasis (Jana et al., 2011).
Additionally, exposure to these pesticides is associated with
heightened oxidative stress, where an imbalance between reactive
oxygen species (ROS) production and antioxidant defenses may
trigger neurodegenerative phenomena (Mohamed et al., 2019).
Moreover, pyrethroid-induced mitochondrial dysfunction is
correlated with the accumulation of senescent mitochondria,
impairing their clearance and contributing to cellular damage (Cui
et al., 2010; Ryan et al., 2015). Mitochondrial dysfunction is also amajor
cause of neurodegenerative diseases, especially Parkinson’s disease (PD)
(Moradi Vastegani et al., 2023).

Fenpropathrin (FNE), classified as an alpha-cyano pyrethroid, is
known to induce neurotoxicological responses (Weiner et al., 2009).
Initially, due to its rapid metabolism and clearance, FNE was perceived
as relatively harmless to mammals (Proudfoot, 2005). However, it can
exert prolonged effects when introduced into aquatic environments,
posing a substantial threat to fish populations by accumulating within
their tissues (Brander et al., 2016). Research revealed that FNE and
deltamethrin can reduce kynurenic acid (KYNA) concentration in rat
cortical slices (Zielinska et al., 2005), reflecting the findings in PD
patients’ brain tissue and cerebrospinal fluid (Ogawa et al., 1992).

Curcumin (CRM), a bioactive compound found in the spice
turmeric, has garnered significant attention for its diverse
therapeutic properties. Renowned for its potent anti-inflammatory,
antioxidant, and neuroprotective effects, curcumin has been
extensively studied for its potential in combating various diseases
and promoting overall health. Its ability to modulate multiple
cellular signaling pathways makes it a promising candidate for the
prevention and treatment of conditions such as cancer,
neurodegenerative diseases, cardiovascular disorders, and
metabolic syndrome.

Moreover, curcumin’s favorable safety profile and relatively low
cost further contribute to its appeal as a natural remedy. However,
challenges like poor bioavailability have prompted ongoing research to

enhance its efficacy through innovative delivery systems (Bavarsad et al.,
2019). Various formulations have been employed to enhance the
bioavailability of curcumin, a compound with neuroprotective
potential (Arya et al., 2018). These innovative approaches aim to
protect curcumin from chemical degradation and include methods
such as encapsulation into nanoparticles or microparticles, often
integrated into food or supplements. In this sense, polysaccharide-
based systems, e.g., chitosan, emerged as promising tools due to their
exceptional physicochemical properties (Khater et al., 2021). Chitosan
(Chs), a natural polysaccharide, possesses advantageous traits, including
biocompatibility, biodegradability, and mucoadhesive capabilities (Lin
et al., 2022). Chitosan-encapsulated curcumin nanoparticles (CRM-
Chs-NPs) have already shown improved stability of curcumin in
cervical cancer cells, bioavailability, and cellular uptake. Besides,
CRM-Chs-NPs demonstrated an elevated uptake in the SiHa cells
regarding free CRM (Khan et al., 2018).

Neuron impairment, followed by increased ROS production
(Golpich et al., 2017), can lead to the onset and worsening of PD
(Abdelnour et al., 2020; Agnihotri and Aruoma, 2020). Moreover,
specific genetic mutations in genes like PTEN-induced kinase 1
(Pink1), Parkin, and protein deglycase 1 (DJ-1) can also play a
crucial role in PD if they occur in a recessive manner (Sekine and
Youle, 2018). These genes are essential for maintaining a healthy
balance in the mitochondria and a process called mitophagy, which
helps to remove damaged mitochondria (Burbulla et al., 2017).

Additionally, neurological degeneration and PD can also be
triggered by exposure to environmental toxins like 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP), 6-hydroxydopamine
hydrobromide (6-OHDA), rotenone, and FNE (Filichia et al., 2016).
These pollutants can impair mitochondria function or even disrupt
them. The mitochondrial complexes I-V can be directly or indirectly
affected by oxidative stress resulting from exposure to FNE, leading to
energy deficits, increased ROS production, mitochondrial dysfunction,
and ultimately, neuronal degeneration, a central feature of PD (Tong
et al., 2018). Mitochondrial complexes can have several detrimental
effects, including energy deficits via reduced ATP production from
damaged complexes, ROS accumulation, and oxidative stress that
further damage the complexes and exacerbate oxidative damage (Sas
et al., 2007; Reddy et al., 2011).

This study aimed to understand the FNE hallmarks of the
pathophysiology of PD, namely, the alteration of dopaminergic
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markers and oxidative stress, as well as the examination of key
markers through histological and immunohistochemical
staining in a rat model. Additionally, the potential benefits of
CRM-Chs-NPs in counteracting the harmful effects of FNE on
nerve tissue were explored. The selected dose of FNE was based
on the human exposure levels as the NOAEL, identified at
300 ppm (equivalent to 15 mg/kg/bw per day), and was
determined by assessing clinical indicators such as tremors,
reductions in body weight, decreased blood clotting time in
females, and potentially elevated alkaline phosphatase levels in
both sexes at 600 ppm (equivalent to 30 mg/kg/bw per day)
(Hend and Butterworth, 1976).

Additionally, the dose of CRM-Chs-NPs used in the current
study was based on recent research findings, which strongly support
their effectiveness and demonstrated their superior efficacy and
tissue bioavailability compared to molecular curcumin in
countering the harmful effects of FNE exposure on the
reproductive system and hepatotoxicity (Alqahtani et al., 2023;
Mohamed et al., 2023).

2 Materials and methods

2.1 Preparation and characterization of
CRM-Chs nanoparticles (CRM-Chs-NPs)

CRM-Chs-NPs were prepared using the standard ionic gelation
synthesis method (Kunjachan and Jose, 2010). The morphology of
nanoparticles was investigated using high-resolution transmission
electron microscopy (JEM-2100, JEOL, Japan, Tokyo). Zeta
potential and particle size analyses were conducted using a Zeta
Sizer (Nano-ZS, Malvern Instruments Ltd., Zetasizer Ver, Malvern,
United Kingdom). Furthermore, the CRM-Chs-NPs surface
functional groups were identified through Fourier-Transform
Infrared (FTIR) spectroscopy spanning the 400–4,000 cm⁻1 range
(ALPHA II Compact FT-IR spectrometer, Bruker, Germany).
Notably, the distinctive characteristics of nanoparticles were
previously elucidated and documented in a study (Alqahtani
et al., 2023).

2.2 Animals and experimental design

A group of 40 adult male Sprague Dawley rats (10-week-old and
mean weight 142 ± 0.46 g) from the Animal Housing Unit at Zagazig
University’s Faculty of Veterinary Medicine were enrolled. The rats
were acclimated for 12 days with a 12-h light/dark cycle with
unrestricted access to food and water.

Rats were randomly assigned into 4 groups: the first group
(control) received corn oil (1 mL/animal) (Arma Food Industries,
Egypt), the second group (CRM-Chs-Nps) received chitosan-
encapsulated curcumin in distilled water at 50 mg/kg bw
(Abd-Elhakim et al., 2022), the third group (FNE) received
FNE at 15 mg/kg bw (Mohamed et al., 2019), and fourth
group (CRM-Chs NPs + FNE) simultaneously received the
chitosan-encapsulated curcumin and FNE at the same above-
cited concentrations. The corn oil vehicle was used to dissolve
FNE, ensuring consistency in administration across experimental

groups. In our study, distilled water was not utilized as a vehicle
rather it constituted a component of the preparation of CRM-
Chs-NPs, tested separately from FNE. Throughout the 60-day
experiment, each group was orally given the compounds via a
dedicated feeding needle.

The study was approved by the Ethics Committee at Zagazig
University, Egypt (Approval number: ZU-IACUC/2/F/101/2022).
Procedures were conducted according to the regulations outlined in
the U.K. Animals (Scientific Procedures) Act of 1986, the EU
Directive 2010/63/EU on animal experimentation, and the
principles and recommendations outlined in the ARRIVE
guidelines (Percie du Sert et al., 2020).

2.3 Chemicals

FNE (Danitol®) was purchased from Sumitomo Chemical Co.
Ltd (Saint Didier au Mont d’Or, France), CRM from Sigma Aldrich
Co. (St. Louis, Missouri, United States), and low molecular weight
chitosan (MW: 100–300 KDa) from Across Co. Ltd. (Chuncheon-si,
South Korea). Notably, all other compounds and reagents in this
analysis exhibited a ≥99.99% purity. GSH and Caspase 3 were
purchased from (Cusabio Biotech Co., Ltd.) (Beutler et al., 1963),
SOD, CAT, and MDA (MyBioSource, San Diego, United States)
(Spitz and Oberley, 1989), ROS (Life Sciences, Mongkok Ki,
Hongkong), ATP (Assay Genie, Dublin, Ireland) (Aebi, 1984),
glutamate and dopamine from Biomatik (Wilmington, Delaware,
United States).

2.4 Collection of samples and
biochemical analysis

The rats were anesthetized by isoflurane 5% inhalation via a
mask and air pump (R510–25, RWD life science, San Diego, CA) for
3 min, and then were euthanized by cervical dislocation. The two
primary regions of interest for dopamine, glutamate, and oxidative
stress markers analysis are the striatum and the prefrontal cortex.
These brain tissue regions were included for the preparation of tissue
homogenate, which was placed in 20 mL of 1X PBS and stored
overnight at ≤ −20 °C. Then, each sample was centrifuged at
20,000 ×g for 15 min. The collected supernatant was stored for
the detection of oxidative stress [malondialdehyde (MDA), ROS and
adenosine triphosphate (ATP) and antioxidant (superoxide
dismutase (SOD), catalase (CAT) and glutathione (GSH)]
markers, neurotransmitters (dopamine, glutamate) and apoptotic
indices (Caspase 3) using Enzyme-linked Immunosorbent Assay
(ELISA) according to the manufacturer instructions. The samples of
brain hemispheres for gene expression were frozen at −80 °C. Other
tissue samples were separated in a neutral buffered formaldehyde
solution for histopathological and immunohistochemical staining
sections. The brain was dissected into the cerebrum, including the
hippocampus and cerebellum. The cerebellum was longitudinally
dissected, and the hippocampus was cross-sectionally dissected at
the mammillary body and tuber cinereum level, according to
Treuting et al. (2017). Cerebral samples were taken from the
midbrain above the hippocampus, where dopaminergic neurons
are common.
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2.5 Quantitative real-time RT-PCR
(qRT-PCR)

Trizol (Invitrogen; Thermo Fisher Scientific, Waltham, MA,
United States) was used for total RNA extraction from 30mg of brain
tissue.We evaluated the RNAquality to detect the A260/A280 ratio using
the Nano DropVR ND-1000 Spectrophotometer (NanoDrop
Technologies, Wilmington, DE, United States) for 1.5 mL of the RNA.
A High-Capacity cDNA Reverse Transcription Kit cDNA Kit for cDNA

synthesis (Applied Biosystems™,Waltham,MA,United States) was used.
The primers were designed for the tested genes, including apoptosis genes
Casp 3, Bcl-2, Bax, and Sod1), mitochondrial complex genes (5 NADH
oxidoreductase (Complex I, Succinate oxidoreductase (Complex II),
Cytochrome c oxidoreductase (Complex III), Cytochrome c oxidase
(Complex IV), ATP synthase F1 subunit alpha (ATP5F1α), Dynamin-
related protein 1 (Drp1). Mitochondrial homeostasis, mitophagy-related,
andmitofusins (Mfn1 andMfn2) genes were evaluated according to their
manufacturer instructions (Sangon Biotech Beijing, China) as provided in

TABLE 1 Primers sequences, accession number, and product size for the quantitative RT-PCR for the analyzed genes in the brain tissue.

Target gene Primers sequences Accession no. pb

Gapdh 5′-GGCACAGTCAAGGCTGAGAATG-3′ NM_017008.4 143

3′-ATGGTGGTGAAGACGCCAGTA-5′

Bax 5′-CGAATTGGCGATGAACTGGA-3′ NM_017059.2 109

3′-CAAACATGTCAGCTGCCACAC-5′

Bcl-2 5′-GACTGAGTACCTGAACCGGCATC-3′ NM_016993.1 135

3′-CTGAGCAGCGTCTTCAGAGACA-5′

Casp 3 5′-GAGACAGACAGTGGAACTGACGATG-3′ NM_012922.2 147

3′-GGCGCAAAGTGACTGGATGA-5′

Sod1 5′-TTGGCCGTACTATGG TGGTC-3′ NM_017050.1 120

3′-GGGCAATCCCAATCA CACCA-5′

5-Nadh oxidoreductase (Complex I) 5′-AGAGCCTCACAGACAATGGC-3′ NM_001005550.1 70

3′-ATGGCTCCTCTACTGCCTGA-5′

Succinate oxidoreductase (Complex II) 5′-GCTCTTGCTGAGACACATCG-3′ NM_001005534.1 191

3′-TTGCCATGGGAAGAGACCAC-5

Cytochrome c oxidoreductase Complex (III) 5′-CTCAGCGTGTGGACTGAATA-3′ NM_001013185.1 127

3′-CCAGGTTCTGCAGGTGAGTT-5′

Cytochrome c oxidase Complex (IV) 5′-GGAACCACACGCTTTTCCAC-3′ NM_012812.3 71

3′-GAGTCTTCAAGGCTGCTCGT-5′

ATP synthase F1 subunit alpha (Atpf1α) Complex V 5′-TGCCATTGATGGGAAGGGTC-3′ NM_023093.1 97

3′-TGGTTCCCGCACAGAGATTC-5′

Prkn 5′-GAACTGTGGCTGTGAGTGGA-3′ NM_020093.1 105

3′-GGTGTTTCCCATGAGGTCGT-5′

Mfn1 5′-CTGGGACGGAATGAGTGACC-3′ NM_138976.2 164

3′-CATGTGAGGGGCCCAATCTT-5′

Mfn2 5′-ACCAGCTAGAAACGAGATGTCC-3′ NM_130894.4 109

3′-GTGCTTGAGAGGGGAAGCAT-5′

Pink1 5′-AGGAAAAGGCCCAGATGTCG-3′ NM_001106694.1 171

3′-CTGTTTGCTGAACCCAAGGC-5′

Drp1 5′-GGCAACTGGAGAGGAATGCT-3′ NM_053655.3 165

3′-CTGTTCTCGGGCAGACAGTT-5′

Gapdh: Glyceraldehyde 3-phosphate dehydrogenase; Bax: Bcl-2-associated X protein, Bcl-2: B-cell lymphoma 2, Casp 3: Caspase 3, Sod1: Super oxide dismutase, Complex I: Nadh-

ubiquinone oxidoreductase complex, Complex II: succinate dehydrogenase, Complex III: cytochrome c oxidoreductase, Complex IV: cytochrome c oxidase, Complex IV: ATP, synthase

F1 subunit alpha (Atpf1α), Drp1: dynamin-related protein 1, Prkn: Parkin RBR, E3 ubiquitin protein ligase, Mfn1: Mitofusin 1, Mfn2: Mitofusin 2, Pink1: PTEN-induced kinase 1, pb: base pair.
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Table 1 (Kimmich et al., 1975; Mihara and Uchiyama, 1978; Yuan
et al., 2006).

A thorough assessment of the primer sequences was conducted.
The primer sequence was validated via blast analysis NCBI, and primer
details were carefully revised. The stability of the expression of different
housekeeping genes, includingGapdh, Act-b, andBeta-2-macroglobulin,
and their CT values using the geNorm online software (https://genorm.
cmgg.be) revealed that Gapdh was the most stably expressed without
any significant difference among experimental groups.

2.6 Microarchitecture examination of
brain tissue

Brain samples were washed in phosphate buffer saline (pH 7.4)
and immersed in 10% neutral buffered formaldehyde. The
conventional paraffin embedding technique was chosen for
specimens (Fischer et al., 2008).

Obtained sections were stained by Hematoxylin and Eosin
(H&E). The calculation was based on semiquantitative scoring of
brain necrotic lesions (Gibson-Corley et al., 2013). Scoring was
applied on ten randomly chosen microscopic fields
at ×400 magnification and averaged. The blinded scoring of the
lesions was based on the following procedure [Score scale: 0 =
normal; 1 ≤ 25%; 2 = 26–50%; 3 = 51–75%; 4 = 76–100%].

2.7 Immunohistochemical and
immunofluorescence staining

The antibodies used in this study were themonoclonal rabbit anti-
vimentin (1:300), polyclonal rabbit anti-4-hydroxynonenal (4-HNE)
(1:100), and monoclonal mouse anti-Bax (1:50), which were obtained
from (Abcam, Cat Ab92547, Cambridge, United Kingdom), (Abcam,
Cat Ab46545, Cambridge, United Kingdom) and (Sc-7480, Santa
Cruz, CA, United States), respectively. Antigen retrieval was at 10 mM
citrate buffer (pH 6.0) at 105 °C for 20 min for all markers. The
procedures of immunohistochemical and immunofluorescence
techniques were based on Saafan et al. (2023) and Noreldin et al.
(2018). The studied micrographs were obtained with a digital camera
(Leica EC3, Leica, Germany). The Fiji image analyzer (National
Institutes of Health, Bethesda, MD, United States) was utilized to
semi-quantitatively calculate the area percentages of the various
immunostaining and immunofluorescence reactions (Schindelin
et al., 2012; Buckels et al., 2022). Specific brown color images
representing the immunoreactions resulting from the
deconvolution of ten randomly chosen images were used for
analysis. The color thresholds were unified for all analyzed
micrographs to compute the different immunoreaction area
percentages (Vis et al., 2000).

2.8 Molecular docking assessment

2.8.1 Instruments and tools
RCSB Protein Data Bank (RCSB PDB; https://www.rcsb.org/)

and AlphaFold (https://alphafold.ebi.ac.uk/) databases, and the
Molecular Operating Environment (MOE 2022.02, Chemical

Computing Group, Montreal, QC, Canada) software were used
for protein and ligand retrieving and molecular docking.

2.8.2 Ligand preparation
Curcumin and FNE’s three-dimensional structures were

obtained from the PubChem database in SDF format and opened
in MOE software for energy minimization and docking with
target proteins.

2.8.3 Protein preparation
The three-dimensional structures of rats’ caspase 8, caspase 9,

caspase 3, CAT, PINK1, NADH-ubiquinone oxidoreductase,
succinate dehydrogenase complex subunit C (SDHC), coenzyme
Q8A (COQ8A), ATP synthase F1 subunit alpha (ATP5F1A),
protein deglycase (DJ-1), dopamine transporter (DAT), tyrosine
hydroxylase proteins were retrieved from RCSB Protein Data Bank
and Alpha Fold protein structure databases. Target proteins were
prepared for docking using MOE software (MOE 2015.10, Chemical
Computing Group, Montreal, QC, Canada) by removing water and
ligand molecules in the protein structures and minimizing target
protein energy.

2.8.4 Molecular docking analysis and visualization
Target proteins were docked with ligands by identifying the

binding site and docking with the induced fit model. Finally, the
protein-ligand interactions were visualized using the same software
(Vilar et al., 2008).

2.9 Statistical analysis

All data are expressed as mean ± SEM and were analyzed
using the Prism 9.0 software from GraphPad (San Diego, CA,
United States). Differences among groups for mRNA expression
as well as for oxidative and antioxidant enzymes, caspase 3, and
neurotransmitters were analyzed using a One-Way Analysis of
Variance (ANOVA) followed by Tukey’s multiple range post hoc
test, while for the scores, a Kruskal–Wallis test followed by
Dunn’s multiple comparisons test. A p < 0.05 was considered
significant.

3 Results

3.1 Biochemical alterations due to exposure
to FNE and/or CRM-Chs-NPs

3.1.1 Markers of antioxidant capacity, oxidative
stress, and the level of ATP

The results demonstrated significant changes in various
biomarkers following exposure to FNE (Table 2).

Specifically, exposure to FNE led to a substantial increase (p <
0.001) in ROS levels and MDA concentration in brain tissue,
showing a 2.31-fold and 6.43-fold increase, respectively,
compared to the control group. Conversely, there was a
significant reduction (p < 0.001) in ATP levels by 86.53%, CAT
activity by 88.13%, GSH content by 68.24%, and SOD activity by
71.01% compared to the control group.
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Remarkably, co-treatment of CRM-Chs-NPs and FNE (FNE +
CRM-Chs-NPs group) significantly decreased ROS and MDA levels
in rats’ brain tissue, reducing them by 43.05% and 56.89%,
respectively, compared to the FNE group (p < 0.001).
Additionally, CRM-Chs-NPs significantly reduced oxidative
stress, lowering ROS levels by 19.79% and MDA levels by 43.9%
compared to the control group (p < 0.001).

In the CRM-Chs-NPs + FNE group, a significant
enhancement in the levels of GSH, CAT, and SOD by
122.67%, 368.69%, and 172.42%, respectively, was observed
compared to the FNE-exposed group (p < 0.001). As for ATP
levels, while the FNE-exposed group experienced a significant
decline (86.53%) compared to the control group (p < 0.001),
concurrent administration of CRM-Chs-NPs with FNE
significantly reversed this trend, elevating ATP content in
brain tissue by 195.5% compared to the FNE group (p < 0.05).

Furthermore, caspase-3 protein levels in the brain tissue of the
FNE-exposed group significantly increased by 842.9% compared to
the control group (p < 0.001). However, caspase-3 was significantly
reduced by 41.54% following the addition of CRM-Chs-NPs in the
FNE + CRM-Chs-NPs group compared to the FNE-exposed group
(p < 0.001).

3.1.2 The levels of dopamine and glutamate in the
brain tissue

A significant increase in brain tissue levels of glutamate,
reaching 7.06 times the values observed in control rats, was
observed in the FNE-exposed group (p < 0.001). Conversely,
dopamine levels in the same group exhibited a significant
decrease of 89.07% compared to the control values (p < 0.001).

In the combined treatment group (FNE + CRM-Chs-NPs), there
was a significant elevation in dopamine levels, with a 3.05-fold
increase and a 62.02% compared to the FNE-treated group (p <
0.05). This demonstrated the beneficial effect of CRM-Chs-NPs in
significantly elevating dopamine levels in the brains of exposed rats
to FNE for 60 days (Table 2) (p < 0.001).

3.1.3 The expression pattern of estimated genes
(apoptotic and antioxidant genes)

As shown in Figures 1A, B, a marked upregulation of
apoptosis-related genes, namely, Casp 3 (573.03%) and Bax
(389.52%), was observed in the brain tissues of rats exposed
to FNE, indicating a significant difference (p < 0.001) when
compared to the control group. Conversely, the expressions of
Bcl-2 and Sod1 exhibited substantial downregulation by 83.80%
and 201.79%, respectively, compared to the control
group.

Notably, the group treated with CRM-Chs-NPs displayed a
noteworthy decrease (p < 0.001) in the mRNA expressions of
Casp 3 and Bax (Figures 1C, D) when compared to the FNE-
exposed group, with reductions of 46.88% and 44.93%,
respectively.

Furthermore, in the FNE + CRM-Chs-NPs group, there was a
significant (p < 0.001) elevation in the mRNA expressions of Bcl-2
and Sod1 in brain tissues, with increases of 221.27% and 201.97%,
respectively, compared to the FNE-exposed group.

3.1.4 Gene expression analysis of mitochondrial
complex genes

As shown in Figures 2A–E, the rats exposed to FNE exhibited a
substantial downregulation of mitochondrial Complex genes I, II, III,
IV, and V in brain tissues, with reductions of 68.98%, 77.66%,
78.81%, 87.32%, and 69.83%, respectively, compared to the control
group (p < 0.001).

In contrast, the brain tissue of rats subjected to combined
treatment with CRM-Chs-NPs and FNE showed a significant
(p < 0.001) upregulation of the same genes, with increases of
151.83%, 181.44%, 164.95%, 458.37%, and 157.9%, respectively,
compared to the FNE-exposed group. Furthermore, when
assessing the comparative effectiveness of CRM-Chs-NPs and
control, a statistically significant (p < 0.001) improvement in the
gene’s activity was observed compared to the control
group.

TABLE 2 Effect of oral dosing of CRM-Chs-NPs on the brain oxidative and antioxidant enzymes, caspase-3, and neurotransmitters of adult Sprague Dawley
rats exposed to FNE for 60 days.

Estimated parameters Control CRM-Chs-NPs FNE FNE + CRM-Chs-NPs

ROS (pg/mg) 184.4 ± 13.23 147.9 ± 3.37£££ 610.9 ± 22.22*** 347.9 ± 27.94***,£££

ATP (ng/mg) 23.91 ± 2.67 22.46 ± 0.4£££ 3.200 ± 0.37*** 9.515 ± 1.14***,£

GSH (ng/mg) 163.6 ± 3.21 182.9 ± 2.35*,£££ 51.96 ± 2.49*** 115.7 ± 7.14***,£££

CAT (ng/mg) 6.65 ± 0.51 8.94 ± 0.31**,£££ 0.79 ± 0.048*** 3.7 ± 0.26***,£££

MDA (nmol/mg) 1.23 ± 0.18 0.69 ± 0.054£££ 9.14 ± 0.31*** 3.94 ± 0.32***,£££

SOD (U/mg) 180.8 ± 4.29 198.4 ± 3.45£££ 52.42 ± 3.98***,£££ 142.8 ± 5.04***,£££

Caspase-3 (ng/mg) 0.76 ± 0.07 0.62 ± 0.04£££ 7.18 ± 0.43***,£££ 4.20 ± 0.19***,£££

Glutamate (ug/dL) 0.98 ± 0.09 1.05 ± 0.03£££ 7.92 ± 0.67*** 3.01 ± 0.30*,£££

Dopamine (DA) (ng/mg) 5.19 ± 0.24 6.29 ± 0.23£££ 0.57 ± 0.07*** 2.30 ± 0.44***,£

ROS: reactive oxygen species, ATP: Adenosine tri-phosphate, GSH: reduced glutathione, CAT: catalase, MDA: malondialdehyde, SOD: Superoxide dismutase. Means within the same row

carrying different superscripts significantly differ at *p < 0.05 or £p < 0.05, **p < 0.01 or ££p < 0.01, ***p < 0.001 or £££p < 0.001. Values shown are means ± SE. n = 10 group (*) is the significance

vs. control while (£) is the difference vs. FNE, group (FROS (3, 12) = 121,7; FATP (3,12) = 46.64; FGSH (3,12) = 186.6; FCAT (3,12) = 117.6; FMDA (3,12) = 253.5; FSOD (3,12) = 236.6; FCaspase-3
(3,12) = 169.7; FGlutamate (3,12) = 77.11; FDA (3,12) = 65.78).
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3.1.5 Gene expression analysis mitophagy and
mitochondrial homeostasis-related genes

Genes associated with mitochondrial homeostasis and dynamics
were also examined (Figures 3A–E).

This figure illustrates a significant downregulation (p < 0.001) in the
expression of these genes, namely, Pink, Drp1, Parkn, Mfn1, andMfn2,
in the FNE-exposed group. The reductions were significant, 83.75%,
87.82%, 76.32%, 69.09%, and 79.08%, respectively, compared to the
control group. However, when CRM-Chs-NPs were co-administered,
the expression of these genes in the brain of the combined group was
remarkably elevated, nearly approaching the control values compared

to the FNE-exposed group. The calculated percentages are 274% in
Pink, 293.43% in Drp1, 175.27% in Parkn, 149.84% in Mfn1, and
189.04% in Mfn2 compared to the control. These findings underscore
the potential of CRM-Chs-NPs to effectively mitigate the adverse effects
of FNE on mitochondrial gene expression.

3.2 Microscopical findings

The study of brain histoarchitecture of negative control and CRM-
Chs-NPs groups revealed normal neuropil and neurons in the brain

FIGURE 1
Effect of CRM-Chs-NPs oral dosing on mRNA expression of (A) Casp 3, (B) Bax, (C) Bcl-2, and (D) Sod1 in the brain tissues of adult male Sprague
Dawley rats exposed to FNE after 60 days. (n = 10 group), **p < 0.01, ***p < 0.001, [FCaspase (3,36) = 1,154, FBAX (3,36) = 1,164, FBcl-2 (3,24) = 247.8,
FSOD (3,36) = 463.2].
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areas, including cerebrum (taken from the midbrain above the
hippocampus), cerebellum (longitudinally dissected), and
hippocampus (cross-sectionally dissected at the level of the
mammillary body and tuber cinereum) (Figures 4A, C).

However, we detected necrotic neurons in the FNE cerebrum
(Figure 4B). CRM-Chs-NPs ameliorated the toxic effects of FNE on
the cerebrum with few necrotic neurons (Figure 4D). These results
were shown in the image-scoring analysis of brain histoarchitecture

FIGURE 2
Effect of CRM-Chs-NPs oral dosing on mRNA expression of (A) 5-Nadh oxidoreductase (Complex I), (B) Succinate oxidoreductase (Complex II), (C)
Cytochrome c oxidoreductase (Complex III), and (D) Cytochrome c oxidase (Complex IV), (E) ATP synthase F1 subunit alpha (Atpf1α) (Complex V) in the
brain tissues of adult male Sprague Dawley rats exposed to FNE for 60 days. (n = 10 group), ***p < 0.001, [Fcomplex I (3, 36) = 369.2, Fcomplex II (3, 36) = 1794,
Fcomplex III (3, 36) = 956.3, Fcomplex IV (3, 36) = 2024, Fcomplex V (3, 36) = 782].
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(Figure 4E). A significant increase in the FNE (p < 0.001) with
respect to the control and CRM-Chs-NPs group (p < 0.001)
was observed.

The hippocampal architecture revealed typical dentate gyrus in
control and CRM-Chs-NPs groups (Figures 5A, C). However, the
dentate gyrus displayed necrotic neurons with a few disordered

FIGURE 3
Effect of CRM-Chs-NPs oral dosing on mRNA expression of (A) PTEN-induced kinase (Pink1), (B) Dynamin-related protein 1 (Drp1), (C) Parkin RBR
E3 ubiquitin protein ligase (Prkn), (D) Mitofusin 1 (Mfn1), and (E) Mitofusin 2 (Mfn2) in the brain tissues of adult male Sprague Dawley rats exposed to
fenpropathrin (FNE) for 60 days. (n = 10 group), *p < 0.05, ***p < 0.001, [FPink1 (3, 36) = 433, FDrp1 (3, 36) = 1,034, FPrkn (3, 36) = 357, FMfn1 (3, 36) = 172.4,
FMfn2 (3, 36) = 230.7].
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neurons in the FNE group (Figure 5B). On the other hand, CRM-
Chs-NPs improved dentate gyrus structure in the CRM-Chs-NPs +
FNE group (Figure 5D). These results were shown in the image-
scoring analysis of hippocampal histoarchitecture (Figure 5E). A
significant increase in the FNE (p < 0.001) and CRM-Chs-NPs +
FNE (p < 0.05) with respect to the control and CRM-Chs-NPs group
(p < 0.001 and p < 0.01, respectively) was observed.

The investigation of cerebellar histoarchitecture of control and
CRM-Chs-NPs groups revealed normal neurons (Figures 6A, C).
The FNE group displayed focal cavities due to lysis or loss of
granules and Purkinje neurons (Figure 6B). Few pyknotic
neurons could be detected on FNE cerebellar neurons following

CRM-Chs-NPs administration (Figure 6D). These results were
shown in the image-scoring analysis of cerebellar
histoarchitecture (Figure 6E). A significant increase in the FNE
(p < 0.001) and CRM-Chs-NPs + FNE (p < 0.01) with respect to the
control and CRM-Chs-NPs group (p < 0.001 and p < 0.01,
respectively) was observed.

3.3 Immunohistochemical staining

There was no observable BAX immunohistochemical reaction in
control and CRM-Chs-NPs groups in the cerebrum (Figures 7A1,

FIGURE 4
Representative photomicrograph of rat cerebrum (taken from themidbrain above the hippocampus): (A) control, (B) FNE-exposed necrotic neurons
(arrow), (C) CRM-Chs-NPs-treated cerebrum showing normal neurons, (D) CRM-Chs + FNE-treated rats illustrating the improvement in cerebrum
architecture with some necrotic neurons (arrow), and (E) graphical representation of photomicrograph score (HE, Scale bar = 50 µm). ***p < 0.001.
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A2), hippocampus (Figures 7B, 7B2), and cerebellum (Figures 7C1,
C2), respectively. Extensive BAX reactions were detected in the
nuclei of all studied brain regions of the FNE group (Figures 7A3, B3,

C3). On the other hand, the co-administration of CRM-Chs-NPs to
FNE decreased the BAX distribution (Figures 7A4, B4, C4). The
semiquantitative analysis for the BAX area percentage revealed a

FIGURE 5
Representative photomicrograph of rat hippocampus (cross-sectionally dissected at the level of the mammillary body and tuber cinereum): (A)
control, and (B) FNE reveals necrotic neurons (arrowhead) and hyperchromatic neurons (thick arrow), (C) CRM-Chs groups showing normal dentate
gyrus (thin arrows), (D) CRM-Chs + FNE reveals improved hippocampal architecture, and (E) graphical representation of photomicrograph score (HE,
Scale bar = 50 µm). *p < 0.05, **p < 0.01, ***p < 0.001.
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significant BAX distribution in the FNE group than in control
(Figure 7A5, p < 0.001; B5, p < 0.01; C5, p < 0.001) and CRM-
Chs-NPs (Figures 7A5, B5, C5 p < 0.001) groups and a significant

reduction in the CRM-Chs-NPs + FNE group compared to the
control group, but only for the cerebrum (Figure 7A5, p < 0.05). A
similar trend was observed for the FNE group with respect to the

FIGURE 6
Representative photomicrograph of rat cerebellum (longitudinally dissected): (A) control, (B) FNE-treated rats revealing pyknotic Purkinje neurons
(thick arrow) in the Purkinje cells layer (PCL), focal neuronal loss (thin arrow) in the granular layer (GL), and necrotic neurons (arrowhead) in the molecular
layer (ML), (C) CRM-Chs-NPs-treated cerebellum, (D) CRM-Chs-NPs + FNE-treated rats showing nearly normal cerebellum with some degenerated
Purkinje cells (arrowhead), and (E) graphical representation of photomicrograph score (HE, Scale bar = 50 µm). **p < 0.01, ***p < 0.001.
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CRM-Chs-NPs group (Figures 8A5, B5, C5, p < 0.001) and for
CRM-Chs-NPs + FNE compared to the CRM-Chs-NPs group
(Figure 8A5, p < 0.05; Figure 8B5, p < 0.01; Figure 8C5, p < 0.001).

In the control and CRM-Chs-NPs groups, vimentin
immunohistochemical expression showed low vimentin
distribution in the cerebrum (Figures 8A1, A2), hippocampus

FIGURE 7
Representative photomicrograph of immunohistochemical BAX expression in the cerebrum (A1–A5), hippocampus (B1–B5), and cerebellum
(C1–C5) from control (A1,B1,C1), CRM-Chs-NPs (A2,B2,C2), FNE (A3,B3,C3), and CRM-Chs-NPs + FNE (A4,B4,C4) groups. Arrowheads indicate positive
immune expressions (Scale bar = 50 µm). *p < 0.05, **p < 0.01, ***p < 0.001.
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(Figure 8B1B2), and cerebellum (Figures 8C1,C2). The FNE group
showed extensive vimentin expression in all brain regions (Figures
8A3, B3, C3). CRM-Chs-NPs lowered vimentin distribution in the

CRM-Chs-NPs + FNE group (Figures 8A4, B4, C4). The
semiquantitative analysis for the vimentin area percentage
revealed a more significant reaction in the FNE group than in

FIGURE 8
Representative photomicrograph demonstrated immunohistochemical vimentin staining in the cerebrum (A1–A5), hippocampus (B1–B5), and
cerebellum (C1–C5) from negative control (A1,B1,C1), CRM-Chs-NPs (A2,B2,C2), FNE (A3,B3,C3), and CRM-Chs-NPs + FNE (A4,B4,C4) groups.
Arrowheads indicate positive immune expressions (Scale bar = 50 µm). *p < 0.05, ***p < 0.001.
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control (Figures 8A5, B5, C5, p < 0.001), CRM-Chs-NPs (Figures
8A5, B5, C5, p < 0.001), and CRM-Chs-NPs + FNE group but
only for the cerebrum and the cerebellum (Figures 8A5, C5, p <
0.05). A similar trend was observed for the FNE group with

respect to the CRM-Chs-NPs group (Figures 8A5, B5, C5, p <
0.001) and for CRM-Chs-NPs + FNE compared to the CRM-
Chs-NPs group, but only for the cerebellum
(Figure 8C5, p < 0.05).

FIGURE 9
Representative photomicrograph demonstrated 4-hydroxynonenal (4-HNE) immunofluorescence in the cerebrum (A1–A5), hippocampus
(B1–B5), and cerebellum (C1–C5) from negative control (A1,B1,C1), CRM-Chs-NPs (A2,B2,C2), FNE (A3,B3,C3), and CRM-Chs-NPs + FNE
(A4,B4,C4) groups. Arrowheads indicate positive immunofluorescence expressions (Scale bar = 50 µm). **p < 0.01, ***p < 0.001.
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3.4 Immunofluorescence staining of
4-hydroxynonenal (4-HNE)

The immunofluorescence of 4HNE revealed low expression
in the cerebrum (Figures 9A1, A2), hippocampus (Figures 9B1,

B2), and cerebellum (Figure 9C1, C2) of the control and CRM-
Chs-NPs groups. Conversely, a significant 4HNE expression was
detected in all brain regions of the FNE group (Figures 9A3, B3,
C3), while a low expression was detected in the brain cells of the
CRM-Chs-NPs + FNE group (Figures 9A4, B4, C4). The

FIGURE 10
Molecular docking interaction of curcumin with (A) caspase 8, (B) caspase 9, and (C) caspase 3.
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semiquantitative analysis for the 4HNE area percentage revealed
a significant reaction in the FNE group than in the control
(Figure 9A5, p < 0.01; Figure 9B5, p < 0.001; Figure 9C5, p <

0.01) and CRM-Chs-NPs + FNE groups, but only for the
cerebellum (Figure 9C5, p < 0.01).

3.5 Molecular docking

Figure 10 presents curcumin’s molecular interactions and
docking scores with caspase-8, caspase-9, and caspase-3 binding
sites. Curcumin interacted with the ILE396 (H-donor and
H-acceptor) residue in caspase-8’s binding site by −6.70 kcal/mol
of binding energy (Figure 10A). Also, curcumin interacted with
caspase-9 (Figure 10B) and caspase-3 (Figure 10C) binding sites
with energy of −5.75 and −6.80 kcal/mol, respectively.

FNE bound to GLN471 (two H-acceptors), HIS510
(H-acceptor), and LYS504 (pi-cation) residues in the CAT’s
binding site with an energy of −6.58 kcal/mol (Figure 11A). By
the energy of −7.27 kcal/mol, FNE interacted with ILE273
(H-donor), LYS318 (two H-acceptors), and ARG275 (H-acceptor)
residues in the binding site of PINK1 (Figure 11B).

Regarding NADH-ubiquinone oxidoreductase, FNE bound to
ASP698 (H-acceptor) and ARG702 (two H-acceptors) residues with
an energy of −7.14 kcal/mol (Figure 11C). In contrast, it interacted
with SDHC’s binding site with −5.99 kcal/mol of
energy (Figure 11D).

As shown in Figure 11E, FNE interacted by −7.10 kcal/mol of
energy with ASN494 (H-acceptor) and ALA511 (H-acceptor)
residues in the binding site of COQ8A. Also, FNE is bound with
ARG484 (H-acceptor) and LYS197 (pi-cation) in the binding site of
ATP5F1A by an energy value of −6.43 kcal/mol (Figure 11F).
By −5.73 kcal/mol of energy, FNE bound to GLU96 (H-donor),
PHE119 (two H-acceptors), and GLU (pi-H) in the binding site of
DJ-1, as represented in Figure 11G. The molecular interaction of the
FNE and DAT binding site is represented in Figure 11H with a
binding energy of −6.86 kcal/mol with ARG85 (H-acceptor) and
HIS476 (H-acceptor) residues. Moreover, FNE bound to PRO327,
GLY392, and SER396 residues in the binding site of tyrosine
hydroxylase by an energy of −7.50 kcal/mol (Figure 11I).

4 Discussion

A failure in redox homeostasis is one of the typical hallmarks of
PD (Fei et al., 2010). Research has shown that pyrethroids can cross
the blood-brain barrier and affect the dopaminergic system,
producing oxidative stress in PD (Nasuti et al., 2007). Hence, we
investigated whether FNE increases brain oxidative stress in the
present study. We detected ROS readily after FNE exposure in the
brain tissue and found that its expression was significantly increased.
In contrast, GSH, CAT, and total SOD levels as antioxidative indices
were significantly reduced in the FNE group compared to the
control. These results indicated that oxidation and reduction
were dysfunctional following FNE exposure. Furthermore, the
mRNA expression of the Sod1 gene was significantly
downregulated. These ROS molecules can disrupt mitochondrial
function, impairing the electron transport chain and promoting
mitochondrial dysfunction. Researchers have identified elevated free
radicals and mitochondrial dysfunction as primary contributors to
neuronal loss in PD brains (Nasuti et al., 2007).

FIGURE 11
Molecular docking interaction of FNE with (A) CAT, (B) PINK1, (C)
NADH-ubiquinone oxidoreductase, (D) succinate dehydrogenase
complex subunit C (SDHC), (E) coenzyme Q8A (COQ8A), (F) ATP
synthase F1 subunit alpha (ATP5F1A), (G) protein deglycase (DJ-
1), (H) dopamine transporter (DAT), and (I) tyrosine hydroxylase.

Frontiers in Pharmacology frontiersin.org17

Alotaibi et al. 10.3389/fphar.2024.1388784

87

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1388784


Consequently, the expression of key mitochondrial complex
genes, such as those involved in oxidative phosphorylation, can
be altered. The current study confirmed this via the downregulated
expression of mitochondrial Complex genes (I-V) in the brain tissue
of the FNE group rather than the control. Other pyrethroids,
including cypermethrin and deltamethrin, have also been
documented to cause oxidative stress in cells (Mohamed et al.,
2020; Rahman et al., 2022), thus confirming our findings.

However, treating FNE-intoxicated rats with CRM-Chs-NPs
significantly decreased ROS and MDA levels while increasing
SOD, CAT, and GSH contents and Sod1 and mitochondrial
Complex genes (I-V) expression in the brain tissues to alleviate
oxidative stress, lipid peroxidation, and mitochondrial dysfunction.
Similarly, CRM was observed to shield dopaminergic neurons from
MPTP-induced neuronal damage (Stanic, 2017) and oxidative
damage by restoring mitochondrial membrane potential,
upregulating Cu-Zn superoxide dismutase, and inhibiting the
production of intracellular ROS (Anand et al., 2007; Itokawa
et al., 2008). CRM also inhibited GSH reduction in the brain by
improving the GSH levels (Asai and Miyazawa, 2000) and reduced
lipid peroxidation levels and protein carbonyl aggregates in the brain
of the transgenic PD model of Drosophila (Kehlet et al., 2006). It has
been proposed that the antioxidant properties of CRM and its nano
form are mostly due to its ability to block ROS-generating enzymes
such as microsomal monooxygenase, mitochondrial succinoxidase,
and NADH oxidase (Alisi et al., 2018). In addition, CRM’s
conjugated structure and enol form can boost the activity of
antioxidant enzymes and scavenge free radicals (Trujillo et al.,
2013). On top of that, CRM helps keep cell membranes intact by
blocking peroxidation in toxicant situations (Sankar et al., 2012).

In the current study, the molecules involved in apoptosis were
upregulated in the brain tissue of FNE-administered rats via
detecting the levels of Caspase 3 in the brain tissue and assessing
the expression of different genes related to apoptotic cascade
pathway, including Casp 3, Bax, and Bcl-2. Furthermore, the
immunohistochemical reactivity scoring of BAX protein was
highly enhanced, while the reaction of Bcl-2 significantly declined
in the brain upon exposure to FNE. These results were previously
shown in some earlier studies (Mohamed et al., 2019; Mohamed
et al., 2020). Reduced complex I and cytochrome P450 activity in
mitochondria (Abdou et al., 2010) and mitochondrial dysfunction
(Gassner et al., 1997) have been linked to pyrethroid-induced
oxidative stress. Dysregulation in these genes can further
exacerbate ROS production, creating a vicious cycle of oxidative
stress. This cascade of events ultimately activates apoptotic
pathways, initiating programmed cell death (Cao et al., 2007;
Salem et al., 2023). Environmental toxicants can cause PD by
disrupting mitochondrial function or dynamics (Arya et al., 2018;
Khater et al., 2021; Yin et al., 2021; Lin et al., 2022) regulated by
Mfn1, Mfn2, and Drp1 genes (Gassner et al., 1997; Reddy et al.,
2011). Our results indicated that FNE administration caused
downregulated expression of all these proteins, thus indicating
the ability of FNE to induce the pathways related to the
pathophysiological changes in PD.

Similarly, dopaminergic degeneration is caused by the
neurotoxin MPTP, which specifically destroys Complex I of the
mitochondrial electron transport chain. This may be a similar
pattern for FNE-inducing dopaminergic degeneration and then

PD. Besides, in the molecular docking assessment, FNE
successfully bound to the binding sites of mitochondrial
Complexes (I-V), including Pink1, DJ-1, NADH-ubiquinone
oxidoreductase, SDHC, COQ8A, and ATP5F1A, which is an
indication for probability to occur in vivo leading to
mitochondrial function impairment.

On the contrary, our results indicated that co-administration of
CRM-Chs-NPs + FNE reduced oxidative stress (ROS and MDA)
and apoptosis molecules that enhance apoptosis in the brain tissue
and activate the mitochondrial complex genes. The downregulation
of Bax and Caspase-3 gene expression and inhibition of the Bcl-2
gene in the brain of rats administered FNE + CRM-Chs-NPs and
CRM-Chs-NPs confirmed the protective role of CRM. These
improvements could help explain the key mechanisms through
which CRM-Chs-NPs counteract degenerative changes caused by
FNE and decrease the likelihood of PD onset. These effects could be
highly correlated to what is reported in several in vitro and in vivo
investigations carried out with CRM due to its antioxidant, anti-
inflammatory, antiapoptotic activities, and therapeutic potential in
neurodegenerative disorders (Itokawa et al., 2008). Besides, CRM-
Chs-NPs potency to attenuate mitochondrial impairments by
maintaining mitochondrial integrity while reducing
mitochondrial oxidative stress could contribute to its
neuroprotective activity (Sandhir et al., 2014). It was also
previously observed that CRM could inhibit mitophagy and
regulate mitochondrial dynamics in tested cells (Maiti et al.,
2019). This effect could also be interrupted by the degradability
of CRM-Chs-NPs, a key solution to help maintain CRM for longer
periods and act on the mitochondrial homeostatic ability (Rainey
et al., 2020).

