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Editorial on the Research Topic

Biomaterials for Brain Therapy and Repair

Acute or chronic alterations of brain function, either in the form of brain disorders, including
developmental, psychiatric, neurodegenerative, and autoimmune diseases, cancer or injury
represent a tremendous social and economic burden that has increased considerably over the last
20 years (Feigin et al., 2017). Technologies to repair or induce regeneration of brain tissue are
still in early stages of development, but the use of induced pluripotent stem cells (iPSCs) have
opened the possibility of modeling and reconstructing brain circuits (Barker et al., 2018). Recent
efforts have begun to consider the explicit development of tools to analyze brain composition
and function as a means to better diagnose, prevent, or treat brain diseases. Artificial models of
healthy and diseased brain tissue may eventually help decipher patterns of regional cell diversity
and connectivity and allow the precise manipulation of cells and extracellular conditions to
mimic neural microenvironments. In this context, biomaterials can act as a dynamic stimulatory
platform that can recreate the native cerebral tissue, deliver growth factors or immune-modulating
components to support neural growth and allow detailed analysis of therapeutic outcomes.

Over the last 30 years we have witnessed advances in biomaterials technologies supporting
regeneration of a range of tissues, from skin to heart valves, urinary bladder and cartilage (Langer
and Vacanti, 2016). However, central nervous tissues such as the brain remains a challenge due to
their native complexity. Recently, increasingly interdisciplinary efforts are combining fields such
as chemical and functional imaging, developmental biology, animal models and behavioral studies,
and tissue engineering to develop new understanding regarding mechanisms of homeostasis and
disease progression in the brain, as well as to discover and validate new therapeutic strategies.

This collection of research articles highlights recent biomaterials-centric approaches to study
and treat disorders, diseases, and injuries to the brain. Topics span diverse areas of interest,
such as tissue engineering, targeted drug delivery, ex vivo disease models, dynamic biomaterials,
neurovascular diseases, molecular imaging, neurobiology, proteomics, systems biology, protein
biosensors, and biomimetic scaffold design.

One area of significant effort is the development of biomaterials to examine the progression
and treatment of brain cancer. Efforts highlighted here seek to model influential regulators of
the glioblastoma tumor microenvironment (Cha and Kim) that may yield clinically-actionable
data (Cornelison and Munson), including using cytokines to direct angiogenesis, improving drug
delivery and increasing the circulation of immune cells at the tumor site, as well as manipulating
biophysical properties to control cell phenotype and migration. Such platforms also facilitate
study of cellular level heterogeneity associated with brain cancer, such as the role played by
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a subpopulation of glioblastoma stem-like cells (Heffernan and
Sirianni) and heterogeneity of tyrosine kinase receptor density
(Chen et al.) on tumor recurrence and therapeutic resistance.
They also examine the role of matrix composition, such as
the molecular weight of hyaluronic acid, on glioblastoma cell
invasion capacity (Chen et al.).

This virtual issue also includes an exciting compilation of
research describing biomaterials to recapitulate native neural
behavior in vitro. Biomaterial environments can guide controlled
differentiation of neural cells and support neuronal processes
(Farrukh et al.) and may serve as a platform to culture
embryonic neuronal cells in a brain-mimetic hydrogel matrix
(Magariños et al.). The microscale architecture of biomaterial
culture platforms can directly affect the efficacy of neural cell
transplants (Meco and Lampe), while the precise manipulation
of topographical, chemical, electrical, and mechanical cues
enhance control over directionality of regenerating neurites
(Cangellaris and Gillette). Recent advances in 3D bioprinting
may ultimately provide the resolution necessary to replicate the
native complexity of the neural environment tissue (Thomas and
Willerth). Precisely embedded bioactive signals may alternatively
provide a pathway to direct migration and differentiation of
neural stem cells (Matta and Gonzalez) as a means to regenerate
the subventricular zone following stroke. This issue also provides
an overview of delivery systems that support the repair of the
stroke-damaged tissue (Tuladhar et al.).

Changes in the neural vascular environment play a critical
role in acute brain damage and chronic neurodegenerative
disorders. Such injuries are characterized by inflammatory
reactions that include possible alterations of the extracellular
matrix and modifications of the blood-brain barrier (BBB)
(Nih et al., 2018). Here, a review article compiles efforts

employing iPSCs in biomaterial models of the BBB to

analyze mechanisms of neurovascular diseases (Bosworth
et al.), while a research article examines the role of BBB
integrity on the functional behavior of intracortical electrodes
(Falcone et al.).

Together, this Research Topic illustrates the current state-
of-the-art and future opportunities for the development of
biomaterials to sustain and support differentiation of cells
involved in neurological conditions. Due to the complexity of
the brain, further progress in this area will presumably be related
to technological advances at multiple scales and from multiple
disciplines. However, it is clear that biomaterial platforms will
play an essential role in these ongoing and future efforts. They
may: aid the development of models to study the dysregulation
and degradation of neuronal architectures; act as templates to
promote neural regeneration; facilitate study of the progression
of a wide range of brain related diseases including trauma and
cancer; and play a central role in the optimization and delivery
of therapeutic strategies. As a result, we have been excited to help
organize this Research Topic Biomaterials for Brain Therapy and
Repair and hope it serves as a relevant and useful resource to our
colleagues.
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Strategies for neural tissue repair heavily depend on our ability to temporally reconstruct

the natural cellular microenvironment of neural cells. Biomaterials play a fundamental role

in this context, as they provide the mechanical support for cells to attach and migrate

to the injury site, as well as fundamental signals for differentiation. This review describes

how different cellular processes (attachment, proliferation, and (directional) migration and

differentiation) have been supported by different material parameters, in vitro and in vivo.

Although incipient guidelines for biomaterial design become visible, literature in the field

remains rather phenomenological. As in other fields of tissue regeneration, progress will

depend on more systematic studies on cell-materials response, better understanding on

how cells behave and understand signals in their natural milieu from neurobiology studies,

and the translation of this knowledge into engineered microenvironments for clinical use.

Keywords: biomaterials, neuroregeneration, axon growth, neurite guidance, nerve repair

INTRODUCTION

Disfunction in the nervous system due to aging, trauma or neurodegeneration leads to severe
disabilities and is a major concern in an aging society. Regeneration of nerve functions involves
migration and generation of new born cells at the damage site, the oriented growth and branching
of axons to reform nerves, and the formation of functional synapses between adjacent neurons (Liu
et al., 2011; Lee et al., 2014). Over the last two decades neural tissue regenerative therapies based on
stem cell transplantation to the injury site have been explored (Lunn et al., 2011; Gage and Temple,
2013; Casarosa et al., 2014). Different biomaterials have been used as carriers for stem cell delivery
in order to improve the viability and to guide differentiation of implanted cells (Roach et al., 2010).
These biomaterials are conceived, in part, to reproduce the mechanical properties, morphology and
composition of the extracellular matrix (ECM) around neuronal cells.

The next sections present relevant examples of biomaterial designs that support different
neuronal processes (adhesion, proliferation, migration or (directional) differentiation) in 2D or
3D formats in vitro, and also nerve tissue regeneration in vivo. The sections in this review
are organized attending to the biomaterial-elicited cellular response. Inside each section, the
literature is structured along specific material properties exploited to support such response, i.e.,
(i) biofunctionalization with adhesive proteins, mimetic peptides and growth factors used to
mediate specific interactions with cells, (ii) mechanical properties, and (iii) dimensionality and
topographical features for guiding axon extension and directional growth. Within each section the
response from different cell types is presented. At the end of this article the overall progress and
remaining challenges for the future of this field are critically discussed.
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BIOMATERIALS THAT SUPPORT
NEURONAL CELL ADHESION

The most basic requirement for a synthetic biomaterial scaffold
for cell growth and tissue regeneration (beyond toxicity) is its
ability to support cell attachment (Cooke et al., 2010). For this
purpose, synthetic biomaterials for neuronal regeneration are
typically coated or functionalized with either (a) polymers which
are able to interact with the negatively charged cell membrane,
(b) reactive layers that can (covalently) bind to the cell surface, or
(c) specific cell adhesive molecules able to interact with adhesive
receptors at the cell membrane (i.e., integrins) (Berns et al.,
2014; Lu et al., 2014; Akizawa et al., 2016; Hamsici et al., 2017).
Positively charged polymers like polylysine (PL), poly(ornithine)
(PO), poly(ethyleneimine) (PEI), poly(propyleneimine) (PPI) or
poly(allylamine hydrochloride) are traditionally used in neuronal
cell cultures (Roach et al., 2010). These positively charged
layers interact with the negatively charged cellular membrane
and allow cell attachment. Reactive polycatechol coatings like
poly(dopamine) or poly(norepinephrine) (pNE) have also been
used to immobilize neurons (Park et al., 2014; Kim et al., 2015).
Such coatings can form on almost any kind of material. The
polycatechol layer can covalently react with proteins from serum
forming a protein layer onto the biomaterial that supports fast
adhesion of human neural stem cells (hNSCs) (Figure 1A), or
bind secreted adhesive proteins from the cells, or directly bind
to the surface of the cells (Park et al., 2014).

Alternatively to positively charged or reactive coatings,
biomaterials can be functionalized with cell adhesive ECM
proteins, such as laminin (LN), collagen (CO) or fibronectin
(FN) (Yamada, 1989; Belkin and Stepp, 2000; Guarnieri et al.,
2007; Durbeej, 2010; Lei et al., 2012; Lee et al., 2014). These
proteins offer specific binding sites for adhesion receptors at
the cell membrane (i.e., integrins) that mediate cell adhesion.
For example, poly(L-lactic acid) (PLLA) nanofibers coated with
LN enhanced the attachment and proliferation of PC12 cells

Abbreviations: 3D-GFs, 3D porous graphene foam; AFG, Aligned fibrillar fibrin

hydrogel; aNSCs, Adult neural stem cells; BDNF, Brain-derived neurotrophic

factor; BMHP, Bone marrow homing peptide; BMP, Bone morphogenetic

protein; BMSCs, Bone marrow stromal cells; CNGs, Chitosan nerve guides;

CNS, Central nervous system; CO, Collagen; DRGs, Dorsal root ganglion; ECM,

Extracellular matrix; EGF, Epidermal growth factor; ELP, Elastin-like proteins;

EPO, Erythropoietin; ESMN, Embryonic stem cell-derived motor neurons;

FGF-2, Fibroblast growth factor 2; FN, Fibronectin; GDNF, Glial cell line-derived

neurotrophic factor; GO, Graphene oxide; h-iN, Human induced neuronal

cells; hiPSCs, human induced pluripotent stem cells; HNPCs, Hippocampal

neural progenitor cells; hNSCs, Human neural stem cells; hUMSCs, human

umbilical cord mesenchymal stem cells; LN, Laminin; MAC, Methacrylamide

chitosans; MaSp1, Major ampullate spidroin 1; mNSCs, Mouse neural stem cells;

MSCs, Mesenchymal stem cells; NCAM, Neural cell adhesion molecule; NF,

Neurotrophic factors; NGCs, Nerve guidance channels; NGF, Nerve growth factor;

NPCs, Neural progenitor cells; NSCs, Neural stem cells; NSPCs, Neural stem

progenitor cells; P(AAm), Poly(Acrylamide); PAN-MA, Poly(Acrylonitrile-co-

Methylacrylate); PAs, Peptide amphiphiles; PCL, Poly(ε-Caprolactone); PDMS,

Poly(Dimethylsiloxane); PEG, Poly(Ethyleneglycol); PEI, Poly(Ethyleneimine);

PL, Poly(Lysine); PLGA, Poly(L-lactide-co-glycolide); PLLA, Poly(L-lactic

acid); pNE, Poly(Norepinephrine); PNS, Peripheral nervous system; PO,

Poly(Ornithine); PPI, Poly(Propyleneimine); PVC, Poly(Vinyl chloride); RFG,

Random fibrin hydrogel; SAPs, Self-assembling peptides; SF, Silk fibroin; SGN,

Spiral ganglion neurons; TCP, Tissue culture plate.

vs. unmodified fibers (Figure 1B) (Koh et al., 2008). In some
cases, protein fragments containing the binding domains or
peptidomimetica are used for surface functionalization instead of
the whole protein (Mizuno et al., 2017). Short peptidomimetics
are easier to control and manipulate in comparison to the full
protein for biomaterial applications. Typical sequences used in
neuronal cell cultures are IKVAV, RKRLQVQLSIRT or YIGSR
peptides derived from LN, or the RGD binding site from
FN (Frith et al., 2012; Kharkar et al., 2013). The YIGSR and
RKRLQVQLSIRT peptides support neural cells adhesion, while
IKVAV sequence is stated to support differentiation, migration
and neurite extension of neural cells (Freitas et al., 2007;
Mochizuki et al., 2007; Thid et al., 2007; Frith et al., 2012; Yamada
et al., 2012). Functionalized PAs with IKVAV enhanced adhesion
by two-folds and aligned neurite extension of hippocampal
neurons in comparison to unmodified fibers (Figure 1C) (Berns
et al., 2014). Neurotrophic factors (NF) and glial cell line-derived
neurotrophic factor (GDNF) have also been combined with
adhesion peptides to promote attachment of hNSCs (Kang et al.,
2011; Yang et al., 2012; Taylor et al., 2017).

In many cases the nonspecific (electrostatic) and specific
(receptor-mediated) functionalization approaches are
used together to improve neural adhesion to surfaces.
Poly(acrylamide) P(AAm) gels covalently derivatized with
IKVAV and PL mixture through orthogonal thiol and
amine coupling chemistries enhanced neuronal maturation
of mouse embryonic neural progenitor cells (NPCs) by 3-fold
in comparison to hydrogels modified only with IKVAV or PL
(Figure 1D) (Farrukh et al., 2017b). Neuronal cells behaved
differently when seeded on laminin micropatterns on glass
or on PEI coated surfaces. Cells on glass/laminin surface
extended neurites only on micropatterned laminin lines, while
on PEI/laminin surface neurites grew randomly and did not
follow the laminin pattern (Liu et al., 2006).

The attachment of the adhesive proteins or ligands to the
biomaterial can be performed either by physical adsorption, or by
covalent reaction of the adhesive molecule with reactive groups
on the materials surface. Physical adsorption is the simplest
method, which only requires incubation of the surface with a
concentrated protein solution. However, physical interactions
are reversible and this might limit the stability of the coating
during cell culture time. In addition, immobilization by physical
interactions lacks spatial orientation of the absorbed protein and
can lead to loss of protein function in the immobilized state.
Covalent binding of the adhesive molecules is expected to lead
to more homogenous and stable coatings, and eventually allow
specific orientation of ligands and more effective binding (Ho
et al., 2006). Amines and thiols are the most common reactive
groups present in peptides or proteins used for derivatization
of functional surfaces. Typically glycidyl, carboxyl or maleimide
groups are the reactive functionalities at the surface (Taylor et al.,
2017). The performance of covalent vs. physical immobilization
strategies for neuronal cell attachment has been addressed in
some reports. NSCs seeded on soft chitosan hydrogels (0.5–0.7
kPa) covalently functionalized with LN showed enhanced cell
spreading vs. hydrogels with physically adsorbed LN (Wilkinson
et al., 2014). In a different study, adult hippocampal NSCs
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FIGURE 1 | Strategies to support adhesion of neuronal cells to biomaterials (A) hNSCs on pNE coated and uncoated substrates. pNE coating after 2 h of cell seeding

significantly enhance cell adhesion (Park et al., 2014) Copyright 2014, Minah Park et al.; (B) PLLA nanofibers coated or covalently functionalized with LN. LN coated

substrates support adhesion and neurite extension of PC12 cells (Koh et al., 2008) Copyright 2008, Elsevier; (C) PAs (Palmitoyl-VVAAEE-NH2 ) functionalized with

adhesive epitope to support adhesion of hippocampal neurons. Aligned PA-IKVAV significantly enhance cell adhesion and directional neurite extension during 2 days

of culture (Berns et al., 2014) Copyright 2014, Elsevier; (D) IKVAV (IK-19) and PL functionalized polyacrylamide hydrogels either by mixed (simultaneous binding) or by

orthogonal coupling chemistries (sequential binding). Sequential binding of PL/IKVAV enhance the cell neurite extension of NPCs, during 5 days of culture in

comparison to simultaneous binding (Farrukh et al., 2017b) Copyright 2017, American Chemical Society.

were cultured on phospholipid bilayers supported on glass
functionalized with different RGD-containing peptides. NSCs
attached to RGD functionalized bilayers in a similar way to glass
substrates coated with LN, and underwent differentiation into
neurons and astrocytes (Ananthanarayanan et al., 2010).

Typically, neural cells are attached to flat plastic/glass
coated surfaces or thin hydrogel coatings for 2D culture.
Alternative, more complex or conductive materials can be used
in order to implement additional functions to the interface.
For example, LN coated graphene films support adhesion
of hNSCs during long term cell culture (3–4 weeks) and
promote neuronal differentiation (Figure 2A) (Park et al., 2011).
Such 2D cell culture environments are attractive due to their
simple preparation and facile imaging. Eventually a topology,

i.e., a patterned distribution of adhesive molecules, can be
superposed on the substrate using established micropatterning
methods (typically microcontactprinting), in order to provide
directionality or site-specificity to neuronal attachment
(Mammadov et al., 2013). For example, polydimethylsiloxane
(PDMS) substrates were microcontactprinted with FN,
N-cadherin, and Jagged1 proteins to promote spatially resolved
adhesion of NSCs (Figure 2B) (Wang et al., 2014). In contrast
to in vivo cellular environment where cells can adopt a 3D
body shape by attaching to the 3D space, cells in 2D adhere
within a single plane and develop an apical-basal polarization
that might not be representative for the in vivo case (Caliari
and Burdick, 2016). Therefore, 3D culture models of neuronal
cells have developed in recent years. Different biomaterials
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FIGURE 2 | Dimensionality in neuronal cell cultures. Examples of 2D and 3D substrates supporting attachment of neuronal cells (A) hNSCs cultured on laminin coated

glass and on graphene film (Park et al., 2011) Copyright 2011, John Wiley and Sons; (B) NSCs cultured on micro-contact printed patterns of FN, Jag or N-cadherin

adhesive proteins on PDMS films. FN support higher neuronal cell adhesion while combination of FN/Jag support neuronal differentiation (Wang et al., 2014) Copyright

2014, John Wiley and Sons; (C) Neural cultures in 3D gels of soft (Young’s Modulus = 0.4 kPa) photopolymerized hyaluronic acid functionalized with RGD. The soft

hydrogel facilitated neurite extension from encapsulated neurospheres during 17 days of culture (Tarus et al., 2016) Copyright 2016, American Chemical Society;

(D) Neural cultures on 3D fibrous matrices of aligned (-A) and random PLA fibers (-R), modified with polypyrrole (PLAPPY) and poly-ornithine (o-PLAPPY) (Tian et al.,

2016) Copyright 2016, Elsevier.

have been used as scaffolds: carbohydrates (alginate, dextran
or hyaluronic acid), synthetic hydrogels (poly(ethyleneglycol)
(PEG), fibrous matrices of peptide amphiphiles (PAs) nanofibers,
or electrospun membranes from degradable polymers, i.e.,
PLLA, poly(L-lactide-co-glycolide) (PLGA) or silk. These
materials are also coated with adhesive proteins, or modified
with adhesive bioactive peptide for supporting cell attachment
(Cooke et al., 2010). Embryonic stem cell-derived motor neurons
(ESMN) encapsulated in PEG hydrogel showed outgrowth of
neurites only when the gel was functionalized with KGRGDS
sequence (McKinnon et al., 2014). Mouse embryonic stem
cells (ESCs) encapsulated into 3D alginate beads modified with
FN or hyaluronic acid supported adhesion and differentiation
of ESCs into neuronal lineage (Bozza et al., 2014). PEG
hydrogel functionalized with IKVAV derived peptide sequence
(CCRRIKVAVWLC) supported adhesion and proliferation
of hNSCs (Li X. et al., 2014). RGD functionalized hyaluronic

acid based 3D hydrogel enhanced 2 folds adhesion and neurite
outgrowth of hippocampal NPCs (Figure 2C) (Tarus et al.,
2016). Hydrogels formed by nanofibers of peptide amphiphiles
(PAs) containing the repeating RADA sequence and different
peptidomimetica (RGD for cell adhesion, PFSSTKT for signal
transduction and SKPPGTSS for apoptosis inhibition) allowed
attachment, survival and proliferation of NSCs into NPCs,
neurons, astrocytes and oligodendrocytes during 5 months of
cell culture (Koutsopoulos and Zhang, 2013; Zweckberger et al.,
2016). The enhanced cell survival on hydrogels of PAs modified
with SKPPGTSS (69%), RGD (58%), and PFSSTKT (56%) was
significantly higher than on matrigel (37%) or collagen-1 (25%)
gels (Koutsopoulos and Zhang, 2013). PA hydrogels containing
RGD and IKVAV motif showed enhanced adhesion and
proliferation of embedded NSCs in comparison to unmodified
fibers (Sun et al., 2016). Spider silk based 3D scaffold has also
been used for neural cell culture due to biocompatibility, tunable
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surface charge and mechanical properties. Primary cortical
neurons showed growth, extension and higher expression of
neural cell adhesion molecule (NCAM) on recombinant major
ampullate spidroin 1 (MaSp1) spider silk. The modification of
MaSp1 with GRGGL adhesive sequence (N-cadherin binding
site) lead to a significant improvement in neuronal growth (An
et al., 2015). The Self-assembling peptides (SAPs) nanofiber
scaffolds from K2(QL)6K2(QL6)-IKVAV and RADA16-I-BMHP-
1 were tested for spinal cord injury (SCI) model. These peptides
increased the stem cell viability and facilitated differentiation
into neurons (Zweckberger et al., 2016). A hybrid nanofiber
scaffold based on PLGA and RADA16 and modified with bone
marrow homing peptide-1 (BMHP-1) supported adhesion and
proliferation of rat Schwann cells for application in peripheral
nervous system (PNS) repair (Nune et al., 2016).

Topological and topographical features at micro- and
nanoscale influence the behavior of neurons in multiple ways,
not yet well understood (Micholt et al., 2013; Kulangara
et al., 2014; Yang et al., 2014; Nagamine et al., 2015). Line
micropatterns with 1–10µm width and several mm length are
the preferred geometrical designs to meet the characteristic
elongated morphology of neurons. Either adhesive protein
micropatterns on planar substrates (Figure 2) or microchannels
have been used for this purpose. Different examples demonstrate
positive effect of topographical features in supporting neuronal
adhesion. hNSCs showed a two folds enhanced adhesion to LN
coated graphene films vs. glass, presumably due to the surface
roughness (Park et al., 2011). A micro-grated PDMS substrate
coated with PO/LN were designed with dimensions of different
heights (0.35–4µm), width (2µm), and spacing (2µm). Higher
cell adhesion, alignment (10–50 %), and neuronal differentiation
(∼10–20%) of murine NPCs was reported in deeper (2 and
4µm) PDMS channels vs. shallow channels (Chua et al., 2014).
Electrospun PLGA nanofibers with smooth and nanorough
surfaces (∼100–400 nm) were used to culture A-172 cell line
derived from human brain. The PLGA fibers with rough surface
enhanced the adhesion and up to 50% increase in viability of cells
(Zamani et al., 2013). A scaffold of aligned electrospun PLLA
nanofibers coated with PO enhanced adhesion and proliferation
of PC-12 cells by two-fold in comparison to randomly oriented
PLLA-PO fibers (Figure 2D) (Tian et al., 2016). In some cases
microtopographies are used to define the direction for neurons
to attach and grow. Alginate hydrogels containingmicrochannels
functionalized with RGD supported adhesion and differentiation
of bonemarrow stromal cells (Lee et al., 2015). Electrospun PLLA
fibers coated with graphene oxide (GO) supported adhesion of
Schwann cells and PC12. The surface roughness was introduced
by coating of GO nanosheets (Zhang et al., 2016).

BIOMATERIALS THAT SUPPORT
PROLIFERATION OF NEURONAL CELLS

Low cell proliferation ratio is a major barrier in the clinical
success of cell therapies (Karow et al., 2012; Ortega et al., 2013).
Similar to adhesive behavior, proliferation varies with material

parameters such as coating chemistry, mechanics, dimensionality
or morphology.

Functionalization of biodegradable polyesters with
hydrophilic and charged functional groups has a positive
effect in proliferation ratios. Hydrophilic O2 plasma treated
PCL fiber meshes enhanced by ∼2 folds the viability and
proliferation of mouse ESCs after 3 days of cell culture (Abbasi
et al., 2014). Schwann cells showed doubled proliferation ratio
on PCL surfaces treated with hexamethylenediamine than on
non-functionalized ones during 5 days of cell culture (Luca et al.,
2014). Electrospun PLLA-co-PCL/silk fibers loaded with vitamin
B5 supported 20% higher proliferation of Schwann cells due to
increased surface hydrophilicity (Bhutto et al., 2016).

Several reports demonstrate the positive effect of
surface anchored adhesive proteins and peptidomimetics in
proliferation. Matrigel functionalized PCL nanofibers enhanced
∼2.5 times proliferation of nerve precursor cells during 4 days
of cell culture compared to bare PCL (Hiraoka et al., 2009;
Ghasemi-Mobarakeh et al., 2010). Laminin peptides from α1
(LP3) or γ1 (LP) chains improved cell survival in in vivo collagen
implants. Implanted NSCs encapsulated in the functionalized
collagen at striatum of healthy rats showed enhanced cell
viability (Nakaji-Hirabayashi et al., 2013). GRGDS modified
gellan gum used to culture neural stem progenitor cells (NSPCs)
showed 3-fold increase in proliferation than unmodified gellan
gum (Silva et al., 2012). Collagen hydrogels functionalized with
peptide sequence PPFLMLLKGSTR from LN α3 chain enhanced
the viability and proliferation (∼4 folds) of neurosphere isolated
from striatum of embryonic rat. Schwann cells cultured on
core-shell electrospun PLLA-co-PCL nanofibers (316 ± 110 nm)
coated with LN showed a 78% enhanced proliferation after 7
days of culture (Kijenska et al., 2014). Hydrogels formed by PA
nanofibers functionalized with IKVAV and RGD promoted ∼1
fold higher proliferation ratios of Schwann cells after 7–14 days of
cell culture. The RGD-PA hydrogels were slightly (∼20%) more
effective in supporting cell proliferation and maintaining cell
viability than IKVAV during 21 days of culture (Li A. et al., 2014).
IKVAV functionalized poly(ester carbonate) fibers enhanced cell
proliferation (20%) and neurite outgrowth (∼5 folds) of PC12
cells compared to unmodified fibers (Xing et al., 2014).

Improvement in cell proliferation was also reported on natural
matrices modified with adhesive peptides in combination with
NGFs. The fibroblast growth factor-2 (FGF2) embedded in a
collagen sponge enhanced the viability and proliferation of NSCs
(Ma et al., 2014). Slow release of NGFs (10 ng/mL) from collagen
gel enhanced the viability and decreased apoptosis of PC12 cell
during 4 days of cell culture more effectively than NGFs directly
added to medium (Bhang et al., 2009).

It is now well accepted that the mechanical properties of
the natural cellular microenvironment influence the behavior of
embedded cells. In a similar manner, the mechanical properties
of the culture substrate in 2D or 3D impact cellular processes
(Laura et al., 2008; Norman and Aranda-Espinoza, 2010; Hanein
et al., 2011). In general culture conditions tend to match the
properties of the natural environment. In the case of brain
tissue, which belongs to the softest in the body, biomaterials
with stiffness 0.1–20 kPa are preferred. For the retina tissue,
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the stiffness with 1–20 kPa is the preferred mechanical designs
for biomaterials. Several reports show how the stiffness of
the biomaterial influences proliferation of neuronal cells. Soft
P(AAm) hydrogels (2 kPa) functionalized with PL/IKVAV
enhance proliferation (11–24%) of NSCs during 4 days of
culture vs. glass or stiff gel (20 kPa) (Figure 3A) (Farrukh
et al., 2017a). A soft N-carboxyethyl chitosan/oxidized sodium
alginate hydrogel with Young’s Modulus between 0.1 and 1 kPa
was demonstrated to support proliferation and differentiation
of NSCs. Enhanced cell proliferation (∼1 fold) and a 38%
increase in neuronal differentiation was observed in the hydrogel
with Young’s Modulus 0.5 kPa. This hydrogel is also injectable
and, therefore, it could be a suitable carrier for NSCs based
regeneration (Wei et al., 2016). A study of NSCs proliferation
in materials with different stiffness was reported using thermo-
responsive polyurethane hydrogels with varying compositional
ranges with Young’s Modulus between 0.68 and 2.4 kPa. NSCs
on 0.68 kPa gels proliferated 30% faster than cells on 2.4 kPa
hydrogels (Figure 3B). Low stiffness facilitated NSCs survival
and growth (Hsieh et al., 2015). Electrospun blends of silk fibroin
(SF) and poly(L-lactic acid-co-ε-caprolactone) (PLLA-co-PCL)
with Young’s Modulus between 13 and 120 MPa supported
adhesion, proliferation and preferential differentiation of retinal
progenitor cells (RPCs) into retinal neurons. The cells show
highest proliferation on 105 MPa SF:PLCL (1:1) substrates
(Zhang et al., 2015).

Topography and alignment also influence neuronal cell
proliferation. Electrospun gelatin nanofiber meshes with
randomly oriented nanofibers showed enhanced adhesion
(20%) and proliferation of Schwann (RT4-D6P2T) (30%)
and sensory neuron-like (50B11) (40%) cell lines, while
aligned fibers enhanced the differentiation (Gnavi et al.,
2015). Similarly stimuli responsive biomaterials also influence
cell proliferation. Electrically conducting aligned PLLA and
polypyrrole electrospun nanofibers coated with PO support
proliferation (40%) and differentiation of PC-12 cells while
on electric stimulation it improves the neurite out growth
(Tian et al., 2016). Table 1 presents an overview of biomaterials
reported to support cell proliferation.

BIOMATERIAL DESIGNS TO SUPPORT
DIFFERENTIATION OF STEM CELLS INTO
NEURONAL CELL LINEAGES

The success of nerve regeneration therapies is based on optimized
differentiation of stem cells into different nerve cell lineage.
The undifferentiated multipotent NSCs can differentiate into
unipotent neurons, astrocytes, and oligodendrocytes lineage. The
following section describes biomaterials to guide differentiation
of stem cells into neural cells.

Several adhesive proteins and peptidomimetics have been
reported to support neuronal differentiation on different
biomaterials. Micropatterned FN/N-cadherin on PDMS
substrates allows formation of cell-cell and cell-matrix contacts
and stimulate differentiation of NSCs into neural linage (Wang
et al., 2014). LN coated graphene films preferential enhance

neuronal differentiation of hNSCs during 2–4 weeks culture
(Park et al., 2011). Bioactive IKVAV peptide functionalized
phospholipid bilayers supported differentiation of embryonic
NSCs into neuronal lineage over the glial phenotype (Thid
et al., 2008). YIGSR modified aligned PLLA-DIBO nanofibers
prepared by metal-free click chemistry promoted neurogenic
differentiation of mouse ESCs (Callahan et al., 2013). Gelatin
coated PCL electrospun fibers in combination with retinoic
acid were reported to trigger differentiation of embryonic stem
cells (ESCs) into neural progenitors (Xie et al., 2009). Hybrid
scaffolds such as silk-carbon nanotube scaffold coated with
PO promoted ∼1 fold increase in neuronal differentiation of
human ESCs compared to bare silk fibers (Chen et al., 2012).
Similarly, silk fibroin films decorated with integrin-binding LN
peptide motifs (YIGSR and GYIGSR) triggered differentiation
of human Mesenchymal stem cells (MSCs) into neurogenic
cells (Manchineella et al., 2016). Growth factors such as ciliary
neurotrophic factor (CNTF) pattern printed on P(AAm)
hydrogels promoted astrogenic differentiation of MSCs at
the printed areas, while cells remained undifferentiated on
fibroblast growth factor-2 (FGF2) printed area (Ilkhanizadeh
et al., 2007). MSCs cultured on gold surfaces modified with
FN, RGD (cyclic and linear form), or KRDGVC ligands
developed into different phenotypes. Neurogenesis was observed
at low surface concentration of linear RGD ligand, and
myogenesis when cultured on high concentrations of linear
RGD. The rest of adhesive ligands promoted osteogenesis
(Kilian and Mrksich, 2012).

Biofunctionalization of biomaterials for 3D cultures with
adhesive ligands also influences neural differentiation. Aligned
electrospun cyclodextrin nanofibers conjugated with admantane-
IKVAV increased neuronal differentiation (∼1 fold) and oriented
neurite extension (Hamsici et al., 2017). IKVAV modified
hyaluronic acid–PEG hydrogel supported neural differentiation,
neurite outgrowth and growth of long axons (Xing et al.,
2017). Recombinant 3D spider silk (4RepCT) matrices enhance
differentiation of NSCs isolated from the cerebral cortices
into neurons (Lewicka et al., 2012). Electrospun PLC fibers
coated with GO result in PCL-GO hybrid nanofibers. NSCs
undergo differentiation into neuronal lineage at low GO
concentration, while into oligodendrocyte lineage at high
GO concentration. The authors predict that differentiation
is based on interaction of cells with material, influenced
by high elasticity and flexibility of GO (Shah et al., 2014).
Soft 3D hydrogels formed by self-assembling of RADA16

sequence containing RGD support differentiation of adult
mouse NSCs into neurons (Gelain et al., 2006). RADA16

based SAPs functionalized with RGD or LN derived BMHP-
1 and BMHP-2 were used for 3D cell culture of adult
mouse NSCs. The RADA16-RGD promoted cell differentiation
while RADA16-BMHP supported proliferation (Cunha et al.,
2011). DNA nanotubes functionalized with RGD also supported
differentiation of NSCs into neurons (Stephanopoulos et al.,
2014). NSCs cultured on 3D porous graphene foam (3D-
GFs) functionalized with LN supported cell differentiation into
neurons and astrocytes (Nasir et al., 2013). Super porous
2-hydroxyethyl methacrylate with 2-aminoethyl methacrylate
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FIGURE 3 | Influence of the stiffness of the biomaterial in cell proliferation and differentiation (A) Soft (2 kPa) 2D polyacrylamide hydrogels functionalized with PL and

IKVAV support proliferation of NSCs during 4 days of culture (Farrukh et al., 2017a) Copyright 2017, The Authors; (B) Soft (0.68 kPa) 3D polyurethane hydrogel

encapsulating NSCs enhance proliferation of encapsulated cells (Hsieh et al., 2015) Copyright 2015, Elsevier; (C) Soft (<1 kPa) 2D methacrylamide chitosan hydrogel

on glass, preferentially support neuronal differentiation of NSPCs during 8 days of culture (Leipzig and Shoichet, 2009) Copyright 2009, Elsevier; (D) Soft (0.5 kPa) 3D

hyaluronic acid hydrogels trigger neurite extension from hiPSC-NPC spheroids, while stiff (1.4 kPa) hydrogel failed to support neurite extension, after 28 days of culture

(Wu et al., 2017) Copyright 2017, Royal Society of Chemistry.

scaffolds modified with IKVAV support cell adhesion and the
differentiation of human fetal NSCs into neurons (Kubinová
et al., 2010). IKVAV grafted 3D silk fibroin-based hydrogel
promote differentiation of progenitor cells into neuronal cells
(Sun et al., 2017). Alginate hydrogels biochemically conjugated
with Fc-tagged recombinant N-cadherin (N-Cad-Fc) protein
promoted a∼80% increased neurogenic differentiation of neural
cortical cells of rat embryo (E18) compared to unmodified
hydrogel (Lee et al., 2016). IKVAV modified self-assembled 3D
PAs nanofibers, preferentially promotes neuronal cell growth
over glial cells (Silva et al., 2004). Rat embryonic NPCs
embedded in 3D graphene oxide (GO) scaffold coated with
PL developed interconnected synapsis and differentiated into
neurons (∼62%) and astrocytes (∼41%) during 14 days of
cell culture (Serrano et al., 2014). The differentiation of neural
precursor cells in 3D collagen gels modified with PO/LN,
growth factor-reduced matrigel (gfrMG) or PuraMatrix R© gels
depicted enhanced (∼2 folds) neurogenic differentiation in
gfrMG modified matrices (Uemura et al., 2010). IKVAV
functionalized 3D collagen hydrogels enhanced (∼5 folds)
differentiation of dorsal root ganglions (DRGs) into neuronal
phenotype in comparison to unmodified collagen matrix
(Hosseinkhani et al., 2013). Hybrid 3D matrices formed by

collagen and PAs nanofibers modified with IKVAV were reported
to support survival and dendritic growth of purkinje neurons
(PC) (Sur et al., 2014). High PA-IKVAV to collagen ratio
(1:0.45) promoted dendritic growth (∼4 folds) and axonal
guidance of PC neurons (Sur et al., 2014). Gradient of IKVAV
on photochemically modified PCL fibers supports neuronal
differentiation and expression of β-III-tubulin in PC12 cells,
and neurite growth in the direction of increasing peptide
concentration (Kim et al., 2015).

The stiffness of the biomaterial also plays an important role
in defining cell phenotype. MSCs cultured on soft P(AAm) gels
(i.e., Young’s Modulus of 0.1- 1 kPa, mimicking the stiffness
of brain tissue) developed into neurogenic cells, while the
culture conditions rendered myocytes or osteogenic phenotypes
when harder gels were used for culture (8–17 or 25–40 kPa
respectively).(Engler et al., 2006) These findings have been
supported by other reports as well (Wen et al., 2014). ESCs
differentiation was studied on covalently crosslinked gelatin gels
with Young’s Modulus ranging from 2 to 35 kPa. Soft 2 kPa
substrate preferentially supported differentiation of ESCs into
mature neurons, while a 83% decrease in neuronal differentiation
was reported on gelatin of higher (35 kPa) stiffness (Ali et al.,
2015). Neuronal differentiation of mouse embryonic NPCs
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TABLE 1 | Biomaterial scaffold for neural cell proliferation.

Biomaterial Functionalization Cells References

Polydopamine

coating

YIGSR and RGD NSCs Taylor et al., 2017

PEG hydrogel CCRRIKVAVWLC NSCs Li et al., 2015

RADA16 SAPs RGD, PFSSTKT,

SKPPGTSS

NSCs Koutsopoulos and

Zhang, 2013

RADA16 SAPs RGD and IKVAV NSCs Sun et al., 2016

RADA16 SAPs BMHP-1 Schwann cells Nune et al., 2016

PLCL fibers LN Schwann cells Kijenska et al.,

2014

PLLA nanofibers LN PC 12 Koh et al., 2008

PLLA fibers GO Schwann cells,

PC12

Zhang et al., 2016

Gellan gum GRGDS NSPCs Silva et al., 2012

PLCL nanofibers LN Schwann cells Kijenska et al.,

2014

PCL Matrigel NPCs Ghasemi-

Mobarakeh et al.,

2010

Collagen gel NGFs PC 12 Bhang et al., 2009

Gelatin fibers Gelatin Schwann Cells Gnavi et al., 2015

Pas RGD and IKVAV Schwann cells Li A. et al., 2014

on P(AAm) hydrogels (0.2–20 kPa) covalently functionalized
with IKVAV and PL showed a 6 folds enhancement of NPCs
neuronal maturation on 2 kPa gels vs. IKVAV/PL coated glass,
while the 20 kPa hydrogel enhanced (30% increase) neuronal
differentiation of adult neural stem cells (aNSCs) (Farrukh
et al., 2017a). Methacrylamide chitosan (MAC) hydrogels
(1–10 kPA) functionalized with LN showed the highest neuronal
differentiation of NSPCs at <1 kPa (30%), low density of
astrocytes (2%) between 1 and 3.5 kPa, and oligodendrocyte
differentiation (70%) on stiff 7 kPa hydrogel (Figure 3C) (Leipzig
and Shoichet, 2009).

3D cultures of hyaluronic acid hydrogels with tunable stiffness
(1.5–7 kPa) coated with PL showed differentiation of NPCs into
neurons at low stiffness (1.5 kPa) and into astrocytes at higher
stiffness (7 kPa) (Seidlits et al., 2010). mNSCs encapsulated
in soft elastin-like proteins (ELP) hydrogel modified with
RGD (G′ = 0.36 kPa) showed enhanced viability ∼97% and
differentiation into neurons (Madl et al., 2016). ELPs without
RGD sequence or scramble RDG sequence failed to support cell
survival or differentiation. RGD functionalized 3D hyaluronic
acid hydrogel with different stiffness (G′ 400 and 800 Pa) is
reported for culture of hippocampal NPCs. Neurite extend
through the hydrogel with enhanced neurite outgrowth and
branching on soft hydrogel (G′ 400 Pa) (Tarus et al., 2016).
Hydrogel films of 3-hydroxybutyrate and 3-hydroxyhexanoate
copolymers promoted neuronal differentiation of NSCs during
2D cell culture. The same polymers used as 3D matrices
supported attachment, synaptic outgrowth and synaptogenesis
(Xu et al., 2010). Chitosan 2D films promoted astrocytic
differentiation of NSCs, while chitosan porous scaffolds and
chitosan multimicrotubule conduits supported neuronal

differentiation (Wang et al., 2010a). Methacrylated hyaluronic
acid (0.5–1.5 kPa) 3D hydrogels promoted differentiation
of human induced pluripotent stem (hiPSCs) derived NPCs
and Down syndrome patient-specific hiPSCs derived NPCs
spheroids into neurons (Figure 3D). Soft (0.5 kPa) hydrogels
enhanced neuronal phenotype (∼1 fold), suppressed (∼40%)
astrocytic differentiation and triggered neurite outgrowth (Wu
et al., 2017). RGD functionalized 3D ELP based polymeric
hydrogels (0.5–2.1 kPa) enhanced DRGs neuronal viability
and promote neurite outgrowth from DRGs explant. Soft 0.5
kPa ELPs-RGD promoted neurite extension up to ∼1,800µm
from DRS during 7 days of cell culture, in contrast to ∼500µm
neurite extension on 2.1 kPa hydrogel (Lampe et al., 2013).
Gelatin-hydroxyphenylpropionic acid hydrogels with tunable
stiffness (G′ 0.28–0.84 kPa) modulated differentiation of hMSCs.
Low stiffness (0.28 kPa) hydrogels promoted neurogenesis, while
high stiffness (0.84 kPa) increased cell proliferation (Wang et al.,
2010b). Thixotropic 3D PEG-silica hydrogel with 7, 25, and
75 Pa stiffness functionalized with RGD promoted neuronal
differentiation of MSCs only above 75 Pa. Very soft hydrogels
failed to support cell viability, proliferation and differentiation of
cells (Pek et al., 2010).

Several reports demonstrate the effect of geometry
and topography of substrates on cell differentiation.
Rat hippocampus-derived adult NSCs on laminin-coated
electrospun polyethersulfone fiber with different fiber diameter
(∼ 250–1,500 nm) showed a 40% increase in oligodendrocyte
differentiate on small diameter mesh (280 nm), while a 20%
increase in neuronal differentiation was observed on meshes
with diameter 750 nm. Authors attribute this effect to random
spreading of cells on densely packed small fiber mesh vs.
aligned extension of cell along single fiber of large diameter
(Christopherson et al., 2009). PCL loop mesh, bimodal, and
biaxially aligned electrospun scaffold (fiber diameter ∼40–
85µm) promoted neuronal differentiation and guided the
neurite outgrowth of human iPSCs along the fiber, as depicted
in Figure 4A. Biaxial aligned scaffolds promoted the highest
viability (95%) and neurite extension along the fibers (Mohtaram
et al., 2015). Micro-patterned PDMS with PL and LN stripes
directed differentiation and guidance of adult human stem
cells. Microstripes significantly wider than the cell soma (3µm)
promoted neural differentiation, while stripes narrower than
10µm hindered differentiation (Figure 4B) (Béduer et al.,
2012). LN functionalized P(AAm) hydrogels (0.6 kPa) with
un-patterned or with circular (50µm) geometrical patterns,
trigger preferential differentiation of MSCs into neurogenic cells
(90%) on un-patterned substrate while adipogenic cells (60%) on
circular geometry (Lee et al., 2013).

BIOMATERIALS SUPPORTING NEURONAL
MIGRATION

Regenerative strategies for neural tissue involve the recruitment
and instruction of endogenous neural stem cells or Schwann
cells by using scaffolds containing relevant features of the
migratory environment in brain tissue and assist cells to
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FIGURE 4 | Substrate topography modulates cell differentiation. (A) PCL loop mesh, bimodal and biaxially aligned electrospun scaffold (fiber diameter ∼40–85µm)

influence on differentiation of iPSCs. Biaxially aligned fibers preferentially promoted the highest neurite extension as labeled by Tuj1 immunostaining (Mohtaram et al.,

2015) Copyright 2015, John Wiley and Sons; (B) Micro-patterned PDMS with PL and LN stripes directed differentiation and guidance of adult hNSCs. Microstripes

>10µm promote neuronal differentiation, while < 10µm hinder differentiation, during 7 days of culture (B1-B4 represents individuals with 4 different biopsies) (Béduer

et al., 2012) Copyright 2012, Elsevier.

organize and relocate at appropriate positions. Similar to neural
attachment, neural migration is influenced by biochemical
(adhesive ligands, growth factors), mechanical factors and
topographical of the extracellular matrix, and also by adhesive
contacts to neighboring cells. Examples of reported migratory
responses of neural cells to these material parameters are detailed
below.

The type and concentration of adhesive ligand on a
biomaterial influences migration of neural cells by stabilizing the
attachment of the growth cone of neurites. LN, for example, has
been demonstrated to stimulate and guide migration of olfactory
epithelial neurons in vitro (Calof and Lander, 1991). Depending
on the cell type, different responses to the same adhesive coating
can be expected. For example, aNSCs and astrocytes migrated
on PL surfaces and became less migratory on PL/LN mixtures,
while neuron preferred to spread and not move on PL (Joo et al.,
2015a,b). A recent article describes morphological features on the
migration of neuronal cells on different protein coatings FN, LN,
LNmimetic peptides, reelin etc. Using micropatterned substrates
with contrasting regions with different proteins, the role of
specific adhesive cues in triggering, guide or stop migration of
Early postmitotic cortical neurons on a biomaterial surface was
explored (Zhao et al., 2017). In particular the role of adhesion for
terminal somal translocation, i.e., the specific migratory behavior
of cortical neurons when they position in the cortex layers, was
studied. Somal translocation could be efficiently triggered when
the growth cone of a neurite spread and stabilized on an area
of stronger adhesive interactions, for example with a higher
concentration of adhesive molecules (Figure 5A). In vivo, LN
coated scaffolds promote migration of neuroblasts to injured

brain tissue, contributing to neuronal regeneration after stroke
in mice (Figure 5B) (Fujioka et al., 2017).

Gradients of soluble neurotrophic factors and
neurotransmitters influence neuronal migration (Li Jeon
et al., 2002). These molecules can be added to cell cultures,
or secreted by other co-cultured cells like astrocytes (Mason
et al., 2001). Glial and neural migration through hydrogels
was demonstrated to be enhanced through delivery of soluble
growth factors such as nerve growth factor (NGF) from fibrin in
in vitro cultures (Wood and Sakiyama-Elbert, 2008). In vivo, the
delivery of stimulating molecules to the CNS represents a clinical
challenge because the blood–brain barrier limits the diffusion
of molecules into the brain by traditional oral or intravenous
routes. Injectable hydrogels have the capacity to overcome the
challenges associated with drug delivery to the CNS (Pakulska
et al., 2012). Intraventricular sequential delivery of epidermal
growth factor (EGF) and erythropoietin (EPO) into a stroke
injured rat brain showed enhanced migration of endogenous
NSPCs to the injury site, resulting in neurogenesis and improved
functional recovery (Kolb et al., 2007).

During growth and migration cells sense and can be
guided by the variation of mechanical properties of their
microenvironment. The relevance of mechanical signaling in
different contexts of cell function is a current vivid area of
research, also related to neural tissue. Stiffness gradients have
been reported in CNS tissue (Franze, 2011, 2013; Wrobel and
Sundararaghavan, 2013). LN-coated P(AAm) hydrogel with high
stiffness (20 kPa) greatly promoted the migration of Schwann
cells progenitors from embryonic DRGs compared to low
stiffness hydrogel (1 kPa)(Rosso et al., 2017).
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FIGURE 5 | Neuronal migration on biomaterials. (A) Hydrogel coated glass slides modified with mircopatterens of PL/IKVAV to trigger neuronal migration and somal

translocation of cortical neurons in vitro (Zhao et al., 2017) Copyright 2017, Elsevier; (B) Migration of neuroblasts along a LN coated hydrogels toward the injured area

in vivo (Fujioka et al., 2017) Copyright 2017, Elsevier.

During development, migration of neuronal cells often occurs
in a directional way. Neurons attach and migrate along fibers
of the ECM or along glial cell tracts (Malatesta et al., 2008).
The sensitivity of neurons to topographical features has been
exploited in vitro and in vivo (Hoffman-Kim et al., 2010; Gumera
et al., 2011). Oligodendrocytes (Webb et al., 1995) and neurons
(Gomez et al., 2007), have been shown to migrate along grooved
topographies. The average migration speed of cells was higher
on microgrooved substrates than on flat surfaces (Nikkhah et al.,
2012). In 3D environments, DRGs cells exhibited unidirectional
migration into micro-channels of the PEGylated fibrinogen
hydrogel (Sarig-Nadir et al., 2009).

Neuronal migration has been also modulated via cell-cell
contacts, specifically involving glial cells in cocultures. The
membrane proteins connexin 46 and 23 expressed by radial
glia (Valiente and Marín, 2010) and the cell adhesive proteins

L1-CAM and neural cell adhesion molecule (NCAM) (Schmid
and Maness, 2008) seem to play a relevant role in neuronal
migration.

BIOMATERIALS FOR DIRECTIONAL
NEURITE EXTENSION

In order to achieve successful regeneration of nerve tissue,
sprouting axons from the proximal stump of one neuron need to
grow and establish a new connection with the distal stump of the
next neuron (Shin et al., 2003). Following injury, the remaining
functional neurons will try to grow processes and reestablish
connections with neighboring partners, but they often meet an
impenetrable scar tissue composed of myelin, cellular debris, and
other cells (astrocytes, oligodendrocytes, microglia) at the injury
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site. The scar tissue blocks existing neurons from reaching their
synaptic target and hinder the regeneration process (Schmidt and
Leach, 2003). Guidance in neurite growth plays a vital role in
nerve repair. Many approaches to support nerve regeneration,
therefore, have focused on the development of biomaterials that
provide guidance cues for directional neurite growth.

Topographical Cues for Guiding Neurite
Extension
The topography of the neuronal microenvironment, including
fibrillar ECM proteins and elongated glial cells, plays a major role
for the directional growth of neurites. In the biomaterials field
nerve guidance channels, surface topographies and 3D fibrillar
meshworks have been used as supportive scaffolds for directional
neural regeneration.

Nerve Guidance Channels (NGCs) for Peripheral

Nerve Regeneration
Nerve guidance channels (NGCs) are tubular constructs with
a hollow lumen through which the neuron axon should grow.
This geometry has several advantages for spatial guidance of
peripheral nerve regeneration: protection of the regenerating
nerve against compression by the surrounding tissue, isolation of
the regenerating axons from surrounding tissue, and longitudinal
directional guidance of the regenerating neurites toward target
tissue. Hollow nerve conduits have been widely used in
research and clinical applications. Porous and not porous
NGCs providing longitudinally oriented grooves in their lumen
surface, (Göpferich, 1996) and eventually functionalized with
cell adhesive ligands (e.g., LN-derived peptides YIGSR and
IKVAV (Chiono et al., 2009) or controlled released growth
factor (neurotrophic factors (Pfister et al., 2007) promote
directional axon growth in vivo in small animals test. However,
in some cases dispersion of the regenerating axons through the
comparatively large lumen of the NGCs leads to inappropriate
target reinnervation or polyinnervation of different targets by the
axonal branches of the same neuron. Single hollow lumen NGCs
are thus only recommended for small lesions (<30mm) in the
sensory nerves (Weber et al., 2000). In vitro neuronal, Schwann
and DRGs culture were used to test the NGCs and in vivo a
thy-1-YFP-H mouse common fibular nerve injury model or a
nerve gap in the rat sciatic nerve were normally used. Generally,
typical NGCs dimensions for experimental use in small animals
are inner diameters of 1–2mm and lengths of several millimeters,
depending on the experimental gap.

Considerable effort has been focused on the development of
more effective NGCs, in which a microstructured lumen of the
NGC provides higher directionality. Structured lumens including
multichannels, porous matrices or oriented fibrous conduits have
been proposed (Figure 6). Multichannel NGCsmimic the natural
compartment structure of nerves (He et al., 2009; Chiono and
Tonda-Turo, 2015). They reduce axon dispersion, offer higher
surface area for functionalization, cell adhesion and migration
as compared to single lumen NGCs. The disadvantages of the
multichannel NGC design reduced permeability and mechanical
flexibility. In fact, multichannel NGCs did not lead to significant
functional improvement in the repair of a 1-cm nerve gap in

the rat sciatic nerve compared to single lumen nerve tubes (de
Ruiter et al., 2008). NGCs might also incorporate fillers to form
an internal porous or aligned 3D matrix. Fillers may include
longitudinally aligned fibers (Matsumoto et al., 2000; Wang
et al., 2005), porous sponges (Tonda-Turo et al., 2011) or gels
(Ceballos et al., 1999; Nakayama et al., 2007). Fillers can also be
functionalized with specific peptides/proteins or growth factors,
as described in recent reviews (Pfister et al., 2007; Gu et al., 2011).
Filling of the lumen of silicon NGCs with longitudinally oriented
polyamide filaments lead to improved nerve regeneration by
bridging a 15-mm sciatic nerve gap in rats (Lundborg et al.,
1997). The ability of tubular channels mininally supplemented
with aligned nanofiber-based thin-films to promote regeneration
across a 14mm tibial nerve gap was studied(Clements et al.,
2009). They evaluated two different channels: a 1-film guidance
channel–containing a single continuous thin-film of aligned
fibers, and a 3-film channel. Interestingly, they found that the
1-film channels supported enhanced regeneration compared
to the 3-film channels, because the two additional thin-film
reduced permeability. Recently, the hollow chitosan nerve guides
(CNGs) enhanced by introduction of a longitudinal chitosan
film to reconstruct critical length 15mm sciatic nerve defects in
rats(Meyer et al., 2016). Compare to simple hollow CNGs, the
CNGs with the introduced chitosan film significantly improved
nerve regeneration, almost reached the regeneration outcome
after autologous nerve grafting.

An alternative strategy to guide neurites growth within the
luminal cavity of the NGC involves the use of electrospun tube
walls. The use of tubes with walls consisting of oriented fibers
has a number of advantages over the filled lumen strategy. (i)
The materials are highly flexible and porous, well adapted for use
within biological systems; (ii) nano- and micro-scale fibers have
a high surface area-to-volume ratio increasing the area available
for protein absorption, neural cells migration and regeneration
of axons; (iii) fibers that can be preferentially aligned resulting in
increased promotion of guided axonal growth (Daly et al., 2012).

Scaffolds for Guided Central Nerve Regeneration
Although regeneration of the mammalian CNS was thought
to be impossible, studies have shown that axonal growth after
spinal cord injury can occur when neurons are provided
with the suitable substrata that support directional growth
(Fawcett, 1998, 2002). Natural, ECM-derived biomaterials and
also synthetic polymers processed in different ways to generate
microtopographies have been used as matrices for supporting
spinal nerve regeneration.

The relationship between microscale topography and
neuronal development has been recently investigated in vitro
in a high-throughput screening assay (Li et al., 2015). Primary
neurons were presented to patterned substrates with a large
library of topographical features including isotropic (e.g., dots,
grids, squares) and anisotropic pattern designs (e.g., gratings)
with lateral width between 5 and 15µm and 1µm depth.
Anisotropic topographies enhanced axonal and in some cases
dendritic extension vs. isotropic ones. However, dendritic
branching occurred preferentially on planar substrates. The
depth of the topographical features also influences the growth
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FIGURE 6 | Different designs of nerve guidance conduits (NGCs). The basic design parameters include: a biodegradable and porous channel wall, a biofunctionalized

wall surface including adhesive and growth factors, intraluminal structures to mimic the structure of nerve fascicles, intraluminal guidance structures (filaments, sponge

or hydrogel-like) or wall microstructures to support cell migration and axonal growth. Support cells can also be incorporated to the NGCs (Daly et al., 2012) Copyright

2012, The Royal Society.

of processes. Murine NPCs sensed the depth of micro-gratings
and neurite elongation, alignment and neuronal differentiation
increased with grating depth (Chua et al., 2014).

In vivo studies using poly(2-hydroxyethyl methacrylate-co-
methylmethacrylate) hydrogel channels demonstrated improved
tissue regeneration of transected rat spinal cords (Tsai et al.,
2004). The hydrogel guidance channels were designed to match
the dimensions and modulus of the rat spinal cord; the outside
diameter of the channels was approximately 4.2mm, the inside
diameter was 3.6mm, giving a wall thickness of 0.3mm and the
length was 6mm. By inserting the transected cord stumps into
the hydrogel nerve guidance channels, alignment of the cord
stumps occurs, and cells were able to migrate along them. Axonal
regeneration was enabled, and no significant scar formation
appears.

Guided Neurite Extension on 3D Fibrillar Meshworks
Fibrillar 3Dmatrices can serve as substrates for neuronal growth.
The fibrils provide spatial guidance to the extension of processes,
while retaining an open matrix structure to be repopulated by
the growing cells (Lietz et al., 2006; Schnell et al., 2007). This
is of particular interest in the development of biomaterial-based
scaffolds intended to promote the repair of highly organized
nerve tissues, such as the retina or whitematter tracts of the spinal
cord.

Protein based and synthetic polymer fibers have been
used to form fibrillar matrices and guide axonal growth.
Fibers can be processed by different technologies, like
electrospinning, bioprinting or self-assembly. Among these

methods, electrospinning offers an uncomplicated and low-cost
method for processing and applicable to different kinds of
materials. Electrospun membranes with randomly or aligned
fibers can be produced, and neuronal growth along the fibers
has been demonstrated (Sell et al., 2007). NPCs and DRGs cells
grew preferentially along aligned PLLA electrospun scaffolds
with fiber diameters between 150 to 3,000 nm independently
of the adhesive coating (Yang et al., 2005; Corey et al., 2007).
NSCs elongated and outgrew neurites along aligned fiber
scaffolds without adhesive coating (Figure 7A) (Yang et al.,
2005). Authors could not establish a significant effect of the fiber
diameter (between 300 and 1,500 nm) on the cell orientation.
NSCs differentiation rate was found to be higher on PLLA
nanofibers (diameter 300 nm) than that of micro fibers (diameter
1,500 nm), independently of alignment. Aligned nanofibers
significantly improved neurite outgrowth compared to not
aligned ones. On thicker fibers and fibers coated with adhesive
factors, however, different tendencies were observed. Fibers of
35µm coated with PL and LN promoted directional neurite
outgrowth and promoted greater oriented process growth
than large-caliber fibers (500µm) (Smeal et al., 2005; Smeal
and Tresco, 2008). Many studies have demonstrated that the
aligned nanofibers, pattern nanofibers (half random and half
aligned) and also cross-patterned nanofiber can guide the
neurites to extend along the nanostructure. However, the contact
cues provided by the nanofibers can be far more complicated
than just guiding the neurites to extend along them. Xie et al.
demonstrated that the neurites could not only project along
the nanofibers, but also be directed to grow along a direction
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FIGURE 7 | Guided neurite extension on fibrillar networks (A) Neuron cells cultured on random and aligned fibers (Yang et al., 2005) Copyright 2005, Elsevier;

(B) Neurites oriented along the nanofibers previously coated with laminin and perpendicularly to the nanofibers without adhesive coating (Xie et al., 2014) Copyright

2014, American Chemical Society.

perpendicular to the aligned nanofibers. The DRGs neurites
grew perpendicularly to the alignment direction of electrospun
PCL fibers (Figure 7B) (Xie et al., 2014). The growing direction
of neurite on fibers was dependent on the adhesive interaction
between neurites and nanofibers and on the dimensions and
separation between fibers. A strong interaction leads to parallel
growth of neurites along the fibers (e.g., low density fiber and
fiber with LN coating), while a weak interaction (i.e., fibers
without adhesive proteins) lead to perpendicular growth while
high density mesh works lead also to perpendicular growth.

In vivo, aligned oriented fibers elicit regeneration, while
randomly distributed fibers do not, demonstrating how
topographical cues can influence endogenous nerve repair
mechanisms in the absence of exogenous growth promoting
proteins (Kim et al., 2008). Using electrospinning method,
poly(acrylonitrile-co-methylacrylate) (PAN-MA) fibrillar
constructs (19mm long and 1.5mm inner diameter) were
produced. Axons regenerated across a 17mm nerve gap, re-
innervated muscles, and reformed neuromuscular junctions.
Electrophysiological and behavioral analyses revealed that
aligned but not randomly oriented constructs facilitated both
sensory and motor nerve regeneration, improving significantly
functional outcomes.

Fibers have been also integrated within hydrogel materials
to provide hybrid three-dimensional construct for neuronal
guidance within a growth promoting environment (Newman
et al., 2006; Novikova et al., 2008). Studies showed that
magnetic collagen fibers in collagen gels, aligned using magnetic
fields, provide an improved template for neurite extension
compared to randomly oriented collagen fibers (Ceballos et al.,
1999; Dubey et al., 1999). Recently, magnetoresponsive PEG
based microgel are reported by incorporation of iron oxide
nanoparticles for directional growth of DRGs (Rose et al., 2017).
Natural protein based hydrogels also provide adhesive factors
to support attachment and neurite grown. Yao et al. developed
a hierarchically aligned fibrillar fibrin hydrogel (AFG) with low
rigidity and aligned topography to mimics both the soft and
oriented features of nerve tissue. They found that the AFG exhibit

co-effects on promoting the neurogenic differentiation of human
umbilical cordmesenchymal stem cells (hUMSCs) in comparison
to random fibrin hydrogel (RFG) and tissue culture plate (TCP).
Also, AFG induces DRGs neurons to rapidly project numerous
long neurite outgrowths longitudinally along the AFG fibers (Yao
et al., 2016).

Recently, Johnson et al. have developed a novel 3D
printing approach for manufacturing of a custom nerve repair
technology which is personalized to anatomical geometries, and
augmented with physical (microgrooves) and biochemical cues
(multicomponent diffusive biomolecular gradients) to promote
the regeneration of multiple nerve pathways (Johnson et al.,
2015). The custom scaffolds are prepared via a 3D printing
using 3D models, which are reverse engineered from patient
anatomies by 3D scanning. The bifurcating pathways (sensory
and motor path) are augmented with microgrooves and path-
specific biochemical cues for the regeneration of complex mixed
nerve injuries (Figure 8). This 3D printed scaffold provides
axonal guidance in vitro and achieved successful regeneration
of bifurcated injuries across a 10mm complex nerve gap in rats
in vivo.

Synthetic hydrogels formed by self-assembling PAs show also
a nanofibrilar structure that has been used in nerve regeneration.
Encapsulated NPCs were observed to differentiate into neurons
with extensive neurite outgrowth within nanofibrillar hydrogels
(Silva et al., 2004).

Guided Neurite Growth by Rigidity Patterns
The rigidity of the biomaterial contributes to the oriented
growth of neurites in spiral ganglion neurons (SGN) on
micropatterns. Alignment was significantly enhanced when the
material stiffness increased from 650 to 2,000 MPa (Tuft et al.,
2014). Increasing substrate stiffness of a LN-coated P(AAm)
hydrogel also promoted directional neurite outgrowth from
embryonic DRGs (Rosso et al., 2017). The neurite in low stiffness
substrate (1 kPa) show relax and less aligned morphology,
whereas the neurite display stretch, more aligned morphology
in high stiffness (20 kPa). Interestingly, the opposite observation
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FIGURE 8 | Guided neurite extension in 3D printed scaffold; (A) Nerve regeneration pathways enabled by 3D scanning and printing, (B) The 3D printing process

provided the ability to introduce advantageous physical and biochemical cues in the form of microgrooves and multicomponent diffusive biomolecular gradients,

(C) In vitro and in vivo characterization of regeneration with 3D printed nerve pathways (Johnson et al., 2015), Copyright 2015, John Wiley and Sons.

was made in 3D cultures. A hyaluronic acid (HA) hydrogel with
tunable Young’s Modulus between 400 and 800 Pa was used to
culture hippocampal neural progenitor cells (HNPCs) (Tarus
et al., 2016). Neurites of HNPCs grew into the soft HA hydrogel
at increased outgrowth and density. The growth of neurites
(in quantity and length) from DRGs was also promoted in softer
(0.5 kPa) elastin-like hydrogels (Lampe et al., 2013). Authors
hypothesize that on 2D environments the stiffer substrates
provide more stable anchoring to facilitate the outgrowth of
neurite. In contrast, stiffer 3D matrices (i.e., higher crosslinking
degree) hinder the outgrowth of neurites due to the small pore
sizes.

Neural Growth on Patterns of Cell
Adhesive Ligands
Patterns of adhesive ligands (full proteins or peptidomimetics)
on non-adhesive backgrounds (typically PEG) can be used to
selectively promote neuronal attachment and guided outgrowth
on the adhesive regions of the pattern (Zhang et al., 2005; Straley
et al., 2010; Joo et al., 2015a). Recent studies demonstrate that
responsive biomaterials can be used to in situ guide axonal
growth. In vivo, poly(vinyl chloride) (PVC) channels filled with
different adhesive matrices (a YIGSR peptide containing agarose
gel, a plain gel, and PBS solution) have been applied to fill a
4mm segment of dissected dorsal root. A significant increase of
myelinated axons was shown in the peptide modified agarose gel
(Borkenhagen et al., 1998).

In addition to promoting cell growth, the presentation of
neurotrophic factors in a gradient distribution within scaffold
has also been studied for guidance of regenerating neurons.
Several in vitro studies have demonstrated that neuronal cells

are guided by immobilized gradients of nerve growth factors or
neurotrophic factors on scaffolds (Moore et al., 2006; Dodla and
Bellamkonda, 2008). The presence of LN and NGF gradients in
agarose scaffolds has also shown better functional recovery of
long peripheral nerve gaps than uniform concentration scaffolds
(Dodla and Bellamkonda, 2008).

Directed Growth on “Living Scaffolds”
During neural morphogenesis and development, directed axon
growth and cell migration typically occurs along pathways
formed by other cells. This concept has long been appreciated in
developmental neurobiology as crucial to the proper formation
of the nervous system, including necessary axonal connectivity
and localization of cellular constituents. This idea has also
been embraced by the tissue regeneration community and lead
to the concept of “living scaffolds” for regeneration. These
are tissue engineered constructs containing supporting guiding
material and cells from the neural environment, typically glial
cells and astrocytes (Figure 9). These follow the haptotactic
cues of the scaffold and arrange in oriented dispositions. These
cells secrete neural growth factor and combine haptotactic
and chemotactig signals to neuronal cells to grow along them
(Struzyna et al., 2014).

In vitro, higher order structures can be formed by first
culturing and aligning support cells on microgrooves, followed
by seeding of neurons (Nikkhah et al., 2012). Micropatterned
PLLA substrates containing grooves selectively coated with LN
were used to culture rat Schwann cells to support neurites
outgrowth (Miller et al., 2001). Neurons cultured on those
substrates displayed accelerated outgrowth of nerve fibers and
98% alignment of neurites along the microgrooves. In a
different study, micropatterned Schwann cells controlled by
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FIGURE 9 | Structural and soluble cues directing axonal outgrowth along “living scaffolds” (Struzyna et al., 2014) Copyright 2014, Elsevier.

micropatterned LN stipes on glass substrates were used to
direct neuronal regeneration (Thompson and Buettner, 2004;
Schmalenberg and Uhrich, 2005).

Winter et al. have developed a living scaffold that structurally
mimicked the glial tube. It consisted of aligned astrocytes that
guided the migration of NPCs and facilitated directed axonal
regeneration for CNS repair. The networks of longitudinally
aligned astrocytes on patterned hydrogels, supported seeded
neurons to extend neurites along the aligned astrocytes
bundles (Winter et al., 2016). In a different approach, collagen
sheets supported alignment of astrocytes in the presence of
transforming growth factor (East et al., 2010). The collagen
sheets were then rolled to create cylindrical constructs.
Dissociated DRGs neurons and astrocytes were seeded together
on the scaffolds. Neurites preferentially grew along the aligned
astrocytes.

In vivo, living scaffolds consisting of neurons and stretch-
grown axonal tracts were grown to 10mm in length, encapsulated
in collagenous matrices, and transplanted to repair equally
sized lateral hemisection spinal cord lesions in rats for spinal
cord repair (Iwata et al., 2006). At 1 month post-surgery, the
constructs had integrated with the host by extending axons into
the spinal cord. Similar constructs containing “stretch-grown”
axonal tracts were also used for peripheral nerve repair (East
et al., 2010).

BIOMATERIALS SUPPORTING NEURAL
GROWTH IN-VIVO

Central nervous system (CNS) injuries emerge from accidents or
trauma affecting brain and spinal cord or by neurodegenerative
disorders such as Parkinson’s or Alzheimer’s disease (Daly et al.,
2012). Peripheral nervous system (PNS) disorders occurred
through cut or injury to nerve cord, effecting autonomic
motor and sensory functions resulting in impairment of body
performance (Kabu et al., 2015). The common strategies to
repair CNS injuries involves grafting of stem cells at injured
site, while PNS system repair is frequently based on autograft or
hollow nerve guidance conduits. However, after implantation the
grafted cells fails to survive, remain undifferentiated or chiefly
differentiate into to glial cell forming glial scar and fail to develop
oriented nerves. In addition, the rejection of implant due to
inflammation and infection at surgery site also affect success of
transplant. Biomaterials for neural regeneration are designed to
resemble the properties of the natural cellular niche (stiffness,
topography), accompanied with tunable release of growth factors
and availability of ECM bioactive motifs. This section presents a
brief overview of new advances in biomaterial based implants for
nervous system regeneration.

Inert biocompatible scaffolds functionalized with bioactive
sequences in combination with addition or immobilization
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FIGURE 10 | Biomaterials applied for regeneration therapies (A) Alginate hydrogel scaffolds encapsulating BMSC (expressing GFP or BDNF) to promote directed

linear axonal regeneration in the injured rat spinal cord model. Cell-filled alginate scaffold implanted at injured area with Sr2+ and Zn2+ ions staining demonstrates

numerous cells within the channels. BMSC expressing BDNF cell preferentially promote axonal growth (Günther et al., 2015) Copyright 2015, Elsevier; (B) PLGA

based peripheral nerve construct filled with aligned PAs (PAs-RGD and PAs-IKVAV) for recovery of peripheral nerve injury. PAs solution, filled inside PLGA tubes was

crosslinked by CaCl2. PAs-RGD filled PLGA construct provide faster recovery than bare PAs and comparable with autograft (Li A. et al., 2014) Copyright 2014, Elsevier.

of nerve growth factors have been tested for regeneration
therapies. Injectable 3D IKVAV containing SAPs (RADA16-
IKVAV) hydrogel (G’ 300 Pa) was reported for recovery of
cerebral neocortex injury in rat brain surgery model. In-situ
self-assembly of RADA16-IKVAV hydrogel fill the injury
gap, enhanced cell survival and reduced the glial astrocytes
differentiation in comparison to bare RADA16 during 6 weeks
after post-implantation (Cheng et al., 2013). MAC scaffold
functionalized with growth factors and LN modulated the
differentiation of subcutaneously implanted NPCs into different
lineages. MAC was functionalized with interferon-γ (IFN-γ)
for neurons, platelet derived growth factor-AA (PDGF-AA) for
oligodendrocytes, or Bone morphogenetic protein-2 (BMP-2)
for astrocytes differentiation. Cells differentiation was more
effective when the growth factors were conjugated with the
scaffold and not added freely to the medium. Differentiation
into neuron was significant and rosette like neurons were
reported after 28 days of implantation (Li H. et al., 2014). A 3D
scaffold of poly(desaminotyrosyl tyrosine ethyl ester carbonate)
electrospun fibers with 1.25–3.23µm diameters was implanted
at mouse brain striatum to enhance the cell viability and
neuronal differentiation at implantation site. Human induced
neuronal cells (h-iN), dispersed in fiber suspension were injected
at the site of injury forming a gel in-situ. h-iN inside the
hydrogel showed ∼38-fold enhanced in vivo cell viability and
3.5-folds improvement in neurite outgrowth in comparison to
isolated h-iN (Carlson et al., 2016). Cell viability and outgrowth
of spiral ganglion neurites has reported to be enhanced by
coupling of IKVAV peptide (∼100%) on PuraMatrix R© hydrogel
in comparison to unmodified hydrogel (∼40%) (Frick et al.,
2017). IKVAV containing PAs nanofibers employed in in vivo
mouse spinal cord injury model enhanced cell viability (∼2 folds)
at the site of injury and promoted development of motor neurons
(Tysseling-Mattiace et al., 2008; Cui et al., 2010; Sun et al., 2017).

Alginate-based capillary hydrogels seeded with brain-derived
neurotrophic factor (BDNF) expressing bone marrow stromal
cells (BMSCs) guided axon extension on lesion site. A 3–4 folds
increase in the axon length along the rostro-caudal direction,
extending through the whole implant in rat spinal cord was
achieved (Figure 10A) (Günther et al., 2015).

PLGA conduits filled with aligned PAs (palmitoyl-
VVAAEENH2) with and without bioactive RGD or IKVAV
epitope were reported to repair rat sciatic nerve injury. Agarose
hydrogel loaded with concentration gradient of LN and NGF,
promote sciatic nerve repair covering the gap of 20mm (Dodla
and Bellamkonda, 2008). PLGA implant containing bioactive
(IKVAV or RGD) PAs grafted at injury site of peripheral nerve
critical sized defect model enhanced Schwann cells (∼20–40%
increase) and axonal growth (∼20% increase) during 21 days
of implant in comparison to bare PLGA-PAs (Figure 10B).
Bioactive PLGA-PAs support recovery of motor and sensory
activity after 12 weeks of implantation comparable to autograft
(positive control) (Li A. et al., 2014). Commercially available
inert PuraMatrix R© hydrogel functionalized with IKVAV is
applied for cochlear implants (CI). Table 2 entailed biomaterials
relevant for neural tissue engineering.

CRITICAL OVERVIEW

Strategies for brain repair heavily depend on our ability to
temporally reconstruct the natural cellular microenvironment
of neural cells. Biomaterials play a fundamental role in this
context, as they provide the mechanical support for cells to
attach and migrate to the injury site, as well as fundamental
signals for differentiation. The increasing evidence that (neural)
cells sense and specifically respond to biochemical and
physical material parameters like stiffness or morphology opens
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TABLE 2 | Biomaterial scaffold applied for neural tissue engineering.

Biomaterial Modification Application Outcome References

PAs IKVAV mouse spinal cord

injury (SCI)

Reduced astrogliosis and apoptosis,

increase oligodendroglia

Tysseling-Mattiace et al.,

2008

Collagen hydrogel LN polypeptide Rat striatum Viability of NSCs Nakaji-Hirabayashi et al.,

2013

PLGA microspheres in chitosan

channels

Dibutyryl cyclic-AMP (dbcAMP)

in PLGA microspheres

Rat SCI Viability and differentiation of NSPCs Kim et al., 2011

Hyaluronan hydrogel Rat platelet derived

growth factor-A (rPDGF-A)

Rat SCI Viability and oligodendrocytic of

NSPCs

Mothe et al., 2013

enormous possibilities for material-supported cell therapies
for brain repair. However, reported work up to now, as
described in this article, is mostly phenomenological and limits
attempts to extract generic material properties-cellular response
relationships out of our analysis. The still phenomenological
character of most publications does not allow scientifically
grounded statements that could lead biomaterials design for
nervous tissue regeneration.

Break-through approaches in the field will depend on several
factors. From the materials side, the analysis and quantification
of the material properties to which cells are exposed is a
fundamental requirement. The density of protein or peptide of
an adhesive coating depends on the chemistry of the surface
and the coating strategy. Same incubation conditions lead
to different surface densities on different materials, and this
will influence the biological response. No comparison between
biological readouts from different articles is possible if there is
no quantitative information about the surface composition with
which the neuronal cell interacts. The stiffness of a material
is typically analyzed as a macroscopic parameter, whereas the
cell senses stiffness at a molecular lengthscale. Fibrous or
continuous matrices can appear very different to a neuron from
a mechanical perspective. Moreover, the Young’s Modulus of a
material describes only part of the mechanical response, and
not necessarily the one a cell might feel long-term. Viscous
components might play a role, as demonstrated for other cell
types. All these factors have to be properly described in order to
make meaningful interpretation of cell responses to biomaterials,
and to extract useful information for advanced materials design.

Novel strategies for brain repair will also depend on the ability
of biomaterials developers to assimilate and translate increasing

knowledge from cell and matrix biology of neural tissue into
artificial models. The regenerative biomaterials community
is traditionally dominated by material scientists cooperating
with surgeons in best case, and it has little interaction with
neurobiology or neuronal development community. All these
fields have a lot to share with each other, though the languages
and experimental methods are very different. Approximation
between the different communities is starting andwill profoundly
impact development in biomaterials for brain tissue repair, as
it is impacting in other tissue types. We face a challenging and
exciting era.

Experimental work with neuronal cells is challenging.
Neurons are difficult to culture and the access to primary cells is

more complicated than in other tissue types. The analysis of the
existing literature evidences that biomaterials development for
brain repair lies behind other tissue types. However, knowledge
transfer will occur and will accelerate development in the coming
years. There is a longway to go until break-through approaches in
brain repair will translate into revolutionary therapies, but there
is hope to get there in the next decade.
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As they differentiate from neuroblasts, nascent neurons become highly polarized

and elongate. Neurons extend and elaborate fine and fragile cellular extensions that

form circuits enabling long-distance communication and signal integration within the

body. While other organ systems are developing, projections of differentiating neurons

find paths to distant targets. Subsequent post-developmental neuronal damage is

catastrophic because the cues for reinnervation are no longer active. Advances in

biomaterials are enabling fabrication of micro-environments that encourage neuronal

regrowth and restoration of function by recreating these developmental cues. This

mini-review considers new materials that employ topographical, chemical, electrical,

and/or mechanical cues for use in neuronal repair. Manipulating and integrating these

elements in different combinations will generate new technologies to enhance neural

repair.

Keywords: neuroregenerative therapy, neural scaffolds, topography, electrical stimulation, hydrogels, self-rolled-

up membranes, nerve-guide-conduits, flexible electronics

INTRODUCTION

Neurons are characterized by dendrites, multiple slender filamentous protrusions that receive and
integrate incoming information, and a single axon, which transmits integrated signals downstream
in a multicellular network. These cellular extensions are typically several times longer than the
relatively small cell body and form a myriad of interconnections that enable humans to sense,
integrate, remember, and respond to the world. Unlike other systems in the human body, cues
for growth and repair in the nervous system are no longer active post-developmentally and,
consequently, structural and functional losses following disease or damage are catastrophic.
Neurological deficits contribute to over 600 classified neurological disorders and affect∼50 million
people in the United States alone (Brown et al., 2005). Neurological disorders often result in
debilitation rather than immediate death, and the personal and financial costs become staggering.
The global burden of neurological afflictions, measured in disability-adjusted life years (DALYs),
exceeds that of other diseases including heart disease and cancer (WHO, 2006). Therefore, new
methods of treatment that ameliorate or resolve neurological disorders are necessary.

Innovative therapies for neurodegeneration and traumatic injury are emerging from novel
biomaterials. Development of materials that support and nurture growth without introducing
trauma while facilitating neural repair have the potential to alleviate peripheral neuropathies;
diabetic sensory neuropathy or spinal cord trauma would benefit (Teng et al., 2002; Gu et al., 2014).
New techniques and advances in material design, such as pore-enhanced hydrogels to promote
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neuronal alignment (Lee et al., 2015b), are facilitating targeted
neuronal growth and repair. Innovations in neural monitoring
through flexible, biodegradable electronics provide a means to
understand these processes at amore fundamental level, as well as
track and monitor repair in vivo (Viventi et al., 2011; Kang et al.,
2016). These engineered interfaces address specific challenges
inherent to damaged neural tissue by reducing glial scarring and
overcoming limited distances of regeneration (Orive et al., 2009;
Tam et al., 2014).

Unmodified planar substrates inadequately capitalize on
endogenous factors that could enhance the efficacy of the
substrate to promote targeted cellular development and
growth. Modifying the substrate to better approximate the
native developmental environment of neurons encourages the
extension of neurites and repair of lesions. This review explores
recent advances in the manipulation of topography, electric
cues, and stiffness in biomaterials to enhance neuronal dynamics
(e.g., neuritogenesis), improve growth, and allow monitoring
of neural systems. Cues or properties are compared for relative
impact on neuronal behavior and development (Table 1). While
the integration of chemical cues into materials has been widely
employed in other neuronal studies (Moore et al., 2006; Patel
et al., 2007; Millet et al., 2010), the influence of chemical signals is
intertwined in the discussion of the aforementioned parameters.
This review focuses on neurons, while discussion of neural
repair of all major cell populations within the nervous system,
including glia, has been considered elsewhere (Schmidt and
Leach, 2003; Tian et al., 2015).

TOPOGRAPHICAL CUES DRIVE
ALIGNMENT AND DIRECTIONALITY

Cellular dynamics are strongly influenced by substrate
topography (Bettinger et al., 2009; Ventre et al., 2012).
Throughout the body, the extracellular matrix (ECM), with
its fibers of collagen, fibronectin, and/or laminin, provides
scaffolding that cells can adhere to and climb on, over, and
through to travel to their terminal point. Neurons themselves
can provide critical topography. An example is during formation
of laminar brain structures, where new daughter cells use the
scaffold provided by radial glial cells to migrate outward and
form successive cortical layers (Rakic, 1972; Edmondson and
Hatten, 1987; Kriegstein, 2005; Barros et al., 2011).

When designing customized materials and substrates for use
in neural repair, the relationship between neuronal cells and
native in vivo topography informs the relation to the desired
functional outcome. Neuronal migration and neurite extension
or directionality can be guided by the addition of topographical
cues to a substrate, which enhances control by providing a

Abbreviations: DALYs, Disability-adjusted life years; ECM, Extracellular matrix;

PLLA, Polylactic acid; DRG, Dorsal root ganglia; ESCs, Embryonic stem cells;

iPSCs, Induced pluripotent stem cells; hBMSCs, Human bone marrow stromal

cells; S-RuMs, Self-rolled-up membranes; NGCs, Nerve-guide-conduits or nerve-

guidance-channels; PHB-HV, Poly(3-hydroxybutyrate-co-3-hydroxyvalerate);

EFs, Electric fields; DC, Direct current; AC, Alternating current; PPy, Polypyrrole;

E, Elastic modulus; NPCs, Neural progenitor cells; CSF, Cerebral spinal fluid.

recognizable path (Jang et al., 2010; Baranes et al., 2012). In
the case of damaged spinal neurons, a 3D scaffold can provide
a sturdy framework to support directional neurite regrowth.
A tubular design allows for directed tunneling of the neurite
to the distal region needing reinnervation. Nanotopography is
also important for cell adhesion and plays a critical role in
material design (Yu et al., 2008; Khan and Newaz, 2010). Cellular
adhesion depends on surface properties such as wettability and
charge. These elements can be modified during fabrication and
functionalization through protein deposition to the substrate
surface (Subramanian et al., 2009). Furthermore, cells can
respond to nanoscale features in ways that change morphology,
attachment, proliferation, and even gene expression in response
to nano-gratings, posts, and pits (Bettinger et al., 2009).

Polymer nanofibers are used to build scaffolds that support
and direct neurite extension of neuron cultures in vitro. These
scaffolds are fabricated using electrospinning, a technique that
allows for accumulation of nanofibers in specific orientations.
The process is highly customizable and the fibers can be spun
in nm or µm scales (Pettikiriarachchi et al., 2010). Polylactic
acid (PLLA) fibers of large diameter (>1,000 nm) have been
shown to enhance neurite extension in dissociated chick dorsal
root ganglia (DRG) cultures (Wang et al., 2010). Functionalizing
PLLA fibers with fibronectin or laminin further improves
neurite interaction by replicating these endogenous chemical
cues (Koppes et al., 2014). Other electrospun nanofiber scaffolds
improve DRG neurite extension, promote differentiation of
mouse embryonic stem cells (ESCs) into neural progenitors,
and enhance outgrowth of neurites on the scaffolds with
aligned fibers. Neural crest stem cells differentiated from iPSCs
cultured within nanofiber-modified conduits enhanced sciatic
nerve regeneration (Xie et al., 2009; Schaub and Gilbert, 2011;
Wong et al., 2011). Nanofibers can be spun from a variety
of biocompatible materials, including natural proteins such
as collagen. However, there are several limitations to these
scaffolds. It is difficult to create an environment mimicking
the endogenous ECM, because its components are smaller
than what is currently achievable when fabricating nanofibers
(∼100 nm thick). Additionally, nanofiber scaffolds cannot
support embedded cells without compromising the structural
integrity of the scaffold (Liu et al., 2012).

Hydrogels, networks of polymers that have been swollen
with water, are attractive materials for cellular applications due
to their biocompatibility, ease of fabrication, and capacity for
customization (Caliari and Burdick, 2016). One advantage of
hydrogels is that their porosity is not detrimental to their
structure and can allow for migration of cells within the hydrogel
scaffold. Hydrogels fabricated with an additional internal
topography promote alignment or directionality of hippocampal
and DRG neurons (Liu et al., 2015), and differentiation of stem
cells into a neuronal cell-type (Lee et al., 2015b). When human
bone marrow stromal cells (hBMSCs) were cultured in hydrogels
with both aligned microchannels (Figure 1A) and stochastically
formed micropores (Figure 1B), hBMSCs differentiated into
neuronal cells and elongated to grow within the microchannels
(Figure 1C). Differentiation was attributed to the topography
facilitating binding between cellular integrins and ligands, which
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TABLE 1 | Impact of various material properties on neuronal behavior and development.

