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between distribution network and
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water-electric-gas integrated
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Introduction: It is significant for energy sharing to study the complementary
utilization of multiple energy sources, such as water, electricity and gas, and the
interaction among multiple stakeholders.

Methods:We propose a research on energy sharing between distribution network
and multiple systems based on the mixed game strategy and water-electric-gas
integrated energy complementation. Firstly, this paper describes the relationship
and functions of all stakeholders under the research framework, and establishes
the mathematical model of each unit in the water-electric-gas complementary
IES. Secondly, the internal roles are layered based on the relationship between
stakeholders in the system. Then a non-cooperative game model for the
distribution network operator and multiple subsystems is established according
to the theory of Stackelberg game, and a cooperative game model for multiple
subsystems is further established based on the theory of Nash bargaining. In the
next step, the complexity of the problem is analyzed, followed by the description
of the specific algorithm and process of solving the model.

Results: Finally, the results of example analysis show that the model proposed in
this paper not only balances the interests of stakeholders at the upper and lower
layers of the system, but also allocates the interests of multiple subsystems at the
lower layer.

Discussion: Thus effectively improving the energy utilization of the system.

KEYWORDS

water system, water-electric cogeneration, energy sharing, Stackelberg game, low-
carbon dispatching, cooperative game
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1 Introduction

Global climate change is one of the severe challenges facing
human society. Under the background of pursuing “carbon peaking
and carbon neutrality,” integrated energy system (IES), which can
effectively facilitate the absorption of renewable energy through a
variety of generalized storage effects, provides an effective solution
to achieve the goal of “carbon peaking and carbon neutrality” (Hu
et al., 2021). But nowadays the development of technologies such as
efficient multi-generation system, lead to realizing the benefits of
integrated energy infrastructure such as electricity, natural gas, and
district heating (DH) networks, and thus a rapid movement toward
multi-energy systems (MES). In such systems, different energy
carriers and systems interact together in a synergistic way
(Mohammadi et al., 2017). On the basis of IES modeling, (Zhou
et al., 2020). examines the impact of coupling devices such as new
energy electric generators, electric boilers and heat-electric
cogeneration units, and establishes the objective function of
minimizing the overall economic operation cost of IES, and
carries out the analysis of optimal dispatching (Li et al., 2021). Li
et al. (2017) conducts modeling and simulation analysis on regional
IES, involving three kinds of energy sources: electricity, heating, and
cooling. It also models a system composed of the energy storage
devices and coupling devices corresponding to the three kinds of
energy sources, for the purpose of minimizing the overall cost. In
addition to analyzing the access situation, when different energy
storage devices are connected, it also identifies the economic changes
of the system and gives corresponding profit-making strategies. Hui
et al. (2022) illustrates the physical background of the interaction of
various energy systems. At the same time, the coupling constraint
between the electric and heating systems is overcome by connecting
energy storage devices. The comprehensive operation cost is
obtained by coordinating the reasonable output of energy
coupling devices and energy storage devices in the system.
Finally, it is verified that the model could improve the operation
flexibility and the ability of the system to absorb renewable energy.
In summary, the existing research results show that there are few
studies on the economic optimization of IES where electric, gas and
water loads are performed simultaneously. However, in the actual
operation optimization process, the IES operation plan should be
formulated according to the characteristics of all energy loads.
Coupling devices and energy storage devices often can break the
coupling constraint between energy sources. Hence, the
incorporation of these devices can not only improve the
economic operation characteristics of the system, but also further
promote the grid space and utilization efficiency of new energy.

The realization of carbon neutrality requires not only reducing
carbon emissions from carbon emission sources, but also developing
low-carbon technologies such as carbon capture and storage (CCS)
from the perspective of carbon disposal, so as to achieve the balance
between carbon emissions and carbon ab-sorption. Bao et al. (2023)
describes the model of gas-electric energy system. Wang et al. (2023)
extends the energy system modeling theory. In response, some
scholars propose the introduction of the power-to-gas (P2G)
converter into IES. P2G can not only be used as a coupling
device to realize the mutual conversion between electric energy
and natural gas energy, but can also be utilized for the peak shaving
and valley filling of flexible load in IES. Additionally, it can work

with the gas storage tank as an energy storage device and cooperate
with energy storage batteries to improve the reliability of the energy
storage system. Nonetheless, there are few existing researches on the
sources of P2G raw materials. As an ideal supporting source of wind
power, carbon capture power plants can use CO2 they have captured
as a source of P2G raw materials to achieve the reuse of carbon in
IES. Wang et al. (2020) shows the decarbonization potential of IES.
Therefore, building a new type of IES which contains carbon capture
and P2G has gradually be-come the current research focus. Wang
et al. (2022) discuss the effect of carbon capture technology in
reducing carbon emissions and propose a low-carbon eco-nomic
operation strategy for IES based on demand response. Hu et al.
(2019) examine the peak regulation characteristics of carbon capture
power plants, integrate carbon capture thermal power plants, wind
power heating devices, wind farms and photovoltaic power plants in
a certain heating area into a virtual power plant, and establish a low-
carbon economic dispatching model which incorporates the
comprehensive and flexible operation mode of carbon capture
power plants. Zhang et al. (2022) introduce the collaborative
utilization framework covering carbon capture power plants, P2G
and gas-fired units to achieve the supply and demand balance
between source and load and perform peak shaving and valley filling.

The current research on the operation optimization of IES that
contains CCS and P2Gmainly focuses on the overall optimization of
the system, Existing studies often use game models to deal with the
complexities existing in transactions. Since the income from
investment in P2G converters or CCS alone is low in actual
scenarios, it is often necessary to build an energy sharing system.
The cooperative alliance in energy sharing can give full play to the
ability of P2G converters in absorbing renewable energy and the
function of carbon capture devices in reducing emissions, and make
a reasonable allocation of the income it yields. The key to the
problem above is to ensure that benefits are distributed fairly and
reasonably among the participants in the system. In this regard,
game theory provides a reference for such interactive decision-
making problems. Hence, this paper introduces the concept of
game to analyze such problems. For example, (Duan et al., 2021)
analyzes the electric energy transaction between IESs through
Stackelberg game, and establishes a multi-IES optimal
dispatching model with multiple IES systems as the leader and
the load aggregator as the follower. Chis et al. (2017) established a
multi-IES system optimization configuration model through
Stackelberg game, where multiple IES operators act as the
dominator body and distribution network acts as the
subordinate. How-ever, both the leader and the follower in
Stackelberg game aim to maximize their own interests, making it
impossible to optimize the overall benefits (Chis and Koivunen,
2019). The electric energy interaction through cooperative game
considers individual benefits and overall benefits, and improves the
enthusiasm for inter-network electric energy trading. Nevertheless,
cooperative game alone cannot measure the mixed behaviors of
complex players. In the model built in Li and Ma (2020) through
cooperative game, the IES alliance can only passively accept the
decisions made by the distribution network, resulting in the failure
of the distribution network and the IES alliance to interact effectively
(Tushar et al., 2019). On the other hand, the IES alliance in the
reference above exchanges electric energy with the grid at a fixed
price, which leads to the reliance of the IES alliance on the grid to
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balance its own load and affects the enthusiasm of alliance members
to participate in demand response and electric energy interaction
across IESs. In some cases, purely cooperative or non-cooperative
strategies may not be optimal. Mixed games provide a broader range
of strategy choices for decision makers, which may lead to better
solutions or results. The mixed game provides players with the
flexibility to adjust their strategies in different interactive situations.
In some situations, through the combination of cooperation and
non-cooperation, players can achieve higher overall benefits or
achieve Pareto efficiency. In general, the mixed game provides a
richer and more flexible tool for the study and analysis of interactive
decision-making by combining the advantages of cooperative game
and non-cooperative game.

To sum up, this paper proposes a mathematical model for the
active distribution network containing water-electric-gas integrated
energy subsystems, which considers P2G, CCS, wastewater
utilization devices, etc. Based on the relationship of stakeholders
in the system, the internal roles are stratified, and then the non-
cooperative game model between distribution network operators
and multi-subsystems is established by using the master-slave game
theory. Based on Nash negotiation theory, a multi-subsystem
cooperative game model is established. This is a double-layer
hybrid game model, with the distribution network operator at

the upper layer and multiple integrated energy subsystems at the
lower layer. The up-per-layer distribution network operator and the
lower-layer group of subsystems constitute a Stackelberg game, and
the energy sharing among lower-layer subsystems constitutes a
cooperative game. The intelligent algorithm and solver are used
iteratively to solve the problem. The feasibility and effectiveness of
the method are verified through example simulation.

2 Basic framework of the system

The water-electric-gas integrated energy system (IES) energy
sharing framework established in this paper is shown in Figure 1.
Under the framework considered, the system stakeholders mainly
include the large power grid operator, the distribution network
operator and the multi-water-electric-gas IES group. In particular,
the water-electric-gas IES is responsible for providing multiple energy
sources to energy users. Mean-while, multiple adjacent subsystems
can share multiple energy sources with each other, so as to achieve
mutual power aid among multiple subsystems, further promote the
local absorption of renewable energy, and thereby maximize the
overall benefits of multi-subsystem alliance. The distribution
network operator performs energy management at the upper layer

FIGURE 1
Allowable framework for distribution network optimization considering energy sharing among multiple subsystems.
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and conducts energy transactions with the multi-subsystem group at
the lower layer by setting reasonable purchasing and selling prices,
with the purpose of maximizing its operating benefits.

It can be seen from Figure 1 that water-electric-gas integrated
energy subsystems, which are studied herein, can complement each
other in terms of energy utilization. By coordinating the
characteristics of net load in each subsystem, energy can be shared
among and absorbed within the multi-subsystem group. The large
power grid operator, the distribution network operator and the multi-
water-electric-gas IES group are all equipped with information
sharing devices, covering price information, energy sharing
information, cost sharing information, etc.

A water-electric-gas integrated energy subsystem mainly
consists of the photovoltaic electricity generation device, the wind
power device, the carbon capture device, the gas-fired unit, the
electric-to-gas converter, the water-electric cogeneration unit, the
wastewater electricity generation device, the energy storage device
and other devices. The basic frame-work of the system is shown in
Figure 2.

In this system, the photovoltaic electricity generation device and
the wind power device are renewable energy sources and use natural
resources to generate electricity. The electric-to-gas converter can
generate hydrogen (H2) and oxygen (O2). Hydrogen generated can
be transmitted to the hydrogen refueling station for the use by fuel
cell vehicles. It can also be used to further synthesize methane (CH4),
which is directed to natural gas pipelines to promote the absorption
of clean energy. The carbon capture device can absorb the carbon
dioxide generated from electricity generation, thereby reducing the
cost of treating carbon dioxide. The water-electric cogeneration unit
can generate water power and electric power simultaneously,
between which there is a strong constraint. The wastewater
utilization device can generate electricity from surplus wastewater
and produce electric power, thus realizing the conversion of water
resources to electric energy. The energy storage device can perform
the transfer of energy in time and effectively improve the flexibility
of energy in the system. Meanwhile, flexible adjustment or efficiency
reduction feasible for different energy loads within a day, rendering
comprehensive demand response.

3 Mathematical model for the game
optimization and dispatching of active
distribution network with multiple
water-electric-gas integrated energy
subsystems

In the framework of the system, there are mainly two
stakeholders with game relations, namely, the distribution
network operator and multiple water-electric-gas integrated
energy subsystems. The specific model is as follows:

3.1 Distribution network operator

The decision variables of the distribution network operator are
the internal purchasing price and the selling price, while the
objective function is the profits made by trading electric energy
with the large power grid and multiple subsystems, as follows:

UADN � Uu + Ul (1)
Uu � ∑

t∈T
−pt

gsP
t
gs + pt

gbP
t
gb( ) (2)

Ul � ∑
t∈T

−pt
nbP

t
nb + pt

nsP
t
ns( ) (3)

where Uu and Ul respectively represent the profits made by the
distribution network operator through trading electric energy
with the upper-layer large power grid and lower-layer users; pt

gs

and pt
gb respectively represent the purchasing price and the

selling price available to the upper-layer large power grid
during the period t; pt

ns and pt
nb respectively represent the

selling price and purchasing price available to the distribution
network operator in the face of lower-layer users in the period t;
Pt
gs and Pt

gb respectively represent the amount of electricity
purchased by the distribution network operator and sold by
the upper-layer large power grid during the period t; Pt

ns and
Pt
nb respectively represent the amount of electricity sold by the

distribution network operator and purchased by the group of
users at the lower layer during the period t.

FIGURE 2
Framework of the water-electric-gas integrated energy subsystem.
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In addition, in order to ensure the reasonableness of the prices
set by the distribution network operator and prevent malicious price
increases for prof-it-making, it is necessary to consider the price
regulatory constraint from policy, as follows:

pt
gb <pt

nb, p
t
ns <pt

gs (4)

Considering the rationality of the profit-making de-mand of the
distribution network operator, the internal electricity prices
formulated should also meet the following requirement:

pt
nb <pt

ns (5)

3.2 Multiple water-electric-gas integrated
energy subsystems

Multiple water-electric-gas integrated energy sub-systems are
interconnected through power lines or energy pipelines, so that it is
possible to realize the transfer and absorption of energy among
different subsystems during different periods. The objective function
is the overall operating cost of the system cluster, which is
specifically shown as follows:

CMMGs � ∑
i∈I

Ci,MT + Ci,CWP + Ci,Y + Ci,ES + Ci,CW + Ci,C( ) (6)

whereCi,MT,Ci,CWP,Ci,Y,Ci,ES,Ci,CW andCi,C respectively represent
the cost of the gas-fired unit, the cost of water-electric cogeneration,
the cost of power transaction with the distribution network operator,
the cost of the energy storage device, the cost of the water pump and
the cost of carbon emission in the subsystem i.

Each factor considered in the system cluster is as follows:

3.2.1 Gas-fired unit
The specific cost of the gas-fired in the subsystem i is as follows:

Ci,MT � ∑
t∈T

Pi,MT,t

ηi,t

Cg,t

LHVgas
(7)

where Cg,t is the price of gas purchased during the period t; LHVgas

is the low calorific value of natural gas; ηi,t is the conversion
efficiency of the i th gas-fired unit at the time t; Pi,MT,t it is the
output of the subsystem i in the period t. In the model of the gas
turbine in this paper, we assume that its operating efficiency is a
fixed value, that is, ignoring the operating efficiency changes with the
operating state of the unit. In this scenario, LHV can be directly set
as a constant factor that determines the operating cost, that is, we
assume that the operating cost is linear with the unit output.

The operational constraint is as follows:

Pi,min ≤Pi,MT,t ≤Pi,max (8)
where Pi,max and Pi,min are the upper and lower limits of unit output
in the subsystem i.

3.2.2 Water-electric cogeneration
Similar to heat-electric cogeneration, water-electric cogeneration can

generate water energy and electric energy simultaneously by consuming
a certain amount of fuel. Generally, the cost of fuel consumed by the

water-electric cogeneration unit is related to the output water power and
electric power. The cost of fuel is shown as follows:

Ci,CWP � ∑
t∈T

αcP2
i,c,t + βcPi,c,tWi,c,t + ycW2

i,c,t+
ζ cPi,c,t + ςcWi,c,t + ξcUi,c,t

(9)

where αc, βc, yc, ζc, ςc and ξc are respectively the fuel consumption
characteristic coefficients of the water-electric cogeneration unit;
Pi,c,t is the electricity generation rate of the water-electric
cogeneration unit c in the period t; Wi,c,t is the water generation
rate of the water-electric cogeneration unit c in the period t;Ui,c,t is a
binary variable, which is 1 when the water-electric cogeneration unit
c is started or 0 otherwise.

The operational constraint is as follows:

Pi,c
min × Ui,c,t ≤Pi,c,t ≤Pi,c

max × Ui,c,t (10)
Wi,c

min × Ut
i,c ≤Wi,c,t ≤Wi,c

max × Ut
i,c (11)

Rc
min ≤

Pi,c,t

Wi,c,t
≤Rc

max (12)

where Pi,c
min and Pi,c

max are respectively the minimum and maximum
electricity generation rate of the water-electric cogeneration unit c;
Wi,c

min andWi,c
max are respectively the minimum and maximum water

generation rate of the water-electric cogeneration unit c; Ri,c
min and

Ri,c
max are respectively the minimum water-electric ratio and the

maximum water-electric ratio of the water-electric cogeneration
unit c. In this paper, the water-electric ratio is taken as 1.5.

3.2.3 Transaction cost
The transaction cost of the subsystem i is:

Ci,Y � ∑
t∈T

−pt
nbP

t
i,b + pt

nsP
t
i,s( ) (13)

where Pt
i,s and Pt

i,b respectively represent the amount of electricity
sold by the distribution network operator and purchased by lower-
layer subsystems during the period t.

The operational constraint is as follows:

Pt
i,Y,min ≤Pt

i,b, P
t
i,s ≤Pt

i,Y,max (14)
where Pt

i,Y,min and Pt
i,Y,max are respectively the limit on the amount

of electricity traded between the subsystem i and the distribution
network operator.

3.2.4 Wastewater utilization device
The wastewater utilization device, which adopts biological treatment

process, can remove toxic sub-stances in organic wastewater and recycle
organic wastewater. In view of the conversion characteristic of the
wastewater utilization device, that is, the conversion efficiency should
be considered in con-version by the device, the conversion cost is
simplified in this paper through the conversion efficiency. The
relationship between the water power output by the wastewater
utilization device and the electric power consumed is as follows:

Pw
i,t � Pe

i,tηf (15)

where Pw
i,t represents the output water power of the wastewater utilization

device in the subsystem i;Pe
i,t represents the input power of thewastewater

utilization device in the subsystem i; ηf represents the conversion
efficiency of the wastewater utilization device in the subsystem i.
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3.2.5 Electric-to-gas converter
The electric-to-gas converter can generate hydrogen and oxygen.

Hydrogen can be transmitted to the hydrogen refueling station for the
use by fuel cell vehicles. It can also be used to further synthesizemethane
(CH4), which is directed to natural gas pipelines. On the one hand, the
electric-to-gas converter can use surplus electric energy generated from
clean energy in the case of abundant energy supply, to electrolyze water
and generate a large amount of oxygen and hydrogen. On the other
hand, it can also work as an electric-to-methane converter to absorb
carbon dioxide and generate methane fuel and water.

The operational constraint is as follows:

Pi,P2G,min ≤Pi,P2G ≤Pi,P2G,max (16)
where Pi,P2G is the output of the electric-to-gas converter; Pi,P2G,min

and Pi,P2G,max are the upper and lower limits of P2G output.

3.2.6 Energy storage device
The energy storage system can realize the transfer of energy in

time and effectively improve the flexibility of energy in the system.
When participating in the coordination and optimization of
operation in the access system, the energy storage device would
incur the operating cost, as follows:

Ci,ES � ∑
t∈T

pES Pi,char,t + Pi,dis,t( ) (17)

The operational constraint is as follows:

Ei,t � Ei,t−1 1 − ηloss( ) + ηcharPi,char,t − Pi,dis,t

ηdis
( )Δt (18)

Ei,min ≤Ei,t ≤Ei,max (19)
0≤Pi,char,t ≤ αi,char,tPi,char,max (20)
0≤Pi,dis,t ≤ αi,dis,tPi,dis,max (21)

αi,char,t + αi,dis,t ≤ 1 (22)
Ei,1 � Ei,T+1 (23)

where Ei,t represents the storage capacity of the energy storage device
during the period t; Pi,char,t is the energy storage and charging power of
the energy storage device during the period t;Pi,dis,t is the energy storage
and discharging power of the energy storage device during the period t;
ηloss, ηchar and ηdis are respectively the energy storage loss rate, charging
efficiency and discharging efficiency of the energy storage device; Ei,min

and Ei,max represent the upper and lower limits of the energy storage
capacity of the energy storage device; αi,char,t and αi,dis,t represent the
charging and discharging state, which is a variable of either 0 or 1, with
1 indicating that the device is in the charging or discharging state and
0 indicating that the device stops the charging or discharging state;
Pi,char,max and Pi,dis,max are the maximum charging and discharging
power of the energy storage device.

3.2.7 Water pump device
The water pump is an independent component in the water

network, which only produces and supplies water. The operating
cost of the water pump in the subsystem i is:

Ci,CW � ∑
t∈T

ai,wWi,w,tUi,w,t (24)

where ai,w represents the electric energy consumption characteristic
coefficient of the electric-driven water pump w;Wi,w,t is the amount

of water yielded by the electric-driven pump w in the period t; Ui,w,t

is a binary variable, which is 1 when the electric-driven water pump
w is started, or 0 otherwise.

3.2.8 Carbon capture device
The carbon capture device can capture carbon dioxide emitted

and reduce the cost of exhaust emission from the system. The
specific constraint is as follows:

MCC
i,t � ηi,tP

CC
r,i,t (25)

η min ≤ ηi,t ≤ η max (26)
where PCC,i,t is the energy consumption of the carbon capture device
in the subsystem i in the period t; PCC

r,i,t is the operating energy
consumption of the carbon capture device, and ηi,t is the
corresponding power of the carbon capture device; ηmax and ηmin

are the maximum and minimum carbon capture rate, generally with
ηmax being 90% and ηmin being 0.

3.2.9 Demand response
The electric-gas-water integrated energy demand load can be

divided into rigid load not participating in demand response and
flexible load participating in demand response. From the perspective
of energy characteristics, electricity, gas and water have different
energy consumption characteristics. Therefore, transfer is adopted
for electricity and gas, and efficiency reduction is adopted for water.
The electric, gas and water loads after participating in demand
response are as follows:

Le
t � Le,o

t + ΔLe
t (27)

Lg
t � Lg,o

t + ΔLg
t (28)

Lw
t � Lw,o

t − ΔLw
t (29)

where Let, Lgt and Lwt respectively represent the electric, gas and
water loads after participating in demand response; Le,ot, Lg,ot and
Lw,ot respectively represent the initial predicted values of electric, gas
and water loads before participating in demand response; ΔLet and
ΔLgt respectively represents the changes of electric and gas load
response, ΔLwt and represents the change in efficiency reduction of
water load.

The total amount of flexible load remains unchanged
throughout the demand response process:

∑T
t�1
ΔLe

t � ∑T
t�1
ΔLg

t � 0 (30)

The percentage of decrease/increase in electric, gas and water
load shall meet the following constraint:

−ΔLe
max ≤ΔLe

t ≤ΔLe
max (31)

−ΔLg
max ≤ΔLg

t ≤ΔLg
max (32)

0≤ΔLw
t ≤ΔLw

max (33)
where ΔLe max, ΔLg max and ΔLw max are respectively the maximum
allowable changes of electric, gas and water loads.

All kinds of factors in the general water-electric-gas IES are
described in detail above. In addition, multiple energy sources
including electricity, gas and water in each subsystem also need
to meet the balance of energy, which is not repeated here.
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4 Analysis and solution of the game
relationship between players

4.1 Game relationship between players

On the basis of the model above, further analysis is made on the
game relationship between the main players: the distribution
network operator has priority in formulating electricity prices,
and the multi-subsystem group at the lower layer need to
respond to the amount of electricity traded according to the
internal electricity prices set by the upper-layer distribution
network operator. The amount of electricity traded determines
the objective function of the upper layer. In addition, the
strategies made by these two players are prioritized, that is, they
are not equal in status. Therefore, the upper-layer distribution net-
work operator and the lower-layer multi-subsystem group constitute
a Stackelberg game model. For the lower layer, subsystems can
engage in energy sharing, which belongs to the category of
cooperative game. To sum up, the upper and lower layers
constitute a hybrid game model, and the framework of the game
relationship between stakeholders in the system is shown in Figure 3.

What needs further discussion is that the respective benefits of
multiple subsystems at the lower layer need to be shared and
balanced. The common methods to solve this problem include
Shapley value, Nash bargaining, nucleolus, etc. Among them, the
method of asymmetric Nash bargaining is not affected by the
number of participants, takes the contribution of each participant
into careful consideration, and has been applied to multiple
cooperation scenarios. The specific model is as follows:

max∏N
i

C0
i,MG − Ci,MG( )di s.t. C0

i,MG ≥Ci,MG (34)

where di is the bargaining power of the i th IES, which is specifically
as follows:

di � e

Es
i

max Es
1
,.Es

2
,..,Esm( ) − e

Er
i

max Er
1
,.Er

2
,..Erm( ) (35)

where Es
i and Er

i are respectively the power provided by other
participants to the i th IES and the power obtained by the i th
IES from other participants when participating in the cooperative
game, which are further expressed as:

Es
i � ∑T

t�1
Pexport
i,t +Hexport

i,t( ) (36)

Er
i � ∑T

t�1
Pimport
i,t +Himport

i,t( ) (37)

Formula (26) is mathematically converted, and the two convex
sub-problems after conversion are shown in Formulas 30, 31
respectively:

min∑N
i

Ci,MG (38)

max∑N
i

di ln C0
i,MG − Ci,MG* + Gi( ) (39)

where Ci,MG* is the optimal value for the operation of the i th gas-
electric IES after solution; Gi is the cost paid by the i th gas-electric
IES after bargaining with other subsystems.

4.2 Solution method

The process of solving for the model is designed based on the
previous analysis of the game relationship between players in the system
framework. Generally, there are two methods for the issue of double-
layer optimization: 1) using KKT conditions to transform a lower-layer
problem into an optimization problem with only constraints and
connecting to the upper layer for simultaneous solution; 2) using an

FIGURE 3
Game relationship between stakeholders in the system.
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intelligent algorithm and solver to solve the problem iteratively. It can be
found that there are a large number of 0–1 variables in the lower-layer
problem. Accordingly, the lower-layer problem is a mixed-integer
problem that is non-convex, where KKT conditions cannot be used.
Therefore, the second method is adopted. It should be noted that the
upper layer of this model has strategy constraints, so that the algorithm
needs to be modified before being applied to this model.

(1) Setting parameters: an intelligent algorithm with constraints is
designed through modifying the genetic algorithm, setting
relevant parameters in the modified genetic algorithm and
initializing the system parameters;

(2) Optimizing the upper layer: an initial uncertainty set population
is encoded and formed by randomly generating sets of internal
electricity prices by the distribution network operator under

constraints (4–5), and transferring the internal electricity price
sets to the lower-layer sub-problem;

(3) Optimizing the lower layer: the CPLEX solver is used to
optimize the solution of the lower-layer multi-subsystem
group, obtain the dispatching plan of each device in the
multi-subsystem group and the amount of electricity traded
with the upper layer through coupling, and record the strategy
and objective function value of each subsystem;

(4) Recursively calculating the upper-layer objective function: the
amount of electricity traded with the upper layer is returned to
the upper layer to calculate the current income of the upper layer;

(5) Updating internal electricity prices: the current optimal solution
(i.e., the worst scenario) is updated and replaced with the largest
UADN*; new uncertainty sets are generated through random
enumeration and mutation, followed by returning to Step 4;

FIGURE 4
Predicted values of renewable energy output and load in the three subsystems. (A): Predicted values of renewable energy output and load in
Subsystems 1. (B): Predicted values of renewable energy output and load in Subsystems 2. (C): Predicted values of renewable energy output and load in
Subsystems 3.

TABLE 1 Income of the distribution network operator, total operating cost of subsystems and total cost of carbon emission under the three scenarios.

Scenario Income of the distribution network operator Total operating cost of subsystems Total cost of carbon emission

Scenario 1 — 95,644.36 1,047.14

Scenario 2 — 95,173.67 0

Scenario 3 773.82 94,819.27 0
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(6) Determining convergence: If the convergent f* is obtained in
the calculation, the worst scenario and the optimization strategy
results for the lower-layer problem are saved and the program is
end; Otherwise, it is necessary to return to Step 5;

(7) Finishing optimum seeking

5 Example analysis

5.1 Example setting

The scenarios considered cover three water-electric-gas IESs. The
reference source for the scenario considered in this paper is the actual
project data of a region in southern China (Mohammadi et al., 2017).
The specific parameters are: the upper and lower limits of P2G output
are 800 kW and 0 respectively, with the efficiency being 60%; the
upper and lower limits of carbon capture output are 100 kW and
0 respectively, with the carbon dioxide capture rate being 90% and the
emission intensity being is 0.2; the electric, gas and water loads can be
adjusted within a certain range, with the total amount of electric and

gas loads before and after adjustment remaining unchanged, the
maximum allowable adjustment proportion of electric and gas
loads in each period within a day being 5% and 3% respectively,
and the upper limit of efficiency reduction of water load being 10%;
the rated capacity and upper limit of charging and discharging power
of the energy storage battery are 300 kW h and 60 kW respectively,
with the maximum and minimum values of the state of charge being
0.9 and 0.1 respectively, the initial value of the state of charge being
0.2, and the charging and discharging efficiency coefficients both
being 0.95; the rated capacity and upper limit of gas storage and
discharging efficiency of the gas tank are 60 kW h and 12 kW
respectively, with the maximum and minimum values of the state
of charge being 0.9 and 0.1 respectively, the initial value of the state of
charge being 0.5, and the charging and discharging efficiency
coefficients both being 0.95; the electric-water ratio of the water-
electric cogeneration unit is 1.5, with the electric-to-gas efficiency and
wastewater electricity generation efficiency being 95% and 90%
respectively; the cost coefficients of water-electric cogeneration unit
1 are 0.0004433 yuan/kW, 0.003546 yuan/kW, 0.007093 yuan,

TABLE 2 Process of each subsystem bargaining under Scenario 2.

Mode Subsystem 1/yuan Subsystem 2/yuan Subsystem 3/yuan

Pre-bargaining −331.82 −1,148.55 +96,654.03

Bargaining transfer −1,138.12 −526.42 +1,664.54

Post-bargaining −1,469.94 −1,674.97 +98,318.57

TABLE 3 Process of each subsystem bargaining under Scenario 3.

Mode Subsystem 1/yuan Subsystem 2/yuan Subsystem 3/yuan

Pre-bargaining −340.75 −1,543.36 +96,703.38

Bargaining transfer +1,318.62 +105.3 −1,423.93

Post-bargaining −1,659.37 −1,648.66 +98,127.31

FIGURE 5
Optimized internal electricity prices set by the distribution
network operator under game equilibrium. FIGURE 6

Amount of electricity traded between the three subsystems and
the upper-layer distribution network when the upper and lower layers
reach equilibrium.
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−1.106 yuan/kW, −4.426 yuan/kW and 737.4 yuan respectively, with
the maximum and minimum electric outputs being 800 kW and
160 kW respectively, the maximum and minimum water outputs
being 200 and 30 kW respectively, the upper and lower limits of the
climbing rate being 9 kW/s and 4 kW/s; the cost coefficients of water-
electric cogeneration unit 2 are 0.0007881 yuan/kW, 0.006305 yuan/
kW, 0.01261 yuan, −1.475 yuan/kW,−5.901 yuan/kWand 737.4 yuan
respectively, with the maximum electric output andminimum electric
outputs being 600 and 120 kW respectively, the maximum and
minimum water outputs being 150 and 23 kW respectively, and
the upper and lower limits of the climbing rate being 9 kW/s and
4 kW/s; the cost coefficients of the water pump are 0.00018 yuan/
kW2, 0.0374 yuan/kW, and 0 respectively, with the maximum and
minimum outputs being 250 kW and 0 respectively. The predicted
values of renewable energy output and load in the three subsystems
are shown in Figure 4.

5.2 Example results

Under the compiling environment of MATLAB 2021a, Yalmip
language is used in this paper to call CPLEX for solution.

To verify the effectiveness of the model proposed in this paper,
the following three scenarios are set:

Scenario 1: Each subsystem operates independently and trades
directly with the large power grid.

Scenario 2: Each subsystem operates cooperatively and trades
directly with the large power grid.

Scenario 3: Each subsystem operates cooperatively and engages
in a Stackelberg game with the distribution network operator.

Table 1 shows the income of the distribution network operator,
the total operating cost of subsystems and the cost of carbon
emission under the three scenarios.

It can be seen from Table 1 that the total operating cost of themulti-
subsystem group is the highest un-der Scenario 1, and the total cost of
carbon emission is also the highest. The reason is that under this
scenario, the three subsystems cannot share energy with each other,
resulting in the worst flexibility of the system and the highest operation
cost. Compared with Scenario 1, the total cost of the multi-subsystem
group is reduced under Scenario 2, and the total cost of carbon emission
is reduced to 0. This is because the energy sharing between subsystems
further consumes renewable energy within the system, reduces the cost
of trading with the large power grid, and gives full play to the role of the
electric-to-gas converter and carbon capture device in the system. Under
Scenario 3, due to the participation of the distribution network operator
in the mechanism of the Stackeberg game with the multi-subsystem
group, they can both make profits under the effect of the internal
electricity prices set by the upper-layer operator, which further reduces
the total operating cost of themulti-subsystem group and creates prof-it-
making space for the distribution network operator.

The modified method of Nash bargaining described above is
used to redistribute the income of each subsystem to balance the

FIGURE 7
Plan of dispatching the three energy sources for each device in Subsystem 1. (A): Plan of dispatching for unit equipment. (B): Plan of dispatching for
electric energy related equipment. (C): Plan of dispatching for gas energy related equipment. (D): Plan of dispatching for water energy related equipment.
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income of all players involved in the cooperative game. In particular,
multiple subsystems at the lower layer are in a cooperative mode
under Scenario 2 and Scenario 3. Tables 2, 3 respectively show the
process of allocating for the three subsystems.

Tables 2, 3 specifically show the process of the three subsystems
bargaining over cost redistributing under Scenario 2 and Scenario 3.
The contribution of each subsystem is specifically considered in the

process of the three subsystems bargaining over cost redistributing.
After bargaining, the cost of each subsystem is reduced compared
with the cost under independent operation, which improves the
stability of each subsystem participating in the alliance. As the cost
redistributing process under Scenario 2 is similar to that under
Scenario 3, the analysis is carried out based on the results in Table 3:
under Scenario 3, the cooperation surplus of Subsystem 1,

FIGURE 8
Changes of response to electric, gas andwater load demands in Subsystem 1. (A): Changes of response to electric load demands in Subsystem 1. (B):
Changes of response to gas load demands in Subsystem 1. (C): Changes of response to water load demands in Subsystem 1.

TABLE 4 Compares the results with the uncertainty model.

Scenario Distribution network operator revenue Total operating cost of subsystem group Total carbon emission cost

Pre-bargaining 773.82 94,819.27 0

Bargaining transfer 758.15 95,001.43 0

TABLE 5 Comparison of results before and after static security constraints are added.

Scenario Distribution network operator
revenue

Total operating cost of subsystem
group

Total carbon emission
cost

Constraints are not
considered

773.82 94,819.27 0

Constraints are considered 690.46 98,360.19 0
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Subsystem 2 and Subsystem 3 is 342.41 yuan, 103.14 yuan, and
379.54 yuan respectively, which indicates that Subsystem 3 has the
largest contribution in the process of energy sharing, followed by
Subsystem 1, and finally by Subsystem 2. The redistributing result is
determined by the mutual contribution of each subsystem in the
process of energy sharing, to reasonably and orderly balance the
operating costs of the three subsystems.

It can be seen from Figures 5, 6 that the distribution network
operator determines the optimal internal electricity prices based on
the boundary of the purchasing and selling prices offered by the
large power grid and the response of the lower-layer multi-
subsystem group to the amount of electricity. Within this
framework of internal electricity prices, Subsystem 1 characterizes
electricity sales at 3:00–7:00 and 11:00–16:00 in a day; Subsystem
2 mainly characterizes electricity sales at 12:00–16:00 in a day;
meanwhile, Subsystem 3 mainly presents the state of electricity
purchase. This is determined by the initial renewable energy and
load characteristics of the three subsystems. The specific amount of
electricity traded with the distribution network operator is
determined by the internal electricity price game established by
the upper-layer distribution network operator. For example, the
distribution network operator sets a higher purchasing price during
12:00–15:00 to guide lower-layer multiple subsystems to sell
electricity.

Subsystem 1 among the three subsystems is taken as an
example and the focus in the analysis. Figure 7 shows the plan
curve of dispatching the three energy sources for each device in
Subsystem 1.

Figure 8 shows the curve of changes of the response to electric,
gas and water load demands in Subsystem 1 under Scenario 3.

According to Figure 8, the electric and gas loads in Subsystem 1 can
be transferred at different times in a day. Specifically, electric load is
taken as an example of transferable load: the efficiency of electric load is
performed reduced at 18:00–24:00 of the day, but increased at 0:00–6:
00 and 11:00–15:00 of the day to some extent. The reason is that
Subsystem 1 needs to consider transferring the periods in which the
operation of each unit, the amount of electricity traded and other items
constitute a higher total cost to the periods incurring a lower cost, so as
to improve the economic performance of the system. For water load of
which efficiency can be reduced, decision-makers need to find a balance
point between the cost of efficiency reduction and the economic benefits
that can be brought by efficiency reduction, so as to optimize the
economic performance of the system.

In order to further explore the influence of the uncertainty of the
predicted values of photovoltaic power generation and wind power
generation on the mathematical model of this paper, the method of
positive distribution is used to set the initial 200 sets of uncertain
scene sets. The results of the deterministic model and the
uncertainty model are shown in Table 4.

According to Table 4, it can be concluded that the income of
distribution network operators is reduced and the total
operating cost of subsystems is increased in the uncertain
scenario. This is because the scheduling strategy of the system
is more difficult to carry out in the uncertain scenario, that is, the
external uncertainty interferes with the operating efficiency of
the system.

In order to further explore the influence of static security
constraints of power system (branch overload constraints and

bus voltage over-limit constraints) on the mathematical model of
this paper, static security constraints are added to the original
mathematical model. The results before and after the addition
are shown in Table 5.

According to Table 5, it can be obtained that the revenue of
distribution network operators and subsystem group operators in
the system is forced to decrease under the scenario of considering
grid constraints. This is because considering the static security
constraints of the power system will force the feasible region of
the scheduling strategy variables in the system to decrease, and the
optimal solution of the system will shift, that is, the operation of the
system will become more demanding under this condition.

6 Conclusion

This paper examines the hierarchical relationship between
multiple stakeholders in the system, and proposes a hybrid game
model for distribution network and multiple systems based on
cooperative and non-cooperative game strategies. The conclusion
are as follows:

(1) In this paper, a Stackelberg game model is established for
distribution network and multiple subsystems. By solving the
Stackelberg equilibrium, the equilibrium points for both sides
are obtained, so as to better measure the interest relationship
between them and improve the energy sharing between upper
and lower layers;

(2) Under the framework proposed, the energy sharing model
for subsystems is established under the guidance of
cooperative game theory, which is conducive to
improving the capacity of local energy consumption
among regional subsystems and reducing the economic
losses caused by the status ad-vantage of the upper-layer
distribution network operator;

(3) The model proposed in this paper takes into ac-count multiple
factors including demand response, carbon capture, electric-to-
gas, water-electric cogeneration and wastewater electricity
generation, enriching the complexity of the model and
providing decision-makers with dispatching plans in complex
environments;

(4) The incorporation of energy sharing between the water system
and multiple subsystems can maximize the use of energy in the
system, improve the overall economic benefits, and achieve win-
win benefits for multiple players in the system.
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Optimize configuration of multi-
energy storage system in a
standalone microgrid

Jun Chen*

College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing, China

Aiming at the integrated energy microgrid, an important part of the energy
internet, this paper constructs a multi-energy storage system optimization
configuration model of the integrated energy microgrid in an independent
mode, and proposes a configuration method that includes the rated power
and capacity of the storage system and the heat storage system. The storage
system model includes the estimation of battery life during heating and non-
heating periods. The model takes economy as the index, and considers the
relevant constraints of thermoelectric coupling of thermoelectric units,
including thermal and electrical balance, unit climb, energy storage system and
self-sufficiency probability, etc., and uses a The bacterial colony chemotaxis (BCC)
algorithm model based on unit output and energy storage system power
distribution strategy to solve the problem. The operation characteristics of
cogeneration units equipped with energy storage system are discussed. The
results show that the proposed multi-energy storage system configuration
method has significant economic and environmental benefits in both heating
and non-heating periods, and promotes the uptake of wind power.

KEYWORDS

integrated energy microgrid, multi-energy storage system, optimal sizing methods,
battery life, heat storage system

1 Introduction

With the gradual depletion of traditional fossil energy and the increasingly serious
environmental problems and global warming, vigorously developing low-carbon new energy
represented by wind and light, and improving the penetration rate of renewable energy in the
existing power grid has become one of the important ways to solve the above problems. As a
result, the concept of energy Internet proposed by Jeremy Rifkin has received wide attention
(Sezgin, 2018). The integrated energy micro network that can be applied to isolated islands,
urban and rural residential areas, factories, remote areas away from the main network and
other areas will become an important part of the energy Internet, and will become one of the
trends in the development of the energy system in the future (Shiming et al., 2010). The
concept of integrated energy micro grid is developed from the concept of micro grid, which
generally includes four forms of energy: cold, heat, electricity and gas. All energy supply
equipment sources in the region are integrated and dispatched using Internet of Things
technology and information technology, so as to achieve the effect of optimizing energy
supply for regional cold and hot electric loads and improving energy utilization efficiency
(Pratama et al., 2017; Chen et al., 2016).

However, renewable energy represented by wind and light has strong intermittent and
random volatility, which often leads to the generation of wind and light abandonment.
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Especially during heat supply, the operation mode of “power is
determined by heat” of cogeneration units will reduce the peak
shaving capacity of the entire microgrid, and even cause a lot of
“wind abandonment” (Sadeghian et al., 2020). In order to absorb
renewable energy and enhance the flexibility of the microgrid, we
have introduced an energy storage system that can be used for multi
energy storage in the microgrid.

The storage function of energy is called energy storage, mainly in the
form of electricity storage, heat storage, gas storage and composite energy
storage (P2G, liquid hydrogen SMES, etc.) (Marc et al., 2010). This paper
mainly discusses two types of energy storage systems: electric storage and
thermal storage. The promotion of microgrid technology researchmakes
the research on power storage technology very sufficient. The electric
energy storage technology can be used to suppress the short-term power
fluctuation of renewable energy power generation, track the output of the
dispatching plan, improve the power quality of renewable energy power
generation connected to the grid,meet the flexible access of new energy to
optimize the load, cut the peak and fill the valley, improve the system’s
self-regulating ability, achieve load management and obtain economic
benefits (Kousksou et al., 2014). A large number of scholars have studied
the configuration of electric energy storage system. Reference
(Bahramirad et al., 2012) established an optimal allocation model of
energy storage system investment cost and operation cost, taking into
account the stability of the entire microgrid. The literature (Fengbing
et al., 2014) takes the optimal economic operation of microgrid as the
research objec. The literature (Xiaojuan et al., 2013) studies the influence
of the depth and times of charging and discharging of lead acid battery on
its life. The literature (Yuming et al., 2014) establishes the optimal
economic operation model of microgrid. The document (longyun
et al., 2016) established the breaking principle of the discrete Fourier
transform breaking point of unbalanced power and established the island
type microgrid hybrid energy storage optimization configuration model.
Reference (Xie et al., 2013) take the hybrid energy storage system
composed of batteryas the research object. Reference (Xiao et al.,
2019; Heijde et al., 2019) use the complementary characteristics of
battery and super-capacitor to establish the capacity allocation model
of hybrid energy storage system. Literature (Minglei et al., 2023; Hengyu
et al., 2022) present the function of energy storage and microgrid in the
energy hubs and industrial parks. Literature (Sheng et al., 2023; Wang
et al., 2023) is to refine the modelling methodology of energy storages.
Moreover, more about the optimization methods are introduce in
microgrids based on energy storages in (Junyi et al., 2022; Xiao et al.,
2023).

In terms of heat storage technology, sensible heat storage and
phase-change heat storage have been developed rapidly, and have a
wide range of practical engineering ap-plications. Literature (Bartnik
et al., 2021) provides dispatching strategies by studying the impact of
co-generation units with heat storage devices and carbon capture
devices on economy and low carbon, and provides certain reference
for power grid dispatching. Literature (Yu et al., 2019) has built a
coordinated scheduling model for waste air consumption of
cogeneration units with heat storage and electric boilers. The
literature (Teng et al., 2019) introduces the research work on key
technologies of electricity heat combined system including large
capacity heat storage, which is in line with the development trend of
energy field.

However, the research on integrated configuration of multi-energy
storage system is less. For example, the literature (Zhengmao et al., 2015)

establishes a microgrid electric heating joint dis-patching model
including fans, photovoltaic cells, cogeneration systems, electric
boilers, fuel cells and energy storage (electric energy storage and
thermal energy storage) systems. According to the characteristics of
urban communities, Literature (Liu et al., 2020) proposed amicro energy
network architecture based on compressed air energy storage, combined
with community energy consumption data to configure the capacity of
the main equipment, and analyzed the specific supporting design and
operation mode of the energy storage sub-system, including electric
energy storage and thermal energy storage. Literature (Rohit and
Rangnekar, 2017) pro-posed an equipment investment planning
optimization method for wind power and coal chemical multi energy
coupling system based on hydrogen energy storage.

The above literature has made some progress in the
configuration of microgrid energy storage system, but through
reading and comparing such literature, it is found that the
following problems are relatively prominent:

1) The rated power and capacity of the heat storage system are not
considered in the configuration of the energy storage system;

2) Considering the battery life, the difference of battery state of
charge curve between heating period and non-heating period is
not taken into account;

3) In most literatures, the optimal allocation algorithm is not
combined with the power allocation strategy, resulting in a
large number of redundant solutions.

Aiming at the above problems, this paper constructs the optimal
configurationmodel of the integrated energy microgrid multi energy
storage system under the independent mode. The main
contributions of this paper are as follows:

1) Considering the rated power and capacity of the power and heat
storage systems, an optimization configuration method for the
integrated energy microgrid multi energy storage system in
independent mode is proposed.

2) Considering the battery life during heating and non-heating
periods, this paper constructs an energy storage system
model. On this basis, taking economy as an indicator and
considering the constraints related to thermoelectric coupling
of thermoelectric units, a multi energy storage system
optimization configuration model is established.

3) The bacterial population chemotaxis algorithm is combined with
the unit output and energy storage system power allocation
strategy to solve the optimization configuration model of a
multi-energy storage system. This algorithm greatly improves
the solving speed and convergence.

2 Operating characteristics of each
power supply and wind power
consumption principle

2.1 Typica microgrid structure

The structural configuration of typical microgrid mainly
includes wind turbine (WT), conventional thermal power unit,
electric boiler, electrical energy storage (EES), heat storage (HS)
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and other units. All units in the network are uniformly controlled
and communicated by the microgrid central controller (MGCC).

2.2 Principle of cogeneration unit

Common cogeneration units can be divided into four categories
according to their characteristics (Roy et al., 2014). This paper takes the
most common exhaust type cogeneration unit as an example, and its
electric heating characteristics are shown in Figure 1. It can be seen that
themaximum andminimum electric output of the steam turbine under
the pure condensation condition are and respectively.With the increase
of air extraction, the electric power decreases in proportion to a certain
elastic coefficient. When the heating power is, the adjustment range of
the electric power is. The power generation output is restricted by the
thermoelectric coupling, and the ability to adjust the electric output is
very limited. The figure shows the reduction of electric power when the
unit heating heat is extracted more when the steam inflow is constant
(Bartnik et al., 2021). According to the operation principle of the
extraction type unit, the following relations can be obtained for the
generating power, net generating power and thermal power under the
pure condensing condition:

p � pe + γh (1)
The electrothermal characteristics can be expressed as follows:

p min − γh≤pe ≤p max − γh
0≤ h≤ h max

{ (2)

where hmax is the maximum heating power of the unit. p max and
pmin are respectively the maximum andminimum generating power
of the unit under pure condensing condition.

After installing the energy storage system, the operation of the
traditional cogeneration unit will be greatly changed. First of all, after
adding the heat storage device, when the cogeneration unit outputs the
same heat power, the electric output adjustment range increases (Yu
et al., 2019). The addition of energy storage battery further increases the
regulation range of electric output, which can effectively decouple the

thermoelectric coupling characteristics and achieve the purpose of
flexibly regulating the output of the thermoelectric unit.

2.3 Typical microgrid structure

2.3.1 Power storage system
The power storage system mainly includes battery, compressed

air energy storage, flywheel energy storage, superconducting energy
storage, super capacitor energy storage and other forms. This paper
takes the most widely used battery as an example.

The state of charge (SOC) of the battery is a parameter reflecting
the proportion of the remaining battery power to the total capacity
of the battery. Generally, the relationship between SOC and the
charging and discharging power and capacity of the battery is used
to build a battery model.

The charging process is:

SOC t( ) � 1 − δ( )SOC t − 1( ) + pc△t
ηc

Ce
max

(3)

The discharge process is:

SOC t( ) � 1 − δ( )SOC t − 1( ) − PdΔt
Ce

maxηd
(4)

where SOC(t) is the state of charge of the energy storage system at the
end of the t period; SOC(t − 1) is the state of charge of the energy
storage system at the end of the t-1 period; δ is the self discharge rate of
the energy storage system. pc and pd are charge and discharge power of
energy storage system. ηc and ηd are charge and discharge efficiency of
the storage system; Ce

max is the rated capacity of the storage system.

2.3.2 Heat storage system
Heat storage technology is divided into sensible heat storage and

phase change heat storage. Generally, similar to energy storage
battery, the thermal storage state of the thermal storage system
and its charging and discharging power and thermal storage capacity
are modeled as follows:

The heat storage process is:

HHS t( ) � 1 − μ( )HHS t − 1( ) + QC t( )△t
ηhc
Hhold

(5)

The exothermic process is

HHS t( ) � 1 − μ( )HHS t − 1( ) + Qd t( )Δt
Hholdηhd

(6)

where HHS(t) is the thermal energy storage capacity of period t;
HHS(t − 1) is the thermal energy storage capacity at the end of t-1
period; μ is the heat storage heat dissipation loss rate. QHS ch(t),
QHS dis(t) and ηhch, ηhdis are the heat absorption and release power
and efficiency of time period t;Hhold(t) is the capacity of the heat storage
system.

2.4 Principle of optimal energy storage
system configuration

The energy storage system is divided into electric energy storage
system (battery) and thermal energy storage system. The

FIGURE 1
The diagram of heat-electricity relationship for combined heat
power units.
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configuration of the energy storage system includes power and
capacity configuration. The power storage system includes
battery, converter and other equipment, so the investment cost is
settled in the form of power and capacity. The heat storage system
includes heat storage tanks and heat transfer materials, so the
investment cost is also settled in the form of power and capacity.

The configuration of the energy storage system affects the
investment cost of the energy storage system, the operation cost
of the entire microgrid, and the pollution control cost. The energy
storage system with lower configuration can not meet the expected
economy and stability of the system, can not effectively reduce the
operating costs, and the content of pollutants emitted is high. The
investment cost of energy storage system with higher configuration
is high, and the overall maintenance cost is relatively high.
Therefore, the optimal configuration of energy storage system
can reach a balance point among investment cost, operation cost
and pollution control cost, that is, the configuration of energy
storage system with the minimum total cost.

2.5 Life model of energy storage battery

The life of the energy storage battery is affected by many factors,
including the discharge depth, rate performance, charge and
discharge cut-off voltage and ambient temperature of the battery.
As mentioned above, the maximum power of the energy storage
battery is taken as the rated value, so the influence of the battery’s
magnification performance on its life is not considered for the time
being. Since the capacity range of the energy storage battery has been
set in the paper, the impact of the battery’s charge and discharge cut-
off voltage on its life is not considered for the time being. The
ambient temperature is regarded as room temperature, and its
impact on battery life is not considered temporarily. After some
simplifications, this paper only considers the influence of the
discharge depth on the battery life, so we can use the rain flow
counting method to predict the battery life.

The rain flow counting method, also known as the “tower top
method,” was proposed by two British engineers Matsuiski and
Endo. The rain flow counting method is mainly used in the
engineering field, especially in the calculation of fatigue life.

The commonly used fitting methods include N-order function
method, power function method and subsection fitting method. In
this paper, the fourth order function in literature (Xiaojuan et al.,
2013) is used to characterize the relationship between cycle life and
discharge depth.

Cyc � −3.728DoD
4 − 5DoD

3 + 12823DoD
2 − 14122DoD + 5112 (7)

where Cyc is the maximum number i of cycles corresponding to the
first cycle; DoD is the discharge depth of the cycle.

Since the energy storage system considered in this paper
includes two aspects: power storage and heat storage, the SOC
curve of the energy storage battery is significantly different after
the heat storage system is installed in the heating period and non-
heating period, so the method of calculating the life of the traditional
rain-flow counting method is further improved. The heating period
is 120 days from November to March of the next year; The non-
heating period is from April to October, with a total of 245 days:

dloss � θ∑k
i�1

1
Cyci

(8)

dwinloss � θ∑k
i�1

1
Cyci

(9)

T � 1/ 245dloss + 120dwinloss( ) (10)
where dloss refers to the life loss rate of the electric energy storage
system in the non-heating period of 1 day; dwinloss is the life loss rate
of electric energy storage system for 1 day of heating period; θ is the
cycle coefficient, the full cycle is 1, and the half cycle is 0.5; Cyci is
the maximum number of cycles corresponding to the second cycle i;
T is the life cycle.

In this way, the life of the energy storage system can be estimated
by constructing the charge-discharge curve of the battery in a typical
day in the heating period and non-heating period.

2.6 Principle of energy storage system
absorbing wind power

Due to the coupling relationship between the generating output
and the heating output of the thermoelectric unit, the adjustable
range of the generating power of the unit is limited by the heating
output under a certain heating power (Bartnik et al., 2021).

In the independent microgrid, due to excessive wind power at
night, it is impossible to connect to the grid. Therefore, during the
winter heating period, the power generation output of
thermoelectric units cannot be reduced due to heat supply
constraints, resulting in more serious wind abandonment. After
installing heat storage devices in the microgrid, the thermoelectric
units supply heat load and also store heat to the heat storage device
during the non-wind abandonment period. During the wind
abandonment period, the output of the thermoelectric units can
be reduced, while the insufficient heat supply is supplemented by the
heat stored by the heat storage device, so as to accept more wind
power and minimize the wind abandonment.

3 Optimal configuration model of
energy storage system

According to the principle of the highest economic efficiency
and maximum benefit in the microgrid, this paper aims at
minimizing the total economic cost of the system, and establishes
a planning systemmodel including the investment cost of the energy
storage system, the operation cost of the microgrid, and the
pollution control cost, as shown in Figure 2.

3.1 Objective function

In the optimization configuration of energy storage system, we
take economy as the optimization objective, and propose the
following objective function:

Total � Min IC + OC + PC( ) (11)
IC � αPR

B + βCe
max + χhRB + δCh

max (12)
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OC � ∑NT

t�1
∑NH

h�1
∑NG

i�1
∑NL

l�1
Fe Pith( )Iith + Fh Plth( )Llth + SUth + SDth[ ] (13)

PC � ∑NT

t�1
∑NH

h�1
∑NK

K�1
αKβKpdie t( ) (14)

Where Total is the total cost of the microgrid in the planning
period of the energy storage system; IC is the investment cost of the
energy storage system;OC is the operation cost of the microgrid; PC is
the cost of microgrid pollution control; α is the unit power investment
coefficient of the battery; β is the unit capacity investment coefficient of
the battery; χ is the unit power investment coefficient of the heat storage
system; δ is the unit capacity investment coefficient of the heat storage
system; PR

B and Ce
max are the maximum power and capacity of the

battery respectively; hRB and Ch
max are the maximum power and

maximum capacity of the heat storage system respectively; NT is
the total number of days; NH is the total number of hours; NG is
the total number of conventional thermal generator sets;NL is the total
number of cogeneration units; Pith is the power generated by a
conventional unit in a certain period of time; Fe is the functional
relationship between the power and cost; Iith is the state index of
whether the distributed power supply works. When the distributed
power supply works, Iith � 1; otherwise, Iith � 0. Plth is the power
generated by a cogeneration unit in a certain period of time, and Fh is
the functional relationship between the power and cost; Llth is the state
index of whether the distributed power supply works. When the
distributed power supply works, LIth � 1; otherwise, LIth � 0. SUth

and SDth are the start-up and shutdown costs of the generator unit; αK
is the treatment cost coefficient of different pollutants; βK is the
emission coefficient of different pollutants; NK is the total amount
of pollutants; pdie(t) refers to the power generated by a unit in a certain
period of time.

The investment coefficient per unit capacity of battery is as
follows:

β � CE

Tlife
+ Cm (15)

Where CE is the total investment cost per unit capacity; Cm is the
sum of the repair and maintenance costs of the equipment per unit
capacity and the disposal costs of the device; Tlife is the estimated life of
the energy storage system. In this way, these costs are spread evenly over

the cycle life of the energy storage system, and the investment coefficient
of unit capacity in the planning cycle can be obtained.

Generation cost can generally be expressed as a quadratic
function of generation power. The power cost functions of
conventional thermal power units and cogeneration units are:

Fe pith( ) � aip
2
ith + bipith + ci (16)

alp
2
lth + blplth + cl � al pei,t + γlhlth( )2 + bl pei,t + γlhlth( ) + cl (17)

Where: ai, bi, ci and al, bl, cl are the cost coefficients of
conventional units and cogeneration units.

It can be seen that Eqs 16, 17) are nonlinear, which brings
difficulty to the solution of the model. To linearize the equations, the
piecewise linearization technique is adopted, the detailed description
of which in (Tuladhar et al., 2022).

3.1.1 System constraints
(1) Electrical power balance constraint

∑NG

i�1
PithIith +∑NL

l�1
PlthLlth +∑NR

i�1
Pirth + PESS � Pload,th (18)

Where NR is the quantity of new energy; Pirth is power
generated for new energy; PESS is the power to charge or
discharge the energy storage system; Pload,th is the power required
for the load in this period.

(2) Heating power balance constraint

∑NL

l�1
hlth + hhs � hload,th (19)

Where hlth is the thermal power of thermoelectric unit i in this
period; hhs is the heat storage and heat release power of the heat
storage system in this period; hth is the thermal load of the system
during this period; NL is the number of all thermoelectric units.

(3) Wind power output constraint

Pwth

0 vht < vCI or vht ≥ vco

Pw
maxvht − vCI

vR − vCI
vCI ≤ vht < vR

Pw
max vR ≤ vht < vCO

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(20)

Where Pw
max is the rated power of the wind turbine, vCI, vR, and

vCO are the cut-in wind speed, rated wind speed and cut-out wind
speed of the fan; vht is the wind speed in a certain period.

3.1.2 Unit constraints
(1) Unit output constraint:

pi,min ≤pi,t ≤pi,max (21)
Where pi,min and pi,max are the minimum and maximum

electric output of the unit respectively.

(2) Thermal output constraint of steam extraction unit:

0≤ hlth ≤ hl,max (22)
Where hl,max is the maximum limit value of the thermal output

of unit l, which mainly depends on the capacity of the heat
exchanger.

FIGURE 2
Each cost diagram of the system.
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(3) Gross power ramp constraints for the unit:

Pith − Pit h−1( ) ≤Δpu,i (23)
Pith h−1( ) − Pith ≤Δpd,i (24)

Where Δpu,i and Δpd,i are the maximum uphill and downhill
climbing outputs of the unit.

(4) Thermal Climbing Constraints for Steam Extraction Units:

hlth − hlt h−1( ) ≤Δhu,l (25)
hlt h−1( ) − hlth ≤Δhd,l (26)

Where Δhu,l and Δhd,l are the maximum changes in thermal
power per unit time of the extraction unit.

3.1.3 Energy storage system constraint
(1) Energy storage battery output constraints:

SOC min ≤ SOCt ≤ SOC max (27)
Where SOCmin and SOC max are the minimum and maximum

values of the state of charge of the energy storage battery.

(2) Thermal storage system output constraints:

HHS. min ≤Ht
HS ≤HHS. max (28)

Where HHS. min and HHS. max are the minimum and maximum
values of the thermal storage state of the thermal storage system,
respectively.

3.1.4 Self-sufficiency probability constraint
In the independent operation mode of the microgrid, it is

particularly important to meet the load requirements and achieve
system stability. Therefore, we introduce the concept of self-
sufficiency probability. Configure the energy storage system by
constraining the probability of meeting the load demand within
the planning period, considering the load and wind output
prediction errors.

For electrical loads:

P(∑NG

i�1
PithIith + Pwth + Δw + λPESS ≥Pload,th + Δd)≥PSSe (29)

For thermal loads:

P ∑NL

l�1
hlthLlth + μhhs ≥ hload,th + Δh⎛⎝ ⎞⎠≥PSSh (30)

Where PSSe and PSSh are the self-sufficiency probabilities of
electrical and thermal loads in the microgrid, respectively, Δw, Δd,
and Δh are wind power output prediction errors, electrical load
errors, and thermal load errors that meet normal distribution.

4 Solution method

The bacterial colony chemotaxis algorithm is an improvement of
the bacterial chemotaxis algorithm (BC). By exchanging information
with surrounding peers, bacteria can greatly save search time in the
solution space, which improves speed and convergence while

retaining the simplicity and robustness of the BC algorithm. This
article adopts a bacterial population chemotaxis algorithm based on
unit output and energy storage system power allocation strategy.

Each row of 4 bacteria represents the rated power and capacity of
the power storage system, as well as the rated power and capacity of
the heat storage system. In order to reasonably coordinate the power
output within the system in the microgrid to meet the needs of the
load. Ensure real-time power balance between power output and
load demand at each time period, prevent overcharging and
discharging of the energy storage system, and achieve optimized
scheduling of distributed power sources in the microgrid. In the
actual planning process, it is often necessary to select a reasonable
power allocation strategy, which can effectively improve the
efficiency of generating feasible solutions and thereby improve
algorithm performance.

The planning cycle of energy storage systems is generally divided
into heating period and non heating period. The non heating period
generally refers to April to October, when the cogeneration unit and
heat storage system stop operating. The heating period generally
refers to November to March of the following year, when the
cogeneration unit and heat storage system are put into operation.

During non heating periods, wind power is prioritized in
microgrids, and excess wind power is stored through energy
storage batteries. If wind power is insufficient, conventional units
are used to supplement output demand.

During the heating period, due to the fact that the loss cost of
charging and discharging heat in the heat storage system is much
lower than that of charging and discharging batteries, priority is
given to utilizing the heat storage system to absorb wind power. The
specific operation strategy is as follows:

Firstly, determine whether the period is in the wind
abandonment stage, based on whether the wind power output
meets the electricity load demand. If during the wind
abandonment stage, the heat storage system releases heat, the
cogeneration unit prioritizes supplementing the heat load
demand, and the electricity load prioritizes consuming the output
of wind power and cogeneration units. Excess electricity is stored
through energy storage batteries. If in the non wind abandonment
stage, the thermal power unit not only meets the thermal load but
also stores heat for the heat storage system, and then judges the
charging and discharging needs of the energy storage system based
on the power load. If there is insufficient power, it will be
supplemented by conventional thermal power units. The specific
steps are shown in Figure 3.

5 Case studies

5.1 Case description

In this paper, a 6-unit system is used for simulation, with a
planning period of 1 year. The system consists of 3 conventional
thermal power units, 2 extraction thermoelectric units, and 1 wind
turbine. The system load is divided into heating and non-heating
periods, and the wind power is predicted by selecting historical data
from an island. The island load is mainly residential load. The coal
consumption characteristic parameters and electric heating output
operation parameters are shown in (Jiaming et al., 2016). The
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self-sufficiency probability requirement is 90%. The self-sufficiency
probability prediction error normal distribution Δw, Δd, and Δh are
taken as (0, 144) kW, (0, 256) kW, and (0, 256) kW. The annual
investment cost coefficient α is 240 $/(kW·a), and the total cost of
capacity investment CE is 80 $/(kW·h), The sum of the annual unit
capacity equipment repair and maintenance costs and device
disposal costs is 30 $/(kW·h)·a), the annual unit power
investment coefficient of the heat storage system is 192 $/(kW·a),
and the annual unit capacity investment coefficient is 9 $/(kW·h)·a.
The planning cycle of the microgrid is taken as 1 a. To prevent
overcharging and discharging, the upper and lower limits of SOC are
taken as 0.9 and 0.2, respectively. The upper and lower limits are
0.9 and 0.1 respectively. The initial SOC setting is 0.2, and the initial
settingHHS for the heating period is 0.5; The self-discharge rate and
self-heat release rate of the energy storage system are both 0.01, and

the charge discharge efficiency and charge heat release efficiency are
both 0.75. The thermoelectric unit is 0.9.

The number of bacteria is 50, the maximum number of
iterations is 100, the initial accuracy is 2, the final accuracy is
0.01, the accuracy update constant is 1.25, and each bacteria
moves at a speed of 1.

The configuration is tested on a personal computer with Intel(R)
Core (TM) i7-8565U CPU and 8.00 GB RAM using MATLAB
R2020b.

In order to compare and analyze the economic benefits of energy
storage system configuration on the system, three different scenarios
are set up:
Scenario A: There is no energy storage device in the system;
Scenario B:Adding a randomly configured energy storage system to
the system;
Scenario C: Configure an optimized energy storage system in the
system.

5.2 Simulation results

5.2.1 Analysis of optimization results
Select a typical heating and non-heating day, and the SOC curve

of the energy storage battery in the ideal state (that is, not limited by
capacity, but only related to load demand) is shown in Figures 4, 5.
As can be seen from the figure, during the non-heating period, there
are 4.5 cycles with discharge depths of 0.6, 0.6, 0.2, and 0.2,
respectively. The heating period is 2.5 cycles, and the discharge
depth is 0.4 and 0.4, respectively. According to calculation, the
annual life loss rate is about 0.45. During the heating period, as wind
power is mainly dissipated through the heat storage system, the SOC
of the energy storage battery has a small change. It can be estimated
that the service life of the energy storage battery is about 2.2 a, and
then the annual investment coefficient per unit capacity of the
energy storage battery is 66 $/(kW·h)·a.

The total cost of Scenario A is 171.1902 million $, including
171.118 million $ of operation cost and 10,200 $ of pollution control
cost. The probability of self-sufficiency in electrical load is 65%, and

FIGURE 3
The calculation process of bacterial colony chemotaxis
algorithm.

FIGURE 4
A typical SOC curve during the non-heating period.
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the probability of self-sufficiency in thermal load is 87%, which does
not meet the requirements. During non-heating periods, thermal
power unit 1 operates all the time, and during periods of insufficient
output, it is supplemented by thermal power units 2 and 3. During
the heating period, the operation of thermoelectric units gives
priority to meeting the thermal load. Due to the “heat to power”
mode of air extraction units, when wind energy resources are
sufficient in winter, a large amount of wind energy will be discarded.

Scenario B randomly selects the configurations of 3 MW and
5 MW·h energy storage batteries and 1 MW and 6 MW·h heat
storage systems, with a total cost of 79.364 million $, of which
the investment cost of the energy storage system is 1.08 million $, the
operation cost of the microgrid and the pollution control cost are
78.346 million $ and 9,700 $, respectively. Compared to Scenario A,
the total cost decreased by 53% year-on-year. The main reason for
the decrease in total cost is that after configuring the energy storage
system, the energy storage battery can reduce peak load and valley
load, optimize output scheduling, reduce wind power losses, and the
heat storage system can increase the utilization rate of wind power
during the heating period, avoiding the generation of abandoned
wind, resulting in a decrease in total cost. Under this scheme, the
probability of self-sufficiency of electrical load is 97%, and the
probability of self-sufficiency of thermal load is 99%, which
meets the self-sufficiency probability set by the system.

Scenario C uses the energy storage system optimization
configuration method proposed in the article to seek the optimal
configuration, and obtains the optimal configuration of 2.6 MW,
9.1 MW·h energy storage batteries, and 2.2 MW, 10 MW·h heat
storage systems, which is the optimal configuration sought. Under
this configuration, the total cost is 77.751 million $, compared to
Scenario A, the total cost decreased by 54% year-on-year, and
compared to Scenario B, the total cost decreased by 2% year-on-
year. Among them, the investment cost of energy storage system is
1548000 $, the operation cost of microgrid and the pollution control
cost are 76.193 million $ and 9,300 $ respectively. The probability of
self-sufficiency of both electrical and thermal loads in this
configuration is 99%. Compared to Scenario B, the reason for the
total cost reduction is that the system is configured with an

optimized energy storage system, which can more effectively
optimize system output and reduce wind abandonment. The
specific comparison results are shown in Table 1.

As can be seen from Figure 6A, in the wind abandonment phase
of the microgrid, the energy storage batteries are charged. In the

FIGURE 5
Typical SOC curve during the heating period.

TABLE 1 Cost in different scenes.

Scenario A Scenario B Scenario C

Investment cost (104$) 0 100.8 154.8

Operating cost (104$) 17,118 7,834.6 7,619.3

Pollution control cost (104$) 1.02 0.97 0.93

Total cost (104$) 17,119.02 7,936.4 7,775.1

FIGURE 6
Composition of load output on a typical day during the heating
and non-heating periods. (A) Typical load output composition during
non-heating period. (B) Typical load output composition during
heating period. (C) Typical daily heat load output composition
during heating period.
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non-wind abandonment phase, after using the wind power, priority
is given to replenishing the output through the energy storage
batteries, which can effectively reduce peak load and valley load,
reducing energy consumption.

Figures 6B, C show the electricity and heat output during the
heating period. During the wind abandonment stage, the heat
storage system releases heat energy and the cogeneration unit
jointly meet the heat load. At this time, the cogeneration unit has
a small output, and wind energy can be preferentially utilized to
reduce wind abandonment. In this case, there is sometimes still a
large amount of remaining electrical energy, and at this time, energy
storage batteries can be used to store electrical energy. In the non-
wind abandonment stage, the thermoelectric unit stores heat for the
heat storage system while meeting the thermal load, and then judges
the charging and discharging requirements of the power storage
system based on the electrical load. It can be seen that the
introduction of a multi-purpose storage system into the
microgrid has increased the flexibility and system benefits of the
microgrid, reducing the generation of wind abandonment.

The operating cost during the non-heating period only considers
the power and capacity of the energy storage battery. As shown in
Figure 7, selecting a series of data with a step size of 1 MW, it can be
seen that as the system configuration increases, the system operating
costs gradually decrease, while the investment costs increase, and the
pollution control costs decrease.

During the heating period, the overall configuration of energy
storage batteries and heat storage systems is considered. As the
configuration increases, the investment cost of the energy storage
system increases, and the operating cost and pollution control cost
of the microgrid also decrease.

5.2.2 Analysis of wind power absorption effect
Figure 8 shows the exhaust air volume under different scenarios on

a typical day during a heating period. It can be seen that the total
exhaust air volume under scenario 1 reaches 39.11 MW. The reason is
that during the heating period, the production mode of the
cogeneration unit “determining power based on heat” causes the
forced power output of the system to be too high due to heating.

After adding energy storage, the exhaust air volume for Scenario 2 and
Scenario 3 is 8.19 MW and 7.84MW, respectively, greatly reducing the
exhaust air volume. It can be seen that the existence of energy storage
systems has significantly improved the acceptance of wind power,
which has played a positive role in the overall economy of the system.

5.2.3 Comparative analysis with traditional optimal
allocation methods

During the comparative analysis process, the following scenarios
are set up.
Scenario D: Adding an energy storage system with traditional
optimization configuration methods to the system.

The main difference between the traditional optimal configuration
method for energy storage systems and the configurationmethod in this
paper is that the traditional method does not consider the difference
between the SOC curve heating period and the non-heating period
when estimating the life of the energy storage system.

When estimating the life of energy storage batteries using traditional
configuration methods, the SOC curve of a typical day is generally
selected. Here, selecting a typical non-heating period SOC curve, as
shown in Figure 4, it can be obtained that the discharge depths for
4.5 cycles are 0.6, 0.6, 0.2, and 0.2, respectively. After calculation, the
annual loss rate is 0.55, and the estimated life of the power storage system
is about 1.8 years. The main reason for calculating this result is that the
difference between the SOC curve during the heating period and the non-
heating period is not considered. During the heating period, the SOC
curve of the energy storage battery changes slightly due to the dissipation
of waste air mainly through the charging and discharging effects of the
heat storage system. Therefore, using traditional methods to estimate the
life of energy storage batteries has generated certain errors, resulting in
inaccurate investment cost calculations.

5.2.4 Sensitivity analysis of energy storage system
investment

The annual unit power investment coefficient is larger than the
annual unit capacity investment of the energy storage system. This
section mainly analyzes the impact of the annual unit power
investment coefficient of the energy storage system on the
optimal configuration and total cost of the energy storage system.
Taking a series of data with other cost factors unchanged, the
resulting results are shown in Figure 9. It can be seen that when

FIGURE 7
Relationship between operation cost and energy storage system
sizing during the non-heating period.

FIGURE 8
Comparison of typical drought scenarios during the heating
period.
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it is small, due to the lower investment unit cost, the optimal
configuration power of the power storage system is larger, which
also brings benefits to the system. As the investment increases, the
unit cost of investment increases, and the optimal allocation of
power increases, while the system benefits also decrease due to the
reduced configuration of the energy storage system. Other cost
factors have similar effects.

6 Conclusion

This paper proposes a model for optimal configuration of energy
storage systems in microgrids, and the following conclusions are
obtained.

(1) The configuration of energy storage systems in amicrogrid can affect
the investment cost of energy storage systems, as well as the operating
and pollution control costs of the entire microgrid. As a constraint in
system operation, it affects the selection of power allocation strategies
for the entire microgrid. Therefore, selecting a more reasonable
configuration of the energy storage system can improve the
utilization rate of new energy and increase system revenue.

(2) The reasonable configuration of the energy storage system can,
to a certain extent, avoid wind abandonment caused by the
forced power output of the cogeneration unit in the “heat to
power” mode during the winter heating period, thereby
improving the overall economy and low-carbon performance
of the independent microgrid.

Further research should consider the configuration and coupling
relationship of electricity, gas, and heat storage in the integrated
energy microgrid, as well as the planning and configuration of
composite energy storage and energy conversion devices such as
P2G and liquid hydrogen SMES in themicrogrid. In existingmodels,
in order to more accurately estimate the life of the energy storage
system, it is possible to further consider a modified model that
predicts the life changing with the actual situation. At the same time,
the main research object of this article is independent microgrids,
which can continue to be studied.
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Existing macroeconomic forecasting methods primarily focus on the
characteristics of economic data, but they overlook the energy-related
features concealed behind these economic characteristics, which may lead to
inaccurate GDP predictions. Therefore, this paper meticulously analyzes the
relationship between energy big data and economic data indicators, explores
the coupling featuremining of energy big data and economic data, and constructs
features coupling economic and energy data. Targeting the nonlinear variation
coupling features in China’s quarterly GDP data and using the long short-term
memory (LSTM) neural network model based on deep learning, we employ
wavelet analysis technology (WA) to decompose selected macroeconomic
variables and construct a prediction model combining LSTM and WA, which is
further compared with multiple benchmark models. The research findings show
that, in terms of quarterly GDP data prediction, the combined deep learningmodel
and wavelet analysis significantly outperform other methods. When processing
structurally complex, nonlinear, and multi-variable data, the LSTM and WA
combined prediction model demonstrate better generalization capabilities,
with its prediction accuracy generally surpassing other benchmark models.

KEYWORDS

quarterly GDP prediction, wavelet analysis, deep learning, cross-validation,
macroeconomic variables

1 Introduction

With the development of economic globalization, we are faced with new
opportunities and challenges, and the fluctuations in the global economy are having
an increasingly significant impact on China’s domestic economy. Therefore, conducting
accurate economic forecasts, formulating appropriate economic policies, and avoiding
economic risks in advance have become particularly important. Quarterly GDP metrics
offer benefits in showcasing crucial macroeconomic figures like the quarterly economic
total and growth rate, and they can promptly illustrate recent trends in economic
development, thus having significant reference value in formulating economic policies.
Exploring high-precision statistical methods for predicting quarterly GDP and revealing
the laws of GDP changes on a quarterly basis is of great importance in macroeconomic
development planning.

In reality, GDP growth isn’t solely influenced by the cyclical fluctuations of the
macroeconomy. Other energy variables, including energy production and consumption,
can also play a role in shaping the short, medium, and long-term trajectories of GDP. Hence,
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when assessing GDP trends, it’s essential to consider both
macroeconomic factors and an array of other specific
determinants (Huang et al., 2021; Huang et al., 2022).

To substantiate this, numerous researchers have delved deeper.
For instance, Das et al. (2012) employed a system matrix estimation
technique to analyze the electricity consumption and GDP data of
45 developing countries over the last 4 decades, revealing a positive
correlation between the two. Similarly, ZAshraf, AYJavid, and
MJavid from Pakistan (Ashraf et al., 2013) reached a parallel
conclusion. Furthermore, Altinay Galip and Karagol Erdal
(Altinay and Karagol, 2005) affirmed this through a causality
perspective. However, research from the U.S. Energy Information
Administration suggests the relationship might vary across
countries. Research by KraftJ, Stern D1 (Kraft and Kraft, 1978),
Ferguson R (Ferguson et al., 2000) and Liu (Liu et al., 2023) further
underscored the tight bond between energy consumption and
economic growth.

Over the years, researchers have primarily relied on traditional
linear prediction models for GDP forecasting. For instance, The
linear time series forecasting model, known as the autoregressive
integrated moving average (ARIMA), a concept brought forward by
Box and Jenkins in 1976 (Box and Jenkins, 2010), stands as a notable
example in this field. Considering the seasonality of economic data,
researchers further discussed the applicability of seasonal ARIMA
models in cyclical economic time series (Ngungu et al., 2018).
However, many studies have overlooked other influencing factors
when predicting GDP and only used univariate models, which are
prone to data leakage, resulting in biased prediction accuracy. In
contrast, the vector autoregression (VAR) model incorporates more
prediction variables, and Linda F. Debenedictis (Debenedictis, 1997)
found that the VAR model outperforms the ARIMA model in
predicting actual GDP values. In the selection of other variables,
Linda F. Debenedictis introduced traditional economic indicators
such as the money supply (M2) and fixed assets investment
(INVESTMENT) as prediction variables.

Currently, an increasing number of scholars are applying
machine learning techniques to data prediction (Tan et al., 2022).
Artificial Neural Networks (ANN), as a prominent example of
machine learning algorithms, can handle complex nonlinear
multidimensional data. Tkacz (2001) (Tkacz, 2001) applied the
ANN model to the research on the annual GDP growth rate
prediction in Canada, showing that the model prediction error
was reduced by about 25% compared to linear prediction models.
With the advancement of computer performance, deep learning
has gradually become the frontier field of machine learning and
has received extensive attention in economic data prediction. X.
Wu, Z (Wu et al., 2021) believes that deep neural network models
such as neural network models such as Long Short-Term
Memory (LSTM) and Convolutional Neural Network (CNN)
are superior to traditional ARIMA, VAR, and other models in
predicting economic data. Furthermore, some scholars found
that utilizing wavelet analysis (WA) to decompose time series can
better extract features, thereby improving model prediction
accuracy. Yan et al. (2019) applied wavelet analysis to the
prediction of individual household energy consumption, and
the empirical results showed that the integration of wavelet
analysis improved the predictive performance of dynamic

trends in time series. However, few studies have applied
wavelet analysis techniques to GDP data prediction.

In this study, we employed the LSTM model combined with
wavelet analysis to decompose nine critical macroeconomic
variables. To enhance prediction accuracy, we identified four
energy indicators with strong relevance to GDP. During the
model’s development, we utilized time series cross-validation to
refine the parameters, leading to the creation of an integrated LSTM
and wavelet analysis prediction model (LSTM&WA), primarily
applied to forecast China’s quarterly GDP data. To assess the
performance of our model, we compared it with various
forecasting models, including SARIMA, VAR, ANN, 1D-CNN,
and their wavelet-augmented counterparts like VAR&WA,
ANN&WA, and 1D-CNN&WA. Additionally, we examined the
prediction accuracy changes before and after incorporating
energy indicators. This comprehensive analysis enabled us to
evaluate the efficacy and reliability of different models in
predicting China’s GDP data.

The main contributions and organization are given as follows:

• The article provides a detailed analysis of the relationship
between energy big data and economic indicators, carries out
mining of the coupling characteristics between energy big data
and economic data, and constructs the coupling characteristics
of economic data and energy data.

• Considering the nonlinear change characteristics of China’s
quarterly GDP, the LSTM model from deep learning neural
networks is introduced, combined with wavelet analysis
technology to decompose the selected macroeconomic
variables. Subsequently, an LSTM & WA (Wavelet
Analysis) forecasting model is constructed to conduct
predictive research on the high and low frequency parts of
the quarterly GDP.

• Comparative analysis of the predictive effects of various
models (LSTM, 1D-CNN & WA, 1D-CNN, ANN & WA,
ANN, VAR & WA, VAR) shows that the LSTM & WA
forecasting model has better generalization capability, and
its prediction accuracy surpasses the other seven benchmark
models.

The following text outlines the organization of this paper.
Section two presents an LSTM neural network model for
economic forecasting. Section three conducts a case study,
offering prediction outcomes and associated errors. Finally,
Section four provides a summary of the primary contributions of
this paper.

2 Model building

In order to verify whether deep learning models are
applicable for economic data prediction, this paper selects
commonly used models in economic data prediction, such as
SARIMA, VAR, and the ANN model from shallow machine
learning as the benchmark models, aiming to compare the
GDP prediction capabilities of different models. The specific
construction of SARIMA, VAR, and ANN models can be
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found in references (Debenedictis, 1997; Tkacz, 2001; Ngungu
et al., 2018; Tan et al., 2022).

2.1 Deep learning models

2.1.1 CNN model
CNN is a type of feedforward neural network that can be used in

areas such as image and speech recognition. Unlike multilayer
feedforward neural networks, CNN has fewer network structure
parameters and features local connections, weight sharing, and
subsampling. A typical CNN network structure is composed of
interconnected convolutional and pooling layers, supplemented by
fully connected layers. Initially, the raw data is fed into the CNN
network where it experiences several simultaneous convolutional

processes, generating a variety of feature maps. These maps are
subsequently modified via a nonlinear activation function, like
ReLU. Next, pooling layers compress the generated features by
choosing either the maximum value, known as max pooling, or
the mean value, termed average pooling within a specific region
from the results generated by the convolutional layer, with the aim of
decreasing the quantities of parameters and lessening the
computational burden in the subsequent layer., and prevent
overfitting. The final layer is a fully connected one, essentially
embodying a conventional neural network architecture, whose
essence is to combine features generated from the previous
convolutional layers and set different parameters.

Figure 1 shows the overall architecture of theCNNnetwork, Figure 2
depicts feature map transformations, Figure 3 illustrates receptive field
changes, and Figure 4 presents the basic structure of the one-dimensional

FIGURE 1
Overall architecture of CNN network.

FIGURE 2
Feature map transformation.

FIGURE 3
Change in receptive field.
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CNN network used in this study, mainly including two one-dimensional
convolutional layers and two average pooling layers, etc.

2.1.2 LSTM model
When using Long Short-Term Memory networks (LSTM) for

quarterly GDP forecasting based on the coupling of economic and
energy data, LSTMs have several advantages over Convolutional
Neural Networks (CNN), so we adopt LSTMmodel to forecast GDP.

• Sequence Learning Ability: LSTM is designed to handle
sequence data, capable of capturing long-term dependencies
within time series, which is very useful for predicting
economic indicators like GDP.

• Handling Variable-Length Sequences: LSTM can process time
series data of varying lengths, while CNN typically requires
fixed-size inputs.

• Forgetting Mechanism: LSTM has a forgetting gate that
enables them to learn to ignore irrelevant information,
which is an important feature when analyzing complex
economic and energy data.

• Stable Learning Process: LSTM is generally more stable than
CNN when processing long time sequences and have a
relatively smaller problem with vanishing gradients.

As the LSTM neural network model can better discover long-
distance dependence relationships in sequence data, it is widely used in
handling time series data issues. At the same time, the LSTM model is
proficient at addressing the issues of gradient explosion and gradient
disappearance during the learning process. The basic principle of LSTM
is to record and use the state of all previous positions to better represent

the short-distance and long-distance dependencies in the sequence data.
LSTM’s cell structure introduces two mechanisms, namely, “memory
cells” and “gates.” The former records the state information of previous
positions, while the latter controls the state information usage through
gate functions. These three gates’ functions are to protect and control
the cell state, determining whether the information will be passed on to
the next cell.

The LSTM network mainly consists of LSTM layers and
Dropout layers, and the LSTM model structure can be seen in
Figure 5.

2.1.3 Model structure
The 1D-CNN network’s input layer takes charge of accepting the

one-dimensional time series input data X = [x1, x2, xn] to undergo
network processing. The convolutional layer extracts input features
by applying dot product operations on the input vector, weights, and
biases, and an activation function is applied for nonlinear mapping
while the pooling layer condenses the outcomes produced by the
convolutional layer, performing average pooling on selected regions.
Convolution and pooling operations are as follows:

C1� f X ⊗w1 + b1( )� ReLU X ⊗w1 + b1( ) (1)
p1� average C1( ) + b2 (2)

C2� f X ⊗w2 + b3( )� ReLU p1 ⊗ w2 + b3( ) (3)
p2� average C2( ) + b4 (4)

H2� f p2 ⊗ w3 + b5( )� sigmoid p2 ⊗ w3 + b5( ) (5)
Where C1 and C2 are the output vectors of convolutional layers

1 and 2, respectively; p1 and p2 are the outputs of pooling layers
1 and 2, respectively; Weight matrices are denoted as w1, w2, and w3,

FIGURE 4
1D-CNN model structure.

FIGURE 5
LSTM model structure.
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while b1, b2, b3, b4, and b5 represent bias vectors. The outcome post
convolutional and pooling operations is referred to as
Hc � [hc1, hc2,/hci], where i is the length of the output
sequence; average represents average pooling; ReLU and Sigmoid
are activation functions; And ⊗ is the dot product operation symbol.

Between the pooling layer and the fully connected layer, a
Flatten layer is utilized to simplify the feature map into a one-
dimensional vector, and a Dropout layer is employed to prevent
overfitting, further improving the model’s generalization capability.
The fully connected layer uses activation functions to allocate
weights on feature vectors, and iteratively updates the optimal
weight parameter matrix for interpreting features extracted by
the model’s convolutional part. The activation function learns
load change rules from the extracted features to achieve the
prediction function, and obtains the prediction results in the
output layer. In this study, the activation function of the output
layer is Linear, and the output layer calculation formula is:

yt � w0at + b0 (6)
Where yt is the output result of the tth network training, w0 and

b0 are the weight matrix and bias vector, respectively.
For the LSTMmodel, an LSTM cell structure is shown in Figure 6.

The LSTM neural network contains multiple cell structures.

it� σ xtWxi + ht−1Whi + bi( ) (7)
f t� σ xtWxf + ht−1Whf + bf( ) (8)

~ct � tanh xtWxc + ht−1Whc + bc( ) (9)
ct � f t ⊗ ct−1 + it ⊗ ~ct (10)

ot� σ xtWxo + ht−1Who + bo( ) (11)
ht � ot⊗ Linear ct( ) (12)

In this model, xt is the input vector at time t, which includes
historical data of macroeconomic variables such as quarterly GDP,
M2, and CPI; ht-1 represents the output at the previous moment; ct-1
denotes the memory at the previous moment; it indicates the output
of the input gate; ft represents the output of the forget gate; refers to

the memory updated at this moment; ct stands for the final memory
of the memory module; ot describes the information filtered by the
output gate that is not useful for prediction; ht signifies the ultimate
output of the output gate; W1 and W2 are weight matrices, and b1
and b2 are bias vectors; Tanh and Linear are activation functions.

2.2 Cross-validation to determine optimal
parameters

In this study, cross-validation is employed to identify the parameters
or hyperparameters for the selectedmodels. The original dataset is divided
into three categories: a training set, a validation set, and a test set. By
iterating through parameter combinations in the training set and selecting
the best parameter combination with the validation set using the rolling
window cross-validationmethod. As shown in Figure 7, the validation set
(Valid) is divided into 5-fold, each fold containing n samples. Compute
RMSE1 with Train1 as the first training set and Valid1 as the first test set.
Add n1 periods of samples to the training set, use Train2 as the second
training set, Valid2 as the second test set, and calculate RMSE2. So on and
so forth, the training set adds n samples each time and ends when

FIGURE 6
LSTM unit structure.

FIGURE 7
5-fold cross-validation with rolling window.
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Valid5 becomes the test set, then calculates RMSE5. Finally, the average
RMSE is calculated based on the training results of the 5 validation sets to
select better performingmodel parameters. Cross-validation improves the
robustness of the model, does not produce significant outlier predictions,
and makes the results more stable and reliable.

SARIMA, VAR, ANN, and 1D-CNN models were selected as
comparison models for LSTM in this paper. Due to the seasonal
factors of the GDP sequence increasing with the overall trend, a
multiplicative form of the SARIMA model was chosen. The optimal
lag order for the VAR model is determined through the Akaike
Information Criterion (AIC) and a VAR (1) model is established. In
addition, a two-hidden-layer ANN model was considered.

The paper used a rolling window cross-validation method to tune
and train SARIMA, VAR, ANN, 1D-CNN, and LSTM models on the
data from the first quarter of 1996 to the second quarter of 2019
(74 quarters for training and 20 quarters for validation) and finally
tested the GDP for 5 quarters. Throughout the training phase of neural
network models, optimizers are required to enhance the model, refresh

network model parameters, and establish varying parameters for
adaptive learning rates., thereby improving training speed and
prediction accuracy. Kingma and Ba (2014) compared several
optimization algorithms, and the results showed that the Adam
algorithm is a combination of ideas from gradient descent,
momentum, and other stochastic optimization algorithms with slight
improvements, and is an excellent algorithm in both computational
power and performance. Therefore, the Adam algorithm was chosen as
the optimizer for the selected neural network models in this paper.

Through the time series cross-validation tuning method
mentioned above, the final parameter setups for the models
developed in this research are showcased in the Table 1.

To form a unifiedmeasurement standard among different prediction
models, this study employs Root Mean Square Error (RMSE), Mean
Absolute Error (MAE), andMean Absolute Percentage Error (MAPE) as
assessment metrics. The calculation formulas are as follows:

RMSE �

������������
1
N
∑N
t�1

yt − ŷt( )2
√√

(13)

MAE � 1
N
∑N
t�1

yt − ŷt
∣∣∣∣ ∣∣∣∣ (14)

MAPE � 100%
N

∑N
t�1

yt − ŷt
yt

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ (15)

2.3 Wavelet analysis

Wavelet analysis adjusts the frequency spectrum and spatial
positioning of data via the scaling and translation of the wavelet
basis function. It identifies the oscillation frequency of data in time

TABLE 1 Hyperparameters of the model.

Hyperparameters LSTM Hyperparameters 1D-CNN

Number of LSTM layers 2 Number of convolution layers 2

Number of neurons 32 Number of convolution kernels 128

Learning rate 0.01 Learning rate 0.001

Optimizer Adam Optimizer Adam

Output layer activation function Linear Output layer activation function Linear

Dropout ratio 0.2 Dropout ratio 0.2

Loss function MAE Loss function MAE

Hyperparameters ANN Parameters SARIMA

Number of hidden layers 2 p 2

Number of hidden layer nodes 32 d 1

Learning rate 0.001 q 1

Learning rate Adam P 0

Hidden layer activation function Relu D 1

Loss function MAE Q 0

Batch size 16 — —

FIGURE 8
China’s quarterly GDP sequence from 1996 to 2020.
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and spatial dimensions, consequently facilitating feature selection
and noise reduction. Wavelet analysis technique disassembles input
time series data into components of low and high frequencies. As the
scale increases, the amplitude of wavelet coefficients in the high-
frequency part diminishes to zero, portraying the transient random
fluctuations in the sequence. The amplitude of the low-frequency
part remains roughly the same, with no significant changes,
capturing the fundamental pattern exhibited by the sequence.

By processing the features with wavelet analysis, the LSTM
neural network model becomes less susceptible to the disruptive
influence of short-term noise disturbances.

When forecasting quarterly GDP based on the coupling of
economic and energy data, the first step is to process the
economic features. The advantages of applying wavelet analysis
over Fast Fourier Transform (FFT) include:

✓Wavelet analysis is better suited for non-stationary data where
the statistical properties change over time, which is often the
case with economic data.

✓Wavelet transforms provide both time and frequency
information, allowing for a more detailed analysis of time
series that have transient characteristics in specific time
periods.

✓They can handle abrupt changes and localized features in
economic and energy data more effectively than FFT, which
assumes the signal is periodic and continuous.

✓Wavelets allow for multi-resolution analysis, which can be
particularly useful for capturing the inherent hierarchies and
multiple scales present in economic data.

TABLE 2 Definitions and processing methods of the indicators.

Indicator Unit Statistical frequency Indicator processing

GDP Billion yuan Quarterly

M2 Billion yuan Monthly The quarterly value is the sum of 3 months

INVESTMENT Billion yuan Quarterly

CPI % Monthly The quarterly value is the average of 3 months

RATE % Monthly The quarterly value is the average of 3 months

C Billion yuan Monthly The quarterly value is the sum of 3 months

EXPORT Billion yuan Quarterly

Public expenditure Billion yuan Quarterly

Industrial value % Monthly The quarterly value is the average of 3 months

TEC billion KWH Monthly The quarterly value is the sum of 3 months

FIGURE 10
Wavelet decomposition results for total retail sales of consumer
goods.

FIGURE 9
Wavelet decomposition results for CPImonth-on-month growth
rate.
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3 Case study

3.1 Feature analysis

3.1.1 Economic data feature analysis
Based on Keynes’ theory, the following specific indicators are

selected:

(1) Quarterly real GDP (GDP), which is the core variable for
prediction;

(2) Money supply (M2), which represents changes in the money
supply;

(3) Fixed asset investment completion amount (INVESTMENT),
which as an important part of investment, is a crucial basis for
monitoring macroeconomic trends;

(4) CPI month-on-month growth rate (CPI), which measures
inflation levels;

(5) RMB loan benchmark interest rate (RATE), which is the short-
term loan interest rate for lending periods within 6 months
(inclusive of 6 months);

(6) Total retail sales of consumer goods (C), which reflects domestic
consumption and can determine macroeconomic development
trends;

(7) Export amount (EXPORT), which measures market openness,
and when the indicator is large, it implies increased exports and
good economic performance, otherwise, it indicates
macroeconomic downturn;

(8) National public fiscal expenditure (Public Expenditure),
representing the government’s purchasing situation;

(9) Month-to-month expansion rate of industrial value-added for
enterprises above a designated size (Industrial Value), which is
commonly used to judge the short-term industrial economic
operation and macroeconomic prosperity.

The above data are from the website of the National Bureau of
Statistics and the Wind database. Among these, 4 indicators are
quarterly, and 5 are monthly. Considering that the core variable
GDP is quarterly data, as shown in Figure 8, the frequencies of the
9 selected indicators need to be unified and all processed as quarterly
data. The frequency statistics and particular processing techniques
for each indicator are depicted in the fourth and fifth columns of
Figure 8. The selected indicators cover a time span from the first
quarter of 1996 (1996Q1) to the third quarter of 2020 (2020Q3). The
explanations and descriptive statistics for each indicator are
presented in Tables 2, 3.

3.1.2 Energy data feature analysis
In terms of energy indicators, this paper also selects 10 related

influencing factors in the energy economy, including power and
energy, elements that notably influence economic production. The
impact of these 10 factors on GDP is determined through grey
relational analysis, and the specific grey correlation degree results are
shown in Table 4.

Through Table 5, it can be found that among the 10 indicators
selected in this paper, X10 has the highest grey correlation degree
with GDP, while X7 has the lowest. According to the ranking from
high to low, this paper selects the top four variables as the main
indicators affecting GDP, namely, X10, X9, X2, and X1, which are
total social electricity consumption, electricity production, total
energy consumption, and the consumption of primary electricity
and other energy sources.

3.2 Data preprocessing

3.2.1 Data normalization
In order to enhance the model’s training process and expedite its

convergence speed, measures will be taken to optimize its
performance, this paper uses the min-max standardization
method for data normalization, as shown in Formula 16. After
modeling and predicting using the normalized data, Formula 17 is
used to restore the data for accuracy comparison among different
models.

FIGURE 11
Wavelet decomposition results for national public fiscal
expenditure.

FIGURE 12
Wavelet decomposition results for China’s quarterly GDP.
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xscaled � x − x min

x max − x min
(16)

xunscale � xscaled x max − x min( ) + x min (17)
This paper uses the multivariate time series from 1996Q1 to

2019Q2 as input values to establish ANN, 1D-CNN, and LSTM
models. Due to the processing of lagged data by two periods, in order
to ensure that the length of the input data for the model is the same,
the total amount of data used is reduced from 94 sets to 92 sets.

3.2.2 Wavelet analysis
The four-stage compactly supported orthogonal wavelet

(Daubechies wavelet, db4) has advantages such as better
regularity, asymmetry, and strong time-frequency localization
ability, which can increase the frequency domain resolution.
Therefore, this paper selects db4 wavelet to perform wavelet
analysis on selected macroeconomic variables and quarterly GDP,
and draws waveform diagrams before and after analysis. This paper
primarily examines the decomposition findings of the month-on-
month growth rate of CPI, total retail sales of consumer goods, and
national public fiscal expenditure, and China’s quarterly real GDP,
as shown in Figures 9–12 on the next page.

It can be seen that each indicator presents different fluctuations
on the original overall trend, and after wavelet analysis processing,
the changes in the low-frequency part (the second subplot in each
figure) are relatively smooth, reflecting an overall trend, while the

FIGURE 13
Rolling forecast method for predicting 3 periods.

TABLE 3 Descriptive statistics of the indicators.

Indicator Sample size Mean Standard deviation Minimum Maximum

GDP 99 99,751.62 76,816.26 14,628.00 278,019.70

M2 99 2,248,208.00 2,192,936.00 186,690.00 12,888,024.21

INVESTMENT 99 62,070.51 62,349.74 1298.71 197,458.00

CPI 99 2.25 2.40 −2.17 9.37

RATE 99 3.28 2.19 −1.46 8.11

C 99 39,359.86 32,877.42 5,726.40 114,974.80

EXPORT 99 3,182.07 2,229.07 282.49 7,126.49

Public expenditure 99 22,281.27 19,798.05 1,178.64 64,909.00

Industrial value 99 10.97 4.69 −10.43 20.03

TABLE 4 Energy indicator names and meanings.

Variable name Variable meaning

X1 Total electricity consumption of the whole society

X2 Electricity production

X3 Industrial electricity consumption

X4 Total available energy for consumption

X5 Natural gas consumption

X6 Total industrial energy consumption

X7 Coal consumption

X8 Petroleum consumption

X9 Total energy consumption

X10 One-time electricity and other energy consumption
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high-frequency part (the third subplot in each figure) has a higher
fluctuation frequency and more frequent changes.

Next, this paper builds VAR&WA, ANN&WA, 1D-CNN&WA,
and LSTM&WA models for the high and low-frequency parts,
respectively, and finally compares the combined predictions with
the actual GDP values.

3.3 Model prediction ability comparison
analysis

This paper uses a rolling forecast method for prediction, that is,
using known true values for predicting the next period. Figure 13
illustrates the prediction process using a 3-step rolling forecast as an
example. To obtain prior sample information, quarterly GDP data
from lag 1 to lag 4 is used as the initial sample interval. From the 5th
period onwards, a one-step forward rolling forecast is performed,
that is, estimating the 5th period’s quarterly GDP data based on

prior information, obtaining the predicted value Fore_5 for the 5th
period. The true value of GDP, True_5, for the 5th period is added to
the initial sample to predict the 6th period’s quarterly GDP data, and
so on, until predicting the 7th period’s quarterly GDP.

3.3.1 Univariate model prediction performance
This paper establishes SARIMA (2,1,1) × (0,1,0)4, VAR (1),

ANN, 1D-CNN, and LSTM models and, after verification,
conducts rolling forecasts on China’s quarterly GDP (a total of
5 data points) from 2019Q3 to 2020Q3. Since the SARIMA model
can only predict a single time series, for ease of analysis, we model
the univariate quarterly GDP data. The prediction results of
various models are presented in Table 6, illustrating the
univariate analysis, and the last two columns of Table 6 provide
the RMSE and MAPE of these four models for the GDP time series.
As can be seen, deep learning neural network models’ prediction
performance is superior to other machine learning models, such as
the ANN model, and traditional seasonal time series models, such
as the SARIMA model, with the LSTM model having the smallest
MAPE of 3.64%.

3.3.2 Multivariate model prediction performance
Furthermore, this paper incorporates a feature analysis of energy

data and compares the results of different prediction models
considering economic data features only or considering coupled
economic and energy data features, as shown in Table 7 below. It is
evident that the LSTM model with combined features exhibits
superior performance.

3.3.3 Prediction effect of multivariate model
combined with wavelet analysis

At the same time, this paper presents an introduction to
wavelet analysis and provides a comparative analysis of the
outcomes of different prediction models for multi-variable
coupled features, as shown in Table 8. It can be seen that for
forecasting research related to China’s quarterly GDP, The
LSTM&WA model outperforms other deep learning models
with notably higher accuracy, such as the 1D-CNN model,
machine learning models like the ANN model, and traditional
multivariate time series models like the VAR model. Meanwhile,
we have confirmed that the inclusion of wavelet analysis in the
LSTM&WA model results in significantly improved prediction
performance when compared to the LSTM model without wavelet
analysis. The introduction of wavelet analysis has improved the
LSTMmodel’s prediction accuracy, such as MAPE, by 0.55%. After
determining the model parameters through cross-validation, the

TABLE 5 Grey correlation degree.

Variable name Gray correlation Variable name Gray correlation

X1 0.903943 X6 0.823812

X2 0.923044 X7 0.751810

X3 0.895299 X8 0.894320

X4 0.853212 X9 0.963938

X5 0.851565 X10 0.966350

FIGURE 14
LSTM&WA model test set prediction results.

TABLE 6 Comparison of univariate model prediction performance (Rolling
forecast).