Our findings also revealed a decrease in dopamine levels and
an increase in glutamate levels in the brains of rats exposed to
FNE for 60 days. These outcomes align with previous research,
which demonstrated a connection between dopamine turnover
and the acceleration of cellular dopamine uptake in rats (Husain
et al., 1994). This phenomenon is associated with the upregulation
of the transcription factor Nurr1, resulting in an increased
dopamine transporter expression (Karen et al., 2001).
Furthermore, Elwan et al. (2006) reported that pyrethroids,
known to block sodium channels, could enhance the
transcription factor Nurr1. This enhancement may have
contributed to our study’s decrease in dopamine observed
among rats exposed to FNE. It is reasonable to hypothesize
that this reduction in dopamine levels may be linked to
inhibited dopamine biosynthesis. This process may have
occurred due to decreased synthesis of tyrosine hydroxylase
and aromatic l-amino acid decarboxylase (Liu and Shi, 2006).
This study also revealed a molecular interaction with average
docking scores among FNE, tyrosine hydroxylase (TH), and
dopamine transporter (DAT). Also, another study revealed that
FNE could target the TH-positive dopamine neurons (Xiong et al.,
2016). Despite this, specific staining of dopaminergic neurons and
TH could explain the effect of FNE. However, it is evident from
previous studies that FNE can induce PD by damaging
dopaminergic neurons (Jiao et al., 2020). Thus, we focused on
the toxic effects on all cerebrum, hippocampus, and cerebellum
neurons and how CRM nano-formulations could ameliorate them
and help prevent neurodegenerative diseases, including PD.
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Besides, the reduced dopamine levels in our study, after
exposure to FNE, may primarily be attributed to the loss of the
biosynthesis enzyme TH. Previous research also revealed an
interaction between FNE and DAT, a member of the Na+/Cl−-
dependent transporter family and a key regulator of cytosolic
dopamine concentration through molecular docking (Niode et al.,
2021). This interaction might have contributed to the decline in
dopamine levels in FNE-exposed rats, potentially leading to
increased damage to dopamine neurons (Khoshbouei et al., 2003;
Yoon et al., 2004). These findings underscore the consideration of
FNE as a possible neurotoxin for DA and an environmental risk
factor for PD. Additionally, glutamate was significantly elevated in
the brains of rats exposed to FNE, as stated in many other studies
(Xiong et al., 2016; Wu et al., 2023). This could be attributed to
several mechanisms, among them the ability of FNE to cause
glutamate buildup and exacerbation of excitotoxicity of a
ubiquitin ligase that facilitates the ubiquitination and degradation
of glutamate transporter 1, which causes the accumulation of
glutamate in the synapse (Cao et al., 2011). Also, it was
previously confirmed that several pyrethroids, including FNE,
could cause efficient alterations in Ca2+ influx and activation of
voltage-gated calcium channels, leading to the accumulation of
glutamate (Cao et al., 2011; Symington et al., 2011).

Our results also revealed increased dopamine and reduced
glutamate levels in the brain tissue of rats receiving CRM-Chs-
NPs + FNE. This is consistent with what was found by Pan et al.
(1999), who claimed the ability of CRM to increase dopamine and
TH by inhibiting the glial fibrillary acidic protein (GFAP) and iNOS
protein expression. Other studies also confirmed that CRM
significantly protected TH-positive cells in the substantia nigra
and restored dopamine levels in rat model (Ireson et al., 2001)
and mice model (Jagatha et al., 2008). Moreover, CRM-Chs-NPs
may decrease the extracellular glutamate content at a safe
physiological level through a range of buffering processes,
including glutamate absorption by glial cells and its conversion
by glutamate decarboxylase or glutamine synthetase to the harmless
glutamine (Khalil and Khedr, 2016). Furthermore, the earlier study
Lin et al. (2012) demonstrated that CRM-mediated suppression of
glutamate release results in downregulation of receptor expression
for both metabotropic glutamate receptors 5 (mGluR5) and
N-methyl-D-aspartate receptor 2B (NMDA2B).

In addition, immunohistochemistry revealed increased levels of
vimentin, an intermediate filament protein of several cell types
within the central nervous system (Chen et al., 2018), in the
brain tissue of rats exposed to FNE compared to the control
group. Vimentin also regulates the NLRP3 inflammasome since it
interacts with NLRP3 in macrophages, facilitating the assembly of
proteins involved in the inflammasome, including caspase-1. This
latter contributes to the maturation of IL-1β (Marandi et al., 2021)
and is thus associated with neuroinflammation (Khater et al., 2022).
Our study also revealed an increased immunohistochemical staining
of 4HNE in response to FNE exposure. This may be linked to FNE’s
ability to enhance the production of ROS and induce oxidative
stress, which, in turn, disrupts mitochondrial function and ATP
production, leading to disrupted synaptic transmission and
neuronal degeneration.

Conversely, in the CRM-Chs-NPs + FNE group, we observed a
reduction in the expression of both vimentin and 4HNE in the brain

tissue compared to the FNE-exposed group. This reduction could be
attributed to CRM-Chs-NPs’ high ROS scavenging capacity, which
promotes mitochondrial stability and ATP production (Naeimi
et al., 2018). These findings provide substantial evidence for the
anti-inflammatory, anti-apoptotic, and stable mitochondrial
dynamics exerted by CRM-Chs-NPs.

Herein, a CRM-Chs-NPs formulation has been used to increase
its bioavailability by shielding it from chemical breakdown. Such a
formulation has already been used to integrate bioactive
components into food or dietary supplements (McClements
et al., 2009). In the current study, the oral administration of
CRM-Chs-NPs to rats for 60 days resulted in no side effects.
Throughout the experimental period, there were no noticeable
changes in the general health state of the animals. Analysis of the
recorded data indicated non-significant changes in some
parameters, while in others, significant improvements were
observed in the CRM-Chs-NPs group compared to the control. It
is known that CRM-Chs-NPs have been extensively tested in
previous studies and have been reported to be safely used in both
food and drug applications. These findings reinforce the safety
profile of CRM-Chs-NPs and support their potential utility in
various biomedical and therapeutic applications (Jagatha et al.,
2008; Rafiee et al., 2019).

5 Conclusion

Our findings indicate that the FNE challenge elicited signs of
compromised mitochondrial function, declined ATP generation
through inhibiting mitochondrial regeneration, and enhanced
mitophagy. These factors collectively resulted in disrupted
synaptic transmission and neuronal degeneration, outlining the
harmful effects of FNE exposure on the pathophysiology of PD.
However, the concurrent administration of CRM-Chs-NPs
effectively reversed these detrimental effects. CRM-Chs-NPs
restored ATP production, reduced proinflammatory cytokine
levels, activated antioxidant enzymes, and mitigated oxidative
stress. Additionally, CRM-Chs-NPs played a crucial role in
regulating the activity of the mitochondrial gene complex and
mitophagy, ultimately preserving the microarchitecture of brain
tissue. These results underline the therapeutic potential of CRM-
Chs-NPs in mitigating FNE-induced damage to dopaminergic
neurons, mitochondrial health, and brain tissue microarchitectures.
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Edaravone dexborneol attenuates
oxidative stress in experimental
subarachnoid hemorrhage via
Keap1/Nrf2 signaling pathway

Kunyuan Zhu1,2, Shijun Bi1, Zechao Zhu1,2, Wenxu Zhang1,2,
Xinyu Yang1,2, Jiashuo Li2, Guobiao Liang  1*, Chunyong Yu1*
and Pengyu Pan  1*
1Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China,
2China Medical University, Shenyang, Liaoning, China

Background: Subarachnoid hemorrhage (SAH) serves as a disease
characterized by high incidence rate, which is exceedingly prevalent and
severe. Presently, there is no unambiguous or efficacious intervention for
the neurological impairment following SAH. Administering multi-targeted
neuroprotective agents to reduce oxidative stress (OS) and
neuroinflammation caused by early brain injury (EBI) has been
demonstrated to improve neurological function and prognosis following
SAH. Edaravone dexborneol (EDB), a novel multi targeted neuroprotective
medication, combines four parts edaravone (EDA) with 1 part (+)-borneol in
proportion. Clinical trials conducted in China have revealed during 2 days of
acute ischemic stroke (AIS), early administration of EDB leads to improved
therapeutic outcomes compared to treatment in EDA monotherapy.
Currently, there is no clear evidence that EDB can effectively treat SAH,
therefore, our study aims to investigate its potential therapeutic effects and
mechanisms on EBI after SAH.

Method:Weused the intravascular threadingmethod to establish amousemodel
of SAH to explore whether EDA and EDB could produce anti-OS and anti-
apoptosis effects. Behavioral assessment of mice was conducted using the
balance beam experiment and the modified Garcia scoring system. Neuronal
damage due to OS and Keap1/Nrf2 signaling pathway were detected through
techniques of immunofluorescence, Western blotting, spectrophotometry. The
group of EDA and EDB were injected intraperitoneally for 72 h after SAH.

Results: The experiment results indicated that EDB lead to remarkably positive
results by significantly enhancing neurological function, reducing blood-brain
barrier (BBB) injury, and effectively inhibiting neuronal apoptosis after SAH.
Further examination indicated EDB significantly reduced the expression of
Keap1 and increased the expression of Nrf2, and it inhibited MDA, and
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enhanced SOD activity after SAH. These outcomes surpassed the effectiveness
observed in EDA monotherapy. However, the application of ML385 reversed the
anti-OS effects of EDB and EDA.

Conclusion: Our experimental findings indicated that EDB could activate Keap1/
Nrf2 signaling pathway to reduce OS damage, thereby protecting neurological
function and enhancing behavioral abilities after SAH. These outcomes could
facilitate the creation of new approaches for the clinical management of SAH.

KEYWORDS

subarachnoid hemorrhage, early brain injury, edaravone dexborneol, oxidative stress,
KEAP1, Nrf2,

1 Introduction

Subarachnoid hemorrhage (SAH) is a severe neurological
disorder, which result in substantial neurological impairment
and potentially life-threatening complications (Claassen and
Park, 2022). The primary cause is the intracranial aneurysm
rupture, accounting for approximately 85% (Claassen and Park,
2022). Patients with SAH at 55 years averagely, experience a
notable impact on their quality of life, health, and personal
property safety (Macdonald and Schweizer, 2017). Neuronal
damage after SAH can occur through various pathways, such as
neuroinflammation and injury caused by oxidative stress (OS) (Xu
W. et al., 2019; Zeng et al., 2021). Pathophysiological alterations,
such as the disturbance of blood-brain barrier (BBB) or the
occurrence of vasogenic and cytotoxic cerebral oedema, can
contribute to early brain injury (EBI), ultimately resulting in
deteriorating neurological impairment (Feng et al., 2022). At
present, there is a lack of any recognized successful approach
to tackle the neurological damage resulting from SAH. Therefore,
we urgently need a new treatment with good curative effect.
Research has demonstrated that multi-target neuroprotective
agents, which help to reduce OS and neuroinflammation
induced by EBI, can be significant interventions to improve
neurological impairment and prognosis following SAH (Feng
et al., 2022). The main components of edaravone dexborneol
(EDB) are edaravone (EDA) and dexborneol. It was considered
to be a novel neuroprotective agent (Xu J. et al., 2019). Wherein,
EDA serves as free radical scavenger, safeguarding neurons by
sequestering reactive oxygen species (ROS) (Suh et al., 2019).
Then, by preventing lipid peroxidation, DNA damage, and
vascular endothelial damage, EDA aided in reducing neuronal
injury resulting from SAH (Kikuchi et al., 2013; Wu S. et al., 2014).
Furthermore, the administration of EDA markedly reduced
neuronal apoptosis in cases of SAH (Chen et al., 2022).
Dexborneol, the primary compound in (+)-borneol, is a bicyclic
monoterpenoid that is highly soluble in lipids (Liu et al., 2021). It
assisted in the absorption of other medications and helped
preserve the integrity of the tight junction proteins and BBB
(Liu et al., 2011; Dong et al., 2018). By enhancing the
superoxide dismutase (SOD) activity, reducing the
malondialdehyde (MDA) level, and effectively alleviating OS
harm to the body, dexborneol demonstrates its antioxidant
properties (Hur et al., 2013). Furthermore, it had the potential
to decrease the synthesis or conveyance of proinflammatory
cytokines such as interleukin-1β (IL-1β), cyclooxygenase-2

(COX-2), and tumor necrosis factor-α (TNF-α), thereby
mitigating the risk of inflammation (Chen et al., 2019). Studies
evaluating the effectiveness of EDB have shown improved
neurological results in patients who received EDB during
2 days of acute ischemic stroke (AIS) onset, as opposed to
those treated solely with EDA (Xu J. et al., 2019; Xu et al.,
2021). EDB has proposed to offer protection from AIS through
various pathways, including anti-oxidative, anti-inflammatory,
and inhibition of apoptosis (Hu R. et al., 2022). Studies have
demonstrated that the conventional OS pathway kelch-like ECH-
associated protein 1 (Keap1)/nuclear factor erythroid 2-related
factor 2 (Nrf2) signaling pathway is effective in treating cerebral
infarction (Zhang et al., 2023). Keap1 and Nrf2 collaborate to
regulate the antioxidant reaction, presenting a possible treatment
approach for inflammatory diseases. The imbalance of Keap1/
Nrf2 complex decreases antioxidants and may be related to the
advancement of SAH (Tu et al., 2019). After SAH, a
pathophysiological process of global cerebral ischemia occurs
(Sehba et al., 2013). Pathophysiological process of global
cerebral ischemia after SAH. Emerging evidence indicated that
EDB could diminish OS and inflammation in a cerebral infarction
model through Keap1/Nrf2 signaling pathway (Yang et al., 2022).
However, the efficacy of EDB in treating brain injury caused by
SAH has not been conclusively established. Our hypothesis is that
EDB could reduce neurological injury induced by SAH by
inhibiting OS via Keap1/Nrf2. In our experiment, we evaluated
the therapeutic efficacy of EDB treating SAH and elucidated the
mechanisms involved, to provide a new clinical strategy for
treating SAH.

2 Materials and methods

2.1 Experimental animals

The research study underwent a thorough review and approved
by the Ethics Committee of the General Hospital of the Northern
Theater command. A total of 410 C57BL/6 mice (adult male, aged
8–10 weeks, weighing 22–30 g) were employed for this investigation.
These animals were procured from the Laboratory Animal Centre of
the General Hospital of the Northern Theater command. Our
experimental animals were accommodated in a standard light
environment (12 h of darkness/12 h of light) within an SPF-class
laboratory animal facility, ensuring they had access to sufficient food
and water.
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2.2 Experimental design

This experimental design contained the three parts, with
the following:

Experiment 1: To examine the effectiveness of EDB and
determine the optimal dosage, we allocated randomly
100 C57BL/6 mice to seven groups, namely, sham, SAH, SAH +
vehicle, SAH + EDB 1.25 mg/kg, SAH + EDB 12.5 mg/kg, SAH +
EDB 125 mg/kg and SAH + EDA10 mg/kg group (12 mice in each
group). Neurological deficits were evaluated in each group by means
of the modified Garcia and balance beam tests following SAH
induction, with a sample size of six mice per group. Additionally,
brain water content (left, right cerebral hemispheres, cerebellum)
was measured at 24 and 72 h post-SAH to evaluate the severity of
cerebral oedema, also with six mice per group. According to the
aforementioned findings, we have determined that the ideal dose of
EDB is 12.5 mg/kg. Then we employed EDA with 10 mg/kg as a
comparative standard in this investigation. This chosen dosage will
be utilized in the subsequent experiments.

Experiment 2: To examine the neuroprotective role of EDB in
the context of SAH, we allocated stochastically 120 C57BL/6 mice
into five distinct groups: sham, SAH, SAH + vehicle, SAH + EDB
and SAH + EDA group (21 mice in each group). After inducing
SAH, we quantified the permeability of Evans blue dye in the right
and left cerebral hemispheres to assess BBB integrity. This
assessment was carried out on a subset of six mice from each
group. In addition, the levels of apoptotic proteins and signaling
pathway proteins (Keap1 and Nrf2) were analysis using Western
blotting (n = 6). Immunofluorescence staining (n = 3) was utilized to
examine the level of apoptotic neurons in the left cerebral
hemisphere subsequent to SAH. Additionally, a subset of six
mice from each group were utilized to measure the content of
SOD and MDA, which provide insight into brain OS level.

Experiment 3: To explore the specific mechanism of action of
EDB, we allocated 190 C57BL/6 mice into six groups randomly:
sham, SAH + vehicle, SAH + vehicle + EDB, SAH + ML385+EDB,
SAH + vehicle + EDA and SAH + ML385+EDA group (27 mice in
each group). After 24 h of inducing SAH, a subset of six mice from
each group underwent several tests, included two behavioral
experiment and measurements of brain water content (left, right
cerebral hemisphere and cerebellum). The purpose was to evaluate
neurological deficits and determine the severity of cerebral oedema.
Western blotting analysis was undertaken on a subset of six mice
from each group to identify apoptotic proteins and signaling
pathway proteins. This analysis purpose was to examine the
levels of these proteins and their potential contribution to the
observed effects of EDB in relation to SAH. Immunofluorescence
staining was carried out on a subset of three mice from each group to
identify apoptotic neurons in the left cerebral hemisphere following
SAH. Additionally, we measured SOD and MDA levels, providing
insights into the degree of cerebral OS.

2.3 Drug doses

In our experiment, we administered intraperitoneal injections of
EDB to mice at three different doses: a low dose of 1.25 mg/kg, a
medium dose of 12.5 mg/kg, and a high dose of 125 mg/kg. The first

injection was given 15 min after inducing SAH, followed by injections
every 12 h until the mice died. These doses were determined according
to previous studies on edaravone and our pre-experiments (Jangra et al.,
2017; Herbet et al., 2019; Dang et al., 2022). On the other hand, the
control group of mice received intraperitoneal injections of PBS buffer
15 min following SAH. In experiment 3, mice were intraperitoneally
injected with ML385 (30 mg/kg, AbMole, Houston, United States) for
30 min before SAH based on previous studies (Singh et al., 2016; Hu Q.
et al., 2022). EDA andEDBwas administered after the administration of
ML385 (Dang et al., 2022) (Figure 1A).

2.4 Mouse SAH model

This experimental study established the mouse SAH model on the
left side using intravascular threading, as previously reported (Pan et al.,
2017). Initially, mice were anaesthetized with 1% sodium pentobarbital
(40 mg/kg) by intraperitoneal injection. Then the external carotid artery
(ECA) was surgically separated using an operation microscope (Leica,
Wetzlar, Germany), and a 2-mm incision was made at its distal end.
Subsequently, insertion of a 5–0 nylon suture into the internal carotid
artery (ICA)was performed through the previouslymade incision in the
ECA until encountering a minimal degree of resistance. The suture was
further advanced by an additional 2 mm to penetrate the site where the
anterior cerebral and middle cerebral arteries bifurcate. Following the
precise placement of the nylon suture at the intended location, it was
cautiously withdrawn. To redirect blood flow from the common carotid
artery (CCA) to the ICA and induce SAH, the ECAwas securely ligated.
The control group of mice underwent a similar procedure, nevertheless,
the suture did not advance through the artery when encountering
resistance. This procedure replicated the steps without inducing SAH.

2.5 Neurological function score

In the experiment, two assessment methods, namely, the modified
Garcia score and the balance beam test, were utilized in a blinded
method to assess the extent of neurobehavioral deficits post-SAH
24 and 72 h (Pan et al., 2020). The modified Garcia score was a
comprehensive scoring system consisting of six tests, which were
used to assess various aspects of neurological function. It allocated
18 points to judge the extent of neurological impairments. These tests
assessed spontaneous activity, spontaneous limb movement, forepaw
extension, climbing, body proprioception, and response to whisker
stimulation. Each individual test in the modified Garcia score was
scored from 3 to 18 points. Higher scores within this range indicate
improved neurological function for that specific test. The balance beam
test involved placing the mice on a beam, and their ability to walk along
the beam within 1 minute was measured. The distance walked by the
mice was then scored on a scale of 0–five points, with higher score
indicating better motor coordination and balance.

2.6 SAH grading assessment

The experiment utilized an 18-point SAH severity grading
system (Dong et al., 2016). The skull base of the mice was
classified into six regions, and a grading system ranging from
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0 to three was applied to assess the extent of bleeding observed in
each region. A score of 0 indicated no hemorrhage in that region,
while a score of one indicated a small amount of hemorrhage. A
score of two denoted significant hemorrhage with clear vascular
morphology, and a score of three indicated a large amount of
hemorrhage with unclear vascular morphology. The total score of
hemorrhage severity was calculated by summing up the scores of all
six regions. Scores ranging from 0 to seven indicated mild
hemorrhage, scores from 8 to 12 indicated moderate hemorrhage,
and scores from 13 to 18 indicated severe hemorrhage. Experiment
excluded mice with SAH scores below eight points.

2.7 Brain water content

The determination method of brain water content was the same
as the previous experiment (Zou et al., 2021). Mice were euthanized
by cervical dislocation method, then the brain was dissected into the
left, right hemispheres, as well as the cerebellum. Subsequently, the
tissue was subjected to a 105°C oven for a duration of 24 h in order to
thoroughly eliminate all moisture. After the completion of the
drying, the weight of the brains was once again measured in
order to ascertain their dry weight. The formula for calculating
brain water content was as follow:

Brain water content � wetweight − dryweight( )

wetweight
× 100%

2.8 Evans blue penetration assessment

The BBB disruption was evaluated using Evans blue dye
penetration as previously reported (Han et al., 2021). At post-24 h
SAH, under 1% sodium pentobarbital anesthesia, we administered a 2%
concentration of Evans blue dye (4 mL/kg) via the left femoral vein,
followed by a 60-min circulation. In order to eliminate any residual dye
in the vessels, mice were then perfused with PBS buffer. Brain tissue was
collected and homogenized in a saline solution. Afterwards, the brain
tissue that had been homogenized using frozen centrifuge (Thermo,
Massachusetts, United States) was subjected to centrifugation at a speed
of 15,000 revolutions per minute for a duration of 30 min. The collected
liquid above the sediment was obtained, and an equivalent amount of
trichloroacetic acid was introduced to cause protein precipitation. After
being incubated overnight at 4°C, the mixture was subjected to another
round of centrifugation at 15,000 rpm to collect the ultimate
supernatant. The microplate reader (Epoch, Biotek, Winooski,
United States) measurement of absorbance at 620 nm was
conducted in order to determine the concentration of Evans blue
dye present in the supernatant.

2.9 Western blotting

We extracted the mice brains and then proteins were then
harvested from the left cerebral hemisphere and analyzed via
Western blotting techniques as previously described (Li et al., 2020).

FIGURE 1
(A) Experimental flow chart; (B) SAH grading scores after SAH. No statistical difference in SAH grade indicated the SAH model are consistent and
comparable in each group.

Frontiers in Pharmacology frontiersin.org04

Zhu et al. 10.3389/fphar.2024.1342226

96

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1342226


Each well on the gel was supplemented with 40 μg of protein, followed
by gel electrophoresis (Bio-rad, California, United States). The proteins
were subsequently transferred onto a nitrocellulose membrane and
sealed with a sealing buffer at ambient temperature for a duration of
60 min. After sealing, the nitrocellulose membrane was then subjected
to incubation with a diluted primary antibody overnight at a
temperature of 4°C. The main primary antibody included the
antibodies of Keap1 (Proteintech, Wuhan, China), Nrf2
(Proteintech, Wuhan, China), β-tubulin (Proteintech, Wuhan,
China), Bax (Santa Cruz, Texas, United States), Bcl-2 (Santa Cruz,

Texas, United States), caspase-3 (Santa Cruz, Texas, United States),
cleaved caspase-3 (Santa Cruz, Texas, United States), Parp1
(Proteintech, Wuhan, China) and Hsp90 (Bioss, Beijing, China).
Subsequently, the membrane was incubated with an appropriately
diluted secondary antibody for a period of 2 h at ambient
temperature. The main secondary antibody included goat anti-rabbit
IgG/HRP (Bioss, Beijing, China) and goat anti-mouse IgG/HRP (Bioss,
Beijing, China). Chemiluminescence imaging system (Tanon 4,600,
Tanon, Shanghai, China) was used to detect the bands which were then
analyzed densitometrically by ImageJ.

FIGURE 2
Neurological behavioral scores, brain water content of left, right hemisphere and cerebellum and Evans blue permeability after SAH. (A and B)
Balance beam test scores at 24 and 72 h after SAH; (C and D) The modified Garcia scores at 24 and 72 h after SAH; (E and F) Brain water content at 24 h
and 72 h post-SAH; (G) Evans blue permeability of left, right hemisphere at 24 h post-SAH. Data are presented as the mean ± SD. # p < 0.05 compared
with sham; * p < 0.05 compared with SAH + vehicle; and p < 0.05 compared with SAH + EDB (12.5 mg/kg); || p ≥ 0.05 compared with SAH + vehicle.
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2.10 Immunofluorescence staining

As previously, immunofluorescence staining was performed
on fixed frozen section (Zhang et al., 2015). Following SAH, the
mice were subjected to anesthesia using 1% sodium
pentobarbital, followed by intracardial perfusion with a PBS
buffer solution containing 4% PFA. Immediately euthanizing
mice, and their brain tissues were gathered and immersed in
4% PFA for a duration of 24 h. Subsequently, the tissues were
dehydrated in 30% sucrose for an additional 24 h. Afterwards, the
specimens were quick-frozen at −35°C and coronal slices of the
brain with a thickness of 8 µm were taken by using a freezing
microtome (Leica, Wetzlar, Germany). To permeabilize, we used
a solution of Triton X-100 at a concentration of 0.3% for 30 min
at room temperature, after that, we sealed it with BSA for an
additional 60 min at the same temperature. The sections were
subsequently incubated with the NeuN antibody (Abcam,
Cambridge, Britain) for an extended period of time at a
temperature of 4°C. Following that, the sections were subjected
to a fluorescent secondary antibody that corresponded to the
source of the primary antibody, and this process was carried out
at room temperature for a duration of 60 min. The main
fluorescent secondary antibody included goat anti-mouse
AF555 (Bioss, Beijing, China) and goat anti-rabbit AF555
(Bioss, Beijing, China). Next, Tunel Apoptosis Assay Kit
(Beyotime, Shanghai, China) was done to detect apoptotic
cells according to the manufacturer’s instructions. Lastly, the
sections were sealed using the fluorescence quenching agent
containing DAPI (Solarbio, Beijing, China). Finally, we
observed these sections using the fluorescence microscope
(BX-53, Olympus, Tokyo, Japan) to analyze the localization of
the molecules.

2.11 Measurement of SOD and MDA

24 h after SAH, mice brain tissue was harvested. Subsequently, the
brain tissues were homogenized in chilled PBS buffer at a ratio of 20 mg
tissue per 100 µL buffer. Following the process of homogenization, we
centrifuged and collected the supernatant. Finally, we utilized a
microplate reader for the determination of SOD and MDA using
Lipid Peroxidation MDA Assay Kit (Beyotime, Shanghai, China)
and SOD Activity Assay Kit (Beyotime, Shanghai, China) according
to the instructions (Han et al., 2022).

2.12 Statistics and analysis

Data were presented as mean ± SD (standard deviation). All of
the data were tested for normality and variance homogeneity
(Brown–Forsythe test). The outcomes between the two groups
were compared with independent t-test, and Bonferroni corrected
one-way ANOVA was chosen for contrast between multiple groups.
The median (interquartile range) was used to describe the
neurologic score results, and Mann-Whitney U test was carried
out to compare differences. Statistical analysis was conducted using
GraphPad Prism 9.0 and the statistical program SPSS 22.0, with
statistical significance defined as p < 0.05.

3 Result

3.1 Mortality

None of the sham-operated mice died, eight mice died in
SAH group, and 18 mice died in SAH + vehicle group, and nine

FIGURE 3
Neuronal Tunel immunofluorescence staining and ratio of Tunel-positive neurons to normal neurons. Data are presented as the mean ± SD. # p <
0.05 compared with sham; * p < 0.05 compared with SAH + vehicle.
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mice died in SAH + EDA group, and 10 mice died in SAH + EDB
group (3 mice in SAH + EDB 1.25 mg/kg group, five mice in
SAH + EDB 12.5 mg/kg group, two mice in SAH + EDB
125 mg/kg group) and 14 mice died in SAH + ML385 group
(7 mice in SAH + ML385 + EDA, seven mice in SAH +
ML385+EDB) within 24 h after SAH due to severe
hemorrhagic volume (Supplementary Figure S1). No mice
were excluded from this study because of mild hemorrhagic
volume without obvious neurological deficits (SAH grade
score <8), and the SAH grade exhibited no statistical
difference among each group (Figure 1B).

3.2 EDB improves neurological functions
after SAH and alleviates BBB disruption

For evaluating the EDB efficacy in treating neurobehavioral
impairment, our experiment utilized a neurological function scoring
system for the assessment of severity. At both 24 and 72 h following
SAH, the SAH and SAH + vehicle groups exhibited notable
neurological impairments in contrast to the EDB group, which

demonstrated substantial enhancement in behavioral assessment,
particularly in 12.5 mg/kg group (Figures 2A–D). After SAH, the
group receiving EDB treatment demonstrated greater superiority
compared to the group receiving only EDA treatment. Additionally,
we also evaluated the impact of EDB on brain oedema after SAH
through quantifying brain water content post-SAH. The findings
indicated notable brain oedema in left, right hemispheres as well as
in the cerebellum for both the SAH and SAH + vehicle group during
the first 72 h after SAH. On the other hand, both the groups treated
with EDA and EDB exhibited a notable alleviation of cerebral
oedema. Furthermore, the treatment with a moderate dose
(12.5 mg/kg) exhibited a markedly better outcome in comparison
to the remaining two groups. In the left cerebral hemisphere at 24 h
and 72 h after SAH, the therapeutic performances of EDA group and
EDB group were in addition to significant differences, and the degree
of cerebral oedema was reduced more significantly by EDB
treatment (Figures 2E,F). Meanwhile, we also assessed the extent
of BBB injury after SAH by measuring the permeability of Evans
blue dye. The SAH and SAH + vehicle groups exhibited a significant
leakage of Evans blue, suggesting a compromised integrity of the
BBB after SAH. In comparison, both EDA and EDB treatments

FIGURE 4
Western blotting and relative density analysis of apoptotic proteins. (A) The expressions of Bax, Bcl-2, caspase-3, cleaved caspase-3, Parp1 and
Hsp90 were measured by Western blotting; (B) Bax relative density; (C) Bcl-2 relative density; (D) Caspase-3 relative density; (E) Cleaved caspase-3
relative density; (F) Parp1 relative density. Data are presented as themean ± SD. # p < 0.05 compared with sham; * p < 0.05 compared with SAH + vehicle;
and p < 0.05 compared with SAH + EDB.
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resulted in a significant reduction in Evans blue leakage, indicating
attenuation of BBB damage (Figure 2G). Significantly, the effect with
EDB treatment was significantly superior to the effect with EDA
treatment, when compared to the EDA group. To summarize, in
relation to enhancing neurobehavioral function, minimizing
cerebral oedema, and reducing BBB disruption following SAH,
the EDB treatment exhibited a notable therapeutic impact and
outperformed the solitary use of EDA treatment. As a result of
the experiment, 12.5 mg/kg EDB was found to be the optimal
treatment dosage for SAH. Following a thorough analysis of the

results, we opted for 12.5 mg/kg dosage of EDB for the forthcoming
experiments.

3.3 EDB reduces neuro-apoptosis after SAH

To study the impact of EDB on decreasing neuronal apoptosis
after SAH, our experiment employed immunofluorescence staining
to assess the extent of neuronal apoptosis in brain tissue following
SAH. The results obtained from both the SAH and SAH + vehicle

FIGURE 5
Measurement of oxidative stress indicators, Western blotting and relative density analysis of signaling pathway proteins. (A) The level of SOD; (B) The
level of MDA; (C)The expressions of Keap1 were measured by Western blotting; (D) The expressions of Nrf2 were measured by Western blotting; (E)
Keap1 relative density; (F) Nrf2 relative density. Data are presented as the mean ± SD. # p < 0.05 compared with sham; * p < 0.05 compared with SAH +
vehicle; and p < 0.05 compared with SAH + EDB.
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groups demonstrated a significant elevation in the quantity of
Tunel-positive neurons, suggesting a marked augmentation in
neuronal apoptosis. Conversely, Tunel-positive neuron numbers
in the EDA and EDB treatment groups exhibited a substantial
decrease in comparison to the SAH + vehicle group, indicating
the effectiveness of both EDA and EDB treatments in reducing
apoptotic neurons after SAH (Figure 3). Furthermore, the EDB
group exhibited a lower count of apoptotic neurons than the EDA
group, suggesting the EDB treatment exhibited superiority over the
EDA treatment alone. On the other hand, Western blotting was
utilized to assess the levels of various proteins involved in the
regulation of apoptosis. These proteins encompassed the pro-
apoptotic proteins Bax, caspase3, cleaved caspase3 and Parp1,
along with the anti-apoptotic protein Bcl-2 (Figure 4A). The
results of the study revealed a notable reduction in Bcl-2
expression in SAH + vehicle group, while there was a noteworthy
increase in the levels of Bax, caspase3, cleaved caspase3 and Parp1.
However, the treatment of EDB effectively reversed these results.
(Figures 4B–F). The findings demonstrated that EDB successfully

decreased neural apoptosis following SAH. Moreover, the observed
reduction in neuronal apoptosis after SAH exhibited a notably
higher magnitude in the EDB treatment group in comparison to
the EDA treatment group, suggesting EDB treatment was more
effective than EDA treatment alone in reducing neuronal apoptosis.

3.4 EDB inhibits OS after SAH

To investigate the impact of EDB therapy on the prevention of
OS, we conducted an analysis of its antioxidant properties by
assessing the levels of SOD and MDA at SAH post-24 h. The
results indicated a noteworthy increase in MDA levels, as well as
a notable decline in SOD levels in both SAH and SAH + vehicle
groups, indicating heightened oxidative damage. In contrast to the
control group, both the EDA and EDB treatment groups exhibited a
reduction in MDA expression and an elevation in SOD levels
(Figures 5A,B). Furthermore, the antioxidant impact of EDB was
significantly greater in comparison to the sole administration of

FIGURE 6
After application of the Nrf2 inhibitor (ML385) intervention, neurological behavioral scores, brain water content and Evans blue permeability after
SAH. (A) Balance beam test scores at 24 h after SAH; (B) Themodified Garcia scores at 24 h after SAH; (C) Brainwater content of left, right hemisphere and
cerebellum at 24 h after SAH; (D) Evans blue permeability after SAH. Data are presented as the mean ± SD. # p < 0.05 compared with sham; * p <
0.05 compared with SAH + vehicle; and p < 0.05 compared with SAH + EDA; † p < 0.05 compared with SAH + vehicle + EDA; ‡ p < 0.05 compared
with SAH + vehicle + EDB.
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EDA. In conclusion, both EDA and EDB treatments exhibited
remarkable antioxidant capacity against SAH-induced neural
injury. Moreover, the antioxidant potential of EDB exceeded that
of EDA treatment in isolation.

3.5 EDB attenuates OS injury after SAH via
the Keap1/Nrf2 signal pathway

To identify the mechanisms by which EDB mitigates OS after
SAH, we conducted Western blotting to assess the levels of
Keap1 and Nrf2 (Figures 5C,D). There was a notable increase in
Keap1 expression in both the SAH and SAH + vehicle groups, while
Nrf2 expression decreased significantly. However, the groups treated
with EDA and EDB demonstrated a noteworthy reduction in
Keap1 expression and a notable elevation in Nrf2 expression
when compared to the control group (Figures 5E,F). Moreover,
EDB treatment group exhibited a more pronounced reduction in
Keap1 expression and an elevation in Nrf2 expression in comparison
to the group receiving EDA alone.

3.6 Blockade of Nrf2 can abolish the anti-OS
of EDB

To further evaluate the effect of Keap1/Nrf2 signaling pathway
on the antioxidant effect of EDB, the Nrf2 inhibitor ML385 was
applied to SAH-induced mice at 30 min prior to drug
administration. Compared with the SAH + vehicle group, two

behavioral experiments score of the SAH + vehicle + EDA and
SAH + vehicle + EDB groups showed significant improvement,
whereas both ML385-treated groups showed poorer behavioral
status; the behavioral scores of SAH + ML385+EDA were worse
in contrast to the SAH + ML385+EDB group (Figures 6A,B). The
findings of this study indicated that the inhibition of Nrf2 hindered
the antioxidant properties of EDB in relation to the behavioral
aspects of mice. The SAH+ vehicle + EDA and SAH + vehicle + EDB
groups exhibited a significant decrease in brain water content and
Evans blue permeability (Figures 6C,D), whereas both groups
showed a significant increase in these measures following
ML385 treatment. These findings suggested that the ability of
EDB to mitigate cerebral oedema and BBB disruption was
significantly impeded when Nrf2 was blocked. To investigate the
impact of ML385 on mitigating SAH-induced apoptosis following
the administration of EDA and EDB, we analyzed the number of
Tunel-positive neurons in the brain after SAH by
immunofluorescence staining. The results showed that, compared
with SAH + vehicle group, the number of Tunel-positive neurons
decreased significantly. After the application of ML385, these results
were reversed (Figure 7). On the other hand, Western blotting
results showed the groups treated with SAH + vehicle + EDA
and SAH + vehicle + EDB exhibited a noteworthy reduction in
Bcl-2 expression and a notable increase in the expression of Bax,
caspase3, cleaved caspase3 and Parp1 (Figures 8A–F). However, the
administration of ML385 effectively reversed these results. The
findings of this study demonstrated that when ML385 blocked
the Keap1/Nrf2 signal pathway, the anti-apoptosis effects of EDA
and EDB in reducing neuronal apoptosis were hindered. To detect

FIGURE 7
After application of the Nrf2 inhibitor (ML385) intervention, neuronal Tunel immunofluorescence staining and ratio of Tunel-positive neurons to
normal neurons. Data are presented as the mean ± SD. # p < 0.05 compared with sham; * p < 0.05 compared with SAH + vehicle; † p < 0.05 compared
with SAH + vehicle + EDA; ‡ p < 0.05 compared with SAH + vehicle + EDB.
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the impact of ML385 on the reduction of SAH-mediated OS
following the treatment of EDA and EDB, we quantitatively
analyzed SOD and MDA in the brain tissue of mice after SAH.
The results showed that the level of SOD increased and the level of
MDA decreased significantly compared with SAH + vehicle
group. Then after the application of ML385, these results were
significantly reversed (Figures 9A,B). Meanwhile, we used Western
blotting to detect the signaling pathway proteins Keap1 and Nrf2
(Figures 9C,D). In comparison to the SAH + vehicle + EDA and
SAH + vehicle + EDB groups, the application of ML385 resulted in
an elevation of Keap1 levels and a reduction in Nrf2 levels in both
groups. These results demonstrated that ML385 could block the
Keap1/Nrf2 signaling pathway to inhibit the anti-oxidative effects of
EDA and EDB (Figures 9E,F).

4 Discussion

Our research findings have demonstrated the beneficial effects of
EDB in ameliorating the neuronal detrimental consequences of OS,
reducing neuronal apoptosis, and improving prognosis within the
context of SAH. Additionally, we have provided evidence to

substantiate the claim that the neuroprotective advantages of
EDB in SAH are attained by means of activating anti-oxidative
response by the Keap1/Nrf2 signaling pathway.

EDB serves as a new neuroprotective medication with multiple
targets, blending EDA and dexborneol in a 4:1 ratio (Xu J. et al.,
2019). Clinical trials evaluating the effectiveness of EDB have shown
that patients who received EDB during 48 h of AIS had improved
neurological status compared to those received EDA solely (Xu
J. et al., 2019; Xu et al., 2021). Furthermore, the safety and tolerability
with EDB at different doses were found to be more advantageous in
comparison to the administration of EDA alone (Wu H. Y. et al.,
2014). Research has shown that EDB for treating AIS has a
neuroprotective mechanism that encompasses various pathways
for neuroprotection, such as OS, apoptotic injury and
inflammation response (Huang et al., 2022). Nevertheless, there
is currently a lack of empirical evidence regarding the efficacy of
EDB for treating SAH.

AIS patients have been treated with EDA, which acts as an
antioxidant by scavenging free radicals (Rothstein, 2017).
Numerous experimental studies suggest that EDA may reduce
brain damage in SAH through multiple mechanisms. EDA is
recognized for its antioxidant characteristics and its capacity to

FIGURE 8
After application of the Nrf2 inhibitor (ML385) intervention, Western blotting and relative density analysis of apoptotic proteins. (A) The expressions
of Bax, Bcl-2, caspase-3, cleaved caspase-3, Parp1 and Hsp90 were measured by Western blotting; (B) Bax relative density; (C) Bcl-2 relative density; (D)
Caspase-3 relative density; (E) Cleaved caspase-3 relative density; (F) Parp1 relative density. Data are presented as the mean ± SD. # p < 0.05 compared
with sham; * p < 0.05 compared with SAH + vehicle; and p < 0.05 compared with SAH + EDA; † p < 0.05 compared with SAH + vehicle + EDA; ‡ p <
0.05 compared with SAH + vehicle + EDB.
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eliminate hydroxyl radicals, peroxyl radicals, and other ROS. This
helps in decreasing OS and preventing the buildup of lipid
peroxidation and oxidative DNA damage (Kikuchi et al., 2013;
Wu S. et al., 2014; Suh et al., 2019). Multiple studies have provided
evidence supporting the efficacy of EDA in SAH for the purpose of
neuronal protection, neurological function enhancement, and
mitigation of unfavorable prognostic outcomes subsequent to
SAH (Yamashita and Abe, 2019). At the same time, we select
EDA as a positive control drug to further explore the efficacy with
EDB treatment.

Dexborneol, a bicyclic monoterpene compound, is the primary
component of (+)-borneol. It assists in the uptake of other

medications and protects the tight junction proteins and BBB.
This protection helps prevent neurological harm in AIS (Liu
et al., 2011; Dong et al., 2018; Liu et al., 2021). In addition,
dexborneol has the ability to enhance SOD activity and decrease
MDA levels, effectively diminishing OS harmwithin the body. It also
suppresses the generation and manifestation of pro-inflammatory
factors and associated proteins, thereby inhibiting the inflammatory
response (Hur et al., 2013; Chen et al., 2019). The combination of
EDA and dexborneol, known as EDB, has the potential to be more
efficient compared to using EDA alone (Xu J. et al., 2019; Xu et al.,
2021). Our current research examined the efficacy of SAH with EDB
treatment and explored the distinctions compared to EDA therapy.

FIGURE 9
After application of the Nrf2 inhibitor (ML385) intervention, measurement of oxidative stress indicators, Western blotting and relative density analysis
of signaling pathway proteins. (A) The level of SOD; (B) The level of MDA; (C)The expressions of Keap1 were measured by Western blotting; (D) The
expressions of Nrf2 were measured by Western blotting; (E) Keap1 relative density; (F) Nrf2 relative density. Data are presented as the mean ± SD. # p <
0.05 compared with sham; * p < 0.05 compared with SAH + vehicle; and p < 0.05 compared with SAH + EDA; † p < 0.05 compared with SAH +
vehicle + EDA; ‡ p < 0.05 compared with SAH + vehicle + EDB.
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The findings indicated that the utilization of EDB therapy following
SAH exhibited superior effectiveness and neuroprotective benefits in
comparison to EDA in isolation.

SAH serves as a type of cerebrovascular event caused by blood
entering the subarachnoid space from a ruptured aneurysm. There
are various causes for its occurrence, with the most frequent being
ruptured cerebral aneurysms and traumatic hemorrhage (Claassen
and Park, 2022). EBI is a common complication that typically
happens within 72 h after SAH, it is responsible for the majority
of fatalities and is the primary factor contributing to unfavorable
outcomes after SAH (Rass and Helbok, 2019). Studies have
identified OS as an important mechanism of EBI that leads to
neurological dysfunction after SAH (Mo et al., 2019). OS is a
physiological condition resulting from the elevation of ROS and
free radicals, potentially resulting in cellular structural damage.
Additionally, OS following SAH can result in neuronal apoptosis
(Forman and Zhang, 2021; Wu et al., 2021).

The Keap1/Nrf2 signaling pathway is of paramount importance in
alleviating OS and exhibits a significant association with inflammatory
disorders (Lu et al., 2016). Nrf2 is a prominent transcription factor
implicated inOS transcription, constituting a key component within the
repertoire of cell defense mechanisms (Liu et al., 2022). The role of
Nrf2 is closely controlled by Keap1, a linker protein of the Cul3-based
E3 ligase. In typical physiological circumstances, Keap1 engages with
Nrf2 to direct the proteasome towards ubiquitin degradation (Baird and
Yamamoto, 2020).When exposed toOS, Keap1 loses its activity and the
process of Nrf2 ubiquitination stops (Yang et al., 2021). This leads to the
buildup of newly produced Nrf2 and its subsequent activation.
Consequently, Nrf2 is subsequently passed on to cell nucleus,

initiating the transcription of numerous genes responsible for
cellular defense, ultimately activating the defense mechanism
(Adinolfi et al., 2023). In short, the Keap1/Nrf2 signaling pathway is
of paramount importance in upholding cell redox equilibrium and
dynamic homeostasis (Figure 10). Moreover, it actively supports anti-
oxidative processes in SAH (Zhang et al., 2019). Our results showed
EDA and EDB displayed strong antioxidant properties. In comparison
to EDA alone, the use of EDB resulted in a greater decrease in OS-
induced harm after SAH. Moreover, the combination of EDA and
dexborneol exhibited increased neuroprotective properties against cell
apoptosis following SAH.

The effectiveness of EDB in treating SAH was assessed in our
experimental study. Moreover, we verified its ability to prevent OS
and cell apoptosis while also uncovering the precise mechanism. In
addition, there is also a need for research into the pivotal effect of
EDB in other pathophysiological processes of SAH-mediated EBI,
including neuroinflammation and vasospasm. Considering the
extensive utilization of EDB in AIS, we eagerly anticipate
forthcoming clinical studies involving individuals with SAH.