Material property Neurites Directionality Cell fate

Topographicala • Increased neurite length Neurite direction guided by

• Tubular structures

• Microchannels

• Confined spaces

iPSCs, ESCs, hBMSCs differentiate to

neural cell type

Electricalb • Increased neurite length

• Enhanced neuritogenesis

• Neurites grow/extend in direction of EF

• Neurite growth rate increased

• Neurons migrate in EF direction

• Polarization of neurons

• Direct neural tube formation

• Direct cell migration and organization

• Influence neuronal differentiation

Mechanical Stiffnessc Decreased stiffness supports increased neurite length

Increased stiffness results in:

• Improved network connectivity

• Improved signal transduction

No effect Decreased stiffness directs stem cell

differentiation toward the neural lineage

aTopographical References: (Xie et al., 2009; Schaub and Gilbert, 2011; Wong et al., 2011; Froeter et al., 2014; Koppes et al., 2014; Lee et al., 2015b).
bElectrical References: (Jaffe and Stern, 1979; Patel and Poo, 1982; Hotary and Robinson, 1991; Davenport and McCaig, 1993; Metcalf and Borgens, 1994; Yao et al., 2008, 2009,

2011; Graves et al., 2011; Koppes et al., 2014; Kim et al., 2016; Ma et al., 2016).
cMechanical Stiffness References: (Balgude et al., 2001; Discher et al., 2005; Jiang et al., 2010; Keung et al., 2012; Lee et al., 2013; Zhang et al., 2014; Mosley et al., 2017).

is important for stem cell differentiation to neurons. The
stochastic micropore gels could not support this binding, leading
to mostly undifferentiated hBMSCs (Lee et al., 2015b). Hydrogels
can also be used for cell encapsulation or fabricated with particles
bearing trophic factors to enhance cellular interactions on and
within the gel (Carballo-Molina and Velasco, 2015).

A semiconductor-based microtube substrate, composed of
a thin nanomembrane of oppositely strained layers of silicon
nitride that can self-roll, significantly enhances neurite alignment
(Figure 1D). These self-rolled-up membranes (S-RuMs) have
a unique combination of features that make them attractive
for manipulating topography. S-RuMs are optically transparent
under most conventional microscopy techniques, including
phase-contrast and fluorescence imaging, which makes them
ideal for use with cultured cells. Since they are manufactured
using a scalable semiconductor process (Li, 2008; Huang et al.,
2012), they are highly customizable and versatile, which facilitates
many different designs (Froeter et al., 2013). They also are
biocompatible, an essential characteristic for cell and tissue
interfaces (Froeter et al., 2014). The S-RuMs can be tuned to
a range of diameters and lengths, can be rolled into a single
or binocular tube, and can be incorporated with pores to allow
for nutrient and gas exchange across the tube membrane. By
restricting the diameter of the S-RuM to the 5-µm range, a
single neurite can be captured within each tube. By altering the
fabrication process to widen the diameter, a bundle of neurites
can traverse a single tube. Additionally, a thin deposition of
metal can be added during the fabrication process to create
an electrode that is rolled within the S-RuM (Figure 1E).
This characteristic will enable selective and targeted stimulation
and recording of a neurite contained on a single substrate
and continuous tracking of functional neurite dynamics under
electrical stimulation. Scanning electron microscopy (SEM) of
rat hippocampal neurons in culture reveal the S-RuMs provide
adequate space for neurites to extend, turn, and extend through
the lumen (Figure 1F).

Nerve-guide-conduits or nerve-guidance-channels (NGCs)
are 3D constructs for whole nerve therapies in vivo (Anderson
et al., 2017; Lackington et al., 2017). They are currently
used as implants for neural repair in humans. Commercially
available NGCs are primarily single-lumen tubes, with no
added topographical features, through which the two ends of
a severed nerve are inserted and left to grow together (de
Ruiter et al., 2009). There are limitations to these models, most
notably in the injury gap distance over which they are effective.
Functionalization to improve rate of regrowth, limit scarring,
and improve permeability for nutrient transfer has yet to be
integrated into these devices.

Techniques that have proven successful during in vitro
neuroregenerative studies are currently being applied and
evaluated in NGCs in animal models. An experimental NGC,
composed of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
(PHB-HV) and enhanced with a conductive polypyrrole
co-polymer coating along the inner diameter of the NGC,
has been implanted in Sprague-Dawley rats with severed
sciatic nerves. When the conduits were harvested at 8 weeks
and analyzed for neuronal markers, nerve tissue was found
throughout the conduit with no evidence of inflammation.
Thus, the NGC supports and promotes regeneration of damaged
nerves (Durgam et al., 2010). A more recent study in rats
demonstrated nerve regeneration in vivo that utilized NGCs
made of zein, a corn-derived polymer. NGCs were fabricated
in three configurations: non-porous NGCs, porous NGCs, and
porous NGCs that contained smaller zein microtubes. A 10-mm
section of the sciatic nerve was removed and replaced with the
NGCs, and recovery was tracked over a 4-month period. The
rats showed improved gait 2 months after implantation. The
porous zein conduit showed significantly increased density of
myelinated nerve fibers and increased myelin sheath thickness
at 2- and 4-months post-implantation (Wang et al., 2017). The
porous nature of these zein NGCs enabled nutrient diffusion
and facilitated eventual degradation of the scaffold over the
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FIGURE 1 | Material applications of topography, electrical stimulation, and stiffness. (A) Scanning electron micrograph (SEM) of fractured hydrogels reveals the

internal structure of the hydrogel with microchannels, or (B) micropores (images A,B adapted from Lee et al., 2015a). (C) Human bone marrow stromal cells

(hBMSCs) cultured on hydrogel with aligned microchannels differentiate into a neuronal phenotype. Fluorescence imaging reveals MAP2 (neuronal marker, green),

GFAP (glial marker, red), and DAPI (nuclear marker, blue) immunoreactivity, demonstrating differentiation of hBMSCs into cells expressing neuronal or glial markers,

and elongating in the microchanneled hydrogel (image contributed by H. J. Kong, University of Illinois at Urbana-Champaign). (D) SEM of array of self-rolled-up

membranes (S-RuMs) composed of thin-film silicon nitride bilayers. (E) A multi-electrode array chip (left) with S-RuMs patterned in a pentagon formation (orange box,

right). Black inset shows schematic of single S-RuM with gold electrodes rolled inside (images D,E contributed by X. Li, University of Illinois at Urbana-Champaign). (F)

SEM of rat hippocampal neurons cultured on S-RuM substrate (3 days in vitro). Inset: Fluorescence imaging reveals MAP2 (neuronal marker, white) immunoreactivity,

confirming neuronal cell type. Orange arrows correspond to entry of neurites into S-RuMs. (G) An example of flexible, biocompatible, dissolvable electronics: an

electronic circuit dissolving in a stream of water. White arrows indicate the path of the water and the region of the circuit that is dissolving (image contributed by J.A.

Rogers, Northwestern University).

course of 4 months, when nerve regeneration in the conduit
with microtubes was comparable to the regeneration observed
in autograft controls (Wang et al., 2017). Collectively, these
results highlight how topography can positively promote neurite
outgrowth and enhance regeneration.

APPLICATION OF ELECTRIC FIELDS TO
MANIPULATE NEURITE EXTENSION

The nervous system relies on electrical signals for development
and communication. In early development, electric potentials
define migration paths of the cells and differentiation, driving
the formation of the neural tube (Hotary and Robinson, 1990,
1991; Metcalf and Borgens, 1994; Yao et al., 2008; Ma et al.,
2016). Signal transmission in neurons is mediated by ion fluxes
across the cell membrane. In instances of traumatic injury, ion
flux establishes an electric potential gradient that promotes repair
(Reid et al., 2007; McCaig et al., 2009). Numerous studies support
the positive effect of electric fields (EFs) on neurite extension,

growth-rate, and neuron polarization and migration (Jaffe and
Stern, 1979; Patel and Poo, 1982; McCaig, 1990; Davenport and
McCaig, 1993; Yao et al., 2009, 2011; Graves et al., 2011; Kim et al.,
2016). Consequently, electrical cues can be utilized to positively
regulate, facilitate, and enhance neuroregeneration.

Nanofiber scaffolds can be augmented to enhance neurite
outgrowth by providing both electrical stimulation and
topographical cues. An external EF was introduced in parallel or
perpendicular orientation to planar PLLA fiber scaffolds using
an agar salt-bridge and platinum reference electrode. When rat
DRG cultured on each of these scaffolds were stimulated with
an applied direct current (DC) EF for 8 h, neurite outgrowths
on the electrically stimulated scaffolds were significantly longer
compared to controls. Neurite outgrowth increased by 74%
on the PLLA fibers (topography alone), 32% on the PLLA
planar films (electrical stimulation alone), and by 126% on the
PLLA fibers aligned to the direction of the DC EF (Koppes
et al., 2014). Therefore, the combination of topographical and
electrical cues greatly improves length of neurite extension.
Electrical stimulation can be further integrated into the scaffold

Frontiers in Materials | www.frontiersin.org April 2018 | Volume 5 | Article 2131

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Cangellaris and Gillette Biomaterials for Neuronal Repair

by choosing a conductive base material. Polypyrrole (PPy) is
biocompatible, biodegradable, as well as electrically conductive,
so NGCs augmented with PPy can support electrical stimulation
(Nguyen et al., 2014). When DRGs on PPy-modified flat scaffolds
were stimulated with an electric field, neurite extension was
enhanced by 13% in a DC EF, and 21% in an alternating current
(AC) EF. PPy-modified NGCs without electrical stimulation
were shown to support regrowth of severed sciatic nerves in rats
in vivo (Durgam et al., 2010). To translate this technology to in
vivo models, electrical stimulation needs to be introduced to a
PPy-modified NGC. Electric stimulation is a native signal that
strongly impacts neurons and can be further manipulated to
direct neuritogenesis in strategies for neuroregenerative therapy.

MANIPULATION OF SUBSTRATE
STIFFNESS

The intrinsic mechanical properties of the body determine
neuronal differentiation, dynamics, behavior, and organization
(Hynes, 2009; Janmey and Miller, 2011; Koser et al., 2016).
The importance of substrate mechanics as a cue is evident
during differentiation of stem cells in environments of
controlled stiffness. Increasingly higher stiffness encourages
their differentiation into muscle [elastic modulus (E) ∼10 kPa]
or bone (E > 30 kPa), whereas a lower stiffness on the order
of hundreds of Pa encourages differentiation into neurons
(Lee et al., 2013). This is consistent with the elastic modulus
within the central and peripheral nervous systems, which ranges
between 0.5 and 1 kPa, and the shear stiffness of human brain
tissue in vivo, which has been measured between 2 and 3 kPa
(Lee et al., 2013; Bai et al., 2014; Hiscox et al., 2016). Such
measurements of human brain tissue are highly dependent on
frequency and region, and therefore variable. Additional studies
have demonstrated that timing and duration of exposure to
stiffness cues impacts stem cell differentiation to neural cell
types, and that while neuritogenesis may be enhanced on soft
substrates, network connectivity and signal transduction are
enhanced by stiffer substrates (Balgude et al., 2001; Jiang et al.,
2010; Keung et al., 2012; Zhang et al., 2014; Mosley et al., 2017).
These findings emphasize that stiffness cues should be adjusted
depending on the desired outcome, with close attention to the
region of interest in the human body.

Hydrogels are a compelling choice for neuronal scaffolds
because their elastic modulus is easily tuned during fabrication,
although dependent upon the monomer/material used.
Polyacrylamide can be used to create hydrogels with gradient
stiffness ranging from ∼1 to 240 kPa. Polyacrylamide can act
as a strong analog to the endogenous ECM when invested
with proteins and chemical signals specific to the cell of
interest (Sunyer et al., 2012; Lee et al., 2015b). Hydrogels can
be constructed in planar or 3D configurations maintaining
precise control over the elastic modulus (Chatterjee et al.,
2011; Wylie et al., 2011). They facilitate nutrient exchange and
diffusion of gasses through their natural pores. This exchange
contributes to healthier cells within the deepest parts of the
scaffold. In designing scaffolds for use in repair of nervous
tissue, manipulating the base material to more closely resemble

the endogenous elastic modulus can facilitate more natural
integration with the existing cellular structure.

INNOVATIVE SUBSTRATES FOR
EFFECTIVE REPAIR

An ideal substrate for effective repair should take into account
a combination of topographical, chemical, electrical, and
mechanical properties of the substrate. The parameters must
be carefully tailored to address the site of application, as
biocompatibility with surrounding tissue will differ, and the
time course for repair, which will influence the duration of the
implant. For an acute spinal cord injury, the ideal substrate
should facilitate the initial regrowth, and protect against glial
scarring while nurturing the damaged axons during the healing
process via embedded trophic factors. Once the lesion has healed
and the scaffold has served its purpose, the scaffold can either
be resorbed or fully integrated into the recovered tissue. Such a
substrate must be flexible with an elastic modulus matching the
native spinal column for an environment that closely resembles
the endogenous condition. The scaffold can be enriched with
microchannels, which attract the regenerating neurites given
their affinity for edges and enclosed spaces (Millet et al., 2007;
Froeter et al., 2014; Li et al., 2015). To enhance regrowth and
influence its directionality, electronics that support electrical
stimuli can be embedded in the scaffold. These electronics can
also support recording capabilities to assess neuronal activity.
Impregnating the scaffold with stem cells could enhance this
therapy even more.

A recent study demonstrated how grafted human spinal cord-
derived neural progenitor cells (NPCs) restore functionality to
primates with lesioned spinal cords. The NPCs survived in
the graft 9 months following injury and enabled recovered
functionality in the primate forelimbs. Two notable challenges
were encountered before a successful grafting method was
developed: (1) in initial grafts, the NPCs were washed away by
the native cerebral spinal fluid (CSF) that refilled the lesion site,
and (2) the initial immunosuppressive regimen was not robust
enough to enable the graft to survive the host immune response,
leading to poor filling of the lesion with the NPCs. These two
challenges were resolved by draining the CSF in the region of the
lesion prior to grafting, increasing the grafting mixture to hasten
the rate of gelling, subjecting the primates to higher initial doses
of the immunosuppressants, and monitoring the subjects more
frequently (Rosenzweig et al., 2018). The success of this study
could be improved by loading the NPCs on an idealized scaffold
as described above, which would protect the NPCs and allow for
active monitoring of the regeneration.

With advancements in materials engineering, a new wave
of flexible and biodegradable electronics has been introduced
(Figure 1G). Applications for their use in the nervous system
are especially promising. Flexible, transient, silicon-based,
biocompatible, implantable biosensors are being developed
that allow for wireless monitoring capability. They have been
used successfully on skin, cardiac tissue, muscle, and the brain
(Viventi et al., 2010, 2011; Hwang et al., 2012; Kang et al., 2016).
A wireless communication device composed of bioresorbable
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materials has been successfully implanted and used in rats
for monitoring intracranial pressure and temperature (Kang
et al., 2016). Another flexible, non-penetrating multi-electrode
array with embedded ultrathin silicon transistors was used for
in vivo neural recording and monitoring of electrical brain
activity in feline models. The electrode array was applied to the
visual cortex, or folded and inserted into the interhemispheric
fissure, and electrical signals corresponding to visual stimuli
were recorded (Viventi et al., 2011). The connection between
these technologies and solutions for neuronal repair lies in three
major advantages of these devices: (1) the flexible nature of the
material allows for intimate contact between the biosensor and
the neural tissue, minimizing current-loss (Viventi et al., 2010,
2011), (2) the materials are biocompatible and do not trigger an
inflammatory response (Kang et al., 2016), and (3) the devices
are bioresorbable. Each of these elements addresses requirements
of an ideal substrate for neural repair. While long-term clinical
translation of these devices must ensure longevity of thematerials
and sustained biocompatibility, progress in flexible electronics
development is promising.

CONCLUSION

Recovering function following damage to neuronal systems
is challenging due to loss of native cues, inflammation, and
scarring. Solutions to this problem lie in clever development
and functionalization of new scaffolds on which neurons can
regenerate complex, 3D circuits. Important advances are being
made in development of biomaterials for neuronal repair,
including: (1) the development of new polymer/co-polymer
substrates to enhance scaffolds for better integration with neural
tissue, (2) new topographical structures to heighten neurite
capture, support, and growth, and (3) novel manipulations
of silicon-based electronics to design and implement flexible
substrates for stimulation and recording. New materials enabling
manipulation of substrate topography, such as hydrogels, mimic
similar in vivo structures and enhance control over directionality

in regenerating neurites. Introduction of electrical stimulation
will amplify growth rate and length of regeneration, and
influence orientation. Embedded wireless sensors will enable
real-time monitoring of regenerating nerves in situ. Substrates
can be manipulated to further emulate the endogenous neural
environment by tuning the elastic modulus to better match the
range of local stiffnesses in vivo and provide transitions between
native tissue and supportive scaffold. By developing scaffolds
and devices that dissolve away after fulfilling their purpose,
the need for an additional surgery for removal is eliminated,
thereby reducing the risks of added surgical complications,
such as infection, as well as additional medical costs. For
the brain and the nervous system, the future is pliable and
electronic.

AUTHOR CONTRIBUTIONS

The manuscript was conceived and prepared by OVC. OVC and
MUG revised the manuscript.

FUNDING

The authors acknowledge funding from the Medical Scholars
Program at the University of Illinois and Christie Foundation
Award (OVC), and the National Science Foundation STC
Emergent Behaviors of Integrated Cellular Systems CBET
0939511 (MUG).

ACKNOWLEDGMENTS

The authors thank Guillermo L. Monroy for contributions
to revising the manuscript, Jennifer W. Mitchell for insights
in figure preparation, and Ann C. Benefiel for facilitating
manuscript submission. The authors thank Xiuling Li, Paul
Froeter, and Hyun Joon Kong (University of Illinois at Urbana-
Champaign), and John A. Rogers (Northwestern University) for
providing images.

REFERENCES

Anderson, M., Shelke, N. B., Manoukian, O. S., Yu, X., McCullough, L. D., and

Kumbar, S. G. (2017). Peripheral nerve regeneration strategies: electrically

stimulating polymer based nerve growth conduits. Crit. Rev. Biomed. Eng. 43,

131–159. doi: 10.1615/CritRevBiomedEng.2015014015

Bai, S., Zhang, W., Lu, Q., Ma, Q., Kaplan, D. L., and Zhu, H. (2014). Silk

nanofiber hydrogels with tunable modulus to regulate nerve stem cell fate.

J. Mater. Chem. B. Mater. Biol. Med. 2, 6590–6600. doi: 10.1039/C4TB0

0878B

Balgude, A. P., Yu, X., Szymanski, A., and Bellamkonda, R. V. (2001). Agarose gel

stiffness determines rate of DRG neurite extension in 3D cultures. Biomaterials

22, 1077–1084. doi: 10.1016/S0142-9612(00)00350-1

Baranes, K., Chejanovsky, N., Alon, N., Sharoni, A., and Shefi, O.

(2012). Topographic cues of nano-scale height direct neuronal

growth pattern. Biotechnol. Bioeng. 109, 1791–1797. doi: 10.1002/bit.

24444

Barros, C. S., Franco, S. J., and Müller, U. (2011). Extracellular matrix:

functions in the nervous system. Cold Spring Harb. Perspect. Biol. 3:a005108.

doi: 10.1101/cshperspect.a005108

Bettinger, C. J., Langer, R., and Borenstein, J. T. (2009). Engineering substrate

topography at themicro- and nanoscale to control cell function.Angew. Chemie

Int. Ed. 48, 5406–5415. doi: 10.1002/anie.200805179

Brown, R. C., Lockwood, A. H., and Sonawane, B. R. (2005). Neurodegenerative

diseases: an overview of environmental risk factors. Environ. Health Perspect.

113, 1250–1256. doi: 10.1289/ehp.7567

Caliari, S. R., and Burdick, J. A. (2016). A practical guide to hydrogels for cell

culture. Nat. Methods 13, 405–414. doi: 10.1038/nmeth.3839

Carballo-Molina, O. A., and Velasco, I. (2015). Hydrogels as scaffolds and delivery

systems to enhance axonal regeneration after injuries. Front. Cell. Neurosci.

9:13. doi: 10.3389/fncel.2015.00013

Chatterjee, K., Young, M. F., and Simon, C. G. Jr. (2011). Fabricating gradient

hydrogel scaffolds for 3D cell culture. Comb. Chem. High Throughput Screen.

14, 227–236. doi: 10.2174/138620711795222455

Davenport, R. W., and McCaig, C. D. (1993). Hippocampal growth cone

responses to focally applied electric fields. J. Neurobiol. 24, 89–100.

doi: 10.1002/neu.480240108

de Ruiter, G. C., Malessy, M. J., Yaszemski, M. J., Winderbank, A. J., and Spinner,

R. J. (2009). Designing ideal conduits for peripheral nerve repair. Neurosurg.

Focus 26:E5. doi: 10.3171/FOC.2009.26.2.E5

Frontiers in Materials | www.frontiersin.org April 2018 | Volume 5 | Article 2133

https://doi.org/10.1615/CritRevBiomedEng.2015014015
https://doi.org/10.1039/C4TB00878B
https://doi.org/10.1016/S0142-9612(00)00350-1
https://doi.org/10.1002/bit.24444
https://doi.org/10.1101/cshperspect.a005108
https://doi.org/10.1002/anie.200805179
https://doi.org/10.1289/ehp.7567
https://doi.org/10.1038/nmeth.3839
https://doi.org/10.3389/fncel.2015.00013
https://doi.org/10.2174/138620711795222455
https://doi.org/10.1002/neu.480240108
https://doi.org/10.3171/FOC.2009.26.2.E5
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Cangellaris and Gillette Biomaterials for Neuronal Repair

Discher, D., Janmey, P., and Wang, Y. (2005). Tissue cells feel and

respond to the stiffness of their substrate. Science 310, 1139–1143.

doi: 10.1126/science.1116995

Durgam, H., Sapp, S., Deister, C., Khaing, Z., Chang, E., Luebben, S., et al. (2010).

Novel degradable co-polymers of polypyrrole support cell proliferation and

enhance neurite outgrowth with electrical stimulation. J. Biomater. Sci. Polym.

Ed. 21, 1265–1282. doi: 10.1163/092050609X12481751806330

Edmondson, J. C., and Hatten, M. E. (1987). Glial-guided granule neuron

migration in vitro: a high-resolution time-lapse video microscopic study. J.

Neurosci. 7, 1928–1934.

Froeter, P., Huang, Y., Cangellaris, O. V., Huang, W., Dent, E. W., Gillette, M.

U., et al. (2014). Toward intelligent synthetic neural circuits: directing and

accelerating neuron cell growth by self-rolled-up silicon nitride microtube

array. ACS Nano 8, 11108–11117. doi: 10.1021/nn504876y

Froeter, P., Yu, X., Huang, W., Du, F., Li, M., Chun, I., et al. (2013). 3D

hierarchical architectures based on self-rolled-up silicon nitride membranes.

Nanotechnology 24:475301. doi: 10.1088/0957-4484/24/47/475301

Graves, M. S., Hassell, T., Beier, B. L., Albors, G. O., and Irazoqui,

P. P. (2011). Electrically mediated neuronal guidance with applied

alternating current electric fields. Ann. Biomed. Eng. 39, 1759–1767.

doi: 10.1007/s10439-011-0259-8

Gu, X., Ding, F., and Williams, D. F. (2014). Neural tissue engineering

options for peripheral nerve regeneration. Biomaterials 35, 6143–6156.

doi: 10.1016/j.biomaterials.2014.04.064

Hiscox, L. V., Johnson, C. L., Barnhill, E., McGarry, M. D., Huston, J., van Beek, E.

J., et al. (2016). Magnetic resonance elastography (MRE) of the human brain:

technique, findings and clinical applications. Phys. Med. Biol. 61, R401–R437.

doi: 10.1088/0031-9155/61/24/R401

Hotary, K. B., and Robinson, K. R. (1990). Endogenous electrical currents and

the resultant voltage gradients in the chick embryo. Dev. Biol. 140, 149–160.

doi: 10.1016/0012-1606(90)90062-N

Hotary, K. B., and Robinson, K. R. (1991). The neural tube of the Xenopus

embryo maintains a potential difference across itself. Dev. Brain Res. 59, 65–73.

doi: 10.1016/0165-3806(91)90030-M

Huang, W., Yu, X., Froeter, P., Xu, R., Ferreira, P., and Li, X. (2012).

On-chip inductors with self-rolled-up SiNx nanomembrane tubes: a novel

design platform for extreme miniaturization. Nano Lett. 12, 6283–6288.

doi: 10.1021/nl303395d

Hwang, S. W., Tao, H., Kim, D.-H., Cheng, H., Song, J.-K., Rill, E.,

et al. (2012). A physically transient form of silicon electronics, with

integrated sensors, actuators and power supply. Science 337, 1640–1644.

doi: 10.1126/science.1226325

Hynes, R. O. (2009). Extracellular matrix: not just pretty fibrils. Science 326,

1216–1219. doi: 10.1126/science.1176009

Jaffe, L. F., and Stern, C. D. (1979). Strong electrical currents leave the primitive

streak of chick embryos. Science 206, 569–571. doi: 10.1126/science.573921

Jang, K. J., Kim, M. S., Feltrin, D., Jeon, N. L., Suh, K. Y., and Pertz, O.

(2010). Two distinct filopodia populations at the growth cone allow to sense

nanotopographical extracellular matrix cues to guide neurite outgrowth. PLoS

ONE 5:e15966. doi: 10.1371/journal.pone.0015966

Janmey, P. A., and Miller, R. T. (2011). Mechanisms of mechanical signaling in

development and disease. J. Cell Sci. 124, 9–18. doi: 10.1242/jcs.071001

Jiang, F. X., Yurke, B., Schloss, R. S., Firestein, B. L., and Langrana, N. A.

(2010). Effect of dynamic stiffness of the substrates on neurite outgrowth

by using a DNA-crosslinked hydrogel. Tissue Eng. A 16, 1873–1889.

doi: 10.1089/ten.tea.2009.0574

Kang, S. K., Murphy, R. K., Hwang, S. W., Lee, S. M., Harburg, D. V., Krueger, N.

A., et al. (2016). Bioresorbable silicon electronic sensors for the brain. Nature

530, 71–76. doi: 10.1038/nature16492

Keung, A. J., Asuri, P., Kumar, S., and Schaffer, D. V. (2012). Soft

microenvironments promote the early neurogenic differentiation but not

self-renewal of human pluripotent stem cells. Integr. Biol. 4, 1049–1058.

doi: 10.1039/c2ib20083j

Khan, S., and Newaz, G. (2010). A comprehensive review of surface modification

for neural cell adhesion and patterning. J. Biomed. Mater. Res. Part A 93,

1209–1224. doi: 10.1002/jbm.a.32698

Kim, K. M., Kim, S. Y., and Palmore, G. T. (2016). Axon outgrowth

of rat embryonic hippocampal neurons in the presence of an electric

field. ACS Chem. Neurosci. 7, 1325–1330. doi: 10.1021/acschemneuro.

6b00191

Koppes, A. N., Zaccor, N. W., Rivet, C. J., Williams, L. A., Piselli, J. M.,

Gilbert, R. J., et al. (2014). Neurite outgrowth on electrospun PLLA fibers

is enhanced by exogenous electrical stimulation. J. Neural Eng. 11:46002.

doi: 10.1088/1741-2560/11/4/046002

Koser, D. E., Thompson, A. J., Foster, S. K., Dwivedy, A., Pillai, E. K., Sheridan, G.

K., et al. (2016). Mechanosensing is critical for axon growth in the developing

brain. Nat. Neurosci. 19, 1592–1598. doi: 10.1038/nn.4394

Kriegstein, A. R. (2005). Constructing circuits: neurogenesis and

migration in the developing neocortex. Epilepsia 46, 15–21.

doi: 10.1111/j.1528-1167.2005.00304.x

Lackington, W. A., Ryan, A. J., and O’Brien, F. J. (2017). Advances in nerve

guidance conduit-based therapeutics for peripheral nerve repair.ACS Biomater.

Sci. Eng. 3, 1221–1235. doi: 10.1021/acsbiomaterials.6b00500

Lee, J., Abdeen, A. A., Zhang, D., and Kilian, K. A. (2013). Directing

stem cell fate on hydrogel substrates by controlling cell geometry, matrix

mechanics and adhesion ligand composition. Biomaterials 34, 8140–8148.

doi: 10.1016/j.biomaterials.2013.07.074

Lee, M. K., Rich, M. H., Baek, K., Lee, J., and Kong, H. (2015a). Bioinspired

tuning of hydrogel permeability-rigidity dependency for 3D cell culture. Sci.

Rep. 5:8948. doi: 10.1038/srep0894

Lee, M. K., Rich, M. H., Lee, J., and Kong, H. (2015b). A bio-inspired,

microchanneled hydrogel with controlled spacing of cell adhesion ligands

regulates 3D spatial organization of cells and tissue. Biomaterials 58, 26–34.

doi: 10.1016/j.biomaterials.2015.04.014

Li, W., Tang, Q. Y., Jadhav, A. D., Narang, A., Qian, W. X., Shi, P., et al. (2015).

Large-scale topographical screen for investigation of physical neural-guidance

cues. Sci. Rep. 5:8644. doi: 10.1038/srep08644

Li, X. (2008). Strain induced semiconductor nanotubes: from formation

process to device applications. J. Phys. D. Appl. Phys. 41:193001.

doi: 10.1088/0022-3727/41/19/193001

Liu, S. C., Lee, M. K., Slater, B. J., Kouzehgarani, G. N., Yu, M., Cangellaris, O.

V., et al. (2015). “Engineering a 3D platform to mimic in vivo neural network

morphology and activity,” in Program No. P030. 2015 Neuroscience Meeting

Planner (Chicago, IL: Society for Neuroscience).

Liu, W., Thomopoulos, S., and Xia, Y. (2012). Electrospun nanofibers

for regenerative medicine. Adv. Healthc. Mater. 1, 10–25.

doi: 10.1002/adhm.201100021

Ma, Q., Chen, C., Deng, P., Zhu, G., Lin,M., Zhang, L., et al. (2016). Extremely low-

frequency electromagnetic fields promote in vitro neuronal differentiation and

neurite outgrowth of embryonic neural stem cells via up-regulating TRPC1.

PLoS ONE 11:e0150923. doi: 10.1371/journal.pone.0150923

McCaig, C. D. (1990). Nerve branching is induced and oriented by a small applied

electric field. J. Cell Sci. 95(Pt 4), 605–615.

McCaig, C. D., Song, B., and Rajnicek, A. M. (2009). Electrical dimensions in cell

science. J. Cell Sci. 122, 4267–4276. doi: 10.1242/jcs.023564

Metcalf, M. E. M., and Borgens, R. B. (1994). Weak applied voltages interfere

with amphibian morphogenesis and pattern. J. Exp. Zool. 268, 323–338.

doi: 10.1002/jez.1402680408

Millet, L. J., Stewart, M. E., Nuzzo, R. G., and Gillette, M. U. (2010). Guiding

neuron development with planar surface gradients of substrate cues deposited

using microfluidic devices. Lab Chip 10, 1525–1535. doi: 10.1039/c001552k

Millet, L. J., Stewart, M. E., Sweedler, J. V., Nuzzo, R. G., and Gillette, M. U.

(2007). Microfluidic devices for culturing primary mammalian neurons at low

densities. Lab Chip 7, 987–994. doi: 10.1039/b705266a

Moore, K., Macsween, M., and Shoichet, M. (2006). Immobilized concentration

gradients of neurotrophic factors guide neurite outgrowth of primary neurons

inmacroporous scaffolds.Tissue Eng. 12, 267–278. doi: 10.1089/ten.2006.12.267

Mosley, M. C., Lim, H. J., Chen, J., Yang, Y. H., Li, S., Liu, Y., et al. (2017).

Neurite extension and neuronal differentiation of human induced pluripotent

stem cell derived neural stem cells on polyethylene glycol hydrogels containing

a continuous Young’s Modulus gradient. J. Biomed. Mater. Res. Part A 105,

824–833. doi: 10.1002/jbm.a.35955

Nguyen, H. T., Sapp, S., Wei, C., Chow, J. K., Nguyen, A., Coursen, J., et al.

(2014). Electric field stimulation through a biodegradable polypyrrole-co-

polycaprolactone substrate enhances neural cell growth. J. Biomed. Mater. Res.

Part A 102, 2554–2564. doi: 10.1002/jbm.a.34925

Frontiers in Materials | www.frontiersin.org April 2018 | Volume 5 | Article 2134

https://doi.org/10.1126/science.1116995
https://doi.org/10.1163/092050609X12481751806330
https://doi.org/10.1021/nn504876y
https://doi.org/10.1088/0957-4484/24/47/475301
https://doi.org/10.1007/s10439-011-0259-8
https://doi.org/10.1016/j.biomaterials.2014.04.064
https://doi.org/10.1088/0031-9155/61/24/R401
https://doi.org/10.1016/0012-1606(90)90062-N
https://doi.org/10.1016/0165-3806(91)90030-M
https://doi.org/10.1021/nl303395d
https://doi.org/10.1126/science.1226325
https://doi.org/10.1126/science.1176009
https://doi.org/10.1126/science.573921
https://doi.org/10.1371/journal.pone.0015966
https://doi.org/10.1242/jcs.071001
https://doi.org/10.1089/ten.tea.2009.0574
https://doi.org/10.1038/nature16492
https://doi.org/10.1039/c2ib20083j
https://doi.org/10.1002/jbm.a.32698
https://doi.org/10.1021/acschemneuro.6b00191
https://doi.org/10.1088/1741-2560/11/4/046002
https://doi.org/10.1038/nn.4394
https://doi.org/10.1111/j.1528-1167.2005.00304.x
https://doi.org/10.1021/acsbiomaterials.6b00500
https://doi.org/10.1016/j.biomaterials.2013.07.074
https://doi.org/10.1038/srep0894
https://doi.org/10.1016/j.biomaterials.2015.04.014
https://doi.org/10.1038/srep08644
https://doi.org/10.1088/0022-3727/41/19/193001
https://doi.org/10.1002/adhm.201100021
https://doi.org/10.1371/journal.pone.0150923
https://doi.org/10.1242/jcs.023564
https://doi.org/10.1002/jez.1402680408
https://doi.org/10.1039/c001552k
https://doi.org/10.1039/b705266a
https://doi.org/10.1089/ten.2006.12.267
https://doi.org/10.1002/jbm.a.35955
https://doi.org/10.1002/jbm.a.34925
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Cangellaris and Gillette Biomaterials for Neuronal Repair

Orive, G., Anitua, E., Pedraz, J. L., and Emerich, D. F. (2009). Biomaterials for

promoting brain protection, repair and regeneration. Nat. Rev. Neurosci. 10,

682–692. doi: 10.1038/nrn2685

Patel, N., and Poo, M. M. (1982). Orientation of neurite growth by extracellular

electric fields. J. Neurosci. 2, 483–496.

Patel, S., Kurpinski, K., Quigley, R., Gao, H., Hsiao, B. S., Poo, M. M., et al. (2007).

Bioactive nanofibers: synergistic effects of nanotopography and chemical

signaling on cell guidance. Nano Lett. 7, 2122–2128. doi: 10.1021/nl071182z

Pettikiriarachchi, J. T. S., Parish, C. L., Shoichet, M. S., Forsythe, J. S., and Nisbet,

D. R. (2010). Biomaterials for brain tissue engineering. Aust. J. Chem. 63,

1143–1154. doi: 10.1071/CH10159

Rakic, P. (1972). Mode of cell migration to the superficial layers of fetal monkey

neocortex. J. Comp. Neurol. 145, 61–83. doi: 10.1002/cne.901450105

Reid, B., Nuccitelli, R., and Zhao, M. (2007). Non-invasive measurement

of bioelectric currents with a vibrating probe. Nat. Protoc. 2, 661–669.

doi: 10.1038/nprot.2007.91

Rosenzweig, E. S., Brock, J. H., Lu, P., Kumamaru, H., Salegio, E. A., Kadoya, K.,

et al. (2018). Restorative effects of human neural stem cell grafts on the primate

spinal cord. Nat. Med. doi: 10.1038/nm.4502. [Epub ahead of print].

Schaub, N. J., and Gilbert, R. J. (2011). Controlled release of 6-aminonicotinamide

from aligned, electrospun fibers alters astrocyte metabolism and

dorsal root ganglia neurite outgrowth. J. Neural Eng. 8:046026.

doi: 10.1088/1741-2560/8/4/046026

Schmidt, C. E., and Leach, J. B. (2003). Neural tissue engineering: strategies

for repair and regeneration. Annu. Rev. Biomed. Eng. 5, 293–347.

doi: 10.1146/annurev.bioeng.5.011303.120731

Subramanian, A., Krishnan, U. M., and Sethuraman, S. (2009). Development of

biomaterial scaffold for nerve tissue engineering: biomaterial mediated neural

regeneration. J. Biomed. Sci. 16:108. doi: 10.1186/1423-0127-16-108

Sunyer, R., Jin, A. J., Nossal, R., and Sackett, D. L. (2012). Fabrication of hydrogels

with steep stiffness gradients for studying cell mechanical response. PLoS ONE

7:e46107. doi: 10.1371/journal.pone.0046107

Tam, R. Y., Fuehrmann, T., Mitrousis, N., and Shoichet, M. S. (2014). Regenerative

therapies for central nervous system diseases: a biomaterials approach.

Neuropsychopharmacology 39, 169–188. doi: 10.1038/npp.2013.237

Teng, Y. D., Lavik, E. B., Qu, X., Park, K. I., Ourednik, J., Zurakowski, D., et al.

(2002). Functional recovery following traumatic spinal cord injury mediated by

a unique polymer scaffold seeded with neural stem cells. Proc. Natl. Acad. Sci.

U.S.A. 99, 3024–3029. doi: 10.1073/pnas.052678899

Tian, L., Prabhakaran, M. P., and Ramakrishna, S. (2015). Strategies for

regeneration of components of nervous system: scaffolds, cells and

biomolecules. Regen. Biomater. 2, 31–45. doi: 10.1093/rb/rbu017

Ventre, M., Causa, F., and Netti, P. A. (2012). Determinants of cell-material

crosstalk at the interface: towards engineering of cell instructive materials. J.

R. Soc. Interface 9, 2017–2032. doi: 10.1098/rsif.2012.0308

Viventi, J., Kim, D. H., Moss, J. D., Kim, Y. S., Blanco, J. A., Annetta, N.,

et al. (2010). A conformal, bio-interfaced class of silicon electronics

for mapping cardiac electrophysiology. Sci. Transl. Med. 2:24ra22.

doi: 10.1126/scitranslmed.3000738

Viventi, J., Kim, D. H., Vigeland, L., Frechette, E. S., Blanco, J. A., Kim, Y. S.,

et al. (2011). Flexible, foldable, actively multiplexed, high-density electrode

array for mapping brain activity in vivo. Nat. Neurosci. 14, 1599–1605.

doi: 10.1038/nn.2973

Wang, G. W., Yang, H., Wu, W. F., Zhang, P., and Wang, J. Y. (2017). Design

and optimization of a biodegradable porous zein conduit using microtubes

as a guide for rat sciatic nerve defect repair. Biomaterials 131, 145–159.

doi: 10.1016/j.biomaterials.2017.03.038

Wang, H. B., Mullins, M. E., Cregg, J. M., Mccarthy, C. W., and Gilbert,

R. J. (2010). Varying the diameter of aligned electrospun fibers alters

neurite outgrowth and Schwann cell migration. Acta Biomater. 6, 2970–2978.

doi: 10.1016/j.actbio.2010.02.020

WHO. (2006). “Neurological disorders: a public health approach,” in Neurological

Disorders: Public Health Challenges, eds J. A. Aarli, G. Avanzini, J. M. Bertolote,

H. de Boer, H. Breivik, T. Dua, N. Graham, A. Janca, J. Kesselring, C. Mathers,

A. Muscetta, L. Prilipko, B. Saraceno, S. Saxena, and T. J. Steiner (Geneva),

41–176.

Wong, A., Tang, Z., Park, I. H., Zhu, Y., Patel, S., Daley, G. Q., et al. (2011).

Induced pluripotent stem cells for neural tissue engineering. Biomaterials 32,

5023–5032. doi: 10.1016/j.biomaterials.2011.03.070

Wylie, R. G., Ahsan, S., Aizawa, Y., Maxwell, K. L., Morshead, C. M., and

Shoichet, M. S. (2011). Spatially controlled simultaneous patterning of multiple

growth factors in three-dimensional hydrogels. Nat. Mater. 10, 799–806.

doi: 10.1038/nmat3101

Xie, J., Willerth, S. M., Li, X., Macewan, M. R., Rader, A. and Sakiyama-

Elbert S. E. (2009). The differentiation of embryonic stem cells seeded

on electrospun nanofibers into neural lineages. Biomaterials 30, 354–362.

doi: 10.1016/j.biomaterials.2008.09.046

Yao, L., McCaig, C. D., and Zhao, M. (2009). Electrical signals polarize neuronal

organelles, direct neuron migration, and orient cell division. Hippocampus 19,

855–868. doi: 10.1002/hipo.20569

Yao, L., Pandit, A., Yao, S., and McCaig, C. D. (2011). Electric field-guided neuron

migration: a novel approach in neurogenesis. Tissue Eng. B. Rev. 17, 143–153.

doi: 10.1089/ten.teb.2010.0561

Yao, L., Shanley, L., McCaig, C., and Zhao, M. (2008). Small applied electric

fields guide migration of hippocampal neurons. J. Cell. Physiol. 216, 527–535.

doi: 10.1002/jcp.21431

Yu, L. M. Y., Leipzig, N. D., and Shoichet, M. S. (2008).

Promoting neuron adhesion and growth. Mater. Today 11, 36–43.

doi: 10.1016/S1369-7021(08)70088-9

Zhang, Q. Y., Zhang, Y. Y., Xie, J., Li, C. X., Chen, W. Y., Liu, B. L., et al. (2014).

Stiff substrates enhance cultured neuronal network activity. Sci. Rep. 4:6215.

doi: 10.1038/srep06215

Conflict of Interest Statement: The authors declare that the manuscript was

developed in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

The handling Editor declared a shared affiliation, though no other collaboration,

with the authors.

Copyright © 2018 Cangellaris and Gillette. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Materials | www.frontiersin.org April 2018 | Volume 5 | Article 2135

https://doi.org/10.1038/nrn2685
https://doi.org/10.1021/nl071182z
https://doi.org/10.1071/CH10159
https://doi.org/10.1002/cne.901450105
https://doi.org/10.1038/nprot.2007.91
https://doi.org/10.1038/nm.4502
https://doi.org/10.1088/1741-2560/8/4/046026
https://doi.org/10.1146/annurev.bioeng.5.011303.120731
https://doi.org/10.1186/1423-0127-16-108
https://doi.org/10.1371/journal.pone.0046107
https://doi.org/10.1038/npp.2013.237
https://doi.org/10.1073/pnas.052678899
https://doi.org/10.1093/rb/rbu017
https://doi.org/10.1098/rsif.2012.0308
https://doi.org/10.1126/scitranslmed.3000738
https://doi.org/10.1038/nn.2973
https://doi.org/10.1016/j.biomaterials.2017.03.038
https://doi.org/10.1016/j.actbio.2010.02.020
https://doi.org/10.1016/j.biomaterials.2011.03.070
https://doi.org/10.1038/nmat3101
https://doi.org/10.1016/j.biomaterials.2008.09.046
https://doi.org/10.1002/hipo.20569
https://doi.org/10.1089/ten.teb.2010.0561
https://doi.org/10.1002/jcp.21431
https://doi.org/10.1016/S1369-7021(08)70088-9
https://doi.org/10.1038/srep06215
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


February 2018 | Volume 5 | Article 2

Review
published: 01 February 2018

doi: 10.3389/fmats.2018.00002

Frontiers in Materials | www.frontiersin.org

Edited by: 
Sara Pedron,  

University of Illinois at Urbana–
Champaign, United States

Reviewed by: 
Stephanie Michelle Willerth,  

University of Victoria, Canada  
Stephanie K. Seidlits,  

University of California, Los Angeles, 
United States  

Francesca Taraballi,  
Houston Methodist Research 

Institute, United States

*Correspondence:
Edi Meco 

em4zv@virginia.edu; 
Kyle J. Lampe 

lampe@virginia.edu

Specialty section: 
This article was submitted to 

Biomaterials,  
a section of the journal  

Frontiers in Materials

Received: 28 October 2017
Accepted: 10 January 2018

Published: 01 February 2018

Citation: 
Meco E and Lampe KJ (2018) 

Microscale Architecture in Biomaterial 
Scaffolds for Spatial Control of Neural 

Cell Behavior. 
Front. Mater. 5:2. 

doi: 10.3389/fmats.2018.00002

Microscale Architecture in 
Biomaterial Scaffolds for Spatial 
Control of Neural Cell Behavior
Edi Meco* and Kyle J. Lampe*

Department of Chemical Engineering, University of Virginia, Charlottesville, VA, United States

Biomaterial scaffolds mimic aspects of the native central nervous system (CNS) 
extracellular matrix (ECM) and have been extensively utilized to influence neural cell 
(NC) behavior in in vitro and in vivo settings. These biomimetic scaffolds support NC 
cultures, can direct the differentiation of NCs, and have recapitulated some native NC 
behavior in an in vitro setting. However, NC transplant therapies and treatments used 
in animal models of CNS disease and injury have not fully restored functionality. The 
observed lack of functional recovery occurs despite improvements in transplanted NC 
viability when incorporating biomaterial scaffolds and the potential of NC to replace 
damaged native cells. The behavior of NCs within biomaterial scaffolds must be directed 
in order to improve the efficacy of transplant therapies and treatments. Biomaterial 
scaffold topography and imbedded bioactive cues, designed at the microscale level, 
can alter NC phenotype, direct migration, and differentiation. Microscale patterning in 
biomaterial scaffolds for spatial control of NC behavior has enhanced the capabilities 
of in  vitro models to capture properties of the native CNS tissue ECM. Patterning 
techniques such as lithography, electrospinning and three-dimensional (3D) bioprint-
ing can be employed to design the microscale architecture of biomaterial scaffolds. 
Here, the progress and challenges of the prevalent biomaterial patterning techniques 
of lithography, electrospinning, and 3D bioprinting are reported. This review analyzes 
NC behavioral response to specific microscale topographical patterns and spatially 
organized bioactive cues.

Keywords: lithography, three-dimensional bioprinting, electrospinning, biomaterials, neural stem cells

iNTRODUCTiON

Tissue Damage in the Central Nervous System (CNS)
Tissue damage in the CNS caused by injury and disease cannot be fully repaired through endogenous 
healing mechanisms. For therapeutic treatments of CNS injury and disease to be successful they 
need to address a variety of challenges that are specific to the individual injury or disease, but can 
be broadly defined as replacing dead neural cells (NCs), remodeling the extracellular matrix (ECM) 
to a healthy state, and restoring nervous system functionality. In the autoimmune disease multiple 
sclerosis (MS), for instance, immune cells infiltrate the CNS and cause demyelination of neuronal 
axons (Correale et al., 2015). In the aftermath of this demyelination, the axons deteriorate and neu-
ronal death occurs, leading to reactive astrogliosis (Correale et al., 2015). During reactive astrogliosis 
astrocytes form inhibitory glial scars around the demyelinated lesion and prevent both remyelination 
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of damaged axons and axonal regeneration (Correale et al., 2015). 
The therapeutic needs for successful tissue regeneration of this 
particular disease are to replace dead neurons and oligodendro-
cytes, remodel the inhibitory scar tissue to allow for infiltration 
of endogenous cells, and prevent further immune cell infiltration 
into the CNS. A related sequence of events occurs in ischemic 
stroke, where the blood supply to the CNS is blocked, leading 
to hypoxia. Unlike MS, where preventative medicine is used to 
inhibit immune cell infiltration and mitigate tissue damage, tis-
sue damage in ischemic stroke is difficult to prevent because it 
only takes approximately 4 min for the adenosine triphosphate 
(ATP) concentration to be fully depleted (Krause et  al., 1988). 
Most of the cell death occurs during reperfusion, when blood 
flow returns to the CNS and the oxygen concentration sud-
denly elevates (White et  al., 2000). Re-established metabolism 
of oxygen causes the overproduction of reactive oxygen species 
(ROS), leading to lipid peroxidation of unsaturated fatty acids on 
the cell membranes, increasing their permeability, and causing 
apoptosis (White et  al., 2000; Lipinski, 2011). This is followed 
by reactive astrogliosis and formation of a glial scar around the 
original oxygen deficient region (Huang et al., 2014). Successful 
therapeutic treatment of damaged tissue after ischemic strike 
would replace dead NCs and remodel the inhibitory scar tissue 
to allow for infiltration of endogenous cells. There is a significant 
difference in the types of cells that need to be replaced when 
comparing ischemic stroke, which indiscriminately leads to NC 
death within a region, to diseases like MS which targets specific 
cell types. Unlike MS and ischemic stroke, tissue damage in the 
form of cell necrosis occurs immediately after a mechanical insult 
in spinal cord (SC) contusion injury (Yuan and He, 2013). Cell 
debris and ROS cause cytotoxicity in the microenvironment, 
and subsequently apoptosis of surrounding cells (Macaya and 
Spector, 2012). Over the course of several days to months after the 
initial injury, reactive astrocytes, in conjunction with infiltrating 
periphery cells in some instances, form glial scar tissue in the area 
of the mechanical insult (White et al., 2000; Macaya and Spector, 
2012). Treatment of CNS tissue damaged by SC contusion injury 
requires ECM remodeling to remove the cytotoxic cell debris 
and excess ROS before cells in the injury lesion can be replaced. 
The mechanisms of NC death are different in each case, but the 
requirements for effective treatments can be broadly defined as 
remodeling the ECM to remove cytotoxic and inhibitory aspects, 
replacing damaged cells, and recovering functionality.

Reparative effects of endogenous NCs
Interest in developing NC transplant therapies to treat tissue 
damage caused by CNS injury and disease is derived from 
evidence that endogenous NCs have reparative effects on dam-
aged tissue (Cooke et al., 2010). After ischemic stroke in the rat 
stratium via middle cerebral artery occlusion (MCAO), new 
neurons derived from proliferating neural precursor cells (NPCs) 
in the subventricular zone (SVZ) were observed (Arvidsson et al., 
2002). Similar results occurred in mice with an ipsilateral cer-
ebral cortex infarction induced by MCAO, where the number of 
Nestin-positive cells in the ischemic region increased (Nakagomi 
et  al., 2009). When extracted and cultured, the Nestin-positive 
cells from the ischemic region displayed neural stem cell (NSC) 

properties in  vitro (Nakagomi et  al., 2009). NSC populations, 
derived from ependymal cells, were also discovered in mouse 
SC after a transverse dorsal funiculus incision (Barnabé-Heider 
et  al., 2010). These findings have led researchers to transplant 
NCs as therapies to heal CNS tissue damage in both the brain 
and SC. However, most of the NCs transplanted to the injury 
environment do not survive and cells that do survive do not 
display integrative behavior. Only 2–4.5% of mouse NPCs 
transplanted into rats after traumatic brain injury survived 24 h 
after the transplant (Bakshi et al., 2005). In addition, the caspase 
activity of transplanted NPCs that survived was higher in injured 
rats than sham surgery controls, indicating that the population of 
cells that survived was apoptotic in the CNS injury environment 
(Bakshi et al., 2005). While transplanted cell viability is higher if 
the transplant is performed 1 week postinjury (Hill et al., 2006; 
Walker et  al., 2015), NCs alone do not restore functionality to 
preinjury baselines.

It is important to highlight distinctions between NC popula-
tions used to research in vitro and in vivo models because there 
is a wide range of capabilities of each cell line. Mature NCs such 
as neurons do not contain the capacity to self-renew or further 
differentiate and are typically not used because in  vitro cell 
cultures cannot be maintained. NSCs can self-renew indefinitely 
and exhibit multipotent differentiation, while NPCs and neural 
progenitor cells have a limited capacity to self-renew and have a 
restricted capacity to differentiate (Seaberg and Van Der Kooy, 
2003). Typically NPCs display unipotent differentiation behavior 
while neural progenitor cells maintain multipotent differentia-
tion, but these descriptions are not rigid rules so overlap between 
NPCs and neural progenitor cells does exist in literature. Neural 
precursor and progenitor cells are preferred over NSCs for trans-
plant therapies because their differentiation is more controlled, 
resulting in less heterogeneous cell cultures. Many NC lines are 
derived from neuronal tumors because these cell lines are immor-
talized and are relatively easy to grow and maintain in in vitro cell 
cultures (Gordon et al., 2013). The capabilities and limitations of 
NC lines are discussed by other reviews (Seaberg and Van Der 
Kooy, 2003; Dell’Albani, 2008; Murry and Keller, 2008; Politis and 
Lindvall, 2012; Gordon et al., 2013). Here, we will focus on the 
microscale architecture design of biomaterial scaffolds and how 
NCs respond to that architecture.

Bulk Biomaterials for Tissue Repair
Biomaterial scaffolds are designed to be biocompatible and 
influence cell behavior, making them promising tools for 
developing CNS tissue treatment therapies. Implantation of 
biomaterials into CNS injury lesions has helped improve cell 
infiltration and functional recovery (Shrestha et  al., 2014). A 
collagen and PuraMatrix hydrogel transplanted into a 5-mm 
gap thoracic (T9–T11) rat SC transection increased animal 
Basso, Beattie, and Bresnahan (BBB) scores over phosphate-
buffered saline (PBS) controls 4 months postsurgery (Kaneko 
et al., 2015). Neuronal and astrocyte infiltration into the injury 
lesion increased in animals with the collagen and PuraMatrix 
biomaterial scaffold. A similar endogenous cell response 
occurred when implanting a fibronectin-based scaffold into 
2-mm gap thoracic (T7–T9) rat SC transection (King et  al., 
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2003, 2006). Axons infiltrated the fibronectin scaffold and were 
myelinated by Schwann cells 4  weeks postinjury (King et  al., 
2003). Animals with the fibronectin scaffold also had early and 
aggressive macrophage infiltration into the lesion site, which 
was speculated to provide trophic support for axon infiltration 
(King et al., 2006). Biomaterial scaffolds have also been utilized 
to transplant NCs into damaged CNS tissue. NCs transplanted 
with biomaterial scaffolds have improved posttransplant 
viability and improve functional recovery over the standalone 
scaffold and NC transplantations. Improved functional recovery 
from a 10-mm gap thoracic (T9–T10) SC hemisection injury on 
African green monkeys was observed when implanting human 
NSCs seeded on a poly(lactide-co-glycolide) (PLGA) scaffold 
(Pritchard et al., 2010). Implanting the PLGA scaffold improved 
the left hindlimb neuromotor score 44 days postinjury over no-
treatment controls, and incorporating human NSCs into the 
PLGA scaffold led to further improvement. Similar results were 
found when human NSCs in a fibrin scaffold were transplanted 
into a complete 2-mm long thoracic (T3) rat SC transection, 
where the inclusion of human NSCs with the fibrin scaffold 
improved hindlimb locomotion BBB scores 8 weeks postinjury 
over untreated controls (Lu et  al., 2012b). While implanting 
NCs with biomaterial scaffolds has been shown to promote CNS 
tissue recovery in animal models, regeneration is still limited 
and functionality cannot be restored to the preinjury state. 
Biomaterial scaffolds need to be designed with greater control 
over NC behavior to improve the efficacy of transplant therapies.

Microscale Architecture in Biomaterials
Current biomaterial design strategies are focused on control-
ling NC behavior at the microscale level (less than 1  mm in 
size). The goals for controlling microscale architecture within 
biomaterial scaffolds are to direct NC behavior toward clinical 
therapy needs and to investigate how NCs interact with the 
ECM. The microscale architecture within biomaterials has a 
significant impact on cell behavior and differentiation (Gunther 
et  al., 2015; Lynam et  al., 2015; Dye et  al., 2016). Chitosan-
based hydrogels were fragmented into varying microscale sizes 
(Figure  1A) and incorporated into thoracic (T8–T9) rat SC 
bilateral dorsal hemisection injury model (Chedly et al., 2017). 
The hydrogel transplants improved endogenous cell infiltration 
into the injury lesion (Figures  1B–D) and the degree of cell 
infiltration depended largely on the chitosan fragment size. 
Hydrogels with 20-µm chitosan fragments (Figure  1D) led 
to robust endogenous cell infiltration while hydrogels with 
150-µm chitosan fragments (Figure 1C) had limited cell infil-
tration 4 weeks postinjury. In addition, scaffolds with 150-µm 
fragments did not have infiltration of axons and few glial cells, 
while scaffolds with 20-µm fragments had robust infiltration of 
both. While the microstructure alterations were not designed 
to direct endogenous NC behavior in a specific way, these 
results illustrate the significance scaffold microstructure on 
NC behavior for clinical applications. For SC injury, a clinical 
goal is to guide axons through the injury lesion, which was 
only achieved by the hydrogel with 20-µm fragments. These 
results provide motivation for exploring techniques that allow 
greater control over material architecture and cell positioning 

to guide tissue growth. The prevailing techniques used to design 
microscale architecture in biomaterial scaffolds for influence 
over NC behavior are lithography, electrospinning, and three-
dimensional (3D) bioprinting (Figure 2).

LiTHOGRAPHY

Lithographic Techniques
Several lithographic techniques are used to pattern biomaterial 
scaffolds: photolithography, soft lithography, stereolithography, 
and two-photon lithography (sometimes referred to by the 
more general term multiphoton lithography in literature). 
Photolithography refers to techniques that pattern a photoresist 
onto a substrate using a photomask and a light source, usually 
in the ultraviolet (UV) wavelength range (Jang et  al., 2016). 
The substrate is the biomaterial housing and the photoresist is 
a material that is chemically responsive to the presence of light 
within a specific wavelength range. A photomask is used to cre-
ate a pattern by shielding parts of the photoresist material from 
the light source. The process can be repeated to create multiple 
layers with differing patterns. Since most of the processing is 
cytotoxic, for biological research the photoresist is patterned, 
washed, and cells are seeded on top of the material afterward. 
Stereolithography is similar to photolithography except the pho-
toresist material is replaced with a photocurable polymer resin 
or solution (Wang et al., 2017). The polymer resin or solution 
is solidified in the presence of a light source. Patterns are made 
either by using a photomask or a mobile laser light source. Soft 
lithography is a technique used in conjunction with photolithog-
raphy. First a patterned stamp or mold is made from materials 
such as polydimethylsiloxane (PDMS) using photolithography 
(Turunen et al., 2013). The patterned stamp is then placed on 
the substrate and the voids created by the stamp’s pattern are 
filled with a biomaterial of interest, called ink. The benefits of 
patterning using soft lithography are that the ink solidification 
chemistry does not need to be light based and the processing 
can be biocompatible. Two-photon lithography is an extension 
of photolithography and stereolithography because it is used to 
pattern the same materials, either a photoresist or photocurable 
polymer, with a different light source. The UV light source is 
replaced with a femtosecond pulsed infrared (IR) laser, such as 
titanium:sapphire lasers, going through an objective lens to focus 
the beam. The laser wavelength is twice that of the maximum 
absorbance wavelength of UV light-based chemistry; therefore, 
two of these lower energy photons are required to generate 
the same free radical (Ciuciu and Cywiński, 2014). Since the 
process of absorbing two photons requires a high light intensity, 
absorbance only occurs at the objective lens focal point, allowing 
for patterning in the z-direction of a UV light responsive mate-
rial. The advantage of two-photon lithography is the increased 
resolution in the z-direction, which allows for patterning in 
three dimensions. In contrast, photo- and stereolithography 
techniques require repeating the processing to create multiple 
layers for design of 3D structures. Lithography-based techniques 
have been successfully used to organize biomaterial topography 
and spatially immobilized ECM materials.
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FiGURe 1 | (A) Chitosan solution gelled by contacting with ammonia vapors and then fragmented mechanically into differing average microscale architecture.  
(B–D) Immunostaining of spinal cord lesion site 4 weeks postinjury/injection for neurofilament (NF), astrocytes (GFAP), and cell nuclei (DAPI). (B) Lesion only, (C) 
lesion with chitosan-FPHS hydrogel implant with 150-µm average fragment size, and (D) lesion with chitosan-FPHS 20-µm average fragment size. Smaller 
fragments result in greater presence of NF in the lesion site. (B,D) Scale bar = 240 µm and (C) Scale bar = 300 µm. Reproduced with permission of Chedly et al. 
(2017), Copyright 2017, Elsevier.
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Grooves on Scaffold Surfaces
Lithographic patterning of grooves into biomaterial surfaces 
has been extensively shown to direct NC alignment, migration, 
and differentiation (Dos Reis et  al., 2010; Haring et  al., 2017). 
Astrocytes seeded onto a polystyrene mold patterned with 
channels that were 10-µm wide and 3-µm deep using photoli-
thography, and subsequently coated with laminin, had elongated 
process extensions that aligned with the grooves (Recknor et al., 
2004). In the non-patterned surface astrocytes had rounded 
cell bodies and process extensions were not oriented toward a 
particular direction. Adult hippocampal progenitor cells behaved 
in a similar manner by aligning processes with patterned chan-
nels on a laminin-coated polystyrene scaffold (Oh et al., 2009). 
In addition, cells seeded onto the patterned scaffold had longer 
process extensions than those on the non-patterned surface. 
Differentiation down the neuronal, oligodendrocyte, and astro-
cyte pathways was similar for cells seeded on both the patterned 

and non-patterned polystyrene surfaces, indicating that this 
effect was not caused by a difference in the cell differentiation. The 
dimensions of the grooves are important for being able to control 
both differentiation and alignment. Dorsal root ganglion (DRG) 
cells seeded onto the surface of a coumarin-based biomaterial 
scaffold that was patterned into square pillars using a modified 
stereolithography technique did not show robust alignment with 
the grooves (McCormick et al., 2014). This could be because the 
grooves were very shallow, with 20 nm being the largest depth 
tested. Other studies have investigated the effects of groove width 
on NC behavior. Adult human NSCs aligned better on smaller, 
5-µm wide, channels than on larger, 60-µm wide, channels when 
seeded onto patterned PDMS channels coated with poly-l-lysine 
(Béduer et al., 2012). However, more cells seeded on the PDMS 
scaffold with larger channels differentiated down the neuronal 
lineage, and had more neurites per cell. Similar results were found 
when radial glia cells were seeded on polymethylmethacrylate 
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FiGURe 2 | Schematic of 3D bioprinting, electrospinning, and lithography techniques. The type of 3D bioprinter is chosen based on biomaterial rheological 
properties. Electrospun fibers are patterned by changing the collector. Lithography patterning is done by adjusting light-based techniques or using a mold.
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(PMMA) scaffolds patterned with 2- and 10-µm wide channels, 
where cells aligned with the grooves and migrated along the 
channels (Figure 3) (Mattotti et al., 2012). Patterning channels 
on the scaffold surface can also affect the behavior of NCs encap-
sulated within the biomaterial scaffold. Bone marrow-derived 
stem cells encapsulated in alginate gels with 500-µm wide surface 
microchannels had a fourfold decrease in the glial cell to neuron 
differentiation ratio when compared to non-patterned hydrogels 
(Lee et al., 2015). Simulations of oxygen and water transport into 
the alginate hydrogels indicated that the surface microchannels 
improved oxygen and water diffusion into the scaffolds. The 
decrease in the glial cell to neuron differentiation ratio was 
attributed to better nutrient transport in hydrogels with the 
surface microchannels. Lithographic patterning can also be used 
to spatially orient bioactive motifs to direct NC behavior.

immobilization of Bioactive Motifs
Lithographic techniques have been developed that can spatially 
immobilize proteins and ECM molecules onto the polymer 
network of biomaterial scaffolds. A prevalent theme in the lit-
erature is the microscale attachment of adhesive ECM proteins 
and peptide sequences, such as arginine-glycine-aspartic acid 
(RGD), which can be used to direct cell migration and the 
extension of processes (Hahn et  al., 2005; Huval et  al., 2015). 
DRG cells seeded on the surface of an agarose scaffold migrated 
and extended processes into the interior of the scaffold when 
RGD was immobilized within the agarose scaffold (Luo and 
Shoichet, 2004a,b). The RGD polypeptide was incorporated 
into the agarose hydrogel by first functionalizing agarose with 
2-nitrobenzyl-protected cysteine. The nitrobenzyl group was 
cleaved to expose a free thiol group when UV light was shined 
onto the agarose scaffold. The free thiol group subsequently 
reacted with a maleimide-modified RGD polypeptide dissolved 
in the scaffold encompassing solution. RGD attachment onto the 
agarose scaffold was constrained to cylindrical sections down the 
z-axis by using a photomask with open circles. The versatility of 

this method was demonstrated by achieving the similar results 
on a hyaluronic acid (HA)-based scaffold (Musoke-Zawedde and 
Shoichet, 2006). Adhesive motifs can also be used to direct where 
NCs attach on biomaterial surfaces. LRM55 astroglioma and 
primary rat hippocampal neurons seeded onto an acrylamide-
based substrate with immobilized fibronectin, laminin, and the 
IKVAV polypeptide sequence (separately) only attached to the 
fibronectin, laminin or IKVAV portion of the scaffold (Hynd 
et  al., 2006, 2009). Soft lithography was used to immobilize 
the adhesive motifs into a crosshatch pattern. Primary rat hip-
pocampal neurons extended processes preferentially along the 
grid pattern and were found to have functional synapses 10 days 
post seeding. Similar results were achieved when hybrid mouse 
neuroblastoma and rat glioma cell cultures were seeded onto a 
bovine serum albumen (BSA)-modified collagen scaffold surface 
with immobilized matrigel (Nagamine et  al., 2015). Matrigel 
was immobilized into a crosshatch pattern and cells migrated 
to the nodes of the matrigel pattern, extended processes along 
the matrigel grid 15 h after seeding. Although most research has 
focused patterning motifs that promote adhesion, the techniques 
described here are versatile and can be expanded to immobilize 
other proteins.

The biological activity of immobilized proteins depends on the 
immobilization process and the specific protein tolerances to the 
processing environment(s). Photolithography was used to test if 
the activity of two known axon inhibitor proteins, semaphorin 
6A and ephrin-B3, was affected by immobilizing them onto an 
agarose-based hydrogel (Curley et al., 2014; Horn-ranney et al., 
2014). The technique involved creating a mold from poly(ethylene 
glycol) (PEG) designed in the shape of a well attached to a channel 
that splits into two separate channels. The mold was then filled 
with 2-nitrobenzyl-protected cysteine-modified-agarose solu-
tion, similar to the chemistry described above. Semaphorin 6A 
or ephrin-B3 were immobilized onto one of the two channels by 
exposing the scaffold to UV light and using a photomask. The 
second channel did not contain immobilized protein and was 
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FiGURe 3 | Radial glial cells seeded on (A) unpatterned PMMA surface and (B) PMMA surface with 2-µm wide channels. Cell nuclei stained with TO-PRO-S (blue) 
and neurons stained with beta tubulin III (red). (C) Particle tracks of neuronal trajectories over 3 h in unpatterned PMMA (top) and PMMA with 2-µm wide channels 
(bottom). Scale bar = 200 µm. Reproduced with permission of Mattotti et al. (2012), Copyright 2012, Elsevier.
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used as a control. DRG explants from the lumbosacral, thoracic, 
and cervicothoracic regions were placed inside the well and the 
direction of their process extensions was used to determine if 
the immobilized proteins maintained biological activity. DRG 
explants from the lumbosacral region did not extend processes 
into the channel with immobilized semaphorin 6A, indicating 
that the immobilized protein was still biologically active. However, 
processes from thoracic and cervicothoracic DRG explants were 
not inhibited by semaphorin 6A. In addition, Ephrin-B3 did not 
inhibit the process extensions from any of the DRG explants. These 
results demonstrate one of the weaknesses of photolithography, 
where the process of immobilizing proteins can denature them. 
However, it is unclear what part of the immobilization process 
(exposure to UV light or the chemical reaction) had deleterious 
effects. Another chemical reaction scheme available to immobi-
lize proteins onto biomaterial scaffolds uses UV light to cleave a 
nitrobenzyl ester bond and expose an alkoxyamine that can react 
with aldehyde groups on proteins in the encompassing solution 
(DeForest and Anseth, 2011, 2012; DeForest and Tirrell, 2015). 
This scheme was used to immobilize collagenase to a PEG-based 
scaffold and the immobilized collagenase activity was quantified 
to be 24% of the soluble enzyme. In addition, immobilized mouse 
anti-6xHis monoclonal antibody attached to the PEG scaffold 
retained sufficient bioactivity to recognize a secondary antibody. 
Finally, vitronectin was immobilized in the PEG scaffolds and 
encapsulated human mesenchymal stem cells only differentiated 
in regions where the protein was attached. These studies demon-
strate that proteins can be spatially immobilized onto biomaterial 
scaffolds, but the process does affect biological activity.

Microscale Design in 3D Space
While most lithographic processes are used for surface-based 
patterning and protein immobilization on biomaterial scaffolds, 
there have been several advances that have allowed for pattern-
ing in three dimensions. The design of biocompatible materials 
that are sensitive to UV light has allowed for encapsulating NCs 
inside biomaterial scaffolds using stereolithography. PC12 cells 
encapsulated in methacrylate-modified gelatin hydrogels pat-
terned as a crosshatch survived the gelation process and could 
differentiate 14  days post encapsulation (Zhu et  al., 2016). A 

similar process was used to encapsulate PC12 cells in an 
acrylate-modified PEG (PEGDA) hydrogel, where cells could 
differentiate 3  days post encapsulation (Jhaveri et  al., 2006). 
Combining cytocompatible materials with two-photon lithog-
raphy has allowed for the design of biomaterials with sophis-
ticated 3D architecture (Maruo et  al., 1997). Channels with a 
denser concentration of PEG were created by first crosslinking 
a large molecular weight PEGDA to form a bulk hydrogel, then 
leaching in a small molecular weight PEGDA into the scaffold, 
and finally exposing specific regions in the bulk hydrogel to a 
two-photon laser for a second round of crosslinking (Hahn et al., 
2006). Fluorescent BSA was then leached into the PEG scaffold 
to demonstrate that regions exposed to the two-photon laser 
did not allow for BSA diffusion because of the denser network 
created by crosslinking the small molecular weight PEGDA. The 
same technique was used to add adhesive domains to the scaffold 
in various 3D spatial patterns by attaching the RGD polypeptide 
to the small molecular weight PEGDA before leaching it into 
the scaffold (Hahn et  al., 2006). Two-photon lithography was 
also used to create a PEG-based scaffold patterned with tunnels 
inside the scaffold (Livnat et al., 2007). Encapsulated DRG pref-
erentially migrated through the tunnels over 4 days. Two-photon 
lithography has been combined with other chemical processes 
to spatially orient bioactive motifs. BSA was immobilized 
into an HA-based hydrogel in the shape of a spiral using two-
photon lithography (Seidlits et al., 2009). The adhesive IKVAV 
polypeptide was then linked to the immobilized BSA using an 
avidin-biotin complex. DRG encapsulated in the scaffold and 
near the immobilized IKVAV polypeptide extended processes 
toward the IKVAV protein and followed designed spiral pat-
tern. Proteins have been immobilized onto biomaterial scaffolds 
with a 3D resolution of a couple of microns, which allows for 
influencing single cell behavior. BSA was immobilized to a PEG-
based scaffold with a resolution of 1 µm × 1 µm in the xy-plane 
and 3–5  µm down the z-axis (DeForest and Tirrell, 2015). A 
similar resolution of 0.5 µm radially and 1–2 µm down the z-axis 
was achieved for the immobilization of the IKVAV polypeptide 
(Seidlits et al., 2009). Biomaterial scaffold architecture can be 
designed at the microscale level by utilizing a combination of 
lithographic techniques with cytocompatible materials.

41

http://www.frontiersin.org/Materials/
http://www.frontiersin.org
http://www.frontiersin.org/Materials/archive


Meco and Lampe Biomaterial Micro-Architecture for Neural Cells

Frontiers in Materials | www.frontiersin.org February 2018 | Volume 5 | Article 2

eLeCTROSPiNNiNG

electrospinning Techniques
The electrospinning process involves pumping a polymer solu-
tion through a charged needle (Pham et  al., 2006; Kishan and 
Cosgriff-Hernandez, 2017). Enough voltage is applied to the 
needle tip to cause droplets of the polymer solution to overcome 
the surface tension and emerge from the needle tip in the form 
of a liquid jet. The liquid jet then undergoes bending instability 
and rapidly whips into multiple expanding loops. During this 
whipping process the polymer solution stretches and thins into 
micrometer and nanometer fibers, and solvents evaporate. The jet 
is ultimately collected on a grounded or oppositely charged plate 
that is a variable distance away from the needle tip. The distance 
of the collector from the needle tip is selected to allow enough 
time for solvents to evaporate fully and to control the diameter 
of the fibers. There are several parameters that require careful 
tuning in order to electrospin a polymer solution into fibers: 
polymer solution viscosity, conductivity, and flow rate, applied 
voltage to the needle, and the temperature and humidity of the 
environment.

Electrospun fibers are patterned by changing the collector 
used to gather the polymer (Figure  2). A flat plate collector 
produces fibers with a random orientation. A rotating mandrel 
is used to align fibers in a singular direction (Matthews et  al., 
2002). Increasing the speed of the mandrel improves fiber 
alignment but also affects the mechanical properties of the bulk 
scaffold formed. Another way to align fibers is to collect them 
using two conducting electrodes separated by an insulating gap 
(Li et al., 2004). The gap causes the electrostatic forces to become 
directional and the fibers align in-between the two electrodes. 
This method of fiber alignment is limited to thin fiber scaffolds 
because the fibers carry a charge. As more fiber layers are added 
the collector starts to behave like a flat plate and subsequent fiber 
layers become randomly oriented. There are workarounds to this 
limitation that involve gathering the fibers layer-by-layer and 
combining them into a single-scaffold post electrospinning (Orr 
et al., 2015). Electrospun fibers can also be aligned by using two 
parallel magnets as a collector (Yang et al., 2007). This method is 
not limited to thin layered scaffolds but does require magnetizing 
the polymer solution. More sophisticated patterns can be created 
by adjusting the topography of the collector. Researchers have 
gathered polyurethane-based fibers on a PDMS collector with 
a square grid pattern etched onto the surface (Dempsey et  al., 
2010). The resulting scaffold had aligned fibers along the grid 
lines and random fibers in the square sections.

NCs on Aligned Fibers
The alignment of electrospun fibers has a robust effect on NC 
behavior. Researchers seeded human neural progenitor-derived 
astrocytes (hNP-AC), human astrocytoma cell line U373, and 
human neuroblastoma cell line SH-SY5Y on aligned polycapro-
lactone (PCL) and PCL/collagen-blended fibers (Gerardo-Nava 
et  al., 2009). All three cell types had elongated cell bodies in 
alignment with fiber direction, extended processes in that direc-
tion, and migrated preferentially in parallel with the aligned. 

These findings were consistent on both PCL and PCL/collagen-
blended fiber scaffolds. Human umbilical mesenchymal stem 
cells (hUMSCs) displayed similar behavior when seeded onto 
aligned fibrin fibers by orienting actin filaments with the fiber 
orientation (Figure  4E) (Yao et  al., 2016). When hUMSCs 
were seeded on randomly aligned fibrin fibers they expressed 
actin filaments in a random orientation, but their morphology 
did differ from cells cultured on tissue culture plastic controls 
(Figures 4C,D) (Yao et al., 2016). Alignment of electrospun fib-
ers influences both the direction of NC process extensions and 
promotes longer processes. DRG seeded on randomly oriented 
polypyrrole tube fibers extended neurites radially (Xie et  al., 
2009). By comparison, DRG seeded on aligned polypyrrole tube 
fibers extended neurites in the directions of the fibers, and dis-
played a longer maximum neurite length. The effects of aligned 
fibers are robust and can be repeated across many NC lines.

Fiber Material Composition
Most biocompatible materials are difficult to electrospin into 
fibrous scaffolds and some cell lines do not adhere to commonly 
electrospun polymers like PCL. As a result, many electrospun 
fiber scaffolds used to seed NCs are either blended with native 
ECM proteins and polymers or coated with a bioactive material. 
The effects of material composition on NC behavior are cell line 
dependent. The adhesion and migration rate of hNP-AC was 
improved on the PCL/collagen-blended fibers when compared 
to the PCL fibers (Gerardo-Nava et al., 2009). In contrast, U373 
cells did not display a difference in migration rate or adhesion 
behavior when seeded on PCL/collagen-blended and PCL fiber 
scaffolds. SH-SY5Y neuroblastoma cells had an increased meta-
bolic activity when seeded on PCL/hyaluronan-blended fibers 
over PCL fibers (Entekhabi et al., 2016). Electrospun fibers made 
from PCL blended with gelatin increased C17.2 NSC neurite 
length over PCL fiber scaffold controls (Ghasemi-Mobarakeh 
et  al., 2008). Fibers made from conductive biomaterials, such 
as polypyrrole, have gained interest because electrical stimula-
tion also promotes process extensions. Applying an electrical 
stimulation to randomly oriented and aligned polypyrrole 
nanotubes increased the DRG maximum neurite length over 
unstimulated controls (Xie et  al., 2009). Electrical stimulation 
can also increase the number of processes NSCs extend. The 
percentage of PC12 cells seeded on silk fibroin fibers coated with 
reduced graphene oxide that extended neurites increased after 
applying electrical stimulation (Aznar-Cervantes et  al., 2017). 
The increase was comparable to the increase in number of cells 
with neurites observed when adding soluble nerve growth factor 
to the media. In addition, multiple rounds of electrical stimula-
tion did not further promote more PC12 cells to extend neurites. 
NC behavior can also be directed by controlling the electrospun 
fiber diameter.

Fiber Diameter
The distance between the charged needle tip and the fiber 
collector can be adjusted to control fiber diameter. Several 2D 
studies have investigated the impact of fiber diameter on NC 
behavior. Hippocampus-derived adult rat NSCs were seeded on 
laminin-coated poly(ethersulfone) fibers with 0.283-, 0.749-, 
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FiGURe 4 | Human astrocytoma cell line U373 cultured on (A) poly-l-lysine substrate for 4 days and (B) aligned PCL fibers for 7 days. Arrows indicate (A) process 
extensions and (B) fiber orientation. Reproduced with permission of Gerardo-Nava et al. (2009), Copyright 2009, Future Medicine Ltd. Human umbilical cord 
mesenchymal stem cells cultured on (C) tissue culture plastic, (D) randomly oriented fibrin fibers, and (e) aligned fibrin fibers for 1 day. Arrow indicates fiber 
orientation. Reproduced with permission of Yao et al. (2016), Copyright 2016, Royal Society of Chemistry. (A,B) Cell nuclei (blue), GFAP (green), vimentin (red), and 
scale bars = 100 µm. (C–e) Cell nuclei (blue) and F-actin (red).
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and 1.452-µm diameters (Christopherson et  al., 2009). In pro-
liferation media conditions, an increase in fiber diameter led to 
reduced NSC migration, spreading, and proliferation. Under 
differentiation media conditions, NSCs on 0.283-µm diameter 
fibers preferentially differentiated into oligodendrocytes, while 
NSCs on 0.749- and 1.452-µm diameter fibers preferentially dif-
ferentiated down a neuronal lineage. Differences in electrospun 
fiber diameter have also been utilized to elucidate oligodendro-
cyte myelination behavior. Researchers seeded oligodendrocyte 
precursor cells on poly(l-lysine)-coated polystyrene fibers with 
diameter ranges of 0.2–0.4 and 2–4  µm (Lee et  al., 2012). In 
part, fibers served as artificial axons, and a higher percentage of 
the cells cultured on the larger diameter fibers wrapped myelin 
around the fibers than cells cultured on the smaller diameter 
fibers. This suggests that axon diameter is an influencing factor 
in determining which axons are myelinated by oligodendrocytes 
and which axons are not in the CNS. While electrospinning has 
been successfully utilized to direct NC behavior on biomaterial 
scaffolds in 2D culture systems, it has been difficult to translate 
those results to three dimensions.

Fibers in 3D Scaffolds
The effects of electrospun fibers have also been investigated in 
3D biomaterial scaffolds. Fibers produced by the electrospin-
ning process do not fully mimic the 3D nature of native tissue. 
Electrospun fibers are too densely packed to allow for cell 

infiltration into the biomaterial scaffold. The effects of fiber 
topography, material composition, and orientation on NCs are 
limited to surface effects. However, researchers have developed 
several techniques to incorporate electrospun fibers in 3D bio-
material scaffolds. A simple way to do this is to gel a hydrogel 
scaffold on top of the fibers. Researchers gelled a Puramatrix-
based hydrogel on top of aligned PCL fibers and investigated if 
human pluripotent stem cell-derived neuron (hPSC) could sense 
the presence of the fibers (Hyysalo et al., 2017). hPSCs seeded on 
top of a 15-µm thick Puramatrix hydrogel could not sense the 
aligned PCL fibers at the bottom and extended processes with 
random orientation. hPSCs encapsulated inside the Puramatrix 
hydrogel and within 10 µm of the fibers did align processes along 
the PCL fiber axis. Cells further away from the PCL fibers, yet 
still inside the gel, extended processes with a random orienta-
tion. A similar study was conducted using stereolithography to 
gel a square grid patterned PEGDA hydrogel on top of aligned 
PCL and PCL/gelatin fibers (Lee et al., 2017). Primary cortical 
neurons and NSCs seeded on top the PEGDA hydrogel did orient 
process extensions with PCL/gelatin fiber alignment. Although 
there was no mention of how thick the PEGDA hydrogel was, 
it suggests that NCs do not need to be in direct contact with 
aligned fibers to direct behavior. Similar results were obtained 
by placing PCL, PCL/gelatin, and laminin-coated PCL aligned 
fibers in the center of HA-based hydrogels using soft lithography 
(McMurtrey, 2014). Encapsulated SH-5Y5Y neuronal cells grew 
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FiGURe 5 | (A) Lateral view of 3D printed alginate gel matching anatomical 
features of the cortex and cerebellum with microscale resolution. (B) Top view 
with black dye dripped on alginate gels. Scale bars = 1 cm. Reproduced with 
permission of Hinton et al. (2015), Creative Commons Copyright (CC-BY).
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into large spherical clusters away from the fiber layer and had 
an elongated phenotype at the fiber layer. NCs at the fiber layer 
extended processes in the direction of the fiber orientation. The 
average neurite length was quantified and shown to be highest 
in HA hydrogels with laminin-coated PCL fibers, indicating that 
cell adhesion to fibers plays a critical role in their behavior. In 
order get a more uniform cell response across the z-axis of 3D 
biomaterial scaffolds, researchers have stacked multiple fiber lay-
ers in-between hydrogel layers. A single-scaffold layer consisted 
of aligned poly-l,d-lactic acid fibers placed on top of a thin 
collagen gel with cells seeded on top of the fibers (Weightman 
et al., 2014). Astrocytes, oligodendrocytes, and oligodendrocyte 
precursor cells had elongated cell bodies in alignment with fiber 
direction and extended processes in that direction. It is unclear 
if this stacking method truly represents a 3D culture system 
because cells cannot migrate through the individual fiber layers. 
The effects of electrospun fibers on directing NSC behavior have 
been consistent across the in vitro literature, and researchers have 
begun incorporating them into animal studies.

Fiber Scaffolds In Vivo
The implementation of electrospun fiber-based biomaterial scaf-
folds into animal models has not yielded similar results to in vitro 
experiments. Poly(ε-caprolactone-co-ethyl ethylene phosphate)-
aligned fibers were incorporated into a collagen hydrogel and 
implanted into a C5 rat SC incision injury (Milbreta et al., 2016). 
Endogenous cell response to a collagen scaffold without fibers, a 
collagen scaffold with fibers in parallel with the SC longitudinal 
axis, and a collagen scaffold with fibers at an angle to the SC 
longitudinal axis was analyzed. Collagen scaffolds with fibers 
had more neurite infiltration and longer neurites 12 weeks post 
implantation when compared to the collagen scaffold without 
fibers. However, aligning the fibers in parallel to the SC longi-
tudinal axis did not further improve endogenous cell response. 
Similar results were found with the implantation of aligned and 
randomly oriented fibrin fibers into a 4-mm gap thoracic (T9–
T10) SC hemisection injury (Yao et al., 2016). Endogenous cell 
infiltration into the aligned fibers did follow the fiber orientation 
4 weeks post implant, but total cell infiltration was similar into 
both randomly oriented and aligned fibrin scaffolds. From these 
animal studies, it is unclear as to whether or not fiber alignment is 
important in vivo. Researchers have also investigated the effects of 
fiber surface charge on endogenous cell infiltration. Polyurethane 
fibers were plasma coated with films of positive, negative and 
neural relative surface charge and implanted into rat dorsum for 
5 weeks (Sanders et al., 2005). Cell infiltrations into the implants 
were similar for all conditions, and the study did not investigate 
infiltrating cell morphology. NCs have also been incorporated 
with electropun fiber-based scaffolds in  vivo. Dopaminergic 
neurons encapsulated in a xyloglucan hydrogel with short 
poly(l-lactic acid) fibers were injected into the ventral midbrain 
of Parkinsonian mice (Wang et al., 2016). There was no difference 
in transplanted cell viability between xyluglucan scaffolds with 
and without fibers. Taken together, these findings indicate that 
the incorporation of scaffolds made from electrospun fibers into 
animal models have not confirmed in  vitro findings and more 
investigation is necessary.