LSTM 1D-CNN ANN SARIMA

MAE 15,263.95 29,384.28 29,646.27 30,827.67

MAPE (%) 7.64 10.30 10.36 13.77
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LSTM&WAmodel has stronger generalization ability compared to
various benchmark models, and its prediction curve performance
is more robust, as seen in Figure 14 Specifically, in the 2019Q3 to
2020Q3 interval, the LSTM&WA model’s predicted values are
close to the actual quarterly GDP values, with no significantly
abnormal predictions.

For structurally complex nonlinear multivariable data, the
LSTM&WA prediction model exhibits strong generalization
capabilities and in terms of prediction accuracy, the LSTM&WA
forecast model surpasses the other seven benchmark models (LSTM,
1D-CNN&WA, 1D-CNN, ANN&WA, ANN, VAR&WA, VAR).

In our initial efforts to predict GDP using the LSTM model, we
focused solely on economic indicators as input features. Table 7
indicates a prediction error of 6.36%. However, by incorporating
energy-related features, we managed to reduce the error to 5.93%.
Further enhancement came when we integrated wavelet analysis
techniques, leading to a significant accuracy boost. As shown in
Table 8, the error decreased to 4.73%, marking a 1.63%
improvement from our original rate.

3.4 Computational burden

We believe that incorporating computational efficiency into
experimental evaluation is crucial. While accuracy is a key
indicator of model performance, the computational time of
the model is equally important in real-world application
scenarios, as it directly relates to the practicality and
operability of the model. We meticulously recorded the overall
computational time for model training and forecasting, and
compared it with the computational efficiency of other
benchmark models in Table 9.

We found that despite the higher computational demands of
the combined LSTM and WA model in handling time series
predictions in Table 9, it exhibits an excellent balance between
computational time and forecasting precision in Tables 8, 9,
offering a viable and efficient solution for the field of economic
forecasting.

4 Conclusion and future work

This research conducts an all-inclusive analysis to scrutinize
the relationship between extensive energy data and economic
indicators. Furthermore, coupling feature mining of energy big
data and economic data is performed to uncover valuable
insights, and constructs coupled features of economic data and
energy data. In response to the nonlinear change characteristics
of China’s quarterly GDP, we introduce the LSTM model from
deep learning neural networks and combine wavelet analysis
techniques to decompose the selected macroeconomic
variables. Subsequently, we construct an LSTM&WA
prediction model and conduct prediction research on the
high- and low-frequency parts of quarterly GDP. By
incorporating wavelet analysis in the feature processing stage,
the LSTM neural network model becomes less susceptible to the
disruptive influence of short-term noise disturbances. For
quarterly GDP data, compared to the LSTM model without
wavelet analysis, the LSTM&WA model yields superior
prediction outcomes, as evidenced by the prediction accuracy,
such as MAPE, increasing by 0.55%.

This paper primarily employs mathematical statistics and data
mining knowledge, building models based on related time series
data. It does not take into account other factors that may influence
China’s GDP. Significant policies or events could potentially cause
actual figures to exceed the forecasted range of this paper. Due to
limitations in the data sources, data from 2020 and beyond were not
utilized, thus, to some extent, avoiding the impact of events like the
pandemic. Therefore, for more long-term GDP forecasting,
improvements are needed in how to integrate other influencing
factors and further refine the model.

TABLE 7 Comparison of economic feature and coupled feature model
prediction performance (Rolling forecast).

MAE RMSE MAPE (%)

LSTM& Coupling features 11,798.53 14,623.26 5.93

LSTM& Economic features 12,446.25 14,725.28 6.36

ID-CNN& Coupling features 19,856.4 25,684.03 8.86

1D-CNN& Economic features 22,964.33 28,009.51 9.86

ANN& Coupling features 21,963.76 25,041.62 8.65

ANN& Economic features 22,816.93 26,858.04 9.18

VAR& Coupling features 25,638.43 30,281.45 13.61

VAR& Economic features 27,581.49 31,421.51 14.51

TABLE 8 Comparison of multivariate model prediction performance (Rolling
forecast).

MAE RMSE MAPE (%)

LSTM&WA 10,897.51 14,596.56 4.73

LSTM 12,446.25 14,725.28 5.93

ID-CNN&WA 19,926 22,748 8.46

1D-CNN 22,964.33 28,009.51 8.86

ANN&WA 21,362.06 23,911.72 8.38

VAR&WA 22,816.93 26,858.04 9.18

VAR 34,666.73 41,879.15 13.61

TABLE 9 Time of train and test (s).

LSTM LSTM-WA

Train time 6,382 6,528

Test time 0.274 0.295
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Operation and evaluation of
digitalized retail electricity
markets under low-carbon
transition: recent advances and
challenges

Xiuzhen Hu1, Weicong Tan1, Yuting Xie1, Wei Yang1, Zhijian Zeng1,
Yuanming Huang1, Dongliang Xiao2*, Yuquan Chi2 and
Runting Cheng2

1Guangdong Power Exchange Center Co., Ltd., Guangzhou, China, 2School of Electric Power, South
China University of Technology, Guangzhou, China

With the growth of electricity consumers purchasing green energy and the
development of digital energy trading platforms, the role of digitalized retail
electricity markets in the low-carbon transition of electric energy systems is
becoming increasingly crucial. In this circumstance, the research work on retail
electricity markets needs to be further analyzed and expanded, which would
facilitate the efficient decision-making of both market players and policymakers.
First, this paper introduces the latest developments in the retail electricity market
under low-carbon energy transition and analyzes the limitations of the existing
research works. Second, from three aspects of power trading strategy, retail
pricing methodology, and market risk management, it provides an overview of
the existing operation and mechanism design strategies of the retail electricity
market; then, it provides a systematic introduction to the evaluation system and
monitoring methodology of electricity markets, which is not sufficient for the
current digitalized retail electricity markets. Finally, the issues regarding operation
evaluation and platform optimization of the current digitalized retail electricity
market are summarized, and the research topics worth further investigations are
recommended.

KEYWORDS

retail electricity market, low carbon, operation strategy, evaluation method, risk
management

1 Introduction

To realize the low-carbon transition of energy systems and the sustainable development
of society, the installed capacity of renewable energy sources has achieved substantial growth
worldwide (AlAshery et al., 2019; Erdogan et al., 2023; Lu et al., 2023). Under this context, it
is necessary to have an efficient electricity market to achieve the optimal allocation of
renewable energy resources and provide effective incentives for the production and
consumption of green electricity (Yang et al., 2021). The retail electricity market serves
as a bridge connecting electricity retailers and customers. With extensive access to various
types of distributed energy resources, such as distributed photovoltaics and electric vehicles,
the trading volume of the retail electricity market has been growing rapidly, and the needs of
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retail market players are becoming more and more diversified
(Hampton et al., 2022). In this circumstance, the increased needs
and risk levels have put forward higher requirements for retail
electricity market construction and operation.

To face the above challenges, a digital energy trading platform
can be utilized to carry out online electricity retail transactions,
which can reduce the operation costs of trading entities and
improve the transparency, fairness, and efficiency of the retail
electricity market (Yang et al., 2021). In the major electricity
market worldwide, digital retail trading platforms have the
functions of retail package management, electronic
contracting, information disclosure, etc., which can
significantly reduce the communication and marketing costs
between electricity consumers and retailers. In Japan,
electricity consumers can log into the electricity package price
comparison website and enter their basic information, such as the
address zip code, household size, and characteristics of electricity
consumption, to calculate the electricity cost of various packages
(Fang and Wang, 2023). In Australia, a third-party website can
help electricity consumers choose an electricity seller by
considering multiple factors, including residential location,
type of residence, and household size, as well as the
percentage of green electricity in the package (Nelson et al.,
2018). In Texas, United States, retail customers can also access
the package comparison website, where the historical electricity
consumption, acceptable tariff range, rate plan, renewable energy
ratio, and other information about packages can be compared
(Joskow, 2008). In the provincial electricity markets in China,
online electricity retail trading has been established in Yunnan,
Guangdong, Zhejiang, Shanxi, and other provinces and regions,

and more provinces will join them in the future (Yang, 2021). In
December 2022, the platform of Guangdong’s retail electricity
market was launched, and as of 31 March 2023, a total of
36,187 electricity consumers in Guangdong had signed the
retail electricity contracts with 158 electricity retailers through
the digital trading platform.

In the context of the rapid growth of renewable energy
sources and the development of digital trading platforms, it is
necessary to conduct a comprehensive overview and analysis of
the operation and evaluation methods of digitalized retail
electricity markets. However, the current works (Möst and
Dogan, 2010; Bublitz et al., 2019; Bao et al., 2021; Liu et al.,
2022) on electricity markets mainly review the methodologies on
the wholesale side, and Yang et al. (2017) and Hampton et al.
(2022) focused only on the decision-making of the retailers and
consumers, respectively, which did not involve the evaluation of
the retail market or an analysis of the digital energy trading
platform.

Therefore, this paper reviews and analyzes the operation and
evaluation of digitalized retail electricity markets, and its
contributions mainly include the following: 1) the research
works on retail electricity markets, considering the dependent
operation and evaluation approaches, are systematically
reviewed; 2) the research gaps in the current research works
are pointed out, which include the systematic evaluation of retail
electricity markets and in-depth analysis of digital energy trading
platforms; and 3) referring to other e-commerce platforms, such
as Amazon and TikTok, suggestions on improving the operation
and evaluation of digitalized retail electricity markets are put
forward.

FIGURE 1
Frameworks for the research on retail electricity markets.
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2 Operation and mechanism design of
retail electricity markets

2.1 Operation strategies for retailers and
consumers

As the main decision-makers in retail electricity markets,
electricity retailers and consumers have been comprehensively
investigated in the existing works, which is summarized in Figure 1.
In this section, the operation strategies for retailers and consumers
mainly focus on power trading optimization, retail pricing scheme, and
market risk management.

1) Power trading strategy optimization. The intermittent renewable
energy resources increased the risk levels of electricity retailers in
the wholesale electricity market, which needs to be managed by
using proper retail pricing and contract design strategies in retail
electricity contracts. In the existing works, the trading strategies
of electricity retailers in multi-type power markets have been
developed using advanced optimization techniques considering
various flexible resources, such as battery storages, demand
response (DR) programs, and virtual bids (Slouma et al.,
2023; Wei et al., 2023). Ghazvini et al. (2015) and Khojasteh
(2022) developed multi-objective optimization models for
electricity retailers, where disaster recovery scheduling and
retail packages have been investigated in detail, respectively.
Jacquet et al. (2023) maximized the electricity retailer’s profit
by designing a contract menu for customers, where a quadratic
regularization model of customer responses is adopted to
improve the robustness of the model, and Luo et al. (2017)
proposed a personalized power retail solution recommendation
system for residential users using collaborative filtering
technology by considering users’ energy consumption
patterns. Lu et al. (2022) analyzed the trading strategies for
large retailers in China’s medium- and long-term electricity
markets, while Charwand et al. (2014) focused on medium-
term planning for electricity retailers and formulated a multi-
objective framework to balance profit and sales prices to
customers. Feuerriegel and Neumann (2014) optimized
electricity procurement with DR for retailers, which can
significantly reduce procurement costs and peak costs. Liu
et al. (2020) explored data-driven decision-making strategies
for electricity retailers using actor–critic and deep Q-learning
approaches. Lu et al. (2021) introduced a comprehensive power
cost optimization algorithm for electricity retailers, and its
economic feasibility is verified in China’s electricity spot market.

2) Developing retail pricing schemes. The design of efficient retail
pricing schemes is crucial for the retailer to encourage consumers
to participate in the retail markets, and the green retail contracts
can also facilitate the renewable energy consumption of the
consumers. The Stackelberg game model was employed by
Sekizaki et al. (2016) and Zugno et al. (2013) to obtain
flexible pricing strategies for retailers, where the flexible
interactions between market players and weather-related
random parameters have been taken into account.
Mahmoudi-Kohan et al. (2010) proposed an annual pricing
framework for electricity retailers using the clustering
technology based on consumers’ load profiles. Yang et al.

(2018) optimized the time-of-use electricity price structure
and level using data mining technology, given the number of
price blocks using real power consumption data. Zhang et al.
(2023a) proposed a two-stage customized retail price design
based on personalized DR incentives, while Nojavan and Zare
(2018) proposed a real-time pricing model by comparing time-
sharing and fixed pricing. Qiu et al. (2020) introduced a three-
level optimization model to capture the retailer’s pricing
strategies’ implications and wholesale market price DR, and it
can demonstrate the interactions and assess demand flexibility’s
influence. Naseri et al. (2022) addressed the challenges faced by
retailers, and the Seq2Seq algorithm and reinforcement learning
were used for customer demand prediction and tariff mechanism
design, respectively.

3) Market risk management. Different risk assessment methods
have been investigated by the market players or system operators
to handle the uncertainties on both wholesale and retail sides
(Deng. et al., 2023; Xiao et al., 2023). To investigate the risk
management for integrated energy service providers in the retail
market, Guo et al. (2021) proposed an optimal pricing method
based on value at risk (VaR), considering multi-energy DR. By
using the CVaR and scenario generation techniques, the impacts
of risk preferences andmarket conditions on the trading patterns
of retailers were analyzed in detail (Sun et al., 2021). Karandikar
et al. (2010) offered a method for strategic retailers to assess their
benefits and quantify the risks in bilateral transactions. Zhang
et al. (2022b) presented a credit evaluation and risk measurement
mechanism for electricity retailers to manage risks in a dynamic
market using the Bayesian best–worst method (BBWM) cloud
model. Yu and Sun (2019) addressed risk assessment for
independent electricity retailers in China and constructed a
multi-level electricity market portfolio optimization model. To
manage diverse contracts and sales prices, Charwand and
Moshavash (2014) proposed an information gap decision
theory-based method to evaluate retailer strategies, which
could serve as a tool to assess risk levels and determine risk
preferences.

2.2 Market design and analyses

The retail electricity market plays a crucial role in achieving
multi-type policy targets, such as carbon neutrality, energy
transition, and national unified electricity market construction in
China. Defeuilley (2009) critiqued the impact of introducing
competition on the supply side of the retail electricity market,
and the flaws in the theoretical concepts from the Austrian
School are addressed when the stability of short- and medium-
term retail markets is evaluated. Mulder and Zomer (2016) revealed
the effectiveness of renewable energy labeling systems and their
limitations in Dutch retail electricity markets toward net zero. Peng
and Tao (2018) addressed the existing issues and achievements by
investigating an inter-regional power trading model in China, which
focuses on quantifying the impact of cost, electricity price, and
revenue on the behavior of electricity retailers. Guo et al. (2020)
addressed risk assessment in China’s evolving retail electricity
markets, and a hybrid multi-criteria decision-making method
combining the Bayesian best–worst method and matter–element
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extension model was proposed. Yue et al. (2023) investigated the
electricity price linkage mechanism between wholesale and retail
sides in electricity markets for different applications with various
users. Yuan et al. (2022) proposed the retail electricity market under
the framework of constructing a national unified electricity market
in China, where characteristics of the emerging entities are taken
into account. Liang et al. (2022) proposed a carbon neutrality-driven
architecture for the retail electricity trading platform to improve
market efficiency and satisfy the diverse needs of different market
entities. To ensure credible and efficient retail electricity trading of
distributed energy resources, a blockchain-based online platform
was developed by Chen et al. (2022). Zishan et al. (2022) examined
the strategic choices of electricity retailers participating in the
market, considering uncertain parameters in DR programs. Sun
et al. (2023) proposed an incentive mechanism involving
government, retailers, and residents to promote renewable energy
consumption, and its effectiveness is verified by using realistic data
in the winter. To reduce uncertainty and disclose privacy, the
concepts of data revenues and costs were illustrated, and power-
side and data-side trading frameworks were proposed for electricity
retailers (Wang et al., 2022).

3 Evaluation of electricity market
operation

3.1 Existing works on market evaluation

To ensure the efficient operation of wholesale and retail electricity
markets, it is necessary to construct reliable monitoring and
evaluation systems, which can avoid illegal bidding and other
undesirable market behaviors that may decrease market efficiency
(Li et al., 2004). Additionally, the environmental indicators suitable for
retail electricity markets need to be developed to evaluate the energy
transition status on the demand side. Xu et al. (2021) analyzed the
establishment of a power market operation evaluation system and put
forward the basic principle of power market operation monitoring to
adapt to China’s power market reform. As a whole, the assessment of
the electricity market needs to include a regulatory information
collection system to provide data support, a market evaluation to
generate early warnings, and a regulatory information dissemination
system to show the evaluation results (Li et al., 2004). Moreover, the
operation processes of the power market also need to be evaluated,
and the main indicators of evaluation can be divided into four
categories: economy, security, fairness, and environmental
protection (Xu et al., 2021). To monitor and evaluate the
electricity market, market structure, market balance, trading
results, bidding strategy, and supplier status should be considered
to ensure the healthy development of themarket (Liu et al., 2004). The
market power is a crucial content to be included to effectively assess
and monitor the electricity market (Liu et al., 2023), where the
evaluation system can be constructed according to the
structure–conduct–performance model of industrial economics,
followed by real-time evaluation and the corresponding decision-
making by combining the fuzzy comprehensive evaluation method
(Zhang et al., 2006). The residual supply index and the market
parameter dependence index can be taken into account to access
the market conditions (Dolmatova et al., 2021).

3.2 Systemmonitoring for market evaluation

With renewable energy sources being connected to the power
grid at a tremendous rate of growth, the quality and continuity of the
power supply in the power system is being significantly challenged
(Rietveld et al., 2015). To achieve this goal, intelligent devices for
monitoring and controlling the status of power grids need to be
deployed to maintain the safe and stable operation of power grids
(Liu et al., 2013; Yang et al., 2023a). However, the current smart grid
monitoring system often encounters problems such as poor
portability of monitoring terminals, oversimplified monitoring
systems, and low security of the information system (Fu et al.,
2017). To judge the operation status and trend of the power grid,
evaluation indexes can be constructed based on the stochastic matrix
and qualitative trend analysis using operation data collected from
the power grid (Yang et al., 2023b). It is also possible to utilize big
data in combination with information fusion technology to provide
the assessment and prediction of key equipment in a smart grid
(Wang et al., 2011). The monitoring system can be used in
conjunction with the smart grid to assess and evaluate the status
of the power system and the information system, which help the staff
make correct decisions and reduce losses (Fu et al., 2017).
Additionally, if the operating conditions are relatively harsh, the
monitoring system needs to take into account typhoon, ice, snow,
lightning, and many other unfavorable factors to avoid the
occurrence of serious accidents (Wang et al., 2012). In the
process of monitoring and evaluating smart grids, different
models can be established by considering different detection
needs so as to obtain the best monitoring and evaluation effects
(Falahati et al., 2013).

3.3 Limitations of existing evaluation indexes

Based on the evaluation indexes proposed in the research works on
market evaluation and monitoring, an evaluation framework with
various evaluation indexes for electricity markets is shown in Table 1,
which includes six primary evaluation indicators and secondary
evaluation indicators. It is shown that most market structure and
management indicators, such as the Herfindahl–Hirschman index
(HHI), top-m, and timely rate of information disclosure indexes, are
easy to be applied to retail electricity markets. However, some indicators
onmarket behavior and development are not suitable due to the different
frameworks, policies, and rules between retail and wholesale electricity
markets. For instance, the centralized market clearing mechanism is
widely used in wholesale electricity markets, while bilateral contracts are
adopted by the players in retail electricity markets.

4 Discussion and suggestions

Existing research efforts have conducted comprehensive studies
on decision optimization and mechanism design strategies for the
retail electricity market. However, the current strategies did not
consider the specific features and advantages of digital retail
platforms in depth. It is also necessary to have systematic
evaluation systems to provide references for the optimization and
design of retail electricity markets, which also help improve the
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operation performance and risk management capability.
Additionally, current monitoring and evaluation approaches for
electricity market operation mainly focus on the wholesale side,
which might not be suitable for retail electricity markets.

Therefore, to further improve the operational efficiency of retail
electricity markets toward low-carbon transition, it is necessary to
carry out further research in the following aspects:

1) It is necessary to conduct in-depth comparative analyses of
the operational characteristics of wholesale and retail power
markets and establish a quantitative and systematic

evaluation index system for retail electricity markets so as
to provide a basis for the optimal market mechanism design.

2) As the electricity retail platform has certain similarities with
e-commerce platforms, such as TikTok and Amazon, it can refer
to the operation and management strategies of existing
e-commerce platforms and fully utilize those platform’s multi-
dimensional data. This can help improve the operation and
service levels of electricity retail trading platforms under low-
carbon transition.

3) Since there are large numbers of players in retail electricity
markets, which are diversified and large in scale, we can make

TABLE 1 Evaluation indicators for electricity market operation.

Primary evaluation indicator Secondary evaluation indicator Suitable for retail electricity market or not?

Market structure indicators HHI √

Top-m index √

Residual supply rate index √

Lerner index ×

Market behavior indicators Averaged settlement price √

High offer price ratio of the generator ×

Withholding ratio of the generator ×

Offer price sequence correlation √

Price–cost correlation ×

Price supply and demand correlation √

Market efficiency indicators Averaged settlement price √

Electricity supply/demand ratio √

Cleared rate of units with high offer prices ×

Average return of generators ×

Environmental indicators Market share of renewable energy √

Percentage of cross-province/region power trading ×

Wind power abandonment rate ×

Solar power abandonment rate ×

Development indicators Growth rate of market entities √

Growth rate of electricity sales √

Growth rate of installed power generation capacity √

Growth rate of renewable power productions ×

Growth rate of cross-province/region power trading ×

Reduction rate of wind and solar abandonment ×

Management indicators Timely rate of information disclosure √

Information disclosure completeness rate √

Accuracy of information disclosure √

Response rate for public opinions √

Average response time for public opinions √

Number of under-credit disposals √

Level of credit risk protection √
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better use of the artificial intelligence technology to conduct in-
depth analyses of the market data, better understand the
behavioral characteristics of various retail trading entities,
improve the low-carbon operational efficiency, and enrich
market service strategies.
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Multi-agent game operation of
regional integrated energy system
based on carbon emission flow
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In the process of promoting energy green transformation, the optimization of
regional integrated energy system faces many challenges such as cooperative
management, energy saving and emission reduction, as well as uncertainty of new
energy output. Therefore, this paper proposes a multi-agent game operation
method of regional integrated energy system based on carbon emission flow.
First, this paper establishes a carbon emission flow calculation model for each
subject, and proposes a comprehensive tariff model based on the carbon emission
flow, which discounts the carbon emissions from the power supply side to the
power consumption side. Secondly, considering the interests of each subject, this
paper establishes the decision-makingmodel of each subject. And the new energy
uncertainty, the cost of energy preference of prosumers, and the thermal inertia of
buildings are considered in the decision model. Finally, the model is solved using
differential evolution algorithm and solver. The case study verifies that the
comprehensive electricity pricing model based on carbon emission flow
developed in this paper can play a role in balancing economy and low carbon.

KEYWORDS

IES, carbon emission flow, multi-agent game, demand response, thermal inertia of
buildings

1 Introduction

As greenhouse gas emissions continue to climb, it is required to fundamentally change
the traditional way of production and life and promote the green and low-carbon
transformation of energy (Tong et al., 2019). In this context, regional integrated energy
system (RIES) has been developed significantly due to its advantages in meeting diversified
energy demand and improving energy utilization efficiency (Zhu et al., 2022; Su et al., 2023;
Wang et al., 2023). With the development of RIES, a system of multi-agent interaction is
further formed, which provides a platform support for the sharing and mutual aid of
dispatchable resources (Liu et al., 2020). Each subject within the RIES has different objectives
and does not support other subjects “unconditionally” (Li et al., 2020). Therefore, it is very
important to deeply study the operation of multi-agent game of regional integrated energy
system.

The study of optimal operation schemes for integrated energy systems is one of the
current hot issues. Ming et al. (2021) proposed an optimized scheduling scheme based
on a multi-agent system composed of system layer, network layer, energy center layer
and local layer. Ma et al. (2021) establishes a compact model of cogeneration system to
solve the problem of uncoordinated energy supply flexibility and conversion efficiency
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of integrated energy system. Liu et al. (2019) considers the
constraints of multi-energy systems and achieves the effect of
improving clean energy consumption based on the optimization
model of multi-demand response. The above studies focus on the
perspective of IES optimization operation, but do not consider
the conflict between multiple players in the operation process.

The introduction of the game idea in the optimized
operation of integrated energy system provides a method for
the study of solving the problem of interests among multi-
agents. The method of game is an effective means to solve the
conflict between different interest players (Liu et al., 2018).
Zhou et al. (2019) combined the auxiliary service model and the
economic operation model to construct the Stackelberg game
model of users and operators, and proved the existence of a
unique equilibrium solution of the model in the game process.
Wang et al. (2020) proposed a Stackelberg game model based on
the energy seller and load aggregator as players to obtain a RIES
distributed cooperative optimized scheduling scheme, which led
to a significant increase in both system and customer
consumption surplus. Cong et al. (2018) constructed a two-
tier optimization coalition game model with the upper layer on
the energy supply side and the lower layer on the customer
demand side, taking into account the demand response, which
improves the economy and flexibility of the system’s energy
hubs to collaborate with each other. Chen et al. (2022)
considered the cooperative relationship between multiple
microgrids and adopted Nash bargaining to accomplish the
reasonable distribution of benefits among different players. Li
et al. (2023) studied the master-slave game operation strategy
with energy retailer, supplier and user as the players to improve
the operational stability of the integrated energy system.
Numerous explorations of game models have been conducted
in existing research results, but little research has been
conducted on the game interactions among distribution
network operator, distributed energy station, and prosumer
in RIES.

On the demand side of energy, the rational utilization of
demand response resources of users such as prosumers is one of
the hot issues in integrated energy system. Most of the existing
studies are about a single type of demand response behavior (Cui
et al., 2020; Chen et al., 2021). He et al. (2017) proposed
mathematical models of demand response resources and
methods for optimal operation. Yang et al. (2020) adjusts the
integrated demand response by setting prices for multiple energy
sources to get greater profit. Wang et al. (2020b) investigated the
demand response evaluation of RIES based on an improved
material-element model. In the above studies, there are fewer
studies on the satisfaction requirements of prosumers in the
multi-agent game in pursuit of maximizing the effectiveness of
acquisition.

In addition, under low-carbon requirements, integrated
energy system usually introduces carbon emissions as part of
the model objective function or as a constraint to achieve
emission reduction (Zhang et al., 2022). Li et al. (2012)
proposes carbon capture power plant scheduling strategies to
achieve emission reduction under the constraint of carbon
emission reduction targets. Some studies introduced the
carbon trading mechanism in the objective function and

verified that the introduction of carbon trading mechanism
can effectively reduce carbon emissions (Wei et al., 2016; Lu
et al., 2017; Qu et al., 2018). From the perspective of promoting
renewable energy consumption and thus reducing carbon
emissions, Lu et al. (2018) and Wei et al. (2017) proposes
scheduling strategies to smooth out net load fluctuations and
increase new energy consumption for wind power consumption
in electric and thermal integrated energy systems. However, the
above studies only consider from the source side, based on the
idea that demand generates supply, how to measure the demand-
side carbon emissions and make full use of demand-side
resources to participate in the system scheduling deserves
attention.

As mentioned above, in the optimization operation problem
of RIES, there are fewer researches that comprehensively
consider the characteristics of multi-energy coupling, carbon
emission flow, market mechanism, satisfaction of producers and
prosumers, and multi-agent game problems. In this paper, a
multi-agent game operation method of regional integrated
energy system based on carbon emission flow is proposed in
the context of multi-agent game, aiming at the reasonable benefit
distribution among multi-agents, low-carbon operation, the
influence of uncertainty factors, and the influence of users’
satisfaction of energy acquisition. First, the RIES structure
and multi-agent game framework are constructed. Second, the
integrated electricity price model based on carbon emission flow
is established. After that, the interests of each player are
considered and the decision-making model of each player is
established. And the uncertainty of new energy, the satisfaction
function of prosumer, and the virtual energy storage of buildings
are considered in the decision model. Finally, the differential
evolution algorithm (DE) and solver are utilized to solve the
model, and the proposed model is verified through examples to
be significant for improving the economy and low-carbon of the
integrated energy system.

The main contributions of this paper are as follows:

1) This paper proposes a comprehensive electricity price model
based on carbon emission flow. Integrating the carbon emission
flow of each subject into the formulation of electricity price and
establishing a price mechanism that takes into account carbon
policies such as carbon tax and carbon emissions can better guide
the energy use behavior of users.

2) This paper develops a two-layer Stackelberg game framework
based on the distribution system operator, distributed energy
stations, and prosumers. The distribution system operator, as a
leader, has the objective of maximizing revenue and deciding the
electricity price. The lower tier followers aim at maximizing their
own interests and decide their own equipment output and energy
use behaviors.

3) In the game model established in this paper, the satisfaction
function is used in the objective function of the prosumer to
describe the energy use preference of the prosumer. It reflects the
impact of comprehensive electricity price on prosumer’s energy
use behavior. In addition, since indoor temperature changes take
a period of time, this paper employs the thermal inertia of
buildings constraint to characterize the thermal demand of
prosumers.
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2 Structure of the RIES and multi-agent
game framework

2.1 Structure of the RIES

Regional integrated energy system is a multilevel complex
coupled system of multiple energy inputs, transformations, and
outputs (Wang et al., 2020c), consisting of the main bodies of
distribution grids, distributed energy stations, and prosumers.
The system involves the coupling of electrical energy, natural gas
and thermal energy. The structure of RIES is shown in Figure 1.
Among them, the energy station includes a variety of energy
coupling devices, generally combined heating and power units
(CHP), heat pump (HP), gas boilers (GB) electric energy storage
(EES), thermal energy storage (TES), and renewable energy power
generation equipment.

2.2 Multi-agent game framework

The multiple players in the RIES studied in this paper are the
distribution system operator (DSO), distributed energy station
(DES), and the prosumer. The DSO seeks to maximize its own
revenue, while the DES and the prosumer seek to optimize their
performance according to their own demand for electricity and heat

as well as their own satisfaction. These three parties constitute a
competitive game relationship.

The RIES multi-agent master-slave game interaction framework
is shown in Figure 2. DSO, DES and prosumer formulate trading
strategies based on their own interests and environmental benefits,
optimize the internal operation state and satisfy diversified load
demands. DSO is the coordinator and the dominant player in the
game, which is responsible for optimizing the electricity price and
maintaining the power balance. The interaction between the DSO
and the lower level players is a typical Stackelberg game. DES is a
follower in the game, which contains various types of energy
conversion equipment and wind turbines, and aims to maximize
its own revenue. Prosumer is a follower in the game, and its load
contains a portion of adjustable load. And the Prosumer is not
sensitive to thermal induction, this paper uses virtual energy storage
to describe its thermal load.

3 Comprehensive electricity price
model based on carbon emission flow

The integrated energy system multi-agent game can incentivize
small energy consumer, prosumer to exchange energy with each
other in a competitive market, and its optimal scheduling research
has received widespread attention (Liu et al., 2018). One of the

FIGURE 1
Structure of RIES.
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important issues in RIES operation research is how to rationalize
pricing. In order to achieve the purpose of energy saving and
emission reduction and rational utilization of energy, this paper
proposes a comprehensive electricity pricing model based on carbon
emission flow. This paper incorporates carbon emission indicators
into the calculation of electricity price to better guide the energy use
behavior of prosumers.

3.1 Carbon emission flow model

In order to model a comprehensive electricity price based on
carbon emission flow, it is necessary to model the carbon emission
flow of each player within its IES. Ac-cording to the literature (Kang
et al., 2012), it is known that the carbon emission flow of each player
is the weighted average of the carbon emission intensity of all
injected electricity. Based on this theory, this paper models the
carbon emission flows in RIES. In this paper, it is assumed that the
grid power supply is generated from thermal power generation.

Lg .t � Lc (1)
where, Lg .t is the carbon emission flow of the grid, and Lc is the
carbon emission flow of thermal power units.

If the energy demand of prosumer exceeds its own PV
generation, the carbon emission flow of DSO at this time is as
follows.

LDSO.t � Lg .tPg .t +LDES.tPDES.t

Pg .t + PDES.t − P+
e.t

(2)

where LDES.t is the carbon emission flow of the DES, Pg .t is the
electricity delivered from the grid to the DSO, PDES.t is the electricity
sold by the DES to DSO, and P+

e.t is the additional electricity needed
by the prosumer.

If the energy demand of prosumer can be satisfied by its own PV,
the carbon emission flow of the DSO is as follows.

LDSO.t � Lg .tPg .t +LDES.tPDES.t

Pg .t + PDES.t
(3)

At this point, the carbon emission flow from prosumer is
0 because the electricity produced by prosumer is generated by PV.

Lprosumer.t � 0 (4)
For the DES, it can sell the excess electricity to the distribution

system operator after meeting its own electricity and heat demand.
Therefore, the carbon emission flow of the energy station is
calculated as:

LDES.t � LCHP.tPCHP.t

PCHP.t + PWT.t − PHP.t − PL.t
(5)

where LCHP.t is the carbon emission flow of CHP; PCHP.t , PWT.t are
the power generation of CHP and WT, respectively, and PHP.t , PL.t

are the electricity consumed by the HP and the electrical load in the
energy station, respectively.

3.2 Comprehensive electricity price model

The process of electricity production, transmission and
distribution needs to go through a series of complex processes, so
it is difficult for prosumer and other users to sense the incentives of
electricity price in a timely and accurate manner (Cheng et al., 2018).
The key to the multi-agent game of IES lies in the transmission of
price information. This paper first analyzes the carbon emission flow
among the agents to lay the foundation for the establishment of a
comprehensive electricity price model. The comprehensive
electricity price consists of a basic electricity price and a carbon
cost, where the DSO decides the basic electricity price. The
comprehensive tariff model links the price of electricity in each
time period to the carbon emission stream by considering carbon
policy factors such as carbon emissions and carbon taxes. The
method transmits information from the source side to the users,
which can better guide the energy use behavior of prosumers.

πc
DSO.t � π+

DSO.t + τcLDSO.t (6)
πc
DES.t � π−

DSO.t − τcLDSO.t (7)

FIGURE 2
Multi-agent game framework.
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πc
prosumer.t � π−

DSO.t (8)

where πc
DSO.t , π

c
DES.t , π

c
prosumer.t are the comprehensive electricity

price for DSO, DES, and prosumer, respectively, π+
DSO.t , π

−
DSO.t are

the base price of electricity for DSO to sell and buy electricity,
respectively, and τc is the carbon tax.

4 Decision-making model of each
game player

4.1 Decision-making model of DSO

4.1.1 Objective function
In the proposed Stackelberg game model, the distribution

system operator, as a leader, will decide the price of electricity
and purchase electricity from the grid based on the energy demand
to gain profit. The distribution system operator has profit
maximization as its objective function.

max IDSO � Cs − Cb − CDSO
op (9)

where Cs is the profit from the DSO’s interaction with prosumer, Cb

is the cost of purchasing electricity from the energy station, and
CDSO
op is the maintenance cost.
When the prosumer needs to purchase electricity externally, the

profit from the interaction between the prosumer and the DSO is:

Cs � ∑T
t�1
πc
DSO.tP

+
e.t (10)

Prosumer sells additional electricity after satisfying its own
demand. The profit of interaction between prosumer and DSO is:

Cs � ∑T
t�1
πc
prosumer.tP

−
e.t (11)

where P−
e.t is the excess electricity sold by prosumer.

The DES produces electricity through WT and CHP, and the
excess electricity is purchased by the DSO after meeting the load
demand in the energy station. The cost of purchasing electricity
from the DES by the distribution system operator is:

Cb � ∑T
t�1
πc
DES.tPDES.t (12)

The maintenance cost of the distribution system operator is
calculated by multiplying the unit price of maintenance cost by the
power of the superior grid, which is expressed as follows:

CDSO
op � ∑T

t�1
λPg .t (13)

where λ is the DSO maintenance cost unit price

4.1.2 Constraint condition
1) Power balance constraint

The DSO is responsible for the transmission and distribution of
electrical energy, so the electrical power balance constraint is:

Pg .t + PDES.t � Pe.t (14)

2) Security operational constraint

The DSO needs to satisfy the security constraint during
operation, and the power interacting between the DSO and the
grid cannot exceed the specified upper limit.

0≤Pg .t ≤Pg .max (15)

3) Other constraint

In order to ensure that prosumer is motivated to trade with the
DSO, the purchase and sale price of electricity decided by the DSO
should satisfy the following constraints:

∑T
t�1
πc
DSO.t ≤Tπ

ave
s.t (16)

∑T
t�1
πc
DES.t ≥Tπ

ave
b.t (17)

where πave
s.t is the average value of the grid’s electricity sales price and

πave
b.t is the average value of the grid’s electricity purchase price.

4.2 Decision-making model of DES

4.2.1 Objective function
The energy station regulates the output of each equipment

within the energy station according to the price set by the DSO.
The energy station has the objective of maximizing the profit.

max IDES � Cb − Cg − CDES
op (18)

where Cb is the profit from the sale of electricity at the energy
station, which numerically corresponds to the cost of electricity
purchased by the DSO from the energy station. Cg is the cost of gas
consumed by the energy station, andCDES

op is the cost of operating the
equipment in the energy station.

The DES can produce electricity and heat through the use of gas,
allowing for the inter-conversion of energy sources, while also
reducing costs and pollution. In the DES, the equipment that
uses gas are CHP and GB. The cost of gas consumption is
calculated as follows:

Cg � ∑T
t�1

PCHP.t

qηCHP

+ VGB.t( )πg .t (19)

where q is the calorific value of gas used in DES, ηCHP is the
efficiency of CHP, VGB.t is the amount of gas used in GB, and πg .t is
the unit price of gas.

The operating cost of each equipment in the DES is calculated as
follows:

CDES
op � ∑N

n�1
∑T
t�1
μnPn.t (20)

where μn is the unit price of the operating cost of device n, and Pn.t is
the power of device n.
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4.2.2 Constraint condition
1) Power balance constraint

The balance of electric and thermal power is to be satisfied inside
the energy station with the following expression.

PCHP.t + PWT .t + P+
EES.t � PDES.t + P−

EES.t + PHP.t + PL.t (21)
QCHP.t + Q+

TES.t + QHP.t + QGB.t � Q−
TES.t + QL.t (22)

where P+
EES.t , P

−
EES.t are the power of charging and discharging of the

electric energy storage equipment in DES, Q+
TES.t , Q

−
TES.t are the

power of charging and discharging of the thermal energy storage
equipment in DES, respectively, QCHP.t , QHP.t , QGB.t are the thermal
power of CHP, HP and GB, respectively.

2) Security operational constraint

The security operational constraint of the equipment is to ensure
the safe operation of all kinds of equipment, mainly considering the
power upper limit and the maximum ramping rate constraints of
each equipment in DES.

0≤Pn.t ≤Pn.max (23)
Pn.t − Pn−1.t ≤ΔPn.max (24)

where Pn.max is the maximum output power of the equipment, and
ΔPn.max is the maximum ramping rate of the equipment.

4.3 Decision-making model of prosumer

4.3.1 Objective function
Prosumers aim tominimize their own energy costs. Based on the

comprehensive electric pricing strategy and utilizing demand
response and building thermal inertia, prosumers actively
participate in the master-slave game to reduce their energy costs
while meeting their energy requirements. Due to the existence of the
thermal inertia of the building and the heat load of the prosumer is
not large, the heat demand of the prosumer is satisfied through the
conversion of electric energy.

The energy preference cost of the prosumer, the cost of
interacting with the DSO and the operation cost of the PV are
considered in the objective function.

min Iprosumer � CPV
op + CP + Cs (25)

where CP is the energy preference cost of the prosumer and CPV
op is

the operating cost of the PV.
The operating cost of the PV is proportional to its output, and

the expression is as follows.

CPV
op � ∑T

t�1
γPVPPV .t (26)

where γPV is the unit operating cost and PPV .t is the output power of
the PV.

CP � ∑T
t�1

εe
Pp.t.0

Pp.t( )2 − εePp.t + εe
2
Pp.t.0 (27)

where εe is the preference coefficient of electric demand by
prosumer, Pp.t.0 is the initial electric load of prosumer, and Pp.t is
the electric load to be optimized by prosumer.

Pp.t � Puse.t + Ph.t + Pd.t − PPV .t (28)
where Puse.t is the basic electrical load of the prosumer, Ph.t is the
electrical power required for heating, and Pd.t is the electrical load
that can be adjusted.

4.3.2 Constraint condition
1) Operation constraint

The sale and purchase of electricity between DSO and prosumer
cannot be carried out at the same time. And the PV output needs to
be less than the maximum output power.

P+
e.tP

−
e.t � 0 (29)

0≤PPV .t ≤PPV .max (30)

2) Electric load demand response constraint

The basic electric load requires high reliability to meet the basic
production and living needs of users, and cannot be changed
arbitrarily, so it does not participate in demand response.
Adjustable electric loads participate in demand response.

0≤Pd.t ≤Pd.max (31)

3) Thermal inertia of buildings constraint

In integrated energy system, buildings have large thermal inertia.
Due to the inherent thermal inertia of buildings, it takes a certain
amount of time for the indoor temperature to change, and after a
sudden interruption or increase or decrease in the thermal energy
provided by the system, the indoor temperature of the building will
not change immediately, but will reach a new temperature after a
certain period of time. So the thermal load can be regulated within a
comfortable temperature range.

Since buildings have thermal inertia of buildings, the thermal
needs of prosumers can be met by maintaining the room
temperature within the comfort range. In order to describe the
indoor temperature variation in a building, this paper uses a building
energy model based on a thermal resistance and thermal capacity
network (Chen et al., 2021).

Ph.t � Qt

ηh
(32)

Qt � βKcf c Tin.t − Tout.t( ) + 0.278cwρwV0nt Tin.t − Tout.t( )
+0.278c0ρ0V0

dTin.t

dt
(33)

where Ph.t is the electric power required for heating, ηh is the electric
heat conversion efficiency,Qt is the heat output power of the heating
equipment when the indoor temperature changes, β is the outdoor
wind intrusion additive rate; Kc is the heat transfer coefficient of the
exterior door; f c is the area of the exterior door, and nt is the number
of air changes in time period t. Tin.t is the current indoor
temperature, Tout.t is the current outdoor temperature, cw is the
specific heat of the outdoor air, ρw is the density of the outdoor air,
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V0 is the volume of the air in the building, c0 is the indoor air specific
heat, and ρ0 is indoor air density.

The temperature variation constraints inside the prosumer’s
room, and the comfortable temperature range expressions are as
follows.

Tin.t � Tin.t−1 − Tin.t−1 − Tout.t + ηeRiPh.t

CRi
Δt (34)

Tin.min ≤Tin.t ≤Tin.max (35)
where C is the heat capacity, Ri is the thermal resistance, ηe is the air
conditioner operating efficiency, Tin.min is the minimum acceptable
indoor temperature, and Tin.max is the maximum acceptable indoor
temperature.

4.4 Uncertainty model transformation

During the actual energy station operation, there is uncertainty
in the output of the wind turbines and photovoltaic equipment. And
it is often difficult to obtain the exact probability density function in
real system decision-making, while it is relatively easy to obtain the
range of values of uncertain variables (Wang et al., 2014; Bai et al.,
2017). Interval mathematical programming (IMP) methods are
capable of handling uncertain information in the form of
intervals, with interval linear programming methods being the
most widely used in energy planning under complex and
uncertain conditions.

The general form of IMP model is:

max
X

f[ ] � C[ ] X[ ]
s.t. A[ ] X[ ]≤ B[ ]
X[ ]≥ 0

⎧⎪⎨⎪⎩ (36)

where [C] � ([cij])1×n, [A] � ([aij])m×n denote the coefficient
matrices of [X] in the objective function, inequality constraints,
respectively, whose elements are [cij] � [c−ij, c+ij], [aij] � [a−ij, a+ij].
[X] � ([xij])n×1 is a n-dimensional decision variable, whose
elements are [xij] � [x−ij, x+ij]. [B] � ([bij])m×1 is the interval value
of the constraint condition, whose elements are [bij] � [b−ij, b+ij].

Interval mathematical programming method generally
transform a model containing an uncertain problem into two
sub-models of a deterministic problem to be solved, so that the
objective value [f o] � [f −o , f +o ] and the decision variable [xj] �
[x−j , x+j ] can be obtained.

In this paper, the IMP is used to deal with theWT and PV output
uncertainty problem, which represents PWT,t and PPV ,t in the form
of interval numbers. The decision variable Pn,t , Pd,t and the objective
function IDES, Iprosumer are also represented in the form of interval
numbers. After performing the solution, the objective function will
change to the interval value [IDES] and [Iprosumer].

This paper uses (IaDES, IdDES) and (Iaprosumer , I
d
prosumer) to denote

the return intervals for DES and prosumer respectively. The mean
value IaDES, Iaprosumer are the expected optimal value under the
influence of uncertainties, and IdDES, Idprosumer describe the
uncertainty of the optimal solution.

IaDES �
I−DES + I+DES

2
(37)

IdDES �
I−DES − I+DES
∣∣∣∣ ∣∣∣∣

2
(38)

Iaprosumer �
I−prosumer + I+prosumer

2
(39)

Idprosumer �
I−prosumer − I+prosumer

∣∣∣∣∣ ∣∣∣∣∣
2

(40)

where I−DES and I
−
prosumer are obtained from the worst sub-model, and

I+DES and I
+
prosumer are obtained from the best sub-model. The impact

of WT and PV output uncertainty on the benefits of each subject is
reduced by determining value substitution intervals values IDES and
Iprosumer , while maximizing DES benefits and minimizing energy use
costs for prosumers.

max IDES � σ1I
a
DES + 1 − σ1( )IdDES (41)

minIprosumer � σ2I
a
prosumer + 1 − σ2( )Idprosumer (42)

where σ1 and σ2 are weighting coefficient.

4.5 Stackelberg game model

The Stackelberg game model is developed based on the
competitive relationship between DSO, DES and prosumer.
where DSO acts as the leader, DES and prosumer act as the
follower. In the game process, the upper level leader sets the
price of each electric energy with the goal of obtaining its own
maximum net profit, and the lower level followers will take into
account the maximum comprehensive efficiency and their own
satisfaction to formulate a suitable energy demand program.

The strategy of the DSO is πc
DSO.t ,π

c
DES.t , π

c
prosumer.t , and the

strategy of the followers is the output of each equipment in DES Pn.t ,
and the adjustable load of prosumer Pd.t . The utility of each player is
the objective function as described above. In Stackelberg equilibrium
solution, there is no participant who can unilaterally change its
strategy to make the profit bigger or the cost smaller. The expression
that satisfies the conditions for the equilibrium solution is as follows.

IDSO π*,P*
n,P

*
d( )≥ IDSO π,P*

n,P
*
d( ) (43)

IDES π*,P*
n,P

*
d( )≥ IDES π*,Pn,P

*
d( ) (44)

Iprosumer π*,P*
n,P

*
d( )≤ Iprosumer π*,P*

n,Pd( ) (45)

5 Solution method

Considering the privacy problem of each player, this paper
adopts the differential evolution algorithm as well as the CPLEX
solver to solve the multi-agent game model. Figure 3 shows the
flowchart of the algorithm. The DE algorithm designs the
computational factors by simulating the hybridization and
mutation in the genetic process, and optimizes the updating of
the offspring population by using the difference between the parent
vectors, which leads to the optimal solution of the given problem
after several iterations (Zhang et al., 2023). The basic steps of DE can
be summarized into 4 steps: selection, variation, crossover and
selection.
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The decision of the upper level leader DSO is a nonlinear
optimization problem. The DE algorithm can solve it quickly and
accurately. Among the followers, the objective functions of energy
station and prosumer can be solved directly using the CPLEX solver.
During the solving process, the optimization results of the followers
are passed to the upper level leader, who makes decisions based on
the information and passes them to the lower level. The final result
can be solved through continuous iteration (Liu et al., 2017).

6 Case study

6.1 Basic data

The data of the cases in this paper are selected from a typical
regional integrated energy system. The multi-agent game model
established in this paper is applied to simulate the operation
optimization of this regional integrated energy system to verify
the effectiveness of the method proposed in this paper.
According to the load characteristics and geographical
characteristics of the region, the energy station is equipped
with CHP, GB, WT, HP, and energy storage devices; the
prosumer is equipped with PV. The basic parameters required
for the case include equipment parameters, load parameters, and
new energy output parameters. The variation curves of wind
speed and light intensity in the region are shown in Figure 4, the
parameters of each equipment are shown in Table 1, and the

electric and thermal load demand in the region is shown in
Figure 5.

Based on the above data, the following scenarios are set up for
comparison in order to analyze the impacts of comprehensive
electricity price, wind power output uncertainty, and demand
response on the regional integrated energy system.

Scenario 1: Considering demand response, no comprehensive
electricity price and no uncertainty.

Scenario 2: Considering demand response and comprehensive
electricity price of electricity, carbon tax τc = 0.1 CNY/kgCO2, no
uncertainty.

Scenario 3: Demand response is not considered, comprehensive
electricity price is considered, carbon tax τc = 0.1 CNY/kgCO2, no
uncertainty.

Scenario 4: Considering demand response and comprehensive
electricity price of electricity, carbon tax τc = 0.2 CNY/kgCO2, no
uncertainty.

Scenario 5: Considering demand response and comprehensive
electricity price of electricity, carbon tax τc = 0.1 CNY/kgCO2,
uncertainty is considered.

6.2 Analysis of comprehensive electricity
price based on carbon emission flow

In order to demonstrate the effect of the comprehensive
electricity price model based on the carbon emission flow theory

FIGURE 3
Solving flow chart.
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on the energy station and distribution system operator in the region
in terms of carbon reduction, Table 2 shows the data comparison
before and after the application of the comprehensive electricity
price model with different carbon tax prices.

Comparing scenario 1 and scenario 2, the effectiveness of the
comprehensive electricity price model developed in this paper in
terms of energy saving and emission reduction benefits is analyzed.
The DES’s benefit increases by 14.5%, which is due to the higher
price of electricity sold by the distribution system operator after
taking into account the carbon emission and carbon tax, thus
increasing the benefit. However, DES and prosumer experience a
slight decrease in their revenues due to the additional costs
associated with the carbon tax. The carbon emissions of scenario
2 decreased by 12.1% compared to scenario 1, proving the
effectiveness of the method of the invention for reducing carbon
emissions.

The sensitivity of RIES to carbon tax price is analyzed
comparing scenario 2 and scenario 4. After the carbon tax price
is raised to 0.2 CNY/kgCO2, the revenue of the energy station further
decreases and the cost of prosumer increases. However, there is a
significant reduction in carbon emissions. It can be seen that the
method proposed in this paper can reduce the system carbon
emissions by sacrificing part of the economy.

In order to accurately analyze the effect of the comprehensive
electricity price, this paper compares the change in electricity price
before and after considering the carbon emission flow. Figure 6A
shows the price of electricity sold by this DSO during a typical day,
and Figure 6B shows the price at which the DSO purchases excess
electricity from the energy station. The variation of electricity price
over time reflects the time-varying characteristics of the load and
the carbon emission characteristics of the energy producing
equipment. When the load is large and in the peak period of

FIGURE 4
Wind speed and light intensity.

TABLE 1 Types and parameters of equipment.

Equipment type Rated capacity/kW Efficiency/% Operation cost/(CNY/kW)

CHP 1000 34 (Gas to electric) 0.023

39 (Gas to heat)

HP 900 440 0.088

GB 900 90 0.02

EES 600 90 0.0017

TES 600 90 0.0019

WT 2800 — 0.028

PV 1600 — 0.035
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electricity consumption, the purchase and sale price of electricity is
higher; when the load is small and in the trough period of
electricity consumption, the purchase and sale price of
electricity is lower. When the new energy equipment output of
the DES is large enough, the carbon emission intensity of each
node in the system decreases, at which time the price of electricity
sales is lower and the price of electricity purchases is higher; when
the new energy equipment output of the DES is lower, the carbon
emission intensity of each node in the system is larger, at which
time the price of electricity sales is higher and the price of
electricity purchases is lower.

6.3 Operational analysis of DES

6.3.1 Analysis of operational results
The effect of the comprehensive electricity price shows that the

operational status of the equipment within the energy station and
the comprehensive electricity price in-fluence each other. Therefore,
it is necessary to analyze the operating state of the DES. The
operation simulation is carried out for the electric and thermal
loads and wind power data in this paper, and the electric power
balance scheduling results and thermal power balance scheduling
results are obtained, as shown in Figures 7, 8, respectively.

First of all, during the period from 23:00 to 07:00, electricity
prices are in the valley due to the low electrical load, and the profits
from the sale of electricity by the energy station are also lower. The
electric load is first supplied by WT, and the shortfall is then
replenished by other devices. In addition, in order to obtain
more profit, the energy station will store the excess electricity in
the storage equipment, and then sell the stored electricity at a high
price during the peak period. During this period, the heat load
demand is high, and then GB, CHP and HP work together to meet
the thermal energy demand of the users; if they cannot meet the
demand, the thermal energy shortage is supplemented by the
thermal storage device of the energy station. Secondly, during 08:
00–10:00 and 14:00–18:00, the demand of electric load rises
gradually, and the comprehensive electricity price tends to
increase, and when WT cannot meet the demand of load, the
output of CHP also increases. The heat load is still supplied by
GB, CHP and HP, and the shortfall is then supplemented by the heat
storage equipment. Finally, the electrical load is at its peak during
the 18:00–23:00 h, when the comprehensive electricity price is the
highest, and the energy station, driven by profit, will increase its

FIGURE 5
Electrical and thermal loads on a typical day.

TABLE 2 Effectiveness of comprehensive electricity price model.

Scenario Profits of DES/CNY Profits of DSO/CNY Costs of prosumer/CNY Carbon emission/kg

1 8102 13762 21845 1201.3

2 7632 15712 20586 1002.5

4 7375 17046 20947 880.5

FIGURE 6
DSO electricity price comparison. (A) price of electricity sales (B) price of electricity purchase.
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internal generation significantly to avoid using electricity with too
much carbon price attached. At the same time, the storage device
discharges and sells the rest of the electricity to the DSO while
meeting its own load demand, thus obtaining a high profit. Due to
the operating characteristics of the CHP, the CHP also produces
more heat during this time period, and the excess heat energy will be
stored by the thermal storage device and then released during the
peak heat use period.

6.3.2 Analysis of uncertainty
Under the actual conditions, the output of new energy equipment is

greatly affected by natural conditions and there is a certain degree of
uncertainty, so it is necessary to further study the impact of uncertainty
factors on the operation of energy stations. In this paper, we consider the
uncertainty of wind power equipment output and compare scenario
5 and scenario 2 according to the interval mathematical programming
method, and the results are shown in Table 3.

FIGURE 7
Electric energy scheduling results on a typical day.

FIGURE 8
Thermal energy scheduling results on a typical day.
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Comparing the results of scenario 2 and scenario 5, it can be seen
that the revenue of the energy station under scenario 5 is affected by the
uncertainty of wind power output in the system, and the average value of
the profit is slightly decreased. This is due to the fact that after
considering the wind power output uncertainty, the energy station
will sell less power to the distribution network in order to cope with
the situation of insufficient wind power output while meeting the load
demand, which in turn leads to a lower profit from power sales.

6.4 Optimized results of prosumer

6.4.1 Analysis of operational results
In order to analyze the effect of the comprehensive electricity

price on the energy use behavior of prosumer in the game process,
the following conclusions are drawn by comparing scenarios 1, 2 and
3. Table 4 shows the comparison of optimization results of
prosumer.

TABLE 3 Uncertainty analysis of wind power output.

Scenario Profits of DES/CNY Average profit/CNY Profit breadth/CNY

2 7632 7632 0

5 [6910,8105] 7507.5 1195

TABLE 4 Analysis of prosumer costs.

Scenario Costs/CNY Electricity consumption/kWh Carbon emission/kg

1 21845 27371 1203.1

2 20586 24625 1002.5

3 25865 19058 794.5

FIGURE 9
Comparison of electricity use by prosumer.

TABLE 5 Uncertainty analysis of wind power output.

Scenario Prosumer costs/CNY Average cost/CNY Cost breadth/CNY

2 20586 20586 0

5 [20098,23130] 21614 3032
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Scenario 2 considers the cost of additional carbon tax on
electricity purchased by prosumer compared to Scenario 1. The
introduction of the additional carbon tax not only encourages the
energy station to prioritize the production of clean electricity, but
also guides prosumer to adjust their own energy use behavior to
reduce the overall carbon emissions in the region. By
comprehensively weighing the carbon emissions and the costs to
prosumer, it can be argued that all players can gain more profit after
considering the comprehensive electricity price.

Comparing scenario 2 and scenario 3, the impact of considering
the demand response of prosumer on the operation status is
analyzed. The system carbon emission of scenario 3 is further
reduced, but at the same time the cost of prosumer increases by
25.6%. This is due to the fact that scenario 3 does not consider the
demand response of prosumer, and prosumer does not adjust its
energy use behavior when the comprehensive electricity price is
higher.

To further illustrate the effectiveness of the comprehensive
electricity price model proposed in this paper in guiding
prosumer to adjust their electricity consumption strategies, this
paper compares the electricity consumption of prosumer with
and without the comprehensive electricity price mechanism. The
comparison results are shown in Figure 9. Prosumer adjusts its
electricity consumption strategy with the goal of minimizing the
total cost while ensuring that the basic electric load is satisfied. From
the figure, it can be seen that based on the comprehensive electricity
price model, prosumer will take the initiative to regulate the energy
use behavior and reduce the electricity consumption during the peak
period.

6.4.2 Analysis of uncertainty
Compare scenarios 2 and 5 to analyze the impact of uncertainty.

The results are shown in Table 5. Compared with Scenario 2,
Scenario 5 is affected by PV uncertainty, and the energy cost of
prosumers fluctuates greatly and the average value of the cost
increases slightly. This is because when considering the
uncertainty of PV plant output, prosumers need to cope with the
situation of insufficient PV plant output and need to buy more
electricity from the distribution network operator or adjust their
energy use behavior in order to satisfy their own electricity demand.

7 Conclusion

This paper proposes an optimization operation strategy of
integrated energy system based on carbon emission flow for RIES
multi-agent game. The paper constructs a body Stackelberg game
mechanism with DSO as the leader and distributed energy stations
and prosumers as the followers. The conclusions are drawn by
setting up multiple scenarios for comparison and analysis. The
comprehensive electricity price model based on carbon emission
flow can well guide the equipment output and energy use behavior of
the lower level followers. In the game process, the energy station
optimizes the operation state according to the comprehensive
electricity price and gains more revenue. Prosumers optimize
their energy consumption strategies under the incentive of
demand response after obtaining the comprehensive electricity
price. Each agent is able to transform its low-carbon resources

into economic benefits after participating in the game, indicating
that the carbon market environment can motivate the participating
agents to further save energy and reduce emissions.
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With the increasing proportion of renewable energy, the power system inertia
decreases, and the operation uncertainty rises. It brings concerns about the
system frequency and operational reliability. However, the impacts of the
power system frequency performance on the reliability parameters of
generation units have not been fully investigated. This paper studies the
frequency performance and the operational reliability co-evaluation for power
systems considering wind turbines. Firstly, a power system frequency regulation
model is established considering the regulation capability of wind turbines. Then,
the cluster of equivalent wind turbines is incorporated into the frequency
regulation architecture of thermal power units, which accelerates the analysis
of frequency performance. Then, the frequency performance of the power system
with the participation of wind turbines under the operation uncertainty and the
unit random faults is quantitatively analyzed. A frequency-dependent generator
reliability parameter model is derived. Next, a multi-time scale co-evaluation
framework is proposed to realize the co-evaluation of frequency performance
and operational reliability. Case studies are carried out on the modified IEEE RTS-
79 system and a provincial power system. Results show that compared with the
existing research, the proposed method can obtain the frequency performance
and reliability results efficiently.

KEYWORDS

renewable energy, wind turbines, power system reliability, frequency regulation, risk
evaluation

1 Introduction

In line with China’s “Carbon Peak and Carbon Neutrality” policy, the installed capacity
of renewable energy units is expected to experience further growth. As stated in the National
Development and Reform Commission’s report ‘China’s Renewable Energy Development in
2022"(National development and reform commission of China, 2022), China’s renewable
energy installed capacity is projected to reach 1.2 billion kilowatts by 2022, accounting for
47.3% of the country’s total power generation. This will result in a total renewable energy
power generation of 2.7 trillion kW hours, representing 31.6% of the total electricity
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consumption in society. The State Grid Energy Institute has
reported that China’s wind and solar installed capacity is
forecasted to reach 5 billion kilowatts by 2060, constituting over
65% of the total installed capacity (Lin et al., 2022a). Wind power,
being the most mature and cost-effective renewable energy
technology currently, is anticipated to witness a five-fold increase
in installed capacity by 2060. Consequently, renewable energy will
become the primary source of electricity supply in China.

The increasing integration of renewable energy sources, coupled
with the retirement of conventional synchronous units like thermal
power plants, has led to heightened uncertainty in the power supply
of the electrical grid. Consequently, the system’s inertia has
decreased, posing challenges to the frequency security and
operational reliability of the power system (Lin et al., 2023). One
potential solution to address this issue is to involve wind power
generators in economic dispatch and frequency regulation services
(Zhang et al., 2022; Lei et al., 2022; Tang et al., 2022). In line with
China’s “Guidelines for Power System Safety and Stability”
implemented on 1 July 2020, wind power generators are required
to possess primary frequency regulation capabilities, with a higher
priority assigned to primary frequency regulation than automatic
power generation control (National Power Grid Operation And
Control Standardization Technical Committee, 2023). It is
foreseeable that wind power generators, as an increasingly
significant energy source in modern power systems, will assume
more substantial responsibilities in peak load management and
frequency regulation.

The expansion of wind power generators integrated into the power
grid leads to system frequency fluctuations, thereby influencing unit
operation and dispatch as well as potentially impacting unit outage
probabilities (Wu et al., 2023). Consequently, the operational and
maintenance costs of the power system are likely to increase (Yang
et al., 2020). Notably, augmented frequency fluctuations can trigger
protective actions, such as frequency protection measures or even
generator tripping, which are considered reliability events (Zhou et
al., 2021). To illustrate this point, the British blackout incident inAugust
2019 serves as an example. The rapid decline in system frequency,
resulting from transmission line and wind turbine failures, prompted
the activation of frequency protection mechanisms in distributed
generators, leading to their shutdown. This further exacerbated the
frequency drop, ultimately necessitating the activation of the system’s
low-frequency load-shedding mechanism. Consequently,
approximately 931MW of load was disconnected, resulting in the
shutdown of local industries and commerce, paralyzing transportation,
and incurring significant economic losses (Owens, 2019). These events
demonstrate the interconnected nature of system frequency
performance and operational reliability. Therefore, it becomes
imperative to conduct a comprehensive assessment of the power
system’s operational reliability level and frequency performance.

Various studies have investigated methods for assessing the
operational reliability of power systems considering the uncertainty
of wind power. Thesemethods include analytical approaches (Sharifinia
et al., 2020), time-series Markov Monte Carlo methods (Chao et al.,
2019), and Monte Carlo hybrid sampling methods (Ding, 2022; Li,
2013; Wu and Wang, 2023) is a pioneering work in the reliability
evaluation for integrated electricity-gas systems considering hydrogen.
(Ding et al., 2021). provides a comprehensive study for the operational
reliability assessment of the integrated heat and electricity system. (Hu

et al., 2021). focuses on the power system operational reliability
assessment considering the decision-dependent uncertainty. These
studies propose an efficient reliability evaluation method for power
systems. However, they overlook the impact of frequency performance
on system reliability and fail to comprehensively capture the interplay
between frequency performance and reliability parameters. The
uncertainty in wind power output directly leads to increased system
frequency fluctuations. Then the protection device of the generation
units may be triggered and even result in generator trips, which are
considered reliability events. These events ultimately affect the outage
probability of generating units and consequently impact the results of
power system operational reliability assessments (Kundur and
Malik, 2022).

Currently, there are a limited number of studies that address the
comprehensive assessment of power system frequency performance
and operational reliability. A collaborative frequency regulation
architecture combining battery energy storage and generators is
proposed in (Farivar et al., 2022) to achieve a comprehensive
evaluation of frequency performance and operational reliability.
(Ye et al., 2023). presents a comprehensive evaluation method
considering the frequency performance reliability of
interconnected power systems, considering the characteristics of
high-voltage DC transmission. These studies primarily analyze the
impact of frequency regulation on the output power of generators,
overlooking the influence of system frequency performance on the
reliability parameters of the generation units. Moreover, they fail to
adequately consider the frequency regulation capabilities of wind
turbine clusters and neglect factors such as the wake effect of wind
turbine clusters, leading to overly optimistic reliability assessment
results (Wang et al., 2020).

This study aims to address the coupling effect between power
system frequency performance and generator unit reliability
parameters. Contributions of this paper are.

1) Propose an analytical expression of the frequency-dependent
reliability parameters for generation units. The frequency
performance of the power system is quantitatively analyzed
under load uncertainty and random unit failures.

2) Formulate a comprehensive assessment method that
incorporates the frequency regulation capability of wind
turbine clusters, which enables the comprehensive evaluation
of secondary frequency dynamics and hour-level power system
operational reliability.

3) Numerical examples are conducted using the modified IEEE
RTS-79 system and a provincial power system to validate the
accuracy of the proposed method. The results obtained from this
research contribute to the verification of the method’s
effectiveness and provide valuable insights for secondary
frequency control and reliability optimization efforts.

The rest of this manuscript is organized as follows. Section 1
introduces the frequency regulation model of wind turbine
clusters. Section 2 proposes the frequency-dependent reliability
parameters of generation units and the power system operational
reliability assessment model. Section 3 formulates the power
system frequency-reliability comprehensive assessment
framework. Case studies are illustrated in Section 4. Section 5
concludes this paper.
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2 Frequency regulation model of wind
turbine clusters

2.1 Frequency regulation model of doubly-
fed induction wind turbine

Doubly-fed induction generator converters (DFIG) wind
turbines consist of several essential components, including wind
turbines, mechanical systems, generators, converters, controllers,
and associated devices, as shown in Figure 1. The primary function
of the wind turbine component is to extract energy from the wind
and convert it into mechanical energy. This mechanical energy is
subsequently transmitted through the mechanical system, enabling
the rotation of the generator. The generator, an induction machine
in this case, converts the mechanical energy into electrical energy. To
achieve variable speed constant frequency power generation, a
converter is interconnected with the rotor of the generator. The
converter plays a crucial role in regulating the excitation current
frequency of the rotor, thereby maintaining a constant stator
frequency. Through this control mechanism, the DFIG can
operate at varying speeds while ensuring a consistent frequency
of the generated electrical power.

To provide frequency regulation services, DFIG works in sub-
optimal power point tracking mode. In this mode, the DFIG reserves
a certain amount of wind power and collects the frequency deviation
of the power system Δf and frequency change rate df/dt to adjust
its output. The wind turbine output power PWG can be established as
a piece-wise nonlinear function of the wind turbine rotor speed wG

(Lin et al., 2022b):

PWG �

Kw3
0 wG − wmin( )
w0 − wmin( ) , wmin <wG <w0

Kw3
G, w0 ≤wG ≤w1

Pm −Kw3
1( ) wG − wmax( )

wmax − w1( ) + Pm, w1 <wG <wmax

Pm, wG ≥wmax

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where wmin represents the starting speed of the fan rotor; w0

represents the rotor speed in the constant speed zone of the fan;

wmax represents the speed at which the DFIG enters the constant
power zone; Pm represents the maximum output power of the DFIG;
K is the power tracking coefficient. The value of the power tracking
coefficient K depends on the power system frequency deviation Δf
and frequency change rate df/dt such that

K � Kmax uOPPT − ΔuOPPT( ) (2)
where Kmax is the power tracking coefficient of the DFIG operating
in the maximum power tracking mode; uOPPT is the virtual inertia
factor of the DFIG; ΔuOPPT is the correction coefficient of the virtual
inertia factor of the DFIG. The relationship between the virtual
inertia factor uOPPT and power system frequency deviation Δf is

uOOPT � w3
G0 wG0 + 2πcΔf

p
( )

−1
(3)

where wG0 is the rotor speed when the wind turbine participates in
frequency regulation; c is the virtual inertia coefficient of the wind
turbine; p is the number of pole pairs of the wind turbine.

The relationship between the wind turbine virtual inertia factor
correction coefficient and the power system frequency change rate is
(Shafi et al., 2020)

ΔuOPPT � 2wG0w−1
s cHf

Kmaxw3
G

· w2
G − w 2

min

w 2
max − w 2

min

· df
dt

(4)

where ws is the grid synchronous rotor speed; H is the equivalent
inertia time constant of the DFIG.

ΔPWT � 2
ωG0

ωs
cH( )fdf

dt
(5)

Figure 2 shows the relationship between the output power of the
wind turbine, the rotor speed, and the wind speed based on Eqs 1–5.
It is assumed that before the disturbance occurs, the wind turbine
operates at point A. When the system frequency decreases, the
frequency changes, i.e., Δf< 0. According to Equation 3 and
Equation 2, the virtual inertia factor of the wind turbine uOOPT
decreases. Then the power tracking coefficient K increases and the
wind turbine operating curve changes from the purple curve in
Figure 2 to the red curve. The operating point moves from point A to

FIGURE 1
The structure of the wind turbine.
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B point, thereby increasing the output power of the wind turbine
PWG. Under this circumstance, the input mechanical power of the
wind turbine remains at the level of point A. Therefore, the wind
turbine will only work at point B for a short time. Then slowly fall
back to point C where the input mechanical power and output
electromagnetic power are balanced. Point C is not the optimal
operating point at this wind speed. In consideration of the operating
economy, the output power of the wind turbine will be adjusted back
to operating point A. The moving trajectories of the wind turbine’s
working points are A, B, C, and A in sequence. Figure 3 shows the
frequency regulation model of a single wind turbine.

2.2 Frequency regulation model of wind
turbine cluster considering wake effects

Since the frequency regulation capability of a single wind turbine
is weak, clusters of wind turbines often participate in power system
frequency regulation. In wind turbine clusters, the wake effect refers
to the phenomenon that upstream wind turbines absorb part of the
wind energy, thereby affecting the wind speed of downstream wind
turbines. Ignoring this phenomenon will lead to overly optimistic
evaluation results of power system frequency performance and

reliability. This paper uses the common Jensen model to
characterize the wake effect in wind turbine clusters (Zhao et al.,
2021), as shown in Figure 4.

In Figure 4, vi is the wind speed of the upstream fan; vj is the
wind speed of the down-stream fan; ri is the blade radius of the
upstream fan; α is the wake drop coefficient; Ri represents the
influence range of the wake, satisfying Ri = ri + α xij; xij
represents the up-stream wind turbine unit i and the
downstream. The distance between wind turbines j along the
wind direction. Part of the wind energy of the downstream wind
turbine j is blocked by the upstream wind turbine i, and the blocked
area is recorded as Sij. Sj is the wind-catching area of wind turbine j.
The downstream affected area increases as the attenuation
coefficient α increases. The wind speed reaching the downstream
wind turbine j is not only affected by the upstream wind turbine i
directly in front of it, but also by other upstream wind turbines.

Based on the Jensen model, the wind speed vj of the downstream
wind turbine can be estimated as

vj � βjvi (6)

βj � 1 −∑n
i�1

1 − �����
1 − Ci

√( ) r2i Sij
R2
i Sj

(7)

where Ci is the thrust coefficient of the upstream fan i, which is
related to the operating status of the fan i itself; n is the total number
of upstream fans of the fan j. βj is the wake effect coefficient of wind
turbine j, which comprehensively reflects the influence of the wake
effect. The smaller βj is, the greater the wake effect will be, and the
weaker the frequency modulation ability of the downstream
fan will be.

When a wind turbine cluster contains hundreds or even
thousands of wind turbines, it is impossible to analyze the
frequency regulation capabilities of the units under the influence
of the wake effect and its impact on system reliability. Therefore, this
paper proposes a clustering method based on the wake effect
coefficient to classify wind turbine clusters according to the wake
effect coefficient of each wind turbine. The classification number is
A, B, C,/, and the corresponding wind turbine set is recorded as
ΩA,ΩB,/ . Wind turbines of the same type do not affect each other,
but the output of wind turbines of different types is affected by the
wind turbines of the previous type. If wind turbines of the same type

FIGURE 2
The relationship among the output power of the wind turbine,
the rotor speed, and the wind speed.

FIGURE 3
Frequency regulation model of a single wind turbine.
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are subjected to the same wind speed, the thrust coefficients of the
turbines Ci are the same.

Since the influence coefficient of the wake effect is nonlinearly
related to factors such as the spatial position of the wind turbine,
blade size, relative distance, etc., it presents characteristics of
randomness and convexity that are difficult to guarantee.
Therefore, this paper uses a density-based clustering algorithm
with the wake effect coefficient as the core index to solve the
problem of overestimation of wind turbine frequency regulation
capabilities and power system operational reliability assessment
caused by inaccurate clustering of wind turbines and inaccurate
wind speed estimation. The problem with being too optimistic.

After the clustering is completed, the withstand wind speed of
each type of wind turbine can be calculated. For example, the wind
speed of Class B wind turbines is affected by the wake effect caused
by Class A wind turbines. The wind speed is recorded as vj,B, which
can be expressed as

vj,B � βj,BvA (8)

βj,B � 1 − ∑
i∈ΩA

1 − ������
1 − CA

√( ) r2i Sij
R2
i Sj

[ ] (9)

where vA is the wind speed of class A wind turbine; CA is the thrust
coefficient of class A wind turbine; βj,B is the wake effect influence
coefficient of wind turbine j belonging to class B under the influence
of the wake effect of class A wind turbine. The wind turbine cluster
frequency regulation model considering the wake effect is shown in
Figure 5 based on Eqs 6–9.

3 Power system operational reliability
assessment model

3.1 Power system frequency
regulation model

By incorporating the wind turbine cluster frequency regulation
model, a wind turbine cluster-thermal power collaborative
frequency regulation model is obtained, as shown in Figure 6.

The collaborative frequency regulation model between wind
turbine clusters and thermal power units, as depicted in Figure 6,
incorporates various factors such as the reserve capacity, ramping
power limit of the thermal power unit, and the frequency regulation
module of the wind turbine cluster. This model facilitates the
transition from isolated analysis to integrated evaluation of these
two distinct resource types, thereby extending the assessment
framework. Each symbol in Figure 6 is explained as follows: R is
the equivalent coefficient of the governor of the reheated thermal
power generation unit; TCG is the equivalent time constant of the
governor; TCH is the equivalent time constant of the steam chamber;
FHP is the high-pressure power of the steam turbine. TRH is the steam
turbine equivalent time constant. ΔPCG is the thermal power unit
output change. MCG is the system load-damping coefficient. TCG is
the system inertia equivalent constant. A is the system frequency
deviation factor, satisfying A = D + 1/R. System power deficit ΔPD

caused by wind power output fluctuations ΔPDW , unit failuresΔPDC

, and load fluctuations ΔPDL; that is, ΔPD � ΔPDW + ΔPDC + ΔPDL.
Note that the set of thermal power units participating in

secondary frequency regulation is ΩCG. The set of thermal power
units with occasional failures isΩfault

CG . The set of thermal power units
operating normally is Ωnormal

CG . The output variation of the thermal
power generating unit can be expressed as

ΔPCG � ∑
i∈Ωnormal

CG

ΔPCG,i (10)

where ΔPCG,i is the output change amount of thermal power
generating unit i. The wind turbine cluster-thermal power
generation unit collaborative frequency regulation strategy is not
the research scope of this article. Thus, this article directly adopts the
frequency control strategy proposed in (Huang et al., 2023).

3.2 Frequency-dependent generator
reliability parameter model

The reliability parameters of the generator (such as outage
probability) are related to the health status of the generator, the

FIGURE 4
Schematic diagram of wake effect of wind turbine cluster based on Jensen model.
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FIGURE 5
Frequency regulation model of wind turbine cluster considering the wake effect.

FIGURE 6
Wind turbine cluster-thermal power coordinated frequency regulation model.
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external environment, and the system operating conditions.
Specifically, the reasons for the outage of the generating set may be.

1) Actual failure of the generating set due to aging, extreme high
temperature, or cold wave.

2) Abnormal operation of the system (such as frequency exceeding
the limit) causes the protection device to operate and power
generation The unit was not faulty but was removed from the
power grid, causing an outage in a nonfaulty state.

3) Human misoperation and protection malfunction.

When establishing a generator reliability parameter model, this
article focuses on the impact of reasons 1) and 2) on the generator
reliability parameters due to the low probability of human
misoperation and protection malfunction. The impact of reason
1) on the outage probability U of the generator is U1, and the impact
of reason 2) on the outage probability U of the generator is U2. Since
reasons 1) and 2) are independent events, the probability of
generator outage satisfies

U � U1 + U2 − U1U2 (11)
The Weibull model is used to describe the influence of the aging

degree of the generator on the probability of outage of the generator
and the probability of outage due to aging ΔtG after the generator
continues to operate for tG years is obtained

U1 �
∫tG+ΔtG
tG

β·tβ−1
αβ

e−
t
α( )βdt

∫∞
tG

β·tβ−1
αβ

e−
t
α( )βdt

(12)

where t is the running time of the generator in years; α is the size
parameter of the generator; β is the shape parameter of the
generator. α and β jointly reflect the impact of the aging degree
of the generator on the outage rate.

Analyze the impact of reason 2) on the outage rate of generating
units. The generator is equipped with a complete and sensitive relay
protection system to ensure that the generator operates within a
reasonable frequency range. When the generator operates within the
low-frequency/high-frequency protection threshold range of the
generator, the frequency does not affect the probability of outage
of the generator. The probability of an outage of the generator is
linked to the aging degree of the generator. Currently, U2 = 0 and
U = U1. When the generator reaches the protection threshold of the
generator frequency protection device, the protection device starts,
and the generator is cut off from the grid. Although the generator is
not faulty currently, it does not helpmaintain the power balance. For
the power grid, the generator is equivalent to being out of service
currently. Under this circumstance, the generator outage probability
is 1, U = U2 = 1. In the context where the system frequency falls
within the range of the normal value and the protection-action
value, a direct correlation exists between the probability of generator
failure and the frequency level, which can be expressed as Eq. 13

U f( ) �
U1 − 1( )f + fnormal

g,min − U1f
protect
g,min

fnormal
g,min − fprotect

g,min

fprotect
g,min ≤f≤fnormal

g,min

1 − U1( )f + U1fprotect
g,max − fnormal

g,max

fprotect
g,max − fnormal

g,max

fnormal
g,max ≤f≤fprotect

g,max

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(13)

where f protects g, min and f protect g, max is the generator’s low-
and high-frequency protection action values. The generator will trip
when the frequency is f protect g, min or f protect g,max.

The two-state Markov model is used to describe the
reliability parameter model of the generator. Based on
calculating the probability of generator outage, the generator
outage rate can be determined. Since the generator outage
probability is related to the system frequency, without loss of
generality, note U � U(f). Then the generator outage rate can be
written as

λ f( ) � μ · U f( )
1 − U f( ) (14)

where μ is the repair rate of the generator (the unit is timed/year),
which is given by historical statistical data. Based on the Markov
limit state equation, it can be obtained that the steady-state
probability of the generator unit in normal operation is
μ/(λ(f) + μ), and the steady-state probability of the generator in
outage state is λ(f)/(λ(f) + μ).

3.3 Power system risk assessment indicators

This paper uses reliability indicators in terms of power and
probability to quantify the ability of the power system to meet
users’ power frequency quality and power demand, including 1)
expected energy not supplied (EENS), 2) expected indirect energy
not supplied (EIENS), 3) expected number of under-frequency
events (ENUF), 4) expected under frequency duration (EUFD),
5) probability of low-frequency events (LFEP) and 6) the
probability of the system recovering from the low-frequency
event (PRLFE). The detailed definitions of these metrics are
referred to Eqs 14–21.

1) EENS represents the risk of load loss in the power system within
a period and is the product of the probability of a load loss event
and the amount of load loss. Let the expected power shortage be
MEENS , which can be expressed as

MEENS � ∑
k∈S

pk · ΔPD − ΔPCG − ΔPWG( )TH (15)

where the set of loss-of-load events is S; the loss-of-load event is k;
the probability of occurrence of a loss-of-load event is pk; ΔPD −
ΔPCG − ΔPWG is the amount of load loss caused by source load
fluctuations and sporadic failures of generator units in the power
system; TH is the duration of the loss-of-load even.

2) EIENS represents insufficient power during the primary and
secondary frequency adjustment process. The power shortage
here does not appear as load loss but as a frequency deviation of
the power system. The indirect expected power shortage EIENS
is defined as

MEIENS � ∑
k∈S

pk · MIENS,k,1 +MIENS,k,2( ) (16)

where MIENS,k,1 and MIENS,k,2 respectively represent the indirect
power shortage reflected by the frequency deviation of the next and
secondary frequency modulation processes of event k. It is recorded
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that the system frequency deviation at the end of the first frequency
modulation is Δf1,end, the duration of the first frequency
modulation Δt1, and the corresponding active power deficit is
ΔP1,end. At the end of the second frequency modulation, the
system frequency deviation is Δf2,end; the duration of the second
frequency modulation is Δt2; and the corresponding active power
deficit is ΔP2,end. Then the indirect power shortage in the next
secondary frequency modulation process of event k MIENS,k,1 and
MIENS,k,2 satisfies

MIENS,k,1 � ΔP1,endΔt1 (17)
MIENS,k,2 � ΔP1,end − ΔP2,end

2
( ) Δt2 − Δt1( ) (18)

3) ENUF represents the number of frequency limit violations
within a period. The expectation of recording frequency
exceeding the limit is MENUF , which is defined as

MENUF � ∑
k∈S

pk ·NNUF,k (19)

where NNUF,k is the number of times the system frequency exceeds
the limit under event k, satisfyingNNUF,k ∈ 0, 1, 2{ }. If the frequency
limit does not occur in event k, then NNUF,k � 0. If the frequency
exceeds the limit and the frequency returns to a reasonable range
after the frequency adjustment process, then NNUF,k � 2; NNUF,k �
1 otherwise.

4) EUFD characterizes the duration of low-frequency phenomena
within a period. The expected duration of low frequency is
recorded as MEUFD, which is defined as

MEUFD � ∑
k∈S

pk · TUFD,k (20)

where TUFD,k is the duration of the low-frequency phenomenon in
event k.

5) LFEP is used to analyze the probability of low-frequency events
in the system. The probability of occurrence of low-frequency
events is recorded as MLFEP, which can be defined as

MLFEP � ∑
k∈SLFEP

pk (21)

where SLFEP is the set of events that recover from low frequency to a
reasonable frequency range.

4 Frequency-reliability comprehensive
assessment framework

This section proposes a multi-time scale power system
frequency performance-reliability comprehensive assessment
process to couple the power system frequency adjustment process
with the reliability assessment process. The evaluation process
includes three links: power system event generation, event
analysis, and indicator calculation.

This article employs the enumeration method to generate states
for analysis. In comparison to sequential and non-sequential Monte
Carlo methods, the enumeration method offers distinct advantages,
such as clearer physical interpretations and more precise
evaluation results.

In the state analysis process, the impact of the frequency
regulation process needs to be considered. Take an event k as an
example to illustrate. In event k, firstly, the power system
generates power imbalance ΔPD due to the source and load
uncertainty and sporadic failures of equipment such as
generating units. Subsequently, following the power imbalance,
two distinct effects arise. Firstly, the power imbalance triggers
frequency fluctuations within the power system, thereby
influencing the reliability parameters of the generator and
altering the event occurrence probability. Secondly, as per the
established control strategy, the power system engages in one or

FIGURE 7
The modified IEEE RTS-79 system.
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FIGURE 8
The improvement of the frequency performance with different wind speeds.

FIGURE 9
The wind speed of the wind turbine considering the wake effect.

TABLE 1 The parameters of the wind turbines.

Type Inertia constant (MWs) Ramping rate (MW/h) Frequency regulation coefficient (MW/Hz) Number

Wind Turbine — — — 681

U12 2.5 60 4.8 3

U20 3.0 80 8.2 2

U50 4.0 300 25 2

U76 4.5 304 33 2

U100 5.5 300 57 2

U155 6.5 620 79 2

U197 7.5 591 109 2

U350 8.5 350 200 1

U400 10 1,000 267 2
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two frequency regulations. This frequency regulation process, in
turn, generates an indirectly expected power shortage.
Consequently, the power imbalance after undergoing
frequency regulation is represented by ΔPD − ΔPCG − ΔPWG. If

the imbalance is not 0, the power system must reduce the load,
which occurs in the reliability event.

In the reliability metrics calculation process, the metrics are
calculated based on the indicator definition and event analysis results.

TABLE 2 Cluster results of wind turbines under different wind directions.

Wind direction Clustering results

0° Area 1 Area 2 Area 3 Area 4 Area 5 Area 6

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

1–7 8–14 15–21 22–28 29–35 36–42

18° Area 1 Area 2 Area 3

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

1–15, 22, 29, 36 16–21 23–28 30, 37 31–35 39–42

32° Area 1 Area 2 Area 3

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

1–15, 22, 29, 36 16–21, 23, 30, 37 24–28 31, 38 32–35 39–42

45° Area 1 Area 2 Area 3 Area 4 Area 5 Area 6

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

1–8, 15, 22, 29, 36 9–14, 16, 23, 30, 37 17–21, 24, 31, 38 25–28, 32, 39 33–35, 40 41, 42

FIGURE 10
Cluster results of wind turbines under different wind directions. (A) Thewind direction is 0°. (B) Thewind direction is 18°. (C) Thewind direction is 32°.
(D) The wind direction is 45°.
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The power system frequency performance-reliability
comprehensive assessment process is as follows.

Step 1: Input wind speed, wind turbine spatial position, load, traditional
unit operating status, frequency controlmodel parameters, generator unit
reliability parameters, and other related parameters. The parameters of
wind turbines are listed in Table 1.

Step 2: Use the enumeration method to generate the power system
event set S. Perform status analysis on the events in the set S in turn.
The status analysis is described in steps 3–6.

Step 3: Consider the event k ∈ S. The wind turbine clusters are
clustered by considering the operating status of the wind turbine
cluster, wind speed, wind direction, wind turbine cluster, and other
factors. According to Equations 5–8, calculate the equivalent
parameters of each type of wind turbine, such as wind speed, fan
thrust coefficient, etc.

Step 4: Based on the wind turbine cluster-thermal power
collaborative frequency regulation model, calculate the frequency
response curve of the power system.

Step 5: According to the frequency response curve of the power
system, record the frequency deviation amount at the end of the first
and second frequency modulation of the system, whether the low-
frequency event occurs, and its duration.

Step 6: According to the power system frequency response curve
and Equations 10–12, update the steady-state outage probability and
normal operation probability of the generating unit. Update the
occurrence probability pk of event k. Calculate system frequency
performance and reliability metrics.

Step 7:Check whether the entire system status has been analyzed. If
not, let � k + 1 , and repeat steps 3 to 6.

5 Case study

This paper uses the modified IEEE RTS79 system and a provincial
power system to evaluate the power system frequency performance and
operational reliability. It verifies the necessity of considering the impacts
of the system frequency performance on the operational reliability level.

5.1 IEEE RTS79 system settings

The IEEE RTS79 system contains 9 types of conventional
units and 1 wind turbine cluster. Assuming that the working life
of all units is within the range of 3–5 years, the outage
probability of generation units caused by aging can be
calculated by Equation 11. The ramping rate, inertia
constant, and frequency modulation coefficient of the
generation units are referenced from (Attabo Ameh et al.,
2023). The rated power of a single wind turbine is 1.5 MW,
and the wind turbine control parameters can be found in (Chen
et al., 2017). The wind power penetration rate is selected to be
30%. The load is set to a peak load of 2,850 MW and a load
adjustment coefficient of 75 MW/Hz. The normal frequency of
the system is 50 Hz, and the reasonable operating range of
frequency is [49.8, 50.2] Hz. Only fault events of order 4 and
below are considered in the reliability assessment. The time
scale of each scenario is 1 h. It is assumed that all thermal power
units participate in the primary and secondary frequency
modulation of the system. Wind speed data comes from
actual data from the San Cristobal Wind Farm. The revised
IEEE RTS-79 system diagram is shown in Figure 7.

5.2 Results of IEEE RTS79 system

Figure 8 shows the improvement effect of wind turbines
participating in system frequency control on the maximum
deviation of system frequency Δfmax under different wind
speeds. In the wind speed range of 7.2–12 m/s, the wind
turbine operates in the maximum power point tracking mode.
As the wind speed increases, the frequency improvement effect
brought by the wind turbine gradually increases. However, when
the wind speed is lower than 7.2 m/s and higher than 12 m/s, the
trend of the frequency improvement effect of wind turbines
changes. When the wind speed is between 3 m/s ~ 7.2 m/s, the
wind turbine operates in startup mode. Since the rotor speed
variable range is very small in this mode, the frequency support
for the power grid is limited. Similarly, when the wind speed is
between 12 and 13.2 m/s, the wind turbine operates in constant
speed mode and the output power is close to the rated power,
which means that the additional power for frequency control is
also limited (Liu et al., 2023). When the wind speed is greater
than 13.2 m/s, due to security constraints, the wind turbine
operating in constant power mode is limited by the rated
power and maximum rotor speed. Then, it cannot increase its
active output power. Therefore, the wind turbine cannot provide
frequency support in this mode.

TABLE 3 The results of the frequency performance and the operational
reliability.

Index Situation 1 Situation 2

MEENS (MWh/year) 259,327 254,577

MEIENS (MWh/year) 87,937 85,559

MENUF (occ./year) 4,867.4 4,747.6

MEUFD (h/year) 161.7 149.8

MPLFE 1 1

MPRFEL 0.9413 0.9297

TABLE 4 The system reliability evaluation results under four scenarios.

Index situation MEENS (MWh/year) MEIENS (MWh/year)

Situation A 259,327 87,937

Situation B 256,713 86,715

Situation C 254,577 85,559

Situation D 482,630 —
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When the natural wind speed is 13.2 m/s, the wind turbines
are clustered considering the wake effects. First, the wind speed of
wind turbines was studied when the wind direction was 0°, as
shown in Figure 9. It can be seen from Figure 9 that the wake
effect has a great influence on the wind speed of the wind turbine.
Therefore, it is necessary to cluster the wind turbines according
to the wind speed and establish an equivalent model of the wind
turbine. Table 2 shows the clustering results of wind turbines in
four cases where the wind speed direction is 0°, 18°, 32° and 45°.

Figure 10 shows the natural wind speed of the wind turbine
cluster is 13.2 m/s, and the wind speed of each wind turbine in
different wind directions. The same wind speed is drawn in the same
color. Comparing the data in Figure 10 and Table 2, it can be found
that the clustering algorithm proposed in this article can cluster
wind turbines with similar wind speeds into the same group, and
then the equivalent wind turbine cluster model can be used, which
greatly improves the efficiency of calculating frequency performance
indicators.

Then we illustrate the accuracy of the proposed model by
comparing the evaluation results of power system frequency
performance-reliability with and without considering the
impacts of frequency performance on the system
reliability level.

Assuming that the predicted wind speed is 13.2 m/s, and the
actual wind speed is 12 m/s. The absolute error of wind speed
prediction is 1.2 m/s. Table 3 shows the results of the frequency
performance and reliability of the power system. Situation
1 refers to considering the impacts of frequency performance
on the reliability parameters of generation units. Situation
2 refers to without consideration of the impacts. From the
perspective of frequency indicators, the frequency limit
expectation MENUF, low-frequency duration expectation
MEUFD, low-frequency event occurrence probability MLFEP and
system recovery probability MPRLFE corresponding to Situation
1 are 102%, 108%, 100%, and 101.25% than the ones related to
Situation 2. From the perspective of system reliability indicators,
the expected power shortage MEENS and the indirect expected
power shortage MEIENS corresponding to Situation 1 are 102%
and 103% than the ones related to Situation 2. This shows that
when the impacts of frequency performance on the reliability
parameters of generation units are not considered, the reliability
level of the generation units is overestimated, resulting in overly
optimistic frequency performance and power system reliability
evaluation results. On the other hand, the expected frequency
MENUF corresponding to Situation 1 reaches 4,867.4 times/year,
and the expected low-frequency durationMEUFD reaches 161.7 h/
year. This shows that the reliability risks caused by frequency
exceeding limits in power systems including wind power cannot
be ignored.

The model proposed in this article simultaneously considers two
factors: 1) the frequency regulation capability of wind turbine
clusters with wake effects, and 2) the dependence of system
frequency performance and generator unit reliability parameters.
To illustrate the necessity of considering these two factors, four types
of situations are set up for comparison:

Situation A: Both 1) and 2) are considered.
Situation B: Consider 1), but do not consider 2); that is, the

dependence of the system frequency performance on the reliability
parameters of the generator is ignored.

Situation C: Consider 2), but do not consider 1). Namely, the
wake effect is not ignored.

Situation D: Neither factor is considered; that is, the traditional
power system reliability assessment method.

Existing studies fall into three categories: Situations B to D. Table 4
shows the system’s expected power shortage MEENS and indirect
expected power shortage MEIENS under four types of situations.
Since traditional reliability assessment does not consider the impact
of the frequencymodulation process, there is no corresponding indirect
expected power shortage MEIENS. Scenario A considers more
comprehensive factors and can reflect more objective frequency
performance and reliability evaluation results. The factors considered
in scenarios B and C are lacking, and the corresponding expected power
shortage MEENS and indirect expected power shortage MEIENS are
smaller than those in scenario A, and the results are too optimistic.

5.3 Results of a provincial power system

To verify the accuracy and scalability of the proposed
method, a provincial power system located in China is
employed as the testing ground. This system encompasses a
considerable scale, comprising 220 generators, 1,393 buses,
and 2033 transmission lines. The peak load within this
provincial system reaches 38,760 MW, with an installed
capacity of 64,471 MW. Notably, the enumeration of branch
and generator outages is conducted up to the N-3 contingency
level, while branch outages are solely enumerated up to the N-1
contingency level. For evaluation, a period of 6 h is chosen. The
reliability evaluation outcomes are presented in Table 5, where
Situation 1 refers to considering the impacts of frequency
performance on the reliability parameters of generation units
and Situation 2 refers to without consideration of the impacts.

6 Conclusion

This paper investigates the dependence between the power
system reliability level and the system frequency performance. In

TABLE 5 The system reliability evaluation result of the provincial power system.

Index Situation 1 Situation 2

MEENS (MWh/year) 1.10 1.06

MEIENS 0.37 0.35

This case study demonstrates the feasibility of applying the proposed model to practical power systems. However, it is worth noting that the impacts of system frequency on component

reliability parameters are necessary to be considered.
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this study, a power system frequency regulation model is developed
that considers the regulation capabilities of wind turbines.
Subsequently, an equivalent wind turbine cluster is integrated
into the frequency regulation architecture of thermal power units,
thereby facilitating the analysis of frequency performance. The
frequency performance of the power system, considering the
uncertain operation conditions and random faults of generating
units, is then quantitatively examined. A model for the frequency-
dependent reliability parameters of generators is derived.
Furthermore, a multi-time scale co-evaluation framework is
proposed to enable the simultaneous evaluation of frequency
performance and operational reliability. The proposed
methodology is applied to case studies involving the modified
IEEE RTS-79 system and a provincial power system. The results
demonstrate that the proposed approach achieves efficient
determination of frequency performance and reliability outcomes,
surpassing the capabilities of existing research in this domain.

Furthermore, the suggested evaluation method can be integrated
into the framework of power system optimal dispatching and
planning. Given the imperative coordination of economic
considerations, reliability requirements, and frequency stability, it
becomes essential to establish an effective long-term capacity
planning approach for the power system. This methodology
ensures the optimal arrangement of generating units and
guarantees the system’s sustained capacity adequacy over the
long term. By incorporating the proposed evaluation method into
the planning process, power system operators can make informed
decisions regarding the configuration of generating units, striking a
balance between economic efficiency, operational reliability, and the
safeguarding of frequency stability.
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Reliability-constrained capacity
market design with high
proportions of renewable
energies

Chen Zheng and Shang Nan*

Energy Development Research Institute, China Southern Power Grid, Guangzhou, China

Renewable energy generation (REG) has continued to grow strongly and resulted
in the lower profitability of conventional generation. Meanwhile, the
indeterminacy of REG will also lead to electricity balancing challenges and
more volatile and less-predictable physical flows in the power grid. In this
case, a capacity market is essential to motivate new investments and,
therefore, ensure supply adequacy. Considering the low-carbon transition goal
and the requirements of the reliability of the power system, this paper develops a
reliability-constrained capacity market framework in which the reliability criterion
rather than the capacity supply–demand equilibrium is taken into account. The
ramping constraints, devices’ random failures, and REG uncertainties are
comprehensively considered in the capacity requirement determination and
allocation. First, a comprehensive capacity market mechanism coordinated
with multi-objective regulations is proposed to compensate the capacity
providers and encourage the renewable energy transition. Then, a novel
capacity market model is proposed to clear the market with reliability
constraints. Moreover, to reduce the computational burden caused by the
explicit consideration of reliability constraints, several techniques are applied
including the root-event-based state screening technique and the adaptive
Kriging metamodel. A modified IEEE-RTS-79 case is studied to illustrate the
benefits of the proposed reliability-constrained capacity market model.

KEYWORDS

renewable energy generation, reliability, capacity market, uncertainties, Kriging
metamodel

1 Introduction

In recent decades, there has been a global trend toward the deregulation of electricity
markets. The primary objective of this deregulation is to stimulate competition among
various electricity generators, ultimately enhancing market efficiency and reducing costs. A
noteworthy development in major markets worldwide is the increasing prominence of
renewable energy generation (REG) (Mitra and Nguyen, 2022). In 2018, 26.2% of global
energy consumption was attributed to renewable energies, and it is projected to surge to 45%
by 2040. The growth in renewable capacity is particularly driven by intermittent sources,
specifically wind and solar photovoltaics. Notably, these sources exhibit a unique
characteristic wherein their total cost is predominantly determined by capital costs with
marginal costs nearing 0 (Yang et al., 2020). In contrast, conventional generation,
particularly thermal power generation, struggles to compete with the cost dynamics of
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REG sources. Consequently, the load factors and profitability of
conventional generators are on a decline. Despite this, the
intermittent nature of REG prevents it from entirely replacing
the conventional generation (Ssengonzi et al., 2022). The
reliability and security of power supply are still dependent on
conventional generations.

Due to the deteriorating profit margins, there has been a decline
in investor enthusiasm for new conventional generation
investments. Concurrently, with the persistent surge in demand
for reliable capacity, the system generation adequacy is now under
risk. Various capacity mechanisms have been deliberated to ensure
the sufficiency of power supply (Petitet et al., 2017; Kirschen and
Strbac, 2018). The current regulatory discourse predominantly
revolves around capacity markets, in which resources are
compensated for their readiness to meet peak electricity demand,
with payments determined through auction processes (Khezr and
Nepal, 2021). The discussion on the capacity market design has
spanned within the academic literature for many years. For example,
Cramton and Stoft (2005) elaborated the design principles for
ensuring adequate capacity while mitigating market power
concerns. Chen et al. (2020) proposed a novel capacity market
mechanism coordinated with multi-objective regulations, and Shang
et al. (2021) further extended the model to take into consideration
the network topology and spot market operation. Addressing the
question of compensating existing generations upon the capacity
market, Cramton et al. (2013) argued that all generations should
receive compensation, aligning with the principles of an energy-only
market.

Nowadays, the capacity market is adopted by several major
independent system operators (ISOs) in the United States, such as
PJM, New York ISO, and ISO-New England, to ensure an adequate
medium- and long-term security of generation supply by
remunerating generators for their capacity availability (Bushnell
et al., 2017; PJM, 2023a; PJM, 2023b). The energy crisis of 2022 has
increased the re-thinking of the energy supply security and the need
to increase decarbonization, sparking discussions on the need to
redesign the EU’s electricity market. The reform of the electricity
market was first presented by the European Commission in March
2023. The proposal of the market reform has supported the
investments in firm and low-carbon capacity. In order to “ensure
long-term security of supply and provide investor certainty,” it
argues for the further assessment of capacity mechanisms
(i.e., remuneration for power plants to secure long-term supply)
to ensure investments in firm renewable and low-carbon capacity
(Widuto, 2023). One of the key elements of capacity market design is
the determination and allocation of the required capacity. The
existing capacity market designs in ISOs consider the
determination and allocation separately (Hobbs et al., 2007).
First, they determine the required capacity based on the variable
resource requirement (VRR) curve that reflects the value of load
(Bhagwat et al., 2016). Then, the capacity allocation is achieved
through the intersection between the VRR curve and the supply
curve, while the supply curve of the generation capacity is based on
offered generation capacities.

Although this mechanism could maintain generation capacity
adequacy at peak, it could not guarantee the system reliability targets
(Fang et al., 2018). System reliability is not only determined by the
available capacity but also influenced by the ramping capability of

power systems, which is necessary to follow REG fluctuation (Currie
et al., 2017). Additionally, as those models usually concern system-
wide balancing between demand and supply, they could not be fit for
larger regional markets with severe internal peak mismatch and
transmission congestion. Moreover, as surging REG integration is
reshaping the generation mix and it is difficult to precisely predict
the required capacity to meet the reliability criterion, the modeling
of REG volatility and uncertainty is simplified in practices.

Some researchers have made efforts to improve the capacity
market model. Fang et al. (2021) introduced a novel capacity market
model integrating flexibility requirements to address ramping needs
arising from load, wind, and solar power fluctuations. Mertens et al.
(2021) quantified the capacity credit of energy storage in capacity
markets. Cañas-Carretón and Carrión (2020) considered the reserve
provision by wind power plants in the capacity market. Sun et al.
(2022) reviewed the capacity markets that incorporate the demand
response resources. Some capacity expansion models can be
modified to search the capacity market equilibrium. For example,
Dehghan et al. (2016) and Costa et al. (2021) considered constraints
on reliability indexes via Monte Carlo simulation and Benders
decomposition with feasibility cuts. Rashidaee et al. (2018)
considered the loss of load probability (LOLP) constraint in the
generation expansion planning model.