5 Conclusion

To summarize, this experiment demonstrates that EDB has a strong
neuroprotective effect and improves behavioral function following SAH.
The primary foundation of action appears to involve the initiation of the
Keap1/Nrf2 signaling pathway, providing antioxidant activity as well as
reducing neuronal apoptosis. These findings emphasize the potential for
EDB as a neuroprotective agent with multi-target effects in mitigating

FIGURE 10
Mechanism of oxidative stress and neuronal apoptosis associated with EDB.
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neurological damage associated with SAH. The results of this study are of
significant clinical importance and make a valuable addition to the
advancement of novel SAH-treatment approaches.
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SUPPLEMENTARY FIGURE S1
Figure shows the percent survival of the study mice. None of the sham-
operated mice died, 8 mice died in SAH group, and 18 mice died in SAH+
Vehicle group, and 9 mice died in SAH+ EDA group, and 10 mice died in
SAH+ EDB group (3 mice in SAH+ EDB 1.25 mg/kg group, 5 mice in SAH+
EDB 12.5 mg/kg group, 2 mice in SAH+ EDB 125 mg/kg group) and 14 mice
died in SAH+ ML385 group (7 mice in SAH+ ML385+ EDA, 7 mice in SAH+
ML385+ EDB) within 24 h after SAH due to severe hemorrhagic volume.
Survival rates were significantly lower in the SAH group than in the sham
group at 24 and 72 hours after subarachnoid hemorrhage. It was able to
improve after applying EDA and EDB treatment, and the improvement was
more significant in EDB.
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One of the most important developments in psychopharmacology in the
past decade has been the emergence of novel treatments for mood
disorders, such as psilocybin for treatment-resistant depression.
Psilocybin is most commonly found in different species of mushroom;
however, the literature on mushroom and fungus extracts with potential
antidepressant activity extends well beyond just psilocybin-containing
mushrooms, and includes both psychedelic and non-psychedelic species.
In the current review, we systematically review the preclinical literature on
mushroom and fungus extracts, and their effects of animal models of
depression and tests of antidepressant activity. The PICO structure,
PRISMA checklist and the Cochrane Handbook for systematic reviews of
intervention were used to guide the search strategy. A scoping search was
conducted in electronic databases PubMed, CINAHL, Embase and Web of
Science. The literature search identified 50 relevant and suitable published
studies. These included 19 different species of mushrooms, as well as
seven different species of other fungi. Nearly all studies reported
antidepressant-like effects of treatment with extracts. Treatments were
most commonly delivered orally, in both acute and chronically
administered studies to predominantly male rodents. Multiple animal
models of depression were used, the most common being unpredictable
chronic mild stress, while the tail suspension test and forced swim test
were most frequently used as standalone antidepressant screens. Details
on each experiment with mushroom and fungus species are discussed in
detail, while an evaluation is provided of the strengths and weaknesses of
these studies.
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Introduction

Mood disorders remain among the most prevalent and disabling
of all psychiatric conditions. They also represent one of the leading
causes of worldwide disease burden (Friedrich, 2017; Collaborators,
2022). While many individuals affected by mood disorders respond
well to treatment, a significant proportion of people show either
partial or no response to antidepressant therapies (McLachlan,
2018). If an individual fails to respond to two or more trials of
standard antidepressant pharmacotherapy, they may be considered
“treatment-resistant” (Voineskos et al., 2020). Furthermore, many
individuals may show a therapeutic response to antidepressant
treatment but suffer side-effects that significantly reduce their
quality of life (Teng et al., 2022), resulting in reduced treatment
adherence (Hung, 2014; Rossom et al., 2016).

Clinical treatment options for those who do not respond well to
standard antidepressant therapies have historically remained
limited. However, in recent years, several landmark studies have
reported that administration of psychedelic drugs under controlled
conditions, typically in combination with psychotherapy, can
significantly reduce depressive symptoms (Griffiths et al., 2016;
Ross et al., 2016; Palhano-Fontes et al., 2019; Davis et al., 2021;
Eisenstein, 2022; Goodwin et al., 2022). Importantly, this includes
individuals with treatment-resistant depression (Carhart-Harris
et al., 2016). Additionally, in clinical trials reported to-date, the
side-effect profile of these compounds has appeared relatively
benign (Eisenstein, 2022) with no evidence of some of the side-
effects associated with other psychotropic medications, such as
weight gain and metabolic dysregulation (Boyda et al., 2013;
Boyda et al., 2021; Sepúlveda-Lizcano et al., 2023).

While the use of the term “psychedelic” has no official definition, it
typically refers to a drug that is able to alter perception, thoughts, feelings
and consciousness in humans (Hosanagar et al., 2021). Psychedelic drugs
are commonly categorized as either “classical” or “atypical” (Kamal et al.,
2023). The former category represents drugs with agonism or partial
agonism at the serotonergic 5-HT2A receptor, and includes tryptamines
(such as psilocybin and DMT), ergolines (such as LSD) and
phenethylamines (such as mescaline) (Kelmendi et al., 2022). The
atypical psychedelics have diverse mechanisms of action
(Aleksandrova and Phillips, 2021), which are not primarily at the 5-
HT2A receptor, and include drugs such as ketamine, ibogaine,muscimol
and salvinorin A (Kelmendi et al., 2022). At this point, it is important to
note that many compounds from both classes of psychedelic drugs have
their origins in commonly available mushrooms and other fungi.

Mushrooms and other fungi

Mushrooms are generally defined as the spore-producing fruiting
body of a fungus. Traditional medicine has used mushrooms, and fungi
in general, in medical treatment for centuries (Yadav and Negi, 2021;
Gravina et al., 2023), taking advantage of their numerous perceived
therapeutic benefits. Such properties have been reported to include
antimicrobial (Moussa et al., 2022), antibacterial, antioxidant,
hepatoprotective (Venturella et al., 2021), and antitumor (Pandya
et al., 2019) effects. More recently, researchers have investigated
“medicinal” mushrooms as potential alternatives or complements to
mainstream antidepressant treatments. For example, non-psychedelic

species such as Hericium erinaceus and Ganoderma lucidum have been
noted as having mood-improving qualities in humans (Nagano et al.,
2010; Fijałkowska et al., 2022), although head-to-head trials comparing
effects against standard antidepressant pharmacotherapies are lacking.
Nevertheless, the increasing body of evidence which indicates that
psilocybin (a psychedelic compound found in many species of
mushrooms (Strauss et al., 2022)) has potent antidepressant effects,
including in those with treatment-resistant depression (Haikazian et al.,
2023; Simonsson et al., 2023), supports the notion that mushrooms and
other fungi may hold significant therapeutic potential in this area.
However, given the enormous number of potential species of
mushroom and other fungi that could have antidepressant effects,
measured against the tremendous costs associated with conducting
clinical trials in humans, it is critical to determine which mushroom
and fungus species and their derivatives represent the best preclinical
leads for further development. In this context, it is vitally important to
understand which species have already demonstrated efficacy in
preclinical animal models of depression and specific screens for
antidepressant activity. The purpose of the present scoping review is
therefore to systematically identify which mushroom and fungus species
have been tested for antidepressant effects in specific preclinical models,
and to summarize and evaluate the results of these studies.

Materials and methods

The PICO structure, PRISMA checklist and the Cochrane
Handbook (Higgins and Green, 2011) for systematic reviews of
intervention were used to guide the search strategy. A scoping search
was conducted in electronic databases PubMed, CINAHL (via
EBSCO), Embase (via Ovid), and Web of Science, as previously
(Tse et al., 2014; Yuen et al., 2021; Lian et al., 2022). One preprint
source was found as a suggestion under another article and later
located on Google Scholar. The latest literature search was
conducted on 19 December 2023.

A combination of 26 individual search terms were used with the
following keywords: “mushroom” or “mushrooms” or “fungus” and
“depress*” or “antidepress*” and “animal” or “animal model”. Filters
excluding human studies or non-article sources were applied as needed.
Searches were also conducted using specific behavioural models/tests or
mushroom species as keywords. Studieswere limited to those using rodent
species as those reflect the expertise of the authors (Lu et al., 2005; Barr
et al., 2006; Hill et al., 2007; Boyda et al., 2014); however, it is important to
note that other species, such as zebrafish, represent additional valid animal
models of antidepressant efficacy (Braun et al., 2024).

Studies were included if they met the following criteria: 1) studies
tested a mushroom, fungus, or relevant mushroom derivative, and; 2)
used a rodent model or behavioural test of depression or screen of
antidepressant activity. Studies were excluded if they 1) were not
published in English, or; 2) were not full text original research
studies (i.e., conference abstracts, review papers).

A total of 546 articles were identified using Covidence (www.
covidence.org), with 241 duplicates removed, leaving 305 articles to
be screened. After title and abstract screening, 237 were deemed
irrelevant, leaving 68 studies for eligibility assessment. After full text
review, 18 studies were excluded, leaving 50 studies in the final
database. Figure 1 outlines a PRISMA flowchart of the study
selection process.
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Abstracts and full texts were screened by GK and CKW. Data
was extracted independently by GK and CKW with key variables
extrapolated and outlined in Supplementary Table S1. Any

discrepancies throughout the process were brought to
consensus by GK and CKW with the assistance of AMB
if required.

FIGURE 1
Literature review flow process.
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Results

The literature search identified 50 relevant and suitable
published studies. These included 19 different species of
mushrooms see Table 1, as well as seven different species of
other fungi see Table 2; there were also three studies that used
compounds which are common to multiple mushroom species.

Characteristics of animals used and drug
administration

The species used in all of the animal models were limited to rats
and mice: we did not find instances of other rodent species that have
been utilized as antidepressant screens (Kramer et al., 1998; Alo
et al., 2019). Fourteen of the studies used rats (Matsuzaki et al., 2013;
Minami et al., 2013; Tan et al., 2016; Liu C. et al., 2017; Song et al.,
2017; Wang et al., 2017; Huang et al., 2020; Nascimento et al., 2020;
Lin et al., 2021a; Zhang L. et al., 2021; Lin et al., 2021b; Anuar et al.,
2022; Cheng, 2023; Rakoczy et al., 2023), while the remaining
36 studies used mice to test for antidepressant-like effects (Zhou
et al., 2005; Nishizawa et al., 2007; Koo et al., 2008; Singh et al., 2014;
Tianzhu et al., 2014; Socala et al., 2015; Yao et al., 2015; Gupta et al.,
2016; Huang et al., 2016; Nakamichi et al., 2016; Song et al., 2016;
Xu, 2016; Bao et al., 2017; Liu Y. et al., 2017; Lin et al., 2017; Chiu
et al., 2018; Mahmoudi et al., 2018; Ryu et al., 2018; Jin et al., 2019; Li
et al., 2019; Song et al., 2020; Li H. et al., 2021; Li TJ. et al., 2021;
Zhang T. et al., 2021; Chong et al., 2021; Hossen et al., 2021; Park
et al., 2021; Singh et al., 2021; Zhao et al., 2021; Chou et al., 2022; Mi
et al., 2022; Xin et al., 2022; Yu et al., 2022; Ezurike et al., 2023; Zhao
et al., 2023; Hernandez-Leon et al., 2024). In terms of strains, 10 of
the rat studies used Sprague-Dawley, three included Wistar and one
used Long-Evans rats. For the mice studies, the most commonly
used strain was the C57BL/6 strain and sub-strains (12 studies),
followed by Institute for Cancer Research mice (seven studies), Swiss
Albino and Kunming mice (six studies each) and one study each
with BALB/c, CD1, Swiss Webster and NMRI strains. Two studies
did not mention the specific strains used (Li et al., 2019; Park et al.,
2021). The overwhelming majority of rat studies used male rats
(12 studies) compared to female rats (two studies (Minami et al.,
2013; Anuar et al., 2022)). All mice studies utilized males, most of
which included males only, while five studies used both male and
female mice (Singh et al., 2014; Song et al., 2016; Liu Y. et al., 2017;
Hossen et al., 2021; Ezurike et al., 2023), and one study did not
specify sex (Park et al., 2021). Thus, only 14% of studies used female
animals in their investigation.

Administration of mushroom or fungus derivatives to animals
was mostly through a single route of administration, although a
handful of studies used two different routes of administration (Yao
et al., 2015; Huang et al., 2016; Chou et al., 2022; Yu et al., 2022;
Hernandez-Leon et al., 2024). The most common route of
administration was oral (per os, p.o.), which accounted for more
than 50% of studies (29 of 55 instances of administration). Second
most common was treatment by intraperitoneal (i.p.) injection
(13 instances), followed by intragastric (i.g.) administration
(7 instances). Extracts were administered to animals in their food
in three separate studies (Nakamichi et al., 2016; Bao et al., 2017;
Anuar et al., 2022), by subcutaneous (s.c.) injection in two studies

(Chou et al., 2022; Yu et al., 2022), and by intravenous (i.v.)
administration in one study (Zhang L. et al., 2021).

The methods of extraction of mushroom and fungus derivatives
was reported in 28 studies. Methods included use of both polar and
non-polar solvents, with the most common ones including water
and various alcohols. For many of the studies where complex
extraction procedures were involved, including with non-polar
solvents, it was not possible to determine if the extracts that were
administered to animals also contained traces of these solvents (e.g.,
(Singh et al., 2021)), which could feasibly have an effect
on behaviour.

The duration of drug treatment varied significantly across the
studies, from acute doses with behavioural testing 30 min later
(Socala et al., 2015; Mahmoudi et al., 2018; Jin et al., 2019;
Zhang T. et al., 2021; Hossen et al., 2021; Park et al., 2021;
Hernandez-Leon et al., 2024), up to 92 days of continuous
administration (Anuar et al., 2022). Of the 50 studies, 13 were
acute (treatment over a span of <24 h) (Matsuzaki et al., 2013; Socala
et al., 2015; Yao et al., 2015; Gupta et al., 2016; Lin et al., 2017;
Mahmoudi et al., 2018; Jin et al., 2019; Zhang T. et al., 2021; Hossen
et al., 2021; Park et al., 2021; Singh et al., 2021; Rakoczy et al., 2023;
Hernandez-Leon et al., 2024), six were sub-acute (1–7 days)
(Nishizawa et al., 2007; Song et al., 2016; Bao et al., 2017;
Nascimento et al., 2020; Song et al., 2020; Yu et al., 2022), and
the remaining 31 studies involved chronic treatment (>7 days). The
mean duration of treatment for the chronic studies was 30.4 (±16.7)
days for the longest treated group in each study (some studies had
varying durations of treatment depending on the group). The modal
and median periods of treatment for chronic studies were both
28 days. Rats were more likely to be treated chronically, with only
two of the 14 rat studies involving acute treatment (Matsuzaki et al.,
2013; Rakoczy et al., 2023).

Animal models of depression and tests of
antidepressant activity

A variety of animal models of depression and antidepressant
screens were used to examine mushroom and fungus antidepressant
efficacy. By far the most common animal model used to induce a
depressive-like phenotype in rodents was the unpredictable chronic
mild stress paradigm (UCMS), with 14 studies implementing this
model (Zhou et al., 2005; Tianzhu et al., 2014; Tan et al., 2016; Liu C.
et al., 2017; Song et al., 2017; Wang et al., 2017; Li et al., 2019; Huang
et al., 2020; Lin et al., 2021a; Zhang L. et al., 2021; Lin et al., 2021b;
Zhao et al., 2021; Xin et al., 2022; Cheng, 2023); rats were used in the
majority (9) of these studies. The second most frequent model
involved the use of chronic restraint stress, in four mouse studies
(Nakamichi et al., 2016; Chiu et al., 2018; Chong et al., 2021; Zhao
et al., 2023). Two rat studies used ovariectomy procedures to model
menopausal depression (Minami et al., 2013; Anuar et al., 2022),
while high-dose corticosterone was administered to mice in two
studies (Chou et al., 2022; Yu et al., 2022). Other models included the
use of lipopolysaccharide (Yao et al., 2015), chronic social defeat
stress (Li H. et al., 2021), maternal separation (Mi et al., 2022),
ethanol binge drinking (Nascimento et al., 2020) and streptozotocin
to model diabetes-induced depression (Huang et al., 2016). To
determine that a depressive-like state had been induced by the
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TABLE 1 Summary of rodent depression models and behavioural tests used to screen for antidepressant effects in different mushroom species. Subchronic and chronic treatment schedules include daily
administration of drug unless otherwise stated.

Route Treatment
duration

Extraction
method

Rodent
species

Strain Sex Sample size Behavioural
test or model

Test
duration

Test
frequency

Doses
tested

Combined with Other notes Reference
number

Hericium erinaceus

Food Chronic (92 d) Methanol Rat Wistar Female Sham (n = 11)
OVX Model (n =
11)
OVX + HE (n =
10)
OVX + E2 (n = 8)

OVX 96 d Once n/a n/a Models menopausal
depression

Anuar et al.
(2022)

FST 5 min OVX Model*
1%#

p.o. Chronic (28 d) Ethanol Mouse ICR Male n = 10 per group
Control
CRS Model
CRS + HE (Low,
Medium, High)

CRS 14 d 2 h daily n/a Erinacine A Mycelium Chiu et al. (2018)

FST 5 min Once CRS Model***
100 mg/kg
200 mg/kg##

400 mg/kg##
TST

i.p. Chronic (28 d) Ethanol Mouse C57BL/6 Male n = 76 in total CRS 14 d 6 h daily n/a# n/a n/a Chong et al.
(2021)

SPT 2 h Once CRS Model***
10 mg/kg##

25 mg/kg##

TST 5 min CRS Model*
10 mg/kg
25 mg/kg##

s.c. Chronic (21 d) Alcohol Mouse SAMP8,
BALB/C

Male n = 8 per group
CORT Model
CORT + (Low,
Medium, High)
CORT +
Fluoxetine

CORT 21 d Daily 40 mg/kg Chlorella 0.1 mL chlorella + 6 mg
HE

0.2 mL chlorella + 12 mg
HE

0.4 mL chlorella + 24
mg HE

Chou et al. (2022)

p.o. FST Last 4 min of
6 min

Once CORT Model
0.25 mL/25 g
0.5 mL/25 g#

2.5 mL/25 g#

p.o. Chronic (9 d) n/a Mouse C57BL/6 Male n = 6
Control
Low dose
High dose

TST 15 min Daily for 9 d 75 mg/kg
150 mg/kg

% immobility
increased daily over

9 d period

n/a Mycelium; Uses TST-
induced depression
model, not screen

Li et al. (2021b)

p.o. Chronic (28 d) Ethanol Mouse C57BL/6 Male n/a
Control
HE (Low, High)

FST Last 4 min of
6 min

Once 20 mg/kg*
60 mg/kg*

n/a n/a Ryu et al. (2018)

TST

i.p. Subchronic (1 d) n/a Mouse C57BL/
6N

Male n = 11–12 per
group
Control
Control +
Amycenone
LPS Model
LPS + Amycenone

LPS 1 d Once n/a n/a Amycenone: hericenones/
hericium isolates (0.5%)
and amyloban (6%)
Use LPS to induce

depression

Yao et al. (2015)

p.o. FST 6 min Non-LPS
200 mg/kg

LPS
LPS Model**
200 mg/kg#

TST 10 min Non-LPS
200 mg/kg

LPS
LPS Model***
200 mg/kg##
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TABLE 1 (Continued) Summary of rodent depression models and behavioural tests used to screen for antidepressant effects in different mushroom species. Subchronic and chronic treatment schedules include daily
administration of drug unless otherwise stated.

Route Treatment
duration

Extraction
method

Rodent
species

Strain Sex Sample size Behavioural
test or model

Test
duration

Test
frequency

Doses
tested

Combined with Other notes Reference
number

Ganoderma lucidum

p.o. Chronic (28 d) Ethanol Rat Sprague-
Dawley

Male n = 8 per group
Control
UCMS Model
UCMS + Gl-E
(Low, Medium,
High)
UCMS +
Fluoxetine

UCMS 28 d Daily n/a n/a Preprint; not peer-
reviewed

Cheng (2023)

SPT 3 h Once UCMS Model***
0.02 g/kg
0.1 g/kg#

0.5 g/kg##

p.o. Chronic (28 d) Ethanol Mouse Swiss
Albino

Both n = 5 per group
Control
EEGL (Low,
Medium, High)

FST Last 4 min of
6 min

Once Male
100 mg/kg*
200 mg/kg**
400 mg/kg**

Female
100 mg/kg*
200 mg/kg*
400 mg/kg**

n/a n/a Ezurike et al.
(2023)

Chronic (29 d) TST Male
100 mg/kg*
200 mg/kg**
400 mg/kg**

Female
100 mg/kg*
200 mg/kg*
400 mg/kg*

i.p. n/a n/a Mouse C57BL/6 Male SPT: n = 7 per
group
TST: n = 8–10 per
group
FST: n = 9–10 per
group
Control
Control + GLP
(Low, Medium,
High)
CSDS Model
CSDS + GLP
(Medium)
Imipramine

CSDS 10 d 5–10 min daily n/a n/a Polysaccharide Li et al. (2021a)

SPT 2 h Once CSDS Model***

Subchronic (5 d) FST Last 4 min of
6 min

Non-CSDS
1 mg/kg

5 mg/kg***
12.5 mg/kg

CSDS
5 mg/kg###

Acute (60 min) TST Non-CSDS
1 mg/kg
5 mg/kg*
12.5 mg/kg

CSDS
5 mg/kg#

p.o. Acute (60 min) Water Rat Sprague-
Dawley

Male Control (n = 8)
MAK (Low, High)
(n = 6)
Imipramine (n = 5)

FST 5 min Once 0.3 g/kg
1 g/kg*

n/a Mycelium Matsuzaki et al.
(2013)

i.p. Chronic (21 d) Ethanol + Ethyl
Acetate

Mouse C57BL/6J Male n = 11–13 per
group
Control
Control + GLT

MS 21 d 4 h daily n/a n/a Triterpenoids Mi et al. (2022)

SPT 24 h Once Non-MS
40 mg/kg

(Continued on following page)
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TABLE 1 (Continued) Summary of rodent depression models and behavioural tests used to screen for antidepressant effects in different mushroom species. Subchronic and chronic treatment schedules include daily
administration of drug unless otherwise stated.

Route Treatment
duration

Extraction
method

Rodent
species

Strain Sex Sample size Behavioural
test or model

Test
duration

Test
frequency

Doses
tested

Combined with Other notes Reference
number

MS Model
MS + GLT

MS
MS Model****
40 mg/kg####

FST 6 min Non-MS
40 mg/kg

MS
MS Model****
40 mg/kg###

TST Non-MS
40 mg/kg

MS
MS Model*
40 mg/kg#

Splash Test 5 min Non-MS
40 mg/kg

MS
MS Model****
40 mg/kg####

Nest Building 24 h Non-MS
40 mg/kg

MS
MS Model***
40 mg/kg####

p.o. Subchronic (3 d) Water Rat Wistar Male n = 6–9 per group
Control
Binge Drinking
(EtOH) Model
Binge + AEGI

Binge Drinking 35 d Weekly (daily
administration for 3
consecutive days)

n/a n/a Models binge drinking
induced depression

Nascimento et al.
(2020)

FST Last 3 min of
5 min

Once Binge Drinking
Model****

0.1 mL/100 g##

p.o. Acute (60 min) Petroleum Ether,
Chloroform,

Methanol, and Water
Methanol → Ethyl
Acetate, n-Butanol,

and Methanol
fractions

Mouse Swiss
Albino

Male n = 6 per group
Control
Extracts
Pet. Ether (Low,
Medium, High)
Chloroform (Low,
Medium, High)
Methanol (Low,
Medium, High)
Aqueous (Low,
Medium, High)
Imipramine
Fractions
E: Ethyl Acetate
(Very Low, Low,
Medium)
N: n-Butanol (Very
Low, Low, Medium)
MF: Methanol-
soluble fraction
(Low, Medium,
High)
Imipramine

FST Last 4 min of
6 min

Once Extracts
100 mg/kg*
200 mg/kg*

400 mg/kg* (for all
extracts)
Fractions

50 mg/kg – E*, N*
100 mg/kg – E*, N,

MF*
200 mg/kg – E*, N*,

MF*
400 mg/kg – MF*

n/a n/a Singh et al. (2021)

(Continued on following page)
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TABLE 1 (Continued) Summary of rodent depression models and behavioural tests used to screen for antidepressant effects in different mushroom species. Subchronic and chronic treatment schedules include daily
administration of drug unless otherwise stated.

Route Treatment
duration

Extraction
method

Rodent
species

Strain Sex Sample size Behavioural
test or model

Test
duration

Test
frequency

Doses
tested

Combined with Other notes Reference
number

i.g. Acute (30 min) Water Mouse Swiss
Albino

Male n = 11–12 per
group
Control
G. lucidum extract
(Very Low, Low,
Medium, High)

FST Last 4 min of
6 min

Once 50 mg/kg
100 mg/kg**
200 mg/kg***
400 mg/kg***

n/a Mycelium Socala et al.
(2015)

p.o. Chronic (28 d) Water Mouse C57BL/6 Male n = 10 per group
Control
Control + PGL
(Low, Medium,
High)
UCMS Model
UCMS + PGL
(Low, Medium.
High)
UCMS +
Fluoxetine

UCMS 56 d Daily n/a n/a Spore polysaccharide-
peptide

Zhao et al. (2021)

SPT 24 h Once UCMS Model**
100 mg/kg#

200 mg/kg##

400 mg/kg##

Acute (1 h)
Chronic (28 d)

FST Last 4 min of
6 min

Acute
100 mg/kg
200 mg/kg*
400 mg/kg**
Chronic

UCMS Model
100 mg/kg##

200 mg/kg##

400 mg/kg##

Acute (1 h) TST 100 mg/kg
200 mg/kg**
400 mg/kg**

Ganoderma applanatum

p.o. Acute (30 min) Ethanol and Water Mouse Swiss
Albino

Both n = 5 per group
Control
Ethanol (Low,
High)
Aqueous (Low,
High)
Diazepam [i.p.]

TST 6 min Once Ethanol
200 mg/kg
400 mg/kg
Aqueous
200 mg/kg
400 mg/kg

n/a n/a Hossen et al.
(2021)

p.o. Acute (60 min) Petroleum Ether,
Chloroform,

Methanol, and Water

Mouse Swiss
Albino

Male n = 6 per group
Control
Extracts
Pet. Ether (Low,
Medium, High)
Chloroform (Low,
Medium, High)
Methanol (Low,
Medium, High)
Aqueous (Low,
Medium, High)
Imipramine

FST Last 4 min of
6 min

Once Extracts
100 mg/kg*
200 mg/kg*

400 mg/kg* (for all
extracts)

n/a n/a Singh et al. (2021)

Ganoderma philippii

p.o. Acute (60 min) Petroleum Ether,
Chloroform,

Methanol, and Water

Mouse Swiss
Albino

Male n = 6 per group
Control
Extracts
Pet. Ether (Low,
Medium, High)

FST Last 4 min of
6 min

Once Extracts
100 mg/kg*
200 mg/kg*

400 mg/kg* (for all
extracts)

n/a n/a Singh et al. (2021)
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TABLE 1 (Continued) Summary of rodent depression models and behavioural tests used to screen for antidepressant effects in different mushroom species. Subchronic and chronic treatment schedules include daily
administration of drug unless otherwise stated.

Route Treatment
duration

Extraction
method

Rodent
species

Strain Sex Sample size Behavioural
test or model

Test
duration

Test
frequency

Doses
tested

Combined with Other notes Reference
number

Chloroform (Low,
Medium, High)
Methanol (Low,
Medium, High)
Aqueous (Low,
Medium, High)
Imipramine

Ganoderma brownii

p.o. Acute (60 min) Petroleum Ether,
Chloroform,

Methanol, and Water

Mouse Swiss
Albino

Male n = 6 per group
Control
Extracts
Pet. Ether (Low,
Medium, High)
Chloroform (Low,
Medium, High)
Methanol (Low,
Medium, High)
Aqueous (Low,
Medium, High)
Imipramine

FST Last 4 min of
6 min

Once Extracts
100 mg/kg*
200 mg/kg*

400 mg/kg* (for all
extracts)

n/a n/a Singh et al. (2021)

Ganoderma sp.

i.v. Chronic (21 d) n/a Rat Sprague-
Dawley

Male Sham (n = 8)
MCAO (n = 7)
PSD Model (n = 7)
PSD + GAA (Low,
Medium, High)
(n = 8)

PSD (UCMS) 21 d Daily n/a n/a Ganoderic acid
(triterpenoid)

Performs MCAO to
induce stroke conditions

Use UCMS to
establish PSD

Zhang et al.
(2021a)

SPT 3 h Once PSD Model̂̂
10 mg/mL
20 mg/mL#

30 mg/mL##

^̂p < 0.01 v.s. MCAO
group

Grifola frondosa

Food Subchronic:
Cohort 1 (5 d)
Cohort 2 (1 d)
Cohort 3 (5 d)

n/a Mouse CD-1 Male Cohort 1 (n = 14
per group)
Cohort 2 (n = 14
per group)
Cohort 3 (n =
10–11 per group)
For each cohort:
Control
Low
Medium
High
Imipramine

FST Last 4 min of
6 min

Once 1:4 GF:chow**
1:2 GF:chow**
1:1 GF:chow***

n/a Tested with multiple
cohorts

Bao et al. (2017)

Subchronic:
Cohort 1 (1 d)
Cohort 2 (5 d)
Cohort 3 (1 d)

Cohort 1 (n = 14
per group)
Cohort 2 (n = 13
per group)
Cohort 3 (n = 11
per group)

TST 1:4 GF:chow*
1:2 GF:chow**
1:1 GF:chow**
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TABLE 1 (Continued) Summary of rodent depression models and behavioural tests used to screen for antidepressant effects in different mushroom species. Subchronic and chronic treatment schedules include daily
administration of drug unless otherwise stated.

Route Treatment
duration

Extraction
method

Rodent
species

Strain Sex Sample size Behavioural
test or model

Test
duration

Test
frequency

Doses
tested

Combined with Other notes Reference
number

For each cohort:
Control
Low
Medium
High
Imipramine

Psilocybe cubensis

p.o. (whole)
i.p.

(extracts)

Acute (30 min) Methanol and Water Mouse Swiss
Webster

Male n ≥ 7 per group
Control
Whole Mushroom
(Very High)
Methanol (Low,
Medium, High)
Aqueous (Low,
Medium, High)
Fluoxetine [s.c.]
Imipramine [i.p.]

FST 5 min Once Whole Mushroom
1000 mg/kg*
Methanol
1 mg/kg

10 mg/kg**
100 mg/kg***
Aqueous
1 mg/kg**
10 mg/kg***
100 mg/kg***

n/a n/a Hernandez-Leon
et al. (2024)

i.p. Acute (30 min) Chloroform Mouse NMRI Male n = 8 per group
Control
PCE (Low, High)
PCE (Low) +
Ketamine
PCE (High) +
Ketamine
Ketamine
Fluoxetine

FST Last 4 min of
6 min

Once 10 mg/kg
40 mg/kg

For PCE (10 mg/kg):
PCE + Ketamine (1

mg/kg)***
For PCE (40 mg/kg):
PCE + Ketamine (1

mg/kg)***

Ketamine Alkaloid extract Mahmoudi et al.
(2018)

TST

Pleurotus eryngii

p.o. Chronic (84 d) Ethanol Rat Wistar Female Sham (n = 10)
OVX Model (n =
10)
OVX + P. eryngii
(n = 8)

OVX 84 d Once n/a n/a Models menopausal
depression

Minami et al.
(2013)

Chronic (79 d) FST 6 min Once OVX Model*
500 mg/kg#

i.p. Acute (30 min) Ethanol Mouse n/a n/a n = 4 per group
Control
EtOH Extract
Mixture (pellet)
R2 Fraction
Fluoxetine

FST 4 min Once EtOH Extract*
Mixture (pellet)**

R2 Fraction*
(all 20 mg/kg)

n/a EtOH Extract → Pellet →
R2: fractions increase in

purification levels

Park et al. (2021)

Pleurotus ostreatus

Food Subchronic (5 d) n/a Mouse CD-1 Male Control (n = 11)
PO (n = 11)
Imipramine (n =
10–11)

FST Last 4 min of
6 min

Once 1:2 PO:chow n/a n/a Bao et al. (2017)

Subchronic (1 d) TST
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TABLE 1 (Continued) Summary of rodent depression models and behavioural tests used to screen for antidepressant effects in different mushroom species. Subchronic and chronic treatment schedules include daily
administration of drug unless otherwise stated.

Route Treatment
duration

Extraction
method

Rodent
species

Strain Sex Sample size Behavioural
test or model

Test
duration

Test
frequency

Doses
tested

Combined with Other notes Reference
number

Pleurotus citrinopileatus

Food Chronic (21 d) n/a Mouse C57BL/6J Male Control (n = 6)
Control + 10% (n
= 8)
CRS Model (n = 8)
CRS + 10% (n = 8)

CRS 21 d 4 h daily n/a n/a Antioxidant
ergothioneine (ERGO)
and golden oyster
mushroom extract

(GOME)

Nakamichi et al.
(2016)

Chronic (14 d) Control (n = 11)
10% GOME (n =
11)
ERGO (n = 6)
Ginkgo biloba
extract (n = 6)

FST 5 min

Once

10% GOME*
120 mg/100 g

ERGO*

Control (n = 15)
0.1% GOME (n = 6)
0.3% GOME (n = 6)
1% GOME (n = 12)
10% GOME (n = 15)

TST First 2 min of
3 min

0.1%
0.3%
1%*
10%*

Marasmius androsaceus

p.o. Subchronic (7 d) n/a Mouse Kunming Male n = 8 per group
Control
MEPS1 (High)
MEPS2 (Medium)
MEPS3 (Low)

FST 6 min Once 180 mg/kg
60 mg/kg*
30 mg/kg

n/a Extracellular
polysaccharide

Song et al. (2020)

TST 5 min 180 mg/kg*
60 mg/kg**
30 mg/kg

p.o. Chronic (28 d) n/a Rat Sprague-
Dawley

Male n = 10 per group
Control
UCMS Model
UCMS + MEPS
(Low, Medium,
High)

UCMS 56 d Daily n/a n/a Exopolysaccharides Song et al. (2017)

SPT 1 h Weekly for 7 weeks UCMS Model**
6 mg/kg
30 mg/kg#

150 mg/kg##

Model: significant
from day 14 to day

56
MEPS: 30 mg/kg and

150 mgm/kg
significant from day

49 to day 56

FST Last 5 min of
6 min

Once UCMS Model***
6 mg/kg#

30 mg/kg###

150 mg/kg###

TST UCMS Model***
6 mg/kg

30 mg/kg###

150 mg/kg###
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TABLE 1 (Continued) Summary of rodent depression models and behavioural tests used to screen for antidepressant effects in different mushroom species. Subchronic and chronic treatment schedules include daily
administration of drug unless otherwise stated.

Route Treatment
duration

Extraction
method

Rodent
species

Strain Sex Sample size Behavioural
test or model

Test
duration

Test
frequency

Doses
tested

Combined with Other notes Reference
number

p.o. Subchronic (7 d) n/a Mouse Kunming Both n = 10 per group
Control
MEPS (Low,
Medium, High)
Fluoxetine [i.g.]

FST Last 5 min of
6 min

Once 10 mg/kg
50 mg/kg
250 mg/kg*

n/a Exopolysaccharide Song et al. (2016)

TST 6 min 10 mg/kg
50 mg/kg*

250 mg/kg***

i.g. Chronic (14 d) n/a Mouse C57BL/6J Male n = 8 per group
IR
CRS Model
CRS + M

IR + Dp (CRS) 21 d 4 h daily n/a n/a Mycelium
Mice were irradiated with
13 Gy TAI to induce

intestinal radiation injury
CRS was used to induce

depression

Zhao et al. (2023)

FST Last 4 min of
6 min

Once CRS Model+++

CRS + M##

+++p < 0.001 v.s. IR
group

TST CRS Model++

CRS + M##

++p < 0.01 v.s. IR
group

Collybia maculata

i.p. Acute (immediate) n/a Mouse C57BL/6J Male n = 7–10 per group
Vehicle
Colly

FST 6 min Once 2 mg/kg n/a Colly: non-nitrogenous
sesquiterpene of C.

maculata

Gupta et al. (2016)

Poria cocos

p.o. Chronic (35 d) Water Rat Sprague-
Dawley

Male n = 7 per group
Control
Control + PCW
(Low, Medium,
High)
UCMS Model
UCMS + PCW
(Low, Medium,
High)

UCMS 35 d Daily n/a n/a Sclerotium Huang et al.
(2020)

Chronic (35 d) SPT 1 h Weekly for 5 weeks UCMS Model*
100 mg/kg#

300 mg/kg#

900 mg/kg
(After 4 weeks)

Chronic (28 d) FST 5 min Once 100 mg/kg*
300 mg/kg*
900 mg/kg*

Lentinula edodes

p.o. Acute (2 h)
Chronic (14 d)

n/a Mouse ICR Male n = 5 per group
Control
Pilopool

FST Last 4 min of
6 min

Once Acute
10 mL/kg*
Chronic
10 mL/kg

Pilopool mixture:
30% of L. edodes/shiitake

extract +
30% water-soluble

chitosan, 30% Allium
sativum L. extract, 0.5% of
Dioscorea batatas D., and

0.5% of bamboo salt

n/a Koo et al. (2008)

(Continued on following page)
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TABLE 1 (Continued) Summary of rodent depression models and behavioural tests used to screen for antidepressant effects in different mushroom species. Subchronic and chronic treatment schedules include daily
administration of drug unless otherwise stated.

Route Treatment
duration

Extraction
method

Rodent
species

Strain Sex Sample size Behavioural
test or model

Test
duration

Test
frequency

Doses
tested

Combined with Other notes Reference
number

Armillaria mellea

p.o. Chronic (35 d) Water Rat Sprague-
Dawley

Male n = 7 per group
Control
UCMS Model
UCMS + WAM
(Low, Medium,
High)
UCMS +
Fluoxetine

UCMS 35 d Daily n/a n/a n/a Lin et al. (2021a)

Chronic (34 d) SPT 1 h Once UCMS Model**
250 mg/kg#

500 mg/kg#

1000 mg/kg#

Chronic (30 d) FST 5 min 250 mg/kg####

500 mg/kg####

1000 mg/kg####

i.p. Acute (30 min) Ethyl Acetate Mouse ICR Male n = 10 per group
Control
PSAM (Lowest,
Very Low, Low,
Medium, High,
Very High,
Highest)
Fluoxetine

FST Last 4 min of
6 min

Once 0.05 mg/kg
0.1 mg/kg
0.5 mg/kg*
1 mg/kg*
5 mg/kg*
20 mg/kg
50 mg/kg

n/a Protoilludane
sesquiterpenoid aromatic

esters

Zhang et al.
(2021b)

TST 0.05 mg/kg
0.1 mg/kg
0.5 mg/kg*
1 mg/kg**
5 mg/kg*
20 mg/kg*
50 mg/kg

For PSAM (0.1 mg/
kg):

PSAM + Fluoxetine
(5 mg/kg)*

PSAM + Reboxetine
(2.5 mg/kg)**

Fluoxetine
Reboxetine

Agaricus brasiliensis

p.o. Chronic (30 d) Water Mouse Kunming Male n = 10 per group
Control
UCMS Model
UCMS + AWE

UCMS 28 d Daily n/a n/a n/a Xin et al. (2022)

TST Last 5 min of
6 min

Once UCMS Model*
3 g/kg#

Xylaria sp.

i.g. Chronic (28 d) n/a Rat Sprague-
Dawley

Male n = 6–9 per group
Control
UCMS Model
UCMS + Wuling
powder (Low,
Medium, High)
UCMS +
Fluoxetine

UCMS 42 d Daily n/a n/a Wuling mycelia powder Tan et al. (2016)

SPT 1 h Weekly for 6 weeks UCMS Model***
0.5 g/kg#

1 g/kg###

2 g/kg###

Model: significant
from week 2 to week

6
Wuling: significant

from week 6

(Continued on following page)
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TABLE 1 (Continued) Summary of rodent depression models and behavioural tests used to screen for antidepressant effects in different mushroom species. Subchronic and chronic treatment schedules include daily
administration of drug unless otherwise stated.

Route Treatment
duration

Extraction
method

Rodent
species

Strain Sex Sample size Behavioural
test or model

Test
duration

Test
frequency

Doses
tested

Combined with Other notes Reference
number

Antrodia cinnamomea

p.o. Chronic (16 d) n/a Mouse Kunming Both n = 24 per group
Control
AC (Low, Medium,
High)

Weight-loaded FST n/a Once 0.1 g/kg
0.3 g/kg**
0.9 g/kg**

n/a Mycelium
Does not focus on

depression nor use valid
screen

Liu et al. (2017b)

Mushrooms (General)

i.p. Acute (60 min) n/a Mouse ICR Male n = 10 per group
Er, ErF, ErS, ErN
(Low, High)
ErN (Very Low,
Low, Medium,
High)
Fluoxetine
Er (Low) +
Fluoxetine
Er (Low) +
Tianeptine
Er (Low) +
Reboxetine

FST Last 4 min of
6 min

Once All derivatives:
5 mg/kg – Er*, ErF*,

ErS*, ErN**
20 mg/kg – Er*,
ErF*, ErS*, ErN**

ErN:
0.1 mg/kg*
0.5 mg/kg
1 mg/kg*
5 mg/kg**

For ErN (0.5 mg/
kg):

ErN + Fluoxetine (5
m/g/kg)

ErN + Tianeptine
(15 mg/kg)**

ErN + Reboxetine
(2.5 mg/kg)**

Fluoxetine
Tianeptine
Reboxetine

Ergosterol and derivatives Lin et al. (2017)

i.g. Subchronic (1 d)
Injected 3 times (23.5
h, 5 h, and 1 h prior to

test)

n/a Rat Long
Evans

Male n = 10 per group
Control
Psilocybin
Baeocystin
Norbaeocystin
Aeruginascin
Fluoxetine

FST 5 min Once Psilocybin*
Baeocystin

Norbaeocystin*
Aeruginascin
(all 1 mg/kg)

n/a Baeocystin,
norbaeocystin,

aeruginascin: tryptamine
alkaloids and analogs of

psilocybin
Preprint; not peer-

reviewed

Rakoczy et al.
(2023)

s.c. Subchronic (3 d) n/a Mouse ICR Male n = 10 per group
Control
CORT Model
CORT + p-CA

CORT 23 d Daily 20 mg/kg n/a P-Coumaric acid (p-CA) Yu et al. (2022)

i.p. SPT 24 h Once CORT Model***
75 mg/kg###

FST Last 4 min of
6 min

CORT Model*
75 mg/kg#

*p < 0.05, **p < 0.01, ***p <0.001, ****p < 0.0001 compared to control.
#p < 0.05, ##p < 0.01, ###p < 0.001, ####p < 0.0001 compared to model/vehicle.

Acute (< 1 d), Subchronic (1–7 d), Chronic (> 7 d).

Abbreviations: FST = forced swim test; TST = tail suspension test; OVX = ovariectomy; UCMS = unpredictable chronic mild stress; CORT = corticosterone; SPT = sucrose preference test; CRS = chronic restraint stress; CSDS = chronic social defeat stress; PSD = post-

stroke depression; MS = maternal separation; LPS = lipopolysaccharide; MCAO = middle cerebral artery occlusion; HE = Hericium erinaceus; Gl-E = Ganoderma lucidum extract; EEGL = ethanol extract of Ganoderma lucidum; GLP = Ganoderma lucidum

polysaccharide; MAK = Ganoderma lucidum mycelia; GLT = Ganoderma lucidum triterpenoid; AEGI = aqueous extract of Ganoderma lucidum; PGL = Polysaccharide-peptide of Ganoderma lucidum; GAA = Ganoderic acid; PCE = Psilocybe cubensis extract; PO =

Pleurotus ostreatus; EtOH = ethanol; MEPS = exopolysaccharide polysaccharide ofMarasmius androsaceus; PCW = Poria cocos water extract; WAM = water extract of Armillaria mellea; PSAM = Protoilludane sesquiterpenoid aromatic esters from Armillaria mellea;

AWE = Agaricus brasiliensis water extract; AC = Antrodia cinnamomea; Er = Ergosterol; IR = intestinal radiation; E2 = 17β-estradiol; Dp = depression; i.p. = intraperitoneal; p.o. = per os (oral); i.g. = intragastric; s.c. = subcutaneous; i.v. = intravenous.
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TABLE 2 Summary of rodent depressionmodels and behavioural tests used to screen for antidepressant effects in different non-mushroom species of fungi.
Subchronic and chronic treatment schedules include daily administration of drug unless otherwise stated.

Cordyceps militaris

p.o. Chronic
(34 d)

Water Rat Sprague-
Dawley

Male n = 6 per group
Control
UCMS Model
UCMS + CW
(Low, Medium,
High)
UCMS +
Fluoxetine

UCMS 34 d Daily n/a n/
a

n/a Lin et al.
(2021b)

SPT 1 h Once UCMS Model***
125 mg/kg###

250 mg/kg#

500 mg/kg#

i.g. Chronic
(42 d)

n/a Mouse ICR Male n = 20 per
group
Control
UCMS Model
UCMS + COR
(Low, High)
UCMS +
Fluoxetine

UCMS 42 d Daily n/a n/
a

Cordycepin (3’-
deoxyadenosine):
component of C.

militaris

Tianzhu et
al. (2014)

SPT 12 h Twice
(Weeks
3 and 6)

Week 3
UCMS Model
20 mg/kg
40 mg/kg
Week 6

UCMS Model**
20 mg/kg##

40 mg/kg##

FST Last
4 min
of

6 min

Once UCMS Model**
20 mg/kg#

40 mg/kg##

TST Twice
(Weeks
3 and 6)

Week 3
UCMS Model
20 mg/kg
40 mg/kg
Week 6

UCMS Model**
20 mg/kg##

40 mg/kg##

i.g. Chronic
(28 d)

Water Mouse Kunming Male n = 12 per
group
Control
PCM (Low,
Medium, High)

Weight-
loaded FST

n/a Once 40 mg/kg*
80 mg/kg*
160 mg/kg*

n/
a

Polysaccharide
Does not focus on
depression nor use

valid screen

Xu (2016)

Cordyceps sinensis

p.o. Subchronic
(5 d)

Supercritical
Fluid and Hot

Water

Mouse C57BL/6 Male n = 17 per
group
Control
Supercritical
(Low, Medium,
High)
Aqueous (Low,
Medium, High)

TST 6 min Once Supercritical
2.5 mL/kg
5 mL/kg*
10 mL/kg*
Aqueous
500 mg/kg
1000 mg/kg
2000 mg/kg

n/
a

n/a Nishizawa
et al.
(2007)

p.o. Chronic
(30 d)

n/a Mouse Swiss
Albino

Both n = 6 per group
Control
Natural C.
sinensis (Low,
Medium, High)
Lab-cultured
Mycelia (Low,
Medium, High)
Fluoxetine

Photoactometer n/a Once NC
100 mg/kg
300 mg/kg*
500 mg/kg*

LCM
100 mg/kg
300 mg/kg*
500 mg/kg*

n/
a

Mycelium Singh et al.
(2014)

Paecilomyces tenuipes

p.o. Chronic
(28 d)

Water Rat Sprague-
Dawley

Male n = 10 per
group
Control
UCMS Model
UCMS +
PTNE (Low,
Medium, High)
UCMS +
Fluoxetine

UCMS 56 d Daily n/a n/
a

Cultured mycelium Liu et al.
(2017a)

FST Last
5 min
of

6 min

Once UCMS Model***
0.04 g/kg##

0.2 g/kg###

1 g/kg###

p.o. Chronic
(21 d)

Alcohol and
Water

Mouse n/a Male n = 10 per
group
Control
Control + AE
(Low, Medium,
High)
Control + WE
(Low, Medium,
High)

UCMS 21 d Daily n/a n/
a

Mutant P. tenuipes
strain M98
Mycelium

Li et al.
(2019)

SPT 1 h Once UCMS
UCMS Model*

Alcohol
0.05 g/kg
0.25 g/kg
2.5 g/kg#

Water

(Continued on following page)
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TABLE 2 (Continued) Summary of rodent depression models and behavioural tests used to screen for antidepressant effects in different non-mushroom
species of fungi. Subchronic and chronic treatment schedules include daily administration of drug unless otherwise stated.