3D BiOPRiNTiNG

Bioprinting Techniques
Three-dimensional bioprinting is defined as the layer-by-layer 
positioning of biomaterials, biochemicals, and cells with spatial 
control to build a bulk 3D structure. Computer-aided design 
software is used to control the placement of materials in a syringe, 
or print head, onto a substrate in the x-, y-, and z-directions. 3D 
bioprinting techniques have the potential to mimic the complex 
micro-architecture of tissue because the biomaterial scaffolds 
are built using an additive approach and multiple print heads 
with different biomaterials can be combined to create a single 
construct (Figure  5). The vast majority of printed biomaterial 
scaffolds are patterned using the inkjet and microextrusion 
printing techniques (Murphy and Atala, 2014; Johnson et  al., 
2016; Ratheesh et al., 2017). Inkjet bioprinting is used to print 
controlled volumes and works best when printing low-viscosity 
materials or cells. There are two types of inkjet 3D printing heads, 
thermal and piezoelectric actuated, that provide similar benefits. 
Thermal inkjet printing is done by electrically heating the print 
head to produce a pulse of pressure. Although the localized heat 
generates temperatures in the range of 200–300°C, the short time 
frame of heating (~2 μs) only results in a material temperature 
increase of 4–10°C (Cui et al., 2010). While cells can survive the 
thermal stress, the technique may be incompatible with biomate-
rials, such as agarose, that undergo a thermal transition to gel or 
solidify. Piezoelectric actuator inkjet printing is done by applying 
a voltage to change the actuator shape and produce a droplet of 
controlled volume. This printing technique does not alter the 
printed material properties but the mechanical stress produced 
by the actuator change in shape can induce some cell membrane 
damage (Chang et al., 2008). Microextrusion 3D printing is used 
for higher viscosity biomaterials or high cell density applications 
because inkjet printers are prone to clogging under those condi-
tions. Instead of printing controlled volumes, microextrusion 3D 
printing applies a force to break the material up into beads in the 
print head. The force is applied either pneumatically or mechani-
cally with a piston or screw assembly. While there are advantages 
and disadvantages to each print head set up, they are not limiting 
for printing biomaterial scaffolds. Microextrusion printers do not 
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have the resolution of inkjet printers and cell viability is lower in 
some cases (Smith et al., 2004; Cui et al., 2012), but the technique 
is usable with a larger variety of biomaterials. Ultimately, the 
print head is selected based on the biomaterial physical proper-
ties because scaffold resolution is currently limited by how well 
biomaterials maintain the printed structure and not the print 
head capabilities.

For biomaterial applications, the 3D printing process works 
best with materials that exhibit yield stress and shear thinning 
rheological properties (Truby and Lewis, 2016). Materials going 
through the printing process undergo three stress profiles: low 
stress while the material is inside the syringe, high stress when 
the material flows through the print head, and low stress when 
the printed material is on the stage. Yield-stress materials exhibit 
two types of responses to stress: when a small stress is applied 
they deform elastically, maintaining their structure, and when a 
high stress is applied they deform plastically, causing the mate-
rial to flow. The transition between the two responses, called the 
yield point, is material dependent. Any viscous material can be 
pushed through a print head, but only materials with yield-stress 
rheological properties will maintain the printed structure on the 
stage (Malek et al., 2017; Siqueira et al., 2017). Most yield-stress 
materials also exhibit shear thinning behavior, which helps shield 
cells from the high shear forces caused by traveling through the 
print head (Thakur et al., 2016).

Strategies for Biomaterial Printing
Bioinks are materials that can be 3D printed, maintain their 
structure, and are cytocompatible. Most biomaterials do not 
exhibit favorable rheological properties for 3D printing so 
bioinks are developed by simple mixing of existing materials 
that individually exhibit desired properties, or through chemi-
cal modification of existing biomaterials (Lee et al., 2009; Shim 
et al., 2011; Diamantides et al., 2017). Cortical human NSCs were 
encapsulated in 3D printed blend of alginate, carboxymethyl-
chitosan, and agarose (Gu et al., 2016). The bioink maintained 
the printed crosshatch structure initially through the cooling of 
agarose and was subsequently soaked in a calcium chloride solu-
tion to crosslink the alginate component. Encapsulated NSCs had 
an initial cell viability of ~75% and were able to differentiate into 
neurons and glial cells. Similar results were found with a bioink 
of sodium alginate, fibrinogen, and gelatin (Dai et al., 2016). The 
bioink was soaked in calcium chloride and thrombin solutions 
after printing to crosslink the sodium alginate and fibrinogen 
components, respectively. Glioma stem cells encapsulated in the 
bioink had an initial cell viability of ~85% and could differentiate 
into glial and NCs. Cells encapsulated in the printed bioink had 
a higher resistance to the cancer drug temozolomide than two 
dimensional controls, highlighting that cells in native 3D tissue 
do not behave similar to cell cultures on surfaces. This study also 
demonstrated the potential of 3D printing to form hierarchical 
structures because the crosshatch structure at the microscale level 
was used to form a bulk scaffold in the shape of a tube. Materials 
can also be mixed during the printing process. Alginate, matrigel, 
and human NSCs were printed through a coaxial syringe with 
three chambers (Alessandri et  al., 2016). Human NSCs and 
matrigel were surrounded by alginate to form capsules and 

were printed into a calcium chloride bath for crosslinking. Cells 
extended neurites within the capsules indicating that they were 
still functional. Ideally, this system would not require alginate to 
hold the capsule structure of the NSCs in matrigel, but matrigel 
does not have favorable physical properties for 3D printing. In 
addition, the chemical structure of matrigel is not well defined 
so it would be difficult to chemically modify the structure reli-
ably for 3D printing applications. Biomaterials with well-defined 
chemical structures do not have this limitation and have been 
chemically modified to alter their rheological properties for 3D 
printing.

Most biomaterials do not exhibit favorable rheological proper-
ties for 3D printing so researchers have transformed the rheo-
logical properties of biomaterials by functionalizing them with 
moieties that form physical crosslinks (Lu et al., 2012a; Shepherd 
et  al., 2012; Ouyang et  al., 2016). An example of this involves 
supramolecular bonding of adamantane and β-cyclodextrin 
moieties, which assemble into a complex at low stress and disas-
semble when exposed to high stress (Ouyang et al., 2016). HA 
scaffolds were formed using supramolecular bonds by modifying 
the HA macromer with adamantine and β-cyclodextrin sepa-
rately, and mixing of the two modified HA solutions together to 
form the scaffold (Ouyang et al., 2016). Modified HA was suc-
cessfully printed into a crosshatch pattern, but the scaffold could 
only maintain the crosshatch structure when few layers were 
printed. In order to prevent the scaffold from collapsing from the 
stress caused by overlaying layers and maintain the crosshatch 
pattern at higher printing heights, HA was further modified with 
methacrylate groups. HA hydrogels crosslinked with both the 
supramolecular assembly and chemical methacrylate bonds, after 
being exposed to UV light, maintained their printed structure for 
up to one month with as many as 16 printed layers. This study also 
highlights the importance of gelation kinetics for maintaining 
printed structure integrity. Only the scaffolds that were exposed 
to additional UV light in the presence of a photoinitiator after 
the printing process was complete maintained their structure for 
1 month. This indicated that UV exposure during the printing 
process did not fully crosslink methacrylate groups. Crosslinking 
kinetics are important considerations for 3D printing biomaterials.

Researchers have investigated inducing fast gelation kinetics 
in biomaterials to avoid requiring yield-stress rheological proper-
ties to maintain the printed structure. Gellan gum was printed 
using a coaxial syringe needle set up, with the gellan gum solution 
in the inner syringe ring and a crosslinking solution on the outer 
ring (Lozano et  al., 2015). The material was not printed into a 
pattern, instead layers with and without encapsulated primary 
cortical neurons were alternately printed on top of each other. 
Encapsulated primary cortical neurons had a viability of 70–80%, 
differentiated into neurons and glia, and extended processes 
into up to 100 µm into layers without cells 5 days after printing. 
Waterborne polyurethane, which undergoes gelation through 
a temperature transition at 37°C, was successfully 3D printed 
by mixing with soy protein isolate to reduce the gelation time 
and printing onto a heated stage (Hsieh et  al., 2015; Lin et  al., 
2016). Up to eight layers were printed into a crosshatch pattern, 
and encapsulated murine NSCs had high viability 3 days after 
printing. However, cell metabolic activity was lower than tissue 
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culture polystyrene controls, indicating that the printing process 
had a negative impact on the murine NSCs.

Bioprinting Bioactive Molecules
The 3D bioprinting technique is not limited to printing bioinks 
with cells, proteins, and other bioactive molecules can also be 
incorporated. Growth factors incorporated with bioinks maintain 
protein bioactivity after being printed. Fibroblast growth factor-2 
(FGF2) and ciliary neurotrophic factor (CNTF) were printed onto 
polyacrylamide hydrogels, and primary fetal NSCs were subse-
quently seeded onto the hydrogels to demonstrate that the growth 
factors remained biologically active after printing (Ilkhanizadeh 
et  al., 2007). Soluble FGF2 promotes proliferation and NSCs 
seeded on portions of the gel with FGF2 did not differentiate into 
glial cells. Soluble CNTF promotes differentiation and NSCs did 
differentiate into glial cells when seeded on portions of the hydro-
gel with CNTF. The amount of NSC differentiation into glial cells 
could be spatially controlled by printing a concentration gradient 
of CNTF across the polyacrylamide scaffold. 3D bioprinting has 
the potential to be utilized as a local drug delivery mechanism 
because the printed pattern affects cumulative drug release. The 
chemotherapeutic drug 5-fluorouracil was printed with a bioink 
composed of PLGA and PCL (Yi et  al., 2016). The cumulative 
release of the drug from the printed scaffold depended on both 
the printed pore structure and the number of printed layers in 
the z-direction. Combinations of bioinks with growth factors 
have directed NSC behavior. A fibrin hydrogel was printed with 
vascular endothelial growth factor (VEGF) and placed next to a 
collagen gel with murine NSCs encapsulated (Lee et al., 2010). 
The NSCs migrated and proliferated toward the fibrin hydrogel 
when VEGF was incorporated and did not do so when fibrin was 
printed without VEGF.

FUTURe PeRSPeCTiveS

Advances in microscale patterning of biomaterial scaffolds have 
allowed researchers to investigate NC behavior in response to both 
physical and biochemical environmental cues. Topographical 
cues such as grooves and aligned fibers can direct NSC differ-
entiation and neural process extensions. Similar effects can also 
be biochemically induced by spatially patterning adhesive motifs. 
Microscale patterning of biomaterial scaffolds has been per-
formed predominantly by the use of lithography, electrospinning, 
and 3D bioprinting techniques. The final goal remains to develop 
microarchitecture to direct NC behavior for in vivo therapeutic 
treatments and tissue regeneration, and the immediate challenges 
for further developing each technique vary significantly.

Lithography has been successfully implemented to pattern 
grooves on surfaces, channels within biomaterial scaffolds, and 
spatially immobilize proteins to scaffolds. It has proved to be 
a powerful tool for developing in  vitro models to mimic some 
aspects of native tissue at the microscale level. However, it will 
be challenging to translate the techniques developed for in vitro 
models to in vivo applications. The use of light as a source for 
patterning at the microscale level is inherently limited to thin 
or transparent scaffolds. Optically transparent materials, such 
as PEG, can be patterned well using light but scaffolds made 

from proteins, such as collagen, are optically dense and cannot 
be patterned deep within the scaffold. This limitation will be 
significant when attempting to translate these scaffolds to large 
animal studies and clinical trials because the biomaterial scaffolds 
will need to be scaled to appropriate sizes. In addition, current 
protein immobilization techniques require incubating the bio-
material scaffold in the protein of interest and then using a light 
source to initiate the immobilization reaction. This has limited 
application in vivo because it takes hours for large proteins, such 
as growth factors, to diffuse into the scaffold and the process 
requires several rinse steps. For this technique to be used in a 
transplant in vivo the scaffold must be designed in vitro and then 
transplanted. While applicable for acellular “device” implants, this 
method has several drawbacks when incorporating NC into the 
scaffolds. For example, encapsulated NCs may uptake the protein 
during the incubation step and not allow for the protein to be 
dispersed throughout the scaffold as desired for immobilization. 
These issues do not limit investigating the effects of microscale 
architecture on NC behavior in in vitro models but do hamper 
translation into in vivo studies.

Electrospinning of fibers into an aligned orientation affects 
a wide range of cell lines in a similar fashion in a 2D setting. 
NCs elongate cell bodies, extend processes, and migrate prefer-
entially in alignment with fiber scaffold orientation. However, 
electrospun fibers have not yet been translated into homogene-
ous 3D biomaterial scaffolds, and differences in NC behavior 
have been observed when moving from 2D culture systems 
to 3D culture systems (Lampe et al., 2010; Bozza et al., 2014; 
Park et al., 2014; Shin et al., 2014). Current attempts at creating 
3D biomaterial scaffolds from electrospun fiber are limited to 
layering a fiber mesh sandwiched between gels or in-between 
another biomaterial and NCs. While the bulk material is 3D, 
this method does not allow for cells to readily embed past a 
single layer in the z-direction because electrospun fiber meshes 
are generally too dense for deep cell infiltration. Cell infiltration 
into the fiber mesh can be improved by electrospinning sacrifi-
cial fibers alongside the main fiber material (Baker et al., 2008). 
The sacrificial fibers are dissolved in solution after electrospin-
ning, leaving behind a more porous fiber mesh. Attempts at 
incorporating electrospun fibers into animal studies have not 
induced similar NC behavior as observed in  vitro (Sanders 
et al., 2005; Milbreta et al., 2016; Wang et al., 2016; Yao et al., 
2016). The challenge for the field is to recapitulate the desired 
NC behavior observed on 2D fiber meshes into 3D biomate-
rial scaffolds. Collector topography has been used to pattern 
fiber scaffolds into more sophisticated patterns than simply 
aligning fibers (Dempsey et al., 2010; Kishan et al., 2017), and 
may become a useful tool in creating a porous 3D fiber mesh. 
The alignment of fibers has the potential to direct NC process 
extensions in  vivo, which has many applications like aligning 
neural synapses along a damaged SC. However, this potential 
using electrospun materials has yet to be realized in a 3D culture 
system. The problem can be tackled by either improving the 
porosity of the electrospun fibers, incorporating cells in the 
electrospinning process (Stankus et  al., 2006; Zanatta et  al., 
2012), or by combining electrospinning with another technique 
such as 3D bioprinting.
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Three-dimensional bioprinting has the most potential for 
developing tissue-like biomaterial scaffolds because it is an 
additive process. However, 3D bioprinting of scaffolds is cur-
rently limited by the available biomaterials. The printing process 
requires cytocompatible materials that exhibit yield stress and 
shear thinning rheological properties. Research has focused on 
blending biomaterials with materials that exhibit the desired 
rheological properties, or modifying biomaterials chemically. 
However, simple blending of materials and chemical modifica-
tions have many limitations. For example, the blend ratios have 
a drastic impact on the rheological properties of bioinks created 
by simply mixing materials. Adding a new protein or bioactive 
cue to the mixture may alter the rheological properties of the 
bioink enough to where it is no longer printable (Shim et  al., 
2011). Chemical modifications are limited to materials that have 
a well-defined chemical structure and materials such as collagen 
are challenging to modify reliably and repeatable. The current 
challenge is developing biomaterials with favorable properties 
for 3D printing. A universal way to tackle these issues is to use 
a sacrificial material to act as a mold to contain the biomaterial 
scaffold until it is solidified through crosslinking (Hinton et al., 
2015). Using sacrificial materials allows for 3D printing a plethora 
of biomaterials with differing crosslinking kinetics but also slows 
down the printing process since the sacrificial material needs to 
be printed in conjunction to the desired biomaterial. The devel-
opment of suitable biomaterials for 3D bioprinting will remain a 
challenge in the field for the foreseeable future.

A major challenge in tissue engineering is to develop micro-
scale architectures that will lead to therapeutic treatments of 
CNS injury and disease. Microscale architecture can be used 
to spatially direct NC differentiation, process extensions, and 
migration. However, the field is uncertain as to how NC behavior 
should be directed and which NC line should be used for thera-
peutic treatments. For example, for repair of SC contusion injury 
it is important to replace damaged neurons, but that is not the 
only cell type required to restore functionality. When designing a 
biomaterial scaffold, should NSC be directed solely toward a neu-
ronal pathway or are other cell types, such as oligodendrocytes 

and/or astrocytes, also required? In addition, are NSC the best cell 
type to transplant or would a scaffold with several encapsulated 
NPC lines be more effective? Encapsulating NCs in biomaterial 
scaffolds with microscale architecture in an in vitro setting may 
help answer some of these questions. For example, in order to 
determine how NSC differentiation should be directed for trans-
plant therapies it is important to investigate how each cell line 
remodels the ECM. However, the CNS ECM is complex, difficult 
to isolate intact and challenging to characterize. By immobilizing 
individual proteins onto a scaffold NC behavior can be investi-
gated on an individual protein basis. Spatial control of NCs and 
proteins within biomaterial scaffolds will help create reductionist 
in vitro models of in vivo features such as the glial scar which may 
help elucidate the importance of specific interactions. A common 
challenge shared by research using all three techniques discussed 
here is the development of relevant microscale patterns. For 
example, can astrocytes, neurons and proteins be organized at the 
microscale level to mimic glial scar behavior in vitro? Currently 
there are few patterns that accomplish this because most research 
has focused on developing the capability to control microscale 
architecture and refining the resolution. Finding a clear link 
between microscale patterning techniques and physiological 
relevance remains a challenge for the neural tissue engineering 
field to meet. As the technical challenges of patterning biomate-
rial scaffolds at the microscale level are now being overcome, 
meaningful designs and patterns must be achieved that replicate 
the complicated architecture of native tissue in order to improve 
NC treatment therapies.
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Neurodegenerative diseases affect millions of individuals in North America and cost the 
health-care industry billions of dollars for treatment. Current treatment options for degen-
erative diseases focus on physical rehabilitation or drug therapies, which temporarily 
mask the effects of cell damage, but quickly lose their efficacy. Cell therapies for the 
central nervous system remain an untapped market due to the complexity involved in 
growing neural tissues, controlling their differentiation, and protecting them from the 
hostile environment they meet upon implantation. Designing tissue constructs for the 
discovery of better drug treatments are also limited due to the resolution needed for 
an accurate cellular representation of the brain, in addition to being expensive and dif-
ficult to translate to biocompatible materials. 3-D printing offers a streamlined solution 
for engineering brain tissue for drug discovery or, in the future, for implantation. New 
microfluidic and bioplotting devices offer increased resolution, little impact on cell viability 
and have been tested with several bioink materials including fibrin, collagen, hyaluronic 
acid, poly(caprolactone), and poly(ethylene glycol). This review details current efforts at 
bioprinting neural tissue and highlights promising avenues for future work.

Keywords: neural tissue engineering, 3-D bioprinting, biomaterials, stem cells, neurodegenerative diseases, drug 
discovery

iNTRODUCTiON

Neurodegenerative diseases affect over 55 million individuals annually in North America, creating 
a multi-billion dollar burden on the health-care industry due to the costs associated with treatment, 
and rehabilitation therapy (Institute for Neurodegenerative Diseases, 2017). Often selective cell loss 
in the central nervous system (CNS) leads to these neurodegenerative diseases. Cell therapy can 
potentially treat neurodegenerative disease by replacing damaged tissues or augmenting remaining 
cell function (Levy et al., 2016). The basis of cell therapy is that living human cells can be injected into 
a damaged region of the body to instigate healing (Dove, 2002). Neurodegenerative diseases, such as 
Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, multiple sclerosis, and amyotrophic 
lateral sclerosis, as well as neurodegenerative disorders, such as traumatic brain injury, serve as 
potential candidates for cell therapy as they result in neuronal death in targeted areas of the brain 
(Vila and Przedborksi, 2003). Neuronal cells possess a low regenerative capacity as they do not 
proliferate after maturation (Tam et al., 2014). Thus, cell therapy can replace damaged neuronal and 
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support cells, or work indirectly by secreting soluble factors to 
facilitate the repair process (Tsintou et al., 2015).

While current treatments for these diseases mainly focus on 
alleviating symptoms and physical rehabilitation, cell therapy can 
potentially promote cellular repair and remodeling, resulting in 
improved function. Several issues must be addressed before cell 
therapy can be widely implemented. These issues include ensuring 
that the proper number and type of cell are being generated, espe-
cially when using stem cells as they can become multiple types of 
cells. Large quantities of cells are often required for cell therapies 
to treat neurodegenerative disorders and thus, high-throughput 
methods for generating these cells must be developed (Rossi and 
Cattaneo, 2002; Cooke et al., 2010). Direct transplantation of cells 
in the damaged CNS is possible, but often these cells fail to properly 
integrate into the brain (Rossi and Cattaneo, 2002). Bioprinting, 
the use of 3-D printing technology with biocompatible materials 
that can be seeded with living cells to create tissue constructs, 
can potentially produce carefully controlled human neural tissue 
in a consistent rapid manner. The biomaterial scaffolds used in 
the 3-D printing process are often referred to as bioinks (Skardal 
and Atala, 2015). Engineered biomaterial microenvironments 
can help overcome low cell survival rates after transplantation 
in the damaged CNS and limit migration of cells away from the 
implantation site while providing a controlled environment for 
cell growth and differentiation (Cooke et al., 2010; Struzyna et al., 
2014). These printable cell scaffolds degrade as the cells develop, 
either through hydrolysis, or through enzymatic degradation by 
byproduct proteases, leaving a biologically accurate tissue con-
struct as the result (Freed et al., 1994).

Different types of stem cells have been evaluated in  vitro 
and in vivo for neural regeneration. These cells include human 
embryonic stem cells (hESCs), which are pluripotent stem cells 
derived from a human embryo; mesenchymal stem cells (MSCs), 
which are multipotent stromal cells that can differentiate into 
osteoblasts, chondrocytes, myocytes, and adipocytes; neural 
stem/progenitor stem cells, which are multipotent and can 
differentiate into neurons, astrocytes, and oligodendrocytes; 
and human induced pluripotent stem cells (hiPSCs), which are 
adult cells taken back to a pluripotent state (Mothe and Tator, 
2012). Both hESCs and hiPSCs are pluripotent, meaning they 
can differentiate into any cell type in the body (Itskovitz-Eldor 
et al., 2000). However, hESCs pose the risk of immune rejection 
after transplantation and remain ethically controversial because 
the blastocyst from which they are isolated does not survive the 
derivation process (Bobbert, 2006). hiPSCs are adult somatic cells 
reprogrammed into a pluripotent state using transcription factors 
(Takahashi et al., 2007). They offer the opportunity to replace cells 
lost while minimizing the risk of immune rejection as these cells 
lines can be derived directly from a patient’s own cells (Kamao 
et al., 2014). Neurodegenerative diseases can be modeled using 
hiPSCs by reprogramming adult cells taken from patients into 
neural cells, which then display disease hallmarks (Durnaoglu 
et al., 2011).

Any cell line chosen for bioprinting must have the ability 
to expand to sufficient numbers to be printable (Murphy and 
Atala, 2014). Many primary cell types cannot self-renew while 
being difficult to isolate, making pluripotent stem cells a more 

attractive option when bioprinting (Murphy and Atala, 2014). 
Recent advancements such as clustered regularly interspaced 
short palindromic repeats (CRISPER/Cas9) make it possible to 
correct gene mutations found in cell lines, enhancing the poten-
tial of hiPSCs for use in cell replacement therapies for treatment 
of neurodegenerative disease (McMahon et al., 2012). Scaffold-
based strategies provide an attractive approach for culturing, 
expanding, and delivering cells because they offer structural sup-
port for growing cells and axons and can be loaded with chemical 
factors to encourage differentiation and integration with existing 
cell culture. 3-D bioprinting can control the spatial distribution of 
these factors to control cell differentiation. Biomaterial scaffolds 
that have supported neural cell scaffolds culture in vitro in mouse 
and rat trials include polyethylene glycol (PEG) (Freudenberg 
et  al., 2008), modified peptide gels such as RADA16-YIGSR  
(Cui et al., 2016), hyaluronan (Gardin et al., 2011), fibrin (Gardin 
et al., 2011), and alginate (Perez et al., 2016). Many studies use 
extracellular matrix molecules to provide structural support such 
as collagen, fibrin, fibronectin, and laminin (Itosaka et al., 2009; 
Tate et al., 2009; Johnson et al., 2010; Elias and Spector, 2012; Lu 
et al., 2012; Wilems et al., 2015) and polymers such as poly(lactic-
co-glycolic acid), N-(2-Hydroxypropyl) methacrylamide, and 
poly(a-hydroxy-acids) (Sykova et al., 2006).

In addition to cell therapy applications, 3-D bioprinted neural 
tissues can be used to model diseases and for drug discovery. Several 
groups have grown functional neural tissue in small tissue con-
structs, but these methods require long and labor-intensive culture 
protocols (Hopkins et al., 2015). Often the function of the resulting 
tissues is not fully developed, lacking fully mature neural cells and 
their associated function as assessed by electrophysiology (Hopkins 
et al., 2015). Bioprinting could create accurate, reproducible tissue 
constructs in a high-throughput manner, allowing for large sample 
sizes for evaluating electrophysiological function over time.

Cell therapy can repair damaged tissues by supplying growth 
factors to the injury site (Kim, 2004). To produce brain tissue 
constructs for drug screening, or disease modeling, the current 
bioprinting technologies must be changed to incorporate nutrient 
flow throughout the cell construct. Replacing brain tissue remains 
a futuristic goal, but finding a way to accurately produce neural 
tissue that mimics the mechanical and biochemical conditions 
found in vivo. These properties include reproducing the calcium 
and potassium gated voltage response for neuronal signaling 
(Kohler et al., 1996), displaying an elastic modulus of less than 
1,000 Pa, similar to brain tissue (Georges et al., 2006), and sup-
porting a mixed cell population to better represent the native 
population of neuronal and support cells. Such properties must be 
achieved without inducing inflammation or unexpected cellular 
responses. Engineering biologically accurate neural tissue requires 
a platform with complex controls with regards to sterilization and 
culture conditions as well as cell and scaffold placement.

CULTURiNG NeURAL CeLLS IN VITRO

2-Dimensional Cell Culture
2-D culture platforms are effective in inducing early neuronal 
developmental structures (such as neural rosettes) from hESCs 
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and hiPSCs, but they impose unnatural geometric constraints on 
the cells (Shao et al., 2015). Deriving neuroepithelial cells from 
hESCs and hiPSCs requires a lengthy differentiation protocol. 
The most common method requires the formation of embryonic 
bodies (EBs) followed by manual isolation of neural rosettes or 
adherent differentiation in combination with small molecule 
inhibitors that promote differentiation (Chambers et al., 2009). 
This process takes 17–19  days and requires several replating 
steps (Chambers et  al., 2009). Similar conversion rates can be 
obtained in approximately 6 days by culturing human pluripotent 
stem cells on laminin coated plates in the presence of E6 media 
(Lippmann et al., 2014). NSCs are cultured in a similar manner 
either as adherent or suspension cultures but face the same geo-
metric and morphological constraints as hESCs and hiPSCs. 2-D 
cultures do not exhibit the same morphology as neurons in the 
body because they cannot grow in 3-D. Thus, many researchers 
have transitioned into culturing cell lines in 3-D systems.

3-Dimensional Cell Culture of Neural Cells 
Using Biomaterials
3-D cell culture requires suspending cells within a permeable 
scaffold matrix, resulting in a more physiologically relevant cell 
microenvironment (Shao et al., 2015). NPCs derived from hiPSCs 
cultured in 3-D produce more neuronal cells and less astrocytes 
compared with cells cultured in 2-D (Edgar et  al., 2017). The 
3-D structure of EBs in a scaffold allows intricate cell to cell and 
cell to scaffold interactions not possible in 2-D culture, enabling 
patterned and structured cell differentiation and morphogenesis 
(Shao et al., 2015). Neural differentiation of stem cells has been 
evaluated in a number of biomaterial scaffolds, including fibrin 
(Robinson et al., 2015), laminin (Edgar et al., 2017), alginate (Gu 
et al., 2016), and PEG (Schwartz et al., 2015).

Fibrin scaffolds promote neural adhesion, proliferation, and 
differentiation likely because low-concentration fibrin gels pos-
sess biochemical and mechanical cues similar to those of soft 
tissue (Willerth et  al., 2006, 2007a,b, 2008; Kolehmainen and 
Willerth, 2012; Montgomery et al., 2015; Robinson et al., 2015). 
Fibrin polymerizes under mild conditions with the addition 
of thrombin, but this slow process is unsuitable for extrusion 
bioprinting. Thus, it is often mixed with polysaccharides, such as 
alginate, to produce a printable bioink (Gu et al., 2016). Alginate, 
one of the most widely employed bioinks, polymerizes quickly 
with the addition of a divalent cation (Skardal and Atala, 2015). 
Other polysaccharides, such as gellan gum, have similar rates of 
polymerization (Lozano et al., 2015). However, these polysaccha-
rides are mostly inert, resulting in limited cell adhesion (Skardal 
and Atala, 2015).

Laminin stimulates axonal outgrowth when added to 3-D 
biomaterial scaffolds, likely because it plays a role in axonal 
guidance and cell migration in the developing CNS (Edgar 
et  al., 2017). Fibrin functionalized with laminin elicits higher 
neurite outgrowth than unmodified fibrin scaffolds (Pittier et al., 
2005). PEG gels functionalized with peptides and seeded with 
ESC-derived NPCs, endothelial cells, MSCs, and microglia/mac-
rophage precursors showed 3-D constructs with diverse neuronal 
and glial populations including vascular networks (Schwartz 

et al., 2015). The addition of small molecules, such as retinoic acid 
and purmorphamine, into 3-D culture promotes more efficient 
differentiation, of hiPSCs into spinal motor neurons (Edgar et al., 
2017). While natural hydrogels can retain the biological activi-
ties of native ECM molecules, they suffer from batch-to-batch 
variability and limited possibilities for biochemical modification 
(Caliari and Burdick, 2016). In addition, natural hydrogels pose 
a risk of immunogenicity and disease transfer for clinical applica-
tions (Caliari and Burdick, 2016). By contrast, synthetic hydrogels 
can be more amenable for biochemical functionalization, such 
as growth factors, ECM adhesive motifs, and specific molecules 
agonistic or antagonistic to cell surface receptors, biophysical 
modulations, including mechanical stiffness, pore size, and 3-D 
architecture, and mimicking key degradation characteristics. 
Synthetic hydrogels also have a lower risk for immunogenic reac-
tions as their monomers are produced using chemically defined 
reactions (Shao et al., 2015).

In terms of comparable technology to 3-D printing, Lancaster 
et al. cultured brain-like organoids, mini organs that possess simi-
lar characteristics to their human counterparts, inside of Matrigel 
droplets using a spinning bioreactor (Lancaster et al., 2013). After 
30 days, a continuous neuroepithelium had formed surrounding 
a fluid-filled cavity with defined brain regions similar to the 
cerebral cortex, choroid plexus, retina, and meninges. Achieving 
a nanoscale resolution to ensure directed differentiation into 
unique brain areas presents one of the greatest challenges when 
engineering tissues (Rafat et  al., 2017). The organoids reached 
a maximum size of approximately 4  mm after 2  months in 
culture. They survived up to 10 months when maintained in the 
bioreactor. The researchers surmised that the lack of the vascular 
network resulted in limited size, causing cells toward the center 
of the mass to die due to lack of oxygen (Lancaster et al., 2013). 
Bioprinting can address this important limitation of organoid 
formation as cell placement and their associated function could 
be more closely controlled by specific mechanical cues from the 
surrounding scaffold. Large hollow structures have already been 
bioprinted, but being able to incorporate blood vessels into such 
tissues would allow for natural vascularization (Hoch et al., 2014).

Printed scaffolds display similar degradation timelines and 
kinetics to their unprinted counterparts. Biomaterials for neural 
tissue engineering must consider that they are meant to be directly 
implanted or mimic natural brain tissue. Any degradation products 
can impact the developing or existing tissues (Wang et al., 2003). 
The chemical kinetics surrounding the degradation of the chosen 
scaffold material must be well understood to ensure the materials 
being released are not biologically active, or are active to a very 
low degree. This will depend both on scaffold composition and 
rate of degradation. In general, neural scaffold materials degrade 
via hydrolysis, ion exchange or through enzymatic reactions over 
a period of 2–8 weeks (Wang et al., 2003). Common degradation 
products include salts like calcium, protein fragments or weak 
acids such as lactic acid (Anderson et  al., 2008). All mid- and 
end-point degradation products must be thoroughly investigated 
for possible immunogenic reactions. Possible host reactions to 
the biomaterial include injury, blood-material interactions, 
inflammation, and development of a fibrous capsule to isolate the 
foreign material (Anderson and Jones, 2007).
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eARLY BiOPRiNTiNG

Bioprinting enables significant control over the arrangement of 
cells and bioactive nanomaterials in defined-scaffold geometries 
in comparison with other tissue-engineering techniques (O’Brien 
et  al., 2015). Printing cell scaffolds means more effective com-
position with less effort, achieving biomimetic constructs with 
ECM feature size and composition, chemical gradients, varied 
mechanical properties, and specific morphologies that were not 
previously accessible (Chia and Wu, 2015). 3-D printing has been 
widely investigated for industrial rapid prototyping and additive 
manufacturing protocols (Gross et al., 2014). 3-D printing neural 
tissue requires creating a computer-aided design (CAD) model of 
the desired tissue structure including cell type and elastic moduli, 
input your starting materials, and letting the program associated 
with the 3-D printer run. The program parses the solid object 
into a stack of cross-sections and then prints the desired structure 
upwards from the bottom along the Z-axis (O’Brien et al., 2015).

Fabricating tissues in a controlled environment outside of a 
living organism requires reproducing the chemical, mechani-
cal, and morphological properties found in  vivo (Ahmad and 
Makoto, 2017). Several key components when bioprinting must 
be optimized to achieve in  vivo mimicry, including the most 
important component—the bioink. Many natural polymers, such 
as fibrin, laminin, gelatin, and collagen, can be crosslinked under 
mild conditions into a cytocompatible hydrogel scaffold suitable 
for 3-D bioprinting (O’Brien et al., 2015). Many synthetic scaf-
fold materials require complex reactions for functionalization, 
which hinders their ability to be bioprinted (Carrow et al., 2015). 
Mechanical restrictions also influence the choice of bioink when 
3-D printing. Inkjet and laser-based bioprinting methods require 
a low-viscosity liquid, while extrusion printing requires a higher 
viscosity, indicating that different formulations are necessary 
depending on the printing method (Ahmad and Makoto, 2017). 
Supplements such as alginate are often added to the bioink to 
improve gelation speed and mechanical strength and maintain a 
good printing environment (Ahmad and Makoto, 2017). Another 
important consideration for bioink preparation is the printability, 
which depends on several rheological factors, including viscosity, 
surface tension, and thixotropy (O’Brien et al., 2015). Bioprinting 
requires the ability to eject the bioink, deposit, and solidify the 
bioink while retaining spatial resolution of the material to control 
and generate desired high-quality 3-D construct with accurate 
geometry. Thus, bioink viscosity plays a vital role in determining 
the flexibility of freestanding constructs and preserving their 
structural integrity during and after the printing process. Cells 
and biomolecules experience shear stress, local rheologic forces, 
or other external physical forces during printing process, which 
influences cell response (O’Brien et al., 2015). Thus, understand-
ing how the parameters of bioprinting affect cellular processes 
throughout the printing process ensures the ability to obtain a 
viable construct (Ahmad and Makoto, 2017). Physiochemical 
properties (such as viscosity, elastic moduli, yield strength, 
reactivity, and degradation products) and cytocompatibility for 
the chosen cell line for printing serve as the two most important 
factors when designing a bioink (Ahmad and Makoto, 2017). 
Neuronal lineage cells derived from any source tend to be 

delicate and easily disrupted, presenting a major challenge when 
bioprinting (Potter and DeMarse, 2001). Controlling neural cell 
differentiation often uses defined culture conditions to ensure 
lineage (Ahmad and Makoto, 2017). The cell scaffold introduces 
a new set of proteins and biomolecules which cells will encounter 
during growth. The scaffold presents a 3-D microenvironment 
for controlling cell behavior through biophysical and biochemical 
cues (Ahmad and Makoto, 2017).

The following sections introduce several methods of bioprint-
ing (Figure  1). These printing technologies can be improved 
by developing more sophisticated nozzles, cartridges that allow 
for automated loading, and speed and accuracy of the printing 
process. High resolution cell distribution remains an issue despite 
being improved in the last decade (Ahmad and Makoto, 2017).

Fused-Deposition Modeling
Fused-deposition modeling (FDS) uses a melted thermoplastic 
which is deposited layer-by-layer onto a flat substrate to build a 
3-D construct (O’Brien et al., 2015). While FDS is extremely inex-
pensive, it has a low accuracy (±127 μm) and height resolution 
(50–762 µm). The thermoplastic cannot support itself immediately 
when deposited, limiting potential geometries. Cells can either 
be encapsulated in the material prior to extruding or seeded on 
top of the construct. Most FDS trials have been with cells seeded 
on top of the scaffold for musculoskeletal applications (since the 
materials are harder and more compatible with bone or dense 
muscle tissue), but some success has been had with encapsulated 
cells for neural tissue engineering (O’Brien et al., 2015).

Selective Laser Sintering (SLS)
Selective laser sintering uses a similar process as FDM, but SLS 
has a higher resolution (O’Brien et al., 2015). A long wavelength 
laser fuses beads of premade material together one layer at a time. 
Common materials include polycaprolactone (PCL) (Tan et al., 
2005; Partee et al., 2006), polyvinyl alcohol (Chua et al., 2004; Tan 
et al., 2005), hydroxyapatite (Chua et al., 2004; Tan et al., 2005), 
and poly(l-lactic acid) (Tan et al., 2005). A layer of powder or 
beads is deposited, heated, and fused and then another layer 
deposited building up a 3-D construct. This process is both costly 
and slow with limited ability to remove non-sintered material. 
Very few materials are compatible with SLS and biocompatible. 
SLS, such as FDS, has largely generated scaffolds for bone tissue 
or other support structures for tissues (O’Brien et al., 2015).

Stereolithography
Stereolithography is the highest resolution option for bioprint-
ing (O’Brien et al., 2015). It can print light-sensitive polymeric 
materials, which often polymerize to soft substrate materials 
with similar mechanical cues to that of neural tissue, which helps 
differentiate seeded cells into neuronal subtypes (Edgar et  al., 
2017). In stereolithography a laser and directed mirror array 
project patterned light onto the surface of a resin-containing vat, 
curing the resin. A fresh layer of resin is added with the process 
being repeated to generate the desired structure. Uncured resin 
remains liquid, making for easy removal. This process can be 
used to incorporate nanomaterials, as well as growth factors 
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FiGURe 1 | Bioprinting methods include stereolithography, bioplotting, inkjet printing, microfluidic extrusion, and fused-deposition modeling. These techniques are 
used to print scaffolds for cell seeding and culture to engineer tissue.
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and other additives without additional processes if they are not 
light-sensitive. Commercial systems for stereolithography use 
propriety nonbiomimetic inks, and the printing process can 
take long periods of time for printing (O’Brien et  al., 2015). 
Stereolithography remains an understudied area with respect to 
applications in neural tissue engineering.

inkjet Bioprinting
Inkjet bioprinting uses a modified inkjet printer to deposit cells 
encapsulated in a bioink onto a chosen substrate (O’Brien et al., 
2015). The bioink cannot have a high viscosity, often resulting 
in constructs with poor mechanical properties. In addition, the 
small nozzle size damages the cells being printed as they become 
deformed when passing through the nozzle. The nozzle size and 
flow rate also restrict the volume deposited per drop (<10 pL), 
meaning high concentrations of cells (greater than 5 million 
cells/mL) must be seeded to maximize the possibility that each 
drop of bioink contains one cell. However, inkjet bioprinting 
offers a simple process to print multiple cell types, making it use-
ful for printing thin tissue constructs like brain slices (O’Brien 
et al., 2015).

Bioplotting
Bioplotting using syringes to print tubes or spheroids layered 
on top of each other (O’Brien et al., 2015). Radiation, chemical 
reaction, or solidification then cures the material after printing. 
Bioprinting requires viscous bioinks as they need to hold their 

shape after extrusion from the needle. These bioinks tend to  
either be too hard or possess a low elastic modulus unsuitable for 
neural tissue-engineering applications. Several syringes can be 
used over the same substrate when placing different cell types in 
a desired format, but resolution is lower than microfluidic extru-
sion. It can print cocultured scaffolds and tissue constructions 
(O’Brien et al., 2015).

Microfluidic extrusion
Microfluidic extrusion represents an extension of bioplotting 
(Pfister et al., 2004). This process continuously extrudes a cell-
seeded bioink-precursor in tandem with a crosslinking agent. The 
mixture meets in a chamber, before being extruded at the desired 
flow rate. The mixing initiates polymerization before deposition, 
allowing for easy flow through the nozzle and a defined structure 
after printing. Multiple valves and chambers can control of the cell 
type and mechanical properties of the construct. The computer-
guided deposition process is hands off, allowing for aseptic condi-
tions during printing. This method requires hydrogel precursors 
that polymerize into semisolid hydrogels (O’Brien et al., 2015).

BiOPRiNTiNG NeURAL TiSSUe

Several groups have bioprinted neural tissue using various cell 
types with varying levels of success (Table 1). In 2006, Xu et al. 
inkjet printed primary embryonic hippocampal and cortical neu-
rons suspended in phosphate-buffered saline onto collagen-based 
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TABLe 1 | Bioprinting neural tissue by various printing methods using different cell types and bioinks.

Bioink Cell type Cell source Printing method In vivo/
in vitro

Outcome Reference

Cell suspension in 
DPBS printed on 
collagen biopaper

Primary embryonic 
hippocampal and 
cortical neurons

Day-18 fetal tissue 
from pregnant 
Sprague-Dawley 
rats

Inkjet bioprinting of 
NT2 cells

In vitro Immunostaining and whole-cell patch 
clamp showed healthy neuronal 
phenotypes with electrophysiological 
activity

Xu et al., 2006

Fibrin hydrogel Primary embryonic 
hippocampal and 
cortical neurons

Day-18 fetal tissue 
from pregnant 
Sprague-Dawley 
rats

Inkjet bioprinting 
alternating layers of 
fibrin hydrogel and 
NT2 cells

In vitro Cells stained positive for DAPI and 
spread over the fibrin. Some cells 
exhibited neurite growth

Xu et al., 2006

Hyaluronic acid 
hydrogels grafted 
with laminin

Schwann cells 
seeded on surface

Day 15 embryonic 
rats 

Photopatterned 
layer by layer

In vitro Cells retained viability for 36 h, but did 
not adhere to scaffolds without laminin

Suri et al., 2011

Puramatrix/agarose Dorsal root ganglia E-15 rat pups Digital micromirror 
device to crosslink 
polyethylene glycol, 
then cell material 
injected into the 
voids

In vitro Cell migration and neurite extension 
limited to cell permissive regions

Curley et al., 2011

Polycaprolactone 
(PCL) microfibers and 
PCL with gelatin

Neural stem cells Mouse NSC line 
C17.2

Stereolithography 
and electrospinning

In vitro Fibers improved cell adhesion, aligned 
fibers enhanced cell proliferation, 
increased neurite length and directed 
neurite extension of primary cortical 
neurons along the fiber

Lee et al., 2017

Alginate, 
carboxymethyl 
chitosan, and 
agarose

Cortical neural stem 
cells encapsulated in 
the scaffold

Human Microextrusion 
bioprinting

In vitro Proliferated for 10 days with 
spontaneous activity and a  
bicuculline-induced increase  
calcium response, predominantly 
expressing gamma- 
aminobutyric acid 

Gu et al., 2016

Polyurethane Neural stem cells 
encapsulated in 
scaffold

Adult mouse brain Fused-deposition 
manufacturing

In vitro Remained viable and stained  
positive for β-tubulin  
(neuronal marker) at 7 days

Hsieh et al., 2015

In vivo 
(zebrafish)

Implanted scaffold improved  
in-chorion coiling contraction  
(motor function) and hatching rate 
[central nervous system (CNS) function] 
in embryonic CNS-deficit zebrafish,  
and improved motor function and 
survival rate in adult zebrafish with 
induced TBI

Hsieh et al., 2015

Suspension in 
B27 Neurobasal-A 
medium

Retinal ganglion 
cells (RGCs) and 
glia encapsulated in 
scaffold

Adult male 
Sprague-Dawley 
rats

Piezoelectric inkjet 
printer

In vitro No significant difference in survival and 
neurite outgrowth between printed 
RGCs and glia and plated cells

Lorber et al., 2014

Media with brain 
derived neurotrophic 
factor and ciliary 
neurotrophic factor

RGCs Postnatal Sprague-
Dawley rats

Inkjet printing 
onto electrospun 
scaffolds

In vitro RGCs maintained survival and normal 
electrophysiological function, and 
displayed radial axon outgrowth

Kador et al., 2016

Collagen and fibrin, 
fibrin loaded with 
VEGF

Neural stem cells Mouse NSC line 
C17.2

Microfluidic 
pneumatic based 
bioprinting

In vitro Greater than 90% cell viability was 
observed with cells migrating toward 
the fibrin

Lee et al., 2010

Gellan gum modified 
with RGD peptide

Primary neural stem 
cells encapsulated in 
the scaffold

E18 embryos of 
BALB/cArcAusb 
mice

Handheld 
microfluidic device

In vitro Cells remained viable at 5 days, forming 
neuronal networks with glial cells

Lozano et al., 2015

GelMA and PEGDA 
in PBS with a photo 
initiator and low-level 
light therapy

Neural stem cells 
seeded on top of 
scaffold

Mouse Stereolithography In vitro Light stimulation promoted NSC 
neuronal differentiation and inhibited 
generation of glial cells

Zhu et al., 2017
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FiGURe 2 | SEM micrographs of single-layered scaffolds made up of photopatterned glycidyl methacrylate and hyaluronic acid with intricate pore geometries,  
(A,B) hexagonal patterns, (C,D) circular patterns with three channels, and (e,F) circular patterns with more than 30 channels created using a digital micromirror 
fabrication system. Reprinted with permission from Suri et al. (2011).

Thomas and Willerth 3-D Bioprinting Neural Tissue

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org November 2017 | Volume 5 | Article 69

biopaper (Xu et al., 2006). Circular single-layer constructs were 
printed and maintained in Dulbecco’s Modified Eagle Media with 
10% fetal bovine serum and 5% retinoic acid. After 8 days, cell 
viability was 74.2 ± 6.3%, and after 15 days, cells stained positive 
for the neuronal marker MAP2. Electrophysiological measure-
ments at 15 days indicated neurons had developed voltage-gated 
potassium and sodium channels. The same study alternating 
printing a layer of cells with a layer of fibrin hydrogels (Xu et al., 
2006). Initially, fibrinogen was printed in a thin layer and then 
thrombin was printed on top. The addition of thrombin polymer-
ized the scaffold. A single layer or neurons was then printed on 
top using direct cell printing. Constructs were printed 50–70 µm 
thick resulting in a 3-D neural sheet 25 mm × 5 mm × 1 mm. The 
resulting samples stained positive for DAPI, and the cells spread 
and exhibited neurite outgrowth after 12 days in culture.

In 2014, Lorber et al. inkjet printed retinal glial cells and 
disassociated retinal cells, resulting in 57% cell death in glial 
cells and 33% cell death in retinal cells compared with controls 
of unprinted cells grown on tissue culture plates (Lorber et al., 
2014). No differences in neurite outgrowth or survival were 
observed after 5 days compared with control cultures. The high 
levels of cell death suggest the need for optimization of nozzle 
technology to reduce cell stress and deformation to improve 
viability post-printing.

Suri et  al. (2011) photopatterned glycidyl methacrylate 
modified hyaluronic acid containing laminin using a digital 
micromirror device before seeding Schwann cells upon the 
resulting construct. Scaffolds were printed in various geometries 
including circles, hexagons, and squares with different pore 
characteristics (Figure  2). Adhered cells maintained viability 
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FiGURe 4 | Cells Cells stained with DAPI, vimentin, and SOX2 24 days after 
printing. Cells largely expressed both DAPI and vimentin, indicating mature 
neurons. Reprinted with permission from Gu et al. (2016).

FiGURe 3 | Representative images of cell growth in (A) the permissive region (puramatrix/agarose) versus (B) PEG after 48 hours. Live cells are labelled with calcein 
(green) while dead cells are labeled with ethidium homodimer-1 (red). Reprinted from Curley et al. (2011) under a Creative Commons License 3.0.
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after 36  h. The researchers also showed this method could be 
used to create gradients of fluorescent microparticles as a model 
for growth factor gradients, which have been shown to guide 
developing neurites.

Curley et al. (2011) also used a micromirror array to polymer-
ize PEG into various geometries. The voids in the PEG gel were 
then filled with a puramatrix/agarose cell suspension. It was 
shown that cells retained their viability and grew only in the 
cell permissive (puramatrix or agarose) region of the scaffold 
(Figure 3).

Lee et al. (2017) combined stereolithography and electrospin-
ning techniques to create PCL microfibers. Scaffolds with fibers 
improved neural stem cell adhesion, increased neurite length, 
and directed neurite extensions along the length of the fiber. Zhu 
et al. (2017) used stereolithography to cure GelMA and PEGDA 
and then seeded NSCs on top of the scaffold. These constructs 
showed comparable viability to plated cells. Low-level light 
stimulation increased cell proliferation and expression of the 
neural marker TUJ1 (Zhu et al., 2017).

Gu et al. (2016) extruded a bioink made up of alginate, car-
boxymethyl chitosan (CMC) and agarose seeded with frontal 
cortical human NSCs. The CMC concentration influenced the 
cell viability. Immediately after printing 25% of seeded cells died, 
and cell proliferation peaked on day 11. After 3 weeks, samples 
stained positive for DAPI and vimentin, but had little SOX2 
expression, indicating mature neurons (Figure 4).

Similarly, Lozano et  al. (2015) extruded a peptide modi-
fied gellan gum seeded with primary cortical neurons. Cells 
remained viable and exhibited neuronal cell morphology 
after 5  days of culture and stained positive for the neuronal 
marker TUJ1 (Figure  5). A comparable study using FDM to 
print polyurethane seeded with murine NSCs by Hsieh et al. 
(2015) observed cell proliferation 72  h after printing. After 
3  days, printed NSCs expressed more neurotrophic factor 
genes than NSCs cultured on tissue culture plates. The cor-
responding in vivo study implanted 3-D printed constructs into 
cerebellum-lesioned zebrafish. Treated fish showed increased 
spontaneous coiling contraction and increased hatching rate 

compared with lesioned untreated fish, indicating cellular 
restoration.

Lee et  al. (2010) used microextrusion to print collagen and 
fibrin as well as fibrin loaded with VEGF seeded with murine 
neural stem cells. Constructs were printed layer-by-layer into a 
cylindrical shape on a tissue culture dish. Printed cells showed 
no difference in viability compared with manually plating cells. 
Cells located up to 1 mm from the fibrin border migrated toward 
the VEGF-containing fibrin gel, indicating that cells will migrate 
toward a more permissive region.
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FiGURe 5 | Cortical neurons encapsulated in a peptide modified gellan gum at different gel concentrations (0.075, 0.15, and 0.5% w/v, respectively) after 5 days  
of culture. (A–C) Cells stained with β-III tubulin (red) for cortical neurons and DAPI (blue) for nuclei. (D–F) Confocal microscope images (depth decoding) of neuronal 
3-D culture models after 5 days of culture. Color decoding for the depth of the cells in the RGD-GG gel along the Z-axis is given (0–60 µm). Different colors represent 
the different planes along the Z-axis as shown on the sides of the images. Scale bars represent 50 µm. Reprinted with permission from Lozano et al. (2015).
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These studies differ greatly in the number of cells lost due to 
the stress of the printing process. Cell viability allows the user 
to seed at the correct cell density. However, some studies do not 
report cell death while others report up to 57% cell death dur-
ing the printing (Lorber et al., 2014). Cell death during printing 
can be due to small nozzle size, polymerization or solidification 
reactions, or bioink composition (Zhu et al., 2017). Optimizing 
the bioink makeup is key to reducing the immediate loss of cell 
viability post-printing.

Current work indicates that a wide variety of bioink materials 
may be suitable for 3-D printing neural tissue. However, more 
research needs to be done comparing the printability of each of 
these materials in terms of efficiency and ease-of-use, both which 
become important when scaling up production. This review has 
covered multiple methods of 3-D printing neural constructs. 
Inkjet bioprinting is the most well documented but is limited in 
both bioink material and geometries. Microfluidic extrusion has 
recently seen success in printing complex shapes with various 
neural cell types and remains an option of interest that needs 
further research in creating ideal bioink compositions. Other 
possibilities, such as stereolithography and SLS, remain under-
used for neural tissue applications.

What remains to be done is finding a cohesive unit of bioink 
and bioprinting method which results in a high cell viability 
post-printing and is adaptable enough to print multiple differ-
ent neural cell types with a bioink which has controllable elastic 
properties and porosity and can be loaded with factors to further 
control differentiation.

In addition, most studies lack a hands-off manner of control-
ling bioprinting. Incorporating CAD and microtechnology into 
printing projects would help fully realize the high-throughput 
nature of 3-D bioprinting tissue, as the field is still largely limited 
by human-controlled systems. The use of CAD would further 
assist in increasing cell resolution within printed constructs. 
Advancing the resolution of bioprinting could also allow the 
printing of vascular networks within a designed tissue, some-
thing which would allow neural models to be scaled-up beyond 
a maximum achieved size of mm. This development would allow 
more physiologically relevant constructs to be printed for disease 
modeling and drug discovery.

CONCLUSiON

Bioprinting can change how neural tissue are engineered, 
moving it from a time consuming, hands-on process that can 
vary from lab-to-lab to a sterile, high-throughput process that 
can rapidly produce physiologically accurate brain constructs 
for applications in cell therapy and drug screening. The low 
throughout methods for engineering brain tissue limit their 
applicability for drug screening. Cell therapy has had limited 
success for the same reason: the number of cells required 
for injection requires lengthy culture time in addition to the 
difficulty controlling cell diffusion and differentiation. For 
bioprinting to succeed as the new standard for engineering 
neural tissue more bioinks must be done to accurately control 
brain region development, and the issue of vascularization 
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must be solved to print accurate constructs suitable for long-
term culture. However, such bioprinted neural tissues hold 
great promise for applications in both cell therapy and for drug 
screening.
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The study of the behavior of embryonic neurons in controlled in vitro conditions require

methodologies that take advantage of advanced tissue engineering approaches to

replicate elements of the developing brain extracellular matrix. We report here a series

of experiments that explore the potential of photo-polymerized gelatin hydrogels to

culture primary embryonic neurons. We employed large medullary reticular neurons

whose activity is essential for brain arousal as well as a library of gelatin hydrogels

that span a range of mechanical properties, inclusion of brain-mimetic hyaluronic

acid, and adhesion peptides. These hydrogel platforms showed inherent capabilities

to sustain neuronal viability and were permissive for neuronal differentiation, resulting

in the development of neurite outgrowth under specific conditions. The maturation of

embryonic medullary reticular cells took place in the absence of growth factors or

other exogenous bioactive molecules. Immunocytochemistry labeling of neuron-specific

tubulin confirmed the initiation of neural differentiation. Thus, this methodology provides

an important validation for future studies of nerve cell growth and maintenance.

Keywords: 3D cell culture, hyaluronic acid, neurons, nucleus gigantocellularis, brain development, biomaterial

models, gelatin hydrogels

INTRODUCTION

Large reticular formation neurons in the medulla, neurons in the nucleus gigantocellularis (NGC),
have recently been identified as master cells responsible for the arousal of the mammalian
brain (Calderon et al., 2016). NGC neurons are located just above the spinal cord and
are essential for supporting generalized CNS arousal (Pfaff, 2006), responsible for facilitating
the initiation and vigor of all motivated behaviors. They may have evolved from the large
Mauthner cells similarly placed in the fish hindbrain and similarly responsible for the rapid
initiation of behavior (Pfaff et al., 2014). These nerve cells have extremely wide dendritic
arbors and are able to respond to stimuli in all sensory modalities tested (Martin et al.,
2010, 2011). Their axonal distribution encompasses ascending projections to the thalamus
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and hypothalamus and descending projections to all levels of the
spinal cord, bilaterally (Jones and Yang, 1985). Their increase
in excitability activates the electroencephalogram in a deeply
anesthetized animal (Wu et al., 2007) and their growing ability
to fire trains of action potentials as a mouse pup grows from
postnatal day 3 to postnatal day 6 is correlated with the increased
behavioral arousal of the mouse pup during those 4 days (Liu
et al., 2016). As a result, increasingly detailed studies of these
neurons under controlled conditions may yield significant new
information to help understand their roles in brain function
and response to injury. However, such studies are difficult in
traditional in vivo settings.

It is generally acknowledged that standard 2D in vitro systems
lack important architectural features of native tissues. Tissue
engineering approaches have increasingly been used to recreate
a myriad of tissue microenvironments in the context of tissue
regeneration or for the development of in vitro model systems
for the study of biological processes, personalized medicine, and
pharmacological testing (Neves et al., 2016; Pradhan et al., 2016;
Caballero et al., 2017). However, fabrication of ex vivo cerebral
tissue has been elusive, due to the high complexity, including
multiple hierarchical levels of interconnected neuronal networks.
Tumor models have been described within hydrogel matrices
(Xiao et al., 2017) and neural cells have been encapsulated
successfully within synthetic (Mckinnon et al., 2013), natural
(Palazzolo et al., 2015; Alessandri et al., 2016), and protein
(Lampe et al., 2013) hydrogels. Besides the use of bulk hydrogels,
more sophisticated fabrication techniques have been used such
as three-dimensional printing (Gu et al., 2016), lithography
(Gurkan et al., 2013), and compartmentalized scaffolds (Tang-
Schomer et al., 2014). Organoids of certain regions of the brain
have been described (Di Lullo and Kriegstein, 2017) but they
lack the oxygen and nutrient diffusion provided by biocompatible
hydrogel matrices. In order to study the development of
these NGC neurons, complementary to in vivo studies, 3-
dimensional growth platforms may be an ideal framework
that could mimic features of the brain’s unique extracellular
matrix.

Hydrogel technologies have become increasingly well
developed, with recent efforts beginning to utilize a series
of hydrogel platforms to study features of brain tumor such
as primary glioblastoma (GBM) or tumor metastasis to the
brain (Rape et al., 2014; Heffernan et al., 2015; Kingsmore
et al., 2016; Chung et al., 2017; Pedron et al., 2017a,b).
Recent efforts in our lab have focused on the development
of a class of photopolymerizable gelatin hydrogels. Gelatin
is a natural polymer that provides cell binding sites (e.g.,
RGD) and degradation moieties (e.g., MMP sensitive). The
functionalization with methacrylamide groups allows for the
formation of a covalently crosslinked gel (Pedron and Harley,
2013). Hyaluronic acid (HA) is the major component in the fetal
mammalian brain ECM (Baier et al., 2007) and it has been used
to culture neuronal cells (Seidlits et al., 2010). Efforts in our
lab have demonstrated covalent incorporation of methacrylated
hyaluronic acid into a methacrylamide functionalized gelatin
hydrogel, yielding the capacity to orthogonally manipulate
hydrogel stiffness and HA content within the hydrogel. In

addition to providing a platform to explore the effect of matrix-
immobilized HA on GBM cell expansion, invasion, and response
to therapeutic inhibitors (Chen et al., 2017; Pedron et al., 2017a),
we recently demonstrated it was possible to incorporate vascular
cells into the hydrogel, yielding complex vascular networks
that remodeled over time (Ngo and Harley, 2017). While 3D
organoid-type cultures have fostered the production of “human
brain-like tissue” (Sasai, 2013; Lancaster and Knoblich, 2014),
so far attention has focused primarily on forebrain cell groups
(Birey et al., 2017; Quadrato et al., 2017) or traumatic brain
injury (Tang-Schomer et al., 2014), yielding opportunities to
explore.

This project set out to examine the translation of a
HA-modified gelatin hydrogel for the in vitro culture of
NGC neurons. To date, these neural cells have not been
studied ex vivo, and given their relevance in linking brain
development to behavior, a permissive culture system will
allow neuroscientists systematically to sort out the separate
contributions of extracellular matrix components and growth
factors to their survival, growth and development. Here we report
examination of the ability to grow NGC neurons in vitro in such
hydrogels without the assistance of growth factors.

MATERIALS AND METHODS

Hydrogel Preparation and Characterization
Gelatin methacrylamide (GelMA) and HA methacrylate
(HAMA) were synthesized as described previously (Pedron et al.,
2015). The degree of functionalization (%DOF) was established
by NMR as the ratio of methacrylamide groups (5.5 ppm) to
aromatic groups (7.3 ppm). Freeze dried GelMA (3.5 wt%) was
mixed with HAMA (0.5 wt%) into PBS containing 0.02% (w/v)
lithium phenyl-2,4,6-trimethyl benzoyl phosphinate (LAP) as
a photoinitiator until fully dissolved. Prepolymer solution was
pipetted into Teflon molds 1.5mm deep and 5mm in diameter,
and exposed to 10 mW/cm2 UV light (365 nm, LED AccuCure
Spot) for 20 s.

Mechanical analyses were performed on fully swollen disks
as described previously (Pedron et al., 2013). Specimens were
tested in compression at room temperature via an Instron 5493
(100N load cell) mechanical testing apparatus (20% strain/min).
The compressive modulus was determined from the linear
region corresponding to ∼0–5% strain. Full laminin protein
was replaced by CYIGSR sequence (generated at the Rockefeller
University Proteomics Resource Center) previously described
in the literature to support neuronal adhesion and growth
(Mckinnon et al., 2013).

Experimental Animals
C57BL/6/J mice (Jackson Laboratories) were maintained on a
12/12 light dark cycle with lights on at 7 a.m. and free access
to water and food. Adult male and female animals were paired
in the late afternoon to obtain timed pregnant dams and the
morning when the formation of a vaginal plug was observed was
counted as embryonic day 0. All experimental procedures were
performed in accordance with the NIH guide for care and use of
animals and approved by the Animal Care and Use Committee
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at The Rockefeller University. Pregnant females at 12 days post
conception (E12) were sacrificed by cervical dislocation. After
cleaning the abdomen with an excess of 70% ethanol, a V-shape
cut was performed onto the abdomen through the skin and
muscle layers to expose the peritoneum. The uterine horns were
removed and transferred into a clean plastic dish containing ice-
cold dissection buffer (DB) consisting of Hanks balanced salt
solution, HBSS, Ca2+, Mg2+ free (Gibco), 20mM D-Glucose
(Sigma Aldrich) and 1% penicillin/streptomycin (Gibco). The
average number of embryos per pregnant female was 6–8.

Hindbrain Dissection and Primary E12

Hindbrain Cell Cultures
Under a dissecting stereomicroscope (Zeiss, model 10298), each
embryo sac was separated from the intact uterine horns. The
embryos were transferred to a clean plastic dish containing fresh
ice-cold DB. The embryonic hindbrains were dissected according
to Fantin et al. (2013) and the hindbrain dissociations were
performed immediately after (see below). On average, the timing
of dissection was 5min per hindbrain.

Hindbrain Dissociation

The collected hindbrains in DB were transferred to the tissue
culture hood, and they were transferred to one of the wells of
a 24-multiwell plate containing fresh DB. The dissection buffer
was then replaced with 500 µl of the pre-warmed enzymatic
cell dissociation reagent (StemPro R© Accutase, Thermo Fisher
Scientific) and incubated at 37◦C for 5min with gentle shaking.
The hindbrains were then mechanically dissociated pipetting up
and down 12 times using a 1,000 µl tip and 12 more times using
a 200 µl tip. Great care was taken in avoiding the formation
of air bubbles during this step to maximize cell viability. The
overall enzymatic and mechanical hindbrain dissociation step
never exceeded 7min. The enzymatic digestion was stopped
by adding 3ml of standard medium containing Dulbecco’s
Modified Eagle’s Medium, DMEM (Gibco) supplemented with
10% fetal bovine serum (Gibco) and 1% penicillin/streptomycin
(Gibco). The resulting cell suspension was filtered through a
tube fitted with a cell strainer snap cap (35 µm nylon mesh,
Falcon), transfer to a 15ml Falcon tube and further diluted
with standard media to a final volume of 10ml. After gentle
inversion, an aliquot of the suspension was mixed with an equal
volume of trypan blue and the viable cell yield (cells/ml) was
estimated using a Neubauer chamber. Immediately after, the
volume of the suspension was adjusted with media to the desired
cell concentration per gel and the samples were centrifuged
at 200 g for 4min at room temperature. After discarding
the supernatant, the resulting cell pellet was immediately
resuspended on the prepolymer hydrogel mixture (see section
below).

Encapsulation of Dissociated Embryonic

Hindbrain Cells
We examined a library of hydrogel prepolymer solutions that
varied by the overall total polymer concentration (5 or 4 wt%),
the degree of methacrylamide functionalization of the gelatin
macromer (DOF: 85, 60, or 55%), the fraction of HAMA

(0.5 or 1 wt%) added to the GelMA solution, or the amount
of LAP photoinitiator (0.05, 0.02 wt%) used to polymerize
the hydrogel (Table 1). To promote the attachment of the
embryonic hindbrain dissociated cells, a subset of hydrogels
were functionalized with 800µg/ml of a laminin peptide
mimic (CYIGSR). The hydrogel components were dissolved
in warm (45◦C) neurobasal serum-free medium consisting of
neurobasal medium, 2% B27 Supplement, 1% Glutamax, 1%
penicillin/streptomycin. In one experiment, the components
were dissolved in phosphate buffer saline as a control. All
reagents were purchased from Gibco. The solution was kept
at 37◦C until the cell pellet was ready to be resuspended.
After gently mixing, either 30 µl (10 million cells per ml)
of the embryonic hindbrain cell suspension was pipetted onto
Teflon molds anchored on top of a glass slide and secured
with binder clips (Pedron et al., 2013, 2017a). Hydrogels were
subsequently created: disks of 5mm diameter; the height of
the gels was 1.5mm. The cell-laden prepolymer suspension was
photopolymerized by exposure to 10mW/cm2 UV light (365 nm)
for 20 or 30 s (Table 1). Neurobasal medium was added to the
gels immediately after polymerization to prevent dehydration.
Each cell-seeded hydrogel was then transferred to a well of a
24-multiwell plate (Corning) containing neurobasal media and
incubated at 37◦C, 5% CO2 on top of the plate of an orbital
shaker (lowest speed setting) inside a cell culture incubator.
Neurobasal medium was exchanged every 3 days over the course
of all experiments.

Live/Dead Cell Viability Assay
The evaluation of cell viability was performed at 7 and 14 days
in vitro (DIV) using the Live/Dead assay (Molecular Probes).
After rinsing hydrogels with PBS (3X for 5min each) they
were incubated at room temperature with PBS containing 2µM
Calcein-AM (stains the cytoplasm of viable cells green) and 4µM
ethidium homodimer-1 (stains the nuclei of dead cells red).
After 40min, the cell-laden hydrogels were rinsed in PBS and
immediately imaged using a confocal microscope (Zeiss LSM
880 inverted confocal laser scanning microscope). Because the
hydrogel area exceeded an individual confocal image field we
acquired the complete hydrogel image using the tile module

TABLE 1 | The composition (overall hydrogel wt %; GelMA/HAMA ratio; degree of

methacrylamide functionalization of the gelatin macromer; inclusion of CYIGSR

peptide), fabrication conditions (photoinitiator wt%; UV exposure time), and

resulting elastic modulus (n = 4) of the family of hydrogel samples used in the

encapsulation of NGC cells.

Total

wt%

GelMA/HAMA

%wt

DOF

%

CYIGSR

µg/ml

PI

wt%

Time

(s)

Modulus

kPa

5 4.5/0.5 85 0 0.05 30 8.7 ± 0.8

4 3/1 60 0 0.02 20 5.0 ± 0.3

4 3/1 55 0 0.02 20 5.0 ± 0.3

4 3/1 55 800 0.02 20

4 3.5/0.5 55 0 0.02 20 1.1 ± 0.2

4 3.5/0.5 55 800 0.02 20
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included in the Zen confocal software (Zeiss). Starting at the
surface and imaging down toward the center of the hydrogel, the
first and last z positions for each z-stack/tile were defined for a
total thickness of 100 or 200µm. The acquired image tiles were
then combined into one final output by a stitching process using
a 10% tile overlap. For automated cell counts, and estimation of
cell viability, the stitched output images were imported to the 3D
rendering software Imaris (Bitplane). We used the spot detection
module, and spots were defined using cell count parameters
for size and fluorescence strength of voxels to represent each
cell soma. Parameters were then subjected to multiple image
tests between manually counted and automated cell counts
in multiple regions of interest of the imported tiled images
to ensure accuracy. Because the quantification of spots using
200 and 100µm thick tiled z-stacks did not differ statistically
within hydrogels, we did the analysis using the thinner tiled
z-stacks images. After validation, parameters were saved and
then applied through the entire 100µm z-stacks and overall
cell count data was obtained for each image. Cell viability was
calculated as (number of green stained cells/number of total cells)
X 100%.

Immunocytochemistry
After 7 days in vitro, cell-laden hydrogels were rinsed 3X in
PBS for 5min per rinse and then fixed in 4% paraformaldehyde
(Sigma Aldrich) for 5min at room temperature. After rinsing
with PBS, the gels were permeabilized with 0.5% Triton X-100
(Sigma Aldrich), blocked with 5% donkey serum (Invitrogen)
and incubated overnight at 4◦C with anti-TUJ1 mouse IgG
primary antibody (1:1,000, Biolegend). Hydrogels were rinsed
in PBS and then incubated for 2 h at room temperature
with donkey anti-mouse IgG secondary antibody conjugated
to Alexa Fluor 488 (Life Technologies, 1:1,000). Cellular
nuclei were counter stained with 0.4 µl/ml DAPI in PBS
for 5min. The labeled hydrogels were examined and imaged

using a Zeiss LSM 880 inverted confocal laser scanning
microscope.

Statistics
Statistical analysis was performed via one-way analysis of
variance (ANOVA) tests after which a Tukey-HSD post-hoc test
was used. Analysis of hydrogel mechanical properties used n =

5 constructs per group. Significance was set at p < 0.05. Error
bars are reported as standard error of the mean unless otherwise
noted.

RESULTS

Gelatin-Based Hydrogel Fabrication
Both the biomechanical and cell-adhesive properties of 3D
hydrogel matrices are critical for the viability and behavior of
encapsulated cultured cells. Initially, the conditions used for
the encapsulation of E12.5 hindbrain cells comprised the use
of 5 wt% total polymer concentration with an 85% degree of
functionalization and 0.05 wt% photoinitiator. These conditions
resulted in highly crosslinked polymer network that led to
stiff hydrogels (8.7 ± 0.8 kPa) and proved to be highly
detrimental to the survival and differentiation of the embryonic
cells (data not shown). With the aim of designing a more
compliant hydrogel, in subsequent experiments, we resorted
to a hydrogel containing a lower total polymer concentration
(4 wt%), lower degrees of functionalization of GelMA (60 or
55%), and photoinitiator concentration of 0.02 wt%. The more
permissive conditions (1.1 ± 0.2 kPa) for cell viability resulted
from platforms containing 55% DOF GelMA and 0.02 wt%
concentration of photoinitiator. Interestingly, the addition of
matrix immobilized HA to the GelMA hydrogel proved to be
beneficial to sustain cell viability and differentiation, in some
cases, of neuritic processes. The hydrogel composition employed

FIGURE 1 | Embryonic 12.5 (E12.5) hindbrain cells encapsulated in 3D hydrogel scaffolds (GelMA/HAMA: 3.5/0.5 wt%, no laminin added) remained viable after 10

days in vitro (10DIV). (A) Maximum intensity projection depicts cell bodies projecting extensive processes adopting elaborated arborization patterns. Viable cells,

shown in green, were labeled with calcein-AM (see Materials and Methods section for details). Scale bar: 50µm. (B) Some encapsulated E12.5 hindbrain cells [same

conditions as (A)] showed varicose neurites. Red arrows indicate the putative boutons along the neurite outgrowth. Scale bar: 50µm.
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in the present report consisted of GelMA/HAMA 3.5/0.5% and
0.02% photoinitiator.

Survival and Growth of Nucleus

Gigantocellularis (NGC) Neurons
The initial, pre-gel viability of these NGC neurons measured by
dye exclusion was in the range of 60–85%. Cells encapsulated
within the GelMA/HAMA (3.5/0.5 wt%) hydrogels and their
associated neurite processes remained viable for up to 2
weeks in vitro. Cell viability at the termination of experiments
was found to be between 30 and 60% as measured by
the Live/Dead assay. Viable neurons usually sent out neurite
processes, in some cases with the primary neurite branching
and producing second-level or even third-level neurite segments
(Figure 1A). This phenomenon was highly variable, both within
and between gels. In some cases, neurites displayed ovoid
varicosities along their length, with complex neuronal processes
observed after 2 weeks in vitro (Figure 1B). Importantly,
neurons were distributed three-dimensionally throughout the
hydrogel, with Figure 2 depicting NGC cells extending processes
(color coded by depth of penetration) into the hydrogel
scaffolding.

Experiments did not include a systematic comparison of
results with and without laminin. Instead, it must be said that,
while it was possible to see robust neuronal network formation in
hydrogels containing the laminin peptide (800µg/ml) (Figure 3),
morphologically similar results could be observed in the absence
of laminin (Figure 4).

FIGURE 2 | Confocal microscopy image using depth decoding of an E12.5

hindbrain cell hydrogel culture (GelMA/HAMA: 3.5/0.5 wt%, no laminin added)

after 15DIV. Color decoding for the depth of the cells in the hydrogel along the

z-axis is given. The difference in colors indicate the different planes along the

z-axes. Scale bar: 50µm.

Neuronal Differentiation of NGC Cells
We subsequently explored the initial stages of neuronal
differentiation of NGC cells maintained within the HA-modified

FIGURE 3 | Effect of the incorporation of a cell-adhesive laminin peptide

mimic into E12.5 hindbrain cell-laden hydrogels (GelMA/HAMA: 3.5/0.5 wt%

plus 800µg/ml CYIGSR) after 15DIV. Maximum projection of a 70µm z-stack

showing that encapsulated cells mature and give out neurites in the presence

of laminin mimic. Scale bar: 50µm.

FIGURE 4 | Absence of laminin in the 3D hydrogel (GelMA/HAMA: 3.5/0.5

wt%) is permissive for the outgrowth of neurites from encapsulated embryonic

hindbrain cells after 15DIV. Scale bar: 50µm.
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GelMAhydrogel. Excitingly, viable NGC cells adopted a neuronal
morphology. Immunocytochemistry using an antibody against
neuron-specific class III-beta-tubulin, a microtubule component
used as a neuronal marker, confirmed that the cells encapsulated
within the GelMA hydrogels displayed a neuronal phenotype
(Figure 5). Further, after 7 days of culture in the hydrogels
in vitro, cellular processes exhibited morphologies suggesting
that they could form more complex neuronal networks.

DISCUSSION

This work shows that it is possible to grow embryonic reticular
formation neurons in 3D hydrogels in the absence of growth
factors or nerve cell adhesion molecules. The neurons used, from
the medial medullary reticular formation, which would include
the large cells of nucleus gigantocellularis, are crucial for CNS
arousal and the initiation of a wide range of behaviors. It remains
to be seen whether optimum conditions for such neurons differ
from those, for example, in the forebrain (Birey et al., 2017).

We selected gelatin-HA hydrogel as the base material for
the fabrication of culture platforms for NGC neurons due to
their success in hosting mammalian cells (Du et al., 2017),
and our previous experience with cancerous glial cells (Chen
et al., 2017; Pedron et al., 2017a,b). Biophysical properties
of gelatin hydrogels can be easily manipulated by dialing
concentration, degree of functionalization and photoreaction
conditions (Pedron and Harley, 2013; Pedron et al., 2013, 2015,
2017a). Primary neural cells are very vulnerable to in vitro culture

FIGURE 5 | E12 hindbrain cells encapsulated in GelMA/HAMA: 3.5/0.5 wt%

plus 800µg/ml CYIGSR display a neuronal phenotype after 7DIV. Hydrogels

were immunostained with Tuj-1, an antibody against neuron-specific class

III-beta tubulin (see Materials and Methods section for details). Scale bar:

20µm.

conditions and need very specific environmental conditions
(e.g., mechanical stress, porosity, degradability, attachment sites)
to keep them viable and functional. Very mild conditions
of polymerization, low polymer concentration, and compliant
resulting gels (Palazzolo et al., 2015) are known to be necessary
for achieving a high initial cell viability, very important in the
case of neurons that do not proliferate. In this case, the most
permissive gels presented an elastic modulus around 1.1 kPa, and
cells show long interconnected processes with the appearance of
varicosities (Figure 1). In photo-initiated reactions, for instance,
time, and intensity of exposure to UV light is a critical variable
that needs to be considered during cell encapsulation that also
engages material mechanical compliance. Ongoing work focuses
on developing more compliant hydrogel constructs to ensure
greater and more stable neuronal outgrowth. Indeed, matrix
architecture is highly important in 3D microenvironments to
allow for neurite extension at the same time as nutrients and
oxygen flow. Current advancements in formation of endothelial
networks within these constructs (Chen et al., 2017) could
demonstrate as a prospective solution for the alteration of
oxygen and biomolecule transport within the hydrogel network.
Future directions aim to achieve a broader array of matrix
architectures in order to optimize cell culture conditions:
alternative crosslinking chemistries and simplification of sample
fabrication by using spatially graded hydrogels (Pedron et al.,
2017b) using microfluidics.

Despite our success in growing these neurons that are crucial
for the initiation of behavior, several aspects of the work indicated
that this methodology deserves further development. First, our
3D gels should in principle be amenable for electrophysiological
recording. We note that it is harder to visualize the surfaces
of target neurons through the gel than in a simple bath; and
with the micropipette entering the gel from the right, advancing
in the gel toward the target neuron pushes the gel (and the
neuron) to the left even to the point where the neuron would be
deformed. Second, despite exquisite attention to methodological
detail, we noted variability in neuron viability and the consistency
of neuron processes. In particular, we observed in some cases
neurites presenting non uniform widths suggestive of varicosities
or putative boutons. Although signs of axonal degeneration
cannot be ruled out, future studies should address the latter
possibility exploring the presence of vesicle associated proteins
such as synapsin (Neto et al., 2014). In trying to explain the
variability in neuron viability, one possibility lies with themethod
of neuronal concentration in the pellet of tissue immediately
before adding the pre-polymer solution. Another possible cause
of variability could stem from the crosslinking reaction and the
hydrogel network formed thereof. Moreover, although adding
laminin-derived adhesion peptide to the gel preparation did
not systematically improve results, we had a small number of
experiments in which the presence of the peptide mimic did
improve viability and neuronal network formation, opening
the door to exploring alternative methods to present adhesion
moieties to NGC cells. One possible strategy to explore a wider
range of combinations of adhesion molecules or a wider range
of activity inducing factors would be the use of microfluidic
patterning tools that we have previously described to create
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gelatin hydrogels containing embossed patterns of biomolecules
(Pedron et al., 2013; Mahadik et al., 2015). Such tools can build
on the observations here to test a wider range of concentrations,
create patterns employing either or both soluble vs. hydrogel-
immobilized signals, and would be ideally suited to examine
a wider range of bioactive factors that might enhance neuron
outgrowth that have been previously identified in the literature
such as EGF and bFGF (Rao, 1999; Maric et al., 2003).

CONCLUSION

For the first time, we report the successful in vitro culture
and growth of primary NGC neurons, crucial for the
initiation of behavior, within gelatin-based biomaterial
platforms. HA-functionalized GelMA hydrogels, previously
identified for the growth and expansion of glioblastoma
cells, provides a 3D-hydrogel environment in which NGC
viability, neuronal process extension, and the expression
of markers of neuronal differentiation could be observed.
Ongoing efforts are exploring modifications to the gelatin-based
hydrogel biophysical properties to achieve a robust growth
and stable neural differentiation for prolonged periods of
time.
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The neurovascular unit (NVU) is composed of neurons, astrocytes, pericytes, and 
endothelial cells that form the blood–brain barrier (BBB). The NVU regulates material 
exchange between the bloodstream and the brain parenchyma, and its dysfunction 
is a primary or secondary cause of many cerebrovascular and neurodegenerative 
disorders. As such, there are substantial research thrusts in academia and industry 
toward building NVU models that mimic endogenous organization and function, which 
could be used to better understand disease mechanisms and assess drug efficacy. 
Human pluripotent stem cells, which can self-renew indefinitely and differentiate to 
almost any cell type in the body, are attractive for these models because they can 
provide a limitless source of individual cells from the NVU. In addition, human-induced 
pluripotent stem cells (iPSCs) offer the opportunity to build NVU models with an explicit 
genetic background and in the context of disease susceptibility. Herein, we review how 
iPSCs are being used to model neurovascular and neurodegenerative diseases, with 
particular focus on contributions of the BBB, and discuss existing technologies and 
emerging opportunities to merge these iPSC progenies with biomaterials platforms to 
create complex NVU systems that recreate the in vivo microenvironment.

Keywords: induced pluripotent stem cell, blood–brain barrier, neurovascular unit, disease modeling, tissue 
engineering

iNTRODUCTiON

The blood–brain barrier (BBB) maintains central nervous system (CNS) homeostasis by strictly 
regulating transport of ions, small molecules, proteins, and cells between the bloodstream and CNS 
(Obermeier et al., 2013). The BBB is formed by a monolayer of brain microvascular endothelial cells 
(BMECs), which express intercellular tight junctions that limit paracellular transport. Owing to the 
fidelity of these intercellular contacts, the BBB exhibits high transendothelial electrical resistance 
(TEER), a quantitative measure of barrier integrity performed by applying a voltage across the cell 
monolayer, measuring resulting current, and calculating resistance using Ohm’s Law. The BBB also 
expresses molecular transporters (e.g., GLUT-1, LAT-1) that shuttle nutrients and waste products 
and expresses efflux transporters that restrict the diffusion of lipophilic substances. These properties 
allow the BBB to protect the CNS neurons from harmful toxins and pathogens in the bloodstream, as 
well as regulate CNS homeostasis (Obermeier et al., 2013). Unfortunately, in aging and the progres-
sion of various disease states, such as Alzheimer’s disease (AD), multiple sclerosis, and traumatic 
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FigURe 1 | Patient-specific fibroblasts are isolated and reprogrammed to a 
pluripotent state, from which pericytes, astrocytes, brain microvascular 
endothelial cells, neurons, and microglia are differentiated. Full coculture 
models of the neurovascular unit are achieved through a two-dimensional 
Transwell setup or a three-dimensional hydrogel setup.
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brain injury, many of these BBB-specific properties are disrupted 
or lost (Korn et  al., 2005; Marques et  al., 2013; Friese et  al., 
2014). As such, improved understanding of BBB function and its 
alterations in disease may lead to new strategies for therapeutic 
intervention in neurological and neurodegenerative disorders.

In vitro models of the BBB are useful for understanding 
proper endothelial cell functionality and gaining insight into 
disease mechanisms. Primary mouse, rat, bovine, and porcine 
BBB endothelium have been often used for constructing various 
in vitro models (Helms et al., 2016), but it has been recognized 
that non-human cell sources are often insufficient for modeling 
human mechanisms because of species’ differences in receptor 
and transporter expression levels and homology (Syvänen et al., 
2009; Helms et al., 2016). Therefore, human cell sources would be 
preferred in many cases. However, primary human BBB endothe-
lial cells exhibit only moderate barrier functionality in vitro are 
usually very difficult and time consuming to isolate and can 
only be obtained in low yield (approximately 1 million cells per 
5–10 mm3 tissue) (Bernas et al., 2010). Patient heterogeneity also 
provides an additional obstacle to the reproducibility of primary 
human cells. Immortalized BBB endothelial cell lines have been 
tested as an alternative to primary cells because they bypass the 
process of isolation from tissue and are derived from a clonal 
source (Weksler et  al., 2005), but the immortalization process 
typically yields poor barrier functionality.

These issues with primary cells and immortalized cell lines 
have led to the exploration of human-induced pluripotent stem 
cells (iPSCs) as a new cell source for modeling BBB. iPSCs are 
characterized by their ability to proliferate indefinitely and dif-
ferentiate into any cell type of the human body (Takahashi et al., 
2007; Yu et al., 2007). Recent work has shown that iPSCs can be 
differentiated into BBB endothelial cells (Lippmann et al., 2012), 
and follow-up studies have improved on this differentiation 
process to produce cells that have properties approaching in vivo 
characteristics (Lippmann et al., 2014). In addition, the presence 
of astrocytes and pericytes, which reside in the neurovascular 
unit (NVU) and further support BBB function in vivo, can simi-
larly enhance the BBB phenotype in vitro (Hollmann et al., 2017). 
Finally, the use of biomaterials such as hydrogels has facilitated 
the development of three-dimensional models that can prospec-
tively mimic NVU architecture. Figure 1 illustrates the general 
process by which patient-derived cells can be incorporated into 
such models. In this review, we summarize these advancements 
in BBB modeling with iPSCs, discuss how iPSC-derived BBB 
endothelium could be used to enhance neurodegenerative disease 
mechanistic interrogations and drug screening campaigns, and 
outline engineering and fabrication approaches that may be used 
in future studies to produce NVU models with more predictive 
power.

MODeLiNg THe BBB wiTH iPSCs

As described above, the BBB is characterized by specialized 
properties such as high TEER, low passive permeability to both 
hydrophilic and hydrophobic substances, and expression of a 
bevy of molecular transporters. The differentiation of iPSCs to 
endothelial cells with these properties was first described in the 

seminal work (Lippmann et  al., 2012). This procedure begins 
with a codifferentiation process that generates both neural and 
endothelial cells to mimic endogenous neurovascular develop-
ment, whereby neural progenitors impart BBB identity onto 
endothelial cells. Wnt/β-catenin signaling plays a key role in this 
process in vivo (Stenman et al., 2008; Daneman et al., 2009) and 
was therefore assayed in the iPSC system; it was determined that 
several key WNTs were expressed during differentiation, and 
localization of β-catenin to the nucleus of PECAM-1+ endothe-
lial cells was found to increase throughout the differentiation 
process, indicating that Wnt/β-catenin signaling was activated. 
Endothelial cells were then purified from the heterogeneous 
mixture by selective adhesion to collagen IV and fibronectin. 
Expression of endothelial and tight junction markers, as well as 
active efflux transporter expression and representative perme-
ability to a panel of small molecules, confirmed BBB-like identity. 
Finally, TEER was measured at ~800 Ω × cm2 after coculture with 
astrocytes; although this level of barrier fidelity was higher than 
any previous human model, it still decreased well below meas-
ured values in rats (up to 5,900 Ω × cm2) (Butt et al., 1990) and 
theoretical maximums calculated by radioactive ion permeability 
(~8,000 Ω × cm2) (Smith and Rapoport, 1986).