As discussed above, there is a growing acceptance that the
reliability criteria should be concerned in capacity market
clearing. Several capacity market models with reliability-related
constraints or objective functions have been proposed by Lu
et al. (2019). However, introducing the reliability-related
constraints significantly increases the complexity of optimization
modeling since the reliability evaluation is based on the state analysis
of numerous system states. Thus, these models usually neglect or
simplify ramping constraints, random failures of the generation and
transmission devices, and renewable energy uncertainty.

This paper introduces a capacity market framework tailored for
power systems characterized by high proportions of REG, aligning
seamlessly with the fundamental objectives of the electrical
system—affordability, reliability, and sustainability. To extend the
existing literature, this paper establishes demand and supply models
covering the whole period of the target year and incorporates REG
development goals as a key constraint into the market clearing model,
enabling it to not only identify marginal capacity costs and ensure
capacity supply but also facilitate the low-carbon transformation of the
power system. In thismanner, the capacitymarket clearingmodel could
not only identify the marginal capacity cost and ensure the capacity
supply but also promote the low-carbon transformation of the power
system. The primary contribution of this paper is listed as follows:

• First, a comprehensive capacity market mechanism
coordinated with multi-objective regulations is proposed in
this paper. The proposed market can satisfy the total capacity
requirements and involves additional energy structure
constraints which can promote energy transition.

• Second, a novel capacity market model is proposed that seeks
the optimal allocation of capacity requirements among the
providers while meeting the reliability criterion. Moreover, the
uncertainties of REGs, loads, the random outages of
generation, and transmission devices are considered to
evaluate the reliability.
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• Third, to reduce the computational burden caused by the
explicit consideration of reliability constraints in the capacity
market model, the root-event-based state screening technique
and Kriging metamodel are applied for reducing the number
of system states and simplifying the system state analysis.

The remainder of this paper is organized as follows. Section 2
introduces the framework of the proposed capacity market with an
emphasis on the operational process. Section 3 introduces the
modeling of devices’ reliability models and formations of REG
and load curves. Section 4 formulates the proposed capacity
market model and proposes the techniques for the efficient
solution of the model. Case studies and conclusion are provided
in Section 5; Section 6, respectively.

2 Design of the capacity market
mechanism

The proposed capacity market involves multi-round auctions.
The base residual auction will be conducted several years before the
delivery year (target year), followed by several additional capacity
auctions as appropriate. Different types of capacity resources can
participate in the capacity market, including conventional thermal
units, hydropower plants, nuclear units, wind power plants, and PV
units, while other resources such as energy storage and demand
response can be allowed to participate in the market as required.
Each resource bids into the auction at its total cost of investment and
operational costs, with the consideration of the expected income in
the wholesale energy market. The process of the additional auctions
is similar to that of the base residual auction. After the capacity
resources in different regions submit their offering curves, the

capacity market model is performed to clear the market to
determine the commitment of each resource. In addition, the
“clearing price” is set by the most expensive resource needed to
meet the demand.

The specific process of the capacity market is illustrated in
Figure 1, which can be divided into the following main steps:

Step 1. Before the opening of the market, the ISO, or the
transmission system operator (TSO), will forecast the system load
of the target year. The ISO along with the regulators will also
determine the other security- and policy-related constraints that
provide the boundaries of the market operation.

Step 2. After the opening of the market, the ISO will release
information about system load, energy regulation targets,
reliability reserve requirements, system network constraints, etc.
Then, the market participants will submit their technical and
marketing information to the ISO, including the types and
locations of their existing capacity resources and offering curves
of the existing and to-be-built capacity resources.

Step 3. According to the information obtained from market
participants, combined with the system load curves, energy
development constraints, system operation constraints, etc., the
market is cleared. The commitment of each capacity resource
and the clearing price are simultaneously determined.

Step 4. The ISO feedback on the results of market clearing to each
market participant to complete the base residual auction.

Step 5. Before the delivery of capacity, the ISO shall timely organize
several additional auctions that are basically the same as Step 2 to
Step 4, and the auction results shall be updated and released on a
rolling basis.

Step 6. During the capacity delivery period, the ISO shall evaluate
the effectiveness of the commitment results within the contract
period (single year, several years or longer, etc.) and compensate the
capacity resources according to the clearing price afterward.

3 Modeling of demand and supply

3.1 Reliability models of the electricity
generation units

It is assumed that each generation unit has two possible states,
including the working and failure states. Under such circumstances,
the availability and unavailability of a device can be calculated as
follows (Hu et al., 2021):

A � μ

λ + μ
� m

m + r
, (1)

U � FOR� 1−p � λ

λ + μ
� r

m + r
, (2)

where λ denotes the expected failure rate, which is the frequency
with which an engineered system or component fails, expressed in
failures per unit of time; µ demotes the expected repair rate, which is

FIGURE 1
Flowchart of the capacity market process.
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the rate with which a repair action is performed and is expressed in
terms of the number of repair actions performed per hour; m
denotes mean time to failure (MTTF), m = 1/λ; and r denotes
the mean time to repair (MTTR), 1/r = µ.

Hence, the available generation capacity of the whole power
system can be expressed as the following multi-state system (MSS)
model:

G � ∏Ni

i�1
Ai · z

∑Ni

i�1
Pi + U1 ·∏

Ni

i�2
Ai · z

∑Ni

i�2
Pi + A1 · U2 ·∏

Ni

i�3
Ai · z

P1+∑Ni

i�3
Pi

+/ +∏Ni

i�1
Ui · z0, (3)

where i denotes the index of the generation units, Ni denotes the
number of the units, and z is the symbol of z-transform.

The above MSS model describes the mapping function between
the specific realization of available generation capacity and the
corresponding probability. Taking the first term of Eq. 3 as an

example, it denotes the probability of a no-failure scenario is ∏Ni

i�1
Ai

and the available generation capacity in this scenario equals to the

total installed capacity of the generation units which are ∑Ni

i�1
Pi.

3.2 Formation of the REG supply curve

The power output of REG, such as wind power and solar PV,
varies over time as the meteorological condition changes. Therefore,
it is necessary to capture the fluctuation characteristics of renewable
generation for evaluating the power system capacity requirements.
To determine the extent to which fluctuating renewable generation
can ensure grid reliability, many grid planners have embraced a
concept called effective load-carrying capability (ELCC). The ELCC
of a generator is defined as the amount by which the system’s loads
can increase when the generator is added to the system while
maintaining the same system reliability.

However, the ELCC of renewable generation is affected by the
scenario of the electricity generation mix. For example, the ELCC of
renewable generation is usually larger in power systems with
sufficient flexible generating units. Hence, the ELCC method is
not precise for capacity market models when much of additional
generating units should be planned.

This paper adopts the power time series model to represent the
fluctuation characteristics of renewable generation. The Gaussians
mixture model–hidden Markov model (GMM–HMM) method is
used to mine the statistical characteristics of REG power output from
historical output data and then uses a simulation method to obtain
output time series with similar patterns. It should be noted that such a
method does not pursue point-by-point accuracy, but focuses on the
extraction and reconstruction of statistical characteristics.

There are three main steps involved in the GMM–HMM
method for generating the REG power output time series,
including construction, learning, and prediction (Li et al., 2021).

3.2.1 Step 1—construction of the HMM
In this study, the observation sequence is the time series of REG

power, whereas the state sequence is the non-observable factors
affecting REG power, such as climate conditions. Figure 2 illustrates
the generation of a hypothetical REG power scenario based on the

HMM, where the natural number 1, ..., N expresses the state
sequence. At time t1, the state variable 2 is selected at random.
Under the climatic conditions corresponding to state variable 2, the
REG power follows the probability distribution N(μ2,∑2), and the
observed value O1 of REG power at time t1 is generated through
random sampling with the probability distribution N(μ2,∑2). The
state variable is transferred to state N at time t2 based on the
transition probability a2N. Similarly, in state N, REG power
conforms to the probability distribution N(μN,∑N), and O2 can
be obtained by sampling randomly from the probability distribution
N(μN,∑N). The REG power time series is obtained by analogy.

Consequently, the hidden Markov model is uniquely
determined by four parameters, λ � (π, A,μ,Σ). Here, π denotes
the probability of selecting different states at time t1, A is the
probability of mutual transition between state variables, and μ,Σ
characterize the REG power distribution in each state.

3.2.2 Step 2—learning of the HMM
REG power is an easily observable variable in the real world.

Learning the HMM is the process of calculating the HMM
parameters that maximize the probability of the observed variable
sequence using historical data of the observed variables. It is
symbolized by the maximization of P(O|λ).

3.2.3 Step 3—prediction of the HMM
Using the HMM parameters and the Viterbi algorithm, the state

sequence of the REG power prediction sequence with the highest
probability among all other state sequences is determined. This
calculation is known as HMM learning and can be regarded as
maximizing P(I|O, λ).

3.3 Modeling of the load demand

Based on the historical data, the load demand can be forecasted.
Moreover, the capacity market model accommodates a per-unitized
daily peak load model with uncertainty introduced on a weekly basis
via normal distributions; that is, for an entire delivery year,
52 normal distributions are developed for modeling the
uncertainty related to future load demand.

The coverage of the capacity market can be a regional scope
(including many regions and provinces) or the whole country. The
forecasting methods for the target annual load curve of the system
have been well developed, and only one of the deterministic methods
is given as follows:

(1) Based on the historical load of each province (region) in recent
years, the typical daily and monthly load characteristic curves of
the target year can be obtained through the analysis and
forecast.

(2) By analyzing and forecasting the maximum load of each
province (region) in the target year, the target annual load
curve of each province (region) can be obtained by
combining the aforementioned forecasting load
characteristic curves.

(3) The target annual load curves of multiple provinces (regions)
can be accumulated at different points to obtain the target
annual load curves of the regional scope or the whole country.
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Shang et al. (2021) provided one of the methods used in the
process of developing system load curves.

The load level of the system is related to complex factors, such as
economic development, and it can be adjusted and corrected on a
rolling basis according to the actual situation before the year of
capacity delivery, which can be responded to by additional
incremental auctions.

For simplicity, the load demand is expressed as the following
normal distribution:

D w( ) � N uD w( ), σD w( )( ), (4)
where uD(w) and σD(w) denote the mean vaule and variance of the
normal distribution for week w.

3.4 Reliability index and the evaluation

There are different indices that can measure the reliability of
power systems, such as loss of load expectation (LOLE) and
expected energy not supplied (EENS). The loss of load event
occurs when the available generation capacity is below the
demand, as shown in Figure 3. Hence, LOLE is represented by
the expected number of hours per year that the power system
cannot meet its demand, which is expressed in Eq. 5. EENS
represents the energy which is expected not to be supplied due
to insufficient resources to meet demand needs during a given time
period, which can be calculated as the product of LOLE and the
averaged load shedding (Yang et al., 2020).

LOLE � ∑52
w�1

E G<D w( )( ). (5)

4 Optimization model of the capacity
market

The proposed capacity market model is illustrated in Figure 4.
The two types of input parameters are required.

The technical data include the reliability parameters of generation
and transmission devices, REG power output time series, and daily load
curves. The economic parameters mainly include the offer curves of the
existing capacity resources and to-be-built capacity resources which are
made up of price-capacity pairs.

FIGURE 2
REG power output simulation using the HMM.

FIGURE 3
Illustration of the loss of load expectation.
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4.1 Formulation of the capacity market
model

The capacity model is formulated as an optimization problem as
follows:

min Cy � ∑
i∈Ωi

Bi · Pi,y + ∑
j∈Ωj

Bj · Ij,y · Pj,y + ∑
k∈Ωk

Bk · Ik,y · Pk,y

+ COy, (6)
COy � ∑

t∈Φy

CO Pi,t, Pj,t, Pk,t( ). (7)

With the following constraints, we obtained

Pi,t ≤Pavi
i,y � Pi,y

Pj,t ≤Pavi
j,y � Pj,y · Ij,y

Pk,t ≤Pavi
k,y � Pk,y · Ik,y

⎧⎪⎪⎨⎪⎪⎩ where t ∈ Φy, (8)

1 + R min( ) × ∑
d∈Ωd

Ld,y
max ≤ ∑

i∈Ωi

Pavi
i,y + ∑

j∈Ωj

Pavi
j,y + ∑

k∈Ωk

Pavi
k,y, (9)

∑
k∈Ωk

Pk,y · Ik,y ≥PREG
min, (10)

∑
k∈Ωk

Pavi
k / ∑

d∈Ωd

Ld
max⎛⎝ ⎞⎠ 1 + R min( )≥Mk

min. (11)

The objective in Eq. 6 represents the sum of the capacity offer
and operation costs, where i, j, and k denote the index of existing
generation units, the to-be-built conventional generating units,
and the to-be-built REG; Pi,y, Pj,y, and Pk,y are the winning
capacity of the generating units; Ij,y and Ik,y are the binary
parameters that indicate whether or not the unit is expected
to be built; Pi,t, Pj,t, andPk,t denote the power output of
generating units at period t, and Φy is the set of all the
periods for the targeted year y; and COy denotes the operation
cost of the target year y which is a polynomial function of the

power output of the generating units Pi,t, Pj,t, and Pk,t, as shown
in Eq. 7.

Equation 8 limits the power output of generating units. Equation
9 guarantees the capacity adequacy of the system where Ld,y max is
the maximal demand of load d at the target year y and R min is the
capacity adequacy threshold. Equations 10, 11 denote the REG
expansion goals, where PREG

min denotes the requirement of REG
installed capacity andMk

min denotes the requirement of the share of
REG in the electricity generation.

The reliability constraint can be formulated based on either
LOLE or EENS.

The reliability constraint based on LOLE is expressed as
follows:

LOLEy � ∑52
w�1

E Gy <Dy w( )( )≤ LOLEy, (12)

where Gy denotes the distribution of available generation capacity
for year y and Dy(w) denotes the distribution of load demand for
week w of year y.

4.2 Reforming of reliability constraints

As we can see from Eq. 12, the LOLE index of each year is
dependent on the distributions of available generation capacity and
load demand. Load demand distributions are forecasted based on
historical data, which are classified into exogenous uncertainty. The
distributions of available generation capacity, on the contrary, are
affected by the generation expansion decisions. For example, more
newly built generation capacity results in larger mean values and
variances of available generation capacity. Without the loss of
generality, Gy is denoted as a normal distribution, the mean value
and variance of which are related to the generation expansion decisions.

Gy � N uGy, σGy( ), (13)

FIGURE 4
Illustration of the capacity market model.
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where

uGy � fu ∑
i∈Ωi

Pavi
i,y , ∑

k∈Ωk

Pavi
k,y

⎛⎝ ⎞⎠,

σGy � fσ ∑
i∈Ωi

Pavi
i,y , ∑

k∈Ωk

Pavi
k,y

⎛⎝ ⎞⎠.

(14)

Under such circumstance, E(Gy <Dy(w)) in Eq. 12 can be
rewritten as follows:

E Gy <Dy w( )( ) � E N uGy, σGy( )<N uD w( ), σD w( )( )( )
� E N uGy − uD w( ), σGy − σD w( )( )< 0( ).

(15)
According to the probability distribution function of normal

distributions, Eq. 15 is equal to

E Gy <Dy w( )( ) � 1���
2π

√
σGy − σD w( )( )∫

0

−∞
e

−
z− uGy−uD w( )( )[ ]2
2 σGy−σD w( )( )2

dz. (16)

Evidently, Eq. 16 is difficult to be incorporated into the
optimization model. Given that, the Kriging model is applied to
obtain the approximate function of Eq. 16. The Kriging model
is an interpolation method based on statistical theory. It
consists of a regression model and a non-parametric
stochastic process. For the set of sample points X and the

set of objective functions Y, the Kriging model can be
expressed as follows:

Y � fTβ+z X( ), (17)
where f is the basis function matrix and β is the coefficient matrix.
Since the choice of the basis function has little effect on the
accuracy of the metamodel, the quadratic function is selected as
the basis function. The basic function is used to denote the
approximated relationship between the value of
E(Gy <Dy(w)) and the decision variables ∑

i∈Ωi

Pavi
i,y , ∑

k∈Ωk

Pavi
k,y,

that is,

E Gy <Dy w( )( ) � fQ ∑
i∈Ωi

Pavi
i,y , ∑

k∈Ωk

Pavi
k,y

⎛⎝ ⎞⎠. (18)

The main steps of the aforementioned Kriging model
construction are shown in Figure 5.

5 Case studies

5.1 Test system and assumptions

The modified IEEE-RTS-79 is studied in a 12-year planning
horizon to show the effectiveness of the proposed model. The
capacity market is held 3 years in advance of the first target/

FIGURE 5
Flowchart of the Kriging model construction.
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delivery year (T1). Target years T2–T10 are the nine successive years
followed by T1. The power system topology and reliability
parameters can be found in (P.M. Subcommittee, 1979). The
details concerning the annual peak load and load growth are
reported by Jong-Bae et al. (2000). Other criteria and system-
related values are shown in the work of Rashidaee, et al. (2018).

There are six types of generating units considered, and the data
are provided in Table 1. It is assumed that there are already
20 generating units, including one oil power unit, three gas
power plants, four coal power plants, one nuclear unit, eight
wind power plants, and four solar PV units.

In reality, what price a power plant bids into the capacity market
varies quite dramatically. A near-retirement power plant could
actually bid at a very low position and a new power plant could
have a much higher bid. For the sake of convenience, the bid prices
of the power plants are set in a unified manner, which can be
expressed as follows:

Price �Investment Cost/Life Span × Compensation Factor

× RandomCoefficient.

The compensation factors of the nuclear power and REG plants
that have near-zero operation costs are set as 0.25, while the
compensation factors of other plants are set as 0.5. The random
coefficients of all the plants are set between [0.9 and 1.1] to represent
the potential uncertainties related to strategic behaviors.

5.2 Simulation results of the base case

In the base case, the operator holds an auction that provides the
available capacity for target year T1 with constraints that the
proportion of REG exceeds 10%, LOLE is below 2.4 h/y, and
EENS is below 70000 MWh/y. The proposed capacity market
model is performed to clear the market. The commitment of the
power plants is summarized in Table 2.

Here, N-3 contingencies are considered to evaluate the system
reliability. There are 18,352 original N-3 contingencies in total.
With the root-event-based contingency screening technique,
574 critical contingencies are identified. Therefore, the
computation efficiency of the capacity market model is
significantly improved. To verify the accuracy of the contingency
screening technique, the Monte Carlo simulation-based method is
applied to evaluate system reliability given the capacity market
clearing results. The value of EENS is calculated as 68,732.08 MWh/
y, which is less than 70000 MWh/y. In other words, the capacity
market model successfully guarantees the expected reliability
criterion for the target year. It mostly confirms the efficiency of
the proposed contingency screening technique.

TABLE 1 Candidate to-be-built capacity resources (generating units).

Type Unit capacity (MW) For (%) Operating cost($/kWh) Investment cost($/Kw)

Oil 200 7.0 0.021 812.5

Gas 450 10.0 0.035 500.0

Coal 500 9.5 0.014 1,062.5

Nuc 1,000 9.0 0.004 1,625.0

Wind 50 10.0 0 1,300.0

Solar 50 10.0 0 950

TABLE 2 Capacity allocation among the existing and newly built units for T1.

Type Oil Gas Coal Nuc Wind Solar

Existing 200 1,200 3,000 4,000 350 200

New 0 1800 1,000 2000 500 350

Total 200 30,000 4,000 5,000 850 550

FIGURE 6
Commitments of different types of power plants (newly built).
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5.3 Sensitivity analysis of REG development
goals

In this section, different REG development goals are considered to
test its influence on the capacity market clearing. Three scenarios are
modeled, including the 10% REG scenario (share of REG in the
electricity generation, calculated as in Eq. 8, should be no less than
10%), 20% REG scenario, and 25% REG scenario. Moreover, the
auctions are held every year for a decade that covers the target years
T1–T10. As shown in Figure 6, a more ambitious REG development
goal results in a significantly increased installed capacity of REG plants.
In the 10% REG scenario, the accumulative capacity of REG plants
during the decade is 3450 MW. It increases to 7200MW for the 20%
REG scenario, which is 109%more than that of the 10% REG scenario.
The accumulative capacity further increases to 8650MW. In response
to this change, the share of flexible power plants, mainly referring to gas
power plants, also increases. In the 10% and 25% REG scenarios, the
shares of gas power plants in the non-REG plants are 38.6% and 56.4%,
respectively. The reason behind this is simple: the proposed capacity
market model considers the ramping constraints into account, and
therefore, the flexible power plants are favored in the commitment,
particularly in the case of large-scale REG. On the contrary, the share of
nuclear power plants decreases along with the growing REG capacity

since the nuclear power plants cannot provide the necessary flexibility to
accommodate the fluctuating REG.

Figure 7A depicts the capacity market clearing price and the cost
per MWh of the electricity supply. The clearing prices are between
30 and 40$/Wh/day for all scenarios. Generally speaking, the
capacity price is relatively lower in the scenario with more REG
plants. REG power plants have near-zero operation costs and
consequently make higher profits in the energy market. It allows
them to bid into the capacity market at lower prices. The integration
of cheaper REG plants drives down capacity prices.

Figure 7B shows the total cost to provide 1MWh of electricity in
different scenarios. Notably, the investment-related cost and operational
cost perMWh of electricity supply are 12.35$ and 14.83$, respectively, in
the 10% REG scenario. In the 25% REG scenario, the investment-related
cost increases to 15.99$, while the operational cost decreases to 13.01$.
REG is not as reliable as the conventional power plants. A larger installed
capacity is required with a high proportion of REG. Therefore, the
investment-related cost is increased as a result. The lower operational
cost in the 25% REG scenario is due to the zero-fuel cost of REG. The
total costs per MWh of the electricity supply in the 10% REG scenario,
20% REG scenario, and 25% REG scenario are 27.18$, 28.47$, and
29.00$, respectively. It is concluded that a higher share of REG comes
with a price. However, it is very likely to be accepted considering the
environmental benefits of REG.

5.4 Sensitivity analysis of reliability
requirements

In this section, the reliability indices are no longer regarded as a
constraint in the capacity market model. On the contrary, EENS is
multiplied by the value of lost load (VOLL) and added to the objective
function. In other words, there is no more a strict constraint that
LOLE and EENS should not exceed the thresholds. Instead, the
capacity market model seeks the equilibrium between the
investment costs of power plants and the load-shedding risk. Here,

FIGURE 8
Power system reliability indices in different scenarios.

FIGURE 7
(A) Average capacity price in different scenarios. (B) Cost per
MWh of electricity in different scenarios.
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different levels of VOLL are considered. The benchmark of VOLL is
set as 17,500$/MWh. A lower level of VOLL (denoted by VOLL−) is
set as 0.75 times the benchmark value, while a higher level of VOLL
(denoted by VOLL+) is set as 1.25 times the benchmark value.

The reliability indices, including LOLE and EENS, are
calculated for different scenarios, which are shown in
Figure 8. With the benchmark values of VOLL, the EENS in
the 10% REG scenario, 20% REG scenario, and 25% REG scenario
is 71,841.4 MWh, 88,163.8 MWh, and 98,235.9 MWh,
respectively. The LOLE in the three scenarios is 1.40 h/y,
1.65 h/y, and 2.22 h/y, respectively. It can be concluded that
system reliability becomes worse in the scenario with a higher
proportion of REG. In the 25% REG scenario, the unreliable REG
power output increases the load-shedding risk, and it requires
additional cost to reduce the risk compared with the 10% REG
scenario. Therefore, the tolerance for the ever-greater risk is
witnessed in the 25% REG scenario.

The other observation is that enhancing VOLL can
remarkably improve the system reliability. A larger value of
VOLL means a higher priority on avoiding load shedding.
Increasing the value of VOLL by 25%, the EENS in the 10%
REG scenario, 20% REG scenario, and 25% REG scenario
becomes 57,247.8 MWh, 67,790.8 MWh, and 74,541.4 MWh,
respectively, while the LOLE is 1.16 h/y, 1.34 h/y, and 1.91 h/y,
respectively. Generally, there is a 20%–25% reduction of EENS
and a 16%–20% reduction of LOLE in VOLL+ cases compared
with the benchmark. Likewise, there is an obvious increase in
both EENS and LOLE indices in VOLL− cases, where the VOLL is
set lower than the benchmark.

6 Conclusion

With the aim of promoting the growth of REG and guaranteeing
supply adequacy, this paper proposes a reliability-constrained
capacity market model. The impacts of devices’ random failures
and REG uncertainties on the system reliability are fully considered.
The reliability-constrained capacity market model is formulated as a
two-level mixed integer linear programming (MILP) problem.
Considering the large number of events that occur, the developed
MILP model requires significant computing work to obtain precise
results. Hence, a series of techniques are proposed to reduce the
computational complexity of the capacity market model.

Simulation results demonstrate the necessity of incorporating
reliability constraints into the capacitymarketmodel. It can effectively

restrict the risk of load shedding. The integration of more REG
increases the requirements for flexible generating units, such as gas
power plants. Moreover, a higher proportion of REG induces
increased capacity-related costs while reducing operating costs.

We consider two future research directions. First, the capacity
market model should take into consideration demand response and
other resources that can provide alternative generation capacity.
Second, the other methods should be investigated to further
accelerate the solution of the capacity market model. In this
manner, the proposed capacity market model can be applied to
large-scale systems.
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Virtual power plants (VPPs), serving as an integration and coordination platform
for energy sources, have been rapidly developed in recent years. With the rapid
expansion of distributed energy sources, disturbance problems within the VPP
and cluster are becoming increasingly prominent. In this study, we commence by
addressing the internal fluctuations within the VPP through the construction of a
source–load uncertainty model. Then, we integrate the Nash bargaining game
theory, treating different VPPs as participants in the game. This approach
significantly mitigates disturbances within both VPPs and the cluster through
the negotiation of power trading strategies. In addition, the coordination between
VPPs and their coordination with the distribution network in the network-wide
interaction is considered, and an optimization algorithm for distributed electricity
trading based on the alternating direction method of multipliers is proposed to
solve themodel. The results show that the proposedmodel effectively copes with
the internal and external disturbances of the VPP, improves the system’s ability to
cope with the uncertainty risk, and reduces the operation cost.

KEYWORDS

virtual power plant, bidirectional source–load fluctuations, cooperative operation, Nash
bargaining game, alternating direction method of multipliers

1 Introduction

In pursuit of the goals of “2030 carbon peak” and “2060 carbon neutral,” China is
accelerating the reform of its energy structure, building a clean and low-carbon energy
system and improving the efficiency of renewable energy use (Han et al., 2021; Li et al., 2021;
Sheng et al., 2021). This makes the power system face unprecedented challenges. One of
them is the source–load fluctuation problem in both directions, mainly due to the
distributed energy systems, such as solar power and wind power, whose power
generation is affected by the weather and wind speed, as well as the uncertainty of the
users’ electricity consumption behavior, leading to a two-way fluctuation between power
supply and demand (Deng et al., 2023; Gao et al., 2023; Tang et al., 2023).

Virtual power plants (VPPs) have been rapidly developed because of their advantages in
meeting diversified energy demand and integrating distributed energy sources (Yin et al.,
2018; Sheng et al., 2019). Integrating and coordinating distributed energy sources and
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utilizing flexible energy scheduling strategies help reduce the impact
of source–load fluctuations on the power system and are a key
technology to cope with the problem of bidirectional source–load
fluctuations (Pan et al., 2023a).

The source–load fluctuation problem has been studied by many
scholars. Various forecasting methods have been developed to
improve the energy utilization within the VPP, such as new
energy output prediction and load prediction. A new energy
prediction control technique with feedback correction and an
adaptive predictive energy management strategy for the real-time
optimal operation of the VPP was proposed in the work of Mohy-
Ud-Din et al. (2021), but it cannot achieve the dual prediction of
source and load. Appino et al. (2021) and Li et al. (2023) used
stochastic models to predict renewable energy output and load, and
the algorithm can obtain the optimal scheduling scheme with perfect
prediction. In the work of Alabi et al. (2022), a deep learning
approach for day-ahead prediction and applying a stochastic
modeling approach for optimal decision making for the day-
ahead scheduling of VPPs were discussed. The stochastic nature
of weather and electricity consumption behavior leads to large
deviations between forecasts and the actual situation, and the
scheduling plan is unable to meet the demand for energy.

To address the issue of inadequate accuracy in forecasting new
energy output and load, we employ game theory. This theory treats
diverse energy entities as participants in a game, employing
negotiations on power trading strategies to compensate for
forecast deviations. The goal is to minimize the influence of
power fluctuations on the VPP. A game optimization model of
the VPP and other energy subjects was proposed in the work of
Wang et al. (2022a) and Pan et al. (2023b), taking into account the
interests of VPP operators and other energy subjects. In the work of
Liu (2023), a two-layer game scheduling method for the VPP with
multiple integrated energy systems (IESs) was proposed to ensure
the reliable operation of the VPP and maximize the benefits of
multiple IESs. However, the behavior of each subject in pursuit of
maximizing its interests will harm the reduction of source–load
uncertainty. Wang et al. (2022b) and Ju et al. (2022) constructed a
VPP game model considering flexible demand response and electric
vehicles to balance the multiple objectives of output fluctuation,
competitive behaviors, and dispatch costs, which achieves energy
complementarity and improves the overall operating economy.
These studies focus on the competitive relationship among
energy subjects; the potential for cooperation among different
energy subjects is not sufficiently considered, and the inter-
subject perturbation problem affected by the competitive
relationship cannot be reasonably solved.

In response to the expanding scale of power systems, researchers
have proposed cooperative optimization strategies for multi-virtual
power plants (MVPPs) to address perturbation issues among VPPs.
Zhou et al. (2018a), Ge et al. (2023a), and Cao et al. (2023)
introduced cooperative game strategies for energy systems,
accounting for constraints in distribution network operation,
leading to enhanced stability in overall VPP operation and
reduced operational costs. In the work of Liu et al. (2023), inter-
VPP perturbations and various internal uncertainties were
considered, proposing an MVPP optimization methodology that
acknowledges the risky nature of operations. Zhou et al. (2018b)
suggested a dual-compensation demand response mechanism for

the operator and MVPP to balance conflicting market interests.
They employed a Stackelberg game strategy for operators and
MVPPs with dual-compensation demand response mechanisms,
achieving optimal energy scheduling strategies for each VPP.
Huang et al. (2023) solved the problem using a distributed,
robust optimization method. Additionally, to safeguard
participant privacy, an alternating direction method of
multipliers (ADMM)-based distributionary robust optimization
algorithm was utilized to address trading issues in a distributed
framework. Qiu et al. (2021) explored the cooperation mode of the
MVPP, establishing multi-objective individual and joint scheduling
models for single and MVPPs, respectively. They applied
cooperative game theory to effectively enhance the anti-
disturbance capability of VPPs. Despite these advancements in
MVPP systems realizing the cooperative mode of multiple
entities, the issue of uncertainty in new energy output
and load is insufficiently considered, limiting the improvement
of system economy.

With the continual increase in distributed energy source
penetration, the uncertainty in their output poses substantial
challenges to the secure and stable operation of the MVPP
system and its cooperative entities. Ge et al. (2023b) and Song
et al. (2023) formulated a non-cooperative dynamic game model for
day-ahead market optimization and trading within the MVPP,
accounting for the uncertainty in renewable energy output. In the
work of Yi et al. (2020), Hou et al. (2023), and Xie et al. (2023), an
MVPP coalition game optimizationmodel was proposed, addressing
multiple uncertainties in the VPP and limited dispatch flexibility,
thereby enhancing the comprehensive operational efficiency of the
MVPP. Sabella et al. (2016) explored a three-layer non-cooperative
energy trading approach among multi-interconnected multi-energy
microgrids (MEMGs) in a restructured integrated energy market.
Heterogeneous uncertainties arising from renewable energy sources,
market prices, and electrical loads are addressed using a risk-averse
stochastic programming method. Despite the consideration of
uncertainties, energy trading is confined to VPPs and does not
account for interactions with the distribution network. Ikpehai et al.
(2019) and Zh et al. (2023) proposed a two-stage MVPP distributed
coordination optimization model, considering distribution network
characteristics to enhance MVPP operation stability while
incorporating cooperative scheduling objectives for the
distribution network. Cui et al. (2021) investigated point-to-point
energy trading among multiple microgrids (MGs) under
uncertainties. The paper suggests a two-level distributed
optimization framework to bridge the gap between the physical
power flow supervised by the distribution system operator and the
logical point-to-point transactions among multiple MGs under
uncertainty.

The aforementioned studies offer crucial insights into the
optimal scheduling of the MVPP under source–load uncertainty.
However, there is a paucity of research that comprehensively
considers the bidirectional fluctuations of both the source and
load, as well as disturbances between the MVPP and the
distribution network. Consequently, this paper introduces a Nash
bargaining gamemodel for theMVPP that incorporates source–load
uncertainty.

With regard to the lack of the above literature and in order to
focus on addressing the disturbance problem within VPPs and
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clusters, this paper proposes a Nash game model for the MVPP that
takes into account the source–load uncertainty. The main
contributions of this paper are as follows: 1) a source load
uncertainty model is formulated. By adjusting the uncertainty
level to align with the specific risk preferences of each VPP, it is
demonstrated that, under varying source–load fluctuations, the
collaboration model enhances VPPs’ capacity to manage
uncertainty risks effectively. 2) A cooperative operational model
for power sharing among MVPPs is formulated using the Nash
bargaining theory. In this model, various VPPs are treated as
participants in a game, engaging in negotiations to establish
power trading strategies. This approach, combining cooperation
and competition, mitigates disturbances among VPPs. 3) The
ADMM is adopted to solve the optimization problem of power
trading among VPPs and between them and the distribution
network. Each VPP only needs to interact with the expected
power trading value and power trading price information, which
ensures the privacy of each VPP’s information while achieving good
convergence.

2 MVPP model

2.1 Structure of an MVPP

In this paper, we propose an MVPP power sharing model based
on the Internet of Things technology, as shown in Figure 1. Each
VPP is equipped with a smart meter device, and VPPs communicate
with each other using a wireless access network (Ma et al., 2021).
VPPs are internally set up with an energy trading client (ETC),
which connects to the smart meter through a wireless network. The

software that implements the trading function together with the
smart meter and external communication is called an energy trading
agent (ETA) (Wang et al., 2023). When considering privacy
protection needs, the optimization strategies within each VPP
can be solved locally, and only limited transaction information is
exchanged through the ETA platform.

The VPP mainly consists of new energy equipment, an energy
storage system, a combined heat and power (CHP) unit with a
carbon capture system (CCS) and power to gas (P2G), and electric
and heat flexible loads, which fully satisfy the load demand within
the system through energy interaction with the higher-level grid.
Each VPP within the cluster optimizes the energy price, traded
power, and system unit output according to its own objectives and
resource characteristics to ensure its own electric and heat load
demand. The energy trading framework of this paper is shown
in Figure 2.

2.2 Mathematical model of the VPP

2.2.1 CHP model with a CCS and P2G
The power model of combined heat and power is shown

as follows:

PCHP
i,t � VCHP

i,t ηCHPXgas, (1)

where VCHP
i,t is the natural gas consumption, ηCHP is the power

generation efficiency of the gas turbine, and Xgas is the calorific
value of natural gas. Given the constraint of “electricity demand
based on heat” on the CHP output of the gas turbine, the heating
power of the gas turbine during period t can be delineated by the
following inequality:

FIGURE 1
Structure of the MVPP.
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max Pmin − h1H
CHP
i,t , hm HCHP

i,t −Hi,0( ){ }≤PCHP
i,t ≤Pmax − h2H

CHP
i,t ,

(2)
whereHCHP

i,t is the heating power of the CHP unit at period t, h1 and
h2 are the electric-heat conversion coefficients of the CHP unit
corresponding to the minimum and maximum output power,
respectively, hm is the linear slope of the cogeneration power,
and Hi,0 is the cogeneration power at the minimum of the CHP
unit’s power.

HGB
i,t � VGB

i,t ηGBXgas, (3)
H GB

min ≤HGB
i,t

≤H GB
max , (4)

−ΔHGB ≤HGB
i,t

−HGB
i,t−1 ≤ΔHGB, (5)

where VGB
i,t is the natural gas consumption of the gas turbine, ηGB

is the heating efficiency of the gas turbine, and HGB
i,min, H

GB
i,max,

and ΔHGB
i are the maximum output power, minimum output

power, and maximum climbing power of gas turbine,
respectively.

In the CHPmodel with P2G and a CCS, the generated electricity
can be divided into three parts based on its utilization:

PCHP
i,t � PE

i,t + PCCS
i,t + PP2G

i,t , (6)

where PE
i,t is the power supplied to meet the electricity demand of the

CHP unit, PP2G
i,t is the power supplied for P2G consumption, and

PCCS
i,t is the power supplied for the CCS.
The power consumption of P2G to produce natural gas is

given by

VP2G
i,t � αPP2G

i,t , (7)

where α is the electrical conversion efficiency for P2G gas
production.

The corresponding amount of CO2 required for P2G is
calculated using the following equation:

WCO2
i,t � βPP2G

i,t , (8)

where β is the coefficient for calculating the amount of CO2.
The electric power corresponding to the CO2 captured for P2G

by the CCS is given by

PCCS
i,t � γWCO2

i,t , (9)

where γ is the conversion coefficient for the consumed electric
energy in capturing CO2. The electric powers of the CCS, P2G, and
the CHP should all be within their respective power limits:

P CCS
min ≤PCCS

i,t ≤P CCS
max , (10)

P P2G
min ≤PP2G

i,t ≤P P2G
max , (11)

P CHP
min ≤PCHP

i,t ≤P CHP
max , (12)

where P min
CCS and Pmax

CCS are the lower and upper bounds of the
electric power consumption of the CCS, respectively, Pmin

P2G and
P max

P2G are the lower and upper bounds of the electric power
consumption of P2G, respectively, and Pmin

CHP and Pmax
CHP are the

lower and upper bounds of the electric power generation of the
CHP, respectively.

Substituting the upper and lower constraints of Eqs. 2, (6), (10),
and (11) into Eq. 13, we obtain the new coupled characteristics of
CHP electric thermal power with P2G and the CCS:

max P min
E − h1H

CHP
i,t , hm HCHP

i,t −H0
i( ) − P max

P2G − P max
CCS{ }≤PE

i,t ≤P max
E

−h2HCHP
i,t − P min

P2G − P min
CCS .

(13)

2.2.2 Battery storage system model
The charging and discharging model of the battery is shown

as follows.

Et
bat � 1 − eloss( )Et−1

bat + PBch
i,t ebat,ec − PBdis

i,t

ebat,ed
( )Δt, (14)

0≤PBch
i,t ≤ ut

batP max
Bch , (15)

0≤PBdis
i,t ≤ 1 − ut

bat( )Pmax
Bdis , (16)

Emin
bat ≤Et

bat ≤E max
bat , (17)

ET
bat � E0

bat, (18)
where energy loss coefficient eloss <<1, Pmax

Bch and Pmax
Bdis are the

maximum charging and discharging power, respectively, and
Emin
bat and Emax

bat are the minimum and maximum storage capacity
of the energy storage system, respectively.

FIGURE 2
Energy trading framework.
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2.2.3 Models of electrical and heating loads
The electric load at period t in the VPP consists of three parts:

fixed, transferable, and curtailable electric loads, which can be
expressed as follows:

Pload
i,t � Pload0

i,t + Ptran
i,t + Pcut

i,t , (19)

∑T
t�1
Ptran
i,t Δt

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣≤ ktranPload

i,t , (20)

0≤Pcut
i,t ≤Pmax

cut , (21)

where Ptran
i,t is the transferable electric load and Pcut

i,t is the curtailable
electric load.

The heat load in the VPP is divided into two parts: the fixed heat
load and the curtailable heat load.

Hload
i,t � Hload0

i,t −Hcut
i,t , (22)

0≤Hcut
i,t ≤H cut

max , (23)

where Hcut
i,t is the curtailable heat load and Hcut

i,max is the upper limit
of the curtailable heat load.

2.3 Source–load uncertainty model

PWT
i,t ∈ P̂

WT

i,t − δWTΔP̂
WT

i,t , P̂
WT

i,t + δWTΔP̂
WT

i,t{ }, (24)

PPV
i,t ∈ P̂

PV

i,t − δPVΔP̂
PV

i,t , P̂
PV + δPVΔP̂

PV

i,t{ }, (25)

Pload0
i,t ∈ P̂

load0
i,t − δeΔP̂

e

i,t, P̂
load0
i,t + δeΔP̂

e

i,t{ }, (26)

Hload0
i,t ∈ Ĥ

load0
i,t − δhΔĤ

h

i,t, Ĥ
load0
i,t + δhΔĤ

h

i,t{ }, (27)
∑
t∈T

δWT ≤ ΓWT,∑
t∈T

δPV ≤ ΓPV, (28)

∑
t∈T

δe ≤ Γe,∑
t∈T

δh ≤ Γh. (29)

The distributed energy output,PWT
i,t andPPV

i,t , and load power,P
load0
i,t

and Hload0
i,t , are composed of two parts: forecast value and deviation

value. P̂
WT

, P̂
PV
i,t , P̂

load0
i,t , and Ĥ

load0
i,t denote the forecast value of

distributed energy output and load power, ΔP̂WT
i,t , ΔP̂PV

, ΔP̂e
i,t, and

ΔĤh
i,t denote the deviation value of distributed energy output and load

power, δWT, δPV, δe, and δh are binary variables, 0 means that the
uncertain variables are not taken, 1 means that the uncertain variables
are taken to the extremes of the uncertainty set, and ΓWT, ΓPV, Γe, and Γh
denote the degree of uncertainty. The uncertainty modeling of
the source load using this method allows a reasonable regulation
of the degree of uncertainty, facilitating a comparison of the
scheduling methods.

2.4 The objective function of the
MVPP model

Based on the established MVPP power cooperation and sharing
model, the VPP operation cost mainly consists of CHP unit
operation cost, energy purchase cost, storage system operation

and degradation cost, demand response cost, power transmission
cost, and power sharing cost. The cost mathematical model of the
VPP can be described using the following equation:

CVPP
i � CCHP

i + Cw
i + CESS

i + Cdr
i + Ctran

i + Cnet
i , (30)

where CVPP
i is the operating cost of the ith VPP in the MVPPmodel.

Each cost term is specified as follows:

1. CHP operation cost

CCHP
i � ∑T

t�1
a1 PCHP

i,t( )2 + b1P
CHP
i,t + c1[ ], (31)

where a1 and b1 are the operation cost coefficients of the CHP and c1
is the operation cost constant.

2. External purchased energy cost

Cw
i � ∑T

t�1
λbuyt Pbuy

i,t − λsellt Psell
i,t( ) + λCH4

i,t Vbuy
i,t[ ], (32)

where λCH4
i,t is the price of natural gas,Vbuy

i,t is the total gas purchased
by the CHP system in period t, and λbuyt and λsellt are the purchase
and selling prices of power, respectively.

3. Operation degradation costs of the battery energy storage system

CESS
i � ∑T

t�1
ζ PBch

i,t + PBdis
i,t( ), (33)

where ζ is the degradation cost per unit of charge and discharge
(Britz et al., 2010).

4. Carbon quota and carbon trading cost

The carbon emission quota of the VPP is calculated using the
following equation:

W0
i,t � D PCHP

i,t + PPV
i,t + PWT

i,t( ), (34)
where D is the carbon emission quota for the CHP VPP per unit of
electricity production. The derivation of carbon trading cost is
as follows:

CCO2
i � ∑T

t�1
ε WCO2

i,t −W0
i,t( ), (35)

where ε is the carbon trading cost coefficient.

5. Demand response cost

Cdr
i � ∑T

t�1
λcute Pcut

i,t + λtrane Ptran
i,t + λcuth Hcut

i,t( ), (36)

whereCdr
i is the demand response cost and λcute , λtrane , and λtranh are the

compensation unit price for the transferable and curtailable loads.

6. Power transmission cost

Ctran
i � ∑T

t�1
∑ϒ
j ≠ i

aeP
net
i−j,t. (37)

Frontiers in Energy Research frontiersin.org05

Chu et al. 10.3389/fenrg.2023.1337205

92

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1337205


Transmission of power between VPPs necessitates the payment
of a crossing charge to the distribution network operator. ae is the
crossing charge per unit of electricity. The VPP cluster is defined as
ϒ, where i, j ∈ ϒ but j ≠ i.

7. Power sharing cost

The power sharing cost is defined as the amount of energy
trading between VPPi and VPPj at period t. If Pnet

i−j,t > 0, VPPi will
obtain energy from VPPj. Conversely, energy will be supplied to
VPPj. The price per unit of energy that needs to be paid for the
amount of electricity Pnet

i−j,t is the power sharing cost, and the cost of
energy sharing Cnet

i is shown in the following equality:

Cnet
i � ∑T

t�1
∑ϒ
j ≠ i

rneti−j,tP
net
i−j,t. (38)

2.5 Constraints

1. Electric power balance constraint

PPV
i,t + PWT

i,t + PCHP
i,t + PBdis

i,t + Pbuy
i,t + Psell

i,t � Pload
i,t + PBch

i,t + Pnet
i−j,t.

(39)

2. Heat power balance constraint

HCHP
i,t +HGB

i,t � Hload
i,t . (40)

3. Natural gas balance constraint

Vbuy
i,t � VCHP

i,t + VGB
i,t . (41)

4. Power trading constraint

The power output or received between VPPs at each period t
should be within the limits of the transmission power limit of the wires.

0≤Pnet
i−j,tξ

b
i,t ≤P max

net ,∀j ∈ ϒ, j ≠ i, (42)
−P max

net ≤Pnet
j−i,tξ

s
i,t ≤ 0,∀j ∈ ϒ, j ≠ i, (43)

0≤Pbuy
i,t ξbi,t ≤P max

grid ,∀i ∈ ϒ, (44)
−P max

grid ≤Psell
i,t ξ

s
i,t ≤ 0,∀i ∈ ϒ, (45)

ξsi,t + ξbi,t ≤ 1, (46)

where Pnet
i,t is the total amount of electricity trading byVPPi in period

t and the corresponding payment to be paid is ]i,t. VPPs participating
in electricity trading must satisfy the energy sharing balance
constraint (44) and the trading payment balance constraint (45).

∑
i∈ϒ

Pnet
i,t � 0,∀t, (47)

∑
i∈ϒ

]i,t � 0,∀t. (48)

3 Model solving of an MVPP based on
Nash bargaining theory

In this study, Nash game theory and the ADMM are used to
optimize the power allocation to VPPs, aiming to improve the
MVPP system’s ability to cope with the source–load fluctuation
problem and reduce the impact of disturbances between VPPs and
between them and the distribution network.

3.1 Nash bargaining theory

The Nash negotiation optimization model studied in this paper is a
cooperative game, where the MVPP distributes cooperative gains among
multiple participants by negotiating with each other after maximizing the
benefits of the entire participating group. The Nash negotiation model
satisfies a set of axioms, including symmetry and Pareto optimization.
The standard Nash negotiation model is shown in equality (46). The
solution that maximizes the Nash product is the equilibrium solution to
the Nash negotiation game problem (Tomohiko, 2014).

max∏
i∈ϒ

Ui − U0
i( )

s.t. Ui ≥U0
i

⎧⎪⎨⎪⎩ , (49)

where Ui is the benefit of the negotiating subject; U0
i is the benefit of

the subject before participating in the cooperation—the point of
negotiation rupture. The Nash negotiation model is a non-convex
nonlinear problem, so the above model decomposition is converted
into two sub-problems: the VPP cluster cost minimization sub-
problem (P1) and the benefit distribution sub-problem (P2), which
are solved sequentially.

3.2 MVPP model solution

To protect the privacy of each subject, P1 applies the ADMM
algorithm and uses the trading power between subjects as a coupling
variable to find out the optimal trading power between subjects while

FIGURE 3
VPP2 electric power balance.
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simultaneously obtaining the scheduling results for each subject.
P2 applies the ADMM algorithm and uses the trading price of
electricity between subjects as a coupling variable to find out the
optimal trading price of electricity between subjects while
simultaneously obtaining the optimal revenue distribution results for
each subject.

3.2.1 Solution of P1

min∏ϒ
i�1

CVPP
i Pnet

i,t( )[ ]
s.t. 1( ) − 29( ), 39( ) − 48( )

⎧⎪⎪⎨⎪⎪⎩ . (50)

In the solution of P1, when the equation is satisfied, it indicates
that there is a consensus on electrical power transaction between
VPPi and VPPj.

Pnet
i−j,t + Pnet

j−i,t � 0,∀i, (51)

where Pnet
i−j,t is the value of power that VPPi expects to trade with

VPPj and Pnet
j−i,t is the value of power that VPPj expects to trade

with VPPi.
The augmented Lagrange function for P1 is constructed

as follows:

LPl
i � CVPP

i +∑ϒ
j

∑T
t�1
λP1i−j Pnet

i−j,t + Pnet
j−i,t( ) +∑ϒ

j

ρPli
2
∑T
t�1

‖ Pnet
i−j,t + Pnet

j−i,t‖22,

(52)
where λP1i−j is the Lagrangemultiplier; the penalty parameter is set as ρP1i =
10–4. The optimal traded electric power between each VPP is determined
by alternatively solving equalities (50)–(52) using the ADMM.

Pnet
i−j,t k + 1( ) � argminLP1

i λP1i−j k( ), Pnet
i−j,t k( ), Pnet

j−i,t k( )( ), (53)
Pnet
j−i,t k + 1( ) � argminLP1

j λP1j−i k( ), Pnet
i−j,t k + 1( ), Pnet

j−i,t k( )( ), (54)
λP1i−j k + 1( ) � λP1i−j k( ) + ρP1i Pnet

i−j,t + Pnet
j−i,t( ). (55)

3.2.2 Solution of P2
In the paper, a nonlinear function is used to quantify the

contribution size of different VPPs in power sharing, and VPPs
negotiate with each other according to their respective contributions
as bargaining power to determine the trading price of power among
them and achieve fair allocation. First, the energy supplied and the
energy gained by each VPP during the participation optimization
cycle are calculated to constitute a nonlinear energy mapping
function to quantify the magnitude of the bargaining power of
each VPP based on the contribution of participation in
power sharing.

Ψs
i � ∑T

t�1
max 0, Pnet

i−j,t( )
Ψr

i � −∑T
t�1

min 0, Pnet
i−j,t( )

, (56)

βi � eΨ
s
i/Ψ s

max − e
− Ψr

i
Ψ r
max

( )
, (57)

where Ψ s
max is the maximum value of supplied power in the VPP

andΨ r
max is the maximum value of received power in each VPP. The

MVPP asymmetric bargaining revenue sharing model is constructed
based on the Nash negotiation model as follows:

max∏ϒ
i�1

C0
i − CVPP

i + Cnet
i( )βi

s.t. 38( ), 47( )

⎧⎪⎪⎨⎪⎪⎩ , (58)

C0
i − CVPP

i + Cnet
i > 0, (59)

where C0
i is the cost of VPPi before power sharing. The maximum

value problem is converted into a minimum value problem.
Following the same procedure as in P1, the multi-coupling
constraints on trade balance are decoupled to transform them
into double-coupling constraints.

min∏ϒ
i�1

− βi ln C0
i − CVPP

i + Cnet
i( ), (60)

rneti−j,t − rnetj−i,t � 0,∀i, (61)

FIGURE 4
VPP cluster power trading.

FIGURE 5
VPP2 purchase and sale of power.
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where rneti−j,t is the transaction price expected byVPPi for the transaction
power Pnet

i−j,t that has been solved in P1, rnetj−i,t is the transaction price
expected by VPPj, and rneti−j,t = rnetj−i,t indicates that the two sides have
reached a consensus. The specific solution steps of P2 are similar to
those of P1, so there is no need to go into details here.

3.2.3 Analysis of algorithm convergence
The convergence curves of P1 and P2 of this paper’s algorithm are

shown in Figure A1 and Figure A2. P1 converges after 32 iterations
with a computation time of 275 s. P2 converges after 24 iterations with
a computation time of 138 s. The results show that this paper’s
distributed algorithm based on the ADMM can achieve the
distributed and efficient solution to the two sub-problems while
considering the privacy protection of all stakeholders.

4 Case analysis

4.1 Basic data

In this paper, we consider the problemof power sharing and trading
among three VPPs: the electrical and heat loads of VPPs are shown in
Figures A3A, B, the new energy unit of VPP1 is wind power, the new
energy unit of VPP2 andVPP3 is photovoltaic power, and VPP2’s CHP
unit contains carbon capture and power-to-gas equipment. The
efficiency of the equipment is assumed to be constant, and the effect

of the load ratio on the efficiency is ignored. The electric and heating
load predictions of each VPP are shown in Figure A3. The distributed
energy output forecast is shown in Figure A4. The parameters of the
main equipment are shown in Table A1, and the information about
electricity prices of the grid and gas prices is shown in Table A2.

4.2 Analysis of results

4.2.1 Optimization results for MVPP power trading
1. VPP internal power balance results

Figure 3 shows the power optimization paradigm within VPP2,
representing a typical instance under the MVPP synergy architecture.
VPP2 actively engages in the comprehensive power coordination and
optimization process across the entire cluster. This involvement is
contingent on satisfying its internal power demands first. Notably, the
power production of the PV unit varies throughout the day. In the 11:
00–18:00 time period, the PV unit generates power to meet local
demand and can redistribute excess power to other VPPs. In contrast,
during the periods of 0:00–10:00 and 19:00–24:00, when PV
production capacity is limited, VPP2 initially draws power from
other VPPs and supplements any shortage through grid purchases.
This collaborative model serves a dual purpose: it diminishes energy
fluctuations within the system andminimizes reliance on external grid
power, thereby curbing overall operational expenses. The electrical

FIGURE 7
Power load of VPP2 under uncertainty.

FIGURE 6
Trading price results of the VPP cluster.

TABLE 1 Cost analysis before and after cooperation.

Participant Bargaining
factor (βi)

Costs before
cooperative
operation/¥

Costs after
cooperative
operation/¥

Final allocated
cost/¥

Value of cost
reduction/¥

VPP1 2.3310 21,756.02 25,065.31 16,274.98 5,481.04

VPP2 1.1001 43,160.78 29,055.43 39,760.90 3,399.88

VPP3 0.8475 22,895.05 22,910.66 20,995.52 1,899.53

VPP cluster — 87,811.85 77,031.40 0 10,780.45
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and heat power balances for the other VPPs are shown in Figures
A5A, C.

2. VPP cluster power trading results

The optimization results of the electrical energy interaction of each
VPP are shown in Figure 4. In the 00:00–10:00 and 16:00–24:00 time
periods, thewind power production capacity inVPP1 is in surplus, which
provides electrical energy for VPP2 and VPP3 to make up for the lack of
electrical energy at night. On the contrary, during the 10:00–16:00 time
period, the sharp increase in electric load during the daytime leads to the
insufficient supply of electric energy in VPP1 when the photovoltaic
power generation capacity of VPP2 andVPP3 is at its peak, in which case
VPP2 and VPP3 deliver electric energy to VPP1. This complementary
power sharing mechanism helps mitigate the power fluctuation among
VPP clusters and improve the overall stability of the system.

3. VPP purchase and sale of power results

The external power trading of VPP2 is shown in Figure 5. When
the generation equipment within VPP2 cannot meet load demand,
VPP2 first purchases electric energy from other VPPs; if it still
cannot meet the load demand, it considers purchasing the required
electric energy from the grid. When VPP2 has excess power, it
prioritizes power trading with other members in the cluster and only
considers selling power to the grid if it meets the power demand of
the cluster. Through this prioritized power trading strategy, the
power fluctuation problem within the VPP cluster is effectively
solved, ensuring that the power interaction between the VPP cluster
and the distribution grid is reasonable and efficient.

4. Trading price results of the VPP cluster

The power trading price among VPPs is shown in Figure 6. It
can be seen that the bargaining method is used to trade electricity
between VPPs, and the electricity price is maintained within the
upstream grid selling and purchasing price ranges at different
periods. This strategy enables VPPs to sell electricity at a price

higher than the grid purchase price and buy electricity at a price
lower than the grid sale price. It increases the VPP’s revenue.

4.2.2 Effects on source load uncertainty
To validate the impact of source load uncertainty and its model on

the operation of the MVPP system, a case study is conducted under the
following uncertainty conditions: load and wind power output
uncertainties are set to 12, photovoltaic output uncertainty is set to
6, and deviation of new energy output and load power is set to 20% of
the predicted values. The most adverse scenario for VPP2 under the
mentioned uncertainty conditions is obtained. Taking load data as an
example, the comparison analysis between the worst-case scenario and
the initial predicted data is plotted in Figure 7.

From Figure 7, it can be observed that, under the consideration of
uncertainty factors, the electric load power of VPP2 in the worst-case
scenario is higher than the predicted values during the time periods of
06:00–08:00 and 14:00–19:00. When considering uncertainty, there is
an increase in the load level, leading to a higher peak-to-valley difference
and accentuating the volatility of the power load curve. To enhance the
system’s capability to address uncertainty factors, it is apparent that the
operational costs of the VPP will increase.

To study the effect of uncertainty on the operation cost of the
MVPP, seven sets of uncertainty parameters are selected to calculate the
operation cost under the modes of cooperative and independent
operation among the VPP members, respectively, and the results are
shown in Figure 8.When the uncertainty is 2, the costs in the twomodes
are ¥95,760 and ¥84,689, respectively, and the cost of cooperative
operation is reduced by 11. 56% based on non-cooperative operation.
The cost under the cooperative mode of operation is ¥98,960 when the
uncertainty is 8, which is similar to the non-cooperative operation cost of
¥99,886 when the uncertainty is 4. As the uncertainty increases, the
operating cost of the system increases accordingly, but the effect of
uncertainty on the operating cost can be significantly reduced by
cooperative operation.

4.2.3 Cost results of the MVPP
Table 1 presents the operation cost data of each VPP before and

after the cooperative operation. The results show that the cost of the
VPP cluster is reduced by ¥10,780.45. Specifically, the cost of each VPP
is reduced by ¥5,481.04, ¥3,399.88, and ¥1,899.53, reaching 25.19%,
7.88%, and 8.30% of the pre-cooperation cost, respectively. It shows that
the cooperative game not only effectively reduces the impact of
source–load fluctuations on the system but also achieves a more
equitable cost distribution.

5 Conclusion

In considering the increasing percentage of distributed energy in the
power system and the challenges resulting from the power system’s
fluctuation in distributed energy, this study introduces the Nash
bargaining theory, builds a source–load uncertainty model, and uses
the alternating directionmethod ofmultipliers to establish an integrated
scheduling framework for a virtual power plant and its integration with
the distribution network. The following are the main conclusions.

1) The constructed uncertainty model for source loads can flexibly
reflect the VPP’s actual risk preferences. By increasing the

FIGURE 8
Operation cost of the MVPP with different uncertainties.
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uncertainty of source loads, it further intensifies the volatility of
the power load curve. To enhance the system’s capability to
address uncertainties, there is a need to increase the operational
costs of the VPP. However, adopting a cooperative game
approach reveals that the total operating cost is less than the
independent operation cost, effectively boosting the system’s
adaptability to uncertainty risks. This indicates that the strategy
of collaborative cooperation not only reduces overall costs but
also, while increasing flexibility, enhances the robustness of the
VPP, enabling it to better adapt to dynamic environments and
uncertain conditions.

2) Through cooperative operations among MVPPs, individual
member costs are reduced by 25.19%, 7.88%, and 8.30%,
respectively, compared to independent VPP operations. The
total cost of the MVPP has decreased by 13.38%, considering
both individual and collective interests. This approach
effectively curtails the operational costs of the VPP.

3) TheMVPP operation optimization strategy, grounded in Nash
game theory, employs the ADMM algorithm for distributed
solving. This algorithm facilitates the exchange of limited
information on traded electricity and prices, ensuring the
privacy of each participating entity, and exhibits
commendable convergence properties.

In addition to the source–load fluctuation problem and the existence
of perturbations among the VPP cluster, the efficiency and capacity
allocation of the main equipment have some degree of influence on the
cooperative operation of the MVPP. The authors intend to conduct
further research on the above issues as a follow-up to this paper.
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Appendix

FIGURE A1
Convergence process of P1.

FIGURE A2
Convergence process of P2.

FIGURE A3
(A) Electrical load. (B) Heat load.
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FIGURE A4
Distributed energy output forecast.

TABLE A1 VPP system parameters.

Parameter Value Parameter Value Parameter Value

ηCHP 0.35 P Bdis
max /kW 500 a1 (¥/kW) 0.01170

ηGB 0.85 ktran 0.15 b1 (¥/kW) 4.00 × 10−6

Χgas (MJ/M3) 35 Pi−j,max/kW 2,000 c1 (¥/kW) 0.02

h1 0.155 H GB
min /kW 0 ae (¥/kW) 0.02

h2 0.20 H GB
max /kW 800 ζ (¥/kW) 0.015

hm 0.85 E bat
min

500 λcute (¥/kW) 0.3

Pmin/kW 1,200 E bat
max

1,800 λtrane (¥/kW) 0.1

Pmax/kW 3,200 P CCS
min /kW 0 λcuth (¥/kW) 0.2

ebat,c 0.95 P CCS
max /kW 600 α/(m3/kW) 0.5

ebat,d 0.95 P P2G
min /kW 0 β/(kg/kW) 0.5

P Bch
max /kW 500 P P2G

max /kW 300 γ/(kW·h/kg) 1.02

TABLE A2 Electricity prices of grid and gas prices.

Type Period Price

Electricity prices Peak period (12:00–14:00, 19:00–22:00) 1.20 (¥/kW·h)

Bottom period (23:00–07:00) 0.40 (¥/kW·h)

Normal period (08:00–11:00, 15:00–18:00) 0.75 (¥/kW·h)

Natural gas price Whole day 3.50 (¥/m3)
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FIGURE A5
Other VPP power balance, (A) VPP1, (B) VPP2, and (C) VPP3.
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Anomaly detection based on a
deep graph convolutional neural
network for reliability
improvement

Gang Xu1, Jie Hu1*, Xin Qie1 and Jingguo Rong2

1School of Electrical and Electronic Engineering, North China Electric Power University, Beijing, China,
2State Grid Economic and Technological Research Institute Co., Ltd., Beijing, China

Effective anomaly detection in power grid engineering is essential for ensuring
the reliability of dispatch and operation. Traditional anomaly detection methods
based onmanual review and expert experience cannot be adapted to the current
rapid increases in project data. In this work, to address this issue, knowledge
graph technology is used to build an anomaly detection dataset. Considering the
over-smoothing problem associated with multi-level GCN networks, a deep skip
connection framework for anomaly detection on attributed networks called DIET
is proposed for anomaly detection on ultra-high voltage (UHV) projects.
Furthermore, a distance-based object function is added to the conventional
object function, which gives DIET the ability to process multiple attributes of the
same type. Several comparative experiments are conducted using five state-of-
the-art algorithms. The results of the receiver operating characteristic with the
area under the curve (ROC-AUC) indicator show a 12% minimum improvement
over other methods. Other evaluation indicators such as precision@K and recall@
K indicate that DIET can achieve a better detection rate with less ranking. To
evaluate the feasibility of the proposedmodel, a parameter analysis of the number
of GCN layers is also performed. The results show that relatively few layers are
needed to achieve good results with small datasets.

KEYWORDS

reliability improvement, graph convolutional network, anomaly detection, skip
connection mechanism, artificial intelligence

1 Introduction

In recent years, the Chinese economy, industry, and society have progressed
significantly. This has led to a tremendous growth in power consumption. Meanwhile,
to meet environmental protection demands, carbon peaking and carbon neutralization
targets have been proposed (Cao et al., 2023; L; Li et al., 2023; Zhang et al., 2023), which have
led to important changes in both electricity production and transmission. The reliability
remains an important topic for both power systems and multi-energy systems. However,
traditional reliability improvement methods mainly focus on the operation progress, the
other important aspect called construction progress which concerns power grid structure
and equipment is less studied. Among the whole construction progress, a process called the
review of power transmission and transformation projects which exists between the initial
design and construction stage is the key to ensure the reliability of power systems. The main
purpose of the review step is to find design flaws, and the step is carried out jointly by
relevant power design institutes and project review institutes. It mainly consists of four
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stages: the collection and verification of review data, an evaluation by
professionals, the formation of review opinions, and the archiving of
project data into a database. An effective anomaly detection method
is needed to find unusual features in design plans. At present, the
specific processes and details of the review step are relatively
complete, but the following problems remain to be addressed:

1) The review documents often contain problems including
errors, omissions, and irregular writing. For example, some
equipment attribute specifications are incompletely filled in,
which can cause problems in the construction stage.

2) There are still deficiencies in the standardization of the review
working process, which mainly relies on the experience of
professionals. It is less efficient and prone to errors.

3) There are still deficiencies in the handling of new technologies,
new equipment, and special engineering environments.

In order to address these problems, studies on the auxiliary
review system for power transmission and transformation projects
have been conducted. Most researchers process data based on
browser-server (B/S) architecture and SQL server databases.
Compared with the traditional client-server (C/S) architecture,
B/S architecture is highly distributed, simple to develop, highly
shareable, and easily maintained. Intelligent review management
platforms have been proposed for the design of power transmission
and transformation projects above and below 110 kV (Huang, 2018;
Li et al., 2021). These systems include key factor extraction, data
platform selection, and data analysis. The difference between the two
scenarios is the database types adopted, and it has been shown that
relational databases can achieve better results in the intelligent
review management platform for power transmission and
transformation engineering design review. Systems already in
operation, such as the Fujian power transmission and
transformation project design review system, show that the B/S
model system architecture can achieve its best results when handling
the entire process of the feasibility study, preliminary design,
construction drawing review, construction drawing budget, and
completion settlement (Hong, 2014). Due to the flexibility of the
architecture, the standardized management of review processes and
the templated management of review documents have also been
realized. Meanwhile, the China Electric Power Planning &
Engineering Institute has established an expert decision-making
system that can realize engineering information extraction, plan
management, and carry out auxiliary decision-making and other
functions based on its own business needs. As the scale of the power
grid continues to expand, the efficiency of existing platforms in
knowledge acquisition encounters the problem of low efficiency and
an inability to meet knowledge reasoning needs.

With the development of artificial intelligence technology,
knowledge graph technology, which has the advantages of high
scalability, efficient query efficiency, and better visualization, has
become an option for building the next-generation of power
transmission and transformation engineering auxiliary review
platforms. A knowledge graph is an auxiliary knowledge base
originally proposed by Google to enhance search engine
functions (Y. Song et al., 2023). It uses “entity-relationship-
entity” triples to describe objects in the real world and the
relationships between them (Pu et al., 2021). It has strong

relationship expression, reasoning, and error correction
capabilities which could provide strong support for applications
in various fields (Ji et al., 2022). Existing research on this topic can be
mainly divided into two aspects: knowledge graph construction and
graph application. In terms of the construction of knowledge graphs,
knowledge extraction based on different business needs is the key.
For power systems, a framework for the application of knowledge
graphs in power systems has been proposed and the key technologies
required to build a domain-specific knowledge graph have been
introduced (Pu et al., 2021). Several researchers have constructed
knowledge graphs based on their own needs (Guo et al., 2021; Tian
et al., 2022; Wang et al., 2023). Although the research objects and
specific algorithm models differ, the key algorithms such as named
entity recognition, relation extraction, and entity fusion are the
same. In terms of graph application, different application cases in
multiple fields such as natural disasters in power transmission and
transformation lines, electricity consumption by power users,
transformer status sensing, and assisted decision-making in
distribution network faults have been studied (Ruan et al., 2021;
Ye et al., 2022; Chen et al., 2023). At present, the applications of
knowledge graphs in the power field mainly include power
dispatching (Li et al., 2019; Zhou et al., 2019; Liu et al., 2020),
operation and maintenance (Guo et al., 2021; Wang et al., 2021; Shu
et al., 2023), and fault handling (Tian et al., 2022; Liu et al., 2023).
However, there has been little research on knowledge graph
construction based on power transmission and
transformation projects.

The goal is to detect defects in power transmission and
transformation projects, so a knowledge-graph-based anomaly
detection algorithm is needed. As it is an attributed network,
there has been a large amount of anomaly detection research
based on the graph convolutional network (GCN). An attributed
network consists of two components: an adjacency matrix that
represents the structural information and an attribute matrix that
contains the feature embedding of node attributes. Leveraging GCN
as an encoder, DOMINAT has been proposed as a basic model to
detect anomalies with a ranking mechanism using both structural
and attribute information (Ding et al., 2019). Noticing that the
nodes’ attributes are different, ALARM introduced multi-view data
into the encoder-decoder framework (Peng et al., 2020). ResGCN,
on the other hand, proposed a deep residual modeling approach (Pei
et al., 2021). All the methods mentioned above are based on
unsupervised learning, and HCM is a self-supervised anomaly
detection method that considers the hop counts of global and
local information. Moreover, a semi-supervised anomaly
detection method has been proposed to tackle datasets with few
labeled nodes (Kumagai et al., 2021). Although all the above
algorithms achieve good results in their own domains, they all
neglect the over-smoothing problem of the deep GCN network,
which could reduce node specificity.

To solve the problems mentioned above, a deep skip connection
framework for anomaly detection on attributed networks called
DIET is proposed in this work. Specifically, to handle the over-
smoothing problem, a skip connection mechanism is used, which
leverages the former GCN output as input for the next hidden layer.
Furthermore, noticing that all the nodes have the additional
attribute of entity type, it is intuitive to cluster all the nodes with
the same type and use a distance-based algorithm to find anomalies
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in the group. The rest of this article is structured as follows. A
detailed analysis of the requirements for the review of power
transmission and transformation projects is provided in Section
2, along with the construction method based on the UHV dataset.
The proposed anomaly detection framework, DIET, is presented in
Section 3, followed by a detailed case study to evaluate the feasibility
of DIET in Section 4. Finally, a conclusion is presented in Section 5.

2 UHV knowledge graph

With the increasing demand for clean energy and the expanding
scale of UHV projects, the digital transformation of power grid
infrastructure projects is imminent. The review of transmission and
transformation projects requires a great deal of professional
knowledge, and the massive amounts of data have created
challenges. Moreover, traditional intelligent platforms usually use
relational databases for data storage, which leads to low knowledge
reasoning ability. By constructing a UHV knowledge graph,
unstructured historical engineering data can be stored as nodes
and relations, making anomaly detection more effective. The
construction of a UHV knowledge graph mainly includes three
steps: demand analysis, data collection, and graph construction.

2.1 Demand analysis

The review of power transmission and transformation projects is
one of the key processes in project construction. It has a direct
impact on the equipment selection, the project quantity calculation,
and the cost of power grid construction. Compared with general civil
construction projects, the evaluation of power transmission and
transformation projects is stricter. Themain review process of power

transmission and transformation projects includes a preliminary
design review (including the budget, technical specifications, and
safety topics), a construction drawing review (including a rough
budget and major design changes), and other reviews of related
topics. It involves many fields of power construction, such as
primary electrical design, secondary electrical design, power line
design, line structure, and substation electrical design. It requires
strong professionalism, an understanding of complex processes, and
significant experience from reviewers. It is completed jointly by an
electric power design institute and a project review institute. The
specific process is shown in Figure 1. Some of the key elements of
substation, overhead line and cable projects are listed in Tables 1–3.

2.2 Data collection

In a power transmission and transformation project, the dataset
can be very large, stored in different formats, and from a variety of
sources. In general, heterogeneous data can be divided into three
types: a grid information model (GIM) that contains the device
properties and graphics information, text data, which usually comes
in Word or PDF format and contains almost all of the important
design details, and images that usually come from the construction
stage. According to existing storage regulations, data is stored in
various databases, which are indexed differently and lack unified
standards. Taking ultra-high voltage (UHV) projects as an example,
the various data types are shown in Figure 2. Geographic
information is the basis for constructing a substation or overhead
lines. It mainly contains altitude information, lightning area, wind
speed and so on. GIM model is a 3D visualization data. It is
constructed based on Grid Information Model (GIM) standard.
Design data is the data generated from the design progress. It mainly
contains two types of data: preliminary design report and equipment

FIGURE 1
The power transmission and transformation project recheck flow chart.
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TABLE 1 Part of substation projects review key elements.

First-level evaluation indicators Second-level evaluation indicators

Main electrical wiring Voltage levels at all levels of substations

Wiring form

Circuit breaker of main transformer

Isolating switch of high-resistance loop

Main equipment selection 50 kA, 60 kA

Transformer type

Neutral point DC blocking device

Shunt reactor

Reactive power compensation equipment

Short circuit current 50 kA for a 500 kV voltage level

60 kA for a 1,000 kV voltage level

Power distribution device Power distribution device selection

Device layout

Insulation Grounding switch

Data

Station electricity Station electrical wiring method

Station power capacity

Cable Low voltage power cable

Control cable

Communication cable

TABLE 2 Part of the overhead line projects review key elements.

First-level evaluation indicators Second-level evaluation indicators

Overhead line path Overhead line path selection

Overhead line corridor width

Crossing point selection

Weather condition Wind speed

Ice thickness

Strong wind area

Ground wire selection Maximum allowable temperature of conductor

Ground conductor excess length

Overhead line transposition Transposition method selection

Insulation Demarcation of polluted areas

Suspension insulator string creepage distance

Suspension insulator string type selection

Anti-icing flash measures

Power distribution device Power distribution device configuration method

Frontiers in Energy Research frontiersin.org04

Xu et al. 10.3389/fenrg.2024.1345361

105

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1345361


inventory. Association hook relationship is an index type data which
gives clear connection between a specific document and its storage
name. Technical and economic data mainly concerns financial data

in the whole construction progress. Engineering technical indicators
are key specification in a project, such as rated voltage, quantity of
transformers and so on. Engineering research materials are new
technology and new equipment used in a specific project. Post-
project evaluation data is an important part in the progress of project
acceptance. It contains a check list of all the indicators for a project.
Engineering features specifies the distinguish aspects from other
projects, for example, a project is constructed in a high-altitude area.
Considering reliability improvement for the energy system, not all
these data are used.

2.3 Graph construction

A knowledge graph is an undirected graph composed of nodes
and edges. The nodes can store equipment and attribute variables,
and the edges can store the relationships between variables.
Constructing a knowledge graph mainly consists of two steps:
ontology design and knowledge extraction. Ontology design
defines the types of entities and relations in a conceptual view,
defining multiple ideas, entity and relation types, and mapping rules
between entities. It provides a guide for knowledge extraction.
Knowledge extraction is the key technology used to construct the
data layer of a knowledge graph and mainly consists of two steps:
named entity recognition (NER) and relation extraction (RE).
Named entity recognition, also known as proper name
recognition or named entities, refers to the identification of
entities with specific meanings in text, for example, the names of
people, place names, and organization names, or properties such as
quantity, length, and width. Relation extraction is a process of
extracting triples such as (subject, relationship, object) from a
text corpus. It has two tasks: identify subjects and objects in the
text corpus and determine which relationship these two entities
belong to. As shown in Figure 3, a knowledge graph contains two
layers: a data layer that is the result of NER and RE, and a concept

TABLE 3 Part of the cable projects review key elements.

First-level evaluation indicators Second-level evaluation indicators

Cable path Cable path selection

Cable corridor width

Crossing point selection

The distance between cables and cables, pipelines, roads, structures, etc.

Layout Layout selection

Cable type and cross-section selection Cable type

Insulation shielding

Metal sheath

Cable armoring

Outer protective cover

Shield grounding Shield grounding method

Cable laying 500 kV layout method

330 kV layout method

FIGURE 2
UHV project data types.
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layer that represents the ontology design. Orange and blue ovals
denote the entity types and instances, and straight lines with arrows
denote relationship instances whose types are pre-defined in the
concept layer. The remainder of this section will elaborate on the
ontology design and knowledge extraction in UHV projects.

There are generally three methods for constructing knowledge
graph ontology: top-down, bottom-up, and a combination of the
two. In the domain of UHV construction projects, a clear
framework of data structure exits according to procedures and
specifications issued by power grid companies. However, there are
two problems which could affect the accuracy of the ontology: a rather
rough framework and the gradually used new equipment. To achieve
better knowledge extraction accuracy, a combination of the two
methods is used to construct the UHV project knowledge graph
ontology, also taking expert experience and data characteristics into
consideration. Such knowledge graph ontology architecture is believed
to provide better performance when it comes to meeting the needs of
different downstream applications, such as searching and project
reviewing. As shown in Figure 4, the ontology of UHV projects
mainly consists of four parts: basic information, design company,
substation, and line. The basic information includes the name of the
project, the construction scale, the natural conditions, and the project
classification, which are the properties of the project. The design
company information describes the basic information related to the
company that makes the preliminary design plan, which is important
because different companies have different design preferences, though
important information such as technical indicators should be contained
in the knowledge graph. Substation and line are two key parts of the
knowledge graph. According to current national, industry, and
enterprise standards and other specifications, to evaluate the
feasibility of a project, the most important consideration is the
equipment type and quantity. Analysis of the preliminary design
report shows that the main substation equipment can be divided

into six categories: electrical primary parts, electrical secondary parts,
relay protection, telecontrol equipment, heating, ventilation and air
conditioning (HVAC) equipment, and communication equipment. The
line part consists of power towers and overhead lines. All of these pieces
of equipment should have two properties, equipment type and quantity,
which are not shown in Figure 4. Table 4 shows some entity examples in
a concept layer.

Knowledge extraction refers to extracting the knowledge
contained in different data sources and storing it as triples in
knowledge graphs. As shown in Figure 5, the initial step of
knowledge extraction is data cleaning, whose purpose is to
remove duplicate information, correct errors, and enforce data
consistency. Since UHV project data comes from different
sources, NER and RE are based on various data formats, which
could be classified as structured data, semi-structured data, and
unstructured data. Structured data refers to a kind of data that can be
represented and stored in a two-dimensional form using a relational
database. It is usually stored in row units, with one row of data
representing the information on an entity, and the attributes of each
row of data being the same. As the most important data form in
UHV projects, structured data contains enormous amounts of
information on equipment, particularly for properties such as
equipment type and quantity. Semi-structured data is a form of
structured data that does not conform to the data model structure
associated with a relational database or another data table form, but
contains relevant tags to separate semantic elements and classify
records and fields. To extract entities and relations from these two
kinds of data formats, various rules can be constructed based on
expert experience. For unstructured data, deep learning methods
should be used. As shown in Table 4, some entities in unstructured
data are very long and an entity nesting problem can be observed.
For example, the ‘Beijing 1,000 kV substation main transformer
expansion project’ is an entity of the ‘Name’ type, while ‘Beijing’

FIGURE 3
Two views of a knowledge graph.
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could also be regarded as an entity of the ‘Location’ type. To handle
this problem, nested NER algorithms should be taken into
consideration, such as Global Pointer (Su et al., 2022). As for RE
problem, we use a combination of rule-basedmethod and supervised
learning method. Considering some simi-structured data such as
equipment inventory, we constructed several rules to extract
relationships between entities. For example, a sentence describing
the attributes of transformer may be like “The rated voltage of the
transformer is 1000 kV”, then the relationship between
“transformer” and its attribute “1000 kV” is “rated voltage”. For
those relations that cannot be extracted by rules, we treated the RE

problem as a classification problem. Specifically, a pair of entities
could be classified to several pre-defined relation types including
non-relation type. During this progress, the type of the entity should
also be treated as an input which could improve the accuracy of
the algorithm.

3 Anomaly detection based on DIET

In this section, the proposed anomaly detection framework
DIET is elaborated on in detail. Its architecture is shown in

TABLE 4 Entity examples in a concept layer.

First-level concept Second-level concept Entities Quantity

Basic information Name Beijing 1,000 kV substation main transformer expansion project -

Basic information Classification Expansion project -

Newly construction project

Basic information Construction scale Transformers 4

Basic information Construction scale High voltage shunt reactor 10

Substation Electrical primary part SF6 fully enclosed combined electrical appliances 2

Substation Electrical primary part Voltage transformers 6

Substation Electrical secondary part Electricity meter 6

Substation Relay protection Breaker 20

Substation Telecontrol equipment Power cable 100

Substation HVAC equipment Fire extinguisher 4

FIGURE 4
The ontology of the UHV project.
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Figure 6. As with conventional anomaly detection models, DIET is
an unsupervised model based on GCN, which mainly consists of
three components: (1) a representation layer, which leverages
multiple GCN layers to embed the given attributed network
based on a skip connection mechanism; (2) a decoder layer,
which reconstructs structural information and attributes
information from a unified representation generated from the
representation layer; (3) an aggregator layer, which attempts to
detect anomalous nodes by aggregating three components:
restructure errors in the structure and attributes, and outlier
characteristics within a specific node set. After multiple

iterations, the nodes are ranked according to their anomaly
scores. The larger the score is, the more likely the samples are to
be anomalies.

3.1 Problem analysis and definitions

As elaborated on in Section 2, a knowledge graph is a digital
structure that represents knowledge as concepts and relationships
between concepts. It can be represented in two common ways:
attributed networks and RDF triples. Considering the flexibility of

FIGURE 5
A UHV project knowledge graph knowledge extraction flowchart.

FIGURE 6
The proposed deep skip-connection framework DIET for anomaly detection on attributed networks.
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representation and rich algorithms, attributed networks are used to
model knowledge graphs. The search for knowledge graph errors is
transformed into anomaly detection on attributed networks. Unlike
conventional anomaly detection problems, subgraphs constructed
on domain data often have similar structures and attributes, but
nodes of the same type have no connections with each other. For
example, the number of transformers in a 1,000 kV substation
construction project in Beijing is the same as that in Shanghai,
while the two nodes are separated in different sub-graphs.
Moreover, deep GCN networks with multiple layers can lead
to an over-smoothing problem, while a single GCN layer can only
aggregate information from neighboring nodes. Taking these two
problems into consideration, a deep skip connection framework
for multi-type anomaly detection on attributed networks is
proposed, called DIET for attributed networks. In this section,
the attributed networks and anomaly detection problem
are defined.

DEFINITION 1. (attributed network) An attributed graph G(V, E, X)
consists of three components: (1) the set of nodesV= {v1, v2, v3,. . ., vn}∈ n;
(2) the set of edges E, where |E| = m; and (3) the attribute matrix X,
where the ith row denotes the feature vector of the attributes of node i.
In addition, an adjacency matrix is defined asA of graph G, where aij =
0 if there is no edge between node vi and vj. Otherwise, aij = 1.

DEFINITION 2. (anomaly detection) Given an attributed graph
G(V, E, X), the task is to detect nodes that differ from the majority of
nodes in terms of structure and attributes. More formally, an order
of nodes is generated as U = {u1,u2,. . .,u3} from the anomaly scores
using a score function, which is used to classify the sample vi based
on the threshold λ, as shown in Eq. 1:

yi � 1, if i≤ λ
0, if i> λ{ , (1)

where yi is the label of sample vi, 0 is the normal node, and 1 is the
anomalous node.

3.2 Representation layer

GNN is a powerful deep-learning framework for solving image-
related and graph-related problems. Each node in the graph sends its
feature representation to nodes within its neighborhood, and after
multiple iterations, a feature matrix is obtained for downstream tasks.
One of the most eminent variants of GNN is the deep convolutional
neural network known as GCN, the core idea of which is to update the
feature vector of node vi denoted by hi via recursively aggregating
information from its neighboring nodes vj. The process can be
represented in the following Eq. 2:

hl+1
i � σ ∑

vj∈N vi( )aijW
l+1hl

j( ), (2)

where σ is a non-linear activation function such as RELU,N (vi) are
the neighboring nodes of vi, aij is the (i, j)-th element of the
symmetric normalized Laplacian matrix Â, which can be
obtained as Â � D−1

2(A + In)D−1/2, and Wl+1 is a layer-specific
trainable parameter matrix. The output matrix of the (l+1)-th
layer can be denoted as Eq. 3:

H l+1( ) � σ ~D
−1
2 ~A ~D

−1
2H l( )W l( )( ) (3)

As shown in the above two equations, GCN-based neural
networks are message-passing neural networks, which have a
strong ability to embed nodes into a low-dimensional dense
space. Several research results (Zhao and Akoglu, 2019; Huang
et al., 2020; Yang et al., 2020) have shown that despite its
outstanding feature expression ability, a GCN is unable to
capture long-distance dependencies between nodes, which has led
researchers to explore deep frameworks of multiple layers. However,
GCNs and their variants are essentially low-pass filters for graph
signals. As the number of layers increases, information can easily
become over-smoothed and indistinguishable, which may affect the
anomaly detection performance. Therefore, to address the problems
mentioned above, a skip connection mechanism is applied in the
framework. Specifically, the input of the (l+1)-th layer (l > 1) is a
combination of the output of the l-th layer and the (l-1)-th layer,
which can be represented as Eq. 4:

H l+1( ) � σ ~D
−1
2 ~A ~D

−1
2 H( l( ) +H l−1( ))W l( )( ) (4)

Obviously, an additional input can improve the
representation ability.

3.3 Decoder layer

The output of the representation layer is a unified representation
matrix Z, where each row Zi is a feature vector of node vi. To detect
anomalous nodes in attributed networks, the network structure and
attribute matrix are reconstructed to calculate residuals with the
original matrices. Specifically, two decoders are designed: a structure
decoder and an attribute decoder.

The structure decoder takes the latent representation of each
node as input and then reconstructs an adjacency matrix Â by
calculating the scalar product between them with an activation
sigmoid function as presented in the following Eq. 5:

Â � sigmoid ZZT( ) (5)

The attribute decoder aims to obtain the attribute matrix of the
original knowledge graph based on the representation matrix Z. To
be more specific, a simple fully-connected network as presented in
Eq. 6 is used to obtain the original attribute information:

X̂ � σ ZW + b( ), (6)
where W∈d1×d2 , d1 is the dimension of the feature vector of the
representation matrix Z, d2 is the dimension of the feature vector of
the original attribute matrix X, and b is the corresponding
bias parameter.

3.4 Aggregator layer

After obtaining the reconstructed adjacency matrix Â and the
attribute matrix X̂, an anomalous score of each node is calculated
as an indicator of the anomaly. Considering the clustering
characteristics of the nodes of the same type, a term is added
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to the conventional objective function. To guarantee the
embeddings of nodes in each subgraph are calculated using
the same model, virtual nodes such as the basic information,
substation, line, and design company can be regarded as joint
nodes to ensure all subgraphs can be combined into a large
attributed network, which contains the complete history of the
same project type. Specifically, the objective function contains
three distinct components: a structural reconstruction error, an
attribute reconstruction error, and the mean errors of the same
node types.

Structural reconstruction error. Taking the original and
reconstructed adjacency matrix A and Â as input, the structural
reconstruction error can be denoted as Eq. 7:

RS � A − Â (7)

For a certain pair of nodes vi and vj, if their connective
information can be estimated through the encoder-decoder
process, there is a low probability of a structural anomaly. If the
connectivity information is different between these two matrixes, it
suggests that there may be an anomaly.

Attribute reconstruction error. Similar to the structural
reconstruction error, the residual of X and X̂ is used to calculate
the attribute reconstruction error as presented in Eq. 8:

RA � X − X̂ (8)
Mean error. Due to the different entity types of the nodes,

such as transformers, isolating switches, and breakers, the
attribute matrix is divided into multiple sets. Given
V′ � v1, v2, . . . , vm{ }, where vi all belong to the same entity
type, vi could belong to a different subgraph from vj. Then,
the clustering center of V′ is calculated using the K-nearest
neighbors (KNN) algorithm, which can be denoted as u′. Note
that due to the fact that all nodes in the set share the same type,
the number of clustering groups should be fixed to 1. The mean
error can be denoted as Eq. 9:

RM � X̂ − U (9)
Until now, three components have been defined considering the

reconstruction errors and mean errors within each group. To jointly
determine the probability of whether a node is an anomaly or not,
the objective function of the proposed deep GCN framework can be
formulated as Eq. 10:

L � w1RS + w2RA + w3RM

� w1 A − Â
���� ����2F + w2 X − X̂

���� ����2F + w3 X̂ − U
���� ����2, (10)

where w1, w2, w3 are weight parameters that balance the impacts of
each component, ‖ · ‖2F denotes the simple Frobenius norm, and
‖ · ‖2 denotes the Euclidean distance. To find anomaly nodes, we
rank scores from large to small and the largest ones are considered
as anomalies.

4 Case study

In this section, the proposed deep skip connection model DIET
is performed on an attributed network that is constructed from a
power grid infrastructure project dataset. The content mainly

consists of four parts: dataset setup, experimental settings,
experimental results, and parameter analysis.

4.1 Dataset setup

As was elaborated upon in Section 2, the UHV knowledge graph
is transformed into an attribute network and is adopted as an input
in the experiment. The UHV dataset contains 30 graph samples,
which all represent new substation construction projects. Every
graph represents a specific project, containing an average of
129 nodes and 128 edges.

As all the samples are unlabeled and there is no ground truth of
anomalous nodes in the UHV knowledge graph, some anomalies
need to be manually injected into the attributed network to get
some negative samples. To be more specific, two anomaly injection
methods are leveraged to generate structural anomalies and
attribute anomalies separately. For structural anomaly injection,
the method introduced by Ding et al. (2019) is adopted to inject
small disturbances into the adjacency matrix. The idea behind this
approach is that a fully connected subgraph has a higher
probability of being a group of anomalous nodes. Thus, m
nodes are selected randomly and aij = 1 is enforced in the new
adjacency matrix. Considering the fact that the ratio of positive
and negative samples could affect the accuracy of the experiment,
this process is iteratively repeated n times, thus generating m×n
structural anomalies in the adjacency matrix. To be more specific,
the number of fully connected nodes m is fixed to 10, because
analysis of the UHV knowledge graph shows that there is no
complete graph whose size is larger than 10. The number of
iterations n is set to 38, which ensures the proportion of
structural anomalies is roughly 10%. For attribute anomaly
injection, the method from Song et al. (2007) is improved to
generate anomalies in the attribute matrix. Instead of picking
nodes from the maximum Euclidean distance to the reference
node, a statistical method is adopted to ensure the quality of
anomalous nodes. Therefore, for each node vi, k nodes of the
same type are randomly selected. To make sure that the number of
attribute anomalies is equal to that of structural anomalies, k is
fixed tom×n. Denoted asX′ � x1, x2, . . . , xk{ }, the data is fitted to a
Gaussian distribution using the following two Equations 11, 12:

~u � ∑k
i�1
xi (11)

σ �
														
∑k

i�1 xi − u( )2/n
√

, (12)

where ~u and σ denote the sample mean and standard deviation,
respectively. Thus, the embeddings of the anomalous nodes should
be three standard deviations away from themean. In the experiment,
considering the number of nodes that each type possesses, the
number of samples k is set to 50.

4.2 Experiment settings

The goal is to detect anomalous nodes in attributed networks
with higher accuracy and a lower false alarm rate, so several
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comparative experiments are conducted with five state-of-the-art
algorithms to achieve outstanding results in anomaly detection. In
addition, to better understand the proposed DIET method and
evaluate the model performance properly, three commonly used
evaluation matrices are adopted. A detailed analysis is
provided below.

The proposed DIET framework is compared with the following
anomaly detection algorithms.

DOMINANT (Ding et al., 2019) detects anomalous nodes
with a three-layer GCN encoder without a skip connection
mechanism. Similarly to the proposed DIET framework, it
reconstructs structural and attribute information separately
and then uses an anomaly score to rank nodes, considering
nodes with rankings higher than a predefined threshold
as anomalies.

RESGCN (Pei et al., 2021) leverages a residual-based
attention mechanism to alleviate the over-smoothing issue of
the multi-layer GCN network. Specifically, it uses several fully
connected layers to embed an attribute matrix and output a
residual matrix R to aggregate with the output of the GCN in
each layer.

ALARM (Peng et al., 2020) takes multi-view characteristics into
consideration, with each view embedded with one separate GNN
encoder. A weighted aggregation method performs better than a
concatenation aggregation method on most open-source synthetic
datasets. Thus, the ALARM-weighted algorithm is used as a
comparison algorithm.

COMGA (Luo et al., 2022) makes use of the community
characteristic present in the attributed network and a tailored
deep graph convolutional network is proposed to tackle
this problem. The gateway module improves the model
performance.

ANOMALYDAE (Fan, Zhang, and Li, 2020) follows the natural
intuition that the fusion of structural and attribute information
could lead to performance improvements. Therefore, a dual
autoencoder structure is proposed in which the decoder process,
node embedding, and attribute embedding are combined using the
inner product.

To effectively evaluate each model, three evaluation indicators
are used: the receiver operating characteristic with the area under the
curve (ROC-AUC), precision@K, and recall@K.

ROC-AUC has been a frequently used evaluation indicator in
most previous anomaly detection modules. The ROC curve is a
curve on a two-dimensional plane, where the X-axis is the false
positive rate (FPR) and the Y-axis is the true positive rate (TPR). The
definitions of the FPR and TPR are elaborated on below in Equations
13, 14. The AUC is a number between 0.1 and 1 that represents the
area under the ROC curve. The AUC can intuitively evaluate the
quality of a model. A higher AUC indicates a method with better
performance.

FPR � FP
FP + TN

(13)

TPR � TP
TP + FN

, (14)

where FP is an abbreviation of false positive and represents the
number of negative samples that are predicted as positive samples;
TN is an abbreviation of true negative and represents the negative

samples correctly predicted as negative samples; TP is an
abbreviation of true positive, which represents the positive
samples correctly predicted as positive samples; and FN is an
abbreviation of false negative, which represents the number of
positive samples that are predicted as negative samples.

Precision@K represents the precision of the first k items in the
list, that is, the proportion of true samples in the top k ranking
nodes. Considering the fact that a ranking mechanism is used to
detect anomalies in the experiment, precision@K is a useful
indicator for evaluating the performance of a model. With a
range of 0–1, a larger precision@K represented in Eq. 15
indicates better performance of the model.

Precision@K � TP@K

TP@K + FP@K
(15)

Recall@K represented in Eq. 16 is similar to precision@K, but
represents the proportion of correct predictions among all results.

Recall@K � TP@K

TP@K + FN@K
(16)

For all the comparison algorithms, the default
hyperparameters are taken and a large number of experiments
are conducted to achieve the best results. For the proposed DIET
framework, the objective function is optimized with the Adam
optimizer and trained for 100 epochs to fit the model parameters
to the given dataset. The representation layer is made up of three
GCN layers, in which the size of the trainable matrices of the
three GCN layers are 192 × 64, 64 × 64, and 64 × 64. Note that
192 is the number of input dimensions of the feature matrix. In
addition, the learning rate of the model is set to 0.005. All the
experiments are conducted on a personal computer with an Intel
i7-11800H CPU and an NVIDIA GeForce RTX
3070 Laptop GPU.

4.3 Experimental results

In this section, six experiments are conducted on a UHV-
attributed network that includes five control groups and one
experimental group. The results are as follows. First, the ROC-
AUC results are presented in Figure 7. Then, the other two
evaluation indicators, Precision@K and Recall@K, are
illustrated in Tables 5, 6. As can be easily observed, the
proposed DIET method outperforms all the other comparison
algorithms. For the GCN over-smoothing problem, the DIET
leverage skip connection mechanism is better than RESGCN,
which uses a residual-based attention framework. This shows
that an aggregation of the output from the former layer, which
contains both structural and attribute information, can achieve
better performance than using only the attribute matrix.
Furthermore, the skip connection mechanism can alleviate the
vanishing gradient problem to a certain extent. In addition, it can
be seen from the original attributed network that the attributes of
each node represent different aspects of the entity. For example, a
node with the type transformer has two attributes that can be
represented in a list: {“Quantity”: 4; “Device model”: “ODFPS-
1000000/1000”}, in what was called a multi-view problem by
Peng et al. (2020). Intuitively, obtaining the embeddings of each
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attribute separately could give the cascading GCN model a more
precise input, thus achieving better performance. Results from
the comparison of the proposed model with ALARM show that a

attribute separation based on different characteristics could be
ignored because a distance-based method which apdopts the
residual to each type of nodes could achieve better results.
Results from DOMINAT show that an encoder-decoder
framework is suitable for anomaly detection problems. As the
GCN has a strong ability to embed a graph-based dataset, it is
better to take the whole attributed network with structural and
attribute information as input rather than treating them
separately.

4.4 Parameter analysis

The reason that DIET achieves good performance is the
introduction of the skip connection mechanism in the model. It
enhances the information interaction between GCN layers and
alleviates over-smoothing problems. In this section, the impact of
different numbers of GCN layers is investigated and the result is
shown in Figure 8. It can be concluded that as the number of GCN
layers gradually increases, the AUC first gradually increases and
then levels off. The highest AUC value appears when the number of
layers is set to three. Although a study (Li et al., 2019) on the GCN
depth showed that it could stack over 50 GCN layers and achieve a
3.7% boost in performance, the results of the experiments show that
three layers of GCN can achieve the best results. This is probably
because the dataset in the experiment is relatively simple, and three
GCN layers are sufficient to get abundant information for
anomaly detection.

FIGURE 7
ROC curve and AOC values of all algorithms in the UHV dataset.

TABLE 5 Precision@K of different algorithms on the UHV dataset.

K 100 200 300 400

DOMINANT 0.68 0.70 0.65 0.59

RESGCN 0.56 0.61 0.52 0.48

ALARM 0.55 0.59 0.50 0.46

COMGA 0.59 0.65 0.57 0.51

ANOMALYDAE 0.65 0.68 0.61 0.55

DIET 0.72 0.76 0.68 0.62

TABLE 6 Recall@K of different algorithms on the UHV dataset.

K 100 200 300 400

DOMINANT 0.21 0.24 0.28 0.30

RESGCN 0.08 0.10 0.15 0.20

ALARM 0.05 0.09 0.13 0.19

COMGA 0.11 0.15 0.17 0.22

ANOMALYDAE 0.18 0.22 0.23 0.28

DIET 0.25 0.29 0.35 0.42
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5 Conclusion

With the rapid development of energy systems, reliability
improvement is becoming an important topic. Traditional
reliability improvement methods mainly contain two aspects: the
analysis of power grid structure and the operation of power grid.
Although many researchers have shown that the operation and
scheduling affect the frequency and voltage fluctuation, which exert
great influence in power supply reliability, the power grid structure
and equipment are the hardware basics of energy systems. In this
paper, considering the increasing amount of data accumulated from
existing power grid projects, we proposed an artificial intelligence
based method to deal with anomaly detection problem in order to
improve reliability in the aspect of power grid structure. The main
contributions are as follows:

1) A knowledge graph is used as the basis for data modeling and
knowledge reasoning. Specifically, heterogeneous data
accumulated from different sources are converted to
structured data and modeled as a knowledge graph. This
kind of data is also easy for downstream applications such
as data search and inference.

2) A skip connection mechanism is leveraged. Multiple GCN
layers could lead to over-smoothing problem. In this
context, we use output from the layer Li-2 as input of Li.

3) A distance-based indicator is added to the objective function. This
indicator could introduce the information from the same type of
subgraphs and improve the accuracy of the algorithm.

To evaluate the performance of our proposed algorithm DIET,
we compared it with five different GCN-based methods. DIET
clearly achieves the highest AUC scores for the UHV dataset. An
additional analysis of the depth of the hidden layers has shown that
in some datasets with fewer samples, a simple three-layer-GCN
network is sufficient to achieve better results than other algorithms.

Specifically, the AUC from DIET for the UHV dataset is 0.82, which
represents an improvement over other algorithms of more than 12%.
Precision@K and recall@K show our method can detect anomalies
more quickly than the other comparison algorithms. In conclusion,
the proposed anomaly detection algorithm can help reduce data
errors in energy systems and help in improving the reliability of
energy systems.
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Master–slave game operation
scheduling strategy of an
integrated energy system
considering the uncertainty of
wind and solar output

Xiaohan Zhang and Jin Shen*

School of Business, Shanghai Dianji University, Shanghai, China

Introduction:With the development of the energy market and the gradual rise of
emerging market players, the linkage of interests between energy sources and
loads in the Integrated Energy System (IES) has become increasingly complex.
Additionally, the reliability of the system has been impacted by the growing
proportion of renewable energy output.

Methods: To address the challenges posed by the above issues. This paper first
proposes an operational strategy for an integrated energy system that
incorporates the uncertainty of wind and solar output using a master-slave
game approach. To enhance system robustness and cost-effectiveness, the
paper introduces the information gap decision theory (IGDT). Second, building
on this foundation, the system operator is considered as the leader, adding a
tiered carbon trading mechanism and cloud energy storage system, and building
a system revenuemaximizationmodel. Then, the user is regarded as the follower,
and an optimization model is developed based on integrated demand response
(IDR). Finally, the two-layer model is converted into a mixed-integer linear
programming problem (MILP) to be solved by the Karush-Kuhn-Tucker
conditions (KKT) combined with the big M method.

Results: The analysis of the example shows that according to the difference of the
decision maker’s attitude towards risk, different scheduling schemes can be
obtained through the two perspectives of risk-seeking and risk-avoiding,
which can provide guidance for the dynamic operation of the system, and at
the same time, the users can be guided by the energy differentials to reasonably
use the energy under this strategy.

Discussion: Therefore, the proposed strategy in this paper can balance the
economy and robustness of the system.

KEYWORDS

integrated energy system, master–slave game, uncertainty of wind and solar output,
carbon trading mechanism, integrated demand response
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1 Introduction

As conventional fossil fuels continue to deplete, the importance of
transitioning to low-carbon alternatives has become increasingly
evident. The integrated energy system (IES), which serves as a
comprehensive system that integrates various energy sources within
a confined space, is emerging as an imperative choice for the ongoing
energy revolution and contemporary development (Canhuang et al.,
2018). The IES not only facilitates seamless integration and
optimization of various energy sources in terms of extraction,
conversion, storage, transport, and utilization but also effectively
caters to the energy demands of the load side. With its inherent
reliability, flexibility, and superior energy efficiency, the IES has
emerged as a pivotal field of study in the realm of energy research
(Yu et al., 2016). At the same time, the IES has gradually become a
research hotspot because of its great advantages in energymanagement.
Several scholars have made significant contributions to energy
management in the past. An energy management strategy using a
price-based DR program is developed for IoT-enabled residential
buildings (Hafeez et al., 2020). Saleem et al. (2022) offered the
design, deployment, implementation, and performance evaluation of
an IoT-based SEMS to manage energy on the demand side.

