Introduction: Neuroimaging technology has experienced explosive growth and transformed the study of neural mechanisms across health and disease. However, given the diversity of sophisticated tools for handling neuroimaging data, the field faces challenges in method integration, particularly across multiple modalities and species. Specifically, researchers often have to rely on siloed approaches which limit reproducibility, with idiosyncratic data organization and limited software interoperability.
Methods: To address these challenges, we have developed Quantitative Neuroimaging Environment & Toolbox (QuNex), a platform for consistent end-to-end processing and analytics. QuNex provides several novel functionalities for neuroimaging analyses, including a “turnkey” command for the reproducible deployment of custom workflows, from onboarding raw data to generating analytic features.
Results: The platform enables interoperable integration of multi-modal, community-developed neuroimaging software through an extension framework with a software development kit (SDK) for seamless integration of community tools. Critically, it supports high-throughput, parallel processing in high-performance compute environments, either locally or in the cloud. Notably, QuNex has successfully processed over 10,000 scans across neuroimaging consortia, including multiple clinical datasets. Moreover, QuNex enables integration of human and non-human workflows via a cohesive translational platform.
Discussion: Collectively, this effort stands to significantly impact neuroimaging method integration across acquisition approaches, pipelines, datasets, computational environments, and species. Building on this platform will enable more rapid, scalable, and reproducible impact of neuroimaging technology across health and disease.
We present Clinica (www.clinica.run), an open-source software platform designed to make clinical neuroscience studies easier and more reproducible. Clinica aims for researchers to (i) spend less time on data management and processing, (ii) perform reproducible evaluations of their methods, and (iii) easily share data and results within their institution and with external collaborators. The core of Clinica is a set of automatic pipelines for processing and analysis of multimodal neuroimaging data (currently, T1-weighted MRI, diffusion MRI, and PET data), as well as tools for statistics, machine learning, and deep learning. It relies on the brain imaging data structure (BIDS) for the organization of raw neuroimaging datasets and on established tools written by the community to build its pipelines. It also provides converters of public neuroimaging datasets to BIDS (currently ADNI, AIBL, OASIS, and NIFD). Processed data include image-valued scalar fields (e.g., tissue probability maps), meshes, surface-based scalar fields (e.g., cortical thickness maps), or scalar outputs (e.g., regional averages). These data follow the ClinicA Processed Structure (CAPS) format which shares the same philosophy as BIDS. Consistent organization of raw and processed neuroimaging files facilitates the execution of single pipelines and of sequences of pipelines, as well as the integration of processed data into statistics or machine learning frameworks. The target audience of Clinica is neuroscientists or clinicians conducting clinical neuroscience studies involving multimodal imaging, and researchers developing advanced machine learning algorithms applied to neuroimaging data.