Animal and human models of the developing brain have 
shown that radial glial cell-secreted retinoic acid (RA) helps 
induce BBB properties (Mizee et  al., 2013). For this reason, 
follow-up work to optimize BMEC differentiation methods 
used media supplemented with RA to boost barrier properties 
in iPSC-derived BBB endothelial cells. RA treatment during the 
differentiation process yielded cells with increased expression of 
VE-cadherin and occludin and drastically elevated TEER values 
to ~3,000 Ω × cm2 (Lippmann et al., 2014). Further optimization 
of seeding density (Wilson et  al., 2015) and defined medium 
composition (Hollmann et  al., 2017) have shortened the dif-
ferentiation time from 13 to 8 days, with the final BBB popula-
tion still exhibiting excellent barrier properties (TEER > 6,000 
Ω  ×  cm2 upon coculture with astrocytes and pericytes). The 
reproducibility of the differentiation procedure has been sub-
sequently confirmed in several publications all demonstrating 
BBB identity through elevated TEER and other molecular 
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characterizations (Katt et al., 2016; Appelt-Menzel et al., 2017; 
Kokubu et al., 2017; Lim et al., 2017; Wang et al., 2017b). While 
initial protocols yielded stable TEER measurements (≥1,000 
Ω  ×  cm2) for approximately 4  days (Lippmann et  al., 2014), 
more recent protocols have yielded stable measurements for up 
to 14 days (Hollmann et al., 2017). As these protocols advance 
and more closely resemble in vivo conditions, it is expected that 
TEER measurements will stabilize even further and extend over 
longer periods of time.

The availability of these high-quality human BMECs has 
spurred numerous advancements in disease modeling. Other 
than their excellent barrier properties relative to other sources 
of human BMECs (Helms et al., 2016), the core utility of iPSC-
derived BMECs is their derivation from a specific genetic back-
ground, which permits explicit studies of genotype/phenotype 
linkages. This powerful approach was applied in two recent 
studies. First, iPSCs from patients with Allan–Herndon–Dudley 
syndrome (AHDS; characterized by severe neuropsychomo-
tor impairments) were used to study BBB transport properties 
(Vatine et al., 2017). AHDS is caused by inactivating mutations 
in monocarboxylate transporter 8, which is a thyroid hormone 
transporter, but the mechanism of the disease has been unclear. 
Although iPSC-derived neurons developed normally in the 
presence of thyroid hormone, BBB endothelial cells derived from 
AHDS iPSCs were deficient at transporting thyroid hormone 
in an apical-to-basolateral direction (“blood” to “brain”). These 
results imply that AHDS could potentially be corrected if this 
delivery problem were overcome. Moreover, this study in iPSCs 
was particularly crucial because rodents express a separate trans-
porter (Oatp1c1) at the BBB that can transport thyroid hormone, 
which is absent at the human BBB; thus, to accurately mimic 
the disease, it was particularly crucial to work with human cells. 
The second study to explore the contribution of human genetics 
to BBB disease utilized Huntington’s disease (HD) iPSCs (Lim 
et  al., 2017). BBB deficits have been observed in live measure-
ments in HD patients and within postmortem tissue analyses, 
but it was unclear if these phenotypes were cell autonomous or 
due to secondary damage incurred by neural inflammation and 
death. Thus, using the standard iPSC-to-BMEC differentiation 
procedure (Lippmann et al., 2014), it was observed that BMECs 
differentiated from HD-iPSCs had defects in barrier formation, 
including diminished TEER and increased transcytosis. Further 
analyses suggested that these malfunctioning barrier properties 
may be related to an increased proliferative/angiogenic capacity. 
Intriguingly, the severity of most BBB defects increased with the 
number of CAG repeats in the huntingtin protein, which also 
correlates with the severity of the disease in vivo. These results 
suggest that defects in the BBB could potentially contribute to 
HD onset and progression.

In the future, we hypothesize that other diseases with explicit 
changes or deficits in BBB function will be modeled with iPSCs. 
For example, cerebral cavernous malformations (CCMs), which 
are vascular malformations found predominantly in the CNS 
that cause hemorrhagic stroke, are caused by the loss of func-
tion mutations in three genes that form an intracellular adaptor 
protein complex (Cavalcanti et al., 2011). However, the clinical 
course of the familial form of the disease is highly variable, 

suggesting additional genetic modifiers could play a role in dis-
ease progression. For example, a recent study demonstrated that 
polymorphisms in the innate immunity gene TLR4 are associated 
with higher disease burden in humans (Tang et al., 2017a). iPSCs 
from CCM patients could be a powerful tool for interrogating 
the genetic and environmental factors that exacerbate this dis-
ease. Another disease that may benefit from iPSC modeling is 
drug-resistant epilepsy. Nearly one-third of epilepsy patients are 
refractory to pharmacotherapy, and the mechanism of this drug 
resistance is hotly debated (Tang et al., 2017b). Much of the clini-
cal data in drug-resistant epilepsy has focused on polymorphisms 
and expression changes in efflux transporters at the BBB. iPSCs 
would again represent an excellent tool for studying the influ-
ence of transporter gene polymorphisms on protein expression 
levels and drug pharmacology. Overall, iPSCs do not even need 
to be derived from specific patient populations to be useful for 
these applications. Several studies have assayed the responses of 
iPSC-derived BMECs to hypoxia and glucose deprivation in an 
effort to mimic ischemia (Page et al., 2016; Kokubu et al., 2017), 
and these types of mechanistic analyses into basic BBB function 
under disease-like conditions can be conducted with generic 
iPSCs. Moreover, cutting-edged genome engineering techniques 
[e.g. CRISPR/Cas (Cong et al., 2013; Mali et al., 2013)] now allow 
researchers to remove genes or introduce specific mutations into 
iPSCs (González et al., 2014; Mandegar et al., 2016). As such, the 
ability to make isogenic pairs of iPSCs will most likely be leveraged 
in the future to shed light on the genetics of BBB dysfunction.

HOw iPSC-DeRiveD BBB  
eNDOTHeLiUM CAN PROviDe iNSigHT 
iNTO NeUROvASCULAR DiSeASe 
MeCHANiSMS AND TReATMeNT 
STRATegieS

In the previous section, we described current and theoreti-
cal examples for how iPSCs can be used to study diseases that 
directly influence BBB function. However, BBB dysfunction has 
been observed in many neurodegenerative diseases, including 
AD, Parkinson’s disease (PD), and amyotrophic lateral sclerosis 
(ALS); whether this dysfunction causes the degeneration or is 
secondary to the diseases and simply exacerbates their progres-
sion remains to be determined. iPSCs represent a potential route 
for deconstructing neurovascular changes in these disorders, 
especially given the progress in differentiating other NVU cell 
types including neurons, microglia, pericytes, and astrocytes 
(Chambers et al., 2009; Orlova et al., 2014; Chandrasekaran et al., 
2016; Pandya et al., 2017). Below we describe some of these dis-
orders and current routes for modeling them with iPSCs, as well 
as advancements that could be realized by incorporating iPSC-
derived BBB endothelium into existing model systems. This list is 
by no means all encompassing and is intended to mainly provide 
the readers with intriguing research avenues and questions.

Alzheimer’s Disease
Hallmarks of AD pathology include the deposition of 
amyloid-β (A-β) in the extracellular space and buildup of 
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hyperphosphorylated tau fibers in the cytoplasm of neurons 
(Selkoe, 2001). Genetic mutations in the β-amyloid precursor 
protein (APP) and presenilin genes have been linked to cases of 
familial AD. Israel et al. (2012) were the first to use iPSC-derived 
neurons from patients with APP genetic duplications and patients 
with sporadic AD to assess disease mechanisms in  vitro. They 
reported that the APP genetic mutation led to increased levels 
of pathological markers A-β and phosphor-tau. Other studies 
have shown that familial AD-derived iPSCs produce neurons 
with altered Aβ42/Aβ40 ratios (Mertens et  al., 2013; Muratore 
et  al., 2014), which recapitulates a key phenotype observed in 
the CSF of AD patients (Borchelt et  al., 1996; Kumar-Singh 
et al., 2006). Given these findings, how then could iPSC-derived 
BMECs be incorporated with these defective neurons and other 
neurovascular cell types to model disease progression? For one, 
both soluble Aβ1–40 (Hartz et al., 2016) and Aβ1–42 (Park et al., 
2014) have been shown to reduce p-glycoprotein expression at 
the BBB in animal models; as such, loss of p-glycoprotein in 
human neurovascular models may be a point of interest. Second, 
human ApoE4, but not ApoE2 or ApoE3, has been implicated in 
neurovascular breakdown (Bell et al., 2012); ApoE4 is a major 
genetic risk factor in AD, and iPSC-derived neurovascular mod-
els represent an excellent system to study its effects in a human 
genetic background. Third, PICALM, another genetic risk factor 
for AD, is expressed at the BBB and involved in amyloid clearance 
via transcytosis; iPSC-derived endothelial cells (albeit not BBB-
specific) carrying a protective PICALM allele exhibit increased 
amyloid transport (Zhao et al., 2015). Ostensibly, the regulation 
of PICALM expression and prospective drugs that increase its 
expression or activity could be screened in iPSC-derived brain 
endothelium. More broadly, because amyloid clearance occurs 
at least in part through the vasculature and is implicated in AD 
progression (Sagare et al., 2012), its incorporation into human 
neurovascular models is vital for understanding plaque and 
tangle accumulation and removal.

Parkinson’s Disease
Parkinson’s disease features the main clinical symptom of 
bradykinesia resulting from the loss of dopaminergic neurons 
in the substantia nigra (Lees et  al., 2009). Familial versions of 
this disease can be traced to mutations in the Parkin, LRRK2, 
and α-synuclein proteins, which lead to phenotypes such as 
compromised mitochondrial functionality and aggregation of 
α-synuclein to form Lewy bodies. iPSCs derived from patients 
with Parkin mutations can recapitulate PD phenotype in  vitro 
(Imaizumi et al., 2012), including impaired mitochondrial func-
tion, accumulation of α-synuclein in differentiated neurons, and 
formation of Lewy bodies that corresponded to the structures 
found in the patient’s postmortem brain tissue. Meanwhile, 
neurons derived from the iPSCs of patients with LRRK2 muta-
tions are more susceptible to stress activators, leading to caspase 
activation and cell death (Nguyen et al., 2011). Neurons derived 
from the iPSCs of patients with triplication of the SNCA gene 
(which encodes α-synuclein) exhibit elevated α-synuclein protein 
expression, thus recapitulating the in  vivo phenotype (Devine 
et al., 2011). More recently, iPSC-derived neurons from patients 
with a different SNCA mutation were shown to exhibit protein 

aggregation and fragment axons, which could be rescued through 
small molecule treatment (Kouroupi et  al., 2017). Intriguingly, 
preformed α-synuclein fibrils can influence tight junction expres-
sion in a human in vitro BBB model (Kuan et al., 2016); however, 
the model used in this case (hCMEC/D3 immortalized cells) is 
notably not very tight (TEER less than 20 Ω × cm2). Given the 
more significant tightness of iPSC-derived BMECs, accumulation 
and/or transport of α-synuclein, and its influence on barrier func-
tion, could be examined in a more physiologically relevant model 
system. This is particularly relevant given recent findings that 
α-synuclein assemblies can cross the BBB in vivo (Sui et al., 2014; 
Peelaerts et al., 2015) and that iPSC-derived BMECs derived from 
a patient with PARK2 mutations may have defective or altered 
p-glycoprotein expression (Hollmann et al., 2017).

Amyotrophic Lateral Sclerosis
Amyotrophic lateral sclerosis is characterized by axonal degenera-
tion and ultimately death of the neuronal cell body in CNS motor 
neurons. While it has been shown that this neurodegeneration is 
correlated with protein accumulation in motor neurons (Hirano 
et al., 1984), the underlying mechanisms of protein accumulation 
and how it leads to selective degradation of motor neurons is still 
largely unknown. To study this disease using iPSCs, many have 
chosen to look at the superoxide dismutase (SOD1) gene muta-
tion since it is responsible for approximately 20% of all cases of 
familial ALS (Sau et al., 2007). Although familial cases account 
for only 5–10% of total ALS cases, many phenotypic similarities 
occur among sporadic and familial types, so it is still viewed as 
informative to study the disease using SOD1 mutations. Chen 
et al. (2014) used this approach to assess neurofilament aggrega-
tion and neurite degeneration in iPSC-derived motor neurons 
containing the SOD1 gene. They found that mutant SOD1 binds 
the mRNA of NF-L, a neurofilament subunit, leading to an overall 
reduction in NF-L levels and altered neurofilament subunit ratios 
in ALS motor neurons. This was predicted to be an early event 
in ALS onset, later leading to neurite degeneration. Meanwhile, 
Kiskinis et al. (2014) used isogenic pairs of iPSCs (wild-type and 
mutant SOD1) to show that the SOD1 mutation alters a variety of 
transcriptional signatures in motor neurons, including upregula-
tion of stress pathways. Others have used iPSC-derived motor 
neurons to reveal a hyperexcitability phenotype that is broadly 
applicable to many ALS gene mutations, including variants of 
SOD1, C9ORF72, and TARDBP (Wainger et  al., 2014; Devlin 
et al., 2015). These particular findings have led to an ALS clini-
cal trial using ezogabine, an approved antiepileptic and Kv7.2/3 
potassium channel agonist (McNeish et al., 2015), which presum-
ably crosses the BBB in rodents (Large et al., 2012). Ideally, the 
permeation of this compound through the human BBB, as well 
as other variants and classes of potassium channel agonists, could 
be tested within the iPSC model. However, correcting aberrant 
phenotypes solely in motor neurons may not cure ALS, as mutant 
astrocytes are also selectively toxic to motor neurons (Di Giorgio 
et al., 2007, 2008; Nagai et al., 2007; Marchetto et al., 2008). It is 
intriguing to further note that vascular disruption has been noted 
in ALS using cell culture models (Meister et  al., 2015), animal 
models (Zhong et al., 2008; Winkler et al., 2014), and postmortem 
human tissue (Garbuzova-Davis et al., 2012; Winkler et al., 2013). 
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Of particular interest, in the animal models, BBB disruption pre-
cedes motor neuron death. Whether this vascular degeneration 
is a direct cause of the ALS-causing mutations or due to altered 
crosstalk with astrocytes (which clearly have toxic capacity) or 
another NVU cell type remains to be determined, but the iPSC 
model represents a possible route for deconstructing these 
disease mechanisms and ultimately elucidating the role of BBB 
dysfunction in disease progression.

In addition to improving the accuracy of disease modeling 
applications, inclusion of a BBB component in these models 
also facilitates a more accurate prediction of drug outcomes (as 
alluded to in reference to the ezogabine clinical trial). Academia 
has made significant strides in screening both existing and newly 
developed drugs within iPSC-derived neurological models (Avior 
et al., 2016), including models of complex behavioral disorders 
such as autism (Shcheglovitov et al., 2013; Griesi-Oliveira et al., 
2015; Mariani et al., 2015; Forrest et al., 2017) and schizophrenia 
(Brennand et al., 2011; Hook et al., 2014; Wen et al., 2014; Yoon 
et al., 2014). These models report drug efficacy among human dis-
eased and control lines and provide perspectives on how they may 
be implemented clinically. However, as mentioned previously, 
the BBB blocks transport of ions, small molecules, and proteins 
between the bloodstream and the CNS. As such, an estimated 
98% of all small molecules do not cross the BBB in appreciable 
amounts (Pardridge, 2005). Therefore, if a drug that exhibits effec-
tiveness against neural cultures is not BBB penetrant, it will likely 
be ineffective in treating diseased CNS tissue, which represents 
a major constraint within the drug development process. Given 
the overall difficulties in CNS drug discovery (Choi et al., 2014), 
we believe that the addition of a BBB component is vital toward 
modeling complex CNS disorders and accurately predicting drug 
delivery and responses.

ROUTeS FOR eNgiNeeRiNg COMPLeX 
IN VITRO NeUROvASCULAR MODeLS 
USiNg iPSCs

Much of the discussion in the above section focused on the pro-
spective interplay between BMECs and other resident cell types in 
the NVU. Historically, such crosstalk has been explored primarily 
in planar cultures or Transwell setups. However, 2D cell culture 
platforms overall are often inadequate as model tissue systems 
due to their inability to support truly biomimetic cell–cell and 
cell–matrix interactions and thus are unable to fully integrate the 
complex biochemical and mechanical cues affecting cell homeo-
stasis and responses to environmental perturbations (Pampaloni 
et al., 2007; Edmondson et al., 2014; Banerjee et al., 2016; Helms 
et al., 2016). For this reason, there is a need to adopt 3D models 
that better recapitulate the native cellular environment to achieve 
in vitro model systems capable of yielding accurate predictions 
regarding factors that influence both disease progression and 
useful clinical interventions. This need has driven efforts in 
biomaterials patterning and microfluidic fabrication methods 
that enable the production of 3D cell culture systems with cel-
lular constituents adopting behavior that more closely mimics 
that observed in  vivo (Huh et  al., 2011; Wikswo, 2014; Ravi 

et al., 2015). For the purposes of this review, we discuss a range 
of techniques that could be used to derive 3D neurovascular 
models, many of which were initially validated using non-stem 
cell sources, but nonetheless reflect significant advances in tissue 
engineering with the potential to provide insights into BBB and 
NVU function not currently obtainable in 2D formats (Cucullo 
et al., 2008). To develop truly biomimetic tissue models, however, 
researchers must still overcome several challenges, one of which 
is the need to develop approaches that incorporate iPSC-derived 
cells in these complex platforms.

Microfluidic fabrication techniques provide a powerful 
method for constructing NVU models in a highly controlled, 
perfused environment. Microfluidic BBB models, some com-
mercially available (Prabhakarpandian et  al., 2013; Lamberti 
et al., 2014), have proven useful for examining the impact of shear 
stress and scaffold geometry on brain endothelium function and 
morphology, as well as for drug screening applications (Cucullo 
et al., 2008; Booth and Kim, 2012; Yeon et al., 2012; Griep et al., 
2013; Ye et al., 2014; Sellgren et al., 2015). While most of these 
platforms were developed using non-stem cell sources, a recent 
report of iPSC-derived BMECs cocultured with astrocytes on 
opposite sides of a porous membrane housed within a micro-
fluidic channel indicated that these cells maintained a robust, 
in vivo-like barrier in the presence of continuous fluid flow for 
up to 12 days (Wang et al., 2017b).

Microfluidic BBB models are particularly well-suited to 
high-throughput, massively parallel drug screening efforts. 
Typically, microfluidic platforms are based on polydimethyl-
siloxane (PDMS) or glass substrates, which, while conducive 
to long-term cell culture, fail to recapitulate the complex 3D 
microenvironment of natural tissue. Scaffolds fabricated from 
hydrogel matrices are appealing for modeling the NVU, in 
that they offer a more physiologically representative platform 
in terms of stiffness, architecture, degradability, and a means 
by which to allow more natural interactions with surrounding 
cell populations (Tibbitt and Anseth, 2009). Hybrid platforms 
have emerged that incorporate hydrogel-filled channels or 
compartments to provide tissue-specific biological cues within 
a microfluidic format. This approach facilitates the use of 
fragile hydrogels composed of natural matrix proteins such 
as collagen, fibronectin, and hyaluronic acid that, depending 
on the concentration, often lack the structural integrity to 
support integrated fluidic channels in 3D as a free-standing 
unit. Such microfluidic compartments, filled with hydrogels 
containing endothelial cells, have been shown to be conducive 
to “bottom-up” formation of vascularized constructs through 
cell-driven angiogenic processes (Phan et al., 2017; Wang et al., 
2017a). These methods have also been used in highly complex, 
organ-on-a-chip platforms. Composed of modular components 
of cells grown in hydrogel matrices as well as those cultured on 
porous membranes connected by microfluidic channels, organ-
on-a-chip systems provide a potentially powerful method for 
gaining critical insights into population-specific responses to 
environmental perturbations with multiple readout mechanisms 
(Markov et  al., 2012; Brown et  al., 2015; Herland et  al., 2016; 
Adriani et  al., 2017). As illustrated by the experimental setup 
in Figure 2, the compartmentalized aspect of organ-on-a-chip 
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FigURe 2 | Schematic and experimental setup of the neurovascular unit (NVU)-on-a-chip. (A) Schematic view of the neurovascular unit (NVU) indicating major 
components, cell types, and their spatial arrangement. (B) Photolithographic masks used to fabricate the three-layered NVU. (C) A photograph of the assembled 
NVU loaded with colored dyes indicating different compartments: red = vasculature; semi-transparent white = filter membrane; turquoise = brain compartment; and 
blue = brain perfusion. (D) NVU device on an incubated microscope stage. Reproduced from Brown et al. (2015), with the permission of AIP Publishing.
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systems provide a novel mechanism for intrapopulation and 
interpopulation soluble communication that is incredibly use-
ful in determining specific response profiles of individual cell 
population to toxic/therapeutic compounds in combination 
with downstream impacts on neighboring cell compartments. 
As such, these platforms are ideal for analyzing both drug 
permeability and drug metabolism for pharmacokinetic and 
pharmacodynamic modeling. However, scaffolds designed to 
identify critical biological mechanisms underlying pathological 
conditions should ideally be more biomimetic, such that the 
scale, biological matrix, cellular components, and organization 
better approximate physiological processes, including both 
soluble and contact-based cellular interactions. Furthermore, 
none of these platforms have yet to incorporate matched cells 
derived from stem cell sources, which would further enhance 
the ability to represent native physiological systems.

Microfluidic fabrication methods often require highly 
specialized equipment and training that are typically outside 
the scope of standard biological laboratory facilities and staff 
experience. In contrast, incorporation of hydrogel matrices 

into standard culture platforms is generally simpler and more 
scalable; although microfluidic NVU devices are generally fab-
ricated to be less than 1 mm in thickness, hydrogel platforms 
are only limited by the size of the culture vessel as long as the 
construct can be appropriately perfused. 3D NVU models 
created based on the hydrogel scaffolds have thus far yielded 
promising results. Cells cultured on the surface of chemically 
defined synthetic PEG hydrogels have been shown to self-
assemble into biomimetic NVU constructs have been used for 
high-throughput toxicity screening (Murphy et al., 2010; Pellett 
et al., 2015; Schwartz et al., 2015; Zanotelli et al., 2016; Barry 
et al., 2017). Others have shown that embedding neural cells in 
alginate hydrogels promotes self-assembly of “BBB spheroids,” 
composed of an astrocytic core sheathed in layers of pericytes 
and brain endothelial cells, which may be useful for drug 
screening applications (Nguyen et al., 2013; Cho et al., 2017). 
Non-differentiated cells encapsulated in hydrogel matrices and 
directed through combined mechanical cues and growth factors 
offer an attractive method for yielding complex multicellular 
constructs that mimic in vivo cellular organization (Bozza et al., 
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2014; Cho et al., 2017). However, these all lack the integrated, 
perfused vasculature necessary for a truly biomimetic model.

Like the aforementioned PDMS microfluidic platforms, 
hydrogels can also be patterned as free-standing constructs with 
perfusable internal channel networks (Faley et al., 2015). In fact, 
initial efforts in generating vascular models in biomimetic hydro-
gels scaffolds utilized lithographic and soft templating techniques 
adopted from traditional microfluidic fabrication methods 
(Cabodi et al., 2005; Golden and Tien, 2007; Zheng et al., 2012). 
These approaches are extremely good at producing micron and 
submicron patterns, but scaling the resulting devices to achieve 
tissue-scale constructs often requires cumbersome sequential 
assembly that is not particularly well suited to cell-laden scaffolds. 
Recent advances in 3D printing allow large-scale patterning with 
cell-laden bioinks in combination with sacrificial templates to 
yield integrated channel networks (Miller et al., 2012; Bertassoni 
et  al., 2014; Kolesky et  al., 2014). Currently, however, printer 
resolution limitations generally make fabricating channels in 3D 
printed scaffolds below 100 µm in diameter impractical. Still, these 
platforms allow modeling of arteriole (and larger) sized struc-
tures in an immediately perfusable format that is easily tailored 
to accommodate variations in shear, mechanical forces, cellular 
organization, and soluble signaling factors, thereby mimicking 
natural tissue in structure and scale. Only a few studies have used 
these techniques to examine brain endothelial dynamics using 
differentiated stem cells in fluidic hydrogel scaffolds (Jiménez-
Torres et  al., 2016; Ingram et al., 2017), but none have yielded 
endothelial lumens with appreciable barrier strength.

The next step in the fabrication of a biomimetic in vitro neu-
rovascular model involves integrating the latest advances in iPSC 
derivation methods along with tissue engineering approaches 
for generating capillary-sized vascular structures. As opposed to 
extrusion-based 3D printing, projection stereolithographic print-
ing techniques can produce 3D scaffolds with complex integrated 
fluidic channels (diameters as small as 20  µm) through spatially 
controlled cross-linkage of photosensitive prepolymer solution by 
targeted light exposure, delivered by computer-controlled digital 
micro-mirror assemblies or through a 2D “mask” in a layer-by layer 
fashion (Hribar et al., 2015; Wang et al., 2015; Raman et al., 2016; 
Valentin et al., 2017). Laser-assisted printing operates in a similar 
fashion, except that the laser focus is traditionally “patterned” by 
CAD file and, in the case of two-photon systems utilizing pulsed 
femtosecond laser sources, has achieved pattering of hydrogel fea-
tures as small as 10 µm (Hoffmann and West, 2013). In addition, a 
novel hybrid approach recently demonstrated the ability to generate 
20-μm channels using multiphoton stereolithography to photo-
bleach biotin-4-fluorescein in unpolymerized collagen (Skylar-Scott 
et al., 2016). This particular method is capable of achieving down 
to 1-µm resolution for patterning much smaller structures, but at 
the expense of scalability with overall scaffold thicknesses limited 
to 1  mm. While lithographic methods such as these allow for 
reproducible fabrication of complex fluidic architecture of capillary 
scale within hydrogel scaffolds, the toxic and/or mutagenic effects 
of high-intensity laser exposure, photoinitiating components, and 
radicals/harmful byproducts produced during fabrication remain a 
significant concern, especially when applied to highly sensitive stem 
cell-derived populations. Laser ablation lithography attempts to 

circumvent the concerns associated with photo-initiated hydrogel 
polymerization by sculpting channels in blocks of hydrogels after 
polymerization by more cell-friendly processes (Brandenberg and 
Lutolf, 2016). However, the specialized equipment and necessary 
skills to implement most of these lithographic fabrication methods 
comprise the greatest obstacle to becoming a technique widely 
accessible to the broader neurovascular modeling community.

In contrast, a technologically straightforward approach to fab-
ricating capillary-sized channels is to simply embed a sacrificial 
mesh of microscale fibers within the hydrogel matrix that, after 
polymerization, is washed away. The utility of this approach for 
developing biomimetic tissue constructs is entirely contingent 
upon identifying a sacrificial material that is non-cytotoxic, 
easily spun into microfibers, insoluble in water at 37°C, and can 
be removed from the crosslinked hydrogel using non-cytotoxic 
methods. A recent report demonstrating the ability to generate 
capillary-like channels from thermoresponsive poly-NIPAM fib-
ers. The unique LCST properties of P-NIPAM result in shift from 
water-insoluble to water-soluble when temperatures fall below 
32°C, enabling facile fiber removal at room temperature yielding 
immediately perfusable microscale channels that are promising 
for modeling brain microvasculature networks (Lee et al., 2016).

Other than fabrication, another hurdle for modeling complex 
neurovascular assemblies is the incompatibility of a traditional 
biological readout for validating the integrity and the functionality 
of brain endothelium. Measuring the resistance of the endothelial 
barrier (TEER) is the most common method for assessing bar-
rier strength in 2D cultures, but obtaining reliable resistance 
measurements from endothelial lumens lining perfused channel 
networks within 3D hydrogel scaffolds is not realistic (Srinivasan 
et al., 2015). For this reason, the permeability of endothelial layers 
in hydrogel channels is typically evaluated by monitoring tracer 
diffusion across cell barriers using compound such as radiolabeled 
or fluorescently conjugated compounds (Bowman et  al., 1983; 
Franke et al., 1999; Lippmann et al., 2013; Hollmann et al., 2017). 
Calculating the permeability coefficients from these observations is 
straightforward for non-intersecting channels in 2D arrays (Zheng 
et al., 2012). However, randomly intersecting channels in 3D matri-
ces that mimic physiological architecture introduce a significant 
degree of complexity for establishing quantitative values of lumen 
permeability. Furthermore, tracers can perturb cellular activity and 
consequently effect barrier integrity. Thus, alternative methods, ide-
ally those that are non-invasive and allow continuous monitoring 
of barrier integrity, are needed to realize the full potential of these 
newly emerging biomimetic neurovascular models. One solution 
may be to leverage advances in CRISPR technologies to produce 
iPSC lines that include reporters of cell function, including barrier 
integrity. Overall, recent innovations in 3D cell scaffold fabrication 
techniques, iPSC derivation methods, and genome editing have 
facilitated this exciting juncture in the field of tissue engineering; 
these progressive resources should ultimately facilitate the develop-
ment of complex, truly biomimetic in vitro models of the NVU.

DiSCUSSiON

Major strides have been made toward building BBB models 
that take advantage of human iPSC technology. In addition, 
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ever-better microfluidics platforms and perfusable hydrogels are 
being developed to provide three-dimensional architectures that 
better mimic in vivo vessel structures. Valuable insights into neu-
rological diseases have already been reported using iPSC-based 
model systems, and it is expected that these models will improve 
further when combined with novel biomaterial scaffolds into full 
NVU constructs. Once built, these complex in vitro models are 
poised to provide relevant clinical knowledge regarding debili-
tating cerebrovascular diseases and ultimately facilitate the next 
generation of therapeutic interventions.
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Objective: The goal for this research was to identify molecular mechanisms that explain 
animal-to-animal variability in chronic intracortical recordings.

approach: Microwire electrodes were implanted into Sprague Dawley rats at an acute 
(1 week) and a chronic (14 weeks) time point. Weekly recordings were conducted, and 
action potentials were evoked in the barrel cortex by deflecting the rat’s whiskers. At 1 
and 14 weeks, tissue was collected, and mRNA was extracted. mRNA expression was 
compared between 1 and 14  weeks using a high throughput multiplexed qRT-PCR. 
Pearson correlation coefficients were calculated between mRNA expression and signal-
to-noise ratios at 14 weeks.

Main results: At 14 weeks, a positive correlation between signal-to-noise ratio (SNR) 
and NeuN and GFAP mRNA expression was observed, indicating a relationship between 
recording strength and neuronal population, as well as reactive astrocyte activity. The 
inflammatory state around the electrode interface was evaluated using M1-like and M2-like 
markers. Expression for both M1-like and M2-like mRNA markers remained steady from 
1 to 14 weeks. Anti-inflammatory markers, CD206 and CD163, however, demonstrated 
a significant positive correlation with SNR quality at 14 weeks. VE-cadherin, a marker for 
adherens junctions, and PDGFR-β, a marker for pericytes, both partial representatives of 
blood–brain barrier health, had a positive correlation with SNR at 14 weeks. Endothelial 
adhesion markers revealed a significant increase in expression at 14 weeks, while CD45, 
a pan-leukocyte marker, significantly decreased at 14 weeks. No significant correlation 
was found for either the endothelial adhesion or pan-leukocyte markers.

significance: A positive correlation between anti-inflammatory and blood–brain bar-
rier health mRNA markers with electrophysiological efficacy of implanted intracortical 
electrodes has been demonstrated. These data reveal potential mechanisms for further 
evaluation to determine potential target mechanisms to improve consistency of intra-
cortical electrodes recordings and reduce animal-to-animal/implant-to-implant variability.

Keywords: intracortical microelectrodes, blood–brain barrier, neuro-inflammatory response, chronic recordings, 
signal-to-noise ratio, correlation analysis
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Table 1 | Overview of significant Pearson correlation at 14 weeks for  
(A) neuroinflammation markers, (B) blood–brain barrier (BBB) markers,  
(C) leukocyte infiltration markers, and (D) inflammation markers.

groups Primers Pearson correlation (p < 0.05)

Neuro-inflammtion CD68 No
GFAP Yes
NeuN Yes

BBB claudin-5 No
occludin No
zona-occludens-1 No
cdh5 Yes
PDGFR-β Yes
AQP-4 No

Leukocyte adhesion CD45 No
ACAM No
ICAM1 No
ICAM2 No
sel-e No
sel-p No
VCAM1 No

Inflammation M1-like CCR7 No
CD32 No
CD64 No
CD80 No
CD86 No

Inflammation M2-like Arg-1 No
CD163 Yes
CD206 Yes
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inTrODUcTiOn

Brain machine interfaces (BMIs) using intracortical electrodes are 
promising to restore virtual and physical functionality to paralysis 
patients (Simeral et al., 2011; Collinger et al., 2013; Perge et al., 
2014; Bouton et al., 2016; Downey et al., 2016; Ajiboye et al., 2017). 
However, reduction in amplitude and number of recorded spikes 
directly impacts the accuracy of machine control (Perge et  al., 
2014). Signal loss in both clinical (Simeral et al., 2011; Collinger 
et al., 2013; Perge et al., 2014; Bouton et al., 2016; Downey et al., 
2016; Ajiboye et  al., 2017) and preclinical (Karumbaiah et  al., 
2013; Saxena et  al., 2013; Kozai et  al., 2015; Nolta et  al., 2015; 
Sharma et al., 2015; McCreery et al., 2016) intracortical electrode 
models have been well documented. A potential biological cause 
is chronic neurodegeneration, which has been characterized at the 
electrode–tissue interface (McConnell et al., 2009; Potter-Baker 
et  al., 2015). Additionally, histology of neuronal nuclei density 
has been significantly correlated with signal-to-noise ratio (SNR) 
at the time of sacrifice (~300 days) (McCreery et al., 2016).

Previous work has suggested that the severity and duration of 
chronic blood–brain barrier (BBB) breach may influence chronic 
recordings (Potter et  al., 2012; Saxena et  al., 2013; Nolta et  al., 
2015; Kozai et al., 2016). The results have shown a negative corre-
lation between IgG localization (a circulatory macromolecule) at 
the electrode interface and SNR (Karumbaiah et al., 2013; Saxena 
et al., 2013; Nolta et al., 2015). IgG accumulation has also shown 
to significantly and inversely correlate with impacts on behavioral 
motor function following electrode implantation in the motor 
cortex (Goss-Varley et al., 2017). While IgG localization demon-
strates BBB leakage, it provides no information on how the BBB 
has been breached. Here, we investigate the molecular sequelae 
to implanted intracortical electrodes in the context of SNR to 
identify possible contributors to recording success.

For this study, key markers of BBB dysregulation, macrophage 
phenotype, and neuronal health at the mRNA level were quanti-
fied following electrode implantation. Animal-to-animal record-
ing variability was leveraged to analyze correlations with mRNA 
expression at a chronic (14 week) time point to better elucidate 
potential mechanisms associated with electrode failure. To achieve 
this objective, functional microwire electrodes were implanted 
into the rat barrel cortex acutely (for 1 week) and chronically (for 
14 weeks). At each endpoint, mRNA was extracted for Fluidigm 
multiplex qRT-PCR analysis. The calculated fold changes for each 
animal were compared to its functional recordings via a Pearson 
coefficient correlation. Primers for neuroinflammation, BBB 
integrity, innate inflammation, and leukocyte infiltration were 
investigated (see Table 1).

MaTerials anD MeThODs

surgical Preparation and electrode 
implantation
This study was carried out in accordance with the recommen-
dations of the Institutional Animal Care and Use Committee 
(IACUC) at the Georgia Institute of Technology. The protocol 
was approved by the Georgia Institute of Technology. Adult 

male Sprague Dawley rats (250–300  g) were implanted for 
1 week (n =  5) or 14 weeks (n =  6). The implanted electrodes 
were polyimide coated tungsten microwires (Tucker-Davis 
Technologies, FL, USA). The array had 16 electrodes arranged 
in a 2 × 8 pattern spaced 300 µm apart in the x-direction and 
500 µm apart in the y-direction (see Figure 1A). The electrodes 
were 50 µm in diameter and 5 mm in length. All microwires were 
sterilized by ethylene oxide and degassed for 12 h. Each rat was 
anesthetized with 2% isoflurane, and their head was shaved and 
sterilized with chlorohexidine and isopropanol. Each rat’s head 
was stereotaxtically positioned and a subcutaneous injection of 
lidocaine (Henry Schein, NY, USA) was administered locally 
prior to incision. Following a midline incision, the periosteum was 
scraped away and etch gel (Henry Schein, NY, USA) was applied 
to the skull. Holes for the anchoring screws were then drilled  
(2 anterior to bregma, 2 posterior to lambda, and 1 opposite 
the craniotomy), and five screws were inserted (see Figure 1B).  
A 3 mm × 5 mm craniotomy was drilled at 1.5 mm posterior from 
bregma and 4 mm lateral from the midline (see Figure 1B). The 
dura was retracted using a bent 25-gage needle and bleeding was 
controlled using gel foam (Pfizer, NY, USA) soaked with sterile 
saline. Grounding wires were wrapped around the anchoring 
screws prior to insertion. Each array was implanted at a 15° 
angle to a depth of 1,200 µm, targeting the IV cortical layer of 
the barrel cortex. Sterile 1.5% SeaKem agarose (Lonza, NJ, USA) 
was applied above the craniotomy and UV curing dental cement 
(Henry Schein, NY, USA) was used to secure the electrodes to 
the anchor screws and the skull. The incision was wound clipped 
and animals were injected intramuscularly with buprenorphine. 
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FigUre 1 | (a) Implantation of microwire array and electrode site map. (b) Representative image of barrel cortex craniotomy and anchoring/grounding screws.  
(c) Average waveforms for a single unit. (D) Acquired raw waveforms from recording system with example threshold setting.
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Animals received daily subcutaneous injections of antibiotic, 
Baytril (Bayer, PA, USA), for 2 weeks.

electrophysiology and analysis
Weekly recordings were collected with a 32-channel data-
acquisition system (Plexon, TX, USA). Signals were amplified at 
1,000 × gain, band-pass filtered at 500–5,000 Hz and sampled at 
40 kHz. Animals were anesthetized with ketamine/xylazine/ace-
promazine cocktail as isoflurane suppresses cortical firing in the 
barrel cortex. For each recording session, two files where recorded: 
(1) an evoked file in which the rat’s whiskers were deflected for 
~1 min, generating action potentials (see Figures 1C,D) and (2) 
a noise file in which no signals were evoked for 10 s. In Offline 
Sorter (Plexon, TX, USA), the channels in the evoked files were 
thresholded at −4σ (standard orders of deviation), and units 
were sorted using K means cluster cutting. To verify units, the 
interspike interval histogram was analyzed and the presence of 
a clear refractory period was observed for a unit to be declared. 
Units that had fewer than 100 action potentials were excluded. 
Spontaneous action potentials were removed from the noise file. 
Sorted files were then exported into Matlab and custom code was 
used to calculate the SNR by dividing the peak-to-peak voltage 
(Vp-p) by two times the SD of noise (Eq. 1) (Nordhausen et al., 
1996; Srinivasan et al., 2016).
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qrT-Pcr and analysis
At the designated time point, animals were transcardially per-
fused with sterile PBS (200 mL). The electrodes and headcap 
were removed and the brain was extracted. A 4-mm biopsy 
punch was taken at a depth of 2  mm around the electrode 

implant site. The biopsy punch was immediately frozen in 
liquid nitrogen and stored at −80°C. Age-matched naïve 
animals were sacrificed in the same manner as well and the 
4-mm biopsy punch was removed from a depth of 2 mm at the 
same location in the brain. Total RNA was extracted using the 
RNeasy Plus Universal Kit (Qiagen, CA, USA). RNA integrity 
was assessed with the Agilent Bioanalyzer using Agilent RNA 
6000 Nano Kit (Agilent Technologies, CA, USA), and purity 
was assessed with the Nanodrop 8000 Spectrophotometer 
(Thermo Fisher Scientific, MA, USA). For all samples, RNA 
integrity numbers were above 7, 260/280 were above 1.8, and 
260/230 were above 1.0. cDNA was synthesized using the 
Fluidigm Reverse Transcription kit (#100-6298) (Fluidigm, 
CA, USA). A 96 qRT-PCR assay using the Fluidigm Biomark 
HD (Fluidigm, CA, USA) was run in triplicate for each sam-
ple using the Duke Center for Genomic and Computational 
Biology. The Delta Gene Assays (Fluidigm, CA, USA) were 
designed using the D3 Assay Design (Fluidigm, CA, USA). CT 
values were averaged together across triplicates. ΔCT values 
were calculated by subtracting the geometric mean of four 
housekeeping genes (GAPDH, HRPT, SDHA, RPL13A) from 
each CT value. ΔΔCT values were calculated by subtracting the 
arithmetic average of the naïve samples from the ΔCT values. 
All statistics were performed in the ΔΔCT space. Fold change 
was then calculated by taking the base 2 exponent of—ΔΔCT. 
A Bonferroni sequential correction (Benjamini and Hochberg, 
1995) was applied to a Student’s t-test to determine significance 
between 1- and 14-week microwire animals.

correlation analysis
To correlate the relation between average SNR and mRNA fold 
change, a Pearson correlation coefficient (r) with a p-value was 
calculated in Matlab. The electrode SNRs for each animal were 
averaged at each timepoint. The 14-week SNRs were compared 
with the mRNA extracted at 14 weeks for each animal.
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FigUre 2 | (a) Animal variability at 14 weeks demonstrated through signal-to-noise ratio (SNR) and percentage of active electrodes. (b) Average SNR and  
(c) average percentage of active electrodes over time for individual animals.
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immunohistochemistry
At 1  week, rats implanted with microwires were transcardially 
perfused with PBS, 4% paraformaldehyde, and 20% sucrose. 
Following decapitation, the skulls were exposed and placed in 4% 
paraformaldehyde overnight at 4°C and then 30% sucrose over-
night at 4°C. The brains were then extracted and stored in 30% 
sucrose at 4°C overnight or until the brains sunk to the bottom 
of the container. Brains were frozen at −20°C and cryosectioned 
transversely onto charged glass slides (VWR, PA, USA). Slides 
were thawed to room temperature and washed with PBS. The 
slides were incubated at room temperature in blocking solution 
(0.4% Triton-X, 4% goat serum in PBS) for 1 h. The following 
primary antibodies were used: rabbit anti-GFAP (1:1,000, DAKO, 
CA, USA), mouse IgG1 anti-NeuN (1:500, Millipore, CA, USA), 
and mouse anti-CD68 (1:500, Millipore, CA, USA). Primary anti-
bodies were diluted in blocking solution and incubated overnight 
at 4°C. Slides were then washed in PBS and washing solution 
(0.4% Triton-X in PBS). The appropriate secondary antibody 
was applied for 1 h at room temperature, followed by DAPI for 
15 min. Slides were washed again in PBS and washing solution, 
dried, and coverslipped with Fluoromount-G (Southern Biotech, 
AL, USA). Stained slides were imaged at 10× on a Zeiss Axiovert 
200 M (Carl Zeiss, NY, USA).

resUlTs

animal-to-animal Variability in 
electrophysiology
Weekly recordings were conducted in the barrel cortex. Rats were 
anesthetized and whiskers were deflected to generate evoked 

potentials. SNRs were calculated for each electrode within each 
time point within each animal. Eight rats were implanted for 
the chronic time point, but two were removed from the study 
due to headcap failure (C3 and C6). Figure  2A demonstrates 
the animal-to-animal variability present at 14  weeks for both 
SNR and percentage of active electrodes. Figures 2B,C shows 
the average SNR and percentage of active electrodes plots, 
subsequently, for each individual animal over time. A three-way 
nested ANOVA was run in Matlab on the SNR and electrode 
percentage data. Over time, no significant change was observed 
for either metric (p > 0.05). However, animal variability in SNR 
and percentage of active electrodes was significant. This vari-
ability was used to investigate possible correlations with under-
lying molecular differences through mRNA expression. Briefly, 
Pearson correlation coefficients and p-values were calculated 
for each mRNA primer and the corresponding animal’s SNR. 
Pearson correlation coefficients were considered significant 
when the p-value ≤ 0.05. Additionally, mRNA expression was 
compared between 1 and 14 weeks using a Bonferroni sequential 
corrected Student’s t-test in which significance was determined 
when the p-value was ≤0.05.

neuroinflammation
At the conclusion of each time point, mRNA was extracted from 
biopsied brain tissue and mRNA expression was calculated. 
Neuroinflammation markers, classically found in the intracorti-
cal electrode implant literature, were analyzed. This included 
CD68 for activated microglia/macrophages, GFAP for astrocytes, 
and NeuN for neuronal nuclei (Polikov et al., 2005; Potter et al., 
2012; Saxena et al., 2013; Sawyer et al., 2014; Nolta et al., 2015). 
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FigUre 3 | Representative images of 16 electrode microwire arrays at 1 week with * representing electrode location for (a) CD68, (b) GFAP, and (c) NeuN 
antibody staining (scale bar = 100 µm). Fold change comparison between 1 and 14 weeks for (D) NeuN, (e) GFAP, and (F) CD68 (*p < 0.05, Student’s t-test, 
Bonferroni corrected). Each time point was compared to age-matched naïve controls to calculate fold change. (g) Pearson correlation values for CD68, GFAP,  
and CD68 (*p < 0.05).
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Representative immunohistochemistry images of CD68, GFAP, 
and NeuN at the microwire interface are shown in Figures 3A–C 
at 1 week. There was a significant reduction of CD68 expression 
from 1 to 14 weeks, and a significant increase of GFAP from 1 
to 14 weeks (p < 0.05) (Figures 3E,F). No change was observed 
for NeuN expression (Figure 3D). At 14 weeks, the Pearson cor-
relation coefficient was positively significant for both NeuN and 
GFAP (r  =  0.85, p  <  0.05, and r =  0.85, p  <  0.05, Figure  3G; 
Figures S1A,B in Supplementary Material). As NeuN marks neu-
ronal nuclei, the positive correlation with SNR is suggestive that 
SNR represents neuronal population at the electrode interface.

inflammation Milieu
Macrophages are a strong part of the wound healing and neuroin-
flammatory response (Strauss-Ayali et al., 2007; Kigerl et al., 2009; 
David and Kroner, 2011; Mokarram et  al., 2017). Markers for 
M1-like or pro-inflammatory response were analyzed and were 
upregulated at both 1 and 14 weeks (Figures 4A–E). However, 
there was no significant change over time. No significance was 
found for Pearson correlation coefficients for pro-inflammatory 
markers at 14  weeks (Figure  4I; Figure S1C in Supplementary 
Material). For M2-like markers or anti-inflammatory response 
(Figures  4F–H), CD206 and CD163 had a significant positive 
Pearson correlation coefficient at 14 weeks (r =  0.84, r =  0.89, 
p < 0.05, Figure 4J; Figure S1D in Supplementary Material).

Vascular integrity/bbb breach status
Previous research has demonstrated the importance of BBB and 
vasculature to neuronal health (Abbott et al., 2006; Ivens et al., 
2007; Stolp and Dziegielewska, 2009; Zlokovic, 2011; Obermeier 
et al., 2013; Ryu et al., 2015). Here, tight junction proteins and 
additional BBB markers were observed. First, common tight 
junction proteins, zona-occludens-1 (ZO-1), claudin-5 (cldn5), 
and occludin (ocln) were evaluated to assess BBB fidelity. ZO-1 
had a significant upregulation at 14 weeks compared to 1 week 

(Figure  5C). No other significant changes from 1 to 14  weeks 
were observed for cldn5 or ocln (Figures 5A,B). No significant 
Pearson coefficient correlation was found for cldn5, ocln, or ZO-1 
at 14 weeks (Figure 5D; Figure S1E in Supplementary Material). 
With no significant correlations with tight junction proteins, 
additional BBB markers were next evaluated. These included cell-
to-cell junctions, VE-cadherin (cdh-5), pericytes (PDGFR-β), 
and astrocyte end-feet (Aqp-4). Aqp-4 was significantly upregu-
lated at 14 weeks compared to 1 week (Figure 5G). Expression 
levels remained the same for cdh-5 and PDGFR-β (Figures 5E,F). 
There was a significant positive Pearson correlation coefficient at 
14 weeks for cdh-5 and PDGFR-β (r = 0.85, r = 0.89, p < 0.05, 
Figure 5H; Figure S1F in Supplementary Material). However, no 
significant correlation was observed for Aqp-4.

leukocyte recruitment and adhesion
A detrimental outcome of BBB leakage is the infiltration of leu-
kocytes (Greenwood et  al., 2011; Obermeier et  al., 2013). This 
can be monitored by leukocyte cell markers and endothelial cell 
adhesion markers. The fold change for the pan-leukocyte marker 
(CD45) was analyzed and expression significantly decreased at 
14 weeks compared to 1 week (p < 0.05, Figure 6G). However, no sig-
nificant Pearson correlation was observed with SNR (Figure 6H).  
A variety of adhesion markers were analyzed (ACAM, ICAM1, 
ICAM2, sel-e, sel-p, VCAM1, Figures 6A–F). All were signi ficantly 
upregulated at 14 weeks (except for ICAM2), suggesting increased 
leukocyte extravasation, but again, no significant Pearson cor-
relation was found (Figure  6H; Figure S1G in Supplementary 
Material).

DiscUssiOn

If BMIs are to be successful, the signal from the intracortical 
electrode (i.e., the input) must be able to reliably and robustly 
record for long durations (on the order of years). Previously, a 

85

www.frontiersin.org/Bioengineering_and_Biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/Bioengineering_and_Biotechnology/archive


FigUre 5 | Fold change comparisons between 1 and 14 weeks for tight junction proteins (a) Cldn-5, (b) occluding (Ocln), and (c) zona-occludens-1 (ZO-1) and 
other blood–brain barrier (BBB) markers, (e) cdh-5, (F) PDGFR-β, and (g) AQP-4 (*p < 0.05, Student’s t-test, Bonferroni corrected). Each time point was compared 
to age-matched naïve controls to calculate fold change. Pearson correlations for (D) tight junction protein markers and (h) other BBB markers (*p < 0.05).

FigUre 4 | Fold change comparisons between 1 and 14 weeks for M1-like pro-inflammatory markers (a) CD32, (b) CD64, (c) CD80, (D) CD86, and (e) CCR7, 
and M2-like anti-inflammatory markers (F) CD206, (g) CD163, and (h) Arg-1 (*p < 0.05, Student’s t-test, Bonferroni corrected). Each time point was compared to 
age-matched naïve controls to calculate fold change. Pearson correlations for (i) M1-like and (J) M2-like markers (*p < 0.05).
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FigUre 6 | Fold change comparisons between 1 and 14 weeks for endothelial adhesion markers (a) ACAM, (b) ICAM1, (c) ICAM2, (D) sel-e, (e) sel-p,  
(F) VCAM1 and pan-leukocyte marker, (g) CD45 (*p < 0.05, Student’s t-test, Bonferroni corrected). Each time point was compared to age-matched naïve  
controls to calculate fold change. (h) Pearson correlation for endothelial adhesion and pan-leukocyte markers (*p < 0.05).
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relation between BBB integrity and electrode performance has 
been demonstrated (Saxena et  al., 2013), and here, these find-
ings have been extended via an investigation of the underlying 
molecular mechanisms. Penetration and destruction of vessels 
during implantation may explain electrode recording variability 
per animal, and the importance of vascular integrity has been 
implicated in several studies in regards to neural health and 
electrodes (Kozai et al., 2010; Shih et al., 2012; Saxena et al., 2013; 
Nolta et al., 2015). However, the direct mechanisms driving BBB 
dysregulation and electrode failure are not well understood. 
These data have shown a positive correlation between SNR and 
different molecular targets, and this information could be further 
investigated to evaluate the importance in relation to electrode 
failure.

Expression levels for common neuroinflammation markers 
were evaluated. As seen in Table 1 and Figures 3D,E, significant 
positive correlation was observed for NeuN and GFAP, but not for 
CD68. Previous electrode literature has suggested that the devel-
opment of the astroglial scar at the electrode tissue interface is the 
primary cause for signal degeneration (Polikov et al., 2005). This 
attitude was pervasive through other neurodegenerative fields; 
however, this view has begun to change. The Sofroniew lab has 
demonstrated the importance of astrocyte support in a spinal cord 
injury model and through knock-out models, when the astrocytic 
scar is ablated, axonal regeneration is in fact impaired (Anderson 
et al., 2016). McCreery et al. (2016) conducted an analysis with 
Utah electrodes implanted in the cat sensorimotor cortex for 
almost a year. Histology was correlated with electrophysiology 
using the Pearson correlation, and a significant positive correla-
tion was found for both NeuN and GFAP within 80 µm of the 
electrode for signal amplitudes at the experiment endpoint. Our 
data corroborate McCreery’s findings, suggesting that presence 
of GFAP+ astrocytes is positively correlated with increased SNR. 
Therefore, developing treatment strategies to improve astrocyte 

recruitment (as opposed to inhibiting astrocytes) may prove 
beneficial for chronic intracortical implants.

The influence of M1-like and M2-like environments on 
neural health has been an area of study within the central and 
peripheral nervous systems (Kigerl et  al., 2009; David and 
Kroner, 2011; Mikita et al., 2011; Mokarram et al., 2012; Vogel 
et al., 2013; Cherry et al., 2014; Sawyer et al., 2014; Kim et al., 
2016; Tang and Le, 2016). With BBB breach following disease 
or injury, the influx of innate monocytes and macrophages 
can influence the neurological outcomes (Kigerl et  al., 2009; 
Mikita et  al., 2011). Common M1-like (CCR7, CD32, CD64, 
CD80, CD86) and M2-like (Arg-1, CD163, CD206) markers 
were evaluated to determine the relation between inflammation 
and SNR (Table 1; Figure 4). At 14 weeks, M2-like CD163 and 
CD206 were significantly positively correlated with SNR. CD163 
is a general receptor found on all subsets M2-like macrophages, 
while CD206 is specific for M2a and M2c, which is responsible 
for tissue repair and pro-healing functions (David and Kroner, 
2011; Mokarram et  al., 2012). Research from the spinal cord 
(Kigerl et al., 2009) and the peripheral nerve (Mokarram et al., 
2017) have demonstrated the benefits of a M2-like macrophage 
environment for neural health and repair. Additionally, non-
functional electrodes implanted in a bone marrow chimera 
mouse model showed blood-borne macrophage accumulation 
at 16 weeks (Ravikumar et al., 2014). It would be beneficial to 
investigate if the M2 macrophage theory also holds true for 
functional recordings from the cortex.

To investigate the status of the BBB, tight junction protein 
expression was analyzed (Table  1; Figures  5A,B). Tight junc-
tions are crucial to maintaining a healthy, intact BBB, and loss 
can lead to neurodegeneration (Kanda et al., 2004; Abbott et al., 
2006; Zhong et al., 2008; Argaw et al., 2009; Henkel et al., 2009; 
Liu et  al., 2012; Paul et  al., 2013). Interestingly, no significant 
correlations were observed for these tight junction expressions. 
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Additional components of the BBB were then investigated, includ-
ing AQP-4, cdh5, and PDGFR-β (Table 1; Figures 5C,D). While 
there was a significant correlation with GFAP expression, there 
was no correlation with AQP-4, which is a common marker on 
astrocyte end-feet interacting with the BBB. VE-cadherin (cdh5) 
had a significant positive correlation with the SNR. VE-cadherin 
is a cell-to-cell junction for endothelial cells, and the removal of 
VE-cadherin severely weakens the BBB (Wallez and Huber, 2008; 
Giannotta et al., 2013; Tietz and Engelhardt, 2015). Thus far, no 
work has been done confirming the impact of VE-cadherin loss 
on neurodegeneration. Further work exploring the potential 
connection between VE-cadherin loss and its impact on neuro-
degeneration could be of interest.

The data also show a significant positive correlation between 
PDGFR-β, a common pericyte receptor, and SNR (see Table 1; 
Figures  5C,D). Evaluation of PDGFR-β knockout mice dem-
onstrated that vascular integrity in the brain was significantly 
compromised and became more susceptible to macromolecule 
leakage (Armulik et al., 2010). The Zlokovic lab built upon this 
work with the PDGFR-β knockout model showing that pericyte 
loss reduced cerebral blood flow and degraded BBB tight junc-
tion proteins. This resulted in neurodegeneration, and pericyte 
loss exacerbated amyloid-β clearance in Alzheimer’s disease 
models (Bell et  al., 2010; Sagare et  al., 2013; Halliday et  al., 
2016). The results from this study thus corroborate previously 
published data describing the importance of pericytes in the 
neurovascular unit and might suggest the importance of main-
taining pericyte health to improve performance for intracortical 
electrodes.

A common cause/impact of BBB leakage is the increased 
expression of adhesion markers and leukocytes (Greenwood 
et al., 2011; de Vries et al., 2012; Obermeier et al., 2013; Shechter 
et al., 2013). Therefore, these markers were investigated in cor-
relation with SNR (Table 1; Figures 6C,D). No significant cor-
relation was found for leukocytes (CD45) or adhesion markers 
(ACAM, ICAM1, ICAM2, sel-e, sel-p, VCAM1). Elahy et  al. 
(2015) demonstrated that loss of BBB integrity and inflammation 
does occur in an aging model, but no leukocytes were recruited. 
Others have shown that while leukocytes are recruited in differ-
ent BBB leakage models, this cellular presence does not lead to 
neurodegeneration (Boztug et al., 2002; Shaftel et al., 2007). Our 
data may suggest that leukocyte infiltration is not a primary cause 
for neurodegeneration in an electrode implant model.

Overall, these data showed significant positive correlation 
between SNR and GFAP, VE-cadherin, and PDGFR-β. No signifi-
cant correlations for leukocyte extravasation, inflammatory phe-
notypes, or tight junction expression were observed. This would 
suggest the importance of astrocytes (GFAP), adherens junctions 
(VE-cadherin), and pericytes (PDGFR- β) for maintaining strong 
SNR at chronic time points. These data offer insight into potential 
molecular mechanisms to explore for improving chronic intra-
cortical recordings.

cOnclUsiOn

The objective of this work was to better understand the molecular 
mechanisms influencing recording fidelity in electrode implant 

models. Previous work has suggested that BBB breach can influ-
ence chronic recordings. mRNA expression was correlated with 
SNR at a chronic (14 week) time point. Astrocytes, pericytes, and 
adherens junctions were identified as potential therapeutic tar-
gets to improve chronic intracortical recordings. Additional work 
with knock-out models and histological analysis is necessary to 
further validate the effect of these pathways. It is also important to 
remember that microwires were used for this study, and compari-
son to commonly used Michigan (research) and Utah (clinical) 
electrodes would be beneficial. This work provides direction for 
future studies and identification of BBB integrity markers that 
may influence and benefit chronic recordings in intracortical 
electrodes.
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Stroke is a devastating disease for which no clinical treatment exists to regenerate lost 
tissue. Strategies for brain repair in animal models of stroke include the delivery of drug 
or cell-based therapeutics; however, the complex anatomy and functional organization of 
the brain presents many challenges. Biomaterials may alleviate some of these challenges 
by providing a scaffold, localizing the therapy to the site of action, and/or modulating 
cues to brain cells. Here, the challenges associated with delivery of therapeutics to the 
brain and the biomaterial strategies used to overcome these challenges are described. 
For example, innovative hydrogel delivery systems have been designed to provide sus-
tained trophic factor delivery for endogenous repair and to support transplanted cell 
survival and integration. Novel treatments, such as electrical stimulation of transplanted 
cells and the delivery of factors for the direct reprogramming of astrocytes into neurons, 
may be further enhanced by biomaterial delivery systems. Ultimately, improved clinical 
translation will be achieved by combining clinically relevant therapies with biomaterials 
strategies.

Keywords: stroke, regeneration, biomaterials, drug delivery, cell delivery

iSCHeMiC STROKe

Physiology and Pathology
Brain injury, unlike degenerative conditions that manifest as a gradual decline in tissue function, is a 
sudden event resulting in a permanent loss of tissue and functional deficits. The brain is a particularly 
challenging organ to develop therapeutics for due to its limited capacity for self-repair, the presence of 
the blood–brain barrier (BBB), as well as its inherently complex cellular and functional composition. 
A stroke is caused by local oxygen deprivation in the brain due to either hemorrhaged or occluded 
blood vessels, accounting for 13 and 87% of strokes, respectively (Mozaffarian et al., 2016). Within 

Abbreviations: BBB, blood–brain barrier; BDNF, brain-derived neurotrophic factor; BMP4, bone morphogenic protein 4; 
ChABC, chondroitinase ABC; CSPG, chondroitin sulfate proteoglycan; ECM, extracellular matrix; EGF, epidermal growth 
factor; EPO, erythropoietin; ESC, embryonic stem cell; FGF2, fibroblast growth factor 2; GDNF, glial-derived neurotrophic 
factor; GFAP, glial fibrillary acidic protein; HA, hyaluronan; HAMC, hyaluronan methylcellulose; hCG, human chorionic 
gonadotrophin; HGF, hepatocyte growth factor; IGF, insulin growth factor; iPSC, induced pluripotent stem cell; MC, methylcel-
lulose; MMP, matrix metalloproteinase; MRI, magnetic resonance imaging; MSC, mesenchymal stromal cell; NPC, neural 
progenitor cell; NSC, neural stem cell; NSPC, neural stem/progenitor cell; NT-3, neurotrophin-3; PCL, polycaprolactone; 
PDMS, polydimethylsilosane; PEG, polyethylene glycol; PGA, polyglycolic acid; PLGA, poly(d,l-lactic acid co-glycolic acid); 
PSA, poly(sebacic acid); SAP, self-assembling peptide; CSF, cerebrospinal fluid; SDF-1α, stromal-derived factor-1α; SGZ, 
subgranular zone; STAiRS, Stroke Therapy Academic Industry Round Table; SVZ, subventricular zone; TBI, traumatic brain 
injury; TMS, transcranial magnetic stimulation; tPA, tissue plasminogen activator; VEGF, vascular endothelial growth factor.
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minutes following the depletion of blood flow, neurons and glial 
cells undergo apoptosis and necrosis, resulting in the formation 
of a cavity or infarct (Barkho and Zhao, 2011). The cellular and 
tissue events that follow the onset of a stroke can be categorized 
into three phases: acute, subacute, and chronic (Heiss, 2012).

The acute phase of stroke is characterized by rapid cell death, 
breakdown of the BBB, and infiltration of immune cells into the 
infarct. Hypoxia and the resulting energy deficit triggers a cascade 
of cell necrosis to form a infarct (Heiss, 2012; Xing et al., 2012). 
Cellular excitotoxicity occurs as glutamate is released by dying 
neurons into the extracellular matrix (ECM) and reuptake is 
inhibited, resulting in high intracellular calcium concentrations. 
By 6 h poststroke, the majority of cell death has occurred (Heiss, 
2012; Hossmann, 2012). However, in the hours and days after a 
stroke there is continued cell death and impaired function in the 
area surrounding the infarct core, known as the peri-infarct. The 
peri-infarct contains cells that are impaired but can be potentially 
restored using therapeutic strategies (Touzani et al., 2001; Brouns 
and De Deyn, 2009).

In the subacute phase, waves of neuronal depolarization trig-
ger further cell injury, caspase-mediated cell apoptosis and cell 
necrosis, which propagate from the ischemic core into the peri-
infarct (Velier et al., 1999). Several molecular cascades contribut-
ing to cell death are initiated at this time, including free radical 
production, excitotoxicity, release of cytokines, and infiltration 
of macrophages and microglia causing inflammation and gliosis 
(Besancon et al., 2008; Barkho and Zhao, 2011).

The last phase of a stroke is the delayed injury or chronic phase, 
occurring in the weeks following the initial occlusion (Heiss, 
2012; Kanekar et  al., 2012). In this phase, there is widespread 
edema and activation of proteases and cytokines. Oxidative 
stress activates matrix metalloproteinases (MMPs), which disrupt 
tight junctions between cells and the basal lamina, and lead to 
a secondary breakdown of the BBB. Breakdown of the BBB in 
turn causes leakage of plasma, red blood cells, and infiltration of 
immune cells into the brain parenchyma (Brouns and De Deyn, 
2009; Heiss, 2012). Once in the brain, neutrophils and other 
leukocytes release proinflammatory factors, initiating a second-
ary wave of inflammation (Doyle et  al., 2008; Brouns and De 
Deyn, 2009). There are also changes to the brain ECM that occur 
over time following stroke. As the basement membrane around 
blood vessels is degraded, collagen IV and laminin are reduced, 
and fibrinogen is deposited and converted to fibrin (Baeten and 
Akassoglou, 2011). High-molecular-weight hyaluronan (HA) is 
deposited in the interstitial ECM and contributes to chondroitin 
sulfate proteoglycan (CSPG)-mediated restriction in plasticity 
and regrowth of axons (Lau et al., 2013). These changes can per-
sist in the stroke infarct, and although the majority of tissue loss 
occurs early in the injury process, it has been shown in humans 
that gradual tissue loss can continue years after the initial stroke 
(Seghier et al., 2014).

Current Clinical Treatments
Despite the high prevalence of stroke in North America, clinical 
therapies remain limited. The only FDA-approved treatment for 
ischemic stroke is tissue plasminogen activator (tPA), which 
activates plasminogen by catalyzing its conversion into plasmin, 

improving the outcome in ischemic stroke when administered 
up to 4.5 h following stroke (Stemer and Lyden, 2010). Due to 
the narrow therapeutic window and risk of bleeding associ-
ated with tPA, only 3–6% of stroke patients are eligible for tPA 
administration (de Los Ríos la Rosa et al., 2012). An endovascular 
thrombectomy can be performed as a complement to tPA for 
larger vessel occlusions, but this strategy is also time-dependent 
(Meretoja et  al., 2017). Rehabilitation to regain function and 
encourage remodeling of the neural circuitry is also utilized fol-
lowing a stroke. Low-intensity training begins around 72 h after 
a stroke, followed by additional rehabilitation programs for up 
to 2 months poststroke (Winstein et al., 2016). While many of 
the aforementioned therapies are successful, they do not promote 
sufficient regeneration of brain tissue to completely restore func-
tion to the brain.

Barriers to Regeneration
Blood–Brain Barrier
The BBB serves as a gatekeeper between the brain and circulating 
blood. The three main components of the BBB (endothelial cells, 
astrocytic end-feet, and pericytes) interact to form and maintain 
the tight junctions between endothelial cells which permit the 
diffusion of dissolved gases such as O2 but limit the transport of 
large molecules (Ballabh et  al., 2004). Following a stroke there 
is breakdown of the BBB leading to a lack of vascular support, 
infiltration of immune cells, and ultimately the formation of a 
cavity (Brouns and De Deyn, 2009). The loss of BBB integrity also 
limits the use of tPA due to the risk of causing a lethal hemorrhage 
in a blood vessel (Cheng et al., 2014). After two waves of hyper-
permeability, the first at 4–6 h and a second delayed permeability 
at 24–72 h (Kuroiwa et al., 1985; Krueger et al., 2013), the BBB is 
gradually reestablished.

Reactive Astrocytes
Injury to the central nervous system (CNS) activates quiescent 
astrocytes, which undergo morphological changes to become 
reactive in the peri-infarct region as early as one day after stroke 
(Duggan et al., 2009; Barreto et al., 2011), forming a physical and 
chemical barrier, known as the glial scar (Yasuda et  al., 2004). 
Reactive astrocytes and pericytes secrete proteoglycans, such as 
CSPGs, that inhibit axonal outgrowth, making their degradation 
a target for regenerative strategies (Fawcett and Asher, 1999; 
Zhang and Chopp, 2009). Perineuronal nets, a normal com-
ponent of the brain ECM, also inhibit axon regeneration (Liu 
et al., 2006). However, reactive astrocytes can also play a posi-
tive role following stroke, isolating the injury site to prevent the 
spread of degeneration into healthy tissue, and secreting many 
growth-promoting proteins that can stimulate axonal sprouting 
(Lu et al., 2003; Liu et al., 2014). Since the sequence of release 
of both growth inhibiting and growth promoting molecules by 
endogenous reactive astrocytes is spatiotemporally coordinated, 
designing a strategy that targets astrocytes at the optimal time for 
therapeutic results is challenging.

Endogenous Response
Following a stroke, a considerable amount of circuit remapping 
takes place in both animal models (Winship and Murphy, 2008) 
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and humans (Dancause et al., 2005). This includes local axonal 
sprouting and remodeling in areas adjacent to the injury, as well 
as larger-scale hyperactivation of contralateral motor pathways 
(Tombari et al., 2004; Dancause et al., 2005). This rewiring can 
serve as a compensatory mechanism to redirect functional path-
ways of the brain but is often insufficient to induce meaningful 
recovery (Winhuisen et al., 2005).

It has been demonstrated in both rodents and humans that 
the brain attempts to replace lost cells through the stimulation 
of endogenous neural stem and progenitor cells (NSPCs) found 
in the subventricular zone (SVZ) of the lateral ventricles and the 
subgranular zone (SGZ) of the dentate gyrus (Morshead et  al., 
1994; Chiasson et al., 1999; Arvidsson et al., 2002; Yamashita et al., 
2006; Minger et al., 2007). The cells of the SVZ normally function 
to continually replace neurons of the olfactory bulb by migrating 
along the rostral migratory stream, but newly-born neuroblasts 
will be redirected to areas of ischemia in the striatum and cortex 
following injury (Pencea et al., 2001; Bedard and Parent, 2004; 
Kernie and Parent, 2010). In animal models, the time of NSPC 
activation will vary depending on the type and size of injury, from 
5 to 7 days posthypoxic/ischemic injury (Ikeda et al., 2005) and 
2 and 6 weeks after middle cerebral artery occlusion injury (Li 
et al., 2010). Due to the presence of cytotoxic factors and a lack 
of supportive ECM, the majority of NSPCs from the SVZ do not 
survive past 2 weeks (Arvidsson et al., 2002; Parent et al., 2002; 
Guerra-Crespo et  al., 2012) and their ultimate contribution to 
regeneration is suggested to be minimal (Wernig et al., 2004; Bithell 
and Williams, 2005; Bliss et al., 2010; Kernie and Parent, 2010). 
The cells of the SGZ, thought to be primarily neural progenitor 
cells (NPCs) (Nakatomi et al., 2002), actively regenerate neurons 
in the granular layer of the adult hippocampus and are activated 
following an ischemic insult (Lindvall and Kokaia, 2010). While 
there is evidence of neurogenesis in the hippocampus after global 
ischemia, the cells in the SGZ do not change their normal migra-
tory pathway following injury (Wiltrout et  al., 2007), limiting 
their therapeutic potential beyond hippocampal injury.

Biomaterials for Brain Repair
The goal of regenerative medicine therapies after stroke is to 
increase the amount of functional tissue available for recovery of 
lost neurological function. This is achievable by: (1) protecting 
degenerating neural cells in the peri-infarct region, (2) regen-
erating new tissue to replace lost neural cells using endogenous 
or exogenous stem cells, and (3) creating a growth-permissive 
environment for new neural cells and circuitry to survive and 
integrate into the host tissue.

Strategies for promoting repair have revolved around delivery 
of drugs (proteins, antibodies, and small molecules) and cells. 
While promising, progress has been hindered by multiple chal-
lenges. Drug therapies are severely impeded by the restriction of 
drug diffusion into the brain parenchyma by the BBB, rendering 
most systemically administered therapies ineffective. Cell trans-
plantation is limited by poor survival after delivery, a loss of sup-
portive ECM and vasculature in the injured brain, and difficulty 
achieving maturity and integration into host tissue.

Biomaterials refer to a class of materials that are tailored to pro-
vide a beneficial effect in the targeted biological system. They can 

be utilized in the brain as scaffolds to provide mechanical stability 
to the injured brain, to provide a substrate for endogenous repair, 
and to address challenges in drug and cell therapies. Namely, 
they can be used to: bypass the BBB, provide temporal control 
over drug delivery, localize drug and cell therapies to targeted 
sites, reduce the negative effects of the hostile microenvironment, 
increase drug stability and cell survival, provide modulatory cues 
to the brain, serve as scaffolds to endogenous and exogenous stem 
cells, and provide guidance cues for the creation of new neural 
circuits.

Material Properties of the Brain
The brain is one of the softest tissues in the body, with an elastic 
modulus reported in the range of 0.1–500 Pa in rodents (Christ 
et al., 2010) and 1–14 kPa in humans (Hiscox et al., 2016). The 
brain has a structurally heterogeneous anisotropy with distinct 
regions that vary in cellular composition and stiffness. Differences 
in stiffness are most pronounced between the cell-body contain-
ing gray matter and axon-dense white matter (~500 Pa in the gray 
matter of the rat brain versus ~300 Pa in the white matter; Kruse 
et al., 2008; Christ et  al., 2010), but substantial variation exists 
even within the same anatomical structure (Elkin et al., 2007). 
The anisotropy of the brain is also reflected in the inhomogeneous 
diffusion parameters; for example, diffusion in the corpus cal-
losum occurs more readily in parallel with the axon bundle than 
perpendicular to it (Syková and Nicholson, 2008). The structural 
integrity of the brain is mediated by the ECM, which consists 
primarily of collagen type IV, HA, fibronectin, laminin, and pro-
teoglycans such as CSPGs (Lau et al., 2013; Medberry et al., 2013). 
These molecules may be subdivided into three compartments 
with differing function: (1) the basement membrane that binds 
the CNS parenchyma and the vasculature, composed of collagen, 
laminin, fibronectin, and proteoglycans; (2) perineuronal nets 
that surround neuronal cell bodies, dendrites, and synapses, made 
primarily of CSPGs; and (3) the interstitial matrix that contains a 
network of molecules loosely bound to the basement membrane 
or perineuronal nets, consisting of proteoglycans, HA, and small 
amounts of collagen, elastin, laminin, and fibronectin (Lau et al., 
2013). The composition of the brain ECM is important in the 
injury response; whilst scar tissue in most regions of the body 
(i.e., skin, heart, muscle) is typically stiffer than the surrounding 
healthy tissue, the glial scar is actually softer than healthy tissue. 
This may be partly due to the lack of fibrous collagen type I in the 
brain (Moeendarbary et al., 2017).

Design Criteria for Brain Biomaterials
The delicate nature of brain tissue and the confined space of the 
skull imposes a unique set of design criteria for biomaterial use 
in the brain. The criteria for the material depend on the type of 
therapy but some common features emerge. The material should 
be biocompatible with brain tissue, which is more sensitive 
to mechanical and environmental stresses than other tissues 
(Saxena and Caroni, 2011). For maximum biocompatibility, the 
mechanical properties of the material should be similar to those 
of brain tissue, as stiffer materials lead to increased gliosis and 
worsened outcomes, whereas materials softer than the host tis-
sue lead to poor material stability at the implant site (Moshayedi 
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et al., 2016; Spencer et al., 2017). Due to the confined space of the 
skull the material must also be minimally swelling to avoid com-
pressing the brain tissue and increasing intracranial pressure. 
Injectable and shape-adaptable materials are favored over stiff 
implants because they require less invasive surgical procedures 
and can conform to heterogeneous spaces. The material must 
be degradable and resorbable as it has been demonstrated that 
long-term or non-biodegradable implants, such as those made 
from silicone, leads to chronic inflammation, scarring, and 
neuron death (Biran et al., 2005). Additionally, the degradation 
products must also be non-cytotoxic. The immunogenicity of 
the material has a significant impact on its biocompatibility. 
Although some inflammation is inevitable, this response can be 
reduced by choices in material design, such as having physical 
properties similar to native brain tissue (i.e., low modulus and 
elastic in nature) and low interfacial tension with biological 
fluids to minimize immune cell adhesion.

The intended use of the material will determine the impor-
tance of its properties. For drug delivery, the ability to control 
drug release is important for regenerative therapies and is 
largely dependent on material stability, drug solubility, and 
tissue penetration. For protein therapeutics the ability to shield 
against enzymatic degradation, especially in the acutely injured 
brain, is crucial. Yet, some materials or chemistries necessary for 
controlled drug release are incompatible with cell delivery due to 
degradation by-products or harsh fabrication conditions (Bible 
et al., 2012; Pakulska et al., 2013). For cell delivery, the material 
must be cytocompatible, able to promote cell adhesion to prevent 
anoikis, able to provide good cell distribution in order to prevent 
cell aggregation (often observed with transplants in saline; Ballios 
et  al., 2015), and degradable. Topographical features, bioactive 
ligands, or drugs incorporated into the material can be used 
to guide cell behavior and fate. Finding a material with all the 
desired properties is challenging, thus requiring the mechanical 
and chemical properties to be tuned.

Types of Biomaterials Used in the Brain
Biomaterials can be produced from both natural and synthetic 
materials. Natural materials are derived from ECM components 
(e.g., HA, collagen, fibrin, laminin, heparin, peptides, and 
proteins) or from xenobiotic sources [e.g., alginate, chitosan, 
Matrigel™, silk, methylcellulose (MC)]. Naturally derived poly-
mers are advantageous over synthetic polymers because they are 
made of components of the ECM or have properties similar to 
the ECM and are therefore less likely to stimulate an immune 
response (Nair and Laurencin, 2007). Synthetic biomaterials 
for the brain are commonly made of polyethylene glycol (PEG), 
poly(d,l-lactic acid), polyglycolic acid (PGA), poly(d,l-lactic 
acid co-glycolic acid) (PLGA), poly(d-lysine), poly(sebacic acid) 
(PSA), and polycaprolactone (PCL) (Drury and Mooney, 2003; 
Hoffman, 2012). Synthetic polymers are easier to tune and 
possess superior in vivo stability. Though they lack innate ECM 
components necessary for cell survival (such as adhesive ligands 
to prevent anoikis), they can be functionalized with bioactive 
ligands (Hoffman, 2012). Biomaterials used in the brain can take 
on the form of injectable hydrogels, nano- and microparticles, 
and electrospun fibers.

Hydrogels are of particular interest as scaffolds for tissue 
engineering and drug delivery because they are able to form 
ECM-mimetic architectures. They are polymer networks 
crosslinked via chemical bonds or physical interactions and 
are primarily composed of water. Their porous and shape 
adaptable nature is effective for filling the stroke cavity and 
allows diffusion of oxygen, nutrients, and drugs required by 
transplanted and host cells (Drury and Mooney, 2003). They 
can often be tuned to match the mechanical properties of the 
brain (Tyler, 2012). Hydrogel stability is dependent, in part, 
on the number of the crosslinks formed; generally, physically 
crosslinked gels are less stable than chemically crosslinked gels, 
but the chemistry required for crosslinking can be detrimental 
to encapsulated proteins and cells, and, in some cases, the host 
tissue (Lee and Mooney, 2001). The crosslinking method also 
affects the rheological properties of the gel; in situ crosslinking 
is preferred as it allows the gel to be injected and conform 
to the space (Stabenfeldt et  al., 2006). Ultraviolet crosslink-
ing can be used to chemically crosslink gels in  situ, but this 
method has not been extensively used in the brain due to 
limited UV light penetration. In addition to taking advantage 
of their innate properties, hydrogels can be modified with cus-
tomizable factors such as proteins or peptides using a number 
of methods, including: blending, adsorption, electrostatic 
interaction, chemical modification such as Schiff base reaction 
(Stabenfeldt et al., 2006), Diels-Alder click chemistry (Nimmo 
and Shoichet, 2011), covalent modifications (Tam et al., 2012), 
and/or affinity-based binding (Vulic and Shoichet, 2014). 
These modifications promote host interactions, support cell 
transplantation and control drug release.

Other polymeric biomaterials have been used extensively in 
drug delivery and tissue engineering as well; namely, particles 
and electrospun fibers. Particles are typically used for drug 
delivery and range in size from hundreds of nanometers to 
hundreds of micrometers (Soppimath et al., 2001; Taluja et al., 
2007). Synthetic polymers are the most widely used material for 
forming particles. Block copolymers of PLGA are widely used in 
the field of controlled drug delivery because they are one of the 
few biodegradable polymers approved for clinical use by the FDA 
(Langer, 1990; Cohen-Sela et al., 2009). The degradation rate of 
polymeric particles is typically tuned by varying the particle size 
and composition. A common concern with PLGA is acidification 
of the local environment due to its acidic degradation products, 
potentially causing further cellular and tissue damage; however, 
this is a concern mostly for larger polymeric implants vs. nano/
micro-particles where the acidic products can diffuse away. 
Particles made of natural materials, such as heparin (Hettiaratchi 
et al., 2014) and chitosan (Mo et al., 2010), avoid this issue but 
are less commonly used, in part due to their limited tunability. 
Synthetic material-derived electrospun scaffolds are attractive 
because their nanofibrous structure can recapitulate the micro-
structure of neural networks and can guide axons and neurites 
topographically (Schnell et  al., 2007; Nisbet et  al., 2009). Cell 
migration into these scaffolds is limited, but may be enhanced 
by inclusion of electrospun fibers in hydrogels, resulting in a cell-
permissive scaffold that retains the biomimetic microstructure 
(Bosworth et al., 2013).
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DRUG DeLiveRY

Goals of Drug Therapy
Drug therapy utilizes endogenous repair mechanisms for 
protecting neural cells, creating a growth permissive environ-
ment, stimulating endogenous neural stem cells (NSCs), and 
promoting brain rewiring and plasticity. The therapeutics may 
take the form of small molecules, peptides or proteins. However, 
the BBB limits tissue penetration of systemically-administered 
therapeutics, rendering conventional systemic delivery strategies 
(intravenous and oral) ineffective (Pardridge, 2012). The small 
fraction of drugs that cross the BBB are often exported by surface 
transporters on the BBB, such as G-protein–coupled receptors 
(Misra et al., 2003). Large systemic doses can increase drug diffu-
sion across the BBB but many compounds carry risks of systemic 
toxicity. Modifications to drugs and carrier-mediated transport 
across the BBB (Pardridge, 2003) may improve delivery but still 
expose the body to non-specific effects of the drug and require 
large doses due to systemic dilution. BBB breakdown after stroke 
does increase diffusion into the brain parenchyma, but is limited 
to the infarcted tissue and a narrow window of opportunity for 
administration; with reestablishment of the BBB, systemic deliv-
ery of therapeutics is again limited (Pardridge, 2012). Similarly, 
methods to disrupt the BBB, such as hypotonic solutions or 
focused ultrasound (Vykhodtseva et al., 2008), are non-specific 
and render the CNS vulnerable to circulating pathogens, making 
them unsuitable for sustained drug therapies.

Circumventing the BBB with local drug delivery increases the 
amount of drug at the target site, reducing systemic exposure and 
the risk of systemic toxicity. Clinical methods administer drugs 
by intracerebroventricular or intracortical infusion through a 
catheter (the Ommaya reservoir; Mead et al., 2014). These routes 
are fraught with issues, as fluid injection into the small ventricular 
spaces increases intracranial pressure and has been associated 
with hemorrhage, leakage of cerebrospinal fluid (CSF), and infec-
tion (Misra et  al., 2003; Mead et  al., 2014). Additionally, there 
is evidence that administration of drug into the CSF does not 
necessarily increase drug transport into the brain parenchyma 
(Pardridge, 2011). Convection enhanced delivery has been tested 
as a solution to increase drug distribution into the brain paren-
chyma by using a pressure gradient to drive convective transport 
through the interstitial spaces in the brain, achieving tissue 
penetration up to several centimeters vs. the millimeter range 
observed with diffusive transport (Mehta et al., 2017). However, 
this method is only conducive to bolus injections and cannot 
provide sustained delivery. Additionally, problems of increased 
intracranial pressure, damage to the infusion site, and damage 
due to needle insertion into brain tissue are still present.

Biomaterials that can be used for sustained local drug delivery 
to the brain in a minimally invasive manner have become impor-
tant for drug therapy because they address many of the challenges 
surrounding delivery. Here, we discuss the use of biomaterials to 
improve local drug delivery and control drug release. We focus on 
the advances that have been made using biomaterials and drugs 
to: (1) protect cells, (2) stimulate regeneration, and (3) promote 
plasticity (Table  1). The therapeutic effects of biomaterials on 
host tissue will also be discussed.

Local Drug Delivery to the Brain
Biomaterial-based local drug delivery systems can overcome the 
limitations of traditional catheter-based systems. Drug diffusion 
in the brain is affected by the size (38–64 nm between cells) and 
tortuosity (λ = ~1.7 in uninjured brain, ~2.1 in injured brain) of 
the extracellular space, interactions with cellular receptors, and 
affinities for charged moieties in the ECM (Thorne et al., 2008). 
Brain injury will change these parameters and reduce the effective 
diffusivity, thereby making it difficult to achieve therapeutic con-
centrations at distances greater than several centimeters. Tissue 
penetration—the distance the drug is found from the source at 
detectable concentrations—can be enhanced by increasing the 
drug concentration at the source, reducing binding to the ECM, 
or decreasing elimination and degradation. Providing a sustained 
source of drugs would maintain a higher driving force for diffusion 
and increase penetration. Shielding the protein from extracellular 
degradation can increase effective diffusion, as was shown by the 
threefold increased tissue penetration after PEGylating epider-
mal growth factor (EGF) (Wang et al., 2011b). In some cases, it 
is important to control the spatial distribution of the molecule, 
not just the tissue penetration, as this can profoundly affect 
physiological response. For example, mice expressing vascular 
endothelial growth factor-A (VEGF-A) isoforms with high ECM 
binding affinity, with steep concentration gradients and low tissue 
penetration, exhibited thin, highly branched blood vessels while 
non-ECM binding VEGF isoforms, with shallow concentration 
gradients and higher concentrations further away from the 
source, exhibited wide, leaky vessels (Ruhrberg et al., 2002).

Delivery can take two forms: intracranial delivery and epi-
cortical delivery (Figure 1). Intracranial delivery into the stroke 
infarct limits damage to healthy tissue. As the peri-infarct region 
is often the site of many protective and regenerative therapies 
(Carmichael et al., 2005), this also positions the drug closer to the 
site of action and reduces the diffusion distance, ensuring thera-
peutically relevant concentrations are reached. One limitation 
of intracranial delivery is the limited range of drug transport by 
diffusion (in the range of millimeters) that is adequate for animal 
models but may not scale to the larger human brain. However, 
postinjury plasticity is often mediated by the peri-infarct tissue 
located millimeters to tens of millimeters from the infarct bound-
ary zone (Nudo et al., 1996; Luft et al., 2004; Carmichael et al., 
2005; Brown et al., 2009). Thus, in most cases, the diffusive range 
seen in animal models may be translatable to humans.