Research on benefit distribution and power supply reliability in the
context of the IES has gained considerable attention as a prominent
research focus. As the IES continues to evolve and the energy market
experiences significant growth, the interdependency between energy
sources and loads becomes increasingly intricate. The energy
transactions and supply–demand relationships between these sources
and loads play a fundamental role in optimizing the operation of the IES.
Coordinating the interests of multiple decision-making entities to
achieve optimal IES operation has emerged as a significant and
challenging topic. Traditional optimization theory predominantly
tackles decision problems involving a single agent. However, it faces
difficulties in capturing the complex interplay among multiple agents
and addressingmulti-agent decision problems. Consequently, the advent
of the master–slave game provides a viable solution to overcome this
obstacle (Lu et al., 2014). During the energy trading process, the system
operator establishes the energy price, while the user adjusts their demand
in response to this price. This sequential interaction between the two
parties lends itself to be effectively described using a master–slave
game framework.

Several scholars in previous studies have contributed greatly to the
study of the master–slave game aspect of IESs. Xiang et al. (2021)
simultaneously considered the initiative of supply-side and demand-
side market players and proposed an interactive framework for the IES,
which realized the interactive optimization of the system operators and
users. Based on the master–slave game framework, Sun et al. (2021)
proposed a demand responsemechanism based on price incentives and
established a user utility model and an aggregator revenue model
considering user preferences. Wang et al. (2020) proposed a distributed
co-optimized operation strategy for integrated community energy
systems based on master–slave games, aiming to enhance revenues
on the supply-side and consumer surplus on the energy-using side.
However, most of the aforementioned studies only focus on achieving
economic optimality of the system from an economic point of view and
lack consideration of uncertainty.

As the share of renewable energy generation continues to rise, the
inherent stochastic and fluctuating characteristics of these sources

introduce significant uncertainties to the system. This uncertainty
poses challenges in accurately predicting generation power and load,
which, in turn, affects the development of precise scheduling plans.
Consequently, it becomes imperative to explore the reliability
assessment and uncertainty mitigation strategies for the IES.
Extensive scholarly research has been conducted in the past to
investigate the IES and its reliability. Bao et al. (2023) and Hui et al.
(2022) presented the function of energy storage and microgrids in
energy hubs and industrial parks. Wang et al. (2023a) focused on the
operational reliability evaluation of the urban multi-energy system,
considering the incorporation of equivalent energy storage. Wang et al.
(2023b) proposed an operational reliability evaluation framework for
the IES, considering flexibilities from both the demand side and
transmission system. The aforementioned literature has refined the
modeling and methodology for energy systems.

Existing studies have produced some research results in the area of
uncertainty in IESs (Yang et al., 2022). Currently, there are two main
approaches to the uncertainty problem, one is stochastic programming
and the other is robust optimization. Stochastic optimization generally
uses probabilistic means to describe various types of random variables,
simulates the probability distribution function of the variables based on
day-ahead forecast data, and generates simulation scenarios to solve the
problem (Birge and Louveaux, 2011). For uncertainty in a system, the
method identifies it as a random parameter that can be described by a
probability function (Mavromatidis et al., 2018). A stochastic
programming model has been devised to address the wind power
uncertainty and optimize system cost minimization (Li et al., 2018).
In order to fully exploit the relationship between flexibility and
uncertainty in electrothermal energy storage, a two-stage stochastic
programming model is raised to improve the economy and reliability
of the system (Lei et al., 2019). Zhao et al. (2020) considered wind, light,
and load uncertainties and developed stochastic planning models based
on long time-scales. However, the modeling of such uncertainties is
highly demanding in terms of obtaining accurate probability density
distributions, which will be greatly limited by the maturity of the
information on the statistical probability branch of data collection
(Xuefei et al., 2022). Stochastic programming methods are
computationally intensive and time-consuming, making it difficult to
obtain accurate probability distribution models. Moreover, the
optimization results may lack robustness and pose risks to the
system’s operation. It is clear that this approach has certain
limitations when evaluated.

Another common method to overcome uncertainty is robust
optimization, which does not have a demand for the probability
distribution of uncertainty (Zhang et al., 2019). The variations in
load and the energy output under extreme conditions are
considered, and an innovative two-stage robust optimization model
for the day-ahead scheduling of IES is constructed (Zun et al., 2019).
Chen et al. (2012) combined robust optimization with interval
programming and established an interval stochastic robust
optimization method to solve carbon trading and energy system
planning problems. Considering the uncertainty of load demand,
Yang and Su (2021) proposed a two-stage robust optimization
framework for enhancing the operational efficiency of the power
station under the condition of satisfying the robustness and
economy of the power plant. Chen et al. (2021) considered the
source-load uncertainty and utilized robust optimization methods to
fulfill the optimal economic dispatch of microgrids about integrated
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energy. Zhai et al. (2022) and Chen et al. (2023) introduced more
concepts regarding the optimization methods. Wu et al. (2022)
developed an optimal RIES operation strategy based on distributing
robust games, considering demand response. However, Zou et al. (2019)
stated that the robust optimization methods generally focus on extreme
cases, requiring constraints to be satisfied in the extreme scenario, and
the resulting optimization results are often too conservative, which
results in certain economic losses and lacks applicability.

Furthermore, the majority of current research on optimizing the
IES primarily focuses on configurations involving physical energy
storage devices. However, in practical scenarios, investing in low-
capacity physical energy storage results in higher unit investment
costs. Additionally, these energy storage devices may remain idle
during peak periods of non-energy usage, leading to potential resource
wastage. In response to this challenge, the concept of cloud energy
storage (CES) has emerged in recent years, largely inspired by the rise
and expansion of the sharing economy (Liu et al., 2017). CES brings a
new solution to the above problems.

Table 1 lists some of the comparisons in the literature. It can be seen
that themajority of the current study focuses primarily on optimizing the
system from an economic standpoint while lacking consideration for the
potential effects brought about by various uncertainties within the system.
At the same time, common approaches to uncertainty resolution, such as
stochastic programming, often rely heavily on data acquisition. However,
these methods face challenges such as intensive computation and slow
solution speed. Robust optimization often leads to overly conservative
solution results due to its emphasis on extreme cases. Therefore, the above
approach has certain limitations. Moreover, most of the existing studies
usually treat uncertainty solely as a negative factor, ignoring its potential
benefits. Meanwhile, this paper introduces CES systems to replace
traditional energy storage devices and innovate the system model.
Based on the deficiencies found in the aforementioned studies, the
objective of this study is to optimize the economy and reliability of
the system within the framework of a master–slave game while taking
into account the uncertainties associated with the output of renewable
energy. The main contributions of this study are presented below.

(1) In order to better capture the mutual interests between system
operators and users, this study proposes an IES master–slave
game scheduling model considering the stepped carbon-trading
mechanism and integrated demand response, which can further
reduce carbon emissions while improving the economic benefits
of the system.

(2) The CES system is used to replace the traditional energy
storage device, and the effect of the traditional energy storage
device can be realized by paying a small amount of leasing fee,
which further reduces the system cost and improves the
consumption rate of renewable energy.

(3) The information-gap decision theory (IGDT) is introduced to
describe the uncertainty of renewable energy, which overcomes
the limitation of regarding the uncertainty purely as a negative
factor in traditional research. Different scheduling schemes are
obtained from the perspectives of risk aversion and risk pursuit,
and the system benefits are analyzed to ensure the robustness of
the system while taking into account the economy of the system.

In this paper, we prove the existence and uniqueness of the
proposed Stackelberg equilibrium under the above model and

methodology. The two-layer model proposed in this paper can be
converted to a single-layer model by the KKT condition and the Big
M method. Finally, we compare the benefits of the system under the
deterministic model, the risk-averse model, and the risk-seeking
model through an example analysis.

2 Basic framework of IES with cloud
energy storage

The depicted framework of the IES is presented in Figure 1. At
the highest level of the IES, the distribution system operator (DSO)
serves as the system operator and encompasses various components,
including a wind power and photovoltaic generation system, a gas
turbine (GT), a gas boiler (GB), and a CES system.

The role of theDSO as an intermediary between the higher grid and
the end-users is to optimize revenue generation by capitalizing on the
price difference through energy trading. Additionally, the DSO has the
advantage of offering more flexible energy prices to customers in
comparison to the grid. However, due to the limited power capacity
of individual users, they do not meet the minimum requirements for
direct market trading. To address this issue, this study introduces a load
aggregator (LA), which consolidates individual users into a lower-level
entity within the IES. The primary objective of the LA is to minimize its
own costs.

The LA assumes the responsibility of conveying the energy
prices determined by the DSO to the users. Furthermore, it
collects real-time feedback on the users’ energy demands after
implementing demand response measures and relays this
information to the upper-level operator. This iterative process
allows for the further optimization of the DSO units’ output
while simultaneously influencing the formulation of subsequent
energy prices by the operator. This dynamic interaction
continues until an equilibrium state is achieved.

FIGURE 1
Basic framework of IES with cloud energy storage.

Frontiers in Energy Research frontiersin.org03

Zhang and Shen 10.3389/fenrg.2023.1291728

118

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1291728


3 Model formulations of the IES

3.1 Upper-level operator model

3.1.1 The tiered carbon-trading mechanism
The tiered carbon-trading mechanism will be used to further

reduce the system’s carbon emissions. Here, the actual carbon
emissions minus the emission allowances are equal to the carbon
emission credits to be purchased.

EIES � ECO2 − EC, (1)

ECO2 � ∑T
t�1

a1GasGT + b1GasGB + c1Pbuy( ), (2)

where ECO2 is the carbon emission in the actual condition, the
value of which is the sum of the actual gas consumption of the units
(GT and GB) and the electricity purchased from the higher carbon
units multiplied by their respective corresponding coefficients, EC is
the carbon quota, and EIES is the portion exceeding the
carbon quota.

The carbon trading cost of this paper is divided into three
intervals; with more CO2 emissions beyond the limit, the cost of the
corresponding part will increase, and the cost model is outlined
as follows:

Cco2 �
βEIES EIES ≤ l
β 1 + α( ) EIES − l( ) + β   l≤EIES ≤ 2l
β 1 + 2α( ) EIES − 2l( ) + β 2 + α( )l  2l≤EIES ≤ 3l

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭, (3)

where Cco2 represents the tiered carbon-trading cost, β
represents the basic carbon trading price, l represents the length
of each interval, and α represents the price escalation rate.

3.1.2 Electric/thermal cloud energy storage
system model

For IES, investing in small-capacity physical energy storage
requires high investment costs. If the cloud electric energy storage
(CEES) is utilized for IES, the energy storage effect can be achieved
through leasing, which can not only reduce the high construction cost
and dependence on the power grid but also avoid the disorder of
charging and discharging of distributed energy storage. Consequently,
it facilitates the efficient utilization of energy storage resources (Guo
et al., 2020). We take the cloud power storage system as an example
and list its relevant constraints as follows:

eECEES ≤Et,CEES ≤fECEES, (4)
0≤ECEES ≤Emax ,CEES, (5)

0≤Pt,ch,CEES ≤Pch,CEES ut,ch,CEES, (6)
0≤Pch,CEES ≤Pch,max ,CEES, (7)

0≤Pt,dis,CEES ≤Pdis,CEES ut,dis,CEES, (8)
0≤Pdis,CEES ≤Pdis,max ,CEES, (9)
ut,ch,CEES + ut,dis,CEES ≤ 1, (10)

Et,CEES � Et−1,CEES 1 − δCEES( ) + ηc,CEESPt,ch,CEES − Pt,dis,CEES

ηd,CEES
, (11)

E24,CEES � E0,CEES, (12)

where Et,CEES represents the real-time storage capacity of CEES;
ECEES represents the CEES capacity leased by the system from the

distribution network; f and e denote the upper and lower bounds of
the state of charge ratio for CEES, respectively; Emax ,CEES represents
the upper bound of the leased capacity, Pt,ch,CEES and Pt,dis,CEES

signify the actual real-time power for both charging and discharging
of CEES, respectively; Pch,CEES and Pdis,CEES represent the charging
and discharging power of CEES, respectively; Pch,max ,CEES and
Pdis,max ,CEES represent the maximum values of power,
respectively; ut,ch,CEES and ut,dis,CEES are the state variables of
CEES’s charging and discharging, respectively, which are utilized
to prevent simultaneous charging and discharging within the
system; δCEES is the self-discharge coefficient of the CEES; and
ηc,CEES and ηd,CEES are the charging and discharging efficiencies,
respectively. The constraints for the cloud thermal storage system
are the same as those for this system and are not repeated here.

3.1.3 The objective function for the upper-level
decision-maker

The primary objective of the DSO is to optimize its revenue
generation by formulating prices for energy transactions with lower-
level users to achieve arbitrage. Its objective function can be defined
as follows:

minC � Cgrid + Cfuel + Ccs + Cco2 − Isell, (13)

where Isell represents the system’s electricity selling revenue,
Cgrid represents the interaction cost in the interaction among the
system and the grid, Cfuel represents the gas costs of the internal
GTs and GBs in the system, Ccs represents the cost associated with
the CEES, and Cco2 represents the carbon trading cost. The details
are as follows:

Isell � ∑T
t�1

peLe + phLh( ), (14)

Cgrid � ∑T
t�1

upbPbuy − upsPsell( ), (15)

Cfuel � θ∑T
t�1

GasGT + GasGB( ), (16)

Ccs � CCEES,om + CCEES, (17)

CCEES,om � ∑T
t�1
λCEES,om Pt,ch,CEES + Pt,dis,CEES( ), (18)

CCEES � λEECEES + λPPch,CEES + λPPdis,CEES( )/365, (19)

where pe and ph signify the price established by the DSO for
lower-level users, representing electricity and heat prices,
respectively; Le and Lh represent the actual electricity and heat
load demands after demand response at the lower level, respectively;
upb and ups represent the purchase and selling electricity prices
when the DSO interacts with the grid, respectively; Pbuy and Psell

represent the buying and selling power of electricity with the grid by
the DSO, respectively; θ represents the unit gas purchase cost;GasGT
and GasGB represent the gas consumption of GT and GB,
respectively; λCEES,om is the cost coefficient of charge and
discharge operation and maintenance of cloud storage power
system; λE and λP represent the unit capacity and unit power
leasing costs of the CES system, respectively. CCEES,om represents
the daily operational and maintenance expenses for the cloud
storage system; CCEES represents the daily leasing costs for the
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CES system. The same principles apply to the cloud thermal storage
system and will not be elaborated on here (Du et al., 2022). The
carbon trading costs are described in Section 3.1.1.

3.1.4 Constraints of DSO
The main equipment within the operator’s system includes the

following: renewable energy generation systems (wind and PV),
micro GTs, GBs, and interaction constraints with the external grid.
The specific constraints are listed below:

(1) New energy output constraints

0≤Pt
e,wd ≤Ppre,wd

max (20)
0≤Pt

e,pv ≤Ppre,pv
max (21)

where Pt
e,wd is the wind power output at moment t, P pre,wd

max is the
wind power day-ahead forecast load, Pt

e,pv is the PV output at
moment t, and P pre,pv

max is the PV day-ahead forecast load.

(2) GT and GB constraints

While the GT consumes natural gas to produce electricity, the
resulting high-temperature waste-heat gas flows through a waste-
heat recovery unit to be recovered and then passed through a heat
exchanger to produce heat.

Pt
h,GT � ηheηwhb 1 − ηmt( )

ηmt

Pt
e,GT, (22)

0≤Pt
e,GT ≤Pe,GT

max, (23)
0≤Pt

h,GB ≤Ph,GB
max, (24)

where ηhe denotes the efficiency of the heat exchanger, ηwhb
denotes the efficiency of the waste-heat recovery equipment, ηmt

denotes the power generation efficiency of the GT, Pt
e,GT and

Pt
h,GT are the electricity and the heat generated by GT,

respectively, and Pt
h,GB is the heat generated by GB, where the

outputs of GT and GB are to be less than their respective
corresponding maximum values.

(3) Energy price constraints

pemin ≤pe ≤pemax, (25)
phmin ≤ph ≤phmax. (26)

Energy prices are set by the DSO for the users as pe and ph.
Energy prices should be limited to a certain range, and in order
to avoid unreasonable pricing by leaders in pursuit of
maximizing their own interests, it is also necessary to include
the average value of the purchase and sale price constraints,
which are as follows:

∑24
t�1
pe / 24≤pe,ave, (27)

∑24
t�1
ph / 24≤ph,ave, (28)

where pe,ave and ph,ave are average value constraints on the prices
set by the DSO for the users, respectively.

(4) Electrical and thermal power balance constraints

Pt
e,GT + Pt

e,pv + Pt
e,wd + Pt

e,buy + Pt
dis � Pt

ch + Lt
e + Pt

sell, (29)
Pt
h,GT + Pt

h,GB +Ht
dis � Lt

h +Ht
ch, (30)

where Pt
e,buy and Pt

sell are the power purchased and sold by the
system to the higher grid, respectively; Pt

ch and Pt
dis are the charging

and discharging power of the CES system, respectively; andHt
ch and

Ht
dis are the heat charging and discharging power of the cloud heat

storage system, respectively.

3.2 Lower-level user model

3.2.1 The objective function for lower-level users
In IES, the LA acts as a representative of the interests of the user’s

controllable resource aggregation, enabling flexible leveling or
curtailment of load demand response under its management.
Users, on the other hand, optimize their own energy use on the
basis of the energy price set by the DSO to reduce the cost of energy
use and provide feedback on their real-time energy demand to the
DSO through the LA. The user cost can be expressed as follows:

minCLA � CL,buy + CLe + CLh, (31)

where CL,buy represents the energy purchase cost of users, which
is consistent with the upper-level energy sales revenue and is
specifically expressed as follows:

CL,buy � ∑T
t�1

peLe + phLh( ), (32)

Only considering the energy purchase cost of the users and
satisfaction loss as representation parameters for user interests lacks
a certain degree of rationality, especially for industrial and
commercial users. Energy consumption implies profit generation,
especially in the context of industry and business. Therefore,
considering the above factors, this paper expresses the user’s
energy utility as follows (Jiang et al., 2021):

CLe � ∑T
t�1

αe Le( )2 + βeLe + ce + αh Lh( )2 + βhLh + ch( ), (33)

where αe, αh, ce, βe, βh, and ch are all coefficients representing
user energy-efficiency benefits.

Previous studies have shown that the user’s comfort before the
demand response is the best. When users receive instructions from
the LA to adjust energy usage in different time periods, it may lead to
a certain degree of user satisfaction loss. Therefore, the loss of user
satisfaction in this paper can be expressed as follows (Li et al., 2021):

CLh � ∑T
t�1

νe Pe,cut( )2 + νh Ph,DR( )2( ), (34)

where CLh represents the penalty cost to the user for reduced
comfort due to heat load reduction, Pe,cut represents the
reducible electrical load, Ph,DR signifies the heat load that
users can potentially reduce, and ν represents the coefficient
of loss of user satisfaction.
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3.2.2 Constraints of the user

(1) Electrical load constraints

The effect of peak shaving and valley filling can be achieved
by adjusting the electric load of the user’s energy use time, and
the transferable electric load should ensure that the total load
before and after the demand response remains unchanged and,
at the same time, meet the upper and lower constraints. Where
αe,tran is the transferable electric load coefficient, Lte0 is the
transferable electric load of the user, and the user can
independently adjust the time of electricity consumption
within a certain range.

∑T
t�1
Pt
e,tran � 0, (35)

−αe,cutL
t
h0 ≤Pt

e,cut ≤ 0, (36)
−αe,tranL

t
e0 ≤P

t
e,tran ≤ αe,tranL

t
e0, (37)

where αe,tran represents the transferable electric load factor and
αe,cut represents the curtailable electric load factor.

(2) Heat load constraints

The heat load can be reduced by a certain percentage within the
user’s energy comfort level.

0≤Pt
h,DR ≤ αh,cutL

t
h0, (38)

where Pt
h,DR represents the heat load reduction available to the

user and αh,cut represents the load reduction factor.

(3) Power balance constraints for loads

Le � Le0 + Pe,cut + Pe,tran, (39)
Lh � Lh0 − Ph,DR, (40)

where Le0 and Lh0 are the electrical and thermal loads,
respectively, prior to the demand-side response.

4 Models of IES based on IGDT

Typically, there is some error in the source load prediction of
the system, which often leads to a large deviation between the
day-ahead schedule and the actual situation, resulting in
economic losses. IGDT is an effective optimization method to
resolve the uncertainty problem (Wang et al., 2018). The IGDT
model needs to set the target of the expected cost or expected
benefit in advance and has two models, risk avoidance and risk
pursuit, so that it can achieve good results for the system to be
both robust and economical. Thus, this approach outperforms
traditional robust optimization. In this paper, IGDT is used to
model and analyze the factors of uncertainty in the day-ahead
dispatch schedule. In the following, we use λwdt and λpvt to
represent Pt

e,wd and Pt
e,pv, respectively, for the theoretical

description.
Traditional robust optimization requires consideration of

the exact upper and lower bounds on the input variables. In

contrast, the IGDT makes the input of uncertainty parameters
an imprecise set by introducing a bias factor and describes
uncertainty through the uncertainty set of some non-
probabilistic models, such as the envelope model, fractional
uncertainty model, and ellipsoid model (Mehdizadeh et al.,
2018). In this paper, we adopt a fractional uncertainty model
based on the characteristics of uncertainty, with the basic model
as follows.

U α, λ̃wdt( ) � λwdt : λwdt − λ̃wdt
∣∣∣∣∣∣

∣∣∣∣∣∣≤ αλ̃wdt{ }, α≥ 0, (41)

U α, λ̃pvt( ) � λpvt : λpvt − λ̃pvt
∣∣∣∣∣ ∣∣∣∣∣≤ αλ̃pvt{ }, α≥ 0, (42)

where α and λ̃wdt represent the fluctuation range (uncertainty)
and day-ahead forecast value of wind power, respectively, while α
represents a deterministic model when it equals zero. Through this
model, the upper and lower bounds of the uncertain factor set
(actual value of wind power) can be described as (1 + α)λ̃wdt and
(1 − α)λ̃wdt , respectively. The description of photovoltaic output
is the same.

Changes in uncertainty factors and decision-makers’ attitudes
toward risk will affect the system’s final revenue and dispatch
strategies. Therefore, according to the IGDT principle, it is
divided into the robust model (RM) of risk aversion and the
opportunity model (OM) of risk pursuit. The RM is conservative,
while the OM is speculative. The fundamental model of IGDT is
as follows.

min B X, d( )
s.t. H X, d( ) � 0

G X, d( )≥ 0

⎧⎪⎨⎪⎩ (43)

In the context provided,X represents an uncertain parameter of
the system, d is a decision variable, B(X, d) stands for the objective

FIGURE 2
Flowchart of the IGDT solving process.
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function, H(X, d) signifies an equality constraint, and G(X, d)
represents an inequality constraint.

4.1 Robust IGDT model based on
risk aversion

The RM believes that uncertainty will adversely affect the
operation schedule and typically maximizes the adverse
perturbation of uncertain parameters with respect to wind and
PV. Under risk-averse scheduling decisions, IES is expected to
achieve robust optimization while ensuring the desired economic
objectives. In other words, when there is severe uncertainty (the
maximum value of uncertain parameter fluctuations), the RM
must ensure that it is stable when fluctuating within U. It can
make the revenue target value within the expected target revenue

range. Thus, a robust IGDT dispatch model based on risk
avoidance is constructed as follows:

obj: max α

s.t.

minB≥BRM � B0 1 − δm( ),
λwdt ∈ U α, λ̃wdt( )
20( ) − 30( )

⎧⎪⎪⎨⎪⎪⎩
(44)

where δm is the robust bias factor and BRM is the robust gain
threshold, and when the renewable energy output is
λwdt � λ̃wdt (1 + α), it means that the model achieves the minimum
value when the output is at the upper limit of the uncertain output
interval, so it is converted to the following constraint:

obj: max α

s.t.
B≥BRM � B0 1 − δm( ),
λwdt � λ̃wdt 1 + α( ),
20( ) − 30( )

⎧⎪⎨⎪⎩ (45)

TABLE 1 Comparison of models, frameworks, and factors in some reference.

Reference Framework and models Factors

Master–slave
game

Cloud
energy
storage

Integrated
demand
response

Carbon trading
mechanism

Economical
efficiency

Uncertainty
of IES

Xiang et al.
(2021)

√ × √ × √ ×

Sun et al. (2021) √ × √ × √ ×

Wang et al.
(2020)

√ × √ × √ ×

Wu et al. (2022) √ × √ × √ √

Yang et al. (2022) × × × × √ √

Guo et al. (2020) × √ √ × √ ×

Du et al. (2022) × √ √ × √ √

Proposed √ √ √ √ √ √

TABLE 2 Results of the total system return changing with α under different risk strategies.

Risk strategy δm/εm Uncertainty α Total system revenue

Certainty 0 0 27,545.4532

Risk avoidance strategy 0.01 0.005736 27,505.7863

0.02 0.045913 27,227.9501

0.03 0.086065 26,950.1138

0.04 0.12617 26,672.2776

0.05 0.16621 26,394.4414

Risk pursuit strategy 0.01 0.037309 28,061.4587

0.02 0.0574 28,339.295

0.03 0.077486 28,617.1312

0.04 0.097644 28,894.9674

0.05 0.11785 29,172.8036
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Similarly, the PV output uncertainty model is considered, where
the uncertainties in wind and PV power are assumed to be equal,
each accounting for 50% of the overall uncertainty.

4.2 Opportunity IGDT model based on
risk pursuit

The OM believes that uncertainty may bring additional benefits
to the system and has the opportunity to further reduce the dispatch
cost of the system. As a result, adverse perturbations to the uncertain
parameters of wind power and PV output are usually minimized. In
the case of risk-seeking scheduling decisions, the system defaults to
the positive impact of uncertainty. In this case, it is more inclined to
maximize returns by reducing α (the minimum value of uncertainty

parameter fluctuations). OM must ensure that, within the
fluctuating range of renewable energy output, it is possible for
system revenues to be higher than the expected revenue target
value. Thus, the opportunistic IGDT scheduling model based on
risk pursuit is formulated as follows:

obj: min α

s.t.

maxB≥BOM � B0 1 + εm( ),
λwdt ∈ U α, λ̃wdt( )
20( ) − 30( )

⎧⎪⎪⎨⎪⎪⎩
(46)

where εm is the opportunity bias factor and BOM is the
opportunity revenue threshold. When the renewable energy output
is λwdt � λ̃wdt (1 − α), that is, when the output is at the lower limit of the
uncertain output range, the revenue can achieve the maximum value;
hence, it translates into the following constraint:

FIGURE 3
Change in the total system revenue and uncertainty under the
risk-averse strategy.

FIGURE 4
Change in the total system revenue and uncertainty under the
risk-pursuit strategy.

FIGURE 5
Electric power balance of deterministic system operators.

FIGURE 6
Cloud energy storage operation.
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obj: min α

s.t.
B≥BOM � B0 1 + εm( ),
λwdt � λ̃wdt 1 − α( ),
20( ) − 30( )

⎧⎪⎨⎪⎩ (47)

5 Example analysis

The two-layer Stackelberg game model for the IES introduced in
this paper uses the stagnation point approach. First, we formulate
the KKT system for the lower-follower cost-minimization problem.
The KKT system is then treated as a constraint in the upper-level
optimization problem. Utilizing the Big M method and
incorporating Boolean variables, the two-layer model is
transformed into a single-layer model for resolution. Finally, the
systematic uncertainties are modeled and analyzed. The proposed

method andmodel are modeled and solved throughMATLAB using
the YALIMP language in combination with the Gurobi solver. The
solution process can be divided into two following parts:

(1) The solution procedure for decoupling the two-tier model is
detailed in Supplementary Appendix (B).

(2) The IGDT model solution considering renewable energy
output uncertainty.

Here, the solution process for the IGDT model is as follows:

Step 1: Solve the deterministic model under the condition that the
renewable output is the predicted value λ̃wdt , obtain the optimal value
B0 of the objective function, and set it as the reference value.

Step 2: First replace the original predicted value with the actual value of
renewable output λwdt , then develop the bias factors δm and εm, and

FIGURE 7
Thermal power balance of deterministic system operators.

FIGURE 8
User power balance of deterministic system users.

FIGURE 9
Electricity price curve formulated by DSO for users.

FIGURE 10
Heat price curve formulated by DSO for users.
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finally solve for the system decision-maker’s desired target value BRM

under the RM and the desired target value BOM under the OM.

Step 3: Solve for the uncertainty α of the system, the revenue of the
system, and the unit output of the equipment in the system phase
under the conditions of risk-averse and risk-seeking strategies,
respectively.

The solution flow is shown in Figure 2.

5.1 Uncertainty and benefit analysis under
risk aversion and risk-pursuing strategies

Table 2 shows the results of the total system return changing
with α under the two risk strategies. The changing trends of

uncertainty and total system return with the bias factor are
shown in Figures 3 and 4.

Under the risk avoidance strategy, the robust bias factor is
directly proportional to the level of uncertainty and inversely
proportional to the total system revenue. This is because under
the robust model, the system decision-maker believes that in this
biased direction, the uncertainty factor will have a negative effect on
the system. The larger α is, the higher the risk posed by uncertainty.
The total revenue would be reduced accordingly. Under the
opportunity pursuit strategy, as the opportunity bias factor
grows, both the system uncertainty and the total system revenue
increase as the system decision-maker believes that in this scenario,
the uncertainty in wind and solar output will bring additional
benefits to the system. Therefore, the larger α is, the greater the
revenue brought by the uncertainty factor and the higher the total
system revenue.

5.2 Analysis of optimization results under the
deterministic model

As shown in Figure 5, under the deterministic model, the system
will reduce the amount of power purchased from the external grid and
increase the output of the CHP units to meet the demand of the
electricity load in the case of higher electricity pricing, thereby
reducing the operating costs. During 10:00–16:00, when the
renewable energy output is relatively high, the CHP units will
preferentially meet the heat load demand accordingly and reduce
some of the generation output. In other words, the CHP unit will
mainly produce heat power during this period. As shown in Figure 6,
the CES system is charged during periods of low electricity prices, such
as 5:00–6:00 and 15:00–17:00, while it is discharged during 10:00–11:
00 and 18:00–19:00. Discharging occurs during intervals characterized
by elevated electricity prices, which further reduces system costs
through this operating mode. It can be found that CES can fully

FIGURE 11
Thermal power balance of deterministic system users.

FIGURE 12
Electric power balance of the system operators under the risk-
averse strategy.

FIGURE 13
Electric power balance of the system operators under the risk-
seeking strategy.

Frontiers in Energy Research frontiersin.org10

Zhang and Shen 10.3389/fenrg.2023.1291728

125

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1291728


realize the energy storage effect of traditional physical energy storage
devices.When the wind power and photovoltaic output is large during
periods such as 7:00–8:00 and 10:00–14:00, theDSO can sell the excess
electric power to the grid, realizing the consumption of renewable
energy and improving the system revenue.

Figure 7 shows that the heat output of the CHP unit occurs
primarily during the daytime hours and is supplemented by GBs
when the output is insufficient at night. The operation mode of
CEES is also adopted in the cloud heat storage system.

Figure 8 and Figure 9 show that the DSO can formulate a more
flexible electricity price relative to the grid under the deterministic
model, and the established electricity price is consistent with the
trend of the time-of-use electricity price of the power grid, thereby
reducing the user’s energy purchase cost. Users formulate their own
energy consumption strategies on the basis of the electricity prices
set by DSO and transfer part of the electricity load to periods of
relatively low electricity prices between 12:00–15:00 and 18:00–20:
00 to minimize their own costs. From this, we can see that the
optimized user power load demand is reduced to varying degrees
throughout the day. It is evident that the load-side flexibility has
been enhanced through integrated demand response.

Figure 10 shows that due to the large thermal load demand of
users during the 12:00–15:00 noon and 20:00–22:00 evening hours,
the DSO sets relatively high thermal prices, while the prices are
relatively low during other periods. As shown in Figure 11, in
general, the user’s comfort level is the highest before the demand
response. Since the lower-load model adds a penalty cost for the
decrease in user satisfaction due to heat load reduction, users
generally do not choose to take the initiative to reduce their heat
load, or the heat load reduction is small when the system can meet
the heat load power supply.

5.3 Comparative analysis of revenue and
renewable energy output

Given the uncertain nature of wind and solar output, in this
paper, we define the fluctuation range of wind and solar output as
uncertainty and then set the bias factor to obtain decision plans for

decision-makers with different risk preferences. Taking the bias
factor δm � εm � 0.05 as an example, the power balance diagram of
the system under the RM and OM is given herein.

From Figures 5, 12, and 13, it can be seen that the moment of
maximum PV output is also the time of day when the renewable
energy output is the highest, i.e., 10:00–14:00. Table 3 compares the
total power of the renewable energy output and the power sold by
the system to the external grid during this time period. It can be
found that under the RM, the system treats the uncertainty as a
negative factor, and both the wind and PV output are reduced, while
the system’s power sales to the external grid are also reduced. In
contrast, under the OM, the system perceives that uncertainty is
expected to lead to a higher revenue, and its effect is positive. As a
result, both the wind and PV output of the system increase
compared to the case under the deterministic model, and the
electricity sales to the external grid increase accordingly.

Table 4 lists the comparison of the system benefits and costs
under the deterministic, risk-averse, and risk-seeking models,
respectively. Under the risk aversion strategy, with an uncertainty
of 0.17, the total system return is ¥ 26,394.44, which means that
when the wind and light output fluctuate within the uncertainty
range of positive 0.17 and below, the total system return can be
guaranteed to be not less than ¥ 26,394.44. Under the risk-seeking
strategy, with an uncertainty of 0.12, the total system return is ¥
29,172.80, which means that the total system return is guaranteed to
be no less than ¥ 29,172.80 when the wind and light outputs fluctuate
within an uncertainty range of negative 0.12 and above.

Since the renewable energy output is mainly reflected in the
power supply side of the system, the electric power balance diagram
of the system operator under the deterministic model, RM, and OM
is analyzed.

Figure 12 illustrates the electric power balance within the system
operator when employing the risk-averse strategy. In this operation
mode, the goal is to obtain the system revenue in the worst case, so
the output of wind and photovoltaic power experiences significant
reductions in comparison to that in the deterministic model.
Therefore, the need to make power purchases from the grid to
satisfy the power balance of the system still exists during the time
period of 9:00–16:00 when the wind and light outputs are high,

TABLE 3 Comparison of the power of the three models in the maximum period of output.

Wind power output/kW PV output/kW Electricity sales to the external grid/kW

Deterministic model 2,955 2,220 1,633.02

RM 2,709.42 2,035.51 1,198.06

OM 3,303.25 2,481.63 2,242.91

TABLE 4 Comparison of the system revenue and cost under three models.

Total system
revenue

Energy sales
revenue

CES
cost

Carbon
transaction cost

Gas
cost

Interaction cost with the
power grid

Deterministic
model

27,545.4532 44,970.2896 252.8843 4,586.4308 10,842.7128 1,742.8085

RM 26,394.4414 44,970.2846 250.8435 4,617.7446 10,840.1622 2,867.0929

OM 29,172.8036 44,970.289 252.8792 4,538.0679 10,838.504 168.0343
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which increases the cost of interacting with the external grid by ¥
1,124.2844 and decreases the total system revenue by ¥
1,151.0118 compared to the cost of interacting with the external
grid under the deterministic model.

Figure 13 shows the system operator’s electric power balance
under the risk-seeking strategy. The system goal under this
operating mode is to obtain the revenue with the least
uncertainty, so the system’s overall revenue is the largest in this
situation. Therefore, the output of renewable energy is greater in the
7:00–19:00 time period than that under the deterministic model,
and, at the same time, in the 7:00–18:00 time period, the excess
electricity generated by renewable energy is sold to the grid to obtain
more revenue, and the system requires purchasing electricity from
the grid only in part of the night time. As can be seen from Table 4,
the cost of interaction between the system and the external grid is
reduced by ¥1,574.7742, and the overall benefit of the system is
increased by ¥1,627.3504 compared to that of the
deterministic model.

Based on the above analysis, it is clear that utilizing the IGDT
approach provides the system decision-maker with the ability to
select an appropriate scheduling strategy based on varying risk
attitudes. By appropriately adjusting the bias factor, the system
can effectively achieve the desired economic benefits while
ensuring robustness.

6 Conclusion

In order to fully take into account the interplay of the interests of
the various actors in the IES and reduce the effect of uncertainties in
the renewable energy output of the system, this paper first proposes a
master–slave game model of an IES that considers the uncertainty in
wind and solar output based on the Stackelberg game. The model
treats the system operator as the leader of the upper tier, and the LA
represents the subscribers as the followers of the lower tier. The two-
layer model is transformed into a single-layer mixed-integer linear
programming problem, which is solved by the KKT condition
combined with the Big M method. The proposed method was
tested and the results showed the following:

1) The model and methodology proposed in this paper can
effectively describe the interaction of interests between the
system operators and users. The energy transaction price is set
for the lower users by the upper DSO to promote the users to
carry out the integrated demand response, which, in turn,
affects the decision-making of the upper operators and
promotes them to optimize their own unit output to
maximize their benefits. This model can greatly improve
the flexibility of the system.

2) The CES system is added to replace the traditional energy
storage equipment and devices. According to the analysis of
the example, the system can achieve the same effect as the
traditional energy storage equipment only by paying a small
amount of rental cost, that is, the CES charges, when the
energy price is low and discharges to the system when the
energy price is high, thus greatly reducing the operating cost of
the system.

3) The IGDT is introduced to describe the uncertainty of wind
and solar output. Two different models are developed
based on the difference in the attitude of decision-
makers toward risk. Under the risk-seeking strategy, the
system is able to take full advantage of favorable
uncertainty factors, which enables the system to achieve
a larger return. Under the risk-averse strategy, the system
can guarantee a certain expected return while guaranteeing
its own robustness. Thus, this approach can make the
system both robust and economical.

Future work will focus on investigating the shared energy
storage among multiple subjects and the influence of the
customer-side load uncertainty.
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A dynamic hierarchical partition
method for optimal power
balance of urban power system
with high renewables
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With the development of new urban power systems, the centralized-distributed
hierarchical partition management architecture has gradually become a
consensus. Existing hierarchical partition methods are mostly static. And if the
partition results are determined, it will remain unchanged for a relatively long
time. However, the new type power system experiencesmore frequent and larger
fluctuations in power generation and load, requiring dynamic responses to the
system’s real-time operation. In this case, traditional partition methods are no
longer applicable, and new hierarchical partition methods for system operation
need to be adopted. Therefore, this paper proposes a power balance mechanism
of urban power system based on dynamic hierarchical partition method,
including dynamic hierarchical partition method and corresponding
decoupling power balance models. The former can continuously change the
results of hierarchical partition according to the real-time state of the power
system, so as to reduce the inter-regional liaison cost and improve the economy.
The latter improves the independence of the region and the security of the power
system through decoupling power balance. Eventually, the proposed method is
validated with an modified Hawaii 37-node system.

KEYWORDS

hierarchical partition, power balance, urban power system, high renewables,
hierarchical clustering

1 Introduction

With the development of renewable energy technologies, the generation cost of wind
power and photovoltaic power continues to decrease while their generation efficiency
continues to improve. The cleanliness and low-cost characteristic of new energy make their
installed capacity in the power system continue to rise, and promote the development of
power system into a new phase. However, at the same time, the volatility and uncertainty of
new energy, as well as their different operational characteristics compared with traditional
power sources, have made the operating environment of urban power systems more
complex and the management more challenging, which poses risks to the reliability of the
power system (Li et al., 2021; Li et al., 2022; Yang et al., 2023a; Hou et al., 2023). In this
situation, traditional gridmorphology andmanagement architecture can no longer meet the
operational requirements of new urban power systems (Xu et al., 2019; Chen et al., 2023).

As a result, scholars at home and abroad have made many attempts and gradually
reached a consensus that the urban power systems will be managed in a hierarchical and
partitioned manner in the future (Lai et al., 2014; Hao et al., 2020; Adeyanju and Canha,
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2021; Wang et al., 2022). The hierarchical partition management
architecture which combines the advantages of centralized
management and distributed management (Li et al., 2023), aligns
more with the requirement of safe and reliable operation of urban
power systems (Pan et al., 2023; Zhao et al., 2023; Yang Y.
et al., 2023b).

As for the hierarchical partition methods for urban power
systems, heuristic methods and clustering methods have been
extensively studied. Heuristic methods include simulated
annealing (Irving and Sterling, 1990; Gil et al., 2006), genetic
algorithms (Orero and Irving, 1996; Hu et al., 2005), tabu search
(Chang et al., 1999; Liu et al., 2002), evolutionary computation (Li
et al., 2009), etc. In reference (Irving and Sterling, 1990), the
simulated annealing algorithm was used to determine the
network partition, and the cost function was set to find the
global optimal. But it took a lot of time to seek out the solution.
So Orero and Irving (1996) used genetic algorithms to partition the
system by balancing the number of lines and nodes between
partitions. Obviously, the main issues with heuristic algorithms
are slow optimization and difficult selection of control parameter,
which necessitates a considerable number of prior experiments for
parameter selection on specific problems.

Clustering methods have been widely used in hierarchical
partitioning of power systems, including k-means clustering
(Biserica et al., 2013; Wang et al., 2013; Li et al., 2014),
hierarchical clustering (Zhang et al., 2021; Han et al., 2023),
fuzzy clustering (Yang et al., 2006; Dai et al., 2011; Mezquita
et al., 2011), etc. Biserica et al. (2013) applied k-means clustering
for power grid partitioning, and used the minimum sum of squared
electrical distances within each cluster as the objective function,
ensuring that the injection or outflow power from any node in the
same partition has an approximately effect on the area. Reference
(Dai et al., 2011) employed both the spectral coefficient averaging
and fuzzy C-means clustering for grid partitioning, and selected a
weighted objective function by node controllability and
representativeness indexes to determine the dominant nodes. The
aforementioned k-means clustering and fuzzy clustering methods
require given and sensitive values, while the hierarchical clustering
method does not require the given cluster trees (Y. Zhang, 2018).
Zhao et al. (2023) performed hierarchical partitioning of the grid
based on hierarchical clustering and determined the partitioning
results with the objective of minimizing the average value of the net
load value and geographical proximity.

Once the above hierarchical partitioning methods are
determined, the partitioning results will remain unchanged for a
relatively long period of time (Sánchez-García et al., 2014; Zhao
et al., 2023). Therefore, most of these methods are merely applicable
to power system planning in the new type power system with a large
amount of wind and solar energy integration. When applied to
power system operation, they may lead to a large number of
problems such as wind and light abandonment, tidal overruns,
etc., due to the inability to respond to system source load
changes in a timely manner, and increase the liaison cost of
power scheduling. However, with further advancement in
renewable energy generation technologies, the future generation
costs of new power systems will continue to decrease, while the
proportion of system interconnection costs and accident
maintenance costs in the overall operating costs of power

systems will gradually increase. In this regard, the traditional
static hierarchical partition methods are neither economical nor
safe for the urban power system in the future.

Therefore, this paper proposes a hierarchical partitioned electric
power balance mechanism for urban power systems applicable to
system operation, including a dynamic hierarchical partition
method and a partitioned decoupled electric power balance
mechanism, which can improve the overall economy and security
of future urban power system by exchanging small power generation
cost for large reduction of interconnection cost. The main
contributions of this paper are as follows:

1) Propose a partitioning result determination method that
comprehensively considers the consumption of
interconnection coordination resources and the independent
operation capability within each partition, achieving dynamic
hierarchical partitioning of the power grid;

2) Achieve the partitioned decoupling operation of the power
balance model by decoupling the constraints;

3) Introduce a dynamic operation mechanism to ensure that the
hierarchical partitioning as well as the power balance model
meets the system operation requirements.

The rest of the paper is organized as follows. Section 2 describes
the dynamic hierarchical partitioning method for urban power
system. Section 3 presents partitioned decoupling power balance
model. Power balance mechanism of urban power system based on
dynamic hierarchical partition method is described in Section 4.
Case study of modified Hawaiian 37-node system is presented in
Section 5. Section 6 summarizes the observations through the case
study and Section 7 concludes this paper.

2 A dynamic hierarchical partition
method for urban power system

The hierarchical partition management architecture of future
urban power system is shown in Figure 1. The centralized layer
coordinates and controls the distribution layer, implementing power
dispatch among different zones in the distribution layer to improve
the efficiency of interconnection resource allocation and the
economy of the power grid operation. The different partition in
distribution layer operates independently from each other, which,
on one hand, facilitates the local consumption of renewable energy
and enhances the flexibility of the power grid operation, and on the
other hand, assist in reducing the regional net load density to ensure
that the power shortage caused by partitioned islanding is
minimized in the event of an accident, thus avoiding chain
reactions and reducing the cost of accidents.

2.1 Hierarchical method

The centralized layer and distribution layer are the main entities
that distinguish the control authority levels in urban power systems.
The centralized layer consists of network nodes in the 110 kV and
above, which are connected to the transmission network and high-
voltage distribution network. The distribution layer consists of
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network nodes in the 110 kV and below, directly connected to the
low-voltage distribution network and end-users.

2.2 Partition method

Distribution layer partitions are the fundamental units for the
operation and control of urban power systems, and as shown in
Figure 2, the division of partitions should be consistent with the
physical reality. Therefore, based on the principle of geographic
proximity, the hierarchical clustering method is used to cluster the

grid nodes participating in the partition, and a clustering tree is
obtained. Afterwards, the number of partitions is determined,
i.e., the level of the clustering tree, and the final partition results
are obtained.

The specific hierarchical clustering process is described
as follows:

1) Step1: Input the two-dimensional geographical location data
for each node in the power grid and normalize the data;

2) Step2: Consider each grid node as a class and then identify the
two classes with the closest average distance to be merged;

3) Step3: Repeat the merging process until all grid nodes are merged
into one class, and output the clustering results after each merge.

Through the aforementioned partition clustering process, the
clustering tree shown in Figure 3 is obtained. The branches of the
clustering tree represent the lower level, indicating that each node is
a separate partition, while the trunk of the clustering tree represents
the top level, indicating that all nodes are merged into one partition.

In Figure 3, the number of intersections between the dashed
lines and the clustering tree represents the number of partitions,
which is denoted as k, k � 1, 2 . . . , N − 1. N represents the total
number of nodes involved in the partitioning. By determining the
position of the dashed lines, which corresponds to the number of
partitions, the final system partitioning results can be obtained.

The determination of the number of partitions needs to consider
the following issues:

1) Having no partition (number of partition is 1) or too few
partitions, which is not conducive to the flexibly local
consumption of renewable energy and independent
operation of partitions.

2) Having excessive number of partitions, which leads to a
significant increase in the number of inter-regional liaison
lines, and excessive consumption of resources.

It can be seen that too many or too few partitions are not
favorable to the flexible and economical operation of the power grid.
Therefore, it is necessary to find a reasonable partition scheme that
takes into account the independent operational capacity within each

FIGURE 1
The hierarchical partitioning management architecture of future urban power system.

FIGURE 2
Partition cluster process diagram.
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partition and the consumption of interconnection resources. To this
end, the following objective function is proposed to determine the
number of partitions, as shown below.

minf k, t( ) � λ Qk+1,t* − Qk,t
*( ) + 1 − λ( ) Ck+1,t* − Ck,t

*( ) (1)
Qk,t

* � Qk,t

Qt‖ ‖2 (2)

Qk,t �
���������������
∑k

a�1 ∑na

j�1q
k
aj,t( )2

√
(3)

Ck,t
* � Ck,t

Ct‖ ‖2 (4)

Ck,t � 1
2
∑k

a�1c
k
a,t (5)

Where Qk,t is the square root of the sum of the squares of the total
predicted net load values of nodes in each partition at time t, when the
number of partitions is k; qkaj,t is the predicted net load value of the node
j in the partition a at time t, when the number of partitions is k; na is the
number of nodes in partition a; Qk,t

* is the value of Qk,t after being
normalized by the L2 norm; Ck,t is the total number of interconnection
lines in each partition at time t when the number of partitions is k; after
normalizing it with the L2 norm, we obtain Ck,t

*; cka,t is the number of
interconnection lines in the partition a at time t when the number of
partitions is k; λ is the weighting coefficient.

The partition number k obtained through (1) has the following
implications. When the number of partitions decreases from k + 1 to k,
the weighted value of the reduction in interconnection line quantity and
the sum of the square of the total net load in each partition is maximized
due to partition merging. The interconnection line quantity and the
square of the total net load can respectively estimate the consumption of
interconnection resources and the independent operational capability of
that partition. The closer the regional net load sum of squares is to zero,

the smaller the inward or outward transfer of electricity from the partition,
indicating a stronger capability of independent operation. Therefore,
when the partition number changes from k + 1 to k, the rate of
reduction in resource consumption of interconnection lines and the
rate of improvement in comprehensive independent operation
capability of each partition are maximized, indicating that the partition
merging process has the greatest overall impact on the power balance.

3 Partiton decoupling power
balance model

In the hierarchical partition control framework of centralized-
distributed form, when the urban power system operates in practice,
the distribution layer operates independently in each partition, thus the
power balance is ensured by power transmission among network nodes
within each partition. If the power balance of the partition cannot be
achieved, the centralized layerwill coordinate and control interconnection
resources to ensure power supply in case of power shortage. In order to
realize the hierarchical partition operation process aforementioned, it is
necessary to performcalculations of the power balance on a regional basis,
which is specifically manifested in the partition weighting of the objective
function and the partition decoupling of the constraint conditions.

3.1 Objective function

Taking into account the economy of system operation and the
independent operation capability of each partition, the optimization
objective of the power balance model is to minimize the weighted
sum of the total generation cost of units and the power imbalance of
each partition. Specifically, it can be expressed as (6) below.

FIGURE 3
Clustering tree diagram.
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min∑
a∈A

∑
b∈ua

fa
b Pa

b,t( ) +∑
a∈A

ηaSat (6)

Where A is the set of partitions obtained by hierarchical
partition of the power system; a is a specific partition in the set
of partitions; ua is the set of units in region a; b is a specific unit in
the set of units; fa

b is the cost function of unit b, which is generally a
quadratic function; Pa

b,t is the output of unit b at time t; Sat is the
power imbalance of partition a at time t; ηa is the penalty term for
power imbalance in partition a.

3.2 Constraint condition

In the hierarchical partition management framework, each
partition operates independently, so the system constraints are
decomposed into regional constraints. For any partition in the
set of partitions, the following regional constraints and
operational constraints must be satisfied.

3.2.1 Power balance constraint

Baθat + Ra
t T

a
t � Pa

t−Da
t + Pa

w,t + Pa
s,t (7)

Where Ba, θat , R
a
t and Ta

t are the nodal admittance matrix, nodal
phase angle matrix, adjacency matrix, and interconnection line flow
matrix of partition a at time t, respectively. Pa

t ,D
a
t , P

a
w,t and P

a
s,t are the

sum of conventional unit output, load, actual wind power output, and
actual photovoltaic power output in partition a at time t, respectively.

3.2.2 Phase angle constraint of reference node

θaref � 0 (8)

where θaref is the reference node phase angle for partition a. If there
is no reference node in partition a, this equation does not need to be
considered.

3.2.3 Power flow constraints of line in the partition

Ba
f θ

∣∣∣∣∣ a

t
≤| FLa,max (9)

Where Ba
f is the power flow transfer matrix of partition a, which

is the product of the inverse of the branch reactance matrix and the
transpose of the node-branch incidence matrix; FLa,max is the
matrix of upper power flow limits of intra-partition lines in
partition a; FLa,max

ij is the upper power flow limit of line ij;
∀ij ∈ La, and La is the set of lines within the partition a.

3.2.4 Power flow constraints of
interconnection line

Ta
ij,t �

θi,t − θj,t
xij

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣≤Ta,max

ij ,∀ij ∈ Γa (10)

where Ta
ij,t is the power flow of interconnection line ij passing

through partition a at time t; Ta,max
ij is the upper limit of the power

flow on interconnection line ij within partition a; Γa is the set of

interconnection lines within partition a; θi,t and θj,t are the phase
angles of node i and j on line ij at time, respectively; xij is the
reactance value of line ij.

3.2.5 Regional power imbalance constraints

Sat � ∑
ij∈Γa

Ta
ij,t

∣∣∣∣∣∣
∣∣∣∣∣∣ (11)

where Sat is the power imbalance of partition a at time t.

3.2.6 Unit operation constraints

Pa,min
b ≤Pa

b ≤P
a,max
b ,∀b ∈ ua (12)

Pa
b,t − Pa

b,t−1 ≤RU
a
b,∀b ∈ ua (13)

Pa
b,t−1 − Pa

b,t ≤RD
a
b,∀b ∈ ua (14)

Where (12) is the upper and lower limits constraints of unit
output; (13)–(14) are the unit ramping constraints. Pa

b,t and Pa
b,t−1

are the output of conventional unit b at time t and t − 1, respectively.
Pa,min
b and Pa,max

b are the minimum and maximum values of the
output of conventional unit b. RUa

b and RDa
b are the maximum

upward and downward ramping rates of unit b.

3.2.7 Operational constraints of wind and solar
energy sources

0≤Pa
w,b,t ≤Pa,fore

w,i,t ,∀b ∈ ua
w (15)

0≤Pa
s,b,t ≤Pa,fore

s,j,t ,∀b ∈ ua
s (16)

where Pa
w,b,t and P

a
s,b,t are the actual output of wind power and solar

power at time t, respectively; Pa,fore
w,i,t and Pa,fore

s,j,t are the theoretical
output of renewable unit at time t; uaw and ua

s are the collection of
wind power units and solar power units in region a.

3.2.8 Operational constraints of energy storage

Ea
b,t

∣∣∣∣ ∣∣∣∣≤Ea,max
b ,∀b ∈ ua

e (17)

SOCa
b,t � SOCa

b,t−1 −
Ea
b,t

Ea,max
b

,∀b ∈ ua
e (18)

0≤ SOCa
b,t ≤ 1,∀b ∈ ua

e (19)

Where Ea
b,t is the output power of energy storage i at time t, with

positive values indicating discharge and negative values indicating charge;
Ea,max
b is the maximum output power of energy storage b; SOCa

b,t and
SOCa

b,t−1 are the state of charge of the energy storage b at time t and t − 1,
respectively; uae represents the collection of energy storages in partition a.

4 Power balance mechanism of urban
power system based on dynamic
hierarchical paetition method

The power balance mechanism of urban power system based on
dynamic hierarchical partition method determines the partitioning
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results first for each operating moment, and then performs power
balancing calculations. The determination of partitioning results is
based on both clustering tree and the net load forecast value at the
current moment. For clustering tree, as the number of power grid
nodes in the same area and their geographical locations remain
constant in the long term, it can be considered fixed during the
operating phase. Therefore, the partitioning clustering process only
needs to be performed once at the beginning of the operation, and
the clustering tree remains unchanged during subsequent
hierarchical partitioning, eliminating the need for repeated
calculations.

As for the current net load forecast value, it is obtained by
predicting the historical net load data with a fixed timing length. In
this study, the least squares support vector machine based on
wavelet packet decomposition is used for net load forecasting.

Due to the volatility and uncertainty of renewable energy and
power load, the net load of power grid nodes changes in real-
time, and the magnitude of the changes can be significant. In order
to better meet the real-time absorption demand of renewable energy,
improve the real-time independent operation capability of the power
grid, and reduce the consumption of interconnection resources, it is
necessary to adjust the partitioning results accordingly to achieve an
improvement in the optimality of power balance results.

The specific operational process of the dynamic hierarchical
partitioning and the power balance mechanism is shown in Figure 4.
In the figure, Ts is the starting operating moment; T0 is the sliding
window length, which denotes the length of historical net load data
used for predicting the net load data of each node; t is the current
operating moment, and Te is the ending operating moment. The
specific process is described as follows:

FIGURE 4
Flowchart of the dynamic hierarchical partitioning and power balance mechanism.
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1) Input the geographical location data of the grid nodes and
obtain the clustering tree through partition clustering;

2) Input the historical operating data of the time period T0

before the current running moment t, which includes
historical load data and historical generation data.
Calculate the net load data of all nodes in the power
system at each moment within the time period
(t − 1 − T0, t − 1), and predict the net load value at the
current moment based on historical net load data;

3) Based on the clustering tree and the predicted net load values
of each node, obtain the hierarchical partitioning results of the
power system at the current moment using (1–5);

4) Based on the hierarchical partitioning results of the power
system at the current moment, calculate the power balancing
results of the power system using (6–19) and output them;

5) Determine if the current moment t is the ending operating
moment Te. If yes, end the operation; if no, set t � t + 1 and go
to Step 2, which is to enter the calculation of hierarchical
partitioning and power balance for the next moment.

5 Case study

As shown in Figure 5, this section analyzes the dynamic hierarchical
partitioned power balance mechanism based on the modified Hawaiian
37-node system, which consists of two voltage levels, 138 and 69 kV,
and the nodes in parentheses in the figure are all 138 kV.

The total duration of the data is 48 h with a granularity of 1 h,
and the base capacity is 100MVA. The initial operating time is 25 h,
using data from 1 to 24 h as historical data. And the final operating
time is 48 h, using data from 24 to 47 h as historical data. The
weighting coefficient λ is set to 0.4, and the penalty term ηa for
power imbalance in each partition is 1,000.

In order to analyze and validate the effectiveness of the dynamic
operating mechanism proposed in this paper, the following three
operatingmodes are established. The problem is modeled and solved
by MATLAB.

1) Mode 1: no hierarchical partitioning, which can be considered
as all nodes belonging to a single partition or each node being a
separate partition;

2) Mode 2: static hierarchical partitioning, i.e., the partitioning
result is fixed during operation, which can be used to simulate
the hierarchical partitioning method proposed in existing
studies for system planning;

3) Mode3: dynamic hierarchical partitioning, which refers to
mechanism proposed in this paper.

5.1 System operation results study

Based on the aforementioned system parameters and data,
the system operating results under three different operating
modes are analyzed. The total generation cost and the tie-line
power of the 24-h system under different operating modes are
shown in Table 1.

From the results in Table 1, it can be observed that the ynamic
hierarchical partitioning reduces the total power transmission on tie
lines (i.e., the sum of absolute values of power imbalances in each
partition) by 21.57% and 1.21% compared with the non-partitioned
and static hierarchical partitioning modes, respectively. Meanwhile,
the generation cost increases by 0.422% and 0.082% respectively,
indicating that the percentage reduction in total power transmission
on tie lines is 51 times and 14 times higher than the percentage
increase in generation cost. This demonstrates that through dynamic
hierarchical partitioning, a large reduction in total power
transmission on tie lines can be achieved at a relatively small
increase in generation cost, which implies lower
interconnection costs.

5.2 Partition operation results study

The total tie-line power under different operating modes in
some periods are shown in Table 2. The clustering tree for the
partitioning process is illustrated in Figure 2. Based on the clustering
tree and (1)–(5), the final static and dynamic partitioning results are
determined and depicted in Figures 6, 7, respectively. The 138 kV
node is located in the central layer and does not participate in the
partitioning process. The new energy units are connected to nodes
23, 26, 27, 28, and 33.

In Table 2, “k” represents “power number”. It can be observed
from Table 2 that after implementing hierarchical partitioning
(including static and dynamic partitioning), the total power
transmission on tie lines in the system is always lower than that
without partitioning. And in most operating time periods, the total
power transmission on tie lines under dynamic partitioning is lower
than that under static partitioning. The net load values for each
partition under different modes during the 40-h period are shown
in Table 3.

Comparing the net load values of different partitions under the
two hierarchical partitioning methods in Table 3, it can be observed
that the dynamic partitioning process follows the change of the
system source-load operation state, and merges partition 1, partition
2, partition 3 and partition 4, which are geographically close to each
other and have opposite signs of net load values. After the merger of

FIGURE 5
Modified Hawaiian 37-node system diagram.
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partition 3 and partition 4, the partition decoupling power balance
process fully utilizes the regulation capability of the units, reducing
the output of units in the original partition 4, so that the
0.00022 MVA of new energy generation capacity, which was not
consumed in the static partitioning of partition 4, is fully consumed
after the dynamic partitioning, and reduces the total net load value
of the merged partition B by 9.48% compared with the original
partition 3.

It can be seen that the dynamic hierarchical partitioning and
partition decoupling power balance processes complement each

other, enabling the system to adapt to operational changes,
improve the local accommodation capacity of new energy, and
reduce regional power imbalance. In the event of an accident
scenario, a smaller amount of regional power imbalance implies a
smaller instantaneous power variation in the system, resulting in
reduced losses, which is crucial for the safe operation of
the system.

6 Conclusion

This paper proposes a power balance mechanism of urban
power system based on dynamic hierarchical partition method,
which can be applied to the operation of future urban power
systems. Compared with the existing static method, the dynamic
hierarchical partition method proposed in this paper can change the
partition result according to the real-time operation state of the
power system, which aims to reduce the coordination cost at the cost
of smaller generation cost, improve the local consumption capacity
of new energy, and enhance the regional independent operation
ability. In addition, a partition decoupling power balance model is
proposed in this paper, which make the power balance process can
be carried out in a hierarchical way and further improve the
independent operation ability of the region.

In this study, the performance of dynamic partitioning results is
closely related to the weight coefficient, and the weighting
coefficients in the objective function for the determination of the
number of partitions may vary for different systems, which needs to
be determined in advance. How to choose the appropriate weight
coefficient is a difficult point, and the adaptive selection of weight
coefficient may be an effective way.

TABLE 1 System operation results in different modes.

Operation modes Total generation cost/$ Tie-line power/100 MVA

Mode 1 115,458.10 272.48

Mode 2 115,850.07 216.33

Mode 3 115,944.99 213.71

TABLE 2 Total tie-line power under different operating modes in some periods.

Time/h Mode1 Mode2 Mode3

Tie-line power/100 MVA k Tie-line power/100 MVA k Tie-line power/100 MVA

38 9.9206 6 7.7679 6 7.7679

39 9.6368 8.1023 6 8.1023

40 11.0015 10.7478 4 9.4274

41 13.3739 9.0022 4 8.4586

42 14.4043 12.0514 6 12.4107

43 14.8631 11.6698 6 11.4045

44 15.0425 10.0469 6 10.0175

FIGURE 6
Static partition results.
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FIGURE 7
Dynamic partition results.

TABLE 3Net load values for each partition under differentmodes during the
40-h period.

Net load for partitions/100MVA

Partition sequence number Mode 2 Mode 3

1 0.6057 0.6257

2 −0.0263 −0.0263

3 4.3480 4.5668

4 0.0000022 −0.6328

5 0.4002 0.4002

A — 0.5994

B — 3.9340

C — 0.4002
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As global temperatures rise and climate change becomes more severely. People
realize that air conditioning systems as a controllable resource and play an
increasingly important role in reducing carbon emissions. In the past, the
operation optimization of air conditioning systems was mainly oriented to
user comfort and electricity costs ignoring the long-term impact on the
environment. This article aims to establish a multi-objective model of air-
conditioning load to ensure user temperature comfort performance and
reduce the total cost (i.e., electricity cost and carbon emission cost)
simultaneously. Multi Sand Cat Swarm Optimization (MSCSO) algorithm
combined with gray target decision-making (GTD) is used to explore optimal
solution. Meanwhile four competitive strategies are applied to validate the
effectiveness of the proposed method, i.e., genetic algorithm (GA), MSCSO-
comfort objective, MSCSO-total electricity cost objective and unoptimization.
The simulation results show that the MSCSO-GTD based objective method can
significantly reduce total costs while taking into account appropriate indoor
temperature comfort.

KEYWORDS

low-carbon operation, economic scheduling, air conditioning system, multiobjective
optimization, dynamic carbon emission factor

1 Introduction

With increasing societal attention to energy sustainability (Wang et al., 2022) and global
warming (Wiriyasart and Kaewluan, 2024), experts in the power systems field are
continuously exploring new methods to reduce carbon emissions and steer the power
systems towards a more sustainable direction (Hu and Yi, 2023). The building industry
accounts for approximately 40% of the global electricity consumption with air conditioning
constituting over 50% of the total energy consumption within buildings (Wijaya et al., 2022;
Silva et al., 2023). According to statistics, there are currently 1.2 billion air conditioners in
daily use globally and this number is expected to rise to 4.5 billion by 2050 (Fikiin, 2018).
Against the backdrop of the carbon neutrality goals outlined in the Paris Agreement
(Reyseliani et al., 2022). Meanwhile the government and related enterprise focusing on
carbon emission reduction, and cost accounting for carbon emissions is the necessary
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premise of carbon reduction and objects which should further
attention (Hu et al., 2022). Air conditioning systems as a
significant burden on the power system, not only directly impact
the stability and efficiency of the power system but also have
profound implications for the environmental carbon emission
levels (Yang ZX. et al., 2022).

Currently, research on carbon emissions in the power sector has
become one of the hot topics in the field of power systems. Past
studies primarily focused on assessing and reducing the carbon
footprint of the overall power system (Shi et al., 2023). However,
current optimization scheduling of air conditioning systems often
emphasizes improving user comfort (Hernández et al., 2022) and
reducing electricity costs with relatively less attention given to their
contribution to carbon emission reduction as referenced (Jung and
Jazizadeh, 2019; Huang et al., 2022). Air conditioning systems have
significant potential to reduce the cost of carbon source energy and
lower overall energy costs. Additionally the aggregation and
coordinated control of air conditioning systems not only quickly
alleviate peak load pressures on the power grid (Xie et al., 2022) but
also provide various load transfer and adjustment assistance
methods, contributing to the stable and efficient operation of the
grid (Dong et al., 2023). Against the backdrop of the “dual carbon
goals” aiming to reduce carbon emissions in the power system while
ensuring its efficiency. It is necessary to reexamine the strategies for
controlling the operation of air conditioning systems.

Li et al. (2021) proposed a single-objective optimization method
during air conditioning usage, which combined weighted user
comfort and energy consumption to minimize overall
consumption. This approach provides a comprehensive
assessment of air conditioning usage. In WuCao et al. (2023), a
personal comfort model was established to optimize and control air
conditioners. This model optimizes air conditioning operation based
on electricity prices, outdoor temperatures, and user preferences,
significantly reducing electricity costs while effectively maintaining
user comfort. Satisfactory decision results are achieved using a
multi-objective air conditioning optimization method based on
user comfort and energy consumption. Bingham et al. (2017),
Ohta and Sato (2018), Elnour et al. (202) employed a neural
network-based model to control building air conditioning
systems reducing energy consumption by up to 46% without
compromising indoor comfort and air quality, providing valuable
insights for reducing energy costs in air conditioning systems. Hu
et al. (2019) explored air conditioning frequency control in response
to smart grids building upon real-time dynamic electricity prices,
endowing air conditioning with price responsiveness and grid
interactivity. Lin et al. (2022) presented a multi-objective
optimization model based on air conditioning energy
consumption and thermal comfort, yielding well-balanced
decision results.

Kuo et al. (2017) developed a low-carbon and economic dispatch
planing for isolated power systems, which offers a significant tool for
this field. Utilizing dynamic approaches for carbon assessment, the
study captures the characteristics of the electricity grid’s generation
mix (Khan et al., 2018). When air conditioner operates as a
controllable load, a dual-layer economic scheduling model is
introduced, emphasizing source-load coordination for carbon
reduction (Zh et al., 2023). In the field of low-carbon behavior
modeling, relevant theoretical models have been established. These

models utilize generic algorithms such as GA and particle swarm
optimization (PSO) to maximize profits for all stakeholders and
minimize carbon emissions (Yang et al., 2023). Additionally, to
optimize the parameters of low-carbon models, metaheuristic
algorithms are employed including genetic algorithms, particle
swarm optimization and so on. Ding (2023) exhibited a certain
advantage in optimizing the parameters of low-carbon models
during to the simplicity and lower computational costs of
these methods.

This study aims to investigate an innovative operational control
strategy for air conditioner focusing on the key performance
indicator of minimizing carbon emission costs. The proposed
approach introduces a multi-objective optimization scheduling
method that relies on dynamic carbon emission factors while
considering collaborative operations with air conditioning
vendors. The primary contributions/nolvelties of this
methodology are outlined as follows:

➢ Different to fixed carbon emission factor, the dynamic carbon
emission factor is introducted to accurately and fairly evaluate
the carbon emmission of air conditioners in hour-level. It
offers an effective guidance for low-carbon and low-cost
operation of air conditioner loads;

➢ Unique to single objective optimization, the total cost
(including electric cost and carbon emission cost) and
users’ comfort are intergrated as a multiple objectives to
guide th optimal operations of air conditioners;

➢The proposedMSCSO algorithm in combination with the Grey
Target Decision, aims to obtain the optimal weighted balanced
solution. By considering both indoor temperature comfort and
the reduction of total electricity costs, it seeks to find a solution
that achieves the best balance between these objectives,
thereby maximizing overall efficiency and benefits.

The remaining sections of this paper are organized as follows:
Section 2 presents the modelling of air conditioning operational
characteristics and optimization objectives. Section 3 introduces the
workflow of the MSCSO algorithm combined with the Grey Target
Decision algorithm. Section 4 provides case simulations for the
optimization of the operation of four air conditioners. Finally,
Section 5 offers a summary of this paper.

2 Air conditioner operation
characteristics and optimization
objective modeling

2.1 Characteristics related to air
conditioning operation

Yang et al. (2022b) shows that air conditioning operation is actually
a dynamic process. If continuous operating characteristics cannot be
maintained, it will affect the user’s comfort experience (Lu et al., 2023)
and increase energy consumption costs (Yuan et al., 2023). During the
air conditioning operation control process, the direct load of the air
conditioner Direct Load Control (DLC) (Alrasheedi et al., 2024) is a
strategy used to manage and balance loads in power systems. It involves
adjusting the load of the power system by proactively intervening in the
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operation of air conditioning equipment to respond to changes in system
demand or to optimize system operation.

In air-conditioning direct load control, it is achieved in the
following two ways:

➢ Heating mode: When the indoor real-time temperature is
lower than the lower limit temperature, the air conditioner
turns on the heating mode. The indoor temperature gradually
increases until it reaches the upper limit temperature and the
air conditioner stops working; until the indoor temperature
drops to the lower limit temperature again, the air conditioner
turns on the heating mode again and then the cycle repeats.

➢ Cooling mode: When the indoor real-time temperature is
higher than the upper limit temperature, the air conditioner
turns on the cooling mode. The indoor temperature gradually
decreases until it reaches the lower limit temperature and the
air conditioner stops working; until the indoor temperature
rises to the upper limit temperature again, the air conditioner
turns on the cooling mode again. And then the cycle repeats.

In the paper, the background of the simulation of air
conditioning load optimization operation is based on summer. So
only the cooling mode needs to be considered, its working state is
shown in Figure 1.

2.2 Real-time calculation of indoor
temperature

The operating status of the air conditioner can be adjusted
through changes in indoor temperature in the process of direct load
control of air conditioners. The real-time indoor temperature is
mainly related to the outdoor temperature, room thermal
parameters, air conditioning load operating status and rated
power, which can be described by Eq. 1 as follows:

Tin t + 1( ) �
Tout t + 1( ) − Tout t + 1( ) − Tin t( )( )e −Δt

RreCre Sop t( ) � 0

Tout t + 1( ) − Tout t + 1( ) − Tin t( ) − RrePeηcop( )e −Δt
RreCre Sop t( ) � 1

⎧⎪⎨⎪⎩
(1)

where Tin(t) is the indoor temperature in the tth period; Tout(t + 1)
represents the outdoor temperature in the (t + 1) th period; Rre (Ω)

and Cre(F) are the indoor equivalent of thermal resistance and heat
capacity, respectively; Δt(h) represents the duration of opening or
closing; Pe(kW) and ηcop represent the rated power of the air
conditioner load and coefficient of refrigeration efficiency
respectively; sop(t) denotes the operational state of the air
conditioning load during the t-th time interval; sop(t) � 0 and
sop(t) � 1 represent the standby and operational states, respectively.

2.2.1 Determining the operating state of the air
conditioning load

Although the operating status of the air conditioner and the
start-stop status are not equivalent. The operating status of the air-
conditioning load at the next moment can be determined through
the indoor temperature and start-stop status at that moment. The
determination method is described by Eq. 2 as follows:

Sop t + 1( ) �
0 Sturn t + 1( ) � 0orTin t( )<Tmin

1 Sturn t( ) � 0andSturn t + 1( ) � 1andTin t( )≥Tmax

Sop t( ) Sturn t( ) � 1andSturn t + 1( ) � 1andTmin ≤Tin t( )≤Tmax

1 Sturn t( ) � 1andSturn t + 1( ) � 1andTin t( )≥Tmax

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(2)

where sturn(t) represents the on/off state of the air conditioning load
during the tth time interval where sturn(t) � 0 and sturn(t) � 1
indicate the states of being turned off and turned on,
respectively. Similarly.

According to the condition sop(t + 1) � 1 in Eq. 2, it indicates
that the air conditioning load is in the operational state in the next
time step. Combining this with the condition in For Eq. 1 that the air
conditioning load is in the turned-on state, we can calculate the
duration of the air conditioning system’s operation when it is in the
operational state, which can be expressed by Eq. 3:

τon � RreCre ln
Tmax − Tout t + 1( ) + RrePeηcop
Tout t + 1( ) − Tmin + RrePeηcop

(3)

where τon represents the working time when the air conditioning
system is in working state.

2.2.2 Dynamic carbon emission factor
Currently in China, there are challenges associated with the

average carbon emission factors for electricity including delayed
data updates and difficulties in reflecting temporal and spatial
variations, it has not been updated since 2012 and has lost its
timeliness taking the example of the regional grid’s average carbon
emission factor. Moreover, its broad coverage makes it challenging
to adequately consider the development disparities and temporal
characteristics of non-fossil energy generation especially new energy
sources in different regions.

The existing values represent fixed annual figures lacking the
capability to address dynamic issues. In this paper, we propose a
dynamic carbon emission factor that utilizes a spatiotemporal data
model for the power grid. This approach enables the coupling and
correlation analysis of electricity and carbon emissions within the
grid. By leveraging real-time grid dynamic flow data, the dynamic
carbon emission factor can be calculated on an hourly and minute-
by-minute basis allowing for dynamic assessments of carbon
emissions across different time periods and regions. This
methodology is more conducive to accurate carbon emission cost
calculations and the equitable distribution of carbon emission

FIGURE 1
Direct load control of air conditioning in cooling mode.
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responsibilities. The dynamic carbon emission factor can be
predicted and released to users in advance. Users adjust their
electricity consumption behavior on an hourly basis. After
perceiving the differences in carbon emission factors for
electricity consumption in different time periods in the future,
users, within the range allowed by their own adjustment
capabilities, respond with the goal of maximizing their carbon
reduction, aiming to minimize their carbon footprint.

According to the principle of carbon emission flow transmission
in the power grid, the schematic diagram is shown in Figure 2. For
each node, according to the proportional sharing principle,
considering the active power input externally, the average
converted carbon emission intensity of the injected node is
defined as the carbon emission factor intensity. The carbon
emission intensity of node branch power and node access load
(Si et al., 2023), which can be expressed by Eq. 4:

δi �
Pg × δg +∑j∈ϕi

Pji × δj

Pg +∑j∈ϕi
Pji

(4)

where δi (kgCO2/kWh) and δj (kgCO2/kWh) represent the power
carbon emission factors of the ith and jth load nodes respectively,
Pg(kW) represents the active power output of the power plant,
δg (kgCO2/kWh) connected to the gth load node are the power
carbon emission factors of the connected power plants, Pji (kW)
represents the power carbon emission factors from active power is
injected into the branch from the jth node to the ith node, ϕi
represents the set of connected nodes of the branch from the ith node.

2.3 Optimization target modeling

This section models the carbon emission flow calculation model
as the foundation. Under the premise of satisfying constraints on
user air conditioning cluster switch states and switch durations,
economic costs for users are fully taken into account. At the same
time, the section aims to maximize user comfort and minimize
carbon emission costs. Therefore building upon the carbon emission
flow, this section formulates a multi-objective model for low-carbon
operation of air conditioning loads. The objective function of the
model considering user comfort and reducing the overall electricity
cost that including carbon emission costs is expressed by Eq. 5:
where Eq. 6 represents the associated constraints of Eq. 5.

min f 1 � ∑N
n�1∑H

t�1ωn t( ) ×
																
Tavg
n t( ) − Tset

n t( )[ ]2√
min f2 � ∑N

n�1∑H
t�1sop,n t( ) × τon,n × Pn × ψe t( ) + ψc t( ) × σn t( )[ ]

⎧⎨⎩
(5)

sop,n t( ) � 1
n � 1, 2, . . . , N
t � 1, 2, . . . , H
N � 4
H � 24

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(6)

where f 1 represents the user temperature comfort deviation function; f 2
represents the comprehensive electricity cost function of electricity cost
and carbon emissions;N is the number of air conditioner; ωn(t) is the
indoor temperature demand weight of the nth user in the tth period;
Tavg
n (t) (℃) and Tset

n (t) (℃) are the average indoor temperature and
preset indoor temperature of the nth air conditioner in the tth period
respectively; sop,n(t) is the working status of the nth user in the tth
period when the value is 1, the air conditioner is working, τon,n (h)
represents the duration of the nth air conditioner in the tth period; Pn

(kWh) is the rated power of the nth user’s air conditioning load;H (h)
represents the number of hours in a day; σn(t)(kgCO2/kWh) is the
carbon emission factor for the nth user in the tth time period;
ψe(t)(CNY/kWh) and ψc(t) (CNY/kgCO2) represent the electricity
price and carbon emission price for the tth time, respectively.

3 MSCSO algorithm combined with
gray target decision-making algorithm

3.1 Basic principles of MSCSO algorithm

TheMSCSO algorithm is an intelligent optimization algorithm that
imitates the foraging behavior of sand cats in nature. This algorithm
simulates the two stages of sand cat foraging behavior: searching for
prey and attacking prey (Seyyedabbasi and Kiani, 2023).

3.1.1 Initialization
In a D-dimensional problem, a sand cat represents a 1 × Dmatrix,

where each sand cat corresponds to a solution to the problem. The sand
cat population matrix Cati � [x1, x2, . . . , xD], i � pop(1, 2 . . . ,N)
where pop represents the population size and N is the maximum
population size. During the operation of the MSCSO algorithm based
on the size of the problem (Npop × ND). The sand cat population

FIGURE 2
Grid carbon emission flow transmission schematic diagram.
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matrix Cati � [x1, x2, . . . , xD] is initialized. The specific form of the
initialization matrix is expressed by Eq. 7:

Cati �

X1

.

.
Xi

.

.
XN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
N×D

�

x11

.

.
x1j

.

.
x1j

x1j

.

.
xij

.

.
xnj

x1D

.

.
xiD

.

.
xND
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
N×D

(7)

where Xi represents the ith sand cat group; xij represents the
dimension of the ith population in the sand cat population.

The fitness function of the sand cat population is
F � f(Cati) � f(x1, x2, . . . , xD), and the specific matrix form is
expressed by Eq. 8:

F �

F1

.

.
Fi

.

.
FN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
N×1

�

f x11, x12, . . . , x1D( )
.
.

f xi1, xi2, . . . , xiD( )
.
.

f xn1, xn2, . . . , xnD( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
N×1

(8)

3.1.2 Searching for prey stage
In the stage of searching for prey, the sand cat’s hearing can

explore the location of the prey by perceiving hearing within 2 kHz.

In the mathematical model, According to the working principle of
the algorithm the process of gradually decreasing linearly from 2 to
0 after iteration is simulated and represents this process using
sensitive Factors →

sc
The mathematical form is expressed by Eq. 9:

→
sc
� sb − 2 × sb × KP

Kmax
(9)

where sb represents the maximum hearing limit of the simulated
sand cat which is set to 2; KP represents the current number of
iterations; Kmax represents the maximum number of iterations.

During the search process in order to ensure that the search
space falls into a local optimum, this search process requires position
updating based on random position changes during the search
process. This behavior can be defined by the different sensitivity
ranges of each sand cat using Eq. 10:

→
sa
� →

sc
× rand 0, 1( ) (10)

The parameter variable that realizes the transformation of
searching for prey and attacking prey is expressed as →

S . This
parameter variable can balance the transformation of the two
stages and is expressed by Eq. 11:

→
S
� 2| × →

sa
−→

sc

∣∣∣∣∣ (11)

When searching for prey position in the algorithm, the sand
cat can iterate its position based on the current position,
sensitivity range and optimal solution which can be expressed
by Eq. 12:

FIGURE 3
MSCSO algorithm combined with gray target decision-making flow chart.
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→
X

t + 1( ) � →
sa
· →

Lb
−rand 0, 1( ) ·→

Lc
( ) (12)

where →
sa
represents the sensitivity range; →

Lb
represents the optimal

solution; →
Lc

represents the current position.

3.1.3 Attacking prey stage
During the process of attacking prey, the sand cat uses a 360-

degree range around its current position as a rotation angle. This
involves randomly selecting an angle for the attack, ensuring both
the avoidance of getting stuck in local optima and a more
accurate emulation of the sand cat’s hunting behavior by Eqs
13, 14.

→
Lr
� | rand 0, 1( ) ·→

Lb
−→

Lc | (13)

→
X

t + 1( ) � →
Lb
−→

sa
·→
Lr
· cos θ( ) θ ∈ 0, 360°( ) (14)

where→
Lr
represents the random position updated by the sand cat; θ

represents the search angle.

3.1.4 Transformation into exploring and attacking
prey stages

The parameter variables that realize the conversion of searching
for prey and attacking prey are expressed as →

S
, |→

S
| > 1 means

exploring prey, |→
S
| ≤ 1 means attacking prey which progress can be

expressed by Eq. 15.

→
X

t + 1( ) � ⎧⎨⎩→
sa
· →

Lb
−rand 0, 1( ) ·→

Lc
( ) |→

S
> 1|

→
Lb
−→

sa
·→
Lr
· cos θ( ) |→

S
≤ 1| (15)

3.2 Basic principles of gray target
decision-making

By employing the MSCSO algorithm for two objectives and
obtaining numerous solutions based on diverse requirements, this

paper adopts an approach that combines Grey Target Decision to
derive the optimal decision solution.

The Grey Target Decision method is primarily based on considering
multiple scenarios and objectives. Essentially, the grey target represents
the region of satisfactory outcomes, with a designated target center in a
sequence set. The proximity to the target center reflects the superiority of
the outcome,where closer distances indicate better performance. The core
concept revolves around identifying data in a set of sequences that is
closest to the target value, forming a reference sequence. Subsequently, a
grey target is constructed using this reference sequence with the reference
sequence as the target center. The distance between each data sequence in
the information space and the target center is referred to as the target
center distance and the solutions are ranked based on the magnitude of
these distances.

3.2.1 Establishing sample matrix
For the MSCSO algorithm targeting two objectives from the set

of numerous solutions obtained based on different requirements: m
solutions can be obtained; each solution contains n objectives.
Within the ith solution, the jth objective value is designated as
an element of a newly created sample matrix denoted as
xi(j) (i � 1, 2, . . . , m; j � 1, 2, . . . , n). The sample matrix is
denoted as X � [xi(j)]m×n, the specific solution method is using
with Eqs 16, 17, as follows

X � xi j( )[ ]m×n � Xmin + xi j( ) − x j( )min

x j( )max − x j( )min

X max −Xmin( ) (16)

X � xi j( )[ ]m×n �
x1 1( )
x2 1( )
. . .

xm 1( )

x1 2( )
x2 2( )
. . .

xm 2( )

. . .

. . .

. . .

. . .

xm n( )
xm n( )
. . .

xm n( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
m×n

(17)

whereXmax,Xmin represent the maximum and minimum values of the
normalized fitness function; x(j)max, x(j)min represent the maximum
and minimum target values of the jth non-dominated solution; X is a
sample matrix containing the normalized fitness values of all solutions.

TABLE 1 Air conditioning related parameters.

Air conditioner No. Rac (°C/kW) Cac (kWh/°C) Nac Pac (kW) Working hours

Air conditioner number 1 5.47 0.14 2.1 4.0 09:00–18:00

2 5.51 0.17 1.2 2.3 09:00–18:00

3 6.20 0.16 1.8 3.5 00:00–08:00, 18:00–24:00

4 5.73 0.21 1.5 2.7 00:00–08:00, 18:00–24:00

TABLE 2 Electricity prices and carbon prices at each moment within 24-h.

Time (hour) 1 2 3 4 5 6 7 8 9 10 11 12

Electricity prices (CNY/kWh) 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.5 0.7 0.7 0.7 0.5

Dynamic CEFs (kgCO2/kWh) 0.75 0.75 0.8 0.8 0.7 0.7 0.65 0.5 0.45 0.4 0.35 0.3

Time (hour) 13 14 15 16 17 18 19 20 21 22 23 24

Electricity prices (CNY/kWh) 0.5 0.5 0.5 0.7 0.7 0.7 0.7 0.9 0.9 0.9 0.5 0.3

Dynamic CEFs (kgCO2/kWh) 0.25 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.7 0.75 0.75 0.8

The meaning of the bold values represent from 13:00 to 24:00.
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3.2.2 Determine the target center
Select the target value as a cost indicator, that is expressed by Eq. 18.

yi j( ) � w j( ) − xi j( )
max max

1≤ i≤m
xi j( ) − w j( ), w j( ) − min

1≤ i≤m
xi j( ){ } (18)

where w(j) expressed as the average value of each column of the
sample matrix by Eq. 19

w j( ) � ∑m
i�1xi j( )
m

(19)

Based on this, the decision matrix is defined as
Y � yi(j)(i � 1, 2, . . . , m; j � 1, 2, . . . , n). The maximum value in

each column represents an element of the target center vector. Thus
the target center vector can be obtained by Eq. 20 as follows:

yo � y 1( )max, . . . , y j( )max, . . . , y n( )max{ } (20)

where y(j)max represents the maximum value of the jth
objective function.

3.2.3 Find the best decision
The method of minimum center distance is used to

determine the optimal solution of the target value (Liu et al.,
2022) by Eq. 21.

di � yi − yo

∣∣∣∣ ∣∣∣∣ � ∑n

i�1w j( ) yi j( ) − yo

∣∣∣∣ ∣∣∣∣ (21)

FIGURE 4
(A) Hourly electricity prices and carbon prices; (B) Hourly ideal indoor and outdoor temperature.

FIGURE 5
Optimization results: (A) Air conditioner operating states; (B) Optimization solutions different strategies.
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FIGURE 6
Indoor temperature changes of different air conditioners under different strategies. (A) air conditioner 1; (B) air conditioner 2; (C) air conditioner 3;
(D) air conditioner 4.

FIGURE 7
(A) Variation chart of different air conditioning comfort indexes under different strategies. (B)Change chart of total cost of electricity under different
strategies.
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Figure 3 shows the chart flow of the MSCSO algorithm combined
with gray target decision-making. where di represents the minimum
center distance which helps us explore the optimal solution.

3.3 MSCSO algorithm combined with gray
target decision-making flow chart

MSCSO algorithm

4 Case studies

During the simulation optimization process, the relevant parameters
of the air conditioner are set as shown in Table 1. The hourly electricity
price and carbon price are designed for 24 h a day as shown in Table 2,
(Zhang et al., 2023). Dynamic carbon emission factor exhibit a trend of
being low during the day and high during the night clean and renewable
energies are considered such as solar power generation. During the day,
the proportion of renewable energy generation is larger resulting in a
small electric carbon factor. On the contrary when solar resources
disappear at night, the system becomes more reliant on traditional

power supply primarily provided by fossil fuel-based power generation
equipment such as coal-fired power plants the proportion of renewable
energy generation is relatively low at night and the carbon emission
factor is large in Figure 4A.

The ideal indoor temperature and actual outdoor temperature
are also set as shown in Figure 4B. The maximum number of
iterations and the number of populations of all algorithms are
exactly the same, the maximum number of iterations K max =
500 and the number of populations Pop = 200. Figure 5A shows
simulation of the air conditioner operating State. There are two
dimensions in Pareto fronts in Figure 5B. It shows the MSCSO-GTD
strategy’s trade-off ability in multi-objective solution sets.

Figure 5A shows simulation of the air conditioner operating State.
There are two dimensions in Pareto fronts in Figure 5B. It shows the
MSCSO-GTD strategy’s trade-off ability in multi-objective solution
sets. In Figure 5B, the solutions obtained fromMSCSO-f1 are close to
the minimum value on the comfort index axis, while the values on the
total cost axis are the highest. This indicates that this decision method
places special emphasis on the weight of comfort, diminishing the
impact of total cost. Similarly, the solutions obtained fromMSCSO-f2
are close to the minimum value on the total cost axis, while the values
on the comfort index axis are the highest. This suggests that this

FIGURE 8
Cost and comfort indexes under different strategies. (A) air conditioner 1; (B) air conditioner 2; (C) air conditioner 3; (D) air conditioner 4.
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decision method prioritizes the weight of total cost, mitigating the
influence of comfort. It is worth noting that the solutions without
optimization and those obtained from MSCSO-f1 are similar
indicating that under regular default conditions, the system
automatically tends to prioritize user comfort neglecting the
impact of total cost. This study provides insights into balancing
these two aspects. Compared to the GA algorithm, MSCSO-GTD-
f1, f 2 achieves a more balanced consideration of user comfort and
total cost issues, aligning well with the optimal expectations of users
and society regarding air conditioning usage.

The indoor temperature variations of different air conditioners
under different strategies are shown in Figure 6. For air conditioners
1 and 2 during the working hours from 9:00 to 18:00, MSCSO-GTD-
f1, f 2 strategy results in the indoor average temperature being very
close to the set ideal temperature compared to other strategies.
Similarly, for air conditioners 3 and 4, during the working hours
from 00:00 to 08:00 and 18:00 to 24:00. MSCSO-GTD-f1, f 2 strategy
also leads to the indoor average temperature being very close to the
set ideal temperature with a temperature deviation within 2.5°C in
Figure 5B. This indicates that MSCSO-GTD-f1, f 2 can significantly
meet the requirements in terms of user comfort.

As illustrated in Figure 7A showing the changes in comfort index
for different air conditioners under different strategies. Figure 7B
displays the variations in total power cost under different strategies,
confirming that MSCSO-GTD-f1, f 2 compared to other strategies. It
exhibits a certain advantage in power cost savings. Particularly
compared to the unoptimized and MSCSO-f 1 strategies, power costs
can be saved by approximately 16%–30%.

Figure 8 depicts the cost and comfort index under different
strategies. The trends exhibited by the four air conditioners under
different strategy optimizations are generally similar. It can be observed
that without optimization, both carbon emission costs and electricity
costs are high which contradicts the low-carbon concept. MSCSO-f 1,
MSCSO-f2 demonstrate significant advantages in their respective
optimized indicators. However they cannot achieve a balanced
decision in terms of the other corresponding indicator. In the
context of the low-carbon operation of the air conditioners studied
in this paper, a crucial aspect is reducing carbon emission costs.
MSCSO-f1 and MSCSO-f2 show significant disadvantages in
reducing carbon emission costs. In comparison, MSCSO-GTD-f1, f 2
exhibits an advantage in carbon emission cost savings of approximately
75%–90% compared to these two single-objective decision methods.
This aligns with the objective of the low-carbon operation research
conducted in this paper. Compared to GA, MSCSO-GTD-f1, f 2 holds
an advantage in both carbon emission costs and electricity costs,
resulting in an overall cost savings of around 10%. Particularly, it
demonstrates a significant potential of MSCSO-GTD-f 1, f 2 for carbon
reduction in the aspect of carbon emission costs. Meanwhile the
comfort index for users can still maintain a satisfactory level.
MSCSO-GTD algorithm is excellent in global and local search, and
can effectively maintain the balance between global and local search
performance. This advantage is shown in this paper as follows:
Compared with unoptimized and genetic algorithms, MSCSO-GTD
has the lowest carbon emission cost, and the obtained solution can also
well meet the user comfort and total cost optimization, which reflects
the huge advantages of the algorithm in maintaining the balance
between global and local search performance, and the algorithm has
fast convergence speed and accuracy.

5 Conclusion

This paper considers the multi-objective decision-making problem
of low-carbon operation of air-conditioning load. How to better achieve
the decision-making balance problem for the two goals of user comfort
and total electricity cost on the basis of being as low -carbon as possible,
using MSCSO-GTD and dynamic electric carbon The research method
of combining factors explored the dual-objective balance problem of
low-carbon cost measurement, user comfort and total electricity cost.
Finally the following conclusions were obtained:

➢ The algorithm employed in this paper belongs to heuristic
algorithms and has demonstrated excellent optimization
results in the context of weak optimization problems
presented in this paper. However, when dealing with the
output optimization of devices such as generators in a
distribution network, more complex constraints, such as
start-stop constraints and ramping constraints, need to be
considered. In such cases, the algorithm proposed in this
paper may not be as applicable.

➢ Compared to the single-objective MSCSO, the proposed dual-
objective MSCSO-GTD can overcome the limitations of
overlooking other objectives in the single-objective research
process. Most importantly, the method proposed for low-
carbon cost control exhibits significant potential;

➢ Compared with the non-optimized and GA algorithm, more
satisfactory optimization indicators were achieved in the test
for the optimized operation of four air conditioners, especially
in terms of low-carbon cost control. The respective
comparisons were close to 20% and 13% reduction; in the
total cost indicators, there are reductions of nearly 33% and
20%, respectively;

➢ Compared with the electricity price, the carbon unit price is
lower; the electricity price plays a dominant role in the
algorithmic equilibrium decision-making process in many
cases, resulting in sometimes unsatisfactory optimization
results guided by the carbon price. A higher carbon unit
price may achieve a more effective low-carbon economy,
carbon runs the guiding role. With the continuous increase
in the proportion of new energy installations and the
establishment of a more robust carbon trading market in
the electricity system, enhanced price incentives, and more
standardized carbon trading, the low points in both electricity
user net loads and dynamic carbon emission factors may
overlap in the future.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding author.

Author contributions

XS: Writing–original draft, Writing–review and editing. JL:
Writing–review and editing. YY: Writing–review and editing. JT:

Frontiers in Energy Research frontiersin.org10

Shen et al. 10.3389/fenrg.2024.1360573

148

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1360573


Writing–original draft. BQ: Writing–review and editing. XL:
Writing–review and editing. ZW: Writing–review and editing.

Funding

The authors declare that no financial support was received for
the research, authorship, and/or publication of this article.

Acknowledgments

The authors gratefully acknowledge the support of the
China Southern Power Grid Technology Project
(YNKJXM20222402).

Conflict of interest

Authors XS, JL, and YY were employed by Yunnan Power Grid
Co., Ltd. Authors JT, BQ, XL, and ZW were employed by Electric
Power Research Institute of CSG.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Alrasheedi, A. F., Alnowibe, K. A., and Alshamrani, A. M. (2024). A smart
predict-and-optimize framework for microgrid’s bidding strategy in a day-ahead
electricity market. Electr. Power Syst. Res. 228, 110016. doi:10.1016/j.epsr.2023.
110016

Bingham, R., Agelin-Chaab, M., and Rosen M, A. (2017). “Multi-objective
optimization of a residential building envelope in the Bahamas,” in 2017 IEEE
International Conference on Smart Energy Grid Engineering (SEGE), Oshawa, ON,
Canada, 14-17 August 2017, 294–301.

Ding, J. W. (2023). Design of a low carbon economy model by carbon cycle
optimization in supply chain. Front. Ecol. Evol. 11, 11. doi:10.3389/fevo.2023.
1122682

Dong, L. X., Wu, Q., Hong, J. H., Wang, Z. H., Fan, S., and He, G. Y. (2023). An
adaptive decentralized regulation strategy for the cluster with massive inverter
air conditionings. Appl. Energy 330, 120304. doi:10.1016/j.apenergy.2022.
120304

Elnour, M., Himeur, Y., Fadli, F., Mohammedsherif, H., Meskin, N., Ahmad, A. M.,
et al. (2022). Neural network-based model predictive control system for optimizing
building automation and management systems of sports facilities. Appl. Energy 318,
119153. doi:10.1016/j.apenergy.2022.119153

Fikiin, K. (2018). The future of cooling: opportunities for energy efficient air
conditioning. Paris, France: International Energy Agency (IEA). doi:10.13140/RG.2.2.
18958.43846

Hernández, F. F., José Miguel, P. S., Bandera Cantalejo, J. A., and González Muriano,
M. C. (2022). Impact of zoning heating and air conditioning control systems in users
comfort and energy efficiency in residential buildings. Energy Convers. Manag. 267,
115954. doi:10.1016/j.enconman.2022.115954

Hu, H. X., Zhang, Y. L., Yao, C., Guo, X., and Yang, Z. J. (2022). Research on cost
accounting of enterprise carbon emission (in China). Math. Biosci. Eng. 19 (11),
11675–11692. doi:10.3934/mbe.2022543

Hu, M., Xiao, F., Jørgensen, J. B., and Wang, S. W. (2019). Frequency control of air
conditioners in response to real-time dynamic electricity prices in smart grids. Appl.
Energy 242, 92–106. doi:10.1016/j.apenergy.2019.03.127

Hu, Y. S., and Yi, M. (2023). Energy consumption and carbon emissions forecasting
for industrial processes: status, challenges and perspectives. Renew. Sustain. Energy Rev.
182, 113405. doi:10.1016/j.rser.2023.113405

Huang, H., Wang, H., Hu, Y. J., Li, C., and Wang, X. (2022). Optimal plan for energy
conservation and CO2 emissions reduction of public buildings considering users’
behavior: case of China. Energy 261, 125037. doi:10.1016/j.energy.2022.125037

Jung, W., and Jazizadeh, F. (2019). Human-in-the-loop HVAC operations: a
quantitative review on occupancy, comfort, and energy-efficiency dimensions. Appl.
Energy 239, 1471–1508. doi:10.1016/j.apenergy.2019.01.070

Khan, I., Jack, M., and Stephenson, J. (2018). Analysis of greenhouse gas emissions in
electricity systems using time-varying carbon intensity. J. Clean. Prod. 184, 1091–1101.
doi:10.1016/j.jclepro.2018.02.309

Kuo, M. T., Lu, S. D., and Tsou, M. C. (2017). Considering carbon emissions in
economic dispatch planning for isolated power systems: a case study of the Taiwan
power system. IEEE Trans. Industry Appl. 54 (2), 987–997. doi:10.1109/tia.2017.
2771338

Li, Z. M., Xu, Y., Fang, S. D., Wang, Y., and Zheng, X. D. (2020). Multiobjective
coordinated energy dispatch and voyage scheduling for a multienergy ship microgrid.
IEEE Trans. Industry Appl. 56, 989–999. doi:10.1109/tia.2019.2956720

Li, Z. M., Xu, Y., Feng, X., and Wu, Q. W. (2021). Optimal stochastic
deployment of heterogeneous energy storage in a residential multienergy
microgrid with demand-side management. IEEE Trans. Industrial Inf. 17,
991–1004. doi:10.1109/tii.2020.2971227

Lin, C. J., Wang, K. J., Dagne, T. B., andWoldegiorgis, B. H. (2022). Balancing thermal
comfort and energy conservation–Amulti-objective optimizationmodel for controlling
air-condition and mechanical ventilation systems. Build. Environ. 219, 109237. doi:10.
1016/j.buildenv.2022.109237

Liu, S., Yang, Y., and Forrest, J. Y. L. (2022). “Grey models for decision-making,” in
Grey systems analysis. Series on grey system (Singapore: Springer).

Lu, J., Han, S., Ruan, S., and Wu, N. (2023). “Demand response capability analysis of
central air conditioners based on group rotation control,” in 2023 International
Conference on Smart Electrical Grid and Renewable Energy (SEGRE), Changsha,
China, 16-19 June 2023, 367–372.