Control +
Fluoxetine
UCMS Model
UCMS + AE
(Low, Medium,
High)
UCMS + WE
(Low, Medium,
High)
UCMS +
Fluoxetine

0.04 g/kg
0.2 g/kg
2 g/kg#

Chronic (15
d), Chronic

(21 d;
UCMS)

FST Last
4 min
of

6 min

Non-UCMS
Alcohol
0.05 g/kg
0.25 g/kg
2.5 g/kg*
Water

0.04 g/kg
0.2 g/kg
2 g/kg**
UCMS

UCMS Model*
Alcohol
0.05 g/kg
0.25 g/kg
2.5 g/kg#

Water
0.04 g/kg#

0.2 g/kg
2 g/kg#

TST Non-UCMS
Alcohol
0.05 g/kg*
0.25 g/kg
2.5 g/kg
Water

0.04 g/kg*
0.2 g/kg
2 g/kg*
UCMS

UCMS Model*
Alcohol
0.05 g/kg
0.25 g/kg
2.5 g/kg
Water

0.04 g/kg
0.2 g/kg#

2 g/kg#

Paecilomyces hepiali

p.o. Chronic
(28 d)

Water Rat Sprague-
Dawley

Male n = 6 per group
Control
UCMS Model
UCMS + PHC
(Low, Medium,
High)
UCMS +
Fluoxetine

UCMS 56 d Daily n/a n/
a

n/a Wang et al.
(2017)

SPT 2 h Once UCMS Model**
0.08 g/kg
0.4 g/kg#

2 g/kg##

FST Last
5 min
of

6 min

UCMS Model*
0.08 g/kg#

0.4 g/kg
2 g/kg##

Ophiocordyceps formosana

i.p. Subchronic
(5 d)

n/a Mouse C57BL/6 Male Control (n = 6)
STZ Model (n
= 8)
STZ + OFE (n
= 8)
STZ +
Rosiglitazone
(n = 8)

STZ 5 d Daily 40 mg/kg n/
a

Uses STZ to induce
diabetes

Models diabetes-
induced depression

Huang et
al. (2016)

p.o. Chronic
(28 d)

TST 6 min Once STZ Model*
25 mg/mL#

Penicillium sp.

i.p. Acute
(30 min)

n/a Mouse ICR Male n = 8 per group
36 groups
Control
2a–2i
3a–3r
4a–4g
Fluoxetine

FST Last
4 min
of

6 min

Once 0.1 mL/20 g*
*28 compounds

showed significant
antidepressant effect
(26.23% – 89.96%

decrease in
immobility time vs.

control)

n/
a

Compounds are
derivatives of P. sp.

Jin et al.
(2019)

(Continued on following page)
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animal models, which could then be reversed by compounds with
antidepressant activity, behavior was predominantly assessed with
three main tests, which included the forced swim test (FST)
(19 studies), tail suspension test (TST) (13 studies) and sucrose
preference test (SPT) (16 studies)—multiple studies used two or
more of these tasks. One study assessed behavior in the splash test as
well as nest building (Mi et al., 2022), while one study measured
locomotor activity and neuromuscular endurance (Singh et al.,
2014). Twenty one of the 50 studies did not use an animal model
of depression per se, and tested antidepressant activity solely with
standalone antidepressant screens. This included 18 studies which
used the FST and 10 that used the TST (seven studies used both);
only two of these 21 studies used rats (Matsuzaki et al., 2013;
Rakoczy et al., 2023).

Antidepressant effects of mushroom extracts
The Kingdom Fungi encompasses many known species which

can be further classified into subgroups by the mechanism with
which they reproduce and disseminate their spores (Boundless,
2024). Fungi subcategories include mushrooms, as well as other
fungi such as moulds and yeasts. Mushrooms from the genus
Psilocybe are of particular interest as many from the genus are
known to contain the psychoactive compounds psilocybin and
psilocin. This includes the species Psilocybe cubensis, which has
been demonstrated to be able to alleviate depression and anxiety
symptoms in clinical trials (Ross et al., 2016; Goodwin et al., 2022).
Other mushrooms species such as H. erinaceus and G. lucidum do
not necessarily contain psychoactive compounds, but are still of
interest in models and studies of depression. Most research
investigating the use of medicinal mushrooms and their extracts
to treat depression has been in preclinical settings, rather than in
clinical trials.

Of the 19 species of mushroom tested for antidepressant-like
activity in the current review, the most common one wasG. lucidum,
in nine studies Table 1. Two studies used UCMS and reported 28-
day treatment with doses of 100–500 mg/kg, p.o. exerted
antidepressant-like effects in the SPT (Cheng, 2023) and both the
SPT and FST (Zhao et al., 2021). A 5 mg/kg, i.p. dose in mice exerted
antidepressant-like effects in the TST and FST after chronic social
defeat stress (Li H. et al., 2021), while effects in mice subjected to the
maternal separation model were reversed with a 21-day treatment
with 40 mg/kg, i.p. of extract (Mi et al., 2022); 100 mg/kg, p.o. also

reversed immobility in the FST in a binge-alcohol model
(Nascimento et al., 2020). Antidepressant screens found positive
effects with chronic doses of 100–1,000 mg/kg, p.o. in the FST and
TST (Matsuzaki et al., 2013; Socala et al., 2015; Singh et al., 2021;
Ezurike et al., 2023). Significant antidepressant-like effects were
observed with the UCMS model with Ganoderma sp. extracts (21-
day, 20–30 mg/kg, i.v.) (Zhang L. et al., 2021); in this study, the
authors did not specify with species of Ganoderma the active
compound ganoderic acid-a was extracted from.

Hericium erinaceus was examined in seven studies. Extracts
(25 mg/kg, i.p. and 200–400 mg/kg, p.o.) for 28 days reversed the
effects of chronic restraint stress in the SPT, TST (Chong et al., 2021)
and FST (Chiu et al., 2018). Doses of 12–24 mg (combined with
Chlorella Vulgaris), p.o. for 21 days significantly reversed immobility
in the FST caused by treatment with high dose corticosterone (Chou
et al., 2022). A single oral dose of 200 mg/kg reversed increased
immobility in the FST and TST caused by lipopolysaccharide (Yao
et al., 2015), while 28-day administration at 20–60 mg/kg, p.o.
decreased immobility in the TST and FST (Ryu et al., 2018).

For other mushroom species examined, effects were observed
with the UCMS model with Marasmius androsaceus (28-day,
30–150 mg/kg, p.o.), Poria cocos (35-day, 100–300 mg/kg, p.o.)
(Huang et al., 2020), Armillaria mellea (35-day, 250–1,000 mg/kg,
p.o.) (Lin et al., 2021a), Agaricus brasiliensis (30-day, 3,000 mg/kg,
p.o.) (Xin et al., 2022) and Xylaria sp. (28-day, 500–2000 mg/kg, i.g.)
(Tan et al., 2016). Other animal models included antidepressant-like
effects in a model of menopausal depression (Pleurotus eryngii, 79-
day, 500 mg/kg, p.o.) (Minami et al., 2013), chronic restraint stress
(Pleurotus citrinopileatus, 14-day, 1,200 mg/kg, in food) (Nakamichi
et al., 2016) (M. androsaceus, 14-day, i.g.) (Zhao et al., 2023) and
high-dose corticosterone (P-coumaric acid–compound found in
some mushrooms, 3-day, 75 mg/kg, i.p.) (Yu et al., 2022).

As an antidepressant screen, studies using the standalone FST
and TST reported significant antidepressant-like effects with
Ganoderma applanatum, Ganoderma philippii, and Ganoderma
brownii (single dose, 100–400 mg/kg, p.o.) (Singh et al., 2021),
Grifola frondosa (1/5-days, in a 1:1-1:4 ratio of Griflola frondosa
powder to rat chow ratio) while Pleurotus ostreatus had no effect in
the same study (Bao et al., 2017), P. cubensis (single dose.
1,000 mg/kg, p.o. (Hernandez-Leon et al., 2024), and single dose
10–40 mg/kg, i.p., combined with ketamine) (Mahmoudi et al.,
2018), P. eryngii (single dose, 20 mg/kg, i.p.) (Park et al., 2021),

TABLE 2 (Continued) Summary of rodent depression models and behavioural tests used to screen for antidepressant effects in different non-mushroom
species of fungi. Subchronic and chronic treatment schedules include daily administration of drug unless otherwise stated.

Beauveria sp.

i.g. Chronic
(21 d)

n/a Mouse Kunming Male n = 10 per
group
Control
UCMS Model
UCMS + BCEF
(Low, Medium,
High)
UCMS +
Moclobemide

UCMS 21 d Daily n/a n/
a

BCEF0083:
bioactive compound

Zhou et al.
(2005)

SPT 24 h Once UCMS Model**
25 mg/kg##

50 mg/kg##

100 mg/kg##

*p < 0.05, **p < 0.01, ***p <0.001, ****p < 0.0001 compared to control
#p < 0.05, ##p < 0.01, ###p < 0.001, ####p < 0.0001 compared to model/vehicle

Acute (< 1 d), Subchronic (1–7 d), Chronic (> 7 d)

Abbreviations: FST = forced swim test; TST, tail suspension test; UCMS, unpredictable chronic mild stress; SPT, sucrose preference test; STZ, streptozotocin(-induced diabetes); CW, Cordyceps

militaris water extract; COR, Cordycepin; PCM = polysaccharide of Cordyceps militaris; PTNE = Paecilomyces tenuipes N45 aqueous extract; AE, alcohol extract; WE, water extract; PHC,

Paecilomyces hepiali extract; OFE, Ophiocordyceps formosana extract; BCEF = bioactive compound from entomogenous fungi; i.p. = intraperitoneal; p.o. = per os (oral); i.g. = intragastric.
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M. androsaceus (7-day, 50–250 mg/kg, p.o.) (Song et al., 2016; Song
et al., 2020), Lentinula edodes (single dose 10 ml/kg p.o., [30% water
soluble chitosan, 30% Allium sativum extract, 30% L. edodes extract,
0.5% Dioscorea Batatas extract, 0.5% bamboo salt extract]) (Koo
et al., 2008), A. mellea (single dose, 5–20 mg/kg, i.p.) (Zhang T. et al.,
2021), as well as ergosterol and derivatives (single dose,
0.1–20 mg/kg, i.p.) (Lin et al., 2017), and the mushroom extracts
psilocybin and norbaeocystin (three doses over 24 h, 1 mg/kg, i.g.)
(Rakoczy et al., 2023). No antidepressant effect was observed for
Collybolide (a fungal metabolite; 2 mg/kg, i.p.) extract (Gupta
et al., 2016).

Antidepressant effects of fungus extracts
For the seven species of fungus that do not produce

mushrooms, antidepressant activity was examined using the
UCMS model in six studies Table 2. Antidepressant-like effects
on the SPT and/or FST were observed with Cordyceps militaris (34-
day, 125–500 mg/kg, p.o.) (Lin et al., 2021b) and (42-day,
20–40 mg/kg, i.g.) (Tianzhu et al., 2014), Paecilomyces tenuipes
(28-day, 40–1,000 mg/kg, p.o.) (Liu C. et al., 2017) and (21-day,
40–2,500 mg/kg, p.o.) (Li et al., 2019), Paecilomyces hepiali (28-
day, 80–2000 mg/kg, p.o.) (Wang et al., 2017) and Beauveria
sp. (21-day, 25–100 mg/kg, i.g.) (Zhou et al., 2005). Treatment
with Ophiocordyceps formosana (28-day, 2.5 mg, p.o.) reversed
TST deficits in a streptozotocin-induced model of diabetic
depression (Huang et al., 2016). Three studies used standalone
animal antidepressant screens, in which Cordyceps sinensis
decreased immobility in the TST (5-day, 5–10 ml/kg, p.o.)
(Nishizawa et al., 2007) and locomotor activity (30-day,
300–500 mg/kg, p.o.) (Singh et al., 2014), while a wide range of
Penicillium sp. derivatives (single dose, 30 mg/kg, i.p.) were active
in the FST (Jin et al., 2019).

Discussion

In the current analysis, we have summarized the main findings
from a scoping review of the effects of mushroom and fungus
extracts in preclinical tests of antidepressant efficacy. While this
topic covers a broad range of compounds and techniques, several
important themes are evident. Firstly, a large number of different
species exhibit antidepressant-like activity, including 19 species of
mushrooms and seven species of other fungi. For each of these,
there can be multiple derivatives with their own antidepressant-
like effects; for example, one study with Penicillium sp. identified
28 individual compounds with antidepressant-like effects in the
FST (Jin et al., 2019), including some with more potent effects than
the positive control fluoxetine. Thus, it appears that there is
significant potential for novel compounds with antidepressant
activity within these organisms. While this includes mushrooms
with extracts that have traditionally been associated with
psychoactive properties, such as P. cubensis, other novel
compounds were identified with antidepressant-like effects. For
example, P-coumaric acid was found to exhibit antidepressant-like
effects after high dose corticosterone treatment (Yu et al., 2022);
and was previously reported to exert pro-cognitive and anxiolytic
effects in rodents (Scheepens et al., 2014; Kim et al., 2017; Ghaderi
et al., 2022). Several of the species evaluated in this review have

been tested in humans, confirming benefits for clinical depression.
The antidepressant effects of psilocybin and psilocin, which are
present in multiple of the current mushroom species are now well
established (Griffiths et al., 2016; Ross et al., 2016; Davis et al.,
2021; Eisenstein, 2022; Goodwin et al., 2022). In addition, one
study showed that menopausal women experienced a reduction in
depression and anxiety after 4 weeks of Hericium erinaceus intake
(Nagano et al., 2010) while another showed a non-significant trend
of reduced depression in women with fibromyalgia who received
micromilled G. lucidum carpophores for 6 weeks (Pazzi
et al., 2020).

Secondly, viewed as a whole, there are a number of both
strengths and limitations within this literature. A positive is that
the majority of studies administered compounds orally. While for
many, use of oral gavage on a daily basis is technically more
challenging than i.p. or s.c. drug administration in rodents
(Turner et al., 2011), it strongly increases the translational
validity of the studies, as human trials will be likely to use the
same route of administration and be affected by similar
pharmacokinetic processes, such as first-pass metabolism and low
bioavailability (Bicker et al., 2020). It is also promising that
antidepressant-like effects were observed across a wide duration
of treatments with psychedelic and non-psychedelic-containing
mushrooms and other fungi. Psychedelic compounds generally
induce rapid drug tolerance upon repeated administration
(Baumeister et al., 2014; Huang et al., 2022), where 5-HT2A
receptor desensitization and/or downregulation leads to
functional tolerance that can last several days (Buchborn et al.,
2015; de la Fuente Revenga et al., 2022). However, observations of
antidepressant-like effects weeks after treatment indicate that
therapeutic effects may be sustained with these compounds
(Aleksandrova and Phillips, 2021; Kelmendi et al., 2022). Various
psychedelics have been reported to enhance neuroplasticity
(synapto- and dendritogenesis) in frontocorticolimbic circuitry
and increase functional connectivity in the brain, presumably
reversing structural and functional deficits in depression
(Aleksandrova and Phillips, 2021; Kelmendi et al., 2022). These
psychedelic-induced structural and functional changes have been
shown to last for weeks to months in animal models and/or humans
and are thought to underlie the sustained therapeutic efficacy of
these compounds (Aleksandrova and Phillips, 2021; Kelmendi
et al., 2022).

While not necessarily a weakness, an extremely wide range of
doses of extracts were tested in the current studies. From Tables 1, 2,
these range from 1 mg/kg (Li H. et al., 2021; Rakoczy et al., 2023) to
3,000 mg/kg (Xin et al., 2022). Part of this reflects the effects of
different routes of administration. Most of the extracts were
administered orally, which is associated with a need for higher
dosing, and therefore many of these studies included doses in the
hundreds of milligrams per kilogram. But this wide range of dosing
also represents the likelihood that many of the extracts were in
early stage development, where the active compounds are
unknown, and so whole product, heterogeneous extracts are
used where the efficacy of active compounds may be modified
through both pharmacodynamic (e.g., receptor antagonism) and
pharmacokinetic (e.g., absorption) processes by many inactive
compounds. Thus, such studies are early-stage screens as part
of an iterative process (Reis et al., 2017), and in the case of positive
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effects in the antidepressant screen, this will lead to refinement of
extracts by further chemical analysis and result in greater potency,
with a lower dose needed.

Multiple different animal models of depression and antidepressant
screens were used to test for antidepressant-like effects. Although there
is no universally accepted definition, animal models of depression are
typically more complex and chronic than antidepressant screens, and
are used to emulate some feature(s) of depression, such as its symptoms
(face validity) or underlying biology (construct validity) (Geyer et al.,
1995; Willner, 1984; Belzung and Lemoine, 2011; van den Berg, 2022).
By contrast, antidepressant screens such as the TST and FST are acute
and were originally designed to identify novel antidepressant
compounds (predictive validity) without regard for similarity to the
human condition (Commons et al., 2017). The most commonly used
animal model of depression in the present studies was the UCMS
paradigm, which is based on the development of anhedonia following
exposure to chronic, variable stressors (Willner, 2017;Nollet, 2021). The
model has strong theoretical appeal, based on the chronic onset of the
antidepressant response, and performs well on key measures of validity
(Willner, 1997). Nevertheless, the model has been criticized on both
theoretical and practical grounds (Forbes et al., 1996; Barr and Phillips,
1998; Planchez et al., 2019; Markov and Novosadova, 2022), although a
recentmeta-analysis supported the utility of themodel when specifically
measuring anhedonia (Antoniuk et al., 2019). Thus, greater confidence
should be placed in those studies with mushroom and fungus extracts
that measured anhedonia (such as with the SPT) than those that did
not. Alternate models of depression were also conducted, such as
chronic social defeat stress (Li H. et al., 2021) and maternal
separation (Mi et al., 2022), but typically only in a single study;
given the importance of reproducibility within this field (Petković
and Chaudhury, 2022), the literature will benefit from similar
findings from alternate groups, or reproduction by the same groups
themselves. Additionally, there are a number of other well-established
and commonly used animalmodels of depression that should be used to
assess antidepressant activity with these extracts, including surgical,
pharmacological and genetic models (Barr and Phillips, 2002; Song and
Leonard, 2005; Barr et al., 2011; Overstreet, 2012; Overstreet and
Wegener, 2013; Vollmayr and Gass, 2013; Hendriksen et al., 2015;
Czéh et al., 2016; Aleksandrova et al., 2019).

Slightly under half of the studies (22) utilized antidepressant
screens such as the FST and TST, rather than models of
depression. In most cases, these studies were methodologically
sound, and used the appropriate controls, such as concurrent
testing for locomotor activity and positive drug controls
(Bogdanova et al., 2013; Yankelevitch-Yahav et al., 2015).
However, several studies utilized variants of the FST, such as
the “weight-loaded” FST (Xu, 2016; Liu Y. et al., 2017), whose
validity is less well determined, while one study ascribed
antidepressant-like effects based on changes in locomotor
activity (Singh et al., 2014), which is a behavior with low
specificity for depression. An additional concern was the small
proportion of female animals tested, given that major depression
is twice as common in women as in men: this issue is prevalent in
the field of animal models of neuropsychiatric disorders as a
whole (Kokras and Dalla, 2014), but future studies in this area

should consider including female animals (Gobinath et al., 2018).
Overall, however, the present review suggests that there is
significant potential for novel antidepressant drug
development with mushroom and fungus extracts provided
that models and screens are conducted with high integrity.
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Glossary

FST forced swim test

TST tail suspension test

OVX ovariectomy

UCMS unpredictable chronic mild stress

CORT corticosterone

SPT sucrose preference test

CRS chronic restraint stress

CSDS chronic social defeat stress

STZ streptozotocin (-induced diabetes)

PSD post-stroke depression

MS maternal separation

LPS lipopolysaccharide

MCAO middle cerebral artery occlusion

HE Hericium erinaceus

Gl-E Ganoderma lucidum extract

EEGL ethanol extract of Ganoderma lucidum

GLP Ganoderma lucidum polysaccharide

MAK Ganoderma lucidum mycelia

GLT Ganoderma lucidum triterpenoid

AEGI aqueous extract of Ganoderma lucidum

PGL Polysaccharide-peptide of Ganoderma lucidum

GAA Ganoderic acid

PCE Psilocybe cubensis extract

PO Pleurotus ostreatus

EtOH ethanol

MEPS exopolysaccharide polysaccharide of Marasmius androsaceus

PCW Poria cocos water extract

WAM water extract of Armillaria mellea

PSAM Protoilludane sesquiterpenoid aromatic esters from Armillaria mellea

AWE Agaricus brasiliensis water extract

AC Antrodia cinnamomea

Er Ergosterol

CW Cordyceps militaris water extract

COR Cordycepin

PCM polysaccharide of Cordyceps militaris

PTNE Paecilomyces tenuipes N45 aqueous extract

AE alcohol extract

WE water extract

PHC Paecilomyces hepiali extract

OFE Ophiocordyceps formosana extract

BCEF bioactive compound from entomogenous fungi

IR intestinal radiation

E2 17β-estradiol

Dp depression

i.p. intraperitoneal

p.o. per os (oral)

i.g. intragastric

s.c. subcutaneous

i.v. intravenous
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Microstimulation reveals
anesthetic state-dependent
effective connectivity of neurons
in cerebral cortex
Anthony G Hudetz*

Department of Anesthesiology, Center for Consciousness Science, University of Michigan, Ann Arbor,
MI, United States

Introduction: Complex neuronal interactions underlie cortical information

processing that can be compromised in altered states of consciousness.

Here intracortical microstimulation was applied to investigate anesthetic state-

dependent effective connectivity of neurons in rat visual cortex in vivo.

Methods: Extracellular activity was recorded at 32 sites in layers 5/6 while

stimulating with charge-balanced discrete pulses at each electrode in random

order. The same stimulation pattern was applied at three levels of anesthesia

with desflurane and in wakefulness. Spikes were sorted and classified by

their waveform features as putative excitatory and inhibitory neurons. Network

motifs were identified in graphs of effective connectivity constructed from

monosynaptic cross-correlograms.

Results: Microstimulation caused early (<10 ms) increase followed by prolonged

(11–100 ms) decrease in spiking of all neurons throughout the electrode array.

The early response of excitatory but not inhibitory neurons decayed rapidly

with distance from the stimulation site over 1 mm. Effective connectivity of

neurons with significant stimulus response was dense in wakefulness and sparse

under anesthesia. The number of network motifs, especially those of higher

order, increased rapidly as the anesthesia was withdrawn indicating a substantial

increase in network connectivity as the animals woke up.

Conclusion: The results illuminate the impact of anesthesia on functional

integrity of local cortical circuits affecting the state of consciousness.

KEYWORDS

microstimulation, cortex, network, connectivity, spike, anesthesia, consciousness

Introduction

Complex neuronal interactions underlie cortical information processing from which
cognitive functions and consciousness emerge. Anesthetic agents are unique tools to
alter neuronal behavior with the goal to better understand the neurobiological basis of
normal and altered states of consciousness. Most prior work examined changes in neuronal
connectivity through recordings of spontaneous ongoing activity or sensory stimulus-
evoked activity during different wakeful and anesthetized states (Hudetz et al., 2009;
Andrada et al., 2012; Vizuete et al., 2012; Aasebo et al., 2017; Lee et al., 2021; Bharioke
et al., 2022; Margalit et al., 2022; Aggarwal et al., 2023). However, recent studies suggest that
further insight into the functional interaction of neurons may be gained through exogenous
perturbation of single neurons or local neuronal populations.
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Former studies proposed to employ intracortical
microstimulation to probe the structure and function of intact
neuronal circuits (Clark et al., 2011; Kwan and Dan, 2012;
Kumar et al., 2013). This approach can help reveal the causal
or “effective” connectivity of neurons (Aertsen et al., 1989) that
is not directly discoverable from the recording of undisturbed,
spontaneous activity alone (Clark et al., 2011; Kumar et al.,
2013; Sadeh and Clopath, 2020). Microstimulation also helps
mitigate the confounding effect of background activity of other
neurons, in analogy with what is achieved by evoked potential
averaging (Cheney et al., 2013). The effect of anatomically precise
perturbation by microstimulation can propagate throughout
the neuron network, generating multiple extra spikes that last
for hundreds of ms (London et al., 2010; Kwan and Dan, 2012;
Emiliani et al., 2015; Bernardi et al., 2021). Such spike sequences
formed by forward and recurrent interactions may reflect basic
information packets in the neuron network (Luczak et al., 2015).
Anesthetics can also alter the spike sequences (Tanabe et al.,
2023), which could inform the potential mechanism by which
state-dependent cellular changes may impair neuronal information
processing and consciousness (Hudetz et al., 2015; Margalit et al.,
2022; Pazienti et al., 2022).

Intracortical stimulation was recently used to examine the
effects of anesthesia on electroencephalographic connectivity
(Arena et al., 2021) but not the connectivity of discrete neurons
in local cortical circuits. To fill this gap of knowledge, this
work applied intracortical microstimulation to investigate how
anesthesia achieved with the inhalational agent desflurane may
alter stimulus-related spiking activity and effective connectivity
of discrete neurons in rat visual cortex in vivo. By electrically
stimulating neuronal tissue at one of the sites of an intracortical
microelectrode array and measuring the spiking activity of neurons
at all other electrode sites, the effective connectivity of the neuronal
network was estimated. We hypothesized that the anesthetic would
disrupt effective connectivity of the neurons in a dose-dependent
manner, implying a gradual disruption of information processing.
We also examined how the anesthetic may influence the stimulus
response of putative excitatory vs. inhibitory neurons. Most
inhalational anesthetics suppress spontaneous neuronal activity
by facilitating inhibitory synaptic transmission and suppressing
excitatory synaptic transmission (Franks, 2008), but the state-
dependent effects of intracortical microstimulation on excitatory
vs. inhibitory neuron firing are unclear. We anticipated that the
effects of anesthesia on microstimulation-induced neuron firing
will also be cell type dependent. Overall, the study aimed to
gain insight into how anesthesia impacts the functional integrity
of cortical neuronal connectivity relevant for the loss or return
of consciousness.

Materials and methods

Surgery and experimental protocol

The study was approved by the Institutional Animal Care and
Use Committee in accordance with the Guide for the Care and
Use of Laboratory Animals of the Governing Board of the National

Research Council (National Academies of Sciences, Engineering,
and Medicine, 2011). General procedures followed those described
before (Lee et al., 2020) but using a different probe design. Briefly,
nine adult male and female rats were chronically implanted with
microelectrode arrays (Microprobes, Gaithersburg, MD, USA) into
the right primary visual cortex (V1) for extracellular recording
and stimulation. The probes consisted of 32 platinum/iridium
(70%/30%) electrodes of 75 µm diameter and 2 mm length.
They had approximately 100 kOhm impedance. The electrodes
were arranged in a 6 × 6 square matrix format, omitting the
corner locations. The electrode spacing was 250 µm in both
directions. The stereotaxic target coordinates of the center of
the array at the electrode tips were −6.75 mm anteroposterior,
3.60 mm mediolateral, and 1.50 mm deep from Bregma. The
depth was chosen to target infragranular cortex (layers 5/6); this
was not verified with histological analysis in this study. One
corner of the electrode array was occupied by the reference
electrode consisting of the same Pt/Ir composition with 10 kOhm
impedance. An additional low-impedance electrode placed in the
opposite corner of the array or an external bare wire tied to
a stainless-steel screw in the cranium over the left cerebellum
served as ground.

Several days after recovery the animals were placed
unrestrained in a sealed, dark anesthesia chamber for testing. The
experiment consisted of stepwise decrease of inhaled concentration
of desflurane at 6, 4, 2.5 and 0% mixed to 30% oxygen-enriched
air. Desflurane concentrations were chosen to cover a suitable
range from light sedation to deep anesthesia. Based on our former
experiments (Imas et al., 2005) with testing the righting reflex–a
putative index of consciousness in rodents (Franks, 2008), 2.5%
corresponds to conscious sedation, 6% unconsciousness and 4%
is near the transition point. Anesthetic depth was not tested in
the present experiments. Each anesthetic concentration was held
for 60 min including an equilibration time of 15 min before
commencing microstimulation. A typical experiment lasted for 4 h.

Stimulation parameters

Monopolar stimuli with respect to ground were delivered to
each electrode site one by one in random order at 0.5 s intervals
(2 Hz). The stimulation frequency was chosen to maximize the
number of stimuli delivered while allowing population spike
activity return to the prestimulus baseline. The same stimulation
sequence was repeated 80 times, equivalent to a total of 2,560
stimuli delivered in each condition. Stimulation pulses were charge-
balanced, biphasic waveforms (Merrill et al., 2005) that were
initially varied with respect to cathodic-anodic temporal order
and asymmetry of duration and amplitude. Preliminary tests in 4
animals with 5, 10, 20, and 40 µA stimulation currents showed
that maximum response was afforded by 40 µA in agreement with
other studies (Voigt and Kral, 2019; Sombeck et al., 2022; Yun et al.,
2023). In all subsequent experiments a maximum stimulus current
of 40 µA was used with 5:1 and 1:5 amplitude/phase duration
ratios to maximize the number of similar trials within the same
experimental time frame. The corresponding amplitudes and phase
durations were 40 µA for 60 µs and 8 µA for 300 µs separated by
0 µA for 60 µs.
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Recording system and data analysis

Extracellular potentials were recorded at all electrode sites
except at the one being stimulated using the data acquisition
system, Scout Processor and Nano2+Stim front end (Ripple Neuro,
Salt Lake City, UT, USA), digitized at 30 kHz and band-pass
filtered at 300–7,500 Hz for spike detection. Spike rasters and
local field potential (LFP) traces in two conditions before and
during microstimulation are shown in Figures 1A, B in one
experiment as an example. The stimulus artifact was removed by
template subtraction (Sombeck et al., 2022). As shown in Figure 1C,
significant stimulus artifact at the non-stimulated electrodes was
limited to 1 ms duration (Figure 1C). The amplitude of the
subsequent slow potential was less than 1 mV and inconsequential
for spike detection and classification following band-pass filtering.
Electromyographic (EMG) artifacts due to motion were eliminated

by rejecting data from all channels within ± 1 s of any signal
exceeding 6 standard deviations of the mean. A total of 160 spiking
neurons were recorded in 9 rats. Unit spikes were extracted and
sorted using the software Spyking Circus (Yger et al., 2018). The
number of recorded neurons in each condition in each animal is
provided in Table 1. Neurons were classified off-line into putative
excitatory or inhibitory type based on the half peak-width and
trough-to-peak time of their spike waveform as illustrated in
Figures 1D–F as done before (Lee et al., 2020).

Network analysis

Stimulus-related network connectivity was analyzed in
two different ways. First, an effective connectivity map was
constructed from all pairs of stimulus-neuron sites from neurons

FIGURE 1

Classification of units and monosynaptic connectivity. (A) Example of raw spike trains (unclassified) and local field potentials (LFP) from four neurons
in wakefulness (0%) and in desflurane anesthesia (6%). (B) Data from the same experiment during microstimulation. LFP channels were chosen to
include stimulation events within the 2.5-second time window as shown. The amplitude scale of the LFP was adjusted to fit the stimulus artifact into
range. (C) Stimulus artifacts at a selected electrode site. Top: 80 stimulus traces superimposed; Bottom: ± one standard deviation of signals around
the mean (gray zone). (D) Features of spike waveform used for unit classification. (E) Examples of regular spiking excitatory neuron (top) and fast
spiking inhibitory neuron (bottom). Several spike waveforms were aligned and superimposed. (F) Trough-to-peak time (b) and half amplitude width
of the negative peak (c) provided separation of units into putative excitatory and inhibitory neurons with typical spike shapes. (G) Cross correlograms
of neuron-pairs that indicate excitatory (left) and inhibitory (right) monosynaptic connections as an example. Horizontal lines of “+” symbols indicate
high and low global confidence intervals obtained from spike-jittered average.

Frontiers in Neuroscience 03 frontiersin.org134

https://doi.org/10.3389/fnins.2024.1387098
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-18-1387098 July 4, 2024 Time: 12:23 # 4

Hudetz 10.3389/fnins.2024.1387098

with a significant change in spike rate within 1–4 ms after
stimulation. Spike counts from 20 trials at each stimulus site were
averaged. Significant change was defined by a spike rate increase
(or decrease) exceeding ± 95% confidence interval of the 200 ms
pre-stimulus baseline. For each stimulation site, neurons with
significantly increased firing rate were marked by a vector from the
respective stimulation site. Pooling all vectors from all stimulation
sites were then compiled in a directed graph. The resulting graph
depicted the influence of microstimulation on all recorded neurons
as a binary directed network.

Second, putative monosynaptic connections were determined
from the short time lag spike cross-correlograms (CCGs) from
spontaneous (pre-stimulus) and stimulation-induced activity as
before (Vizuete et al., 2012; Kobayashi et al., 2019). Briefly, for
each pair of neurons, CCGs were calculated at 1 ms time bins
over an interval of ± 50 ms. To avoid false detection due to
background fluctuations, the CCGs were also calculated from
surrogate spike trains prepared by “jittering” the spike times
within ± 5 ms, repeated 1,000 times to yield 1,000 surrogate
data sets. The 99% confidence interval of the number of CCG
counts in each time bin were obtained and their maximum and
minimum were used as global thresholds. Putative excitatory or
inhibitory monosynaptic connections between a pair of neurons
recorded at different electrode sites were inferred by the presence
of CCG peak exceeding (excitatory) or trough descending below
(inhibitory) the respective global threshold within 1–4 ms time
lag (Figure 1G). Each monosynaptic connection was represented
by a vector between the respective electrode sites. Concatenation
of such vectors were interpreted as putative polysynaptic paths.
All such vectors were combined yielding a graph with its nodes
being the electrode sites. The low-level structure of the graphs was
analyzed by finding its 1st, 2nd and 3rd order connectivity motifs
(Recanatesi et al., 2019). Motifs of each order were counted in each
condition, pre- and post-stimulus. Motifs of the 2nd and 3rd order
can have different variants, called unique motifs. Unique motifs
are those different from all other motifs. Their number reflects
motif diversity.

Statistics

Within-group effects of microstimulation and anesthetic level
were tested with ANOVA followed by Tukey Honestly Significant
Difference post-hoc tests. All results are presented as means
and standard deviation. Some of the analyses were limited
to experiments that yielded the most neurons/spikes. Some
of the analyses were limited to experiments that yielded the
most neurons/spikes.

Results

Simultaneous extracellular recording and electrical stimulation
was performed in nine rats using 32-site microelectrode arrays in
primary visual cortex at three levels of anesthesia and wakefulness.
On average active neurons were found at 63% of the electrode sites
which progressively dropped to 40% at 6% desflurane (p < 0.0001,
ANOVA). Figure 1A presents an example of the firing pattern of

neurons and local field potentials recorded at the same electrodes
in wakefulness and anesthesia at baseline (without stimulation).
As shown, the regular firing pattern in wakefulness converts to
an intermittent pattern associated with slow wave activity in
anesthesia.

Microstimulation was applied to each electrode site was then
stimulated one by one in random order at 2 Hz repetition rate using
charge-balanced biphasic pulses. We compared the effect of stimuli
with different phase duration, amplitude, and temporal order on
the firing response of neurons. In all stimuli, the maximum current
was 40 µA with 60 µs pulse width and balanced by another
phase with opposite polarity as illustrated in Figure 2. Putative
excitatory and inhibitory neurons were not distinguished in this
analysis. Cathodic-first charge-balanced stimuli activated more
neurons than anodic-first charge-balanced stimuli, although this
difference was small. All subsequent experiments were performed
with asymmetric biphasic pulses with 40 µA maximum intensity
and 60 µs pulse width, balanced with 8 µA intensity and 300 µs
pulse width.

Figure 3 shows the time course of spike responses of putative
excitatory and inhibitory neurons. Neurons were classified by
their spike waveform features. Microstimulation generally caused

TABLE 1 Number of recorded neurons.

Desflurane

Rat 0% 2.5% 4% 6%

1 16 (2) 15 (0) 16 (0) 13 (0)

2 23 (6) 21 (7) 19 (4) 11 (0)

3 22 (3) 24 (3) 15 (2) 21 (2)

4 18 (1) 17 (1) 16 (2) 7 (1)

5 22 (2) 22 (1) 22 (2) 17 (2)

6 17 (2) 15 (1) 14 (2) 2 (0)

7 25 (2) 21 (4) 17 (3) 21 (3)

8 21 (4) 22 (4) 21 (4) 15 (2)

9 18 (2) 16 (1) 17 (1) 9 (1)

Number of inhibitory neurons in parenthesis.

FIGURE 2

Effect of stimulus waveform on the number of neurons showing
significant change in firing rate. Maximum stimulus current was
40 µA with 60 µs pulse width and charge balanced. Responses
elicited from various stimulation sites were pooled. All data were
obtained in wakefulness. Data are from 4 rats. Mean ± SD,
*p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 3

Effect of microstimulation on cortical spiking activity in four
conditions. (A) Raster plots of putative inhibitory (blue) and
excitatory (red) neuron firing. Inhaled concentration of the
anesthetic desflurane is indicated on top. Each line corresponds to
a neuron responding to a different trial, i.e., to stimulation at a
different electrode site. Neurons with at least one spike
within ± 100 ms of stimulation only were included. Neurons of both
types were sorted vertically by their firing rate. Stimulus is at time 0.
(B) Peristimulus histogram of spike counts. Spike data are absent in
the 0–1 ms time bin due to stimulus artifact. Stimuli were
charge-balanced, biphasic, asymmetric, cathodic-leading, pulses
with 40 µA maximum intensity delivered at 2 Hz. Data are from 9
rats.

an early increase, within 10 ms, followed by a prolonged (11–
100 ms) decrease in neuron firing. Both excitatory and inhibitory
neurons showed this behavior. Neurons responding to stimulation
were scattered throughout the electrode array. Despite the smaller
number of inhibitory neurons recorded, their total spike count
was higher due to their generally higher average spike rate. The
maximum spike rates attained post stimulus at 6, 4, 2, and
0% desflurane were 2.3, 4.0, 4.5, and 6.5 spikes/s, respectively,
for excitatory neurons and 10.0, 15.9, 18.4, and 25.0 spikes/s,
respectively, for inhibitory neurons.

Figure 4A compares the change in spike rate of each neuron
as a function of distance from the stimulation site separately
for the early (1–10 ms) and late (11–100 ms) response. The
magnitude of spike rate increase decayed with the neuron’s
distance from the stimulation site. In contrast, the magnitude of
spike rate decrease was essentially independent of the distance
from the stimulation site. This pattern was essentially conserved
across all conditions. The number of neurons responding with
a significant increase or decrease in spike rate to stimulation in
the two epochs is illustrated in Figure 4B. The magnitudes of
the early increase and late decrease tended to increase slightly
at lighter levels of anesthesia and upon waking although these
effects were not statistically significant. Approximately twice as

FIGURE 4

Change in firing rate as a function of distance from stimulation site
in four conditions and two post-stimulus epochs. (A) Change in
spike rate change of individual neurons. For each neuron, the 32
stimulation channels are arranged left to right in the order of
increasing distance from stimulation site. Neurons are arranged top
down from maximum increase (red) to maximum decrease (blue) of
spike rate during the wakefulness (0%) and the same order is kept
for the other three conditions. Desflurane concentrations are
shown on top. Data are from 9 rats. (B) Fraction of neurons that
produced statistically significant increase (red) or decrease (blue) in
firing rate (1–10ms left, 11–100ms right). More neurons showed
decrease than increase of firing rate with microstimulation
(p < 0.0001, ANOVA), a difference qualitatively conserved across
states. Stimuli were asymmetric, cathodic-leading, biphasic pulses
with 40 µA maximum intensity delivered at 2 Hz.

many neurons decreased than increased their spike rate following
microstimulation (p < 0.0001, ANOVA).

We examined more closely how the early response of excitatory
vs. inhibitory neurons varied as a function their distance from
the stimulation site. This analysis was limited to the first 4 ms
compatible with putative monosynaptic effects. As Figure 5 shows,
the number of excitatory neurons that significantly increased their
firing rate decayed rapidly with distance from the stimulation site.
This dependence was absent for inhibitory neurons suggesting that
they were stimulated in a more distributed manner.

We then examined the spatial pattern of stimulus-induced
(effective) connectivity of neurons. This was done in two different
ways. First, a directed graph was constructed from the vectors
from each stimulation site to all neurons whose firing rate was
either significantly increased or decreased by microstimulation
(Figure 6A). The resulting connectivity map illustrates the overall
influence of microstimulation on the spiking of all recorded
neurons. Comparing different conditions, effective connectivity
was sparse under anesthesia, suggesting reduced overall neuronal
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FIGURE 5

Effect of distance from stimulation site on excitatory and inhibitory
neuron spiking within 1–4 ms post-stimulus interval in four
conditions. The number of neurons whose firing rate exceeded 99%
confidence interval of their prestimulus firing rate are plotted. Trials
from all stimulus sites were combined. Data are from 4 rats.
Desflurane concentrations is indicated on top. Stimuli were
charge-balanced, asymmetric, biphasic, cathodic-leading pulses
with 40 µA maximum intensity delivered at 2 Hz. P < 0.0001
(ANOVA and Tukey) for 0% vs. 2.5%, 4% and 6% for inhibitory; N.S.
(ANOVA) for all excitatory neurons.

excitability. The total number of positive effects (neurons with
increasing spike rates) was significantly greater as the anesthetic
was withdrawn. Thus, the effective connectivity map indicated
progressively stronger influence of stimulation at lighter levels of
anesthesia and especially in wakefulness. Moreover, negative effects
(neurons with decreasing spike rates) were almost absent at all
levels of anesthesia. Second, we estimated effective connectivity

from putative pair-wise monosynaptic connections as determined
from spike cross-correlograms both pre- and post-stimulus.
A directed graph was constructed by representing all monosynaptic
connections as vectors between two respective electrode sites
as graph nodes. Monosynaptic connections between neurons at
different electrode sites only were considered (Figure 6B). When
two or more monosynaptic connections occurred in series, their
combination was interpreted as a putative polysynaptic path. As
with the previous method, higher connectivity was evident in light
anesthesia and wakefulness and more in the post-stimulus than
pre-stimulus phase.

To further examine the structure of the effective connectivity
map, we identified low-level functional motifs of the networks.
A motif is a small subset of pairwise connections, representative
of a unit of overall network connectivity. Pairwise connections
are arranged in series or in diverging or converging patterns,
leading to multiple variants of second, third and higher order
motifs (Recanatesi et al., 2019). First order motifs consist of a
single monosynaptic connection; second order motifs contain two
connections; and third order motifs contain three connections.
Second and third order motifs have multiple variants defined by
their connectivity profile. The prevalence of motifs of increasing
order, characterized by their relative frequency, reflects the
complexity of the overall connectivity of the network and its
change with stimulation and anesthetic condition. Figure 6C shows
that microstimulation increased the total number of detected
motifs, thus enhancing monosynaptic and putative polysynaptic
connectivity at all levels of anesthesia although this effect did not
reach significance at 0% desflurane in this comparison (for statistics
see figure). Similar results were obtained for the number of unique

FIGURE 6

Effective connectivity of neurons determined by microsimulation. (A) Connectivity maps in one rat as an example. Arrows point from the site of
stimulation to the site of significantly increased (red) or decreased (blue) spike rate within 1–4 ms post-stimulation (desflurane concentrations
indicated on top). Desflurane concentrations is indicated on top. (B) Putative monosynaptic effective connectivity maps inferred from pairwise spike
cross-correlograms pre-stimulus (spontaneous) and post-stimulus (stimulation). The graphs represent “multi-node” paths composed of pairwise
connections. (C) Effect of anesthesia on the number of connectivity motifs as inferred from pairwise spike cross-correlograms before and after
microstimulation. Examples of motifs of different order are illustrated on top. The counts of 1st, 2nd, and 3rd order motifs were combined. Unique
counts reflect the diversity of distinct motif types. Desflurane concentration is on the horizontal axis. Data are from 4 rats. Mean ± SD, *p < 0.05;
**p < 0.01; ***p < 0.001. Stimuli were charge-balanced, asymmetric, biphasic, cathodic-leading pulses with 40 µA maximum intensity
delivered at 2 Hz.
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FIGURE 7

Change in the number of motifs of orders 1–3 as a function of
experimental condition before and after microstimulation. Motifs
were derived from pairwise spike cross-correlograms. Stimuli were
charge-balanced, asymmetric, biphasic, cathodic-leading pulses
with 40 µA maximum intensity delivered at 2 Hz. ∗p < 0.05 vs. at
6%, #p < 0.05 greater than at next higher desflurane concentration.

motifs, suggesting that the diversity of motif variants also increased
after microstimulation. In addition, both the total number of motifs
and their diversity significantly increased as the anesthetic was
withdrawn and reached maximum in wakefulness (see figure for
statistics). Figure 7 compares the change in the number of motifs
of different orders separately. A progressive increase in the number
of all motifs with decreasing anesthetic concentration was evident
both pre-stimulus and post-stimulus (p < 0.0001, ANOVA), except
in post-stimulus first order motifs. In addition, microstimulation
increased the number of motifs of all orders (p < 0.005, ANOVA)
with the most dramatic effect seen in motif order 3 (for pairwise
statistical comparison see figure).

Discussion

The main goal of this work was to apply intracortical
microstimulation to examine how anesthesia may alter effective
connectivity of neurons in a local cortical circuit. Microstimulation
was chosen as an effective means to modulate local neuronal
activity and its propagation across adjacent and remote recording
sites (Kwan and Dan, 2012; Kumar et al., 2013). Probing local
circuitry by causal perturbation provides additional insight into
neuronal connectivity underlying cortical information processing
over that obtainable by recording spontaneous or physiological
stimulus-related activity (Clark et al., 2011; Kumar et al., 2013;
Cicmil and Krug, 2015; Sadeh and Clopath, 2020). Further, by
investigating the concentration-dependent effect of anesthesia on
intracortical stimulus-related connectivity has a unique potential to
help better understand how neuronal networks function in altered
states across experimentally controlled levels of consciousness
(Arena et al., 2021).