Epi-cortical delivery has been explored as a minimally inva-
sive method of drug delivery to the brain (Cooke et  al., 2011; 
Tuladhar et al., 2015). With this method a drug-loaded scaffold 
is implanted onto the surface of the brain, thus avoiding tissue 
damage caused by needle insertion as is seen with intracranial 
and convection-enhanced delivery. In the mouse and rat, proteins 
and drugs delivered epi-cortically can diffuse through the cortex 
and reach the subcortical NSPCs located in the lateral ventricles. 
A drawback of this approach is the larger diffusion distance 
required to reach the site of action. Although this method may 
not be amenable to targeting the subcortical ventricles in the 
larger human brain due to limits of diffusive transport, treatments 
targeting the thin (1–5 mm) cortical regions of the human brain 
(Fischl and Dale, 2000) may be amenable to epi-cortical delivery.
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TABLe 1 | Biomaterials for local drug delivery to the brain.

Therapeutic Material description Outcome Reference

CsA CsA-loaded PLGA microparticles inside HAMC hydrogel 
implanted epi-cortically in Et-1 stroke-injured mouse and  
rat

Controlled local delivery for 2–3 weeks, reduced stroke infarct 
volume, proliferation increased in rat NSPC niche with CsA, 
reduced infarct volume with HAMC

Caicco et al. 
(2013) and 
Tuladhar et al. 
(2015)

EGF EGF-loaded HAMC hydrogel implanted epi-cortically in  
Et-1 stroke-injured mouse

PEG-modified EGF increased diffusion distance during 2-d 
release, increased proliferation of neuroblasts in SVZ

Cooke et al. (2011) 
and Wang et al. 
(2011b)

EPO EPO HAMC hydrogel implanted epi-cortically in Et-1  
stroke-injured mouse

EPO released to brain for 2 days, stroke cavity volume  
decreased with HAMC; further decreased with EPO. Reduced 
astrogliosis and microglia response with HAMC, increased 
number of proliferating neuroblasts in SVZ, reduced cell death  
in SVZ and more neurons

Wang et al. 
(2012b)

EGF + EPO EGF loaded PLGA nanoparticles and EPO loaded  
PLGA/PSA microparticles inside HAMC hydrogel 
implanted epi-cortically at 4 days poststroke in Et-1- 
injured mouse

Sequential and sustained release of PEG-EGF followed by 
EPO. Increased number of NSPCs in SVZ niche and increased 
proliferation. Reduced cavity size with EGF + EPO vs. vehicle  
and more neurons

Wang et al. (2013)

VEGF Alginate hydrogel loaded with VEGF165 by premixing 
alginate solution with lyophilized VEGF and crosslink  
at RT for 30 min, kept on ice until injected into striatum 
15 min before MCAO in young adult male SD rats

VEGF165 released from hydrogel found in brain for 1 week 
compared to <10 h from bolus injection, resulting in reduced 
infarct volume and reduced neurological deficit

Emerich et al. 
(2010)

VEGF encapsulated in poly(dimethylsiloxane-
tetraethoxysilane) and injected into injury cavity

Increased number of astrocytes and endothelial cells with  
VEGF release. The PDMS-TEOS material helped restore/ 
preserve brain shape, serving as a structural support

Zhang et al. (2007)

VEGF + Ang1 + Anti-
NOGOa

HA hydrogel chemically crosslinked with reversibly 
conjugated anti-NOGOa, loaded with VEGF and Ang1 
PLGA particles and implanted into MCAO-injured mice

Increased angiogenesis with VEGF and Ang1, reduced 
astrogliosis and microglial response and significant recovery  
with Ang1 and VEGF treatment

Ju et al. (2014)

Anti-NOGOa HA hydrogel chemically crosslinked with reversibly 
conjugated anti-NOGOa

Moderate behavioral recovery in a reaching task and increased 
nerve fiber growth

Ma et al. (2007)

BDNF HA hydrogel with collagen-binding domains to control 
BDNF release, tested in mice and non-human primate

Sustained BDNF release, over 3 weeks in mouse. Increased 
axonal sprouting in contralateral striatum, following existing 
axon patterns, concomitant with behavioral recovery. Increased 
neurogenesis (DCX and NeuN + BrdU)

Cook et al. (2017)

BDNF + AMPAkine HA hydrogel with collagen-binding domains to control 
BDNF release, injected into infarct with AMPAkine 
administered systemically in aged mice

Recovery seen with both BDNF and AMPAkine alone, further 
increased with combination. Increased expression of  
proplasticity signaling (e.g., p-CREB, p-AKT) with BDNF, 
AMPAkine, increased further in some cases by combination

Clarkson et al. 
(2015)

BDNF + GDNF BDNF and GDNF were separately encapsulated in  
PLGA particles to achieve different release rates and 
loaded into a biodegradable PEG hydrogel strand,  
injected into the substantia nigra and striatum of  
uninjured female SD rats

Achieved slow and long-term release of BDNF for over  
8 weeks, and faster release of GDNF over 28 days. Swelling  
was minimal. Slightly elevated astrogliosis but reduced 
microgliosis

Lampe et al. 
(2011)

NT-3 Chitosan microparticles loaded with NT-3 by adsorption 
onto particle surface and suspended in a collagen-1 
solution, injected into infarct in hippocampal TBI model

Chitosan carrier reduced gliosis and slightly increased axon 
regeneration. NT-3 increased axon regeneration into the injury 
site. Recovery in water maze task with chitosan carrier group;  
no further recovery with NT-3

Mo et al. (2010)

HGF or IGF1 HGF or IGF1 absorbed to gelatin hydrogel microspheres 
by incubation for 1 h. Injection into striatum of uninjured 
and MCAO-injured mice. Drugs were tested  
independently

Increased number of neuroblasts with IGF1 or HGF only when 
delivered in hydrogel carrier. No behavior tested

Nakaguchi et al. 
(2012)

Tuladhar et al. Biomaterials for Stroke Repair

Frontiers in Materials | www.frontiersin.org March 2018 | Volume 5 | Article 14

Controlling Drug Release
Protective and regenerative therapies require sustained drug 
exposure to be efficacious (Wieloch and Nikolich, 2006). In the 
absence of control mechanisms, drugs given by bolus injection are 
cleared in several hours and drug release from a hydrogel depot is 
typically complete within 2–4 days. The release window may be 
extended to several weeks or months by retarding diffusion out of 

the depot through encapsulation or immobilization in the matrix 
(Soppimath et al., 2001) or by affinity interactions with the matrix 
(Vulic and Shoichet, 2014).

Polymeric micro- and nano-particle systems control release by 
encapsulating drugs within a biodegradable polymer matrix. Drug 
release from bulk-degrading polymers, such as PLGA, involves 
multiple mechanisms (Han et  al., 2016). The initial release, 
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FiGURe 1 | Biomaterials can be used to delivery drugs by either (A) intracranial injection into space provided by the stroke injury or (B) epi-cortical implant on the 
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termed the burst phase, occurs from the surface bound drug and 
usually takes place within hours barring any interactions between 
drug and material. The next release phase occurs by diffusion of 
the drug through pores formed in the particle as the polymer 
degrades or swells. Finally, bulk degradation and polymer erosion 
results in the release of any remaining drug. Polymeric particles 
for drug release can range from several hundred nanometers to 
approximately 100 μm (Soppimath et al., 2001; Taluja et al., 2007). 
Microparticles made from natural or ECM components, such as 
heparin and chitosan (Agnihotri et  al., 2004; Lin et  al., 2009), 
have been used but they lack the tunability of common synthetic 
materials such as poly(esters) (e.g., PLGA; Mohammadi-Samani 
and Taghipour, 2015) and poly(anhydrides) (e.g., PSA) (Kumar 
et al., 2002). The release period from PLGA particles can be tuned 
from 1 to 2 weeks to several months by varying the relative ratios 
of lactic acid and glycolic acid monomers, the copolymer chain 
length, the molecular weight of PLGA, or the terminal functional 
groups (Pollauf et al., 2005). Multiple drugs can be incorporated 
into the same particle and the use of slow and fast degrading PLGA 
variants allows for precise temporal release that better mimics 
signaling patterns found in vivo (Richardson et al., 2001; Lampe 
et  al., 2011; Brudno et  al., 2013). In addition, double-walled 
particles can be made using a mix of two polymers (Pekarek 
et al., 1994). Here, a drug-loaded core is coated with a drug-free 
shell; using a polyanhydride for the shell will result in a delayed 
release, where the surface eroding shell degrades before the drug 
is released from the core. Combining a classical PLGA particle 
with this double-walled particle allowed the sequential release of 
EGF followed a week later by erythropoietin (EPO) (Wang et al., 
2013), mimicking the release paradigm of more invasive osmotic 
mini-pumps and cannulas used to stimulate endogenous brain 
NSPCs (Kolb et al., 2007) but in a minimally invasive manner.

Drugs can also be covalently immobilized within hydrogel 
matrices. The drug can act on cells at the hydrogel–tissue inter-
face and on infiltrating cells. Immobilized proteins can cause a 
drastically different tissue response compared to soluble protein 
by inducing differential changes in receptor internalization and 

trafficking (Clegg and Mac Gabhann, 2015) and in downstream 
signaling pathways (Chen et al., 2010b). Proteins can be immo-
bilized in a hydrogel using chemical conjugation (Ehrbar et al., 
2007). Drug release is dictated by the rate of hydrogel degradation, 
which can be tuned to be environmentally responsive to enzymes 
[e.g., MMPs (Purcell et al., 2014)] secreted by, for example, NSPCs 
(Barkho et al., 2008) or endothelial cells (Rundhaug, 2005).

Naturally occurring affinity interactions between proteins and 
the ECM have been employed in biomaterials through natural or 
functionalized binding sites that control release through transient 
hydrophobic and electrostatic interactions. A key advantage of 
these systems is that the harsh encapsulation process necessary 
for particle systems is avoided, preserving protein function and 
stability. Release can be tuned by modifying the strength of the 
affinity interaction, the concentration of binding ligand, and the 
rate of dissociation (Vulic and Shoichet, 2014). Heparin is the 
most popular platform for affinity release because it has a natural 
affinity for a number of heparin binding proteins relevant for 
regeneration [e.g., fibroblast growth factor (FGF), VEGF, insulin 
growth factor (IGF), platelet-derived growth factor, stromal-
derived factor (SDF), and bone morphogenic proteins (BMPs); 
Capila and Linhardt, 2002]. It has been used to form hydrogels 
and particles or to functionalize other materials (Sakiyama-
Elbert, 2014). To overcome the lack of specificity of heparin 
interactions, which is problematic in the heparin binding protein 
rich environment found in  vivo, a variety of solutions have 
been pursued and include: heparan sulfate variants, selectively 
desulfated heparin, and heparin fractions with protein-specific 
affinity (Wang et al., 2014). A drawback to this approach is the 
limited ability to tune the strength of the heparin–protein inter-
action and the inherent limitation to heparin-binding proteins. 
The creation of fusion proteins with SH3-domains that interact 
with SH3-binding peptides bound to a gel enables specific affin-
ity release strategies for a wider range of proteins (Vulic and 
Shoichet, 2012). This strategy allows for the controlled release 
of many proteins, including those too delicate for encapsulation 
and lacking affinity for heparin, as was demonstrated with the 
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enzyme chondroitinase ABC (ChABC) (Pakulska et  al., 2013). 
Multiple drugs can be released from the same vehicle with this 
system using the same material; however, the release rate of two 
or more drugs cannot be independently tuned. If the system is 
reversed whereby SH3-binding peptides are coexpressed with 
proteins and SH3 covalently bound to the hydrogel, controlled 
release of multiple proteins with independent release rates will 
be dictated by the unique SH3-binding peptide on each fusion 
protein (Delplace et al., 2016). Advances in computational design 
of protein–protein interactions and phage display libraries will 
increase the variety of binding interactions available for affinity 
release strategies, increasing their utility (Pakulska et al., 2016b). 
Recently, innovative work has used electrostatic interactions 
to control drug release from PLGA particles without the need 
for encapsulation (Pakulska et al., 2016a). The key advantage to 
this approach is the ability to control release of many relevant 
molecules [e.g., SDF, neurotrophin-3 (NT-3), and brain-derived 
neurotrophic factor (BDNF)] using the same nanoparticle, avoid-
ing the harsh encapsulation process that often denatures proteins 
and reduces drug loading. Release can be tuned simply by 
varying nanoparticle size, concentration, and degradation rate. 
One limitation to the system is that the anionic particle can only 
interact with positively charged proteins. Modifying the particle 
with a positively charged component, such as chitosan, may allow 
electrostatic control of negatively charged proteins (Kumar et al., 
2004). Laponite, derived from clay, can electrostatically control 
release of negatively charged proteins (Koshy et  al., 2018), but 
the non-biodegradable silica degradation products make the 
platform incompatible with the brain.

Protecting Neural Cells
Neuroprotective strategies for stroke have been investigated 
to save existing cells and neural circuits by either (a) directly 
reducing cell death, demyelination, and axon death in the stroke 
peri-infarct or (b) mitigating secondary damage caused by excito-
toxicity, inflammation, and oxidative stress. However, the utility 
of this approach was brought into question when it was noted, in 
2006, that although 1,026 neuroprotective agents had been identi-
fied and tested in preclinical studies (O’Collins et al., 2006) and 
almost 200 had reached various stages of clinical trial, nearly all 
had failed to demonstrate clinical efficacy. tPa, first tested in 1988, 
was the only exception (Stroke trials registry page, http://www.
strokecenter.org/trials) (Minnerup et  al., 2012). Discrepancies 
between preclinical and clinical studies (e.g., population age, 
scope of injury, and primary endpoint) likely contribute to the 
clinical failures (Sutherland et al., 2012). Despite the lack of clini-
cal translation, neuroprotective strategies are still actively being 
investigated and evaluated using more targeted approaches based 
on mechanistic studies (Rajah and Ding, 2017).

The advent of biomaterials may give new life to neuropro-
tective molecules that have previously failed due to poor BBB 
penetration and low concentrations in poorly perfused ischemic 
regions. VEGF released from an alginate hydrogel provided 
exposure for 1 week, compared to <10 h from a bolus injection, 
resulting in reduced stroke infarct size and neurological deficit 
(Emerich et al., 2010). The materials themselves offer some neu-
roprotection by providing structural support, attenuating gliosis 

and inflammation, and reducing cavitation. Bioactive materials, 
like HA, reduce inflammation through the CD44 receptor by 
inhibiting leukocyte migration and inflammation (Forrester 
and Wilkinson, 1981; Cooper et al., 2008), resulting in reduced 
microglial activation (Wang et  al., 2012b) and stroke infarct 
volume (Hou et al., 2005; Austin et al., 2012; Wang et al., 2013; 
Tuladhar et al., 2015).

Recently, the effect of hydrogel structure alone on tissue 
repair was investigated by comparing a micro-porous HA 
hydrogel, synthesized by crosslinking HA-RGD microbeads 
in situ, to a nano-porous hydrogel while keeping the bulk moduli 
and biochemical signaling the same (Figures 2A–E) (Nih et al., 
2017). Both structures reduced the thickness of the glial scar 
and degree of macrophage activation in the peri-infarct region; 
however, the magnitude of this effect was greatly increased in 
the microporous gel. Additionally, the microporous gel reduced 
macrophage activity within the stroke infarct. To have even 
greater benefit, neuroprotective drugs may be delivered from a 
microporous gel, as has been shown with gelatin microspheres to 
deliver anti-inflammatory (Jin et al., 2011b) or proregenerative 
molecules.

Stimulating endogenous Stem Cells
Stimulating endogenous NSPC populations in the brain 
requires therapeutics to influence their proliferation, survival, 
migration, and differentiation (Wiltrout et  al., 2007; Hunt and 
Morshead, 2010; Guerra-Crespo et al., 2012; Wang et al., 2012a). 
An array of growth factors and cytokines has been found to be 
important in endogenous NSPC signaling. Often, these factors 
have multiple and overlapping effects on the NSPCs. Many of 
the factors investigated for endogenous NSPC stimulation are 
naturally upregulated within hours to days after stroke as part 
of the injury response, but this is transient and in the majority 
of cases returns to basal levels within a week. These molecules 
include growth factors and cytokines to stimulate: proliferation 
[e.g., EGF, FGF2, VEGF, human chorionic gonadotrophin (hCG), 
hepatocyte growth factor (HGF), BDNF, IGF1], survival [e.g., 
VEGF, EGF, BDNF, glial-derived neurotrophic factor (GDNF)], 
migration (e.g., SDF1a, VEGF, BDNF), and differentiation (e.g., 
BDNF, EPO, GDNF, BMP4, HGF). The only drugs that have been 
tested clinically are hCG and EPO, and while preclinical results 
demonstrated increased endogenous NSPC mobilization and 
neuronal differentiation (Belayev et  al., 2009), the clinical trial 
was inconclusive (Cramer et al., 2010). Although the clinical trial 
failed to demonstrate a benefit compared to saline controls, and 
was thus prematurely terminated, it was found in post hoc analysis 
that the subgroup of patients also receiving occupational therapy 
benefited from hCG and EPO treatment. Small molecule drugs 
clinically used for other therapeutic purposes have been found 
to stimulate NSPCs and promote recovery. Cyclosporine (CsA), 
a common immunosuppressant, is found to increase NSPC 
survival in vitro and in vivo, and to reduce stroke infarct volume 
(Hunt et al., 2010; Erlandsson et al., 2011; Sachewsky et al., 2014). 
Metformin, a drug for diabetes, stimulates neurogenesis in the 
hippocampus, improving memory in injured mice (Wang et al., 
2012a); a clinical trial is underway to evaluate its potential in 
treating brain injury in children (NCT02040376).
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FiGURe 2 | Manipulating the biomaterial structure can drastically change the host response. (A) A microporous (MAP) hydrogel was synthesized using HA-RGD 
microbeads. The gel had the same bulk modulus and chemical structure as a nanoporous hydrogel. Representative images of the (B) astrocytic and (C) microglial 
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permission from Nih et al. (2017).
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Many studies have demonstrated improved outcomes when 
combining regenerative strategies with biomaterial delivery 
systems for controlled release of drugs. Controlled release of 
HGF and IGF1 from gelatin microspheres increased the number 
of neuronal progenitors while bolus IGF1 or HGF injections 
failed to stimulate the NSPCs (Nakaguchi et al., 2012). Although 
controlled release may be achieved through infusion strategies, 
this method is deleterious to the NSPC niche and may negate 
any beneficial effects of delivered factors (Wang et  al., 2013). 
Intracortical BDNF injections can stimulate NSPCs but requires 
extended exposure (Schabitz et al., 1997). BDNF modified with 

a collagen binding domain increased retention in the tissue by 
binding to collagen in the ventricular NSPC niche, significantly 
stimulating NSPC proliferation and neurogenesis compared 
to unmodified BDNF that lacks the ability to bind to the niche 
(Guan et al., 2012). Incorporating the collagen binding domain in 
a HA hydrogel results in drug release over multiple weeks (Cook 
et  al., 2017). Stroke-injured animals receiving BDNF from this 
hydrogel recovered motor function accompanied by NSPC pro-
liferation and neurogenesis. However, because BDNF can exert 
recovery through a variety of mechanisms (e.g., synaptogen-
esis and angiogenesis) it is unclear how recovery was mediated. 

99

http://www.frontiersin.org/Materials/
http://www.frontiersin.org
http://www.frontiersin.org/Materials/archive


Tuladhar et al. Biomaterials for Stroke Repair

Frontiers in Materials | www.frontiersin.org March 2018 | Volume 5 | Article 14

Epi-cortical EGF and EPO delivery with HAMC, a hydrogel 
blend of HA and methycellulose, increased NSPC proliferation 
and neurogenesis, but the short release window (2 days) may be 
insufficient for substantial regeneration and long-term recovery 
(Cooke et  al., 2011; Wang et  al., 2012b). Previous work with 
EGF and EPO demonstrated that sequential delivery of the two 
compounds into the ventricle with a cannula, for 7 days each, pro-
duced significant tissue regeneration and motor recovery (Kolb 
et al., 2007). Therefore, to mimic this release profile a composite 
delivery system using HAMC, PLGA nanoparticles, and double-
walled PLGA/polyanhydride microparticles was used to achieve 
sequential and extended release of EGF and EPO (Wang et al., 
2013). This bioengineered strategy increased NSPC proliferation 
and survival compared to cannula delivery in a mouse model of 
stroke. This appears to be partly caused by reduced glial scar-
ring and microglial activation by the vehicle, likely mediated by 
the HA component, and increased cell death in the SVZ due to 
cannula insertion. Controlled release of individual drugs was not 
tested, so it is unclear whether a synergistic effect of EGF and 
EPO was necessary for the effects reported. While a clear tissue 
benefit was seen, it is unknown whether this was accompanied by 
behavioral recovery. Epi-cortical delivery has also been tested in 
the larger rat model with cyclosporine, demonstrating sufficient 
tissue penetration to stimulate proliferating endogenous NSPCs 
(Tuladhar et al., 2015).

In a few cases, the material alone has had an impact on host 
NSPCs. The aforementioned micro-porous HA-RGD hydrogels 
stimulated NSPC proliferation in the SVZ—an effect not seen 
with nanoporous gels (Figures 2A,F–H) (Nih et al., 2017). While 
neuroblasts were reported to have migrated into the gels, it is 
unclear how the material stimulated NSPC proliferation. Aligned 
PCL nanofibers were used to promote NSPC migration into the 
injury site; however, long-term neuroblast survival required 
inclusion of a BDNF-mimetic peptide (Fon et al., 2014).

Promoting Plasticity
Neuroplasticity is defined as the brain’s ability to modify its neural 
circuitry and is necessary to restore function (Dimyan and Cohen, 
2011). Spared or newly generated tissue must be integrated into 
the uninjured neural network and adapt to functional demands. 
This requires the creation of new connections, modification of 
existing neural circuitry, and removal of plasticity inhibiting 
elements. Agonists of Trk receptors are involved in neuronal 
plasticity (Thoenen, 1995) and the two factors most investigated 
for stimulating this mechanism are NT-3 and BDNF. NT-3 has a 
key role in the development and repair of motor circuits (Patel 
et al., 2003; Chen et al., 2006) and delivery to stroke-injured ani-
mals increases axonal sprouting (Duricki et al., 2016). Chitosan 
particles suspended in a collagen 1 solution have been used to 
deliver NT-3 to the hippocampus in a traumatic brain injury 
(TBI) model (Mo et al., 2010). Interestingly, the chitosan particles 
alone resulted in increased axonal sprouting compared to injury-
only groups, while NT-3 further increased the amount of axon 
regeneration. However, behavioral recovery was significant with 
the chitosan vehicle alone and, surprisingly, the addition of NT-3 
did not increase this recovery. This lack of additional recovery 
with NT-3 may not necessarily indicate that NT-3 is ineffective; 

rather, the axonal sprouting seen with chitosan may be sufficient 
for behavioral recovery and any additional improvement requires 
other mechanisms. In contrast, in a rat spinal cord injury model, 
a HAMC and PLGA-based NT-3 delivery system induced both 
axonal sprouting and motor recovery (Elliott Donaghue et  al., 
2015). The difference in outcomes may be due to differing etiolo-
gies in the two CNS compartments and different requirements 
for recovery.

Modifying existing neural circuits requires synaptic plastic-
ity at axon-dendrite terminals to strengthen or weaken existing 
connections and appears to be mediated by BDNF. Delivering 
BDNF improves motor recovery (Müller et  al., 2008) while 
blocking BDNF signaling reduces any recovery seen with 
plasticity-dependent rehabilitative training (Ploughman et  al., 
2009). Although BDNF expression is upregulated after stroke 
injury this effect is transient and is reduced with age, making 
plasticity-based recovery paradigms difficult in chronic stroke 
and aged populations. While systemically delivered AMPAkine 
stimulated recovery in young animals, by inducing BDNF release 
(Clarkson et al., 2011), recovery was dampened in aged animals 
(Clarkson et al., 2015) due to reduced BDNF expression in this 
population. Interestingly, combining the systemically adminis-
tered AMPAkine with local BDNF delivery through a HA-based 
hydrogel modified with collagen-binding domains improved 
recovery in aged animals to levels comparable to young animals 
(Clarkson et al., 2015). This is one of the few studies involving 
biomaterials that investigated mechanistic pathways mediat-
ing this process, demonstrating that BDNF delivered from the 
hydrogel upregulates canonical BDNF signaling pathways. The 
delivery system uses the affinity of BDNF for collagen to control 
release and increased local BDNF concentrations for at least 
3 weeks postimplant (Cook et al., 2017). Additionally, intracranial 
delivery of the gel to a non-human primate stroke model resulted 
in sufficient BDNF accumulation in the peri-infarct area (within 
1–2 cm), a distance relevant for recovery in humans (Nudo et al., 
1996; Luft et  al., 2004). Interestingly, the drug concentration 
around the implant varied depending on the direction measured, 
highlighting the anisotropy of the brain and its effect on diffusion. 
Importantly, the authors highlight that BDNF only increases the 
strength of existing connections and cannot overcome growth 
inhibitors. Thus, BDNF treatment alone may be in insufficient 
in cases where new connections need to be made, such as when 
existing connections are insufficient to support adaptive plasticity, 
or in chronic stroke, where glial inhibition is a significant barrier.

The adult brain ECM and glial cells express many growth 
inhibitory molecules that limit synaptogenesis and axonogenesis, 
such as the neurite outgrowth inhibitor (Nogo) (Schwab and 
Strittmatter, 2014). Inhibiting the activity of these molecules, 
such as with an anti-NogoA antibody, enhances regeneration, 
plasticity, and recovery (Buchli and Schwab, 2005). A HA hydro-
gel was used to deliver a Nogo66 receptor antibody in stroke-
injured rats; although increased nerve fiber growth was seen, it 
was insufficient to produce any significant behavioral recovery 
(Ma et  al., 2007). Combining NogoA inhibition with a growth 
stimulatory molecule may produce a synergistic effect on axon 
growth. Controlling the release of anti-NogoA and codelivering 
it with NT-3 was investigated using a blend of HAMC and PLGA 
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particles; increased axon density and improved motor function 
were achieved in a rat spinal cord injury model (Elliott Donaghue 
et al., 2016). Perineuronal nets are ECM structures surrounding 
axon terminals that stabilize synapses in the healthy brain but 
inhibit new connections in the injured and adult brain (Wang and 
Fawcett, 2012). ChABC has been found to increase synaptic plas-
ticity by transiently destabilizing these perineuronal nets (Massey 
et al., 2006). Biomaterial delivery systems have been developed 
for ChABC (Pakulska et al., 2013), to stimulate recovery in spinal 
cord injury (Pakulska et al., 2017), and can be applied to existing 
delivery paradigms in the brain.

CeLL DeLiveRY

Goals of Cell Therapy
As an alternative to drug delivery, many strategies focus on the 
delivery of an exogenous source of cells to treat stroke. The aim of 
cell transplantation is to increase the survival of endogenous cells 
as well as to directly replace damaged tissue to promote regen-
eration. Cell types used for transplantation to the brain include 
adult NSCs, mesenchymal stromal cells (MSCs), embryonic 
stem cell (ESC)- or induced pluripotent stem cell (iPSC)-derived 
NPCs, and directly reprogrammed induced neural stem cells 
(Yamashita et  al., 2017). Early research also included undiffer-
entiated pluripotent stem cells, however, their use has become 
limited due to the risk of teratoma and tumor formation (Kawai 
et al., 2010; Yamashita et al., 2011). Transplanted cells have been 
demonstrated to promote stroke recovery in animal models 
through a variety of mechanisms: stimulating both endogenous 
NPCs and endothelial progenitor cells to migrate to ischemic 
sites (Bliss et al., 2010; Lindvall and Kokaia, 2011; Dailey et al., 
2013), stimulating the proliferation of neuroblasts in the SVZ 
(Chen et al., 2003; Jin et al., 2011a; Zhang et al., 2011), promoting 
angiogenesis in the peri-infarct zone (Horie et al., 2011; Zhang 
et al., 2011; Oki et al., 2012), and decreasing infarct size (Chen 
et al., 2010a; Gomi et al., 2012; Oki et al., 2012). In addition to 
the effects on endogenous tissue, transplanted cells can integrate 
into the existing neural circuitry, reestablishing connections with 
host cells (Niclis et al., 2017); however, it remains unclear if these 
new connections contribute directly to recovery.

Although cell transplantation can stimulate stroke recovery 
in animal models, appreciable long-term survival of cells con-
tinues to remain elusive, with an estimated survival of only 2–8% 
of the initial transplant population (Nakagomi et al., 2009). This 
poor survival is attributed to cell death during the transplanta-
tion process, lack of endogenous ECM and vasculature in the 
stroke cavity, lack of prosurvival signals, and low rates of cell 
differentiation and integration (Modo et al., 2002; Kelly et al., 
2004; Hicks et al., 2009). Biomaterials are becoming an impor-
tant part of the cell delivery paradigm, enhancing the success 
of cell transplantation through four main strategies, discussed 
herein, by providing: (1) a platform for in vitro predifferentia-
tion of cells prior to transplantation; (2) a delivery vehicle to 
reduce acute cell death during the delivery process; (3) a scaffold 
for cell adhesion and survival after delivery; and (4) a platform 
for the codelivery of cells and factors to promote cell differentia-
tion and integration (Figure 3). Most biomaterials used for cell 
transplantation to the brain are hydrogels, and thus will be the 
focus of this discussion. It is also important to note that many 
strategies are multifaceted, involving ECM components and 
proteins that will enhance cell survival, direct differentiation, 
and/or recruit endogenous cells.

Biomaterials for Cell Therapy
Early studies of biomaterials for cell transplantation focused on 
the use of synthetic polymers such as PEG, a highly hydrophilic 
polymer that is biocompatible and non-immunogenic (Bjugstad 
et al., 2008; Bhattarai et al., 2010). PEG can be combined with 
other synthetic polymers, such as PLGA, or with natural 
polymers. PEG has been used to design hydrogels for cell culture, 
incorporating FGF2 and type I collagen (Mahoney and Anseth, 
2007), or heparin and RGD (Freudenberg et al., 2009) to culture 
embryonic NSCs, which were both found to increase cell viability. 
Other synthetic polymers [PGA, PLGA, poly(d-lysine), PCL] are 
used for a range of applications including: in vitro coating of poly-
carbonate or plastics [e.g., poly(l-lysine); Jongpaiboonkit et al., 
2008], scaffold particles for structural support for cell transplan-
tation (e.g., PLGA; Bible et al., 2009), electrospun nanoparticles 
(e.g., PCL; Horne et al., 2010), and 3D scaffolds (e.g., PGA; Park 
et al., 2002). For example, when a PGA 3D scaffold was used to 
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TABLe 2 | Naturally-derived biomaterials for cell delivery to the brain.

Biomaterial Cell type Modifications Outcome Reference

Physical blend of hyaluronan/
methyl cellulose (HAMC)

Adult neural stem/progenitor cells None Behavioral recovery, better cell distribution 
within brain compared to saline

Ballios et al. (2015)

IPSC-derived neural progenitor cells Cell survival to 7 days; improved 
sensorimotor performance

Payne et al. (2017)

Matrigel™ ESC-derived progenitor cells None Reduction in cavity volume; improved 
sensorimotor and cognitive performance

Jin et al. (2010)

Hyaluronan (HA) IPSC-derived progenitor cells MMP-degradable or non-
degradable crosslinker

Increased DCX, better cell distribution 
with hydrogel; adding MMP-degradable 
crosslinker reduced microglial response

Lam et al. (2014)

BDNF, BMP4, laminin, and/or 
fibronectin

Growth factors promoted astrocytic 
differentiation; adhesion proteins promoted 
neuronal differentiation

Moshayedi et al. (2016)

Primary rodent NPCs Crosslinked with heparin Increased cell survival; decreased  
microglial response compared to  
cells alone

Zhong et al. (2010)

Collagen ESC-derived neural stem cells Laminin or fibronectin Collagen I gel with laminin improved cell 
survival a behavioral recovery over untreated 
group

Tate et al. (2009)

Fibrin iPSC-derived NPCs None Fibrin glue + cells reduced infarct volume, 
promoted functional recovery

Chen et al. (2010a)

Reduced infarct volume, inflammation and 
gliosis; increased recovery, angiogenesis 
and white matter tract integrity

Lee et al. (2017)

Self-assembling peptides Primary rodent NSCs IKVAV peptide RADA peptide hydrogel with and without 
IKVAV; enhanced cell survival and neuronal 
marker expression

Cheng et al. (2013)

Human iPSC-derived NPCs IKVAV peptide Reduced brain atrophy, long-term  
functional recovery, and neuronal 
differentiation

Somaa et al. (2017)
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deliver NSCs into the stroke-injured neonatal mouse brain and 
compared to cell delivery in saline, the scaffold attenuated the 
immune response, reduced glial scarring, allowed penetration of 
blood vessels, and promoted differentiation of delivered cells into 
neurons and glia (Park et al., 2002). While there are advantages to 
synthetic biomaterials, there are also drawbacks such as biocom-
patibility issues with many of their acidic degradation products 
and their inability to interface with native cells and enzymes 
(Hoffman, 2012).

Natural hydrogels are favored for cell transplantation after 
stroke due to the similarity in mechanical properties with native 
brain tissue (i.e., soft consistency and elastic nature) (Table 2). 
One natural hydrogel used for cell delivery is Matrigel™, a 
material derived from a mouse sarcoma cell line primarily 
composed of laminin-1 and collagen IV and containing many 
adhesive molecules and growth factors that promote cell viability. 
Transplantation of mouse ESC-derived NPCs in Matrigel™ into 
the striatum resulted in a larger graft volume and increased the 
number of tyrosine hydroxylase-positive dopaminergic neurons 
(Uemura et  al., 2010). Unfortunately, as Matrigel™ is derived 
from a xenobiotic source, it has high batch-to-batch variability 
and is unsuitable for clinical use (Jin et  al., 2010). In addition, 
Matrigel™ gels at room temperature through hydrophobic 
interactions between the components, causing it to be technically 

challenging for cell injection. To retain the desirable properties of 
Matrigel™ without its drawbacks, other strategies have favored 
the use of ECM-based hydrogels such as HA, fibrin, and collagen 
as they are well-defined and tunable (Nair and Laurencin, 2007; 
Nih et al., 2016).

As an alternative to isolating one individual component of 
the ECM to create a hydrogel, researchers have also derived a 
multicomponent hydrogel from decellularized natural ECM. 
Porcine bladder-derived ECM hydrogels promote in  vitro 3D 
neurite extension (Medberry et  al., 2013), and when injected 
into the cavity of stroke-injured rat brain led to infiltration of 
neural progenitors and oligodendrocytes into the gel-filled 
space (Massensini et  al., 2015; Ghuman et  al., 2016). Natural 
ECM hydrogels have also been derived from brain and spinal 
cord, and some have been electrospun with other components 
for in vitro culture to demonstrate neurite extension (Baiguera 
et al., 2014; De Waele et al., 2015). One study comparing bladder, 
spinal cord, and brain ECM reported that there were differ-
ences in the chemical composition and mechanical properties 
between them, and that while all three were able to promote 
neurite formation, brain ECM promoted the longest and most 
numerous neurites in a neuroblastoma cell line (Medberry 
et al., 2013) indicating the superiority of brain-derived ECM for 
neuronal culture.
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In Vitro Cell Priming
Biomaterials can be used to culture cells prior to transplantation, 
enhancing the success of cell therapies. It has been demonstrated 
that priming cells in  vitro through a variety of mechanisms— 
guiding differentiation, stimulating the secretion of factors, or 
exposing cells to stressful conditions—can increase their thera-
peutic efficacy once delivered to the brain (Rosenblum et al., 2015; 
Lee et al., 2017). It has also been suggested that predifferentiating 
pluripotent or multipotent cells toward a neuronal lineage prior 
to transplantation can increase tissue and behavioral recovery 
(Fricker-Gates et al., 2002; Tornero et al., 2013). Culturing adult 
and embryonic NPCs in 3D HA hydrogels can promote differen-
tiation and enhance neurite outgrowth and synapse formation 
(Ma et al., 2004; Hou et al., 2005; Khaing and Seidlits, 2015). The 
addition of factors into HA hydrogels can enhance the desired 
priming effects. For example, a design of experiment approach 
was used by Lam et al. to optimize the concentration of adhesive 
peptides—RGD, IKVAV, and YIGSR—on HA hydrogels for 3D 
NPC survival and differentiation (Lam et al., 2015). The authors 
determined that the optimal concentration of each peptide was 
not the often used 1:1:1 ratio, and that strategic optimization 
of each factor concentration can lead to enhanced survival and 
neurite length. Another study combined both RGD and heparin 
components within a HA hydrogel using click chemistry to cul-
ture hPSC-derived NPCs and differentiate them into midbrain 
dopaminergic neurons for transplantation (Adil et al., 2017). The 
use of both factors increased cell differentiation, neurite exten-
sion, and resulted in functional neurons that could fire action 
potentials in  vitro. When transplanted into the rat striatum 
these cells showed a fivefold increase in cell number compared 
to unencapsulated controls. Lastly, in an approach targeting cell 
migration, Addington et  al. (2015) aimed to enhance the NSC 
response to in  vivo SDF-1α gradients by priming the cells in 
culture with HA-laminin hydrogels. The authors reported that 
culturing NSPCs in these gels resulted in an increased response 
to SDF-1α gradients in  vitro, with increased CXCR4 recep-
tor expression after 48  h of culture that was dependent on the 
concentration of HA and laminin used. In a follow-up study, the 
researchers transplanted HA-laminin-primed NSPCs into intact 
mouse brains and reported an increase in cell migration out of the 
transplantation site that was dependent on the SDF-1α/CXCR4 
interaction (Addington et al., 2017).

improving Cell Delivery
The majority of intracerebral cell delivery strategies are syringe-
based. Necessary steps in the transplantation paradigm, such 
as preparation of cells for transfer from culture into a syringe, 
and injection of cells into the brain, can result in a substantial 
amount of cell death (Rossetti et  al., 2016; Payne et  al., 2017). 
Small-bore needles are favored for cell delivery as they are 
minimally-invasive for the host tissue; however, they increase the 
mechanical disruption and shear stress that cells experience dur-
ing injection (Rossetti et al., 2016). Other variables such as time 
between preparation and implantation of cells, concentration of 
cells, needle length, rate of injection, and suspension medium all 
impact the survival of cells (Heng et al., 2009; Amer et al., 2015; 
Rossetti et al., 2016). Although not often reported, this acute loss 

of cells can impact the therapeutic success of cell transplantation 
at the onset of delivery.

The ability of biomaterials to reduce acute cell death has been 
tested using several hydrogel systems. The extensional shear stress 
that cells experience as they pass through the comparatively large 
diameter syringe into the smaller diameter needle can be reduced 
by encapsulation in a biomaterial. Amer et al. (2015) investigated 
the effect of the vehicle during injection on fibroblast viability 
using crosslinked or non-crosslinked alginate gels, as well as a 
high viscosity carboxymethylcellulose solution, and determined 
that only the crosslinked alginate hydrogel significantly increased 
acute viability of cells. It has been suggested that crosslinked 
hydrogels can undergo plug flow where the hydrogel at the inter-
face of the syringe and needle will undergo shear thinning and 
this acts as a lubricant to the inner core of the gel, thus reducing 
the shear stress and extensional forces experienced by the cells. 
A crosslinked alginate hydrogel also increased viability of human 
umbilical vein endothelial cells and mouse NPCs immediately 
after injection, from 59% survival in saline to 89% in the hydrogel 
(Aguado et al., 2011); however, the authors did not test the hydro-
gel for long-term cell culture or in vivo viability, which could be 
impacted by the hydrogel crosslinking, which determines the 
elastic modulus and the gel stiffness (Banerjee et al., 2009). HA 
also promotes iPSC-NPC viability when high concentrations 
of cells (i.e., 60–90k cells/μL) were injected through a needle of 
28-gage or higher compared to a buffer solution (Lam et al., 2014). 
Interestingly, viability can vary depending on the susceptibility of 
the specific cell type to damage. For example, a mature neuronal 
phenotype experiences more cell death with the use of a HA-MC 
gel than less-differentiated NPCs (Payne et al., 2017).

A single scaffold can be used to first culture and then deliver 
cells into the brain, avoiding cell death due to dissociation and 
supporting cell survival and function both pre- and postinjection. 
Electrospun synthetic poly(desaminotyrosyl tyrosine ethyl ester 
carbonate) microfibers were used to accelerate the differentiation 
of human iPSCs into induced neuronal cells in  vitro (Carlson 
et  al., 2016). Cells grown and differentiated on these fibers 
and transplanted into the mouse striatum survived better than 
dissociated cells alone. In an interesting approach, the Cullen 
lab devised micro-tissue engineered neural networks (micro-
TENNs) to deliver preformed networks of axonal tracts both with 
and without astrocyte support (Struzyna et al., 2015; Winter et al., 
2016). These constructs consist of an outer columnar agarose shell 
that is filled with an ECM hydrogel, such as collagen or laminin. 
Cells are then either seeded at one end of the tube where they 
extend neurites through the construct, or are dispersed along the 
length of the construct and cultured to create a neural network 
that can then be transplanted directly into the brain. In addition, 
once formed, the neural network can be removed still intact from 
the construct for further culture or immunochemical analysis. 
Micro-TENNS can be inserted directly without the use of a 
needle into the brain and, in naïve rats, resulted in cell survival 
for up to 1 month, maintenance of an axonal network, and short-
distance integration into the host tissue (Struzyna et al., 2015). 
Coculturing neurons along astrocyte networks within collagen 
hydrogel micro-columns resulted in neurites that extended along 
the astrocytic bundles, mimicking the glial tube of the rostral 
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migratory stream that guides neuroblasts in vivo (Winter et al., 
2016). Although promising, one potential issue with these con-
structs is scaling up for humans; it is unclear how much larger 
the scaffolds would need to be to traverse damaged areas in the 
human brain, and whether this would affect insertability and cell 
viability. In addition, material degradation and cytocompatibility 
of bioresorption products require further investigation.

increasing Cell Retention and Survival
Cell Retention
Although cell delivery can be achieved via intravascular or intrac-
erebroventricular delivery, the preferred route is directly into the 
stroke site (Jin et al., 2005; Bliss et al., 2010). The infarct provides 
a convenient space for delivery of a relatively large volume of cells, 
avoiding damage to nearby intact tissue while also localizing cells 
to the potentially salvageable tissue in the peri-infarct (Zhong 
et  al., 2010; Willing and Shahaduzzaman, 2013; Ballios et  al., 
2015). Smith et al. compared cell transplantation to the intrac-
erebroventricular or intraparenchymal peri-infarct locations and 
after 14 weeks only found surviving cells when delivered into the 
intraparenchymal peri-infarct (Smith et al., 2012). However, the 
advantages of injection into the infarct also come with obstacles: 
there is a lack of ECM and vasculature to retain cells at the site of 
injection and support survival, the presence of proapoptotic sig-
nals from surrounding cells, and immune cell infiltration (Modo 
et al., 2002; Kelly et al., 2004; Hicks et al., 2009). Biomaterials can 
provide a scaffold to fill the stroke cavity, providing a substrate for 
cell adhesion and aiding in cell distribution and retention at the 
injection site to prevent washout into the CSF.

Cell retention immediately after injection into the brain is 
important for long-term cell survival and functional recovery. If 
injected in a saline solution, cells can backflow out of the brain tis-
sue through the needle tract made by the injection (Ballios et al., 
2015). A hydrogel system that can gel in situ is ideal as it provides 
an injectable material that becomes more viscous once in the 
brain and retains cells at the infarct site. Studies directly com-
paring cell transplantation with and without a hydrogel carrier 
have reported a higher number of cells in the brain immediately 
following injection with the use of a hydrogel (Ballios et al., 2015; 
Cai et al., 2015), which is attributed to increased cell retention. 
HAMC, which is shear-thinning and inverse-thermal gelling, 
allows cells to be injected through a fine-gage needle into the 
brain where it will gel to localize cells to the injury site (Ballios 
et  al., 2015; Payne et  al., 2017). HAMC provides superior cell 
distribution and larger maximal depth in the infarct area, which 
correlates to improved functional recovery compared to saline 
(Ballios et al., 2015). In a different approach, Cai et al. developed a 
dual crosslinking hydrogel system, termed SHIELD, composed of 
a star-PEG copolymer and a recombinant peptide sequence (Cai 
et al., 2015). The components of SHIELD form a weak physical 
network prior to delivery in order to protect cells as they pass 
through the syringe, then undergoes a second crosslinking in situ 
by thermal phase transition of the recombinant protein to increase 
the percentage of cells retained postinjection. While only tested 
with adipose-derived stem cells transplanted subcutaneously, this 
biomaterial system may enhance cell survival and retention in 
other tissues.

Cell Survival
Transplantation of cells directly into the stroke cavity often leads 
to widespread cell death, attributable in part to anoikis (i.e., lack 
of adhesion cues) (Jen et al., 1996; Hersel et al., 2003). The addi-
tion of ECM components to a cell delivery vehicle can mimic 
the native ECM, providing adhesion cues to transplanted cells 
and increasing the success of transplantation. An alternative to 
full-length protein immobilization is the use of short synthetic 
peptide sequences, which are advantageous because they are more 
stable than proteins and thus less susceptible to degradation, are 
easier and less costly to synthesize, and can target one particular 
molecular pathway in the cell, unlike proteins that often have 
different functional domains that may elicit unwanted responses 
(Hersel et  al., 2003; Cooke et  al., 2010). NSCs express many 
integrins that allow them to interact with ECM proteins, such 
as β1-integrin, which binds to the IKVAV sequence of laminin 
and promotes neuronal differentiation (Pan et al., 2014). During 
development many integrins are expressed on NSCs in a temporal 
fashion as they differentiate, which should be taken into account 
when designing a hydrogel with adhesion molecules (Milner and 
Campbell, 2002; Wojcik-Stanaszek et  al., 2011). The develop-
mental stage from which NSCs are derived can also determine 
which integrins are expressed, affecting the binding ability of 
cells to ECM ligands. For example, of mouse NSPCs derived from 
embryonic, early postnatal or adult SVZ, only postnatal-derived 
NSPCs adhered to a collagen I hydrogel (Bergström et al., 2014).

Notwithstanding other common adhesive ligands, laminin 
and the laminin-derived peptide IKVAV have been used success-
fully for cell delivery to the brain (Stabenfeldt et al., 2006; Cheng 
et al., 2013; Somaa et al., 2017). NPCs express the major integrin 
for laminin, α6β1, which promotes differentiation of hESCs to 
neurons in vitro (Ma et al., 2008; Stabenfeldt et al., 2010). When 
collagen I hydrogels containing fibronectin or laminin were 
compared for delivery of fetal-derived NSCs, laminin-containing 
gels resulted in increased cell survival 8 weeks posttransplanta-
tion compared to those with fibronectin (Tate et al., 2009). The 
authors do not offer a mechanism for the superior performance 
of laminin over fibronectin, but laminin may promote neuronal 
differentiation and neurite extension (Ma et  al., 2008; Li et  al., 
2014). Another study which used a self-assembling peptide 
(SAP) hydrogel of repeating RADA amino acid units with 
IKVAV enhanced survival of rat NSCs in vitro compared to an 
SAP hydrogel without IKVAV, and improved survival of NSCs 
and expression of neuronal markers 6 weeks after transplantation 
into a rat TBI model (Cheng et al., 2013). Using a similar SAP 
IKVAV hydrogel, human NPCs transplanted into a rat stroke 
model reduced brain atrophy and improved recovery of motor 
function up to 9  months posttransplantation while enhancing 
neuronal differentiation (Somaa et al., 2017) (Figure 4).

Promoting Cell Differentiation and 
integration
Once cells are delivered to the site of injury, they must not 
only survive long enough to be therapeutically efficacious, but 
also differentiate and integrate into the host tissue to promote 
sustained functional recovery. It has been reported that when 
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FiGURe 4 | Human neural progenitor cells (hNPCs) encapsulated in a self-assembling peptide (SAP) hydrogel and delivered into a stroke-injured rat brain 
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(D) Number and (e) density of hNPCs detected in each group. (F–G) Representative images of (F) transplanted cells alone or (G) in combination with SAP hydrogel. 
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undifferentiated NSCs are transplanted into the stroke-injured 
brain, they often differentiate into astrocytes over neurons 
(Dziewczapolski et al., 2003; Abeysinghe et al., 2015; Ballios et al., 
2015), which may contribute to the glial scar. Therefore, if the goal 
is neuronal replacement, it is desirable to control the cell fate after 
injection with the delivery system.

The properties of the biomaterial alone can influence neural 
cell fate. For example, ventral midbrain-derived NPCs will dif-
ferentiate into neurons when the mechanical properties of an HA 
hydrogel match that of the neonatal brain (Seidlits et al., 2010). 
Proliferation of NSCs can be controlled by changing the modulus 
of 3D alginate hydrogels, with stiffer gels causing a reduction in 
proliferation and βIII-tubulin expression (Banerjee et al., 2009). 
The differentiation of cells cultured on fibrous scaffolds can be 
controlled by tuning the thickness of the fibers; rat NSCs cultured 
on polyethersulfone fiber meshes differentiate preferentially into 
oligodendrocytes on smaller diameter fibers and into neurons on 
wider diameter fibers (Christopherson et al., 2009). Others have 
seen an increase in NSC differentiation in vivo with the use of HA 
hydrogels (Lam et al., 2014; Führmann et al., 2016; Moshayedi 
et al., 2016).

Differentiation of Transplanted Cells
In addition to acting as a physical scaffold, biomaterials can be 
combined with factors to help promote the integration of trans-
planted cells by guiding axon growth and synapse formation, 
and/or stimulating the differentiation of delivered cells into the 
desired phenotype. As biomaterials allow the controlled release 

of factors for sustained availability to transplanted cells, they can 
be used to deliver cells concurrently with factors to both support 
initial survival of cells and promote later differentiation. Many 
factors can control cell fate, yet few have been tested in combina-
tion with cell delivery in a hydrogel delivery system for stroke. 
Moshayedi et  al. (2016) encapsulated hiPSC-derived NPCs in 
HA gels modified with MMP-cleavable sequences for degrada-
tion in the brain, as well as soluble factors, BDNF and BMP4, 
and adhesive laminin peptides, YIGSR and IKVAV (Moshayedi 
et al., 2016). The authors found that after injection of the hydro-
gel with cells into the stroke-injured mouse brain, BDNF and 
BMP4 promoted astrocytic differentiation whereas the laminin 
sequences promoted neuronal differentiation. Other studies 
have used synthetic microparticles to release growth factors in 
conjunction with cell delivery, albeit with mixed results. One 
study used PLGA microparticles coated with laminin and con-
taining encapsulated VEGF to deliver MSCs that were adhered 
to the particle surface (Quittet et al., 2015). The authors reported 
that MSC transdifferentiated into neurons due to the presence 
of laminin, recruited blood vessels to the site, and increased the 
number of endogenous DCX-positive cells in the infarct. Despite 
the beneficial tissue effects, the authors did not report functional 
recovery in a battery of behavioral tests and suggested that this 
could have been the result of an unanticipated delay in VEGF 
release in  vivo, such that an insufficient amount of VEGF was 
released during the therapeutic window. Another study combined 
BDNF-releasing PLGA microparticles, coated with fibronectin, 
seeded with MSC-like cells on the surface, and all blended into 
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a silanized-hydroxypropyl MC hydrogel (Kandalam et al., 2017). 
The authors found that this combination promoted neural dif-
ferentiation of the cells as well as upregulated the secretion of 
beneficial growth factors and chemokines, but did not test cell 
viability. A study which implanted VEGF-releasing PLGA micro-
particles with human NSCs into the brain saw neovascularization 
within the infarct site, but also a large amount of immune cell 
infiltration and decreased transplanted cell viability over time 
(Bible et al., 2012). The authors suggested that the increased cell 
death may have been a result of the degradation of the PLGA into 
acidic byproducts. Indeed, a significantly higher concentration of 
PLGA was used in their formulation compared to the previously 
described studies, as well as a different cell type (NSC vs. MSC), 
suggesting that the concentration of PLGA requires optimization 
for cell viability. Although multicomponent strategies such as 
these can target multiple repair pathways, it remains a challenge 
to gain mechanistic insight into recovery without the many 
required controls. In many cases, although the effect of a factor 
alone is known, the synergistic interactions between two or more 
factors are not. Further work needs to be done to identify promis-
ing combinations to augment cell delivery while elucidating the 
mechanism behind recovery.

Axon Guidance and Synapse Formation
The ability of delivered cells to form connections with the host 
neurons, functionally integrating into the established circuitry, 
is a crucial step for successful cell replacement therapy (Ishibashi 
et al., 2004; Tornero et al., 2017). Without the appropriate stimuli, 
such as topographical or chemical cues, transplanted cells may 
not form these functional connections. Biomaterials have been 
used extensively to provide topographical cues to cells in vitro and 
in spinal cord injury models, but this is a newly emerging strategy 
for in vivo stroke models (Béduer et al., 2012; Nih et al., 2016; 
Tarus et  al., 2016). A pioneering study engineered a micropat-
terned solid polydimethylsilosane (PDMS) scaffold containing 
microchannels and seeded with neurons for implantation into the 
rat brain. The authors reported significant motor recovery and 
increased cell survival 3 weeks after implantation compared to the 
sham animals (Vaysse et al., 2015). In a follow-up publication, the 
host response to the scaffold was analyzed: there was no significant 
increase in activated ED1-positive microglia at the implant site 
and surprisingly a decrease in the astrogliosis response compared 
to the sham (Davoust et al., 2017), suggesting that the implant 
is well tolerated long-term. Future studies could also focus on 
combining topographical cues with some of the factors discussed 
in previous sections known to promote connectivity and plastic-
ity in the brain (Wei et al., 2007; Bliss et al., 2010).

OUTLOOK

improving Biomaterial Design
Biomaterials have been successfully used as delivery vehicles for 
drug and cell therapeutics to the brain. Many of the materials 
discussed meet necessary design criteria (biocompatibility, mini-
mally swelling, injectable, shape adaptable, and biodegradable/
bioresorbable). However, there has been limited exploration of 

the material itself as a therapeutic. Advances in material design 
that have been implemented in other tissue systems, such as 
modifications to material porosity, topography and mechanical 
cues to control the cellular response to the biomaterial, can be 
adapted for brain repair. Only recently has porosity been explored 
in the context of brain repair; a micro-porous HA hydrogel, 
injected into the stroke cavity, demonstrated that porosity can be 
used to achieve superior cellular infiltration and attenuation of 
the inflammatory response compared to non-porous hydrogels 
(Nih et al., 2017). Future work may include optimizing the pore 
size of a material for the desired cellular response, such as for neu-
rogenesis, axonogenesis or vasculogenesis. In addition, surface 
functionalization, such as peptide modification, can be combined 
with a porous hydrogel to mimic cell–cell interactions at the bio-
material–cell interface, which has been demonstrated to control 
stem cell differentiation (Stabenfeldt et al., 2006; Tate et al., 2009; 
Li et al., 2014). While the mechanical and chemical properties of 
a biomaterial are typically linked, new synthetic strategies will 
allow the ECM ligand concentration to be decoupled from the 
hydrogel crosslink density, thereby resulting in materials with 
independently tunable mechanical and chemical properties 
(Fisher et al., 2015). Computational advancements and machine 
learning will allow us to use predictive modeling to explore 
and optimize multiple biomaterial parameters (e.g., elasticity, 
porosity, composition) simultaneously, enabling improvements 
in existing materials and the development of novel materials 
(Vasilevich et al., 2017).

Biomaterials in Novel Treatments
Biomaterials will enable sustained delivery of novel treat-
ments. The direct reprogramming of astrocytes in the glial scar 
into proliferative neuroblasts has been proposed as a feasible 
method of reducing the glial scar, and generating neuron and 
oligodendrocyte precursors at the site of injury and repair, 
even in aged brains (Niu et al., 2013; Guo et al., 2014b). This 
can be achieved through retroviral or lentiviral transfection of 
GFAP+ astrocytes to express reprogramming factors NeuroD1 
or Sox2. However, low transfection efficiency and concerns of 
diffuse non-specific targeting hinder this approach (Li et  al., 
2016). Biomaterials can be used to address these concerns by 
sequestering viral particles, increasing local concentrations of 
the vector and extending the length of virus activity to increase 
transfection efficiency of infiltrating cells. Retaining the viral 
particles within the gel limits transfection to cells at the bound-
ary and to infiltrating cells, controlling reprogramming to 
cells solely within the glial scar-bounded infarct and reducing 
diffuse non-specific exposure (Shin and Shea, 2010; Seidlits 
et al., 2013). Recent developments have found that cocktails of 
small molecules can achieve the same reprogramming as viral 
vectors, without xenobiotic concerns, in astroglial cells (Zhang 
et  al., 2015) and fibroblasts (Hu et  al., 2015; Li et  al., 2015). 
Indeed, a few innovative researchers have begun incorporating 
these factors into nanoparticles to reprogram astrocytes into 
neurons and oligodendrocytes (Li et al., 2016, 2017). Many of 
the discussed advancements in local delivery of therapeutic 
factors are directly applicable to local and controlled delivery 
of reprogramming molecules.
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The ability of neurons to be stimulated by electrical fields has 
been explored as a novel strategy to promote both cell migration 
and differentiation. Stimulating cell migration takes advantage 
of the galvanotaxis demonstrated by NSPCs (Babona-Pilipos 
et al., 2011), whereby neurons migrate in response to an applied 
electric field. This approach has been proposed for in  vivo use 
through externally applied electric fields to increase and direct 
the migration of endogenous NSPCs, though it could also be used 
to direct the migration of transplanted stem cells to prevent their 
clustering (Iwasa et  al., 2017). Recent advances in electrically 
conductive materials may aid in scaling this approach to larger 
human brains where sufficient electrical fields may be difficult to 
generate or more spatially defined electrical fields may be desired 
(Zhou et al., 2017).

In addition to influencing cell migration, electrical stimula-
tion of ESCs can bias their fate toward neuronal differentiation 
via changes in calcium influx (Yamada et al., 2007; Pires et al., 
2015). Graphene is a biocompatible material with good electri-
cal conductivity that allows electrical cues to be introduced to 
the cells to promote differentiation and connectivity (Gardin 
et al., 2016). Various forms of graphene can be used for neural 
cell culture, increasing differentiation of NSCs into neurons or 
oligodendrocytes (Menaa et al., 2015), and it can be utilized to 
differentiate cells in  vitro prior to transplantation (Heo et  al., 
2011). An interesting study combined graphene in the form of 
single-walled carbon nanotubes with laminin to culture NSCs, 
which were then stimulated by an electrical current, generating 
action potentials and forming a neural network (Chao et  al., 
2009). Graphene has shown promise in vitro but the in vivo bio-
compatibility and tolerance remains unknown. Implantation of 
electrically preconditioned cells was recently demonstrated using 
a conductive polymer scaffold where Human neural progenitor 
cells (hNPCs) cultured on a polypyrrole scaffold and exposed to 
electrical stimulation upregulated genes in the VEGF-A pathway 
(George et al., 2017). When cells on these scaffolds were stimulated 
and transplanted onto the cortical surface of stroke-injured rats 
they elicited functional improvement in multiple behavioral tasks 
and increased the peri-infarct vasculature in a VEGF-dependent 
manner compared to unconditioned cells; however, no surviving 
cells were detected at two weeks posttransplantation. Future work 
combining electrical stimulation and cell delivery may lead to 
further advances in the in vivo control of stem cell fate.

improving Clinical Translation
Advances in biomaterials and tissue engineering improve thera-
pies that aim to protect and repair the brain, serving as vehicles 
for drug and cell delivery, and scaffolds for tissue regeneration 
that integrate with the host tissue. However, it remains a nascent 
field and successful clinical translation will require learning from 
the failures of previous neuroprotective efforts (O’Collins et al., 
2006). Many preclinical studies with biomaterials have demon-
strated a limited number of tissue-specific outcomes without 
providing evidence for behavioral recovery. Though the lack of 
behavioral recovery does not undermine the value of a study, 
landmark studies will require robust demonstration of functional 
outcomes in multiple tests. Another major hurdle is the lack of a 
consistent set of clinically relevant goals and study designs. Most 

preclinical studies limit testing to a single stroke model in young 
animals with homogeneous etiologies, yet the majority of clinical 
cases occur in an older population with heterogeneous etiologies 
(Savitz et  al., 2011). Thus, conclusions drawn from preclinical 
studies using a single model may not be robust enough for the 
heterogeneous etiologies seen clinically, and studies exclusively 
on young animals are not reflective of the stroke demographic. 
As one set of studies demonstrated, aged animals have a less-
robust capacity for plasticity and require modifications to their 
treatment to achieve the same outcome found in young animals 
(Clarkson et  al., 2015). Future studies should also incorporate 
the guidelines set forward by Stroke Therapy Academic Industry 
Round Table (STAiRS) for preclinical studies in order to build a 
knowledge base for the field that has practical translation aspects 
[Stroke Therapy Academic Industry Roundtable (STAIR), 1999; 
Saver et  al., 2009]. Along with appropriate study design, the 
choice of biomaterial and any chemical modifications should 
be carefully considered. In addition to the basic requirements 
discussed herein, the biomaterial must be easily sterilized and 
manufactured, and any chemistry involved in manufacturing the 
material should be reproducible, scalable and cost-effective.

Biomaterial delivery can be improved by combining it with 
in vivo imaging. One often overlooked fact is that while human 
strokes vary in their size and location, preclinical studies often 
assume a fixed infarct volume and use a fixed volume of hydrogel. 
To address this, the Modo group used magnetic resonance imaging 
(MRI) to measure the individual infarct volume in each animal, 
in order to adjust the volume of hydrogel delivered and to guide 
injections to the precise site of injury (Massensini et al., 2015). 
The group also employed a drainage catheter to remove any fluid 
buildup in the cavity, displacing it for the injected hydrogel to 
provide better hydrogel retention and reduce backflow. MRI can 
also be used to track the biomaterial implant over time, ensuring 
accurate material implantation, sufficient stability, and adequate 
degradation for newly formed tissue (Cook et al., 2017). These 
strategies can improve the delivery and tracking of biomaterials 
in the brain, increasing both the success of the treatment and its 
relevance to clinical applications.

Brain repair is a multifaceted process; achieving functional 
repair with biomaterial-based therapies may require combination 
with other treatment modalities, such as rehabilitation or tran-
scranial magnetic stimulation (TMS), in order to target multiple 
repair pathways (Wieloch and Nikolich, 2006). Regenerated or 
reestablished neural circuitry, if not directed by an appropriate 
stimulus, can result in uncontrolled plasticity and/or aberrant 
connections (Murphy and Corbett, 2009). Rehabilitation may 
enhance functional integration and wiring of newly generated 
or transplanted neurons (Winstein et  al., 2016). Targeting the 
desired neural pathways with specific rehabilitative tasks simul-
taneously with delivered cells or drugs may stimulate the reestab-
lishment of appropriate functional connections and discourage 
the formation of aberrant ones; this was demonstrated with the 
use of ChABC to produce task-specific recovery (Soleman et al., 
2012). Furthermore, recovery of fine motor skills appears to be 
dependent on receiving the proper type of training; animals that 
received training in gross locomotor skills performed worse 
in fine motor tasks than those which received no treatment 
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(García-Alías et  al., 2009). Thus, functional outcomes with 
reparative therapies may require appropriate rehabilitation to 
guide plasticity and rewiring. The reduced plasticity exhibited in 
chronic injuries and aged patients may make functional integra-
tion difficult, even if combined with rehabilitation. Direct brain 
stimulation with TMS has been used to stimulate brain regions 
for stroke recovery (Takeuchi et al., 2005; Khedr et al., 2010) and 
enhance BDNF-mediated plasticity (Wang et al., 2011a). TMS has 
also been shown to increase the proliferation of resident adult 
NSCs in the SVZ though the miR-25/p57 pathway (Guo et al., 
2014a). While TMS may be combined with delivery of cells or 
stimulation of endogenous cells, research has shown that the 
intensity of TMS must be finely tuned or it can negatively impact 
cell survival (Beom et al., 2015; Kremer et al., 2016), suggesting 
that more work needs to be done before this strategy can be com-
bined successfully. Nonetheless, using a combinatorial therapy of 
biomaterials, drug and/or cells, and rehabilitation or TMS, may 
provide the synergistic approach required to achieve recovery in 
chronic injuries and aged patients.

Conclusion
Stroke is a devastating event that manifests as a complex, multicellu-
lar injury with limited ability for self-repair. By combining drug and 
cell delivery strategies with biomaterial solutions, we can enhance 
the efficacy of treatments to promote regeneration. Although the 
architecture and morphology of the brain impose a unique set of 
constraints on biomaterial design, innovative research provides 
superior drug and cell delivery to the brain with a wide-range of 

materials, from controlled release of multiple drugs to promote 
endogenous regeneration, to increased survival and differentiation 
of delivered cells. While the field has enjoyed preclinical success, 
several hurdles must be overcome for clinical translation. Some of 
these can be addressed with the use of consistent guidelines for 
material design, as well as methodological improvements to the 
delivery of the biomaterial. The use of a combinatorial strategy—
combining the delivery with cells or other factors, or drugs/cells 
with other interventions such as rehabilitation—may provide the 
multipronged approach needed for regeneration and recovery. 
Previously failed preclinical strategies may be resurrected through 
combination with biomaterials, especially if the reason for failure 
was off-target effects or inability to cross the BBB. Future biomate-
rial development should be tailored to advancements in preclinical 
and clinical knowledge of stroke repair treatment modalities.
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Stroke is among the leading causes of death and disability worldwide, 85% of which 
are ischemic. Current stroke therapies are limited by a narrow effective therapeutic time 
and fail to effectively complete the recovery of the damaged area. Magnetic resonance 
imaging of the subventricular zone (SVZ) following infarct/stroke has allowed visualization 
of new axonal connections and projections being formed, while new immature neurons 
migrate from the SVZ to the peri-infarct area. Such studies suggest that the SVZ is a 
primary source of regenerative cells for the repair and regeneration of stroke-damaged 
neurons and tissue. Therefore, the development of tissue engineered scaffolds that 
serve as a bioreplicative SVZ niche would support the survival of multiple cell types that 
reside in the SVZ. Essential to replication of the human SVZ microenvironment is the 
establishment of microvasculature that regulates both the healthy and stroke-injured 
blood–brain barrier, which is dysregulated poststroke. In order to reproduce this niche, 
understanding how cells interact in this environment is critical, in particular neural stem 
cells, endothelial cells, pericytes, ependymal cells, and microglia. Remodeling and repair 
of the matrix-rich SVZ niche by endogenous reparative mechanisms may then support 
functional recovery when enhanced by an artificial niche that supports the survival and 
proliferation of migrating vascular and neuronal cells. Critical considerations to mimic 
this area include an understanding of resident cell types, delivery method, and the use 
of biocompatible materials. Controlling stem cell survival, differentiation, and migration 
are key factors to consider when transplanting stem cells. Here, we discuss the role of 
the SVZ architecture and resident cells in the promotion and enhancement of endo-
genous repair mechanisms. We elucidate the interplay between the extracellular matrix 
composition and cell interactions prior to and following stroke. Finally, we review current 
cell and neuronal niche biomimetic materials that allow for a tissue-engineered approach 
in order to promote structural and functional restoration of neural circuitry. By creating 
an artificial mimetic SVZ, tissue engineers can strive to facilitate tissue regeneration and 
functional recovery.

Keywords: stem cell transplantation, cell therapy, tissue engineering, extracellular matrix, pericytes, endothelial 
cells

STROKe: iMPACT AND BACKGROUND

Stroke is among the most prominent public health issues in the world, ranking among the top five 
leading causes of death and disability and impacting 1 in 6 people worldwide (Marlier et al., 2015). 
In the US alone, someone suffers a stroke every 4 s (Mozaffarian et al., 2016). Both the incidence 
and prevalence of stroke have been correlated to an aging population as well as socioeconomic 
burden (Boisserand et al., 2016), causing trends in incidence and severity of stroke outcomes to vary 
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FiGURe 1 | (A) Healthy brain tissue with proliferating neural stem cells (NSCs) in the neurogenic niches of both the subgranular zone (SGZ) and subventricular zone 
(SVZ). The SVZ lines the lateral wall of the lateral ventricle (LV). (B) In the stroke-injured brain, the peri-infarct tissue, which contains the ischemic core, contains 
proliferating NSCs in this damaged parenchyma.
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significantly between states and countries. Regardless of age or 
socioeconomic variables, most stroke patients present impaired 
motor and sensory function and output, though the severity of 
impairment may differ. The only current therapy for ischemic 
stroke being administration of recombinant tissue plasminogen 
activator (rtPA). While the treatment of rtPA therapy can be ben-
eficial, it is currently constrained to just 2–5% of stroke patients, 
as rtPA is only effective if administered 4.5 h following symptom 
onset (Ruan et al., 2015). For patients who are unable to meet the 
criteria for rtPA therapy, intracranial hemorrhage often causes 
permanent neurological functional deficits (Ruan et  al., 2015). 
A need for therapies that can be administered beyond a short 
therapeutic window remains, in addition to those that have the 
potential to restore the damaged tissue cavity that is formed by 
hypoxic conditions following stroke.

Responsible for approximately 85% of strokes (Boisserand 
et  al., 2016), ischemia occurs when there is a blockade of a 
cerebral artery by a foreign clot or mass. This prevents sufficient 
blood flow through macrovessels and the invested microvascula-
ture, thereby limiting oxygen exchange into the surrounding tis-
sue. Reduction of blood supply under 15–20% of baseline levels 
contributes to tissue necrosis and irreversible damage (Sommer, 
2017). Tissue necrosis and apoptosis can also be caused by 
ischemia-induced complications, including calcium overload, 
oxidative stress, and ATP dependence (Moskowitz et al., 2010). 
Vascular occlusion disrupts the cells and proteins that maintain 
the tightly regulated barrier at the vascular–tissue interface, 
known as the blood–brain barrier (BBB). The BBB contains 
endothelial cells (ECs), pericytes (PCs), a basement membrane, 
and astrocytic feet. Damage to one or all of these components 
causes increased permeability and subsequent edema and neu-
roinflammation. Furthermore, soluble factors including tumor 
necrosis factor alpha (TNF-α), thrombin, hemoglobin, and iron 
sulfate can be released into the local area through diffusion of 
soluble blood and blood plasma constituents, which may cause 
cytotoxic effects to the milieu (Nour et al., 2013). The volume of 
necrotic lesion core resulting from cellular and tissue damage 
is directly correlated to the extent of motor impairment experi-
enced by the patient. The final infarct size, or area of dead tissue 
due to hypoxia, varies from patient to patient, contributing to 

the heterogeneity and complexity of this disorder (Alexander 
et al., 2010).

In an effort to achieve neurological function after stroke, 
neurogenesis creates new neurons (neuroblasts) in two germinal 
regions in the adult mammalian brain: the subventricular zone 
(SVZ) of the lateral ventricles (LV) and the subgranular zone 
(SGZ) in the hippocampus (Alvarez-Buylla and García-Verdugo, 
2002). Under normal conditions, the adult brain inhibits new 
axonal sprouting. Recent studies have demonstrated that existing 
neurons may sprout new connections after the occurrence of 
ischemic stroke, as seen in Figure 1 (Carmichael, 2006). Axonal 
sprouting in peri-infarct tissue, or tissue surrounding the lesion 
core, results in remapping of connections adjacent to the infarct 
area, allowing for new connections to form up to several millim-
eters away from the infarct area (Carmichael, 2006). The degree of 
axonal sprouting depends on the carefully regulated induction of 
growth-promoting and inhibitory genes (Carmichael et al., 2001, 
2005). Proteins involved in axonal growth including growth-
associated protein 43, have been well studied, characterizing 
the precise network of molecules required for the growth cone 
phosphorylation cascade and initiation of axonal sprouting (Ng 
et al., 1988). The “trigger phase” inducing axonal sprouting occurs 
1–3  days after stroke (Carmichael and Chesselet, 2002) and is 
followed by cytoskeletal rearrangement and gene transcription 
(Carmichael, 2006).

In addition to neurogenesis, the process of angiogenesis, 
or development of new blood vessels, is necessary to achieve 
functional neurological recovery following stroke (Ruan et  al., 
2015). The peri-infarct area is hypoxic, triggering angiogenesis 
through upregulation of EC-secreted vascular endothelial growth 
factor (VEGF) within 6–24 h following occlusion. Angiogenesis 
is followed by a coordinated upregulation of the VEGF-receptor 
after 48 h (Marti et al., 2000). Due to this signaling cascade, EC 
proliferation and sprouting contribute to early and necessary 
microvessel formation, as the number of new vessels formed 
in the ischemic penumbra is associated with longer survival for 
ischemic stroke patients (Krupinski et  al., 1994). Many factors 
beyond VEGF, such as fibroblast growth factor (FGF) and brain-
derived neurotrophic factor (BDNF) regulate angiogenesis. These 
function to promote vasodilation and increase circulation and 
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tissue oxygenation as initial steps for repair following ischemic 
damage (Ruan et al., 2015).

Angiogenesis and neurogenesis are coupled processes criti-
cal for functional and structural recovery of the brain infarct 
region following stroke. Neural stem cells (NSCs), cells with 
the capacity to differentiate into cells of all glial and neuronal 
lineages, are able to populate central nervous system (CNS) 
regions. NSCs are natively resident in the SVZ niche and secrete 
growth factors and chemokines that promote proliferation and 
expansion of the NSC pool. Regenerative capacity is maintained 
by switching from asymmetric division, a process allowing stem 
cells to self-renew, to symmetric division, a process enabling 
cells to expand in number after injury. Following NSC prolif-
eration, neuroblasts (cells differentiated from NSCs that are 
committed to neuronal fate) migrate to the ischemic region and 
boundary of the infract region. This migration is characterized 
by cellular interactions between immature neuroblasts and 
blood vessels, suggesting that angiogenesis and neurogenesis 
are time-dependent and codependent upon one another (Ruan 
et al., 2015).

Goal of Tissue engineering Strategies
In order to improve behavioral recovery following stroke, the 
goal of regenerative medicine is to successfully transplant stem 
or progenitor cells that have the ability to differentiate into neu-
rons and integrate with the host microenvironment, improving 
both neurological and behavioral outcomes. Ideally, the act of 
transplantation and cell survival would enhance the endogenous 
repair processes, including axonal sprouting, neurogenesis, brain 
plasticity, and motor remapping. Integrated neural progenitor 
cells have the potential to replace and re-build impacted circuitry 
and reduce lesion size, in conjunction with the fine-coordinated 
events of angiogenesis and neurogenesis. This repair includes 
recruitment of vascular cells for increased neovascularization and 
vascular stabilization (Bliss et al., 2007; Vishwakarma et al., 2014).

Neural stem cells enact cell proliferation and recruitment 
through the production and secretion of growth factors that are 
correlated with recovery following ischemia, including endothe-
lial growth factor (EGF) and FGF-2 (Greenberg and Jin, 2006; 
Vishwakarma et al., 2014). Some growth factors such as VEGF 
have a short-term impact, having demonstrated an increase in 
vascularity of infarcted tissue following stroke (Greenberg and 
Jin, 2006), and presenting upregulation in rat middle cerebral 
artery occlusion (MCAO) models after 3 h (Marti et al., 2000). 
Both insulin-growth factor-1 (IGF-1) and BDNF have also 
demonstrated promising results as acute therapies, beginning 
administration after 30 and 15 min post MCAO, respectively, and 
primarily attributed to reduction in infarct volume (Greenberg 
and Jin, 2006). Growth factor presentation in various forms is 
integral to promoting repair and functional recovery following 
stroke.

Tissue engineering constructs for the goal of neural regen-
eration and repair of the stroke region require that cell survival 
and activity be sustained and, often, enhanced for appropriate 
integration of exogenous transplanted cells into the host tissue. 
The successful use of biomaterials that recreate the SVZ native 
niche should support cell survival, proliferation, growth factor 

production, and protein secretion as necessary for appropri-
ate cellular delivery and engraftment into the damaged area. 
Combining tissue engineering and cell transplantation advances 
can directly influence the differentiation and survival of neural 
progenitor and stem cells in  vitro and in  vivo (Ghuman and 
Modo, 2016).

Objective of Review
While we have come to understand many of the cellular and struc-
tural interactions that occur during stroke recovery, we remain 
unable to harness this knowledge to enhance therapeutic recovery. 
To date, there remains no effective treatment to foster recovery 
following ischemic stroke, though cell therapy has emerged as a 
promising approach to encourage functional replacement of the 
damaged neurons. As a therapeutic approach, transplanted NSCs 
have the potential to differentiate into numerous phenotypes 
required for neurogenesis in response to biological cues, and 
may integrate with the host environment to recover the effects of 
neurodegeneration. By incorporating factors that enhance both 
neurogenesis and angiogenesis through cell therapy, a neuro-
restorative therapy can be created to promote re-growth in the 
neurogenic niche (Delcroix et al., 2010).

Here, we discuss attributes to an effective cell-based therapy, 
focusing on the resident SVZ niche cell types that are critical for 
both tissue homeostasis and response to injury. We elucidate 
many of the microenvironmental factors defined by the cyto-
architecture and extracellular matrix (ECM) that can influence 
the success of tissue engineered constructs for neural progenitor 
cell transplantation. Assessing how the SVZ is damaged post-
stroke, we consider the use of natural and synthetic biomaterials 
in facilitating recovery of the damaged ischemic core by creating 
a biomimetic microenvironment.

SvZ STRUCTURe AND BiOLOGY

Cytoarchitecture
The SVZ is one of the two niches in the adult brain where neurons 
can regenerate, the other being the SGZ of the hippocampus 
(Alvarez-Buylla and García-Verdugo, 2002). This highly organ-
ized microenvironment begins to form during embryonic 
development with the generation of excitatory neurons. New 
excitatory neurons are generated in the ventricular zone that faces 
the LV, an area adjacent to the SVZ. Upon migration toward the 
brain surface during the developmental period, neurons that are 
born earlier are in deeper layers while neurons born later remain 
superficial (Tabata et al., 2012). The SVZ is highly vascularized 
and NSCs are in close contact with the rich vascular system, as 
evidenced by close interactions between NSCs (type-B), ependy-
mal cells, and ECs. Direct contact between each of these cells and 
NSCs promote NSC self-renewal and neurogenesis in the SVZ, 
seen in Figure 2 (Doetsch, 2003).

The microvasculature of the SVZ contains a more expansive 
vascular network than other areas of the brain, including non-
neurogenic niches and the SGZ. While the microvasculature of 
the SVZ maintains vascular integrity to support the BBB, there 
are regions of the SVZ blood vessels where contact with astrocytic 
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FiGURe 2 | (A) The subventricular (SVZ) area is most prominent on the lateral wall of the lateral ventricle (LV). (B) Lining the ventricle is a layer of ependymal cells 
which form a single-cell layer. Type-C neural stem cells (NSCs) are transit-amplifying cells lining the ependymal cells. Type-B NSCs interact with the ependymal cells 
as well as the endothelial cells (ECs), where ECs form the vasculature of the blood–brain barrier. Type-A NSCs, known as neuroblasts, have the ability to migrate to 
the olfactory bulb. Pericytes surround ECs of the capillaries which facilitates communication with the surrounding microenvironment.
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endfeet and microvasculature support cells, particularly PCs, is 
absent. The intermittent absence of astrocytic and PC contact 
with the vessel allows for transit-amplifying NSCs to directly 
contact the endothelium, enabling rapid signaling, and molecular 
exchange between the two cells (Girouard and Iadecola, 2006). 
The unique SVZ microvasculature suggests that a modified BBB 
in this niche exists (Goldberg and Hirschi, 2009).

Extrinsic factors that directly influence cells of the SVZ origi-
nate from blood vessels (Shen et al., 2008), the ependymal layer 
(Lim et  al., 2000), and cerebrospinal fluid (CSF). In particular, 
the CSF is a major supplier of both proteins and small molecules 
responsible for signaling this niche (Falcão et  al., 2012). The 
choroid plexus determines the composition of CSF in order to 
directly delivery these proteins and molecules to the SVZ and 
impact the behavior of neural progenitor cells (Lim et al., 2000; 
Shen et  al., 2008). Secreted CSF is important in maintaining 
normal brain function as well as response to neuropathological 
conditions, where changes in CSF to the SVZ may alter the brain 
parenchyma metabolism.

The interactions between both ECs and PCs with NSCs, as 
well as with each other, are critical for maintaining vessel integrity 
and niche cell maintenance. The connection between type-B cells 
and ECs is characterized by short, thick processes extended from 
the body of NSCs in the ventricular zone. These processes allow 
cells to anchor to the basement membrane and migrate rapidly 
along the vessel length, enabling interactions critical for both 
NSC self-renewal and cell differentiation (Gonzalez-Cano et al., 
2016). Clustering progenitor cells in close contact with cerebral 
ECs are supported in their proliferation and response to ischemia, 
though the process by which EC mediate this support has yet 
to be elucidated (Stolp and Molnár, 2015). Like ECs, PCs also 
intricately interact with type-B  cells, where NSCs both project 
and ensheath PCs of the SVZ capillaries (Lacar et al., 2012). While 
abundant in large numbers within the SVZ, PC distribution along 
the length of brain microvessels varies, which is not surprising 
since the vascular endothelial tissue is extremely heterogeneous. 

Type-B cells control capillary tone in the SVZ due to the contrac-
tile nature of PCs (Goldberg and Hirschi, 2009). As a result, the 
interactions between vascular cells and NSCs are critical to the 
SVZ functioning as a neurogenic network.

Cell Types
Stem Cells
The goal of stem cell-based therapy is to replace dying and dead 
cells in the brain in order to restore damaged neural circuitry. 
There is a broad pool of stem cells with the potential to be used 
as therapeutic agents with the goal of de novo neuron and glial 
cell generation in following stroke-induced neurodegeneration 
(Lindvall and Kokaia, 2010). The use of NSCs, mesenchymal 
stem cells (MSCs), embryonic stem cells (ESCs), and induced 
pluripotent stem cells (IPSCs) are summarized in Table 1.

Neural Stem Cells
In the adult brain, NSCs can be subdivided into 3 types: (1) type-B  
quiescent stem cells, (2) type-C cells, which are transit-amplifying 
progenitors derived from activated type-B cells, and (3) type-A 
neuroblasts, which are formed from amplifying type-C cells that 
ultimately migrate to the olfactory bulb where they differentiate 
into interneurons (Ottone et al., 2014). Type-B cells, commonly 
referred to as SVZ astrocytes, are in close proximity to the vascu-
lature and interact with ECs directly. Type-B cells are character-
ized both by their distinct morphology of long projections with 
specialized endfeet, as well as their expression of glial-fibrillary 
acidic protein (GFAP) (Kriegstein and Alvarez-Buylla, 2009). 
Because the interactions between quiescent type-B NSCs and ECs 
are key to the stability and remodeling of the SVZ, their relation-
ship remains a highly active area of investigation (Alvarez-Buylla 
and García-Verdugo, 2002; Ottone et al., 2014).

Neural stem cells are able to generate neural tissue that pos-
sesses some capacity for self-renewal, as well as the ability to 
undergo asymmetric cell division to produce cells other than 
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TABLe 1 | A summary of neural stem cell (NSC), mesenchymal stem cell (MSC), embryonic stem cell (ESC), and induced pluripotent stem cell (IPSC) isolation sources, 
advantages, and limitations.

Source Features Limitations References

NSC Skin/blood Multipotent
Standard isolation
Control over cellular fate
High survival rate in controlled culture condition
Ability to generate tissue
Some capacity to self-renew
Ability to differentiate to specified lineage

Differentiation state variable
Inconsistency in cell isolation

Gage (2000); Alvarez-Buylla and García-
Verdugo (2002); Hermann et al. (2006); 
Kriegstein and Alvarez-Buylla (2009); 
Ottone et al. (2014)

MSC Bone marrow
Iliac crest

Multipotent
Ease of isolation and expansion
No ethical issues
Impact resident cell survival
Ability to survive, migrate, and differentiate

Poor differentiation into functional 
maturel neuronal cells
Control of properties

Delcroix et al. (2010); Chen et al. (2001); 
Wakabayashi et al. (2010); Ruan et al. 
(2013); Kalladka and Muir (2014)

ESC Inner cell mass  
of blastocyst

Pluripotent
Ability to differentiate to specified lineage
Ease of expansion

Ethical issues
Tumorigenic
Oncogenic

Thomson et al. (1998); Arvidsson et al. 
(2002); Buhnemann et al. (2006); Reyes 
et al. (2008); Ben-David and Benvenisty 
(2011); Kalladka and Muir (2014)

IPSC Adult tissue
Human somatic cells
Human fibroblasts

Similar to ESCs in properties
High reproductive capacity
High degree of pluripotency
No ethical issues

Limited yield
Oncogenic transcription factor 
genes
Tumorigenic

Jensen et al. (2013); Kalladka and Muir 
(2014)
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themselves, including neurons or glial cells (Gage, 2000). They 
can give rise to neurons, astrocytes, and oligodendrocytes in vitro 
and in vivo and have been positively correlated with replacement 
or repair to damaged brain tissue in animal models of stroke. 
NSCs in the adult brain are consistently present in the SVZ and 
the hippocampus (Hermann et  al., 2006). NSC isolation for 
use in vitro requires excision of these regions of the brain and 
agitation of the tissue to dissociate cells (Gage, 2000). In vitro, cel-
lular fate has been determined through staining with antibodies 
specific for neuron-specific class III B-tubulin (TUJ1), a marker 
specific for identification of NSC derived neurons. GFAP has 
been used for identification of astrocytes, and galactosylceramide 
is a marker used to identify oligodendrocytes. In vitro and in vivo 
observation of NSC differentiation suggests that cell fate to a 
specific lineage can be induced by withdrawing mitogens or by 
exposing cells to factors, such as FGF-2, to permit neurogenesis 
(Gage, 2000; Kriegstein and Alvarez-Buylla, 2009).