Ohta, Y., and Sato, H. (2018). Evolutionary multi-objective air-conditioning schedule
optimization for office buildings. Proc. Genet. Evol. Comput. Conf. Companion GECCO
’18, 296–297. doi:10.1145/3205651.3205698

Reyseliani, N., Hidayatno, A., and Purwanto, W. W. (2022). Implication of the Paris
agreement target on Indonesia electricity sector transition to 2050 using TIMES model.
Energy Policy 169, 113184. doi:10.1016/j.enpol.2022.113184

Seyyedabbasi, A., and Kiani, F. (2023). Sand Cat swarm optimization: a nature-
inspired algorithm to solve global optimization problems. Eng. Comput. 39, 2627–2651.
doi:10.1007/s00366-022-01604-x

Shi, C. Q., Murshed, M., Alam, M. M., Ghardallou, W., Balsalobre-Lorente, D., and
Khudoykulov, K. (2023). Can minimizing risk exposures help in inhibiting carbon
footprints? The environmental repercussions of international trade and clean energy.
J. Environ. Manag. 347, 119195. doi:10.1016/j.jenvman.2023.119195

Si, F. Y., Du, E. S., Zhang, N., Wang, Y., and Han, Y. H. (2023). China’s urban energy
system transition towards carbon neutrality: challenges and experience of Beijing and
Suzhou. Renew. Sustain. Energy Rev. 183, 113468. doi:10.1016/j.rser.2023.113468

Silva, H. C. N., Hornsby, E. M., Melo, F. M., Magnani, F. S., Carvalho, M., and Ochoa,
A. A. V. (2023). Combined financial and environmental optimization of a trigeneration
system. Therm. Sci. 27, 321–334. doi:10.2298/tsci220804167s

Wang, C., Wang, B., Cui, M., and Wei, F. (2022). Cooling seasonal performance of
inverter air conditioner using model prediction control for demand response. Energy
Build. 256, 111708. doi:10.1016/j.enbuild.2021.111708

Wijaya, T. K., Sholahudin, Alhamid, M. I., Saito, K., and Nasruddin, N. (2022).
Dynamic optimization of chilled water pump operation to reduce HVAC energy
consumption. Therm. Sci. Eng. Prog. 36, 101512. doi:10.1016/j.tsep.2022.101512

Wiriyasart, S., and Kaewluan, S. (2024). Waste heat recovery of air conditioning on
thermal efficiency enhancement of water heater. Therm. Sci. Eng. Prog. 47, 102296.
doi:10.1016/j.tsep.2023.102296

WuCao, Y. Y. B., Hu, M. Z., Lv, G., Meng, J., and Zhang, H. (2023). Development of
personal comfort model and its use in the control of air conditioner. Energy Build. 285,
112900. doi:10.1016/j.enbuild.2023.112900

Xie, K., Hui, H., Ding, Y., Song, Y., Ye, C., Zheng, W., et al. (2022). Modeling and
control of central air conditionings for providing regulation services for power systems.
Appl. Energy 315, 119035. doi:10.1016/j.apenergy.2022.119035

Yang, J., Wu, J. H., Xian, T., Zhan, H. Y., and Li, X. Y. (2022b). Research on
energy-saving optimization of commercial central air-conditioning based on

Frontiers in Energy Research frontiersin.org11

Shen et al. 10.3389/fenrg.2024.1360573

149

https://doi.org/10.1016/j.epsr.2023.110016
https://doi.org/10.1016/j.epsr.2023.110016
https://doi.org/10.3389/fevo.2023.1122682
https://doi.org/10.3389/fevo.2023.1122682
https://doi.org/10.1016/j.apenergy.2022.120304
https://doi.org/10.1016/j.apenergy.2022.120304
https://doi.org/10.1016/j.apenergy.2022.119153
https://doi.org/10.13140/RG.2.2.18958.43846
https://doi.org/10.13140/RG.2.2.18958.43846
https://doi.org/10.1016/j.enconman.2022.115954
https://doi.org/10.3934/mbe.2022543
https://doi.org/10.1016/j.apenergy.2019.03.127
https://doi.org/10.1016/j.rser.2023.113405
https://doi.org/10.1016/j.energy.2022.125037
https://doi.org/10.1016/j.apenergy.2019.01.070
https://doi.org/10.1016/j.jclepro.2018.02.309
https://doi.org/10.1109/tia.2017.2771338
https://doi.org/10.1109/tia.2017.2771338
https://doi.org/10.1109/tia.2019.2956720
https://doi.org/10.1109/tii.2020.2971227
https://doi.org/10.1016/j.buildenv.2022.109237
https://doi.org/10.1016/j.buildenv.2022.109237
https://doi.org/10.1145/3205651.3205698
https://doi.org/10.1016/j.enpol.2022.113184
https://doi.org/10.1007/s00366-022-01604-x
https://doi.org/10.1016/j.jenvman.2023.119195
https://doi.org/10.1016/j.rser.2023.113468
https://doi.org/10.2298/tsci220804167s
https://doi.org/10.1016/j.enbuild.2021.111708
https://doi.org/10.1016/j.tsep.2022.101512
https://doi.org/10.1016/j.tsep.2023.102296
https://doi.org/10.1016/j.enbuild.2023.112900
https://doi.org/10.1016/j.apenergy.2022.119035
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1360573


data mining algorithm. Energy Build. 272, 112326. doi:10.1016/j.enbuild.2022.
112326

Yang, Y. S., Li, Z. M., Mandapaka, P. V., and Lo, E. Y. M. (2023). Risk-averse
restoration of coupled power and water systems with small pumped-hydro storage and
stochastic rooftop renewables. Appl. Energy 339, 120953. doi:10.1016/j.apenergy.2023.
120953

Yang, Z. X., Zhang, Y. L., Xiao, H. S., Zhuang, R., Liang, X., Cui, M., et al. (2022a).
Comprehensive test of ultra-efficient air conditioner with smart evaporative cooling
ventilation and photovoltaic. Energy Convers. Manag. 254, 115267. doi:10.1016/j.
enconman.2022.115267

Yuan, Y., Gao, L. Y., Zeng, K. J., and Chen, Y. X. (2023). Space-Level air conditioner
electricity consumption and occupant behavior analysis on a university campus. Energy
Build. 300, 113646. doi:10.1016/j.enbuild.2023.113646

Zhang, G.,Wen, J., Xie, T., Zhang, K., and Jia, R. (2023). Bi-layer economic scheduling
for integrated energy system based on source-load coordinated carbon reduction.
Energy 280, 128236. doi:10.1016/j.energy.2023.128236

Zhang, X. S., Guo, Z. X., Pan, F., Yang, Y. Y., and Li, C. S. (2023). Dynamic carbon
emission factor based interactive control of distribution network by a generalized
regression neural network assisted optimization. Energy 283, 129132. doi:10.1016/j.
energy.2023.129132

Frontiers in Energy Research frontiersin.org12

Shen et al. 10.3389/fenrg.2024.1360573

150

https://doi.org/10.1016/j.enbuild.2022.112326
https://doi.org/10.1016/j.enbuild.2022.112326
https://doi.org/10.1016/j.apenergy.2023.120953
https://doi.org/10.1016/j.apenergy.2023.120953
https://doi.org/10.1016/j.enconman.2022.115267
https://doi.org/10.1016/j.enconman.2022.115267
https://doi.org/10.1016/j.enbuild.2023.113646
https://doi.org/10.1016/j.energy.2023.128236
https://doi.org/10.1016/j.energy.2023.129132
https://doi.org/10.1016/j.energy.2023.129132
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1360573


Improved sliding mode direct
power control for low-carbon
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asymmetric offshore wind power
flexible systems
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Themodularmultilevel converter based high voltage direct current (MMC-HVDC)
is a dynamic power balancing system. The control system of MMC generally
adopts a dual closed-loop vector control strategy based on the traditional
instantaneous power model under asymmetric grid state, which has complex
control structure and low control accuracy. This paper introduces a flexible
instantaneous powermodel and establishes a general power equation with active
power and new reactive power as control objects. Based on this, an improved
sliding-mode MMC-HVDC direct power control strategy based on the new
instantaneous power model is proposed which combines the flexible
instantaneous power model and the improved sliding-mode control method
to eliminate the twice grid-frequency ripples in both active and reactive power
under asymmetric grid states. Furthermore, it omits the inner-loop controller and
power compensation terms while optimizing the control structure. Simulation
results show that the proposed method has better dynamic responsiveness,
control accuracy and robustness under operating conditions such as
asymmetric grid state and parameter perturbation which can better exploit
the advantages of the flexible instantaneous power model.

KEYWORDS

MMC-HVDC, asymmetrical grid state, sliding mode control, flexible instantaneous
power model, robust control

1 Introduction

Under the background of the “double carbon” goal, the research of new energy
development and utilization technology has ushered in a new development boom. With
the development of onshore wind power tends to be saturated, offshore wind power has
become an crucial development direction of new energy, and offshore wind power has the
advantages of stable resource conditions and high energy efficiency. With the continuous
expansion of the construction scale and capacity of offshore wind power projects, the layout
of offshore wind farms has gradually changed from near distance and small capacity to far-
reaching sea and large-scale. Flexible HVDC transmission technology, with its advantages
of flexible control, low switching loss and high modularity, has become one of the ideal
solutions for large-scale remote offshore wind farms. However, the traditional sliding mode
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control of MMC-HVDC in asymmetric offshore wind power flexible
and straight system has become a concern.

Modular multilevel converter (MMC) has become the most
promising multilevel converter topology for high-power power
electronics applications due to its high modularity, scalability,
and high quality of output waveforms compared with the
traditional two- and three-level voltage source converter (VSC).
The MMC realizes high-voltage energy conversion function by
stacking a large number of different types of submodules such as
half-bridge, full-bridge, etc., which has shown a rising trend in
domestic DC engineering applications (Yang et al., 2023b; Raju et al.,
2019; Ma et al., 2021).

MMC is an crucial part of the DC transmission system, and
the control strategy of MMC is crucial for the stable operation of
the whole system. Currently, the mainstream design scheme of
MMC-HVDC control system is the direct current control strategy
(vector control) characterized by fast current feedback, which
takes the specific form of double closed-loop series control, and
can obtain high-quality current response. The implementation of
this method in the synchronous rotating coordinate system (dq
coordinate system) has been studied (Vasiladiotis and Cherix,
2014; Nami et al., 2015; Haiyu et al., 2023). Sliding mode variable
structure control (SMC), as a classical nonlinear control method,
has the advantages of good steady-state accuracy, dynamic
performance, and interference immunity, and has been widely
used in scenarios such as PWM rectifiers, synchronous generators,
wind turbine systems, and AC/DC converters (Li et al., 2020;
Fekik et al., 2021). Literature (Li et al., 2020) investigated the
application of sliding mode variable structure control in MMC
vector control and proposed an MMC improved sliding mode
control strategy with better dynamic response capability,
interference immunity, and smaller jitter. However, the above
mentioned control strategies are discussed under symmetrical
grid condition. In engineering practice, three-phase voltages are
often asymmetrical due to grid harmonics and asymmetrical faults
(Wang, 2020; Freytes, 2021), resulting in two-fold fluctuations of
active and reactive power output from the MMC, which seriously
affects the operational performance of the MMC-HVDC (Kong
et al., 2013).

Therefore, in order to improve the transient control
performance of AC/DC converter under asymmetric grid
conditions, scholars in various countries have conducted a lot of
research on it, and the mainstream transient control strategies of
MMC are currently categorized into the dual closed-loop vector
control strategy and the direct power control strategy that takes
active power and reactive power as the control objects. The dual
closed-loop vector control strategy is divided into the PI control
strategy based on the dq coordinate system (Du et al., 2022) and the
PR control strategy based on the αβ coordinate system (Semih et al.,
2021), which can control the positive and negative sequence
currents, but the control structure is more complicated and the
control effect is affected by the performance of the phase-locked
loop. In contrast, the direct power control strategy (Shang et al.,
2011; Alessandra et al., 2023; Habib et al., 2023; Ping et al., 2023)
establishes the control model with active and reactive power, omits
the current inner loop, and simplifies the design of the control
system. Literature (Shang et al., 2011) proposes a direct power
control strategy for grid-connected inverters by combining the αβ

coordinate system, and effective suppression of active and reactive
power two-fold fluctuations can be realized by calculating the power
compensation components. Literature (Habib et al., 2023) proposes
a direct power control strategy based on resonant regulator for
PWM rectifiers, which can realize the control of active and reactive
power fluctuation components by constructing the DC voltage-
power closed loop and resonant closed loop. Literature (Ping
et al., 2023) and literature (Alessandra et al., 2023) used sliding
mode variable structure control and differential-free beat control for
direct power control of VSC and MMC, respectively, by adding a
power compensation term to guarantee that the grid-side current is
free of distortion. Literature (Mei et al., 2021a) proposed a power
sliding mode variable structure compensation strategy, which can
suppress the power fluctuation component of the two-fold
frequency without guaranteeing the distortion-free grid-side
current, but it cannot completely eliminate the power fluctuation
of the two-fold frequency.

The control strategies described in the above literature are all
based on the traditional instantaneous power definition, which is not
able to eliminate the active and reactive power two-fold fluctuations
while maintaining the grid-side current without distortion under
asymmetrical grid conditions. In order to solve this problem, a
flexible instantaneous reactive power definition is proposed in
literature (Suh and Lipo, 2006) to make it applicable to the
operation conditions of asymmetrical grids. In literature (Zhang
and Qu, 2015) and literature (Mei et al., 2021b), the flexible
instantaneous power model is applied in combination with
predictive control and reduced-order vector control, respectively,
and shows excellent control performance under asymmetrical grid
conditions.

Sliding mode control (SMC) is a special class of nonlinear
control, can control the system in accordance with the
predetermined “sliding mode” state trajectory movement, has a
fast response, does not depend on the mathematical model of the
controlled object, strong resistance to external interference, etc.
(Farzin and Mehdi, 2023), is widely used in synchronous
generators, wind turbine systems and other systems. It is widely
used in synchronous generators, wind turbine systems and other
systems. However, the jitter problem is an important issue that
cannot be avoided in the sliding mode variable structure control,
the traditional sliding mode control adopts the linear sliding mode
surface, convergence law and other methods, but the restraining
ability of the jitter is insufficient to ensure the convergence rate at
the same time (Mohapatra et al., 2023), and the fractional-order
sliding mode method, a new type of convergence law, quasi-sliding
mode method, and other strategies are respectively proposed to
inhibit the jitter phenomenon in the literature (Pratap et al., 2018;
Weijia et al., 2023; Xinxin et al., 2023), but there are still some
problems in the design of the controller, the control accuracy, etc.
The control of the sliding mode control is a very important
issue.Literature (Rui et al., 2020; Li et al., 2021; Wang et al.,
2021) proposes an adaptive (two-layer) stochastic approach, a
droop coefficients stability region analysis approach and a
reduced-order small-signal closed-loop transfer function model.
However, there are still some problems in controller design,
control accuracy, etc.

In order to further explore the application of flexible
instantaneous power model in MMC transient control and to
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reduce the jitter problem of conventional sliding mode control, this
paper proposes an improved sliding mode MMC-HVDC direct
power control strategy based on flexible instantaneous power
model, which combined with the flexible instantaneous power
model can eliminate the two-fold fluctuation of MMC output
active and reactive power under the asymmetric grid state and
keep the current of the AC side free of aberration, and at the same
time, compared with the traditional PI control strategy and the
conventional sliding mode control, it has obvious advantages in
terms of the dynamic responsiveness, robustness, and anti-jitter.

This paper firstly introduces the topology and mathematical
model of MMC; Compares and analyzes the flexible
instantaneous power model with the traditional instantaneous
power model, and derives the power control equation of MMC
based on the flexible instantaneous power model, proposes the
direct power control method of MMC based on the improved
sliding-mode control strategy, and analyzes in depth the control
performance of the improved sliding-mode control strategy, and
finally builds a simulation model and constructs an experimental
platform for the MMC hardware in the loop in PSCAD/EMTDC,
and conducts a comparative simulation and experimental
validation for the proposed control strategy under the voltage
symmetry, asymmetric conditions, and parameter perturbation
conditions.

2 MMC mathematical model

The typical three-phase topology of the MMC is shown in
Figure 1, where each phase bridge arm consists of N series-
connected sub-modules (sub-modules, SM), the bridge arm
equivalent resistor R0, and the bridge arm reactor L0, upk and
unk (k = a,b,c, hereinafter) are the sum of the sub-module

voltages of the bridge arms of each phase, and ipk and ink
denote the bridge arm currents of each phase, and each phase
voltage output from each phase bridge arm generates N+1 levels,
which are approximated as sinusoids by the nearest level
modulation strategy. On the AC side of the MMC, O and O′
denote the neutral point of the DC and AC sides, respectively
(UOO’ = 0), the three-phase equivalent resistance and inductance
are denoted as Rac and Lac, respectively, Usk is the equivalent
power supply of the AC side, and ivk is the exit three-phase
current of the MMC.

Figure 1 shows that each bridge arm of the MMC converter is
composed of N submodules with the same structure and bridge arm
reactors connected in series. Each submodule contains an IGBT
half-bridge and an energy storage capacitor C0. The control of the

FIGURE 1
MMC circuit.

FIGURE 2
The control process of SMC.
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MMC can be realized by controlling the on-off of the IGBT through
the modulation strategy and thus casting and switching
the submodule.

According to Kirchhoff’s voltage law, the mathematical model of
the AC side and DC side of the MMC can be obtained by deriving
the circuit of each bridge arm of the MMC:

L_ivk + Rivk � Udiffk − Usk (1)
L0
_ilk + R0ilk � Udc

2
− Ucomk (2)

in the formula:

Udiffk � unk − upk( )/2 Ucomk � unk + upk( )/2
L � Lac + 0.5L0 R � Rac + 0.5R0

ilk � ink + ipk( )/2
⎧⎪⎪⎨⎪⎪⎩

Udiffk is the differential mode voltage of the k-phase upper and
lower bridge arms of the MMC; Ucomk is the common-mode
voltage of the k-phase upper and lower bridge arms of the MMC;
and ilk is the internal loop current of the MMC.

The mathematical model Eq. 1 of the AC side of the MMC is
Clark transformed to transform the sinusoidal AC quantities in
the three-phase stationary coordinate system to the sinusoidal

FIGURE 3
The block diagram of the proposed control strategy.

FIGURE 4
Four-terminal MMC-based HVDC system.
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FIGURE 5
Simulation results under balanced grid condition: (A) Grid-side AC voltage (B) Valve-side AC current (C) System DC voltage (D) Active and
reactive power.
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AC quantities in the two-phase αβ stationary coordinate
system, and then the mathematical model of the MMC in
the two-phase αβ stationary coordinate system can be
expressed as follows:

L_ivα + Rivα � Udiffα − Usα (3)
L_ivβ + Rivβ � Udiffβ − Usβ (4)

where Usα and Usβ are the α and β-axis components of Usk, ivα and
ivβ are the α and β-axis components of ivk, respectively; Udiffα and
Udiffβ are the α and β-axis components of Udiffk, respectively.

3 MMC power modeling based on
flexible instantaneous power modeling

3.1 Flexible transient power modeling

The conventional instantaneous power model can be expressed
as (Lu and Ooi, 2007):

S � 1.5Uαβiαβ
* (5)

where: * denotes the conjugate, Uαβ and iαβ are the α and β axis
components of the voltage and current on the AC side of the grid,
respectively.

Under asymmetrical grid conditions, the MMC power control
strategy based on the traditional instantaneous power model cannot
simultaneously eliminate the two-fold frequency fluctuation
components of active and reactive power while ensuring that the
current on the AC side has no distortion. Meanwhile, under the
asymmetrical and non-ideal grid conditions, only the instantaneous
active power has practical physical and mathematical significance.
Therefore, in this paper, a flexible instantaneous power model is
introduced to redefine the expression of instantaneous reactive
power, which is more applicable to the non-ideal grid with
asymmetrical three-phase voltages.

The flexible instantaneous power model is mainly improved for
the expression of instantaneous reactive power, which is expressed
as the real part of the product of the voltage delay vector conjugated
to the current vector with the expression:

Snew � P + jQnew

� 1.5Re Uαβiαβ*( ) + j1.5Re Ulag
αβ iαβ

*( ) (6)

where: Ulag
αβ � Uαβ(t − T/4) � Ulag

α + jUlag
β is the voltage delay

vector, lagging the normal voltage by 90°.
When the three-phase voltages are symmetrical, the negative

sequence components do not exist, and the expressions for the two
instantaneous reactive powers are the same from Eq. 6, viz:

Q � 1.5Im Uαβiαβ
*( ) � Uβiα − Uαiβ (7)

FIGURE 6
Simulation results under unbalanced grid condition: (A)Grid-side
AC voltage (B) Valve-side AC current (C) Four-terminal system DC
voltage (D) Flexible instantaneous powermodeling operational effects
(E) Effectiveness of conventional instantaneous power
modeling runs.

TABLE 1 Parameters of MMC2.

Converter station parameters Value

System dc voltage (kV) ±200

Ac line voltage (kV) 220

Submodule capacitance (uF) 8950

Arm inductance (mH) 41.5

Number of submodules (N) 120
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Qnew � 1.5Re Ulag
αβ iαβ

*( )
� 1.5Re −jUαβiαβ*( ) � Uβiα − Uαiβ

(8)

When the three-phase voltage is asymmetrical, the
instantaneous vectors of voltage and current in the αβ coordinate
system can be expressed as:

U+
αβ � U+

α + jU+
β � U+ej ωt+θ+u( )

U−
αβ � U−

α + jU−
β � U−ej −ωt+θ−u( )

i+αβ � i+α + ji+β � I+ej ωt+θ+i( )
i−αβ � i−α + ji−β � I−ej −ωt+θ−i( )
Ulag

αβ � U+
αβ t − T/4( ) + U−

αβ t − T/4( ) � −jU+
αβ + jU−

αβ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(9)

where:U+
αβ、U−

αβ、 i+αβ、 i−αβ are the positive and negative sequence
vectors of voltage and current in the αβ coordinate system,
respectively.

Bringing Eq. 9 into Eq. 6 yields an expression for the flexible
instantaneous power model in the αβ coordinate system as:

P � 1.5 P0 + P1 + P2 + P3( )
Qnew � 1.5 Q0 + Qa + Qb + Qc( ){ (10)

in the formula:

P0 � U+
α i

+
α + U+

β i
+
β Qa � U+

β i
+
α − U+

α i
+
β

P1 � U−
α i

−
α + U−

β i
−
β Qb � U−

α i
−
β − U−

β i
−
α

P2 � U+
α i

−
α + U+

β i
−
β Qc � U+

β i
−
α − U+

α i
−
β

P3 � U−
α i

+
α + U−

β i
+
β Qd � U−

α i
+
β − U−

β i
+
α

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Combining Eq. 9 and Eq. 10 gives the expression for each power

component as:

P0 � U+I+ cos θ+u − θ+i( )
P1 � U−I− cos θ−i − θ−u( )
P2 � U+I− cos 2ωt + θ+u − θ−i( )
P3 � U−I+ cos 2ωt + θ+i − θ−u( )

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (11)

Qa � U+I+ sin θ+u − θ+i( )
Qb � U−I− sin θ−i − θ−u( )
Qc � U+I− sin 2ωt + θ+u − θ−i( )
Qd � U−I+ sin 2ωt + θ+i − θ−u( )

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (12)

From Eq. 10, it can be seen that the active power and reactive
power in the flexible instantaneous power model under
asymmetric voltage conditions produce the direct flow P1 and
Qb of the interaction of the negative sequence components
of the voltage and current, respectively, on the basis of the
positive-sequence components P0 and Qa, as well as the two-
fold fluctuations of the interaction of the positive and negative-
sequence components of the voltage and current in the two-fold
fluctuations of the components P2, P3, and Qc, Qd, which
are needed to be satisfied at this time if the two-fold
fluctuations of the control of the active power are 0, i.e., to
satisfy the P2+P3 = 0:

U+I− � U−I+

cos 2ωt + θ+u − θ−i( ) � − cos 2ωt + θ+i − θ−u( ){ (13)

to write:

U+I− � U−I+

θ+u − θ−i � θ+i − θ−u + π
{ (14)

substituting Eq. 14 into Eq. 12 shows that:

FIGURE 7
Simulation results of dynamic power responses and robustness using the PI, conventional SMC and improved SMC: (A) Active power P (B) Flexible
reactive power Q new.
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Qc � U+I− sin 2ωt + θ+u − θ−i( )
� −U−I+ sin 2ωt + θ+i − θ−u( )
� −Qd

(15)

From Eq. 15, it can be seen that under the definition of flexible
instantaneous reactive power, when the two-fold fluctuation of the
control instantaneous active power is zero, the sum of the two-fold
fluctuation of the flexible instantaneous reactive power, Qc + Qd, is also
zero, so that the direct power control strategy based on the definition of
flexible instantaneous reactive power can inhibit the two-fold fluctuation
of the active power and the reactive power under the condition of
guaranteeing that the three-phase current does not undergo aberrant,
and it is more suitable for the conditions of asymmetric three-phase
voltage of the grid compared with the traditional instantaneous
power model.

3.2 MMC flexible transient power modeling

From Eq. 6, the expressions for instantaneous active power and
flexible instantaneous reactive power are written as respectively:

P � 1.5 Usαivα + Usβivβ( )
Qnew � 1.5 Ulag

sα ivα + Ulag
sβ ivβ( )

⎧⎨⎩ (16)

From Eq. 16, the derivatives of instantaneous active power and
flexible instantaneous reactive power with respect to time t can be
written as respectively:

dP

dt
� 1.5(dUsα

dt
ivα + Usα

divα
dt

+ dUsβ

dt
ivβ + Usβ

divβ
dt

) (17)

dQnew

dt
� 1.5(dUlag

sα

dt
ivα + Ulag

sα

divα
dt

+ dUlag
sβ

dt
ivβ + Ulag

sβ

divβ
dt

) (18)

From Eq. 9:

dUlag
sα

dt
� dUlag+

sα

dt
+ dUlag−

sα

dt
� ωUsα

dUlag
sβ

dt
� dUlag+

sβ

dt
+ dUlag−

sβ

dt
� ωUsβ

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(19)

Bringing Eqs. 3, 4, 19 into Eqs. 17, 18 yields the MMC
power model based on the flexible instantaneous power
model as:

dW

dt
� XW + YU + Z (20)

among them:

FIGURE 8
The HIL experiment topology of MMC.
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FIGURE 9
Experimental results under balanced grid condition: (A)Grid-side
AC voltage (B) Valve-side AC current (C) System DC voltage (D) Active
power (E) Reactive power.

FIGURE 10
Experimental results under balanced grid condition: (A)Grid-side
AC voltage (B) Valve-side AC current (C) System DC voltage (D) Active
power (E) Reactive power.
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W � P Qnew[ ]TU � Udiffα Udiffβ[ ]TX �
−R
L

−ω

ω −R
L

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Y � 3
2L

Usα Usβ

Ulag
sα Ulag

sβ
[ ]Z � − 3

2L
Us| |2

Ulag
sα Usα + Ulag

sβ Usβ
[ ]

Where: W is the state variable, i.e., controlled quantity; U is the
control variable, i.e., output variable; X and Y are the coefficient
matrices; and Z is the perturbation variable.

4 Direct power control strategy based
on improved sliding mode control

The direct power control strategy of MMC takes active power
and reactive power as the control objects and usually adopts the PI
control method. Although the PI control can achieve a better control
effect in the steady state, the control performance is poor in the
transient conditions such as parameter perturbation because of its
more fixed control structure, so this paper proposes a kind of
improved sliding-mode control strategy and applies it to the
direct power control strategy based on the flexible instantaneous
power model of MMC.

The fundamental difference between the sliding mode variable
structure control and conventional PI control is the discontinuity of
control, that is, the control system “structure” is based on the current
state of the control system, purposeful and continuous change,
forcing the system state along the pre-designed trajectory of the
state of small amplitude, high frequency up and down movement
until it stays at the equilibrium, as shown in Figure 2, the system
state enters the sliding mode surface and moves on the sliding mode
surface is called sliding mode. The process in which the system state
enters the sliding mode surface and moves on the sliding mode
surface is called sliding mode. When the system state enters the
sliding mode, it is insensitive to external perturbations and
parameter changes, and can move on the sliding mode surface
according to the established design to accurately achieve the control
goal, so the sliding mode variable structure control has better
response speed and robustness than other conventional control
methods such as PI control strategy.

However, the traditional sliding mode control generally adopts
linear sliding mode surface and exponential convergence law
method, and there exists motion inertia near the sliding mode
surface, which easily leads to vibration jitter phenomenon of the
controlled quantity and affects the control effect. In order to further
weaken the vibration phenomenon, improve the control accuracy
and reduce the steady state error, this paper proposes an improved
sliding mode variable structure control and applies it to the direct
power control strategy based on the flexible instantaneous
power model.

4.1 Improved sliding mode control method

4.1.1 Integral sliding mold surface
The traditional linear sliding mode surface is linearized to the

error function, and the rate of change of the sliding mode function is

unconstrained, and the convergence speed is slow. Therefore, this
paper introduces the integral type sliding mode surface function,
which adds the integral term of the error function on the basis of
linear processing, reduces the switching rate of the sliding mode
surface function, improves the steady state accuracy, and effectively
weakens the phenomenon of jitter, and the integral coefficient ks
(ks>0) can regulate the change rate of the integral sliding mode
surface function. The integral sliding mode surface function is
expressed as:

s x( ) � e + ks∫t

0
edt (21)

where e is the control error.

4.1.2 Improved exponential convergence law
As a classical sliding mode control function, the exponential

convergence law can optimize the motion trajectory of the system
state when converging to the sliding mode surface and accelerate the
rate of the system state arriving at the sliding mode surface, but due
to the existence of an isovelocity term in the expression, it leads to
poor convergence characteristics of the system state near the sliding
mode surface, which triggers a certain degree of jitter phenomenon
(Abolfazl et al., 2023). Therefore, this paper optimizes the traditional
exponential convergence law and proposes an improved exponential
convergence law to make it more suitable for the direct power
control model of MMC:

_s � −ε e| |psat s( ) − ks (22)
Where p is the power of the control error; ε and k are the control
coefficients, respectively, which are generally taken as normal
numbers; sat(s) is the saturation function with the expression:

sat s( ) �
1 s>Δ
ks s| |≤Δ, k � 1/Δ
−1 s< − Δ

⎧⎪⎨⎪⎩ (23)

The control idea of the saturation function is as follows: design a
boundary layer, outside the boundary layer, use the switching
control sign(s), so that the system state quickly converges to the
sliding mode; within the boundary layer, use the feedback control, so
as to reduce the jittering phenomenon triggered by the switching
control in the vicinity of the sliding mode surface.

As shown in Eq. 22, this paper introduces the power function
of the control error into the design of the improved exponential
convergence law, so that the motion rate of the system state and
the control error produce a strong correlation, when the system
state is far away from the surface of the sliding mold, the control
error is larger, the convergence rate of the system state is
increased, and the convergence effect is significantly
strengthened; when the system state is close to the surface of
the sliding mold, the control error is small, and the convergence
rate of the system state is lowered, so that the system state
achieves a “soft landing” on the sliding mold surface. When
the system state is close to the sliding mold surface, the control
error is small, the system state convergence rate is reduced, which
reduces the motion inertia of the system state and enables the
system state to achieve a “soft landing” on the sliding mold
surface, and effectively suppresses the jitter vibration
phenomenon generated in the process of convergence of the
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sliding mold. At the same time, the traditional switching function
sgn(s) is replaced by the saturation function sat(s), which reduces
the step transformation of the lower boundary motion on the
sliding mode surface, further weakening the vibration
phenomenon. Therefore, the improved exponential
convergence law proposed in this paper effectively balances
the needs of convergence rate and jitter weakening.

4.1.3 Stability analysis
In order to ensure the stability of the proposed improved sliding

mode control strategy, this paper applies the Liapunov’s second
stability method (Yang et al., 2023a) for stability analysis, for the
improved sliding mode control method shown in Eq. 22, a Liapunov
function can be constructed as:

V � Hs2 (24)
where: H is the stabilization factor, taken as a normal number.

For the improved sliding mode control strategy proposed in this
paper, s represents the sum of the power tracking error and its
integral term, and when the derivative of the square of the power
error with respect to time is negatively definite, it represents that the
active and reactive power output from the MMC can achieve the
control objective. Taking the derivative with respect to time for Eq.
24 yields:

_V � ∂V

∂s

ds

dt
� 2H −ks2 − sε e| |psat s( )[ ] (25)

where is the first order derivative of the Lyapunov function.
Combining Eq. 24 and Eq. 25, it can be seen that, it is positive

definite, and its derivatives are negative definite in the case of s ≠ 0,
which satisfies the criterion of Liapunov’s second stability method,
and it can be proved that the proposed improved sliding mode
control method satisfies the asymptotic stabilization condition, and
can achieve the power control objective.

4.2 Design of direct power controller based
on improved sliding mode control

According to the flexible instantaneous power state Eq. 17, the
control objectives are set to be P→Pref and Q→Qref, respectively, so
that e1 = Pref -P, e2 = Qref -Q, and the switching functions are
designed as follows according to the design method of the integral
sliding mode surface, respectively:

s1 � e1 + ∫t

0
ks1 · e1dt (26)

s2 � e2 + ∫t

0
ks2 · e2dt (27)

where: ks1, ks2 are normal numbers.
The design method of the improved convergence law in

combination with Eq. 19 can be obtained:

_s1 � _e1 + ks1 · e1 � _Pref − _P + ks1 Pref − P( )
� −ε1 e1| |psat s1( ) − k1s1

(28)

_s2 � _e2 + ks2 · e2 � _Qref − _Q + ks2 Qref − Q( )
� −ε2 e2| |qsat s2( ) − k2s2

(29)

where:k1, k2, ks1, ks2, ε1, ε2, p, q are all positive constants.
Combining Eqs. 20, 27, 28 yields the expressions for the

command values Udiffdref and Udiffqref of the differential mode
voltage of the control variables in the direct power control
system as:

Uref � Y−1V − Y−1XW − Y−1Z (30)
among them:

Uref � Udiffαref Udiffβref[ ]TV � ε1 e1| |psat s1( ) + k1s1 + ks5e1
ε2 e2| |qsat s2( ) + k2s2 + ks2e2

[ ]

4.3 Overall system control strategy

Figure 3 shows the block diagram of the improved sliding mode
power control strategy for MMC-HVDC based on flexible
instantaneous power model proposed in this paper. As shown in
Figure 2, the active power and flexible reactive power deviation are
calculated in real time by the flexible instantaneous power model,
and the reference value of the control variable, i.e., the αβ-axis
component of the differential-mode voltage, Udiffαβref, is obtained by
the improved sliding-mode direct power controller, Eq. 29, and the
trigger signals of the IGBTs in the sub-modules are obtained by the
coordinate transformation and combined with the circulating
current suppression controller and the nearest-level modulation
strategy to output the constant active power and reactive power.
Constant active power and reactive power.

5 Simulation verification

5.1 Simulation model

In this paper, a four-terminal MMC-HVDC system as shown in
Figure 4 is built in the PSCAD/EMTDC platform, and the four-
terminal system adopts the master-slave control strategy (Lu and
Ooi, 2007), MMC4 controls the DC voltage of the system from the
master station, and MMC1-MMC3 are the slaves using constant
power control, where MMC2 adopts the direct power control
strategy proposed in this paper. The simulation parameters are
calculated and shown in Table 1. The positive direction of power is
defined as the flow from AC side to DC side.

In order to verify the effectiveness of the proposed improved
sliding mode direct power control strategy for MMC-HVDC based
on flexible instantaneous power model, in this paper, comparative
simulation experiments have been carried out by applying different
power definitions and different controllers in MMC2 under voltage
symmetrical, asymmetrical conditions, and parameter perturbation
conditions, respectively, as shown in Figure 5-Figure 8.

5.2 Steady state operation

In order to verify the steady state and dynamic performance of
MMC2 at different powers after applying the proposed improved
sliding mode direct power control strategy, this subsection analyzes
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the steady state control performance of MMC2 under voltage
symmetry conditions and simulates it for active step conditions.
During the simulation, the initial reference values of active and
reactive power of MMC2 are set to be −200 MW and 0 MVar,
respectively. the trend reversal is set at 1.5 s, which sets the
command value of active power of MMC2 to change linearly
from −200 MW to 200 MW. it can be seen in Figure 5 that the
improved sliding mode direct power control strategy can realize the
accurate tracking of the reference values of active and reactive
power, which verifies the performance of the proposed control
strategy under symmetrical power conditions. the effectiveness of
the proposed control strategy under symmetrical grid conditions. At
1.5 s, with the reversal of the active current, the active power output
from MMC2 has a small overshoot at the beginning of the change,
which can accurately track the change of the power reference value,
and at the same time, the current trend of the valve side of MMC2 is
smooth and always maintains the steady state operation, and the
system dc voltage gradually returns to stability after the power
fluctuation, which shows that the steady state performance based on
the improved sliding mode direct power control strategy is good.

5.3 Asymmetric voltage transient operation

Under asymmetrical grid voltage conditions, the direct power
control strategy based on the traditional instantaneous power model
has limitations in suppressing the two-fold frequency fluctuation
components of active and reactive power, therefore, in this section,
the direct power control of MMC is carried out based on the flexible
instantaneous power model to verify the validity of the flexible
instantaneous power model. Meanwhile, in this section, the PI
controller as well as the improved sliding mode controller are
used in the power control process of MMC2 to compare the
control performance of the two controllers, respectively. During
the simulation process, the initial reference power of MMC2 station
is set to −200 MW and 0 MVar, respectively. At 1.5 s, a 50% voltage
dip is set to occur in the A-phase voltage, which leads to asymmetry
of the three-phase voltages on the AC side.

Figure 6 compares the control effects based on different
instantaneous power definitions when the control objective is to
suppress the MMC2 output active power twofold oscillation under
asymmetric grid conditions. Figures 6A–D shows the operation
with the proposed strategy, and Figure 6E shows the operation
when the traditional instantaneous power definition is used. At
1.5 s, a voltage dip occurs in the A-phase voltage, and an
asymmetry occurs in the three-phase grid voltage, and although
the active power under the control based on the traditional
instantaneous power model still remains constant, there is still a
doubled-frequency oscillation with the amplitude of 80 MW in the
output reactive power, indicating that the traditional instantaneous
power model cannot eliminate the doubled frequency oscillations
in the active and reactive power under the grid voltage asymmetry
at the same time. On the contrary, the active and reactive power
output from the MMC2 under the control of the flexible
instantaneous power model can accurately track the reference
value and keep the valve-side grid current free of aberrations,
indicating that the direct power control based on the flexible
instantaneous power model can eliminate the doubled-

frequency fluctuation components in the active and reactive
power at the same time. From Figure 6C, due to the
stabilization of active power control, the A-phase voltage drop
causes only minor fluctuations in the DC voltage of the four-
terminal system, and thus the proposed improved control strategy
under asymmetrical grid voltage conditions has less impact on the
four-terminal system as a whole. In conclusion, the flexible
instantaneous reactive power is more suitable as a controlled
variable in MMC constant power control than the conventional
instantaneous reactive power.

Figure 7 compares the dynamic control responsiveness and
robustness of the PI controller, the conventional sliding mode
controller, and the improved sliding mode controller for direct
power control under grid asymmetry conditions, where the
A-phase voltage dip time is the same as in Figure 5. Under the
same system parameter conditions, the MMC2 station uses the PI
controller as well as the improved sliding mode controller,
respectively, to make a side-by-side comparison of their response
performance and robustness under voltage dips and
parameter ingress.

As can be seen from Figure 7, in the steady state operation stage, the
jitter vibration of the traditional sliding mode controller is more
obvious, 1.5 s when the A-phase voltage drop occurs instantly, the
maximum deviation of the active power controlled by the PI controller
is about 12 MW, and the overshooting amount of the active power is
close to 6%, and it is only after 0.1 s that it enters into the steady state
operation stage gradually. The maximum deviation of the active power
controlled by the improved sliding mode controller is only 1MW, the
overshooting amount is about 1%, and it reaches the steady state
operation within 0.05 s, and the vibration phenomenon is obviously
weakened, which indicates that the active and reactive power under the
improved sliding mode control strategy have a faster response speed,
and the vibration is smaller. 1.7 s, the inductance value of the bridge arm
is set from 41.5 mH to 48mH, which simulates the actual operation of
the MMC, and the inductance value of the MMC is set from 1.5 mH to
48 mH. The random parameter ingress during the actual operation of
the MMC is simulated. As shown in Figure 7, the perturbation by the
bridge arm inductance value has a greater impact on the PI controller,
and the active power instantly fluctuates to −207MW, and gradually
returns to the normal value after 0.15 s, and the steady state error
increases. The traditional sliding mode controller, although the
fluctuation by the parameter perturbation is small, but the jitter
frequency and amplitude are larger, and the maximum amplitude of
the wave is around 4MW, whereas the active power fluctuation
controlled by the improved sliding mode controller is within 2MW,
and returns to steady state error within 0.1 s. Within 0.1 s, it returns to
steady state operation, and the active and reactive power can still track
the command value accurately, which indicates that the improved
sliding mode controller can maintain good robustness under the
disturbance of the bridge arm inductance parameter change.
Therefore, it is easy to know that when the direct power controller
based on the flexible instantaneous power model adopts the improved
sliding mode control strategy, its active and reactive power dynamic
response capability is stronger and its robustness to the random
parameter uptake is better, which indicates that the improved sliding
mode control strategy can give full play to the advantages of the flexible
instantaneous power model under the conditions of an
asymmetrical grid.
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6 Experimental verification

In order to verify the effectiveness of the improved sliding
mode direct power control strategy for MMC-HVDC based on
the flexible instantaneous power model proposed in this paper, a
hardware-in-the-loop (HIL) experimental platform for modular
multilevel converter is constructed in this section as shown in
Figure 8. From Figure 8, the main circuit of the modular
multilevel converter is realized by OPAL-RTOP5600 real-time
simulation system, which operates at 105 Hz, and the controller is
operated by digital signal processor (DSP). Among them, the
OPAL-RT system and the DSP controller are connected through
the OP8665 as an adapter board and sampling board, and the
input of the DSP controller is the analog signals of the AC side
and the sub-module voltages and currents output from the
OPAL-RT system, and the output of the DSP controller is the
digital signals of IGBT triggering computed according to the
improved sliding mode direct power control strategy proposed in
this paper, which is used for controlling the IGBTs in each sub-
module of the MMC. The output of the DSP controller is the
IGBT trigger digital signal calculated according to the improved
sliding mode direct power control strategy proposed in this paper,
which is used to control the on-off of the IGBTs in each sub-
module of the MMC, thus realizing the external closed-loop
connection between the OPAL-RT system and the DSP
controller. Finally, the other components of the four-terminal
MMC-HVDC system and their related controllers are embedded
into the OPAL-RTOP5600 simulator and the DSP controller, and
the rest of the parameters are the same as those in the simulation
verification section.

Experiment 1 selects the same operating conditions as in
Figure 5, and the initial reference values of active and reactive
power of MMC2 are set to −200 MW and 0 MVar, respectively.
the trend reversal is set at 1.5 s, and the command value of active
power of MMC2 is set to change linearly from −200 MW to
200 MW. as shown in Figure 9, the active and reactive power can
accurately track the reference values in the steady-state case, and
the trend of the valve-side current and the system DC voltage is
smooth. The trend of valve side current and system DC voltage is
smooth. The above experimental results show that the improved
control strategy proposed in this paper can accurately control the
active power and flexible reactive power when the voltage is
symmetrical.

Experiment 2 selects the same operating conditions as in
Figure 6, and the initial reference power of the MMC2 station is
set to −200 MW and 0 MVar, respectively. At 1.5 s, the setup
A-phase voltage shows a 50% voltage drop, which leads to the
asymmetry of the three-phase voltages on the AC side. As shown in
Figure 10, after the AC voltage asymmetry occurs, the system DC
voltage is more stable, and both active power and flexible reactive
power can accurately track the reference value, and keep the valve-
side grid current without distortion. Through the above
experimental results, it can be seen that the improved control
strategy proposed in this paper can accurately control the active
power and reactive power when the voltage is asymmetrical.

It should be noted that the experimental part of this paper and
the simulation part of the operating conditions are exactly the same,
the controlled active power and flexible reactive power can follow

the always stable tracking of the reference value, and the simulation
results are roughly the same as the conclusions of the experimental
results, which further illustrates the validity of the method proposed
in this paper.

7 Conclude

In this paper, an improved sliding mode direct power control
strategy for MMC-HVDC based on the flexible instantaneous
power model is proposed, which derives the direct power
control model for MMC on the basis of the flexible
instantaneous power model and optimizes the control process
with the improved sliding mode control strategy. Through
theoretical analysis, model simulation, and experimental
verification, the following conclusions are drawn:

1) The flexible instantaneous power model can simultaneously
suppress the two-fold frequency fluctuation of active and
reactive power under asymmetrical grid conditions,
avoiding the power compensation term and optimizing the
power control strategy.

2) Under asymmetric grid and random parameter perturbation
conditions, the dynamic response capability and robustness of
the improved sliding mode control strategy are stronger than
that of the traditional PI control strategy, which is more
suitable for the realization of the flexible direct power
control strategy (Akagi et al., 1984).
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distribution networks with
small-micro industrial parks
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Wanhuan Wang

State Grid Pingyang Power Supply Company, Wenzhou, China

In order to improve the operating benefits of the distribution network (DN) and
reduce the energy consumption costs of small-micro industrial parks (SMIPs), a
two-layer optimal electricity trading method for DNwith SMIPs is proposed. First,
based on the Stackelberg game, a multi-objective two-layer optimal trading
model for DN and SMIP is established. In the upper layer, the DN agent is regarded
as the leader, and a trading model is established with the goal of maximizing the
profits of agents. In the lower layer, an energy optimizationmodel is proposed for
the SMIP operators, which are regarded as the followers, with the goal of
minimizing the operating costs. According to the buying and selling electricity
prices at the upper and lower layers, a dynamic pricing strategy is formulated. The
Karush–Kuhn–Tucker condition (KKT) is introduced to transform the two-layer
model into a single-layer model, and based on linear transformations, the model
is further converted into a mixed-integer linear programming model. The
transformations aim to address the non-linear issues arising from multivariable
coupling between the upper and lower-layer trading models. The simulation
results show that the trading strategy proposed in this paper can effectively
increase the profit of DNs while reducing the operating costs of SMIPs and can
provide a reference for decision-making in the electricity market (EM) with the
participation of SMIP.

KEYWORDS

electricity market, multiple stakeholders, Stackelberg game, small-micro industrial
parks, distribution network

1 Introduction

In recent years, small and micro enterprises have developed rapidly in Zhejiang
Province, China. In order to facilitate the prosperous development of such enterprises,
Zhejiang Province has standardized and renovated the existing small-micro industrial parks
(SMIPs) based on the actual operation. However, the SMIPs do not dispatch enough power
generation and energy storage (ES) devices, which results in a low capacity to withstand the
operating risks. With the rapid development of SMIPs, the demand for electricity trading
between SMIPs and distribution networks (DNs) is constantly increasing. On one hand,
trading electricity with the DNs can help the SMIPs to withstand the operating risks. On the
other hand, an optimal trading electricity strategy can help the SMIPs to save the operating
costs. Then, how to optimize the electricity trading between the DNs and SMIPs is currently
a highly important issue (He et al., 2021).
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As the electricity market (EM) continues to expanding, the
operators and agents in the DNs gradually participate in EM
competition (Jin et al., 2022), and the economic operation of the
DNs has been significantly improved (Li et al., 2023a). A market
simulator for peer-to-peer electricity trading is proposed in Kuno et al.
(2022), and a market agent is designed to perform power bidding and
contract processing. Guo et al. (2022) showed that all agents can freely
trade in an asynchronous mode without waiting for idle or inactive
neighboring agents, and the sublinear regret upper bound is proved
for the asynchronous mode, which can maximize the social welfare in
the EM. A real-time congestion management strategy is applied by
Klsch et al. (2022), and the strategy can enable grid-supportive
operation of the operators without interventions. Considering the
characteristic that natural gas can blend with hydrogen, Ding et al.
(2023) proposed a multi-agent electricity–heat–hydrogen trading
model by taking hydrogen produced on the load side. Tan et al.
(2022) treated carbon as a direct trading object and proposed an
internal multi-energy trading mechanism, which adopts an auction
based on the demands for cooling, heating, electricity, and carbon. To
further explore the multi-energy coupling capacity and carbon
reduction potential of the integrated energy systems, Yang M.
et al. (2023) proposed a cooling–heat–electricity–gas collaborative
optimization model of integrated energy systems, given the ladder
carbon trading mechanism and multi-energy demand response. Li Z.
et al. (2023) proposed a medium-term, multi-stage, distributionally
robust optimization scheduling approach for the price-taking of
hydro–wind–solar complementary systems in the EM. A multi-
agent deep reinforcement learning approach combining the multi-
agent actor-critic algorithm with the twin-delayed deep deterministic
policy gradient algorithm is proposed by Chen et al. (2022), and the
proposed approach can handle the high-dimensional continuous
action space and aligns with the nature of peer-to-peer energy
trading. Yang et al. (2022) analyzed the impact of different
bidding decisions on the distribution of wind farm revenues in a
process where the interest of twomarkets is played against each other.
Khaligh et al. (2022) introduced a stochastic agent-based model for
the coordinated scheduling of multi-vector microgrids, considering
interactions between electricity, hydrogen, and gas agents.
Considering the power loss, flexible load demand, and other
operating indicators, to maximize the user and supplier benefits,
the real-time transaction electricity price model of the user side and
the power supply side is constructed by Lyu et al. (2022). In order to
meet the challenge of global low-carbon development, a multi-
objective optimal scheduling model considering the participation
of the park-level integrated energy system in the EM is proposed
by Wang L. et al. (2022), which takes into account multiple
uncertainties on the renewable energy and load. Li et al. (2023c)
analyzed the impact of uncertainties for the multi-energy virtual
power plant on the peak-regulation market, and the operation
mechanism for the multi-energy virtual power plant in the peak-
regulation market is proposed by considering the integrated demand
response. As a user-side system, SMIPs can participate in electricity
trading under the management of SMIP operators (Davoudi and
Moeini-Aghtaie, 2022), which can develop the hierarchical structure
of the EM (Pownall et al., 2021). Meanwhile, the agents in DNs can
link the SMIP with EM (Anwar et al., 2022), which exerts a significant
influence on the energy costs of such parks (Yuan et al., 2022). As
SMIPs participate in electricity trading, how to balance the benefits

between agents and operators, achieve the expected profit of agents,
and reduce the operating costs of operators has become a key concern
in current EM.

Different stakeholders have different optimization goals in EM
trading (Xiao et al., 2021), and a coupling relationship exists among
the EM trading models (Yang et al., 2021). Finding the balanced
benefits in EM trading has become a key way to keep the stability of
the alliances (Cao et al., 2021). To find the balanced benefits in EM
trading, Stackelberg game theory has become an effective tool (Li
et al., 2022). To solve the inherent conflict among the players, a
Stackelberg game-based technique is proposed by Haghifam et al.
(2020), and the distribution system operator attempts to minimize
its operating costs as the leader, while the distributed energy
resource aggregator tends to maximize its profit as the follower.
Huang et al. (2022) proposed a Stackelberg game-based
optimization model for energy service providers and integrated
energy systems based on the collaborative optimization of
integrated energy systems and carbon transaction cost, where the
energy service provider acts as a leader while the integrated energy
systems serve as followers. A Stackelberg game model between the
load aggregator and distribution system operator was proposed by
Xu et al. (2022); the distribution system operator issues subsidies to
decrease the frequency of voltage violations, and the load aggregator
schedules the demand to maximize profits. A trading model based
on the Stackelberg game model was proposed by Wei et al. (2022) to
balance the interests of the supply side and demand side and reduce
carbon emissions. To solve the problems of environmental pollution
and conflict of interests among multiple stakeholders in the
integrated energy system, Wang R. et al. (2022) proposed a novel
collaborative optimization strategy for a low-carbon economy in the
integrated energy system based on the carbon trading mechanism
and Stackelberg game theory. Envelope et al. (2022) proposed a
Stackelberg game-based optimal scheduling model for electro-
thermal integrated energy systems, which seeks to maximize the
revenue of the integrated energy operator and minimize the cost of
users. Pu et al. (2023) constructed a two-stage supply chain
consisting of a manufacturer and a retailer based on the dual-
credit policy, considered three different power structure models,
including the vertical Nash game model, the manufacturer
Stackelberg game model, and the retailer Stackelberg game
model, and explored the operational strategy issues of new
energy vehicle enterprises under the dual-credit policy. Zhang
et al. (2022) took the integrated energy system operator as the
leader and each integrated energy system as the follower to construct
the Stackelberg operation model, and the proposed model is
constructed and solved by the double mutation differential
evolution algorithm. Hua et al. (2023) proposed a framework of
local energy markets to manage this transactive energy and facilitate
the flexibility provision; the decision-making and interactions
between a DN operator and multiple microgrid traders are
formulated as the Stackelberg game-theoretic problem. Fattaheian
et al. (2022) applied the Stackelberg game to model incentivizing
resource scheduling optimization in post-contingency conditions,
and a strong duality condition is used to re-cast the preliminary bi-
level model into a one-level mathematical problem. The pricing
strategies in existing research studies mainly belong to fixed pricing
mechanisms (Du et al., 2022). In the future, as more SMIPs
participate in EM trading, the fixed pricing mechanisms will not
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be satisfied to the flexible EM model. In this context, studying the
dynamic pricing strategies for DN trading with SMIPs to enhance
the economic operation of DNs is highly necessary.

As described previously, a two-layer optimal electricity trading
method for DNs with SMIPs is proposed based on the Stackelberg
game. The main contributions of this paper are summarized
as follows.

(1) A two-layer optimization trading model is established for
DNs and SMIPs, and the competitive game relationship
between different stakeholders in the trading process is
characterized by the Stackelberg game. The paper shows
that through the proposed scheme, the profit of DNs
increases by 14.8% in a typical day, and the operating costs
of SMIPs decreased by 2.5% and 3.8%, respectively.

(2) The Karush–Kuhn–Tucker (KKT) condition and linear
relaxation technique are utilized to transform the proposed
non-linear model into a mixed-integer linear programming
model. This method solves the coupling–nesting problem of
interactive power and electricity price in the proposed model
without any approximation.

(3) To address the disadvantage of fixed pricing mechanisms, a
dynamic pricing strategy is formulated in this paper. The DN
agent sets the dynamic prices to lead the trading behavior of
SMIP operators, and the SMIP operators choose the trading
time to follow the guidance of the DN agent without passive
price reception. Then, the overall profits of both the DN agent
and SMIP operators are greatly improved.

The remainder of this paper is organized as follows. A two-layer
game optimization trading framework for multi-stakeholders is
proposed in Section 2. In addition, a two-layer game
optimization trading model based on the Stackelberg game is
proposed in Section 3. In Section 4, the solution process of the
proposed model is introduced. In Section 5, the case study is
analyzed. The discussion and conclusion are described in Section 6.

2 Two-layer optimization
trading framework

In order to improve the operating benefits of DN and reduce the
energy costs of SMIPs, a two-layer optimization trading framework
for multi-stakeholders is established, as shown in Figure 1.

In the trading framework, the stakeholders include the EM, DN
agent, and SMIP operators. The trading framework is divided into
two layers, with EM and DN agent located in the upper layer and
SMIP operators located in the lower layer. The stakeholders in the
upper and lower layers have different benefits goals, and they
mutually influence each other. In the upper layer, the DN agent
makes decisions on the volume of purchased electricity or sold
electricity based on the needs of EM and SMIPs. If EM supply cannot
meet the demand, electricity trading occurs between two adjacent
DN agents. Additionally, the DN agent will use dynamic trading
prices to encourage the trading of lower-layer SMIP operators. In the
lower layer, SMIP operators will dynamically adjust the outputs of
internal generation units based on the trading prices set by DN
agents, as well as the electricity demand on the user side.

Simultaneously, SMIP operators provide real-time feedback to the
upper layer DN agents regarding the electricity usage strategies. DN
agents, based on the energy consumption situation, dynamically
adjust the trading prices. Through the iterative process between the
upper and lower layers, a balance point that aligns with the interests
of both stakeholders is ultimately determined.

3 Two-layer optimization trading
model based on the Stackelberg game

3.1 Upper-layer optimization model for the
DN agent

In two-layer game optimization trading, the DN agent is
regarded as the leader of the Stackelberg game (Liu et al., 2023),
and an optimization model with the goal of maximizing profits is
established for the DN agent.

max ∑
t

csellt Psell
t Δt −∑

t

cbuyt Pbuy
t Δt+⎡⎣

∑
t

π−
t R

−
t Δt −∑

t

π+
t R

+
t Δt −∑

t

πtRtΔt⎛⎝ ⎞⎠ −∑
t

ctrat Psop
t Δt⎤⎥⎥⎦.

(1)
The optimization model for DNs mainly imposes constraints on

power balance, ES operation, trading of the DN agent, and pricing.
The constraints are as follows:

(1) Power balance constraints

Pbuy
t − Psell

t + Rt + R+
t − R−

t + Psop
t − Et + et � 0. (2)

(2) ES operation constraints

PESS,min ≤Et ≤PESS,max

PESS,min ≤ et ≤PESS,max{ , (3)

SESSt � SESSt−1 + ηEEt, (4)
SESSt � SESSt−1 −

et
ηe
. (5)

Considering the service life of the ESs, the constraints on the
number of ES charging and discharging cycles are shown in Eqs (6)
and (7):

FIGURE 1
Two-layer trading model framework.

Frontiers in Energy Research frontiersin.org03

Chen et al. 10.3389/fenrg.2024.1348823

167

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1348823


0≤wE
t + we

t ≤ 1, (6)

∑24
t�1

wE
t − wwE

t−1
∣∣∣∣ ∣∣∣∣≤ ξ. (7)

(3) Trading constraints of DN agents

The day-ahead market contract electricity quantity and real-
time EM trading must meet the constraints of upper and lower limits
of trading power, as shown below:

0≤Rt ≤Rt
max, (8)

0≤R+
t ≤ κ+t R

max

0≤R−
t ≤ κ−t R

max{ , (9)

0≤ κ+t + κ−t ≤ 1. (10)

(4) Pricing constraints

The DN agent formulates dynamic electricity prices to lead
trading among SMIP operators. Therefore, it is necessary to impose
constraints on pricing as follows:

cbuy,min ≤ cbuyt ≤ cbuy,max,
csell,min ≤ csellt ≤ csell,max.

{ (11)

To encourage the active participation of SMIP operators in
energy trading, the real-time electricity trading price of the DN agent
needs to be constrained by the average value of the electricity price as

∑T
t�1

csellt

T
≤ cav , (12)

∑K
t�1

cbuyt

K
≥ cav. (13)

3.2 Lower-layer optimization model for
SMIP operators

In the lower-layer model, SMIP operators provide real-time
feedback to the upper-layer agents based on the electricity trading

prices provided by DNs and the real-time energy demands of the
users (Lei et al., 2023). The optimization objective is to minimize the
operating costs as follows:

min ∑
t

csellt Psell
t Δt −∑

t

cbuyt Pbuy
t Δt +∑

t

∑
m

cDEGPDEG
m,t Δt⎡⎣ ⎤⎦. (14)

The optimization model for the lower-layer SMIP operators
mainly imposes constraints on power balance, DEG operation,
SMIP operator trading, and opportunity constraints. Each
constraint is as follows:

(1) Power balance constraints in the SMIP area:

∑
m

PDEG
m,t + PPV

t + PWT
t + Psell

t � Pload
t + Pbuy

t . (15)

(2) DEG operation constraints

PDEG,min
m ≤PDEG

m,t ≤PDEG,max
m . (16)

(3) SMIP operator trading constraints

Psell,min
t ≤Psell

t ≤Psell,max
t , (17)

Pbuy,min
t ≤Pbuy

t ≤Pbuy,max
t . (18)

(4) Opportunity constraints

The prediction of the load, WTs, and PVs is susceptible to
uncontrollable factors such as weather, resulting in forecasting errors.
The level of error is approximately represented by a normal distribution
(Li et al., 2023d). In order to deal with the prediction errors caused by
such uncertainties, the system should have a backup capacity in
operation, which is described in probability with a given confidence level:

P ∑
m

PDEG
m,t + RDEG

m,t[ ] + PPV
t + δPVt[ ] + PWT

t + δWT
t[ ]⎧⎨⎩

+ Psell
t ≥Pload

t + δloadt + Pbuy
t

⎫⎬⎭ ≥ α, (19)

where P{} represents the probability at a given confidence level.
The proposed model cannot be solved because of the presence of

FIGURE 2
Solving process of the model.

Frontiers in Energy Research frontiersin.org04

Chen et al. 10.3389/fenrg.2024.1348823

168

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1348823


random variables; then, the opportunity constraint is converted into
a deterministic equivalent constraint as

∑
m

PDEG
m,t + RDEG

m,t[ ] + PPV
t + PWT

t + Psell
t ≥ Pload

t + Pbuy
t

+ F−1 α( )
���������������������
σPV( )2 + σWT( )2 + σ load( )2

√
, (20)

where F−1(α) represents the quantile point α under the standard
normal distribution function.

4 Solution process of the
proposed model

In the constructed two-layer optimization model, the upper and
lower optimization models are coupled through the electricity
trading price. The upper-layer DN agent, acting as the leader in
the Stackelberg game, optimizes the electricity trading with EM and
SMIP operators based on their own internal demand. The lower-
layer SMIP operators, as followers in the Stackelberg game, optimize
their internal energy consumption based on the electricity trading
price provided by the DN agent.

Due to coupling in the two-layer model in this paper, the KKT
condition transformation (Yang X. et al., 2023) is employed to
convert the original coupled two-layer optimization model into a
single-layer linear programming model. The specific process is
as follows:

csellt Δt − λ2,min
t + λ2,max

t − λ4t � 0, (21)
−cbuyt Δt − λ3,min

t + λ3,max
t + λ4t � 0, (22)

cDEG − ρm,t
min + ρm,t

max − λ4t � 0. (23)

The dual variables above need to satisfy the following
conditions:

ρm,t
min ⊥ PDEG

m,t − PDEG,min
m( ), (24)

ρm,t
max ⊥ PDEG,max

m − PDEG
m,t( ), (25)

λ2,min
t ⊥ Psell

t − Psell,min
t( ), (26)

λ2,max
t ⊥ Psell,max

t − Psell
t( ), (27)

λ3,min
t ⊥ Pbuy

t − Pbuy,min
t( ), (28)

λ3,max
t ⊥ Pbuy,max

t − Pbuy
t( ), (29)

λ4t ⊥ Pload
t + Pbuy

t + F−1 α( )
���������������������
σPV( )2 + σWT( )2 + σ load( )2

√
(
−∑

m

PDEG
m,t + RDEG

m,t[ ] − PPV
t − PWT

t − Psell
t
⎞⎠. (30)

In the above equations, x⊥y represents that x and y have at most
one non-zero value. To linearize the model, this paper relaxes the
above equations by introducing Boolean variables:

0≤ ρm,t
min ≤Mθm,t

min, (31)
0≤PDEG

m,t − PDEG,min
m ≤M 1 − θm,t

min( ), (32)
0≤PDEG,max

m − PDEG
m,t ≤M 1 − θm,t

max( ), (33)
0≤ ρm,t

max ≤Mθm,t
max, (34)

0≤ λ2,min
t ≤Mθ2,min

t , (35)

0≤Psell
t − Psell,min

t ≤M 1 − θ2,min
t( ), (36)

0≤ λ2,max
t ≤Mθ2,max

t , (37)
0≤Psell,max

t − Psell
t ≤M 1 − θ2,max

t( ), (38)
0≤ λ3,min

t ≤Mθ3,min
t , (39)

0≤Pbuy
t − Pbuy,min

t ≤M 1 − θ3,min
t( ), (40)

0≤ λ3,max
t ≤Mθ3,max

t , (41)
0≤Pbuy,max

t − Pbuy
t ≤M 1 − θ3,max

t( ), (42)
0≤ λ4t ≤Mθ4t , (43)

0≤ Pload
t + Pbuy

t + F−1 α( )
���������������������
σPV( )2 + σWT( )2 + σ load( )2

√
(

−∑
m

PDEG
m,t + RDEG

m,t[ ] − PPV
t − PWT

t − Psell
t

⎞⎠≤M 1 − θ4t( ). (44)

In the above equations, θm,t
min, θm,t

max, θ2,tmin, θ2,tmax, θ3,tmin, θ3,tmax, and θ4,t
are the Boolean variables. M is the maximum value. After the
transformation, the objective function still contains two non-linear
terms: ∑

t

csellt Psell
t Δt and ∑

t

cbuyt Pbuy
t Δt. To facilitate the solution, the

strong duality principle (Ouyang et al., 2023) is employed to process the
objective function, resulting in the transformation of the objective
function into a linear programming model.

max ∑
t

csellt Psell
t Δt −∑

t

cbuyt Pbuy
t Δt + ∑

t

π−
t R

−
t Δt −∑

t

π+
t R

+
t Δt −∑

t

πtRtΔt⎛⎝ ⎞⎠ −∑
t

ctrat Psop
t Δt⎡⎢⎢⎣ ⎤⎥⎥⎦

0max

∑
t

∑
m

ρmin
m,t P

DEG,min
m − ρmax

m,t P
DEG,max
m( ) +∑

t

λ2,min
t Psell,min

t − λ2,max
t Psell,max

t( ) +∑
t

λ3,min
t Pbuy,min

t − λ3,max
t Pbuy,max

t( )
+∑

t

λ4t F−1 α( )
����������������������
σPV( )2 + σWT( )2 + σ load( )2

√
+ Pload

t − PPV
t − PWT

t − RDEG
m,t( ) −∑

t

∑
m

cDEGPDEG
m,t Δt

+ ∑
t

π−
t R

−
t Δt −∑

t

π+
t R

+
t Δt −∑

t

πtRtΔt⎛⎝ ⎞⎠ −∑
t

ctrat Psop
t Δt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(45)

By employing the above method, the non-linear dual-layer game
model can be transformed into a mixed-integer linear single-layer
optimization model. The optimal solution can be obtained using the
commercial solver CPLEX (Zhao et al., 2022). The overall solving
process of the model established in this paper is illustrated as follows
and is shown in Figure 2:

Step 1: The outputs of WTs, PVs, and user load demand are
forecasted within the SMIP.

Step 2: The data obtained from the previous step are utilized to
generate EM trading scenarios, including the electricity generation
volume and trading prices in EM.

Step 3: A two-layer optimization trading model is established, with
the upper-layer DN agent as the price leaders and the lower-layer
SMIP operators as the price followers, thus forming the Stackelberg
game optimization model.

Step 4:KKTconditions are applied to transform the dual-layer problem
into a single-layer problem. Dual theory, linear relaxation, and other
methods are combined to convert the optimization model into a more
easily solvable mixed-integer linear programmingmodel. In this step, the
specific electricity trading volume of each stakeholder can be calculated
through the nested solution of electricity price and trading volume.

Step 5: Through the real-time dynamic optimization processes, the
optimal electricity price and trading volume are obtained, and an
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optimal solution for all stakeholders in the Stackelberg game
is achieved.

5 Case study

5.1 Case study system

In order to verify the effectiveness of the proposed method, an
actual DN with SMIPs in Zhejiang Province, China, is utilized to
analyze. The topology of this system is illustrated in Figure 3. Within
this system, DNs and SMIPs are connected through the public
connection point (PCC). The DNs are connected through intelligent
software switches. In this topology, DN agents, SMIP operators, and
the EM conduct mutual trading to meet their respective demands.

In the optimization of trading strategies in this paper, the upper-
layer DN maximizes their profits primarily by adjusting the ESs.
Meanwhile, the two lower-layer SMIP operators minimize their
operational costs by adjusting various distributed resources such as
PVs, WTs, DEGs, and loads. The installed capacity of the distributed
resources is shown in Table 1. The predicted data for the output of
photovoltaics and wind power in SMIPs are shown in Figure 4.

The day-ahead contract electricity price of the DN agent is
shown in Table 2, which is denoted as πt. Due to the flexibility in
actual trading, the real electricity trading price is generally higher
than the day-ahead contract electricity price. Therefore, in this
paper, the real-time buying and selling prices, π+ t and π-t,
respectively, are set at 1.2 πt. The trading price between DN
agents is set at 0.9 πt.

As shown in Table 2, the day-ahead contract electricity price of
the DN agent exhibits continuous fluctuations throughout the day.
The price steadily increases from 2:00, experiences a slight decrease
around noon at 12:00, and reaches its peak in the afternoon at 16:00.
Then, the price gradually decreases to reach the lowest point. This
pattern of price variation indicates that in EM, the electricity price
during different time periods may be influenced by supply and
demand dynamics, peak loads, and other factors. The fluctuations in
prices can have a significant impact on EM stakeholders when
formulating trading strategies. Based on these fluctuations, the
leader–follower model needs to undergo a corresponding
electricity trading strategy design to maximize the interests of the
stakeholders involved.

5.2 Analysis of the pricing strategy and
energy usage optimization

For the study of pricing strategies of the DN agent and energy
optimization for SMIP operators, considering the variations in
electricity consumption across regions, the DN agent provides
pricing methods that align with the differences in electricity
consumption. The pricing strategy of the DN agent for SMIP
operators is illustrated in Figure 5.

As shown in Figure 5, due to the constraints imposed by the
average price, the interests of SMIP operators are protected. Under
this premise, the DN agent formulates trading prices tailored to the
electricity demand of different SMIP operators to maximize their
own benefits, thus achieving a win–win situation.

The internal energy optimization for SMIP operators 1 and
2 is shown in Figure 6 and Figure 7, respectively. Figure 6 and
Figure 7 show that the lower-layer SMIP operators provide
feedback to dynamic trading prices after optimizing the output
of internal generation units. For SMIP operator 1, where the user
exhibits significant fluctuations, the DN agent sets the dynamic
electricity price close to the price floor during periods of
relatively low electricity consumption, such as the time period
from 1:00 to 6:00. During the time period from 7:00 to 9:00, when
the energy demand within SMIP operators begins to increase but
the outputs of WTs and PVs are relatively low, the DN agent
increases the trading price to maximize profits while still meeting
the average price constraint. During the time period from 10:
00 to 18:00, when the energy consumption in SMIP operator 1 is
relatively stable and the outputs of WTs and PVs are high, SMIPs
do not need the electricity urgently, so the trading price is close to
the price floor. During the time period from 19:00 to 24:00, as the
outputs of WTs and PVs cannot meet the required energy
demand and the user-side electricity demand is high, the DN
agent sets the trading price to the price ceiling to maximize its
own profits.

For SMIP operator 2, which is characterized by stable load
fluctuations, the pricing strategy of the DN agent is less influenced
by the load. In this situation, the pricing strategy is determined more
by the outputs of WTs and PVs. During the periods that the outputs
of WTs and PVs are high, such as the time period from 10:00 to 18:
00, the demand for electricity purchase in the SMIP has decreased,
and then, the trading price is set close to the price floor. Conversely,
during the time periods from 1:00 to 9:00 and 17:00 to 20:00, the

FIGURE 3
Physical topology of the system.

TABLE 1 Installed capacity of the distributed resources.

Distributed resource SMIP
operator 1

SMIP
operator 2

DEG 1.2 MW 1.2 MW

PV 150 kW 350 kW

WT 250 kW 530 kW

Frontiers in Energy Research frontiersin.org06

Chen et al. 10.3389/fenrg.2024.1348823

170

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1348823


outputs ofWTs and PVs are low, the demand for electricity purchase
in the SMIP has increased, and then the trading price is set close to
the price ceiling. Figure 8 shows the optimal trading strategy
between the DN agent and SMIP operators. The agents
determine the day-ahead contract electricity volume based on the
day-ahead data. During the time periods between 1:00–8:00 and 21:
00–24:00, due to the lower day-ahead contract electricity prices, the
DN agent increases the day-ahead contract electricity volume for
trading with EM based on the past experiences. Meanwhile, as
shown in Figure 9, a portion of the purchased electricity is
charged and stored in the ES, and the stored energy is discharged

during time periods with relatively higher electricity prices, allowing
for maximum profit. Additionally, to ensure their own benefits,
SMIP operators increase their electricity purchases from the upper
layer during these time periods. During periods with higher day-
ahead electricity prices, such as from 9:00 to 16:00, the DN agent
reduces the day-ahead contract electricity volume and release stored
energy. The electricity is sold to the adjacent DN agent as a means of
balancing electricity prices. Meanwhile, SMIP operators increase the
generation output of internal distributed power sources and sell
electricity to the upper-layer DN agent. Through this strategy, the
DN agent and SMIP operators achieve a balance of benefits.

FIGURE 4
Forecasted power of WTs and PVs.

TABLE 2 Day-ahead contract electricity price.

Time Price/¥ Time Price/¥ Time Price/¥ Time Price/¥

0:00–1:00 0.32 6:00–7:00 0.44 12:00–13:00 0.8 18:00–19:00 0.63

1:00–2:00 0.31 7:00–8:00 0.46 13:00–14:00 0.74 19:00–20:00 0.52

2:00–3:00 0.29 8:00–9:00 0.53 14:00–15:00 0.81 20:00–21:00 0.5

3:00–4:00 0.34 9:00–10:00 0.59 15:00–16:00 0.83 21:00–22:00 0.46

4:00–5:00 0.37 10:00–11:00 0.68 16:00–17:00 0.81 22:00–23:00 0.42

5:00–6:00 0.41 11:00–12:00 0.76 17:00–18:00 0.74 23:00–24:00 0.37

FIGURE 5
Pricing strategies of the DN agent.
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The optimization results based on the dynamic pricing strategy
under the Stackelberg game are compared with the conventional
fixed-value time-of-use pricing, as shown in Table 3. Under the
former strategy, the profit of DN has increased, and the operating
costs of SMIP operators have decreased. The reason is that the
dynamic pricing strategy under the Stackelberg game can formulate

electricity prices according to the varying electricity demands of
different SMIP operators. The role of lower-layer SMIP operators
has undergone a significant transformation as they are no longer
passive recipients of electricity prices. DN can influence dynamic
trading prices indirectly by autonomously planning energy
demands. By formulating dynamic electricity prices, the initiative

FIGURE 6
Internal energy optimization of SMIP operator 1.

FIGURE 7
Internal energy optimization of SMIP operator 2.

FIGURE 8
Optimal trading between the DN agent and SMIP operators.
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of lower-layer SMIP operators is enhanced, allowing them to actively
participate in the optimization scheduling of the EM.
Simultaneously, this also improves the overall economic
efficiency of DN optimization to a certain extent.

The profits of the upper-layer DN agent in a typical day increased
from the original price of 5724.6 ¥ to 6572.7 ¥, showing an overall
increase of 14.8%. The operating costs of lower-layer SMIP operators
decreased from 17936.55 ¥ and 26661.23 ¥ to 17486.31 ¥ and
25631.24 ¥, resulting in an overall reduction of 2.5% and 3.8%,
respectively. The dynamic pricing can improve the benefits of
different stakeholders. As indicated in Table 1, under the Stackelberg
game-based dynamic pricing strategy, the benefits of the DN agent and
SMIP operators are effectively balanced. On one hand, the DN agent
can dynamically adjust the trading electricity price based on the
electricity demand of SMIP operators, as well as the output of WTs
and PVs, thereby increasing their own profits. On the other hand, SMIP
operators optimize the outputs of internal power generation, as well as
purchasing strategies through responding to the dynamic trading prices,
thereby reducing operating costs. This indicates that under the
Stackelberg game-based dynamic pricing strategy, the DN agent and
SMIP operators have achievedmaximumbenefits, fulfilling the goal of a
win–win situation. The dynamic pricing strategy allows for timely
adjustments based on electricity buying and selling conditions in the
market, enabling the market to respond more rapidly and flexibly.
Moreover, the prices can be adjusted according to different market
conditions, thereby enabling the stakeholders to pinpoint their market
positions and adapt more effectively to market changes. Furthermore,
the prices can also be adjusted based on market demand, supply
conditions, and the strategies of competitors. This can enable the
business to maximize profits, meet market demands, and gain a
greater competitive advantage.

6 Discussion and conclusion

With the rapid development of SMIP, the demand for electricity
trading between SMIPs and DNs is constantly increasing. An
optimal trading electricity strategy with the DN can help the
SMIPs to withstand the operating risks, as well as help the
SMIPs to save the operating costs. For the electricity trading
between the DNs and SMIPs, the existing methods have the
following issues that need to be addressed:

• The electricity trading mode between the DN and SMIP is
unclear. How to characterize the competitive game
relationship between the DN and SMIP in the trading
process needs to be solved.

• In existing electricity trading methods, due to different
optimization objectives of different stakeholders, there are
multivariable nested problems such as the trading price and
trading quantity, which are often difficult to solve.

• The pricing strategies in existing research studies mainly
belong to fixed pricing mechanisms. As the SMIPs continue
to develop, a fixed pricing mechanism will not be able to adapt
to the flexible trend of the EM. Proposing a dynamic pricing
strategy to further improve the profits of stakeholders
is necessary.

To address the above issues, a Stackelberg game-based optimal
electricity trading method for DNs with SMIPs is proposed. Our
conclusions are as follows:

• The proposed two-layer optimization trading model can
characterize the competitive game relationship between the

FIGURE 9
Operation of the ES.

TABLE 3 Comparison of pricing strategies.

Stackelberg game pricing strategy Conventional pricing strategy Optimization result (%)

Profits of the DN agent/¥ 6572.7 5724.6 ↑14.8

Operating costs of SMIP operator 1/¥ 17486.31 17936.55 ↓2.5

Operating costs of SMIP operator 2/¥ 25631.24 26661.23 ↓3.8
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DNs and SMIPs. Furthermore, under the proposed scheme,
the profit of DNs increases by 14.8% in a typical day, and the
operating costs of SMIPs decreased by 2.5% and 3.8%,
respectively.

• The proposed solution method transforms the proposed non-
linear model into a mixed-integer linear programming model,
which solves the coupling–nesting problem of interactive
power and electricity price in the proposed model without
any approximation.

• A dynamic pricing strategy is formulated to address the
disadvantage of fixed pricing mechanisms. Under the
dynamic pricing strategy, the DN agent sets the dynamic
prices to lead the trading behavior of SMIP operators, and
the SMIP operators choose the trading time to follow the
guidance of the DN agent without the passive price reception.

The trading strategy proposed in this paper can effectively
increase the profits of the DN agent while reducing the operating
costs of SMIP operators. In future research, a two-layer robust
optimization trading method for the DN agent and SMIP operators
will be developed with the consideration of the uncertainty of PVs
and WTs to make the methods more comprehensive.
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Glossary

DN distribution network

SMIP small-micro industrial park

KKT Karush–Kuhn–Tucker condition

EM electricity market

Formulas

csell t electricity selling price of DN agents at time t

cbuy t electricity selling price of SMIP operators at time t

Δt optimization time period

ctra t trading price among DN agents at time t

Psop t traded electricity of the adjacent DN agent at time t

Psell t electricity sold by DN agents to SMIP operators at time t

Pbuy t electricity bought by DN agents from SMIP operators at time t

π+ t buying prices of electricity for DN agents from EM at time t

π-t selling prices of electricity for DN agents from EM at time t

πt day-ahead contract price of electricity

R+ t electricity bought by DN agents from EM at time t

R- t electricity sold by DN agents from EM at time t

Rt day-ahead contract electricity

Et ES charging power at time t

et ES discharging power at time t

PESS,max upper limits of ES charging and discharging power

PESS,min lower limits of ES charging and discharging power

SESS t ES capacity value at time t

ηE ES charging efficiency

ηe ES discharging efficiency

wE t ES charging state at time t

we t ES discharging state at time t

ξ number of transitions between ES charging and discharging states

Rmax maximum value of electricity quantity in the market contract trading

κ+ t buying status between DN agents and EM at time t

κ- t selling status between DN agents and EM at time t

cbuy,max upper limits of the electricity buying price setting by the DN agent

cbuy,min lower limits of the electricity buying price setting by the DN agent

csell,max upper limits of the electricity selling price setting by the DN agent

csell,min lower limits of the electricity selling price setting by the DN agent

ES energy storage

DEG diesel generator

PV photovoltaic power

WT wind power

cav average electricity price for DN agents

T time period of electricity sold by the DN agent

K time period of electricity bought by the DN agent

cDEG cost coefficient for DEG

PDEG m,t outputs of the mth DEG at time t

PPV t outputs of PV at time t in the SMIP

PWT t outputs of WT at time t in the SMIP

Pload t load demand at time t in the SMIP

PDEG,
max m

maximum outputs of mth DEG

PDEG,
min m

minimum outputs of mth DEG

Psell, max t upper limit of electricity power sold by SMIP operators at time t

Psell, min t lower limit of electricity power sold by SMIP operators at time t

Pbuy, max t upper limit of electricity power bought by SMIP operators at time t

Pbuy, min t lower limit of the electricity power bought by SMIP operators at
time t

RDEG m,t rotational backup capacity provided by the mth DEG in the SMIP at
time t

δPV t mean values of normal distribution for PV forecasting errors

δWT t mean values of normal distribution for WT forecasting errors

δload t mean values of normal distribution for load forecasting errors

α confidence level

σPV standard deviations of normal distribution for the PV forecasting
errors

σWT standard deviations of normal distribution for the WT forecasting
errors of WTs

σload standard deviations of normal distribution for the load forecasting
errors

ρmax m,t dual variables for the upper limits of the mth DEG outputs at time t

ρmin m,t dual variables for the lower limits of the mth DEG outputs at time t

λ2, min t dual variables for the lower limits of the electricity sold by the DN
agent at time t

λ2, max t dual variables for the upper limits of the electricity sold by the DN
agent at time t

λ3min t dual variables for the lower limits of the bought electricity quantity by
the DN agent at time t

λ3, max t dual variables for the upper limits of the bought electricity quantity
by the DN agent at time t

λ4 t dual variable for the opportunity constraint at time t
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Sustainable development in the 21st century faces significant challenges due to
finite reserves of fossil fuels and environmental pollution. In the context of new
energy electric vehicles (NEEVs), the wide-bandgap semiconductor known as the
silicon carbide–metal oxide–semiconductor field-effect transistor (SiC MOSFET)
and the permanent magnet synchronous motor (PMSM) have emerged as
advantageous sources. However, the use of these components gives rise to
electromagnetic interference (EMI) issues, which impede the achievement of
electromagnetic compatibility (EMC) standards in the motor drive control
system. This paper aims to elucidate the generation mechanism, propagation
path, and test infrastructure of EMI. Furthermore, it proposes a system-level
conducted EMI equivalent circuit model for the motor drive control system,
encompassing the power battery pack, busbar cable, LISN, three-phase
inverter, and PMSM. Building upon this foundation, the principles for
suppressing and optimizing EMI noise are discussed. The paper concludes with
the validation of simulations and experimental results, which demonstrate the
effectiveness of the proposed approach. It is anticipated that professionals with an
interest in the field of EMI/EMC will find this paper to be of both theoretical and
practical importance.

KEYWORDS

EMI, new energy electric vehicles, SiC MOSFET, PMSM, motor drive control system,
conducted emissions, suppression measures

1 Introduction

Against the background of the traditional fossil energy shortage crisis and sustainable
green development path (Ranjan Kumar and Kumar, 2020; Kalair et al., 2021; Li et al., 2022),
it is encouraging that new energy electric vehicles (NEEVs) have been rapidly popularized
worldwide due to their inherent advantages of zero harmful gas emissions, low energy
consumption and non-pollution, high efficiency, and the use of more environmentally
friendly electric energy as power sources (Buenger and Michalski, 2018; Mihet-Popa and
Saponara, 2018; Hossain et al., 2022a; Cheok et al., 2022). Compared with the conventional
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internal combustion engine (ICE), NEEVs have more electronic and
electrical equipment, including a power battery pack, inverters,
traction electromotors, controllers, and a busbar cable, as shown
in Figure 1 (Kene et al., 2021; Hossain et al., 2022b).

Obviously, the battery management systems (BMSs)
communicate with the vehicle control unit (VCU) to adjust the
high direct voltage and current from the power battery pack. The
VCU establishes a bidirectional data interchange channel through
the controller area network (CAN) bus (Tran et al., 2020; Zhao et al.,
2022), and then the electronic control unit (ECU) sends a pulse-
width modulation (PWM) signal to drive the power switches, the
silicon carbide–metal oxide–semiconductor field-effect transistor
(SiC MOSFET) in the inverter, to turn on and off, thereby
achieving permanent magnet synchronous motor (PMSM) speed
control (Yang et al., 2020; Liu et al., 2021; Barroso et al., 2022).

In actual operation, these high-voltage, high-current, and high-
power electrical components produce electromagnetic interference
(EMI). To make matters even worse, the on-board electronic devices
with high sensitivity, such as BMS, VCU, and ECU, are more
susceptible to EMI, which is directly related to the safety,
reliability, and comfort of NEEVs (López et al., 2019). Therefore,
the internal electromagnetic environment is more complex, and
electromagnetic compatibility (EMC) is also facing greater
challenges and opportunities in NEEVs, which attracts more
attention and requires further discussion (Ma et al., 2018; Hu
et al., 2021).

In recent years, third-generation semiconductor materials have
shown significant advantages in bandgap, electric breakdown field,
saturated electron drift velocity, thermal conductivity, and radiation
resistance, which further meet the new requirements of high
temperature, high power, high voltage, and high frequency in the
field of modern electronic technology (Van Do et al., 2021). SiC
MOSFETs have higher switching speed, smaller losses, and high
temperature working tolerance, which can reduce the size and
volume of passive components (such as heat sinks, inductors,
and capacitors) to achieve higher power density and efficiency
(Alcázar-García and José Luis Romeral, 2022; Robles et al., 2022).
Therefore, SiC MOSFETs have been widely predicted to be superior
to Si IGBTs as power switch tube devices, which provides a
promising solution for the motor drive control system in NEEVs
(Gurpinar et al., 2018; Zhu et al., 2018; Wu et al., 2022).

It is particularly concerning that the high-speed switching
actions of the SiC MOSFET can interact with parasitic resistors,
capacitors, and inductors from the system circuit, resulting in a
surge in the voltage and ringing effect, which can lead to undesired
and still worrisome EMI problems. In previous studies (Oswald
et al., 2014; Jia et al., 2020), the major high-frequency EMI source
of the SiC MOSFET is the changes from high voltage and current
(dv/dt and di/dt) conversion; SiC MOSFETs produce a higher-
spectrum amplitude than Si IGBTs in the frequency range of
2–50 MHz. EMI has great potential to cause performance
degradation, an increase in failure, and shorten the service life
of NEEVs (Zhang and Wang, 2021). This has brought attention to
an important concern: electromagnetic compatibility (EMC). In
1833, the English physicist and chemist Faraday (1791–1867)
discovered electromagnetic induction. The concept of EMC
originated in the 19th century. EMC performance refers to the
abilities of a device or system to function properly in its
electromagnetic environment, and it also would not cause
unsustainable electromagnetic disturbance to anything in the
environment (Ding et al., 2021). In short, most EMI in the
motor drive control system comes from

a) High dv/dt and di/dt;
b) Change in impedance characteristics of resistors, capacitors, and

inductors in the high-frequency range;
c) PWM contains abundant voltage and current

switching harmonics.

EMC testing has certain standards, as shown in Figure 2. Regardless
of whether people develop 5G products, automotive equipment, military
equipment, or something as simple as an ordinary table lamp, the device
must meet the requirements set by the standardization organizations
shown in Table 1 such as the International Electrotechnical Commission
(IEC), International Special Committee on Radio Interference (CISPR),
International Standardization Organization (ISO), Institute of Electrical
and Electronic Engineers (IEEE), Comite Europeen de Normalisation
Electrotechnique (CENELEC), European Telecommunications
Standards Institute (ETSI), Federal Communications Commission
(FCC), American National Standards Institute (ANSI), Radio
Technical Commission for Aeronautics (RTCA), or the Military
Standards (MIL-STD) committee.

FIGURE 1
Main electrical components of NEEVs.
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Serious EMI problems of the motor drive control system are
characterized by high noise amplitude, complex coupling, and
multiple paths, which are closely related to working conditions
(Wang et al., 2021). EMI can be divided into conducted EMI and
radiated EMI, and common mode (CM) interference and
differential mode (DM) interference are two differential
conducted forms of the conducted EMI, according to their own
propagation path and coupling channel (Jia et al., 2021; Rifan et al.,
2021). In addition, the generated CM and DM interference will form
a small loop or wire antenna through the busbar cable, which can
result in radiated EMI to other systems or devices (Didat et al.,
2020). However, without EMC design and correction, the EMI can
hardly meet the standard limit requirements (150 kHz–30 MHz in
CISPR 25). Therefore, the suppression of EMI from the motor drive
control system has been increasingly receiving attention from both
academia and the industry (Ozaki et al., 2017; He et al., 2020).

Currently, research on the EMI and EMC of motor drive control
systems focuses on three main areas: mechanism analysis, modeling,
and suppression measures (Gong and Ferreira, 2010; Hu et al., 2018;
Liu et al., 2019; Rao et al., 2021; Safayet and Islam, 2021; Zhai et al.,
2021; Kumar and Jayaraman, 2022; Wang et al., 2022). Hu et al.
(2018) introduced EMC problems and investigated the EMI

mechanism of motor driving systems, charging systems, and
other low-voltage systems. The EMI of the power components in
an NEEV motor drive control system is given in Rao et al. (2021),
including its propagation path and the method of interference
measurement. Gong and Ferreira (2010) proposed a general
device-based CM model that can describe the propagating
mechanism in the system. Wang et al. (2022) proposed a high-
frequency model to predict the system-level conducted EMI. A
conducted emission model with lumped and finite-element
parameter circuit-based electromagnetic simulation is presented
in Safayet and Islam (2021). Liu et al. (2019) described a
complete equivalent circuit model, and CM conducted emissions
can be predicted and evaluated during the design phase for
performance optimization purposes. Kumar and Jayaraman
(2022) presented three modified single-stage and multistage EMI
filters to offer the same CM and DM attenuation performances for
an SiC inverter switching at 200 kHz. Two EMI filter designmethods
for high-voltage DC ports of NEEV motor controllers are proposed
in Zhai et al. (2021).

In this paper, different from existing papers, a system-level
conducted EMI equivalent circuit model of the motor drive
control system based on a PMSM with an SiC MOSFET for

FIGURE 2
EMC standardization organizations committee.

TABLE 1 Commercial EMC standards.

Commercial standards CISPR CENELEC (Europe) FCC (United States) METI (Japan)

Industrial and scientific medical equipment 11 EN 55011 Part 18, C J55011

Vehicles, boats, and internal combustion engines 12/25 EN 55012
EN 55025

SAEJ551
J1113

JASO D001-82

Electrical devices, household appliances, and tools 14-1 EN 55014-1 NULL J55014-1

Electrical lighting 15 EN 55015 NULL J55015

Multimedia equipment 32 EN 55032 Part 15, B J55032

Military equipment MIL-STD-461

Aviation DO-160

Frontiers in Energy Research frontiersin.org03

Zhang et al. 10.3389/fenrg.2023.1338212

179

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1338212


NEEVs has been proposed to research and analyze the noise of
conducted EMI. Then, in order to meet EMC standards, the
suppression and optimization measures were summarized.
Finally, the simulation and experimental results were validated in
the laboratory.

The structure of the paper is organized as follows: Section 1
provides an introduction; Section 2 provides the equivalent circuit
models of the motor drive control system; Section 3 elaborates the
EMI suppression and optimization measures; Section 4 provides the
simulation and experimental results; and finally, the conclusions and
future work are summarized accordingly in Section 5.

2 Conductive EMC mechanism of the
motor drive control system

In the past, EMI modeling was considered difficult and
impractical because it required detailed parameters that could not
be predicted until the printed circuit board (PCB) layout was
completed. Section 3 establishes and analyzes the EMI system-
level equivalent circuit model, which follows the top–down
process and can be changed with the project’s progress to
improve fidelity.

2.1 Equivalent circuit models of power
electronic components

The EMI of the motor drive control system is fundamentally
caused by its own power electronics components. Therefore, it is
necessary to establish an effective and accurate equivalent circuit
model with electronic components such as a resistor, a capacitor, a
busbar cable, a power battery pack, a SiC MOSFET, a PMSM, and
PCB wiring.

2.1.1 Electric capacitor models
Figure 3 shows that capacitance C is the ideal capacitor and Rp is

the insulation resistance corresponding to the direct leakage current.
Heat dissipation within the plates, terminals, and all conducting
parts is represented by Rs, and it is known as the equivalent series
resistance (ESR). L stands for the total inductance of the leads and
plates as the equivalent series inductance (ESL).

2.1.2 Busbar cable
Busbar cables, found in power distribution systems, are

distributed elements whose lengths may by far exceed the
operating wavelength, as shown in Figure 4. They can be
modeled as multi-conductor transmission lines, where many
frequency-dependent characteristics, including per unit length

parameters, skin and proximity effects, dielectric losses, and
transmission line propagation, reflections, and delay, need to be
appropriately taken into account.

Therefore, the main purpose of modeling the busbar cable is to
determine the resistance R, inductance L, and the capacitance C per
unit length cable.

First, the resistance R is calculated as

R � ρ/s � ρ/πr21, (1)
where ρ is the resistivity of materials, s is the cross-sectional area,
and r1 is the cross-section radius.

Next, the inductance L is calculated. The cable has an inner
conductor and an outer conductor, also called the shielding layer. So
L consists of the inner conductor’s self-inductance Li and the outer
conductor’s self-inductance Le, as shown in Figure 5:

According to the transmission line theory, the internal self-
inductance per meter Li is

Li � μ0/8π, (2)
where μ0 is the permeability of the vacuum. The value of the

external self-inductance per meter is

Le � μ0/2π( ) ln b/a (3)
So the value of the self-inductance per meter of the cable L is

FIGURE 3
Equivalent circuit model of an electric capacitor.

FIGURE 4
Equivalent circuit for modeling a long three-phase busbar cable.

FIGURE 5
Busbar cable self-inductance diagram.
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L � Li + Le � μ0/8π + μ0/2π( ) ln b/a. (4)
Lastly, the capacitance between the shielding layer and the unit

length cable C is calculated. According to transmission line theory,
the expression of C is

C � ∫
V
E ·Ddv/U1U2, (5)

where U1 is the inner conductor-to-ground voltage and U2 is the
shielding layer-to-ground voltage, which are both fixed values. E is
the electric field intensity and D is the electric displacement.

2.1.3 Power battery pack
In the market, in order to extend the driving mileage of NEEVs,

a large number of low-voltage single cells are required to be
connected to a high-voltage power battery pack. The equivalent
circuit model is shown in Figure 6.

2.1.4 SiC MOSFET
For the SiC MOSFET, the parasitic capacitance and inductance

need to be considered for more accurate modeling. As shown in
Figure 7, RG is the turn-on resistance, and CGD and CGS are parasitic
capacitances between the grid and drain, respectively, according to
the manufacturer’s datasheet. CDS is both the parasitic capacitance
from the drain to the source and the junction capacitance of the
antiparallel diode. LG, LD, and LS are parasitic inductances of the
drain, source, and gate, respectively, as well as of packaging pins.Cp1

and Cp2 are the parasitic capacitances between the power module
and the metal substrate.

2.1.5 PMSM
The PMSM is one of the most complex electrical parts in the

motor drive control system. It is impossible to know the whole
parameter details in practice, and the physical modeling method of

the motor is usually not applicable. The PMSM is a low-frequency
induction device andmodeled by a three-phase linear RLC circuit, as
shown in Figure 8.

2.1.6 PCB tracks
The influence of the PCB tracks’ interconnect design is

sometimes overlooked in EMC research and analysis. When
extracting the parasitic parameters of PCB tracks, only parasitic
resistance and inductance are considered because the parasitic
capacitance is very small. For example, PCB tracks L and N can
be regarded as two conductors. The equivalent circuit model is
shown in Figure 9, where R1 and L1 are the resistance and self-
inductance of track L, respectively; R2 and L2 are the resistance and
self-inductance of track N, respectively; and KL−N is the mutual
inductance between the two tracks.

Table 2 shows that with the increase in frequency, self-
inductance and mutual inductance values hardly change, while
resistance values change greatly and provide some useful
experiences and lessons for an ultra-high frequency motor drive
control system.

2.2 Equivalent circuit models of the motor
drive control system

Figure 10 presents the system-level equivalent circuit models of
the motor drive control system, including the power battery pack,
LISN, three-phase inverter, busbar cable, and PMSM. The spectrum
of the EMI source is distributed in the frequency range of
150 kHz–30 MHz. Therefore, the parasitic parameters must be
considered to research and analyze the transmission path of the
conducted EMI.

3 Discussion of EMI suppression of the
motor drive control system

Section 3 introduces the conducted EMI model of the motor
drive control system in NEEVs to better understand how it generates
and propagates paths and predicts noise levels. However, due to
EMC standards, the conducted EMI needs to be limited. To improve

FIGURE 6
Equivalent circuit model of the power battery pack.

FIGURE 7
SiC MOSFET equivalent circuit model with parasitic parameters.
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the conducted EMI, it is usually necessary to consider three aspects:
suppressing the interference source, optimizing the propagation
path, and improving equipment immunity.

3.1 EMI suppression and
optimization measures

Currently, regarding the motor drive control system, the specific
measures mainly include electromagnetic shielding grounding,
installation filters, advanced PWM strategies, and redesigning the
system structure and layout.

3.1.1 Electromagnetic shielding
An electromagnetic wave is the main mode of electromagnetic

energy transmission. Electromagnetic shielding is a shell made of
soft magnetic metal material that almost surrounds the equipment
to prevent the effects of the external electromagnetic field. The
inverter can be shielded as a whole and has sound grounding.

3.1.2 Filter
An electromagnetic shield is usually used to prevent the

radiation of EMI. For conduction EMI, filtering is the most
effective measure of protection. Adding filters is a convenient

solution, including passive and active EMI filters. However, due
to the limited bandwidth of the integrated operational amplifier in
active EMI filters, it is difficult to suppress EMI effectively in a wide
frequency range. Because of its relatively simple structure, effective
frequency bandwidth, and large noise attenuation, a passive EMI
filter is the most widely used to suppress EMI in the motor drive
control system.

The EMI filter mismatched impedance usually has a better
performance. According to the filter mismatch principle, inductor
L is regarded as a high-resistance element and capacitor C is a low-
resistance element. If the output load is inductive high resistance, the
output filter is capacitive low resistance; and if the output load is
capacitive low resistance, the output filter load is inductive high
resistance, as shown in Figure 11.

The CM and DM passive EMI filters are now mainly applicable
to the motor drive control system. When the CM component of a
signal attempts to go through the choke, it will meet a high
impedance due to the inductance created by the magnetization of
the core and the coils. In contrast to the CM behavior, the DM
component of the signal encounters almost no impedance in the
choke, and this phenomenon could be explained with the magnetic
field compensation inside the core. If the core is not magnetized,
then no inductance will appear in the line. The two- and three-phase
common mode busbar cable chokes of the Würth Elektronik Group
are widely used in conduction EMI filtering circuits because of their
high impedance parameters, high power density, and diverse
magnetic cores, as shown in Figure 12.

FIGURE 8
Coupled three-phase RLC equivalent circuit model of the PMSM.

FIGURE 9
HF equivalent circuit model of the PCB tracks L and N.

TABLE 2 HF parasitic parameters of PCB tracks L and N.

Frequency R1
(mΩ)

R2
(mΩ)

L1
(nH)

L2
(nH)

M12
(nH)

f = 150 kHz 13.33 12.91 32.92 34.95 6.48

f = 10 MHz 14.36 13.89 32.81 34.83 6.41

f = 30 MHz 21.05 20.91 31.70 33.71 6.16
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3.1.3 Advanced PWM strategies
The angular frequency of the EMI spectrum is determined by the

duty cycle and switching frequency of the PWMwaveform. Based on
the different frequencies, it can be divided into constant switching
frequency PWM (CSFPWM) and variable switching frequency
(VSFPWM): random switching frequency PWM (RSFPWM),
period switching frequency PWM (PSFPWM), and model
prediction switching frequency PWM (MPSFPWM). By using
VSFPWM, the output voltage and current concentrated
harmonics of the inverter in the low-frequency range are
expanded to a wider band, which has a lower EMI peak value.
As shown in Figure 13, the ordinate axis is of harmonic amplitude
and f on the abscissa axis is the carrier frequency.

3.1.4 Complex inverter circuit topologies
Section 3 elaborates how the EMI always exists in the motor

drive control system based on the three-phase two-level inverter. To
further minimize EMI, some improved inverter circuit topologies
have been proposed, such as a three-level inverter and double-
parallel inverter, as shown in Figure 14. Multistage inverters have
smaller dv/dt, which can reduce the inverter output voltage and
current harmonics. Unfortunately, more complex inverter circuit
topologies have higher hardware costs and control complexity and
reduce the power density of the system.

3.2 EMI solves problems of the motor drive
control system

In order to suppress the conducted EMI noise of the motor drive
control system, the passive filters with high insertion loss, wide
frequency band, and strong currents are usually installed on the
power battery pack, busbar cables, three-phase inverters, and
motors, as shown in Figure 15.

The main cause of common-mode (CM) current in the motor
drive control system is the parasitic parameters that couple to
ground and shield the busbar cables and PMSM. The high-
frequency current produces DM noise. After accurately capturing
CM and DM effects, the EMC filters can be calculated to meet
EMC standards.

4 Simulation validation and
experiment results

In this section, a system-level equivalent circuit model of the
motor drive control system based on the PMSM with the SiC
MOSFET for NEEVs is established using SIMetrix/SIMPLIS circuit
simulation software, which is used to simulate the conducted EMI
noise effectively. The simulation model of the EMI setup is created by
combining the component models reviewed in Section 2, Section 3,
and Section 4 into a complete system model, demonstrating the
model’s accuracy in predicting the measured conducted EMI noise.
According to EMC Standards, the noise of the conducted EMC is
measured in the laboratory, and the comparison between simulation
and experimental results was analyzed.

4.1 Test arrangement

The experimental equipment is composed of two LISNs, an
EMI receiver, a power battery pack, long four-core shielding
busbar cables, a three-phase inverter, a PMSM, and a
dynamometer machine. Under normal circumstances, the EMI
receiver can measure the conductive interference voltage of the
positive and negative power lines within a frequency range of
150 kHz–30 MHz by LISN.

FIGURE 10
System-level equivalent circuit models of the motor drive control system.

FIGURE 11
Impedance mismatch of passive EMI filters.
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The six SiC MOSFET drive voltage signals with a switching
frequency of 10 KHz under the space vector PWM (SVPWM)
control algorithm and three-phase winding current are given in

Figure 16. The switching speed of the SiC MOSFET can be flexibly
regulated with the changing of external RG (on) and RG (off)
gate resistors.

FIGURE 12
CM busbar cable choke and full-size diagram of (A) two-phase and (B) three-phase chokes.

FIGURE 13
Harmonic magnitude of VSFPWM and CSFPWM: (A) RSFPWM, (B) PSFPWM, and (C) MPSFPWM.
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FIGURE 14
Complex inverter circuit topologies: (A) three-level inverter and (B) double-parallel inverter.

FIGURE 15
CM and DM passive EMI filters (A) between the power battery back to the inverter and (B) between the inverter to the PMSM.
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4.2 Analysis and comparison of simulation
and experiment results

4.2.1 Complex inverter circuit topologies
Figure 17 shows the CM and DM voltage noise spectra curve

for different switching frequencies. It can be observed that the
CM voltage noise source makes up the majority in the low-
frequency range, while the CM and DM are nearly equal in the
high-frequency range. The reason is that the noise source in the
low-frequency range is determined by the PWM modulation
method, while the high-frequency range is caused by the turn-
on and -off behavior and parasitic parameters of the SiC
MOSFET. Obviously, the lower switching frequencies can
effectively suppress the conducted EMC noise in the motor
drive control system. However, due to the increase in size and
volume of passive components, the lower switching frequencies
cannot ensure higher power density. In order to balance the
power density between the conducted EMC noise and motor
drive control system, it is necessary to optimize the
switching frequency.

4.2.2 Load power
Figure 18 compares the spectrum curves of CM and DM noise

under different load–power conditions. It can be found that the CM
noise varies little with the load power in the low-frequency range, in
contrast to the DM noise. The level of CM noise and DM noise
under heavy load power is significantly higher than that under light
load power.