Consistent with prior studies we found that intracortical
microstimulation generally produced a biphasic neuronal response
consisting of an early increase in firing within 10 ms followed by
a transient suppression of 100 ms or so (Butovas and Schwarz,
2003; Sombeck et al., 2022; Yun et al., 2023). This biphasic pattern
was conserved at all levels of anesthesia although the spike rate

increases were lower during anesthesia than in the awake state.
The exact duration of these phases was reported to vary with
stimulus intensity (Yun et al., 2023), although this aspect was not
investigated further here.

Also, as found before (McIntyre and Grill, 2000; Voigt and
Kral, 2019), cathodic-leading charge-balanced stimulus waveforms
were more effective in stimulating neuron firing than the reverse
waveforms, although this difference in our preparation was quite
small. Experimental and computational studies suggest that local
cells are preferentially activated by cathodic-first asymmetrical
charge-balanced biphasic stimulus waveforms, while fibers of
passage is affected more by anodic-phase-first asymmetrical
charge- balanced biphasic stimulus waveforms (Cogan, 2008;
Voigt and Kral, 2019). However, it was also shown that stimulus
polarity and asymmetry influence the probability and localization
of neuron activation in an opposite manner (Stieger et al.,
2022). Also, computational modeling suggests that the initial
mechanism of activation is an antidromic propagation to the
soma following axonal activation (Kumaravelu et al., 2022).
Orthodromic propagation and synaptic transmission could then
mediate the further propagation of activation. However, which
of these mechanisms likely contributed to stimulation-evoked
neuronal firing at the recording sites cannot be determined from
the present data.

We also examined how anesthesia with desflurane modulated
the stimulus response of putative excitatory vs. inhibitory
neurons. Most inhalational anesthetic agents suppress spontaneous
neuronal activity by facilitating inhibitory synaptic transmission
and suppressing excitatory synaptic transmission (Franks, 2008)
through a variety of actions on specific receptors, channels,
and extrasynaptic and mitochondrial energy modulation, the
relative extent of which vary with the particular anesthetic.
In particular, desflurane potentiates GABAA receptor-mediated
inhibition, inhibits NMDA receptor mediated excitation, inhibit
voltage-gated, and to a lesser degree, inward rectifying potassium
channels and kainate receptors (Nishikawa and Harrison, 2003;
Alkire et al., 2008). Despite the inhibitory potentiation observed
in vitro, in the intact cortical circuit in vivo, the strength of
monosynaptic excitatory connections is more suppressed than that
of monosynaptic inhibitory connections (Vizuete et al., 2012).
Although most anesthetics affect the cortical circuits directly
(Hentschke et al., 2005), this is further modulated via subcortical
centers including the brainstem, thalamus, and basal forebrain
(Brown et al., 2010). Due to these complexities, the effect of
intracortical microstimulation on excitatory vs. inhibitory neuron
activity was difficult to predict a priori.

To investigate this question, the early neuron spike responses
were examined in 1–4 ms post-stimulus period which limits
the response to monosynaptic transmission (apart from possible
electrotonic conduction). Transsynaptic responses to single-pulse
cortical electrical stimulation were reported in a comparable time
frame (Sombeck et al., 2022). Under anesthesia very few inhibitory
neurons showed monosynaptic response, whereas excitatory
neurons continued to respond to stimulation. The latter could
be a result of disinhibition due to the suppression of inhibitory
neurons, although this possibility requires further investigation.
As the anesthetic was withdrawn, substantially more inhibitory
neurons responded, suggesting a normalization of the E/I balance.
The spatial distributions of stimulus-responding excitatory and
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inhibitory neurons were also different. Inhibitory neurons had
a relatively wide distribution in wakefulness, consistent with
their excitation by horizontal axonal projections that extend over
1 mm (Kisvarday, 1992). The suppression of their firing rate
under anesthesia could be mediated by their dense connectivity
by electrical coupling (Butovas et al., 2006). This does not
seem to be the case for excitatory neurons, however. Indeed,
the decay of the number of excitatory neurons with distance
from stimulation site could be related to their relatively sparse
connectivity (Overstreet et al., 2013). A similar spatial decay
of connectivity over 1 mm was reported before (Eles et al.,
2021). Alternatively, if the neuron responses to microstimulation
were mediated by electrotonic excitation via field potentials,
this effect would decay exponentially with distance from the
stimulation site.

The main goal of this study was to determine how anesthesia
altered microstimulation-induced effective connectivity of cortical
neurons. The graded reduction in effective connectivity at
increasing depth of anesthesia was consistent with an overall
reduction in neuronal firing rate (Hudetz et al., 2009) impeding
the ongoing neuronal interactions and the propagation of
activity to remote sites. Moreover, the negative effects of
microstimulation (neurons with decreasing spike rates) were
virtually absent in anesthesia suggesting that they were at their
minimum baseline activity. This is consistent with the direct
effect of volatile anesthetics on cortical firing by augmenting
inhibitory neurotransmission (Hentschke et al., 2005). The
directed effective connectivity graphs derived from putative
monosynaptic connections confirmed these findings, revealing
sparser connectivity in anesthesia compared to the dense
connectivity in wakefulness that was further augmented in the
post-stimulus phase.

To gain further insight into network connectivity, we also
analyzed the prevalence of simple network motifs in different
conditions. Such motifs have been considered as building blocks
of complex recurrent networks. The motifs’ statistical prevalence
can determine overall network properties, such as dimensionality,
code compression, computational flexibility, network input-output
response, and memory (Hu et al., 2014; Recanatesi et al., 2019).
In the rat visual cortex, recordings of layer 5 pyramidal neurons
revealed the presence of small, strongly connected network units
that determine overall network connectivity (Song et al., 2005).
Our analysis revealed a sharp difference in the overall number
of motifs between wakefulness and anesthesia consistent with
the rapid collapse of network connectivity. This difference was
most expressed in the number of 3rd order motifs in the pre-
stimulus condition. Although we were not able to identify motifs
of higher than 3rd order due to the limited size of the electrode
array, it could be surmised by extrapolation that higher order
motifs would be even more affected. Because the number of 1st
order motifs (monosynaptic connections) was hardly affected by
the anesthetic (especially post-stimulus), the increase in higher-
order motifs was probably due to network reconfiguration rather
than an overall change in pair-wise connectivity. The fact that
microstimulation did not significantly increase the number of
motifs in the awake condition could mean that they were already
at their near maximum density.

Several limitations of the current study are recognized.
First, due to the sparse sampling of neuronal network, effective

connectivity maps represent a small subset of true neuronal
connectivity. A complete reconstruction of the neuronal network
would theoretically require stimulating all single neurons and their
combinations of the entire neuron network (O’Doherty et al.,
2012; Kumar et al., 2013; Sadeh and Clopath, 2020). Nevertheless,
the observed change in graph density in our sample should
reflect the general trend of the anesthetic effect. Second, neuronal
connectivity as determined here could be in part from synaptic
transmission and in part from electrical fields through a mixture
of antidromic and orthodromic activation (Butovas and Schwarz,
2003). The use of cathodic-leading biphasic stimuli in the present
experiments presumably favored orthodromic activation, although
this could not be verified with extracellular recordings. In addition,
the probability of evoking excitatory responses decayed with
distance rapidly, which could be due to the increasing sparsity
of synaptic terminals reached or the weakening of electrical field
with distance. Although cross-correlograms with short time-lag
likely reflect monosynaptic spike transmission probability between
pairs of neurons, they can be confounded by common inputs with
comparable temporal delay. Thus, the neuron connections derived
here are approximate and both the monosynaptic connections and
their combinations inferred as polysynaptic connections should be
considered putative. Third, extracellular microstimulation affects
not a single cell but an unknown population of cells and passing
axons surrounding the stimulation electrode. These difficulties
could be mitigated by neuronal redundancy, i.e., that many
neighboring neurons often respond to similar stimulus features,
that a relatively small group of cells can drive network activity in
similar fashion (Yassin et al., 2010; Kwan and Dan, 2012; Emiliani
et al., 2015; Bernardi et al., 2021), and that frequently recurring
neuronal firing sequences represent a small fraction of all possible
patterns (Luczak et al., 2007, 2009; Luczak and Maclean, 2012).
Thus, effective connectivity as derived here is best interpreted as
“embeddedness,” i.e., the influence of a local neuronal population
on individual neurons at a distance. In fact, both experiments
and computer simulations suggest that an estimation of neuronal
embeddedness is a valid approach for network discovery (Vlachos
et al., 2012; Kumar et al., 2013). Fourth, motifs are only a metric
of the basic building blocks of the functional connectivity of a
local neuron network. There are several other graph-based metrics;
however, our graphs were relatively small and sparse to apply such
methods to them. The use of larger electrode arrays may allow
such an analysis in the future. Fifth, one could contend that the
observed changes in connectivity may in part be accounted for by
the anesthetic-induced decrease in overall firing rate. However, this
is not thought to be the primary contributing factor of effective
connectivity changes because stimulus-induced neuronal firing is
often significantly elevated during anesthesia, especially at deep
anesthetic levels (Hudetz and Imas, 2007). Sixth, the accuracy of
electrode placement in layers 5/6 of the primary visual cortex was
not histologically verified in this work. However, the exact location
of the electrodes was not critical for the general conclusions of
the study. Our former work supports that stereotaxic implantation
provided sufficient targeting accuracy (Pillay et al., 2014). Finally,
trial-to-trial variability due to ongoing activity limits the accuracy at
which an invariant network can be reconstructed. Nevertheless, it is
believed that the microstimulation-based perturbational approach
augments the reproducibility of the mapped network by transiently
suppressing background activity (Cheney et al., 2013). In the future,
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optical methods that allow more precise control of the number and
type of directly stimulated neurons (Cicmil and Krug, 2015; Cavelli
et al., 2023) including optogenetic stimulation with micro-light
emitting diodes (LEDs) (Buzsaki et al., 2015; Wu et al., 2015; Kim
et al., 2020) could be used. In addition, distinct temporal patterns
of stimulation pulses could also be used to control the affected
neuronal population (Eles et al., 2021) and one could also target the
stimulation to specific cortical layers (Voigt et al., 2017; Urdaneta
et al., 2021).

In summary, the present work demonstrates the anesthetic
modulation of effective connectivity in rat visual cortex as
probed by microstimulation in vivo. The suppression of network
connectivity was associated with the preferential loss of higher
order network motifs. The results are relevant to understanding
the mechanisms of anesthetic-induced impairment of cortical
information processing and by inference, loss of consciousness.
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Psychiatric disorders are categorized on the basis of presence and absence of
diagnostic criteria using classification systems such as the international
classification of diseases (ICD) and the diagnostic and statistical manual for
mental disorders (DSM). The research domain criteria (RDoC) initiative
provides an alternative dimensional framework for conceptualizing mental
disorders. In the present paper, we studied neural and behavioral effects of
central stimulant (CS) medication in adults with attention deficit hyperactivity
disorder (ADHD) and healthy controls using categorical and dimensional
stratifications. AX-Continuous Performance Task (AX-CPT) was utilized for the
later purpose, and participants were classified as “reactive” or “proactive” based
on their baseline proactive behavioral index (PBI). Out of the 65 individuals who
participated (33 healthy controls and 32 patients with ADHD), 53 were included in
the final analysis that consisted of 31 healthy controls and 22 ADHD patients. For
the dimensional stratification, a median split of PBI scores divided participants
into “reactive” and “proactive” groups irrespective of whether they had ADHD or
not. Participants performed AX-CPT in conjunction with functional magnetic
resonance imaging (fMRI) before and after CS medication. We found no
significant within or between group CS effect when participants were
categorically assigned as healthy controls and ADHD patients. For the
dimensional stratification, however, CS selectively increased activation in
frontoparietal cognitive areas and induced a shift towards proactive control
mode in the reactive group, without significantly affecting the proactive
group. In conclusion, the neural and behavioral effects of CS were more
clear-cut when participants were stratified into dimensional groups rather
than diagnostic categories.
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1 Introduction

Psychiatric disorders, as a rule complex syndromes with substantial
heterogeneity, are categorized into distinct diagnostic groups on the
basis of presence and absence of characteristic criteria using
classification systems such as the diagnostic and statistical manual
for mental disorders (DSM) (American Psychiatric Association, 2013)
and the international classification of disease (ICD). The research
domain criteria initiative (RDoC) takes a different approach and
utilizes neurobiologically informed domains of function to provide a
dimensional framework for conceptualizing mental disorders
(Cuthbert, 2022). In clinical settings, DSM/ICD classifications are
used exclusively. However, these classification systems lead to widely
heterogeneous groups within the same diagnostic category and their
utility for research purposes has been questioned (Widiger and Samuel,
2005;Wardenaar and de Jonge, 2013; Borgogna, Owen, andAita, 2023).
In the present study, we compared effects of stimulant medication in
healthy individuals and adults with attention deficit hyperactivity
disorder (ADHD) using categorical (presence and absence of ADHD
diagnosis according to DSM 5) and dimensional (RDoC cognitive
control construct) stratification methods.

ADHD is a neurodevelopmental disorder, with impaired
cognitive control and impulsivity/hyperactivity as core symptoms
(Faraone et al., 2021). Although not part of the diagnostic criteria,
there is also evidence indicating that emotional dysregulation may
be a core impairment in ADHD, making ADHD an even more
heterogeneous syndrome than currently clinically conceptualized
(Retz et al., 2012; Shaw et al., 2014). Central stimulants (CS), which
act by blocking dopamine (DA) and noradrenaline (NA) reuptake,
are the mainstay of pharmacological treatment (Volkow et al., 2001;
Arnsten and Dudley, 2005; Berridge et al., 2006; Faraone and Glatt,
2010), and their effect in alleviating core ADHD symptoms has been
shown to be robust in the clinical setting (Faraone and Glatt, 2010;
Cortese et al., 2018). Roughly 70%–80% of ADHD patients treated
with CS are clinically deemed to be treatment responders (Spencer
et al., 2005). CS is also used by segments of the healthy population
wanting to improve cognitive performance, but the beneficial effects
of CS in normal functioning adults is less clear (Repantis et al., 2010;
Smith and Farah, 2011). Meta-analyses in healthy individuals
showed small but significant effects of methylphenidate (MPH)
on working memory, inhibitory control and processing speed
(Smith and Farah, 2011; Marraccini et al., 2016). A meta-analysis
that compared the effect of three cognitive enhancers in healthy
individuals, MPH, modafinil and dexamphetamine, found that
MPH had the strongest effect of the three, with small
improvements on recall, attention and inhibitory control (Roberts
et al., 2020). A recent study that evaluated the effects of CS in
everyday complex tasks in healthy subjects showed that CS increased
effort but reduced quality of effort, and performance across
participants was reversed by CS such that above average
performers ended up being below average after CS and vice versa
for below average performers (Bowman et al., 2023). Effects of CS
have also been shown to vary with baseline cognitive capacity
(Mattay et al., 2000; Cools et al., 2008; Rostami Kandroodi et al.,
2021) and baseline DA and NA levels (Cools and D’Esposito, 2011).
Thus, not only effects of CS may differ between healthy subjects and
ADHD patients, but they may also differ within the same group on
the bases of baseline behavioral and neurochemical factors.

Cognitive control, also known as top-down control or executive
control is a neuropsychological construct pertaining to the flexible
regulation of goal-directed behaviour and is generally associated
with the functions of lateral prefrontal cortex and posterior parietal
cortex (Miller and Cohen, 2001; Friedman and Robbins, 2022).
Cognitive control subconstructs such as goal selection, updating,
representation, and maintenance can be studied using AX-
Continuous Performance Task (AX-CPT), a paradigm that is
often used to assess cognitive control (Lopez-Garcia et al., 2016).
In AX-CPT, single letters (A, B, X, Y) are displayed on a screen and
participants are instructed to make a target response when presented
with the letter X, but only if it is preceded by the letter A. For all
other letter combinations, participants are instructed to make a non-
target response. To create expectancy, AX trials are generally made
to occur more frequently than AY, BX and BY trials (Barch et al.,
2003). Cognitive control mode during AX-CPT is assessed by the
proactive behavioral index (PBI), where a proactive cognitive
control mode indicates better performance on BX trials than AY
trials, and the opposite being the case for reactive control mode.

In a study that made use of the dual system theory of decision-
making that contrasts quick heuristic mode of decision making with
a slower deliberative mode, Yechiam and Zeif found that MPH
improved performance by selectively enhancing the slower
deliberative mode of decision-making compared to the quicker
heuristic mode (Yechiam and Zeif, 2022). A conceptually
comparable dual mechanism framework (DMC) has been
suggested for cognitive control, contrasting proactive and reactive
control modes (Braver et al., 2009; Braver, 2012). The proactive
control mode has been shown to dominate in healthy adults, while
patients with psychotic (Barch et al., 2003; MacDonald and Carter,
2003) and anxiety disorders (Schmid, Kleiman, and Amodio, 2015)
are more prone to employ a more reactive control mode.

In the present paper, we studied behavioral and neural effects of
CS in healthy controls and individuals with ADHD using two
stratification strategies, (i) categorical stratification on the bases
of presence and absence of ADHD diagnosis according to DSM 5,
and (ii) dimensional stratification on the basis of proactive and
reactive cognitive control mode. We hypothesized that the
behavioral and neural effects of CS in the categorical and
dimensional groups may not always parallel each other, and that
the neurobehavioral homogeneity created by dimensional
stratification using RDoC cognitive control domain might reveal
CS effects masked by heterogeneity in the categorical stratification
using diagnosis classes.

2 Materials and methods

The study was approved by the Swedish Ethical Review
Authority (Dnr 2020-02278; 2020-05590) and written consent
was obtained from all participants in the study.

2.1 Participants and study outline

Thirty-three healthy controls and 32 adults with ADHD were
included in the study that was conducted between December
2020 and December 2023. The ADHD group was a well-
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characterized clinical cohort, who had clinically responded to CS
medication and are recruited from the Neuropsychiatric Outpatient
Clinic at Örebro University Hospital (Rode et al., 2023). Inclusion
criteria for the ADHD cohort were (i) ADHD diagnosis after
extensive neuropsychiatric evaluation by a dedicated team of
psychologists and senior consultants in psychiatry according to
Swedish guidelines, (ii) no ongoing psychosis, bipolar, depressive,
substance use or sever autism spectrum disorder, (iii) no suicidal or
aggressive tendency and (iv) no contraindication for MRI
investigation. Choice of medication and treatment optimization
was carried out by the treating physician and followed Swedish
guidelines for the pharmacological treatment of ADHD
(Läkemedelsverket, 2016). Patients had to have a minimum of
4–6 weeks of stable medication before they could be enrolled in
the study. Clinical response was determined by a score of 1 or 2 using
clinician and patient-rated Clinical Global
Impression–Improvement (CGI-I). The control group was
recruited by advertising at a university campus and hospital area.
Exclusion criteria for the healthy controls were (i) current or
previous psychiatric and neurological ailment including substance
use, (ii) ongoing psychoactive medication use, (iii) narrow-angle
glaucoma, and (iv) incompatibility with magnetic resonance
imaging (MRI). The control group was also assessed for potential
allergic reaction to MPH or any of its ingredients. The CS
medication used by the ADHD patients was either
methylphenidate (MPH) or lisdexamfetamine (LDX) as selected
and dose-optimized by the treating physician.

All participants underwent MRI examinations before and after
CS using the same MRI scanner and protocol settings. The first
session was performed in the absence of CS and the second 1–2 h
after ingestion of CS, which constituted of 30 mg short-acting MPH
for the healthy controls and MPH or LDX for the ADHD group as
selected and dose-optimized by the treating physician. ADHD
patients were instructed to abstain from CS medication for 24 h
before the start of the first MRI session. CS was ingested directly after
the end of the first session, and the second session started 1–2 h later
to synchronize MRI examination with peak CS concentration in
brain tissue. Each MRI session included a functional MRI (fMRI)
acquisition with the participants performing an AX-CPT task that
lasted for 14 min and 22 s.

2.2 Cognitive control task (AX-CPT)

AX-CPT was implemented using E-Prime (Psychology Software
Tools version 3.0, Pittsburgh, PA, United States) and started with a
rest period of 30 s displaying a fixation cross at the center of the
screen, followed by 160 AX-CPT trials. An AX-CPT trial consisted
of two stimuli; a cue letter (“A” or “B”) followed by a probe letter
(“X” or “Y”) with a blank inter-stimulus interval (ISI) in between,
followed by an inter-trial interval (ITI) where a fixation cross was
displayed. Participants used pistol-grips held in each hand and
target-responses were made by pressing a button on the right
grip and on the left grip for non-target responses. Reaction time
(RT) and response were recorded from the onset of the probe to, at
maximum, the end of the ITI. Duration of cue and probe was
500 msec. ISI was jittered between 900–1,100 msec with average
duration of 1,000 msec and ITI was jittered between

1,500–2,500 msec with average duration of 2,000 msec. The
order of the trial types was randomized, with 70% being target
trials (AX) and 30% divided equally between non-target trials (AY,
BX, BY). Participants got instructions about AX-CPT and practiced
prior MRI until they felt sure they understood the task and could
perform it with ease.

RT and responses were analyzed separately for each trial type
(AX, AY, BX and AY). The proactive behavioral index (PBI) was
calculated using the RTs for AY and BX according to the formula
(AY-BX)/(AY + BX) (Braver et al., 2009; Gonthier et al., 2016). High
PBI was interpreted as a dominance of a proactive cognitive control
mode and low PBI as dominance of reactive control mode. The
calculation of error rate for the different trial types was based on
recorded responses (correct/incorrect) while trials without any
responses were omitted.

2.3 Categorical and dimensional
stratification

Participants were stratified into categorical and dimensional
groups on the basis of presence and absence of ADHD diagnosis
according to DSM 5 (categorical stratification), or on the basis of
RDoC cognitive control domain (dimensional stratification). For the
categorical stratification, the two groups thus consisted of healthy
controls and ADHD patients, and for the dimensional stratification
of reactive and proactive individuals irrespective of their DSM
5 diagnosis status. The two dimensional groups (reactive vs.
proactive) were created by a median split of baseline PBI scores
(PBIpre). Participants with PBIpre score less than the median value
formed the reactive group and those with PBIpre score equal to or
greater than the median value formed the proactive group.

2.4 MRI and preprocessing of fMRI data

A 3.0T MR system (Signa Premier, GE Medical Systems, WI)
and a 48-channel head coil were used for all MR examinations,
which included a structural image of the brain and an fMRI
acquisition during the AX-CPT task. Parameters for the
structural scan (3D T1w IR-prepared fast spoiled gradient
recalled echo, “BRAVO”) were: TR/TE = 7.3/3.0 msec, acquired
voxel size 0.9 × 0.9 × 1.2 mm, parallel imaging acceleration (ARC)
factor of 2. The fMRI acquisition used a gradient echo EPI pulse
sequence with TR/TE = 2000/35 msec, slice thickness 2.5 mm,
acquired pixel size 2.5 × 2.5 mm, no slice gap, ARC factor of
2 and a hyperband factor of 2. Acquired images were converted
to nifti-format using dcm2niix (https://github.com/
rordenlab/dcm2niix).

Preprocessing of fMRI data (slice-time correction, realigning,
unwarping, normalizing to MNI template, smoothing) was
performed using CONN (Whitfield-Gabrieli and Nieto-Castanon,
2012). Default settings were applied except for a smoothing kernel of
6 mm instead of 8 mm. The final preprocessing step included
anatomical component-based noise correction (aCompCor) based
on white matter and cerebrospinal fluid (CSF), scrubbing and
bandpass filtering. Further details regarding the preprocessing are
provided in the supplement.
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2.5 fMRI analysis

First-level analysis of each AX-CPT acquisition (pre and post
CS) was performed using a general linear model (GLM) consisting of
4 regressors (AX, AY, BX and BY trials) where the onset and
duration for each trial started with the presentation of the cue
and lasted until the end of ITI. Group (second-level) analysis was
carried out by setting up a full factorial model including beta values
(i.e., BOLD signals) from the four different trials (AX, AY, BX and
BY), before and after the administration of CS.

Correlations were tested between baseline PBI (PBIpre) and
differences in brain activity pre and post CS for the trial types
(AY, BX). This was achieved by calculating a difference image
(BOLD image post—BOLD image pre) for each trial type and
then correlating it using PBIpre as covariate.

Exploratory whole-brain analysis was performed and to correct for
multiple comparisons, a pixelwise significance threshold level of p <
0.001 and cluster size threshold of FWE<0.05 were applied. All fMRI
analyses were performed using SPM12 running on Matlab R2019b.

Labels in the Harvard-Oxford cortical structural atlas, available
in FSLeyes (version 0.34.2, https://git.fmrib.ox.ac.uk/fsl/fsleyes/
fsleyes), were used to provide anatomical information about
significant clusters.

2.6 Statistical analysis

Behavioral data were analyzed using SPSS (IBM SPSS
Statistics version 28.0), and Matlab (R2019b) was used for
graphical plots. Participants with PBIpre outside the range
[Q1-1.5xIQR, Q3+1.5xIQR] were considered as outliers and
their experimental protocol was reviewed for any outstanding
issues that may explain the extreme values. (Q1 = 25th percentile,
Q3 = 75th percentile, interquartile range (IQR) = Q3-Q1).
Parametric tests were applied if the data could be adequately
modelled according to the normal distribution, otherwise non-
parametric tests were used. Two-sided p-values are reported in
all cases.

FIGURE 1
Flowchart showing inclusion and exclusion of participants in the study and the number of participants in the categorical and dimensional groups.
Three participants from the ADHD group were excluded since PBI could not be calculated because they inaccurately performed the AX-CPT.
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3 Results

3.1 Study groups and participant data

Of the 65 initial participants, 53 were included in the final
analysis, which consisted of 31 healthy controls and 22 patients with
ADHD (Figure 1). Five outliers were identified, and their
experimental protocol carefully reviewed for any outstanding
issue; in all cases circumstances could be identified that explained
the extreme values and justified the exclusion of the participants. For
the dimensional stratification, there were 26 individuals in the
reactive group consisting of 14 healthy controls and 12 ADHD
patients and 27 individuals in the proactive group consisting of
17 healthy controls and 10 ADHD patients. There was no significant
difference in the number of healthy controls and ADHD patients
clustering to the reactive and proactive groups (Pearson chi-square,
χ(1) = 0.45, p = 0.50). Baseline and behavioral data for all
participants are shown in Table 1.

3.2 Cognitive control paradigm (AX-CPT)–
behavioral data

The AX-CPT used in the current study resulted in the expected
behavioral features, and as previously reported in the literature AY trials
showed the longest reaction time and highest error rate (Table 1;
Supplementary Figure S1). For the behavioral data, we analyzed

potential differences in reaction time (RT) and proactive behavioral
index (PBI) in the categorical and dimensional groups before and after
administration of CS by evaluating interaction effects. For the
categorical stratification, we found no significant interaction
regarding RT or PBI between healthy controls and ADHD patients
before and after CS. For the dimensional stratification, however, a 2 ×
2 repeated measure ANOVA showed a significant (F (1,51) = 8.777, p =
0.005) interaction for PBI where the reactive group significantly
increased its mean PBI (p = 0.006) compared to the proactive
group, which did not show any significant change in PBI, although
there was a slight decrease in this (Figure 2A). Also, there was a
significant pre-post CS interaction in RT for BX [F (1,51) = 4.516, p =
0.038], where the reactive (p = 0.004) but not proactive group
significantly decreased its RT for the BX trial (Figure 2B).

3.3 Functional brain activation data

Similar to the behavioral data, we analyzed the fMRI data for
interaction effects in order to assess potential brain activation
differences between groups in the categorical and dimensional
stratifications before and after administration of CS. The AY and
BX trials were used as regressors, as they are the basis for calculating
PBI and determining reactive and proactive cognitive control
mode groups.

There were no significant interaction effects between healthy
controls and patients with ADHD before and after administration of

TABLE 1 Baseline characteristics of study participants in the two stratification groups. Values are presented asmean ± 1 standard deviation. PBI is calculated
using RT for AY and BX as PBI = (AY-BX)/(AX + BX).

All
(n = 53)

Controls
(n = 31)

ADHD
(n = 22)

Comparison
(Controls vs.

ADHD)

Reactive
(n = 26)

Proactive
(n = 27)

Comparison
(Reactive vs.
Proactive)

Age
(years)

36 ± 10 37 ± 11 36 ± 9 p = 0.914 37 ± 11 36 ± 9 p = 0.689

Sexa

(Male/
Female)

23/30 14/17 9/13 p = 0.86 15/11 8/19 p = 0.04

PBIpre
(a.u.)

0.15 ± 0.08 0.15 ± 0.07 0.15 ± 0.09 p = 0.957 0.09 ± 0.04 0.21 ± 0.05 p < 0.001 (due to median
split)

PBIpost
(a.u.)

0.17 ± 0.09 0.17 ± 0.09 0.17 ± 0.09 p = 0.971 0.14 ± .0.08 0.19 ± 0.09 p = 0.011

RT pre CS
(msec)

AX 530 ± 139 520 ± 125 544 ± 158 p = 0.639 573 ± 155 488 ± 108 p = 0.013

AY 631 ± 172 601 ± 134 673 ± 211 p = 0.170 665 ± 187 598 ± 153 p = 0.117

BX 473 ± 165 457 ± 159 495 ± 174 p = 0.357 564 ± 180 385 ± 82 p < 0.001

BY 462 ± 178 437 ± 143 499 ± 216 p = 0.209 519 ± 182 408 ± 158 p = 0.003

RT post
CS (msec)

AX 505 ± 153 506 ± 147 503 ± 164 p = 0.986 534 ± 158 476 ± 145 p = 0.064

AY 585 ± 169 588 ± 156 582 ± 190 p = 0.718 610 ± 173 561 ± 166 p = 0.24

BX 433 ± 198 434 ± 188 431 ± 215 p = 0.871 473 ± 191 393 ± 199 p = 0.012

BY 425 ± 190 422 ± 170 429 ± 220 p = 0.986 463 ± 177 388 ± 198 p = 0.013

CS, central stimulant medication;

a.u., arbitrary unit.
aSex assigned at birth.
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CS in the categorical stratification. For the dimensional
stratification, however, there was a significant interaction effect
for BX. This interaction was noticed in a cluster located in the
superior frontal and paracingulate gyri, showing that in these areas
the reactive group increased its brain activation more after CS
compared to the proactive group. The cluster consisted of
167 voxels (voxel size = 2 × 2 × 2 mm3) with a peak t-statistic
coordinate at (−4, 42, 40 mm) in MNI-space (Figure 3).

Correlation between baseline PBI (PBIpre) and changes in brain
activation for the AY and BX trials after CS was also evaluated
considering all participants as one group (n = 53). There were four
significant clusters showing a negative correlation between PBIpre
and changes in brain activation after CS for the BX trial (BX1-BX4),
and one cluster (BX5) showing a positive correlation (Figure 4). We
saw no significant correlations between PBIpre and changes in brain
activation after CS for the AY trial. A summary of all displayed
clusters shown in Figure 4 is provided in Supplementary Table S1
together with anatomical information about clusters.

Figure 5 shows the correlations between PBIpre and BX1-BX5
activation clusters. BX3 is virtually the same cluster obtained when

comparing CS effects between the reactive and proactive groups in
the dimensional stratification (Figure 3). The negative correlation
indicates that reactive individuals increase brain activation in these
areas after CS compared to proactive individuals, who show a
decrease in brain activation after CS. For illustrative purposes,
the individuals with largest increase in PBI after CS (defined as
greater than the 75th percentile) are indicated in Figure 5. The
majority of these individuals (11 out of 13) belong to the reactive
group and most have an increase in brain activation after CS in
clusters BX1-BX4 (BX1: 8/13, BX2: 8/13, BX3: 7/13, BX4: 10/13). In
cluster BX5 themajority (8/13) decreased brain activity after CS. The
regression lines in Figure 5 cross the x-axis at PBIpre equal to 0.13/
0.15/0.14/0.16/0.13 for clusters BX1-BX5, respectively.

4 Discussion

Psychiatric disorders are in almost all instances complex
syndromes with as yet not fully established etiopathology (Insel,
2010). Diagnostic classification in clinical settings is guided by the

FIGURE 2
Interaction for PBI (A) and BX RT (B) in the reactive and proactive cognitive control mode groups, before and after administration of CS. Error bars
show 95% confidence interval.

FIGURE 3
Three orthogonal slices (sagittal, coronal and axial) showing brain area where there was a significant increase of brain activity after CS for the reactive
group compared to the proactive group. Images are shown using neurological orientation, i.e., subject left to the left in image.
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presence and absence of characteristic phenomenological criteria
that in themselves remain agnostic as to the neurobiological
underpinning of the disorders (American Psychiatric Association,
2013). Lately, concern has been raised pertaining to a putative lack of
reproducibility in the psychiatry/psychology research fields (Open
Science Collaboration, 2015). Diagnostic heterogeneity has been
postulated as one possible reason behind this (Borgogna et al., 2023).
The utility of these classification systems for research purposes has
thus been questioned, among other things, due to the substantial
within group heterogeneity between group overlap the current
categorical classification systems lead to (Widiger and Samuel,
2005; Wardenaar and de Jonge, 2013; Borgogna et al., 2023). The
research domain criteria initiative (RDoC), on the other hand,
although not a diagnostic tool per se, provides a neurobiologically
informed dimensional framework for conceptualizing psychiatric
disorders by utilizing neurobehavioral domains of function (Insel
et al., 2010). Thus, dimensional stratification by reducing within
group heterogeneity (Borgogna et al., 2023) may contribute to the
standardization of a study population in a such a way that
intervention, control and outcome (PICO) may become
reproducible when similar PICOs are studied in different
research facilities. The RDoC domains that are thought to be
most relevant for ADHD are cognitive control and positive
valence domains, pertaining to inattention and hyperactivity/
impulsivity aspects of the disorder, respectively. Paradigms that
evaluate these domains include the AX Continuous Performance
Task (AX-CPT) for cognitive control domains such as goal selection,
goal maintenance and updating (Lopez-Garcia et al., 2016), the Go
NoGo task for response selection and response inhibition (Boucher
et al., 2007), and various incentive delay tasks for positive valence
domains such as reward anticipation (Knutson et al., 2000).

In this study, neural and behavioral effects of CS medication
during a cognitive control task (AX-CPT) were investigated using
two classification strategies to stratify study participants, (i)
categorical stratification using DSM 5 diagnosis and (ii)
dimensional stratification using RDoC cognitive control domain
irrespective of diagnosis status. Median split of proactive behavioral

index (PBI) calculated from AY and BX trials of the AX-CPT
(Gonthier et al., 2016) was used to divided participants into
reactive and proactive groups for the dimensional stratification
without paying attention to diagnosis. Based on previous studies
that found the effect of CS on cognitive control to vary with baseline
cognitive capacity (Mattay et al., 2000; van der Schaaf et al., 2013;
Rostami Kandroodi et al., 2021), we hypothesized that dimensional
stratification may be superior to categorical stratification in
revealing neural and behavioral effects of CS. Also, in the
categorical stratification, we expected the effects of CS to be
more prominent in ADHD patients compared to healthy
controls, based on previous findings that showed a robust clinical
effect of CS in ADHD patients (Faraone and Glatt, 2010; Cortese
et al., 2018) and a less clear-cut cognitive enhancing effects in the
non-clinical population (Repantis et al., 2010; Smith and
Farah, 2011).

There was, of course, the possibility that the two stratification
methods would result in largely similar individuals clustering in the
same groups, in a way that would undermine our study design,
i.e., that most ADHD patients would cluster into the reactive group
and most healthy controls into the proactive group and that there
would be no meaningful difference between the two stratification
methods. Contrary to our initial apprehension, however, we found
an almost 50/50 clustering of patients and healthy controls into the
two dimensional groups, with the median split resulting in
14 healthy controls (45.2%) and 12 ADHD patients (54.5%)
clustering in the reactive group and 17 healthy individuals
(54.8%) and 10 ADHD patients (45.5%) clustering in the
proactive group, with no significant difference in this between
healthy controls and ADHD patients. The fact that cognitive
control mode cuts across diagnosis indicates that ADHD patients
may not markedly differ from healthy controls in this respect,
unlike, for example, psychosis patients who have been shown to
employ a markedly reactive cognitive control mode compared to
healthy individuals (MacDonald, 2008).

Once it was ascertained that the stratification method gave
variable clustering of individuals into the categorical and

FIGURE 4
Two axial (left and middle) and one coronal (right) images showing significant clusters correlations between changes in brain activities (post-pre
administration of CS) and PBIpre during BX trials. The clusters are labelled (BX1-BX5) to be used for identification in text and Supplementary table S1 Images
are shown using neurological orientation.
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dimensional groups, we went ahead to systematically evaluate the
effects of CS on the groups within the two stratification strategies.
When participants were categorically assigned as healthy controls

and ADHD patients, on the basis of DSM 5 diagnosis, we found no
significant behavioral or brain activation effects of CS in these two
groups. On the other hand, when study participants were stratified

FIGURE 5
Correlations between contrast differences for BX (post-pre administration of CS) and PBIpre are shown in panels (A–E) for cluster BX1-BX5,
respectively. The individuals in the whole study who had an increase of PBI (PBIpost vs PBIpre) greater than the 75th percentile are indicated with “+”.
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along dimensional factors into reactive and proactive cognitive
control mode groups ignoring diagnosis status, CS selectively
increased activation in paracingulate and superior frontal gyri in
the reactive group compared to the proactive group and induced a
shift towards proactive control mode in the reactive group without
significantly affecting the proactive group. The shift towards
proactive control mode in the reactive group was mediated by a
decrease in reaction time for BX trials, without significant
concomitant effects on AY trials. Besides these direct and
selective effects of CS on brain activation and proactive
behavioral index (PBI), we also found a significant correlation
between baseline PBI and the neural effects of CS. In 4 out of
the 5 active frontoparietal clusters for the BX contrast, lower baseline
PBI was associated with greater post CS increase in brain activation.
Clusters in frontal (frontal pole, bilateral paracingulate, right
superior frontal gyrus) and parietal (bilateral angular and left
supramarginal gyri) brain areas all showed increased brain
activation after CS that was negatively correlated with baseline
PBI scores. One left-lateralized temporo-insular cluster consisting
of left insular cortex and left planum polare showed CS induced
activation changes that were positively correlated to baseline PBI,
i.e., the post-CS increase in these two areas was greater the higher
baseline PBI score was.

Our results show that the neural and behavioral effects of CS
were more clear-cut when participants were stratified along
dimensional factors than diagnostic categories. In a recent study
that included ADHD patients who responded and did not respond
to CS treatment, we reported that saliency (“wanting”) and hedonic
experience (“liking”), pertaining to the positive valence RDoC
domain, could predict response to CS treatment and that that the
scores for “wanting” were positively correlated to resting state
connectivity increase in the ventral striatum (Rode et al., 2023).
Although all included patients in the present study were clinical
responders to CS treatment as evaluated by clinician- and patient-
rated clinical global impression–improvement (CGI-I), our results
from this study indicate that cognitive control mode might also be a
potential predictor of CS response in clinical the setting. In a more
recent paper Hung et al., 2024 reported that striatal structural
connectivity and higher pre-treatment working memory scores
were correlated with greater response to CS medication in
patients with ADHD (Hung et al., 2024).

As mentioned above, the effect of CS on behavioral or neural
outcomes varies with baseline cognitive capacity (Mattay et al., 2000;
van der Schaaf et al., 2013; Rostami Kandroodi et al., 2021), baseline
DA and NA levels (Cools and D’Esposito, 2011) and rate of
behavioral, physical or electrical stimulation (Sanger and
Blackman, 1976). Because the proactive group had substantially
lower mean RT scores for, among other things, BX and BY trials, if
the proactive group were to be allowed to respond at a higher rate,
this could potentially affect the results due to the rate dependency of
CS effect (Sanger and Blackman, 1976). However, in the present
paper, the rate of stimulus (interstimulus interval) across all subjects
and conditions was constant. Thus, even though a participant had a
shorter RT, this was not allowed to alter the rate of response.
Furthermore, due to the low mean RT scores in the proactive
group, their response to CS as far as RT is concerned could be
restricted due to ceiling effects. However, when we looked at baseline
RT scores across all participants, we found that both proactive and

reactive individuals had baseline RT scores that ranged from low to
high and did not cluster around any particular value in a way that
could have imposed significant ceiling effects.

A plausible clinical implication based on the results in the current
study might be that ADHD patients employing reactive cognitive
control mode, as well as healthy controls who might use CS off-
label, would respond better to CS than those employing a more
proactive control mode. This assumes that a transition from reactive
to proactive controlmode is equated to being a responder of CS. Further
studies are needed to elucidate this and should include groups of both
CS responding and CS non-responding ADHD patients.

The lack of effect of CS in unstratified ADHD patients and
unstratified healthy controls, we suspect, might be due to substantial
within group heterogeneity and the known inverted U-form dose-
effect curve of the signal substances dopamine and noradrenaline
whose peri-synaptic levels are enhanced by CS medication. Similar
lack of effect was previously reported in unstratified study
participants (Cools et al., 2008), and the CS effects could be
revealed when participants were stratified along baseline cognitive
capacity (Cools et al., 2008) or baseline dopamine synthesis capacity
(Westbrook et al., 2020).

Our implementation of the AX-CPT paradigm in this study
corresponds to a low load task (Mäki-Marttunen, Hagen, and
Espeseth, 2019), since it only consisted of two cue letters (“A” and
“B”) and two probes (“X” and “Y”) and that the intra-trial interval was
short. The behavioral and neural effects of the task can be expected to be
larger when using a more challenging version with more cues and
probes and longer intra-trial interval. However, we found such versions
too difficult for some of the ADHD patients that could have led to an
even greater loss of included ADHD participants, which occurred even
when using this easier version (see Figure 1).

4.1 Limitations

In this study we included only ADHD patients that have clinically
been judged to be responders to CS treatment. It is theoretically possible
that the results may have been different had we also included ADHD
patients who were CS non-responders. Another intriguing question is
why ADHD patients who have clinically responded to CS medication
become “non-responders” when tested with a cognitive control
paradigm, if they happen to employ proactive cognitive control
mode. One possible explanation for this is suggested by the recent
finding of (Bowman et al., 2023), who in healthy subjects found that CS
increasedmotivation/effort but reduced quality of effort, which suggests
that CS responding ADHD patients might improve on certain but not
all aspects of their impairment.

5 Conclusion

We can draw several conclusions from the current study, (i)
cognitive control mode cuts across diagnostic categories and there is
equal likelihood for ADHD patients to employ reactive and
proactive cognitive control mode as healthy controls, (ii)
dimensional stratification under our experimental condition
seems to be superior to categorical stratification in revealing
neural and behavioral effects of CS, and (iii) baseline cognitive
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control mode might potentially be a predictor of CS treatment effect
in the clinical setting.
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Ibogaine is a psychedelic alkaloid being investigated as a possible treatment

for opioid use disorder. Ibogaine has a multi-receptor profile with a�nities

for mu and kappa opioid as well as NMDA receptors amongst others. Due to

the sparsity of research into ibogaine’s e�ects on white matter integrity and

given the growing evidence that opioid use disorder is characterized by white

matter pathology, we set out to investigate ibogaine’s e�ects on two markers

of myelination, 2′, 3′-cyclic nucleotide 3′-phosphodiesterase (CNP) and myelin

basic protein (MBP). Fifty Sprague Dawley rats were randomly assigned to five

experimental groups of n = 10; (1) a saline control group received daily saline

injections for 10 days, (2) amorphine control group received escalatingmorphine

doses from 5 to 15 mg/kg over 10 days, (3) an ibogaine control group that

received 10 days of saline followed by 50 mg/kg ibogaine hydrochloride, (4)

a combination morphine and ibogaine group 1 that received the escalating

morphine regime followed by 50 mg/kg ibogaine hydrochloride and (5) a

second combination morphine and ibogaine group 2 which followed the same

morphine and ibogaine regimen yet was terminated 72h after administration

compared to 24h in the other groups. White matter from the internal capsule

was dissected and qPCR and western blotting determined protein and gene

expression of CNP and MBP. Morphine upregulated CNPase whereas ibogaine

alone had no e�ect on CNP mRNA or protein expression. However, ibogaine

administration following repeated morphine administration had an immediate

e�ect by increasing CNP mRNA expression. This e�ect diminished after 72h

and resulted in a highly significant upregulation of CNPase protein at 72h post

administration. Ibogaine administration alone significantly upregulated protein

expression yet downregulated MBP mRNA expression. Ibogaine administration

following repeated morphine administration significantly upregulated MBP
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mRNAexpressionwhich increased at 72h post administration resulting in a highly

significant upregulation of MBP protein expression at 72h post administration.

These findings indicate that ibogaine is able to upregulate genes and proteins

involved in the process of remyelination following opioid use and highlights

an important mechanism of action of ibogaine’s ability to treat substance

use disorders.

KEYWORDS

ibogaine, psychedelic medicine, white matter, opioid use disorder, oligodendrocytes

1 Introduction

Opioids continue to be the group of substances with the highest

contribution to severe drug-related harm, including fatal overdoses

(United Nations Office on Drugs and Crime, 2023). An estimated

60 million people engaged in non-medical opioid use in 2021.

Opioids remain the leading cause of deaths from fatal overdoses.

Opioids accounted for nearly 70% of the 128,000 deaths attributed

to drug use disorders in 2019. Opioid use disorders (OUDs) also

accounted for the majority (71% of the 18 million healthy years) of

life lost owing to premature death and disability in 2019 (United

Nations Office on Drugs and Crime, 2023).

Ibogaine is the primary alkaloid in Tabernathe iboga root bark

and may have anti-addictive effects that lead to reduced drug

cravings, decreased symptoms of withdrawal, and prevention

of relapse (Maisonneuve et al., 1991; Sheppard, 1994; Alper

et al., 1999; Mash et al., 2000, 2018; Parker and Siegel, 2001;

Schenberg et al., 2014; Barsuglia et al., 2018; Calvey and Howells,

2018). Ibogaine undergoes extensive first-pass metabolism

to noribogaine (the principle metabolite) by cytochrome

P4502D6 in the gut wall and liver following oral administration.

Ibogaine is cleared from the blood within 24 h (t1/2 = 4–6 h)

depending on CYP2D6 genotype. Noribogaine, on the other

hand, is eliminated over 5–7 days (t1/2 = 24–30 h; Mash,

2023).