Neural stem cells are located within close proximity to the 
abundant vasculature of the SVZ. More than 50% of NSC nuclei 
within the murine SVZ are located within 20 µm of blood ves-
sels. Additionally, NSC proliferation occurs close to blood ves-
sels, suggesting that neurogenesis is dependent upon direct and 
indirect interaction with the vasculature. Endothelial signaling, 
specifically ephrin-B/EphB, regulates NSC proliferation and 
niche cell plasticity, while Notch signaling regulates NSC mainte-
nance (Imayoshi et al., 2010; Nomura et al., 2010). These signaling 
pathways facilitate EC inhibition of NSC differentiation and limit 
NSC proliferation. ECs of the SVZ vasculature are functionally 
important for the NSCs lineage by regulating these cell processes 
(Shen et al., 2008).

To date, the consistency of data acquired from the use of 
NSCs has been limited, primarily due to inconsistent protocols 
in cell culture. As one example, mitogens EGF and FGF-2 are 
inconsistently used between laboratories to expand primitive 

cells. Many experimental protocols call for the individual use 
of such growth factors, where others suggest that most effective 
manipulation requires the combined use of growth factors. In 
addition, methods of cell isolation vary due to differences in dis-
section methods, donor age, and cell density within each neural 
region (Gage, 2000). The variability in NSC cultural protocol and 
isolation creates an undefined depiction of how to harvest NSCs, 
ultimately making utility studies and outcomes inconsistent.

Mesenchymal Stem Cells
Mesenchymal stem cells, multipotent adult stem cells, are isolated 
from the iliac crest or bone marrow and are easily expanded 
in  vitro (Delcroix et  al., 2010). MSCs can impact resident cell 
survival, including astrocytes, by upregulating kinase pathways. 
MSCs can then migrate to ischemic boundaries in several ani-
mal models with temporary or permanent MCAO. However, it 
remains unclear whether MSCs that differentiate along neuronal 
lines in culture are intrinsically similar to NSCs, as specific 
characterization of MSCs over time has resulted which makes 
comparability and consistency between studies difficult (Kalladka 
and Muir, 2014).

Mesenchymal stem cells have been utilized in animal models 
with stroke, demonstrating positive results in terms of repair. 
Transplantation of rat bone marrow-derived MSCs into a rat 
MCAO model has resulted in a reduction of infarct size. In this 
context, MSCs can survive, migrate, differentiate, and support 
significant recovery in motor and somatosensory behavioral tests 
in rats with transplanted MSCs upon activation with nerve growth 
factor (Chen et  al., 2001). In fact, even xenotransplantation of 
human MSCs isolated from bone marrow has enhanced func-
tional recovery of mice following induction of stroke (Ruan et al., 
2013). Beyond MCAO injections, MSCs are delivered through 
various routes. For example, bone marrow MSCs deliv ered via 
intraventricular transplantation, carotid artery transplantation, 

120

https://www.frontiersin.org/Materials/
https://www.frontiersin.org
https://www.frontiersin.org/Materials/archive


Matta and Gonzalez Biomimicry of the SVZ

Frontiers in Materials | www.frontiersin.org March 2018 | Volume 5 | Article 15

and internal jugular vein injection have migrated to the brain 
injury area and cortex, surviving in the infarct area following 
middle MCAO in rats (Ruan et  al., 2013). Rats receiving MSC 
transplantation demonstrated reduction in infarct volume 
at 7 and 14  days, as well as expression of neurotrophic factors 
VEGF, EGF, and FGF within 7 days (Wakabayashi et al., 2010). It 
appears that there is wide potential for MSC delivery to promote 
functional recovery through activation of endogenous restorative 
responses in the brain (Wakabayashi et al., 2010).

Embryonic Stem Cells
Embryonic stem cells are pluripotent cells derived from the first 
stage of embryonic development, containing the potential to 
replace tissues lost by injury (Reyes et  al., 2008; Kalladka and 
Muir, 2014). However, due to their isolation source, the usage of 
ESCs presents ethical issues in medical research and as a poten-
tial therapeutic strategy (Kalladka and Muir, 2014). Despite 
these issues, ESCs have demonstrated major advantages for 
therapeutic uses and are studied intensely for in vitro generation 
of neuronal cell lines. The use of ESCs in xenotransplantation 
into the necrotic area of adult rats subjected to stroke demon-
strates that murine ESCs improved functional outcome. In these 
studies, engrafted cells were able to survive within the infarct 
area up to 12 weeks following transplantation (Arvidsson et al., 
2002). The support pluripotent ESCs provide to resident cells 
make them an attractive candidate for improving functional 
recovery poststroke.

In addition to promoting survival, ESCs can differentiate into 
specific neuronal populations, including glial cells, neurons, and 
astrocytes (Arvidsson et al., 2002). Transplanted and engrafted 
cells exhibit characteristics of functional neurons and astro-
cytes, including neuron-specific nuclear protein (NeuN) + and 
GFAP  +  expression, respectively. They also resemble mature 
glial cells with enhanced green fluorescent protein + expression 
(Buhnemann et  al., 2006). Differentiation is successfully con-
trolled through the use of specific media and culture conditions. 
For example, the use of media containing fetal bovine serum and 
ESC supplement coincides with upregulation of TUJ1, suggesting 
the differentiation of ESCs to neuronal cells (Reyes et al., 2008). 
By tightly controlling experimental parameters and timing in 
conjunction with growth and inhibitory factors in media and 
culture conditions, ESCs can be preferentially driven toward 
specific cell phenotypes (Arvidsson et al., 2002).

The expanded and immediate translation of ESCs to clinical 
application is somewhat limited because ESCs display tumo-
rigenic properties in vivo and in vitro. For example, ESCs have 
formed teratomas when injected into immunodeficient mice 
(Ben-David and Benvenisty, 2011). ESCs also display a high level 
of telomerase activity, which is directly related to immortality in 
human cell lines (Thomson et al., 1998). Nonetheless, ESCs have 
shown positive results when transplanted to the diseased brain or 
spinal cord, directly or after pre-differentiation or genetic modi-
fication in culture. Experimentation utilizing ESC based clinical 
trials have been targeted for macular degeneration, Parkinson’s 
disease, and spinal cord injury (Trounson and McDonald, 2015). 
While it appears that there is potential for the use of ESCs in 
neural regeneration and repair, additional studies are needed 

to understand how tumorigenic characteristics of ESCs can be 
controlled before being considered for therapeutic applications.

Induced Pluripotent Stem Cells
Induced pluripotent stem cells can be reprogramed to an embry-
onic-like state, subsequently performing similarly to ESCs. IPSCs 
can be isolated from adult tissue, such as human somatic cells 
and fibroblasts and have both a high reproductive capacity while 
maintaining a high degree of pluripotency (Kalladka and Muir, 
2014). However, there is a low yield achieved during induced 
reprogramming in addition to the expression of oncogenic tran-
scription factors (Kalladka and Muir, 2014). Transplanted IPSCs 
have formed teratomas in rat MCAO models, and unlike ESCs, 
have demonstrated little effect in terms of functional recovery. 
Although some studies report improvement in function and 
reduced infarct volume, as well as differentiated neuronal cells 
following intracerebral implantation of human fibroblast derived 
IPSCs, there is limited functional improvement to be reported 
using stereotactic injections to the brain (Jensen et  al., 2013; 
Kalladka and Muir, 2014). In order to improve the use of IPSCs, 
parameters such as the optimal timing following stroke, dose of 
cells, source, culture protocol of cells, and maturation time must 
be optimized (Jensen et al., 2013).

Endothelial Cells
Endothelial cells comprise the lumen of the brain microvascula-
ture and are critical for regulating tissue homeostasis and facilitat-
ing information transfer between neurons and glial cells. During 
ischemic stroke, microvascular ECs are damaged by oxygen and 
nutrient deprivation, which results in degradation of tight junc-
tions that produces an increase in BBB permeability. Following 
stroke, disturbance of the EC framework and local cytokine levels 
poses danger to the milieu due to ECs’ role in maintaining the 
BBB integrity when responding to injury (Girouard and Iadecola, 
2006).

As previously discussed, angiogenesis and neurogenesis are 
interdependent processes that intrinsically rely upon each other. 
In the BBB, the vascular framework is formed through tight junc-
tions, which are responsible for regulating vascular permeability 
and stabilizing the vessel wall. As the BBB is notably impermeable 
to large, polar molecules, true biomimetic in vitro models must 
maintain endothelial specific markers that facilitate vascular 
integrity and restrict permeability. Experimental use of the 
immortalized mouse brain EC line, bEnd3 is common because 
these cells retain the expression of mRNA and proteins that 
are required for the formation of tight junction proteins. These 
include zonal occludins-1 and -2 (ZO-1 and ZO-2), and claudin-5 
(Fanning et al., 1998; Brown et al., 2007). Although immortalized 
brain ECs are utilized heavily in vitro, utilizing primary ECs can 
more closely mimic brain microvasculature. In order to prepare 
a pure culture, for example from a mouse, a standard protocol 
typically includes an enzyme-based tissue disruption, selective 
adhesion to collagen I, a culture in EC medium, and selective 
survival over non-ECs when cultured with a protein synthesis 
inhibitor (Welser-Alves et al., 2014). Utilizing brain ECs through 
benchtop work allows researchers to re-create complex 3-D 
environments and contribute to our understanding on how 

121

https://www.frontiersin.org/Materials/
https://www.frontiersin.org
https://www.frontiersin.org/Materials/archive


Matta and Gonzalez Biomimicry of the SVZ

Frontiers in Materials | www.frontiersin.org March 2018 | Volume 5 | Article 15

they contribute to vascular remodeling and BBB breakdown. In 
addition to controlling differentiation and promoting quiescence, 
ECs are critical for healing the neuronal niche following ischemic 
damage. Specifically, ECs promote NSCs survival through Notch 
signaling regulated growth factor secretion. Growth factors, 
including VEGF, can stimulate neurogenesis, demonstrating that 
the NSCs lie directly adjacent to the vasculature in an interde-
pendent manner, ultimately promoting NSC homeostasis and 
survival (Shen et al., 2008).

Pericytes
Pericytes are microvascular mural cells that are instrumental to 
vasculogenesis, the process of new blood vessel formation during 
embryonic development, and vascular stability. PCs enact their 
roles in neurovasculature development and integrity main tenance 
through direct contact with microvascular EC and exchange of 
soluble factors between the two cells, where the highest density 
of PCs (EC:PC ratio 1:1) is in neural tissues (Korn et al., 2002; 
Geevarghese and Herman, 2014). PCs are capable of expressing 
proteoglycans, specifically chondroitin-sulfate proteoglycan-4, 
and other ECM proteins. They are known to support the struc-
ture of the microvasculature and provide signals necessary for 
the differentiation of plastic cells within the SVZ (Korn et  al., 
2002). There is no universal marker to identify PCs, rather 
they are typically recognized by their coexpression of multiple 
markers and absence of EC, fibroblast, leukocyte, and smooth 
muscle cell specific markers. Positive identifying markers for PC 
include chondroitin-sulfate proteoglycan neuron-glial antigen 
2 NG2, platelet-derived growth factor-beta (PDGFβ) receptor, 
and CD13—a type II membrane metalloprotease (MMP) that is 
specific for brain PCs (Armulik et al., 2011). PC markers may be 
downregulated during various stages of development and loca-
tion within organs, suggesting a heterogeneity among PCs. PC 
heterogeneity is correlated with specialized function required for 
vascular homeostasis in specific microenvironments (Girouard 
and Iadecola, 2006; Armulik et al., 2011).

Pericytes respond to EC-secreted PDGFβ, where PDGFβ 
receptor is functionally involved in PC recruitment during angio-
genesis (Daneman et al., 2010; Armulik et al., 2011). PCs promote 
neurovasculature maturation and are influenced by transforming 
growth factor-beta (TGF-β) to regulate cell proliferation, dif-
ferentiation, and survival. Secretion of TGF-β by ECs is elevated 
following ischemic stroke, indicating that the injured brain may 
induce mural cell expansion in order to promote neovasculari-
zation and repair (Rustenhoven et al., 2016). Primary rat brain 
PCs in coculture with mouse brain capillary ECs have exhibited 
both induction and upregulation of microvascular integrity. 
This was demonstrated by a decrease in permeability to sodium 
fluorescein, where the enhancement of integrity was inhibited 
when TGF-β activity was neutralized via antibody binding. This 
suggests that brain PCs contribute to BBB maintenance through 
TGF-β production (Dohgu et al., 2005).

Although PCs are present in the SVZ niche, their role is poorly 
understood. The contractile nature of PCs is known to regulate 
blood flow in ex vivo cerebellar brain slices and retina prepara-
tions; however, the mechanisms driving regulation of capillary 

tone and blood flow in the SVZ remain unknown (Armulik 
et al., 2011). Recent work in mouse models suggests that type-B 
NSCs send projections that ensheath PCs on SVZ capillaries may 
indirectly regulating capillary blood by activating purinergic 
receptors on PCs. Despite their ambiguous role, PCs are known 
regulators of oxygen and glucose, directly impacting niche cell 
proliferation and metabolic changes within the environment 
(Lacar et al., 2012). Continued studies investigating the signaling 
mechanisms involved in PC regulated blood flow are critical for 
a better understanding of the neuronal niche.

Ependymal Cells
Ependymal cells are multi-nucleated cells that intricately interact 
with the apical NSC layer and LV. Ependymal cells have microvilli 
and motile cilia, wherein cilia create a current of CSF along the 
LV walls. Malfunction of these cells is correlated with disturbance 
of CSF flow (Spassky et al., 2005). Ependymal cells are identified 
through their presentation of surface and intracellular proteins, 
including β-catenin, N-cadherin, Vimentin, and α-tubulin, in 
addition to their close proximity, within 5 µm, to vessels (Shen 
et  al., 2008). Ependymal cells, like ECs, secrete soluble factor 
pigment epithelium-derived factor (PEDF) which potentially 
promotes NSC self-renewal and plays a role in NSC maintenance 
in the murine SVZ (Ramirez-Castillejo et al., 2006). The pathways 
associated with PEDF activation can present a therapeutic advan-
tage by promoting self-renewal of NSCs in many neurodegenera-
tive diseases.

In the SVZ, ependymal cells differ from ECs and NSCs in their 
role and behavior. For one, ependymal cells are not connected to 
one another nor their articulating cells via tight junctions (unlike 
ECs). This enables large molecules to penetrate the ependymal 
layer through the gap junctions that connect ependymal cells and 
astrocytes (Shen et  al., 2008; Nomura et  al., 2010). Ependymal 
cells exist in a postmitotic state and do not divide after differentia-
tion, unlike NSCs (Spassky et al., 2005). Stroke injury is disruptive 
to the quiescent state of ependymal cells enforced by canonical 
Notch signaling, a signaling pathway that is necessary to conserve 
stem cell maintenance. In turn, neurogenesis is promoted through 
inhibition of Notch signaling following stroke, allowing ependy-
mal cells to lose ependymal cell features, enter the cell cycle, and 
give rise to astrocytes and neuroblasts. The ependymal cells lack 
self-renewal capacity and do not maintain their population after 
stroke, unlike ECs and NSCs, suggesting their role as a reservoir 
recruited following injury (Carlen et al., 2009).

Ependymal cells play an important role in maintaining a 
neurogenic niche. These cells produce bone morphogenic protein 
(BMP) antagonist, Noggin, where Noggin antagonizes type-B cell 
BMP signaling and promotes neurogenesis in the SVZ. Type-B cell 
BMP signaling blocks the neurogenic pathway, instead promoting 
gliogenesis. Thereby, ependymal cells contribute to the promotion 
and enhancement of neurogenesis in the SVZ, which is critical to 
re-building damaged tissue (Lim et al., 2000).

Microglia
Microglia are resident immune cells known to maintain brain 
homeostasis. These cells monitor the microenvironment by 
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responding to injury through the secretion of cytokines and 
phagocytosing cellular debris at the site (Weinstein et al., 2010; 
Ghuman and Modo, 2016). Within minutes following stroke, 
the brain tissue surrounding the core contains activated micro-
glia that accumulate within the lesioned cavity (Patel et  al., 
2013). Microglia are detected using Iba-1 and Mac-2, markers 
for cells of myeloid origin and activated/proliferating resident 
microglia, respectively. Flow cytometry provides the ability to 
distinguish between residential and infiltrating microglia and 
myeloid cells, defined by low and high expression of cell-surface 
marker CD45, respectively. However, the stability of this marker 
during pathological state is in question (Lalancette-Hebert 
et al., 2007).

Microglial activation is triggered by ischemic stroke, where 
endogenous neuronal–glial interactions are disrupted, leading 
to upregulation of pro-inflammatory cytokines. CD200, a trans-
membrane glycoprotein expressed on neurons, and its receptor 
expressed on myeloid cells, modulate microglial activation 
under homeostasis, promoting quiescence until the occurrence 
of injury. Following stroke, CD200 gene transcription in the 
ischemic hemisphere is decreased (Patel et al., 2013), facilitating 
alternative activation of microglia. In addition, following injury 
the quiescence of microglia is also disrupted through a decrease 
in neurons secreting the cytokine fractalkine (CX3CL1). ATP 
release from dying neurons, as well as monocyte chemotac-
tic protein-1 secretion from surrounding brain cells, induces 
chemotaxis and migration of microglia to the ischemic area 
(Patel et al., 2013).

Following tissue damage, changes in microglia migration pat-
terns, cell-surface protein expressions and functions are observed.  
Motility of microglia toward injury site is seen within minutes. 
Microglial polarization promotes the development of two pheno-
types; M1 or M2. M1 is a classical pro-inflammatory activation 
phenotype, increasing pro-inflammatory mediators including 
TNF-α, IL-6, IL-1, nitric oxide, and proteolytic enzymes including 
MMP-3 and MMP-9. M2, an alternative activation, releases anti-
inflammatory mediators, including IGF-1, TGF-B, IL-10, IL-4,  
and IL-13 (Patel et al., 2013). The fine-tuned balance of M1 and M2 
are offset by stroke. Identifying microglia of each subpopulation 
can contribute understanding of functional changes poststroke 
(Patel et al., 2013).

The pro-inflammatory mediators associated with the M1 
phenotype can be detrimental to injured brain tissue. MMPs 
breakdown the ECM and BBB poststroke. This adverse effect is 
diminished using an MMP knock out mouse model, demonstrat-
ing less neuronal injury post ischemia. In addition, TNF-α is 
rapidly upregulated in the brain following injury within 1 h after 
induction of ischemia (Lambertsen et al., 2005) and inhibition 
of this pleiotropic cytokine has been displayed in studies to be 
neuroprotective (Barone et al., 1997). Microglia thereby plays a 
detrimental role in the acute phase by exacerbating the inflam-
matory phase.

Recent evidence suggests that activated microglia may actu-
ally provide benefits to the SVZ following stroke by orchestrating 
brain tissue repair. Following cerebral ischemia in transgenic 
mice, a resident proliferating microglia population presents an 
endogenous pool of neurotrophic molecules, including IGF-1, 

where activated microglial proliferation peaks 48–72  h post 
injury (Lalancette-Hebert et  al., 2007). At 72  h postischemic 
injury, resident microglia undergo proliferative expansion and 
neutrophil infiltration is diminished, suggesting that microglia 
are resolving the acute inflammatory phase of repair and promot-
ing reparative environmental remodeling (Denes et  al., 2007). 
Stimulating microglial proliferation can thereby be explored as a 
therapeutic tool in order to assess the neuroprotective properties 
of these resident immune cells.

ROLe OF THe eCM

eCM Composition and Proteins
The ECM compromises 20% of the brain tissue volume and pre-
sents structural and functional proteins that are necessary for cel-
lular function (Sobel, 1998). Brain-specific ECM varies in density 
and composition, as well as association with specific neuron types 
within different areas of the brain. Areas with mature synaptic 
activity show densely packed areas, known as perineuronal nets, 
directly impacting neuronal activity in this tight network (Bikbaev 
et  al., 2015). The ECM comprises the basement membranes 
that support epithelia and vascular ECs. The BBB contains an 
endothelium basement membrane in addition to a parenchymal 
basement membrane. Under normal conditions, these two base-
ment membranes are closely in contact. The parenchymal base-
ment membrane is formed by astrocytes and creates a barrier for 
leukocyte migration into the brain parenchyma. The anatomical 
location between ECs and astrocytes regulates barrier function, 
provides physical support and anchoring for cells, and contains 
ligands that regulate cell processes and signaling through integrin 
and ECM receptor interactions.

There is a bidirectional relationship between cells and ECM 
proteins, where ECM proteins, once secreted, interact with cells 
to both induce and maintain the regulatory properties of this 
barrier system (Baeten and Akassoglou, 2011). These proteins 
include collagen, fibronectin, laminin, tenascin, and proteogly-
cans, inter acting closely with ECs, astrocytes, PCs, and microglial, 
which secrete these proteins poststroke. Many tissue engineering 
strategies aim to expose cells to an environment within a scaffold 
that possesses biological ECM-derived molecules to drive cellular 
function (Delcroix et al., 2010).

The general structure of the ECM includes a variety of mac-
romolecules including proteoglycans and fibrous proteins, each 
of which are expressed to different degrees in tissues throughout 
the body. For example, more than 20 distinct collagens have been 
identified which are expressed differentially in specific tissues 
based on mechanical requirements of the area. Laminins dem-
onstrate multiple isoforms, synthesized by a variety of cells in a 
tissue specific manner, expressing explicit α, β, and γ chains. The 
effect of laminin on adjacent cells is exerted through integrins 
that recognize laminins, heightening the role of laminin mediat-
ing cell–ECM interactions. Laminin 2, specifically, promotes 
neurite outgrowth from neural cells, where laminin 5 and 10 
are seem predominantly in the vascular basement membrane to 
mediate adhesion of platelets, leukocytes, and ECs. The tenascin 
family, a group of glycoproteins with strikingly diverse expression 
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patterns, possesses complex domain structures, implying the 
molecule can interact with multiple ECM proteins. Tenascins 
are not expressed in normal adult tissues, however, under 
pathological conditions, including injury induced neovasculari-
zation, tenascin-c is expressed. Proteoglycans, heavily glycosylated 
pro teins consisting of a core protein with covalently attached 
glycosaminoglycan chains, are grouped into several families, 
characterized by their composition. For example, decorin, a key 
member of a leucine-rich repeat proteoglycan family, is involved 
in signal transduction via EGF receptor. It is involved in modula-
tion and differentiation of epithelial and ECs, and also interacts 
with TGF-β. The heparin sulfate proteoglycans have high affinity 
bonding to a range of cytokines and growth factors, including 
FGF and VEGF, implying an important role in pathological 
processes including the modulation of cell migration, prolifera-
tion, and differentiation. MMPs, the main ECM enzymes with 
proteolytic degradation potential, are responsible for the constant 
ECM remodeling, facilitating the synthesis and deposition of new 
ECM proteins and thereby plays an essential role in tissue repair 
and cell metastasis. At homeostasis, the adult brain has very little 
MMP expression and activity, though is the microenvironment 
is rapidly altered when activated by cytokines and growth factors 
that trigger tissue remodeling (Bosman and Stamenkovic, 2003). 
Overall, this intrinsically complex ECM system is essential for 
normal development as well as response to disease and injury, 
consequently there is an intricate interplay between resident cells 
and this matrix.

eCM–Stem Cell interactions
Extracellular matrix components supply a microenvironment 
that promotes the maintenance of stem cell homeostasis, dictated 
by signals derived by both ECM–cell interactions and soluble 
factors. Integrins, a family of heterodimeric transmembrane rece-
ptors connecting extracellular environments to intracellular 
cytoskeletons, are key receptors that facilitate cellular processes 
including migration and differentiation. Integrins and cell pre-
sented matrix receptors mediate a number of interactions by acti-
vating downstream signaling. As an example, integrins directly 
activate downstream signaling through focal adhesion kinase 
and phosphoinositide 3-kinase, thereby regulating self-renewal 
and proliferation of cells including hematopoietic stem and 
progenitor cells. Epithelial cells in the brain express high levels of 
α6 and/or β1 integrins, which heterodimerize in order to generate 
a laminin receptor (Marthiens et al., 2010). In particular, α6β1 
integrin facilitates cell binding to laminin and is required for NSC 
adhesion to SVZ blood vessels, where adult SVZ progenitor cells 
express α6β1 receptor. Blocking this receptor inhibits adhesion 
to ECs, negatively impacting SVZ progenitor cell proliferation 
in vivo, and highlights the importance of these integrin mediated 
interactions (Shen et al., 2008). In addition, integrins can bind 
directly to laminin, collagen, and fibronectin, and to cell-surface 
adhesion molecules including intercellular adhesion molecule-1 
and vascular cell adhesion molecule-1, both present in the stem 
cell niche.

In addition to integrins, cadherin molecules mediate both 
cell–cell adhesions and interactions with cytoskeleton-associated 
proteins. Scaffold proteins β-catenin and α-catenin can interact 

with intracellular domains of cadherins, thereby connecting 
cadherins to the cytoskeletal network and forming stable adh-
erns junctions by clustering cadherin molecules. E-cadherin, 
expressed by ependymal cells in the SVZ, forms adherns junc-
tions between ependymal cells and NSCs. When eliminating 
E-cadherin in vitro, NSC self-renewal is reduced as seen in vivo 
by disrupting E-cadherin through mutations in areas where 
NSCs specifically reside (Karpowicz et al., 2009). NSCs use both 
cadherin and integrin to interact with the niche and exploiting 
the necessity of these adhesion molecules can aid transplantation 
approaches (Chen et al., 2013).

The ECM can regulate stem cell activity by non-canonical 
growth factor presentation. It both avidly binds growth factors, 
regulating their local availability, and functions as a reservoir, 
making growth factors unavailable and insoluble. By capturing 
FGF-2 from the milieu, the ECM of the NSC niche in the SVZ 
promotes growth factor activity in the niche and regulates the 
neurogenic niche. Thereby, the ECM is extremely dynamic in 
its response to regulating stem cell maintenance and activity by 
providing and controlling access to growth factors in the milieu 
(Gattazzo et al., 2014).

Due to the important role of ECM proteins in cell survival 
and function, many ECM moieties have been incorporated 
into engineered scaffolds as a strategy for creating microen-
vironments that promote neuronal regeneration (Lemons 
and Condic, 2008). Within biomimetic polymer scaffolds, 
presentation of laminin, collagen, or fibronectin to MSC in 
culture demonstrates that laminin, in contrast to fibronectin 
or collagen, is a strong promoter of neuronal differentiation. 
Laminin also positively impacts neurite length and the forma-
tion of a growth cone, the structure that drives axon extension, 
through integrin-dependent signaling. Laminin-211 can both 
increase and decrease neurite extension due to the affinity of 
integrin binding, demonstrating its ability to drive precise and 
complex integrin mediated pathways (Qian and Saltzman, 2004; 
Delcroix et al., 2010). While the entirety of the laminin protein 
has been used in investigation matrix derived cell function, 
isolated laminin derived peptides are responsible for specific 
cell function. Laminin derived peptides, including and Tyr–
Ile–Gly–Ser–Arg (YIGSR) and Ile–Lys–Val–Ala–Val (IKVAV) 
sequences, are responsible for outgrowth of dorsal root ganglion 
neurons and are widely utilized in a variety of polymeric based 
scaffolds (Delcroix et al., 2010). The use of a scaffold to guide 
cell survival and differentiation in vivo includes incorporation 
of ECM components or derived peptides. As one example, the 
inclusion of fibronectin derived Arg–Gly–Asp (RGD) to poly-
(ethylene glycol) (PEG) hydrogel systems illustrates improved 
human MSCs cell survival in vitro (Salinas and Anseth, 2008). 
Human plasma fibronectin and human plasma fibrinogen dem-
onstrate enhanced survival of cells and increased cell metabolic 
activity in vitro when encapsulating human MSCs in fibronectin 
or fibrinogen containing hydrogel capsules, most likely due to 
integrin clustering and activation of extracellular signaling 
cascades such as the mitogen activated protein kinase cascade 
(Karoubi et  al., 2009). Thereby, the use of ECM proteins can 
enhance therapeutic cell survival in vivo by triggering native cell 
pathways.
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eCM Following Stroke
Following stroke, basement membranes of the BBB are degraded. 
New ECM proteins are deposited, either by secretion of ECM 
proteins, or leakage of plasma proteins into the CNS. Degradation 
of basement membranes after stroke demonstrates notable 
changes at later time points after injury, for instance, 12–18  h 
after MCAO in a rat model, although changes in cell presented 
matrix receptors occur within a few hours. Degradation occurs 
through proteolysis, mainly by MMPs and plasmin, where these 
are upregulated and activated following pathological conditions 
such as stroke (Baeten and Akassoglou, 2011). MMP-9, synthe-
sized by both macrophages as well as ECs, is present within and at 
the periphery of infarct within 24 h, thereby creating a significant 
disturbance to BBB integrity following stroke. These degradation 
pathways are correlated with increased BBB disruption, as well 
as secondary inflammation and edema and the promotion of 
vascular permeability (Romanic et al., 1998).

As an inherent method of tissue repair following stroke, ECM 
proteins are deposited or penetrate the CNS to recover the struc-
ture of the microenvironment. In particular, osteopontin (OPN), 
a secreted glycosylated phosphoprotein, binds receptors that act 
on several cell types and is expressed in neurons, macrophages, 
and astrocytes. Following stroke, OPN is upregulated around the 
infarct zone, and appears to be beneficial after ischemic insult. In 
rat pups, OPN injections are correlated with reduction in infarct 
volume and improvement in functional recovery following 
ischemia (Baeten and Akassoglou, 2011). Fibrinogen, a major 
plasma protein involved in blood coagulation, cannot normally 
penetrate the CNS parenchyma due to the BBB. In stroke, however, 
fibrinogen can occlude blood vessels and leak in the brain, form-
ing deposits and potentially increasing inflammation. In order to 
remove fibrin to reestablish blood flow, enzymatic degradation 
by plasmin as well as MMP-2/9 activity is mechanistically helpful 
(Baeten and Akassoglou, 2011). Considering the alteration of the 
ECM composition in response to BBB disruption and the direct 
impact on neurologic disease are functionally important when 
considering ECM functions in physiology and disease pathology.

CeLL-BASeD THeRAPieS

Cell Delivery Technologies
Cell therapies have demonstrated some ability to induce spon-
taneous recovery following stroke and can promote endogenous 
neurogenesis (Kalladka and Muir, 2014). Current methods of 
cell therapy include exogenous, autologous, and allogenic cell 
delivery into experimental stroke models, each presenting their 
own set of advantages and drawbacks. Exogenous cell therapy, 
in which cells are derived from a source external to the stroke, 
has demonstrated impact on cell migration, survival, and dif-
ferentiation which subsequently promote functional recovery in 
animal models. However, these transplanted cells may induce an 
immunogenic response. An alternative to exogenous cell therapy 
is the use of autologous cells, which avoids the risk of rejection. 
This therapy presents its own challenges, though, as limited access 
to these cells often requires in vitro expansion, which may delay 
treatment. Allogenic cell therapy, or transplanting stem cells 

from a genetically similar donor, is potentially the most suc-
cessful method of cell transplantation. The use of allogenic cells 
presents advantages of reduced immunogenicity, in addition to 
being readily available. Of note, ongoing research is still required 
in order to improve patient selection regarding eligibility for 
allogenic based therapy (Kalladka and Muir, 2014). Stereotaxic 
implantation, a minimally invasive surgical method relying on 
exact 3-D coordinate anatomical systems, is challenging due to 
time constraints, where lesion size varies greatly over time and 
from patient to patient. Intravenous (IV) delivery, a non-invasive 
delivery route, can overcome this set back, though there is a 
lack of a direct pathway of cells to the ischemic area. Although 
intra-arterial (IA) delivery can deliver cells to the peri-infarct area 
directly, occlusion of the target artery that persists can create a 
blockade for a route of delivery while also compromising survival 
of delivered cells (Kalladka and Muir, 2014). Interestingly, there 
is a lack of evidence that IA delivery is superior to IV when 
delivering bone derived MSCs to a mouse stroke model. With no 
difference in functional or structural outcomes detected (Yang 
et  al., 2013), the ideal route of administration to optimize the 
effect of cell therapy, in particular that of stem cells, remains a 
matter of debate.

Stem cells can be used in stroke therapies to dynamically 
respond to a stroke-damaged tissue, in which stem cells have 
phenotypic properties that allow direct interaction with the 
host environment. Engrafted stem cells, unlike terminally dif-
ferentiated cells, can respond dynamically to temporal and spatial 
changes of the environment that follow ischemic injury (Kim, 
2004; Kalladka and Muir, 2014; Duncan et  al., 2015). Delivery 
of stem cells to a brain-injury site has effectively reduced lesion 
size and host cell death. Additionally, successfully delivered 
stem cells have the potential to replace lost circuitry by forming 
new synaptic contacts. Even the use of stem cell xenografts in 
animal models has been shown to decrease infarct area, promote 
expression of the neuronal proteins such as synaptic proteins, and 
restore synaptic activity. In fact, stem cells can also strengthen 
existing synapses (Ishibashi et al., 2004; Bliss et al., 2007), pro-
moting enhanced signaling among uninjured neurons. Further, 
an induction of host brain plasticity has been observed following 
exogenous cell engraftment. In this context, increased levels of 
factors (i.e., FGF and BDNF) that induce angiogenesis resulted 
in successful integration of transplanted cells with the host cir-
cuitry, as well as increased neovascularization and recruitment of 
endogenous progenitors (Bliss et al., 2007; Lindvall and Kokaia, 
2010).

The use of cell therapy requires collaboration between neurolo-
gists and engineers to create new and effective delivery methods. 
Cellular behavior manipulation and induction are explored to 
enhance cell state prior to and after delivery (Lindvall and Kokaia, 
2010). The approaches utilized for cell transplantation, including 
the control of differentiation and proliferation, are necessary to 
provide insight for ex vivo models that address relevant biological 
questions regarding SVZ cell interactions. Fundamental consid-
erations include the cell type, cell number, and delivery vehicle 
and route. Here, we consider the key cell types native to the SVZ 
and their potential use as cell therapy: stem cells, ECs, ependymal 
cells, PCs, and microglia, summarized in Table 2.
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TABLe 2 | Resident cell types of the subventricular zone (SVZ) niche, including endothelial cells, ependymal cells, pericytes (PCs), and microglia, with their respective 
cellular markers, secreted factors, and impact to other cells present in the niche.

Cell type Markers Secreted factors impact Reference

Endothelial 
cells

Tight junction 
markers (ZO-1, 
ZO-2, and 
claudin-5)
NCAM
Laminin

PDGFβ
Pigment epithelium-derived 
factor (PEDF)
Betacellulin
NT3
Vascular endothelial growth 
factor (VEGF)
FGF-2
Endothelial growth factor
Bone morphogenic protein 
(BMP)
TGF-β
Laminin
Prolactin
Collagen IV
Angiopoietin

Influence PCs function
Impact neural stem cell (NSC) self-renewal, 
proliferation, survival, and quiescence
Proliferate in response to stroke
Undergo angiogenesis in per-infarct regions
Promote neuroblast recruitment

Ramirez-Castillejo et al. (2006); Goldberg and 
Hirschi (2009); Daneman et al. (2010); Young 
et al. (2011); Codega et al. (2014); Delgado et al. 
(2014); Ottone et al. (2014)

Ependymal 
cells

BMP
β-Catenin
N-Cadherin
Vimentin
α-Tubulin

PEDF
Noggin

Generate cerebrospinal fluid flow
Promote NSC self-renewal and maintenance
Proliferate and give rise to neuroblasts and 
astrocytes
Regulate SVZ through Noggin

Lim et al. (2000); Ramirez-Castillejo et al. (2006); 
Colak et al. (2008); Shen et al. (2008); Young 
et al. (2011)

Pericytes αSMA
PDGFβ-receptor
NG2
CD13

TGF-β
IGF-2

Induce and upregulate blood–brain barrier 
function
Impact neurogenesis to be explored
Exhibit contractile properties

Dohgu et al. (2005); Yemisci et al. (2009); Armulik 
et al. (2011); Lehtinen et al. (2011); Sharma et al. 
(2012)

Microglia Iba-1
Mac-2

Tumor necrosis factor alpha-α
IL-1
Cytokines: pro and 
anti-inflammatory
VEGF
Osteopontin

Monitor brain microenvironment
Phagocytose foreign substances
Inhibit or induce deleterious effects

Barone et al. (1997); Lambertsen et al. (2005); 
Denes et al. (2007); Lalancette-Hebert et al. 
(2007); Weinstein et al. (2010); Patel et al. (2013); 
Ghuman and Modo (2016)
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Limitations to Successful Cell Therapy
The major restriction to successful transplantation of neural cells 
into the stroke-damaged area has been the survival of exogenous 
cells, which ranges from 1 to 32% (Zhang et  al., 2001). Cell 
survival is compromised by delivery mechanisms that increase 
distorting force during syringe needle flow such as pressure drop, 
shearing, and stretching forces (Aguado et  al., 2012). Viscosity 
and composition of delivery fluid contribute to cell distribution 
in solution and shear forces applied to cells during delivery. 
Additionally, sedimentation in carrier fluid becomes a limiting 
factor in successful cell delivery, causing the first partial injection 
volume to contain more cells than those delivered later. In order 
to achieve precise cell suspensions and cells with minimal dam-
age, cellular delivery methods are the focus of innovation and 
optimization in stroke recovery therapeutics (Aguado et al., 2012; 
Potts et al., 2013).

The BBB and CSF barrier pose limitations to delivering 
therapeutics to the brain. Established delivery methods can be 
invasive, causing further damage to the ischemic area. Although 
systemic, intravenous delivery methods can be non-invasive, they 
often lead to an accumulation of cells in clearing organs, including 
kidney and spleen, rather than the brain. Targeted intracerebral 
cell injection can be applied directly to the peri-infarct region; 
however, the multiple injections required to deliver adequate 

numbers of cells can cause further damage to the already injured 
tissue (Ghuman and Modo, 2016). With minimal damage to an 
already fragile environment, invasive approaches are unfavorable 
due to the threat of further disruption of tissue and the BBB. 
Recent advances take these limitations in current therapeutic 
strategies into account, focusing on development of minimally 
invasive and non-damaging injections or delivery routes.

Biomimetic strategies face obstacles when considering clinical 
translation due to the fact the optimal cell type for transplantation 
therapy has not been determined. The use of stem cells in par-
ticular is impacted by ethical issues, where fetal and embryonic 
derived cells can create controversy. Generating an abundance of 
cells that maintain and recapitulate stemness is a challenge that 
limits the use of other cell types. Just as it has been seen with 
direct implantation and delivery of stem cells, many restrictions 
impact the success of these new therapies. First, the stroke-injured 
brain may compartmentalize areas of damaged tissue, creating a 
physical barrier to therapeutic deliveries. Stroke-injured brains 
also contain varying degrees of necrotic, avascular tissue, limit-
ing access to systemic delivery of materials and cells through the 
vasculature. The variation in injury observed from person to 
person in each stroke occurrence causes significant difficulty in 
normalization of therapeutic methods. Due to the high variability 
of tissue damage and resultant function between patients, there 
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is a lack of a standardized way to quantify both the severity and 
recovery of the disease. In order to form an effective therapy, these 
ambiguities must be addressed to formulate a common language 
that can measure functional outcomes in stroke trials.

BiOMATeRiAL-BASeD BiOMiMiCRY

We have detailed the importance of native and remodeled micro-
environments in the SVZ and their role in driving cell function. 
The resident cell types have been described in addition to the 
ways these cells interact and impact one another. Both direct and 
indirect interactions with ECM molecules impact cell behavior, 
providing biomimetic scaffolds the opportunity to regulate cell 
behavior by modifying scaffolds to provide cues that cells in the 
host environment would have (Delcroix et al., 2010). Together, 
knowledge of SVZ cells, exogenous cells, and the ECM molecules 
that control cell fate and maintain the SVZ niche, tissue engineers 
can create biomaterials to produce a bioreplicative system that 
may improve experimental and therapeutic approaches.

Ideally, direct implantation of a biomaterial into the stroke-
damaged area would promote cell adhesion and survival, cellular 
cues for healthy tissue development, and induce the recovery 
of the damaged ischemic core. Here, we discuss critical scaffold 
attributes required to facilitate poststroke healing in the brain, 
and two classes of biomaterials that have been demonstrated 
advantageous for brain repair: synthetic and natural materials.

Considerations for Development  
of an ideal Scaffold
The ultimate goal of a biomimetic scaffold is to facilitate neural 
tissue regeneration and functional recovery following stroke.  
A scaffold must promote survival and proliferation of transplanted 
cells within the damage site, engage healthy interaction with 
endogenous cells, and promote the recovery of damaged neural 
circuitry. The mechanical and physical properties of a biomate-
rial impact the administration of the scaffold, the target injection 
site, and endogenous/exogenous cell response. In particular, solid 
scaffolds must present a compressive moduli allowing for cell 
survival rather than promoting tissue stress and damage upon 
implantation. A decrease in NSC proliferation in 3-D alginate 
scaffolds is correlated with an increase in the material modulus, 
where the greatest differentiation expression was attributed to the 
softest hydrogels. These soft hydrogels possess an elastic modulus 
comparable to brain tissue (100–1,000 Pa) (Banerjee et al., 2009). 
In addition to mechanical constraints, the initiation of the cel-
lular and molecular cascade following transplantation must be 
considered. A biocompatible material is one that can coexist 
with living tissues without eliciting a local and systemic immune 
response in host tissue. Biocompatible materials do not promote 
a foreign body response, do not produce cytotoxic effects to the 
milieu, and limit the inflammatory and immune reaction in the 
brain (Boisserand et  al., 2016). Byproducts from biomaterial 
degradation can be bioactive, influencing the surrounding envi-
ronment and affecting both host and transplanted cells, thereby 
producing detrimental effects. Photopolymerization processes, 
which are cross-linking reactions that occur with light exposure, 

are often used for hydrogel production; however, these reactions 
can lead to the formation of free-radicals that compromise cell 
survival. Polymers that can polymerize at physiological condi-
tions, dependent on temperature or pH, avoid these potential 
toxic effects (Ghuman and Modo, 2016). Consideration of how 
biomaterials will interact with host tissue is critical to contribute 
to functional recovery of both the infarct area and surrounding 
tissues.

Scaffold degradation over time to create or restore neural 
circuitry in stroke-damaged tissue. Degradation allows for inte-
gration of transplanted cells into the cavity. There is a fine balance 
between supporting cells during transplantation and controlling 
the rate of degradation. Injectable biomaterials, including hydro-
gels, are attractive candidates for stroke injury lesion cavities, 
which vary in size and morphology between patients. Hydrogels 
that structurally fill the cavity space and induce repopulation 
of cell depleted tissue space can be advantageous, as long as the 
mechanical properties are controlled in a manner that avoids fur-
ther damage to the lesion cavity caused by increased intracerebral 
pressure with large volume of hydrogel injection. In fact, Modo 
et al. observed that microglia and astrocytes were able to infiltrate 
an ECM hydrogel where cell infiltration allows for a repopulation 
of host cells and ECM remodeling (Ghuman et al., 2016). While 
bulk hydrogel implantation into infarcted and lesional cavities has 
demonstrated some benefit, implantation of microencapsulated 
biological moieties has also demonstrated promise in the area 
of stroke recovery and repair. Microencapsulation techniques in 
which cells are encapsulated in approximately 95 microsphere 
diameter polymeric hydrogel spheres can be used to control 
the microenvironment an implanted cell is initially exposed to, 
thereby maintaining proper function of the cell type. In particular, 
is the maintenance of cell function is applicable to the SVZ niche 
where the cytoarchitecture organization is important to maintain-
ing cellular and biochemical cues (Franco et al., 2011). Growth 
factor incorporation into biomaterials can contribute to creating 
biomimetic microenvironments. As one example, growth factors, 
including IGF-1, that are encapsulated into gelatin microspheres, 
promoted increased endogenous neurogenesis in the SVZ of 
adult mice. Hepatocyte growth factor containing microspheres 
also increased neuroblast migration from the SVZ to the stroke-
injured tissue in the same model (Nakaguchi et al., 2012). FGF-2 
in heparin–chitosan scaffolds demonstrates sustained survival 
and growth of NSC, where these multifunctional, biocompatible 
microspheres are optimized for NSC grafting (Struzyna et  al., 
2014). The use of stem cells and growth factors in conjunction 
with biocompatible and degradable scaffolds shows high potential 
to create a microenvironment that promotes functional recovery 
following injury. The use of 2-D polymer scaffolds has been 
advantageous as a means of exploring conditions for optimal cell 
growth and survival, for probing cell-surface interactions, and for 
trialing manipulations of the microenvironment that are impact-
ful to cell response. In fact, such models that have been used 
to deconstruct the SVZ niche include the presentation of FGF 
covalently attached to a network of polyamide nanofibers. The 
scaffold maintained biological efficacy of FGF-2, strongly activat-
ing FGF receptors (Nur et al., 2008). In addition, EGF tethered to 
poly(methyl methacrylate)-graft-poly(ethylene oxide) promotes 
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MSC spreading and survival around the biomaterial (Fan et al., 
2007). These advantageous promote the use of 2-D polymeric 
substrates as bioreplicative constructs is a method of optimizing 
conditions for cell culture prior to advancement to 3-D replicates 
of the SVZ niche. In a 2-D model, cell–cell adhesions are confined 
to a horizontal plane, while a 3-D model allows for adhesions on 
all sides. A 3-D environment constrains cells to an artificial niche, 
enabling dynamic variation or continuous remodeling, which are 
not capable in a 2-D monolayer model.

Elastic, polymeric scaffolds make an ideal candidate for neu-
rosurgical techniques to deliver scaffolds to the SVZ. While the 
goal is to fill the stroke cavity with a pliable and tunable scaffold 
which resembles mechanical properties of the native environ-
ment that will temporarily replace lost tissue, the material must 
also promote the infiltration of new and healthy cells. Rat-derived 
NSCs vary their cellular fate depending on the hydrogel stiffness, 
stressing the importance of biomaterial mechanical properties on 
differentiation potential (Leipzig and Shoichet, 2009). Stiffness 
and diffusion capacity must be carefully assessed prior to scaffold 
delivery in order to avoid detrimental effects to surrounding 
tissues in addition to differentiation to undesired cellular fates.

Synthetic Polymeric Materials
Synthetic biomaterials enable direct control of key properties, 
including degradation rate, material stiffness, and protein incorpora-
tion. Cell incorporation in combination with these materials calls 
for careful observation of cell–scaffold interactions, consequently 
allowing for control of cell processes, such as differentiation, 
morphological formation, and extension, to ultimately enhance 
connectivity in the ischemia area (Ghuman and Modo, 2016).

Poly-(Ethylene Glycol)
Poly-(ethylene glycol) is a biologically inert, non-toxic poly-
meric material, presenting excellent biocompatibility and resis t-
ance of protein adsorption. The mechanical properties of PEG 
depend on its molecular weight, as increasing the chain length 
of PEG increases stiffness and viscosity (Parlato et  al., 2014). 
PEG can be chemically modified by tethering peptides or pro-
teins through cross-linking reactions. Due to its inert nature, 
the incorporation of biologically active peptides cell-adhesive 
peptides, such as RGD and YIGSR, promotes cell attachment 
to the material (Gonzalez et al., 2004). PEGylation, the process 
of attaching PEG polymer chains to molecules and macro-
structures, changes the chemical and physical properties of 
the material (Roudsari et al., 2016), making PEG a highly used 
polymer in a broad spectrum of tissue engineering applications. 
PEG-based microspheres modified by adhesive sequence RGD 
and metalloproteinase sensitive sequence have been utilized 
to encapsulate murine NSCs and brain ECs, demonstrating 
60–80% cell viability, cell spreading, and migration through the 
scaffold (Franco et al., 2011).

In order to observe PEG as a candidate for neural repair and 
recovery, degradation characteristics as well as delivery of both 
cells, and growth factors are under investigation. As one exam-
ple, varying mass profiles of PEG were examined. The astrocyte 
response varied with degradation rate, where slowly degrading/
non-degrading gels display a prolonged astrocytic response. 

Astrocytes extended their processes into the hydrogel, where 
microglia infiltrated the hydrogel and facilitated the enzymatic 
process. Hydrogels decreased acute microglial response dur-
ing the week following implantation, suggesting PEG-based 
materials are beneficial for CNS delivery for both drugs and 
cells (Bjugstad et  al., 2010). In addition, PEG-based hydrogels 
with increased lactic acid content and encapsulated neural cells, 
including postmiotic neurons and multipotent precursor cells, 
demonstrate an increase in cell proliferation and survival, estab-
lishing an advantage of rendering PEG materials as degradable in 
order to be relevant to neural cells delivered to the stroke-injured 
brain (Lampe et al., 2010). Delivery of EGF using modified PEG 
hydrogels demonstrates a significant increase in tissue penetra-
tion as well as endogenous NSCs and progenitor cells in the SVZ 
when delivered to the ventricles of the brain. PEG modification in 
this way decreased EGF degradation by proteases, allowing for a 
greater protein accumulation in surrounding tissues, penetrating 
deeply into the tissues, seen in both the healthy and stroke-injured 
mice brain (Cooke et al., 2011). Thereby, these studies provide 
support for the use of PEG as a highly adaptable and tunable scaf-
fold to be utilized for delivery of both cells and growth factors in 
stroke repair applications.

Polylactide Acid (PLA), Polyglycolide Acid (PGA),  
and Poly(Lactic-Co-Glycolic Acid) (PLGA)
Utilizing PLA and PGA alone or as the copolymer PLGA renders 
a bioactive polymer with the ability to closely control material 
properties, specifically degradation (Ghuman and Modo, 2016). 
PGA, a hydrophilic polymer, can rapidly degrade over a course 
of 2–4 weeks in vivo, while hydrophobic PLA degrades slower. 
Incorporation of these materials, PLGA in particular, can pro-
duce a variety of biomaterials, including nano and microparticles, 
which present high biocompatibility, low immunogenic response, 
and high structural support for NSCs to enhance brain repair 
(Boisserand et al., 2016).

Polyglycolide acid scaffolds have been effective for encapsulat-
ing NSCs, illustrating vascular formation and access to nutrients 
via diffusion (Park et al., 2002). In addition, a copolymer of PLGA-
PEG nanoparticles loaded with thyroid hormone, which has a 
neuroprotective role in ischemia damage and is permeable across 
the BBB, demonstrates a decrease in tissue infarction and brain 
edema when delivered to a MCAO mouse model (Mdzinarishvili 
et al., 2013). PLGA based microspheres can bypass the inflam-
matory cascade and reduce host immune response, where these 
microspheres produce an inflammatory response similar to that 
of just a needle tract, presenting a peak in astrocyte activation 
1-week post injection in rat brain models (Emerich et al., 1999). 
Another study shows human derived NSCs seeded on VEGF-
releasing PLGA microparticles delivered to a MCAO rat model 
exhibiting a burst and sustained VEGF release, promoting attrac-
tion to ECs from the host, and facilitating the re-establishment of 
neovasculature through the cell and growth factor delivery (Bible 
et al., 2012). These results suggest that PLGA, due to its controlled 
degradation rates and high biocompatibility, has potential for a 
stroke therapeutic delivery system of drugs, cells, or reparative 
and regenerative factors.
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Polypyrrole
Electric fields in vivo play a crucial role in control of cell poten-
tial and neuronal field potential. Electrical stimulation of stem 
cells is known to facilitate stem cell and progenitor cell fate. 
Experimentation using electrical properties may be beneficial to 
differentiate stem cells and re-build neural circuitry. The use of 
conductive scaffolds makes plausible the manipulation of stem 
cells, in particular, the use of Polypyrrole (PPy) (George et  al., 
2017). Following the seeding of cells, ion channel density and 
neurite outgrowth are manipulated by signaling intrinsic electrical 
cues. PPy generates a minimal inflammatory response, supports 
cell growth, and guides stem cells toward differentiation (Stewart 
et al., 2015). By applying electrical stimulation to NSCs seeded on 
laminin-coated PPy films in a timely manner demonstrates neu-
ron differentiation (Stewart et al., 2015). A study preconditioning 
human neural progenitor cells in a cell chamber system seeded on 
a PPy scaffold presents an improvement in neurologic function 
in a rat stroke model (George et al., 2017). The VEGF-A pathway 
gene expression was altered following electrical stimulation, cor-
related with endogenous vasculature remodeling (George et al., 
2017). This suggests that electrically preconditioning stem cells 
can be beneficial to enhance stroke recovery.

Natural Materials
Chitosan
Chitosan is a biodegradable, inexpensive material with low 
toxicity that can be modified through incorporation of ECM 
proteins to the surface, including laminin and fibronectin that 
regulate cell functions (Haipeng et al., 2000; Cheng et al., 2007; 
Yang et al., 2010). Accordingly, due to its ability to be modified, 
chitosan carriers have demonstrated NSC survival, proliferation, 
and cell differentiation into desired phenotypes (Yang et  al., 
2010). In terms of neural repair, chitosan use is advantageous as 
the material undergoes alkaline hydrolysis, directly controlling 
the amine content and ultimately impacting cell adhesion and 
neurite extension (Cheng et al., 2007). In addition, oxygen plasma 
treatment preserves the chitosan microstructure in nerve conduit 
models, confirming improvement in behavior and functional 
recovery (Cheng et  al., 2007). Chitosan nanoparticles loaded 
with acetyl-11-keto-β-boswellic acid, a resin extract which may 
control inflammatory responses, demonstrate a neuroprotective 
effect in a MCAO rat model, reducing infarct volume and cell 
death (Ding et al., 2016). In addition, the encapsulation of ESC 
derived ECs into a chitosan-based hydrogel loaded with VEGF 
microtubes presents minimal cytotoxicity in vivo and high cell 
survival, inducing neovascularization in hind limb ischemia 
mouse models (Lee et  al., 2015). Chitosan-based biomaterials 
continue to be explored for the use in nerve repair for brain injury 
due to the lack of immune response post injection.

Hyaluronic Acid (HA)
Hyaluronic acid is a linear-chain polysaccharide that has demon-
strated a positive role in nerve regeneration as well as neuronal 
development. HA is biocompatible and ubiquitous in the body. 
HA plays a role in CNS development and has been utilized in con-
junction with neuronal progenitor cells in various applications, 

including the use of photocrosslinkable hydrogels varying in stiff-
ness, presenting differences in differentiation potential (Seidlits 
et  al., 2010; Khaing et  al., 2014). The mechanical properties of 
HA hydrogels can be manipulated, promoting the potential to 
direct neural progenitor differentiation (Seidlits et al., 2010) in 
addition to reducing scar formation following neurolysis (Ikeda 
et  al., 2003). These hydrogel systems express mechanical prop-
erties similar to that of brain tissue and can be altered through 
photo cross-linking systems, testing a variety of compressive 
moduli. In normal tissue, hyaluronan has a range of molecular 
weights that play critical rolls in controlling cell motility, cell 
growth, and angiogenesis (Back et  al., 2005). Engrafting trans-
planted mouse, human progenitor, and human glial-restricted 
precursor cells in HA-PEG gels demonstrates prolonged survival 
in the xenograft, despite the induction of a mild inflammatory 
response after 2 weeks (Liang et al., 2013). The optimization of 
HA based scaffolds is under exploration for neural repair therapy 
as this polysaccharide plays a key role in stabilizing the ECM and 
regulating cell processes such as adhesion, motility, proliferation, 
and differentiation.

Hyaluronan–Methylcellulose (HAMC)
In HAMC systems, fine tuning of material properties is obtained 
by altering both the composition and molar mass of HA and 
methylcellulose (MC). While hyaluronan and MC are both bio-
compatible, hyaluronan is beneficial due to its non-immunogenic 
and anti-inflammatory properties (Vercruysse and Prestwich, 
1998), and MC is a non-cell-adhesive material with the ability to 
fill brain lesions (Wells et al., 1997; Tate et al., 2001). The combi-
nation of these two materials is an ideal option for many neural 
therapies. HAMC polymers are fast-gelling and can be made into 
an injectable material. The gelation mechanisms, degradation, and 
cell adhesion of these materials can be varied and are well charac-
terized (Tate et al., 2001; Gupta et al., 2006; Shoichet et al., 2007). 
Future uses of HAMC models rely upon their non-immunogenic 
nature, which is advantageous for injection therapies due to the 
reduced risk of infection at the injection site.

Fibrin
Fibrin has been used extensively as a scaffold for nerve regenera-
tion, allowing for axonal regeneration and cell migration in gap 
nerve injuries (Williams et al., 1983; Taylor et al., 2004). Since 
fibrin is susceptible to enzymatic degradation, neurites are able 
to degrade these gels via plasmin activity (Herbert et al., 1996). 
Fibrin-based drug delivery systems have been used to release 
neurotrophins, a family of proteins that positively impact survival 
and development of neurons. Fibrin gel systems have been used 
to promote cell migration, neural fiber extension, and growth 
factor delivery (Taylor et al., 2004). In addition, fibrin matrices 
have been used in conjunction with glial-derived neurotrophic 
factor to enhance neurite extension (Wood et al., 2009), further 
demonstrating the advantages of this material for re-building 
nerve connectivity. IPSCs mixed with a fibrin glue injected to 
an MCAO rat model resulted in a reduction in infarct volume, 
improvement in behavior, a reduction in pro-inflammatory 
cytokines, and an increase of anti-inflammatory cytokines (Chen 
et al., 2010).
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Collagen
Collagen, one of the most abundant proteins, is a biocompatible 
and immunogenic material that promotes cell adhesion and 
growth (Cross et al., 2010). Collagen can be remodeled by cells 
and is readily accessible for research and therapeutic use, as it 
can be obtained commercially or through established extraction 
protocols. However, due to the weak bulk mechanical strength 
of collagen, collagen-based materials must be altered to mimic 
the ECM and facilitate native cell interactions and biophysical 
cues (Knapp et al., 1997). The modulus or tensile strength of col-
lagen can be increased through the addition of molecules, such as 
glycosaminoglycans (Lee et al., 2001).

Due to the biocompatibility and tunable mechanical strength 
of collagen, studies using collagen hydrogels have demonstrated 
the ability to encapsulate NSCs to increase cell survival when 
compared to injection of cells alone into the lesion cavity. NSCs 
assemble into the pores of the collagen matrix, where cells sur-
vive, differentiate, and re-build neural synapses in the MCAO 
rat model, displaying the start of collagen degradation after 
6 days. Degradation processes facilitate the recovery of neural 
tissue post ischemia and allow for NSC integration to the host 
network (Yu et  al., 2010). The incorporation of hyaluronan, 
heparin, and collagen into a hydrogel loaded with NSCs into a 
photo thrombotic stroke mouse model exhibits survival of the 
neural cells transplanted into the infarct cavity, a decrease in 
activated microglia and macrophage cells around the scaffold, 
and an increase in cell survival (Zhong et al., 2010). Due to the 
remodeling potential of a collagen scaffold, in addition to its use 
for observing dynamic cell processes, collagen is an attractive 
biomaterial for improving angiogenesis and vasculogenesis in 
stroke models.

PeRSPeCTive AND FUTURe DiReCTiONS

Biomaterial platforms have great potential to mimic the native 
interactions of the SVZ. Nevertheless, these materials must 
induce resident cell function and limit further damage to the 
stroke-injured tissue, presenting significant challenges for 
researchers and engineers. Ideally, a biomaterial must be biocom-
patible and degradable. This promotes cell interactions includ-
ing molecular and biological signaling and cues, which mimic 
the native transplantation niche. Intracranial delivery systems 
must be optimized, beginning from rodent models in order to 
enhance knowledge of SVZ maintenance and dynamic response 
following brain trauma. This expanding pool of knowledge will 
ultimately translate to human trials. The translation to human 
models, however, poses its own challenges, as the human SVZ 
differs from that of the rodent in cellular architecture. In addi-
tion, large-scale efficacy and randomized controlled trials must 
be conducted to ultimately test the efficiency and safety of stroke  
therapeutics.

In order to produce a biomimetic scaffold that takes into 
account the many requirements and considerations discussed 
here, intense collaboration between neurologists, neural cell 
biologists, tissue engineers, and imaging experts is required. 
More profound knowledge of stem cell therapy is necessary to 

determine whether stem cells take on the function of the cells 
they replace, or if the cells integrate and need training by sur-
rounding cells to function. Such discoveries would also aid in 
the understanding of these cells’ impact on endogenous neuro-
genesis. The implications of these discoveries would contribute 
to neurological diseases that compromise brain homeostasis not 
limited to stroke, including Parkinson’s disease and Huntington’s 
disease. Using the ability of NSCs to differentiate and self-
renew, these cells have great potential for cell replacement and  
gene therapy for a broad category of neurological disease (Kim, 
2004). The observation of molecular pathways between the criti-
cal cell types discussed above will guide development of scaffolds 
that promote both neurogenesis and angiogenesis.

As survival of transplanted cells remains a major limitation of 
successful cell therapy, a tissue engineered strategy must focus on 
transplantation methods that do not compromise cell viability. In 
addition, therapies must be tunable by nature, thereby addressing 
patient heterogeneity. Patients show variety in lesion size, loca-
tion, and neuroanatomy postischemic stroke. The availability of 
stem cells to incorporate into biomimetic scaffolds must further 
be explored to ensure that these cell sources, in addition to resi-
dent cells, will limit the inflammatory cascade from occurring. It 
is important that research further examine how immune cells can 
be neuroprotective or damaging or if their role is solely depend-
ent on the microenvironment, in order to achieve both positive 
and negative impacts.

Imaging techniques will require advanced technology to mon-
itor stem cell activity, biomarker expression, structural changes,  
and the integrity of the infarct area. Using fluorescent micros-
copy, distribution of transplanted cells and material can be 
observed over time, where migration of stem cells to the lesion 
site is desirable. In this way, temporal dynamics of migration can 
be observed in addition to histological analysis of transplanted 
cells to the lesion area. Cell tracking is made feasible through 
bioluminescent optical imaging at a low cost, however, limited 
by the low penetration of light. In order to track cells deeper in 
tissue, positron emission tomography, single-photon emission 
computed tomography, and magnetic resonance imaging (MRI) 
can penetrate deeper within a subject utilizing a radioactive 
isotope (Gavins and Smith, 2015). MRI allows for imaging 
modalities to assess pathophysiological changes, outcomes of 
cerebral ischemia, vascular lesions, and blood flow. By observ-
ing parenchyma changes through this tool, ischemic lesions 
and the advancing ischemia can be observed, as well as the 
direct consequences of the injury (Nour and Liebeskind, 2014). 
Computed tomographic scans of the brain allow monitoring of 
hemorrhaging, an observation required before intravenous rtPA 
can be administered (Menon et al., 2015). Customized imaging 
can give insight into the area of infarction over the course of 
therapy, where this enhanced detail is crucial when considering 
translation to human trial.

In summary, there is strong potential in our ability to pro-
duce and optimize biomaterials that mimic the SVZ, during 
homeostasis and following stroke. By incorporating multiple cell 
types, important matrix proteins and moieties, and appropriate 
biochemical and biomechanical cues native to the SVZ niche, 
promotion and enhancement of neurogenesis and angiogenesis 
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can be attained. Once accomplished, this can revolutionize the 
limitations of stroke therapies, where there is currently no effec-
tive treatment for full recovery following ischemia. Future thera-
pies must mimic the SVZ niche to maintain stem cells in a 
quiescent, undifferentiated state with controlled differentiation 
potential, in addition to the direct cell to cell interactions that 
regulate homeostasis and promote repair following injury. As 
a result, integrating neuroanatomy and biomaterials can be an 
advantageous collaboration to confront a pressing clinical need 
to produce a therapy with fine-tuned control over a biomaterial’s 
properties. Through the manipulation of engineered scaffolds, 
the ultimate goal of treating degenerative activity in the SVZ to 
allow for functional recovery and neural circuitry post-trauma 
can be achieved.
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Glioblastoma (GBM) is the most common and malignant form of brain cancer. Even with

aggressive standard of care, GBM almost always recurs because its diffuse, infiltrative

nature makes these tumors difficult to treat. The use of biomaterials is one strategy

that has been, and is being, employed to study and overcome recurrence. Biomaterials

have been used in GBM in two ways: in vitro as mediums in which to model the

tumor microenvironment, and in vivo to sustain release of cytotoxic therapeutics. In

vitro systems are a useful platform for studying the effects of drugs and tissue-level

effectors on tumor cells in a physiologically relevant context. These systems have

aided examination of how glioma cells respond to a variety of natural, synthetic,

and semi-synthetic biomaterials with varying substrate properties, biochemical factor

presentations, and non-malignant parenchymal cell compositions in both 2D and 3D

environments. The current in vivo paradigm is completely different, however. Polymeric

implants are simply used to line the post-surgical resection cavities and deliver secondary

therapies, offering moderate impacts on survival. Instead, perhaps we can use the data

generated from in vitro systems to design novel biomaterial-based treatments for GBM

akin to a tissue engineering approach. Here we offer our perspective on the topic,

summarizing how biomaterials have been used to identify facets of glioma biology in vitro

and discussing the elements that show promise for translating these systems in vivo as

new therapies for GBM.

Keywords: glioblastoma, biomaterial, hydrogel, regenerative medicine, tissue engineering, brain, tumor

microenvironment

INTRODUCTION

Glioblastoma (GBM) is a high-grade brain cancer that almost always recurs (Cuddapah et al.,
2014). Many in vitro and in vivomodels of GBM have been developed in an effort to uncover new
therapeutic strategies. Biomaterials are often primary components of in vitromodels to chemically,
mechanically, and/or topographically recreate the physiological tumor environment, as recently
reviewed by Xiao et al. (2017), Gu and Mooney (2015), Pradhan et al. (2016), Cha and Kim (2017),
and Heffernan and Sirianni (2018).

While GBM models are useful for studying glioma biology, the field is far from accurately
predicting clinical success of a new therapy. It was recently suggested that all models,
including gold-standard mouse xenografts, inherently cannot preserve the genetic landscape
of patient-derived tumor cells (Ben-David et al., 2017). Where does this study (and others
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like it) leave the field? Glioma is a tissue, with complex
heterogeneity in tissue geometry, composition, biophysical
properties, etc. Even if researchers can create sophisticated
models of the tumor, these models cannot logistically account for
every element of the in vivo environment. Therefore, a tissue-
level approach may enhance our ability to treat this deadly
disease.

In vitro biomaterial research has revealed crucial information
about material-GBM cell interactions. And yet, implementation
of biomaterials in vivo for treating GBM has been limited to
anti-tumor drug delivery, such as BCNU-releasing Gliadel wafers
(Wait et al., 2015). These wafers, made of a poly(lactic-co-
glycolic) polymer backbone, have been used to line resection
cavities in patients receiving surgical removal of primary tumors
and offer a modest, yet significant, increase in survival. However,
these systems are simply a conduit for therapy and thus in no way
leverage glioma-biomaterial interactions as part of the therapy.

Many diseases are now being viewed from a regenerative
medicine lens, using factors within the patient’s own body to
promote healing. Cancer is often described as a wound that
does not heal and may similarly benefit from this approach.
The fluid-filled cavity remaining after resection is a prime space
in which to examine biomaterial-based therapies, analogous to
experimental treatments for stroke or traumatic brain injury. In
current literature, treating the post-resection cavity has primarily
involved hydrogel biomaterials as passive vehicles for drug
therapy (Bagó et al., 2016; Bastiancich et al., 2017). It is possible
that translating collective knowledge frommyriad in vitromodels
could instead transition biomaterials to an active avenue for
cancer remediation. Below, we summarize current understanding
of how glioma outcomes can be altered in vitro and offer
perspectives for using this data to design biomaterials for
promoting anti-tumor responses, tumor targeting, and treatment
against glioblastoma.

TUNING THE EXTRACELLULAR MATRIX

Matrix Composition
While earlier experiments with glioma cells used 2D plastic, it is
now understood that the underlying matrix plays an important
role in glioma phenotype (Eke and Cordes, 2011; Florczyk
et al., 2013; Heffernan et al., 2015). The composition of the
brain matrix is different from most tissues, primarily comprising
the polysaccharide hyaluronic acid (HA) and HA-binding
proteoglycans, but few fibrillar proteins. Many engineered
in vitro systems for GBM therefore employ HA-based matrices.
These models have elucidated that HA increases stem cell
maintenance, glioma cell adhesion and migration, and markers
of malignancy (Pedron et al., 2013; Kim and Kumar, 2014;
Tilghman et al., 2014; Cha et al., 2016). Other brain components,
such as certain chondroitin sulfate proteoglycans (CSPGs), have
also been shown to increase glioma invasion (Logun et al., 2016).
However, CSPGs have also been suggested to inhibit glioma cell
invasion (Silver et al., 2013), therefore the specific response may
depend on CSPG sulfation pattern (Silver and Silver, 2014).

Several in vitromodels have been developed with components
not ubiquitous in the brain, like collagen I and laminin-rich

basement membrane extract (Matrigel). While mixing these
components with HA can recreate the invasive phenotypes
observed in pure HA hydrogels (Munson et al., 2013; Gritsenko
et al., 2017), collagen andMatrigel hydrogels alone comparatively
limit glioma cell invasion. Some non-native components
nonetheless increase invasion: The extracellular matrix (ECM)
secreted by glioma cells is itself dissimilar to the native
brain and is rich in aberrant proteoglycans, tenascin-c, and
an overabundance of HA (Cuddapah et al., 2014; Xia et al.,
2016). For example, glioma cells secrete a truncated form
of the proteoglycan brevican which binds to fibronectin and
promotes invasion (Hu et al., 2008). Incorporation of RGDS,
the adhesive ligand found in fibronectin, similarly induced cell
dissemination in poly(ethylene) glycol hydrogels (Beck et al.,
2013). Further, glioma cells adhere more strongly in HAmatrices
that contain RGDS, potentially due to augmented integrin-
mediated mechanotransduction in HA (Chopra et al., 2014; Kim
and Kumar, 2014).

Topographical Cues
Topographical cues present within the tissue can also enhance
migration. While the brain is relatively non-fibrous and
amorphous, basement membrane-rich blood vessels are a prime
substrate on which glioma cells migrate within perivascular
spaces (Cuddapah et al., 2014). Herrera-Perez et al. (2015)
showed that pseudovessels of Matrigel-coated collagen-oligomer
fibrils increased the speed of glioma cell migration across a
3D collagen-HA matrix. White matter tracts in the brain are
also a frequent route of migration. Using core-shell electrospun
nanofibers to mimic white matter tracts, Rao et al. (2013)
found that glioma cell morphology, migration speed, and focal
adhesion kinase expression were all sensitive to fiber mechanics
and composition. Altering the design parameters of fibrous
biomaterials can therefore offer precise control over glioma
migration.

Mechanical Forces
A major driving force for using biomaterials in cell culture
platforms is the ability to control biomechanical forces, often
independently from the chemical composition. The mechanical
properties of a scaffold influence a wide range of cellular
behaviors, including proliferation, migration, and stem cell
fate (Engler et al., 2006; Ulrich et al., 2009; Seidlits et al.,
2010). It is well described that many tumors outside the
brain are stiffer than the surrounding tissue. In glioma, tissue
mechanics appear to be extremely heterogeneous, but the
tumor is likely stiffer than normal brain, which has a Young’s
modulus around 1.4 kPa (Miroshnikova et al., 2016). While the
exact physiological properties are controversial, stiffer matrices
promote glioma dissemination. Increasing the stiffness of PEG
hydrogels decreased proliferation of U87 cells and increased the
number of cell protrusions (Wang et al., 2014). Similar results
were found using fibronectin-based matrices on which tumor
cell spread and speed of migration increased with modulus while
proliferation rate decreased compared to softer substrates (Ulrich
et al., 2009).
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Fluid flow and shear stress are also felt by glioma cells in
the tumor microenvironment (Munson and Shieh, 2014). These
forces have been recreated in vitro using HAmatrices (Polacheck
et al., 2011; Qazi et al., 2011; Munson et al., 2013). Interstitial
flow on the order of 0.1–1 µm/s generally increased glioma
cell invasion, although patient-derived glioma stem cells showed
variable responses (Kingsmore et al., 2016). Manipulation of
the matrix to reduce glycocalyx assembly (Qazi et al., 2013) or
CD44-binding (Kingsmore et al., 2016) attenuated these effects,
indicating a link between flow and the surrounding 3D matrix.

Implications for Therapeutic Translation
Biomaterials often promote cell recruitment into an implantation
site after neural injury (Ghuman et al., 2016; Nih et al.,
2017). A similar approach may be beneficial for promoting
glioma migration into an implanted material following resection.
The properties of the implanted matrix should overcome the
malignancy-enhancing properties of HA in the brain, either by
disrupting binding or providing effective competition. Using a
low molecular weight version of HA instead of high molecular
weight may promote local anti-tumor inflammation and disrupt
growth factor signaling (Fuchs et al., 2013; Rayahin et al., 2015).
Incorporation of components such as fibronectin or RGDS could
also preferentially promote stronger binding between invaded
cells and the material vs. the parenchyma (Kim and Kumar,
2014). Fibrous materials would likely increase glioma invasion
into the cavity. In fact, inducing migration through topography
has already proved feasible and beneficial for GBM therapy
(Jain et al., 2014). Additionally, the implanted matrix should
be relatively stiffer than the brain to promote durotaxis, or
migration up a stiffness gradient, of glioma cells and stem-like
cells but deter migration of neural cells, which prefer softer
substrates (Flanagan et al., 2002; Hadden et al., 2017). The caveat
is that mechanical mismatch can promote potentially detrimental
astrogliosis (Prodanov and Delbeke, 2016). Matrices that are
initially stiffer and gradually soften over time may have a defined
niche, in this case.

CONTROLLING BIOCHEMICAL CUE

PRESENTATION

Cytokine and Growth Factor Gradients
Cytokines and growth factors originating from both glioma
and parenchymal cells are associated with the progression of
glioma and response to therapy, as previously reviewed (Iwami
et al., 2011; Zhu et al., 2012). In vivo, natural heterogeneity
is formed as tumor and parenchymal cells secrete biological
molecules, which then differentially bind to the surrounding
matrix and form gradients, sources, and sinks within the
tissue. Recreating gradients in vitro using combinations of
microfluidics, biomaterials, and various cells has been a focus of
models for the study of both cancer (Keenan and Folch, 2008;
Pedron et al., 2015) and regenerative medicine (Khang, 2015).
Microfluidic devices and tissue culture insert models have both
been used to show that in situ gradients of CXCL12 within 3D
hydrogels directly promote glioma migration up the chemokine

gradient (Munson et al., 2013; Addington et al., 2015; Kingsmore
et al., 2016).

Cytokines are also implicated in the maintenance of glioma
stem cells, a potential driver of glioma recurrence. Glial cells
and recruited endothelial cells secrete factors such as bFGF that
promote stem cell maintenance (Fessler et al., 2015). Blocking
the effect of these cytokines offers potential to slow or halt
proliferation of glioma cells. Affinity binding peptides have been
incorporated into biomaterials for controlling release of bFGF,
but these materials could inversely act as effective cytokine sinks
(Lin and Anseth, 2009). A similar approach using an RNA
aptamer to block PDGFRβ was shown effective at slowing glioma
growth (Camorani et al., 2014). Designing materials to promote
cell differentiation, as is common in regenerative medicine, may
be equally applicable to treating glioma (Benoit et al., 2008).

Oxygen
Aberrant vasculature and unchecked tumor growth produce
hypoxic or low oxygen-containing regions within the tumor and
invading tumor clusters (called pseudopalisades; Rong et al.,
2006). Hypoxia is implicated in increasing angiogenesis, stem cell
maintenance, immunosuppression, and cancer cell therapeutic
resistance (Colwell et al., 2017). Thus, incorporation of oxygen
gradients within in vitro systems has been used to study a major
effector of glioma outcomes. Use of 3D systems or spheroid
culture naturally introduce regions of hypoxia based on thickness
and permeability of the materials used. Recently, an in vitro PEG-
based system showed that immobilization of the O2-consuming
enzymes glucose oxidase and catalase effectively induced
hypoxia and upregulated genes known to contribute to cancer
metastasis (Dawes et al., 2017). The opposite would therefore
be useful for glioma therapy: generating oxygen gradients and
preventing hypoxia. Validating this approach, a paper-based
PET mesh layering system showing that linear gradients of
oxygen in culture functioned as a primary chemoattractant and
increased invasion of lung adenocarcinoma cells (Mosadegh
et al., 2015). Oxygen-creating biomaterials have been tested
in regenerative medicine, showing sustain oxygen release for
weeks and reducing hypoxia until angiogenesis can occur
(Pedraza et al., 2012).

Implications for Therapeutic Translation
The ability to control spatiotemporal chemical gradients within
the post-resection cavity has far-reaching implications for
glioma therapy. An ideal biomaterial would trigger glioma cell
egress from the brain parenchyma into the material through
establishing chemical gradients of chemotactic factors such as
oxygen or CXCL12. Alternatively, the material could eliminate or
disrupt pro-malignant cytokine signaling through either release
of receptor blockers or sequestration of factors that aid glioma
stem cell proliferation and maintenance. Dual-release or multi-
functional biomaterials would likely be optimal. Materials that
enable temporally-regulated release and/or capture dynamics,
similar to those used in regenerative medicine (Spiller et al.,
2015), are particularly promising since they may simultaneously
promote parenchyma egress, glioma stem cell differentiation, and
loss of acquired drug resistance.
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REMODELING THE CELLULAR

MICROENVIRONMENT

Angiogenesis
One hallmark of cancer is the ability to induce aberrant
angiogenesis (Hanahan and Weinberg, 2011). Multiple models
of angiogenesis have been engineered and used in vitro (Kimlin
et al., 2013), although few have been described for co-culture
of glioma cells and endothelial cells (Nguyen et al., 2016).
Glioma cells secrete high levels of pro-angiogenic vascular
endothelial growth factor (VEGF)-A which promotes blood
vessel sprouting (Folkins et al., 2009). The ECM can act to
sequester or locally retain VEGF-A, thereby amplifying resultant
uncontrolled angiogenesis (Belair et al., 2016). Additionally,
glioma cells in vivo physically displace astrocytic endfeet from the
surface of blood vessels, disrupting the blood-brain barrier (BBB)
and astrocytic control of vascular tone (Cuddapah et al., 2014;
Watkins et al., 2014). While anti-angiogenesis strategies were
initially promising for limiting glioma progression, the VEGF-
specific antibody bevacizumab (Avastin) completely ablated
tumor blood vessels and actually enhanced tumor growth by
upregulating hypoxia-inducible pathways (Conley et al., 2012).
A more apt approach may be to control availability of pro-
angiogenic factors to promote vascular normalization.

Immune Cell Modulation
Another hallmark of cancer is the promotion of pro-tumor
inflammation (Hanahan and Weinberg, 2011). Monocyte-
derived cells can account for nearly 60% of the tumor bulk
(Yuan et al., 2014). Initial studies proposed that glioma-
associated macrophages were conditioned toward alternative,
M2 activation, but recent evidence suggests this characterization
requires refinement (Mantovani et al., 2002; Szulzewsky et al.,
2015; Gabrusiewicz et al., 2016). Early in tumor development,
anti-inflammatory cytokines enable tumor cells to evade the
host immune response (Zitvogel et al., 2006; Razavi et al.,
2016). Later, immunotolerance can occur due to secretion of
tolerogenic cytokines and ligands such as TGFβ, IL-10, and PD-
L1 (Razavi et al., 2016). Glioma-derived ECM molecules also
alter immune cell phenotype, with periostin acting to recruit and
train monocytes toward pro-tumor phenotypes and tenascin-c
protecting tumor cells from immune surveillance by arresting
T-cell activation (Jachetti et al., 2015; Zhou et al., 2015).

While early biomaterials aimed to reduce the immune
response (Bryers et al., 2012), more recent advances have
resulted in development of immunomodulatory biomaterials
(Hubbell et al., 2009) and immunotherapeutic biomaterials
(Swartz et al., 2012). Biomaterial-based regulation of macrophage
polarization was recently reviewed elsewhere (Sridharan et al.,
2015). Although regenerative approaches typically focus on
promoting anti-inflammatory immune cell phenotypes, the
opposite is also conceivable. These approaches could easily
be tailored toward anti-cancer immunotherapy, as well. T cell
modulation is a rapidly growing and promising field, with
several strategies currently being tested: checkpoint inhibitor
targeting of programmed cell death protein (PD)-1, chimeric
antigen receptor (CAR) T cell therapy, and dendritic cell

therapy (Tumeh et al., 2014; Garg et al., 2017; O’Rourke et al.,
2017).

Glial Cell Modulation
The glioma tumor microenvironment uniquely contains a
brain-specific class of cells known collectively as glia, in part
comprising astrocytes and microglia. Astrocytes provide trophic
and functional support for neurons, and microglia are the
resident immune cells of the central nervous system. Glioma-
associated factors such as CCL21 and the proteoglycan versican
promote a pro-tumor phenotype in microglia (Vinnakota et al.,
2013; Hu et al., 2015). Glioma cells communicate with astrocytes
via connexin-43 gap junctions to promotes glioma invasion,
potentially through exchange of double stranded DNA, as was
observed with metastatic breast cancer cells (Chen et al., 2016;
Sin et al., 2016).

There is limited knowledge on the effects of combining
glial cells in 3D culture with glioma cells. Recent histological
evidence revealed that the balance between reactive astrocytes
and microglia correlated with GBM patient prognosis; therefore,
it will be important to investigate the combination of these cell
types in the future (Yuan et al., 2016). It also remains unclear if
tumor-associated astrocytes are functionally different than other
reactive astrocytes, particularly after the mechanical stress of
surgical resection. Nonetheless, material interventions for tissue
regeneration often target astrocytic “glial scarring.” A mixture
of collagen, hyaluronic acid, and Matrigel maintained astrocytes
in a quiescent state in vitro (Placone et al., 2015). Additionally,
a laminin-inspired self-assembling peptide hydrogel attenuated
glial scarring following a stab injury (Maclean et al., 2017).

Implications for Therapeutic Translation
Biomaterials are routinely used to target the cellular
microenvironment to promote healing. A similar approach
may prove useful for limiting glioma recurrence. Implanting
a material with immobilized pro-angiogenic factors may help
constructively direct angiogenesis within the resection cavity
to promote BBB formation and oxygen normalization while
restricting vessel development in the parenchyma (Li et al.,
2017). A matrix that irreversibly sequesters VEGF-A from
the surrounding tumor microenvironment may have similar
effects. The adaptive immune system can be redirected using
biomaterial-based vaccines to elicit potent, antigen-specific T cell
responses, including in glioma (Ali et al., 2011; Purwada et al.,
2014; Cheung et al., 2018). Reversing pro-tumor polarization
in innate immune cells and glia will likely require a nuanced
balance between pro- and anti-inflammatory phenotypes.
In this case, it would be useful to temporally control release
and/or presentation of different factors (Spiller et al., 2015).
Enzyme-releasing materials could assist in mitigating the
effects of glioma-derived ECM molecules (Qu et al., 2013).
Additionally, astrocytes may be specifically targeted using
therapeutic connectosomes to override cell-cell communication
with glioma (Gadok et al., 2016). The foremost objective must
remain eliminating the cancer cells, therefore fibrous materials
may again be preferred given it proves desirable to promote
pro-healing phenotypes in the long run (Sridharan et al., 2015).
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CONCLUSIONS

Althoughwe use the in vivo environment to educate development
of defined in vitro models, we rarely do the inverse in cancer.
The complexity of glioblastoma has thus far proven difficult
to capture in vitro, and unfortunately no current model can
accurately predict the translational success of a therapy. Here,
we proposed synthesizing the collective knowledge from in vitro
models to inform tissue-level interventions through rational
design of therapeutic biomaterials. Several strategies may be
particularly relevant: Controlling angiogenesis by presentation
of VEGF-A and FGF to enable better drug delivery to
tumor remnants; induction of immunogenic response through
growth factor and chemokine presentation to induce immune
infiltration and anti-tumor differentiation; or increased stiffness
coupled with topography and/or chemokines such as CXCL12
to encourage tumor cell migration away from healthy tissue.

Regardless, using biomaterials as a tissue engineering approach to
treat glioblastoma is an unexplored possibility. Because a plethora
of in vitro models have used a host of different biomaterials
and approaches, there may already be a strategy hidden within
these studies that could assist in the fight against this deadly
disease.
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Following diagnosis of a glioblastoma (GBM) brain tumor, surgical resection, che-
motherapy, and radiation together yield a median patient survival of only 15 months. 
Importantly, standard treatments fail to address the dynamic regulation of the brain 
tumor microenvironment that actively supports tumor progression and treatment 
resistance. It is becoming increasingly recognized that specialized niches within 
the tumor microenvironment maintain a population of highly malignant glioblastoma 
stem-like cells (GSCs). GSCs are resistant to traditional chemotherapy and radiation 
therapy, suggesting that they may be responsible for the near universal rates of tumor 
recurrence and associated morbidity in GBM. Thus, disrupting microenvironmental 
support for GSCs could be critical to developing more effective GBM therapies. 
Three-dimensional culture models of the tumor microenvironment are powerful tools 
for identifying key biochemical and biophysical inputs that impact malignant behaviors. 
Such systems have been used effectively to identify conditions that regulate GSC pro-
liferation, invasion, stem-specific phenotypes, and treatment resistance. Considering 
the significant role that GSC microenvironments play in regulating this tumorigenic 
subpopulation, these models may be essential for uncovering mechanisms that limit 
GSCs malignancy.

Keywords: tumor microenvironment, niche microenvironments, brain tumor stem cells, cancer stem cells, 
scaffolds, hydrogels, three-dimensional cell culture

GLiOBLASTOMA (GBM)

Glioblastoma is the most common and deadly pathological classification of malignant primary brain 
tumors. Epidemiological data collected for the United States between 2009 and 2013 indicate that 
GBM represents 46.6% of these diagnoses and 14.9% of all malignant and non-malignant primary 
brain tumor diagnoses (Ostrom et al., 2016). Overall age adjusted incidence rates are 3.2 per 100,000, 
with a median age of diagnosis of 64.0 years; risk rises with age (Ostrom et al., 2016). Symptoms 
of a GBM vary widely depending on tumor location and size but may include severe headaches, 
seizures, vision and speech impairment, or loss of cognitive and motor functions. Standard treatment 
modalities include removal of the bulk tumor via surgical resection, followed by radiotherapy and 
concomitant chemotherapy. However, treatment is rarely curative, and the prognosis is poor. Median 
survival remains stagnated at only 15 months (Stupp et al., 2009), and the 5-year survival rate is 
reported between 4.7 and 5.5% (Omuro and DeAngelis, 2013; Ostrom et al., 2016).
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Barriers to Treatment
From a clinical perspective, successful treatment of GBM remains 
challenging due to several factors. Complete surgical resection, 
while the best treatment for GBM, is often impossible as a result of 
tumor location, as well as the potential for irreparable damage to 
healthy brain tissue during surgery (Sanai et al., 2011). Radiation 
treatment can often be targeted to areas of the brain that would be 
otherwise difficult to access surgically. Although radiation is an 
effective means for killing remaining tumor cells, simultaneous 
damage incurred on surrounding healthy tissue limits tolerabil-
ity and may worsen patient outcome. Treatment of GBM with 
chemotherapeutics is inhibited by the blood–brain barrier, which 
segregates the brain from systemic circulation and prevents the 
vast majority of drugs from effectively reaching malignant cells in 
the brain. The primary chemotherapeutic currently used in GBM 
treatment is the DNA alkylating agent temozolomide, which is 
administered orally, is brain available and generally well toler-
ated, but imparts only a modest improvement in patient outcome 
(Stupp et  al., 2009). Overall, current treatment options remain 
inadequate.