4.2.3 EMI filter
Figure 19 shows the total EMI noise spectrum curves obtained

by simulation and experiment. Adding CM and DM passive EMI
filters can reduce the conducted EMI noise of the motor drive
control system and further affect the radiated interference.

5 Conclusion and future work

The urgent need to address energy and environmental
challenges in the 21st century has become increasingly apparent
alongside societal and industrial progress. With the rapid growth of

FIGURE 16
SVPWM control PMSM: (A) drive voltage signal and (B) three-phase winding current.

FIGURE 17
CM and DM voltage noise spectrum curves for switching frequencies (A) 10 KHz and (B) 20 KHz.
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the automotive industry, the motor drive control system of NEEVs
has garnered the attention of the research community globally. SiC
MOSFET and PMSM technologies have demonstrated substantial
advancements in efficiency, performance, and power density,
enabling the realization of high-speed motor controllers.
However, this progress has also brought about intensified EMI
noise. Therefore, it is imperative to carry out the mechanistic
modeling, simulation, and experimental verification to study
conducted EMI of the motor drive control system. This paper
focuses on the system-level equivalent circuit model,
encompassing the power battery pack, busbar cable, LISN, three-
phase inverter, PMSM, and other power electronic components.

This modeling approach not only establishes EMI sources and CM
and DM propagation paths but also enables the simulation of
control strategies and operating conditions. The simulation and
experimental results corroborate the feasibility of the
proposed scheme.

This paper contributes significantly by predicting the conducted
EMI noise during the initial design phase, thereby avoiding
additional PCB updating. It remains to be seen whether this
work has multiple extensions. For instance, it is essential to
assess the advantages of an active EMC filter in reducing the
reliance on expensive CM and DM passive EMI filters.
Additionally, while EMI simulation proves invaluable in

FIGURE 18
CM and DM voltage noise spectrum curves under (A) light and (B) heavy load power.

FIGURE 19
Total EMI noise spectrum curves (A) before no EMI filter (B) after have filter.
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analyzing conducted EMI and designing the necessary filters, further
endeavors should concentrate on developing similar simulation
tools for radiated EMI.
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In the context of energy conservation and emission reduction, the integration and
consumption of large-scale wind and solar resources is an inevitable trend in future
energy development. However, with the increase of wind and solar grid-connected
capacity, the power system also requires more flexible resources to ensure safe
operation. To enhance the economic efficiency of the complementary operation of
wind, solar, hydro, and thermal sources, considering the peak regulation
characteristics of different types of power sources, the study of the joint
dispatch model of complementary utilization of various generation methods like
wind, solar, hydro, thermal, and storage is of great significance for the economic
dispatch of the power system. Existing studies mainly focus on traditional thermal
power units or hydropower units, with few studies investigating the impact of
pumped-storage power stations on the absorption of renewable energy. Firstly, this
paper introduces the composition and function of each unit under the research
framework and establishes a joint dispatch model for wind, solar, hydro, and
thermal power. Secondly, the paper elaborates on the objective function within
themodel,mainly covering theoperating costs of thermal power units, hydropower
units, pumped storage, wind and solar units, the cost of discarding new energy, and
the cost of load shedding. Subsequently, the paper presents the constraints of the
systemmodel, mainly the feasible boundaries for the operation of each unit within
the system. Finally, The results of the calculations show that the proposed model
reduces the total operating cost by 12% and the power abandonment rate by 82%
compared to the conventional model. It is shown that the proposedmodel can not
only significantly improve the economic efficiency of the systemoperation but also
reduce the level of energy waste and load shedding, effectively enhancing the
degree of energy utilization within the system.

KEYWORDS

multi-energy complementarity, hydropower unit, joint dispatch, pumped storage,
renewable energy absorption, power system optimization

1 Introduction

Developing a new power system adapted to the increasing proportion of new energy
sources is a crucial measure for China to achieve its carbon peak and carbon neutrality goals
on schedule and is essential for ensuring national energy security (Hou et al., 2023).
Traditional thermal power units generate a large amount of carbon dioxide and other
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greenhouse gases when burning coal, significantly impacting global
warming. Additionally, thermal power stations consume vast
amounts of water resources during operation and produce air
pollutants and solid waste, adversely affecting the environment
and human health. The medium-to-long-term seasonal
fluctuations, short-term randomness, and intermittent
fluctuations of wind and solar power generation pose severe
flexibility challenges for the new power system across daily,
monthly, seasonal, and annual timescales, necessitating the
exploration of new renewable flexibility resources (Nnamchi
et al., 2023). Hydropower ranks second in installed capacity in
China, with a 16.1% share in 2022, second only to thermal power
units. Its strong regulation capability, combined with the random
fluctuations of wind and solar power, forms a complementary
system that outputs relatively smooth and stable high-quality
power, effectively solving the challenges of wind and solar energy
development (Bello et al., 2023). Prioritizing the use of existing
power sources to achieve multi-energy complementarity and
maximize the use of renewable energy is of significant research
value (Lamb et al., 2023). Therefore, the functional positioning of
hydropower should gradually shift from focusing on electricity
generation to capacity support, thus promoting the integrated
development of hydro-wind-solar complementarity. However,
with the increasing capacity of wind and solar power, the issue of
abandoning wind and solar energy is unavoidable, and conventional
hydropower cannot effectively store the electricity generated from
abandoned wind and solar power (Jin et al., 2023). Pumped storage,
as a crucial technology for enhancing the absorption level of new
energy, has developed rapidly in China (Garcia-Gonzalez et al.,
2008; Feng et al., 2021; Huang et al., 2023; Liu et al., 2023; Wang
et al., 2023). How to use pumped storage technology efficiently and
economically to promote the absorption of new energy is an
important direction of current research.

When the penetration rate of wind power increases to a certain
extent, relying solely on thermal power to cope with the uncertainty
of wind and solar output will lead to frequent starting and stopping
of thermal power units, threatening the safety, stability, and
economy of the power grid operation (Ye et al., 2023). In the
analysis of wind and solar grid integration, research on the active
output characteristics of the system mainly includes studies on the
operating characteristics of wind-solar-thermal systems and the
spatiotemporal complementarity of active power output from
wind and solar energy (Sun and Harrison, 2019). Literature (Silva
et al., 2016) used Pearson correlation coefficients to analyze the
correlation between different power sources. Literature (Hong-Mei
et al., 2013) assessed the natural characteristics of wind and solar
output and the complementarity of wind, solar, and storage from the
aspects of complementarity rate and smoothness. Literature
(Cuiping et al., 2017) evaluated the operating characteristics of
the photovoltaic-hydropower complementary system based on
indicators such as the abandoned light ratio, the ratio of thermal
power to load, and grid-connected revenue. Facing the numerous
uncertainties of wind and photovoltaic grid integration, literature
(Canizes et al., 2012) used the Monte Carlo method to simulate
uncertain factors such as wind speed and natural inflow. Literature
(Hinojosa and Velasquez, 2016) used scenario trees for uncertainty
modeling, which includes a large amount of random information.
Literature (Azizipanah-Abarghooee et al., 2012), based on the

Monte Carlo concept, used the point estimation method to
obtain the probabilistic statistical information of the variables
in question.

Currently, hydropower, as the most widely used clean energy
source, is also a hot topic in the research of multi-energy system
optimization dispatch. For efficient use of the regulation capability
of hydropower to satisfy the power balance, literature (Esmaeily
et al., 2016) specifically conducted dispatch analysis for hydropower
systems. Literature (Arce et al., 2002) considers the total power
generation of hydropower stations as a constraint, taking into
account the impact of hydropower units on system peak
regulation, and optimizes the output of each unit in the system.
Literature (Gromyko et al., 2023) included the water volume
constraint of the hydropower station in the modeling of
hydropower stations. Literature (Zanoli et al., 2023) used a
piecewise linear function to fit the hydropower conversion curve.
Literature (Rahman et al., 2022) analyzed the complementarity of
wind and hydropower output on a time scale and established a linear
programming model for the wind-hydro joint dispatch system.
Literature (Yang et al., 2023) proposed a short-term stochastic
optimization dispatch model for wind, water, and thermal multi-
energy systems. Large-scale hydropower generation bases are mostly
developed and utilized on the scale of river basin cascade
hydropower station groups, with a high degree of coupling
between cascading hydropower stations. To improve the overall
efficiency of basin cascade hydropower, the operation of cascading
hydropower stations needs to consider constraints such as water
volume, storage capacity, and head in the upstream and downstream
of the basin. However, traditional hydropower units, as one of the
long-standing renewable energy technologies, hold an important
position in the global energy structure. But this traditional method
faces some challenges and shortcomings. Firstly, the energy output
of traditional hydropower units is limited by the availability of water
resources, especially in dry seasons or areas with scarce water
resources, significantly affecting their power generation capacity.
Additionally, the construction and operation of hydropower stations
may have negative impacts on the local ecosystem and environment.

In this context, the development of pumped storage technology
offers a new perspective. Pumped storage power stations, as an
efficient method of energy storage, can store energy when electricity
demand is low and release it during peak periods, thus optimizing
energy allocation and utilization. This not only enhances the
stability and reliability of the power grid but also provides an
effective solution for the integration of renewable energy sources.

Pumped storage power stations are currently the world’s most
comprehensively evaluated large-scale electricity storage technology.
Their basic principle involves using surplus electricity to pump
water from lower elevations to higher reservoirs when electricity
demand is low; then, when electricity demand is high, releasing this
water to drive turbines and generate electricity. This technology is
not only crucial for the stable operation of the power grid but also
plays an important role in the integration of renewable energy
sources. Early pumped storage power stations were mainly
concentrated in Europe and North America, but in recent years,
development in Asia, especially in China, has been rapid. Literature
(Kanakasabapathy and Swarup, 2010) notes that China has made
significant efforts in the development of pumped storage technology
and has now become the world’s largest pumped storage market.
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The efficiency of pumped storage power stations is affected by
various factors, including hydraulic, mechanical, and electrical
losses. Literature (Hu et al., 2012) points out that optimizing the
design of turbines and pumps, as well as adopting advanced control
strategies, can significantly improve the overall efficiency of pumped
storage power stations. Although pumped storage power stations are
a form of clean energy, their construction and operation have an
impact on the environment that cannot be ignored. With the rapid
development of renewable energy, the role of pumped storage power
stations in the electricity market is becoming increasingly important.
Literature (Katsuhiro et al., 2013) indicates that market mechanism
reforms, such as implementing time-of-use electricity pricing
policies, will help improve the economic viability of pumped
storage power stations. At the same time, facing challenges from
technological innovation and market competition, such as the rise of
battery storage technology, pumped storage power stations need to
continuously improve efficiency and reduce costs to maintain their
competitiveness in the energy storage market. In the future, as the
power system’s demands for flexibility and reliability increase,
pumped storage power stations will continue to play a key role
in the power system. Literature (Sheng and Sun, 2014) predicts that,
combined with digital technology and smart grids, pumped storage
power stations will become more intelligent and efficient, providing
stronger support for the stability of the grid and the integration of
renewable energy. Literature (Ding et al., 2016) notes that the
construction of pumped storage power stations can impact local
hydrological conditions and ecosystems, necessitating detailed
environmental impact assessments in site selection and design,
hence, the construction of pumped storage power stations should
not be carried out haphazardly. Maximizing the role of pumped
storage power stations and adopting multi-energy joint dispatch
based on pumped storage is a viable approach.

Joint dispatch refers to the collaborative work and optimized
allocation of different types of energy sources, such as wind, solar,
hydro, and thermal power. This concept is widely discussed in
literature (Zhou et al., 2016; Zhou et al., 2017; Zhang et al., 2018).
Through joint dispatch, it is possible to effectively balance and utilize
the advantages and limitations of various energy sources, improve
overall energy efficiency, reduce energy costs, and simultaneously
decrease environmental pollution. Pumped storage power stations
play a key role in joint dispatch systems. Literature (Menglin et al.,
2018) points out that pumped storage can serve as a buffer energy
storage facility, helping to balance the unstable output of wind and
solar energy, and improve the stability and reliability of the power
grid. Additionally, it can store energy during low electricity demand
periods for use during peak times, thus enhancing the flexibility and
economic efficiency of energy utilization. To achieve optimal joint
dispatch, various factors need to be considered, including the
prediction of energy production, demand-side response, and
market price fluctuations. Literature (Lingamuthu and
Mariappan, 2019; Xu et al., 2019; Nedaei and Walsh, 2022)
indicates that multi-energy scheduling, pumped-storage power
stations serve as energy storage systems to balance supply and
demand, thereby enhancing the energy efficiency and stability of
the system. Literature (Nedaei et al., 2023) is a commendable work
that provides groundbreaking insights into inverter technology,
offering substantial advancements in their design and efficiency
through innovative modulation techniques.

In summary, this paper introduces pumped storage power
stations and investigates the optimization dispatch problem of
complementary systems including hydropower, wind power, solar
power, thermal power, and pumped storage, fully exploring their
potential for flexible regulation. The joint operation of wind, solar,
water, and thermal power based on pumped storage power stations
is not only a supplement and improvement to traditional energy
systems but also a crucial step towards a cleaner, more efficient, and
more sustainable energy future. This study aims to delve into the
potential and implementation strategies of this model, providing
practical cases and theoretical support for the global energy
transition.

2 Basic system framework

The joint dispatch framework for the complementary utilization
of multiple generation methods such as wind, solar, hydro, thermal,
and storage established in this paper is shown in Figure 1. represents
a system framework that integrates a variety of renewable and
conventional energy sources into an electric power system.
Within this system, wind power is depicted by symbols
representing four wind turbines, signifying the conversion of
wind energy into electrical power. Hydroelectric power is
indicated by the illustration of a dam, highlighting the generation
of electricity from the kinetic energy of flowing water. Solar
photovoltaic power is symbolized by icons of solar panels,
denoting the transformation of solar energy into electrical energy
through the photovoltaic effect, and these three renewable sources
are connected to inverters. Conventional thermal power generation
is represented by an image of a factory, typically involving the
combustion of fossil fuels to produce electricity. Lastly, the pumped
storage plant represents an energy storage method that uses excess
electricity to pump water into an elevated reservoir during low
demand periods and releases the water flow to generate electricity
when demand increases. These two conventional sources are linked
to transformers. Collectively, this framework illustrates the unified
management and delivery of electric power generated in various
ways to meet the load requirements as needed, with an emphasis on
the seamless integration of diverse energy generation methods.
Within the considered framework, the objective function mainly
focuses on the economic dispatch of the system, abandoned power,
load shedding, etc., normalizing all comprehensive factors into
economic dispatch costs, specifically the operating costs of each
unit, the penalty costs for abandoning new energy power, and
involuntary load shedding. The constraints include the output
limits and ramp rate limits of each unit, as well as the pumping
and generation power and capacity constraints of the pumped
storage units.

In this system: Traditional thermal power generation faces
issues such as ramp rate limitations and difficulties in coordinating
high operational cost intervals, while the generation mode of
hydropower units is more flexible compared to thermal power
units, with their output and cost function being nearly linear,
allowing them to complement thermal power generation and
enhance the utilization rate of the system’s generation
resources. Pumped storage units, as a type of energy storage
resource that can pump or release water resources, can work in
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conjunction with hydropower units to achieve flexible energy
conversion, thereby deeply absorbing renewable energy sources
(such as wind turbines and photovoltaics) within the system.Wind
turbines and photovoltaics, as renewable energy sources within the
system, are utilized as much as possible, in response to new
energy policies.

3 Mathematical model

This model comprehensively considers the operating costs of
thermal power units, hydropower units, pumped storage power
stations, operating and maintenance costs of new energy generation
units, penalty costs for abandoning new energy power, and
involuntary load shedding costs. It establishes a dispatch model
aimed at minimizing the total operating costs of generation,
including wind power, photovoltaics, thermal power,
hydropower, and pumped storage. The objective function is
as follows:

min Fs � Fh + Fk + Fw + Fc + Fq + Fu (1)

In Eq. 1: where Fs represents the total operating cost of the
system, Fh is the optimized dispatch cost of thermal power units, Fk

is the optimized dispatch cost for renewable energy units (wind
turbines, photovoltaics), Fw is the optimized dispatch cost for
hydroelectric units, Fc is the optimized dispatch cost for
pumped-storage, Fq is the penalty cost for curtailment of new
energy sources, and Fu is the penalty cost for involuntary
load shedding.

(1) The operating costs of thermal power units

Flexible control of thermal power units is a crucial prerequisite
for ensuring stable operation of power grids with high penetration of
renewable energy. Renewable energy output is highly volatile, and to

ensure their grid access space, sometimes even starting and stopping
operations of thermal power units are required. Therefore, the
operating costs of thermal power units primarily consist of coal
consumption costs and start-stop costs, expressed by the formula:

Fh � fmh + fqt (2)

fmh � ∑T
t�1

∑Ih
i1�1

ai1Pi1,t
2 + bi1Pi1,t + ci1 (3)

fqt � ∑T
t�1

∑Ih
i1�1

Si1,tUi1,t 1 − Ui1,t−1( ) (4)

In Eqs 2–4, fmh and fqt are the coal consumption cost and the
start-stop cost of the thermal power unit, respectively; T is the
scheduling time, Ih is the total number of thermal power units; ai1,
bi1, ci1 are the parameters for the coal consumption cost of electricity
generation of the thermal power unit i1; Si1,t is the start-stop cost of
the unit i1 at the moment t; Pi1,t and Ui1,t are the power generation
and operation status of the thermal power unit i in the time period t,
withUi1,t � 1 representing operation andUi1,t � 0 representing stop
(Esmaeily et al., 2016).

(2) The operating costs of hydroelectric units

Hydroelectric operating costs include the water consumption for
electricity generation and the loss due to unit start-stop. The process
of each unit start-stop can also be converted into equivalent water
consumption. The formula is as follows:

Fw � ∑T
t�1

∑Iw
i2�1

Qi2,t + bi2,txi2,t( ) (5)

In the formula Eq. 5: Qi2,t is the generation flow of hydroelectric
unit i2 during period t; xi2,t is the equivalent water consumption
flow for the start-stop of the hydroelectric unit i2; bi2,t is the start-
stop operation of unit i2 in period t, bi2,t is a 0-1 variable (Menglin
et al., 2018).

FIGURE 1
System framework diagram.
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(3) Operating costs of pumped-storage power stations

Fc � ∑T
t�1

∑Ic
i3�1

Ci3P
c
i3,t +Xi3P

x
i3,t( ) (6)

In the formula Eq. 6: Ci3 and Xi3 represent the unit cost of
electricity generation and the unit cost of pumping, respectively; Ic is
the total number of pumped-storage units; Pc

i3,t and Px
i3,t are the

power generation and pumping power consumption of the pumped-
storage power station at time t, respectively (Garcia-Gonzalez
et al., 2008).

(4) Operation and maintenance costs of new energy
generation units

Wind and photovoltaic are both new energy generations, but
due to the uncontrollable nature of wind speed and solar radiation,
some operating costs are incurred during generation. It is assumed
that the operation and maintenance costs of various types of units
are directly proportional to the amount of electricity generated, the
formula is:

Fk � ∑T
t�1

∑Ik
i4�1

Ki4,fP
f
i4,t + Ki4,pP

p
i4,t( ) (7)

In the formula Eq. 7: Ki4,f and Ki4,p are respectively the unit
operation and maintenance cost coefficients for wind farms and
photovoltaic power stations; Ik is the total number of units in wind
farms and photovoltaic power stations, Pf

i4,t and P
p
i4,t are the dispatch

output values of wind farms and photovoltaic power stations at
moment t, respectively (Sun and Harrison, 2019).

(5) The penalty cost for curtailment of new energy sources

Considering the penalty for curtailment of wind and
photovoltaic power, the formula is as follows:

Fq � ∑T
t�1

∑Iq
i4�1

Ni4,fQ
f
i4,t +Ni4,pQ

p
i4,t( ) (8)

In the formula Eq. 8:Ni4,f andNi4,p are respectively the penalty
cost coefficients for curtailed wind and photovoltaic power; Iq is the
total number of equipment for curtailment; Qf

i4,t and Qp
i4,t are the

amounts of curtailed wind and photovoltaic power at the
corresponding moments.

(6) System load shedding penalty costs

To ensure the stability and quality of the power grid, when
the actual output of the system deviates from the load demand, a
load shedding penalty cost calculation function must be
introduced, with penalties applied according to the size of the
deviation, as follows:

Fu � ∑T
t�1
βPu

t (9)

In the formula Eq. 9: β is the load shedding cost penalty factor,
Pu
t is the power of load shedding at moment t.

4 Constraints

(1) Power balance constraints

∑Ih
i1�1

Pi1,t + ∑Is
i2�1

Qi2,t + ∑Ic
i3�1

Pc
i3,t + Px

i3,t( ) + ∑Ik
i4�1

Pf
i4,t + Pp

i4,t( )

� PL,t + Pu
t +∑Iq

i�1
Qf

i4,t + Qp
i4,t( ) (10)

In Eq. 10: Pi1,t is the power of thermal power units; Qi2,t is the
power of hydroelectric units; PL,t is the load of the power grid at
moment t.

(2) Power flow constraints

−Pmax
ij ≤Pij,t ≤Pmax

ij (11)

Pij,t � θi,t − θj,t
xij

(12)

The flow model represented by Eqs 11, 12 is the Direct
Current (DC) flow model. The rationale for establishing this
model includes: 1) Given that the model scenario pertains to a
regional system, where individual units are relatively close to
each other, it is feasible to approximate multiple nodes within the
system as a single node. 2) The model primarily focuses on the
supply relationship between generation and load, under which
consideration of active power takes precedence, thereby
justifying the omission of reactive power. 3) As the distances
between nodes within the considered scenario are relatively
short, the voltage levels across these nodes are expected to be
similar, allowing for the exclusion of voltage variations. 4) From a
computational complexity perspective, disregarding phase angles
and frequency variations within the flow model, and focusing

FIGURE 2
Predicted output of wind and photovoltaic power within the
district-level grid.
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solely on power flow, simplifies the computational complexity.
Based on these considerations, the model under study can be
effectively equated to a Direct Current flow model.

It should be noted that the DC flow model has significant
advantages in certain situations, but it also has limitations, such as
its inability to accurately describe phase angles and frequency
variations found in Alternating Current (AC) flow models (Kile
et al., 2015). However, within the context of this study, the DC flow
model is adopted for calculation and analysis, given its
applicability.

In the formula xij is the reactance of the branch; Pij
max is the

capacity between branches i, j; Pij,t is the power transmission
between nodes i, j; θi,t, θj,t are respectively the voltage angles of
i, j at moment t.

(3) Thermal power unit operational constraints

Operational constraints of thermal power units mainly include:
the maximum and minimum output of the units, ramping
constraints of the units. The formula is as follows:

Pi1,min ≤Pi1,t ≤Pi1,max (13)
Ri1,min ≤Pi1,t − Pi1,t−1 ≤Ri1,max (14)

In the formula: Pi,min and Pi,max are respectively the
minimum and maximum outputs of thermal power unit i; Pi,t

and Pi,t−1 are respectively the power generation of thermal power
unit i at moments t and t − 1; Ri,min and Ri,max are respectively the
maximum and minimum ramp rates of unit i. Meanwhile, the
minimum operational and shutdown constraints of the unit are
as follows:

ui1,t − ui1,t−1 ≤ ui1,H,∀H ∈ t + 1, min t + Ton − 1, T( )[ ] (15)

FIGURE 3
Predicted load value within the district-level grid.

FIGURE 4
Conditions of energy curtailment and load shedding in Mode 1.

FIGURE 5
Wind power consumption in Mode 1.

FIGURE 6
Photovoltaic power consumption in Mode 1.
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ui1,t−1 − ui1,t ≤ 1 − ui1,H,∀H ∈ t + 1, min t + Toff − 1, T( )[ ] (16)

In Eqs 15, 16: wherein, ui,t represents the operating status of
unit i at moment t;H refers to the hourly time period; ui1,t−1 is the
operating status of unit i1 at moment t − 1. Ton and Toff

respectively represent the minimum operating and shutdown
time of the unit, T is the total dispatch time.

(4) Operational constraints of wind and photovoltaic power
generation

0≤Pf
i4,t ≤P

f,max
i4,t (17)

0≤Pp
i4,t ≤P

p,max
i4,t (18)

In Eqs 17, 18, Pf
i,t and Pp

i,t represent the output power of wind and
photovoltaic at time t, respectively.Pf,max

i,t andPp,max
i,t denote the output

power constraints of wind and photovoltaic at time t, respectively.

(5) Hydroelectric operation constraints

Hydroelectric operation constraints include output constraints,
hydroelectric energy conversion constraints, and daily flow
constraints, as shown in the following formulas:

Pmin
sh ≤Psh,t ≤Pmax

sh (19)
Psh,t � AQi2,thh,t (20)
Qmin

i2 ≤Qi2,t ≤Qmax
i2 (21)

FIGURE 7
Energy curtailment and load shedding in Mode 2.

FIGURE 8
Wind power consumption in Mode 2.

FIGURE 9
Photovoltaic power consumption in Mode 2.

FIGURE 10
Energy curtailment and load shedding in Mode 3.
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In Eqs 19–21, Pmin
sh and Pmax

sh represent the maximum and
minimum output of hydroelectric units h. Psh,t is the output of
hydroelectric unit h during time period t. A is the hydroelectric
conversion coefficient in m3/kWh, and hh,t is the upstream head of
hydroelectric unit during time period t in meters. Qmax

i2 and Qmin
i2

represent the upper and lower limits of daily flow for
hydroelectric units.

(6) Pumped Storage Constraints

For simplicity, define the output power of pumped storage
power plants as PP,t. If PP,t is greater than or equal to zero, the
system is in a discharging and generating state; otherwise, it is in a
pumping and energy storage state. Pumped storage power
constraints:

Pmin
P,t ≤PP,t ≤Pmax

P,t (22)

In the Eq. 22, Pmin
P,t and Pmax

P,t represent the minimum and
maximum pumping power of pumped storage power plants.

Hydroturbine power generation constraints:

Pmin
hg ≤Phg,t ≤ min Pmax

hg , Etηg( ) (23)

In the Eq. 23, Et represents the energy stored in the pumped
storage power station at time t; ηg is the hydroturbine efficiency;
Pmin
hg and Pmax

hg are the minimum andmaximum hydroturbine power
generation capacities, respectively.

Operational constraints in Eq. 24:

PP,tPhg,t � 0 (24)

Phg,t represents the hydroturbine power generation at time t.
Pumped storage power plants operate in either discharging and
generating or pumping and energy storage modes, and these modes
do not occur simultaneously.

FIGURE 11
Wind power consumption in Mode 3.

FIGURE 12
Photovoltaic power consumption in Mode 3.

FIGURE 13
Energy curtailment and load shedding in Mode 4.

FIGURE 14
Wind power consumption in Mode 4.
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Reservoir energy balance constraints in Eq. 25:

Et+1 � Et + PP,tηp − Phg,t/ηg (25)

In the equation, Et+1 represents the energy stored in the pumped
storage power station at time t + 1; ηp is the pump efficiency, and ηg
is the hydroturbine efficiency.

Reservoir capacity constraints in Eq. 26:

0≤Et ≤Emax
t (26)

In the equation, Emax
t represents the maximum energy stored in

the pumped storage power station at time t.

5 Case analysis

5.1 Description of the algorithm

This paper focuses on the research of a county-level power grid in
southern China, where the primary power sources include thermal
power plants, hydroelectric power plants, and pumped storage power
plants. Among them, there are 6 thermal power units in the thermal
power plants, 4 hydroelectric units in the hydroelectric power plants,
and 2 pumping units in the pumped storage power station. The
hydroelectric conversion coefficient is assumed to be 90%. The
upstream water head of the hydropower unit is 50 m. In this
region, the thermal power plants are the primary power source for
supplying the load, while the hydroelectric power plants and pumped
storage power plants participate in energy distribution as auxiliary
forms to regulate it. The test cases were conducted on a laptop with
AMD Ryzen 7 7735H with Radeon Graphics CPU, 3.2 GHz and
32 GB RAM. The MATLAB software with YALMIP toolbox and
CPLEX solver were used to solve the optimization problems.

Detailed information on the parameters of each power plant is
provided in the appendix. Wind and photovoltaic power forecasts as
well as load forecasts within the regional grid are shown in Figures 2, 3.

5.2 Analysis of results

To validate the advantages of the proposed model, results are
compared in the following four modes for further explanation.
Mode 1: Initial mode, where the primary power generation is solely
handled by thermal power plants, and there are no reservoirs or
pumped storage in the system. Mode 2: Involves hydroelectric plants
in scheduling optimization, working in coordination with thermal
power plants for optimized operations, with reservoirs but no

pumped storage. Mode 3: No hydroelectric plants participate in
optimization, but there is auxiliary regulation by pumped storage
plants, with no reservoirs but pumped storage available. Mode 4:
The model established in this paper, which includes both reservoirs
and pumped storage. Economic operating costs and curtailment rates
under the four modes are shown in Table 1.

From Table 1, it is evident that in Mode 1, the total operating cost
of the system is the highest. This is because only thermal power units
generate electricity in the system, and there is no pumped storage and
hydroelectric units for auxiliary regulation, leading to higher
curtailment penalties/load shedding costs. In Mode 2, the
participation of hydroelectric units significantly reduces curtailment
penalties/load shedding costs, although the unit operating costs are
relatively higher, resulting in a significant reduction in total operating
costs. In Mode 3, the introduction of pumped storage reduces both unit
operating costs and curtailment penalties/load shedding costs,
emphasizing the importance of pumped storage. In Mode 4,
although unit operating costs are slightly higher compared to Mode
3, other costs and curtailment rates are reduced, demonstrating that the
coordination between pumped storage and hydroelectric units can
optimize system scheduling performance.

Curtailment, load shedding, and new energy integration under
the four modes are as follows in Figures 4–15:

From the scenarios of renewable energy consumption,
curtailment, and load shedding described above, it is evident that:
In Modes 2 and 4, the system does not experience load shedding, as
the output of the hydroelectric units can prevent load shedding
incidents. InMode 3, there is a small amount of load shedding due to
the limited capacity or regulatory ability of pumped storage, which
prevents the transfer of more energy to the load shedding gap,
resulting in system load shedding. In Mode 4, the system’s energy
curtailment is minimized, and there is no load shedding,
demonstrating the superiority of the model presented in this paper.

The operational results of each unit under Mode 4 are as follows:
Figure 16 shows the power output of thermal power units,

hydroelectric units, and pumped-storage power units over a 24-h
period. The chart reveals that the power output of thermal power
units (red bars) and hydroelectric units (black bars) is relatively
stable, whereas the pumped-storage power units (purple line)
exhibit significant negative and positive power outputs, reflecting
their energy storage and release characteristics.

The analysis of the joint operation of these three types of equipment
demonstrates the critical role of pumped-storage in peak shaving and
balancing the electricity grid load. During the night, when electricity
demand is low and the production capacity of thermal and hydroelectric
units might be excessive, pumped-storage units operate at negative
power to absorb surplus electricity, thus avoiding resource waste.

TABLE 1 Economic operating costs and power abandonment in four models.

Model Total Running
costs

Unit operating
costs

Abandonment penalties/load-shedding
costs

Power abandonment
rate

Model 1 11,184.93 9,528.88 1,656.05 0.126

Model 2 11,076.28 9,702.47 1,373.81 0.126

Model 3 10,572.54 9,508.69 1,063.84 0.087

Model 4 9,923.078 9,667.24 255.836 0.023
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During peak electricity usage times, the pumped-storage units respond
rapidly to increased load through positive power operation, supporting
grid stability and reducing reliance on thermal power units.

The operation strategy of the pumped-storage power plant is
as follows:

Figure 17 shows the daily operational strategy of pumped storage.
The graph shows the output variation of the pumped-storage units over
a 24-h period: during low demand periods (such as nighttime), they
exhibit negative output, meaning the units consume electricity to pump
water to the upper reservoir; during high demand periods (usually
daytime and evening), they switch to positive output, releasing water to
generate electricity to meet high power demands.

The load adjustment before and after is as follows:
Figure 18 shows the load data comparison before and after pumped

storage participates in grid load regulation. By comparing the two curves
- before regulation (unregulated) and after regulation (regulated), we can

analyze the role of pumped storage in electricity system load
management. The vertical axis represents the load (in KW), and the
horizontal axis represents the time of day (0–24 h). The graph shows that
in the unregulated scenario, the load curve exhibits significant peak-
valley differences, meaning the power system will face high loads during
certain periods (such as afternoon and evening) and lower loads at other
times (such as late night and early morning).

After the pumped-storage system is put into operation, the adjusted
load curve becomes smoother, especially during the periods of original
peak load. This indicates that pumped storage effectively reduces peak
loads and lowers the operational pressure on the grid by storing energy
(pumping water to the upper reservoir) during low load periods and
releasing energy (generating electricity) during high load periods.

The operational strategy of pumped storage reflects its multiple
advantages. Firstly, its peak-shaving capability, as shown in the positive

FIGURE 16
Operational results of each unit in Mode 4.

FIGURE 17
Operational strategy of the pumped-storage power plant in
Mode 4.

FIGURE 15
Photovoltaic power consumption in Mode 4.

FIGURE 18
Before and after load adjustment in Mode 4.

Frontiers in Energy Research frontiersin.org10

Jia et al. 10.3389/fenrg.2024.1373588

199

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1373588


output phase in Figure 17, demonstrates the pumped storage system
releasing storedwater energy to generate electricity during high demand
periods, helping the grid handle peak loads. This peak-shaving
capability is a key component of the flexibility of the electricity
system, particularly in the context of the increasing share of
renewable energies like wind and solar power. Secondly, its energy
storage capability is revealed during the negative output phase,
highlighting the ability of pumped storage to store energy during
low demand periods. In this way, it can convert surplus electrical
energy into potential energy, increasing the storage capacity of the
electricity system. Finally, its high efficiency and environmental
friendliness. Pumped storage is one of the most mature large-scale
electricity storage technologies, with a cycle efficiency of 70%–80%. As a
clean storage technology, pumped storage does not produce greenhouse
gases or other pollutants during operation, helping to reduce reliance on
fossil fuels and lower the carbon footprint of the electricity system.
Through Figure 18, we can visually observe howpumped storage adjusts
its operational mode according to the daily cyclical changes in electricity
demand, demonstrating its indispensable role and value in the electricity
market. Furthermore, the involvement of pumped storage also helps to
reduce the electricity system’s dependence on traditional peak-shaving
power plants (such as gas-fired power plants), thereby lowering
operational costs and environmental impacts.

6 Conclusion

This paper considers the coordinated dispatch of flexible resources
such as pumped storage and hydropower units in traditional power
systems and proposes a joint dispatch model for the complementary
utilization of various generation methods like wind, solar, hydro,
thermal, and storage. Conclusions are as follows:

(1) The joint dispatch model established in this paper for the
complementary utilization of wind, solar, hydro, thermal, and
storage generation methods has generally reduced the
economic dispatch cost of the system, lowered the level of
load shedding and the rate of abandoned power, and
increased the absorption of wind and solar power;

(2) In the proposed model, hydropower units can buffer issues such
as the high-cost operating intervals and startup/shutdown
difficulties of traditional thermal power units, optimizing power
generation in conjunction with thermal power units, thereby
enhancing the economic efficiency of the system’s operation;

(3) In the proposed model, pumped storage units can fully
mobilize hydraulic resources, dispatching energy within the
generation intervals where the original units bear high output
costs or where there is surplus wind and solar power, thereby
improving system load characteristics and reducing the
burden of output on units within the system.

Although joint dispatch offers many advantages, it also faces
numerous challenges in practical application, including
technical complexity, cost investment, policies, and market
mechanisms. Future research needs to focus more on
technological innovation, cost-benefit analysis, and policy
support mechanisms to promote the widespread application
and development of this strategy.
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Lean resource management and
reliable interaction for a
low-carbon-oriented new grid
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The lean resource management and reliable interaction of massive data are
important components of a low-carbon-oriented new grid. However, with
a high proportion of distributed low-carbon resources connected to a new
grid, issues such as data anomalies, data redundancy, and missing data lead
to inefficient resource management and unreliable interaction, affecting the
accuracy of power grid decision-making, as well as the effectiveness of
emission reduction and carbon reduction. Therefore, this paper proposes a
lean resource management and reliable interaction framework of a middle
platform based on distributed data governance. On this basis, a distributed data
governance approach for the lean resource management method of the middle
platform in the low-carbon new grid is proposed, which realizes anomalous
data cleaning and missing data filling. Then, a data storage and traceability
method for reliable interaction is proposed, which prevents important data from
being illegally tampered with in the interaction process. The simulation results
demonstrate that the proposed algorithm significantly enhances efficiency,
reliability, and accuracy in anomalous data cleaning and filling, as well as data
traceability.

KEYWORDS

lean resource management, anomalous data cleaning, missing data filling, reliable
interaction, low-carbon-oriented new grid

1 Introduction

With the increasing demand of a low-carbon-oriented new grid for strengthening
the management and control of massive data, lean resource management and reliable
interaction with functions such as data cleaning and governance play an important
role in the low-carbon-oriented new grid (Li et al., 2021; Shahbazi and Byun, 2022;
Liao et al., 2023a). However, due to the complex operating environment and the diversity
of data sources, lean resource management poses high requirements on the data quality
and reliability (Bo et al., 2023). Issues such as data anomalies, data redundancy, and
missing data have a significant impact on the accuracy and stability of the system
operation and may also increase the risk of low-carbon-oriented new grid decisions
and even pose a threat to the security and stability of the entire grid financial
operation (Zhou et al., 2018; Tariq et al., 2021; Li et al., 2022). The emergence of a data
middle platform provides a solution for the lean management and unified integration
of financial data, realizing the fine configuration of resources and improving the
overall economic efficiency through integrating financial data middle platform and
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service middle platform (Tariq and Poor, 2018; Ashtiani and
Raahemi, 2022; Fei et al., 2022).

However, data governance under the traditional middle
platform architecture often adopts a centralized management
model, with issues such as data silos, poor data quality, high
data security risk, low data governance efficiency, and poor
scalability. Therefore, research on data cleaning governance for
lean resource management and reliable interaction of financial
financing in the low-carbon-oriented new grid is required
(Li et al., 2023).

1.1 Contribution

The main contribution of this research lies in
proposing a lean resource management and reliable
interaction framework for the middle platform based
on distributed data governance in the context of the
lean financing management environment for power grid
companies. The paper addresses the pressing need for
enhanced data management and control in the grid,
particularly focusing on functions such as data cleaning
and governance.

First, the existing research algorithms for anomalous data
detection have encountered some limitations, such as a manual
anomaly threshold setting and untimely threshold updating. In this
regard, an anomalous data cleaning method is proposed, based
on the dynamic adjustment of local outlier factor (LOF) anomaly
thresholds, to achieve the optimal selection of the anomaly threshold
for eliminating anomalous data and ensuring high standards of data
quality and reliability in lean resource management.

Second, there are some shortcomings in various methods
to complete missing data, such as the incomplete utilization of
context information and data correlation. In this regard, a missing
data-filling method based on an adaptive update domain genetic
algorithm is proposed to ensure reliable data support for decision-
making processes in the low-carbon-oriented new grid.

Finally, a data storage and traceability method was
proposed, integrating blockchain with the InterPlanetary
File System (IPFS) to ensure the authenticity and reliability
of financial data during the interaction process, thereby
enhancing the efficiency and efficacy of lean resource
management and reliable interaction in the context of the new
energy grid.

The remainder of the paper is structured as follows:
Section 2 outlines the related work; Section 3 introduces
the lean resource management and reliable interaction
framework of the middle platform based on distributed data
governance; Section 4 presents a distributed data governance
approach for lean resource management of the middle
platform in the low-carbon-oriented new grid; Section 5
introduces a data storage and traceability method for
reliable interaction; Section 6 presents the simulation results;
Section 7 presents the discussion and limitations; and Section 8
presents the conclusion.

2 Related works

At present, a number of studies focus on the data cleaning
governance of the grid financial financing lean resource
management and reliable interaction, and themainmethods include
data anomaly identification algorithms and missing data filling
algorithms (Kalid et al., 2020; de Prieëlle et al., 2022). The LOF
algorithm is a typical algorithm in data anomaly identification.
Several studies have introduced methods for evaluating the extent
of outliers within data segments through the utilization of the LOF
calculated with respect to principal components (Wang et al., 2021).
Some other methods include the LOF based on the sample density
(SD-LOF) data cleaning algorithm (Xu et al., 2018). However,
the above methods still have some issues. The identification of
anomalous data usually requires manual setting of the anomalous
determination threshold, which is inefficient and inaccurate. For
missing data filling, the current main methods include vector-based
andmatrix-basedmissing data fillingmethods. In addition, there are
tensor-based missing data filling methods, which can be regarded
as matrix-based extensions and are suitable for multi-dimensional
data filling (Deng et al., 2019; Jiang et al., 2021). In this regard, there
is research on missing data interpolation methods based on tensor
completion (Dai et al., 2017; Liao et al., 2021), and some scholars
have put forward a missing data-reconstruction method based on
matrix completion (Li Q. et al., 2020). However, the missing filling
method often fails to make full use of the contextual information
of the data and the correlation between the data, which leads to
inaccurate or incomplete filling results. In the realm of reliable
interaction among cooperating systems through the interoperability
platform, several studies have sought to enhance the trustworthiness
of digital governance interoperability and data exchange using
blockchain and deep learning-based frameworks while also
integrating a lightweight Feistel structure with optimal operations
to enhance privacy preservation (Malik et al., 2023). However, there
is a lack of consideration for data cleaning and filling, leading to
compromised data quality and low contextual relevance in business
flows. Additionally, studies have proposed the integrated service
architectural view and two methods of modeling messaging flows at
the service and business levels, defining a business flow context using
the integrated process view, thereby improving communication
efficiency in complex systems (Górski, 2023). Nevertheless, this
modeling approach overlooks the essentiality of reliable data storage
and traceability, resulting in the inefficient generation of executable
integrated flows for large-scale composite systems such as grid
companies. In addressing the abovementioned issues, this paper
presents significant innovations in service and business flow data
processing. It introduces a dynamic data cleaning algorithm with
adaptive data-filling methods that consider contextual information.
Furthermore, it proposes a data trust storage method based on
a blockchain and IPFS, along with data traceability through
Merkle trees. This series of data processing methods is closely
interconnected, enhancing the effectiveness of lean resource
management and the performance and trustworthiness of digital
governance interoperability and data exchange within the reliable
interaction framework.
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FIGURE 1
Lean resource management and reliable interaction framework of the middle platform based on distributed data governance.

3 Lean resource management and
reliable interaction framework of the
middle platform based on distributed
data governance

With the continuous development of the financing scale
of low-carbon-oriented new grid financial systems and the
gradual expansion of interest-bearing liabilities of electric power
companies, lean resource management and reliable interaction
of financial financing are urgently needed. Therefore, this paper
constructs a lean resource management and reliable interaction
framework of a financial middle platform based on distributed data
governance, as shown in Figure 1. The proposed framework mainly
includes the data awareness layer, distributed data governance
layer, management and interaction layer, middle platform layer,
and overall decision-making layer. The following paragraphs
describe how to realize the fine allocation of financial data
resources and improve the overall economic benefits of electric
power companies.

The data awareness layer is the foundation of the lean resource
management framework, which covers the core capital flow data
of the low-carbon-oriented new grid financial system (Li Z. et al.,
2020).The core capital flow data include the cash inflow and outflow
data of the whole chain of cost and expense inputs and benefit
outputs, such as assets, equipment, projects, costs, capital, loads,
reliability, electricity sales, and tariffs. Data awareness encompasses
the acquisition, organization, analysis, and visualization of data,
serving to enhance individuals’ comprehension of the concealed
trends and value inherent within the data. Through efficient data
collection and integration, it ensures the accuracy and completeness
of the basic data of the financing lean management framework and
provides reliable data support for the subsequent financing lean
management of electric power companies.

The distributed data governance layer is mainly responsible
for the management of distributed financial data standardization,
data quality, master data, metadata, data security, data sharing,
data value, and life cycle of the low-carbon-oriented new grid,
aiming to improve the security and controllability of data in the
system and achieve the purpose of lean resource management
and reliable interaction. By adopting advanced data governance
technologies, such as data anomaly identification cleaning and
missing data filling (Ali et al., 2021; Hou et al., 2023), the usability
and integrity of financial data are guaranteed, and a credible
database is provided tomeet the data requirements of financing lean
management, thus enhancing the protection of financial data and
providing reliable support for financial decision-making in the low-
carbon-oriented new grid. Furthermore, through distributed data
governance, the consistency and accuracy of data across disparate
systems and departments can be ensured, thereby mitigating data
redundancy and errors. It can establish a robust data security
and compliance storage mechanism, hence enhancing the lean
level of resource management. Distributed data governance, by
safeguarding data consistency, security, quality, and traceability,
enhances the reliability of data resource interactions to ensure the
dependable exchange and sharing of data across various systems and
departments.

The management and interaction layer is responsible for
analyzing the financial data from the distributed data governance
layer and formulating the financing strategy of electric power
companies, including the modules of financing scale measurement,
financing structure measurement, financial cost upper- and lower-
limit measurement, and electricity tariff sensitivity analysis. Among
them, the goal of financing scale measurement is to scientifically
determine the capital demand. Financing structure measurement
aims to optimize the allocation of capital. Financial cost upper- and
lower-limitmeasurement ensures that the financial cost is controlled
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within a reasonable range. Electricity tariff sensitivity analysis is used
to assess the financial performance of the enterprise in different
market situations. In addition, this layer is also responsible for
providing reliable financing data interaction. The blockchain and
IPFS are located in this layer, which realizes the functions of trusted
storage and accurate traceability of distributed financial data (Tant
and Stratoudaki, 2019). The IPFS is a peer-to-peer distributed file
system that uses content addressing for data storage and retrieval.
Trusted storage leverages this technology to ensure the integrity,
confidentiality, and reliability of data, guarding against tampering,
loss, or leakage, which further ensures the reliability of the financing
strategy and improves the reliable interaction capability of the
distribution grid.

The financial middle platform layer includes the financial
service middle platform and the financial data middle platform.
First, the financial service middle platform integrates common
and universal core financial accounting capabilities such as fund
accounting, taxmanagement, expense reimbursement,management
reports for material procurement, power purchase fee payment, and
power sales revenue, achieving the reuse and sharing of financial
service capabilities of different service units of the enterprise.
The financial data middle platform realizes the integration and
unification of multi-level and multi-professional data such as
distribution network projects, assets, equipment, costs, funds,
power, and users. The financial middle platform integrates the
data and functions of each layer of the lean resource management
and reliable interaction framework, provides unified interfaces
and service, improves the quality of business and financial data,
and forms various types of data products, which can be used to
serve in the front-end business and support the lean resource
management and reliable interaction for the low-carbon-oriented
new grid.

The overall decision-making layer mainly includes carbon
trading management, enterprise budget management, personnel
performance management, and investment decision-making
modules (Tariq et al., 2020; Liao et al., 2023b). Through the
implementation of financing strategies as well as the analysis and
feedback of the results, it formulates to ensure the controllable scale
of interest-bearing liabilities and optimize financing costs.

4 A distributed data governance
approach for the lean resource
management of the middle platform
in the low-carbon-oriented new grid

In the process of data acquisition, execution, control, and
feedback, data anomalies and missing data easily occur due to
factors such as short-term failure of sensors, manual errors, and
redundancy of information, which reduce the available information
of original data and affect data accuracy and continuity. In this
paper, we propose a distributed data governancemethod for the lean
resource management of the middle platform in the low-carbon-
oriented new grid. The specific process is shown in Figure 2, which
can significantly improve the quality of basic data and improve the
available information through the identification and cleaning of data
anomaly and the automatic filling of missing data. Data governance

FIGURE 2
Flowchart of the distributed data governance method for the lean
resource management of the middle platform.

technology supports the lean resource management in the low-
carbon-oriented new grid and the efficient and reliable operation of
the power system.

4.1 Data anomaly cleaning method based
on the dynamic adjustment of LOF
anomaly thresholds

The LOF algorithm is a classic unsupervised anomaly
identification algorithm, mainly utilizing the density of the data
to determine the data anomaly. However, the traditional LOF
algorithm requires the LOF threshold to be set manually in
advance, which is not applicable to massive financial data cleaning
(Zheng et al., 2015; Salehi et al., 2016). This paper proposes a data
anomaly cleaning method based on the dynamic adjustment of
LOF anomaly thresholds, which adjusts and updates the anomaly
threshold according to the number of samples of the LOF value.
The proposed method realizes the optimal selection of anomaly
thresholds, which is described as follows.

The kth reachable distance is calculated. The kth distance
between the point farthest from di and di in all financial data points
is defined; the distance Sk(di) is the kth distance of di, and Sk(di,dj)
denotes the distance between point di and point dj. Thus, the kth
reachable distance from point di to point di is denoted as Sk(di,dj) =
max{s(di,dj),Sk(di)}.
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The local reachable density for each financial data point is
calculated. The kth distance domain of point di is denoted byVk(di),
that is, all points within the kth distance of point di. The local
reachability density ρk(di) of point di is the inverse of the average
reachability distance from all points within Vk(di) to point di,
reflecting the density between point di and points in the surrounding
domain, which is given by the following expression:

ρk (di) =
|Vk (di)|

∑
dj∈Vk(di)

Sk (di,dj)
. (1)

The LOF is calculated for all financial data points in the sample.
The local anomaly factor ξLOF(di) for point di is given by the
following equation:

ξLOF (di) =
∑

dj∈Vk(di)
ρk(dj)
ρk(di)

|Vk (di)|
. (2)

Here, ξLOF(di) denotes the average value of the ratio of the local
reachability density of points within the kth distance domain Vk(di)
of point di to the local reachability density of point di. The larger
ξLOF(di) is, the more likely that point di is an anomalous data point.

The LOF anomaly threshold is determined. After obtaining all
LOF values, the anomaly threshold can be continuously adjusted
based on the number of statistics of LOF values to realize the
accurate identification of anomaly financial data, and the LOF
anomaly threshold is defined as ξ′LOF, which is calculated as follows:

ξ′LOF = ̄ξLOF +
β ⋅ √∑n

i=1
(ξLOF (di) − ̄ξLOF)

2

n
. (3)

Here, ̄ξLOF =
1
n
∑ni=1ξLOF (di) is the mean of all LOF values. n is

the sample size of LOF values. β is the anomaly skewness, which
measures the extent to which the anomalous data differ from the
normal data, and the larger the value of β, the larger the ξ′LOF is
likely to be. When ξLOF(di) is greater than ξ′LOF, di is an anomalous
data point.

Since β is an important parameter affecting the LOF anomaly
threshold, a too-large value of β will lead to a large anomaly
identification error, while a too-small value of β will lead to
slow identification efficiency. Therefore, the optimal β needs to be
selected.This paper further adapts the parameter of β, which is given
as follows:

β =
n

∑
i=1
(1− 1

eai
) ⋅

ξLOF (di) − ̄ξLOF

ξLOF,max − ξLOF,min
, (4)

where ai ∈ [0,1] is an indicator variable for the mean value of the
financial data. When ai = 0, it indicates that ξ′LOF = ̄ξlo f ; otherwise,
ai = 1. ξLOF,max and ξLOF,min indicate the maximum and minimum
values of the LOF financial data point, respectively. Using the above
equation, the optimal β can be adaptively adjusted according to the
number of samples of LOF values, and the optimal LOF anomaly
threshold can be further obtained, which improves the efficiency and
accuracy of financial data point anomaly identification.

The above steps are repeated until all anomalous financial data
points are identified, and the anomalous financial data are cleaned
to obtain a new financial dataset E = {E1,E2,…,Em}.

4.2 Missing data-filling method based on
the adaptive update domain genetic
algorithm

As the cleaning of anomalous financial data will result in
missing financial data points, it is necessary to fill in the missing
data to protect the integrity of financial data to support the lean
resource management of financial financing. We assume that E =
{E1,E2,…,Em} satisfies the m dimensional normal distribution,
which is denoted as E = Eobs ∪Emis. Eobs is the set of financial data
with observations, and Emis is the set of missing financial data. In
this paper, based on the adaptive update domain genetic algorithm,
we estimate the log-likelihood function of the parameters μ and Ω
of the financial dataset E as follows:

Φ (μ,Ω) = − t
2
ln (2π) − t

2
ln |Ω| − 1

2

t

∑
1=1
(e1 − μ)

T ⋅Ω−11 (e1 − μ) , (5)

where μ = {μ1,μ2,…,μm} is a vector of means for each financial data
and Ω(σpq) is the covariance matrix of variable {E1,E2,…,Em}. The
initial values of μ and Ω are generally determined by the financial
dataset Eobs, and el denotes the vector of variables corresponding
to the financial data record l = {1,2,…, t}, where t is the number of
financial data records.

In this paper, Φ(μ,Ω) is used as the fitness function to calculate
the fitness of each parameter individual in the population.The larger
theΦ(μ,Ω) value is, the closer andmore accurate the parameter.The
following constraints must be met.

s.t. {μ1,min ≤ μ1 ≤ μ1,max,…,μm,min ≤ μm ≤ μm,max} , (6)

where μm, min and μm, max denote theminimumandmaximumvalues
of themth anomalous financial data point, respectively, whose values
are determined by Eobs.

In order to improve the speed of selecting the optimal
parameters, the parameters determined by Φ(μ,Ω) are further
crossed and mutated to realize the selection of the optimal
parameters. Assuming that pc is the crossover probability and
there are t parameter individuals in the parameter population,
tpc parameter individuals are selected for crossover operation.
Assuming that O = {O1,O2,…,Ot} denotes the parent of the
parameter population, two parameters are randomly chosen in O =
{O1,O2,…,Ot} to form the crossover pair O(Or,Os). At the same
time, v is randomly chosen in {1,2,…,m}. Two offspring μ′rv,μ

′
sv

are generated by performing a c-crossing operation on μrv,μsv in
O(Or,Os), which, in turn, yields a new parameter O′rv,O

′
sv. The

crossover formula is expressed as follows:

μ′rv = eμrv + (1− e)μsv
μ′sv = (1− e)μrv + eμsv

, (7)

where e is the crossover randomnumber and its value is within [0,1].
Assuming that px is the variation probability and there are t

parameter individuals in the parameter population, tpx parameter
individuals are selected from the parameter population for crossover
operation. Oh is denoted as an individual in the parameter
population. {μh1,μhn,⋯,μhm} is the set of means of Oh, and φ is
randomly selected in {1,2,…,m} for the mutation operation. Then,
the mutated parameter isO′h, and the mean is {μ′h1,μ

′
hn,…,μ

′
hm}. The
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mutation formula is expressed as follows:

μ′hφ =
{
{
{

μhφ +Δ(g,maxφ − μhφ) ,random (⋅) > 0

μhφ −Δ(g,μhφ −minφ) ,random (⋅) < 0
, (8)

Δ (g,x) = x(1− η(1−
g
G
)β) , (9)

where random() is a random function that produces a uniform
distribution. If a random number is greater than 0, the mean value
after mutation will increase, that is, random(⋅) > 0; if a random
number is less than 0, the mean value after mutation will decrease,
that is, random(⋅) < 0; and if a random number is 0, the mean value
after mutation will remain unchanged, that is, random(⋅) = 0. G is
the maximum number of generations of variants, g is the current
number of generations of variants, β is a parameter that determines
the degree of non-consistency, and η is a random number in [0,1].

Considering that the genetic algorithm easily falls into the local
optimum and has many iterations, this paper makes the algorithm
jump out of the local optimum by the chaotic disturbance of
excellent parameters to reduce the number of iterations. Let the
fitness function of the current optimal parameter μ∗ be Φ∗ and the
mean vector of the excellent parameter μ∗h = {μ

∗
h1,μ
∗
h2,…,μ

∗
hm}, then,

the chaotic disturbance to μ∗hm can be expressed by the following
equation:

μ∗hm = μ
∗
hm−1 + 1−[

(y− 1)
y
]
n
χj−1. (10)

Here, μ∗ is the value after chaotic perturbation in the traversal
interval of the smaller feasible domain. 1− [ (y−1)

y
]
n
is the adjustment

coefficient with respect to the number of iterations y. The value of
χj−1 is randomly set as 1 or -1.

In order to further improve the optimization accuracy of the
genetic algorithm, this paper introduces the search domain adaptive
update mechanism. The update domain includes a total of two
phases. Φo and Φo−1 are defined as the optimal adaptation values of
the oth and o− 1th generations, respectively. α is a threshold, which
takes the value of (0,1). If the difference between Φo and Φo−1 is less
than a threshold α, the search domain update is in the first stage;
otherwise, it is in the second stage.The stage discrimination formula
of the search domain update is shown as follows:

Φ∗ = |Φo −Φo−1| < α. (11)

When the search domain update is in the first stage, the lower
bound of the search domain is increased, and the upper bound of
the search domain is decreased, thus reducing the overall search
domain. The upper and lower bounds of the search domain for the
oth generation are calculated as follows:

blowo = b
low
o−1 +min(|bupo−1 − b

low
o−1|)/ε,

bupo = b
up
o−1 −min(|bupo−1 − b

low
o−1|)/ε
, (12)

where blowo and bupo are the upper and lower bounds of the oth
generation, respectively, and ɛ is the scale parameter.

When the difference between Φo and Φo−1 is larger than a
threshold α, the replicated optimal individual enters the second
stage, and then, the search domain is updated as follows:

clowo = μ
′
hφ +min(|cupo−1 − c

low
o−1|)/ε,

cupo = μ′hφ −min(|cupo−1 − c
low
o−1|)/ε
, (13)

where clowo and cupo are the adjusted lower and upper bounds,
respectively. Φ∗ is used as the criterion to shrink the boundaries
one by one. When the distance of the optimal individual from the
boundaries is less than the fault-tolerant variable, the boundaries
are restored to the initially defined domain. The current optimal
individual is preserved, and then, the genetic search is continued
until reaching the maximum number of iterations.

In order to reduce the error of the estimated value of missing
data, it is necessary to further estimate the missing anomalous
financial data. Therefore, this paper uses the Markov chain Monte
Carlo (MCMC) method to fill the missing data. This method
iteratively estimates the missing data on the condition of incomplete
datasets and parameters of incomplete data, and the filling process
is as follows.

1) Each of the missing-type anomalous financial data are
estimated according to the optimal parameters μ, Ω, and Eobs,
and the value of Ey+1

mis is derived from the conditional distribution
p(Emis,Eobs,Oy). p(Emis,Eobs,Oy) is the probability distribution
associated with Emis, Eobs, andOy. μ andΩ are generally determined
by the financial dataset Eobs.

2) The posterior mean vector and covariance matrix of the
simulated data, that is,Oy+1, are obtained in p(O ∣ Eobs,E

y+1
mis), based

on the filled complete financial dataset, whichwill be repeated in (1).
3) Filling the missing-type financial data by iterating

(1) and (2) over each other produces a Markov chain
({Y1,O1} , {Y2,O2} ,…,{Yy+1,Oy+1}), which exhibits a
p((Emis,O) ∣ Eobs) distribution. When the distribution is stabilized,
the filled missing data of Emis will be obtained, yielding the complete
financial dataset U = {u1,…,um}.

5 A data storage and traceability
method for reliable interaction

After the anomaly financial data cleaning and missing data
filling, measures are implemented to further guarantee the reliable
interaction between different departments in the financial financing
of electric power companies. This paper proposes a data storage
and traceability method for the reliable interaction of the financial
system, which prevents the financial data from being illegally
tampered with in the interaction process. It ensures the authenticity
and reliability of power grid data and further supports the
calculation and interaction of the internal financing revenues and
costs in electric power companies and the cost units.

5.1 Data storage method based on th IPFS

After data governance, the dataset U = {u1,…,um} is stored
using the IPFS.The IPFS enables the data storage and retrieval based
on the content of financial data and uses the idle storage resources in
the network to establish a distributed data storage system. It divides
the data to different network locations, supports fast retrieval and
data sharing, and possesses a fault-tolerant nature.

Considering that the IPFS uses the hash value of data as the
storage address, this feature is naturally consistent with the tamper-
proof feature of blockchain storing data hash values. Therefore, this
paper proposes a data storage scheme combining the IPFS and
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blockchain, which combines the IPFS to store data and blockchain
to store data hash so as to realize distributed data storage and
ensure data safety reliability, and traceability. When uploading
data larger than 256 KB to the IPFS, the system automatically
divides the data into 256 KB chunks and stores these chunks on
different nodes in the network. Blockchain nodes store hash values
of data elements, while nodes except leaf nodes store hash values
of child nodes. Therefore, the hash value in the node is calculated
as follows:

Ai,j =Hash(Ai−1,2j−1,Ai−1,2j) , (14)

where Ai,j denotes the hash value of the jth target node in the
ith level.

To represent the hash of the data, the IPFS uses a multi-hash
format and Base58 encoding. The storage address Ad is represented
as follows:

Ad = Base58(ACode |ALengh|AHash) , (15)

where ACode denotes the hash algorithm encoding; ALengh
denotes the length of the hash value; and AHash denotes the
hash value.

For each fragment, a unique hash value is generated.
Subsequently, the IPFS concatenates the hash values of all fragments
and computes the resulting hash value for the data, which is

AHash =∑Hash(um) . (16)

5.2 Data traceability method based on
Merkle mountain proof

In order to ensure the authenticity and traceability of financial
data flow records (DFRs) of electric power companies, this paper
proposes a data traceability method based on Merkle mountain
proof, supporting the safety and reliability of financial data in
the interaction process. Specifically, a new Merkle mountain block
structure is introduced to construct a data storage structure, which
includes two parts: block header and block body. Between them,
the block header contains the data version number, time stamp,
degree of confidentiality, business category, hash value of the
previous block, Merkle tree root (MTR), and Merkle mountain
range root (MMRR). The block body consists of the Merkle
tree and Merkle mountain. As a special Merkle tree, the Merkle
mountain has the advantage of dynamic data addition, and it is
not necessary to rebuild the data structure. The data traceability
method based onMerklemountain proof includes two parts,Merkle
mountain proof and data traceability of Merkle mountain proof
based on data private blockchain (DPBC), which are introduced
as follows.

5.2.1 Merkle mountain proof
The process of data traceability requires the initial generation

of Merkle mountain proof, which involves verifying the data
stored in the leaf nodes of the Merkle mountain to ensure their
integrity and authenticity, thereby safeguarding against tampering
and ensuring trustworthiness.TheMerklemountain proof process is
as follows:

1:Input:h, MTR

2:Output:MTR', MMRRh

3:Phase1:Downloading

4:InitializeΘi(t) = ∅ and yi,j = 0.

5:A target node in the financial middle platform

synchronizes information about a block of height h

from the local ledger of the entire node in the

DPBC network of the company.

6:Obtain the MTR′ of the Merkle tree in block h.

7:Phase 2: Merkle mountain proof

8:Calculate the MTR′ of a node by Merkle

mountain proof.

9:if MTR′ = MTR then

10:Synchronize the block information of the latest

height H from the local account book of all nodes

in the DPBC network, and obtain MMRR from the

H block.

11:Calculate the MMRRh of the target node by

Merkle mountain proof.

12:ifMMRRh = MMRRH then

13:DFR care authentic and traceability is

completed.

14:else

15:Error in DFR.

16:end if

17:else

18:Error in DFR.

19:end if

Algorithm 1. The proposedMerkle mountain proof-based data traceability
method.

Step 1: The process starts with the target node to be verified,
looks up to the upper parent node, and ends with the MTR of the
Merkle tree where the target node is located. The set of nodes passed
through in the search process is called Merkle mountain range path.

Step 2: The MTR is retrieved for all subtrees within the Merkle
mountain range.

Step 3: The Merkle mountain range proof set is assembled by
combining the nodes from the Merkle mountain range path in step
1 and the MTRs from step 2.

Step 4: A hash operation is performed on the Merkle mountain
range proof set, which is compared with the field in the block header
to complete the Merkle mountain proof.

Then, the set of Merkle mountain proof can be expressed as
follows:

Ai,j
M = {∑Ai,j

MP ⊗∑Ai,j
MTR} , (17)

where ∑Ai,j
MP is the node in the path of the Merkle mountains and

∑Ai,j
MTR is theMTR of all subtrees. ⊗means that all nodes in the path

of theMerklemountain form a one-to-one combination relationship
with the MTR of all subtrees.
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Therefore, the MMRRh of the target node can be obtained
through hash operation, that is,

MMRRh =Hash(Ai,j
M) , (18)

where MMRRh denotes the MMRR of the block with height h.

5.2.2 Data traceability of Merkle mountain proof
based on the DPBC

The traceability process is shown in Algorithm 1, where H
represents the latest block height in the current network and
h represents the height of the block to be verified. When it is
necessary to trace the DFR in the block with height h, the node
only needs to synchronize the block with height h and the block
header with the latest height H from the network to complete
the verification.

6 Simulation results

6.1 Analysis of anomalous data
identification and cleaning performance

This paper uses a sample set consisting of 103–104 distribution
grid financial system data points collected for the purpose of
identifying and cleaning anomalous financial data.Thefinancial data
points used are sourced from the transaction data and financial
books of five departments in the distribution network financial
system of a certain power supply company of the State Grid
Corporation of China from January to March 2017 (Shouyu et al.,
2019). To further validate the efficiency of the proposed algorithm
in this paper, a comparative analysis is conducted with two existing
algorithms for identifying and cleaning anomalous data: the quartile
algorithm and the traditional LOF algorithm.The quartile algorithm
demonstrates high cleaning efficiency but is prone to excessive
removal, leading to identifying and cleaning some data points within
the normal fluctuation range, resulting in a serrated pattern in
the clustered regions of the data. The traditional LOF algorithm
requires a manually preset threshold, heavily relying on expert
experience. When applied to the cleaning of massive financial data
characterized by high uncertainty, its efficiency and accuracy are
notably compromised.

Figure 3 shows the anomalous data identifying and cleaning
results under different numbers of data points. The proposed
algorithm exhibits higher accuracy in identifying and cleaning
anomalous data than the two comparing algorithms. Specifically,
when the number of data points is set at 104, the performance
of the proposed algorithm improves by 76.4% compared to the
quartile algorithm and 106.5% compared to the traditional LOF
algorithm. This improvement stems from the adaptive adjustment
of the anomaly threshold based on the sample size of LOF values
in the proposed algorithm, enabling a dynamic optimal selection
of the anomaly threshold and consequently enhancing the accuracy
of anomalous data identifying and cleaning in massive financial
datasets. The weaker ability of the quartile algorithm to identify
biases in the data leads to the excessive removal of normal
data, resulting in a decrease in accuracy in the identification

FIGURE 3
Anomalous data identifying and cleaning results versus different
numbers of data points.

FIGURE 4
Number of false positives for anomalous data versus different
numbers of data points.

and cleaning of anomalous data. The traditional LOF algorithm,
when confronted with large datasets, has a fixed threshold, which
limits its ability to identify and eliminate a significant portion
of extreme anomalies, particularly in the context of multivariate
high-dimensional data, thereby diminishing its accuracy in
anomaly identification.

Figure 4 shows the number of false positives for anomalous data
under different numbers of data points. The proposed algorithm
exhibits a significantly lower count of misjudged anomalous data
than the two comparison algorithms. Specifically, when the number
of data points is set at 104, the number of false positives for
anomalous data in the proposed algorithm is 790, representing
reductions of 83.5% and 85.7% compared to the quartile algorithm
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TABLE 1 Simulation parameters.

Sub-
dataset

Sample
size

Number
of
attributes

Number
of
categories

Balance sheet 3,002 42 8

Profit 5,890 33 34

Cash flow 103 18 21

and traditional LOF algorithm, respectively. This noteworthy
improvement stems from the real-time dynamic adjustment of the
LOF threshold by the proposed algorithm, leading to a substantial
decrease in the misjudgment count, particularly in the context of
handling vast datasets. In contrast, the two comparison algorithms
lack the capability to adapt to dynamic changes in financial
data, resulting in an increase in the misjudgment count as data
rapidly expand.

6.2 Analysis of missing data-filling
performance

The performance of the algorithm is validated through
simulation using a foundational financial dataset from the
power grid financial system, aiming to demonstrate its data
imputation capabilities in a multivariate dataset. The validation
indicator is the data-filling accuracy, which refers to the
similarity between the filled data and the original data.
The specific attributes of the selected dataset are detailed
in Table 1 (Wu et al., 2012).

To validate the performance of the proposed algorithm,
the expectation maximization algorithm (EMA) and genetic
algorithm (GA) are selected as comparison algorithms. The
EMA assumes a distribution for a financial dataset with partially
missing data and makes inferences based on the likelihood
under this distribution, replacing missing data with expected
values. The GA, on the other hand, derives the optimal
combination of attribute weights, or the best chromosome, through
selection, crossover, and mutation operations. Consequently,
it estimates missing values in the dataset based on this
optimal chromosome.

Figure 5 shows the variation in data-filling accuracy with
the number of algorithm iterations. The proposed algorithm
demonstrates superior data-filling accuracy and faster convergence
than the two comparison algorithms. At the 120th iteration,
the data-filling accuracy of the proposed algorithm surpasses
those of the EMA and GA by 41.1% and 8.2%, respectively. This
improvement is attributed to the adaptive updating mechanism
of the search space introduced by the proposed algorithm,
which dynamically identifies whether the improvement rate
of the optimal individual meets the requirements, leading to
adjustments in the updating space. Consequently, it conducts global
optimization for the attributes of each sub-dataset. Although the

FIGURE 5
Accuracy of data filling versus the number of iterations.

EMA exhibits faster convergence than the proposed algorithm,
its failure to consider the entire parameter space may result in
estimating optimal parameters that are specific to local optima
in individual sub-datasets, leading to a decrease in the overall
data imputation accuracy. The GA lacks the ability to promptly
use feedback information from the network, exhibiting a slower
search speed, requiring more training epochs to achieve more
accurate solutions.

6.3 Analysis of data traceability
performance

To validate the performance of the proposed data traceability
algorithm in this paper, simulation experiments are conducted, with
the evaluation metrics being the amount of data downloaded and
data traceability verification time. The amount of data downloaded
refers to the size of data that nodes need to store locally when
performing data traceability verification. The data traceability
verification time is the time required to verify a specific transaction,
encompassing the duration from submitting the proof of inclusion
of a transaction to locating its corresponding hash value. The
comparison algorithm chosen for this analysis is the simplified
payment verification (SPV) algorithm. The impact of block height
at various magnitudes on simulations is discussed, with the
experimental setup including block heights of 0.01× 105, 0.02× 105,
0.02× 105, 0.1× 105, 0.2× 105, 0.3× 105, 0.6× 105, 1× 105, 1.5× 105,
and 2× 105.

Figure 6 shows the amount of data downloaded at different
blockchain heights. As the blockchain height increases, both the
proposed algorithm and SPV algorithm experience an increase
in the required data volume. However, at the same block height,
the proposed algorithm necessitates a smaller data download than
the comparison Algorithm. At a blockchain height of 2× 105,
the amount of data downloaded for the proposed algorithm is
45.4 MB, representing a 16% reduction compared to the SPV
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FIGURE 6
Amount of data downloaded versus different blockchain heights.

algorithm. This discrepancy arises from the fact that during data
verification, the SPV algorithm needs to download the block
header information for the entire chain, whereas the proposed
algorithm only requires the download of the latest block in
the longest valid chain, thereby reducing the storage resource
consumption for nodes.

Figure 7 shows the results of data traceability verification time
at different blockchain heights. As the number of blocks in the
blockchain network increases, the verification time for both the
proposed algorithm and SPV algorithm gradually escalates. The
proposed algorithm exhibits a shorter verification time than the SPV
algorithm. This is attributed to the fact that the proposed algorithm
only requires obtaining the Merkle mountain range, calculating
the verification path to derive the MMRR and comparing it with
the hash value in the latest block header at the current height. In
contrast, the SPV verification process is more complex as it involves
traversing downward from the latest block to trace back to the target
block. At a blockchain height of 2× 105, SPV incurs a maximum
time cost of approximately 36 ms, while the maximum time cost of
the proposed algorithm is approximately 10 ms. Consequently, the
proposed algorithm achieves a reduction of approximately 72% in
verification time compared to the SPV algorithm, thereby enhancing
the efficiency of the verification process in data traceability.

7 Discussion and limitations

Our proposed approach and framework offer several advantages
that make them promising candidates for integration into enterprise
architecture management (EAM) practices. One key strength is
that the proposed framework adopts a distributed data governance
method, which has high scalability and flexibility. At the same time,
the proposed framework adopts advanced abnormal data cleaning
and missing data-filling technology to ensure the availability and
integrity of financial data. In the context of enterprise architecture

FIGURE 7
Data traceability verification time versus different blockchain heights.

management, our approach opens up opportunities for the
introduction of a novel integration pattern. By leveraging the
decision-making layer, organizations can establish a more seamless
and responsive integration mechanism that aligns with the dynamic
nature of contemporary enterprises. However, the proposed
framework still has some limitations. Introducing a new approach
may require significant changes to existing enterprise architecture
management processes, potentially posing integration challenges. In
addition, the compatibility of our approach with legacy systemsmay
be a concern.

8 Conclusion

In this paper, we proposed a lean resource management and
reliable interaction framework of the middle platform based on
distributed data governance. First, the distribution grid anomaly
data are cleaned by the dynamic adjustment of LOF anomaly
thresholds, and then, the missing data are filled based on
the adaptive update domain genetic algorithm, which enables
lean resource management in the low-carbon-oriented new grid.
Second, the data storage method based on the IPFS is proposed,
and the distribution grid data can be traced back by Merkle
mountain proof based on DPBC, which enables reliable interaction
in the low-carbon-oriented new grid. Finally, the simulation
results show that compared with the quartile algorithm and
traditional LOF algorithm, the proposed algorithm improves
the accuracy of identifying and cleaning anomalous data by
76.4% and 106.5%, respectively. Compared with the EMA and
GA, the accuracy of the proposed data-filling algorithm is
improved by 41.1% and 8.2%, respectively. Compared with SPV, the
proposed data traceability method reduces the verification time by
approximately 72%. In the future, we will study how to integrate the
financing income evaluation of electric power companies into the
proposed framework.
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The impulse noise generated by a large volume of power electronics
devices imposes a hazardous impact on information interaction reliability
in low-voltage distribution grids. In this paper, we propose a two-stage
collaborative information interaction reliability improvement algorithm to
minimize the bit error rate (BER) of the information interaction under impulse
noise. In the first stage, the transmission-side peak-to-average power ratio
(PAPR) is reduced based on the adaptive particle swarm optimization (PSO)-
enabled partial transmit sequence (PTS). In the second stage, the reception-
side dual-signal blanking is proposed based on the transmission-side PAPR
and reception-side useful signal power estimation and peak median ratio.
The transmission–reception collaborative information interaction reliability
improvement is realized through two aspects. First, transmission-side PAPR
reduction improves the performance of reception-side signal blanking by
making it easier to distinguish useful signals from impulse noise. Second, the
transmission-side PAPR is utilized to improve the estimation accuracy of both
coarse and precise thresholds in dual-signal blanking. Simulation results show
that the proposed algorithm outperforms existing algorithms in both PAPR
reduction and BER performances to achieve information interaction reliability
improvement effectively.

KEYWORDS

low-voltage distribution grid, information interaction, reliability improvement, dual-
signal blanking, partial transmit sequence, particle swarm optimization

1 Introduction

Information interaction plays an important role in low-voltage distribution grid
dispatch. As a widely used medium in low-voltage distribution grids, power line
communication (PLC) has played a crucial role in realizing reliable information
exchange. PLC takes existing power lines as the communication medium, which
demonstrates the great advantages of low deployment costs, fast installation, and
wide coverage (Yuwen et al., 2018; Khaled et al., 2018; Zhou et al., 2023). It can adapt
well to the complex multi-branch and multi-load communication topology of low-
voltage distribution grids (Antonio et al., 2015; Li et al., 2022a). However, with the
large-scale integration of renewable energy resources, flexible loads, and energy
storage units into distribution grids, the presence of a significant number of power
electronics devices generates unignorable impulse noise, which significantly reduces
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information interaction reliability and leads to the degradation of
bit error rate (BER) performance (Nima et al., 2017; Ali et al., 2021a;
Wen-Jing et al., 2022). How to ensure information interaction
reliability for a low-voltage distribution grid under impulse noise
remains an open issue (Tariq and Poor, 2018).

Impulse noise suppression is an important aspect of information
interaction reliability improvement for low-voltage distribution
grids, the core of which lies in the transmission-side peak-to-
average power ratio (PAPR) reduction and reception-side signal
blanking. On one hand, the adoption of orthogonal frequency
division multiplexing (OFDM) (Bo et al., 2023; Liong et al., 2023)
in PLC results in high transmission-side PAPR, which counteracts
the effect of reception-side signal blanking because it is difficult to
distinguish impulse noise from useful signals under high PAPR. A
widely utilized approach to reducing the PAPR is the partial transmit
sequence (PTS). It decomposes the original OFDM symbols into
multiple subsequences and then performs weighting and phase
modulation on each subsequence to achieve PAPR minimization.
On the other hand, reception-side signal blanking suppresses
impulse noise by nulling the signal whose amplitude is above a
preset blanking threshold of zero. Its effectiveness in improving
information interaction reliability of PLC has been proved due
to its high feasibility and practicability in real-world applications
(Wang et al., 2023).

However, although recent studies have achieved significant
progress, the study on improving information interaction reliability
in low-voltage distribution grids still faces some major technical
challenges (Kelvin et al., 2017; Zhang et al., 2017). First, there is
a lack of comprehensive consideration of transmission-side PAPR
reduction and reception-side signal blanking from the perspective
of collaboration (Gaëtan et al., 2008; Hongxiang and Tetsuya, 2016;
Ali et al., 2021b). Information interaction reliability improvement
is a complex problem that involves both the transmission and
reception sides, and the transmission-side PAPR has an unignorable
impact on reception-side signal blanking. Second, the selection
of the optimal phase factor in the PTS has extremely high
computational complexity. The search space of minimum PAPR
increases exponentially with the number of partial sequences, and
the simple utilization of the exhaustive method becomes infeasible
(Satyendra Singh et al., 2015; Yassine and Abdelkrim, 2017; Li et al.,
2023). Finally, signal blanking relying on a single threshold is less
effective to deal with the scenario where low-amplitude impulse
noise coexists with high-amplitude noise. The one-size-fits-all
threshold tends to either suppress high-amplitude impulse noise
but keep the low-amplitude one or even suppress both the impulse
noise and useful signal, which has an adverse impact on information
interaction reliability improvement (Filbert et al., 2016).

Numerous researchers have studied PTS for PAPR reduction.
Sravanti and Vasantha (2017) proposed various precoding PTS
methods to improve PAPR reduction performance based on
the exhaustive method. Qian et al. (2019) proposed a PTS-based
algorithm to search for the optimal phase factor using the
exhaustivemethod, which reduces the PAPRof transmission signals.
Zhang et al. (2020) proposed a permutated PTS scheme, which
exhibits significantly higher PAPR reduction performance with less
complexity by combining two operations of phase rotations and
frequency-domain permutations. However, the above studies rely
on exhaustive methods to search for the optimal phase factor,

which is infeasible for practical implementation. The particle swarm
optimization (PSO) algorithm can quickly find the optimal phase
factor by simulating the interaction between particles. It has been
widely applied to PTS due to the advantages of simultaneous
utilization of both local and global information to improve the
search performance. Ouqour et al. (2014) designed a PSO-based
active constellation extension-projection onto convex sets (ACE-
POCS) algorithm to reduce the PAPR of OFDM signals. However,
the conventional PSOalgorithmadopts a fixed inertial weight, which
cannot be adaptively adjusted by the signal characteristic, leading
to poor optimization accuracy and convergence speed. Moreover,
the above studies do not consider signal blanking on the reception
side. Nir and Ron (2014) proposed a narrowband noise suppression
scheme based on frequency shift filtering, the objective of which is
to improve the information exchange reliability of PLC. Gaëtan et al.
(2010) investigated an impulse statistics estimation-based automatic
noise mitigation algorithm to improve the BER performance of
the information interaction. However, the above studies ignore the
collaboration between the transmission-side PAPR and reception-
side useful signal power estimation and peak median ratio, which
cannot fully release the potential for impulse noise suppression.
Furthermore, the mere consideration of a single-signal blanking
threshold cannot achieve accurate impulse noise suppression.

To address these challenges, we propose a two-stage
collaborative information interaction reliability improvement
algorithm for low-voltage distribution grids. First, the transmission-
side PAPR is reduced based on adaptive PSO-enabled PTS. Second,
reception-side dual-signal blanking is proposed based on the
transmission-side PAPR and reception-side useful signal power
estimation and peak median ratio. Finally, through simulation
results, we verify the effectiveness of the proposed algorithm in both
PAPR reduction and BER performances. The main contributions of
this work are summarized as follows:

• Two-stage collaborative impulse noise suppression for
information interaction reliability improvement: the proposed
algorithm realizes transmission–reception collaborative
information interaction reliability improvement in two stages.
In the first stage, the transmission-side PAPR is reduced by
optimizing the phase factor of PST based on adaptive PSO,
which improves the performance of reception-side signal
blanking by making it easier to distinguish useful signals from
impulse noise. In the second stage, the transmission-side PAPR
is further used to calculate both coarse and precise thresholds,
which can effectively improve the blanking threshold accuracy
based on signal characteristics.

• Transmission-side PAPR reduction based on the adaptive PSO-
enabled PTS: we propose a transmission-side PAPR reduction
based on the adaptive PSO-enabled PTS to preprocess the
frequency domain signal. By dynamically adjusting the adaptive
inertia weight of PSO based on differentiated PAPRs, the
proposed algorithm can adaptively adjust the global and local
search capabilities. Global search is adopted to improve the
searching speed under large PAPR, while local search is adopted
to improve the searching accuracy under small PAPR. In this
way, the proposed algorithm can avoid falling into the local
optimum and improve the search precision.
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• Reception-side dual-signal blanking based on useful signal
power estimation and peakmedian ratio: we propose reception-
side dual-signal blanking based on the transmission-side PAPR
and reception-side useful signal power estimation and peak
median ratio. The proposed algorithm uses the transmission-
side PAPR to carry out coarse blanking, which blanks high-
amplitude impulse noise to improve useful signal power
estimation for precise signal blanking. Then, precise signal
blanking is carried out based on useful signal power estimation
and the peak median ratio. The precise threshold is set to
approach the peak value of the useful signal so that the low-
amplitude impulse noise can be precisely suppressed.

The remainder of this paper is organized as follows: Section 2
formulates the system model. The proposed adaptive PSO and dual
blanking-based two-stage collaborative information interaction
reliability improvement algorithm is presented in Section 3. The
simulation results are provided in Section 4. Finally, conclusions are
drawn in Section 5.

2 System model

PLC is a complex process, including transmission and reception,
and the whole communication process consists of many aspects.
During the information interaction of PLC, impulse noise is
generated by a large number of power electronics devices,
which will seriously affect the quality of PLC and lead to data
transmission errors and even transmission interruptions. Compared
withmodulationmethods such as code division,multiple access, and
time division multiplexing, OFDM divides the signal into multiple
subcarriers, limiting the impact of impulse noise (Wang et al., 2019).
Furthermore, by dynamically adjusting the power distribution of
subcarriers, OFDM reduces the effect of impulse noise on the entire
PLC communication system (Hou et al., 2023). In order to reduce
the impact of impulse noise on PLC, it is necessary to establish a
complete OFDM signal transmission model to lay the foundation
for information interaction reliability improvement.

2.1 Signal transmission model

The complete OFDM signal transmission model is shown in
Figure 1. At the transmitter, the binary bit data are modulated as
a frequency domain signal by Q-phase shift keying (QPSK). A is
defined as the original frequency domain signal, which is given by
Eq. (1)

A = [A1,A2,…,An,…,AN]
T, (1)

where N is the number of subcarriers and AN represents the data
carried by the Nth subcarrier.

PTS is a phase optimization scheme that works by splitting
the original signal into multiple sub-sequences and weighting these
sub-sequences using different phase factors. Then, the weighted
sub-sequences are superimposed together before transmission. It
effectively reduces the high PAPR generated by OFDM modulation
and improves the interaction reliability performance of the signal.

We divide N subcarriers into L disjoint subsets, each of which
contains M subcarriers, i.e., N = L×M. For each subset, M
corresponding subcarriers are selected from the original frequency
domain signal to form a partial sequence. The set of partial
sequences is defined as Ω = {Q1,Q2,…,Ql,…,QL}, where Ql is the
partial sequence of the lth subset and represented as Eq. (2)

Ql = [Aq1
,…,Aqm
,…,AqM]

T, (2)

where q1,…,qm,…,qM are the indexes of the selected subcarriers in
the subset.

PAPR, the peak-to-average power ratio of a signal, is used as a
measure of the dynamic range and complexity of a signal. A lower
PAPR indicates a higher resolution between the noise generated
during signal transmission and the useful signal, which improves
the information interaction reliability performance. By weighting
partial sequences, the phase can be adjusted to avoid high PAPR
in the process of signal superposition. Therefore, the phase factor
bl = exp(jφl) is introduced as the auxiliary information to weigh
partial sequences, where φl ∈ [0,2π ). By choosing different phase
factors to weigh partial sequences, the generated integrated discrete
time domain signal xk is given by Eq. (3)

xk =
L

∑
l=1

IDFT{bl Ql)}

=
L

∑
l=1

blIDFT{Ql}

=
L

∑
l=1

blql,k = 1,…,N, (3)

where q1 is the discrete time-domain signal of Q1. The PAPR of xk
is represented as Eq. (4)

PAPR(xk) = 10lg(
max

k=1,2,…,N
|xk|

2

1
N

N

∑
k=1
|xk|

2

). (4)

In order to obtain the time-domain signal with the lowest PAPR,
it is necessary to choose the optimal phase factor sequence, which is
given by Eq. (5)

{b1,b2,…,bl} = arg min
{b1,b2,…,bl}

(max
1≤k≤N
|xk|

2), (5)

where argmin{⋅} denotes the value of the independent variable
when the function reaches its minimum value. In order to better
describe the reduction degree of the signal PAPR before and after the
weighted integration of phase factors, we adopt the complementary
cumulative distribution function (CCDF) to characterize the degree
of reduction in the PAPR, which is given by Eq. (6)

CCDF(xk) = Pr(PAPR(xk) > PAPR∗ ) , (6)

where PAPR∗ is the threshold of the transmission-side PAPR.

2.2 Noise model

According to Antoniali et al. (2016), during the information
interaction of PLC, the relevant research mainly classifies the noise
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FIGURE 1
Complete OFDM signal transmission model.

into two categories, i.e., background noise and impulse noise,
according to the variation in noise and the amplitude of fluctuation
over time. Background noise varies more smoothly in a certain time
range, with little amplitude fluctuation and a long duration. Impulse
noise is mainly caused by the sudden switching of the working
state of high-power electronic equipment and contains multiple
frequency components in the frequency domain (Tariq et al., 2020;
Li et al., 2022b). It covers a wide frequency range and has a high
impact on the quality of PLC. The Middleton class A noise model
is used to model PLC impulse noise (Savoia and Verde, 2013). The
overall noise is given by Eq. (7)

ωk = αk + βk, k = 1,….,N, (7)

where αk is the background noise of the tth OFDM symbol period
and can be expressed as additive Gaussian white noise. βk is
the impulse noise, which can be described as the multiplication
of Gaussian noise and a Bernoulli process (Axell et al., 2015),
in Eq. (8),

βk = μkgk, (8)

where gk is the zero-mean white Gaussian noise and μk is
the Bernoulli process. The probability density function of μk is
expressed as Eq. (9)

fμ (μk) =
{
{
{

λ, μk = 1

1− λ, μk = 0,
(9)

where μk = 1 indicates the presence of impulse noise and μk = 0
indicates the absence of impulse noise. λ is the probability of
generating impulse noise. The noise probability density function
over a period of time can be obtained, which is given by Eq. (10)

fω (ωk) = (1− λ)G(ωk,0,σ
2
α)

+ λG(ωk,0,σ
2
α + σ

2
β) ,

(10)

where σ2
α is the variance in backgroundnoise, σ2

β is the variance in the
impulse noise, andG(⋅) is the Gaussian probability density function.

2.3 Bit error rate model

According to the description of the noise model, the total noise
in the channel of the OFDM system is composed of additive white
Gaussian noise and impulse noise. The power spectral densities of
additive Gaussian white noise and impulse noise are defined as Nα
and Nβ, respectively (Abdo et al., 2018). We use QPSK to modulate
the transmission-side signal of the OFDM system. The BER under
noise is expressed as Eq. (11)

BER = Q(√
2Eb

Nα +Nβ
), (11)

where Eb is the binary code energy of the OFDM signal. Q(⋅) is
the right tail function of the standard normal distribution, which
is given by Eq. (12)

Q (z) = ∫
∞

z

1
2π

e−
t2

2 dt = 1
2
erfc( z
√2
). (12)

3 Adaptive PSO and dual
blanking-based two-stage
collaborative information interaction
reliability improvement for
low-voltage distribution grids

In this section, we propose an adaptive PSO and dual
blanking-based two-stage collaborative information interaction
reliability improvement algorithm for low-voltage distribution
grids. Specifically, in the first stage, we endeavor to reduce the
transmission-side PAPR by optimizing the phase coefficients of
the PST, thereby enhancing the resolution between the impulse
noise and the useful signal. Subsequently, in the second stage, we
utilize the decreased transmission-side PAPR from the first stage
to compute coarse and precise thresholds, thereby elevating the
blanking performance of the reception-side signal in the second
phase. Ultimately, this approach achieves transmission–reception
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FIGURE 2
Overall structure of the proposed algorithm.

collaborative information interaction reliability improvement.
Without the collaboration of the two stages, the PAPR on the
transmission side may not effectively decrease, thereby affecting
the performance of impulse noise suppression. In the first stage, we
successfully reduce the transmission-side PAPRby optimizing phase
coefficients, enhancing the resolution between impulse noise and
useful signals. The second stage utilizes the reduced transmission-
side PAPR to calculate coarse and precise thresholds, further
improving the blanking performance of the reception-side signal.
Neglecting the collaboration in the second stage could result in
a reduced resolution between impulse noise and useful signals,
inaccurate threshold calculations, and, consequently, an impact
on the impulse noise suppression performance. The proposed
algorithm is shown in Algorithm 1. The overall structure of the
proposed algorithm is shown in Figure 2.

3.1 First-stage transmission-side PAPR
reduction based on the adaptive
PSO-enabled PTS

The traditional PTS algorithmhas high complexity since it needs
to search for the optimal phase factors using the exhaustive method.
The PSO algorithm realizes PTS optimization by simulating the
interaction between particles to effectively reduce computational
complexity.

PSO designs massless particles to simulate the individuals in
a swarm. The particle contains two attributes defined as velocity s
and position p, where s reflects the moving speed of the particles in
the swarm and p reflects the moving direction of the particles. The
particles’ positions indicate potential solutions, while their speeds
determine the direction and speed of movement within the search
space. Integrating speed and position attributes with the article’s
specific content can enhance the algorithm’s problem-specific
nature, thereby increasing the search efficiency and accuracy. The
optimal solution searched by each particle individually is denoted
as the current individual optimal value vind and shared with other
particles in the swarm.The optimal solution searched by all particles

in the swarm is denoted as the current global optimal value vglo. The
optimal solution is the one with the best performance based on the
fitness function value in the current iteration cycle. The individual
optimal value is the best solution found in each particle’s history.The
global optimal value is the best solution found in the history of all
particles in the entire particle swarm. By comparing these values,
the optimal solution in the current iteration cycle may evolve into
the individual optimal solution and potentially evolve into the global
optimal solution.

We consider G iterations, the set of which is G = {1,…,g,…,G}.
After the optimal solution is searched in the gth iteration, PSO
updates the position and velocity of the particle based on its inertial,
cognitive, and social components to adjust the search direction and
step size in the (g+ 1)th iteration.The position pi(g+ 1) and velocity
si(g+ 1) of the ith particle in the (g+ 1)th iteration are updated
as Eq. (13) and Eq. (14) (Fernandez-Martinez and Garcia-Gonzalo,
2011; Anamika et al., 2018):

si (g+ 1) = θsi (g) + l1r1 (v
ind
i (g) − pi (g))

+ l2r2 (v
glo (g) − pi (g)) ,

(13)

pi (g+ 1) = pi (g) + si (g+ 1) , (14)

where r1 and r2 are the random numbers within [0,1]. θ is the
inertia weight factor, which serves to balance the local and global
search ability of PSO. l1 and l2 are the learning factors, which
reflect the tendency of each particle to search toward itself or the
swarm. vindi (g) and vglo(g) are the individual optimal value of the ith
particle and global optimal value in the gth iteration, respectively.
θsi(g) is the inertia part, which reflects the motion behavior of the
particle, i.e., the tendency of the particle to maintain its previous
state. l1r1 (v

ind
i (g) − pi(g)) is the cognitive part, which reflects the

particle’s memory of its own historical experience and represents
the particle’s tendency to approach its historical optimal position.
l2r2 (v

glo(g) − pi(g)) is the social part, which reflects the swarm
history experience on cooperation and knowledge sharing among
the particles and represents the tendency of the particles to approach
the best position in the swarm history.
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1: Input: G, s, l1, l2, smax, A, bl, L, N, C, M, h,

p, σα, σβ, θini, θend, r1, and r2.

2: Stage 1: First-stage transmission-side PAPR

reduction algorithm based on the adaptive

PSO-enabled PTS

3: Initialize s, p, l1, l2, G, smax, Nph, L, N, θini,

θend, r1, and r2.

4: For g = 1:G do

5: Divide the original frequency domain signal

into L partial sequences and weigh the above

partial sequences by different phase factors

according to the PTS.

6:  Calculate the minimum PAPR(xk) and use it as a

fitness function.

7: Obtain vind and vglo based on the

fitness function.

8: Adaptively adjust the inertia weight according

to (17).

9:  Update the particle velocity and position

based on (16) and (18).

10: Determine whether s exceeds the maximum speed

limit smax.

11: If g = G

12: Output vglo. The final vglo is the minimum

PAPR(xk).

13: else

14:  g = g+ 1.

15: End if

16: End for

17: Stage 2: Second-stage reception-side

dual-Signal blanking based on the

transmission-side PAPR and reception-side useful

signal power estimation and peak median ratio

18: Coarse blanking based on the transmission-side

PAPR:

19: Calculate the coarse threshold Γ of the signal

amplitude based on (19).

20: Perform coarse blanking based on (20).

21: Precise blanking based on reception-side

useful signal power estimation and peak median

ratio:

22: Calculate the difference between the average power

of the original reception-side signal and the average

power after coarse suppression based on (21).

23: Calculate the useful signal power based on (22).

24: Calculate the parameters ϖ and ξ based on the

peak and median values of the

reception-side signal.

25: Calculate the precise threshold Γ∗ of the

signal amplitude based on ϖ, ξ, and the useful

signal power.

26: Perform precise blanking based on (26).

27: End

Algorithm 1. Adaptive PSO and dual blanking-based two-stage
collaborative information interaction reliability improvement for
low-voltage distribution grids.

In actual OFDM systems, the phase factor is generally selected
from a specific set to reduce computation complexity, which is
presented as Eq. (15)

bl ∈
{
{
{

expj2π[

[

[0:Nph − 1]

Nph
) , (15)

where Nph is the number of phase factors.
However, the traditional PSO algorithm has the problems of

slow convergence speed and poor optimization accuracy. To address
these challenges, we propose a first-stage transmission-side PAPR
reduction algorithm based on the adaptive PSO-enabled PTS. It
adopts PSO to quickly find the optimal phase factors of PTS and
uses PAPR of the transmission-side signal to dynamically adjust
the weights of local and global search, improving the speed and
accuracy of PSO.

Based on the traditional PSO algorithm, si,d(g) is defined as the
velocity of the dth dimension of the ith particle in the gth iteration,
which is updated as

si,d (g+ 1) = θ (g) si,d (g) + l1r1 (v
ind
i (g)) − pi,d (g))+

l2r2 (v
glo (g)) − pi,d (g)) , (16)

where θ(g) is the adaptive inertia weight. θ(g) is calculated as

θ (g) = PAPR(xk) ∗
(θini − θend) (G− g)

G
+ θend, (17)

where θini is the initial inertia weight and θend is the inertia weight
in the Gth iteration. The adaptive inertia weight decreases with an
increase in the number of iterations, and the local search ability
is increased to make the algorithm converge faster. At the same
time, when PAPR(xk) is larger, it tends to perform the global
search as a way to expand all positions and reduce the PAPR
as quickly as possible. When PAPR(xk) is smaller, it tends to
maintain its previous state and refine the exploration of local
positions to approach the optimal solution faster. Through (17), the
global and local search capabilities can be adaptively adjusted based
on the transmission-side PAPR and provide better convergence
performance to effectively reduce the algorithm complexity of the
PTS method.

pi,d(g) is defined as the position of the dth dimension of the ith
particle in the gth iteration, which is updated as

pi,d (g+ 1) =
{
{
{

1, rand!sig(si,d (g+ 1))

0, else,
(18)

where sig(si,d(g+ 1)) =
1

1+exp (si,d(g+1))
.

Thus, the implementation steps of the first-stage transmission-
side PAPR reduction algorithm based on the adaptive PSO-enabled
PTS are as follows:

1) Np particle swarms are randomly generated in a Nph ∗ L
dimensional space. Learning factors l1 and l2, position p,
velocity s, maximum speed limit smax, maximum number of
iterations G, the number of phase factors Nph, disjoint subset
number L, subcarrier number in a disjoint subset M, and
subcarrier number N are initialized.

2) Based on the PTS method, the original frequency domain
signal is divided into L partial sequences, which are multiplied
by different phase factors after IDFT.
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3) The minimum PAPR(xk) of the transmission-side signal xk is
calculated and used as a fitness function. The search values vind

and vglo are obtained according to the fitness function.
4) Based on PAPR(xk), θ(g) is adaptively adjusted according to

(17). The velocity and position of the particles are updated
based on (16, 18).Whether s exceeds themaximum speed limit
smax is determined.

5) The iterative process of learning is repeated until themaximum
number of iterationsG is reached.Thefinal vglo is theminimum
PAPR(xk).

3.2 Second-stage reception-side
dual-signal blanking based on the
transmission-side PAPR and reception-side
useful signal power estimation and the
peak median ratio

The proposed algorithm involves two parts: the transmission
side and reception side. The proposed algorithm is conducted
in two stages. After PAPR reduction at the transmission side is
completed, the second stage of the proposed algorithm occurs.
In the second stage, the reception-side signal is blanked to
improve information interaction reliability by suppressing impulse
noise. Traditional single-blanking-based impulse noise suppression
algorithms realize impulse noise suppression by zeroing out the
impulse noise with a preset threshold. Due to the influence of
parameter uncertainty and the characteristics of the signal, the
preset threshold is not precise, which makes it difficult to suppress
the impulse noise through the threshold. Therefore, we propose
a second-stage reception-side dual-signal blanking based on the
transmission-side PAPR and reception-side useful signal power
estimation and peak median ratio, which consists of coarse and
precise blanking and can be applied to all low-voltage distribution
network systems. Dual blanking refers to the proposed algorithm
performing two-step blankings, i.e., the first one being coarse
blanking followed by precise blanking. Impulse noise suppression
can be effectively realized by these two-step blankings. Replacing
single-signal banking with the proposed dual-signal blanking will
increase the additional calculation cost, but the calculation of dual-
signal blanking is simple and the added cost is minimal. Moreover,
dual-signal blanking can significantly enhance the impulse noise
suppression capability. The detailed steps of this algorithm are
shown as follows.

3.2.1 Coarse blanking based on the
transmission-side PAPR

The coarse threshold Γ of the signal amplitude is calculated
by combining the PAPR of the transmission-side signal,
which is given by

Γ = √PAPR(xk) ×
1
N

N

∑
k=1
|yk|2, (19)

where yk represents the reception-side signal and 1
N

N
∑
k=1
|yk|

2

represents the average reception-side signal power. Γ should be
located between the maximum signal envelope without noise and

the maximum waveform of the reception-side envelope. In the first
stage, the signal with lower PAPR is obtained based on the adaptive
PSO-enabled PTS, which indicates that the dynamic range of the
useful signal is small and the amplitude gap with the impulse noise
amplitude is large. Therefore, we perform coarse filtering of the
reception-side signal according to this feature in the coarse blanking
stage, thus realizing the cooperative impulse noise suppression at the
transmission side and reception side.

According to Γ, a coarse blanking method is used to suppress
impulse noise, which is given by

y′k =
{
{
{

yk , i f|yk| ≤ CΓ

0 , i f|yk| > CΓ,
(20)

where C represents the coarse estimation threshold adjustment
factor. It can adjust Γ to avoid the elimination of useful signals.
Through the above processing, the impulse noise greater than CΓ
is suppressed.

3.2.2 Precise blanking based on the
reception-side useful signal power estimation
and peak median ratio

Based on the coarse blanking results of the reception-side
signal y′k, the difference between the average power of the original
reception-side signal and the average power after coarse blanking
can be given by

D = 1
N

N

∑
k=1
(|yk|

2 − |y′k|
2) . (21)

The impulse noise power suppressed in the coarse blanking can
be approximated as D, but the actual impulse noise power is larger
thanD.We introduce the constant τ to adjustD so that the estimated
average power is closer to the actual useful signal power, which
ensures that the obtained threshold is more accurate. Useful signal
power R is given by

R = 1
N

N

∑
k=1
|yk|

2 − τD×

N

∑
k=1
|y′k|

2

N

∑
k=1
|yk|

2

, (22)

where

N
∑
k=1
|y′k|

2

N
∑
k=1
|yk|2

is the ratio of the average power of the received signal

after coarse blanking to the average power of the received signal
before coarse blanking.

Then, the peak value of the useful signal can be obtained using
the transmission signal PAPR and useful signal power. To improve
the blanking accuracy, we adjust the threshold based on the peak
median ratio of the received signal in the precise blanking to realize
precise noise suppression.