The mechanisms of action of ibogaine continue to be

explored but likely result from its multiple receptor affinities

and polypharmacology. Ibogaine inhibits transport of serotonin

and dopamine and is a serotonin reuptake blocker. It is a

non-competitive inhibitor on nicotinic receptors such as the

ganglionic and alpha-3 beta-4 subtype, a partial agonist of mu

and kappa opioid receptors, and an NMDA channel blocker

(Mash, 2023). Noribogaine binds to the serotonin transporter

with a higher affinity (Villalba et al., 2024) and is a weak

mu opioid receptor antagonist. Ibogaine is able to produce a

neuroadaptive effect on endogenous opioid systems which reverses

opioid tolerance (Barsuglia et al., 2018; Calvey and Howells, 2018;

Corkery, 2018). Both ibogaine and noribogaine modulate the

analgesic effect and physical tolerance to morphine (Calvey and

Howells, 2018; Mash, 2023). Further, ibogaine possesses an opiate

replacement mechanism of action as reported for compounds such

as methadone possibly due to its agonism on the mu opioid

receptor, however, neither ibogaine nor noribogaine produce signs

and symptoms of opioid intoxication in opioid naïve persons (Mash

et al., 1995; Zubaran et al., 1999; Baumann et al., 2001a,b; Barsuglia

et al., 2018; Corkery, 2018).

We have conducted research on mechanisms of action of

ibogaine for several years. Findings from our lab indicate that

ibogaine HCl affects gene and protein expression in proteins

related to substance use disorders. For example, ibogaine HCl

downregulates the glutamate ionotropic receptor AMPA subunit 1

(GRIA1; Calvey et al., 2019a,b) and upregulates histone deacetylase

2,3 (HDAC2,3) which is involved in epigenetic mechanisms

diminishing opioid tolerance (Moloko et al., 2019).

Of particular interest is the role of white matter on the

pathology of SUDs and opioid addiction. Oligodendrocytes have

been understudied with regards to drug abuse and its effects

(Miguel-Hidalgo, 2018) but the effect of opioid addiction is

associated with demyelination (Liu et al., 2013; Fan et al., 2018).

Upadhyay et al. (2010) showed decreased anisotropy of white

matter tracts specifically in the amygdala-specific tracts which

suggests decreased whitematter tract connectivity in brains affected

by opioid addiction. This further suggests that opioid addiction

causes demyelination. There are two myelin markers that have

commonly been used to assess the amount of myelin present in

a sample: myelin basic protein (MBP) and 2′, 3′-cyclic nucleotide

3′-phosphodiesterase (CNP) protein. Changes in expression and

abundance of these proteins can be used as early markers for

increased or decreased myelin (Lindner et al., 2008; Oberoi et al.,

2019).

Myelin basic protein (MBP) is the second most abundant

myelin sheath protein and has four main isoforms which are

21.5, 18.5, 17, and 14 kDa (Akiyama et al., 2002). It compromises

30% of the total myelin protein and is a structural protein that

is essential for CNS myelin (Boggs, 2006). It is bound to the

cytosolic membrane of the oligodendrocytes between the layers of

cells. It is involved in the adhesion of the cytosolic surface of the

myelin sheath layers (De Vries et al., 1997; Boggs, 2006). Therefore,

its main function is adhesion for the myelin sheath formation

and has a critical role in myelination or remyelination. CNPase

is an enzyme and structural protein present in the cytoplasm

of oligodendrocytes that catalyzes the hydrolysis of 2′,3′-cyclic

nucleotides (Verrier et al., 2013). It is utilized during the early

stages of oligodendrocyte differentiation and has been associated

with compacting the myelin layers on axons as it is found on the

outer layers of the cells (De Vries et al., 1997; Maier et al., 2008).

Very little is known about ibogaine’s effect on white matter or

its role in de- or remyelination. The pharmacology of ibogaine and

noribogaine suggests potential to increase white matter. Ibogaine

increases BDNF and GDNF, which has been shown to have

neuroplastic effects in addiction (Carnicella and Ron, 2009; Marton

et al., 2019). Ibogaine and noribogaine are partial kappa opioid
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receptor agonists (Glick et al., 1997; Glick and Maisonneuve,

1998; Alper, 2001; Maillet et al., 2015; Mash, 2023). The kappa

opioid receptor has been shown to influence remyelination through

oligodendrocytes (Du et al., 2016; Mei et al., 2016). The kappa

opioid receptor is an important regulator of oligodendrocyte

differentiation and remyelination. This regulation is achieved by

controlling the oligodendrocyte precursor cells (OPCs) developing

into oligodendrocytes (Du et al., 2016; Mei et al., 2016). The kappa

opioid receptor is expressed on OPCs and in white matter such as

the corpus callosum (Mei et al., 2016). Of interest is ibogaine’s dual

affinity for mu and kappa opioid receptors. Several dual kappa/mu

opioid receptor agonists have produced strong antinociception

effects in mice while lacking the typical dysphoric or addictive

properties of pure kappa- or pure mu opioid receptor agonists,

respectively (Khan et al., 2022). This highlights the inter-play

between the functions of these two types of opioid receptors. Very

little is known about this relationship in ibogaine or in the process

of myelination.

We were, therefore, interested in observing ibogaine’s effect on

myelination markers. Preliminary findings indicated that ibogaine

administration upregulated CNPase protein expression in rats

(Govender et al., 2020). We expanded the study to include analysis

of both protein and gene expression of CNPase and MBP in groups

of Sprague Dawley rats. The experiment was designed to indicate

effects of ibogaine and morphine administration as well as the

temporal mechanisms of remyelination.

2 Materials and methods

2.1 Animal experiment

The ethical approval for this study was issued by the Animal

Research Ethics Committee at the University of theWitwatersrand.

Fifty male Sprague-Dawley (SD) rats, post-natal days 42–45, were

on a 12-h light/dark cycle with food and water access as needed. All

the animals were allowed a pre-treatment acclimatization period of

1 week. Two rats were housed in 1500U Techniplast Eurostandard

Type IV S cages to prevent social isolation. Animals were assigned

randomly to one of five groups and weighed daily, to calculate

accurate dosages of ibogaine, morphine and saline. The animals

were randomly divided into five groups of 10 rats: saline control,

ibogaine only, morphine only, morphine ibogaine 1 test group

and morphine ibogaine 2 test group with a 3-day waiting period

before termination.

The saline control group (n = 10) received daily 1 ml/kg

subcutaneous (s.c.) saline (0.9% sodium chloride, Adcocare,

Adcock IngramCritical Care) for 10 days. The rats were terminated

24 h following the last administration.

The morphine group (n = 10) was administered daily

morphine (s.c.) for 10 days according to an escalated morphine

protocol starting at 5 mg/kg for 48 h, 7.5 mg/kg for 72 h, 10 mg/kg

for 72 h, and 15 mg/kg for 48 h. The rats were terminated 24 h

following the last administration.

The ibogaine group (n= 10) received daily saline (0.9% sodium

chloride, Adcocare, Adcock Ingram Critical Care) s.c. for 10 days

and a 50mg/kg intraperitoneal (i.p.) dose of ibogaine hydrochloride

(HCl; Iboga Association, Cape Town, 98% purity) on day 11

(Rezvani et al., 1995; Glick et al., 1997). Ibogaine was homogenized

in 1 ml/kg saline immediately before administration. The rats were

terminated 24 h following the last administration.

The first morphine-ibogaine group (n = 10) received the

escalated morphine regime for 10 days followed by a 50 mg/kg dose

of ibogaine HCl on day 11. The rats were terminated 24 h following

the last administration.

The second morphine-ibogaine group (n = 10) received

the same treatment as the first morphine-ibogaine group except

the rats were terminated 72 h following the last administration.

The experiment was designed for morphine-ibogaine group 1

to evaluate myelination 24 h after treatment and for morphine-

ibogaine group 2 to represent myelination at 72 h post treatment

which has previously been found to be peak remyelination

(Skripuletz et al., 2011).

Rats were decapitated with a sharp, well-maintained guillotine

on the day of termination.

2.2 White matter tissue collection from the
Sprague Dawley rat brains

Brains were carefully removed from the skulls immediately

following decapitation, the white matter of the internal capsule was

dissected from the brains on ice, transferred to separate 1.5mL

Eppendorf tubes and flash-frozen in liquid nitrogen prior to storage

at−80◦C for subsequent tissue processing.

2.3 White matter sample preparation for
qPCR and western blotting

The frozen brain samples were homogenized with a

homogenizer in QIAzol lysis reagent (Qiagen, Netherlands)

to disrupt the cells. The QIAzol RNeasy Lipid Tissue Mini Kit

(Qiagen, Netherlands) was used, following the manufacturer’s

instructions. The kit allowed for separation of the homogenate

into three phases: RNA in the upper aqueous phase, DNA in the

interphase and proteins in the lower organic phase. RNA was

processed as per the kit’s instructions.

The protein fractions from the Qiazol lysis homogenate were

added to ice cold acetone in a 1:1 ratio, centrifuged at 14,500

rpm for 10min and the supernatant was discarded. The pellet was

homogenized with 5% sodium dodecyl sulfate (SDS).

2.4 Bicinchoninic acid assay of total
proteins extracted from white matter

BCA assays are used to determine the concentration of total

protein in a sample. This is done using a standard curve of Bovine

Serum Albumin (BSA). The protein samples that were prepared in

5% SDS were measured by diluting them with 5% SDS to 1:5, 1:10,

or 1:20 depending on their concentration as the highest limit of this

standard curve was 2,000µg/ml. The PierceTM BCA Protein Assay

kit (Thermoscientific, Massachusetts, USA) was used according

to manufacturer instructions. Samples and the working reagent
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were added in duplicates to the plate in a 1:8 ratio of sample

to working reagent. The plate was incubated at 37◦C for 30min

and the absorbance read on the Biorad iMarkTM microplate reader

(Microplate Manager Software, Bio-Rad) at 570 nm.

2.5 Reverse transcription of extracted
mRNA from white matter into cDNA

The SuperscriptTM III First Strand Synthesis system for RT-

PCR (Invitrogen, Massachusetts, USA) was used to convert 2 µg

RNA from each sample into cDNA, according to manufacturer’s

instructions. Final cDNA concentrations were measured with a

NanodropTM _ND-1000 (Massachusetts, USA) spectrometer and

diluted with RNase free water to 100 ng/µl. Aliquots were stored

at 4◦C.

2.6 qPCR protocol and data analysis

Primers are listed in Table 1 and were manufactured by

Inqaba BiotecTM, Pretoria, South Africa. An annealing temperature

gradient test revealed that all primer sets worked efficiently at an

annealing temperature of 51◦C.

Quantitative PCR was done in 10 µl reactions using the

2X Fast SYBRTM Green Master Mix (Thermofischer Scientific,

Massachusetts, United States) with 6µm each of the reverse and

forward primers and 100 ng of cDNA per reaction. Reactions

were setup in triplicate and included the corresponding beta actin

housekeeping gene on the same 96-well plate. Negative, no DNA

controls were also included in triplicates for both housekeeping

gene and genes of interest. The Lightcycler R© 96 instrument

and software (Roche Diagnostics, Indianapolis, United States of

America) were used to run the reactions and extract the Cq values

for each curve. Thermal cycling conditions were as follows: 95◦C

for 10min, 45 cycles of 95◦C for 15 s, 51◦C for 20 s, and 72◦C for

30 s. A melting curve was included at the end of all runs, with the

following parameters: 95◦C for 10 s, 65◦C for 1min and 97◦C for

1 s.

Delta delta Cq value was used to calculate the fold change with

the following formula:

11Cq = (Cqgene of interest − Cqβ−actin)test group

− (Cqgene of interest − Cqβ−actin)saline group

Fold change = E−11Cq

2.7 SDS PAGE and western blot analysis of
the white matter total protein from SD rats

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

was used to separate the proteins in the white matter tissue

before being transferred onto a nitrocellulose membrane during

western blotting.

Equal amounts of protein samples were resolved by Laemmli

SDS–PAGE on a 15% Tris–glycine gel (Laemmli, 1970). Proteins

resolved by SDS–PAGE were then transferred to nitrocellulose

membrane using blotting buffer (50mM Tris–HCl, 200mM

glycine, pH 8.3, containing 0.1% (w/v) SDS and 20% (v/v)

methanol) at 35V overnight at 4◦C in the HoeferTM T22 mighty

small transfer tank. Membranes were blocked in TBS (0.2M NaCl

and 20mM Tris–HCl, pH 7.4) containing 0.5% (w/v) BSA (TBS-

BSA) for 1 h at room temperature. Membranes were then washed

3× with TBS (5 min/wash).

Polyclonal mouse antibodies raised against the proteins

investigated in the study were used to detect their levels of

expression in each rat brain sample. Membranes were separately

incubated for an hour at RT with solutions of the primary

antibodies, each diluted in TBS-BSA as follows: the Anti-CNPase

antibody (Abcam) was diluted 1:10000, Anti-Myelin Basic Protein

antibody (Biolegend) was diluted 1:2000, and Anti-beta Actin

antibody (Abcam) was diluted 1:2500. The Anti-beta actin was

diluted in TBST-BSA (TBS-BSA with 0.1% Tween-20). The

membranes were then washed with TBST (3×, 10 min/wash)

and incubated with goat anti-mouse IgG secondary antibody

conjugated to horseradish peroxidase (Abcam) for 1 h at room

temperature. The secondary antibody was diluted in TBS-BSA at

1:5000 to detect the Anti-CNP and Anti-MBP primary antibodies,

and at 1:2500 to detect the Anti-β-actin primary antibody. After

washing the membranes (2×, 10 min/wash with TBST, followed by

1× for 10min with TBS) they were incubated with the PierceTM

ECL Western Blotting Substrate (Thermofischer Scientific) for

5min. The blots were imaged in the ChemiDocTM MP imaging

system (Bio-Rad). and the bands analyzed for peak density

using the QuantityOneTM version 4.6.9 Software Programme (Bio-

Rad). The data was normalized using the following formula for

all proteins:

Samples Protein expression =

sample densitometric measurement
loading control from membrane

actin densitometric measurement
loading control of actin membrane

Each sample was analyzed by western blotting in duplicate, and

the protein expression values for each replicate were averaged.

2.8 Statistical analysis

All statistical analysis was done using GraphPad Prism 9.5.0 for

Windows (GraphPad Software). Shapiro-Wilk tests were run to test

for normality. ANOVA, unpaired t-tests and Mann-Whitney tests

were run to determine significance between the groups dependent

on the normality of the data. Outliers were determined at 1% using

the ROUT method. The data is represented by mean ± standard

error of the mean (SEM).

3 Results

3.1 E�ects of ibogaine and morphine on
CNP

Quantitative PCR was used to evaluate the changes in the

mRNA expression of CNP in the white matter of the internal

capsule of SD rats (Figure 1). Three outliers were found in this

analysis: 1 in the morphine control, 1 in the ibogaine control
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TABLE 1 Primers for genes used in qPCR (CNP, MBP, and beta actin).

Gene Forward primer Reverse primer

CNP (Hattori et al., 2014) 5′-CAA CAG GAT GTG GTG AGG A-3′ 5′-CTG TCT TGG GTG TCA CAA AG-3′

MBP (Ray et al., 2003) 5
′
-TGA AAA CCC AGT AGT CCA C-3

′
5
′
-GGA TTA AGA GAG GGT CTG C-3

′

β-actin (Ray et al., 2003) 5
′
-TAC AAC CTC CTT GCA GCT CC-3

′
5
′
-GGA TCT TCA TGA GGT AGT CTG TC-3

′

FIGURE 1

Relative mRNA expression of CNP gene in morphine control (n = 6),

ibogaine control (n = 8), morphine ibogaine 1 (n = 8), and morphine

ibogaine 2 (n = 7). There was an immediate increase in mRNA

expression of CNP after ibogaine administration following repeated

morphine administration. The data is presented as Mean ± SEM.

**Shows significance (p < 0.0021) which is compared to saline.

and 1 in the morphine ibogaine 2 groups. These outliers were

removed from the data set prior to analysis. Repeated morphine

administration as well as ibogaine-only administration had no

significant effect on CNP mRNA expression relative to the

saline control. Although insignificant, morphine-only treatment

trended toward increasing mRNA expression. Repeated morphine

administration followed by ibogaine administration (morphine

ibogaine 1) significantly increased CNP mRNA expression (p =

0.001). The morphine ibogaine 2 group showed no significant

change in CNPmRNA expression relative to the saline control. This

suggests that the immediate increase in CNP mRNA expression

(24 h post administration) diminishes by 72 h post administration.

Densitometric measurements of the western blots showed that

the protein expression levels of CNPase in the white matter of SD

rats increased following repeated morphine administration relative

to the saline control (p = 0.046; Figure 2). Ibogaine administration

had no effect on CNPase protein expression. Repeated morphine

administration followed by ibogaine had no immediate effect on

CNPase (morphine ibogaine 1), however, after 72 h (morphine

ibogaine 2), there was a highly significant increase in CNPase

protein expression (p= 0.0001).

FIGURE 2

Peak density measurements of CNP protein expression of white

matter in SD rats showed increased expression in morphine as well

as morphine ibogaine group 2. Relative protein expression of CNP

protein in saline control (n = 8), morphine control (n = 7), ibogaine

control (n = 9), morphine ibogaine 1 (n = 8), and

morphine-ibogaine 2 (n = 9). The data is presented as mean ± SEM.

*Shows significance (p < 0.05). ****Shows significance (p < 0.0001).

Taken together, morphine alone upregulated CNP protein

expression. Ibogaine alone had no effect on mRNA or protein

expression. However, in combination, there was an early

upregulation of CNP mRNA that resulted in a highly significant

upregulation of CNPase protein expression after 72 h.

3.2 E�ects of ibogaine and morphine on
MBP

Quantitative PCR was used to evaluate the changes in the

mRNA expression of MBP in the white matter of the internal

capsule of SD rats (Figure 3). Two outliers were found in this

analysis: 1 in the ibogaine control and 1 in the morphine ibogaine

2 groups. These outliers were removed from the data set prior

to analysis. Repeated morphine administration had no effect on

MBP mRNA expression relative to the saline control. Ibogaine

administration significantly decreased MBP mRNA expression

relative to the saline control (p < 0.0001). The immediate

effect of ibogaine administration following repeated morphine

administration (morphine ibogaine 1) was to significantly increase

MBP mRNA expression relative to the saline control (p = 0.038)

and following 72 h (morphine ibogaine 2), this increase was
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sustained and slightly elevated relative to the saline control (p

= 0.041).

Western blots of the white matter from the SD rats showed

two isomers of MBP with molecular weights of 21.5 and 18.5 kDa

(Figure 4). There were no significant differences between the test

groups for the 21.5 kDa isomer (Figure 4B). The following are

group differences of the 18.5 kDa isomer (Figure 4A): Repeated

morphine administration had no effect on MBP protein expression

relative to the saline control. Ibogaine administration significantly

increased MBP protein expression relative to the saline control

(p < 0.0021). The immediate effect of ibogaine administration

following repeated morphine administration (morphine ibogaine

1) was insignificant relative to the saline control, however, following

72 h (morphine ibogaine 2), there was a highly significant increase

in MBP protein expression (p < 0.0002) that was elevated relative

to the ibogaine.

Taken together, it appears that morphine administration

alone had no effect on MBP mRNA or protein expression.

Ibogaine alone significantly downregulated mRNA expression

yet upregulated protein expression at the same time point.

In combination (repeated morphine administration followed by

ibogaine administration), there was an early upregulation of MBP

mRNA expression that increased after 72 h resulting in upregulated

protein expression at 72 h post administration.

4 Discussion

Our results indicate that ibogaine alone had no effect

on CNP mRNA or protein expression. Treatment with

morphine-only trended toward increasing CNPase protein

expression and significantly upregulated mRNA expression.

In combination, ibogaine administration following repeated

morphine administration had an immediate effect by significantly

increasing CNP mRNA expression. This effect diminished after

72 h yet resulted in a highly significant upregulation of CNPase

protein at 72 h post administration. Morphine-only treatment

had no significant effect on MBP mRNA or protein expression.

Ibogaine administration alone significantly upregulated protein

expression yet downregulated MBP mRNA expression at the same

time point. Ibogaine administration following repeated morphine

administration significantly upregulated MBP mRNA expression

which was elevated at 72 h post administration resulting in a

highly significant upregulation of MBP protein expression at 72 h

post administration.

These effects on both gene and protein expression of CNP and

MBP suggest an interaction between morphine and ibogaine with

regards to increasing myelination. It is also important to highlight

that the interaction between morphine and ibogaine takes place

after only 10 days of morphine administration. Althoughmorphine

does seem to upregulate CNPase, the combination of morphine and

ibogaine augments that effect. This is shown when comparing the

morphine-ibogaine groups 1 and 2 in both the mRNA and protein

findings (Figures 1, 2). The mRNA is significantly upregulated

24 h post ibogaine administration (more so than the morphine

control) which subsides by 72 h. The protein in morphine and

ibogaine group 1 is not upregulated which, in contrast to the

morphine group, confirms an interaction between morphine and

FIGURE 3

Relative mRNA expression of MBP gene in morphine control (n = 7),

ibogaine control (n = 8), morphine ibogaine 1 (n = 8), and

morphine-ibogaine 2 (n = 7). Relative mRNA expression of MBP is

decreased after ibogaine administration and increased expression is

seen in both morphine ibogaine treatment groups. The data is

presented as mean ± SEM. *Shows significance (p < 0.5). ****Shows

significance (p < 0.0001).

ibogaine. At 72 h, CNPase shows a highly significant increase in

the combination group. These findings replicate an early study

we conducted where ibogaine alone had no effect on CNPase

protein expression yet ibogaine administration following repeated

morphine administration was significantly upregulated (Govender

et al., 2020). With MBP (Figures 3, 4), the gene expression data

shows a clear difference between the combination groups and the

morphine- and ibogaine-only controls. The protein data is less clear

but when comparing combination groups 1 and 2 in Figure 4, it is

evident that combination morphine-ibogaine has less of an effect

at 24 h than after 72 h. The initial mRNA upregulation results in a

highly significant upregulation of the protein at 72 h which is what

you would expect. Although the morphine results are unexpected

and explained further in a subsequent paragraph, there is a definite

augmenting effect of combination morphine and ibogaine that

supersedes any substance on its own. A future experiment should

include additional time points for all groups, especially morphine-

only at 72 h to further clarify these findings, as this is the major

limitation of the current study.

These findings also point to a possible intricate relationship

between the mu and kappa opioid receptors and their roles

in myelination as a possible mechanism behind the enhanced

effect of the combination administration. Repeated morphine

administration would downregulate the mu opioid receptor and

lead to the recruitment of beta-arrestin (Valentino and Volkow,

2018). This downregulation could enhance the kappa opioid

receptor mechanisms of action of ibogaine as ibogaine is a partial

agonist at both kappa and mu opioid receptors. The upregulation

of these myelin proteins is seen after 72 h indicating the effects are
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FIGURE 4

Peak density of MBP (A) 18.5 isoform and (B) 21.5 isoform in white matter of the SD rats in the saline control (n = 8), morphine control (n = 6),

ibogaine control (n = 9), morphine ibogaine 1 (n = 8), and morphine-ibogaine 2 (n = 9). There was increased MBP expression of the 18.5 isoform

after ibogaine administration and in the morphine ibogaine group 2. There was no significant di�erences in the peak density of the 21.5 isoform

between the groups. **Shows significance (p < 0.0021). ***Shows significance (p < 0.0002).

likely due to the primary metabolite, noribogaine, with a higher

kapa opioid receptor affinity (Maillet et al., 2015). Dynorphin, the

endogenous kappa opioid receptor ligand, is known to be released

rapidly after drug administration, activating CNS and peripheral

kappa opioid receptors (Khan et al., 2022). This combined with the

downregulation of mu opioid receptors could enhance ibogaine’s

effect on the kappa opioid receptor and, thus, its involvement

in myelination.

We were also able to demonstrate an early upregulation ofMBP

mRNA following ibogaine as well as combined morphine-ibogaine

administration leading to an upregulation of MBP protein. An

early upregulation of CNP mRNA in the combination morphine-

ibogaine group 1 led to a significant upregulation in CNPase at 72 h

post administration. This is in line with previous studies showing

CNP and MBP to be the earliest markers of remyelination with

the myelin proteins being detected within 3–4 days (Skripuletz

et al., 2011). Our results indicate that CNP and MBP mRNA are

both upregulated early yet CNP diminishes by 72 h and MBP

continues to elevate. The two isomers of MBP that were seen in

the western blots were 21.5 and 18.5 kDa. The 18.5 kDa isomer

was increased in the ibogaine-only andmorphine-ibogaine 2 group.

The 21.5 kDa isoform showed no significant changes in protein

expression between the test groups. These results may indicate

differing activation mechanisms of the two isomers as previous

research has shown the 18.5 kDa isomer to be produced later in

the remyelination process than the 21.5 kDa isoform (Harauz and

Boggs, 2013). Another factor that may be involved in the timing

of myelination markers following ibogaine administration which

needs to be explored further is the differing effects of ibogaine and

noribogaine. Ibogaine is eliminated by 24 h post-administration

and noribogaine takes 5–7 days to be eliminated in humans (Mash,

2023) and both are eliminated by 24 h in the rat brain (Rodriguez

et al., 2020). This may influence MBP gene expression. Further

studies with either additional time points, direct administration of

noribogaine, or intravenous administration of ibogaine (to decrease

noribogaine formation) are required to explore this fully.

Further research is needed to identify ibogaine’s exact

mechanisms of action on the process of myelination yet likely

involve ibogaine’s influence on the mTOR signaling cascade (Ly

et al., 2018), production of BDNF (Marton et al., 2019), and its

affinity for the kappa opioid receptor (Du et al., 2016; Mei et al.,

2016). Ibogaine also has a reversible voltage gated antagonistic

effect on NMDA receptors (Popik et al., 1994; Mash, 2023). The

NMDA receptors present on oligodendrocytes regulatemyelination

and axonal health (Saab et al., 2016). NMDA receptor activation

may increase myelination and CNPase by increasing the cytosolic

calcium and reactive oxygen species (Cavaliere et al., 2012). Due

to ibogaine’s voltage gating the cytosolic calcium will need to

be at lower levels to activate the NOX-dependent generation

of reactive oxygen species, which will activate the PI3K/AKT

pathway (Cavaliere et al., 2012). The PI3K pathway promotes

neural plasticity by activating mTOR. The sigma 1 receptor agonist

affinity of ibogaine could also affect the oligodendrocyte CNPase

activity, as the sigma 1 receptor regulates Ca2+ channels, which is

important for CNPase activity and regulation of gene expression

(Soriani and Kourrich, 2019).

The finding of morphine upregulating CNPase and having

no effect on MBP was unexpected. We initially hypothesized

that repeated morphine administration would downregulate both

myelination markers as opioid addiction is known to decrease

white matter integrity (Bora et al., 2012; Li et al., 2013; Fan

et al., 2018). Bora et al. (2012) showed that longer drug use
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correlated with increased white matter injury so a possible

explanation could be that our administration regime was not

long enough. Our administration protocol of 10 days, although

adequate to facilitate neurobiological changes evident in the

CNPase and combination morphine-ibogaine findings, does not

represent a chronic morphine administration or opioid addiction

model. It would be of great interest to the field to investigate

these myelination markers in chronic morphine, conditioned-

place preference or opioid self-administration models. The effects

on myelination are likely to be augmented in the combination

treatment groups and may show demyelination in the morphine-

only groups. A recent study has shown morphine’s effects

on OPCs to be region specific whereby morphine-induced

oligodendrogenesis occured specifically in the ventral tegmental

area (Yalçin et al., 2024). Future research should, therefore, include

additional white matter regions. These findings may also explain

our differing results between morphine’s effects on CNP vs. MBP.

CNPase is an oligodendrocyte-related protein and MBP is only

related to myelin which may be the reason we only see an increase

in the morphine control with CNPase and not MBP. Maladaptive

myelination in reward circuitry is propped by Yalçin et al. (2024)

to represent a key neural substrate of pathological learning

associated with OUD, suggesting myelination as a potential

therapeutic target. This highlights the importance of ibogaine’s role

in remyelination.

There was a striking difference between ibogaine’s effect on

MBP protein vs. gene expression. The correlation between protein

and mRNA expression is understudied with many conflicting

results (Guo et al., 2008) and transcription factors would play

a major role in the opposing findings. Sox2 has been identified

as a crucial transcription factor for remyelination as it regulates

OPC proliferation (Zhao et al., 2015; Zhang et al., 2018). Sox2

regulates OPC proliferation by increasing proliferation of the OPCs

and inhibits their differentiation into mature oligodendrocytes

(Zhao et al., 2015; Zhang et al., 2018). This would be essential for

remyelination to occur. The transcription factors Olig1 and Olig2

have also been linked to remyelination (Wegener et al., 2015; Yang

et al., 2017; Zhao et al., 2019). Another major transcription factor

that is required for efficient remyelination and oligodendrocyte

regeneration is Stat3 (Steelman et al., 2016). These factors should be

investigated following ibogaine administration to fully understand

these molecular relationships.

These findings indicate that ibogaine is able to upregulate

genes and proteins involved in the process of remyelination and

highlights an important mechanism of action of ibogaine’s ability

to repair brain injury (Cherian et al., 2024) and treat substance

use disorders (Barsuglia et al., 2018; Mash et al., 2018; Mash,

2023). Future research should address ibogaine and noribogaine’s

effects on the mu and kappa opioid receptors as there is still

disagreement in the literature regarding specific receptor affinities

(Cameron et al., 2021; Mash, 2023). Experiments should be

designed with chronic morphine and imaging protocols to uncover

the full extent of the interaction between morphine and ibogaine

and structural plasticity of white matter. These experiments may

uncover ibogaine’s mechanism of action in being able to treat

opioid use disorders yet are also relevant for the numerous myelin-

associated diseases such as stroke and multiple sclerosis.
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Natural herbal extract roles and
mechanisms in treating cerebral
ischemia: A systematic review

Jiashuo Yang, Bo Yu and Jian Zheng*

Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China

Background: Stroke has been the focus of medical research due to its serious
consequences and sequelae. Among the tens of millions of new stroke
patients every year, cerebral ischemia patients account for the vast
majority. While cerebral ischemia drug research and development is still
ongoing, most drugs are terminated at preclinical stages due to their
unacceptable toxic side effects. In recent years, natural herbs have
received considerable attention in the pharmaceutical research and
development field due to their low toxicity levels. Numerous studies have
shown that natural herbs exert actions that cannot be ignored when treating
cerebral ischemia.

Methods:We reviewed and summarized the therapeutic effects andmechanisms
of different natural herbal extracts on cerebral ischemia to promote their
application in this field. We used keywords such as “natural herbal extract,”
“herbal medicine,” “Chinese herbal medicine” and “cerebral ischemia” to
comprehensively search PubMed, ScienceDirect, ScienceNet, CNKI, and
Wanfang databases, after which we conducted a detailed screening and
review strategy.

Results: We included 120 high-quality studies up to 10 January 2024. Natural
herbal extracts had significant roles in cerebral ischemia treatments via several
molecular mechanisms, such as improving regional blood flow disorders,
protecting the blood-brain barrier, and inhibiting neuronal apoptosis, oxidative
stress and inflammatory responses.

Conclusion: Natural herbal extracts are represented by low toxicity and high
curative effects, and will become indispensable therapeutic options in the
cerebral ischemia treatment field.

KEYWORDS

natural herbal extract, herbs, cerebral ischemia, blood-brain barrier, flavonoids

1 Introduction

Cerebral ischemia (CI) is a complex disease in clinical medicine. To put it simply,
due to various reasons, blood in brain tissue cannot support normal metabolism and
function, with subsequent symptoms collectively referred to as CI. Worldwide,
morbidity and mortality rates due to CI are very high. The disease is characterized
by several etiologies, changeable conditions, and serious consequences, which exert
extremely heavy burdens on patients and their families. The National Institutes of
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Health Stroke Scale is commonly used to assess neurological
damage in patients with clinical ischemia. Even if a patient avoids
death, most will experience severe neurological dysfunction.
Currently, the early treatment of patients with CI mainly
occurs via the rapid restoration of cerebral blood flow
perfusion, however, this restoration increases oxidative stress
and inflammatory responses in ischemic tissue, leading to
reperfusion injury. One factor that determines the severity of
a patient’s condition is ischemia duration, which is a very
important determinant when selecting treatment options for
patients with acute cerebral ischemia (ACI) (Powers, 2020).
Another problem that cannot be ignored is that the
recombinant tissue plasminogen activator (rt-PA) drug is
currently approved by the U.S. Food and Drug Administration
for stroke patients, but its treatment window is very narrow and it
has very serious side effects (e.g., cerebral hemorrhaging)
(Dhamija and Donnan, 2007). Thus, a lack of drugs is an

urgent issue for CI treatment. To remedy this, promoting low-
toxicity and high-efficiency drug research and development can
alleviate CI patient suffering. Our work is based on this purpose
and motivation.

Herbal medicines are gifts from nature, and have helped
humans solve medical problems that have plagued humankind
for centuries. For example, artemisinin extracted from Artemisia
annua L. helps alleviate malaria (Talman et al., 2019). Methanol
extracts from Allium turcicum Özhatay and Cowley exert
significant anticancer, antioxidant, and antimicrobial activities
(łpek et al., 2024). These natural herbal extracts (NHEs) have
active roles in many different fields, for example, a Chenopodium
quinoa Willd. seed extract restores photosystem II damage
caused by toxic metal salts (Ganieva et al., 2023).
Also, Pistacia atlantica Desf. extracts effectively inhibit
Fusarium oxysporum f. sp. albedinis to rescue infected date
palms (Fatiha et al., 2023). NHEs have unique structures and
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properties, and are roughly divided into alkaloids,
flavonoids, polysaccharides, glycosides, organic acids, and
volatile oils.

1.1 Alkaloids

Alkaloids are nitrogen-containing organic compounds mainly
found in plants, which have similar chemical properties to alkalis.
One common property is that they all contain nitrogen as part of
their chemical structure, but not all organic compounds containing
nitrogen are alkaloids. Thanks to natural herb research and
exploration, nearly 10,000 alkaloids have been discovered and
collected. Alkaloids are subdivided into more than 60 types, for
example, Leonurus japonicus Houtt. total alkaloid (LHA) is an
organic amine in alkaloids. LHA and kukoamine A (KuA) are
common alkaloids. LHA helps protect the blood-brain barrier
(BBB) and inhibits inflammatory reactions and apoptosis in
ischemia-reperfusion (IR) injury (Zhang Q.-Y. et al., 2017; Li Y.
et al., 2021). KuA impacts CI injury by alleviating brain edema and
inhibiting oxidative stress and apoptosis (Liu et al., 2017).

1.2 Flavonoids

Flavonoids are one of the most widespread organic compounds
in nature; they exist in almost all green plants, especially higher
plants. In the selected studies in this review, many have investigated
flavonoid NHEs, such as emodin, scutellarin, and icariin (ICA).
From our research, emodin enhances cell viability and inhibits
oxidative stress radicalization to alleviate IR injury (Wang et al.,
2007; Leung et al., 2020); scutellarin improves neurological
dysfunction in rats during IR injury by inhibiting apoptosis, focal
death, and necrosis (Wang C. et al., 2023); and ICA inhibits
apoptosis and protects neuronal dendrites during chronic
cerebral ischemia (CCI) to improve cognitive impairment (Li W.-
X. et al., 2015).

1.3 Polysaccharides

Polysaccharides are macromolecules composed of at least
10 monosaccharides, and have important roles maintaining
normal life activities. Polysaccharides are divided into plant,

FIGURE 1
Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) flow chart showing literature retrieval and screening in this review.
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animal, and fungal polysaccharides according to extraction sources.
Plant polysaccharides include ganoderma polysaccharides, lentinan,
ginseng polysaccharides, and other polysaccharides beneficial to
humans. Previous studies have reported that some
polysaccharides may have anti-tumor effects (Zhang et al., 2021).

1.4 Glycosides

Glycosides have high medicinal value, which not only enhance
immunity and antiviral effects, but also inhibit oxidative stress and
enhance metabolic function in cells. Astragaloside IV (ASIV),
ginsenoside, and notoginsenoside are well-known representative
glycosides, especially ASIV. As an Astragalus membranaceus
(Fisch.) Bunge extract, ASIV inhibits inflammatory reactions,
promotes neurogenesis and angiogenesis, promotes neurotrophic
factor expression, protects the BBB, and significantly improves
neurological dysfunction caused by IR injury (Li et al., 2013; Li
L. et al., 2021; Li S. et al., 2021; Shi et al., 2021). Ginsenoside has
protective roles in injury caused by ACI, CCI, and IR. It not only
inhibits apoptosis, increases angiogenesis, and improves local blood
flow disorders, but also protects the BBB and improves cognitive

dysfunction caused by CI (Zhou et al., 2014; Yang et al., 2016; Wang
S. et al., 2017; Wan et al., 2017; Zhang et al., 2019; Zhang C. et al.,
2020). Notoginsenoside resists injury caused by ACI and IR by
alleviating brain edema, enhancing cell viability, protecting the BBB,
and inhibiting apoptosis (Tu et al., 2018; Liu B. et al., 2021; Gao et al.,
2022; Liu et al., 2022).

1.5 Organic acids

Organic acids are widely found in leaves, roots, and especially
plant fruits. They have acidic properties, and are widely found in
Lonicera japonica Thunb., Schisandra chinensis (Turcz.) Baill.,
Prunus mume Siebold & Zucc., Rubus idaeus L., and other herbs.
Representative organic acid compounds from NHEs include
salvianolic acid A (SAA) and betulinic acid (BA). In an ACI
model, SAA reduces the incidence of cerebral hemorrhaging,
protects the BBB, relieves vascular endothelial dysfunction,
promotes neural function recovery, and induces neural
progenitor cell proliferation. SAA also alleviates ischemic brain
edema, inhibits inflammatory reactions, relieves oxidative stress,
inhibits apoptosis, and improves long-term learning and memory

TABLE 1 Summary of ACI study characteristics.

In vivo Quantity In vitro Quantity

Model Model

MCAO 14 OGD 7

PT 3 Model of cell injury induced by COCl2 1

autologous thrombotic stroke model 2 Cell types

Species PC12 2

SD rats 15 N2A 1

ICR mice 2 bEnd.3 1

Wistar rats 1 HBMEC 1

Tree shrews 1 Primary neurons 2

C57BL/6 mice 1 Primary microglia 1

Drug effect Hippocampal slices 1

Reduce neurological deficit 15 Drug effect

Reduce cerebral edema 4 Enhance cell viability 7

Inhibit oxidative stress response 4 Improve mitochondrial dysfunction 1

Reduce infarct size 11 Protect the blood-brain barrier 1

Inhibition inflammatory response 3 Inhibit calcium inflow 1

Reduce cerebral thrombosis 1 Inhibit oxidative stress response 1

Protect the blood-brain barrier 3 Inhibit apoptosis 2

Ameliorate mitochondrial dysfunction 3 Inhibit inflammatory response 2

Improve regional cerebral blood flow disturbance 5 Alleviate glutamate hyperexcitation injury 1

Promote angiogenesis 2

Inhibit astrocyte activation and proliferation 1
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defects (Jiang et al., 2011; Chien et al., 2016; Song et al., 2019; Liu C.
et al., 2021; Ling et al., 2021; Yang Y. et al., 2022). BA also inhibits
neuronal autophagy against IR injury (Zhao et al., 2021).

1.6 Volatile oils

Volatile oils mainly come from aromatic traditional Chinese
medicine, with many fragrant plants more or less containing these
compounds. The group includes terpenoids and aromatic
compounds and also their oxygen-containing derivatives such as
alcohols, aldehydes, ketones, phenols, ethers, and lipids.
Additionally, the group includes some nitrogen- and sulfur-
containing compounds. The most common NHEs are ginkgolide
and ligustilide (LIG). Seven ginkgolide species have been found: A,
B, C, M, J, K, and L. Ginkgolide B (GB) exerts the greatest effects, so
many pharmacological studies have focused on this compound. GB
protects the BBB and improves mitochondrial respiratory function
against ACI injury (Li et al., 2007). LIG alleviates neurological
deficits and inhibits apoptosis, astrocyte activation and
proliferation, and oxidative stress responses in a CCI model
(Feng et al., 2012; Peng D. et al., 2022).

2 Search strategy

To comprehensively and systematically conduct literature
retrieval and data extraction, we preliminarily searched and
screened all studies from PubMed, ScienceDirect, Web of
Science, CNKI, and WANFANG databases before 10 January
2024 in strict accordance with Preferred Reporting Items for
Systematic Review and Meta-analysis (PRISMA) guidelines. The
retrieval keywords are as follows: 1) natural herbal extracts, 2)
Chinese herbal medicines, 3) herbal medicines, and 4) cerebral
ischemia. Constructed retrieval expressions are (natural herbal
extracts OR Chinese herbal medicines OR herbal medicines)
AND cerebral ischemia. After retrieving pertinent studies (n =
7,018), we preliminarily screened (using titles, keywords, and
abstracts) and comprehensively reviewed these studies. Finally,
120 studies were selected for review (Figure 1).

2.1 Inclusion and exclusion criteria

In view of the therapeutic effects and mechanisms of NHEs
toward CI, and the large number of studies, we formulated the
following inclusion and exclusion criteria. Inclusion criteria; 1) A
cerebral ischemia model and 2) a control group are included; 3) At
least one experimental group used NHEs as an intervention; and 4)
Research data are published in high impact journals. Exclusion
criteria; 1) Reviews or books; and 2) Studies on other diseases
and compounds.

2.2 Data extraction and treatment evaluation

The authors independently extracted and summarized
information from selected studies, solved any issues via

discussion, and finally summarized the information, including; 1)
NHEs; 2) The source and voucher numbers of the herbal
medicine; 3) Extraction methods 4) Extraction parts and
solvents; 5) Toxicity and side effects; 6) Related diseases in the
study; 7) Establishing in vitro or in vivomodels; 8) Animal or cell
models; 9) Dose and time of treatment; 10) Main biological
effects; 11) Mechanism of action; 12) Year of publication and
first author; and 13) Positive controls.

2.3 Risk of bias

After discussions, the authors referred to the previous literature
(Dong et al., 2023) to establish an evaluation scale of bias risk for
selected studies. The following questions were posed; 1) Had the
study passed peer review; 2) Were randomness principles followed
when grouping models; 3) Were blinding methods applied during
drug interventions and data collection; 4) Were sample sizes
statistically calculated before model establishment; 5) Were
animal welfare laws and regulations strictly observed in the
research process; and 6) Were potential conflicts of interest
between authors declared?

3 Results

From our strategy, 7,018 studies were retrieved, including
2032 Pubmed results, 1,242 Web of Science results,
3,578 ScienceDirect results, 124 CNKI results, and
42 WANFANG results. After preliminary screening and applying
inclusion and exclusion, 120 studies were finally selected (Figure 1).
Among these, 21 were related to ACI, 28 to CCI, and 71 to IR. In
order to avoid disease subtype differences which may have affected
our study results, we separately summarized the therapeutic effects
of NHEs for ACI, CCI, and IR.

3.1 ACI

In the 21 ACI-related studies were 19 in vivo and nine in vitro
studies, from which we summarized the characteristics of
each study (Table 1). To ensure reliability, we summarized in
vivo and in vitro study characteristics, separately. In the 19 in
vivo studies, NHEs mitigated ACI-induced damage via different
modes of action (Table 2). In nine in vitro studies, damaged cell
models achieved varying degrees of remission after a NHE
intervention (Table 3).

3.2 CCI

We included 28 studies on CCI, including 28 in vivo and four
in vitro studies. We summarized CCI-related research
characteristics (Table 4). NHEs alleviated damage caused by CCI
and improved cognitive dysfunction caused by ischemia (Table 5).
Detailed information on four studies outlining in vitro CCI
characteristics (extracts, interventions, biological effects, and
mechanisms) is shown (Table 6).
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TABLE 2 NHE therapeutic effects and mechanisms in in vivo ACI models.

Author(Year) Extracts Model Species Interventions Positive
control

Biological effects (experimental
protocol)

Mechanism Regulation

Wang et al. (2022) catalpol MCAO SD rats catalpol(10 mg/kg) for 7 d NA Reduce neurological deficit (mNSS)
Alleviate ischemic brain edema (water content
calculation)
Inhibit oxidative stress response (MDA assay)
Reduce infarct size (TTC)

Nrf2/HO-1 path
Bax/Bcl-2 path

Upregulated(Nrf2/HO-
1 path)
Downregulated(Bax/Bcl-
2 path)

Zhao et al. (2017) MO autologous
thrombotic stroke
model

Wistar rats MO(100/250/500 mg/kg)
for 3 d

NA Reduce neurological deficit (neurological deficit
scores)
Reduce infarct size (TTC)
Reduce cerebral thrombosis (radioimmunoassay)
Inhibit oxidative stress and inflammatory
response (Westernblot)

6-keto-PGF1α/TXB2
Bax/Bcl-2 path

Downregulated

Li et al. (2007) GB PT Tree shrews GB(5 mg/kg)for 6 h NA Protect the blood-brain barrier (EB test)
Improve the mitochondrial respiration
(determining the oxygen consumption in an
airtight chamber)

PAFR Downregulated

Fei et al. (2017) SCED MCAO SD rats SCED(3.75/7.5/15 mg/kg)
for 3 d

Ginaton(15 mg/kg) Reduce neurological deficit (Longa)
Improve regional cerebral blood flow disturbance
(laser-Doppler)
Alleviate ischemic brain edema (water content
calculation)
Reduce infarct size (TTC)

TXA2
PLC/PKC path

Downregulated

Liu et al. (2022) NGR1 MCAO SD rats NGR1(20/40 mg/kg)
for 24 h

Dl-3-n-Butylphthalide Reduce neurological deficit (neurological deficit
scores)
Reduce infarct size (TTC)
Accelerate energy metabolism (RT-qPCR)

Atp12a
Atp6v1g3

Upregulated

Gao et al. (2022) PNS MCAO ICR mice PNS(50/100 mg/kg)
for 3 d

minocycline Reduce neurological deficit (Longa)
Improve regional cerebral blood flow disturbance
(Laser speckle imaging)
Inhibit microglial activation and inflammatory
response (Westernblot)

HIF-1α/PKM2/
STAT3 path

Downregulated

Liu et al. (2021a) NGR1 MCAO SD rats NGR1(10/20/40 mg/kg)
for 12 h

Dl-3-n-Butylphthalide Protect the blood-brain barrier (EB test) NA

Wang et al. (2017a) GSRb1 PT SD rats GSRb1(25/50/100 mg/kg)
for 1 d

nimodipine Improve regional cerebral blood flow disturbance
(laser-Doppler)

GLT-1
NMDAR
Cyt-C

Upregulated(GLT-1)
Downregulated(NMDAR
and Cyt-C)

Liu et al. (2021b) SAA autologous
thrombotic stroke
model

SD rats SAA(10 mg/kg) for 5 d aspirin Reduce neurological deficit (Longa)
Protect the blood-brain barrier (EB test)

VEGFA/Src/VAV2/
Rac/PAK/MMPs

Downregulated

Liu et al. (2010) TSA MCAO SD rats TSA(15/20 mg/kg) for 1 d NA Reduce neurological deficit (Longa)
Alleviate ischemic brain edema (water content
calculation)

TORC1/CREB/BDNF
path

Upregulated

(Continued on following page)
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TABLE 2 (Continued) NHE therapeutic effects and mechanisms in in vivo ACI models.