One of the key biological features of GBM is that, unlike other 
tumor types tumors, it does not metastasize through the blood to 
peripheral organs; instead, individual cells invade healthy brain, 
preferentially migrating along white matter tracts and perivascu-
lar spaces (Giese and Westphal, 1996; Giese et al., 2003). These 
cells are responsible for initiating secondary tumors that most 
often arise within centimeters of the original tumor (Petrecca 
et al., 2012) but may manifest even on the contralateral side of 
the brain (Matsukado et  al., 1961; Giese and Westphal, 1996). 
Invasive cells are undetectable by current imaging methods, and 
almost impossible to remove via surgical resection without dam-
aging healthy brain. Radiation and chemotherapy fail to address 
invasive cells that are shielded by radiosensitive healthy tissue and 
an intact blood–brain barrier. Thus, the invasive nature of GBM 
drives near universal rates of tumor recurrence as secondary 
tumors arise from seemingly healthy brain (Petrecca et al., 2012; 
Omuro and DeAngelis, 2013).

A factor that further complicates the treatment landscape is 
that GBM tumors display a high degree of genetic, epigenetic, and 
cellular diversity. Presently, GBM is classified into four distinct 
subtypes: Proneural, Neural, Classical, and Mesenchymal; each of 
which corresponds to a common set of neoplastic genetic altera-
tions (Verhaak et  al., 2010). However, individual subtype clas-
sifications may not be relevant to all cells found in a single tumor, 
as intratumoral heterogeneity is also a common feature of GBM 
(Sottoriva et al., 2013). This heterogeneity is a primary source of 
treatment resistance, whereby one tumor region that is sensitive 
to treatment is sustained or replaced by another region that is 
tolerant (Bonavia et al., 2011). Tumor heterogeneity is therefore 
an adaptive growth pattern that is challenging to address through 
monotherapy, even when targeted.

GBM TUMOR MiCROeNviRONMeNT

The GBM tumor microenvironment is a complex regulatory 
structure composed of cellular and non-cellular components that 

collectively contribute to disease progression. The tumor micro-
environment significantly influences many important aspects of 
GBM biology; the specific functions of the GBM tumor micro-
environment have been reviewed extensively by others (Bonavia 
et al., 2011; Charles et al., 2011; Wiranowska and Rojiani, 2011; 
Xiao et al., 2017); here, we provide an overview to introduce key 
features of this relationship that are important for modeling this 
unique microenvironment.

Unlike other tissues in the body, the brain extracellular matrix 
(ECM) does not contain high concentrations of fibrous proteins 
(Bellail et al., 2004). Instead, the dense tumor microenvironment 
ECM is primarily composed of the glycosaminoglycan hyaluronic 
acid (HA), and to a lesser degree, tenascin-C, collagen IV and V, 
fibronectin, laminin, and vitronectin, which are generally associ-
ated with blood vessels (Delpech et al., 1993; Giese and Westphal, 
1996; Bellail et  al., 2004; Wiranowska and Rojiani, 2011; Rape 
et  al., 2014). GBM  cells interact with HA via the cell surface 
receptors CD44 and RHAMM, which are often overexpressed on 
GBM cells, and promote invasive phenotypes (Merzak et al., 1994; 
Ariza et al., 1995; Koochekpour et al., 1995; Akiyama et al., 2001). 
The proteoglycan tenascin-C has been described to promote 
GBM invasion (Giese and Westphal, 1996; Sarkar et  al., 2006) 
and to stimulate angiogenesis, which leads to tumor progression 
(Bellail et al., 2004; Rape et al., 2014). Other vascular-associated 
ECM constituents (collagen, fibronectin, laminin, and vitronec-
tin) both promote and guide GBM invasion into healthy brain 
tissue (Mahesparan et al., 2003; Kawataki et al., 2007; Rape et al., 
2014). Moreover, these molecules also enable integrin-mediated 
focal adhesions, which play a significant role in GBM progres-
sion, and have been proposed as a biomarker target for treatment 
(Kawataki et  al., 2007; Lathia et  al., 2010; Ruiz-Ontañon et  al., 
2013; Paolillo et al., 2016; Haas et al., 2017). Furthermore, in addi-
tion to affecting invasion, various isoforms of laminin proteins 
have been shown to potentiate glioblastoma stem-like cell (GSC) 
phenotypes via integrin interactions (Pollard et al., 2009; Lathia 
et al., 2010, 2012; Haas et al., 2017).

The concentration of ECM in the tumor microenvironment 
is increased compared with healthy brain, as its constituents 
are manufactured by GBM  cells to support tumor progression 
(Delpech et al., 1993; Giese and Westphal, 1996; Akiyama et al., 
2001; Wiranowska and Rojiani, 2011; Lathia et  al., 2012). The 
dense ECM and the high cellularity of the tumor contribute to 
increased mechanical stiffness. GBM cells sense microenviron-
mental stiffness primarily through integrins and focal adhesion 
complexes via mechanosensation (Rape et  al., 2014). While 
the biochemical and biophysical effects of matrix composition 
appear to be complementary or even synergistic in promoting 
malignancy, they are not easily isolated in vivo. In vitro studies 
have identified stiffness as a strong regulator of GBM prolifera-
tion and invasion (Ananthanarayanan et al., 2011; Wiranowska 
and Rojiani, 2011; Pathak and Kumar, 2012; Pedron and Harley, 
2013; Heffernan et al., 2014; Kim and Kumar, 2014; Rape et al., 
2014; Umesh et al., 2014). Moreover, blood vessels provide the 
greatest stiffness in the brain and are preferential routes for GBM 
invasion (Giese and Westphal, 1996; Giese et al., 2003). Therefore, 
it is likely that the stiffness of these and other structures instructs 
malignant behaviors in vivo.
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The tumor-associated cells within the tumor microen-
vironment are key regulators of GBM growth and tumor 
vascularization. Cells that commonly provide support to GBM 
include tumor-associated endothelial cells, pericytes, astrocytes, 
fibroblasts, and infiltrating immune cells such as macrophages 
and microglia (Charles et al., 2011). One of the primary modes 
of support from tumor and tumor-associated cells is secretion 
of soluble signaling factors that stimulate malignant phenotypes, 
i.e., proliferation (EGF, FGF, IGF, and HGF), angiogenesis 
[vascular endothelial growth factor (VEGF)], and invasion (IGF, 
HGF, and TGF-β) (Wiranowska and Plaas, 2008). These secreted 
signaling factors may be sequestered within the dense network of 
ECM and serve as a depot for GBM cells (Wiranowska and Plaas, 
2008; Wiranowska and Rojiani, 2011). Tumor vascularization is 
achieved in part by recruitment of vascular-associated endothe-
lial cells, pericytes, and astrocytes, to meet the nutrient demands 
of a growing tumor (Wiranowska and Plaas, 2008; Charles et al., 
2011; Soda et al., 2013). Specifically, endothelial cells are stimu-
lated to proliferate and migrate toward tumor regions with poor 
oxygenation as a result of VEGF productions by hypoxic tumor 
cells (Soda et al., 2013). However, the resulting tumor-associated 
neovasculature is significantly different from healthy vessels as 
it forms a dense and disordered network of leaky vessels with 
necrosis developing in regions of severe chronic hypoxia (<1% 
O2) (Holmquist-Mengelbier et al., 2006; Soda et al., 2013).

GLiOBLASTOMA STeM-LiKe CeLLS

Before 2003, GBM, like most solid tumors, was widely believed 
to be driven by a stochastic model of clonal evolution in which 
tumors were initiated via neoplastic transformation of glia. The 
identification and characterization of tumorigenic GSCs within 
human brain tumors have since reshaped conventional wisdom 
over the architecture of GBM biology (Ignatova et al., 2002; Singh 
et al., 2003, 2004; Galli et al., 2004). This discovery supports the 
hypothesis that cells within a tumor display a hierarchical order of 
tumorigenic potential that is maintained by cancer stem cells (Tan 
et al., 2006; Venere et al., 2011). It is now widely recognized that 
within GBM tumors, GSCs are essential to tumor maintenance, 
drivers of heterogeneity, and also may represent the cell of origin 
(Sanai et al., 2005; Venere et al., 2011).

GSC Characteristics
Glioblastoma stem-like cells display many biological similarities 
to neural stem cells (NSCs); they are capable of indefinite self-
renewal and multipotent differentiation, and they express genes 
that promote NSC phenotypes such as NESTIN, SOX2, and 
OLIG2 (Ignatova et  al., 2002; Singh et  al., 2003, 2004; Galli 
et al., 2004; Sanai et al., 2005; Lee et al., 2006; Ligon et al., 2007). 
Identification and enrichment of GSCs can be achieved by 
sorting tumor cells that express validated cell surface biomark-
ers [CD133 (Singh et al., 2003), SSEA-1 (Son et al., 2009), and 
Integrin α6 (Lathia et al., 2010)] followed by functional analysis 
of stem behaviors (Lathia et  al., 2015). Of the stem behaviors, 
none is more important to GSC tumorigenicity than self-renewal. 
This was demonstrated when GSCs were first isolated and were 
observed to form orthotopic xenograft tumors from as few as 

100 cells. In comparison, non-stem GBM  cells (NGSCs) from 
the same tumor sample were incapable of forming tumors from 
injections of 100,000 cells (Singh et al., 2004). GSCs also display 
a capacity for multipotent differentiation into non-tumorigenic 
cancer-associated cells, such as vascular cells, that provide critical 
support for tumor growth (Ricci-Vitiani et al., 2010; Wang et al., 
2010a; Lathia et  al., 2011; Cheng et  al., 2013a). Multipotency 
contributes to cellular heterogeneity observed in primary GBM; 
this behavior has been recapitulated in experimental orthotopic 
xenograft tumor models (Singh et al., 2004).

Ex vivo purification of GSCs requires a multistep process that 
tests self-renewal, multipotency, and stem-marker expression. 
Failure to test all three components often results in false positive 
identification (Lathia et al., 2015). Another method for identify-
ing GSCs has been through the use of label retaining assays to 
identify quiescent or slow-cycling cells (Deleyrolle et  al., 2011; 
Zeng et al., 2016). Using robust verification, long-term established 
GBM cell lines are found to lack fully functional GSCs, even in 
NSC culture conditions (Lee et al., 2006; Lathia et al., 2015). Thus 
to properly research GSC behaviors, experiments should ideally 
be performed on low-passage patient-derived cells that have been 
validated as a stem population.

GSC Response to Treatment
Glioblastoma stem-like cells are highly treatment resistant, 
which is facilitated by their propensity to invade healthy brain 
(Cheng et  al., 2011), potential quiescence (Chen et  al., 2012), 
and activation of molecular machinery that is protective against 
radiation (Bao et al., 2006a) and cytotoxic insult (Liu et al., 2006). 
Many of the invasive mechanisms utilized by GSCs mimic NSC 
motility along white matter tracts and blood vessels (Sanai et al., 
2005). Thus, GBM tumors characteristically display an infiltrative 
leading edge that disseminates into healthy tissue. GSC derived 
orthotopic xenograft tumors recapitulate this invasive behavior 
with GSCs concentrated at the tumor edge (Strojnik et al., 2007), 
whereas NGSCs from the same patient tumor sample are mini-
mally invasive (Cheng et al., 2011). Resistance to both radiation 
(Bao et al., 2006a) as well as many conventional chemotherapeu-
tics, including temozolomide (Liu et al., 2006; Chen et al., 2012), 
has been reported in the GSC population. This resistance is 
ascribed to increased activation of DNA damage checkpoint and 
repair proteins (Bao et al., 2006a), as well as increased expression 
of ATP-binding cassette drug transporters, which contribute to 
increased drug efflux and chemoresistance (Bleau et  al., 2009). 
Recurrent tumors are also enriched for GSCs compared with the 
primary tumor suggesting that GSCs evade conventional therapy 
and play a prominent role in the high rates of GBM relapse  
(Liu et al., 2006).

GSC NiCHe MiCROeNviRONMeNTS

Similar to NSCs, which are primarily found in the subventricular 
zone and hippocampus of the adult brain, GSCs are also con-
centrated in niche microenvironments (Figure  1) (Sanai et  al., 
2005). One notable difference is that GSC niche microenviron-
ments appear to be mitogenic, encouraging growth, while NSCs 
are generally sustained in quiescence (Lathia et al., 2011). These 
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FiGURe 1 | Glioblastoma stem-like cells are located in defined microenvironments within the brain, including perivascular, hypoxic, and invasive niches. Each niche 
varies in terms of biophysical features (stiffness and porosity), extracellular matrix composition, and oxygen availability. In the graphic, vessel co-option is depicted 
within the perivascular niche, and movement along white matter tracts is depicted in the invasive niche. Within the hypoxic niche, necrosis and altered metabolism is 
expected to drive alterations in pH, as well as recruitment of new blood vessels.
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physical regions within the larger tumor microenvironment 
include a range of microenvironmental features that sustain and 
regulate GSC phenotypes through hypoxia, growth factor signal-
ing, and adhesion to the ECM. It is thus unsurprising that the 
microenvironment plays a role in provoking treatment resistance 
(Gilbertson and Rich, 2007; Rich, 2007; Jamal et al., 2010, 2012; 
Mannino and Chalmers, 2011; Lathia et al., 2012).

Perivascular Niche
A niche microenvironment has been identified in regions directly 
adjacent to blood vessels known as the vascular or perivascular 
niche (Calabrese et al., 2007; Gilbertson and Rich, 2007). Tumor 
vascularization is a requisite process to provide GBM tumors 
with adequate oxygen and nutrients that sustain rapid growth. 
Bao et  al. determined that GSCs initiate neovascularization by 
stimulating endothelial cell proliferation, migration, and tube 
formation through secretion of VEGF and stromal-derived fac-
tor 1 (Bao et al., 2006b; Folkins et al., 2009). In parallel, vascular 
endothelial cells promote GSC self-renewal and proliferation, 
through secretion of soluble signaling factors such as nitric 
oxide, as well as via activation of NOTCH signaling (Calabrese 
et al., 2007; Charles et al., 2010; Hovinga et al., 2010; Galan-Moya 
et  al., 2011). This support appears to be unique to endothelial 
cells. For example, Calabrese et  al. (2007) determined that 
neither NGSCs, astrocytes, nor fibroblasts were able to produce 

comparable enrichment of GSCs in vitro. Importantly, GSCs are 
also capable of transdifferentiation into tumor-derived vascular 
cells. In experimental tumor models, GSCs have been observed to 
differentiate into pericytes and endothelial cells that participate in 
the formation and maintenance of neovasculature (Ricci-Vitiani 
et al., 2010; Wang et al., 2010a; Lathia et al., 2011; Cheng et al., 
2013a; Schonberg et al., 2014). Therefore, interactions between 
endothelial cells and GSCs in the perivascular niche may create a 
self-sustaining paracrine signaling cycle that is critical for tumor 
maintenance and progression (Schonberg et al., 2014).

Hypoxic Niche
In juxtaposition to the nutrient-rich perivascular niche, GSCs 
are also found concentrated surrounding tumor regions that 
have limited access to blood vessels and are often necrotic  
(Li et  al., 2009). The disorganized vasculature of GBM tumors 
leads to regional oxygen concentration gradients that have 
significant effects on GSC phenotypes. The primary molecular 
response to oxygen deprivation involves activation of the hypoxia 
inducible factor (HIF) family of transcription factors whose 
canonical downstream targets are proangiogenic (Heddleston 
et  al., 2010). As a result, the hypoxic niche may in some cases 
exist as a transitional microenvironment in which GSCs use 
proangiogenic factors such as VEGF to recruit blood vessels and 
establish a perivascular niche (Venere et al., 2011).
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Hypoxia inducible factor activation has also been found to be 
a potent regulator of various GSC behaviors. HIF1α and HIF2α 
exhibit overlapping functions in both vasculogenesis and enrich-
ing stem phenotypes (Heddleston et al., 2009, 2010; Li et al., 2009; 
Soeda et al., 2009; Bar et al., 2010; Seidel et al., 2010). However, 
unique downstream target genes have also been identified par-
ticularly for HIF2α, which include stem markers Oct4, c-Myc, 
and Nanog (Heddleston et al., 2009; Li et al., 2009; Keith et al., 
2011). Importantly, Li et al. (2009) reported that while HIF1α is 
expressed in both NSC and GSC populations, HIF2α expression is 
restricted to GSCs and is required for GSC tumorigenicity in vivo. 
HIF2α induction also promotes stem plasticity in the pool of 
NGSCs, which may be particularly important for repopulating the 
GSC pool in response to treatment (Heddleston et al., 2009). HIF 
expression also appears to be regulated by distinct components 
of the microenvironment. HIF1α expressing cells are enriched 
in regions of chronic hypoxia (>1% O2), while HIF2α expression 
is more sporadically identified in both hypoxic and normoxic 
regions surrounding blood vessels (Holmquist-Mengelbier et al., 
2006; Li et al., 2009). In addition, tumor acidity, a byproduct of 
overactive glycolytic energy production, increases HIF2α stabili-
zation independent of oxygen concentration and also promotes 
stem plasticity (Hjelmeland et al., 2011). Thus, the hypoxic niche 
regulates GSC phenotypes primarily through HIF activity, which 
is essential to stem maintenance and tumorigenicity.

invasive Niche
Glioblastoma stem-like cell populations have been identified at 
the leading edge of GBM tumors suggesting that this invasive 
front also contributes to GSC maintenance (Lee et al., 2006; Kitai 
et al., 2010; Cheng et al., 2011; Ishiwata et al., 2011; Lathia et al., 
2011; Ortensi et al., 2013). Orthotopic GSC tumors recapitulate 
the invasive profile observed in patient tumors compared with 
NGSCs, which generally form noninvasive tumors (Cheng et al., 
2011). Furthermore, recurrent tumors are enriched with GSCs 
indicating that these cells are likely responsible for infiltrative 
growth that is characteristic of GBM (Liu et al., 2006). Therefore, 
while an invasive niche has yet to be definitively established, 
microenvironmental interactions, particularly with the ECM 
protein laminin, have been identified that regulate both invasive 
behaviors and stem phenotypes. For example, laminin recep-
tor integrins α6 and α7 have been proposed as biomarkers for 
functional GSCs (Lathia et al., 2010; Haas et al., 2017), while GSC 
regulation has also been described through interactions with the 
laminin subunit α2 (Lathia et al., 2012). In healthy brain, laminin 
is primarily located on the outside of blood vessels, which are 
primary routes of GBM invasion (Giese and Westphal, 1996). 
Expression of laminin (Ljubimova et al., 2006) and localization of 
laminin within the perivascular niche (Lathia et al., 2012) relate 
to poor patient prognosis; the integrin family of laminin receptor 
proteins are overexpressed in CD133 + GSCs, which have been 
demonstrated to promote invasion (Nakada et al., 2013), prolif-
eration (Lathia et al., 2012), and resistance to apoptosis (Huang 
et  al., 2012). These integrin-mediated phenotypic shifts are 
significant at the level of disease progression and may be related 
to active microenvironmental regulation (Paolillo et  al., 2016). 
For example, Ljubimova et al. (2006) observed a switch in laminin 

isoform expression during tumor progression that was associated 
with both invasion and angiogenesis, suggesting that laminin is 
a dynamic partner in the development of tumor malignancy. The 
interaction of tumor cells with vascular-associated laminins has 
been shown to be an important factor for GSC regulation in the 
perivascular niche (Lathia et al., 2012). In addition, certain iso-
forms of laminin sustain GSC phenotypes during in vitro stem cell 
cultures (Pollard et al., 2009), and conversely, may also be used to 
promote GSC differentiation to NGSCs in serum-supplemented 
conditions (Ignatova et  al., 2002). These relationships warrant 
further study to understand the complexities of GBM–laminin 
interactions, and to determine how they may contribute to treat-
ment resistance and/or tumor recurrence.

Therapeutic Challenges and Opportunities
Along with regulatory inputs, niche microenvironments provide 
GSCs with protection from cytotoxic treatments (Gilbertson 
and Rich, 2007). The perivascular niche has been described as 
radioprotective for medulloblastoma tumors (Hambardzumyan 
et al., 2008). This resistance was initiated by signaling through the 
oncogenic PI3K/Akt pathway, which is a downstream target of 
the epidermal growth factor receptor (EGFR). In relation to GBM 
biology, EGFR is one of the most important biomarkers for malig-
nancy (Verhaak et al., 2010) and is critical to the maintenance of 
stem phenotypes in vitro (Lee et al., 2006). Moreover, inhibiting 
EGFR has been observed to sensitize otherwise radioresistant 
GSCs to treatment (Kang et  al., 2012). Therefore, activation of 
this receptor in the nutrient-rich perivascular niche would con-
ceivably negatively impact the efficacy of radiotherapy on GSCs. 
VEGF signaling, which is critical for tumor vascularization and 
establishment of the perivascular niche, has also been shown to 
enhance resistance to radiation (Knizetova et al., 2008). Similarly, 
Notch signaling, which functions through direct cell–cell contact 
of transmembrane proteins, also supports radioresistant behav-
iors in GSCs and is an integral signaling pathway in the vascular 
niche (Wang et al., 2010b).

The hypoxic niche provides some of the best direct evidence 
of niche protection from chemotherapy and radiation. For both 
treatments, a common mode of action is through the generation 
of reactive oxygen species (ROS), which induces double strand 
breaks in DNA (Harrison and Blackwell, 2004). However, due to 
the relative lack of oxygen, ROS generation is attenuated thereby 
limiting this mechanism. In addition, hypoxia is capable of pro-
moting downstream activation of numerous survival pathways 
that may further limit treatment efficacy (Harrison and Blackwell, 
2004; Bhatt et al., 2008; Bertout et al., 2009). For example, GSCs 
identified in hypoxia have been observed to highly express 
MGMT, which functions to repair DNA and promotes resistance 
to TMZ (Pistollato et al., 2010).

Targeting niche microenvironments may provide an oppor-
tunity to disrupt GSC regulation and increase GBM treatment 
efficacy. Recently, inhibition of vascular niche formation initially 
appeared to be a promising direction for the development of 
new treatments; in experimental tumors, GSCs were depleted 
and tumor growth retarded by the antiangiogenic therapy 
bevacizumab, which is a VEGF function blocking antibody (Bao 
et al., 2006b; Calabrese et al., 2007). However, bevacizumab was 
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subsequently found to effect an increase invasion of GBM cells 
in response to increased hypoxia resulting from the inhibition 
of blood vessel formation (Pàez-Ribes et  al., 2009; Keunen 
et al., 2011). In a phase III clinical trial, this treatment failed as 
a first-line therapy but remains an approved and viable option 
as a salvage treatment for increasing progression free survival in 
recurrent GBM (Kreisl et al., 2008). Bevacizumab fails as a GBM 
treatment primarily as a result of the strong hypoxia response of 
these tumors, and thus any approach seeking to inhibit blood sup-
ply to GBM must consider molecular responses of cells to hypoxic 
environments. For example, HIF2α may present a potential co-
therapeutic target due to its specificity for GSCs, prominent role 
in GSC tumorigenicity, and regulation of responses to oxygen (Li 
et al., 2009; Hjelmeland et al., 2011).

Glioblastoma stem-like cell niches are complex and diverse 
microenvironments that provide adaptive regulation of stem 
functions along with protective support against GBM treatments. 
The striking capacity of these cells to survive insults decreases the 
likelihood that any monotherapy will be significantly effective. 
Therefore, although clinical results have thus far been disappoint-
ing, targeting and disrupting microenvironmental mechanisms of 
GSC regulation should remain a focus of novel treatment designs.

GBM ReSeARCH MODeLS

Cell Lines and In Vitro Culture
In vitro cell culture models have been fundamental to GBM 
research since the first tumor cell lines were isolated and 
immortalized in the 1960s (Ponten and Macintyre, 1968). 
Various immortalized cell lines are now widely available for 
research and provide a platform for disease research that ideally 
enables reproducible testing. Propagation in vitro is performed 
using a simplified two-dimensional (2D) isotropic plate [often 
poly(styrene)] that is treated to present a negative charge, or 
coated with poly-d-lysine, or ECM proteins to promote anchor-
age dependent cell growth. This 2D design is optimized for cells to 
experience consistency in their access to adhesion sites, nutrients, 
soluble signaling factors, and oxygen in culture (Woolard and 
Fine, 2009). These cultures enable biologically instructive assays 
that measure behaviors such as proliferation, migration, stem 
cell status, and drug sensitivity under various discrete conditions 
(Giese et al., 1995; Pollard et al., 2009).

Although immortalized GBM cell lines have provided invalu-
able understanding of aspects of the disease process in GBM, 
their utility in generating new therapies for clinical application is 
limited. In vitro, cells are polarized and attach to the stiff culture 
substrate in a single plane that provides little to no resistance 
to proliferation or migration. In response, cells converge on a 
singular phenotype through a rapid loss of cellular heterogene-
ity, which is a fundamental feature of GBM (Li et  al., 2008). 
Immortalized cell lines show significant differences in their 
molecular signature compared with primary GBM tissue, which 
is a direct result of prolonged propagation and genetic instability 
(Li et  al., 2008). Another prominent issue with long-term cell 
lines is the potential for contamination with other cell lines that 
replace the original population. As an example, one of the most 

widely used and first established in vitro models of GBM, the U87 
MG cell line, was originally isolated from a 44-year-old female 
patient (Ponten and Macintyre, 1968). Recently, the genome of 
this line was compared with the original tumor sample and was 
determined to be a GBM of male origin (Allen et al., 2016). These 
problems, among others, illustrate that more representative dis-
ease models are necessary to overcome challenges in studying 
GBM biology.

The use of low-passage primary cells derived from patient tis-
sue provides an improvement in the biological relevance of in vitro 
models. These are established by mechanical and enzymatic 
digestion of tumor tissue, whereby the resulting heterogeneous 
cell mix is cultured in  vitro using standard culture conditions. 
GSC lines may also be established from primary tissue through 
culture in serum-free NSC optimized media with the mitogenic 
growth factors EGF and FGF (Venugopal et  al., 2012). These 
conditions maintain the GSC population such that cells preserve 
genotypic and phenotypic features of the original tumor, whereas 
serum-supplemented cultures promote selection of differentiated 
GBM phenotypes and the GSC pool is subsequently depleted 
(Zhang et al., 2013; Lathia et al., 2015).

Standard 2D cultures may also be modified to produce models 
that better represent native GBM biology. For example, GBM has 
been cocultured with a secondary cell type such as astrocytes 
(Rath et al., 2013, 2015) or endothelial cells (Galan-Moya et al., 
2011) to promote malignant phenotypes. The most common 
method for establishing cocultures is through a transwell or 
Boyden chamber system. In these cultures, cells are separated 
by a semi-permeable membrane that allows access to signaling 
factors secreted by the otherwise physically separated cell popula-
tions. Coculture studies have indicated that supporting cells are 
well capable of directing the behavior of tumor cells, including 
provocation of invasion and treatment resistance (Galan-Moya 
et al., 2011; Rath et al., 2013, 2015).

Similar to coculture methods, three-dimensional (3D) cell 
cultures model aspects of the tumor microenvironment to 
elicit interactions that are generally absent from 2D cultures. 
Techniques such as hanging drop culture or culture on soft agar 
gels generate multicellular GBM spheroids that exhibit prolifera-
tion and invasion that better recapitulates in vivo scenarios (Del 
Duca et al., 2004; Pampaloni et al., 2007; Heffernan et al., 2014). 
Suspension culture, in which non-adherent cells are free-floating 
in media, is most often used to propagate GSCs where, similar 
to NSCs, stem-like cells form multicellular neurospheres (also 
called tumorspheres) (Ignatova et  al., 2002; Singh et  al., 2003; 
Galli et al., 2004; Lee et al., 2006; Fael Al-Mayhani et al., 2009; 
Venugopal et al., 2012). Spheroid cultures can also be initiated as 
cocultures in which GBM cells are combined with endothelial or 
glial cells and incorporated into spheroid structures (Chen et al., 
2009). Brain slice cultures further improve the relevance of the 
in vitro culture by enabling GBM cells to be analyzed in live brain 
tissue ex vivo. Here, viable brain slices are cultured and inocu-
lated with tumor cells to enable tracking of GBM proliferation 
and invasion within a complete brain microenvironment. The 
primary drawbacks to brain slice culture include technical chal-
lenges with maintaining the tissue, reproducibility, and rapid cell 
death and/or alterations in the tissue during cultures (Rao et al., 
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2014; Jensen et al., 2016). Taken in sum, each of these approaches 
to culturing GBM have been valuable to isolate specific cellular 
responses under defined experimental conditions, although 
the degree to which neurosphere or hanging drop cultures can 
be engineered to capture essential aspects of the niche remain 
limited.

Preclinical In Vivo Models
In vivo models of GBM are the gold standard for analyzing 
tumor growth and response to therapy within a physiologically 
relevant system. In vivo models are either syngeneic or xeno-
graft. Syngeneic murine GBM models have been established via 
development of native GBM cell lines (e.g., through chemical 
insult) or genetic engineering that induces spontaneous and 
reproducible tumor formation (Huszthy et al., 2012). Primary 
advantages of syngeneic models include the ability to analyze 
tumors in the context of a fully functional immune system, 
and in genetic models, alterations in signaling pathways that 
are known to drive GBM malignancy (EGFR, PDGFR, Rb, Ras, 
and Akt) (Jacobs et al., 2011; Huszthy et al., 2012). Alternatively, 
xenograft models are established by the transplantation of 
human derived cell lines into an immunocompromised mouse 
host. The primary advantage of xenograft models is that they 
enable study of human GBM progression within a functional 
albeit immunodeficient brain.

Human xenograft models may be established from long-
term cell lines or from freshly isolated patient-derived GBM 
tissue. Tumors can be induced in either the flank or directly 
in the brain. Flank models enable rapid confirmation of 
tumorigenicity and rapid growth of tumor within an easy to 
access physical compartment, while also providing a more 
permissive paradigm for treatment studies due to the lack of a 
blood–brain barrier protecting the tumor. Orthotopic models, 
on the other hand, are best suited for studying GBM behaviors 
in the context of the native brain tumor microenvironment. 
Various immortalized cell lines (U87, U118, etc.) have been 
used to produce aggressive orthotopic tumors with reproduc-
ible cellular architecture (Jacobs et  al., 2011; Huszthy et  al., 
2012). However, tumors generated through orthotopic trans-
plant of immortalized cells often present significant genetic 
and histological variations from patient tumors thereby 
limiting their translational relevance (Lee et al., 2006; Jacobs 
et  al., 2011). For example, U87 tumors are highly vascular-
ized, possess a relatively leaky blood–brain barrier, and do 
not exhibit the infiltrative behavior that is characteristic of 
patient GBM tissue (Jacobs et  al., 2011). The generation of 
noninvasive tumors is one of the primary drawbacks common 
to using immortalized cells in preclinical models. Conversely, 
low-passage patient-derived xenografts, particularly those 
established in serum-free culture or via direct in vivo inocula-
tion, are characterized by their maintenance of parental tumor 
genotypes, an invasive leading edge, and minimal disruption 
of the blood–brain barrier (Galli et al., 2004; Singh et al., 2004; 
Sanai et al., 2005; Lee et al., 2006; Fael Al-Mayhani et al., 2009). 
Thus, patient-derived xenografts are presently considered 
the most biologically relevant research model of the human 
disease (Huszthy et al., 2012).

eNGiNeeRiNG THe GBM TUMOR 
MiCROeNviRONMeNT

The reduction of microenvironmental complexity in 2D cell 
culture limits analysis of disease biology because the 3D ECM 
regulates numerous essential cellular phenotypes (Pampaloni 
et  al., 2007). Tissue engineering strategies address this gap in 
understanding by providing methods to model key components 
of the 3D tumor microenvironment such as insoluble ECM 
components, stiffness, matrix degradability, and soluble signaling 
factors. These tools are not a direct surrogate for the complex, 
anisotropic, and heterogeneous in  vivo scenario; instead, they 
enable characterization of contributions from individual micro-
environmental factors. Here, we review how these approaches 
have been utilized to understand important features of GBM and 
GSC biology.

Biomaterials in GBM Research
Both natural and synthetic polymers have been used to study 
GBM response to the microenvironment (relevant studies are 
summarized in Table 1). Natural materials are bioactive, degra-
dable by enzymatic or hydrolytic mechanisms, and cells interact 
with them directly through specific and established biochemical 
pathways. Due to their specific bioactivity, some of the most 
important and commonly used in GBM research are HA, col-
lagen, and Matrigel® (Table  1). One potential challenge with 
using ECM biomaterials derived from live hosts or cell cultures, 
such as Matrigel®, is a lack of experimental reproducibility. These 
multicomponent materials exhibit variation in composition 
across batches (e.g., growth factor content and ECM protein 
concentration), which may adversely impact the interpretation 
of results due to changes in the constituent materials (Pampaloni 
et  al., 2007). Juxtaposed to natural materials, synthetic bioma-
terials used in GBM cultures are derived from organic sources, 
which enables a high degree of control over their physical and 
chemical properties. Of these, poly(ethylene glycol) (PEG) is by 
far the most common. Its hydrophilicity and chemical structure 
enable cell encapsulation and functionalization reactions that 
can be performed in  situ. Synthetic biomaterials can be either 
degradable or non-degradable, and in general, are expected to 
possess lower intrinsic bioactivity than natural materials, since 
they do not possess cellular adhesion sites that would be expected 
to elicit biological responses. Cells are capable of interfacing with 
a purely synthetic polymer either through surface adsorbed pro-
teins (vitronectin, laminin, etc.) or through non-specific charge 
interactions (Hubbell, 1995). Grafting synthetic polymers with 
bioactive proteins or peptides (e.g., RGD) is a common approach 
to enable cellular adhesion or biodegradation (Table  1). This 
method of combining natural and/or synthetic components into 
a composite biomaterial is useful for leveraging advantages of 
both classifications.

The majority of natural, synthetic, and composite scaffolds 
applied in GBM studies are hydrophilic hydrogels, which, 
like tissue, are composed of a high fraction of water and swell 
considerably in aqueous solution. However, in some instances 
hydrophobic polymers are also incorporated, often coated with 
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TABLe 1 | Biomaterial models of the glioblastoma (GBM) microenvironment enable analysis of malignant behaviors in vitro.

Reference

SCAFFOLD COMPONeNTS

Hyaluronic acid Tamaki et al. (1997), Jin et al. (2009), Ananthanarayanan et al. (2011), Florczyk et al. (2013), Pedron et al. (2013, 2015, 2017), Rao 
et al. (2013a,b), Fernandez-Fuente et al. (2014), Heffernan et al. (2014), Jiguet Jiglaire et al. (2014), Kim and Kumar (2014), Rape 
and Kumar (2014), Wang et al. (2014, 2016), Herrera-Perez et al. (2015), Rape et al. (2015), Cha et al. (2016), Kievit et al. (2016), 
Chen et al. (2017), and Ngo and Harley (2017)

Collagen Tamaki et al. (1997), Sarkar et al. (2006), Kim et al. (2008), Ulrich et al. (2010), Yang et al. (2010, 2014), Eke et al. (2012), Florczyk 
et al. (2013), Pedron and Harley (2013), Pedron et al. (2013, 2015, 2017), Rao et al. (2013a,b), Ruiz-Ontañon et al. (2013), 
Fernandez-Fuente et al. (2014), Heffernan et al. (2014), Jain et al. (2014), Jiguet Jiglaire et al. (2014), Herrera-Perez et al. (2015), 
Wong et al. (2015), Cha et al. (2016), Chen et al. (2017), Chonan et al. (2017), and Ngo and Harley (2017)

Matrigel Cordes et al. (2003), Jin et al. (2009), Kievit et al. (2010), Cheng et al. (2011), Rao et al. (2013a), Ruiz-Ontañon et al. (2013), Herrera-
Perez et al. (2015), Grundy et al. (2016), Hubert et al. (2016), and Chonan et al. (2017)

Poly(ethylene glycol) Pedron and Harley (2013), Pedron et al. (2013), Heffernan et al. (2014), Jiguet Jiglaire et al. (2014), Wang et al. (2014), Fan et al. 
(2016), Li et al. (2016), Oh et al. (2016), and Ngo and Harley (2017)

Chitosan Kievit et al. (2010, 2014, 2016), Florczyk et al. (2013, 2016), and Wang et al. (2016)

Alginate Kievit et al. (2010, 2014, 2016), Florczyk et al. (2016), and Oh et al. (2016)

Poly(N-isopropylacrylamide) Heffernan et al. (2016, 2017), and Li et al. (2016)

Polyacrylamide Ulrich et al. (2009), Pathak and Kumar (2012), Ruiz-Ontañon et al. (2013), Fernandez-Fuente et al. (2014), Rape and Kumar (2014), 
Umesh et al. (2014), Wong et al. (2015), and Grundy et al. (2016)

Polycaprolactone Rao et al. (2013a), Jain et al. (2014), Kievit et al. (2014, 2016), and Cha et al. (2016)

Polystyrene Kievit et al. (2014) and Ma et al. (2016a)

Poly(lactic acid) Ma et al. (2012)

Bioactive peptide/protein Tamaki et al. (1997), Cordes et al. (2003), Sarkar et al. (2006), Ulrich et al. (2009), Ananthanarayanan et al. (2011), Pathak and Kumar 
(2012), Ruiz-Ontañon et al. (2013), Jain et al. (2014), Kim and Kumar (2014), Rape and Kumar (2014), Umesh et al. (2014), Wang et al. 
(2014), Rape et al. (2015), Wong et al. (2015), Heffernan et al. (2016), Ma et al. (2016a), and Ngo and Harley (2017)

Complex three-dimensional  
(3D) models

Ma et al. (2012), Pathak and Kumar (2012), Rao et al. (2013a), Jain et al. (2014), Herrera-Perez et al. (2015), Pedron et al. (2015), 
Rape et al. (2015), Cha et al. (2016), Fan et al. (2016), Li et al. (2016), and Chonan et al. (2017)

BiOPHYSiCAL PROPeRTieS

Stiffness Kim et al. (2008), Ulrich et al. (2009, 2010), Yang et al. (2010), Ananthanarayanan et al. (2011), Pathak and Kumar (2012), Florczyk 
et al. (2013, 2016), Pedron and Harley (2013), Pedron et al. (2013, 2015), Rao et al. (2013a,b), Fernandez-Fuente et al. (2014), 
Heffernan et al. (2014, 2016, 2017), Kim and Kumar (2014), Rape and Kumar (2014), Umesh et al. (2014), Wang et al. (2014), Herrera-
Perez et al. (2015), Rape et al. (2015), Wong et al. (2015), Cha et al. (2016), Grundy et al. (2016), Chen et al. (2017), and Ngo and 
Harley (2017)

Porosity Kim et al. (2008), Yang et al. (2010, 2014), Ananthanarayanan et al. (2011), Ma et al. (2012, 2016a), Pathak and Kumar (2012), 
Florczyk et al. (2013, 2016), Pedron and Harley (2013), Rao et al. (2013a,b), Kievit et al. (2014, 2016), Wang et al. (2014, 2016), 
Herrera-Perez et al. (2015), Cha et al. (2016), Fan et al. (2016), and Oh et al. (2016)

Microchannels Pathak and Kumar (2012), Pedron et al. (2015), Fan et al. (2016), and Chonan et al. (2017)

Fibers/alignment Kim et al. (2008), Ulrich et al. (2010), Yang et al. (2010), Rao et al. (2013a,b), Jain et al. (2014), Herrera-Perez et al. (2015), Cha et al. (2016), 
and Ma et al. (2016a)

GBM CeLL LiNeS

U87 Kim et al. (2008), Jin et al. (2009), Ulrich et al. (2009), Kievit et al. (2010, 2014, 2016), Ananthanarayanan et al. (2011), Eke et al. 
(2012), Pedron and Harley (2013), Pedron et al. (2013, 2015), Fernandez-Fuente et al. (2014), Heffernan et al. (2014), Jain et al. (2014), 
Jiguet Jiglaire et al. (2014), Kim and Kumar (2014), Rape and Kumar (2014), Umesh et al. (2014), Wang et al. (2014), Fan et al. (2016), 
Florczyk et al. (2016), and Ngo and Harley (2017)

U373 Jin et al. (2009), Ulrich et al. (2009, 2010), Ananthanarayanan et al. (2011), Pathak and Kumar (2012), Kim and Kumar (2014), Rape 
and Kumar (2014), Umesh et al. (2014), Rape et al. (2015), and Wong et al. (2015)

U251 Sarkar et al. (2006), Jin et al. (2009), Ulrich et al. (2009), Ma et al. (2016a), and Chen et al. (2017)

U118 Kievit et al. (2010, 2014), Florczyk et al. (2013), and Heffernan et al. (2014, 2016)

U138 Cordes et al. (2003) and Eke et al. (2012)

A172 Cordes et al. (2003), Eke et al. (2012), and Fernandez-Fuente et al. (2014)

U343 Jin et al. (2009)

U178 Sarkar et al. (2006)

T98 Fernandez-Fuente et al. (2014)

(Continued)
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Reference

LN229 Cordes et al. (2003) and Eke et al. (2012)

LN18 Cordes et al. (2003)

SNB19 Ulrich et al. (2009)

M059K Ma et al. (2012)

Genetically modified GBM Pedron et al. (2013, 2015), Heffernan et al. (2014), and Kim and Kumar (2014)

Coculture Ma et al. (2012), Ruiz-Ontañon et al. (2013), Kievit et al. (2016), Chonan et al. (2017), and Ngo and Harley (2017)

Murine model Tamaki et al. (1997), Ulrich et al. (2009), Kievit et al. (2010), Yang et al. (2010), Jiguet Jiglaire et al. (2014), Hubert et al. (2016), and 
Chonan et al. (2017)

Patient derived Eke et al. (2012), Rao et al. (2013a,b), Ruiz-Ontañon et al. (2013), Fernandez-Fuente et al. (2014), Jiguet Jiglaire et al. (2014), Yang 
et al. (2014), Herrera-Perez et al. (2015), Wong et al. (2015), Cha et al. (2016), Grundy et al. (2016), Hubert et al. (2016), Li et al. 
(2016), Oh et al. (2016), Wang et al. (2016), Heffernan et al. (2017), and Pedron et al. (2017)

BiOLOGiCAL BeHAviORS

Two-dimensional migration Kim et al. (2008), Jin et al. (2009), Ulrich et al. (2009), Ananthanarayanan et al. (2011), Eke et al. (2012), Pathak and Kumar (2012), 
Rao et al. (2013a), Ruiz-Ontañon et al. (2013), Fernandez-Fuente et al. (2014), Kim and Kumar (2014), Rape and Kumar (2014), 
Wong et al. (2015), Grundy et al. (2016), and Chonan et al. (2017)

3D invasion Tamaki et al. (1997), Cordes et al. (2003), Sarkar et al. (2006), Kim et al. (2008), Jin et al. (2009), Ulrich et al. (2010), Yang et al. 
(2010), Ananthanarayanan et al. (2011), Cheng et al. (2011), Eke et al. (2012), Pathak and Kumar (2012), Florczyk et al. (2013),  
Rao et al. (2013b), Ruiz-Ontañon et al. (2013), Heffernan et al. (2014, 2016), Jain et al. (2014), Kim and Kumar (2014), Rape and 
Kumar (2014), Herrera-Perez et al. (2015), Wong et al. (2015), Cha et al. (2016), Grundy et al. (2016), Chen et al. (2017),  
and Chonan et al. (2017)

Proliferation Tamaki et al. (1997), Ulrich et al. (2009), Kievit et al. (2010, 2014, 2016), Yang et al. (2010, 2014), Ananthanarayanan et al.  
(2011), Eke et al. (2012), Ma et al. (2012, 2016a), Florczyk et al. (2013, 2016), Pedron and Harley (2013), Pedron et al. (2013,  
2015, 2017), Ruiz-Ontañon et al. (2013), Heffernan et al. (2014, 2016, 2017), Jain et al. (2014), Jiguet Jiglaire et al. (2014),  
Umesh et al. (2014), Wang et al. (2014, 2016), Wong et al. (2015), Cha et al. (2016), Hubert et al. (2016), Li et al. (2016), and  
Chen et al. (2017)

Malignancy markers Cordes et al. (2003), Sarkar et al. (2006), Kim et al. (2008), Jin et al. (2009), Kievit et al. (2010, 2014, 2016), Cheng et al. 
(2011), Eke et al. (2012), Florczyk et al. (2013, 2016), Pedron and Harley (2013), Pedron et al. (2013, 2015, 2017), Rao et al. 
(2013a), Ruiz-Ontañon et al. (2013), Fernandez-Fuente et al. (2014), Jiguet Jiglaire et al. (2014), Kim and Kumar (2014), Umesh 
et al. (2014), Wang et al. (2014, 2016), Yang et al. (2014), Herrera-Perez et al. (2015), Rape et al. (2015), Wong et al. (2015), 
Cha et al. (2016), Hubert et al. (2016), Li et al. (2016), Ma et al. (2016a), Chen et al. (2017), Chonan et al. (2017), and Heffernan 
et al. (2017)

Stem phenotypes Cheng et al. (2011), Florczyk et al. (2013, 2016), Ruiz-Ontañon et al. (2013), Fernandez-Fuente et al. (2014), Kievit et al. (2014, 
2016), Yang et al. (2014), Herrera-Perez et al. (2015), Wong et al. (2015), Cha et al. (2016), Grundy et al. (2016), Hubert  
et al. (2016), Li et al. (2016), Ma et al. (2016a), Wang et al. (2016), Chonan et al. (2017), Heffernan et al. (2017), and  
Pedron et al. (2017)

In vivo characteristics Kievit et al. (2010, 2014), Cheng et al. (2011), Ruiz-Ontañon et al. (2013), Jain et al. (2014), Jiguet Jiglaire et al. (2014), Yang et al. 
(2014), Wong et al. (2015), Florczyk et al. (2016), Hubert et al. (2016), Li et al. (2016), and Pedron et al. (2017)

TReATMeNT ReSPONSe

Chemotherapy Kim et al. (2008), Ulrich et al. (2009), Eke et al. (2012), Ma et al. (2012), Pathak and Kumar (2012), Florczyk et al. (2013), Fernandez-
Fuente et al. (2014), Jain et al. (2014), Jiguet Jiglaire et al. (2014), Rape and Kumar (2014), Umesh et al. (2014), Yang et al. (2014), 
Cha et al. (2016), Fan et al. (2016), Wang et al. (2016), and Pedron et al. (2017)

Radiation Cordes et al. (2003), Eke et al. (2012), Jiguet Jiglaire et al. (2014), Hubert et al. (2016), and Heffernan et al. (2017)

hydrophilic ECM proteins (Rao et  al., 2013a; Cha et  al., 2016; 
Ma et al., 2016a). Scaffolds of either classification can be further 
designed as porous, fibrous, anisotropic, or some combination, 
each with varying degrees of control of these physical properties 
dependent on the constituents. These properties enable modeling 
of a wide variety of topographies to mimic the physiological micro-
environment. Chemical and physical cross-linking reactions are 
often necessary to increase the molecular weight of a biomaterial 
such that it forms an insoluble physical structure in aqueous solu-
tion. Strategies that do not negatively impact cell viability are par-
ticularly desirable. For chemically cross-linked biomaterials, click 

chemistry, such as Michael addition (Ananthanarayanan et  al., 
2011; Heffernan et al., 2014; Jiguet Jiglaire et al., 2014; Kim and 
Kumar, 2014; Rape and Kumar, 2014; Rape et al., 2015), describes 
stepwise reactions that proceed efficiently at neutral pH, do not 
require biologically damaging solvents or reaction conditions, 
and do not produce any cytotoxic byproducts (Hoyle et al., 2010). 
Another common example of chemical cross-linking is UV free 
radical polymerization, which, unlike most free radical reactions, 
may utilize an aqueous compatible initiator that is photoreac-
tive (e.g., Irgacure 2959). This method enables polymerization 
of reactive monomers such as terminal olefins (e.g., acrylates) 

TABLe 1 | Continued
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(Pedron and Harley, 2013; Pedron et  al., 2013, 2015, 2017; 
Chen et al., 2017; Ngo and Harley, 2017). Alternatively, physical 
cross-linking proceeds without a chemical reaction; alterations 
in pH or temperature produce electrostatic interactions that 
result in polymerization and/or precipitation (El-Sherbiny and 
Yacoub, 2013); typical examples include collagen (pH stimulus) 
or poly(N-isopropylacrylamide) (temperature stimulus). It is well 
known that the degree of cross-linking (chemical or physical) for 
any given material will affect the porosity, density, and stiffness of 
the scaffold, which are each independently important considera-
tions in GBM tissue engineering.

3D Culture Methods
Biomaterial cultures are performed with cells or spheroids either 
seeded on the scaffold surface or encapsulated within the scaf-
fold during cross-linking. Surface cultures enable measurement 
of cellular behaviors (motility, invasion, proliferation, viability, 
etc.) in response to the biophysical and biochemical material 
properties. They also provide a set initial location for cells and 
do not necessarily require biodegradation of the material to 
allow for cell proliferation or motility, since cells are capable 
of moving across the surface. Encapsulation cultures offer a 
more physiologically relevant scenario but require biocompat-
ible cross-linking and matrix degradation for cell growth and 
motility. Both scenarios are regularly used to measure invasive 
capacity, which cannot be fully recapitulated in 2D in  vitro 
systems.

For both surface and encapsulation cultures, biological assays 
must be either performed in  situ (e.g., immunofluorescence 
and cell tracking) or alternatively, on cells recovered from the 
scaffold (e.g., western blot, polymerase chain reaction, and fluo-
rescence activated cell sorting). Both culture approaches pose 
various technical challenges to performing these assays that are 
specific to the biomaterial system; a significant consideration in 
designing a 3D culture format. For example, chemically cross-
linked materials may require degradation or cell dissociation 
conditions that adversely affect cell viability or the presentation 
of surface proteins. Physical scaffolds, on the other hand, may 
offer reversible formation in response to mild environmental 
changes and thereby enable easy cell recovery for post-culture 
analysis.

Biophysical and Biochemical Regulation 
of GBM Behaviors
The in vivo tumor microenvironment provides critical regulatory 
functions for GBM tumors. As a result, there are many reports 
investigating how the physical microarchitecture and biochemi-
cal features of 3D biomaterials regulate or elicit specific GBM 
behaviors in  vitro (summarized in detail in Table  1). These 
studies have been reviewed in great detail elsewhere (Rao et al., 
2014; Rape et al., 2014; Xiao et al., 2017). One well-established 
observation is that matrix stiffness and topography (porosity, 
fiber content, geometry) can alter cellular phenotype to elicit 
malignant behaviors, including proliferation, migration, and 
invasion. Mechanosensation, or the ability for cells to sense 
mechanical forces and stiffness, is a key component of GBM 

biology that mediates tumor growth and cell motility (Rape et al., 
2014). This was demonstrated in vitro by Ulrich et al. (2009) who 
described that GBM cell lines displayed both higher motility and 
proliferation on high stiffness substrates and also identified that 
the motile responses were governed at least in part by non-muscle 
myosin II. Furthermore, one of the more intriguing developments 
in understanding biophysical regulation has been the discovery 
that biomaterial fibers mimicking the structure of blood vessels 
are capable of encouraging and guiding GBM invasion (Rao 
et  al., 2013a; Jain et  al., 2014; Herrera-Perez et  al., 2015; Cha 
et al., 2016). The primary method for changing the biophysical 
properties of 3D models is via altering the concentration of the 
constituent biomaterials. While effective, this often also coupled 
with changing the density of bioactive components. Isolating 
the impact of different biophysical cues on cellular behavior is 
almost impossible in  vivo, but biomaterial platforms offer an 
opportunity to independently manipulate these variables, which 
will be important to deepening understanding of the disease 
(Wang et al., 2014).

In considering the biochemical influence of the microenvi-
ronment on GBM biology, various different scaffold components 
have been explored (complete list in Table 1); one of the most 
common materials utilized for this purpose is HA. Given that 
HA, discussed earlier, has many essential functions in GBM 
(Giese and Westphal, 1996), it is unsurprising that HA hydrogels 
have been shown to regulate a wide variety of behaviors includ-
ing proliferation (Pedron et al., 2013), invasion (Heffernan et al., 
2014), stem phenotypes (Cha et al., 2016), and treatment resist-
ance (Jiguet Jiglaire et al., 2014). HA does not provide cellular 
adhesion sites, and as a result is regularly modified with cell 
adhesion peptides or combined with other biomaterials, such 
as collagen, to enable cell attachment (Ananthanarayanan et al., 
2011; Pedron et al., 2013; Heffernan et al., 2014; Jiguet Jiglaire 
et al., 2014). While relatively insignificant components of the 
native brain ECM, collagen and Matrigel® are also prominent 
biomaterials in GBM research primarily because of their high 
density of focal adhesion sites, their history of use in other can-
cer models (e.g., breast cancer), and the ease with which they 
can be experimentally implemented. Both models have been 
used to investigate the role of matrix signaling in promoting 
focal adhesion mediated GBM invasion (Herrera-Perez et al., 
2015; Heffernan et al., 2016). Alternatively, PEG-based bioma-
terials offer a tunable synthetic platform with the potential for 
easy chemical modification. PEG gels have been designed to 
be enzymatically degradable (Wang et al., 2014), hydrolytically 
stable or degradable (Heffernan et al., 2014), or modified with 
cell instructive peptides (Ananthanarayanan et al., 2011), each 
of which have been shown to modify malignant GBM behaviors. 
Moreover, complex multicomponent biomaterial models have 
also been reported for developing high-throughput studies of 
GBM behaviors across a range of different microenvironmental 
conditions (Pedron et al., 2015), or alternatively, through cocul-
tures with microenvironmental support cells within a single 3D 
in vitro system (Ngo and Harley, 2017). Together, the current 
body of work (Table 1) illustrates the breadth of understand-
ing that has developed in response to implementing in  vitro 
biomaterial cultures.
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BiOMATeRiALS FOR PROBiNG GSC 
BiOLOGY

engineering the Stem Cell 
Microenvironment
Engineering GSC instructive in  vitro microenvironments is a 
relatively new approach derived from well-established tissue 
engineering research. Stem cells are widely regarded for their 
potential to regenerate and establish functional tissues. Neural 
tissue engineering, which is most closely related to methods for 
modeling the GBM microenvironment, primarily focuses on 
developing novel techniques for directing NSC behaviors. In this 
field, biomaterials have been utilized to elucidate various stem 
cell behaviors with a focus on understanding how biophysical 
and biochemical factors in 2D and 3D environments affect NSC 
maintenance, self-renewal, and differentiation mechanisms 
(Teixeira et  al., 2007). Through these studies, the mechanical 
stiffness of culture substrates and matrices has been identified 
as a potent regulator of NSC fate. Saha et  al. (2008) reported 
that NSC differentiation could be directed with soft substrates 
(100–500  Pa) to promote neurogenesis and stiff (>1,000  Pa) 
matrices to promote gliogenesis. In addition to matrix stiffness, 
Soen et al. (2006) and Nakajima et al. (2007) demonstrated that 
specific ECM components and growth factors were also capable 
of controlling stem cell fate and differentiation in culture. Other 
cellular components of the NSC microenvironment have been 
investigated as regulators of stem cell fate in vitro. For example, 
Shen et al. (2004) determined that endothelial cells secrete soluble 
factors that promote and maintain stem phenotypes in NSC 
populations.

The regenerative capacity of NSCs has also been investigated 
in 3D microenvironment models with both matrix composition 
and stiffness again identified as key regulatory components. Here, 
Saha et al. (2008) described that very soft substrates (<100 Pa) 
promoted quiescent NSC phenotypes, while stiffening these 
substrates (≥100 Pa) promoted expansion of the NSC pool. The 
structure of the ECM is also important to NSC neural regenera-
tive properties, as Yang et al. (2005) described scaffolds composed 
of aligned poly(l-lactic acid) nanofibers promoted neuronal 
phenotypes and neurite outgrowth along the fibers. More bio-
mimetic approaches have also been tested using ECM compo-
nents of the in vivo NSC niche as well. To this end, Cheng et al. 
(2013b) described that a laminin-derived IKVAV peptide-based 
hydrogel supported NSC neuronal differentiation and improved 
tissue regeneration in vivo following a traumatic brain injury. In 
addition, we reported that an HA–laminin composite hydrogels 
increase the migratory response of NSCs a result of increased 
sensitivity to stromal cell-derived factor 1α both in  vitro and 
in vivo (Addington et al., 2015, 2017).

Similar regulatory mechanisms govern both GSC and NSC 
biology (Sanai et  al., 2005), and as such, these examples have 
direct relevance to understanding and predicting how model 
microenvironments may affect malignant GSC phenotypes. In 
applying these same tissue engineering approaches to GSCs, 
conditions under which these cells acquire or enhance stem 
phenotypes, prefer to initiate invasive mechanisms, or exhibit 

treatment resistance have been identified. These results provide 
better understanding of the underlying mechanisms that drive 
microenvironmental support for GSC populations.

GBM Stem Plasticity in 3D Culture
Glioblastoma stem-like cells and NGSCs are believed to exist in 
a regulated state of plasticity where induction of differentiation 
is a bidirectional process regulated by the microenvironment, 
epigenetics, and response to treatment (Heddleston et al., 2009; 
Dahan et al., 2014; Safa et al., 2015). This stem plasticity has been 
investigated using immortalized GBM  cell lines as a model of 
NGSCs. Although, as previously described, these cell lines do not 
offer a complete and accurate depiction of GBM biology, and the 
mechanisms that are employed to acquire stem phenotypes may 
mimic GSC plasticity (Jacobs et al., 2011; Zhang et al., 2013).

Stem plasticity has been studied in GBM cell lines cultured 
in chitosan-based scaffolds; for example, Florczyk et al. (2013) 
developed a chitosan–HA composite scaffold that elucidated 
stem-like characteristics in U118 cells. The authors reported that 
these scaffolds promoted sphere formation, expression of stem 
markers (Nestin, Musashi-1, and CD44), and increased invasive 
capacity compared with traditional 2D cultures. In addition, 
scaffold-cultured cells displayed increased resistance to both 
TMZ and doxorubicin, coupled with increased expression of 
the ABCG2 drug efflux pump, suggesting a phenotypic switch 
toward a more GSC-like state (Florczyk et al., 2013). In a follow-
up study, Kievit et al. (2014) used a chitosan–alginate scaffold 
to also examine stem plasticity. Using these models, U118 and 
U87 GBM cells again displayed increased stem protein and gene 
expression (CD133, Nestin, CD44, Notch, among others) in 
scaffold environments, which was again a function of scaffold 
composition. Functionally, scaffold grown cells also exhibited 
increased tumorigenicity in a flank tumor model. Kievit et al. 
(2016) further optimized this approach by coating chitosan–alg-
inate scaffolds with HA and establishing a 3D coculture model 
of U87 and endothelial cells. These conditions also increased 
expression of CD133, ID1, and CD44 but interestingly slowed 
the growth of spheroids. Outside of GBM, Florczyk et al. (2016) 
employed this platform to enrich CD133 expression in prostate, 
breast, and liver cancer cells.

Chitosan-based scaffolds are also not the only biomaterial 
platform that has been reported to drive stem plasticity, as Ma 
et al. (2016a) also identified stem-specific responses to 3D elec-
trospun polystyrene scaffolds coated with a library of seven differ-
ent isoforms of laminin. The resulting behavior of U251 cells was, 
similar to the chitosan studies, contingent both on 3D context 
and matrix chemistry. Specifically, 3D scaffolds presenting the 
laminin isoforms 411, 421, 511, and 521 promoted an increase in 
expression of the GSC markers (including, for example, integrin 
α6, SOX2, and OLIG2) that coincided with an increase in clono-
genicity of these cells (Ma et al., 2016a).

Together, these works emphasize the significance of using 
engineered microenvironments to drive relevant GSC behaviors 
in culture. The use of immortalized cell lines provides some 
insight into how GBM cells exhibit plasticity in a shift from dif-
ferentiated phenotypes to more stem-like behaviors.
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Biomaterials Promoting GSC expansion 
and enrichment
Engineered tumor microenvironments have also been designed 
to assay conditions under which patient-derived GSCs may be 
enriched in vitro. GSCs are typically maintained in non-adherent 
neurosphere conditions (Singh et al., 2003) or in adherent cul-
tures on laminin (Pollard et al., 2009), with the desired condition 
often selected based on cellular affinity. In general, neurosphere 
conditions are most common as sphere forming capacity is 
regularly accompanied by a broader array of GSC specific pheno-
types (self-renewal, multipotency, and stem-marker expression) 
(Venugopal et  al., 2012). However, neurosphere culture has 
well-characterized drawbacks. Specifically, as spheres increase in 
size, the constituent cells experience differential access to oxygen 
and soluble signaling factors as a result of diffusion limitations 
(Woolard and Fine, 2009). This problem is amplified by variations 
in rates of cell proliferation and fusion of adjacent spheres. As a 
result, a single neurosphere may contain a heterogeneous mixture 
of clonogenic, differentiated, apoptotic, and necrotic cells (Bez 
et al., 2003; Beier et al., 2008; Pollard et al., 2009; Woolard and 
Fine, 2009).

A number of biomaterials have been described as useful 
tools for addressing problems associated with neurosphere 
aggregation. For example, Yang et al. (2014) reported that gelatin 
foam scaffolds maintained GSC protein expression, while also 
increasing HIF1α and VEGF signaling to provide a GSC sup-
portive microenvironment. As stated previously (see Therapeutic 
Challenges and Opportunities), hypoxia signaling, including 
HIFs and VEGF, has been proposed as a potential mechanism for 
sensitizing GSCs to treatment. Thus, this platform may be relevant 
for testing these hypotheses. In a separate study, Oh et al. (2016) 
reported that GSCs encapsulated in an alginate–PEG hydrogel 
formed neurospheres with relative uniformity in size, which may 
improve nutrient and oxygen access. Li et al. (2016) used a similar 
approach to expand patient-derived GSCs in a temperature-
responsive PNIPAAm-based scaffold. In this context, cells 
were capable of high density culture without aggregating, thus 
overcoming a key drawback to traditional neurosphere cultures. 
This system subsequently enabled improved cellular yield from 
GSC cultures while maintaining multipotency and stem-marker 
expression.

Beyond GSC expansion, conditions under which GSC pheno-
types are actively enriched have also been explored in 3D culture. 
Chitosan–HA scaffolds were recently applied to patient-derived 
GSCs by Wang et al. (2016) and were found to increase stem gene 
expression (SOX2, and TAZ, NANOG), invasion gene expres-
sion (TWIST1, TWIST2, SNAIL1, SNAIL2, and ZEB2), and 
expression of genes that drive drug resistance (MGMT, HIF1A, 
and SOD1) compared with cells cultured as a 2D monolayer. 
GSCs cultured in these scaffolds also exhibited higher toler-
ance to the chemotherapeutics TMZ, carmustin (BCNU), and 
lomustine (CCNU). Similarly, we recently reported another set 
of 3D culture conditions that promote GSC enrichment utilizing 
temperature-responsive PNIPAAm-co-Jeffamine (PNJ) scaf-
folds (Heffernan et  al., 2017). This culture platform increased 
self-renewal capacity, expression of the stem marker Nestin, and 
EGFR expression while maintaining cellular multipotency in two 

genetically distinct models of GBM. In addition, we observed that 
PNJ cultured cells also exhibited increased resistance to clinical 
dosages of radiation following 3D culture. EGFR signaling has 
been shown to be an important mediator of medulloblastoma 
radioresistance, and this platform may help to elucidate whether 
this mechanism is applicable to GSCs (Hambardzumyan et al., 
2008).

In total, these studies suggest that there are a diverse set of 
biomaterials capable of maintaining GSCs cultures, and a subset 
of these materials are useful for actively enriching GSC specific 
phenotypes. Considering the differences in scaffold composition, 
it is also likely that GSCs are regulated via distinct mechanisms 
in the described culture systems.

In Vitro Models of GSC invasion
Invasion of neoplastic cells into healthy brain tissue has and 
continues to be considered the most clinically significant issue 
inhibiting effective GBM treatment (Berens and Giese, 1999). 
Considering the role, GSCs play in tumor recurrence and inva-
sion, understanding how these cells respond to specific microen-
vironmental cues to promote invasive behaviors is of particular 
importance. In the seminal work of Cheng et al. (2011), GSCs were 
determined to exhibit a heightened propensity for invasion. This 
characteristic was first identified in vitro, using a 3D Matrigel-
transwell invasion assay, and was subsequently confirmed in vivo 
when compared with NGSCs from a matched tumor sample 
(Cheng et al., 2011). This description provided a foundation for 
employing in  vitro microenvironments to determine how the 
biochemical, biophysical, and cellular components of the tumor 
microenvironment affect GSC invasion.

Biochemical input signals from the tumor microenvironment 
ECM influence GSC propensity for invasion, and this hypoth-
esis has been supported in various different in vitro paradigms. 
Using a library of Matrigel, collagen, and HA–collagen matrices, 
Herrera-Perez et al. (2015) determined that modes of GSC inva-
sion were directly dependent on ECM chemistry. These matrices 
accurately modeled the stiffness of healthy brain tissue, and dif-
ferent preparations of collagen were used to separate the effects 
of matrix stiffness and collagen concentration. As a result, this 
study identified an interplay between matrix stiffness and chem-
istry that influenced invasion distance and velocity. Interestingly, 
soluble HA (non-immobilized) decreased GSC invasion in HA–
collagen matrices, and Matrigel coated microfibers, mimicking 
the structure of blood vessels, encouraged directional strand 
motility reminiscent of white matter tract invasion tendencies 
in vivo (Herrera-Perez et al., 2015).

Identification of biochemical pathways that promote or inhibit 
GSC invasion is necessary for complete characterization of these 
behaviors but is often underreported; a limitation of many 3D 
culture studies. As an example, Cha et  al. (2016) explored a 
similar paradigm to Herrera-Perez et  al. by measuring GSC 
invasion through collagen matrices that included soluble HA 
and PCL fibers to model blood vessels. Yet, in apparent contrast 
to the prior study, Cha et  al. (2016) reported that soluble HA 
increased GSC invasion in collagen matrices, while also exhibit-
ing increased expression of CD44, and HA synthase. In addition, 
treatment with an HA synthase inhibitor decreased invasion and 
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effected an increase in FAK and MMP2 expression (Cha et al., 
2016). While the functional results of these studies (i.e., invasion) 
appear contradictory, it is important to recognize differences in 
methodology which include the source of patient-derived cells, 
and the concentrations of collagen and HA in the model systems. 
Therefore, molecular level descriptions may improve cross-study 
comparisons and allow for more robust descriptions of GSC 
invasive mechanisms.

From analysis of the in vivo tumor microenvironment, it is 
clear that non-GBM cells, such as endothelial cells, are capable 
of regulating GSC phenotypes and promoting invasion. This 
behavior was studied by Chonan et  al. (2017) in which a 3D 
collagen gel was applied to separate a murine GSC line from 
endothelial cells in an engineered microfluidic invasion model. 
Here, endothelial cells stimulated increased invasion of Nestin 
expressing cells through the 3D microenvironment. These 
GSCs also exhibited increased expression of integrin α2 and 
β3 in response to coculture, suggesting a potential mechanistic 
role for endothelial cells in promoting motility of GSCs in this 
model. Meanwhile, cells expressing the neuronal differentiation 
marker tubulin β3 were less invasive, which agrees with prior 
reports of increased GSC invasive capacity vs. NGSCs (Cheng 
et al., 2011).

As previously stated, microenvironmental stiffness regulates 
the invasive capacity of GBM  cell lines via mechanosensation 
mechanisms (Ulrich et al., 2009; Ananthanarayanan et al., 2011; 
Pedron and Harley, 2013; Heffernan et al., 2014; Kim and Kumar, 
2014). While the stiffness of healthy brain is generally charac-
terized between 100 and 1,000  Pa, GBM tumors can present 
significantly increased stiffness due to their high cellularity and 
dense ECM (Netti et al., 2000; Georges et al., 2006; Saha et al., 
2008; Buxboim et al., 2010). At present, reports investigating the 
effects of matrix stiffness on GSC motility in both 2D and 3D 
paradigms describe a complex relationship (Ruiz-Ontañon et al., 
2013; Herrera-Perez et al., 2015; Wong et al., 2015; Grundy et al., 
2016). Ruiz-Ontañon et al. (2013) reported that GSCs harvested 
from different tumor regions (peritumoral vs. bulk tumor) display 
invasive tendencies and sensitivity to microenvironmental stiff-
ness that was a function of their regional origin. Unsurprisingly, 
peritumoral GSCs were observed to have a heightened invasive 
capacity. These behaviors were modeled on 2D laminin function-
alized polyacrylamide matrices, within 3D Matrigel and collagen 
I hydrogels, as well as in chicken embryo and mouse xenografts. 
Moreover, peritumoral invasion was insensitive to stiffness as a 
result of Rac and RhoA signaling activation, and integrin αVβ3, 
an RGD peptide binding integrin, was identified as a key regulator 
of GSC invasion and potential target for therapy (Ruiz-Ontañon 
et  al., 2013). Similarly, Wong et  al. (2015) also reported that 
GSCs exhibited an insensitivity to matrix stiffness on 2D laminin 
coated polyacrylamide matrices. Here, matrix stiffness ranging 
from 80 Pa to 119 kPa produced no effect on cellular migration. 
However, in contrast to the previous study, activation of myosin 
II signaling via genetic constitutive activation of RhoA, ROCK, or 
MLCK sensitized cells to matrix stiffness and effected a decrease 
in motility on soft matrices.

Together, these studies suggest that GSCs employ diverse 
invasion strategies that may be cell-type specific. This hypothesis 

was supported by Grundy et al. (2016) who suggested that a GSC 
subtype-specific relationship exists between invasive behavior 
and sensitivity to microenvironmental stiffness. In this study, 
migration and invasion were measured on 2D Matrigel coated 
polyacrylamide matrices with varying stiffness (200 Pa–50 kPa) 
and also within soft (~400  Pa) 3D Matrigel hydrogels. With 
this platform, the invasive behavior of neural subtype GSCs 
was observed to be insensitive to stiffness, while mesenchymal 
subtype GSCs exhibited stiffness dependent motility. The authors 
surmise that the cell of origin (neural GSCs—neuronal lineage; 
mesenchymal GSCs—astrocytic lineage) may be a primary fac-
tor influencing GSC motility in response to microenvironmental 
stiffness (Grundy et  al., 2016). This hypothesis also draws rel-
evance back to the NSC paradigm, in which neuronal phenotypes 
manifest on soft matrices while astrocytic phenotypes dominate 
on stiff substrates (Saha et al., 2008).

These 3D invasion studies provide unique opportunities to 
isolate specific microenvironmental features (chemistry, stiffness, 
architecture, cellular support, etc.) and may be instrumental in 
identifying targets for therapy to address GSC invasion at 
the clinical level. However, the wide range of reported results 
indicate that a more comprehensive picture of subtype-specific 
and context-specific molecular mechanisms of invasion may be 
necessary to develop predictive hypotheses.

Modeling Treatment Resistance and the 
influence of Tumor Heterogeneity
Tumors generated through orthotopic transplant of human 
GSCs display treatment resistance that is supported by the 
tumor microenvironment (Mannino and Chalmers, 2011). Yet, 
similar to challenges faced in studying GBM invasion, direct 
identification of specific resistance promoting factors remains 
challenging in vivo; the mechanisms underlying microenviron-
mental contributions to treatment resistance can be efficiently 
modeled in  vitro. For example, Fernandez-Fuente et  al. (2014) 
proposed that resistance to sunitinib induced receptor tyrosine 
kinase (RTK) inhibition is mediated by interactions specific 
to a 3D microenvironment. Using a number of different GSC, 
NGSC, and established GBM cell lines, the authors determined 
that GSCs were comparatively insensitive to RTK inhibition in 
3D collagen gels vs. standard 2D conditions and 2D collagen 
coated polyacrylamide. The observed resistance was abrogated 
via chemical inhibition of the PI3K/Akt and MEK/ERK signaling 
pathways leading the authors to hypothesize that focal adhesions 
in 3D were responsible for promoting RTK resistance. Notably, 
changes in collagen content, stiffness (2D and 3D), and soluble 
HA inclusion in 3D collagen gels did not produce a measurable 
effect on drug sensitivity.

The biochemical response to matrix bound HA has also been 
identified as a regulator of GSC resistance to chemotherapy in 3D 
culture. In a recent study by Pedron et al. (2017), the EGFR inhibi-
tor erlotinib produced little GSC cytotoxicity in gelatin hydrogels, 
and its effects were predictably dependent on basal EGFR status 
(EGFRwt, EGFR+, and the GBM specific constitutively active form 
EGFRVIII). In addition, incorporation of HA within the gelatin 
hydrogels increased erlotinib resistance in EGFRVIII cells, while 
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inhibition of EGFR and CD44 increased cytotoxic effects in 
EGFRwt and EGFR+ cells. This study provides evidence for EGFR–
CD44 signaling interactions that promote GSC resistance to RTK 
inhibition dependent on the microenvironment and molecular 
profile of the GBM cells. Considering the clinical importance of 
EGFR in GBM, this mechanism may be highly relevant design-
ing novel inhibition strategies for GSCs. Moreover, measuring 
divergent responses as a function of EGFR signaling provides 
an example of how tumor heterogeneity may negatively impact 
treatment.

The development of tumor heterogeneity diminishes sensitiv-
ity to treatment as a result of divergent phenotypes (proliferative 
vs. quiescent, invasive vs. stationary, protein expression, etc.). 
Hubert et  al. (2016) modeled this process by culturing GSCs 
in Matrigel coupled with continuous mechanical agitation. This 
model generated large GBM organoids with hypoxic cores that 
were composed of populations of GSCs and NGSCs. GSCs were 
primarily located at the organoid rim but were also sporadically 
identified in regions of hypoxia. Moreover, the GSC populations 
within the organoids displayed resistance to apoptosis follow-
ing radiation treatment, while NGSCs were observed to be 
sensitive to treatment. This test demonstrates a prevailing GSC 
theory that conventional modes of treatment may effectively 
target NGSCs but leave GSCs relatively unharmed. Finally, 
organoid cultures were orthotopically implanted and formed 
tumor architecture and single-cell invasive patterns that were 
a better representation of the parent tumor than matched cells 
in neurosphere culture (Hubert et al., 2016). Thus, developing 
models that can recapitulate tumor heterogeneity may provide 
avenues for determining patient-specific drug responses via 
personalized medicine.

CRiTiCAL PeRSPeCTive AND FUTURe 
DiReCTiONS

Biomaterial models of the GBM tumor microenvironment have 
been useful to interrogate aspects of GSC biology that could 
not be studied easily under standard 2D culture conditions or 
with in  vivo tumor models. While this has undoubtedly leads 
to progress in GBM research, there remain opportunities for 
improving the overall impact of these studies. Primarily, the 
choice of cell line remains one of the most important vari-
ables to the biological relevance of model microenvironments. 
Immortalized cell lines simply do not provide accurate repre-
sentation of the disease in this area and should be restricted to 
proof of concept use if possible. Ultimately, biomaterial models 
are designed to identify biological features that are important 
to the in vivo scenario. Therefore, low-passage patient-derived 
cell sources that have been validated to retain genotypic and 
phenotypic features of the parent tumor, such as GSCs, should be 
prioritized. The impact of these studies will be further increased 
by providing detailed characterization data on both the cell lines 
and biomaterial system employed. Incomplete descriptions often 
omit key information needed to replicate studies or draw broader 
conclusions about GBM behaviors. One important consideration 
in utilizing patient-derived cells is that the heterogeneity of GBM 

tumors makes it unlikely that cells from different sources will 
behave identically. However, understanding these differences 
will be essential to making progress in the treatment of human 
disease. By classifying GSC lines into the clinically accepted 
subtypes, providing gene and/or protein expression data, and 
reporting comprehensive behavioral analyses, the field can gain 
a more comprehensive understanding intra- and interpatient 
heterogeneity. We further propose that the definition of a GSC 
should be considered carefully and well defined for the purpose 
of each study: cell behaviors should be characterized in more 
than one context, and standard characterization should include 
features such as self-renewal capacity, expression of stem related 
genes or proteins, their ability to differentiate into multiple 
lineages, and the behavior of cells transplanted in vivo. Similarly, 
microenvironmental variables should be tightly controlled, with 
consideration given to the potential interdependence of different 
scaffold properties. Given the role that both biochemical and 
biophysical signaling play in GSC regulation, decoupling these 
responses concepts may be key to truly isolating these biological 
relationships.

Looking forward, modeling GSC behaviors in engineered 
microenvironments provides significant opportunities for the 
advancement of GBM research and eventual translation of new 
therapies to target this population. The primary motivator is 
to identify treatable mechanisms or biochemical pathways that 
are critical for GSC persistence, invasion, or tumorigenesis. To 
this end, efforts focused developing heterogeneity via micro-
environmental cues are particularly impactful, as heterogeneity 
limits the capacity for non-personalized therapies to be success-
ful. However, if heterogeneity in recurrent tumors develops as 
a result of interactions with the microenvironment, there may 
be models that could identify key mechanisms in this process 
that would enable prevention. Alternatively, models designed to 
enable long-term maintenance of parental tumor features would 
also be a welcome innovation. Following resection, patient-
derived cell line models lose their heterogeneity, converge on 
a dominant phenotype, and experience genetic drift over time. 
Thus, models that are able to maintain and enrich GSCs with 
minimal plastic culture, or even straight from the patient, 
would be enable analysis on samples that represent the original 
tumor. Microenvironmental modeling may also better our 
understanding of the role of GSCs in driving angiogenesis. We 
understand that GSCs respond to hypoxic microenvironments 
by recruiting endothelial cells, and in some cases differentiating 
into vascular support cells to vascularize the tumor. However, 
these behaviors have not been fully demonstrated in  vitro. 
Employing a hypoxic microenvironment model in combina-
tion with cocultured endothelial cells and microenvironmental 
components designed to encourage vessel formation (laminin 
proteins, VEGF, etc.) may enable elucidation of these processes 
and their mechanisms. Finally, personalized medicine options 
remain a long-standing goal of tumor microenvironment mod-
els. Considering again the heterogeneity of GBM, platforms 
that enable high-throughput testing of patient-derived tumor 
samples could allow for therapies to be tailored for different 
individuals. Such models could focus on treating tumorigenesis, 
invasion, or GSC maintenance.
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CONCLUSiON

Although GBM is aggressively treated, conventional radiation 
and chemotherapy are relatively ineffective, and tumor recur-
rence is nearly inevitable. The GBM microenvironment is broadly 
protective to various tumor and tumor-associated cells; special-
ized niches therein provide critical functions for maintaining a 
population of treatment resistant GSCs that fuel tumor recur-
rence. Importantly, a growing body of evidence suggests that 
these microenvironments directly support treatment resistance 
and induction of stem plasticity through a diverse set of dynamic 
interactions. In vitro studies utilizing 3D scaffolds are proven tools 
for identifying and isolating microenvironmental mechanisms 
that regulate GBM and GSC behaviors. Therefore, we propose 
that further development of these models may facilitate better 

understanding of the mechanisms that maintain GSCs in the 
microenvironment and may precede the development of new 
methods for disrupting niche regulation.
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The extracellular matrix (ECM) is critical in tumor growth and invasive potential of cancer

cells. In glioblastoma tumors, some components of the native brain ECM such as

hyaluronic acid (HA) have been suggested as key regulators of processes associated

with poor patient outlook such as invasion and therapeutic resistance. Given the

importance of cell-mediated remodeling during invasion, it is likely that the molecular

weight of available HA polymer may strongly influence GBM progression. Biomaterial

platforms therefore provide a unique opportunity to systematically examine the influence

of the molecular weight distribution of HA on GBM cell activity. Here we report the

relationship between the molecular weight of matrix-bound HA within a methacrylamide-

functionalized gelatin (GelMA) hydrogel, the invasive phenotype of a patient-derived

xenograft GBM population that exhibits significant in vivo invasivity, and the local

production of soluble HA during GBM cell invasion. Hyaluronic acid of different molecular

weights spanning a range associated with cell-mediated remodeling (10, 60, and 500

kDa) was photopolymerized into GelMA hydrogels, with cell activity compared to GelMA

only conditions (-HA). Polymerization conditions were tuned to create a homologous

series of GelMA hydrogels with conserved poroelastic properties (i.e., shear modulus,

Poisson’s ratio, and diffusivity). GBM migration was strongly influenced by HA molecular

weight; while markers associated with active remodeling of HA (hyaluronan synthase and

hyaluronidase) were found to be uninfluenced. These results provide new information

regarding the importance of local hyaluronic acid content on the invasive phenotype of

GBM.

Keywords: cell invasion, hyaluronic acid, hydrogels, tumor microenvironment, tumor margins, molecular weight,
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INTRODUCTION

Glioblastoma (GBM), a WHO grade IV astrocytoma, is the most
common and deadly form of brain cancer and accounts for more
than 50% of primary brain tumors (Furnari et al., 2007; Nakada
et al., 2007; Wen and Kesari, 2008). Unlike many other cancers
that metastasize to a secondary site, GBM instead is known to
diffusely infiltrate throughout but rarely metastasize beyond the
brain, and this invasive phenotype contributes to poor patient
prognosis (median survival <15 months and 5 year survival
<5%) (Stupp et al., 2005; Jackson et al., 2011; Johnson andO’neill,
2012;Mehta et al., 2015). The brain extracellularmatrix andGBM
tumor microenvironment (TME) display striking differences to
other tumors, show a large amount of spatial and temporal
heterogeneity, and can differ patient-to-patient. However, while
fibrillar proteins such as collagen and fibronectin are abundant
in many other tissues, the brain ECM has minimal fibrillar
structures and is mainly composed of hyaluronic acid (HA, also
called hyaluronan, or hyaluronate) (Bonneh-Barkay and Wiley,
2009; Sivakumar et al., 2017).

The GBM TME is not homogeneous but a complicated
heterogeneous environment, especially on the tumor margins,
where transitions between the tumor microenvironment and
surrounding brain parenchyma are characterized by transitions
in structural, biomolecular, and cellular composition. The matrix
compositional transition from natural brain to tumor provides a
potential invasion path for GBM and, therefore, might contribute
to poor patient prognosis (Syková, 2002; Quirico-Santos et al.,
2010; Charles et al., 2011; Jackson et al., 2011; Wiranowska and
Rojiani, 2011; Junttila and de Sauvage, 2013). Processes of GBM
invasion, particularly in the perivascular niche in the tumor
margins, involve exposure to not only HA but a range of fibrillar
protein content and significant matrix remodeling, resulting in
GBM cell exposure to not only HA but also a wide range of
molecular weights of HA (Bayin et al., 2014; Lathia et al., 2015;
Paw et al., 2015). In this context, the amount and molecular
weight distribution of HA, associated with constant turnover
from oligosaccharides to high MW HA, across the tumor
microenvironment is believed as an important regulator of GBM
invasion (Itano and Kimata, 2008). Hyaluronic acid, a negatively
charged, nonsulfated GAG, is the main component of brain
ECM. HA is naturally produced by hyaluronan synthase (HAS)
family and degraded by hyaluronidase (HYAL) in mammalian
animals (Misra et al., 2011). While the presence of HA has
been shown to be important to tumor progression (Toole, 2004;
Stern, 2008; Kim and Kumar, 2014), significant investigation is
needed to explore the role of the molecular weight (MW) of HA
on processes associated with GBM invasion, progression, and
therapeutic response.

Remodeling of hyaluronic acid in the context of GBM cell
invasion requires the combined effort of a range of degradative
and biosynthetic proteins. Notably, HA biosynthesis is driven
by hyaluronic synthase (HAS), which has multiple isoforms
responsible for secreting different MW HA (HAS1: 200–2,000
kDa; HAS2: >2,000 kDa; HAS3: 100–1,000 kDa). Similarly, the
degradation of HA by hyaluronidase (HYAL) can produce final
fragments with different MW. In GBM, HYAL1 (<20 kDa) and

HYAL2 (20–50 kDa) are the most abundant HYAL isoforms
(Misra et al., 2011; Khaldoyanidi et al., 2014). Due to the constant
synthesis and degradation of HA, a wide range of different
molecular weight HA (High, >500 kDa; Medium, 50–350 kDa;
Low, <30 kDa) are present in the brain and TME (Toole, 2004;
Lam et al., 2014; Monslow et al., 2015). HMW HA is important
for structural support and the biophysical properties in tissue,
and is directly synthesized via HAS. While HMWHA can inhibit
tumor growth in colon cancer (Mueller et al., 2010) it also
decreases production of MMPs by suppression of MAPK and Akt
pathways (Chang et al., 2012). L-MMW, generated from HYAL
degradation as final products, are often associated with enhanced
invasion and increased tumor growth (Monslow et al., 2015).
LMW and MMW HA have been reported to enhance cancer
proliferation, cell adhesion as well as secretion of MMPs for
matrix remodeling (Tofuku et al., 2006). LMWHA has also been
reported to be pro-inflammatory and pro-angiogenic, which may
contribute to cancer invasion (West et al., 1985; Lam et al., 2014).
In contrast, the effects of oligo HA have been more variable.
In papillary thyroid carcinoma, oligo HA is associated with
increased (Dang et al., 2013), while other studies demonstrate
suppression of signaling pathways such as Ras and Erk and
reduced tumor progression (Misra et al., 2006; Toole et al., 2008).