The parameters ϖ and ξ are calculated based on the peak and
median values of the received signal. ξ is the peak median ratio
of the received signal. The concepts of peak median ratio and
PAPR are distinct as they delineate different aspects of a signal
in the time domain. Specifically, PAPR quantifies the discrepancy
between the peak power and the average power of a signal. A higher
PAPR indicates a greater disparity between the peak and average
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powers, potentially leading to signal distortion and degraded system
performance. On the other hand, the peak median ratio represents
the difference between the peak power and the median power of a
signal. In contrast to the PAPR, the peak median ratio is typically
employed to characterize signal stability and waveform symmetry.
The parameters ϖ and ξ are given by Eq. (23) and Eq. (24)

ϖ =
median
k=1,2,…,N

(|yk|)

η
,0 < η < 1, (23)

ξ = √
max

k=1,2,…,N
(|yk|)

median
k=1,2,…,N

(|yk|)
, (24)

where η is a constant used to adjust the parameter calculation and
median(⋅) represents the median function.

Useful signal power and the peak median ratio are combined to
calculate the precise threshold Γ∗ of the signal amplitude, which is
given by Eq. (25)

Γ∗ = (1− h)√PAPR(xk) ×R+ h
ϖ×√2 log (N)

1+√1+ ξ
2

, (25)

where h represents the balance parameter and
ϖ×√2 log(N)

1+√1+ ξ
2

is the

threshold based on parameters. Due to the reduction in the useful
signal’s PAPR at the transmitter and the high power characteristics of
impulse noise, the value of parameter ξ is larger. A larger parameter
ξ brings Γ∗ closer to the peak of the useful signal, thus suppressing
low-amplitude impulse noise.

According to Γ∗ , precise blanking is carried out to improve the
blanking accuracy of impulse noise, which is given by

y′′k =
{
{
{

y′k , i f|y
′
k| ≤ Γ
∗

0 , i f|y′k| > Γ
∗ .

(26)

4 Simulation results

In this section, we evaluate the information interaction
reliability improvement performance of the proposed algorithm
through simulation. The simulation is implemented through
MATLAB. We consider an OFDM communication system with
256 subcarriers using QPSK modulation. Other detailed simulation
parameters are shown in Table 1 (Emad and Khaled, 2013;
Khaled and Emad, 2014).

Two state-of-the-art algorithms are used for comparison.
The first algorithm is dynamic peak-based threshold estimation
(DPTE), which improves information interaction reliability by
analyzing the relationship between the optimal blanking threshold
and the peak value of OFDM symbols and using the peak
amplitude of the OFDM symbol as the noise suppression threshold
(Khaled and Emad, 2014). The second is the dynamic peak-based
threshold estimation–partial transmission sequence (DPTE-PTS),
which considers PTS-based PAPR reduction before implementing
DPTE and realizes PTS optimization by conventional PSO
(Khaled and Emad, 2014).

TABLE 1 Simulation parameters.

Parameter Value Parameter Value

N 256 M 8

L 2, 4, 8, 16, and 32 Nph 4

l1 2 l2 2

Q3-4: smax 0.2 G 250

θini 0.9 θend 0.4

h 0.5

FIGURE 3
Q2-5: Transmission-side PAPR fluctuation under different algorithms.

The complexity of the proposed algorithm includes two
stages. In the first stage, the computational complexity of
PSO depends on the number of particles and the number
of iterations and can be calculated as O(3I×G), where I
represents the total number of particles. In the second stage,
computational complexity simply depends on the number of
mathematical calculations, and the computational complexity
is O(8). It is worth mentioning that the complexity of using
single-signal blanking in the second stage is O(2). Therefore,
the computational complexity of the proposed algorithm is
O(3I×G+ 8). The computational complexity of DPTE is O(3G).
DPTE-PTS also adopts the PSO algorithm, and its computational
complexity is O(3(I+ 1) ×G). Since DPTE does not consider
PAPR reduction on the transmission side, its computational
complexity is less, but the impulse noise suppression performance of
DPTE is poor.

Figure 3 shows the box plot of the transmission-side PAPR,
illustrating the fluctuation of the transmission-side PAPR under
different algorithms. Compared with DPTE and DPTE-PTS, the
proposed algorithm has the smallest PAPR fluctuation and reduces
the average PAPR by 24.7% and 16.1%, respectively. The reason
is that the proposed algorithm optimizes phase factor selection
for PST through adaptive PSO to improve the PAPR reduction
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FIGURE 4
CCDF of PAPR reduction under different algorithms.

FIGURE 5
CCDF of PAPR reduction of the proposed algorithm under different
L values.

performance. Simultaneously, it utilizes the PAPR to adaptively
update inertia weights based on signal characteristics so as to
balance between global search and local search, leading to better
convergence performance, higher searching accuracy, and smaller
PAPR fluctuation. DPTE neglects selection optimization of phase
factors for PTS, which leads to higher transmission-side PAPR.
DPTE-PTS cannot adaptively adjust its search strategy according to
the change in PAPR, resulting in a slower searching speed and poor
search accuracy.

Figure 4 shows the CCDF of PAPR reduction under different
algorithms. Compared with DPTE and DPTE-PTS, the proposed
algorithm can realize better PAPR reduction performance. The
reason is that the proposed algorithm uses the PAPR to realize the
dynamic adjustment of the inertia weight of PSO, thus effectively
improving the search accuracy and PAPR performance. In this way,
the probability that the transmission-side PAPR exceeds the PAPR
threshold is effectively reduced.

FIGURE 6
Average PAPR versus PSO iterations.

FIGURE 7
BER performance versus SNR.

Figure 5 shows the CCDF of PAPR reduction with different L
values. The proposed algorithm decomposes the original OFDM
symbols into L subsequences and then performs weighting and
phase modulation on each subsequence to reduce the PAPR of the
signal at the transmission side. As L increases,more phase factors are
utilized to weigh the decomposed partial subsequences, achieving
better PAPR reduction. However, the computational complexity also
increases exponentially with L.

Figure 6 shows the average PAPR versus PSO iterations. As
the number of PSO iterations increases, the average PAPR of the
proposed algorithm first decreases and finally stabilizes after g = 25,
while that of DPTE-PTS also decreases at first and finally stabilizes
after g = 50.When g = 250, comparedwithDPTE-PTS, the proposed
algorithm reduces the average PAPR by 4.5%. The reason is that
the proposed algorithm dynamically adjusts the updating of inertia
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weights based on PAPR variation. It combines global search under
large PAPR and local search under small PAPR to jointly improve
the convergence rate and searching accuracy of PSO.

Figure 7 shows the variation in the BER versus SNR. Since data
transmission involves the interaction between the transmission side
and the reception side, the higher the interaction reliability between
the transmission and reception sides, the smaller the BER of the
reception-side signal. Therefore, the BER can reflect the interaction
reliability of the proposed algorithm.When SNR= 10 dB, the BER of
the proposed algorithm decreases by 81.3% and 65% compared with
DPTE and DPTE-PTS, respectively. The reason is that the proposed
algorithm achieves two-stage collaborative information interaction
reliability improvement by suppressing the impulse noise. The first
stage uses adaptive PSO to optimize PTS to reduce transmission-
side PAPR, which improves the amplitude gap between impulse
noise and the useful signal. The second stage utilizes reception-side
dual-signal blanking to further suppress the impulse noise. DPTE
does not consider PTS or transmission-side PAPR reduction. The
signal blanking effectiveness is counteracted due to the degraded
resolution between the useful signal and impulse noise, thereby
resulting in higher BER. DPTE-PTS performs better than DPTE
because it considers PTS-enabled transmission-side PAPR reduction
to improve reception-side signal blanking.However, its performance
is worse than the proposed algorithm because it cannot adaptively
adjust inertia weight updating, according to PAPR variation, and
the searching of the phase factor is prone to being trapped in local
optimum. Furthermore, it does not consider the combination of
coarse and precise blanking so that impulse noise whose amplitude
is close to that of a useful signal cannot be accurately identified and
suppressed.

5 Conclusion

In this paper, we addressed the problem of insufficient
reliability of information interaction for low-voltage distribution
grids under impulse noise caused by the high proportion of
power electronics devices and proposed a two-stage collaborative
information interaction reliability improvement algorithm for low-
voltage distribution grids. Compared with DPTE and DPTE-PTS,
the average PAPR of the proposed algorithm is reduced by 65.5%
and 34.5%, and the BER of the proposed algorithm decreases
by 81.3% and 65% when SNR = 10 dB. This demonstrates that
the collaboration between transmission-side PAPR reduction and
reception-side signal blanking has obvious performance gains. We
have provided insights into combining PTS and signal blanking
to improve information interaction reliability, but the form of
collaboration is not constrained by PTS and signal blanking.

Meanwhile, the proposed work is still applicable in the case of
SINR. However, the proposed method does not consider the effect
of background noise or the frequency domain characteristics of
impulse noise. In the future, considering the coupling of noise
features in the time and frequency domains, wewill further look into
information interaction reliability improvement based on historical
performance feedback from a reinforcement learning perspective.
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The combination of internet of things (IoT), 5G, and power line communication
(PLC) provides real-time and low-cost data transmission services to meet
the quality of service (QoS) requirements for distribution grid energy
dispatch. However, the IoT-empowered communication resource management
system faces challenges in optimizing delay and traffic cost for distribution
grid energy dispatch. There is a contradiction between the long-term
performance guarantee and short-term optimization objectives, compounded
by competition for communication resources. In this paper, we construct the
minimization problem of the weighted sum of data transmission delay and
traffic cost. Utilizing Lyapunov optimization, we aim to decouple the long-term
constraint of average queuing delay with the short-term optimization objective.
Then, a delay and cost-balanced communication resource management
algorithm based on two-layer iterative matching is proposed. It optimizes
the communication mode selection by I-to-2 bidding matching in a large
timescale and subchannel allocation by many-to-many deferred acceptance
matching in a small timescale. The simulation data present that the proposed
algorithm excels in reducing data transmission delay, minimizing traffic cost, and
decreasing queuing delay.

KEYWORDS

IoT, distribution grid energy dispatch, two-layer iterative matching, multi-timescale
optimization, communication resource management, balance of delay and cost

1 Introduction

The internet of things (IoT) has a broad development prospect in the field of distribution
grid energy dispatch. By connecting distribution grid operators with energy users and
electric equipment (Tariq et al., 2020; Liao et al., 2023a; Fizza et al., 2023; Liu et al., 2023;
Safdar Malik et al., 2023; Zhu et al., 2024), IoT provides dynamic data acquisition and real-
time state perception of key electric equipment. Then, these collected data can be uploaded
to the edge server or cloud server for deep state analysis and intelligent energy dispatch
(Wang et al., 2023; Yao et al., 2023). Among various communication technologies, fiber
optic technology cannot adapt to the wide coverage requirement of IoT due to the high
deployment cost (Chagnon, 2019; Liao et al., 2023b; Lin et al., 2023).Wireless fidelity (WiFi)
relying on the industrial, scientific, andmedical (ISM) band is susceptible to interference and
privacy issues (Schwung et al., 2023). In comparison, 5G and power line communication
(PLC) emerge as feasible candidates (López et al., 2019; Pal et al., 2021; Zhou et al., 2022).
Coverage by using a dedicated frequency band, but it causes extra traffic costs for
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grid operators (Qian et al., 2022; Zhou et al., 2024; Zhou et al.,
2023a). On the other hand, PLC has the advantages of low cost
and flexible development, but it suffers from lower communication
capacity. How to combine 5G and PLC to support the real-time
energy dispatch of the distribution grid fromadelay and cost balance
perspective remains an open issue (Xu et al., 2021; Zhang et al.,
2023; Ruby et al., 2023).

Communication resource management refers to the effective
and reasonable configuration, monitoring, scheduling, and
optimization of various resources of communication systems
to meet the quality of service (QoS) requirements (Guo et al.,
2021; Ding et al., 2022; Gu et al., 2022; Wang et al., 2023).
When combining 5G and PLC with IoT, communication mode
selection and subchannel allocation are two important research
topics of communication resource management. Particularly,
communication mode selection should be optimized in a large
timescale because the frequently switching communication mode
results in large overheads. On the other hand, subchannel allocation
should be optimized in a small timescale, considering the temporal-
varying characteristics of the channel state (Xiang et al., 2022;
Bigdeli et al., 2023). Despite the great research efforts initiated
by previous studies, how to realize scalable, reliable, stable, and
adaptable communication resource management still faces several
technical challenges.

First, the optimization of data transmission delay and traffic
cost is contradictory to each other. Although 5G has lower
latency, it significantly increases the total traffic cost, particularly
under the scenario of second-level data collection (Gu et al.,
2021). The switching between 5G and PLC should be dynamically
adjusted in accordance with various parameters including delay,
traffic cost, and channel quality. Second, severe competition for
communication resources is inevitable when the number of IoT
devices is overwhelming.The small-timescale subchannel allocation
optimization of a device is not only affected by the large-
timescale mode selection results but also related to decisions
of other competing devices. This incurs further difficulty in the
multi-timescale resource management problem (Leng et al., 2023).
Finally, short-term optimization based on information lacking
foresight leads to long-term performance deterioration. The long-
term queuing delay requirement imposed by real-time energy
dispatch is considered an example. The optimum policy to balance
delay and cost may come at the expense of larger cumulative
queue backlog, which deteriorates the long-term queuing delay
performance (Huang et al., 2023).

There exist several studies on subchannel allocation in IoT.
Zhou et al. (2020) launched an algorithm based on online learning,
utilizing the context-aware multi-armed bandit framework to
dynamically distribute channels in a 5G network, which has
shown exceptional performance, particularly in large-scale network
scenarios. Ning et al. (2019) proposed a blended framework for
computational task offloading, designed to enhance real-time traffic
handlingwithin 5Gnetwork infrastructures.The goal is tomaximize
the sum offloading rate. Do and Lehnert (2011) proposed a PLC
channel allocation protocol that considers the individual channel
quality of each user, enabling precise calculations for the required
transmission resources. Han et al. (2023) investigated an advanced
channel allocation strategy involving dynamic two-step random
access optimization to enhance the access success probability.

Wang et al. (2018) proposed an innovative algorithm for joint
power and channel allocation, with the objective of maximizing
the sum rate for cellular users. However, these works overlook
severe competition for communication resources caused by massive
IoT devices. Dewa et al. (2021) proposed a distributed channel
assignment algorithm that efficiently finds the optimal channel
configuration using the concept of belief propagation. Li et al. (2023)
proposed a multi-agent device-to-device (D2D) communication
resource allocation algorithm based on the advantage actor critic
(A2C) to dynamically and adaptively output the resource allocation
scheme of D2D users. However, these works overlook severe
competition for communication resources caused by massive
IoT devices. The developed optimization approaches have the
disadvantages of high complexity, slow convergence, and instability
under resource competition.

Matching theory provides a feasible tool to address
combinatorial optimization problems involving large-number
participants. Meshgi et al. (2017) studied the channel allocation
problem of multi-user multi-channel cellular networks and
proposed a channel allocation scheme based on stable matching
to effectively improve the system capacity. Islam et al. (2016)
proposed a channel allocation method based on stable matching
to effectively reduce delay and improve system throughput for
D2D communications underlying cellular networks. Csercsik
and Jorswieck (2023) proposed a novel preallocation-based
combinatorial auction approach to optimize the efficient allocation
of channels for ultra-reliable low-latency communication
(URLLC) services. Zhou et al. (2021) considered priority-aware
resource coordination in a multi-unmanned aerial vehicle (UAV)
communication system and jointly optimized a channel assignment
and power allocation strategy under stringent resource availability
constraints. These works simply assume all the resources are
optimized in the same timescale and cannot be applicable to
our scenario involving large-timescale communication mode
selection and small-timescale subchannel allocation. Huang et al.
(2015) proposed a multi-timescale matching model to enhance
the matching degree between the available wind supply and the
increasing EV charging demand within the microgrid. Huang et al.
(2015) and Yu et al. proposed an innovative algorithm aimed at
addressing challenges in resource allocation and task divisionwithin
non-orthogonal multiple access edge computing-based power IoT.
Wang et al. (2021) proposed a low-complexity algorithm to solve
the formulated subchannel allocation problem using the matching
theory, where the joint optimization of the task assignment and
power allocation is performed at each iteration. Huang et al. (2022)
proposed a beacon synchronization-based multi-channel dynamic
time slot assignment method. The channel is allocated based
on interference minimization from adjacent channels. However,
these studies ignore the coupling between the long-term queuing
delay guarantee with the short-term optimization of delay and
cost balance.

Thus, we design a delay and cost-balanced communication
resource management framework for IoT-empowered distribution
grid energy dispatch. First, we present models of delay and traffic
cost and formulate a delay and traffic cost optimization problem.
The optimization objective is to minimize the weighted sum of
transmission delay and traffic cost under the constraints of the
subchannel allocation number, subchannel allocation quota, data
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transmission reliability, and long-term average queuing delay. Then,
we decompose the formulated problem into two main subproblems,
i.e., a large-timescale subproblem involving device communication
mode selection and a small-timescale subproblem focusing on
subchannel allocation, and solve them alternatively by the proposed
delay and cost-balanced communication resource management
algorithm based on two-layer iterative matching. The specific
contributions include the following.

• Communication resource management with delay and traffic
cost balancing:The proposed algorithmdynamically adjusts the
optimization policy to trade off data transmission delay with
traffic cost, which is an oversight in related works.
• Communication resource competition solution and complexity

reduction: At each epoch, the large-timescale mode selection
problem is addressed through the utilization of I-to-2 bidding
matching. The small-timescale subchannel allocation problem
is solved based on many-to-many deferred acceptance
matching at each slot. This multi-timescale matching improves
the convergence speed and complexity performances and the
overheads caused by frequent switching in related works.
• Guarantee of long-term queuing delay: Based on Lyapunov

optimization, we transform the long-term queuing delay
constraint into a virtual queue. Then, the product of the
virtual queue backlog and the queuing delay is added into the
optimization objective. Particularly, devices with large queue
backlog and queuing delay are given priority in matching so as
to realize long-term queuing delay guarantee, which is a lack of
consideration in related works.

The remainder of this paper is structured in the subsequent
manner: An exposition of the system model and the formulation
of the problem are explained in Section 2. The algorithm proposed,
which relies on a two-tiered iterative matching process, is elucidated
in Section 3. Section 4 is dedicated to demonstrating the outcomes
derived from simulations. The conclusion of this study is presented
in Section 5. The notations used in this paper are summarized in
Table 1.

2 System model

Figure 1 introduces the proposed delay and cost-balanced
communication resource management framework for IoT-
empowered distribution energy dispatch, which includes the device
layer, transmission layer, and edge layer. In the device layer, I
IoT devices which support both PLC and 5G communication
modes are deployed on electrical equipment including distributed
photovoltaic, energy storage unit, power distribution equipment,
and electrical vehicle charging pile to collect various types of data
such as active power, reactive power, and temperature (Adnan et al.,
2019; Ali et al., 2021). Define the set of IoT devices as M =
{m1,…,mi,…,mI}. The transmission layer contains a PLC gateway
and a 5G base station for data transmission, which support dual
communication modes, i.e., PLC and 5G. An orthogonal frequency
division multiplexing (OFDM)-based data transmission scheme is
adopted. There exist J orthogonal subchannels, including J1 PLC
subchannels and J2 5G subchannels. Define the set of subchannels

as N = {n1,…,nj,…,nJ}, where nj, j = 1,…, J1 are PLC subchannels,
and nj, j = J1 + 1,…, J are 5G subchannels. The data collected by IoT
devices are uploaded to the edge layer via a selected communication
mode and allocated subchannels, i.e., either PLC subchannels
or 5G subchannels. The edge layer contains an edge server that
processes the data uploaded from the device layer. The edge server
also optimizes communication resource management in terms of
communication mode selection and subchannel allocation.

Device communication mode selection and subchannel
allocation are optimized in different timescales. Particularly, to
avoid frequent switching of the communication mode and reduce
overheads, in a large timescale, i.e., epoch, mode selection is
optimized, while in a small timescale, i.e., time slot, subchannel
allocation is optimized (Sezer and Gezici, 2016; Yu et al., 2021;
Li et al., 2023; Zhou et al., 2023b). We consider a duration which
contains T slots. Each slot lasts a duration τ. Define the slot’s set as
T = {1,…, t,…,T} and the epoch’s set as V = {1,…,v,…,V}. Each
epoch contains consecutive T0 slots. The relationship between V
and T satisfies T = T0V. The slot’s set in the v-th epoch is denoted as
T (v) = {(v− 1)T0 + 1, (v− 1)T0 + 2,…,vT0}.

Define xi(v) = {x
PLC
i (v),x

5G
i (v)} as the set of optimization

variables of large timescale device communication mode selection,
where xPLCi (v) and x5G

i (v) are the indicator variables of the 5G
communication mode and PLC mode, respectively. xPLC

i (v) =
1 indicates that device mi selects the PLC mode to upload
data to the edge server in the v-th epoch; otherwise, xPLC

i (v) =
0. Similarly, x5G

i (v) = 1 indicates that device mi selects the 5G
communication mode, and otherwise x5G

i (v) = 0. Define yi,j(t) as
the optimization variable of small-timescale subchannel allocation.
yi,j(t) = 1 indicates that in the t-th slot, the edge server allocates
subchannel nj to device mi, and otherwise, yi,j(t) = 0. Denote qm
as the quota of subchannel allocation, i.e., at most qm subchannels
can be allocated for each device per slot. Meanwhile, due to the
limited number of subchannels in each communication mode,
PLC subchannels can be allocated to at most J1 devices, and 5G
subchannels can be allocated to at most J2 devices.

2.1 Data transmission model

In the t-th slot, the data transmission rate for device mi on
subchannel nj is calculated as

Ri,j (t) = Nsmin(Rmax
j ,⌊log2(1+

Pi,j (t)gi,j (t)

Γi
)⌋), (1)

where ⌊⋅⌋ represents that the number is rounded down to the nearest
integer. Ns is the OFDM symbol rate. Rmax

j (bits/symbol) is the
maximum transmitted bits per symbol for subchannel nj, which is
determined based on the modulation method, signal-to-noise ratio,
frequency selective fading, computational complexity, and other
factors to guarantee signal quality. Γi is the signal-to-interference-
plus-noise ratio (SINR) gap coefficient, and gi,j(t) is the subchannel
gain, which are calculated as

Γi ≈
[Q−1 (Pe/4)]

2

3
, (2)

gi,j (t) =
|Hi,j (t) |

2

NEMI
j (t) +N0

, (3)
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TABLE 1 Summary of notations.

Notation Definition Notation Definition

I Number of IoT devices M Set of IoT devices

J Number of orthogonal subchannels J1 Number of PLC subchannels

J2 Number of 5G subchannels N Set of subchannels

T Number of slots τ Slot duration

T Set of slot V Epoch

V Set of epoch xi(v) Set of communication mode selection optimization variables

xPLC
i (v) PLC mode variable x5G

i (v) 5G communication mode variable

yi,j(t) Subchannel allocation variable q+m Quota of subchannel allocation

Ri,j(t) Data transmission rate Ns OFDM symbol rate

Rmax
j Maximum transmitted bits per symbol for the subchannel Γi SINR gap coefficient

gi,j(t) Subchannel gain Pe Target bit error rate

Hi,j(t) Frequency response of device mion the subchannel nj N0 Gaussian noise

NEMI
j (t) Electromagnetic interference lgf(x) Electromagnetic interference characteristic function

ν Characteristic index η Skewed parameter

μ Positional parameter θ Scale parameter

SINRi,j(t) SINR of device mion subchannel nj SINRmin Lower bound of SINR

Li(t) Backlog of the device-side data queue Ai(t) mi’s collected data amount

Di(t) mi’s throughput τi(t) Data transmission delay from mito the edge server

Ci(t) Extra traffic cost e5G(v) Unit cost of transmitting single-bit data through the 5G
subchannel

τquei (t) Queuing delay of data transmission Âi(t) Average data arrival rate of mi

τquei,max Average queuing delay threshold α Weight of traffic cost

Oi(t) Virtual queue of the constraint of long-term average queuing
delay

γPLC
i (v),
γ5G
i (v)

Preference values of device mifor selecting PLC and 5G
communication mode

pPLC
i (v),
p5G
i (v)

Bidding prices for device mito select PLC and 5G
communication mode

Π Set of devices queuing for matching

ΛPLC, Λ5G Set of devices that issue requests to PLC and 5G communication
mode

ρ Predefined constant

βPLC, β5G Bidding price coefficients for the PLC and 5G communication
modes

Θi(t) Set of PLC subchannels that are currently matched with mi

|Θi(t)| Size of Θi(t) ωi,j(t) Reciprocal of the data transmission delay

λi,j(t) Product of the virtual queue backlog and queuing delay Ni(t) Set of available 5G subchannels for mi

FD
i Partial preference list of 5G subchannels FC

j Partial preference list of the subchannel nj

where Pe is the target bit error rate. Q−1(⋅) is the inverse function of
Q(x) = 1

2π
∫∞x et

2/2dt.Hi,j(t) is the frequency response of devicemi on
subchannel nj. N0 is Gaussian noise. NEMI

j (t) is the electromagnetic

interference generated by the operation of the electrical equipment.
We use the alpha steady-state function to describe electromagnetic
interference (Zhou et al., 2016), and its characteristic function is
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FIGURE 1
Delay and cost-balanced communication resource management framework for IoT-empowered distribution energy dispatch.

given by

lg f (x) =
{{
{{
{

−θν|x|ν [1− jηsign (x) tanπν
2
] + jμx ,ν ≠ 1

−θ|x|[1− jηsign (x) 2
π
lg|x|] + jμx ,ν = 1

, (4)

where ν ∈ (0,2) is the characteristic index. η ∈ [−1,1] is a skewed
parameter that determines the slope. θ > 0 is a scale parameter used
to measure the dispersion. μ ∈ R is a positional parameter. When
ν ∈ (1,2], μ represents the average value; when ν ∈ (0,1], μ represents
the median. sign(⋅) is the sign function.

Define the SINR of device mi on subchannel nj as

SINRi,j (t) =
Pi,j (t)gi,j (t)

Γi
. (5)

To ensure reliable data transmission, the SINR constraint is
given by

SINRi,j (t) ≥ SINRmin, (6)

where SINRmin represents the lower bound of SINR.

2.2 Transmission delay and the traffic cost
model

The data stored atmi is modeled as a device-side data queue, the
backlog of which evolves as

Li (t+ 1) = Li (t) +Ai (t) −Di (t) , (7)

where Ai(t) is mi’s collected data amount in the t-th slot. Di(t)
is mi’s throughput, i.e., the amount of data leaving Li(t), which is
calculated as

Di (t) =min{Li (t) +Ai (t) ,τ
J

∑
j=1

yi,j (t)Ri,j (t)}. (8)

Therefore, in the t-th slot, the data transmission delay from mi
to the edge server is given by

τi (t) =min
{{
{{
{

τ,
Li (t) +Ai (t)

∑J
j=1

Ri,j (t)

}}
}}
}

. (9)
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Since the PLC network belongs to the power grid
assets, there is no additional traffic cost when using PLC
for data transmission. On the other hand, although 5G
provides a higher transmission rate, it belongs to the assets
of the telecommunication operator. Extra traffic cost is
required when using 5G for data transmission, which is
given by

Ci (t) = x
5G
i (v)e

5G (v)Di (t) , (10)

where e5G(v) represents the unit cost of transmitting
single bit data through the 5G subchannel at the
v-th epoch.

2.3 Queuing delay model

For the data queue, we normally expect the mean rate of data
queue to be stable. Li(t) is mean rate stable if

lim
T→∞

𝔼{|Li (t) |}
T
= 0. (11)

Queuing delay is defined as the ratio obtained by dividing the
average quantity of data backlogged in the queue by the mean rate
at which data arrive. Then, the queuing delay of data transmission at
device mi is given by

τquei (t) =
Li (t)
Âi (t)
, (12)

where Âi(t) is the average data arrival rate of mi, which is
calculated as

Âi (t) =
1

t− 1

t−1

∑
s=1

Ai (s) . (13)

To avoid a large queue backlog and meet the low-delay
requirement of energy dispatch, a constraint of the long-term
average queuing delay over T slots is given by

lim
T→∞

1
T

T

∑
t=1

τquei (t) ≤ τ
que
i,max, (14)

where τquei,max represents the average queuing delay threshold.

2.4 Problem formulation

The optimization problem is a joint minimization problem
that aims to jointly minimize data transmission delay and
traffic cost through the large-timescale optimization of device
communication mode selection and the small-timescale
optimization of subchannel allocation. The constraints of the
subchannel allocation number, subchannel allocation quota,
data transmission reliability, and long-term average queuing
delay are taken into account. The data transmission delay
and traffic cost joint minimization problem is formulated

as

P1: min
{xi(v),yi,j(t)}

lim
T→∞

1
T

T

∑
t=1

I

∑
i=1
[τi (t) + αCi (t)]

s.t. C1: x
PLC
i (v) ,x

5G
i (v) ∈ {0,1} ,∀mi ∈M,∀v ∈ V ,

C2: x
PLC
i (v) + x

5G
i (v) = 1,∀mi ∈M,∀v ∈ V ,

C3: 0 ≤
I

∑
i=1

xPLC
i (v) ≤ J1,∀v ∈ V ,

C4: 0 ≤
I

∑
i=1

x5G
i (v) ≤ J2,∀v ∈ V ,

C5: 0 ≤
J

∑
j=1
[xPLC

i (v)yi,j (t) + x
5G
i (v)yi,j (t)]

≤ qm,∀mi ∈M,∀t ∈ T ,∀v ∈ V

C6:
I

∑
i=1
[xPLC

i (v)yi,j (t) + x
5G
i (v)yi,j (t)]

≤ 1,∀nj ∈N ,∀t ∈ T ,∀v ∈ V
C7: SINRi,j (t) ≥ SINRmin,∀mi ∈M,∀nj ∈N ,∀t ∈ T ,

C8: lim
T→∞

1
T

T

∑
t=1

τquei (t) ≤ τ
que
i,max, (15)

where α represents the weight of traffic cost. C1 is the
constraint of the large-timescale device communication mode
selection variable. C2 indicates that the device can only
choose one of the communication modes in an epoch. C3
indicates that PLC channels can be allocated to at most J1
devices. C4 indicates that 5G subchannels can be allocated
to at most J2 devices. C5 is the constraint on the number
of subchannels allocated to one device in each slot. C6
indicates that each subchannel can be allocated to at most
one device. C7 is the constraint of the data transmission
reliability requirement. C8 is the constraint of long-term average
queuing delay.

2.5 Problem transformation

The formulated joint optimization problem is a stochastic
problem with a long-term perspective, which cannot be solved
in polynomial time because the long-term constraint of average
queuing delay is coupled with the short-term tradeoff between
queuing delay and traffic cost per slot.Therefore, we utilize Lyapunov
optimization to provide a tractable solution by transforming the
problem based on the virtual queue concept. Specifically, virtual
queue Oi(t) corresponding to C8 evolves as

Oi (t+ 1) =max{Oi (t) + τ
que
i (t) − τ

que
i,max,0} . (16)

If Oi(t) is mean rate stable, C8 holds automatically. Based on
Oi(t), P1 is rewritten as

P2: min
{xi(v),yi,j(t)}

I

∑
i=1
[τi (t) + αCi (t) +Oi (t)τ

que
i (t)]

s.t. C1 ∼ C7. (17)
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FIGURE 2
Schematic diagram of the delay and cost-balanced communication resource management algorithm based on two-layer iterative matching.

3 Delay and cost-balanced
communication resource
management algorithm based on
two-layer iterative matching

The optimization problem formulated in (17) involves both
large and small timescales. To address it, we propose a delay
and cost balanced communication resource management algorithm
based on two-layer iterative matching, which is shown in Figure 2.
First, the initial optimization problem has been broken down into
a communication mode selection subproblem in large-timescale
epoch and a subchannel allocation subproblem in a small-
timescale slot. Next, we propose a large-timescale communication
mode selection algorithm based on I-to-2 bidding matching to
select the communication mode at each epoch. Here, I-to-2
indicates that the matching is implemented in a bidding fashion
between I devices and two communication modes. On this
basis, based on the many-to-many deferred acceptance matching
algorithm, a small-timescale subchannel allocation algorithm is
proposed to match devices with subchannels based on bilateral
preferences.

3.1 Large-timescale communication mode
selection based on I-to-2 bidding matching

In this subsection, the proposed large-timescale communication
mode selection algorithm based on I-to-2 bidding matching is
introduced. It establishes a stable matching between I devices
and two communication modes through iterative bidding. As the
communication mode selected by a device in a large-timescale
epoch influences the data transmission delay and traffic cost
of multiple slots in that epoch, the large-timescale decision-
making is coupled with future performance of small-timescale
optimization. To address the issue of the lack of a priori knowledge
of future performance, historical data transmission delay and
historical traffic cost are used to construct the preference value

of device toward the communication mode. Then, a device
selects its most preferred communication mode based on the
preference values.

However, due to the constraint of the subchannel number,
matching competition among devices occurs if the device number
selecting the PLC mode exceeds J1, or the device number selecting
the 5G communication mode exceeds J2. Bidding matching can
effectively solve the competition between devices, improve the
convergence speed, and reduce the complexity by lowering the
preference value so as to enforce devices giving up competing
for the same communication mode. The proposed algorithm
adopts iterative bidding to resolve competition among devices
toward communication mode selection. Specifically, a bidding
price is introduced to reduce the preference value of a device
toward the competing communication mode at each iteration,
thereby forcing some devices to choose the other communication
mode and quit competition. Moreover, the bidding price can be
dynamically adjusted according to the virtual queue backlog and
queuing delay to provide higher priority for devices with a larger
queue backlog and queuing delay. The specific implementation
procedures are summarized in Algorithm 1, which are
introduced below.

3.1.1 Initialization
Define the preference values of device mi for selecting

the PLC mode and 5G communication mode as γPLC
i (v)

and γ5G
i (v), respectively. The bidding prices for device mi to

select the PLC mode or 5G communication mode are defined
as pPLC

i (v) and p5G
i (v).

Represent the set of devices queuing for matching as
Π, the set of devices that issue requests to PLC mode
as ΛPLC, and the set of devices that issue requests to 5G
communication mode as Λ5G. Initialize Π =M, ΛPLC = ∅,
Λ5G = ∅, γPLC

i (0) = ρ, and γ5G
i (0) = ρ, ∀mi ∈M, where ρ is a

predefined constant.
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1: For v = 1,2,…,V, do

2:   Phase 1: Initialization

3:   Initialize Π =M, ΛPLC = ∅, Λ5G = ∅,
γPLC
i
(0) = ρ, and γ5G

i
(0) = ρ.

4:   Phase 2: 5G and PLC preference

value calculation

5:  Calculate γPLC
i
(v) and γ5G

i
(v) based on (18) and

(19).

6:  while Π ≠ ∅, do
7:    Phase 3: 5G and PLC preference

list construction

8:    Construct Pi based on γPLC
i
(v) and γ5G

i
(v).

9:    Phase 4: I-to-2 matching

10:    mi ∈M sends matching request to its

most preferred communication mode based on γPLC
i
(v)

and γ5G
i
(v).

11:    if |ΛPLC| ≤ J1, then

12:      mi ∈ ΛPLC selects the PLC mode and sets the

corresponding xPLC
i
(v) = 1.

13:      Update Π = Π ΛPLC

14:    end if

15:    if |Λ5G| ≤ J2, then

16:      mi ∈ Λ5G selects the 5G communication mode

and sets the corresponding x5G
i
(v) = 1.

17:      Update Π = Π Λ5G

18:    end if

19:    Phase 5: bidding matching and preference

value update

20:    if |ΛPLC| > J1, then

21:    mi ∈ ΛPLC starts bidding and updates γPLC
i
(v)

based on Eq. (20) and (22).

22:    if ∃mi ∈ ΛPLC,γ
PLC
i
(v) < γ5G

i
(v), then

23:      mi sends matching request to the 5G

communication mode and updates ΛPLC = ΛPLC mi.

24:     end if

25:   end if

26:   if |Λ5G| > J2, then

27:    mi ∈ Λ5G starts bidding and updates γ5G
i
(v)

based on Eq. (21) and (23).

28:    if ∃mi ∈ Λ5G,γ
5G
i
(v) < γPLC

i
(v), then

29:      mi sends matching request to the PLC mode

and updates Λ5G = Λ5G mi.

30:    end if

31:   end if

32:   Repeat the above steps until Π = ∅.
33:  end while

34:end for

Algorithm 1. Large-timescale communication mode selection based on I-
to-2 bidding matching.

3.1.2 5G and PLC preference value calculation
The preference values γPLC

i (v) and γ5G
i (v) are calculated by the

edge server. We utilize the historical performance to calculate the
preference values γPLC

i (v) and γ5G
i (v), which are represented as Eq.

18, Eq. 19, respectively. Here, Eq. 18 is considered an example.
The first term of the numerator, i.e., γPLC

i (v− 1)(∑
v−1
z=1x

PLC
i (z) + 1),

represents the accumulative preference value of mi for PLC until
the (v− 1)-th epoch, while the second term of the numerator,

i.e., xPLC
i (v)

∑vT0
t=(v−1)T0

τi(t)

T0
, represents the average transmission delay of

mi within the v-th epoch. The denominator, i.e., ∑vz=1x
PLC
i (z) + 1,

represents the total number of selecting PLC mode of mi until the
v-th epoch. Eq. 19 is defined similarly.

γPLC
i (v) =

γPLC
i (v− 1)(∑

v−1
z=1x

PLC
i (z) + 1) − x

PLC
i (v)

∑vT0
t=(v−1)T0

τi(t)

T0

∑vz=1x
PLC
i (z) + 1

,

(18)

γ5G
i (v) =

γ5G
i (v− 1)(∑

v−1
z=1x

5G
i (z) + 1) − x

5G
i (v)

∑vT0
t=(v−1)T0
(τi(t)+αCi(t))

T0

∑vz=1x
5G
i (z) + 1

.

(19)

3.1.3 5G and PLC preference list construction
Denote the 5G and PLC preference list of device mi as

Pi. Each device constructs the preference list by arranging
its preference values γPLC

i (v) and γ5G
i (v) in a descending

order. The communication mode with the largest preference
value is prioritized to be selected, which ranks top in the
preference list.

3.1.4 I-to-2 matching
Each device mi ∈Π issues a matching request to its most

preferred communication mode based on its preference list. Denote
the number of devices selecting the PLC mode as |ΛPLC|, which
is the number of elements in the set ΛPLC. Similarly, the number
of devices selecting the 5G communication mode is |Λ5G|. When
|ΛPLC| ≤ J1, devices selecting the PLC mode, i.e., mi ∈ Λ

PLC, are
matched successfully with the PLC mode, i.e., xPLC

i (v) = 1. Then,
the devices which are successfully matched with the PLC mode
are removed from the set of unmatched devices, i.e., Π =Π\ΛPLC.
Similarly, when |Λ5G| ≤ J2, devices selecting the 5G mode, i.e.,
mi ∈ Λ

5G, are matched successfully with the 5G communication
mode, i.e., x5G

i (v) = 1. Then, the devices which are successfully
matched with the 5G mode are removed from the set of unmatched
devices, i.e., Π =Π\Λ5G.
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3.1.5 Bidding matching and preference value
update

When |ΛPLC| ≥ J1 or |Λ5G| ≥ J2, competition of communication
mode selection occurs, and C3 or C4 cannot be satisfied. To address
the competition issues, bidding matching is proposed to iteratively
reduce the preference value based on the bidding price. Moreover,
the bidding price can be dynamically adjusted to enable larger
preference for devices with a large queuing delay and virtual
queue backlog.

To enable higher priority for devices with a larger virtual
queue backlog and queuing delay, the bidding price is negatively
proportional to an historical virtual queue backlog and queuing
delay. The bidding prices of device mi toward PLC and 5G modes
are given by

pPLC
i (v) =

βPLCγPLC
i (v)

∑vT0
t=(v−1)T0

Oi (t)τ
que
i (t)
, (20)

p5G
i (v) =

β5Gγ5G
i (v)

∑vT0
t=(v−1)T0

Oi (t)τ
que
i (t)
, (21)

where βPLC and β5G denote the bidding price coefficients for the
PLC and 5G communication modes, respectively. Taking (20) as
an example, the numerator represents the bidding step size, and
the denominator represents the historical virtual queue backlog and
queuing delay.

The device mi reduces its preference values for the PLC and 5G
communication modes by subtracting the bidding prices, which are
given by

γPLC
i (v) = γ

PLC
i (v) − p

PLC
i (v) , (22)

γ5G
i (v) = γ

5G
i (v) − p

5G
i (v) . (23)

Since the bidding price is negatively related to the virtual
queue backlog and queuing delay, devices with worse historical
performances will have a larger preference value and higher priority
to be matched.

Then, repeat 3), 4), and 5) until Π = ∅.
In 3), i.e., the procedure of 5G and PLC preference list

construction, devices reconstruct the preference list based on the
updated preference values. The subtraction of bidding price lowers
the preference value and changes the ranking of communication
modes in the preference list. For example, device mi which used
to select PLC in the previous iteration may select 5G in the
current iteration because the preference value toward PLC is
reduced, and the PLC mode becomes less attractive than 5G.
In this way, bidding price enforces some devices to withdraw
matching, thereby resolving communication mode selection
competition.

3.2 Small-timescale subchannel allocation
based on many-to-many deferred
acceptance matching

Based on the large-timescale optimization results of
communication mode selection, the small-timescale subchannel
allocation problem is decomposed into a PLC subchannel allocation

subproblem and a 5G subchannel allocation subproblem, which
can be solved simultaneously by the proposed many-to-many
deferred acceptance matching. The objective is to minimize the
weighted sum of data transmission delay and traffic cost by
establishing a bilateral matching relationship between devices and
subchannels. Some definitions of the algorithm put forward are
described below.

Definition 1 (Bilateral preference relation): For the matching
between devices and subchannels, the complete, reflective, and
transitive bilateral relation between devices and subchannels, i.e.,“
≻,” is expressed” through the bilateral preference relation, which
indicates the extent ofmutual preference. It is introduced to compare
the preferences as

mi≻njnj′⇔ ωi,j (t) > ωi,j′ (t) , (24a)

nj≻mi
mi′ ⇔ λi,j (t) > λi′,j (t) , (24b)

where ⇔ means equivalence. mi≻njn
′
j means that

the device mi prefers the subchannel nj more than the
subchannel nj′ because ωi,j′(t) is smaller than the preference
value ωi,j(t). nj≻mi

mi′ means that the subchannel nj prefers the
device mi more than the device mi’ because λi′,j(t) is smaller than
the preference value λi,j(t).

Definition 2 (bilateral matching): The small-timescale
subchannel allocation is a bilateral matching ϕ with constraints
of device quota and transmission reliability, i.e.,

ϕ(mi) ⊆N and |ϕ(mi) | ≤ qm,∀nj ∈N , (25a)

ϕ(nj) ⊆M and |ϕ(nj) | ≤ 1,∀mi ∈M, (25b)

ϕ(mi) ⊆N and SINRi,j (t) ≥ SINRmin,∀mi ∈M, (25c)

nj ∈ ϕ(mi) ⇔mi ∈ ϕ(nj) , (25d)

where (25a) ensures that at most qm subchannels can be allocated to
mi. (25b) indicates that each subchannel can be allocated to at most
one device. (25c) indicates that the SINR of the subchannel allocated
tomi needs tomeet the requirement of transmission reliability. (25d)
means that the subchannel nj is matched to the device mi if mi is
matched to nj.

Definition 3 (stable matching): If the matching ϕ satisfies
individual rationality criteria and is not disrupted by any pair, it is
deemed to be stable.

Based on the above definitions, we propose the small-
timescale subchannel allocation algorithm based on many-to-
many deferred acceptance matching. Algorithm 2 encapsulates the
detailed procedural steps for implementation.

3.2.1 Grouping and initialization
According to the large-timescale optimization results of

communicationmode selection, devices are divided into two groups.
Among them, the devices that select the PLC mode belong to the
set MPLC, and the devices that select the 5G communication mode
belong to the set M5G. Define Θi(t) as the set of PLC subchannels
that are currentlymatchedwithmi. Denote |Θi(t)| as the size ofΘi(t),
i.e., the number of subchannels allocated to mi. Initialize yi,j(t) = 0
and Θi(t) = ∅.

3.2.2 Bilateral preference value calculation
According to the grouping results, ∀mi ∈MPLC, the preference

values ofmi toward the PLC subchannel nj are calculated by the edge

Frontiers in Energy Research 09 frontiersin.org233

https://doi.org/10.3389/fenrg.2024.1378320
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Shi 10.3389/fenrg.2024.1378320

1:for t = (v−1)T0 +1, (v−1)T0 +2,…,vT0 do

2:   Phase 1: Grouping and initialization

3:   Initialize Θi(t) = ∅ and yi,j = 0.

4:   Phase 2: Bilateral preference value

calculation

5:   ∀mi ∈M calculates its preference value toward

nj based on (26) and (28).

6:   ∀nj ∈N calculates its preference value toward

mi based on (27) and (29).

7:   Phase 3: Bilateral partial preference list

construction

8:   mi and nj construct FD
i
and FC

j
based on C7 and

large-timescale optimization results.

9:   Phase 4: Device and 5G subchannel bilateral

deferred acceptance matching

10:   ∀mi ∈M5G sends matching proposals to its

most preferred (qm − |Θi(t)|) 5G subchannel in FD
i
.

11:   for nj,j = J1 +1,…,J do

12:    if C6 is satisfied then

13:     Derive stable matching between devices and

5G subchannels.

14:    end if

15:    if C6 is not satisfied then

16:     if yi,j = 0 then

17:      nj selects the device mi with the largest

preference rejects the other devices and sets

yi,j(t) = 1.

18:     else

19:        nj compares mi’ with mi and selects the

device with the largest preference value.

20:        nj rejects the other devices and renews

the tentative matching relationship.

21:     end if

22:    end if

23:    Remove the devices which are temporarily

matched with 5G subchannels from FC
j
. Remove the 5G

subchannels which have rejected

mi from FD
i
.

24:    Repeat the above steps until no 5G

subchannel remains.

25:   end for

26:   Phase 5: Device and PLC subchannel bilateral

deferred acceptance matching

27:   Perform the bilateral deferred acceptance

matching between devices and PLC subchannel

similarly.

28: end for

Algorithm 2. Small-timescale subchannel allocation based on many-to-
many deferred acceptance matching.

server, which is defined as the reciprocal of the data transmission
delay, i.e.,

ωi,j (t) =
xPLC
i (v)
τi (t)
, j = 1,…, J1. (26)

Considering higher priority for devices with a large virtual
queue backlog and queuing delay, the preference value of
the PLC subchannel nj toward mi is defined as the product
of the virtual queue backlog and queuing delay, which is
given by

λi,j (t) = x
PLC
i (v)Oi (t)τ

que
i (t) , j = 1,…, J1. (27)

Similarly, ∀mi ∈M5G, combined with the extra traffic cost
of using 5G subchannels, the preference value of mi toward 5G
subchannel nj is defined as

ωi,j (t) =
x5G
i (v)

τi (t) + αCi (t)
, j = J1,…, J. (28)

The preference value of the 5G subchannel nj toward mi is
given by

λi,j (t) = x
5G
i (v)Oi (t)τ

que
i (t) , j = J1,…, J. (29)

3.2.3 Bilateral partial preference list construction
Unlike the large-timescale matching in communication mode

selection, the preference list of subchannel allocation is partial
because subchannels which cannot meet the minimum SINR
requirement are removed from the preference list. Assuming
that device mi selects the 5G communication mode, the set
of available 5G subchannels for mi is defined as Ni(t) =
{nj|nj ∈N ,SINRi,j(t) ≥ SINRmin, j = J1 + 1,…, J}.

Then,mi constructs the partial preference list of 5G subchannels,
i.e., FD

i , by sorting the preference values of 5G subchannels of set
Ni(t) in descending order. Next, each 5G subchannel constructs
the preference list of devices based on (29). The partial preference
list of the subchannel nj is defined as FC

j . The bilateral preference
lists between devices and PLC subchannels are constructed
similarly.

3.2.4 Device and 5G subchannel bilateral
deferred acceptance matching

Bilateral deferred acceptance is used to derive a stable matching
between devices and 5G subchannels.
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TABLE 2 Simulation parameters (Seo, 2012).

Parameter Value Parameter Value

J1, J2 1000, 280 I 100

qm 100 Rmax
j 8 bits/symbol

T 100 Pi,j(t) −17 dBm

V 10 T0 10

τ 1 s e5G(v) 0.4 $/Gbits

ρ 1 SINRmin 12.3 dB

Ns 14,000 symbols/s α 200

N0 −114 dBm Pe 10–7

ν 1.4 η −0.791

θ 10–4 μ [1.2,2.6]

Step 1: mi ∈M5G sends matching proposals to its most preferred
(qm − |Θi(t)|) 5G subchannels in its preference list FD

i .

Step 2: Each 5G subchannel, i.e., nj, j = J1 + 1,…, J, calculates the
total number of received matching proposals. If the matching
proposals received by all 5G subchannels meet the constraint C6,
then a stable matching between devices and 5G subchannels is
derived. The bilateral deferred acceptance matching is terminated.
Otherwise, if the constraint C6 is not satisfied, execute Step 3.

Step 3: Assume that nj receives more than one matching proposals.
If nj has not established a tentative matching relationship with
any device in previous iterations, it selects the device with the
largest preference, e.g., mi, and rejects the other devices. Then, a
tentativematching relationship is established between nj andmi, i.e.,
yi,j(t) = 1.

If nj has established a tentative matching relationship with some
device in previous iterations, e.g., mi’, it compares mi’ with mi
and selects the device with the largest preference value. Next, it
rejects other devices and renews the tentative matching relationship.
Therefore, devices which have been matched with subchannels
in previous iterations may get rejected in later iterators if better
matching candidate appears, which stands for the meaning of
deferred acceptance.

Step 4: The devices which are temporarily matched with 5G
subchannels are removed from the set FC

j . Meanwhile, the 5G
subchannels which have rejected mi are removed from the set FD

i .
Then, go back to Step 1 and reperform bilateral matching for the
rejected devices until no 5G subchannel remains.

3.2.5 Device and PLC subchannel bilateral
deferred acceptance matching

The bilateral deferred acceptance matching between devices
and PLC subchannels is performed similarly as that of 5G.
The iterative process between nj and mi is repeated until no
PLC subchannel remains. The proposed algorithm divides devices

FIGURE 3
Weighted sum of data transmission delay and traffic cost versus time
slot (I = 100).

FIGURE 4
Weighted sum of data transmission delay and traffic cost versus the
number of devices.

into two groups based on the large-timescale communication
mode selection result and allows parallel implementation of two
matchings. This dramatically reduces matching complexity and
convergence performance compared to existing approaches.

4 Simulation results

Within this segment, the efficacy of the algorithm put forward
is assessed via simulation-based analysis. An IoT-empowered
distribution energy dispatch scenario containing 10 IoT devices is
set. The quota of subchannel allocation qm is set as 10. There are
128 orthogonal subchannels, including 100 PLC subchannels and 28
5G subchannels. The alpha steady-state function is used to describe
electromagnetic interference. Table 2 presents the parameters used
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FIGURE 5
Traffic cost versus proportion of the 5G subchannel.

FIGURE 6
Data transmission delay and traffic cost versus α.

for the simulation (Liao et al., 2020; Zhang P. et al., 2023). Two
existing algorithms are compared with the algorithm put forward.
The first algorithm is the resource allocation scheme based on
the fire algorithm (RAF), which minimizes the weighted sum of
transmission delay and traffic cost and ignores the large-timescale
optimization of communication mode selection (Liu et al., 2019).
The second algorithm is the resource allocation algorithm based
on one-to-many matching (RAOM), which neglects the traffic cost
optimization (Yuan et al., 2019). Both comparison algorithmsdonot
consider the long-term average queuing delay constraint.

Figure 3 shows the weighted sum of data transmission delay
and traffic cost versus time slot. With the device number escalating
from 100 to 300, the weighted sum performances of the proposed
algorithm, RAF, and RAOM exhibit enhancements of 20.82%,
53.78%, and 37.47%, respectively. The algorithm put forward
considers the optimization of the communication mode selection
and subchannel allocation in a multi-timescale. In a large timescale,
by updating the bidding price, the proposed algorithm resolves
the conflicts among devices. In a small timescale, the proposed

FIGURE 7
Box plots of the virtual queue backlog.

FIGURE 8
Weighted sum of data transmission delay and traffic cost versus
SINRmin.

algorithm calculates the preference value based on the data
transmission delay, traffic cost, virtual queue backlog, and queuing
delay. The proposed algorithm constructs the partial preference
list, according to the data transmission reliability requirement,
and executes the grouping matching based on the large-timescale
decisions. This effectively reduces the complexity of matching
iteration and improves the weighted sum of data transmission delay
and traffic cost while satisfying the long-term average queuing delay
constraint. RAF ignores the large-timescale communication mode
selection, leading to the high complexity and worse weighted sum
performance. RAOM does not consider traffic cost optimization,
and its performance is the worst.

Figure 4 shows the weighted sum of data transmission
delay and traffic cost versus the number of devices. With the
device number escalating from 10 to 110, the weighted sum
performances of the proposed algorithm, RAF, and RAOM exhibit
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enhancements of 20.82%, 53.78%, and 37.47%, respectively.
When I = 110, compared with RAF and RAOM, the proposed
algorithm reduces the weighted sum performance by 33.13% and
53.65%, respectively. The algorithm put forward addresses the
conflicts through the dynamic bidding in a large timescale and
the bilateral deferred acceptance matching in a small timescale,
which can achieve the stable two-layer iterative matching strategies
among devices.

Figure 5 shows the traffic cost versus proportion of the 5G
subchannel. As the proportion of the 5G subchannel increases
from 15% to 60%, the traffic cost of the proposed algorithm
increases at a slower pace compared to that of RAF and RAOM.
When the proportion of 5G subchannel is 60%, the traffic cost
of the proposed algorithm is 34.03% and 53.35% lower than
those of RAF and RAOM, respectively. The proposed algorithm
considers the trade-off between data transmission delay and
traffic cost, avoiding the problem of high traffic cost due to
the excessive selection of 5G channels when the 5G subchannel
number is high.

Figure 6 shows the data transmission delay and traffic cost
versus α. The simulation result shows that the traffic cost
increases gradually with α, while the data transmission delay
decreases contrarily. When α increases from 100 to 900, the data
transmission delay is reduced by 95.25%, and the traffic cost
is increased by 55.45%. The increase in α makes the proposed
algorithm tend to optimize the transmission delay. Therefore, a
dynamic tradeoff is achieved between data transmission delay
and traffic cost by adaptively adjusting α in the proposed
algorithm.

Figure 7 shows the box plots of the virtual queue backlog.
Compared with RAF and RAOM, the proposed algorithm
reduces the median virtual queue backlog by 23.73% and
30.08%, respectively. The proposed algorithm transforms the
long-term constraint of average queuing delay into the stability
of virtual queue based on Lyapunov optimization. Moreover, it
considers the virtual queue of queuing delay into the preference
value calculation and effectively solves the competition problem
among devices.

Figure 8 shows the weighted sum of data transmission delay
and traffic cost versus SINRmin. As SINRmin increases, the weighted
sum performances of the three algorithms gradually increase.
The proposed algorithm achieves smallest increment. This is
due to the decrease in available channels caused by the increase
in SINRmin, resulting in an overall performance degradation.
The proposed algorithm can optimize the communication
resource allocation strategies based on the alternately iterative
matching between the large timescale and small timescale.
In addition, the proposed algorithm enhances the optimality
of matching through the bidding and deferred acceptance
mechanisms.

5 Conclusion

In this paper, we addressed the joint minimization problem
of data transmission delay and traffic cost. The delay and cost-
balanced communication resourcemanagement algorithm based on
two-layer iterative matching is proposed to satisfy the constraints

of the subchannel allocation number, subchannel allocation quota,
data transmission reliability, and long-term average queuing delay
by jointly optimizing the large-timescale communication mode
selection and small-timescale subchannel allocation. Compared
with the RAF and RAOM algorithm, the proposed algorithm
reduces the weighted sum of data transmission delay and traffic
cost by 43.22% and 22.13%, respectively. Particularly, the proposed
algorithm can efficiently guarantee the long-term average queuing
delay constraint. Compared with RAF and RAOM, the proposed
algorithm reduces the median virtual queue backlog by 23.73% and
30.08% and achieves the best queuing delay performance.

The large-scale access of IoT devices causes an explosion of data
for distribution energy dispatch. Limited computing resources of the
edge server cannot meet the data processing demands. A potential
solution is to combine edge computing with cloud computing,
thereby constructing a cloud-edge collaborative computing
framework to improve the data processing capacity. However,
this increases the optimization complexity of communication
resource allocation. How to reasonably allocate computing
resources to meet the data processing requirements with different
service priority is also an open issue. Therefore, future work
will focus on the joint optimization of cloud-edge collaborative
communication and computing resources to further improve the
data processing performance for IoT-empowered distribution grid
energy dispatch.
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Application of improved graph
convolutional networks in
daily-ahead carbon emission
prediction

Feng Pan, Yuyao Yang*, Yilin Ji, Jinli Li, Jun Zhang and
Lihua Zhong

Metrology Center of Guangdong Power Grid Co., Ltd., Qingyuan, China

With the increasing complexity of power systems and the proliferation of
renewable energy sources, the task of calculating carbon emissions has
become increasingly challenging. To address these challenges, we developed
a new method for predicting carbon emission factors. Bayesian optimization
technique graphical convolutional networks with long- and short-term network
(BO-TGNN) is used to predict the carbon emissions of the power system. The
method aims to quickly predict the day-ahead carbon emissions of power system
nodes with enhanced feature extraction and optimized network training
hyperparameters. The effectiveness of the proposed method is demonstrated
through simulation tests on three different power systems using four deep
learning algorithms. The method provides a tailored solution to the evolving
needs of carbon reduction efforts and is a significant step forward in addressing
the complexity of carbon emission calculations for modern power systems.

KEYWORDS

Bayesian optimization, graph neural network, long- and short-term neural network day-
ahead prediction, carbon emission factor, carbon reduction

1 Introduction

Emission source analysis and emission trend prediction help electricity consumers
(Zeng X. et al., 2023; Zhang X. et al., 2023) and power generation enterprises (Zhang et al.,
2020; Ruhnau et al., 2022) explore effective paths and measures for carbon emission
reduction and theoretically ensure the development of reasonable carbon reduction and
emission reduction operations and behaviors (Sun and Huang, 2022). Therefore, there is a
need to explore scientific methods to predict carbon emission. Considering the reduction of
fossil fuels, replacing electricity with renewable energy is gradually becoming popular
around the world, and the mechanisms between carbon footprint and other carbon
reduction measures are worth exploring. In addition to renewable energy, the supply
chain with hydrogen and ammonia is also favorable for shipping organizations and
institutions (Yan et al., 2023).

For the carbon emission prediction, Gao et al. (2022) derived a differential formula-
based gray prediction model with the whale optimization algorithm (WOA) for parameters’
optimization. The carbon emission forecast of the thermal power plant was analyzed in
Zhou et al. (2017) with particle swarm optimization (PSO) for the parameter update of the
backpropagation (BP) neural network. In Ye et al. (2023), the carbon emission of the
industry zone was forecasted quickly via the combination of integrating autoregressive
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integrated moving average (ARIMA) and support vector regression
(SVR). Another important part of the prediction area considering
carbon emission is carbon emission peak (CEP) prediction (Gao
et al., 2023). In Wu et al. (2018), stochastic impacts by regression
on population, affluence, and technology (STIRPAT) is employed to
predict the CEP forQingdao, China. For the carbon emission reduction,
Wu et al. (2022) adopted the radial basis function (RBF) neural network
to extract the feature of the indices with the production of vinyl.

For the carbon emission price prediction, Yang et al. (2022)
presented a generalized autoregressive conditional
heteroscedasticity model to effectively obtain the price of the
carbon, and a mixed-integer linear programming (MILP) model
is constructed for the cooperation of the electricity market and
carbon market. In Sun and Zhang (2022), a cooperation technique
with least square support vector machine (LSSVM) and artificial fish
swarm algorithm (AFSA) is constructed for the effective and robust
of carbon price forecast. For the carbon emission factor (CEF)
forecast, Sun and Huang (2022) adopted the machine learning
technique, extreme learning machine (ELM), to learn the feature
of CEF at a provincial level for carbon emissions in China, with a
heuristic-based approach, WOA, for the optimal operation and fast
convergence. For the prediction of carbon emission or CEF, Zhang
X. et al. (2023) constructed a surrogated optimization with
generalized regression neural network (GRNN) for the
acceleration of a two-stage optimization model for the electricity

vehicle. With the consumer satisfaction, the day-ahead optimization
of air-conditioning control was conducted in Zeng X. et al. (2023)
with a driving training-based optimization (DTBO).

With the continuous breakthroughs in artificial intelligence
technology, deep learning algorithms with their efficient feature
extraction and function approximation ability have gradually
received more attention in the field of carbon emission-related
prediction. Recurrent neural networks (RNNs) and their variants,
including long short-term memory (LSTM) (Kong et al., 2019)
and gated recurrent units (GRUs), focus on capturing the time
dimension feature. Therefore, they are suitable for the task of time
series prediction of carbon prices. The day-ahead prediction with
time series of CEI was performed in Cai et al. (2023) based on the
LSTM neural network. Later, in Chen et al. (2023), the real-time of
CEI with 15 min data was evaluated with the gated cycle unit
network. In Niu et al. (2022), the empirical mode decomposition
(EMD) cooperated with dragonfly algorithm (DA) was employed
to process the features of the time series data considering
uncertainty. And four methods were performed for the
simulation test of carbon price forecast. Zhang K. et al. (2023)
formulated the feature decomposition and capture model for the
carbon price via the cooperation of variational mode
decomposition (VMD) and LSTM. The PSO is adopted to
search the parameter of LSTM in Zeng Q. et al. (2023) for the
CEP at Yangtze River Delta city cluster, China.

FIGURE 1
Framework of BO-TGNN for the power system and electricity consumer.
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In addition, the graph convolutional neural network (GNN)
is one of the brand-new areas of deep learning. It can capture
non-Euclidean geometric spatial features of graph structures,
such as traffic flow, metro lines, and chemical structures, more
efficiently than traditional convolutional networks. Time series
networks can effectively extract high-dimensional non-linear
features between electricity quantities from massive historical
time series data using gate structures and learn the non-linear
relationships between carbon emission time series in the source
network. Therefore, the graph convolution network with long-
and short-term network (TGNN) is constructed for the carbon
emission prediction. Recently, several studies have evaluated
the applications of GNNs in power grids (Boyaci et al., 2022;
Liu et al., 2022; Hansen et al., 2023; Liu et al., 2023). The
Bayesian optimization utilizes Gaussian process regression to

construct a selection function for obtaining the next sample
point. This technique shows good competence for searching the
hyperparameter of network in studies (De Baets et al., 2017;
Aslam et al., 2021; Rana et al., 2021), such as load monitoring
(Rana et al., 2021), cyber-attack detection (De Baets et al.,
2017), and renewable energy power forecast (Aslam et al.,
2021). Rana et al. (2021) combines Bayesian optimization
with machine learning for non-invasive load monitoring. This
process is repeated, including hyperparameter optimization and
network parameter training. On account of these, this paper
proposes a novel Bayesian optimal technique for the graph
convolution network with long- and short-term network (BO-
TGNN) for the prediction of carbon emissions in new power
systems. Through the data-driven form, it can reduce the
dependence on the grid topology and system parameters. With

FIGURE 2
Flow diagram for the day-ahead CEF forecast with BO-TGNN.

FIGURE 3
Network configuration of TGNN.
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the addition of Bayesian optimization, the network’s
hyperparameter optimization operation is carried out to
improve the generalization and convergence ability of the
data-driven model. Finally, the combination of the time series
network can quickly predict the electrical quantity of the CEF
forecast. There are three novel points in this research, which are
explained below:

1) Different from Boyaci et al. (2022), Liu et al. (2022), Hansen
et al. (2023), and Liu et al. (2023), the BO-TGNN algorithm
can effectively extract the high-dimensional electrical quantity
characteristics of the power system spatio-temporally, and it
can predict these characteristics for the user nodes system by
analyzing the historical data on the
source–network–load parameter.

2) Consistent with De Baets et al. (2017), Aslam et al. (2021), and
Rana et al. (2021), this method innovatively applies a spatio-
temporal graph convolutional neural network based on
Bayesian optimization to the power system network in
order to rapidly and accurately predict the carbon emission
factors of power system load nodes.

3) It can meet certain calculation accuracy requirements and
show good ability to effectively adapt to the source–load

dynamics of the power system, providing a powerful tool
for sustainable monitoring and management of power
system carbon emissions.

The rest of the paper is organized as follows: Section 2
introduces the mathematical model for the analysis for carbon
emission factors. Section 3 gives the structure and detailed
implementation of BO-TGNN. Simulation results and
discussion with three power systems are presented in Section
4. At last, Section 5 summarizes the paper.

2 Mathematical model of the CEF
calculation

For the carbon flow prediction based on the graph convolution
network with a long- and short-term network, the prediction
process is divided into five steps, as shown in Figure 1. It
includes the load and generator historical series dataset, carbon
emission factor computation and collection, network training,
hyperparameter of networks based on the Bayesian optimization
technique, and the day-ahead forecast application for the nodes or
electricity consumers in power systems.

TABLE 1 Execution procedure of BO-TGNN for the day-ahead CEF forecast.

1: Data collection

2: Load data and renewable energy power output series set

3: Power flow calculation and carbon equation solving by Eqs (1)-(8)

4: Collect load, renewable energy power, and CEF series data

5: Network training

6: Determine the adjacency matrix of the power system by resistance and reactance

7: Select the hyperparameters and the bounding for Bayesian optimization

8: Dataset standardization and network structure design

9: For τ = 1: To

10: For ε = 1: Te

11: Forward propagation with graph coevolution operation and time series feature captured by Eqs (9)-(11)

12: Loss function calculation and backpropagation update parameters

13: END FOR 1

14: Evaluate the objective function according to MPE of the test dataset

15: Gaussian process regression operation and sample the hyperparameters for the next iteration by Eqs (12)–(14)

16: END FOR 2

17: Day-ahead application

18: For t = 1: Td

19: Input the load, renewable energy power, and CEF historical series data

20: Employ optimal TGNN to quickly obtain the CEF of the current step

21: Update the data on the current step for next iteration

22: END FOR 3

Output: The day-ahead CEF forecast series
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The first step is to collect the load historical sequence inputs
from the PQ nodes, and Newton’s method is employed for power
flow calculation. Then, the carbon flow analysis is performed and the
load input data with the corresponding CEF output data on the
power system nodes are collected. In the third step, the
hyperparameters of the TGNN are selected as the variables for
Bayesian optimization, followed by training the parameters of the
network based on the collected data and updating the LSTM
parameters by combining the loss function evaluation and
backpropagation. In the fourth step, Bayesian optimization
utilizes the Gaussian process regression to construct the ensemble
function of the next sample point and repeats the hyperparameter
optimization iterations and the training of the network parameters.
Finally, the optimization is performed according to the real-time
load sequence data and generator power output data, and the

optimized optimal network is used for the online prediction of
carbon emission coefficients to achieve a fast prediction of carbon
emission coefficients at each node.

2.1 Calculation of the power flow

In order to predict day-ahead CEF, the primary task is to collect
the historical load sequence inputs of PQ nodes and renewable
energy power output data. Then, the power flow calculations should
be performed. The power flow and voltage distribution of the power
system are closely related. For containing Ng generators and Nn

power bus, the power output of a power system with n nodes is
divided into active and reactive parts. The power flow equation of
the power system nodes can be expressed as follows:

FIGURE 4
Spatial parameters of the IEEE-9 system. (A) Topology and (B) adjacency matrix.

FIGURE 5
Spatial parameters of the IEEE-39 system. (A) Topology and (B) adjacency matrix.
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Pi
G − Pi

L � Vi∑Nn

j�1Vj Gij cos θij + Bij sin θij( ), (1)

∑Ng

k�1Q
i
G − Qi

L � Vi∑Nn

j�1Vj Gij sin θij − Bij cos θij( ), (2)
θij � θi − θj, (3)

Pj
min ≤Pi

G ≤Pmax
j , (4)

Qj
min ≤Qi

G ≤Qmax
j , (5)

Vj
min ≤Vj ≤Vmax

j , (6)
where Pi

G and Pi
L are the active power values of the generator and load

at node i, respectively; Qi
G and Qi

L are the reactive power values of the
generator and load at node i, respectively; Gij and Bij are the negative

FIGURE 6
Spatial parameters of the IEEE-118 system. (A) Topology and (B) adjacency matrix.

FIGURE 7
Fluctuation of the power system node considering the load and renewable power output. (A) IEEE-9, (B) IEEE-39, and (C) IEEE-118.
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values of line i–j conductance and inductive reactance, respectively; Vj

denotes the voltage amplitudes at node i; θij denotes the voltage angle
difference between node i and node j; and θi denotes the voltage angle of
node i, wherePj

min,Pmax
j ,Qj

min,Qmax
j ,Vj

min, andVmax
j are theminimum

and maximum values of active power regulation and reactive power
regulation and output voltages for the jth generator, respectively.

2.2 Calculation of the carbon flow

In the carbon emission factor calculation, the CEF of the power
system node corresponds to the active power of the input source and

input source node. The calculation of CEF can be based on the above
current results. The CEF equation can be expressed as follows:

δL,i �
Pi
G · δG,i +∑Nn

j�1P
i,j
L · δL,j

Pi
G +∑Nn

j�1P
i,j
L

, (7)

Pi
G +∑Nn

j�1P
i,j
L( )δL,i −∑Nn

j�1P
i,j
L · δL,j � Pi

G · δG,i, (8)

where δL,i (i � 1, 2, . . .Nn) is the set of solutions to the carbon
flow equation, where Nn is the set of required solutions and
equations. (Pi

G + ∑Nn
j�1P

i,j
L ) is the diagonal component of the

carbon flow equation, which corresponds to the total power
injected into the ith node; Pi,j

L is the active power injected
along the line from the jth node to the ith node; and Pi,j

L is
the non-diagonal component of the equation, which corresponds
to the active power along the j–i line.

2.3 Construction of the data feature

The sequence data on the past Δt length of the power system are
selected as the input, which can be expressed as X �
X1,X2, . . . ,XTS−Th{ },X � x1, x2, . . . , xTS−Th{ }. For a single moment,
the network input feature quantity can be represented as
xi � Li,Gi, δL,i{ } (i � 1, 2, . . . , TS − Th). L � L1, L2, . . . , LTS−Th{ },
� G1,G2, . . . ,GTS−Th{ }, where TS is the total collection data series
length, Th denotes the length of data series for a sample, and TS − Th

is the total valid number of collected samples. For the output
characteristics of carbon emission factor trend analysis, it is necessary
to consider the characteristic quantities of the output sequence of node
carbon emission factors. Therefore, this article selects the load, new energy
output, and carbon emission factor of each node as characteristic outputs.
The network prediction feature quantity is the output of the network’s
feature quantity at the next moment, which can be expressed as Y �
Y1,Y2, . . . ,YTS−Th{ } and Yi � xi+Th(i � 1, 2, . . . , TS − Th).

TABLE 2 System and algorithm parameter settings.

Parameter type IEEE-9 IEEE-39 IEEE-118

Number of buses 9 39 118

Number of inputs 27 117 354

Number of outputs 27 117 354

Train data length 9,216 9,216 9,216

Test data length 2,304 2,304 2,304

Length of historical series 48 48 48

Full layer [16 32] [16 32 64] [16 64 64]

LSTM layer [32] [32 64] [32 64]

GNN layer Cai et al. (2023) [16, 32] [16, 32, 32]

Optimizer Adam Adam Adam

L2 regularization factor [0, 0.001] [0, 0.001] [0, 0.001]

Initial learning rate [0.001, 0.01] [0.001, 0.01] [0.001, 0.01]

Learning rate drop factor [0,0.1] [0,0.1] [0,0.1]

FIGURE 8
Bayesian optimization results of the IEEE-9 system. (A) Bayesian optimization objective function and (B) MSE loss in network training for TGNN.
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3 Design of BO-TGNN for day-
ahead CEF

The following flowchart in Figure 2 complements the specific steps
of the BO-TGNN. In the upper part of the flowchart, the data source,
calculation of electricity quantities, and data collection are presented for
network training in the lower part of the flowchart. For GNN, the
adjacency matrix should be determined according to the topology and
line parameters of the power system. In the flowchart, network training
and hyperparameter optimization are the cores of the whole prediction
process. Bayesian optimization of the network hyperparameters involves
a large loop of iterative Bayesian optimization. In each iteration of this
grand loop, a series of network training iterations are performed.

3.1 Principle of LSTM

During the training of the network, historical sequences of input
and output features of the dataset will be used to train the network
parameters. The trained network will be utilized to quickly assess the
carbon emission factors during the pre-testing process of the
network. The forward propagation of LSTM with the gate and
output computation is given as follows:

ft � σ(wf · ht−1
xt

[ ] + bf

it � σ wi · ht−1
xt

[ ] + bi( )
gt � σ wg · ht−1

xt
[ ] + bg( )

ot � σ wo · ht−1
xt

[ ] + bo( ),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

where xt and ht−1 denote the input of the tth time dimension; ft, it, gt,
and ot are the forget, input state, new vector, and output state at the tth
time dimension, respectively; wf , wi, wg, and wo, and bf , bi, bg, and bo

represent the weight and bias parameters of the LSTM layers, respectively;

and
ht−1
xt

[ ] represents the aggregation operation of two vectors.

3.2 Principle of GNN

GNN shows excellent performance in processing graph
structured data. For a power system, it can represent graph
relationships through topology and lines and use adjacency
matrices to reflect the topological structure of the graph. In this
paper, the topology of the power system and parameters of the lines
(resistance RB and reactanceXB) are selected for the construction of
adjacency matrix A, which are expressed as follows:

Aij � �vi − min �v

max �v − min �v
+ �ui − min �u

max �u − min �u

�vi �
Ri,j − min

j�1,2,...Nn

Ri,j

max
j�1,2,...Nn

Ri,j − min
j�1,2,...Nn

Ri,j

�ui �
Xi,j − min

j�1,2,...Nn

Xi,j

max
j�1,2,...Nn

Xi,j − min
j�1,2,...Nn

Xi,j

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, (10)

where Aij is the value of the adjacency matrix; �vi and �ui denote the
elements of two normalized vectors; and Ri,j and Xi,j are the
resistance and reactance between ith node and jth node.

Then, for the graph convolution operation of TGNN, the output
feature can be determined by the adjacency matrix, input feature,
and the optimal parameters, which is expressed as follows:

Hout
c � σ ~D

−1
2 ~A ~D

−1
2Hin

c wc + bc( ),
~A � A + I,

~D � ∑Nn
j�1 ~Aij,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(11)

FIGURE 9
Bayesian optimization results of the IEEE-39 system. (A) Bayesian optimization objective function and (B) MSE loss in network training.
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where Hout
c and Hin

c are the output and input features of the GNN
layer, respectively; I denotes an identity matrix; ~D is a degree matrix
computed by ~A; and wc and bc are the parameters of the GNN.

3.3 Design of TGNN with Bayesian
optimization

Due to good competence of LSTM for temporal feature
extraction and GNN for spatial feature, the TGNN is employed
to quickly forecast the carbon emission factor for power system and
electricity consumers. The configuration of TGNN is given in
Figure 3. It has four layers, including the input layer time series
layer, graph convolution layer, and fully connected layer.

For hyperparameter optimization of TGNN, the Bayesian
optimization technique is employed to search the optimum,
which has three optimal steps. First, the hyperparameter of the
system is determined by the sample operation for the current
iterations, which is expressed as follows:

f φ( ) ~ N[m φ( ), k φ,φ′( ), (12)

where φ is the optimal hyperparameter and f(φ) is the
corresponding probability distribution function. φbest is the
location of the lowest posterior mean. ω(φbest) is the
minimum of the posterior mean.

Second, the forward propagation of the network is performed
and the loss is calculated by the mean square error (MSE) function.
Then, a collection function based on Gaussian process regression is
constructed for collecting the sample set for the next iteration, which
is expressed as follows:

�E φ( ) � E{max 0,ω[ φbest( ) − f φ( )]}, (13)

where �E(φ) is the corresponding acquisition function.
Finally, the steps will be repeated until the iteration

conditions are satisfied. The mean percentage error (MPE)

function of the validation set is employed for the value
evaluation, which is expressed as follows:

�φ � arg min empe φ( ),φ ∈ ϑ, (14)
where �φ is the optimal hyperparameter set, �ϑ denotes the optimal
search space, and empe(φ) is the objective function.

3.4 Calculation flow of BO-TGNN

The whole process of calculating the day-ahead CEF forecast by
BO-TGNN is provided in the following Table 1. It follows three steps,
namely, data collection, network training, and day-ahead application.

FIGURE 10
Bayesian optimization results of the IEEE-118 system. (A) Bayesian optimization objective function and (B) MSE loss in network training.

FIGURE 11
Bayesian optimal parameters path with TGNN. (A) IEEE-9, (B)
IEEE-39, and (C) IEEE-118.

Frontiers in Energy Research frontiersin.org09

Pan et al. 10.3389/fenrg.2024.1371507

248

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1371507


4 Case studies

In this paper, the IEEE-9 node, IEEE-39 node, and IEEE-118
node systems are employed to conduct simulation cases for
simulation. In addition, the simulation is conducted with four
algorithms, namely, BO-FULL, BO-LSTM, BO-GNN, and BO-
TGNN. They all have the same hyperparameters and the same
search space.

4.1 Dataset and parameters of three systems

The system topologies are shown in Figure 4A, Figure 5A, and
Figure 6A. Then, the adjacency matrixes of the power systems for

the GNN computation are given in Figure 4B, Figure 5B, and
Figure 6B. These matrix values are determined by the topology,
resistance, and reluctance of the power system nodes. The
simulation uses 3 months of simulated data with a sampling
time granularity of 15 min, considering the load fluctuation
and renewable energy power output (as given in Figure 7). It
has 11,520 sample data for deep learning technique training. The
ratio of the training set to validation set is 1:4. The specific
parameter data on the node system and algorithm are shown in
Tables 2. For the carbon emission factor of the power system
nodes, it related to the source end power generation technology
of power system nodes. The renewable resources (like wind and
PV) are set to 0 kg/kWh, the coal fired is set to 1.2 kg/kwh, and
gas plant is set to 0.5 kg/kwh.

FIGURE 12
Day-ahead result of CEF in the IEEE-9 node system. (A) Node 9 and (B) node 7.

FIGURE 13
Day-ahead result of CEF for node 15 in the IEEE-39 node system. (A) Node 15 and (B) node 19.
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For Bayesian optimization, three hyperparameters of the four
networks are selected, which are the L2 regularization factor, initial
learning rate, and learning rate drop factor with the optimizer.
These parameters are important for the network prediction
performance, network training convergence, and generalization
ability. To improve the transparency and understanding of the
network for carbon emission factor prediction, these
hyperparameters should be optimal reasonably. The iteration of
Bayesian optimization is set to 35. The iteration of parameter
optimization for deep learning is set to 100. The batch size of the
training process is set to 64, and the Adam optimizer is selected for
the network training. The time series length is set to 48 (12 h) for
the day-ahead carbon emission factor forecast. TheMPE is selected
for the Bayesian optimization objective function, and MSE is
selected for the network training loss function. MSE is widely
used in regression models to analyze the prediction accuracy. MPE
can better reflect the relative errors of various features in the
model. For themth dimension prediction result, the MPE andMSE
can be given as follows:

MSE � ∑m
i�1 yi − �yi( )2

m
, (15)

MPE � ∑m

i�1
yi − �yi

yi

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣. (16)

4.2 Bayesian optimization for TGNN

Bayesian optimization is often applied to the hyperparameter
optimization of networks, due to the good predictive performance
requiring only a small number of iterations. It includes two iteration
processes. The first iteration is the Bayesian optimization for
hyperparameters for the network training, as shown in Figure 8A,
Figure 9A, and Figure 10A. Then, the network parameters of the weight,
bias parameters of each layer will be optimized according to the forward

propagation and backward propagation, and the loss function of the
convergence of the network will be obtained (as given in Figure 8B,
Figure 9B, and Figure 10B).

The following section discusses the optimal process of
Bayesian optimization for each algorithm at different power
systems. For the IEEE-9 node system, four algorithms
eventually converge to approximate optimized values (as
shown in Figure 8A). The TGNN converged first, followed by
the GCN, LSTM, and FULL. The network training loss curves of
TGNN for each Bayesian optimal iterations are given
in Figure 8B.

In addition, for the IEEE-39 node system, the proposed TGNN
has the best convergence value with the fastest convergence rate
than the other three deep networks based on Bayesian
optimization (as depicted in Figure 9A). In the network
parameter training, Figure 9B shows the MSE loss function
convergence process. With the vast majority of Bayesian
optimization hyperparameters, the network parameter training
converges at 30–40 iteration steps.

Finally, for the IEEE-118 node system, the best performance
for Bayesian optimization can also be acquired with the
cooperation of LSTM and GNN (as depicted in Figure 10A),
and it has faster convergence rate and greater objective
optimization than the IEEE-39 node system. This means that
with the increase in power system’s nodes sizes, suitable network
hyperparameter selection is necessary. This improves the
predictive performance and convergence speed of the network.
It is worth noting that the iterative loss function of the optimal
hyperparameters in Figure 10B is instead higher than that of the
other non-optimal iterative sets. This means that Bayesian
optimization helps search the optimal hyperparameters and
improve the generalization of the network, rather than simply
improving the performance of the network’s loss function.

The Bayesian optimal parameter paths of the three systems with
TGNN are given in Figure 11. For the IEEE-9 node system, the
proposed Bayesian technique can optimize the parameters with a

FIGURE 14
Day-ahead result of CEF for node 15 in the IEEE-118 node system. (A) Node 15 and (B) node 28.
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lower fluctuation (as depicted in Figure 9A). In the three parameters, the
L2 regularization factor has the maximum numerical fluctuation than
the other two parameters. In addition, parameter optimization
fluctuations of the initial learning rate also gradually increased (as
depicted in Figure 11B; Figure 11C). These indicate that Bayesian
optimization can effectively explore the hyperparameters of
the network.

4.3 Day-ahead optimization

4.3.1 Comparison for the power system node
The day-ahead results of CEFs for the power system node are

given in Figure 12, Figure 13, and Figure 14 with prediction results of
3 days. For the IEEE-9 node system, the GCN shows shortcoming in
predicting the carbon emission of the system due to the lack of the
time series mechanism. The TGNN has the lower forecast error and
fluctuation amplitude than the GCN (as shown in Figure 12).
However, it fails to demonstrate advantages in comparing the
performance of traditional algorithms, like FULL and LSTM.
This may be due to the few features to the capture. In addition,
in the IEEE-39 nodes system, it can track the trend of carbon
emissions at nodes well. However, there are still lagging
predictions at certain times, like 16:00 and 40:00. Finally, as
given in Figure 13, the TGNN can track the fluctuation in
carbon emission factors of power system nodes, indicating that
it shows the best predictive performance on this testing system
compared to other algorithms.

4.3.2 Statistical results
To further evaluate the performance of the TGNN in the day-

ahead CEF forecast, this section presents the application results of the
four algorithms with three indexes separately, as shown in Table 3,
where MSE is the loss function for deep network training. Higher
values of MSE do not indicate a better network performance, and
there may be network overfitting. In addition, MPE and the mean
absolute error (MAE) are also used to evaluate the algorithm’s forward
prediction performance. It is worth noting that the MPE function is

also the objective function of Bayesian optimization. For the IEEE-9
node system, the MPE value is too terrible; this means that the
network is hard to predict the results due to the bad hyperparameters
for the network training. With the introduction of Bayesian
optimization for hyperparameters of the deep network, the
performance of the networks is improved. For the IEEE-39 node
and 118 node systems, the proposed BO-TGNN has the lowest MPE;
this means that it has the best performance for the prediction of the
day-ahead carbon emission factor of the power system with larger
node sizes. It can help improve the MPE performance for FULL with
89.3%, 53.3%, and 61.2%; LSTM with 94.9%, 67.9%, and 72.6%; GCN
with 96.3%, 18.2%, and 86.7%; andTGNNwith 98.9%, 7%, and 61.3%,
respectively.

5 Conclusion

In conclusion, the work in this paper consists of the below two
contributions:

1) The data-driven model is developed to effectively extract high-
dimensional spatio-temporal electrical quantity characteristics
of power systems, and these features of the user node system
are predicted by analyzing the historical data on
source–network–load parameters.

2) The method innovatively applies the spatio-temporal graph
convolutional neural network based on Bayesian optimization
to the power system network, which achieves a fast and
accurate prediction of the daily-ahead carbon emission
factor of a power system with a large node size.

In this paper, only the carbon emission factor is predictively
analyzed and the impact of the response of the flexibility
resources on the system is not considered. Future work will
seriously address the uncertainty of wind and solar power
generation in carbon emission prediction, in order to improve
the comprehensiveness of prediction models. For the case of
random changes in the load and new energy sources of the power

TABLE 3 Result comparison with Bayesian optimization and none for each algorithm.

Case Index Bayesian optimization None

BO-FULL BO-LSTM BO-GCN BO-TGNN FULL LSTM GCN TGNN

IEEE-9 MPE 13.20 13.21 13.65 13.32 100 100 100 100

MAE 0.0101 0.0108 0.0101 0.0102 0.0103 0.0122 0.0166 0.0207

MSE 0.0026 0.0059 0.0026 0.0057 0.0037 0.0076 0.0047 0.0077

IEEE-39 MPE 17.19 16.00 14.94 14.61 36.84 49.89 18.25 15.70

MAE 0.0166 0.0110 0.0166 0.0148 0.0218 0.0088 0.0064 0.0118

MSE 0.0189 0.0230 0.0321 0.0218 0.0185 0.0218 0.0306 0.0357

IEEE-118 MPE 18.01 20.55 18.91 16.37 46.37 74.96 100 42.29

MAE 0.0053 0.0114 0.0090 0.0119 0.0102 0.0148 0.0093 0.0163

MSE 0.0354 0.0307 0.0264 0.0151 0.0439 0.0169 0.0121 0.0222

The bold values indicates that the TGCN performs better than the other compared algorithms.
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system, the realistic resource response may not be consistent at
all. In order to further improve the operation technology of the
power system and power users, the carbon emission optimization
model is subsequently considered to be combined with the
forecasting technique to achieve the optimal carbon energy
response of flexible loads.
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Accurate CO2 tracking in electric substation construction is vital for climate
efforts, using monocular SLAM for monitoring despite challenges like sunlight
and complex terrain. Additionally, these methods typically yield only aggregate
carbon emission data, thereby lacking the granularity necessary for precise
monitoring throughout the construction process. These limitations compromise
mapping accuracy and impede the integration of digital twins and IoT
technologies. Addressing these issues, this paper proposed a methodology
combining red, green, and blue (RGB) cameras and multi-camera collaboration
with digital design systems, enhancing SLAM capabilities. The advanced
technique integrated methods including overlap estimation, depth reasoning,
noise reduction, and surface reconstruction to create accurate 3D models,
enhancing scene reconstruction and real-timeCO2 tracking during construction
and operation. Leveraging continuous on-site cameramonitoring as a substitute
for manual inspections, it significantly contributes to the compilation of a
comprehensive carbon emission database within a digital twin framework.
Experimental results confirmed the proposed method’s superiority over
previous works in real-time CO2 estimation, enhancing decision-making,
resource management, and sustainable energy development. Overall, besides
its application in substation construction for CO2 monitoring, this methodology
can also be applied to carbon tracking in various other construction projects.

KEYWORDS

3D mapping, digital twin system, electric substation construction, multi-camera vision,
real-time CO 2 estimation, simultaneous localization and mapping (SLAM)

1 Introduction

The field of computer vision technology has witnessed remarkable advancements
that have provided sophisticated techniques for scene reconstruction and mapping,
widely adopted in robotics, autonomous vehicles, and construction (González et al.,
2015; Voronin et al., 2020). In the construction industry, synchronous positioning and
mapping technology has emerged as crucial tools for achieving a digital twin system
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capable of synchronously mapping with cartography (Tay et al.,
2017). This technology enables construction professionals to
accurately and efficiently map the physical construction site with its
digital counterpart, facilitating improved planning, monitoring, and
decision-making throughout the construction process.

The necessity for carbon monitoring in substation construction
arises from the substantial impact such projects can have on
the environment, contributing significantly to the overall carbon
footprint. Video methods, including camera-based monitoring
and computer vision techniques, are increasingly used in carbon
monitoring due to their ability to provide continuous, detailed,
and dynamic observations of construction activities. These methods
offer the potential for more precise quantification and tracking
of carbon emissions, aligning with environmental regulations and
sustainability goals.

Acknowledging the significant impact of substation
construction on the environment, the issue of climate change and its
associated impacts has garnered significant attention, with a push
towards integrating advanced technologies to mitigate greenhouse
gas emissions. The international community has responded by
establishing a legally binding multilateral environmental treaty
to mitigate greenhouse gas emissions (Hoffmann, 2011). China,
as a rapidly growing emerging economy, faces the dual challenge
of balancing economic development and environmental pollution
(Dollar et al., 2020; Zhao et al., 2022b). Being the world’s largest
CO2 emitter, China has made commitments to peak its emissions
around 2030 and reduce intensity by 60%–65% based on the 2005
level (den Elzen et al., 2016). The power generation sector, being a
significant contributor to greenhouse gas emissions, plays a crucial
role in achieving these reduction targets.

To address the challenges posed by global warming, various
countries and international organizations have taken steps to
improve environmental regulations and reduce greenhouse gas
emissions. China, in particular, has announced voluntary reduction
goals through its Intended Nationally Determined Contributions
(INDC), aiming to decrease domestic greenhouse gases by 37%
(Fang et al., 2019). While previous studies have focused on CO2
emissions from vehicle fuels and road transportation, accurate
quantification of CO2 emissions resulting from energy and raw
materials used in transportation infrastructure construction has
only recently gained attention (Li et al., 2020).

Figure 1 illustrates the factors influencing CO2 emissions
in electric substation construction, including building materials,
electrical infrastructures, and miscellaneous elements, highlighting
their roles in determining emission levels throughout construction
activities.

1.1 Aim and objectives

The objective of this work is to facilitate green and low-carbon
management of electric substations throughout their life cycle
by developing a comprehensive carbon emission measurement
system that accurately reflects construction progress and operations.
Leveraging advancements in machine learning, computer vision,
digital twin, and Internet of Things (IoT), this research seeks
to optimize construction efficiency, environmental monitoring,
and energy-saving equipment adoption. It emphasizes sustainable

practices and materials to reduce energy consumption and
emissions, thereby enhancing power engineering sustainability
and aiding the development of a low-carbon power system.
With a focus on life cycle carbon emission analysis and effective
reduction strategies, this study contributes to setting improved
construction standards and aligns with global “Peak Carbon”
and “Carbon Neutrality” objectives. By incorporating digital twin
and computer vision advancements, the study addresses China’s
commitment to emission reduction, specifically in the construction
sector, to optimize practices and achieve sustainable development
goals through precise CO2 emissions quantification and
management.

1.2 Related works

Several studies have contributed to our understanding of
CO2 emissions in various domains, including construction, power
generation, and indoor reconstruction. Estimating and analyzing
CO2 emissions in the construction sector has been a key focus
of research. A study conducted in Xi’an, China, investigated the
CO2 emission characteristics of urban road corridor construction,
highlighting the significant contributions from road sub-projects
including lime-fly ash, cement, and lime (Li et al., 2020). The
examination of CO2 emissions associated with apartment housing
during the construction process revealed that construction work
involving reinforced concrete accounted for a substantial portion of
the CO2 emissions (Lee et al., 2018).

In the power generation sector, CO2 emission determinants have
been identified and analyzed through regression analysis, and a
transition from coal, natural gas, and oil to renewable resources and
nuclear energy has been advocated as an effective emission reduction
strategy (Zhou et al., 2021).

Advancements in indoor reconstruction techniques have
focused on developing robust techniques to address occlusions and
clutter, involving planar surface extraction, openings detection, and
occluded regions reconstruction, thereby facilitating semantically
rich 3D indoor building models (Mura et al., 2013). Concurrently,
optimization research in surveillance camera placement within
buildings has considered coverage, cost, and machinery movement
efficiency (Albahri and Hammad, 2017).

Other research has analyzed the impact of energy mix transition
on CO2 emissions in the power generation sector (Wei et al.,
2021), while investigations into temporal factors for CO2 emissions
in buildings emphasize the significance of accommodating
fluctuating energy demands across various times (EVANS
and SIDAT, 2017).

In the realm of camera-based research, LIFT-SLAM introduces
an innovative monocular SLAM technique that integrates deep
learning-based feature descriptors with conventional geometry-
based methodologies. This integration enhances the system’s
robustness to sensor noise and environmental adversities (Bruno
and Colombini, 2021).The adoption of event-based cameras offers a
solution to the visual odometry (VO) data overload challenge, with
a hybrid approach that improves odometry performance through
high time resolution and accuracy, demonstrating the potential
for advanced, efficient data processing in dynamic environments
(Mohamed et al., 2020).
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FIGURE 1
Multiple factors influencing carbon emissions during substation construction.

1.3 Problem statement

The substation construction industry relies on synchronous
positioning and mapping technology for precise and reliable
mapping in complex environments. However, the existing
monocular camera-based simultaneous localization and mapping
(SLAM) methods face challenges including direct sunlight
interference, foreground occlusions, rough terrains, sensor
failures, and scarcity of stable textures, leading to incomplete and
inaccurate reconstructions. Additionally, traditional monocular
camera-based SLAM for carbon accounting is limited to
providing total CO2 emissions, while CO2 estimation from
substation construction, which spans over years, is a complex
task requiring detailed and continuous monitoring. Monocular
SLAM methods lack the depth and detail needed for such
extensive CO2 emission estimation, making them insufficient
for comprehensive carbon tracking over the construction and
operational phases. This not only impedes precise mapping
and affects construction efficiency, accuracy, and safety
but also limits the effective implementation of advanced
technologies like digital twins and IoT. These technologies,
crucial for real-time monitoring, carbon emission evaluation,
and efficient substation management, necessitate accurate and
comprehensive scene reconstruction, which is compromised
by traditional monocular camera-based SLAM method
limitations.

1.4 Proposed solution

To overcome the limitations of existing methods, this
research proposes a novel multi-camera vision-based synchronous
positioning andmapping approach for green construction of electric
substations, employing RGB cameras for their cost-effectiveness
and comprehensive color imaging capabilities. It advances 3D
modeling by integrating digital twins and advanced information
technology to create precise digital twin models of real-time
project progress, employing machine learning and computer vision
to facilitate carbon emission control and support sustainable
power engineering strategies. By addressing challenges like
sunlight interference, occlusion, and sensor failures, the approach
enhances scene reconstruction, monitoring, and management,
contributing to efficient and sustainable substation construction
in line with carbon peaking, carbon neutrality, and industry 4.0
objectives. The convergence of multi-camera systems with digital
twin technology and advanced algorithms ensures enhanced
accuracy, efficiency, and sustainability, marking a significant leap
in addressing the intricate demands of complex construction
environments.

Despite advancements in camera-based SLAM for electric
substation construction, persistent challenges in achieving detailed
and dynamic CO2 emission monitoring underscore a critical
research gap. This work introduces a novel approach employing
RGB cameras and multi-camera collaboration to surpass traditional
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limitations, offering refined CO2 tracking and mapping precision.
This contribution not only addresses the granularity needed for
effective carbon management but also facilitates the integration of
digital twins and IoT for sustainable construction practices, marking
a significant leap in environmental stewardship within the industry.

2 Proposed methodology and
experiments

The proposed methodology comprises two primary
components: acquiring a 3D model and estimating real-time
CO2 levels. The proposed methodology comprises two primary
components: acquiring a 3D model and estimating real-time CO2
levels. The method illustrated in Figure 2 initiates with 3D design
creation and point cloud generation from RGB images, following
camera layout optimization using Building Information Modeling
(BIM) for enhanced surveillance (Wang and Rojas, 2014; Albahri
and Hammad, 2017). The process involves sequential steps of
background removal, feature extraction, and key image selection,
leading to spatial depth analysis and radiation regularization for
depth data processing. It then incorporates affine regularization
for denoising, further feature point extraction, nearest neighbor
matching, and concludes with moving least squares (MLS) for
precise surface reconstruction and 3Dmodel enhancement (Albahri
and Hammad, 2016; Concha and Civera, 2017). This approach
ensures comprehensive emission estimation and accurate 3D
modeling for real-time monitoring.

The approach utilizes BIM to identify camera placement
constraints for optimal surveillance coverage in electric substations,
addressing environmental, geometric, operational, logical, and legal
factors including surface height, monitoring areas across floors,
key coverage and privacy zones, and lighting conditions (Albahri
and Hammad, 2017). Decision variables include X, Y (fixed for
optimal height), and Z coordinates, along with Pan/Tilt/Zoom
angles, to determine the best positions for cameras, as illustrated in
Figure 3 (Albahri and Hammad, 2016; Zhou et al., 2019). A genetic
algorithm refines camera positionswithin the BIMgrid by iteratively
optimizing X, Y, Z coordinates and tilt angles, involving search
space definition, coverage evaluation through weighted importance,
and position adjustments via crossover and mutation until optimal
coverage is achieved (Albahri and Hammad, 2017; Lim et al., 2018).
This process considers the performance and cost-efficiency of
cameras, factoring in field of view, resolution, lens size, and type
to automate placement for effective surveillance and accurate CO2
emission mapping in complex construction environments (Albahri
and Hammad, 2016; Chen et al., 2021).

Kx =
X

∑
x=1
(
∑m

i=1
(IVi∑

n′

v=1
Civ)

∑m
i=1
(IVi∑

n
j=1

Cij)
) (1)

In Eq. 1, Kx represents optimal coverage, X represents the total
number of cameras; m is the total number of areas monitored, n
and n′ represent the total counts of units and coverage units in
each area, respectively, Cij represents the camera count and CCiv
represents individual camera coverages. This equation models the
effectiveness of camera deployment in achieving comprehensive

surveillance coverage, balancing camera quantity and placement to
optimize area monitoring.

0 ≤ X ≤ L, Hmin ≤ Y ≤Hmax, 0 ≤ Z ≤W (2)

0 ≤ PAN ≤ 360°, 0 ≤ Tilt < 90° (3)

In Eqs 2, 3, L, Hmin, Hmax, and W define the feasible
placement region for cameras within a space bounded by maximum
length L, width W, and height range [Hmin,Hmax], alongside
permissible pan (0–360°) and tilt angles (0 to less than 90°). These
equations also establish the physical limits for camera positioning,
crucial for optimizing field-of-view coverage and ensuring precise
alignment between cameras and the monitored environment,
thereby facilitating enhanced spatial analysis and accurate 3D scene
reconstruction. Mathematically it is written as:

λgm =
λ[x,y, f (x,y)]T

‖[x,y, f (x,y)]T‖
=

λ[x,y, f (ρ)]T

‖[x,y, f (ρ)]T‖
= P (4)

Eq. 4 defines gm as the vector from the optical center to point p,
where p is the projection of a 3D point onto the camera’s coordinate
system, and T represents its corresponding point on the imaging
plane. Distances λ and ρ measure from p to the optical center
and from the optical center to pixel m, respectively. Utilizing the
line-line intersection principle for camera pose estimation, the
above equation determines the spatial coordinates (X,Y,Z) within
the camera group system, essential for accurately reconstructing
spatial points in the RGB camera system (Přibyl et al., 2017). To
transform the spatial coordinates (X,Y,Z) into image coordinates
( ̃x, ̃y), camera calibration parameters are calculated using following
equations (Tsai, 1987):

̃x−Cx

Fx
=
r0X+ r1Y+ r2Z+TX

r6X+ r7Y+ r8Z+TZ
(5)

̃y−Cy

Fy
=
r3X+ r4Y+ r5Z+TY

r6X+ r7Y+ r8Z+TZ
(6)

In Eqs 5, 6, Cx and Cy are the principal point coordinates, and
Fx and Fy are the camera’s focal lengths. The ri elements (0–8)
and TX ,TY ,TZ from rotation and translation matrices respectively
facilitate geometric transformations, with only r0, r4, and r8 non-
zero for the left-eye camera. The mathematical equations for both
left camera Pl and right camera Pr can be written as:

Pl = [

[

FxlXc − ( ̃xl −Cxl)Zc

FylYc − ( ̃yl −Cyl)Zc

]

]
= 0 (7)

Pr = [

[

∑2
i=0
[( ̃xr −Cxr) r6+i − Fxrri]vi

∑5
i=3
[( ̃yr −Cyr) r6+(i−3) − Fyrri]vi

]

]

+[

[

( ̃xr −Cxr)TZ − FxrTX

( ̃yr −Cyr)TZ − FyrTY

]

]
= 0 (8)

Utilizing normalized image plane coordinates ̃xl, ̃xr, ̃yl, and ̃yr
for left and right cameras, the Eqs 7, 8 streamline the calculation of
sensor positions and attitudes, taking into account principal points
(Cxl,Cxr,Cyl, andCyr) and focal lengths (Fxl, Fxr , Fyl, and Fyr).These
equations efficiently map real-world points to sensor projections,
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FIGURE 2
Conceptual framework diagram illustrating the sequential flow of steps.

crucial for identifying point pairs (2D− 2D,2D− 3D,3D− 3D)
across dimensions and precise camera pose estimation (Zhou et al.,
2013). Such streamlined calculations aid in more accurate point
cloud registration and 3D scene reconstruction, enhancing the
utility of camera systems in complex spatial analyses.

To improve the point cloud reconstruction accuracy and reduce
background pixel errors, the pixel area ratio method utilizes
the Green View Index (GVI) to isolate green vegetation from
source photos by calculating the ratio of green to total pixels,
allowing for targeted background removal and improved accuracy
in architectural point cloud reconstruction (Li et al., 2015).TheGVI
is computed using the number of green pixels Areagreen over the total
pixels Areatotal in an image (Eq. 9).