Author(Year) Extracts Model Species Interventions Positive
control

Biological effects (experimental
protocol)

Mechanism Regulation

Yang et al. (2016) GSRd MCAO SD rats GSRd(10 mg/kg) for 7 d NA Reduce neurological deficit (Longa)
Reduce infarct size (TTC)
Mitigate mitochondrial DNA and nuclear DNA
damage (real-time analysis of mutation
frequency)

NEIL1/3 Upregulated

Ma et al. (2021) L-borneol MCAO SD rats L-borneol(50/100/
200 mg/kg) for 3 d

nimodipine(12 mg/kg) Reduce neurological deficit (Longa)
Reduce infarct size (TTC)
Promote angiogenesis (ELISA)

Ang1/VEGF/BDNF
path

Upregulated

Zhang et al. (2023b) SHPL-49 MCAO SD rats SHPL-49(2.5/5/7.5/10/
15 mg/kg) for 5 d

Edaravone(7.5 mg/kg) Improve regional cerebral blood flow disturbance
(laser-Doppler)
Reduce infarct size (TTC)
Reduce neurological deficit (Bederson)

Bax/Bcl-2/Caspase-
3 path

Downregulated

Li et al. (2012a) Galangin MCAO SD rats Galangin(25/50/
100 mg/kg)

EGB761(4 mg/kg) Improve mitochondrial viability (Measurement
of Mitochondrial Viability)
Improve regional cerebral blood flow disturbance
(laser-Doppler)
Inhibit oxidative stress response (ROS assay)
Reduce infarct size (TTC)

Bax/Bcl-2/Caspase-
3 path

Downregulated

Liu et al. (2017) KuA MCAO SD rats KuA(5/10/20 mg/kg)
for 6 h

NA Reduce neurological deficit (neurological deficit
scores)
Reduce cerebral edema (water content
calculation)
Inhibit oxidative stress response (MDA assay)
Reduce infarct size (TTC)

Bax/Bcl-2/Caspase-
3 path

Downregulated

Li et al. (2015a) T-VA MCAO SD rats ICR
mice

T-VA(30/60/120 mg/kg)
for 10 d

NA Reduce neurological deficit (neurological deficit
scores)
Promote vascular endothelial cell proliferation
(immunohistochemical)

VEGF Upregulated

Liu et al. (2019a) KRGP MCAO C57BL/
6 mice

KRGP(100 mg/kg) for 7 d NA Reduce neurological deficit (neurological deficit
scores)
Inhibit astrocyte activation and proliferation
(immunofluorescence)
Ameliorate abnormal glutamate metabolism
(Westernblot)

Nrf2 Upregulated

Jiang et al. (2018a) Celastro MCAO SD rats celastro NA Reduce neurological deficit (neurological deficit
scores)
Reduce infarct size (TTC)
Inhibit inflammatory response
(immunofluorescence)

NA

Zhang et al. (2013) Luteolin MCAO SD rats Luteolin(4 mg/kg) for 48 h NA Reduce neurological deficit (Longa)
Reduce infarct size (TTC)

Caspase-3 path Downregulated
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TABLE 3 NHE therapeutic effects and mechanisms in in vivo ACI models.

Author(Year) Extracts Model Cell types Interventions Positive
control

Biological effects
(experimental protocol)

Mechanism Regulation

Liu et al. (2022) NGR1 OGD N2A NGR1 (5/10/20/100/200 μM)
for 24 h

Dl-3-n-Butylphthalide Enhance cell viability (CCK-8)
Improve mitochondrial dysfunction
(mitochondrial membrane potential
detection)

NA

Liu et al. (2021a) NGR1 OGD bEnd.3 NGR1 (200 μM) Dl-3-n-Butylphthalide Protect the blood-brain barrier
(Westernblot)

caveolin1/MMP2/9 path Upregulated

Liu et al. (2021b) SAA OGD HBMEC SAA (10 μM) aspirin Enhance cell viability (CCK-8) VEGFA/Src/VAV2/Rac1/
PAK path

Downregulated

Zhang et al. (2023b) SHPL-49 OGD PC12 SHPL-49 (100/200 μM)
for 24 h

NA Inhibit calcium inflow (fluorescent
probe)
Enhance cell viability (CCK-8)
Inhibit oxidative stress response (ROS
assay)
Inhibit apoptosis (Hoechst staining)

Bax/Bcl-2/Caspase-3 path Downregulated

Li et al. (2015a) T-VA Model of cell injury
induced by COCl2

PC12 T-VA (15/30/60 μM) for 36 h NA Enhance cell viability (MTT)
Inhibit inflammatory response
(immunohistochemical)

NF-κB/p65
COX-2

Downregulated

Jiang et al. (2018a) celastro OGD Primary neurons、
Primary microglia

Celastro (0.25/0.5/1/2 μM)
for 3 h

NA Enhance cell viability (CCK-8)
Inhibit apoptosis (Flow Cytometry)
Inhibit inflammatory response
(Westernblot)

IL-33/ST2 Upregulated

Ferreira et al. (2023) EDAC OGD Hippocampal slices EDAC (1/10 μg/mL) for 1 h NA Alleviate glutamate hyperexcitation
injury (Annexin V/PI assay)
Protect astrocytes and oligodendrocytes
(immunohistochemical)

Glutamate receptor Downregulated

Sun et al. (2015) Asiaticoside OGD Primary neurons Asiaticoside (10/100 nM)
for 24 h

NA Enhance cell viability (MTT) Bax/Bcl-2/Caspase-3 path Downregulated

Zhang et al. (2013) Luteolin OGD SH-SY5Y Luteolin(10/25/50 ug/mL) sulforaphane(10 μM) Enhance cell viability (MTT) Nrf2 Upregulated
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3.3 Cerebral IR

Of the 71 cerebral IR-related studies, 68 were in vivo and 31 were
in vitro based. A summary of study characteristics is shown
(Table 7), and then we describe the studies in vivo and in vitro,
separately. Studies showed that NHEs had therapeutic roles in in
vivo brain IR models (Supplementary Table S1). NHEs also reduced
IR damage in in vitro models (Table 8).

4 Quality evaluation of selected studies

Using our bias risk assessment scale, bias risk assessments were
conducted on the 120 studies. All were peer-reviewed publications
and they strictly complied with animal welfare regulations, which
meant that all studies had at least two points (total score = 6 points).
Additionally, 120 studies followed randomization principles
(84.17%), 39 adopted blind methods (32.5%), 88 declared

conflicts of interest among authors (73.33%), and only one study
statistically calculated the sample size (0.83%) (Figure 2). Perhaps
some researchers had calculated sample sizes before their studies,
but this was not stated. After evaluations, bias risk scores for studies
were in the 2–6 range: six studies scored 2 (5%), 29 scored 3
(24.17%), 56 scored 4 (46.67%), 28 scored 5 (23.33%), and one
scored 6 (0.83%). Approximately half (46.67%) received four points,
which proved that study quality was high. Bias risk evaluations for
studies are shown (Table 7).

5 Toxicity

Unfortunately, many studies failed to provide NHE-related
toxicity information. While drug toxicity studies are usually
conducted at pre-experimental stages, researchers must articulate
this. To complement the required NHE toxicity reports for this
review, we performed additional NHE safety reviews by

TABLE 4 Summary of CCI study characteristics.

In vivo Quantity In vitro Quantity

Model Model

MCAO 2 OGD 3

rUCCAO 1 Model of cell injury induced by H2O2 1

2VO 14 Cell types

BCAS 3 PC12 1

BCCAo 5 SH-SY5Y 1

4VO 1 Primary neurons 1

PBOCCA 2 HT-22 1

Species Drug effect

SD rats 14 Enhance cell viability 1

C57BL/6 mice 5 Inhibit apoptosis 1

Wistar rats 9 Alleviate hypoxic damage 1

Drug effect Ameliorate mitochondrial dysfunction 1

Reduce neurological deficit 6

Induce proliferation of neural progenitor cells 1

Improve cognitive impairment 24

Inhibit activation and proliferation of astrocytes 2

Inhibit oxidative stress response 5

Inhibit apoptosis 1

Inhibit inflammatory response 3

Inhibit neuronal demyelination 3

Protect neuronal dendrites 1

Inhibit microglial activation 1

Improve regional cerebral blood flow disturbance 1

Reduce infarct size 1
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TABLE 5 NHE therapeutic effects and mechanisms in in vivo CCI models.

Author(Year) Extracts Model Species Interventions Positive control Biological effects
(experimental protocol)

Mechanism Regulation

Zhang et al. (2017b) SA MCAO C57BL/
6 mice

SA (15/30 mg/kg) for 14 d NA Reduce neurological deficit (mNSS)
Induce proliferation of neural progenitor
cells (Westernblot)

SHH/BDNF
NGF

Upregulated

Wan et al. (2022) Triptolide rUCCAO C57BL/
6 mice

Triptolide (5/20 ug/kg)
for 28 d

NA Improve cognitive impairment (new object
recognition test, Morris water maze)

Src/Akt/GSK3β path Upregulated

Feng et al. (2012) LIG 2VO SD rats LIG (80 mg/kg) for 7 d NA Improve cognitive impairment (Morris
Water Maze)
Inhibit activation and proliferation of
astrocytes (immunohistochemical)

NA

Peng et al. (2022a) LIG 2VO SD rats LIG (20/40 mg/kg) for 28 d NA Improve cognitive impairment (Morris
Water Maze)
Inhibit oxidative stress response (MDA
assay)

SIRT1/IRE1α/XBP1s/
CHOP path

Upregulated

Yang et al. (2022a) SAA 2VO Wistar rats SAA (5/10/20 mg/kg)
for 56 d

nimodipine(10 mg/kg) Improve cognitive impairment (Morris
water maze, open field test)
Inhibit apoptosis (TUNEL staining)
Inhibit inflammatory response
(immunofluorescence)

Drd2/Cryab/NF-κB
path

Upregulated

Tan et al. (2022) Que BCAS C57BL/
6 mice

Que (60 mg/kg) for 14 d NA Improve cognitive impairment (Morris
water maze, open field test, tail suspension
test, forced swimming test, sucrose
preference test)

NA

Liu et al. (2019b) CZ-7 2VO Wistar rats CZ-7 (10/20/40 mg/kg)
for 25 d

nimodipine(20 mg/kg) Improve cognitive impairment (Morris
Water Maze)
Inhibit oxidative stress response (MDA
assay)

Nrf2 Upregulated

Zhang et al. (2023a) Honokiol BCAS C57BL/
6 mice

Honokiol (10 mg/kg)
for 30 d

NA Improve cognitive impairment (open field
test, new object recognition test, fear
conditioning, Y maze)
Inhibit neuronal demyelination
(immunohistochemical)

Akt/mTOR path Upregulated

Chen et al. (2018a) HAR 2VO Wistar rats HAR (15 mg/kg) for 60 d NA Improve cognitive impairment (Morris
water maze, passive avoidance experiment)

PTEN/Akt/GSK3β Downregulated

Lee et al. (2015) Fructus
extracts

BCCAo Wistar rats Fructus extracts
(200 mg/kg) for 40 d

NA Inhibit neuronal demyelination
(immunohistochemical)
Inhibit inflammatory response
(Westernblot)

TLR4/
MyD88 p38 MAPK

Downregulated
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TABLE 5 (Continued) NHE therapeutic effects and mechanisms in in vivo CCI models.

Author(Year) Extracts Model Species Interventions Positive control Biological effects
(experimental protocol)

Mechanism Regulation

Li et al. (2012b) Polydatin 4VO SD rats Polydatin (12.5/25/
50 mg/kg) for 30 d

Ginkgo Tablets
(25 mg/kg)

Improve cognitive impairment (Morris
Water Maze)
Inhibit oxidative stress response (MDA
assay)

NA

Shi et al. (2020) Gas 2VO SD rats Gas (22.5/90 mg/kg)
for 28 d

NA Improve cognitive impairment (Morris
water maze, attention diversion test)

NA

Wu et al. (2023) Gas 2VO SD rats Gas (25/50 mg/kg) for 28 d NA Improve cognitive impairment (Morris
water maze, passive avoidance experiment)
Reduce neuronal ischemic injury
(immunohistochemical)

NA

Yao et al. (2021) EGB761 2VO SD rats EGB761(100 mg/kg)
for 30 d

NA Improve cognitive impairment (Morris
water maze, new object recognition test)
Inhibit neuronal demyelination
(immunohistochemical)

mTOR Upregulated

Kim et al. (2016) GBE BCCAo Wistar rats GBE (5/10/20/40 mg/kg)
for 42 d

NA Inhibit activation and proliferation of
astrocytes (immunohistochemical)
Inhibit inflammatory response
(Westernblot)

NA

Niu et al. (2020) EF 2VO SD rats EF (50/100/200 mg/kg)
for 84 d

nimodipine(10 mg/kg) Improve cognitive impairment (new object
recognition test, Y maze)
Protect neuronal dendrites
(immunohistochemical)

NRG1/ErbB4
BDNF/Fyn
PI3K/Akt/CREB

Upregulated

Li et al. (2015b) ICA BCCAo SD rats ICA (10/40 mg/kg) for 23 d NA Improve cognitive impairment (Morris
Water Maze)

BACE1
ADAM10
IDE

Downregulated(BACE1)、
Upregulated(ADAM10、IDE)

Wan et al. (2017) GSRd BCAS C57BL/
6 mice

GSRd (10/30 mg/kg)
for 21 d

NA Improve cognitive impairment (Morris
water maze, open field test)
Reduce neuronal ischemic injury (HE
staining)

BDNF Upregulated

Zong et al. (2019) CK 2VO SD rats CK (50/100/200 mg/kg)
for 56 d

donepezil(2 mg/kg) Improve cognitive impairment (Morris
Water Maze)
Reduce neuronal ischemic injury (HE
staining)

GSK3β
IDE

Upregulated(IDE)
Downregulated(GSK3β)

Zhu et al. (2018) GSRg1 2VO Wistar rats GSRg1 (50/100 mg/kg)
for 56 d

nimodipine(20 mg/kg) Improve cognitive impairment (Morris
water maze, balance beam test)
Reduce neuronal ischemic damage
(Westernblot)

Bcl-2/Bax
VEGF

Upregulated

Hwang et al. (2011) SB extracts BCCAo Wistar rats SB extracts (100/
200 mg/kg) for 40 d

donepezil(10 mg/kg) Improve cognitive impairment (Morris
Water Maze)

MAPKs Upregulated

(Continued on following page)
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TABLE 5 (Continued) NHE therapeutic effects and mechanisms in in vivo CCI models.

Author(Year) Extracts Model Species Interventions Positive control Biological effects
(experimental protocol)

Mechanism Regulation

Ahad et al. (2023) CTRF PBOCCA SD rats CTRF (10/20/40 mg/kg) NA Improve cognitive dysfunction (Morris
water maze, passive avoidance test, open field
test)

NA

Damodaran et al.
(2018)

CTRF PBOCCA SD rats CTRF (100/200/
300 mg/kg)

NA Improve cognitive dysfunction (Morris
water maze, passive avoidance test, open field
test)

NA

Tiang et al. (2020) XEFGM
α-MG

2VO SD rats XEFGM (25/50/
100 mg/kg) for 40 d
α-MG (25,50 mg/kg)
for 40 d

NA Improve cognitive dysfunction (Morris
water maze, open field test)

NA

Hosseinzadeh et al.
(2012)

CSL extracts
crocin

2VO Wistar rats CSL extracts (50/100/
250 mg/kg) for 5 d
Crocin (5/10/25 mg/kg)
for 5 d

NA Improve cognitive dysfunction (Morris
water maze)

NA

Kim et al. (2023) AA BCCAo Wistar rats AA (150/750 mg/kg)
for 56 d

NA Improve cognitive dysfunction (open field
test, Y maze, eight-arm maze test)
Inhibit microglial activation
(immunohistochemical)
Inhibit oxidative stress response
(immunohistochemical)

Nrf2/Keap1/ARE path Upregulated

Guang and Du. (2006) pinocembrin 2VO SD rats Pinocembrin (0.5/5 mg/kg)
for 14 d

NA Improve regional cerebral blood flow
disturbance (laser-Doppler)
Improve cognitive impairment (Morris
Water Maze)
Inhibit oxidative stress response
(Measurement of hydrogen peroxide
production in mitochondria)

NA

Zhou et al. (2021b) PNS MCAO SD rats PNS (72 mg/kg) for 14/28 d nimodipine(14.4 mg/kg) Reduce neurological deficit (Longa)
Reduce infarct size (TTC)

ROCKII Downregulated
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summarizing the toxicity reports in selected studies (Supplementary
Table S2). However, not all NHEs have accompanying toxicity
reports, which undoubtedly confirms a lack of safety studies in
the natural herb research field. Reported that the LD50 (median
lethal dose, the minimum amount of toxin required to kill half of an
animal of a certain weight or age within a specified period of time) of
SAA in mice (the dose required to kill half of cells/animal after a
specific trial duration) was 1,161.2 mg/kg (Yang M.-Y. et al., 2022).
G. biloba extracts may be carcinogenic and caution is recommended
for their long-term use (Mei et al., 2017). ASIV is not toxic during
maternal and embryonic development, but may inhibit fertility in
female rats, suggesting its non-use in perinatal periods (Xuying et al.,
2010). Luo et al. reported that emodin reduces and inhibits human
sperm motility, suggesting some reproductive toxicity in these cells
(Luo et al., 2015). LHA did not generate significant adverse reactions
in toxicity tests in multiple experimental animals (Zhu et al., 2018).
The main component of an ethanolic extract from Erythrina
velutina Willd. (EEEV) is gallic acid, with in vivo studies
showing that gallic acid at 210 mg/kg exerted no toxic effects in
mice (Li et al., 2019). Ginkgolide A and ginkgolide B reduce mouse
blastocyst viability and cause embryonic retardation in mice, leading
to embryo death, suggesting caution when using these reagents
during pregnancy (Mei et al., 2017). The main component of
supercritical CO2 extracts from DanShen (SCED) is tanshinone
IIA (TSA); it was found that at high TSA concentrations (25M),
zebrafish embryo models exhibited severe growth inhibition,
developmental malformations, and cardiotoxicity (Wang T. et al.,
2017). Usually there are no obvious side effects when Panax
notoginseng is supplemented to patients, but due to its estrogen
effects, some patients have reported vaginal bleeding and distending
breast pain. Those patients taking high P. notoginseng doses (>2.5 g/
day) have central nervous system damaging effects such as insomnia,
tachyarrhythmia, hypertension, and tension (Mancuso and
Santangelo, 2017). In vivo betulinic acid studies showed no signs
of systemic toxicity (Liu C. et al., 2019). Scutellarin has the lowest
toxicity in rodents, and can even be said to be non-toxic. Quercetin
(Que) toxicity is low; the organ weights and histopathology of rats

treated with 400 mg/kg/d Que for 410 consecutive days showed no
significant changes. Ginsenoside Rd, ginsenoside Rb1, and
notoginsenoside promote cancer cell apoptosis and have
significant effects in cancer treatment. Notoginsenoside R1 also
inhibits cell proliferation, migration, invasion and angiogenesis,
and promotes cell apoptosis at 150 µM. Shikonin is considered
safe, but may cause skin allergies at very low doses. Luteolin exerts
cytotoxicity at 5 μM and 10 µM doses, and its safety must be further
evaluated in animal models and clinical trials. Hydroxysafflor yellow
A is sensitive to interactions between herbs and drugs, resulting in
no therapeutic effects at certain doses (Guo et al., 2023). Galangin
has an IC50 (half-inhibitory concentration, the concentration at
which a biological process or activity is inhibited by 50%) value of
275.48 μM in V79 cells, and does not produce genotoxic effects at all
concentrations (Bacanlı et al., 2017). Similarly, echinocystic acid
(EA) exerts no cytotoxic effects under any conditions in cell viability
assays (Joh et al., 2012). Glycyrrhizin is moderately toxic and should
be used with caution during pregnancy. It also has selective cytotoxic
effects toward cancer cells, and its most important side effects are
secondary diseases induced by hypertension and hypokalemia
(Nazari et al., 2017). After the maternal application of 1.0 mg/kg
ASIV for 28 consecutive days, ASIV delays development in young
rats and should be used with caution in perinatal women (Zhang
J. et al., 2020). Studies report serious adverse reactions to matrine,
the most serious being hepatotoxicity, neurotoxicity, and
reproductive toxicity (Wang X. et al., 2023). Acute and subacute
toxicity studies report that breviscapine is a safe drug with a
potential for widespread use in clinical settings (Wu et al., 2021).
Icariin has an IC50 of 20 μM in HeLa cells, and its toxic effects in
normal cells are relatively negligible (Huang et al., 2019).

6 Discussion

We comprehensively summarized the molecular mechanisms
underlying CI treatment by NHEs (Figure 3). As mentioned, NHE
therapeutic effects toward CI are roughly divided in two ways: one

TABLE 6 NHE therapeutic effects and mechanisms in in vitro CCI models.

Author(Year) Extracts Model Cell
types

Interventions Positive
control

Biological
effects
(experimental
protocol)

Mechanism Regulation

Peng et al. (2022a) LIG OGD PC12 LIG (80 µM) for 2 h NA NA SIRT1/IRE1α/
XBP1s/CHOP
path

Upregulated

Yang et al. (2022a) SAA OGD SH-SY5Y SAA (0.05/0.5/5/
10/50 µM)

NA Inhibit apoptosis (Flow
Cytometry)

Drd2/Cryab/NF-
κB path

Upregulated

Li et al. (2012b) Polydatin OGD Primary
neurons

Polydatin (12.5/
5 μg/mL)

NA Alleviate hypoxic
damage (phase-contrast
microscopy)

NA

Wu et al. (2023) Gas Model of
cell injury
induced by
H2O2

HT-22 Gas (100 µM) NA Enhance cell viability
(MTT)
Ameliorate
mitochondrial
dysfunction (oxygen
consumption rate)

NA
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reduces damage, mainly by improving local blood flow disturbance,
inhibiting oxidative stress, inflammatory responses and apoptosis,
relieving cerebral edema, protecting the BBB, and inhibiting
excitatory amino acid overexpression. The other way promotes
injury recovery, mainly by promoting endothelial cell
proliferation and migration, promoting neuron proliferation and

differentiation, and promoting neurotrophic factor expression.
NHEs may also act on molecules, such as SAA, via several
pathways. SAA is a bioactive compound extracted from Salvia
miltiorrhiza Bunge. Studies report that SAA has direct or indirect
effects on toll-like receptor 2/4 (TLR2/4), phosphoinositide 3-kinase
(PI3K), glycogen synthase kinase 3β (GSK3β), vascular endothelial

TABLE 7 Summary of IR study characteristics.

In vivo Quantity In vitro Quantity

Model Model

MCAO/R 65 OGD/R 24

4VO 1 Model of cell injury induced by H2O2 1

2VO 2 Model of cell injury induced by glutamic acid 1

Species EAN 1

SD rats 41 Cell types

C57BL/6 mice 11 PC12 4

Wistar rats 6 SH-SY5Y 5

Swiss mice 1 Primary neurons 8

ICR mice 7 BMEC 1

Long-Evans rats 1 bEnd.3 2

Trpm8−/− mice 2 Primary microglia 7

Mongolian gerbils 1 Primary cortical capillary endothelial cells 1

Kunming mice 1 HUVEC 1

Drug effect HBMEC 1

Reduce neurological deficit 40 BV2 2

Reduce cerebral edema 11 N2A 1

Inhibit oxidative stress response 11 Olineu 1

Reduce infarct size 45 C17.2 cell 1

Inhibition inflammatory response 17 Drug effect

Facilitate the production of new neurons 3 Enhance cell viability 14

Protect the blood-brain barrier 8 Inhibit apoptosis 5

Inhibit neuronal autophagy 4 Inhibit granulocyte adhesion 1

Improve regional cerebral blood flow disturbance 3 Promote endothelial cell proliferation, migration and
invasion

1

Increase angiogenesis 4 Inhibit oxidative stress response 5

Promote astrocyte activation and proliferation 3 Protect the blood-brain barrier 1

Inhibit degradation of tight junctions in ischemic
areas

1 Inhibit degradation of tight junctions in ischemic areas 1

Inhibit brain infiltration by NK cells 1 Inhibition inflammatory response 7

Promote M2 microglia/macrophage polarization 1 Promote neuronal proliferation and differentiation 1

Promote neurotrophic factor expression 1 Inhibit autophagy 1

Improve cognitive impairment 3 Alleviate glutamate-induced neuronal damage 1

Inhibit microglial activation 2

Inhibit glutamate-induced calcium increase 1
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TABLE 8 NHE therapeutic effects and mechanisms in in vivo IR models.

Author(Year) Extracts Model Cell types Interventions Positive control Biological effects
(experimental protocol)

Mechanism Regulation

Zhang et al. (2017a) LHA OGD/R bEnd.3 LHA(15 uM) NA Inhibit degradation of tight junctions
in ischemic areas
(immunofluorescence)

HDAC4/NOX4/MMP-
9 path

Upregulated

Zhang et al. (2018) DGMI
GA
GB
GC

OGD/R PC12 DGMI(1/10/20 ug/mL)
GA, GB or GC (10 μmol/L)

N-Acetyl-L-cysteine Enhance cell viability (MTT)
Inhibit oxidative stress response
(Westernblot)

PI3K/Akt/Nrf2/HO-
1 path
PI3K/Akt/CREB/Bcl-2/
Bax/Caspase-3 path

Upregulated

Yang et al. (2018) EGB761
GB

EAN Primary microglia
Primary cortical
capillary
endothelial cells

EGB761 (0.1 mg/mL)
GB (100 mmol/L)

NA Enhance cell viability (MTT)
Protect the blood-brain barrier (Na-F
analysis)
Inhibit apoptosis (Westernblot)

Bax/Bcl-2 path Downregulated

Tu et al. (2018) NGR1 OGD/R Primary neurons NGR1 (10 μM) NA Enhance cell viability (MTT) ER/PI3K/Akt/mTOR
JNK path

Upregulated

Ling et al. (2021) SAA OGD/R Primary neurons
Primary microglia

SAA (62.5/125/250 μg/mL)
for 15 m

NA Inhibit inflammatory response
(Westernblot)

TLR2/4 Downregulated

Jiang et al. (2011) SAA OGD/R BMEC SAA (0.025/0.25/2.5/25 mg/
L) for 20 h

NA Inhibit granulocyte adhesion (cone-
plate rheometer)

ICAM-1 Downregulated

Song et al. (2019) SAA OGD/R SH-SY5Y SAA (0.05/0.5/5 μM) for 24 h NA Enhance cell viability (MTT) Akt/FOXO3a/BIM Upregulated

Luan et al. (2020) SA OGD/R PC12 SA (5 μM) for 24 h Edaravone Enhance cell viability (CCK-8)
Inhibit oxidative stress response
(MDA assay)
Inhibit apoptosis (Hoechst staining)

Caspase-3 path Downregulated

Zhang et al. (2019) GSF1 OGD/R HUVEC
HBMEC

GSF1 (20/40 μM) for 4/8/
12/24 h

VEGF(80 ng/mL) Promote endothelial cell proliferation,
migration and invasion (Transwell
assays)

IGF-1/IGF1R path Upregulated

Yuan et al. (2020) PF11 OGD/R Primary neurons PF11 (30/100/200 μM)
for 24 h

Dl-3-n-Butylphthalide Promote neuronal proliferation and
differentiation (BrdU administration)

BDNF/TrKB path Upregulated

Zhang et al. (2020a) GSRd OGD/R Primary neurons GSRd (1/3/10/30/100 μM) NA NA DAPK/NR2b/NMDAR Downregulated

Zhao et al. (2021) Betulinic Acid OGD/R PC12 Betulinic Acid NA Inhibit autophagy (Flow Cytometry) SIRT1/FOXO1 Upregulated

Wang et al. (2007) Emodin-8-O-
beta-D-glucoside

Model of cell
injury induced by
glutamic acid

Primary neurons Emodin-8-O-beta-D-
glucoside (2.5/5/10 mg/kg)
for 1 d

MK-801(10 uM) Alleviate glutamate-induced neuronal
damage

NA

Leung et al. (2020) emodin OGD/R PC12 Emodin (1/10 μM) for 4 h NA Inhibit oxidative stress response (ROS
assay)

GLT-1
ERK-1/2/Bcl-2/
Caspase-3

Upregulated

(Continued on following page)
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TABLE 8 (Continued) NHE therapeutic effects and mechanisms in in vivo IR models.

Author(Year) Extracts Model Cell types Interventions Positive control Biological effects
(experimental protocol)

Mechanism Regulation

Yang et al. (2020) Procyanidins OGD/R BV2 Procyanidins (10 μM) NA Inhibit inflammatory response
(Westernblot)

TLR4/p38/NF-κB/
NLRP3

Downregulated

Chen et al. (2020) Glycyrrhizin OGD/R bEnd.3 Glycyrrhizin (10 μM) rt-PA(20 ug/mL) NA ONOO-/HMGB1/
TLR2/MMP9

Downregulated

Wang et al. (2019) EK100 OGD/R N2A EK100 (20/40 μM) NA Inhibit apoptosis (Annexin V/PI
assay)

p65 NF-κB
Caspase-3

Downregulated

Li et al. (2021c) ASIV OGD/R Primary microglia
Primary neurons

ASIV (50 μM) NA Inhibit inflammatory response
(Westernblot)

STAT3/CCL2 Downregulated

Mao et al. (2017) Gas-d Model of cell
injury induced by
H2O2

SH-SY5Y Gas-d (10 uM) for 24 h NA Enhance cell viability (MTT)
Inhibit oxidative stress response (ROS
assay)
Inhibit inflammatory response
(ELISA)

NA

Bai et al. (2024) PQS OGD/R Primary microglia PQS (25/100 ug/mL) NA Inhibit microglial activation (ELISA) Nrf2/miR-103-3p/
TANK

Upregulated

Zhang et al. (2024) VOEX OGD/R Primary microglia VOEX (6.25/12.5/25/50/
100 μM) for 24 h

Dl-3-n-
Butylphthalide(10uM)

Enhance cell viability (CCK-8) IL17A Downregulated

Zhou et al. (2021b) PNS OGD/R SH-SY5Y PNS (20/40/80/160/320/
640 μg/mL)

NA Enhance cell viability (CCK-8) ROCKII Downregulated

Qin et al. (2012) PAL extracts OGD/R Primary neurons PAL extracts (0.0156/0.0625/
0.25 mg/mL)

NA Enhance cell viability (MTT) Caspase-9/3 Downregulated

Wan et al. (2022) Triptolide OGD/R BV2
Olineu

Triptolide (0.001/0.01/
0.1 nM) for 24 h

NA Inhibit apoptosis (Hoechst staining)
Inhibit inflammatory response
(ELISA)

Src/Akt/GSK3β Upregulated

Tan et al. (2022) Que OGD/R Primary microglia Que (30/60 µM) for 2 h NA Facilitate microglial phenotype
switching (transmission electron
microscopy)
Inhibit inflammatory response
(ELISA)

NA

Wan et al. (2017) GSRd OGD/R Primary neurons GSRd (0.1/1/10 μM) for 2 h NA Enhance cell viability (MTT) BDNF Upregulated

Damodaran et al.
(2018)

CTRF OGD/R Primary neurons CTRF (2 μg/mL) for 24 h NA Inhibit glutamate-induced calcium
increase (Fura-2 calcium imaging)

NA

Wang et al. (2023b) ASIV OGD/R SH-SY5Y ASIV(10/20/40 μM) for 24 h Ferrostatin-1(10 μM)
for 24 h

Enhance cell viability (CCK-8)
Inhibit peroxidation (ROS assay)

Nrf2 Upregulated
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growth factor A (VEGFA), and intercellular adhesion molecule 1
(ICAM1), which means that SAA not only inhibits apoptosis,
inflammation, and oxidative stress, and protects the BBB, but
also promotes vascular proliferation and recovery (Jiang et al.,
2011; Chien et al., 2016; Song et al., 2019; Liu C. et al., 2021;
Ling et al., 2021). Additionally, some key factors involved in multiple
pathways, such as VEGF, are activated by multiple NHEs. The
discovery of VEGF has completely changed our understanding of
blood vessel production during development and physiological
homeostasis. The biological effects mediated by VEGF are mainly
due to its impact on vascular permeability and new blood vessel
generation. VEGF has important relationships with tumor growth
and metastasis, hypertensive retinopathy, and other pathological
conditions (Apte et al., 2019). T-VA is extracted from Ligusticum
sinense (Li G. et al., 2015). Several studies report that T-VA,
ginsenoside Rb1 (GSRb1), L-borneol, and DL-n-butylphthalide
(DL-NBP) can also play a role through VEGF (Li G. et al., 2015;
Zhu et al., 2018; Ma et al., 2021; Wang et al., 2020).

CI is a severe nerve injury caused by interrupted cerebral blood
flow. The molecular mechanisms underpinning its pathological
processes are extremely complex and cannot be fully explained at
present. CI involves amino acid excitation, injury oxidative stress,
inflammatory responses, BBB injury, mitochondrial dysfunction,
cell necrosis, and apoptosis. Many studies report that key molecules
are involved in these CI-mediated processes, such as hypoxia-
inducible factor alpha (HIF-1α), VEGF, brain-derived
neurotrophic factor (BDNF), protein kinase B (Akt), matrix
metalloproteinases (MMPs), c-Jun N-terminal kinase (JNK),
B-cell lymphoma-2-associated X (Bax), Caspase-3/9, mitogen-
activated protein kinases (MAPKs) and nuclear factor kappa-B
(NF-κB) (Wang et al., 2020; Li et al., 2022; Liu et al., 2023; Li
et al., 2017; Chen H.-S. et al., 2018; Hu et al., 2020; Peng T. et al.,
2022; Xu et al., 2021).

Blood flow disturbance is the most fundamental issue in CI,
and appears to initiate several pathological conditions, such as
BBB damage, mitochondrial dysfunction, cell necrosis, and
apoptosis. To reduce the severity and prognosis of stroke
onset, doctors must rapidly conduct clinical interventions such
as intravenous thrombolysis and surgical thrombectomy to
unblock cerebral blood vessels. Anticoagulant and antiplatelet
therapies are recommended for patients without
contraindications, but their harsh conditions of use and severe
side effects have prompted scientists to explore better treatments.
Thromboxane A2 (TXA2) is a potent vasoconstrictor and the
main cyclooxygenase (COX) product of arachidonic acid (AA).
The functional importance of this eicosanoid in acute coronary
ischemic syndrome has been demonstrated as it activates
platelets (Reilly and Fitzgerald, 1993). Fei et al. extracted
natural compounds with TSA as the main component from S.
miltiorrhiza Bunge (DanShen); this SCED inhibits platelet
aggregation and improves regional blood flow disorders by
inhibiting TXA2 activation (Fei et al., 2017). Although the
specific molecular mechanisms have not been clarified, and to
determine NHE biological effects on blood flow disorders, several
studies have used laser speckle imaging to show that P.
notoginseng saponins (PNS), GSRb1, L-borneol, and galangin
can improve regional blood flow disorders after stroke (Li S. et al.,
2012; Wang S. et al., 2017; Gao et al., 2022; Xie et al., 2023).T
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FIGURE 2
Quality evaluation chart.

FIGURE 3
Proposed NHE molecular mechanisms for treating CI. The green line represents the interaction between NHEs and molecules. The red line
represents the pathological effects caused by molecules. Numbers represent NHEs (1, DL-NBP; 2, PNS, SAA and SA; 3, ASIV and Formononetin; 4,
L-borneol; 5, T-VA and GSRb1; 6, Triptolide; 7, Glycyrrhizin and SAA; 8, SAA; 9, ASIV andMethylophiopogonanone A; 10, NGR1; 11, LHA; 12, L-borneol; 13,
NGR1; 14, HAR; 15, L-borneol; 16, EF; 17, GSRd, LHA, PF11, and SAA; 18, EK100, TFCJ, DGMI, and Formononetin; 19, Honokiol, L-NBP, HSYA, and
GSF1; 20, CK; 21, Catalpol, KRGP, CZ-7, AA, Rus, PQS, and ASIV; 22, Honokiol; 23, EGB761; 24, EGB761 and Vitexin; 25, LIG, BA and ASIV; 26, Hyperforin
andGSRd; 27, emodin; 28, TSA; 29, Catalpol, MO, SHPL-49, Galangin, KuA, Asiaticoside, GSRb1, OLE, EGB761, SA, GB, Sophoricoside andMatrine; 30, PAL
extracts and GSRb1; 31, SB extracts; 32, T-VA, Silymarin, Storax, EK100 and Rus; 33, ES; 34, SAA; 35, Fructus extracts, Procyanidins and SAA; 36, Gas-d; 37,
YZR extracts and EA; 38, GSRb1 and emodin; 39, GSRb1 and GSRd; 40, EEEV, scutellarin, EDAC and CTRF; 41, MO; 42, SA and PNS; 43, L-borneol, SB
extracts and ASD extract; 44, ASIV and Vitexin; 45, GSRg1, ASIV and DSE; 46, Silymarin, SAA and ICA).
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Amino acid excitotoxicity is due to the abnormal accumulation
of some excitatory amino acids (such as glutamate) outside neurons
after ischemia. Glutamate accumulation leads to sustained Ca2+

channel and N-methyl-D-aspartic acid receptor (NMDAR)
activation on neuronal synaptic membranes. NMDAR is an ion
channel regulated by glutamate on cell membranes. After glutamate
activation, high Ca2+ levels are transported into membranes. Ca2+

accumulates in the cytoplasm and mitochondria, resulting in Ca2+

overload. This alteration affects many biological processes, such as
calpain activation, oxidative stress responses, and mitochondrial
damage, and also protease, kinase, phosphatase, and other enzyme
activities, leading to cell death. As a major transporter of excitatory
amino acids, glutamate transporter 1 (GLT-1) is mainly distributed
in astrocytes. Usually, GLT-1 mediates glutamate uptake by glial
cells to maintain extracellular glutamate concentrations. GLT-1
function is impaired during CI, resulting in high intersynaptic
glutamate accumulation (Rao et al., 2001). GSRb1 and emodin
reportedly activate GLT-1 receptors on astrocyte membranes,
transferring glutamate into astrocytes to reduce its abnormal
accumulation outside neurons (Wang S. et al., 2017; Leung et al.,
2020). GSRb1 also has the same effects as ginsenoside Rd (GSRd) in
inhibiting NMDAR expression (Zhang C. et al., 2020). Glutamine
synthetase (GS) catalyzes glutamate conversion to glutamine in vivo
and has important roles regulating glutamate levels. KRGP is an
active substance extracted from Korean red ginseng(Liu L. et al.,
2019). Liu et al. found that GS expression levels are significantly
elevated after CI in KRGP-pretreated mice, while GS expression
levels are not changed much in nuclear factor erythroid 2-related
factor 2 (Nrf2) gene deletion mice, suggesting that the Nrf2 pathway
has important roles in glutamate homeostasis after CI, and that
KRGP may reduce amino acid excitation damage caused by CI via
Nrf2 signaling (Liu L. et al., 2019).

Oxidative stress is a common phenomenon in hypoxic cells.
Mitochondria are essential organelles which maintain energy
homeostasis in cells. The state and function of mitochondria
undergo significant changes during hypoxia, leading to increased
intracellular reactive oxygen species (ROS) levels, which severely
damage cells and brain tissue. Oxidative stress products directly
attack biomacromolecules (amino acids and nucleic acids) to induce
apoptosis and increase BBB permeability. Nrf2 has antioxidant and
anti-inflammatory effects that activate heme oxygenase-1 (HO-1)
after oxidative stress-inducer (e.g., inflammatory chemokines/
cytokines) activation or tissue damage (Hassanein et al., 2023).
HO-1 is an inducible homolog with antioxidant properties and
has important roles regulating oxidative stress, with elevated HO-1
levels detected in almost all oxidatively stressed cells. catalpol,
KRGP, CZ-7, AA, and ruscogenin (Rus) increase HO-1
expression by stimulating Nrf2 (Liu L. et al., 2019; Liu D.-D.
et al., 2019; Wang et al., 2022; Zhang S. et al., 2023; Kim et al.,
2023). Additionally, by detecting mitochondrial energy metabolism-
related genes (Atp12a and Atp6v1g3), Liu et al. found that
notoginsenoside R1 (NGR1) mitigates mitochondrial energy
metabolism abnormalities (Liu et al., 2022). Three Nei-like DNA
glycosylases exist in mammalian cells, which protect DNA by
removing oxidative bases. GSRd protects neurons by activating
Nei-like DNA glycosylase 1/3 (NEIL1/3) to promote DNA
hydrolysis of oxidative stress-induced product damage (Yang
et al., 2016).

Inflammatory responses are self-defense mechanisms; they
are stimulated by endogenous and exogenous inflammatory
factors and are closely related to different diseases.
Neuroinflammation occurs at almost all stages of ischemic
stroke and is caused by damage-associated molecular pattern
release by damaged/dead cells. These patterns, including
adenosine, heat shock proteins, and interleukin 33 (IL-33) are
recognized by corresponding immune cells which trigger
multiple downstream signaling pathways (Qin et al., 2022).
Additionally, these patterns stimulate inflammation-related
cytokine, interferon or chemokine production, leading to
increased adhesion molecule expression, helping white blood
cells adhere to blood vessel surfaces, and promoting immune
cell infiltration. Therefore, for patients with CI, early anti-
inflammatory treatment is an important method to reduce
ischemic injury and improve prognosis. Pro-inflammatory
cytokines induce chemokine secretion immediately after CI.
Chemokine-chemokineligand2 (CCL2) and its receptors are
involved in regulating inflammation in the ischemic state, and
may be recruited to and adhere to cerebral vascular endothelial
cells by immune cells. Signal transducer and activator of
transcription 3 (STAT3) has positive regulatory effects on
chemokines (such as CCL2) and acts as a key transcription
factor during inflammation and immunity. Li et al. reports
that ASIV inhibits CCL2 functions by inhibiting
STAT3 expression and inhibiting NK cell infiltration (Li S.
et al., 2021). JNK, TLR4, NF-κB, and MAPKs also have key
roles in inflammatory signaling pathways via a vicious cycle
between JNK and TLR4 (Cheng et al., 2021a). TLRs are
expressed on cell surfaces and in intracellular spaces, and
regulate the state and function of many immune cells. Fructus
extracts, procyanidins, and SAA inhibit TLR4 expression (Lee
et al., 2015; Yang et al., 2020; Ling et al., 2021), while Alpinia
oxyphylla Miq. (YZR) extract and EA inhibit JNK activation (Yu
et al., 2019; Cheng et al., 2021a). T-VA, silymarin, storax, and
EK100 also suppress inflammatory responses by inhibiting NF-
κB (Hou et al., 2010; Li G. et al., 2015; Wang et al., 2019; Zhou M.
et al., 2021). The MAPK signaling pathway is activated shortly
after ischemic injury onset. MAPK is composed of three major
effectors, extracellular signal-related kinases (ERK1/2), JNK, and
p38 MAPK. Among these, p38 MAPK regulates pro-
inflammatory cytokine expression. The activation of MAPK/
ERK signaling and the stimulating effects of MMP expression
can aggravate BBB injury in ischemic stroke and further enhance
pro-inflammatory factor expression. Interestingly, we found that
different NHEs have opposite effects on p38 MAPK, but all were
protective against CI injury, which we speculate might be due to
the activation of different factors downstream of p38 MAPK.
L-borneol and Angelica sinensis (Oliv.) Diels (ASD) extracts
activate p38 MAPK (Cheng et al., 2021b; Xie et al., 2023),
while Honokiol and Scutellaria baicalensis Georgi (SB)
extracts inhibit its function (Hwang et al., 2011; Chen
et al., 2014).

MMPs are essential for BBB function and structure, and mainly
act on the tight junction component, ZO-1, between adjacent cells.
Endothelial cells and their tight junction components are key factors
maintaining BBB stability. MMPs disrupt the BBB via enzymatic
ZO-1 hydrolysis, so they are potential therapeutic targets for CI
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(Batra et al., 2010). Glycyrrhizin indirectly inhibits MMPs by
reducing peroxynitrite (ONOO−) production (Chen et al., 2020).
NGR1 mitigates BBB disruption by MMPs by inhibiting caveolin 1
(Liu B. et al., 2021). LHA promotes histone deacetylase 4 (HDAC4)
expression, leading to decreased NADPH oxidase 4 (NOX4)
expression, which in turn inhibits MMP expression (Zhang Q.-Y.
et al., 2017). Additionally, ginsenoside Rg1 (GSRg1), ASIV, and DSE
prevent ischemic cerebral edema and BBB damage by inhibiting
AQP4 (Lee K. et al., 2012; Li et al., 2013; Zhou et al., 2014).

Apoptosis is a normal physiological activity, but after CI, the
process becomes overactivated and causes neuronal death, which
leads to neurological deficits in patients with CI, and seriously affects
neurological function recovery in later stages. Bax is a classical
apoptosis-promoting gene that promotes cytochrome C (Cyt-C)
transfer from the mitochondria to cells, and then activates the
caspase cascade to eventually lead to apoptosis. B-cell lymphoma-
2 (Bcl-2) is an apoptosis inhibitor protein, which binds to Bax and
forms dimers to inhibit apoptosis. Therefore, the balance between
Bcl-2 and Bax is key to neuronal survival. Several NHEs protect
neurons from apoptosis, such as catalpol, MO, SHPL-49, galangin,
KuA, asiaticoside, GSRb1, oleuropein (OLE), EGB761, salvianolic
acid (SA), and GB, by increasing Bcl-2 levels (Li S. et al., 2012; Sun
et al., 2015; Yu et al., 2016; Liu et al., 2017; Zhao et al., 2017; Yang
et al., 2018; Zhang et al., 2018; Zhu et al., 2018; Luan et al., 2020;
Wang et al., 2022; Zhang P. et al., 2023). Additionally, SAA also
inhibits neuronal apoptosis via the Akt/FOXO3a/BIM pathway
(Song et al., 2019).