Despite the conflicting HA-cancer relations and lack of full
understanding of HA MW contribution, HA clearly plays a
significant role in many signaling pathways and in tumor
progression. In this study, we analyze the effects of matrix-
bound HA on GBM cell invasion by using an in vitro fully
three-dimensional gelatin based hydrogel system that our lab has
previously developed (Pedron et al., 2013; Chen et al., 2017).
Previous efforts have used this platform to demonstrate the effect
of a single MW HA immobilized within the GelMA hydrogel
on the invasive phenotype of GBM cell lines as well as the gene
expression signature and response to a model tyrosine kinase
inhibitor (erlotinib) (Chen et al., 2017, 2018; Pedron et al.,
2017a,b). Here we selectively decorate the GelMA hydrogel with
a range of MW HA spanning those seen in the GBM TME (10,
60, and 500 kDa). Further, we examine the behavior of a patient-
derived xenograft (PDX) GBM specimen that maintains patient
specific molecular and morphologic characteristics (Sarkaria
et al., 2006, 2007). We evaluate cell growth, invasion, and
proteomic responses of GBM cells within our platform and
demonstrate the influence HAMW on GBM invasive phenotype.
The understanding of the effect of HAMW in GBM cell invasion
may open up new lines of investigation to identify novel targeted
therapies.

MATERIALS AND METHODS

Hydrogel Fabrication and Characterization
Fabrication of methacrylated gelatin (GelMA) andmethacrylated
hyaluronic acid (HAMA) precursors and hydrogels were as
described in previous publications (Pedron et al., 2013; Chen
et al., 2017). Briefly, gelatin powder (Type A, 300 bloom from
porcine skin, Sigma-Aldrich) was dissolved in 60◦C phosphate
buffered saline (PBS; Lonza, Basel, Switzerland) then methacrylic
anhydride (MA; Sigma-Aldrich) was added into the gelatin-PBS
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solution dropwise and allowed the reaction proceed for 1 h. The
GelMA solution was then dialyzed (12–14 kDa; Fisher Scientific)
and lyophilized. HAMA was synthesized by adding 10mL MA
dropwise into a cold (4◦C) HA sodium salt (10, 60 or 500 kDa;
Lifecore Biomedical) solution (1 g HA sodium salt in 100mL DI
water). The pH was adjusted to 8 with the addition of 5N sodium
hydroxide solution (NaOH; Sigma-Aldrich) and the reaction
proceeded overnight at 4◦C. The product was then purified by
dialysis and lyophilized. The degree of MA functionalization of
both GelMA and HAMA was determined by 1H NMR (data not
shown) (Pedron et al., 2013; Chen et al., 2017).

Hydrogels (GelMA ± HAMA) were prepared by dissolving
GelMA and HAMA in PBS at a total concentration of 4
wt% with gentle heating (37◦C ∼45◦C) in the presence
of a lithium acylphosphinate (LAP) as photoinitiator (PI,
adjusted to maintain same Young’s modulus). The mixture
was placed into Teflon molds (0.15mm thick, 5mm radius)
and photopolymerized under UV light (AccuCure LED 365 nm,
Intensity 7.1 mW/cm2) for 30 s (Mahadik et al., 2015). Cell-
containing hydrogels were made similarly but with addition
of cells (4 × 106 cells/mL hydrogel solution) to the pre-
polymer solution, prior to pipetting into Teflon molds, and then
photopolymerized. Details regarding the hydrogel compositions
are listed in Table 1. All HA containing GelMA hydrogel groups
were fabricated with 15% w/w HA, consistent with previous HA-
decorated GelMA hydrogels described by our group (Pedron
et al., 2015, 2017a,b; Chen et al., 2017, 2018).

Characterization of Hydrogels
Young’s Modulus

The compressivemodulus of each hydrogel variant wasmeasured
using an Instron 5943 mechanical tester. Hydrogels were tested
under unconfined compression with a pre-load 0.005N at the rate
of 0.1 mm/min, with their Young’s modulus obtained from the
linear region of the stress-strain curve (0–10% strain).

Diffusivity

The water diffusivity of each hydrogel was measured through
indentation tests using atomic force microscopy (AFM, MFP-3D
AFM, Asylum Research; Figure 1). The stiffness of the cantilever
used in the measurements is 0.6 N/m. A spherical polystyrene
probe of 25µm diameter was attached to the tip (Novascan).
Three separate measurements of different indentation depths
were taken. After surface detection, the spherical indenter was
pressed into the sample to a certain depth in the rate of
50 µm/s and was held for a period of time until the force
on the indenter reaches a constant value. The force on the
indenter was measured as a function of time F(t). The time-
dependent response of hydrogels is due to solvent migration.
The poroelastic relaxation indentation problem has been solved
theoretically by Hu et al. (2010, 2011). Simple solutions have
been derived for direct extraction of material properties from the
relaxation indentation measurement. According to this method,
the normalized force relaxation function is a function of a single
variable: the normalized time τ = Dt/a2, with D being the
diffusivity, t being time, and a being the contact radius that is
related to the radius of the spherical probe R and indentation

depth h by a=
√
Rh:

F (t) − F(∞)

F (0) − F(∞)
= g

(

Dt

a2

)

(1)

This master curve has been derived numerically as

g(τ ) = 0.491e−0.908
√

τ + e−1.679τ (2)

Normalizing the experimental data and fitting it with the
theoretical curve (Equation 2), we can extract the single fitting
parameter diffusivity D. More details can be seen in references
(Hu et al., 2010, 2011).

Patient Derived Xenograft Cell Culture
Short-term explant cultures derived from the GBM39 PDX
model were obtained from Mayo Clinic (Rochester, Minnesota).
PDX samples were mechanically disaggregated, plated on low-
growth factor Matrigel coated tissue culture flasks in in standard
culture media made with Dulbecco’s modified eagle medium
(DMEM; Gibco) supplemented with 10% fetal bovine serum
(FBS; Atlanta biologicals) and 1% penicillin/streptomycin (P/S;
Lonza) at 37◦C in a 5% CO2 environment. Flasks were shipped
by overnight expression and then used upon arrival after
trypsinzation. For analysis of cell metabolic health and protein
expression, GBM39 cells were homogeneously mixed with the
GelMA ± HAMA solution at a density of 4 × 106 cells/mL.
Cell-seeded hydrogels were incubated in cell culture medium at
37◦C, 5% CO2 in low adhesion well plates containing standard
culture media (DMEM with 10% FBS and 1% P/S). Culture
media was changed at day 3 and day 5 for all cell-containing
hydrogels.

Time-Lapse Cell Invasion Assay Using
Spheroids
To measure relative cell motion in the fully three-dimensional
hydrogel environment, we embedded GBM spheroids into
our hydrogel. A methylcellulose (MC, 12 wt% in 0.5x PBS,
Sigma-Aldrich) solution was made with constant stirring at
4◦C overnight, then autoclaved and kept at 4◦C for storage.
MC solution was then added into 96-well plate and kept
at 37◦C overnight to form a non-adherent MC-hydrogel
layer. 105 GBM cells were added to each well, placed at
37◦C, 5% CO2 environment with constant horizontal-shaking
(60 rpm) overnight to aid spheroid formation (Lee et al.,
2011). Spheroids were then mixed with pre-polymer GelMA
± HAMA solution, photopolymerized and cultured following
the same method previously described. Cell invasion into
the hydrogel was traced throughout 7-day culture by taking
images on days 0 (immediately after embedding), 1, 2, 3,
5, and 7 using a Leica DMI 400B florescence microscope
under bright field. Analysis of cell invasion distance (d i = ri-
r0) was quantified via ImageJ using the relative radius (cell
spreading shape ∼ πr2i ) compared to day 0 (r0) using a
method previously described by our group (Chen et al.,
2017).
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TABLE 1 | Hydrogel composition and characterization results (n = 6).

Hydrogel -HA 10 K 60 K 500 K

GelMA (wt%) 4.0 3.4 3.4 3.4

HAMA (wt%) 0 0.6 0.6 0.6

HA sodium salt MW N/A ∼10 kDa ∼60 kDa ∼500 kDa

LAP (wt%) 0.1 0.02 0.02 0.02

Young’s modulus (kPa) 2.76 ± 0.24 2.97 ± 0.15 2.79 ± 0.15 2.70 ± 0.03

Diffusivity (µm2/s) 161.04 ± 70.33 153.54 ± 34.92 169.90 ± 26.88 156.43 ± 50.18

FIGURE 1 | (A) Schematic drawing of measuring hydrogel water diffusivity via AFM. (B) Poroelastic parameters are extracted via indentation performed to a fixed

depth followed by force relaxation to a new equilibrium state. Characterization that for a homologous series of GelMA hydrogels developed for this project there was a

negligible effect of the molecular weight of hyaluronic acid incorporated into the GelMA hydrogel on (C) hydrogel Young’s modulus measured via MTS (n = 6) and (D)

hydrogel diffusivity via AFM (n = 6).

Analysis of Cell Metabolic Activity
The total metabolic activity of cell-containing hydrogels was
measured immediately after hydrogel encapsulation (day 0)
and then subsequently at days 3 and 7 of hydrogel culture.
Metabolic activity was analyzed using a dimethylthiazol-
diphenyltetrazolium bromide assay (MTT; Molecular Probes)
following manufacturer’s instructions. Briefly, at each time
point the culture media surrounding each hydrogel sample was
replaced withMTT-containing media and incubated for 4 h, then
solution was replaced with dimethyl sulfoxide (DMSO; Sigma-
Aldrich) and set overnight. Metabolic activity of samples was
measured via absorbance at 540 nm using a microplate reader
(Synergy HT, Biotek), with data normalized to day 0 samples
(immediately after seeding) as fold change.

Quantification and Size Analysis of Soluble
Hyaluronic Acid Secretion
The concentration of soluble HA in the media was quantified
from sample media using an enzyme-linked immunosorbent
assay (ELISA, R&D systems) following the manufacturer’s
instructions. Sample media were collected at days 3, 5, and 7.

Samples were analyzed via a microplate reader (Synergy HT,
Biotek) with 450/540 nm wavelength absorbance. Soluble HA
concentration within themedia at each time point was calculated,
with accumulated results reported as a function of all previous
time point measurements.

The HA isolation from media samples and the MW
distribution analysis was assessed following a protocol
from Cleveland Clinic (Hyaluronan size analysis by agarose
gel electrophoresis, http://pegnac.sdsc.edu/cleveland-clinic/
protocols/). Briefly, after consecutive digestion–precipitation
steps, HA was extracted from media samples and lyophilized.
Half of the sample was completely digested with hyaluronidase to
serve as a reference. The remaining sample was dissolved
in formamide (Sigma-Aldrich) before loading into the
electrophoresis gel. A 1% agarose (Fisher Scientific) gel in
1x TAE buffer (Invitrogen) was prepared and electrophoresis
(Horizon 58; LabRepCo) was ran for 4.5 h at 80V to remove any
impurity. Each lane was then loaded with 12 µL of sample and
run for 1.25 h at 100V. The agarose gel was then equilibrated
with 30% ethanol for 1 h and stained with Stains-All (Sigma-
Aldrich) in the dark at room temperature overnight. The agarose
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gel was then washed using ddH2O, exposed to light for 90min
to reduce background signal, and imaged using a blue light
transilluminator compatible with smartphone imaging (color).

Protein Isolation and Western Blotting
Procedures of protein isolation and Western blotting were
described in previous publication (Caliari et al., 2015). Protein
isolation was done by extracting proteins from cell-containing
hydrogels by using cold RIPA buffer and incubating for 30min.
Total protein concentration in the lysates was determined by
PierceTM BCA Protein Assay Kit (Thermo Scientific). Lysates
were then mixed with 2x Laemmli Sample Buffer (Bio-Rad)
and 2-Mercaptoethanol (Sigma-Aldrich), heated to 95◦C for
10min, then loaded (3 µg protein loaded onto per lane)
onto polyacrylamide gels (4–20% gradient; Bio-Rad). Gel
electrophoresis was performed at 150V. Proteins were then
transferred onto nitrocellulose membrane (GE Healthcare) using
Trans-Blot SD (Bio-Rad) under 300mA for 2 h. Membranes
were then cut into desired MW range and blocked in blocking
buffer for 1 h followed by primary antibodies incubation at
4◦C overnight. Membranes were subsequently washed with Tris
Buffered Saline with Tween20 (TBST), followed by secondary
antibody incubation for 2 h at room temperature. Imaging
signal was visualized using imaging kits (SuperSignalTM West
Pico PLUS Chemiluminescent Substrate or SuperSignalTM West
Femto Maximum Sensitivity Substrate, Sigma-Aldrich) via
an Image Quant LAS 4010 chemiluminescence imager (GE
Healthcare). Band intensities were quantified using ImageJ and
normalized to β-actin expression. Buffers and antibodies used in
each condition are listed (Table S1).

Statistics
All statistical analysis was performed using one-way analysis of
variance (ANOVA) followed by Tukey’s test. A minimum sample
number of n = 3 (MTT, ELISA, Western), n = 6 (Young’s
modulus, diffusivity, invasion) samples were used for all assays.
Statistical significance was set at p< 0.05. Error is reported as the
standard error of the mean.

RESULTS

GelMA hydrogels lacking matrix-bound HA will be denoted as “-
HA” while hydrogels containing 15 w/w%HAMAwill be denoted
as “10 K”, “60 K”, or “500 K” to denote the molecular weight of
the incorporated HA sodium.

Molecular Weight of Matrix-Bound HA
Does Not Impact Young’s Moduli or
Diffusive Properties of the Family of
Gelatin Hydrogels
The biophysical properties of the homologous series of GelMA
hydrogel (-HA, 10, 60, and 500K) were assessed via unconfined
compression and AFM indentation. The Young’s moduli of all
hydrogels did not vary as a result of inclusion of matrix-bound
HA regardless of the HAMW. Critically, the Young’s modulus of
these hydrogels (-HA: 2.76 ± 0.24 kPa; 10 K: 2.97 ± 0.15 kPa; 60

K: 2.79 ± 0.15 kPa; 500 K: 2.70 ± 0.03 kPa) are within physio-
relevant range (100-101 kPa) for the GBM TME. Similarly, the
diffusivity of all hydrogel variants was not significantly influenced
by the presence or absence of matrix immobilized HA (-HA:
161.04± 70.33 µm2/s; 10 K: 153.54± 34.92 µm2/s; 60 K: 169.90
± 26.88; 500 K: 156.43± 50.18 µm2/s; Figure 1).

Metabolic Activity of GBM39 PDX Cells
Cultured in GelMA Hydrogels Is Sensitive
to the Molecular Weight of Matrix Bound
HA
The metabolic activity of GBM39 PDX cells encapsulated within
the homologous series of GelMA hydrogels (-HA, 10, 60, and
500K) was traced through 7 days in culture, with results
normalized to day 0 values for each group. The groups with
matrix-bound HA (10, 60, and 500K) showed a significantly
higher metabolic activity compared to -HA group (p < 0.05),
with the 60K HA group showing the highest metabolic activity
amongst all groups (Figure 2).

The Molecular Weight of Matrix-Bound HA
Significantly Affects Invasion
The invasion of GBM39 PDX cells into the surrounding
hydrogel matrix was measured via a previously reported spheroid
assay through 7-days in culture. GBM39 invasion was strongly
influenced by hydrogel HA content. The highest level of
invasion was observed for GelMA hydrogels either lacking
matrix bound HA (-HA), or those containing mid-range (60K)
molecular weight matrix-immobilized HA (Figure 3). At early-
to-mid time points (up to day 5), GBM cell invasion was
significantly depressed in the low molecular weight 10K group,
but GBM invasion increased steeply at later time points (day

FIGURE 2 | Overall metabolic activities (n = 3) of GBM seeded GelMA

hydrogels as a function of incorporated hyaluronic acid molecular weight.

Results are provided throughout the 7-day culture and are normalized to the

metabolic activity of each group at day 0. Samples containing matrix-bound

HA showed an overall higher metabolic activity compared to GelMA only (–HA)

hydrogels. The greatest metabolic activity was observed for GelMA hydrogels

containing 60 kDa (60K) HA. ∨p < 0.05 significant decrease between groups.
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7), matching the highest invasion groups. GelMA hydrogels
containing the largest molecular weight HA (500K) showed
significantly reduced invasion compared to all other hydrogel
groups (-HA, 10, and 60K) throughout the entire period studied.

The Accumulation of Soluble HA in Media
Reflects Matrix-Composition
ELISA was performed to measure the concentration of soluble
HA in the culture media over the course of the invasion
experiment. An increase in soluble HA concentration was
observed in the hydrogels lacking matrix bound HA (-
HA) compared to all groups containing matrix-bound HA.
Interestingly, the presence of soluble HA for hydrogel groups
containing matrix-immobilized HA was found to be strongly
associated with the molecular weight of immobilized HA,
with 500K group showing significantly upregulated secretion
compared to GBM cells in 10 and 60K HA hydrogels as early
as day 3. Significant increases were observed in soluble HA
production in 60 vs. 10K hydrogels appeared by day 7 of
culture (Figure 4A). Moreover, themolecular weight distribution
of soluble HA in the culture media showed that the 500K
group produced higher MW HA, as compared to the rest of
the groups with matrix bound-HA, suggesting an association
between smaller MW HA and increased mobility. On the other
hand, -HA samples showed very weak signals (at all time points),
that may be explained by high concentration of very lowMWHA
that escaped the electrophoresis gel.

Protein Expression of Hyaluronic Acid
Remodeling Associated Proteins Were Not
Strongly Influenced by Hydrogel HA
Content
The expression of protein families, biosynthetic hyaluronan
synthase (HAS1, HAS2, HAS3) and degradative hyaluronidase
(HYAL1, HYAL2), associated with HA remodeling were
subsequently quantified via Western blot analyses (Figure 5,
Figure S1, S2). No significant differences were observed in
expression levels within each group as a function of immobilized
HA molecular weight. However, GBM cells in the highest
molecular weight HA hydrogels (500K) showed generalized
increases in both HAS and HYAL (significant for HYAL2)
compared to all other hydrogel conditions.

DISCUSSION

The heterogeneity of GBM tumor microenvironment
complicates its study both in vivo and in vitro. Within that
high diversity, the extracellular HA has been widely associated
with cancer invasion and response to treatment (Park et al.,
2008; Rankin and Frankel, 2016; Zhao et al., 2017). Naturally,
HA is synthesized and deposited in the extracellular space
by HAS family and degraded into different size fragments by
HYAL enzyme family. The alteration of the levels of these
enzymes are associated with various types of diseases. LMW
HA (<30 kDa) has been associated mainly with increased
tumor growth, cell migration and angiogenesis, while HMW

(250 to >1,000 kDa) is commonly believed to lead to greater
structural stability with reduced tumor growth, migration, and
angiogenesis (Monslow et al., 2015). However, despite their
relevance in GBM microenvironment, the influence of HA MW
has been largely neglected in regard to the construction of ex vivo
biomaterial platforms to examine GBM cell activity. This project
seeks to understand the effect of HA molecular weight, both
matrix bound and cell secreted, on the invasive phenotype of a
patient-derive GBM specimen. We developed and characterized
a homologous series of HA-decorated gelatin-based hydrogels
to evaluate the effect of HA MW on GBM invasiveness and
phenotypic responses.

A family of hydrogels with no matrix-bound HA or with
increasing MW HA (10, 60, and 500 kDa) was fabricated
using a method previously described (Pedron et al., 2013;
Chen et al., 2017). Studies demonstrate that substrate stiffness
and diffusion can deeply influence the migration capacity of
GBM cells in HA containing hydrogels (Rape et al., 2014;
Umesh et al., 2014; Wang et al., 2014; Chen et al., 2017).
However, we have previously described a framework to adjust the
relative ratio of GelMA to HA content as well as manipulating
the crosslinking conditions to generate a series of GelMA
hydrogels containing increasing wt% of a singleMWHA (Pedron
et al., 2013). We therefore adapted this approach to create
the homologous series of hydrogels described in this study,
that contained a conserved wt% of HA but that varied the
MW of matrix-immobilized HA. We then employed a series
of biophysical and biochemical characterization protocols to
describe poroelastic features of these hydrogels. Crosslinking
density can be preserved by adjusting the photoinitiator
concentration in the pre-polymer solution (Table 1), and
therefore maintaining the Young’s modulus between different
hydrogels. Moreover, the deformation of the gel in contact
with the AFM tip results from two simultaneous molecular
processes: the conformational change of the network, and the
migration of the solvent molecules (Hu et al., 2010). In this
case, the poroelasticity of the hydrogels, characterized by the
diffusivity (Figure 1D), stays unchanged for all samples used.
Both Young’s modulus and diffusivity showed no significant
difference among all groups suggesting these hydrogels were able
to provide similar culture conditions for cells while providing
the opportunity to adjust the molecular weight of bound
HA.

We subsequently measured the metabolic activity of GBM39
PDX cells as a function of matrix bound HA MW. The presence
of matrix-bound HA aided GBM metabolic response compared
to the -HA group. In general, all cells remained viable within
the hydrogel up to 7 days, without showing apoptosis or cell
death. Further, we performed a spheroid-based invasion assay
to investigate the effects of matrix-bound HA MW on invasion
at different time points, including early (1 and 2 days), mid (3
and 5 days) and longer (7 day) time points. Consistent with
earlier observations described by our group using GBM cell lines
(Chen et al., 2017, 2018), we found GBM invasion in GelMA
hydrogels lacking matrix bound HA was greatest. However,
invasion was strongly influenced by the MW of immobilized
HA with GBM cell invasion in hydrogels containing 60 kDa
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FIGURE 3 | (A) PDX invasion (n = 6) into the surrounding hydrogel was quantified via a spheroid assay throughout the 7-day culture period. Representative images of

spheroid invasion throughout the 7 day culture, showing GBM cells progressively leave the spheroid and invade the hydrogel. Scale bar 0.5mm. (B) Quantification of

GBM cell invasion into the GelMA hydrogel as a function of the molecular weight of matrix immobilized HA. GelMA only (–HA) and GelMA hydrogels containing 60 kDa

(60K) HA showed the greatest levels of invasion, with no significant difference between those groups across the culture period. Interestingly, GelMA hydrogels

containing high molecular weight HA (500K) showed significantly reduced invasion. ∨p < 0.05 significant decrease between groups.

FIGURE 4 | (A) Accumulative of soluble HA in the media over the course of GBM culture in GelMA hydrogels, measured via ELISA ( n = 3). GBM cells in GelMA

hydrogels lacking any matrix immobilized HA (-HA) showed secreted significantly higher amount of soluble HA compare to GBM cells cultured within GelMA hydrogels

containing matrix-bound HA. Production of soluble HA by GBM cells in GelMA hydrogels containing matrix-immobilized HA were strongly sensitive to the molecular

weight of the matrix immobilized HA. Notably, soluble HA secretion increased with the MW of immobilized HA, with the 500 K group secreting significantly higher

amount of soluble HA compare to 60 and 10 K. ∧p < 0.05 significant increase between different groups. (B) Agarose gel showing the molecular weight distribution of

HA in culture media (blue). Low molecular weight chondroitin sulfate appears in purple. The most intense signals are samples at day 3 for 10, 60, and 500 K hydrogels.

being equivalent to hydrogels lacking matrix bound HA. Further,
this invasive potential of GBM39 cells within –HA and +HA
hydrogels is not associated to their metabolic activity profiles
(Figure 2). Although migration and proliferation are considered
to be circumscribed phenotypes that do not co-occur with
each other in GBM, the complex microenvironment of PDX
suggests that both can coexist. Moreover, GBM cells adapt to
the different phenotypes by using regulatory signaling from the
local microenvironment (Xie et al., 2014). Interestingly, while

invasion was initially significantly reduced in low MW HA
hydrogels (10K), GBM invasion increased significantly at later
time points. However, GBM invasions was strongly reduced in
GelMA hydrogels containing high molecular weight HA (500K)
throughout the entirety of the study, suggesting more mature
HA matrices will inhibit GBM invasion. While recent studies
have begun to examine the design of implants to reduce GBM
invasion (Jain et al., 2014), these findings potentially pave the
way for the design of new bioactive hydrogels with potential
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FIGURE 5 | Hyaluronan synthase (HAS) and hyaluronidase (HYAL) protein expression of GBM cells in gelatin hydrogels as a function of matrix immobilized HA

molecular weight, analyzed via Western Blot at day 7 (n = 3). β-actin is used as loading control. ∧p < 0.05 significant increase between different groups.

to reduce invasive spreading upon post-resection incorporation
in the tumor margins. Regardless, the presence of both fibrillar
and HA associated features of the TME in these HA decorated
GelMA hydrogels may be particularly useful in the context of
GBM invasion in perivascular niches that contain such matrix
diversity (Ngo and Harley, 2018).

Studies have shown that HMW HA could inhibit tumor
invasion by inhibiting MMPs production and down-regulating
invasion related pathways such as MAPK and Akt (Chang
et al., 2012), while LMW HA may promote these invasion
related pathways (West et al., 1985; Lam et al., 2014). We
hypothesize that the significant decrease of motility in PDX
cells in 500 kDa hydrogels is due to the down-regulation of
invasion related pathways, induced by the local extracellular
microenvironment. We observed endogenous HA production
was significantly elevated without the presence of matrix-bound
HA (-HA) (Figure 4A), consistent with previous studies reported
by our group using immortalized cell lines that demonstrated
soluble HA production was associated with increased GBM cell
invasion (Chen et al., 2017). More interestingly, soluble HA
production across the homologous series of hydrogels tested in
this study (-HA, 10, 60, and 500K) showed greatest endogenous
HA production in hydrogels lacking matrix immobilized HA.
However, endogenous production of HA was also sensitive
to the molecular weight of matrix bound HA, with greater
endogenous HA production seen with increasing molecular
weight of bound HA. This trend of increasing soluble HA
production with increasing molecular weight of matrix-bound
HA may be associated to an adaptation required to mobilize
matrix bound HA for invasion. The local microenvironment
is constantly remodeled, with HA present in culture media
suggesting a combination of cell secreted HA in addition to the
products of degradation of matrix-bound HA as cells evolve into
the hydrogel. The distribution of molecular weights suggests a

higher concentration of low molecular weight HA in 10 and 60K
matrices may be associated to increased motility (Figure 4B).

Many studies have shown that the levels of HAS correlate
with breast and colon cancer malignancy and patient prognosis
(Bullard et al., 2003; Auvinen et al., 2014). Inhibition of
HAS has been used as an alternative therapeutic strategy
using mRNA silencing HAS or HAS-targeting drugs (e.g., 4-
Methylubelliferone) (Nakamura et al., 1997; Li et al., 2007;
Nagy et al., 2015). While some studies suggest addition of
HYAL into chemotherapy efficiently improves the patient
prognosis (Baumgartner et al., 1998; Klocker et al., 1998; Stern,
2008), others show HYAL levels are correlated with cancer
malignancy and invasiveness in breast, prostate and bladder
cancers (Lokeshwar et al., 1996, 2005; Madan et al., 1999;
Stern, 2008). While we observe no significant across-the-board
trends in HAS and HYAL proteins levels as a function of
matrix immobilized HA, GBM cells in hydrogels containing
the highest molecular weight HA (500 kDa) show overall a
higher expression of all HAS and HYAL families compared
to the rest. However, these results did not directly correlate
with the GBM invasiveness as for what we observed. While
HAS and HYAL both play a key role in tumor progression
and invasiveness, the dynamic balance might be more crucial
instead of one over the other, suggesting opportunities for
future studies using an expanded library of patient-derived
GBM specimens using this homologous series of GelMA
hydrogels.

High production of HA is normally associated with tumor
progression, although overly high levels of hyaluronic acid
secretion may lead to an opposite behavior (Itano et al., 2004).
Moreover, in gliomas, this HA associated tumor progression
only occurs if hyaluronan is expressed simultaneously with
HAS (Enegd et al., 2002). Therefore, studies suggest that HA
turnover is required for the increase of HA associated GBM
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tumor malignancy. Additionally, the relative contribution of
matrix-bonded and cell produced HA increases this complexity.
Therefore, a feedback mechanism between stromal and produced
HA has been drafted for epithelial cancers (Koyama et al., 2007)
but is still unexplored in glioblastoma. In this study, using an
ex vivo biomaterial model, we show how the dynamic interplay
between extracellular matrix associated and cell produced HA
affects GBM cell behavior. Further ongoing research may allow
identification of alternative antitumor treatments in the context
of the GBMmicroenvironment.

CONCLUSION

There are numerous reports that cover the importance of HA
molecular weight on a variety of diseases, including cancer.
However, discerning between matrix-bound and cell secreted
HA signaling still needs to be elucidated. Here, we highlight the
impact of matrix-bound HAMW on GBM cell malignancy. Cells
cultured in hydrogels containing 500 kDa matrix-immobilized
HA, with controlled physical properties, showed less invasive
potential than those in hydrogels containing matrix immobilized
10 or 60 kDa HA. This increased malignancy seems to
be related to different interrelated factors: cell secreted HA,
matrix degradation and cell-matrix signaling. Going forward,
these results pave the way for a deeper analysis of HA
molecular weight as a therapeutic target for controlling tumor
progression.
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Dysregulation of tyrosine kinase receptor (RTK) signaling pathways play important roles

in glioblastoma (GBM). However, therapies targeting these signaling pathways have not

been successful, partially because of drug resistance. Increasing evidence suggests

that tumor heterogeneity, more specifically, GBM-associated stem and endothelial cell

heterogeneity, may contribute to drug resistance. In this perspective article, we introduce

a high-throughput, quantitative approach to profile plasma membrane RTKs on single

cells. First, we review the roles of RTKs in cancer. Then, we discuss the sources of cell

heterogeneity in GBM, providing context to the key cells directing resistance to drugs.

Finally, we present our provisionally patented qFlow cytometry approach, and report

results of a “proof of concept” patient-derived xenograft GBM study.

Keywords: single-cell, glioblastoma, RTK, heterogeneity, VEGFR, EGFR, IGFR, stem cell

INTRODUCTION

GBMs are the most frequent and lethal malignant primary adult brain tumor (Yadav et al., 2018),
which presents a critical need to develop new therapeutics. Addressing the dysregulation of RTK
signaling pathways offers promise in overcoming GBM lethality (Hawkins-Daarud et al., 2013;
Cloughesy et al., 2014; Smith et al., 2016; Massey et al., 2018). RTK dysfunction has been observed
in GBM, where these pathways are correlated with tumor cell proliferation (Johnson et al., 2012;
Furnari et al., 2015), angiogenesis (Plate et al., 1994; Kuczynski et al., 2011), tumor invasiveness
(Giannini et al., 2005; Sangar et al., 2014), and resistance to therapy (Murat et al., 2008; Lu and
Bergers, 2013; Popescu et al., 2015). Moreover, these pathways are popular targets for small-
molecule inhibitors (Rich and Bigner, 2004; Candolfi et al., 2011). Unfortunately, the clinical benefit
of these targeted therapies is limited by drug resistance (De Witt Hamer, 2010; Szopa et al., 2017).

Increasing evidence suggests that drug resistance may be attributed to tumor heterogeneity
(variations within an individual tumor) (Saunders et al., 2012; Furnari et al., 2015; Qazi et al.,
2017). For example, a landmark study identified tumor subpopulations resistant to therapy prior
to treatment by sequencing 4,645 single cells from 19 melanoma patients. This thorough analysis
was enabled by single-cell technology, and may have been overlooked with ensemble sequencing
(Tirosh et al., 2016). Additionally, a single-cell analysis of patient-derived xenografts (PDXs)
of GBM39 also found higher heterogeneity in resistant tumors than in responsive tumors (Shi
et al., 2012). In line with these single-cell measurements, we previously discovered, measured,
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and statistically described heterogeneity in breast cancer
xenografts by quantifying vascular endothelial growth factor
plasma membrane receptor (VEGFR) concentrations at the
single-cell level (Imoukhuede and Popel, 2014). When we
combined this quantitative analysis with computational
modeling, we arrived at the prediction that tumors having “high”
concentrations of plasma membrane VEGFR1 could be resistant
to anti-VEGF drugs (angiogenesis inhibitors) (Weddell and
Imoukhuede, 2014). Clinical work supports this prediction for
colorectal cancer (Weickhardt et al., 2015), and application of
this quantification and prediction should offer a new paradigm
for biomarker discovery in cancer medicine.

To address the need for quantitative, single-cell analysis of
GBM heterogeneity, we apply our optimized and provisionally
patented VEGFR quantitative flow (qFlow) cytometry approach
to GBM (Imoukhuede and Popel, 2011, 2014; Imoukhuede
et al., 2013; Weddell and Imoukhuede, 2014; Chen et al., 2015,
2017; Imoukhuede and Chen, 2018). We describe expanded
measurement to several RTKs critical to tumor development. To
provide further context we, briefly, review the roles of RTKs in
cancer and present connections between RTK heterogeneity and
drug resistance.We then present our approach, qFlow cytometry,
and report promising findings of a “proof of concept” PDX GBM
study.

ROLES OF RTKS IN CANCER

RTKs are widely expressed transmembrane proteins (Cadena
and Gill, 1992; Ferrara et al., 2003). Upon ligand binding,
they are activated via canonical (Mac Gabhann and Popel,
2007; Sarabipour and Hristova, 2016) and non-canonical
(Steinkamp et al., 2014; Chen et al., 2015; Pennock et al., 2016;
Mamer et al., 2017) ligand-induced dimerization and tyrosine
phosphorylation mechanisms. Importantly, unligated receptors
can dimerize (Ruch et al., 2007; Chung et al., 2010; Low-
Nam et al., 2011; Lin et al., 2012; Comps-Agrar et al., 2015;
King et al., 2016; Sarabipour and Hristova, 2016; Sarabipour
et al., 2016) and signal (Wu et al., 2010; Sarabipour et al.,
2016; Kazlauskas, 2017), although ligand binding stabilizes the
dimeric receptor structure. These receptor-initiated signaling
events regulate cell survival, proliferation, differentiation, and
motility (Hubbard and Miller, 2007; Volinsky and Kholodenko,
2013).

VEGFRs are upregulated in many cancers (Ferrara, 2002; Kut
et al., 2007; Mac Gabhann and Popel, 2008). Signals through
endothelial VEGFRs and the neuropilin (NRP) co-receptors
(Imoukhuede and Popel, 2011, 2012, 2014; Imoukhuede et al.,
2013; Gelfand et al., 2014) induce the sprouting angiogenic
hallmarks of cell proliferation and cell migration (Simons et al.,
2016). These sprouting angiogenesis hallmarks also sustain
tumor growth and enable tumor metastasis (Hanahan and
Weinberg, 2011; Shibuya, 2014). VEGF and other pro-angiogenic
factors, may also regulate vascular growth and regression in
tumors that co-opt pre-existing blood vessels (Holash et al., 1999;
Jayson et al., 2016; Kuczynski et al., 2016).

In addition to these canonical pathways, cross-family
signaling may also affect tumor vascularization. In this paradigm,

ligands from one growth factor family bind to and signal through
receptor(s) of another family. For instance, we have shown
VEGF-mediated downregulation of PDGFRs (Chen et al., 2015),
and discovered that both VEGF–PDGFR binding and PDGF–
VEGFR binding is high affinity (Mamer et al., 2017). Other
cross-family studies have identified VEGF–PDGFR binding and
signaling (Ball et al., 2007; Pennock et al., 2016) and VEGFR–
PDGFR dimerization in tumor associated pericytes (Greenberg
et al., 2008). Altogether, these canonical and cross-family
RTK mechanisms suggest several possible receptor activation
landscapes that can contribute to tumor growth and drug
resistance.

GBM-ASSOCIATED CELL
HETEROGENEITY: STEM AND
ENDOTHELIAL

An accepted origin of tumor heterogeneity involves clonal
evolution; an reiterative process of genetic mutation, clonal
selection, and expansion, which drives the growth of single cancer
cells into heterogeneous tumormasses (Greaves andMaley, 2012;
Greaves, 2015; McGranahan and Swanton, 2017). In addition
to cancer cells, other cell types within the tumor may also
differentiate or transition as tumor develops. Some such cells
include: tumor-associated fibroblasts, macrophages/monocytes,
endothelial cells (ECs), and stem cells (Saunders et al., 2012).
Here, we describe glioblastoma stem cells (GSCs) and ECs, which
we focus on in our pilot study.

GSCs are an important tumor cell component, because despite
their small number (∼0.5–10%) (Pallini et al., 2011), GSCs are
more resistant to radiotherapy and chemotherapy than other
cancer cells (Schonberg et al., 2014; Seymour et al., 2015).
Furthermore, their resistance can amplify tumor heterogeneity,
because they have self-renewing and tumor-initiating capabilities
(Lathia et al., 2015). GSCs are often identified by CD133 (Mak
et al., 2011), which is associated with poor prognosis in a number
of tumor types. There is controversy surrounding the usage of
CD133 as a GSC marker (Golebiewska et al., 2013; Seymour
et al., 2015; Bradshaw et al., 2016). Early studies showed a
subpopulation of GBM cells expressing CD133 were able to
form tumors (Singh et al., 2004) and further studies showed
subpopulations of CD133− cells were also able to form tumors
in vivo (Beier et al., 2007). While these studies do not negate the
possible role of CD133 in identifying GSCs, they do highlight
the importance of heterogeneity and the need for additional
markers. Therefore, establishing a “barcode” of RTK plasma
membrane concentrations on GSCs may help to identify novel
markers, aiding in the isolation and understanding of these stem
cells.

ECs, the primary structural unit of the vasculature, are an
important contributor to GBM development. Unlike normal
vessels, tumor vasculature is leaky, tortuous, and dilated (Jain,
2005; Aird, 2009). In addition to typical tumor vascular
pathological features, brain tumor vasculature exhibits the loss
of the important blood-brain-barrier feature of tight EC-EC
junctions when tumor size grows beyond 1–2mm in diameter
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(Jain et al., 2007). The close interaction between tumors and
tumor vessels, and the observation of extensive EC heterogeneity
supports the need for profiling tumor-associated ECs.

A PARADIGM SHIFT IN SINGLE-CELL
TECHNOLOGIES: FROM GENE-CENTRIC
TO PROTEOMICS

Studies characterizing GBM heterogeneity primarily focus on
genetic and transcriptomic profiling (Verhaak et al., 2010;
Snuderl et al., 2011; Dunn et al., 2012; Szerlip et al., 2012;
Brennan et al., 2013; Patel et al., 2014; Ellis et al., 2015), which
does not always correlate with functional changes (Simonson
and Schnitzer, 2007; Feng et al., 2009; Taniguchi et al., 2010).
Moreover, multiple studies show discordance between sequence
data and protein expression in GBM, particularly with regards to
epidermal growth factor receptor (EGFR) (Brennan et al., 2009)
and PDGFR (Hermanson et al., 1992) gene vs. protein expression.
Because proteins are the effectors of signaling toward functional
response (Grecco et al., 2011; Imoukhuede et al., 2013; Chen et al.,
2017), there is a need for increased protein-based, functional
measurements.

qFlow cytometry offers a powerful tool for protein-based,
single-cell measurements. It applies fluorescent calibration to
traditional flow cytometry, converting signal to absolute protein
concentrations (Lyer et al., 1997; Lee-Montiel and Imoukhuede,
2013; Chen et al., 2017). Absolute protein quantification allows
detection of variations in proteins across published studies,
tissues, replicates, and instrument settings (Wheeless et al.,
1989; Rocha-Martins et al., 2012; Baumgartner et al., 2013;
Nguyen et al., 2013; Vigelsø et al., 2015). Moreover, qFlow
cytometry advances systems biology, providing the quantitative
data needed for computational studies (Chen et al., 2014;
Weddell and Imoukhuede, 2018). For example, using qFlow
cytometry coupled with systems biology, we predicted that
anti-VEGF efficacy depends on tumor endothelial VEGFR1
plasma membrane concentrations (Weddell and Imoukhuede,
2014). Furthermore, a receptor-internalization computational
model recently predicted that small increases in plasma
membrane RTK concentrations (<1,000 receptors/cell) may
double nuclear-based RTK signaling (Weddell and Imoukhuede,
2017), which further implicates RTK concentrations as a
determinant of signal transduction. These predictions were only
possible with the accurate experimental data offered by qFlow
cytometry.

A NEW APPROACH FOR EXAMINING GBM
HETEROGENEITY

We performed a “proof of concept” qFlow cytometry study
on a PDX, GBM39 (Figure 1). GBM39 is known for EGFRvIII

and low invasiveness, in vivo (Johnson et al., 2012; Wei
et al., 2016). The xenograft was established with tumor
tissue from patients undergoing surgical treatment at Mayo
Clinic, Rochester, MN. Multiple studies characterize these PDX
models and report maintenance of patient morphologic and

molecular characteristics including EGFR amplification as well
as tumor invasiveness (Giannini et al., 2005; Sarkaria et al.,
2007).

Following dissociation, PDX cells were stained with Sytox
Blue (a live/dead cell stain), CD45 (Patenaude et al., 2010),
CD34 (Soares et al., 2007; Moghadam et al., 2015), and CD133
(Singh et al., 2004; Calabrese et al., 2007; Molina et al., 2014;
Naujokat, 2014; Soeda et al., 2015) fluorophore-conjugated
antibodies that target EC-like cells and GSCs, respectively
(Figure 1). This labeling scheme excludes both dead cells and
hematopoietic cells and enables identification of human tumor
EC-like cells (hCD34+), mouse tumor EC-like cells (mCD34+),
and GSCs (hCD133+) from the live CD45− pool (Figure 2A).
To obtain reliable data, we obtained fluorescence signals from 2
to 3 samples/RTK with 10,000–35,000 live single cells collected
per sample. As expected, the bulk GBM39 PDX sample was
primarily non-EC, non-GSC cells (62.46%). In addition, we
found 6-fold higher mouse tumor EC-like cells than human
tumor EC-like cells (Figure 2B). This quantification aligned with
prior studies of GBM xenograft showing ∼7.1% EC population
(CD45−CD31+CD34+). Consistent with our quantification of
GSCs, a primary human study of 37 patients reported a range
of 0.5–10% (Pallini et al., 2011), when identifying GSCs using the
CD133 marker.

We labeled and screened 9 plasma membrane RTKs on these
cells, which included two established GBM biomarkers, EGFR
and insulin-like growth factor receptor (IGFR) (Sangar et al.,
2014), and angiogenic signaling biomarkers: VEGFRs, PDGFRs,
NRP1, and Tie2 (Carmeliet and Jain, 2000, 2011; Ferrara, 2002;
Ferrara and Kerbel, 2005; Dudley, 2012). Using qFlow cytometry
and statistical models, we quantitatively characterized GBM39
PDX via four patented metrics (Figure 1): cell composition,
ensemble RTK concentration, cell-by-cell analysis with Gaussian
mixture modeling, and heterogeneity analysis (Imoukhuede and
Chen, 2018).

Percentage of gated cell populations were exported using
FlowJo software (TreeStar). Ensemble RTK concentrations and
cell-by-cell analysis were performed as previously described
(Chen et al., 2015, 2017). We then applied Gaussian mixture
modeling to identify log-normal sub-populations within each
distribution, described by its mean, standard deviation, and
density. We reduced the chance of overfitting the subpopulations
by using Bayesian Information Criterion (BIC) (Raftery,
1995; Huedo-Medina et al., 2006). A detailed description of
heterogeneity quantification is provided in sectionQuantification
of Cell-RTK Heterogeneity.

Human Tumor EC-Like Cells Have High
EGFR and IGFR on Plasma Membrane
EGFR and IGFR are expressed on tumor cells and contribute
to tumor progression. Interestingly, the human tumor EC-
like population had high plasma membrane EGFR and IGFR
concentrations (∼21,000/cell and ∼20,000/cell, respectively)
(Figure 2C), consistent with qualitative findings of higher EGFR
on breast carcinoma-derived ECs compared to normal ECs
(Amin et al., 2006). Our results of high EGFR on human tumor
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FIGURE 1 | An overview of the workflow for characterizing tumor heterogeneity in GBM39 PDX samples. The GBM39 PDX is established with tumor tissue from

patients at Mayo Clinic, Rochester, MN. Following dissociation, multi-channel flow cytometer is used to characterize PDX cells. Briefly, dead cells are excluded using a

live/dead cell stain, and hematopoietic cells are excluded using the CD45 antigen, then the endothelial marker CD34 and CD133 can be used to identify EC-like cells

and GSCs respectively from the CD45− pool. Percentage of GSCs, EC-like cells and other PDX cells within all live cells can be exported from the flow cytometer. Cells

are also stained with phycoerythrin (PE)-conjugated antibodies targeting one of the 9 plasma membrane RTKs: established GBM biomarkers, EGFR and IGFR, and

those within the angiogenic signaling networks, VEGFRs, PDGFRs, NRP1, and Tie2. qFlow cytometry is performed as described previously, and ensemble averaged

plasma membrane RTK concentrations and cell-by-cell RTK distributions can be obtained (Imoukhuede and Popel, 2011; Chen et al., 2015, 2017). We use two

parameters to quantify RTK heterogeneity across EC-like and non EC-like cells: number of mixture components and Quadratic entropy of the cell-by-cell RTK

distribution. Bayesian Information Criterion (BIC)-guided Gaussian mixture modeling is used to select the best number of mixture components existed in a larger cell

population based on their RTK concentration. Alternatively, Quadratic entropy sums the weighted differences of the means between two bins from 500 equally

distributed bins from each cell-by-cell distribution. We envision that characterizing RTK heterogeneity may help understand why RTK inhibitors have not been efficient

in treating GBMs.

EC-like cells from GBM39 is also consistent with results of
clinical GBM samples (Soda et al., 2011).

The mixture modeling revealed that 8% of human tumor
EC-like subpopulations had a ∼12-fold higher membrane
localization of EGFRs than average. We found a similar pattern
for IGFRs in human tumor EC-like subpopulations. Together,

the ensemble-averaged data and the mixture modeling indicated
significant plasma membrane localization of EGFR and IGFR on
human tumor EC-like cells. High concentrations of EGFR and
IGFR suggest an opportunity for targeted inhibition, which could
be a mechanism for disrupting tumor vessels on GBMs with a
similar profile.
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FIGURE 2 | Characterization of plasma membrane RTK concentrations and tumor heterogeneity in GBM39 PDX sample using a LSR Fortessa flow cytometer (BD).

We obtain fluorescence signal from 2 to 3 sample tubes for each RTK with 10,000–35,000 live single cells per sample tube. BD FACSDIVA software was used for data

acquisition, and FlowJo (TreeStar) software was used for data analysis. (A) Representative flow cytometry plots for gating GSCs (hCD45-hCD133+), human EC-like

cells (hCD45-hCD34+), and mouse EC-like cells (mCD45-mCD34+) from live cell population. (B) Percentage of GSCs, human EC-like, mouse EC-like, and tumor &

other PDX cells in the GBM39 PDX sample. (C) Ensemble-averaged concentrations and (D) cell-by-cell distributions of plasma membrane VEGFRs, Tie2, NRP1,

PDGFRs, EGFR, and IGFR on human EC-like cells. (E) Ensemble-averaged concentrations and (F) cell-by-cell distributions of plasma membrane VEGFRs, Tie2,

NRP1, and PDGFRs on mouse EC-like cells. (G) Heterogeneity analysis of RTKs in EC-like and non EC-like cell populations. Number of mixture components

estimates how many cell subpopulations there are having different plasma membrane RTK concentrations. Quadratic entropy represents the diversity of RTK

concentrations within EC-like and non EC-like populations.

Mouse Tumor EC-Like Cells Have Similar
Plasma Membrane VEGFR Concentrations
as Healthy Mouse ECs From Skeletal
Muscle

VEGFRs are key regulators of tumor angiogenesis, so their
quantification can offer insight into the tumor vasculature.
Furthermore, as biomarkers of vasculature, these receptors have
been proposed as diagnostic biomarkers of anti-angiogenic drug

efficacy (Lambrechts et al., 2013; Wehland et al., 2013) with
computational (Weddell and Imoukhuede, 2014) and clinical
(Weickhardt et al., 2015) support to their use. We found that
VEGFR1 and VEGFR2 had similar concentrations and ratios on
mouse tumor EC-like cells (∼3,100 VEGFR1/cell and ∼1,000
VEGFR2/cell) as on healthy ECs obtained from mouse skeletal
muscle (Imoukhuede and Popel, 2012) (Figure 2E). This finding
of a low VEGFR2:VEGFR1 ratio aligns with a previous study
on breast cancer xenografts (Imoukhuede and Popel, 2014);
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however, the receptor abundance we report here is much lower.
These findings of EC-like cells from GBM39 having VEGFRs
at levels similar to normal mouse skeletal muscle ECs suggests
a need for further quantification of normal brain ECs VEGFR
concentrations to establish tissue standards. Similarly, it suggests
a need to examine other GBM specimens to identify whether this
is a property of co-opted vessels or specific to this GBM strain.

We analyzed the human tumor EC-like population (5.20%
of the population, Figure 2B), which should reflect the
original tumor vessels from the patient (Figure 2C). We
found similar plasma membrane VEGFR1 and VEGFR2 ratios
(∼3,600 VEGFR1/cell & ∼5,800 VEGFR2/cell) as previous
reports in vitro (Imoukhuede and Popel, 2011; Chen et al.,
2015). However, these data show that not all tumors have
the same concentrations or ratios of plasma membrane
VEGFRs on their endothelium. Importantly, tumor EC-like
cells display much greater heterogeneity than normal ECs
with subpopulations that have high concentrations of VEGFRs.
Indeed, cell-by-cell analysis and mixture modeling of human
tumor EC-like cells reveals the existence of a high-VEGFR1
subpopulation (∼10%) with ∼41,000 VEGFR1/cell, while the
highest VEGFR2 subpopulation is ∼18,500 VEGFR2/cell,
comprising ∼35% of the total human tumor EC-like population
(Figures 2D,G). The difference in VEGFR2:VEGFR1 ratio and
receptor concentrations between human and mouse tumor
EC-like population shows a significant level of endothelial
heterogeneity. Such data may enable correlations between these
tumor vessel regulators and anti-angiogenic drug efficacy.

Plasma Membrane PDGFRs Localize on
Tumor EC-Like Cells
PDGFRs serve important roles in supporting vasculature in
tumor microenvironments (Andrae et al., 2008). We observed
lower levels of PDGFRs on human tumor EC-like cell membranes
than on mouse (Figures 2C,E). The cell-by-cell analysis and
mixture modeling suggests that this ensemble average does
not capture the subpopulations having high-PDGFR plasma
membrane localization: 66 and 16% of mouse tumor EC-like
cell membrane had ∼23,400 PDGFRα and ∼19,800 PDGFRβ,
respectively (Figure 2F). This significant heterogeneity may be
attributed to the use of the CD34 marker to designate EC-like
cells, because it is also found on stem cells/precursors, mast cells,
and neurons (Nielsen and McNagny, 2008; Imoukhuede and
Popel, 2014; AbuSamra et al., 2017). PDGFRα is also considered
an important mesenchymal stem cell marker (Farahani and
Xaymardan, 2015). So, the co-labeling of PDGFRα and CD34
suggests these cells may be mesenchymal stem cells (Aguirre
et al., 2010).

If these CD34+PDGFR+ cells are endothelial, then our
data correlates with studies finding PDGFRs on tumor ECs
(Hermansson et al., 1988; Werner et al., 1990; Plate et al.,
1992). PDGFR localization on ECs is controversial, because
it is characteristic of mural cells and not of ECs (Heldin
et al., 1981; Bowen-Pope and Ross, 1982; Kazlauskas and
DiCorleto, 1985; Raines et al., 1991; Battegay et al., 1994; Marx
et al., 1994). However, they have been observed on monolayer

microvascular ECs, in vitro (Bar et al., 1989; Marx et al., 1994)
and on angiogenic ECs that formed sprout and tubes in vitro
(Battegay et al., 1994). If we subscribe to the canonical PDGFR
localization understanding, then these tumor vessels induce
“non-conventional” PDGFR localization patterns.

GSCs Have Little-To-No Surface EGFR or
IGFR
Multiple studies suggest that a higher degree of GSC “stemness”
is associated with EGFR amplification (Mazzoleni et al., 2010;
Liffers et al., 2015); however, we observed ∼13-fold lower
EGFRs on GSC plasma membranes compared to the bulk
PDX cells (Figure 2C). This trend was also seen with IGFR
(Figure 2C). The low membrane EGFR concentrations on GSCs
is concerning, given reports that EGFR signaling is necessary
for GSC proliferation and tumor-sphere formation (Soeda et al.,
2008; Griffero et al., 2009). Yet, this may explain the lower
percentage of GSCs in the PDX sample (∼0.9%) compared to
the expected stem cell fraction (0.5–10%; Pallini et al., 2011).
A possible explanation is that serially transplanted tumors can
lose their EGFR overexpression, even in vivo (Liffers et al.,
2015 ). Clearly, further investigation of both gene expression and
protein quantification on other GBM PDX GSCs is necessary
to understand their contribution to heterogeneity and drug-
resistance.

Quantification of Cell-RTK Heterogeneity
To quantify heterogeneity of each cell subpopulation, we
used two parameters: number of mixture components and
Quadratic Entropy (QE). To quantitatively assess the number
of subpopulations within each cell population, we fit each cell-
by-cell RTK distribution with mixture models consisting of 1–
9 log-normal Gaussian sub-distributions (mixture components);
we then applied BIC as the criterion to select the mixture model
with the lowest BIC. The number of mixture components is
determined by howmany log-normal Gaussian sub-distributions
are in the mixture model. The number of mixture components,
thus, is a measurement of cell heterogeneity. Generally, 1–2
mixture components are considered low heterogeneity (Chen
et al., 2017), while more than two components is considered
highly heterogeneous (Imoukhuede and Popel, 2014; Weddell
and Imoukhuede, 2014).

Alternatively, QE requires equally spaced bins, here we chose
500 bins, from each cell-by-cell distribution (Figures 2D,F). QE
then sums the weighted differences of the means between two
bins (Rao, 1982; Pavoine and Dolédec, 2005; Zoltán, 2005). Thus,
QE is a measurement of the increase in random variation in the
cellular response. Because healthy ECs and human fibroblasts
in vitro have shown QE within 0.2–0.7 (Chen et al., 2015),
we describe QE < 0.7 as low heterogeneity and QE > 0.7 as
high heterogeneity. QE provides a quantitative measure of the
diversity of cellular phenotypes in cancer tissue sections for
diagnostic applications (Potts et al., 2012) and drug discovery
(Gough et al., 2014). Interestingly, human tumor EC-like cells
showed lower QE and number of mixture components when
compared to mouse tumor EC-like cells (Figure 2G). We suspect
that the likely loss of human tumor-associated cells over time in
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a PDX model (Chao et al., 2017) may be the reason why human
tumor EC-like cells present a more homogenous state than the
mouse tumor EC-like cells.

Clinical Implications of GBM Heterogeneity
We envision that RTK quantification can identify ideal receptor
targets across the bulk tumor specimen and on specific cell
populations in the tumor. First, the ideal receptor target would
be highly available (Rich and Bigner, 2004; Weis and Cheresh,
2011; Cloughesy et al., 2014): it would have high concentrations
on a high percentage of bulk cells or specific cells. Next, the target
RTK would exhibit low heterogeneity: it would have low QE in
bulk cells or on the specific cell subpopulation (Jain et al., 2009;
Heath et al., 2016). An ideal receptor target would also be highly
specific to the tumor, which would manifest as higher receptor
concentrations in the tumor vs. healthy tissue (Rich and Bigner,
2004).

Based on these guidelines, we offer possible targets onGBM39.
If the goal is targeting tumor vessels, then VEGFR2 and PDGFRα

are highly targetable: >70% target cells have > 6,000 VEGFR2
or PDGFRα/cell plasma membrane with QE = 0.20 or 0.32,
respectively. Furthermore, they are likely targets, because they
are more highly expressed in GBM specimens than health tissue
(Chen et al., 2015): ∼5-fold higher VEGFR2 and ∼4-fold higher
PDGFRα. Therefore, targeting VEGFR2 and PDGFRα should
preferentially target the tumor.

Our work suggests that targeting EGFR and IGFR on tumors
like GBM39 may not be effective by itself. Although, they
have high concentrations on ∼70–90% EC-like and non-EC-
like GBM cells, their high GBM heterogeneity (QE = ∼1.0)
and high concentration on healthy tissue (2–2,000 × 103

EGFR/fibroblast or epithelial cell; 2.5 × 104 IGFR/NIH 3T3
mouse fibroblasts (Sorkin and Duex, 2010; Brennan et al., 2013;
Weddell and Imoukhuede, 2017) may lower their targeting
specificity, resulting in lower drug efficacy (Wheeler et al., 2010).
Better drug delivery to the tumor site will likely improve targeting
specificity without disrupting healthy tissue. An alternative
strategy is to develop dual-inhibitors targeting both EGFR/IGFR
and VEGFR2 to increase their specificity for tumor EC-like cells.

We believe our method can also identify cellular and
molecular mechanisms underlying reduced response to drugs.
For example, upregulation of alternative signaling pathways has
been implicated in anti-VEGF drug resistance (Bergers and
Hanahan, 2008; Shojaei and Ferrara, 2008). This mechanism
of drug resistance is often accompanied by significant tumor
heterogeneity (Snuderl et al., 2011; Szerlip et al., 2012; Lu
and Bergers, 2013). Therefore, these alternative pathways
may be overlooked in bulk studies if they are only present
on small cell subpopulations. From this study, we suggest
targeting RTKs that are localized on plasma membrane at
high concentrations on small cell populations (<10%) for
combination therapy. For example, VEGFR1 and Tie2 on
tumor ECs may become “alternative” RTKs for anti-VEGF
treatment, because we found ∼10% human tumor EC-like cell
subpopulations had 41,000 VEGFR1 and ∼8% had 65,700 Tie2
on the plasma membrane. Identifying alternative RTK pathways

that contribute to resistance can provide tumor-specific drug
targets for combination therapy.

FUTURE DIRECTION IN CHARACTERIZING
GBM HETEROGENEITY

Our study of the GBM39 PDX model, arrived at 4 key findings
and 2 recommendations: (1) tumor EC-like subpopulations
have high concentrations of plasma membrane VEGFR1 and
VEGFR2; (2) human vs. mouse tumor EC-like cells have inverted
VEGFR2:VEGFR1 ratios; (3) tumor EC-like subpopulations
have high plasma membrane EGFR, IGFR, and PDGFR
concentrations; and (4) GSCs compose a low percentage of cells
in the tumor and have little-to-no EGFRs and IGFRs on their
plasma membranes.

Based on findings in this study and our RTK-targeting criteria,
VEGFR2 or PDGFRα would be likely drug targets for GBM39.
In addition, VEGFR1 and Tie2 are likely drug targets for
combination therapy. The next step would be to test these targets
in a GBM PDX model.

The results of this “proof of concept” study should be
interpreted as such: it offers an approach for continued
measurement of tumor samples, broadly, and GBM samples,
specifically, with the GBM39 PDX sample as a first example.
We present the novel method, qFlow cytometry, and show its
application in characterizing GBM heterogeneity. Larger and
well-powered samples are warranted to expand the current
preliminary results, and to discover ideal drug targets and
mechanisms underlying drug resistance.

Future opportunities for expanding this research lies in
establishing protein concentration ranges on additional samples
and continued development of biomimetic tumormodels. Firstly,
additional measurements of protein concentration on normal
ECs and other cells would provide the baselines needed to
compare to tumor. In establishing EC baselines, isolation of a
pure EC population may be a challenge. Previous qFlow studies
have identified ECs using both the CD34 and CD31 markers
(Imoukhuede and Popel, 2012, 2014; Imoukhuede et al., 2013).
However, it is important to note, that using multiple markers
can bias cell collection: CD34 is a progenitor marker, so its use
biases selection from more mature cells. Whereas, CD31 is a
mature cell marker that is found on ECs, platelets, natural killer
cells, monocytes, macrophages, and among other cells (Liu and
Shi, 2012), so its use can lead to sample impurity. Here, we
chose to bias toward progenitor-like ECs; however, expanded
studies may determine if protein concentrations correlate with
marker presentation (e.g., identifying whether progenitor-like
cells having higher or lower protein concentrations).

Another opportunity for advancement lies in our quantitative
single-cell RTK mapping, moving toward multiplexed
measurement of RTKs. Toward multiplexed quantification,
Lee-Montiel et al., developed a quantum dot method for
receptor labeling and calibration (Lee-Montiel and Imoukhuede,
2013; Lee-Montiel et al., 2015) that can be translated to qFlow
cytometry. Another approach could be to adapt receptor
quantification to mass cytometry (CyTOF) (Spitzer and Nolan,
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2016). Such advancements would provide multi-RTK, multi-cell
insight into tumor heterogeneity.

In conclusion, cancer research is experiencing a paradigm
shift from ensemble analysis to cell-to-cell variability (Niepel
et al., 2009; Hoppe et al., 2014; Dar and Weiss, 2018) because of
the increasing evidence correlating drug resistance with tumor
heterogeneity. The perspective and work that we present here
offers sensitive methods for heterogeneity characterization in
tumors that should enable improved treatment. We believe that
continued quantification of single-cell receptor heterogeneity is a
new frontier that will offer significant clinical impact.
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Glioblastoma multiforme (GBM) is a devastating type of tumor with high mortality, caused 
by extensive infiltration into adjacent tissue and rapid recurrence. Most therapies for 
GBM have focused on the cytotoxicity and have not targeted GBM spread. However, 
there have been numerous attempts to improve therapy by addressing GBM invasion, 
through understanding and mimicking its behavior using three-dimensional (3D) experi-
mental models. Compared with two-dimensional models and in vivo animal models, 3D 
GBM models can capture the invasive motility of glioma cells within a 3D environment 
comprising many cellular and non-cellular components. Based on tissue engineering 
techniques, GBM invasion has been investigated within a biologically relevant environ-
ment, from biophysical and biochemical perspectives, to clarify the pro-invasive factors 
of GBM. This review discusses the recent progress in techniques for modeling the micro-
environments of GBM tissue and suggests future directions with respect to recreating 
the GBM microenvironment and preclinical applications.

Keywords: glioblastoma, invasion, in vitro three-dimensional model, microenvironment, biomimetic scaffolds

inTRODUCTiOn

Malignant glioma, which is the most common primary brain tumor in adults, arises from star-shaped 
glial cells or their precursors within the central nervous system (Louis, 2006). Clinically, the World 
Health Organization grading system classifies gliomas into four stages. Of these, the most aggressive 
grade IV astrocytoma, glioblastoma multiforme (GBM); this tumor is the most devastating to health 
and cannot be cured (Louis et al., 2016). One of the main reasons why GBMs are incurable is that 
they spread widely within intracranial spaces, resulting in an indistinct tumor margin that prevents 
complete resection (Stummer et al., 2006). Unlike other systemic tumors, GBM rarely metastasizes 
beyond the central nervous system (Holland, 2000). GBM usually arises from the cerebrum and is 
prone to micrometastasis, i.e., infiltration at a single-cell level throughout the brain parenchyma, 
as well as across the corpus callosum from one hemisphere to the other, thus producing a bilateral 
butterfly like glioma (Dziurzynski et  al., 2012). Although GBM invasion is confined within the 
intracranial spaces, the prognosis of the patients with GBM is still bleak.

The standard therapy for GBM is a surgical resection followed by a combination of radiotherapy 
and chemotherapy. Typically, postoperative radiotherapy is given along with the alkylating agent 
temozolomide (Stupp et al., 2005). Unfortunately, GBM cells are very resistant to these conventional 
therapies, and most patients with GBM end up developing recurrent tumors (Yip et  al., 2009). 
Targeted therapy to overcome the low efficacy and high toxicity of postsurgical adjuvant therapies 
mostly focuses on treating proliferative cells, not invading cells (Wang et al., 2015). To achieve greater 
therapeutic efficacy, targeting the infiltration of GBM could be beneficial. Therefore, it is important 
to understand GBM invasion in brain tissue, to predict and evaluate tumor cell behavior; this is 
essential for developing new therapeutic inventions. Since GBM cells are predominantly regulated by 
the complex microenvironment and cause dynamic remodeling of their surroundings that facilitates 
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FiGURe 1 | Pro-invasive cues in glioblastoma multiforme (GBM) microenvironments and in vitro approaches to mimic the microenvironmental cues. Representative 
examples of Scherer’s structures: white matter tract (A) and blood vessels (B). (C) Proteoglycan-rich extracellular matrix (ECM) in tumorous brain tissue.
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invasion (Rao, 2003), it is necessary to investigate the influence of 
the microenvironment of the brain to understand the unique fea-
tures of GBM invasion. By reproducing both the composition and 
structural elements of the complex in vivo tumor microenviron-
ment, the pro-invasive factors for GBM cells could be identified 
in pathophysiologically relevant context, which may eventually 
lead to novel therapeutic options for clinical trials.

This review focuses on recent research for biomimetic 
approaches to develop in  vitro three-dimensional (3D) tumor 
models of glioblastoma cell invasion. First, the compositional 
and structural features of brain tumor microenvironment are 
introduced. Then, state-of-the-art experimental models of GBM 
invasion are presented and new approaches to mimic the brain 
microenvironment are discussed. Finally, future directions with 
respect to constructing in  vivo-like tumor models for glioblas-
toma are suggested.

BRAin TUMOR MiCROenviROnMenT

Brain tumor tissue comprises heterogeneous subpopulations 
of tumor cells intermingling with normal parenchymal cells 
(Hambardzumyan and Bergers, 2015). In addition to cellular 
components, non-cellular components such as brain extracel-
lular matrix (ECM) and brain anatomy play crucial roles in GBM 
malignancy (Gritsenko et  al., 2012). As pro-migratory, pro-
invasive factors, these chemical and physical factors facilitate the 
GBM progression (Figure 1). By understanding the pro-invasive 
components within GBM microenvironment, we could recreate 
the in vivo behaviors of GBM cells.

Anatomical Features in Glioma Tissue
The unique anatomical structures in the brain include white mat-
ter tracts and capillaries, called Scherer’s structures (Cuddapah 
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et al., 2014). A white matter tract is a bundle of aligned axons. 
These are bound manly in corpus callosum, in which fibrous 
structures consist of submicron-sized fibers. For pro-invasive 
characteristics, topography is a major mechano-physical cue 
derived from the ECM structure and the anatomical features or 
organs, which play key roles in cellular behavior and function 
(Friedl and Alexander, 2011). Histological observations have 
revealed that single GBM  cells preferentially migrate to these 
structures (Bellail et al., 2004; Louis, 2006). As biophysical cues 
for pro-invasive characteristics, tumor cells interact with this 
existing brain anatomy, which is an important mechanism of 
invasion by GBM cells.

eCM in Glioma Tissue
The normal brain lacks the stiff fibrillar collagen matrix that is 
typical component in other organs (Bellail et al., 2004). The brain 
has a substantially different ECM, composed of glycosamino-
glycans (GAGs), proteoglycans (PGs), and other glycoproteins 
(Cuddapah et al., 2014; Rao et al., 2014; Miyata and Kitagawa, 
2017). The interstitial spaces in the brain parenchyma are filled 
with a PG-based matrix, which interacts with hyaluronic acid 
(HA)-binding proteins (e.g., CD44 and RHAMM) and tenascins 
(Gladson, 1999). By contrast, fibrous, adhesive ECM proteins, 
such as collagen, laminin, and fibronectins, are rarely found in 
the brain parenchyma, where their expression is restricted to 
the basement membrane of neural vasculature (Lau et al., 2013). 
These ECM components function as components of blood–brain 
barrier, which constitutes both a chemical and physical barrier, 
inducing the formation of tight junctions.

The composition of the ECM of glioma tissue is distinct from 
that of normal tissue. During cancer progression, the secretion 
of neural ECM molecules is increased significantly. The amor-
phous ECM at the invasive front of a proliferating GBM strongly 
expresses GAGs and PGs, especially HA (Bellail et al., 2004; Jin 
et al., 2009). Moreover, fibrous, adhesive ECM proteins such as 
collagen IV, fibronectin, and laminin are strongly upregulated 
(Gladson, 1999). Increased production of tumorous ECM leads 
to a significant increase in its volume, contributing to elevated 
interstitial pressure in the confined extracellular space (Munson 
et al., 2013). In addition to acting as a signaling molecule, tumor-
ous ECM activates tumor-associated pathways, promoting cell 
survival and motility (Rape et al., 2014).

IN VITRO 3D GBM MODeLS

There are several advantages of utilizing in vitro 3D GBM models 
to investigate the effects of the microenvironment on GBM inva-
sion. Unlike two-dimensional (2D) models, in  vitro 3D GBM 
models can replicate the highly complex microenvironment of 
in vivo GBM niches. Furthermore, well-defined 3D in vitro GBM 
niches are simpler and more reliable than in vivo animal models, 
which involve costly, time-consuming technical procedures (Xiao 
et al., 2017). Here, we presented an overview of the biomimetic 
approaches for reconstructing in vitro 3D GBM models of ana-
tomical and matrix-related aspects of the GBM microenviron-
ment (see also Table 1).

Fibrous Scaffold-Based Culture Models
Histological evidence indicates that GBM  cells migrate along 
pre-existing brain structures and form Scherer’s structures by 
interacting with the neural microenvironment. Brain anatomy, 
including the brain parenchyma, pre-existing blood vessels, white 
matter tracts, and the subarachnoid space below the meningeal 
covering of the brain, plays an important role in GBM invasion 
(Cuddapah et al., 2014).

To mimic these invasion routes, several synthetic polymer-
based micro/nanotechnologies have been used to investigate 
the behavior of GBM cells. Recently, there have been reports on 
the effect of 2D topography on GBM invasion, replicating the 
in vivo behavior of GBM cells (Cha et al., 2015; Smith et al., 2016; 
Sim et  al., 2017). For instance, using 2D polydimethylsiloxane 
(PDMS) substrates, the tapered microtract of the gradient width 
ranging from 3 to 100 µm was fabricated to identify the effect of 
topography on GBM motility (Cha et al., 2015). For microtracts 
smaller than 3 µm, micropatterns can induce in vivo-like salta-
tory migration, even on 2D surfaces. In addition, polyurethane 
acrylate-based nanotopography (Smith et al., 2016) and nanofab-
ricated polystyrene (Zhu et al., 2004) closely mimic the fibrillar 
structures of brain.

Techniques to fabricate nanofibers, such as electrospinning, 
have been used to mimic the delicate fibrous structures of the 
white matter tracts (Johnson et al., 2009; Agudelo-Garcia et al., 
2011; Rao et al., 2013b; Sharma et al., 2013; Beliveau et al., 2016; 
Cha et al., 2016). The behavior of glioma cells on nanofibers was 
observed to be a function of substrate topography, as GBM cells 
migrated much faster on aligned fibers than on random fibers 
(Johnson et al., 2009; Beliveau et al., 2016). This in vivo-like behav-
iors of glioma cells is associated with STAT3 signaling, a driver 
of malignancy during GBM progression (Agudelo-Garcia et al., 
2011). Modification of both biochemical and biophysical features 
of nanofibers has a significant effect on GBM migration (Rao 
et al., 2013b; Sharma et al., 2013), emphasizing the importance of 
biomimetic approaches to understanding the behaviors of glioma.

Matrix Scaffold-Based Culture Models
To simulate tumorous ECM components in brain, researchers 
have attempted to reconstruct an HA-rich environment and 
GAG-based matrices. The biophysical properties of the ECM 
matrix have also been reported to influence GBM cell invasion; 
thus, numerous studies have examined the effects of matrix 
dimensionality, degradability, and stiffness.

Matrices to Mimic the ECM Properties
In addition to the brain anatomy, the brain ECM also has bio-
physical effects on GBM invasion. To provide the effects of 3D 
cell-ECM interaction on GBM invasion, naturally derived bio-
materials, such as Matrigel (Jin et al., 2009) and collagen (Yang 
et al., 2010), have been used to develop a 3D ECM microenvi-
ronment for GBM. Irrelevant components of the brain ECM, 
such as chitosan-alginate hydrogels (Kievit et  al., 2010) and 
collagen-agarose hydrogels (Ulrich et  al., 2010), were chosen 
because they have a biologically inert to investigate biophysical 
effects of the matrices solely, resulting in a mechanosensitive 
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TABLe 1 | Representative approaches used to mimic glioblastoma multiforme (GBM) microenvironment.

To mimic Scherer’s structures

Biomaterials Techniques Cells Findings Reference

Effects of  
anatomic  
topography

Polydimethylsiloxane  
(PDMS)

Soft lithography-based  
micropatterning

U87, U251 Effective topography to induce  
saltatory migration

Cha et al.  
(2015)

Polyurethane  
acrylate

UV-assisted capillary  
force lithography

Patient-derived 
GBM cells

Mimicry of in vivo three-dimensional (3D) 
migration, PDGF-sensitive response

Smith et al.  
(2016)

Fibrous structure  
of white matter  
tract

Polycaprolactone  
(PCL)

Electrospinning U251, X12, 
neurosphere 
glioma from 
biopsy

Effects of fiber directionality on  
glioma migration

Johnson et al. 
(2009)

PCL Electrospinning Dissociated 
U87, U251, 
GBM-derived 
tumor initiating 
cells (G8, G9)

Involvement of STAT3 signaling in  
topography-induced glioma migration

Agudelo-Garcia 
et al. (2011)

PCL Electrospinning Patient-derived 
GBM cells 
(GSC11)

Invasion preference along the  
fibrous structures

Cha et al.  
(2016)

Polystyrene Spinneret-based  
Tunable Engineered  
Parameters (STEP)

DBTRG-05MG Effects of nanofibers on glioma  
migration and blebbing dynamics

Sharma et al.  
(2013)

PCL, gelatin-PCL, 
PDMS-PCL, PES-PCL, 
PCL-collagen, PCL-
HA, PCL-matrigel

Core-shell  
electrospinning

Patient-derived 
GBM cells 
(OSU-2)

Complex interplay of mechanics, chemistry,  
and topography on glioma migration

Rao et al.  
2013b)

To mimic brain extracellular matrix (eCM)

ECM 
properties-
mimetics

Dimensional 
effect

Chitosan-alginate (CA) 
scaffolds

Ionic crosslinking of 
lyophilized CA mixture

C6 rat glioma, 
U87, U118

Higher malignancy of 3D cultured  
GBM than two-dimensional

Kievit  
et al. (2010)

Collagen-agarose 
hydrogels

Physically blended mixture U373 glioma 
spheroids

Mechanosensitivity to ECM-based  
biophysical cues

Ulrich  
et al. (2010)

Matrix 
degradability/
stiffness/pore 
size

Multi-arm based 
polyethylene 
glycol with matrix 
metalloprotease 
(MMP)-cleavable 
peptide

UV photocrosslinking U87 Effects of matrix stiffness on ECM  
deposition and remodeling through  
modulating HA synthases or MMPs

Wang et al.  
(2014, 2017)

Gelatin methacrylate 
(GelMA)

UV photocrosslinking U87 Impact of biophysical properties  
(matrix density, crosslinking density,  
and degradability) on glioma phenotype

Pedron  
et al. (2013)

Polyacrylamide (PA) Polymerization with APS, 
TEMED

U373, U87 Impact of microenvironmental stiffness  
on GBM proliferation

Ulrich et al.  
(2009) and  
Umesh et al. (2014)

Adhesion peptide 
(RGD)-functionalized 
HA-methacrylate 
(Me-HA)

Control of degree of 
methacrylation at varying 
ratios of thiols

U373, U87, C6 
rat glioma

Matrix stiffness-dependent cell adhesion 
(spreading), cell speed, cell growth,  
and cell invasion

Ananthanarayanan 
et al. (2011)

Hyaluronic acid-
methacrylate (Me-HA)

Functionalization of HA with 
methacrylic anhydride

U373, U87 CD44-mediated cell adhesion, motility,  
and invasion in stiffness-dependent  
manner

Kim and Kumar 
(2014)
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GBM invasion response. When designing matrices, their physi-
cal properties, such as degradability, stiffness, and pore sizes, 
are usually interconnected and thus influenced each other. 
Therefore, studies controlling designing parameters, such as 

the physical properties of matrix metalloprotease (MMP)-
degradable polyethylene glycol gels (Wang et  al., 2014, 2017), 
gelatin methacrylate (GelMA) (Pedron and Harley, 2013), and 
polyacrylamide (Ulrich et  al., 2009; Rape and Kumar, 2014; 

(Continued)
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To mimic Scherer’s structures

Biomaterials Techniques Cells Findings Reference

ECM components-mimetics Adhesion peptide 
(RGD)-functionalized 
HA-methacrylate 
(Me-HA)

Michael-type addition with 
dithiothreitol

U373, U87, C6 
rat glioma

Mechanobiological regulation on brain  
tumor progression, elevated invasion by  
CD44-mediated HA

Ananthanarayanan 
et al. (2011) and Kim 
and Kumar (2014)

Collagen I, III, or IV 
with thiolated HA

Interpenetrating polymer 
network

Patient-derived 
GBM cells 
(OSU-2)

Influence of collagen types on GBM  
morphology, HA-dependent GBM  
spreading and migration

Rao et al. (2013a)

Collagen I-HA Semi-interpenetrating 
polymer network

Patient-derived 
GBM cells 
(GSC11)

HA-induced GBM invasion and  
associated mechanisms

Cha et al. (2016)

HA-MA functionalized 
GelMA

Photocrosslinking U87 (+EGFR) HA-induced GBM malignancy and  
effects of HA-gradated heterotypic  
tumor microenvironment

Pedron et al. (2013, 
2015)

Hybrid scaffolds to mimic the GBM microenvironment

Combinations

HA matrices + fibrous structures 3D configuration of 
collagen-HA semi-
interpenetrating polymer 
network on electrospun 
fibers

Patient-derived 
GBM cells 
(GSC11)

Microenvironmental adaptations in  
response to drug treatment

Cha et al. (2016)

Hydrogel stiffness + HA contents Photocrosslinking, of 
GelMA + HAMA in 
concentration-dependent 
manner

U251 Coordinated effect of matrix stiffness,  
immobilized HA, and compensatory  
HA production on GBM invasion

Chen et al. (2017)

Vascular basement + HA surfaces (tissue interface) Interfacial culture between 
fibronectin-coated PA and 
HAMA

U373, U87 Mechanochemical feedback at the  
tissue interfaces

Rape et al. (2014)

GBM-endothelial cell coculture (GBM perivascular 
niche)

Photocrosslinking, of 
GelMA + HAMA

U87, HUVECs, 
NHLF

Contribution of perivascular niche to  
GBM invasion

Ngo and Harley 
(2017)

TABLe 1 | Continued
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Umesh et al., 2014), have been performed to examine the role of 
mechanobiological regulation in GBM invasion. For investigat-
ing mechanosensing characteristics of GBM cells, the modified 
forms of HA gels, such as HA-methacrylate (Me-HA) or RGD-
functionalized Me-HA (Ananthanarayanan et al., 2011; Kim and 
Kumar, 2014), were used to control the matrix stiffness, observ-
ing the stiffness-dependent GBM features via CD44-mediated 
mechanosensing.

Matrices to Mimic the ECM Components
Hyaluronic acid, which is a major ECM component in tumor-
ous brain, is a linear chain composed of d-glucuronic acid and 
N-acetyl-d-glucosamine, so it is hard to form cross-linked 
network itself. Therefore, to investigate the role of HA in GBM 
invasion, the HA is chemically modified so that it is cross-linked. 
Chemically modified forms of HA hydrogels include thiolated 
HA (Rao et al., 2013a), methacrylated HA (Ananthanarayanan 
et al., 2011; Kim and Kumar, 2014), and mixtures with GelMA 
(Pedron et al., 2013). GBM cells are strongly influenced by the HA 
concentration and show increased invasion via CD44-mediated 
HA adhesion (Kim and Kumar, 2014).

Physical blending with other cross-linkable hydrogels, such 
as collagen, is another means of incorporating HA components 

into ECM-mimetic model system. By creating interpenetrating 
polymer networks with HA solution and collagen gels, HA-rich 
matrices can be created (Yang et al., 2011; Rao et al., 2013a; Cha 
et al., 2016). Within this HA-rich matric, GBM develops highly 
proliferative, invasive phenotypes (Cha et  al., 2016). These 
results have been confirmed using other HA-rich matrices, such 
as GelMA-based HA-rich matrices (Pedron et  al., 2015, 2017), 
which have in vivo-like characteristics.

Various GAG-based components, such as heparin, chondroi-
tin sulfate, and keratin sulfate, are often incorporated within 
the ECM of tumorous brain as the scaffolding components. 
Tenascin-C (Sarkar et  al., 2006) and chondroitin sulfate (Yang 
et al., 2011; Logun et al., 2016) have been incorporated into col-
lagen hydrogels to investigate their influence on the GBM inva-
sion. As expected, the motility of GBM was increased by higher 
concentrations of both GAGs.

For advanced brain ECM-mimetic model system, decellular-
ized matrix, obtained by isolating the ECM scaffold of an original 
tissue (Gilbert et al., 2006), shows utility for recreating the ECM 
components of GBM tissue. Using porcine brain tissue, decellu-
larized ECM was applied to mimic the brain matrices (DeQuach 
et  al., 2011), further indicating the potential of mimicking the 
tumorous ECM to investigate GBM invasion.
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Hybrid Scaffolds for GBM 
Microenvironment
Recently, researchers have focused on integrating multiple com-
ponents of GBM microenvironment to reproduce conditions 
corresponding more closely to in vivo conditions. As mentioned 
earlier, by controlling the various design parameters of ECM 
matrices, the combined effects of the chemical and mechanical 
properties of the ECM on GBM invasion were revealed (Chen 
et  al., 2017). Moreover, our group developed 3D GBM models 
consisting of HA matrices and fibrous structures arranged in a 
3D configuration. Using such integrated systems, microenvi-
ronmental adaptation was observed during GBM invasion (Cha 
et al., 2016); changes in the GBM invasion of the HA matrices 
were mediated by the focal adhesion kinase and MMP, within 
the fibrous structures, in response to blockade of a HA-mediated 
pathway of GBM invasion. Recently, other cellular components in 
the microenvironment were incorporated into 3D GBM models, 
revealing the roles of glial cells and the perivascular niche in GBM 
invasion (Grodecki et  al., 2015; Iwadate et  al., 2016; Gritsenko 
et al., 2017; Ngo and Harley, 2017).

FURTHeR DiReCTiOn FOR IN VITRO  
GBM MODeLS

In recent decades, the focus of cancer treatment has shifted mark-
edly, from targeting cancer itself to understanding its microenvi-
ronment; this is because an aberrant microenvironment is pivotal 
to cancerous tumor progression (Joyce and Pollard, 2009). As 
suggested in seed-and-soil hypothesis (Fidler, 2003), a favorable 
environment for the metastatic cancer is crucial for enabling cells 
to settle down and mature. Indeed, cancers reside in complex tis-
sue environments, including stromal cells, blood vessels, immune 
cells, and the ECM, which strongly influence the sustained 
growth, invasion, and metastasis of cancer (Gilkes et al., 2014). 
During tumor progression, cancer cells remodel dynamically 
and interact reciprocally with their microenvironment (both the 
cellular and non-cellular components), leading to the formation 
of a tumor-favorable environment (Quail and Joyce, 2013). Many 
recent studies have highlighted the importance of targeting tumor 
microenvironment to reduce tumor malignancy (Cuddapah et al., 
2014; Hambardzumyan and Bergers, 2015; Xiao et al., 2017). For 
further progress in the development of in vitro GBM models, the 
other components of brain tumor microenvironment should be 
considered to better understand glioblastoma invasion.

intratumoral Heterogeneity
Solid tumors have mass transport limitations due to their 
decreased surface-area-to-volume ratios and longer diffusion 
lengths. Owing to this limitation in diffusion, the tumor mass 
develops internal hypoxic areas, causing shortages of oxygen and 
nutrients. Tumor hypoxia is one of the key factors inducing the 
development of heterogeneous cell subpopulation within the 
tumor masses, which leads to an aggressive treatment-resistant 
phenotype, rapid progression, and poor prognosis (Heddleston 
et al., 2009; Li and Rich, 2010; Cheng et al., 2011). Recent studies 
have reported that these subcellular populations within the GBM 

mass are cancer stem cells, which exhibit increased tumorigenic-
ity and stem cell-like capacity (Hubert et al., 2016). Histologically, 
GBM tissue contains a large hypoxic core, called pseudopalisad-
ing necrosis (Rong et al., 2006), which in turn contains a stem-like 
subpopulation (Mamun et al., 2009). Due to its greater therapeu-
tic resistance compared with other tumor population, the roles 
of cancer stem cells in GBM progression should be considered.

interaction with Surrounding Cells
Along with cancerous astrocytoma cells, GBM tissues contain 
other tumor-associated parenchymal cells such as glial cells, 
vascular cells, microglia, peripheral immune cells, and neural 
precursor cells. These all play crucial influencing roles in the 
pathology of GBM (Rape et  al., 2014). For example, when 
activated, astrocytes in GBM tissue promote tumor progression 
within the GBM microenvironment (Hu et al., 2017). Moreover, 
the neural vasculature provides a perivascular bed not only for 
GBM but also for stem-like GBM cells (Bao et al., 2006; Johansson 
et al., 2017). In addition, microglial cells, which can comprise up 
to 30% of the brain tumor mass, are heavily involved in GBM 
invasion (Hambardzumyan et  al., 2016). Therefore, by coculti-
vating these surrounding cells, we can investigate the supportive 
roles of tumor-associated cells on GBM progression.

Application: In Vitro GBM Models  
As High-Throughput Platforms
By integrating and incorporating the complex components of 
GBM microenvironment, the model presented herein should be 
used as a drug-testing tool for GBM patients. For example, by 
using patient-derived cells and matrices, personalized treatment 
plans can be constructed. Since the biomimetic approaches used 
to model the GBM microenvironment contribute to enhancing 
the similarity and reliability for in vivo GBM cells, anti-invasive 
therapies could be evaluated in a high-throughput manner.

COnCLUSiOn

This review offers an overview of recent development in in vitro 
GBM models in their microenvironmental context and their 
further perspectives. Using these biomimetic models, we can 
investigate and evaluate the invasive features of GBM cells, conse-
quently providing the drug test platform to target their invasion. 
In the future, we thus expect that the integration of multiple 
components from complex microenvironment will enhance the 
understanding of GBM biology and further suggestion of effec-
tive therapeutics for the GBM patients.
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