7 Conclusion and prospects

With deepening research on NHEs, their mechanisms are
becoming more complex and multifaceted. Complexity means
that a single NHE, such as SAA, can simultaneously act on
multiple molecular pathways. Multifaceted means that a NHE
acting on the same key factor on a certain pathway may have
different regulatory outcomes, such as L-borneol and Honokiol.
In such cases, a deeper understanding of study conditions and
results is required. Although too many pathways and factors are
involved in these studies, key factors such as VEGF, BDNF, Akt,
MMPs, JNK, Bax, Caspase-3/9, MAPKs, and NF-κB, may provide
reference points for further research. Additionally, although CI
pathogenesis is highly complex, the first and most important
pathology is disturbed blood flow, which is why early CI
treatments should rapidly restore blood supply. Therefore,
more attention should be paid to NHEs (TSA or GSRb1) with
antiplatelet or antithrombotic effects. For advanced CI
treatments, selected studies should mainly focus on inhibiting
neuroinflammation, inhibiting neuronal apoptosis, and
protecting the BBB. This means that NHE treatment effects
for CI are significant, and show how important
neuroinflammation and neuronal apoptosis processes are in
CI. In addition, the treatment of transient cerebral ischemia
and permanent cerebral ischemia is also different. Transient
cerebral ischemia is a sudden, transient cerebral vascular
insufficiency, usually without brain tissue necrosis. The
treatment of transient cerebral ischemia is mainly prevention,
such as antiplatelet therapy. Permanent cerebral ischemia often

has abnormal pathology such as thrombus, which leads to blood
flow interruption and eventually brain cell death. If the vascular
recanalization treatment cannot be carried out in time, serious
sequelae will often be left.

Although strict review conditions were set, some flaws were
identified in selected studies: 1) The elaboration of extraction
protocols or NHE sources was not adequately detailed. Due to
different NHE extraction methods, resultant NHEs may have
different biological activities and effects, which makes the
research data unreliable; 2) NHE toxicity was not adequately
explored in selected studies. Even if some studies performed
toxicity tests, they were in vitro and not in vivo; 3) Although
considerable animal data were observed, it is uncertain if these
NHEs can be eventually used in clinical practice; therefore, more
pharmacological and pharmacological studies are required; and 4)
NHE mechanisms were not fully explored. Most studies only
explored one or several related factors, but did not examine
complete NHE mechanisms.

Clinically observed NHE effects are the result of combined drug
actions across a multitude of signaling pathways. Researchers are
constantly exploring new treatment options to maximize treatment
benefits while minimizing side effects. Traditional Chinese medicine
efforts in this area are worthy of recognition, and the synergistic
actions of multiple NHEs should be considered in future research. In
addition, the reproducibility of drug efficacy is very critical, and it is
an important factor affecting whether a drug can be transformed
into clinical practice. In order to do this, we need to maintain a
rigorous working attitude and record the experimental process in
detail. We should strengthen our understanding of the various parts
of the experiment and conduct sufficient pre-experiments. The
factors affecting the transformation of medical achievements also
include the lack of advanced medical equipment, insufficient
attention to medical transformation, and lack of communication
between the supply and demand sides.

In this review, we retrieved and screened high-quality NHE
studies related to CI. We briefly summarized the potential
therapeutic effects and mechanisms underpinning NHEs
toward CI, which may promote NHE development and
their applications in clinical settings. Selecting a clinical
medication is a long and complicated process, and any
possibilities, to combat CI, must be carefully and
comprehensively considered.
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Glossary

CI cerebral ischemia

ACI acute cerebral ischemia

CCI chronic cerebral ischemia

IR ischemia-reperfusion

BBB blood-brain barrier

NHE natural herbal extract

rt-PA recombinant tissue plasminogen activator

LHA Leonurus japonicus Houtt. total alkaloids

KuA kukoamine A

ICA icariin

ASIV astragaloside IV

SAA salvianolic acid A

BA betulinic acid

LIG ligustilide

GB ginkgolide B

TSA tanshinone IIA

SCED supercritical CO2 extracts from DanShen

NGR1 notoginsenoside R1

GSRb1 ginsenoside Rb1

GSRg1 ginsenoside Rg1

GSF1 ginsenoside F1

GSRd ginsenoside Rd

PF11 pseudoginsenoside-F11

SA salvianolic acid

Que quercetin

HAR harpagoside

GBE Ginkgo biloba L. extract

EF epimedium flavonoids

SB Scutellaria baicalensis Georgi

Gas gastrodin

CTRF Clitoria ternatea L. root extract

XEFGM xanthone-enriched fraction of Garcinia mangostana L.

CSL Crocus sativus L.

EEEV ethanolic extract from Erythrina velutina Willd.

YZR Alpinia oxyphylla Miq.

GA ginkgolide A

GC ginkgolide C

OLE oleuropein

PQS Panax quinquefolius L. saponins

VOEX Verbena officinalis L. ethanol extracts

Rus ruscogenin

TFCJ total flavonoids of Chuju

NBP n-butylphthalide

L-NBP L-n-butylphthalide

DL-NBP DL-n-butylphthalide

GL Ganoderma lucidum

HSYA Hydroxysafflor Yellow A

PNS Panax notoginseng saponins

ES Eleutherococcus senticosus

GRex Glycyrrhiza uralensis Fisch. methanolic extracts

EO Euterpe oleracea Mart.

ASD Angelica sinensis (Oliv.) Diels

ESF EtOAc extract of Sophora flavescens Aiton

MCAO middle cerebral artery occlusion

PT photothrombosis

rUCCAO right unilateral common carotid artery occlusion

2VO bilateral carotid artery ligation

BCAS bilateral common carotid artery stenosis

BCCAo bilateral common carotid artery occlusion

4VO 4-vessel occlusion

PBOCCA permanent bilateral occlusion of common carotid arteries

MCAO/R middle cerebral artery occlusion and reperfusion

mNSS modified Neurological Severity Score

EB evans blue

OGD oxygen-glucose deprivation

OGD/R oxygen-glucose deprivation/re-oxygenation

Nrf2 nuclear factor erythroid 2-related factor 2

HO-1 heme oxygenase-1

Bax B-cell lymphoma-2-Associated X

Bcl-2 B-cell lymphoma-2

6-keto-PGF1α 6-keto Prostaglandin F1α

TXB2 thromboxane B2

TXA2 thromboxane A2

PAFR platelet-activating factor receptor

PLC phospholipase C

PKC protein kinase C

TORC1 target of Rapamycin Complex 1

CREB cAMP-response element binding protein

BDNF brain-derived neurotrophic factor

VEGF vascular endothelial growth factor

VEGFA vascular endothelial growth factor A

Src tyrosine kinase Src

VAV2 vav guanine nucleotide exchange factor 2
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Rac Ras-related C3 botulinum toxin substrate

PAK p21 activated kinase

MMPs matrix metalloproteinases

MMP2/9 matrix metalloproteinase 2/9

HIF-1α hypoxia-inducible factor alpha

PKM2 pyruvate kinase isozyme type M2

STAT3 signal transducer and activator of transcription 3

GLT-1 glutamate transporter 1

NMDAR N-methyl-D-aspartic acid receptor

NR2b N-methyl-D-aspartic acid receptor 2b

Cyt-C cytochrome C

NEIL1/3 Nei Like DNA Glycosylase 1/3

Ang1 Angiopoietin-1

NF-κB nuclear factor kappa-B

COX-2 cyclooxygenase-2

IL-33 interleukin 33

IL-17A interleukin 17A

ICAM1 intercellular adhesion molecule 1

ST2 growth stimulation expressed gene 2

SHH Sonic hedgehog

NGF nerve growth factor

Drd2 dopamine D2 receptor

Cryab αB-crystallin

Akt protein kinase B

GSK3β glycogen synthase kinase 3β

SIRT1 sirtuin 1

IRE1α inositol-requiring enzyme-1α

XBP1s X-box binding protein 1

CHOP C/EBP-homologous protein

mTOR mammalian target of rapamycin

PTEN phosphatase and tensin homolog

TLR4 toll-like receptor 4

TLR2 toll-like receptor 2

MyD88 myeloid differentiation factor 88

MAPK mitogen-activated protein kinase

p38 MAPK p38 mitogen-activated protein kinase

NRG1 neuregulin1

ErbB4 epidermal growth factor receptor

PI3K phosphoinositide 3-kinase

BACE1 beta-secretase 1

ADAM10 a disintegrin and metalloproteinase domain 10

IDE insulin-degrading enzyme

Keap1 kelch-like ECH-associated protein 1

ARE antioxidant response element

ROCKII Rho-associated protein kinase II

ONOO- peroxynitrite

TrKB tyrosine kinase receptor B

HDAC4 histone deacetylase 4

NOX4 NADPH oxidase 4

HPLC high performance liquid chromatography

JNK c-Jun N-terminal kinase

T3JAM TRAF3-interacting JNK-activating modulator

ER estrogen receptor

RIPK1/3 receptor-interacting protein kinase 1/3

NLRP3 NOD-like receptor family pyrin domain-containing 3

HMGB1 high mobility group box 1

Dll4 delta-like ligand 4

TRPC6 transient receptor potential channel 6

IGF-1 insulin-like growth factor 1

IGF1R insulin-like growth factor 1 receptor

DAPK death-associated protein kinase

ERK1/2 extracellular signal-related kinases 1/2.

Frontiers in Pharmacology frontiersin.org27

Yang et al. 10.3389/fphar.2024.1424146

190

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1424146


Frontiers in Neuroscience 01 frontiersin.org

Lutein inhibits glutamate-induced 
apoptosis in HT22 cells via the 
Nrf2/HO-1 signaling pathway
Zhenhua Li 1†, Zhuohua Cao 1†, Fangmei Chen 2†, Bin Li 3,4* and 
Hanyong Jin 1*
1 Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of 
Pharmacy, Yanbian University, Yanji, Jilin, China, 2 Institute of Science and Technology Information 
Research of Tibet Autonomous Region, Lhasa, China, 3 Key Laboratory of Pharmaceutical Research for 
Metabolic Diseases, Department of Pharmacy, Qingdao University of Science and Technology, 
Qingdao, China, 4 Department of Medicament, College of Medicine, Tibet University, Lhasa, China

Introduction: Excessive glutamate levels induce oxidative stress, resulting in 
neuronal damage, and cell death. While natural antioxidants show promise 
for neuroprotection, their effectiveness in the central nervous system (CNS) is 
limited by the blood -brain barrier. Lutein, a neuroprotective carotenoid, has 
gained attention for its ability to traverse this barrier and accumulate in various 
brain regions. This study aimed to elucidate the mechanisms underlying the 
protective effects of lutein against glutamateinduced cell death in HT22 cells.

Methods: HT22 cells were treated with lutein (1.25-20 μM) for 24 hours. Cell 
viability, ROS levels, apoptosis, and mitochondrial membrane potential were 
assessed following lutein pretreatment and glutamate exposure. Protein 
expression of apoptotic markers was analyzed using Western blotting.

Results: Lutein effectively attenuated glutamate-induced apoptosis due to 
its antioxidant properties. Additionally, lutein inhibited glutamate-induced 
mitochondrial-mediated apoptosis. We observed that lutein modulated the nuclear 
translocation of nuclear factor erythroid 2 -related factor 2 (Nrf2) and upregulated the 
expression of heme oxygenase-1 (HO-1). Inhibition of HO-1 by tin protoporphyrin 
(SnPP), a synthetic inhibitor, weakened the protective effect of lutein. Furthermore, 
we demonstrated that lutein prevented the aberrant activation of MAPKs induced by 
glutamate, including ERK1/2, p38, and JNK, thereby conferring oxidative protection.

Discussion: Our study highlights the potent antioxidant properties of lutein, 
which effectively safeguards against glutamate-induced mitochondrial 
apoptotic cell death through the Nrf2/HO-1 signaling pathway and inhibition of 
MAPK activation. These findings demonstrate that lutein exerts a neuroprotective 
effect against glutamate-induced neuronal cell damage.

KEYWORDS

lutein, glutamate, neuroprotective effects, oxidative stress, apoptosis

1 Introduction

Glutamate, a crucial endogenous excitatory neurotransmitter in the central nervous 
system, mediates synaptic transmission through the activation of both metabotropic and 
ionotropic glutamate receptors (iGluRs) on neurons. It regulates various physiological 
functions in the cerebral cortex and hippocampus, significantly influencing synaptic plasticity, 
cognition, learning, and memory (Haroon et  al., 2017). However, elevated extracellular 
glutamate concentrations can induce neuronal cell death through excitotoxicity (Bano et al., 
2005), thereby contributing to the pathogenesis of neurodegenerative diseases such as 
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Alzheimer’s, Parkinson’s, and amyotrophic lateral sclerosis (Barnham 
et al., 2004), as well as the onset and progression of mental illnesses 
like depression and anxiety disorders (Salim, 2014; Black et al., 2015). 
Many studies have described glutamate-induced cytotoxicity 
occurring through both receptor-mediated and non-receptor-
mediated pathways. iGluRs are classified into four subtypes based on 
their ligand binding properties and sequence similarity, including 
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), 
kainate, N-methyl-d-aspartate (NMDA), and delta receptors 
(Collingridge et al., 2009), which predominantly mediate most of the 
fast excitatory neurotransmission in the brain. In non-receptor-
mediated cytotoxicity, excess extracellular glutamate inhibits the 
neuronal glutamate/cystine antiporter (Murphy et  al., 1989). This 
inhibition results in decreased cystine uptake, leading to reduced 
levels of glutathione, impaired clearance of reactive oxygen species 
(ROS), and the subsequent accumulation of these species, causing 
oxidative stress toxicity (Murphy et al., 1989). HT22 neuronal cells are 
advantageous for studying non-receptor-mediated cytotoxicity and 
oxidative stress responses induced by glutamate due to their lack of 
ionotropic glutamate receptors (Murphy et  al., 1989; Maher and 
Davis, 1996).

The dynamic levels of ROS within mitochondria are closely 
associated with essential cellular functions. However, the disruption 
of mitochondrial redox balance in cells from various tissues can lead 
to pathological developments (Sies and Jones, 2020).This impairment 
compromises cellular function and disrupts the organism’s normal 
physiological activities, ultimately inducing oxidative stress. 
Consequently, lipid peroxidation, cellular damage, and the opening of 
mitochondrial permeability transition pores (MPTP) are triggered, 
thereby facilitating apoptosis in various tissue cells (Sies and Jones, 
2020). Neuronal cells in the central nervous system, characterized by 
their heightened metabolism, lipid richness, and lower antioxidant 
levels, are notably prone to oxidative stress damage compared to other 
tissue cells (Floyd and Carney, 1992). Oxidative stress, whether 
induced by an overproduction of mitochondrial ROS or impairment 
of antioxidant defenses, results in mitochondrial dysfunction and 
initiates the cellular death cascade (Islam, 2017). Mitochondrial 
dysfunction-induced cell death typically begins with mitochondrial 
outer membrane permeabilization (MOMP), a process activated by 
pro-apoptotic effectors, Bax and Bak. The loss of membrane integrity 
results in the release of cytochrome c into the cytosol, where it forms 
a complex known as the apoptosome along with the proapoptotic 
cytosolic factor APAF1. This apoptosome complex then activates 
caspase 9, which subsequently cleaves caspases 3 and 7 leading to 
rapid cellular demolition (Bock and Tait, 2020).

Scavenging ROS through Nrf2-mediated induction of antioxidant 
enzymes is essential for maintaining cellular redox homeostasis 
(Loboda et al., 2016). Heme oxygenase-1 (HO-1) is a major target 
gene regulated by Nrf2, playing a critical role in cellular protection 
against harmful stimuli from both endogenous and exogenous sources 
(Winyard et al., 2005). Its antioxidant function involves preventing 
free heme from engaging in oxidative reactions and, along with its 
enzymatic products biliverdin and carbon monoxide (CO), conferring 
antioxidant, anti-inflammatory, anti-apoptotic, and vasodilatory 
effects, as well as enhancing tissue microcirculation. Under normal 
conditions, Nrf2 is bound to its cytoplasmic inhibitor Keap1. Upon 
external stimulation, Nrf2 dissociates, translocates to the nucleus, and 
binds to the HO-1 promoter antioxidant response element (ARE), 

thereby activating HO-1 gene expression and providing cellular 
protection. Previous studies have shown that the Nrf2/HO-1 signaling 
pathway prevents glutamate-induced oxidative stress in HT22 cell 
death (Wang et al., 2016; Huang et al., 2018; Cuadrado et al., 2019; 
Song et al., 2019b; Gao et al., 2023; Wang et al., 2024).

Intracellular oxidative stress can also be induced by the mitogen-
activated protein kinase (MAPK) signaling pathway, leading to the 
production of reactive oxygen species (ROS) (Son et al., 2011). The 
MAPK protein belongs to the serine/threonine protein kinase family 
and plays an important role in the expression of various proteins 
involved in cell differentiation, inflammation, and apoptosis (Yue and 
López, 2020). MAPKs, such as ERK1/2, p38, and JNK, serve as key 
mediators in converting extracellular signals into a multitude of 
cellular responses, encompassing cell growth, migration, proliferation, 
differentiation, and apoptosis (Yue and López, 2020). Several studies 
have demonstrated that oxidative stress resulting from glutamate 
exposure can activate MAPKs, leading to hippocampal neuronal 
apoptosis (Fukui et al., 2009; Ortuño-Sahagún et al., 2014; Park et al., 
2019; Song et al., 2019a,b; Baek et al., 2021).

Lutein has beneficial effects in delaying the progression of 
age-related eye conditions and shows promise in protecting against 
neurodegenerative diseases by enhancing antioxidant enzyme activity 
in the brain (Ahn and Kim, 2021). Several studies have reported that 
lutein exhibits protective effects against neuronal damage caused by 
glutamate, enhancing antioxidant enzyme activity and reducing 
inflammation in both neuroblastoma and microglial cells (Pap et al., 
2022; Phoraksa et al., 2023). However, further research is necessary to 
fully comprehend its effectiveness against glutamate-induced 
excitotoxicity, particularly concerning metabotropic glutamate 
receptors. In this study, we  demonstrated that lutein prevents 
glutamate-induced apoptosis in HT22 cells by reducing oxidative 
stress and mitochondrial damage. This protective effect is mediated 
through the Nrf2/HO-1 and MAPKs pathways, suggesting significant 
neuroprotective potential.

2 Materials and methods

2.1 Reagents

Lutein (purity of >98%) was purchased from Chengdu Must 
Bio-technology Co., Ltd. (Chengdu, China). All chemicals used in this 
study were purchased from Gibco BRL Co. (Grand Island, NY, 
United States). The following kits were purchased: Reactive Oxygen 
Species Assay Kit, Mitochondrial Membrane Potential Assay Kit with 
JC-1, and One Step of TUNEL Apoptosis Assay Kit were purchased 
from Beyotime Biotechnology Co., Ltd. (Shanghai, China). MTT 
[3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] were 
purchased from Beijing Solarbio Science & Technology Co., Ltd. 
(Beijing, China). Cobalt protoporphyrin (CoPP) and tin 
protoporphyrin (SnPP) were obtained from Sigma-Aldrich Life 
Science & Technology Co., Ltd. (St. Louis, MO, United States).

2.2 Cell culture

Mouse hippocampal HT22 cells were obtained from the Chinese 
Type Culture Collection Center (Wuhan, China) and were cultured 
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in DMEM medium containing 10% heat-inactivated FBS (BDBIO, 
Hangzhou, China) at 37°C in an incubator with 5% carbon dioxide.

2.3 Cell viability assay

Cell viability was evaluated by a 3-[4,5-Dimethylthiazol-2-yl]-2,5-
diphenyltetrazolium bromide (MTT) assay. Cells (8 × 103 cells/well in 
96-well plates) were incubated with MTT at a final concentration of 
0.5 mg/mL for 4 h Dimethyl sulfoxide (DMSO) (Sigma-Aldrich) was 
added to dissolve dark blue formazan crystals formed in the viable 
cells. Optical density was measured at 490 nm using a microplate 
reader (Thermo Multiskan Sky, Waltham, MA, United States). The 
optical density of formazan formed in the control (untreated) cells was 
considered as 100% cell viability.

2.4 Analyses of ROS levels in cells

According to the directions provided by the manufacturer, the 
intracellular ROS level was assayed with the fluorescent probe 
2,7-dichlorodi-hydrofluorescein diacetate (DCF-DA; Solarbio, 
Beijing, China). HT22 cells (1.0 × 104 cells/well) were cultured in 
24-well plates. After 20 min of incubation at 37°C with a diluted 
DCFH-DA probe, serum-free medium was used to wash the cells 
three times. The cells were then collected after being washed three 
times with PBS. With the use of a spectrofluorometer (Spectramax 
Gemini XS; Molecular Devices, Sunnyvale, San Jose, CA, 
United States), the fluorescence intensity was detected at wavelengths 
of 530 nm for the emission and 484 nm for the excitation.

2.5 Mitochondrial membrane potential 
assay

Changes in mitochondrial membrane potential in HT22 cells were 
measured using the mitochondrial membrane potential assay kit with 
JC-1 (Beyotime, Shanghai, China). After being cultivated in a 6-well 
plate and treated with glutamate and/or lutein, the cells were washed 
with PBS. The JC-1 staining solution was added to each well and 
incubated for 30 min at 37°C. Mitochondria were visualized using a 
fluorescence microscope (Provis AX70, Olympus Optical Co., Tokyo, 
Japan) after cells were rinsed with JC-1 staining solution (1 ×). Green 
fluorescence indicates mitochondrial depolarization, while red 
fluorescence indicates normal mitochondria. The red/green fluorescence 
intensity ratio is utilized to assess mitochondrial depolarization.

2.6 Cell apoptosis assay

One step of TUNEL Apoptosis Assay Kit (Beyotime, Shanghai, 
China) was used to investigate the apoptosis of HT22 cells. Briefly, 
cells were treated with 0.3% Triton X-100 and the TUNEL detection 
solution at 37°C in the absence of light after being fixed in 4% 
paraformaldehyde for 60 min. Subsequently, the nuclei were stained 
with DAPI staining solution, sealed with a microscope cover glass, 
and observed under a fluorescence microscope (Olympus Optical 
Co.) after being washed three times with PBS buffer solution.

2.7 Western blotting

The samples (40 μg protein) were electrophoresed by 10% 
SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred 
to a nitrocellulose membrane (Pall Corporation, NY, United States). 
The membrane was sealed for 2 h in TBST with 5% nonfat dry milk. 
The primary antibodies, including p-JNK antibody (Cat: #AF3318, 
1:1000), JNK antibody (Cat: #AF6318, 1:1000), p-ERK antibody 
(Cat: #AF1015, 1:1000), ERK antibody (Cat: #AF0155, 1:1000), 
p-p38 antibody (Cat: #AF6456, 1:1000), p-p38 antibody (Cat: 
#AF4001, 1:1000), HO-1 antibody (Cat: #AF5393, 1:1000), Nrf2 
antibody (Cat: #AF0639, 1:1000), caspase 3 antibody (Cat: #AF6311, 
1:1000), caspase 9 antibody (Cat: #AF6348, 1:1000), cleaved caspase 
3 antibody (Cat: #AF7022, 1:1000), cleaved caspase 9 antibody (Cat: 
#AF5240, 1:1000), β-Actin antibody (Cat: #AF7018, 1:1000), Lamin 
B1 antibody (Cat: #AF5161, 1:1000), and HRP-conjugated 
Affifinipure Goat Anti-Rabbit IgG (H + L) secondary antibodies 
(#S0001, 1:10000) were obtained from Affinity Biosciences (OH, 
United States). An Ultra High Sensitivity ECL Kit (MCE, State of 
New Jersey, United States) and ChemiDoc image analyzer (Tanon 
4,600, Tanon, China) are used to display protein imprinting. Finally, 
protein quantitative analysis was used by an ImageJ analysis program 
(National Institutes of Health, United States).

2.8 Subcellular fractionation

HT22 cells were lysed with a mixture of RIPA lysis buffer [50 mM 
Tris (pH 7.4), 150 mM NaCl, 1% Triton X-100, 1% sodium 
deoxycholate, 0.1% SDS, and general protease and phosphatase 
inhibitors] (MCE, State of New Jersey, United  States) and 1 mM 
phenylmethylsulfonyl fluoride (PMSF; Solarbio, Beijing, China) for 
10 min at 4°C, and the supernatant was collected by centrifugation to 
extract total protein. The extraction of nuclear and cytosolic proteins 
was performed using the Nuclear Protein Extraction Kit (Solarbio, 
Beijing, China) from HT22 cells. Bradford Protein Assay Kit (Solarbio, 
Beijing, China) was used to measure the protein extracts.

2.9 Nrf2 immunofluorescence

For the nuclear translocation of Nrf2, immunofluorescence 
experiments were performed. HT22 cells were permeabilized with 
0.5% Triton X-100 after being treated with lutein (10 μM) and fixed 
with 4% paraformaldehyde. After blocking non-specific binding sites 
with 1% FBS for an hour, cells were incubated with a Nrf2 antibody 
(1,200) at 4°C for an overnight period and were incubated with the 
secondary conjugated antibodies (Alexa Fluor 488; Invitrogen, 
Carlsbad, CA, United States) at 4°C for 10 min. In order to see the 
nuclei, DAPI (1 μg/mL) labeling was completed. A Provis AX70 
fluorescent microscope (Olympus Optical, Tokyo, Japan) was used to 
view and capture stained cells.

2.10 Statistical analysis

All data described in this study were replicated at least three times 
and are presented as the mean ± standard error of mean (S.E.M). 
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Statistical analyses were conducted using GraphPad Prism 7 software 
(San Diego, CA, United States), and group differences were assessed 
using one-way ANOVA. A significance level of p < 0.05 was considered 
as indicating statistically significant.

3 Results

3.1 Effect of lutein on cell viability in 
glutamate-induced cytotoxicity

To assess the impact of lutein on HT22 cells, cell viability was 
determined using the MTT assay after incubation with various 
concentrations of lutein (1.25, 2.5, 5, 10, 20 μM) for 24 h (Figure 1). 
The results indicated that lutein did not induce cytotoxicity in HT22 
cells except at the highest concentration (20 μM) (Figure  1). 
Consequently, the maximum concentration of lutein was restricted 
to 10 μM in all subsequent experiments. Next, we  evaluated the 
ability of lutein to counteract glutamate-induced cytotoxicity in 
HT22 cells. To determine the neuroprotective effect of lutein against 
glutamate-induced cytotoxicity in HT22 cells, the cells were treated 
with 20 mM glutamate with or without varying concentrations of 
lutein (1.25, 2.5, 5, and 10 μM) for 24 h (Figure 2A). Treatment with 
20 mM glutamate significantly reduced the cell viability of HT22 
neuronal cells compared to the control, which was reversed by 
pretreatment with 10 μM of Lutein (Figure 2A). Consequently, it was 
observed that lutein significantly inhibited HT22 cell death induced 
by glutamate at a level similar to that of the positive control, Trolox. 
Consistent with this findings, quantitative fluorescence intensity 
results demonstrated that glutamate exposure elevated increased 
intracellular ROS levels, a phenomenon significantly attenuated by 
pretreatment with 10 μM lutein and Trolox (Figure  2B). These 
findings suggest that the antioxidant properties of lutein may 
mitigate oxidative stress-mediated neuronal cell death induced 
by glutamate.

3.2 Effects of lutein against 
glutamate-induced mitochondrial 
apoptotic death in HT22 cells

Previous studies have indicated that glutamate-induced cell death 
in HT22 cells primarily proceeds through the apoptotic pathway 
(Kritis et al., 2015; Huang et al., 2018; Song et al., 2019a; Gao et al., 
2023). In this study, we aimed to investigate the impact of lutein on 
glutamate-induced apoptotic cell death. HT22 cells were treated with 
increasing concentrations of lutein in the presence of glutamate to 
assess its effects. DAPI staining demonstrated a reduction in 
glutamate-induced nuclear condensation following lutein treatment 
(Figure 3A). Additionally, the number of FITC-positive HT22 cells 
induced by glutamate decreased significantly with increasing doses 
of lutein (Figure 3A). Glutamate exposure led to elevated intracellular 
ROS levels, contributing to neuronal cell death through oxidative 
stress mechanisms (Figures  2A,B). To explore lutein’s potential 
antiapoptotic mechanisms, we conducted a JC-1 staining assay to 
evaluate its ability to counteract glutamate-induced apoptosis by 
preventing mitochondrial dysfunction triggered by oxidative stress. 
Glutamate markedly induced mitochondrial membrane potential 
depolarization in HT22 cells (Figure 3B). However, pretreatment 
with lutein dose-dependently attenuated glutamate-induced MOMP 
depolarization (Figure  3B). Additionally, immunoblot analysis 
revealed the activation of caspase 9 and caspase 3 due to glutamate-
induced disruption of mitochondrial membranes (Figure  3C). 
Conversely, lutein treatment dose-dependently inhibited apoptosis 
induction by preventing the formation of cleaved caspase 9 and 
caspase 3 (Figure 3C). These findings indicate that lutein exerts anti-
apoptotic effects by inhibiting glutamate-induced mitochondrial 
apoptotic death in HT22 cells.

3.3 Protective effects of lutein on 
glutamate-induced oxidative stress

Previous studies have demonstrated that glutamate-induced 
oxidative stress can trigger aberrant activation of MAPK pathways, 
leading to neuronal cell death (Xia et al., 1995; Horstmann et al., 
1998; Stanciu et al., 2000; Szydlowska et al., 2010). To investigate 
whether lutein can inhibit the aberrant activation of MAPKs by 
glutamate, we  treated HT22 neuronal cells with increasing 
concentrations of lutein in the presence or absence of glutamate and 
conducted immunoblotting analysis (Figure  4A). The results 
showed that the activation of MAPKs, including the phosphorylation 
of ERK, p38, and JNK induced by glutamate, was significantly 
reduced in a dose–response manner upon treatment with increasing 
concentrations of lutein (Figures 4A–D). These findings suggest that 
the inhibition of MAPKs is a molecular mechanism underlying 
lutein-mediated neuroprotection against glutamate-induced cell 
death in HT22 cells.

3.4 Antioxidant properties of lutein on 
HT22 cells by regulating Nrf2/HO-1 axis

The Nrf2/HO-1 signaling pathway has been implicated in the 
progression of various neurological complications, including 

FIGURE 1

Effect of Lutein on the viability of HT22 cells. HT22 cells were 
incubated with various concentrations of Lutein for 24  h, and cell 
viability was evaluated. Data are means  ±  S.E.M of three independent 
experiments. Statistical significance is denoted as follows: #p  <  0.05, 
vs. control group.
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glutamate-induced oxidative cell death (Sacks et al., 2018). Previous 
studies have suggested that lutein activates Nrf2, leading to the 
expression of antioxidant genes such as HO-1. To investigate the 
potential of lutein as a modulator of the Nrf2/HO-1 signaling pathway 
in different neurodegenerative disorders, we examined its impact on 
Nrf2 translocation and HO-1 expression in HT22 cells. 
Immunofluorescence and immunoblot analysis revealed a significant 
increase in Nrf2 accumulation within the nucleus after a 2 h treatment 
with 10 μM lutein, compared to the control group (Figures 5A–C). 
Conversely, the levels of cytosolic Nrf2 were notably decreased 
(Figure  5A), indicating that lutein effectively enhanced the 
translocation of Nrf2 to the nucleus in HT22 neuronal cells, leading 
to the activation of Nrf2 downstream target gene expression.

Given the demonstrated role of Nrf2-driven antioxidant gene 
expression of HO-1  in protecting against glutamate-induced 
oxidative damage in HT22 neuronal cells (Kim et  al., 2012), 
we aimed to investigate the effects of lutein on HO-1 expression in 
HT22 neuronal cells. Immunoblot analysis showed that HO-1 
expression significantly increased with lutein treatment in a dose- 
and time-dependent manner (Figures 6A,B). Cobalt protoporphyrin 
(CoPP), an HO-1 inducer, also significantly increased HO-1 
expression, comparable to the level induced by 10 μM lutein 
(Figure 6A). Next, we further elucidated whether the increase in 
Nrf2 nuclear translocation and HO-1 expression by lutein 
contributed to the protection of HT22 neuronal cells from 
glutamate-induced oxidative cell death. To validate the role of 
HO-1, we utilized tin protoporphyrin (SnPP), a synthetic inhibitor 
of HO-1, to inhibit its activity. In Figure 6C, we observed that the 
presence of 50 μM SnPP partially blocked the protective effect of 
lutein against glutamate-induced HT22 cell death. Consistently, 
treatment with SnPP also partially prevented the reduction of 
intracellular ROS levels induced by lutein in HT22 neuronal cells 
(Figure 6D). These findings suggest that lutein modulation of Nrf2-
mediated expression of HO-1 could be  a potential molecular 
mechanism for eliminating glutamate-induced oxidative stress by 
lutein, thereby partially inhibiting glutamate-induced oxidative 
cell death.

4 Discussion

Naturally occurring antioxidants have garnered significant 
attention due to their neuroprotective effects against oxidative stress 
(Pérez-Torres et al., 2021). However, their efficacy in the central nervous 
system (CNS) is often limited by the blood–brain barrier. Lutein, 
capable of crossing this barrier and accumulating in various brain 
regions, significant accumulation has been observed in the hippocampal 
regions of both humans and non-human primates, presents a promising 
candidate for neuroprotection against degenerative diseases (Lieblein-
Boff et  al., 2015; Mohn et  al., 2017; Iyer et  al., 2024). Although 
extensively studied, the specific neuroprotective effects of lutein in 
hippocampal neurons had not been investigated prior to our research. 
HT22 hippocampal neuron cells, selected for their resistance to 
glutamate receptor-mediated excitotoxicity, are commonly used as an 
in vitro model to investigate the neuroprotective properties of natural 
compounds against oxidative stress induced by non-receptor glutamate 
pathways. Glutamate-induced oxidative stress in neuronal cells results 
from altered cystine/glutamate antiporter activity and other pathological 
factors such as ischemia and trauma (Newcomb et al., 1997).

Lutein, a naturally occurring carotenoid obtained through dietary 
intake (Berendschot et al., 2000), has shown significant neuroprotective 
effects in both clinical trials and experimental studies (Yuan et al., 2021; 
Agarwal et al., 2022). It accumulates in critical areas like the retina and 
the CNS, offering protection against oxidative stress-induced damage, 
which is particularly relevant in neurodegenerative disorders such as 
Alzheimer’s and Parkinson’s diseases (Feart et al., 2016; Mullan et al., 
2017). The primary mechanism underlying lutein’s neuroprotection is 
its antioxidant properties (Iyer et al., 2024). Although studies have 
shown lutein’s ability to mitigate ROS generation induced by various 
factors in CNS cells, such as b.END.3, PC12, SH-SY5Y, and BV-2 cells 
(Liu et al., 2017; Singhrang et al., 2018; Pap et al., 2021), research has 
primarily focused on its role in countering oxidative stress in neuronal 
cells triggered by amyloid deposition and external oxidants. 
Excitotoxicity, induced by glutamate, is recognized as a crucial factor 
in the development and progression of neurodegenerative diseases. 
Addressing glutamate-induced excitotoxicity and oxidative stress with 

FIGURE 2

Neuroprotective effects of Lutein on glutamate-induced toxicity in HT22 cells. (A,B) HT22 cells were stimulated with glutamate (20  mM) for 24  h after 
pretreatment with an increasing concentrations of Lutein or Trolox (50  μM) for 12  h. Cell viability (A) and intracellular ROS levels (B) were measured. 
Data are means  ±  S.E.M of three independent experiments. Statistical significance is denoted as follows: ###p  <  0.001 vs. control group; *p  <  0.05, 
**p < 0.01, ***p  <  0.001 vs. glutamate treated group.
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safe and effective natural compounds is thus crucial in treating such 
conditions. This study aims to enrich our understanding of lutein’s 
pharmacological properties, thereby broadening our comprehension 
of its specific mechanisms underlying therapeutic potential for 
neurodegenerative diseases. Therefore, in this study, we constructed an 
in vitro glutamate-induced HT22 cell injury model to explore the 

neuroprotective mechanism of lutein in mouse hippocampal neuronal 
cell lines. We  found that lutein can decrease the cytotoxicity of 
glutamate-induced HT22 cells in a concentration-dependent manner 
(Figure 2A), depends on its antioxidant properties (Figure 2B).

Excessive extracellular glutamate levels can trigger neuronal death 
through excitotoxicity, ferroptosis, and mitochondrial dysfunction, all 

FIGURE 3

Lutein participates in early cell apoptosis by inhibiting glutamate mediated mitochondrial membrane potential destruction. (A) HT22 cells were 
exposed to 20  mM glutamate with varying concentrations of lutein (1.25, 2.5, 5, and 10  μM) and subjected to the FITC test (one-step TUNEL apoptosis 
test kit) to assess the number of apoptotic and dead cells, respectively. The bar graph indicates the percentage of apoptotic cells. Data are presented as 
the mean value  ±  S.E.M of three independent experiments. (B) Representative images of JC-1 staining were detected using fluorescence microscopy. 
The bar graph indicates the percentage of cells exhibiting mitochondrial depolarization. Data are presented as the mean value  ±  S.E.M of three 
independent experiments. (C) Western blot analysis was conducted. β-Actin serving as a loading control. The bars represent the fold-increase in the 
levels of cleaved caspase 3 and cleaved caspase 9 compared to control cells. Data are presented as the mean value  ±  S.E.M of three independent 
experiments. Statistical significance is denoted as follows: ###p  <  0.001 vs. control cells; *p  <  0.05, **p  <  0.01, ***p  <  0.001 vs. glutamate treated group.
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of which disrupt intracellular redox balance (Vaglio-Garro et al., 2024). 
Our study, consistent with prior research, highlights the association 
between neuronal apoptosis and oxidative stress-induced accumulation 
of ROS within mitochondria, leading to mitochondrial damage and 
caspase-mediated apoptosis (Figure  3). In our investigation, lutein 
demonstrated notable protective effects against glutamate-induced 
MOMP depolarization in HT22 cells in a dose-dependent manner 
(Figure  3B). Moreover, lutein effectively inhibited the activation of 
caspase 3 and caspase 9, thereby mitigating apoptosis (Figure 3C). The 
precise mechanism underlying glutamate-induced cell death in HT22 
cells remains debated, with evidence suggesting alternative pathways at 
lower concentrations. For instance, lower glutamate concentrations (≤ 
5 mM) can induce caspase-independent DNA fragmentation (Fukui 
et al., 2009), while specific concentrations can trigger ferroptosis, a 
process attenuated by compounds like quercetin through the SIRT1/
Nrf2/SLC7A11/GPX4 pathway (Xie et al., 2022). Furthermore, in other 
cell lines like the human neuroblastoma cell line SH-SY5Y, glutamate 
treatments induce oxidative stress, inflammation, iron accumulation, 
and lipid peroxidation. Lutein counteracts these effects by reducing 
ROS, suppressing pro-inflammatory cytokines, preventing iron 
accumulation, and downregulating lipid peroxidation-associated gene 
expression, thus inhibiting ferroptosis (Xie et al., 2022). Our findings 
suggest that lutein protects against caspase-dependent apoptosis 

following 20 mM glutamate treatment in HT22 cells. However, further 
research is needed to explore whether lutein’s protective effects extend 
to other cell death pathways in HT22 cells.

Mitogen-activated protein kinases (MAPKs) play crucial roles in 
various cellular processes, including cell proliferation, differentiation, 
inflammation, and apoptosis. Oxidative stress triggers the activation 
of MAPK pathways, such as JNK and p38, through apoptosis signal-
regulating kinase 1 (ASK1), ultimately inducing apoptosis (Saitoh 
et  al., 1998). Although studies have linked JNK, p38, and ERK 
activation to glutamate-induced apoptosis in HT22 cells, lutein 
inhibits MAPK activation under oxidative stress, providing cellular 
protection. For instance, lutein suppresses ERK1/2, JNK1, and p38 
activation in cells exposed to oxidative stress inducers (Hu et  al., 
2021), and reduces lipid peroxidation and JNK and p38 activation in 
human lens epithelial cells exposed to UVB radiation (Silván et al., 
2016). Similarly, our research shows that lutein inhibits JNK, p38, and 
ERK activation in HT22 cells under oxidative stress induced by 
glutamate, thereby reducing apoptosis (Figure  4). Overall, high 
concentrations of glutamate induce MAPK and caspase activation, 
leading to apoptotic cell death, which is dependent on mitochondrial 
dysfunction caused by oxidative stress-induced ROS accumulation.

Nrf2, a transcription factor, plays a crucial role in regulating 
antioxidant stress proteins. Normally, Nrf2 levels are kept low by Keap1, 

FIGURE 4

Lutein inhibits glutamate-induced MAPK activation in HT22 cells. (A) HT22 cells were exposed to 20  mM glutamate in the presence or absence of 
indicated concentrations for 8  h. Western blot analysis was performed using indicated antibodies, with β-Actin serving as a loading control. (B–D) The 
bars represent the fold-increases of P38, ERK, and JNK phosphorylation levels compared to the control cells. Data are presented as the mean 
value  ±  S.E.M of three independent experiments. Statistical significance is denoted as follows: ###p  <  0 0.001 vs. control group; **p  <  0.01, ***p  <  0.001 
vs. glutamate treated group.
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FIGURE 5

Lutein increases Nrf2 nuclear translocation in HT22 cells. (A,B) Translocation of cytosolic Nrf2 into the nucleus was assessed in HT22 cells incubated 
with 10  μM Lutein for indicated times. The cytosolic and nucleus fractions were isolated and analyzed by western blotting with β-Actin and Lamin B1, 
respectively. Bars indicate fold-increases compared to the control cells. Data are mean  ±  S.E.M of three independent experiments. Statistical 
significance is denoted as follows: #p  <  0.05, ##p  <  0.01, ###p  <  0.001 vs. control cells. (C) Representative immunofluorescence of Nrf2 expression in 
HT22 cells is shown. Representative immunofluorescence of Nrf2 expression in HT22 cells is shown. Staining of Nrf2 (green labeled) and the nucleus 
(blue labeled) was detected using fluorescent microscopy.

FIGURE 6

Effects of Lutein on HO-1 expression in HT22 cells. (A) HO-1 expression was evaluated in the presence of varying concentrations of Lutein and 
compared to 20  μM CoPP after 12  h. Western blot analysis was conducted with β-Actin as the control. Bars represent fold-increases in HO-1 
expression. Data are presented as the mean value  ±  S.E.M of three independent experiments. Statistical significance is denoted as follows: **p  <  0.001 
vs. CoPP treated group. (B) Western blot analysis was performed after incubation with 10  μM Lutein for indicated times, with β-Actin as a loading 
control. Data are presented as the mean value  ±  S.E.M of three independent experiments. Statistical significance is denoted as follows: #p  <  0.05, 
##p  <  0.01, ###p  <  0.001 vs. CoPP treated cells group. (C,D) HT22 cells were treated with 20  mM glutamate and subsequently incubated with either 50  μM 
SnPP or 10  μM Lutein, followed by the assessment of cell viability (C) and intracellular ROS levels (D). Data are presented as the mean value  ±  S.E.M of 
three independent experiments. Statistical significance is denoted as follows: %p  <  0.05, ***p  <  0.001, ###p  <  0.001 vs. corresponding group.
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which promotes its degradation via ubiquitination. However, exposure 
to ROS or electrophilic agents causes Nrf2 to dissociate from Keap1 and 
translocate to the nucleus. There, it binds to antioxidant response 
element (ARE) sequences, activating the transcription of various 
antioxidant enzymes like HO-1, GST, SOD, and NQO-1, which help 
detoxify ROS (Huang et al., 2002). Lutein has been found to enhance 
the nuclear translocation of Nrf2, leading to increased expression of 
Nrf2-targeted antioxidant enzymes and exerting an antioxidant effect. 
Studies show that lutein activates Nrf2, resulting in elevated expression 
of protective enzymes like HO-1 and NQO1, which mitigates oxidative 
stress in microglial cells exposed to lipopolysaccharide (Wu et al., 2015) 
Additionally, lutein reverses H2O2-induced down-regulation of HO-1 
mRNA in PC12 cells (Hu et al., 2021). Our research confirms these 
findings, demonstrating that lutein boosts the nuclear translocation of 
Nrf2 and upregulates HO-1 expression in HT22 cells (Figure 5). The 
antioxidant properties of lutein may stem from the upregulation of 
Nrf2-dependent antioxidant genes and its phenolic hydroxyl structure’s 
inherent reductive capacity against ROS. Moreover, we observed that 
the HO-1 inhibitor, SnPP, significantly diminishes lutein’s antioxidant 
efficacy, highlighting the crucial role of HO-1 upregulation in protecting 
HT22 cells from glutamate-induced oxidative stress (Figure 6).

In undifferentiated HT22 cells devoid of glutamate receptors, 
we have confirmed that lutein confers protection against non-receptor-
mediated glutamate neurotoxicity via its antioxidant properties. 
Non-receptor-mediated glutamate neurotoxicity is pivotal in inducing 
neuronal cell toxicity under pathological states, including hypoxia and 

neuronal injury, characterized by the release and accumulation of 
intracellular glutamate in the synaptic cleft at elevated concentrations. 
The in vivo hippocampus consists of differentiated neurons with 
glutamate and cholinergic receptors, operating at lower synaptic cleft 
glutamate levels, further research is needed to elucidate lutein’s protective 
effect against NMDA receptor-mediated excitotoxicity. Reports indicate 
that the antioxidant dithiothreitol (DTT) exhibits a diminished capacity 
to reverse the decrease in cell viability in differentiated HT22 cells with 
NMDA receptors treated with glutamate, in comparison to 
undifferentiated HT22 cells (He et al., 2013). Conversely, another study 
demonstrated that lutein significantly mitigated the upregulation of Bax, 
cytochrome c, p-p38 MAPK, and p-c-Jun in the retinal ganglion cells of 
rats administered NMDA, ameliorating neuronal damage from 
excitotoxicity (Zhang et  al., 2016). Despite the diminished role of 
oxidative stress in glutamate receptor-mediated excitotoxicity, lutein 
might still afford protection against neuronal excitotoxicity via 
mechanisms distinct from its antioxidant activity.

In summary, our research underscores lutein’s potential as a 
neuroprotective agent against glutamate-induced oxidative stress and 
apoptosis in HT22 cells. Lutein demonstrates significant efficacy in 
reducing cytotoxicity, primarily through its antioxidant properties, 
which mitigate ROS accumulation within mitochondria and inhibit 
caspase-mediated apoptosis. Moreover, lutein modulates MAPK 
pathways and activates Nrf2-mediated antioxidant responses, 
particularly by upregulating HO-1 expression (Figure  7). These 
findings highlight lutein’s multifaceted neuroprotective effects and its 

FIGURE 7

Mechanism of lutein mitigating oxidative stress and apoptosis in glutamate-induced HT22 cells. Lutein facilitates the nuclear translocation of Nrf2, 
upregulates HO-1 expression, diminishes ROS levels, mitigates mitochondrial damage caused by oxidative stress, inhibits caspase and MAPK activation, 
and alleviates oxidative stress and apoptosis in HT22 cells.
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promise for therapeutic intervention in neurodegenerative diseases 
characterized by oxidative damage.
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