GVI =
Areagreen

Areatotal
(9)

To isolate green vegetation using predefined thresholds and
criteria, this method accurately identifies green vegetation in scenes
by extracting pixels with significant green channel dominance,
comparing the green channel G) with red R) and blue B) channels.
diff1 and diff2 are differences between distinct color channel. A pixel
is identified as green if diff3 > 0 and diff1 > 0, assigning 1 to green

pixels and 0 to non-green ones, using Eq. 10.

G−R = diff1,G−B = diff2,diff1 × diff2 = diff3 (10)

Along with green vegetation isolation, sky region extraction
employs segmentation to define the sky opening index (SOI),
calculating the ratio of skywithin the viewing cone fromobservation
points (Holz et al., 2012; Hu et al., 2014). This involves counting the
number of sky regions Nsky, pixels in the ith sky region ri, and the
total number of pixels N in the image, thus facilitating accurate
isolation of sky regions based on color inhomogeneity criteria within
segmented areas (Eq. 11) (Yang et al., 2007).

SOI =

Nsky

∑
i=0
|ri|

N
× 100% (11)

Eq. 11 allows for the precise evaluation of sky exposure in
environmental monitoring, contributing valuable insights into
atmospheric conditions and spatial openness in the observed scenes.
Extracting and deleting green vegetation and sky areas from source
photos minimizes background pixel interference, enhancing point
cloud matching and surface reconstruction accuracy for precise
architectural reconstruction.

During the image data processing for point cloud feature
extraction and surface reconstruction, key images are discerned
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FIGURE 3
Camera grouping and placement for 3D visualization of substation.

using the interval overlap estimation algorithm, which evaluates
the temporal sequence and frame overlap of camera images
(Guo et al., 2014; An et al., 2017). Criteria for key frame selection
post-initialization and repositioning include idle mapping thread
intervals, RGB image point proportions, and non-overlapping
map point matches (Liu, 2006). The algorithm strategically selects
frames, optimizing map size, and resource use, and pairs them
with corresponding street view images for feature extraction and
matching. Occlusion assessment and image selection based on
position, pose, and overlap ensure efficient registration and robust
surface reconstruction, eliminating redundancies and consolidating
the dataset for accurate analysis.

To estimate depth maps for key images, the DH-RMVSNet
network regresses each reference image against adjacent images
(Torii et al., 2009). A dynamic consistency check algorithm further
validates and corrects the depth values to refine the depth map
accuracy (Yin and Shi, 2018), as delineated by Eq. 12. This process
underpins the network’s generation of a 3D cost volume, using
differentiable homography and mean square error, which is crucial
for the network’s training and the depth prediction of the 3D
building model.

|preproj − pi| < 1,
|dreproj − di|

di
< 0.01 (12)

The point pi is then re-projected through its depth estimate (di),
to the reference point of view, resulting in a re-projected point,
preproj. The depth estimate of preproj is denoted as dreproj.

Spatial depth data refinement is achieved through the
application of an affine regularization algorithm and Gaussian
filtering, significantly enhancing the quality of RGB depth
images by mitigating noise (Ju et al., 1996; Zhang and Tam,
2005; Zhou et al., 2019). The optimization process involves a
comprehensive energy minimization strategy, incorporating both
first-order and second-order regularization to balance fidelity and
smoothness (Robert and Deriche, 1996; Li et al., 2017; Yan et al.,
2020). The energy function, as articulated in equation 13, integrates
data fidelity and regularization terms to yield high-quality depth
estimations.

E (d; IL, IR) =min
d∈ℝ2
(∫

Ω
α1|∇d−w| + α2|∇w|

+ |∇CW (IL (x+ d,y) , IR (x,y)) |,dΩ) (13)

Frontiers in Energy Research 06 frontiersin.org259

https://doi.org/10.3389/fenrg.2024.1370873
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Wang et al. 10.3389/fenrg.2024.1370873

FIGURE 4
RGB image and Spatial depth image of the Substation.

In Eq. 13, E(d; IL, IR) is the energy function with d as disparity
over the domain Ω, α1, α2 as regularization weights, ∇d the
disparity gradient, w the targeted gradient, and |∇CW(IL, IR)| the
intensity of image difference. This optimization is fine-tuned to
the characteristics of the observed scene, addressing occlusion,
varying illumination, and radiance differences between stereo
images. Specifically, the second-order total generalized variation
targets and supports affine surfaces, enhancing the adaptability
and robustness of the algorithm (Robert and Deriche, 1996). The
resulting depth maps, characterized by reduced noise and improved
feature preservation, demonstrate the effectiveness of these affine
regularization and denoising techniques in producing reliable, high-
quality spatial depth data, as shown in Figure 4.

The feature point extraction process commences with
constructing an image pyramid, a multi-scale representation
of the input image, to facilitate the detection of feature points
across various resolutions (Adelson et al., 1991). Employing
the proportional feature transformation method, feature points
are detected at each pyramid layer, ensuring scale invariance
(Sedaghat et al., 2011). This process involves resizing the image
at each layer with a scaling factor α, ensuring the number of features
per layer is proportional to its area. The total number of features is
derived from the cumulative area of all pyramid layers, facilitating
the proportional distribution of feature points (Eq. 14).

Ns =
N
S
= N
s0 ⋅ α

0 + s0 ⋅ α
1 +⋯+ s0 ⋅ α

n−1 =
N ⋅ (1+ α)
s0 ⋅ (1+ α

n)
(14)

Eq. 14 calculates the total detectable feature points Ns, using
the proportional transformation across the image pyramid’s n
layers. It considers the total feature points N, scaling factor α,
and the cumulative area S for a compact and scale-invariant
feature detection. Once the image pyramid is established, feature
detection proceeds at each layer, employing the gray-scale centroid
and moment method to ensure rotation invariance of the feature
points (Guojun et al., 2021; Zhao et al., 2022a). The direction and
distribution of feature points are ascertained using the moment of
image blocks, culminating in an accurate feature point cloud using
Eq. 15, wherempq represents the moment of order p+ q of the image

block B. These feature points are illustrated in Figure 5. The entire
process ensures a systematic approach to feature point extraction,
providing a robust basis for subsequent 3D modeling and analysis
tasks.

mpq = ∑
x,y∈B

xpyqI (x,y) (15)

To facilitate the matching of image feature points and construct
reliable tracks, the approximate nearest neighbor algorithm is
employed with a k-dimensional tree structure (Boom et al., 2013;
Malkov and Yashunin, 2018). Refinement is conducted through
random sample consensus and eight-point algorithms (Hartley,
1997; Kim and Im, 2003), while forest-based trajectory matching
techniques and binary tree indexes enhance efficiency, as depicted
in Figure 6 (Rao and Ross, 1998; Babin et al., 2021). The Iterative
Closest Point (ICP) algorithm iteratively optimizes rotation and
translation for precise point cloud registration (Marani et al., 2016;
He et al., 2017), as delineated in Eq. 16.

1
2

n

∑
i=1
|qi −Rpi|

2 = 1
2
(

n

∑
i=1
|(qi −

n

∑
j=1

qj) −R(pi −
n

∑
k=1

pk)|
2

+ |
n

∑
i=1

qi −R
n

∑
i=1

pi −T|
2) (16)

In Eq. 16, qi and pi are individual points from target point clouds
Q and source point clouds P. R denotes the rotation matrix, and T is
the translation vector. The centroids of sets Q and p are represented
by μq and μp respectively, while q′i and p′i are the coordinates of
points relative to these centroids. The index k serves as a summation
index over the points in the sets.

Upon acquiring feature point matches between photo pairs,
trajectories are established by tracking these points across multiple
photos. A progressive sampling consensus algorithm is employed
to mitigate pixel migration and noise, enhancing the robustness of
the matching (Song et al., 2013). The matching quality is assessed
by introducing a quality factor q, to rank point pairs and determine
the homographymatrix using only high-qualitymatches. Point pairs
below a certain quality threshold are discarded. The Hamming
distance is used to evaluate feature point similarity, with the
matching quality ratio, β, calculated from the minimum distances,
dmin1 and dmin2, between matched pairs (Hofbauer et al., 2012). The
correlation of quality factor q and ratio β is defined in the Eq. 17.

β =
dmin1

dmin2
, q = 1

βdmin1
(17)

The creation of a 3D model using the processed images is
achieved using moving least squares (MLS) method for point cloud
matching and a directed 3D triangulation (Fleishman et al., 2005;
Cignoni and Scopigno, 2008).The initial step inverts the facade point
cloud, converting image features into straight lines and simplifying
geometry. The least squares method then approximates the error in
distance between adjacent points for 3D surface construction using
the following equation:

RMLS| ̃x =
N

∑
i
wi (xi − ̃x)(b

T (xi)c ( ̃x) − ui)
2 (18)

In Eq. 18, RMLS| ̃x functions as the local objective function for
point ̃x, minimizing squared errors between MLS approximations
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FIGURE 5
Feature points marked on the RGB image.

FIGURE 6
Matching of feature points using approximate nearest neighbor algorithm.

FIGURE 7
Projection of a triangulated mesh in an approximate plane. (A) Integration of Tetrahedron BCDE with Hyperplane ACGDFB in 3D. (B) 2D Projection of
3D Configuration on the X–axis and Y–axis.

xi and actual values ui through the weighted influence of
neighboring points wi(xi − ̃x) and a combination of basis functions
b(xi) and control weights c( ̃x). This formulation serves as the
core of the MLS method for smooth surface reconstruction
from point clouds, iteratively refining the surface based on
continuous weights and localized subdomains until a predefined
error threshold is met. The 3D Delaunay triangulation refines the
smooth surface generated by incremental point cloud triangulation
into a detailed mesh, utilizing a tetrahedron data structure with
vertices and adjacent pointers to define feature points robustly.
Each tetrahedron is associated with four directed triangular pieces:
f0(v0,u1,u2), f1(v0,v3,v1), f2(v1,v3,v2), and f3(v2,v3,v0). The
methodology enhances geometrical fidelity by considering the

cumulative geometry of surrounding triangles like BCE, CDE, and
BDE around point E, ensuring mesh continuity and structural
integrity (Figure 7). Incremental triangulation employs the included
angle criterion for triangle selection and adjacency, focusing on
geometric nuances and refining the mesh post noise removal with
random sampling methods, as illustrated in Figure 8 (Kenwright,
2015). This comprehensive approach preserves the original point
cloud data’s integrity while enhancing the constructedmodel’s detail
and accuracy.

The comprehensive 3D model is finalized by generating a height
model via a digital elevation model (DEM) (Kršák et al., 2016),
classifying ground points and employing triangulation for irregular
interpolation. This process normalizes the original data to yield
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FIGURE 8
Triangular mesh construction with random sampling method to
remove noise.

normalized height point cloud data, which is then interpolated using
inverse distance weighted method (Remondino and El-Hakim,
2006). CO2 estimation, integral to the model’s utility, utilizes an
overlap technique in a 3D design generated from RGB images. This
approach combines Iterative Closest Point (ICP) and Scale-Invariant
Feature Transform (SIFT) techniques for precise alignment and
carbon emission estimation from the substation (Eo et al., 2012),
ensuring the model’s accuracy and effectiveness in environmental
impact analysis.

The technique consists of a series of steps to ensure accurate
feature point matching and alignment in 3D models and designs.
Initially, the Scale-Invariant Feature Transform (SIFT) algorithm is
utilized to identify and match key feature points between the 3D
model and design, extracting local descriptors invariant to scale and
orientation as defined by the scale-space function L(x,y,σ) in Eq. 19,
whereG represents the Gaussian function,D is the input image, and
(x,y) are the image coordinates (Ni et al., 2021).

L (x,y,σ) = G (x,y,σ) ∗ D (x,y) (19)

Following this, the Iterative Closest Point (ICP) algorithm
minimizes point cloud discrepancies between corresponding points
p and p′ by optimizing rotations R and translations t using
equation 20, until a set error threshold is met.

min‖Rp+ t− p′‖2 (20)

The SIFT algorithm is reapplied to extract distinctive features
using the difference-of-Gaussian function in the scale-space yielding
robust descriptors for feature matching. D(x,y,σ) denotes the
difference between Gaussian-filtered images G at scales σ and kσ,
relative to the original image I(x,y) (Eq. 21).

D (x,y,σ) = (G (x,y,kσ) −G (x,y,σ)) ⋅ I (x,y) (21)

Eq. 21 calculates the difference between Gaussian-blurred
images at distinct scales, essential for identifying distinctive image
features. Feature matching is then accomplished using Nearest
Neighbormatching to identify pairs of feature points using euclidean
distance d(i, j), calculated using Eq. 22, where fi and fj are the i− th
and j− th feature descriptors (Yang and Newsam, 2008).

d (i, j) = √∑( fi − fj)
2 (22)

RANSAC estimates the initial alignment between the real-
time 3D model and design, optimizing the transformation to
minimize squared differences between matched points using Eq. 23
(Shen et al., 2020). The transformation T is composed of a rotation
matrix R and a translation vector t, and residual displacement
between aligned points p and p′, given as:

min
T
∑|T [R|t] ⋅ p− p′|2 (23)

Post-alignment quality assessment utilizes Root Mean Squared
Error (RMSE) to measure alignment accuracy, as detailed in Eq. 24,
iterating for refinement. RMSE evaluates the precision of aligning
original point clouds p with their corresponding points p′, based
on the deviation of points post-transformation R× p+ t from their
targets, where N is the total number of corresponding point pairs
used in the calculation. This metric is critical for optimizing the
alignment process, ensuring high fidelity in the registration of 3D
spatial data.

RMSE = √
∑‖R× P+ t− p′‖2

N
(24)

Finally, segmentation is performed using the Random Walker
algorithm, partitioning point clouds into labeled segments as
defined by the spatial extents Ri in Eq. 25, with X,Y,Z denoting
the minimum and maximum bounding coordinates of each
region (Lai et al., 2009). This process ensures accurate 3D model
segmentation for CO2 estimation and structural analysis.

Ri = (Ximin
,Yimin
,Zimin
) − (Ximax

,Yimax
,Zimax
) (25)

Experiments conducted on an under-construction electric
substation validated a novel 3D modeling method combining
computer vision and machine learning for accurate CO2
emission estimation (Cjs). This estimation integrates emissions
from building materials (Cjc), transportation (Cys), labor (Cx),
construction machinery (Cm), and energy consumption (Cjn) for
total construction phase emissions is formulated in Eq. 26.

Cjs = (Cjc +Cys +Cjn) +Cx +Cm (26)

• Building Material CO2 Emissions (Cjc): Building material CO2
emissions (Cjc) are calculated as a total of the product of
material consumption (qi) and emission factors (ei).

Cjc =
n

∑
i=1

qi × ei (27)

• CO2 produced during transportation (Cys): TransportationCO2
emissions (Cys) are computed as the sum of each material’s
consumption (Mi), transport distance (Di), and emission factor
(ei).

Cys =
n

∑
i=1

Mi ×Di × ei (28)

• CO2 produced by labor (Cx): Labor CO2 emissions (Cx) are
calculated using the number of workers X) and their respective
emission factor (ei).
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FIGURE 9
Real-time detection of construction workers and machinery for CO2

emission estimation during substation construction.

Cx = X× ei (29)

• CO2 produced by construction machinery (Cm): Machinery
CO2 emissions (Cm) are derived from fuel consumption (FC),
emission factor (ei), and operation time (OT).

Cm = FC× ei ×OT (30)

• CO2 produced by energy consumption (Cjn): Energy
consumption CO2 emissions (Cjn) are computed from each
energy source’s emission factor (ei), usage frequency (|Uj,i|),
and machinery energy consumption (Qj,i).

Cjn =
n

∑
i=1
(ei × |Uj,i|) ×Qj,i (31)

CO2 emissions from construction workers and machinery are
estimated using a YOLOv8 model trained on a custom dataset of
workers and machinery images. The model calculates the number
of workers and machinery from real-time RGB images of the
substation, with detections shown in Figure 9 using green and
red rectangles for workers and machinery, respectively, along with
detection probabilities.

The total carbon emission of the substation (CO2md
) is

determined by summing up the CO2 emissions for each segmented
part (CO2m) in the 3D model, where each segment’s emission is the
product of its design emission (CO2d) and the ratio of its current
status (Xm) to the design status (Xd). This cumulative approach, as
shown in Eq. 32 provides a comprehensive estimation of emissions
by considering the individual contributions of all segments within
the 3D model.

CO2md
=∑

i
CO2mwhereCO2m = CO2d ×(

Xm

Xd
) (32)

Table 1 presents a detailed overview of CO2 emission factors
and transportation-related emissions for item categories in
substation construction, serving as a reference for the materials’
carbon footprints. The item categories include building materials,
components forming a transformer, gas insulated switchgear (GIS),

FIGURE 10
Map location of 110 kV Chengbei substation.

switchgear, 10 kV static var generator (SVG), ground transformer
arc suppression coil, and energy sources. This table presents the
carbon emission factor for each item in a tabular format, reflecting
their respective carbon emissions per unit quantity. Additionally,
this table displays the actual CO2 emissions of each item during
its transportation to the substation site, considering the density of
diesel as 0.835 kg/L, which is used to calculate the emission factor
of diesel.

The methodology combines RGB cameras with advanced
algorithms including ICP and SIFT to achieve precise 3D
model alignment and design. It effectively addresses segmented
part variations for accurate CO2 emission estimation, with
comprehensive results and analysis presented in Section 3.

3 Experimental results

This section details the experimental results and analyses
from the proposed 3D modeling and CO2 emission estimation
methodology. A total of twenty experiments are performed within
an 9-month period, starting from T1 and concluding at T20.
The initial stage of construction, denoted as T0, served as the
baseline reference point, representing a phase with no construction
activities and negligible CO2 emissions. The initial stage at T0
involved a comprehensive location survey and documentation
of the substation, establishing the baseline 3D design that
served as the reference point for comparisons throughout the
subsequent experimental stages. Each experiment, from T1 to
T20, corresponds to a distinct time interval within the 9-month
period, allowing for a comprehensive investigation of the substation
construction dynamics. The experimental methodology employed
the overlapping technique, aligning and comparing 3D model
with 3D design at different time intervals to analyze changes and
advancements in the construction process.

During each experimental trial, a 3D model is meticulously
constructed to represent the current state of the substation at
that specific time interval, starting from T1 and concluding at
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TABLE 1 Table of CO2 emission factors and transportation-related CO2 emissions for substation construction materials.

Item category Item Emission factor Transportation (tCO2e)

Building material

Hot rolled carbon steel beam 2380 kgCO2e/t 0.79

Hot rolled carbon steel wire rod 2375 kgCO2e/t 0.6

hot rolled carbon steel bar 2310 kgCO2e/t 0.34

Concrete C30 175 kgCO2e/m3 1.32

Concrete C15 175 kgCO2e/m3 16.69

Solid brick 323.6 kgCO2e/m3 0.35

Gravel 2.18 kgCO2e/t 8.05

Portland cement 735 kgCO2e/t 0.48

Architectural ceramics 16.9 kgCO2e/m3 8.47

Aluminum window 194 kgCO2e/m3 0

Cement mortar 0.792 kgCO2e/m3 0.57

Styrofoam board 5020 kgCO2e/m3 0.01

Facing ceramics 16.9 kgCO2e/m3 0.03

Steel window frames 121 kgCO2eq/m2 0.01

Aluminum ceiling sheet 7.95 tCO2eq/t 0

BPIV photovoltaic 2.06 kgCO2e/W 0.04

Transformer

Silicon steel sheet 4 kgCO2e/kg 2.46

Self-adhesive transposed wire 10.3 tCO2eq/t 0.08

Combined wire 10.3 tCO2eq/t 0.13

Paper wrapped flat copper wire 10.3 tCO2eq/t 0.01

Cardboard 0.82 kgCO2e/kg 0.05

Laminated wood −1.025 tCO2eq/t 0.03

Steel plate 2.3 tCO2eq/t 0.05

Mineral vegetable oil 5.84 tCO2eq/t 1.93

GIS

5052 aluminum alloy sheet 18.3 tCO2eq/t 0.23

T2Y Copper 10.3 tCO2eq/t 0.03

Epoxy resin 5.84 tCO2eq/t 0.09

Q235 steel 3.003 kgCO2e/kg 0.09

CO2 1 kgCO2e/kg 0.03

Switchgear
Steel 2.05 kgCO2e/kg 1.65

Copper 10.3 kgCO2e/kg 0.55

10 kV SVG
Steel plate 2.3 kgCO2e/kg 0.4

Copper 10.3 kgCO2e/kg 0.11

(Continued on the following page)
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TABLE 1 (Continued) Table of CO2 emission factors and transportation-related CO2 emissions for substation construction materials.

Item category Item Emission factor Transportation (tCO2e)

Ground transformer arc suppression coil

Ground transformer; copper 10.3 kgCO2e/kg 0.01

Ground transformer; silicon steel sheet 4 kgCO2e/kg 0.03

Arc suppression coil; copper 10.3 tCO2eq/t 0.01

Arc suppression coil; silicon steel sheet 4 kgCO2e/kg 0.04

Energy
Electricity 0.581 tCO2/MWh -

Diesel 3.15 tCO2/t 0.05

TABLE 2 CO2 emissions of various items in tCO2e.

Experimental trial Material Labor Construction machinery Total CO2

T1 34.19 0.02 25.48 74.41

T2 42.37 0.01 27.61 85.83

T3 45.9 0.01 18.56 85.52

T4 72.84 0.02 17.82 123.81

T5 61.51 0.01 17.6 109.91

T6 61.51 0.01 25.01 114.85

T7 101.28 0.02 10.33 168.27

T8 106.29 0.02 11.07 176.91

T9 121.53 0.02 17.37 204.7

T10 92.36 0.02 0.47 146.96

T11 78.42 0.02 1.11 124.43

T12 117.44 0.01 0.92 186.48

T13 85.11 0.01 9.37 146.66

T14 99.05 0.01 0.21 157.46

T15 91.98 0.01 0.06 205.32

T16 128.78 0.01 0.34 204.7

T17 124.69 0.02 0.51 204.39

T18 123.2 0.01 9.47 201.92

T19 117.44 0.01 0.91 186.79

T20 111.87 0.01 0.06 177.84

T20. The 3D models are generated by incorporating the physical
components and structural elements that are implemented up
to each respective experimental phase. Pertinent information
regarding the quantity of materials used during construction at T1
and the subsequent experiments is collected through consultations

with project supervisors and leaders, facilitating a comprehensive
analysis of the construction progress at T0.

Table 2 provides a comprehensive analysis of CO2 emissions
from various materials listed in Table 1, detailing emissions for
each of the 20 experimental trials (T1 to T20) using Eq. 26 to
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FIGURE 11
Total CO2 (tCO2e) Emissions of 110 kV Chengbei Substation (Ours) during each Experiment. (A) Comparative Trends of CO2 Emissions at 110kV
Chengbei Substation Over 20 Trials. (B) Cumulative CO2 Emissions Curve at 110 kV Chengbei Substation During Construction Period.

quantify contributions from building materials (Cjc), transportation
(Cys), energy consumption during construction (Cjn), labor (Cx)
with an emission factor of 0.95 kgCO2/unit (Jiang et al., 2018), and
construction machinery (Cm).

The proposed methodology is implemented on an under
construction 110 kVChengbei substation.This substation is situated
in the north of the Zhejiang Anke Jinji Technology Development,
positioned at the northwest intersection of North Ring Road and
East Ring Road. The geographical coordinates are approximately
(30.675504, 119.697,859), as depicted in the map in Figure 10. The
elevation of the station site ranges from 10.86 m to 12.98 m above
sea level.

By calculating the carbon emissions from each component
individually in each trial, the total carbon emissions for T20 are
estimated at 177.84 tCO2e, enabling a detailed assessment and
monitoring of the 110 kV Chengbei substation’s carbon emission
trajectory. This precise estimation facilitates sustainable practices
and informed decision-making in managing the environmental
impact of construction projects. Comprehensive evaluation of
various contributing factors ensures effective environmental impact
management throughout the project lifecycle.

A theoretical CO2 emission baseline of 225 tCO2e for the 110 kV
Chengbei substation was determined prior to the construction
phase, as documented in the substation’s design scheme. This
baseline acts as a reference point, indicating anticipated emissions
in the absence of specific modifications or optimizations. It
encompasses expected CO2 emissions from various sources
during construction, including machinery, building structures,
construction materials, energy consumption, and other pertinent
factors depicted in Figure 1. This comprehensive baseline aids in
understanding and managing the environmental impact of the
substation construction.

Figure 11A illustrates the CO2 emission trends for the 110 kV
Chengbei substation across 20 experimental trials in tCO2e, with
the blue solid line depicting the CO2 emissions resulting from the
application of the proposed method and the orange dotted line

representing the established baseline emissions. Consistently, the
blue line remains beneath the baseline, demonstrating that the actual
emissions were lower than those projected for optimal conditions,
thus affirming the effectiveness of the proposedmethod in capturing
the reduced CO2 emissions. Conversely, Figure 11B presents
the cumulative CO2 emissions curve for the 110 kV Chengbei
substation in tCO2e, evidencing an upward trend as the substation
approaches completion. This increasing trend underscores the
robustness of the proposed method in delivering real-time CO2
emission estimations, reflecting the progressive accumulation of
emissions throughout the construction period.

Figure 11 illustrated that our proposed method significantly
captured the real-time CO2 emissions in substation construction,
demonstrating superiority over traditional approaches by effectively
handling unpredictable variables and deviations from initial
designs. Unlike the rigid predictions of traditional methods, our
approach adapted to unforeseen machinery factors and other
variables, offering dynamic insights and real-time optimization
throughout the construction process. This adaptability extended
beyond construction, enabling continuous monitoring and
management of CO2 emissions during the operational phase of the
substation. The method’s robustness and comprehensive coverage
underscored its potential in guiding future low-carbon strategies
and fostering sustainable construction practices, thus contributing
to a greener, more sustainable future in substation construction
and operation.

4 Conclusion

This study presents a robust and effective methodology
for accurately estimating CO2 emissions during the
construction of substations, demonstrating superiority
over traditional approaches by effectively handling
unpredictable variables and deviations from initial
designs. Leveraging advanced techniques including image
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processing, feature extraction, feature matching, and point cloud
generation, the proposed approach yields a comprehensive
representation of the construction site, capturing crucial geometric
details and depth information. The utilization of algorithms
including SIFT for key-point detection and rectification significantly
improves the accuracy and alignment of images, ensuring precise
reconstruction of the 3D model. The experimental results confirm
the method’s efficacy in quantifying CO2 emissions, as the 3D
model successfully captures the underlying geometry of the
scene, enabling accurate assessment of the current completion
state and corresponding CO2 emissions. By comparing the 3D
model with the initial design, the study tracks and analyzes
the dynamics of CO2 emissions throughout the construction
process, offering valuable insights for monitoring and evaluating
the environmental impact. Unlike traditional methods that rely
on static predictions, our method adapts to unforeseen variables,
offering dynamic insights and real-time optimization throughout
the construction process. This adaptability extends beyond
construction, enabling continuous monitoring and management
of CO2 emissions during the operational phase of the substation,
thus providing a more holistic and impactful environmental
management strategy. Future research can further enhance this
methodology by exploring additional techniques for refining
the point cloud, incorporating machine learning algorithms for
semantic segmentation and object recognition, and integrating data
from various sources, such as LiDAR or drone imagery, to provide
a more comprehensive and accurate estimation of CO2 emissions in
construction projects.
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The search method for key
transmission sections based on
an improved spectral clustering
algorithm
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Energy and Electricity Research Center, Jinan University, Zhuhai, China

With the increased complexity of power systems stemming from the connection
of high-proportion renewable energy sources, coupled with the escalating
volatility and uncertainty, the key transmission sections that serve as indicators
of the power grid’s security status are also subject to frequent changes,
posing challenges to grid monitoring. The search method for key transmission
sections based on an improved spectral clustering algorithm is proposed in
this paper. A branch weight model, considering the impact of node voltage
and power flow factors, is initially established to comprehensively reflect the
electrical connectivity between nodes. Subsequently, a weighted graph model
is constructed based on spectral graph theory, and an improved spectral
clustering algorithm is employed to partition the power grid. Finally, a safety
risk indicator is utilized to identify whether the partitioned sections are key
transmission sections. Results from case studies on the IEEE39-node system
and actual power grid examples demonstrate that the proposed method
accurately and effectively searches for all key transmission sections of the
system and identifies their security risks. The application in real power grid
scenarios validates its ability to screen out some previously unrecognized key
transmission sections.

KEYWORDS

renewable energy, power grid partitioning, key transmission section, spectral clustering,
normalized cut, security risk index

1 Introduction

In the backdrop of substantial integration of intermittent renewable energy sources
such as wind and solar, combined with the rapid expansion of electric vehicle charging
stations into the power grid, the power system experiences augmented volatility and
uncertainty (Cheng et al., 2022). During occurrences of severe weather events that
lead to transmission line outages, a widespread transfer of power flow takes place,
a significant redistribution of power flow ensues, potentially triggering a series of
cascading system incidents (Wang et al., 2021; Hui et al., 2023). Key Transmission Sections
(KTS) have emerged as critical safety features of the power grid, revealing susceptible
areas. Monitoring and analyzing KTS can significantly enhance the stability and
operational efficiency of power systems (Wang et al., 2019). Conventional methodologies
rely on the expertise of power grid dispatch professionals for the identification
of KTS. However, in light of the escalating intricacies of the power grid, this
manual selection approach proves inadequate to meet the heightened requisites of the
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contemporary intelligent power grid. Consequently, researching
an expeditious KTS search method and conducting an thorough
analysis of safety stability assumes paramount significance.

Currently, methods for searching KTS can be categorized into
two main types: those based on the analysis of power flow transfer
relationships and those depending on power grid partitioning.
Methods centered around power flow transfer relationships
commonly start from a particular overloaded branch and utilize
parameters such as power flow transfer distribution factors or
clustering indicators to identify line cut sets that exhibit strong
electrical associations with the overloaded line. Zio and Golea.
(2012) approached from the perspective of power grid security,
searching for a set of lines closely associated with overloaded lines
as transmission sections. Yu et al. (2023) proposed a transmission
section search method based on graph theory and PMU data. It
obtains transmission sections by searching the first k path with the
minimum weight and ultimately filters KTS by calculating the safety
margin of the sections. Lv et al. (2018) studied the impact ofmultiple
faults on security and stability characteristics of power grid andweak
transmission sections, and proposed a KTS identification method
considering multiple preconceived faults. The K value setting in
the shortest path method is relatively subjective, and the range of
searching for the shortest path in the entire network is too large,
resulting in a waste of search resources. Hu et al. (2023) employed
the transient safety assessment method of feature selection, but it
needs to screen a high-accuracy power flow feature set and the
expression ability of the model needs to be enhanced. Diao et al.
(2023) utilized a deep learning model to predict KTS, which has
strong expressive ability (Bo et al., 2024), but cannot discover
new KTS.

The methodologies for power grid partitioning are grounded in
common attributes shared among network nodes, such as electrical
distance, power voltage, or energy sensitivity (Samudrala et al.,
2020). These approaches segment the power grid into several zones,
classifying sections within high-safety risk areas as KTS (He and
Fang, 2017). The methods for grid partitioning can be categorized
into two types: one is the method of disconnecting lines to split the
grid. Luo et al. (2014) utilized the Gervan-Newman (GN) algorithm
to find tie lines with high transmission betweenness, and removed
these tie lines to partition the power grid. Nonetheless, the search
for lines within the partitions was neglected. Wang et al. (2022)
utilized the fuzzy C-means clustering algorithm to explore lines with
similar power composition to those broken, thus forming the initial
transmission section. Additionally, a composite factor criterion was
introduced to identify KTS. However, the clustering results are
greatly affected by the initial clustering center.

Another partitioning method is the node clustering partitioning
method, which clusters nodes or lines with the same properties
into a group of transmission sections. Hou et al. (2014) proposed
a fast search and identification method for weak transmission
section searching based on automatic subnetwork combination.
Zhao et al. (2017) proposed a network partitioning method
based on community detection algorithm, which divides the
distribution network into multiple communities. Xue and Duan
(2019) introduced an online search method for identifying
typical transmission sections with consideration for geographical
attributes. The method employs a cut-set search algorithm
based on matrix operations of graph theory and utilizes safety

margin criteria to screen typical transmission sections within the
power grid. For the numerous transmission sections resulting
from partitions, Liang et al. (2022) employed N-1 and N-2 fault
verification to identify sections at risk of exceeding limits as KTS.
Wu et al. (2023) utilized comprehensive indicators based on the
line outage distribution factor and line load rate to determine
KTS. The aforementioned methodology transforms the process
of grid partitioning into a graph partitioning process. During
the construction of the branch weight matrix, it may lack the
incorporation of multivariate characteristics in the data (Bai et al.,
2021), such as line parameters, geographical location, system
operating status, etc., thereby posing challenges in ensuring the
accuracy of the partitioning. Deficiencies in conducting KTS
searches for internal sections within the sub-partitions may lead
to the problem of overlooked or missed KTS.

In view of the above problems, a method for searching KTS
based on an improved spectral clustering algorithm is proposed
in this paper. The approach conceptualizes the power system as
a weighted graph model, with branch weights determined by
considering the influences of voltage stability and power flow
characteristics. The power grid is partitioned using the improved
normalized cut spectral clustering algorithm. To tackle the challenge
of numerous transmission sections emerging between partitions,
making it difficult to ascertain their criticality, a safety risk indicator
is devised and employed as a screening criterion. This method fully
exploits the advantages of spectral clustering algorithms in terms of
their low computational complexity and reduced solution difficulty,
while concurrently circumventing the issue of potential omissions
caused by the lack of internal section searches within partitions,
thereby achieving a significant enhancement in accuracy.

2 Power grid partitioning method
based on spectral clustering

Thespectral clustering algorithmhas gained increasing attention
in the realm of electrical engineering due to its solid theoretical
foundation and commendable clustering efficacy (Saxena et al.,
2017). Derived from the theory of spectral graph partitioning,
this algorithm transforms data clustering challenges into graph
cutting problems, providing a fresh perspective for addressing
power grid partitioning. This study utilizes the spectral clustering
algorithm to partition the power grid. Initially, the electrical power
system is abstracted into a weighted graph, with due consideration
given to both voltage and power flow factors in branch weighting.
Subsequently, by constructing the weight matrix and Laplacian
matrix of the graph, the power grid is divided intomultiple partitions
based on the normalized cut criterion.

2.1 Construct branch weight model

Theapplication of spectral clustering for power grid partitioning
fundamentally hinges upon the utilization of eigenvalues and
eigenvectors derived from the Laplacian matrix. A pivotal stage in
this process involves the formulation of a weight matrix for the
graph’s branches, wherein different weight models wield a direct
influence on the partitioning method’s effectiveness. Typically, these
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FIGURE 1
Simplified branch mode.

models consider similar characteristics among network nodes, like
electrical distance, node voltage, branch power flow, etc. However,
prevalent methods mostly consider the above-mentioned single
factors when assigning branchweights, and cannot comprehensively
reflect multiple factors, making it difficult to ensure the rationality
and accuracy of the partitioning outcome (Li et al., 2023).This study
proposes a novel weight model that amalgamates considerations of
both node voltage levels and branch power flowdynamics, providing
a comprehensive reflection of electrical interconnectedness. The
simplified branch model is shown in Figure 1.

In the diagram, Yij = Gij + jBij is the branch admittance; V̇i =
Vi∠θi and V̇j = Vj∠θj are the voltages at the ends of the branch. The
injected power at node i on the branch side is given by:

{
{
{

Pi = ViVj (Gij cosθij +Bij sinθij) +V
2
iGij

Qi = ViVj (Gij sinθij −Bij cosθij) −V
2
i Bij

(1)

where, θij is the phase angle difference; The partial derivative of
reactive power Qi and voltage amplitude Vj is:

∂Qi

∂Vj
= Vi(Gij sinθij −Bij cosθij) (2)

In the above equation, due to the significantly higher reactance than
resistance in high-voltage transmission lines, that is, Bij ≫ Gij. The
voltage phase angle difference θij between the ends of the branch is
usually small, and sinθij close to 0, so Gijsinθij can be ignored. The
branch’s susceptance parameter Bij serves as a direct indicator of the
electrical distance between two nodes, while ∣ θij ∣ is linked to the
load ratio of the line, exhibiting an increase as the load ratio expands.
From this, it can be inferred that the partial derivative ∂Qi/∂Vj is
directly proportional to the node voltage Vi and the susceptance B ̈y
of the line, and inversely proportional to the voltage phase angle
∣ θij ∣.That is, when the node voltage is smaller, the electrical distance
between nodes is larger, and the load ratio is greater, the partial
derivative becomes smaller.

In spectral clustering algorithms, it is required that all branch
weights be positive values. To avoid the possibility of a negative value
for ∂Qi/∂Vj due to a smaller reactance of the intermediate winding
in the equivalent circuit of a three-winding transformer, the absolute
value of ∂Qi/∂Vj is taken (Zhao and Yu, 2008). At the two ends of the
same branch, the partial derivative values ∂Qi/∂Vj and ∂Qj/∂Vi can
be obtained, and their deviation is minimal when the power grid is
operating normally. Therefore, the branch weight is determined by
taking the average of these two values:

wU =
1
2
(|

∂Qi

∂Vj
| + |

∂Qj

∂Vi
|) (3)

The KTS in the power grid refers to a collection of transmission
lines connecting twopartitions.These lines are characterized by high
active power flow values at steady-state. Considering the network
losses, for any branch i− j, the weight based on active power flow
factor is given by:

wP =
∣ Pi ∣ + ∣ Pj ∣

2
(4)

From the preceding discussion, it is clear that node voltage and
branch power flow are pivotal factors influencing branch weighting.
The branch weights in this study are designated as:

wij =
wU

wP
= (|

∂Qi

∂Vj
| + |

∂Qj

∂Vi
|)/(∣ Pi ∣ + ∣ Pj ∣) (5)

The equation indicates that as the voltage at node increases, the
branch power flow decreases, resulting in a higher branch weight
and signifying a close connection between the two nodes.Therefore,
two closely interconnected nodes are typically assigned to the same
partition. Conversely, as the power flow in the branch increases,
the weight of the branch decreases, indicating weaker connectivity
between the two nodes, and they are partitioned into different
regions. Hence, this branch weight model provides a comprehensive
representation of factors including node electrical distance, active
power flow value in the branch, and load conditions. Consequently,
it facilitates the spectral clustering algorithm in partitioning nodes
with similar features into the same region.

2.2 Construct a weighted graph based on
spectral graph theory

The power system can be conceptualized as a graph with
weighted branches. Leveraging spectral graph theory, a weighted
graph comprising n nodes and m edges can be expressed as:

G = (V ,E,W) (6)

where,V is the set of nodes; E is the set of branches;W is the weight
matrix, where the matrix elements are defined as:

Wij =
{
{
{

wij (i, j) ∈ E

0 (i, j) ∉ E
(7)

where, wij is the weight of branch i− j. The connection relationship
between nodes can be represented by a degree matrix, where non-
diagonal elements are zero, and diagonal elements are the sum of
the row elements of the weight matrix. The Laplacian matrix of the
constructed graph is:

L = D −W (8)

2.3 Power grid partitioning method based
on normalized cut criteria

In the realm of spectral clustering for power grid partitioning,
the efficacy of graph cutting criteria exerts a significant bearing
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FIGURE 2
The comparison between the minimum cut and normalized
cut criteria.

on the partitioning outcomes. Various graph cutting criteria,
including but not limited to minimum cut, ratio cut, normalized
cut, and minimum-maximum cut, can be utilized by optimizing
the corresponding objective functions through minimization or
maximization, thereby yielding optimal clustering results (Jia et al.,
2014). Some scholars have observed that the minimum cut criterion
might lead to unbalanced partitions (Von Luxburg, 2007). To
address this concern, Shi and Malik proposed the normalized
cut criterion, aiming to mitigate significant differences in the
size of vertex sets between subgraphs (Shi and Malik, 2000). The
comparison between the minimum cut and normalized cut criteria
is illustrated in Figure 2.

The normalized cut criterion serves the dual purpose of
assessing the internal closeness of nodes within subgraphs and
evaluating the inter-subgraph connection looseness. Furthermore, it
ensures equitable subgraph sizes, effectively averting the possibility
of skewed partitions. The objective function for the normalized cut
criterion, dividing the graph into subgraphs A and B, is expressed as
follows:

NcutNcut (A,B) =
Cut (A,B)
vol (A)

+
Cut (A,B)
vol (B)

(9)

where, Cut(A,B) is the total sum of weights of all branches
connecting subgraphs A and B; vol(A) is the sum of weights of all
branches within subgraph A; vol(B) is the sum of weights of all
branches within subgraph B. Minimizing the function Ncut(A,B),
referred to as the normalized cut criterion, is tantamount to
optimizing the objective function for themost favorable partitioning
of node data. When employing the normalized cut criterion for
power grid partitioning, it takes into account not only the external
connections between partitions but also the internal connections
within each partition, resulting in a balanced partitioning effect.

The optimal solution to the graph partitioning criterion
presents an NP-hard challenge, yielding 2n−1 potential outcomes
for a graph comprising n nodes. For this problem, Donath and
Hoffman proposed a solution method based on the eigenvector
of the adjacency matrix, while Fiedler demonstrated the intimate
correlation between graph bisection and the second eigenvector
of the Laplacian matrix, advocating for the utilization of
this eigenvector in graph partitioning (Fabjawska, 2012). The
optimization problem of the normalized cut criterion can then
be transformed into an eigenvalue problem as follows:

Ly = λDy (10)

Transforming the problem into solving the normalized form of the
Laplacian matrix:

L′ = D1/2 (D −A)D1/2 (11)

Z = D1/2Y (12)

L′Z = λZ (13)

Solving the equation for Fiedler’s eigenvector, denoted as VF ,
corresponding to the second smallest eigenvalue of matrix L′,
enables the derivation of the graph’s partitioning indicator vector
based on the Fiedler eigenvector. Let n× 1 order vector be:

K = VF + ρ (14)

As the variable ρ spans from negative infinity to positive infinity,
the elements of vector K undergo n sign changes, yielding n− 1

FIGURE 3
The simple 10-bus system and its transmission sections.
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distinct segmentation indicator vectors X = (x1,x2,…,xn)
T. The

process entails calculating n− 1 normalized cut objective function
values based on partitioning indicator vectors. Among these, the
partition that corresponds to the indicator vector which minimizes
the objective function is identified as the optimal partition.

3 Search method for KTS

3.1 The KTS identification method based
on power grid partitioning

Grid partitioning facilitates the identification of KTS. In the
case of practical large-scale power grids, power experts typically
divide the grid into several sub-areas based on geographic or
administrative regions, forming multiple partitioned section. When
a partition section or a combination of multiple partitioned
sections can divide the system into independent subsystems, several
important transmission lines that are closely connected between
these partitions constitute a transmission section (Liu et al., 2017).
However, after the power grid is divided, a large number of
transmission sections will be formed, and it is difficult to monitor
all transmission sections. KTS that have a greater impact on the
stability of the power system are usually selected as the focus of
safety analysis andmonitoring. Currently, there is no strict definition
for KTS, leading to different identification methods. To facilitate
the identification of KTS and distinguish them from non-KTS, this
study defines KTS as follows:

1) The active power flow of the section’s lines is high, and the flow
direction is consistent;

2) The transmission lines forming the section are closely
connected, with the outage distribution factor between lines;

3) The section’s line loading rate is high, and there are overloaded
lines in the section under N-1 failure;

4) The system is divided into several mutually independent
and connected subsystems once all lines in the transmission
sections are disconnected.

The study employs a spectral clustering algorithm based on
normalized cut for power grid partitioning, where the cut sets
between partitions are identified as KTS.Throughout the power grid
partitioning process, the algorithm strives to cluster similar node
data into the same partition, ensuring that nodes within a given
partition are closely connected, while nodes in different partitions
exhibit weaker connections.

3.2 Defects in methods for identifying KTS
through power grid partitioning

The KTS identification method based on power grid
partitioning exhibits limitations as it tends to overlook internal
searches within partitions during the KTS search process,
potentially resulting in the omission of relevant KTS. In
section 2.3 of this study, the selection of KTS relies on the
minimum value of the normalized cut’s objective function
corresponding to a partition section. However, the omission of
further identification for the remaining n− 2 objective values

FIGURE 4
The workflow for searching KTS.

related to transmission sections may lead to misidentifications
or exclusions of KTS. To illustrate this, the drawbacks of the
partition method based on the normalized cut are discussed using
the simple 10-bus system and its transmission sections depicted
in Figure 3 as an illustrative example.

In Figure 3, the numerical values assigned to the branches
represent their respective weights, denoted as Ncut for the
normalized cut objective function value, and Z for the load ratio of
the lines. Section 1 is the minimum cut, with the largest objective
function value and a skew-cut issue. Section 2, a normalized cut,
boasts the smallest objective function value, resulting in a more
balanced partitioned subgraph, albeit without overloaded lines.
Although the objective function value of section 3 is larger than
the objective function value of section 2, the lines in section 3 are
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TABLE 1 The results of the comparison between the two methods.

Method KTS Component lines Security risk index N-1 over-limit line

Reference (Wang et al., 2020)

RKTS 1 6-11,13-14 1.39 l13−146−11 , l
6−11
13−14

RKTS 2 10-11,10-13 1.09 l10−1110−13, l
10−13
10−11

RKTS 3 2-25,26-27 1.01 l26−272−25

RKTS 4 5-6,6-7,13-14 0.91 Non

RKTS 5 16-21,16-24 or 16-24,21-22 0.68or1.05 non or l21−2216−24

This paper

SKTS 1 6-11,13-14 1.39 l13−146−11 , l
6−11
13−14

SKTS 2 10-11,10-13 1.09 l10−1110−13, l
10−13
10−11

SKTS 3 2-25,26-27 1.01 l26−272−25

SKTS 4 16-21,23-24 1.15 l16−2123−24, l
23−24
16−21

SKTS 5 6-11,4-14,16-17 1.06 l6−114−14, l
4−14
6−11

SKTS 6 1-2,2-3,26-27 1.07 l26−272−3

FIGURE 5
Distribution of KTS obtained by the two methods.

subject to heavy load operation and load over-limit. According to
the definition of KTS, it is obvious that section 3 is the real KTS.
Upon the above analysis, the identification method for KTS based
on the normalized cut exhibits the following shortcomings:

1) The assessment of section criticality relies solely on the
magnitude of normalized cut objective function values, and the
accuracy of partitioning depends excessively on the settings of
branch weights.
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FIGURE 6
Three-dimensional diagram and its top view of the sorted weight
matrix. (A) The weight of branches. (B) Node partitioning and its
transmission lines.

2) The exploration of KTS is not incorporated within the
partitioning process.

3) There is a lack of specific criteria for distinguishing between
KTS and non-critical transmission sections.

3.3 The KTS search method based on
security risk indicator

In order to systematically search KTS and avoid the issue of
omission, this paper improves the spectral clustering algorithm
based on the normalized cut. It introduces a safety risk indicator for
evaluating the criticality of transmission sections and employs this
indicator to identify KTS during the partitioning process. When an
N-1 fault occurs on a transmission section, the over-limit value of
the transmission line is:

γ =
Pl + αk→lPk

Pl
− 1, l ∈ S,k ∈ S (15)

where, S is the set of transmission section lines; Pl and Pl−max are
the active power flow and transmission limits of the line l; Pk is the
active power flow of the line k; αk→l is the outage distribution factor
when the power flow transfers to line l after line k is disconnected.

The defining characteristics of KTS, as per its definition, involve a
high line load rate and a small safety margin. When the lines of KTS
experience an N-1 fault, the remaining lines in KTS exceed their
flow limits, denoted as γ > 0. To highlight the ascending correlation
between the line overload values of the transmission section and
safety risk more vividly, this study opts for the natural exponent e
as the base and utilizes over-limit value γ as the exponent, thereby
formulating the safety risk index for the transmission section as:

β =max{exp(
Pl + αk→lPk
Pl−max

− 1)}, l ∈ S,k ∈ S (16)

It can be seen from the above formula that the over-limit value
and the safety risk increase exponentially. If the transmission section
surpasses the limit value and the safety risk index exceeds 1, it
is identified as KTS. Hence, this safety risk index serves as an
evaluative criterion for distinguishing betweenKTS and non-critical
transmission sections.

The procedural aspects of the spectral clustering algorithm
based on normalized cut are improved in this paper, with security
risk indicators being utilized to conduct KTS searches within the
partition. As indicated in Section 2.3, during the partitioning of
an n-node system, the search for KTS within the partitions is
overlooked, implying that identification is not conducted for the
remaining n− 2 transmission sections. The algorithmic procedure
outlined in the preceding text is refined in this study. Initially,
the n− 1 transmission sections undergo sorting in ascending
order based on their normalized cut target values. Subsequently, a
sequential N-1 safety verification is executed on the lines within
each transmission section, resulting in the derivation of the outage
distribution factor αk→l and the safety risk indicator β. The selection
of a transmission section as a KTS is made when the safety risk
indicator meets criterion β > 1.

3.4 The KTS search process

This paper presents a KTS search methodology based on
an enhanced spectral clustering algorithm. The approach initially
computes the power flow and branch weights of the power grid
according to its operational scenarios, leading to the construction
of a weighted graph for the power grid. Subsequently, a recursive
spectral clustering algorithm is applied to partition the power
grid, and the criticality of the partitioned sections is assessed
through safety risk indicators. The partitioning process is iteratively
conducted until noKTS is identified in any partition.Theprocedural
framework for the KTS search is illustrated in Figure 4.

4 Case studies

This paper selects the IEEE 39-node system and the actual
power grid 23-node system to verify the effectiveness of the
proposed method.

4.1 IEEE 39-bus system example

Based on the parameters of the IEEE 39-bus system, a
comparison was conducted between the Search Key Transmission
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FIGURE 7
The partition results of the 23-bus system.

TABLE 2 The search results for partitioned sections.

Partitioned section Location Component lines Line power(MW) Load rate Security risk indicators

1 Partition 2,5 1-6,1-13,5-6 171,878,136 0.90,0.50,0.47 1.11

2 Partition 1,2 1-3,1-4,3-5 80,90,371 0.65,0.40,0.85 1.01

3 Partition 4,5 20-21,13-20 501,288 0.38,0.21 0.61

4 Partition 2,3,5 1-13,12-13 878,396 0.30,0.27 0.46

5 Partition 2,3 1-7,1-12,1-14 110,28,62 0.08,0.06,0.06 0.4

6 Partition 3,4 7-20,7-15 14,20 0.01,0.03 0.3

Section (SKTS) recognized by the method proposed in this paper
and the Reference Key Transmission Section (RKTS) identified in
reference (Wang et al., 2020).The results of the comparison between
the two methods are presented in Table 1, where the superscript
of l denotes the disconnected line, and the subscript indicates the
overloaded line.

From Table 1, it can be discerned that the method presented
in this paper identifies 6 SKTS, compared to 5 RKTS in reference
(Wang et al., 2020). Notably, SKTS1, SKTS2, and SKTS3 align
perfectly with RKTS1, RKTS2, and RKTS3. Upon conducting a
comparative analysis of safety risk indicators, it is evident that all
SKTS exhibit safety risk indices greater than 1, accompanied by
transmission lines exceeding their limits under N-1 fault scenarios.
Conversely, the safety risk indicators for RKTS 4 (16–21, 16–24)
and RKTS 5 (16–21, 16–24) are less than 1, with no over-limit

lines, thereby excluding them as KTS. The distribution of KTS
identified by both methodologies is depicted in Figure 5, wherein
red dotted lines denote identical KTS shared by both methods, and
yellow dotted lines and blue dotted lines respectively illustrate the
additional SKTS and RKTS.

A comparative analysis of the criticality between SKTS 4
(16–21,23–24) and RKTS 5 (16–24,21–22) was carried out. As
displayed in Figure 5, both transmission sections consist of four
branches connecting nodes 16, 21, 22, 23, and 24, embodying
an instance of an optimal cut problem within the graph. The
active power flows across these four branches are: P16−21 = 330,
P23−24 = 354, P16−24 = 43, P21−22 = 604. It is evident that the SKTS 4
has larger active power flows and a higher safety risk value.

Through the above discussion and analysis, it can be concluded
that the KTS identified by the proposed method have larger power
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TABLE 3 The comparison between SKTS searched in multiple scenarios and MKTS.

Monitoring KTS Component lines Search KTS Component lines Probability Comparative Results

MKTS 1 1-6,13-18

SKTS 1 1-6,5-6,13-18 15.30% coverMKTS 2 5-6,13-18

MKTS 3 1-6,5-6

MKTS 4 1-3,1-4,3-5 SKTS 2 1-3,1-4,3-5 11% same

MKTS 5 1-6,20-21
SKTS 3 1-6,5-6,20-21 0.7% cover

MKTS 6 5-6,20-21

MKTS 7 1-6,1-13
SKTS 4 1-6,1-13,5-6 0.5% cover

MKTS 8 5-6,1-13

SKTS 5 1-5,1-6,1-13 9.1% new search

flows and higher safety risks, which align with the established
definition of KTS. Moreover, the proposed method incorporates
a safety risk indicator into the algorithmic process to filter KTS
and non-critical transmission sections, ensuring result accuracy
while minimizing the potential for false positives and false negatives
selections.

4.2 The actual electrical grid example

In order to verify the effectiveness of this method in actual
power grids, this paper selects an actual power grid in a city in
Guangdong, China, which contains a high proportion of new energy,
as a calculation example. The power stations and lines of the power
grid with voltage levels above 220 kV are simplified into a system
of 23 bus and 34 lines. The power nodes include 1 pumped hydro
storage, 2 thermal power units and 3 large-scale wind and solar
farms. The total installed capacity of the power supply is 7300 MW,
and the proportion of new energy installed capacity is 49%.

4.2.1 KTS in summer load peak scenario

In actual power grid operations, electrical experts commonly
select representative operational scenarios to identify KTS.
Therefore, this study initially identified KTS in the actual power
grid in the scenario of the summer peak load. The proposed method
effectively segmented the power grid into five partitions, after which
the nodes were rearranged based on their partition sequence,
culminating in a sorted weighted matrix. Three-dimensional
diagram and its corresponding top-down view of the sorted weight
matrix are shown in Figure 6.

As can be seen in Figure 6, the element distribution chart of the
weighted matrix, sorted according to the partition results, clearly
illustrates the connections between nodes and the connections
between different partitions. In Figure 6A, the vertical axis
represents the weight of branches between two nodes, where higher
weight indicates a closer connection between the nodes, increasing

the likelihood of both nodes being assigned to the same partition.
In Figure 6B, dots represent branches between two nodes. The five
rectangles indicate the 5 partitions, each containing nodes and
branches. High branch weights inside the rectangle indicate strong
connections between nodes, leading to their assignment to the
same partition. Low branch weights outside the box suggest weaker
connections, making them inter-partition transmission lines. For
example, the transmission line between partition 5 and partition 2
identified as five to six, with a considerably low weight, representing
a weak link connecting the two partitions. The partition results of
the 23-bus system under typical operating conditions in the summer
peak load scenario are illustrated in Figure 7.

Based on the above partitioning results, the partitioned section
is obtained in the scenario of the summer peak load, that is,
the collection of transmission lines between partitions. The search
results for partitioned sections are shown in Table 2.

From Table 2, it is evident that a total of 6 partitioned sections
were identified in the scenario of the summer peak load. Among
them, partitioned section 1 and partitioned section 2 have higher
power flow and load rate, and the safety risk index value is greater
than 1, which means they are KTS.

4.2.2 KTS in multiple scenarios

There are 8 Monitoring Key Transmission Sections (MKTS)
identified by experts in the actual power grid, but the SKTS in the
scenario of the summer peak load is only 2. Therefore, the KTS
obtained in one scenario cannot cover allMKTS. To address this, this
paper employs Monte Carlo sampling to generate 1,000 scenarios
based on the historical power output and load demand data of the
actual power grid, producing a scenario set that encompasses all
extreme conditions (Bao et al., 2021). KTS are searched in every
scenario, and their occurrence probabilities are calculated. The
comparison between SKTS searched in multiple scenarios and
MKTS is shown in Table 3.

As can be seen from Table 3, a total of 5 SKTS were identified
in multiple scenarios, among which SKTS 2 is the same as MKTS
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4, and SKTS 5 is a new searched section. SKTS 1, SKTS 2, and
SKTS 4 merge multiple MKTS respectively, reducing the number
of MKTS, thereby decreasing the overall number of MKTS while
enhancing monitoring efficiency. For example, SKTS 1 combines
the monitoring of MKTS 1, MKTS 2, and MKTS 3. In order to
verify its rationality, N-1 verification is performed on the three
lines 1–6, 5–6, 13–18. The breaking distribution factors are all
greater than 0.2 and there are line overruns. This shows that the
three lines of SKTS 1 are closely connected, that is, when one
line is broken, the power flow quickly transfers to the other two
lines. However, MKTS 1, MKTS 2, and MKTS 3 only monitor
two of these lines, resulting in a case of missing monitored lines.
Therefore, the approach presented in this paper is more accurate and
efficient.

Through searching and analyzing KTS in 1,000 scenarios,
the results show that the maximum probability of SKTS 1
occurrence is 15.3%, while the minimum probability for SKTS
4 is 0.5%. Among them, the newly searched SKTS 5 has a
probability of occurrence at 9.1%, indicating a higher risk of
section overload. Therefore, SKTS 5 should be included in the
monitored sections.

5 Conclusion

This paper studies the KTS search method of power systems
and proposes a KTS search method based on improved spectral
clustering algorithm. The advantages of this method include:
1) An improved normalized cut spectral clustering algorithm
is adopted for partitioning the power grid, which features a
lower computational complexity and is suitable for large-scale
power networks; 2) Consideration of both node voltage and
active power flow when constructing branch weights, providing a
comprehensive reflection of the tight connections between nodes
and thus improving the accuracy of the model; 3) Search the
internal sections of the partition during the partitioning process
to avoid missing KTS; 4) Establishing a safety risk indicator for
identifying KTS in cases where numerous partitioned sections are
formed. The proposed method has been validated through practical
applications in power system engineering. It can not only accurately
and efficiently search for KTS currently monitored in operational
control, but also filters out KTS with high risk that operational
experts may have overlooked. This contributes to risk mitigation

and enhances monitoring efficiency for operational dispatch
personnel.
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Overvoltage risk regulation
strategy with distributed energy
application in a distribution
network based on the
Stackelberg game
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Chenjie Tong2, Yufan Lu2 and Xiaoqiang Chang1
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and Electronic Engineering, North China Electric Power University, Beijing, China

Alongwith the increasing low-carbon demand of the power system, the access of
a high percentage of renewable energy resources to the distribution network has
a large impact on the voltage fluctuation of the system and reduces the
operational reliability. In this paper, we consider utilizing the reactive capacity
of distributed resources to participate in system voltage regulation to reduce
node loss of load probability (LOLP) caused by node overvoltage faults and
propose an overvoltage risk regulation strategy for the interaction between
distribution network operators (DSOs) and distributed users in the framework
of the Stackelberg game. First, the nodes are clustered and analyzed based on the
two-dimensional indexes of node voltage regulation ability, and different voltage
regulation compensation tariffs are assigned. Second, the cost-benefit model of
voltage regulation for the leader and follower sides and the node LOLPmodel are
constructed to measure the reliability of the system. The Stackelberg game is
used to co-optimize the two parties’ compensation tariffs and voltage regulation
strategies. The optimal solution of voltage regulation under the equilibrium of the
game is obtained by solving using the particle swarm optimization (PSO)
algorithm. Based on the IEEE-33 node system, a case study is carried out to
verify that the proposed overvoltage risk regulation strategy can maximize the
benefits of the regulator participants while enhancing the operational reliability of
the system.

KEYWORDS

distributed system operator, distributed resource, reactive power voltage regulation,
K-means++ clustering algorithm, Stackelberg game, PSO algorithm

1 Introduction

Under the guidance of the “double carbon” policy and the demand for reducing
carbon emissions, the country is fully developing renewable energy generation
technology and significantly increased distributed photovoltaic (PV) capacity. By
the end of June 2023, the total installed PV capacity in China reached 470 million
kilowatts, of which distributed PVs accounted for 42.12%. When large-scale distributed
PV resources access a distribution system, the variety of distributed resources supply
varied levels of energy and power, and the grid voltage distribution is affected, which
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can lead to voltage fluctuations or even overvoltage and bring
challenges to stable grid operations (Sun et al., 2023).

To address the randomness and volatility of distributed
resources, studies have proposed the use of distributed
photovoltaic power as a voltage regulator to participate in voltage
regulation. However, the strategy has certain shortcomings due to
the limitation of photovoltaic inverter voltage regulation capacity.
Currently, distributed energy storage (DES) is one of the main
flexible scheduling grid resources under the background of a high
penetration rate of distributed PVs, and its charging and discharging
process can realize the mutual conversion of AC and DC. The
addition of energy storage resources to the distribution network is an
inevitable trend in the future development of the grid. Therefore, it is
important to study the collaboration of multiple distributed energy
storage resources to reduce the probability of overvoltage in the
distribution network and enhance the reliability of the system
operation and the revenue of voltage regulation and control (Sun
et al., 2005). Zhang et al. (2019) used a combination of DES and
traditional energy storage, reactive power, and active charge and
discharge control to completely optimize and regulate network node
voltage. Another approach constructs voltage state awareness
indicators to provide accurate detection of the distribution
network voltage states and uses DES to participate in the
auxiliary conventional regulation and dynamic reactive power
support, providing rapid response to the demand for regulating
the voltage (Huang et al., 2020; Niu et al., 2022). Cai et al. (2019) put
forward a method of centralized and local two-stage voltage control
with an inverter that ensures the optimization of the whole network
voltage on the time scale of minutes with real-timemonitoring of the
local voltage and dynamic adjustment of the reactive power output.
In addition, considering the independent autonomy and flexible
control capability of the microgrid, the DES resources are used to
establish a voltage optimization and control model for coordinating
the microgrid with the distribution network at a hierarchical level
(Sun, 2019; Ren, 2022; Li et al., 2023; Yang et al., 2023).

Hu et al. (2022) considered the risk of overvoltage faults and
economic benefits, effectively improving the reliability of system
operations. The current methods for using multiple distributed
resources to manage voltage regulation can be mainly categorized
into two means of reactive power compensation (Ye, 2021) and
active reactive synergy (Hu et al., 2020) voltage regulation. Ye (2021)
considered the stochasticity of multi-generation systems in
microgrids and constructed a microgrid reactive-voltage
regulation model based on fuzzy chance constraint planning for
hydropower-wind power-PV to reduce voltage offset and network
loss. Hu et al. (2020) regulated voltage for distributed PV resources
and utilized PV inverters to coordinate the active and reactive
outputs to satisfy the regulating reactive power demand
of each node.

Existing studies mainly consider two strategies to efficiently use
distributed resources to solve the overvoltage faults: direct and
indirect control. The former generally models the optimization
problem as a multi-objective optimal power flow problem with
the objective of minimizing the network loss and the distribution
network nodes’ voltage offset (Li Cuiping et al., 2021; Li Yanjun
et al., 2021). Indirect control considers the market policy or
incentive tariffs, etc., utilizes distributed resources to participate
in the distribution network regulation and auxiliary service market,

and optimizes the incentive tariff and voltage regulation power
strategy through a game between multiple subjects in the
distribution system to achieve the purpose of distribution
network overvoltage regulation and control (Yu et al., 2022).

The above literature has investigated different methods and
strategies for a single distributed resource subject to participate
in grid overvoltage fault regulation, but some remaining problems
need to be investigated. First, the current research on the high
penetration of distributed PVs includes certain limitations in
considering only the single subject of distributed PV or energy
storage to participate in voltage regulation, and it is difficult to adapt
to the future trend of multi-distributed resource synergism. Second,
after evaluating the system’s regulating characteristics of benefits
under the condition of DES at each node to participate in voltage
regulation, few studies have considered the system operational
reliability assessment metrics under the probability of system
overvoltage and loss of loads (Xiong and Xu, 2018; Xie et al.
2023) or how to construct a suitable model to achieve the
synergistic optimization of a wide range of distributed resources
participating in distribution network voltage regulation, which is a
new direction and trend of current research.

To address these shortcomings, this paper takes distributed
resource clusters and distribution network operators as research
objects, utilizing DES reactive resources to compensate for the
reactive power demand of distributed photovoltaic voltage
regulation, which can be seen as voltage-var control. A risk
regulation strategy based on the Stackelberg game framework for
multi-distributed resources is proposed that focuses on the problem
of multi-distributed resources cooperatively participating in
distribution network voltage regulation to enhance the reliability
of system operation. The main contributions of this paper include
the following:

1) Taking distributed resource clusters and distribution network
operators as research objects, a distribution network
overvoltage regulation and operation reliability
improvement strategy considering the collaboration of
multiple distributed renewable resources is developed,
which is realized through the Stackelberg game between two
subjects, namely, DSOs and distributed resource users.

2) The reactive-voltage sensitivity and voltage regulation capacity
of nodes are used as two-dimensional indicators, and the nodes
are clustered to classify nodes and assign different
compensation tariffs.

3) The costs of voltage regulation and voltage offset are
considered to construct the objective function of both based
on the Stackelberg game and, at the same time, establish the
voltage-based node loss of load probability (LOLP) model to
assess the operational reliability of the system. Finally, the
traditional particle swarm optimization (PSO) algorithm is
used to solve the large-scale nonlinear problem under the
framework of the Stackelberg game because the PSO approach
is relatively simple and has a better solution and convergence
speed under the demand of solving accuracy.

The remainder of the article is structured as follows: Section 2
establishes the basic framework and control of distributed
photovoltaic capacity and energy storage; Section 3 gives the
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regulating performance indexes and performs the cluster analysis;
the construction of the cooperative regulating model of multiple
renewable resources based on the Stackelberg game is presented
in Section 4; Section 5 gives the proof of game equilibrium
solution of the proposed Stackelberg game model; the solution
method based on the PSO algorithm is introduced in Section 6.
The case studies and the conclusions are provided in Sections 6
and 7, respectively.

2 Basic framework and control of
distributed photovoltaic and
energy storage

2.1 System framework

The system framework for distribution network voltage
regulation considering distributed resources is shown in Figure 1
below. The energy management system (EMS) of the distribution
system operator (DSO) on the leader side is used to collect
distribution system parameters and operation data and calculate
the power flow accordingly. The distributed resources, that is, the
distributed PV and DES resources, are managed and operated by the
follower side. Distributed PVs adopt the main operation mode of
“self-generation and self-consumption and on-grid storage,” which
improves the self-generation and self-consumption rate of the PV
system. At the same time, the PV system can switched between
selling electricity or storing it in the DSO system according to the
price of the electricity from the distribution grid, and the two
participate in and interact with the DSO to regulate the voltage
process. The PV and energy storage synergistically participate in the
interactive voltage regulation process with the DSO. The
corresponding user energy management system (UEMS) is
installed, which is used to receive signals from the distribution
grid and calculate and modify its active or reactive-voltage
regulation strategy.

In addition, the above EMS collects distributed PVs and
energy storage parameters to grade different distributed

resources and determine their voltage regulation
compensation tariffs, respectively. The follower responds to
the DSO’s compensation tariffs at all levels to allow
their distributed PVs and energy storage to participate in
voltage regulation power strategy based on their respective
optimization objectives under the premise of ensuring the
overall safe operation of the distribution network to achieve
the coordinated and optimized choice of voltage
regulation strategy.

2.2 Distributed PVs and DES cooperative
control mode

DES is considered in the traditional distributed PV distribution
network voltage regulation method, and the reactive compensation
of energy storage is utilized to enhance the active output capability of
distributed PVs (Saboori et al., 2015).

Distributed PV voltage regulation generally adopts two main
modes: reactive power regulation and joint active reactive power
regulation. Usually, reactive power regulation of distributed PV is
used, using the reactive capacity of the grid-connected converter
of the PV device to absorb or release reactive power, change the
injected power of the node, and then regulate the voltage of each
node of the distribution network according to the change of the
system power flow. In the case of a severe overvoltage problem,
reactive power regulation alone cannot meet the demand for
voltage regulation. Such a situation requires reducing the active
output capacity of the PV inverter to support reactive power
regulation, but this approach also reduces the PV power
generation revenue.

The addition of DES to user-side distributed PVs can solve the
problem of reduced revenue due to PV active reduction. The energy
storage converter can be used to provide reactive power andmeet the
overall demand for voltage regulation of the distribution network,
effectively reducing the use of the PV inverter’s active output
channel. However, the cost of energy storage equipment must
also be considered.

FIGURE 1
Overall framework.
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3 Nodal hierarchical model considering
voltage support and regulation capacity

3.1 Voltage regulation performance
indicators

A distributed PV and energy storage system collaboratively
participates in the voltage regulation process through reactive power
regulation, which can directly regulate the node voltage without
affecting the PV active power output. In practice, in the case of low-
voltage distribution lines, resistance is not much less than the reactance.
Although the active power has an impact on the node voltage, the cost
of active voltage regulation is high, which means only considering
reactive-voltage regulation is much more economical. Geng (2023)
pointed out that the greater the reactive power support provided by the
new energy unit, the greater the active powermargin at the nodes of the
distribution network system. That is, in the case of only relying on
reactive power to meet the demand for voltage regulation, reducing the
active participation in regulating the voltage can improve the system
voltage regulation capability and reduce costs. This paper focuses on the
relationship between reactive power and the system node voltage and
participation in the auxiliary services market.

Considering the sensitivity index of power to node voltage, based
on the assumptions mentioned above, the effect of reactive power
support of distributed PVs and DES on the sensitivity of node
voltage is investigated as Eqs (1)–(2):

Spv,i,j,t � ΔUi,t

ΔQpv,j,t
, (1)

Sdes,i,j,t � ΔUi,t

ΔQdes,j,t
, (2)

where Spv,I,j,t and Sdes,i,j,t are reactive-voltage sensitivity for
distributed PVs and DES, respectively, and ΔUi,t、ΔQpv,j,t, and
ΔQdes,j,t are voltage magnitude increment at node i and the
reactive power increment at node j provided by distributed PVs
and DES, respectively.

To study the reactive-voltage regulation capability of distributed
resources, considering the different mechanisms of providing
reactive power for both distributed PVs and DES, it is considered
that the amount of voltage variation at node i can be expressed by the
voltage-reactive sensitivity of the two voltage-reactive sensitivities of
distributed PVs and DES as Eq. (3):

ΔUi,t � Spv,i,j,tΔQpv,j,t + Sdes,i,j,tΔQdes,j,t. (3)

Because the reactive-voltage sensitivity of each node is different,
the support degrees of their respective node voltages are also
different. For the system node overvoltage problem, the reactive-
voltage support that each node can provide under different
overvoltage severities is considered (Ji et al., 2020). The reactive-
voltage support degree ξi,t of node i at moment t is defined as
Eqs (4)–(5):

ξ i,t � 1
sevvolti

∑
j∈i,j≠i

Spv,i,j,t + Sdes,i,j,t( ), (4)

sevvolti � ∑
k∈Kvolt

i

max
vub − vi
vub

,
vi − vlb
vlb

{ }, (5)

where sevivolt is the voltage crossing severity of node i, Ki
volt denotes

the set of all situations that cause node i overvoltage fault, and vub
and vlb are the upper and lower bounds of the normal operating
voltage allowed for node i, respectively. Exceeding the range results
in a voltage collapse or low-voltage instability, which can affect the
reliability of the distribution system.

The reactive-voltage sensitivity provided by the node through
distributed PVs and DES under different overvoltage severities
defines the index of support degree. A higher support degree
indicates that the distributed PVs and storage reactive power
provided by the node can effectively support the node
overvoltage faults, corresponding to a higher reactive-voltage
regulation benefit.

The total reactive power capacity that can be provided by
distributed PVs and DES at each node is further considered. For
distributed PV inverters, there is the following constraint between
apparent power and active reactive power as Eq. (6):��������������������

P2
pv,i,t + Q0,i,t + ΔQpv,i,t( )2

√
≤ Sapppv,i , (6)

where Ppv,i,t is the active power of the distributed PVs at node i at
time t, Q0,i,t is the initial reactive power of the PVs before voltage
regulation, and Sapp pv,i is the total capacity of the PV inverter
at node i.

When using distributed PV and DES in a reactive-voltage
regulation target, the energy storage equipment operations and
maintenance costs are relatively high. Therefore, two operating
modes are specified for the first full use of the reactive capacity
of the PVs, when the PV nodes can provide the maximum value
without cutting the active PV output. Through the reactive regulator
storage, the total reactive capacity of each node in the time of t and
the lower and upper bounds of ΔQmax, i,t and ΔQmin, i,t are as Eq. (7):

ΔQmax ,i,t �
����������
S2pv,i − P2

pv,i,t

√
− Q0,i,t + Qdes,i,

ΔQmin ,i,t � −
����������
S2pv,i − P2

pv,i,t

√
− Q0,i,t + Qdes,i,

⎧⎪⎨⎪⎩ (7)

where Qdes,t is the reactive capacity available for energy storage
for each node.

3.2 Hierarchical modeling of distributed PVs
and DES

For the multi-node voltage regulation demand of the
distribution system, the DSO incentivizes the participation of
customer-side DES in the voltage regulation auxiliary service
market through the voltage regulation compensation tariff. To
reduce the investment cost, the DSO dynamically sets the
respective compensation tariffs based on the voltage regulation
performance of each node.

Using reactive-voltage support ξi,t and node reactive regulating
capacity ΔQ as regulating performance indicators mentioned above,
DSO takes these two indicators as two-dimensional variables,
utilizes the K-means++ clustering algorithm to realize the
similarity clustering purpose, and classifies the user nodes with
similar reactive regulating performance into the same class.
Compared with the traditional K-means clustering method,

Frontiers in Energy Research frontiersin.org04

Qiu et al. 10.3389/fenrg.2024.1367287

284

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1367287


which optimizes the selection of initial cluster centers, the
K-means++ clustering algorithm improves the clustering accuracy
and reasonableness and avoids the influence of clustering when the
initial cluster centers are in the same cluster. The clustering results
can be changed to meet practical needs by adjusting the weights of
the two-dimensional parameters.

The similarity index of the regulator performance after
parameter normalization is expressed by the Euclidean distance
as follows:

dij,k � ξt,ΔQmax ,t( )���� ����k2 �
��������������
k21ξ

2
t + k22ΔQ2

max ,t,
√

(8)
ξt � ξi,t* − ξj,t*

ΔQmax ,t � ΔQmax ,i,t
* − ΔQmax ,j,t

*{ (9)

where in Eq. (8), dij,k denotes the deviation value of the regulation
similarity index of nodes i and j determined by the two-dimensional
parameters; ||·||k 2 denotes the solved two-paradigm number, and k1
and k2 are the weights of the two-dimensional parameters of reactive
power support and reactive power regulation capacity, respectively,
and k1+k2 = 1. Eq. 9 denotes the normalization and unification of the
two-dimensional parameters, which is convenient for the
computation of the parameters with different scales.

From the definition of the deviation value, the smaller the
similarity index, the smaller the regulating variability between
nodes i and j, the higher the probability of being classified into
the same class, and the same initial regulating compensation tariff
provided by the DSO to each node within the same classification.

4 Stackelberg game model for
hierarchical voltage regulation

4.1 Leader and followers benefit model

Through the above hierarchical strategy, the multi-distributed
resources on the user side are integrated to realize the regulated
compensation tariff given by level. On this basis, we analyze the
coordination and optimization process between the DSO and the
distributed photovoltaic storage users and establish a Stackelberg

game model between the DSO and the distributed photovoltaics
with storage. The leader side for the DSO issues the regulation
compensation tariff information to the follower side according to the
real-time state of the distribution network proposed regulation
demand, which incentivizes the follower side to participate in the
distribution network regulation process. The distributed
photovoltaic storage user level responds to the leader side of the
compensation tariff by giving a specific distributed PV and energy
storage coordination regulation strategy to participate in the
auxiliary services market. The leader–follower interaction
principle is shown in Figure 2 below. Both sides complete the
optimization process of distribution network voltage regulation
through the interaction of the compensation tariff and voltage
regulation strategies.

In the figure, the regulated compensation tariff for distributed
photovoltaic storage class k is denoted as wk,t, and the regulated
strategy for node i in the distribution network is denoted as
ΔPi,t, ΔQi,t.

The benefit functions of different subjects in the Stackelberg
game are different. The optimization objectives of both the leader
and the follower are analyzed below and are also shown in Figure A1
in the appendix.

4.1.1 Optimization of the distributed service
organization

The DSO on the leader side pursues the minimization of the
overall regulation cost with respect to the system regulation
objective under the premise of ensuring the safe operation of the
system, i.e., the voltage deviation at each node is as small as possible
within the permissible range. The objective function is as follows:

CDSO,t �∑
K

k�1
wk,t ∑nk

i�1
ΔQi,t

⎛⎝ ⎞⎠ + δ∑N
i�1

Ui,t − Ui,ref( )2, (10)

where wk,t is the DSO regulation compensation tariff of the optical
storage users in the k-th grading at the time t, which needs to be
optimally adjusted according to the regulation strategy of the
follower-side response; K is the total number of hierarchical
levels of the user-side grading strategy, and nk is the total

FIGURE 2
Principle of leader and follower interactions.
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number of distributed PVs and energy storage users in the k-th
grade; δ is the cost coefficient for the voltage deviation constraints;
and Ui,t and Ui,ref are the voltage magnitude and the reference
voltage value of the node i at time t, respectively.

Meanwhile, based on the voltage regulation strategy of the
distributed users on the follower side, the leader side calculates
the system branch power flow and thus optimizes the compensation
tariffs. During system operation, the AC power flow is commonly
used to describe the electric power flow distribution in the
distribution network (Zhang et al., 2023a; Zhang et al., 2023b).
Therefore, it is necessary to ensure that the variables such as node
voltages and branch active and reactive power flows in the voltage
regulation process satisfy the following constraints as Eqs (11)–(17):

Pi,t � Ui,t∑
j∈i

Uj,t Gij cos θij,t + Bij sin θij,t( ), (11)

Qi,t � Ui,t∑
j∈i

Uj,t Gij sin θij,t − Bij cos θij,t( ), (12)

Pij,t � Ui,tUj,t Gij cos θij,t − Bij sin θij,t( ) − GijU
2
i,t, (13)

Qij,t � Ui,tUj,t Gij sin θij,t − Bij cos θij,t( ) + BijU
2
i,t, (14)

Pi,t � PPV,i,t + PESS,i,t − Pload,i,t, (15)
Umin ,i,t ≤Ui,t ≤Umax ,i,t, (16)
Pmin ,ij,t ≤Pij,t ≤Pmax ,ij,t, (17)

where Pi,t and Qi,t are the active and reactive power injected by node
i at moment t, respectively; θij is the phase difference of the electrical
angle between nodes i and j at time t; Gij and Bij are the conductance
and the susceptance of the branch ij, respectively; Pij,t is the active
power flow through the branch ij at moment t; Ui,t is the voltage
corresponding to the node i at time t; and Umax,i,t and Umin,i,t are the
upper and lower bounds of the node’s voltage. Similarly, Pmax,ij,t and
Pmin,ij,t are the upper and lower bounds of the active power flow
currents of the branch, respectively.

4.1.2 Distributed PV and DES on the user side
The benefits of the distributed PV and ES on the user side mainly

include the benefits of participating in the distribution network’s
auxiliary voltage regulation services from the user side, the operation
and maintenance costs of the distributed PVs and DES equipment,
and the degradation cost of the storage equipment over time:

Ri.t � Rreg,i,t − Csum,i,t, (18)
Rreg,i,t � wi,tΔQi,t, (19)

where in Eqs (18)–(19), Ri,t is the net benefit of node i at time t, Rreg,i,t
is the auxiliary service benefit of the user side participating in voltage
regulation, and Csum,i,t is the sum of the costs at node i at time t.

According to the severity of the overvoltage, the utilization of
DES can be mainly categorized into two types of voltage regulation,
in which the DES participates in the reactive-voltage regulation
process as a PV backup.

1) Distributed PV reactive power regulation only

When the network’s overvoltage condition is mild and
acceptable, the amount of reactive power regulation required for
voltage regulation does not exceed the upper limit of distributed PV

regulation on the user side, i.e., ΔQi,t≤ΔQPV,i,t,max, and at this time,
the active output of PV is normal, and there is no need to invoke the
storage reactive power. At the same time, due to the distributed PVs,
reactive power does not produce direct revenue. The main
consideration of reactive power demand on the active output
capacity use is the potential loss of output caused by the part of
the originally available active power used for reactive-voltage
regulation. The cost is expressed as follows:

Csum,i,t � αcpv
���������
S2i − Q2

i,t,ini

√[ −
�����������������
S2i − Qi,t,ini + ΔQi,t( )2√ ], (20)

where cpv is the feed-in tariff for distributed PV trading with the grid,
and α is the utilization rate of the capacity occupied by the PV
inverter for reactive regulation, that is, the ability of the PV inverter
to generate active output. The higher the utilization rate of the same
capacity, the greater the loss of active output, and the higher the cost
of reactive regulation. Si is the rated apparent power of the
distributed PVs, Qi,t,ini is the initial reactive power, and ΔQi,t is
the reactive power participating in voltage regulation.

The total user-side gain out of node i at time t for this reactive
power regulation is expressed as follows:

Ri,t � wi,tΔQi,t − αcpv
���������
S2i − Q2

i,t,ini

√[ −
�����������������
S2i − Qi,t,ini + ΔQi,t( )2√ ].

(21)

2) Cooperative regulation between distributed PV and DES

When the network’s overvoltage condition is severe, the reactive
capacity required for voltage regulation exceeds the upper limit of
PV regulation, i.e., ΔQi,t>ΔQPV,I,t,max. In this case, the reactive power
from DES is called upon to cooperate with the PVs to regulate the
distribution network voltage. The reactive capacity of the PVs is used
first, and then, the missing part is provided by the energy storage
equipment, which effectively compensates for the active reduction of
PV output. The costs of operation and maintenance, degradation,
and other costs of calling energy storage must be considered:

Csum,i,t � αcpv
���������
S2i − Q2

i,t,ini

√[ −
����������������������
S2i − Qi,t,ini + ΔQPV,i,t,max( )2√ ]

+ βcdes,q ΔQi,t − ΔQPV,i,t,max( ), (22)

where in Eq. (22), β is the utilization rate of the energy storage
converter, which is generally greater than the utilization rate of the
PV inverter α because the energy storage converter takes into
account the conversion of AC and DC; cdes,q is the cost
coefficient of reactive power occupancy of the distributed storage
capacity, and the portion of the distributed PVs that exceeds the
maximum amount of reactive power compensation that can be
provided by the storage is supplied by the energy storage.

Because calling on DES resources entails a certain amount of
losses on the energy storage device, the consideration of annual
equivalent investment costs involving the degradation and
maintenance of the energy storage device is as Eqs (23)–(24):

Cdes,inv �∑
N

j�1

r 1 + r( )mdes

1 + r( )mdes − 1
cqQdes,j + cm∑

365

t�1
Qdes,j,t

⎡⎣ ⎤⎦, (23)

Qdes,j � ΔQj,t − ΔQPV,j,t,max, (24)
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where N is the total number of nodes in the system; cq is the cost of
reactive power allocation per unit of energy storage; cm is the fixed
cost per unit of energy storage capacity; Qdes,j is the amount of
reactive power used by the energy storage at node j to compensate
for the support of distributed PV voltage regulation; r is the discount
rate; andmdes is the service life of the energy storage equipment (Wu
et al., 2018; Li et al., 2023). This paper takes 1 year as the time scale
for the calculation of the operation and maintenance cost.

In summary, when distributed PVs and DES are synergistically
involved in the reactive-voltage regulation process, the total benefit
to users is expressed as Eq. (25):

Ri,t � wi,tΔQi,t − αcpv
���������
S2i − Q2

i,t,ini

√[ −
����������������������
S2i − Qi,t,ini + ΔQPV,i,t,max( )2√ ]

+ βcdes,q ΔQi,t − ΔQPV,i,t,max( )
−∑N

j�1

r 1 + r( )mdes

1 + r( )mdes − 1
cqQdes,j + cm∑

365

t�1
Qdes,j

⎡⎣ ⎤⎦.
(25)

Because distributed storage provides reactive compensation for
the regulation gap, PVs do not need to meet the regulation demand
by curtailing active output. The amount of reactive power
absorption involved in voltage regulation is constrained by the
regulation capacity as Eq. (26):

0≤ΔQi,t ≤
���������
S2i − P2

load,i,t

√
− Qi,t,ini. (26)

At the same time, the following constraints of Eqs (27)–(28)
exist on the state of charge of the energy storage device:

SoCmin ,i ≤ SoCi ≤ SoCmax ,i, (27)
SoCi,t � SoCi,t−1 + 1

Cdes,i
max 0, η0Pdes,i,t( )+{ min 0, Pdes,i,t/η0( )},

(28)
where SoCmax,i and SoCmin,i are the upper and lower limits of the
charge state of the energy storage device, respectively. cdes,i is the
upper limit of the DES capacity at node i. η0 is the charging and
discharging efficiency of the energy storage, and Eq. 27 is the
relationship of the charge state at adjacent times at the same node.

4.2 Stackelberg game model

Based on the above objective functions of the distribution
network operator and the user-side distributed storage, the
compensation tariff provided by the DSO to incentivize the users
to participate in voltage regulation is adjusted according to the actual
participation strategy of the user-side voltage regulation. The
relationship aligns with the Stackelberg game model, i.e., the
DSO is the leader, the user-side distributed storage is the
follower, and a “leader and multiple followers” cooperative
voltage regulation model is constructed.

The objective functions of the different sides in the Stackelberg
game are not completely opposite but have a certain order of
priority. The primary consideration of the leader side is the
DSO’s objectives, and then, the leader and follower sides must
adjust their own strategies according to the other side’s strategy.
When the leader side of the compensation tariff is too low, it is

difficult to incentivize user-side optical storage to participate in the
distribution network regulator auxiliary services market. In contrast,
insufficient user-side participation in regulating reactive power can
affect the reliability of the distribution network operation and
prompt the DSO to adjust the compensation tariff. The two sides
interact to reach equilibrium solutions. Let the Stackelberg game be
ψ, and then, it can be expressed as follows:

ψ � DSO( ) ∪ F; S;R{ }, (29)
where F is the follower, i.e., the user-side distributed PVs and DES
system; S is the interaction strategy of the Stackelberg game parties;
and R is the gain of the game parties, which can be expressed
as follows:

S � wk,t;ΔQ1,t,/,ΔQi−1,t,ΔQi,t{ }, (30)
R � −CDSO,t;Ri,t{ }. (31)

Among Eqs (29)–(31), the strategy set of the leader side is the
voltage regulation compensation tariff of each hierarchical subject
and that of the follower side is the reactive power of each distributed
node participating in voltage regulation. Meanwhile, the leader-side
DSO benefit–cost relationship can be deduced from the objective
function of the leader and follower sides in Section 4.1. The benefit
set of the user side under different voltage crossing severities is
constructed, which corresponds to the objective functions Eqs 10,
20; Eq. 24. Based on the above strategies and revenue sets, the
Stackelberg game is used to optimize the voltage regulation strategy
of voltage regulation compensation tariff and user-side distributed
PVs and energy storage.

4.3 Voltage-based model of node loss of
load probability

Based on the above Stackelberg game optimization model
considering the respective benefits of the DSO and the user side,
a system LOLP model considering the node voltages is introduced
for assessing the operational reliability of the system.

In the case of high or low distribution network node voltage, the
system’s low-voltage protection or overvoltage load-shedding device
operates to shut down the system node failure. Combined with the
actual operation logic, when the node voltage varies within the
normal operating range, the node LOLP should be almost unaffected
by the voltage and be a small value. When the node voltage exceeds
the setting limit value of the protection device, and the system is shut
down, the node LOLP will be 1. When the node voltage fluctuates
between the rated value and the limit value, the node LOLP will be
100%. When the nodal voltage fluctuates between the rated value
and the limit value, the voltage-based nodal LOLP model is
established by the linear fitting method as Eq. (32):

Pab V( ) �

P0
ov VN,min ≤V≤VN,max,

1 − P0
ov

Vmax − VN,max
· V + P0

ov · Vmax − VN,max

Vmax − VN,max
VN,max ≤V≤Vmax,

P0
ov − 1

VN,min − Vmin
· V + VN,min − P0

ov · Vmin

VN,min − Vmin
Vmin ≤V≤VN,min,

1 V≤Vmin或Vmax ≤V,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(32)
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where Pab(V) is the node failure LOLP associated with the node
voltage; P0 ov is the historical statistical value of the node
equipment failure rate where the node voltage is in the normal
operating range; VN,max and VN,min are the upper and lower
bounds of the node voltage rating, respectively; and Vmax and
Vmin are the upper and lower bounds of the node voltage’s limit
value, respectively.

5 Equilibrium solution uniqueness
proof and method

5.1 Proof of uniqueness of game
equilibrium solutions

The game in the model above reaches a Stackelberg equilibrium
when both the leader and follower reach the optimal response
according to their respective strategies at the same time. Let the
set of strategies at the equilibrium point of the game be {w*k,t;
ΔQ*1,t,ΔQ*i-1,t,ΔQ*i,t}, under which the Stackelberg game achieves
the optimal coordination result. In other words, the equilibrium
solution of the regulation response strategy for the fixed follower
side is available for any compensation tariff wk,t of the leader-side
distribution network operator.

The energy storage operator plans the storage configuration
capacity at each node on the grid side with the objective function of
minimizing the total cost, where the total cost consists of the total
investment cost, the operations and maintenance costs, and the
operator’s arbitrage revenue, whose objective function over the
planning horizon is expressed as

RDSO,t wk,t
* ;ΔQi,t

*( )≥RDSO,t wk,t;ΔQi,t
*( ). (33)

Similarly, the equilibrium solution of the compensation tariff for
a fixed DSO for any regulation strategy ΔQi,t of the user-side
distributed PVs and DES cooperative regulation is

Ri,t wk,t
* ;ΔQ1,t

* ,/,ΔQi,t
*( )≥Ri,t wk,t

* ;ΔQ1,t,/,ΔQi.t( ). (34)

The uniqueness conditions for the existence of a Stackelberg
equilibrium solution to guarantee the existence of the model are
as follows:

1) In the Stackelberg game framework, the respective strategy
sets of the leader and follower sides are non-empty tight
convex sets.

2) When the leader-side voltage regulation compensation tariff
is determined, there must exist a unique optimal solution in
the user-side voltage regulation strategy.

(3) When the follower-side voltage regulation strategy is
determined, there exists a unique corresponding optimal
strategy in the leader-side compensation tariff.

The following is a brief proof of the existence and uniqueness of
the equilibrium solution of the interaction game between the leader-
side voltage regulation tariff and the follower-side voltage regulation
strategy proposed in this paper.

For the given premise of the leader-side DSO regulation
compensation tariff, all follower sides exist and have a unique

optimal solution. Taking negative values for the benefit function
of the user-side distributed solar storage and transforming it into a
cost minimization objective, the existence of a unique optimal
solution for the follower side can be proved by the property that
the local minimum point of the convex function coincides with the
global minimum point by using the positivity and negativity of the
first- and second-order derivatives.

When ΔQi,t≤ΔQPV,i,t,max, obtain the first-order derivatives of the
regulation strategy ΔQi,t for a negative follower-side regulation
cost function:

− ∂Ri,t

∂ΔQi,t
� −wq,t + αcpv

Qi,t,ini + ΔQi,t�����������������
S2i − Qi,t,ini + ΔQi,t( )2√ . (35)

When Eq. 33 is set to equal 0, the follower-side regulation
strategy ΔQi,t for the corresponding case can be obtained as follows:

ΔQi,t
′ � wi,tSi���������

α2c2pv + w2
i,t

√ − Qi,t,ini. (36)

Then, solving the cost function for the second-order partial
derivatives of the voltage regulation strategy becomes

− ∂2Ri,t

∂ΔQ2
i,t

� αcpvS2i

S2i − Qi,t,ini + ΔQi,t( )2[ ]3/2 > 0. (37)

Because the second-order derivative is constant greater than 0,
the first-order derivative is monotonically increasing, and there is a
zero point of the first-order derivative. Then, the cost function has a
unique minimum, and there is a unique optimal solution for the
revenue. The same is true when ΔQi,t>ΔQPV,i,t,max.

At the same time, under the circumstance that the distributed
photovoltaic storage voltage regulation strategy of the follower side
is given, there exists a unique optimal solution for the leader-side
compensation tariff. The first- and second-order derivatives of the
compensation tariff wk,t are found as follows:

∂CDSO,t

∂wi,t
�∑mk

i�1
λQ,t i( )ΔQi,t

* + wk,t∑
mk

i�1
λQ,t i( ) ∂ΔQi,t

*

∂wk,t

+ 2δ∑N
i�1

Ui,t − Ui,ref( ) ∂ΔUi,t

∂wk,t
, (38)

∂2CDSO,t

∂w2
i,t

� 2∑mk

i�1
λQ,t i( ) ∂ΔQi,t

*

∂wk,t
+ wk,t∑

mk

i�1
λQ,t i( ) ∂

2ΔQi,t
*

∂w2
k,t

+ 2δ∑N
i�1

∂ΔUi,t

∂Δwk,t
( )

2

+∑N
i�1

Ui,t − Ui,ref( ) ∂2ΔUi,t

∂w2
k,t

, (39)

where λQ,t(i) is a 0–1 variable indicating whether the cooperative
distributed PVs and DES at node i participate in reactive-voltage
regulation service or not. λQ,t = 0 indicates that the user side of the
node does not participate in reactive power absorption voltage
regulation, and λQ,t = 1 is the opposite and corresponds to the
unique optimal processing strategy. At this time, we can know that
the reactive-voltage sensitivity has a relation as follows:

∂2CDSO,t

∂w2
k,t

> 0,

∂2CDSO,t

∂wk,t∂wi,t
� 0.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(40)
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At this point, the Hessian matrix of the leader-side cost objective
function is shown in matrix (41), and the value of its corresponding
determinant |H|>0, which means that the Hessian matrix is positive
definite, so the leader-side objective function is convex. Therefore,
for a given follower-side regulation strategy, there exists a unique
equilibrium solution for the DSO to optimize the objective function.

H �

∂2CDSO,t

∂w2
1,t

0 0 0

0
∂2CDSO,t

∂w2
2,t

0 0

..

. ..
.

1 ..
.

0 0 /
∂2CDSO,t

∂w2
N,t

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (41)

In summary, there exists a unique equilibrium solution for the
Stackelberg game model proposed in this article to Eqs (34)–(41)
listed above.

5.2 Solving methodology for the
Stackelberg game

Solving the large-scale nonlinear planning problems of the
leader and follower sides of Eqs. 10, 20; Eq. 24 achieves the
equilibrium solution of the distributed optimization objectives of
both. To ensure the reliability of the distribution network operation,
the fast response and decision-making requirements of the system
are higher than the accuracy of the calculation. Heuristic algorithms
have obvious advantages compared with the traditional nonlinear
optimization solution methods. For general heuristic algorithms,
such as the common genetic algorithm (GA) and the differential
evolution algorithm (DE), etc., inter-individual selection, mutation,
and crossover operations are used to search for the population.
However, because the crossover operation has more randomness,
the global search is good, but the iteration speed is slow. In contrast,
the PSO algorithm is simple and operable, and the particles evolve
independently and can be computed in parallel to accelerate the
convergence of the algorithm. The global optimal solution can be
found quickly through inter-particle cooperation and information
interaction, and the global search capability is strong, which is
suitable for optimizing continuous variables. Li et al. (2022)
introduced inertia weights of the adaptive mechanism to
dynamically adjust its convergence speed to avoid PSO getting into
a local optimal solution, which can lead to premature convergence. Song
(2020) and Ning et al. (2022) considered the complexity of a non-
convex planning reactive-voltage optimization model solution, using a
highly robust PSO algorithm to solve the model without analyzing the
nature of the model itself. In this paper, the PSO algorithm is used to
solve the optimization problem model under the proposed Stackelberg
game framework, and the solution process is shown in the algorithm
flowchart shown in Figure A2 in the appendix.

The PSO algorithm is used to solve the Stackelberg game model,
considering the coupling relationship between the leader-side cost
and the follower-side voltage regulation strategy, and the specific
solution process is as follows:

(1) According to the two voltage regulation performance
indicators mentioned in Section 2.1, the distributed
photovoltaics and energy storage nodes are clustered and
graded, and the voltage regulation compensation tariff wk,t is
given to each level based on the clustering results.

(2) The particle swarm initializes the position and speed
information on each particle, and the distributed
photovoltaics and energy storage nodes find the optimal
reactive power regulation strategy {ΔQ*1,t,. . .,ΔQ*i-1,t,ΔQ*i,t}
based on the initial regulating tariffs, regulating demand, and
the corresponding revenue objective functions and
constraints;

3) The leader side receives the reactive power strategy solved by
the follower side and calculates its own gain RDSO,t according
to Eq. 21;

4) The particles within the particle swarm iterate, based on the
learning factor and their respective velocities, and update the
new particle swarm velocity and position information based
on the following relationship as Eq. (42), i.e., corresponding to
the generation of the new voltage regulation compensation
tariff w’

k,t:

vk+1i � ωvki + c1r1 pk
best i − xk

i( ) + c2r2 gk
best i − xk

i( )
xk+1
i � xk

i + vk+1i ,
{ (42)

where ω is the velocity inertia weight of the particle; c1 and c2 are the
individual learning factor and the social learning factor; r1 and r2 are
the respective corresponding inertia weights; pkbest_i and gkbest_i are
the individual and global optimal position coordinates of the ith
particle of the kth iteration, respectively.

5) Based on the regulator compensation tariff after the above
iterative optimization, perform steps 2 and 3.

6) Continuously iterate and compare the gains before and after
each iteration of the main side DSO; if R’

DSO,t>RDSO,t, then
update the compensation tariff to w’

k,t; otherwise, keep the
original tariff unchanged;

7) When the maximum number of iterations is reached or the
minimum deviation |δ|<ε is satisfied, the algorithm
converges, and the iteration ends; otherwise, the iteration
continues.

6 Case study

6.1 Case setup

In this paper, the proposed distributed PVs and DES cooperative
participation in the optimization strategy of reactive power
regulation between the distribution network operator and the
user side is simulated and verified based on the IEEE 33-node
standard system. For the proposed strategy, the respective
configured capacities of distributed PV and storage at each node
of the system are given below.

Meanwhile, the model parameters, K-means++ clustering
algorithm, and PSO algorithm parameters involved in the
modeling process for the leader and follower sides are uniformly
given in Table 3
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6.2 Optimized results

1) Clustering and cluster segmentation

This article used the clustering algorithm “elbow law” to
determine the optimal number of six clusters using the
K-means++ algorithm clustering nodes of the IEEE 33-node
system and the sum of squares for error (SSE) indicators as the
basis for division (Figure 3).

Consider a typical overvoltage situation in a distributed PV
access node of the distribution grid system, taking into account the
relationship between voltage fluctuation with PV output and the
output with the light intensity. Ignore the weak influence of weather
and other factors, and use 12:00 noon as the example time of day.
Based on reactive regulator performance indicators divided into six
levels and access to the node of the distribution grid system for
sorting, the sorting results corresponding to the various levels of
voltage regulator compensation tariffs follow.

In the actual hierarchical process, clustering based on two-
dimensional indicators can effectively balance the limitations and
differences of a single indicator. Nodes with similar reactive-voltage
support and similar reactive-voltage regulation capacity are
effectively divided to ensure correct results while improving the
solution and convergence speed.

2) Distributed resources synergistic voltage regulation strategy

The distributed PV and energy storage capacity of each node and
the model and algorithm parameters are given in Tables 1, 2, based
on the hierarchical clustering of system nodes in Table 3. According
to the Stackelberg game user-side cooperative optimization basic
strategy based on distributed photovoltaic and storage regulating
capacity, priority is given to the selection of photovoltaic regulation.
When the regulating reactive demand exceeds the photovoltaic
capacity, the storage reactive capacity is invoked to continue to

support the demand, which effectively avoids the revenue loss
caused by the reduction of the photovoltaic active output only to
satisfy the reactive power.

Taking the Stackelberg game model in which the leader and
follower sides correspond to the optimal objective function as the
solution object, the distributed photovoltaics and energy storage
voltage regulation strategies of each user node and its corresponding
DSO regulation compensation tariff are shown in Figure 4. In this
figure, the leader-side compensation tariff is correlated with the
node’s total participation in regulating reactive power, which
confirms that the leader-side tariff is able to guide and
incentivize the follower side to participate in the market of
reactive regulating auxiliary services. However, due to the
clustering hierarchy, some nodes with similar regulating
performance are assigned the same compensation tariff, which
has some deviation from the full positive correlation. At the
same time, compared with assigning different compensation
tariffs to each node, the relative speed of solving is reduced, and
the comprehensive benefit is not high even though the reactive-
voltage regulation support capacity of each node can be
accurately classified.

In addition, the energy storage utilization rate of each node is
also related to the voltage regulation demand and compensation
tariff. The distributed storage reactive power called by each node of
the distribution network system in this time period is negotiated
with the total storage capacity of the system. The average storage
utilization rate of the 33-node distribution network system is
calculated to be 16.86%, which is related to the coordinated
optimization strategy among distributed PV storage, i.e., the
distributed PV reactive capacity is prioritized, and the storage
reactive power is used to participate in the voltage regulation
later. At some nodes, such as nodes 17, 25, and 26, the energy
storage utilization rate can reach 42.25% or even 47.95%, and the
corresponding voltage regulation compensation tariffs at these
nodes are also relatively high, which shows the effect of the
compensation tariff on the user side to incentivize participation
through the dual advantages of user income and enhancement of
voltage regulation participation.

The above strategy can effectively reduce and eliminate the
system node overvoltage problem. The effect of voltage regulation is
shown in the figure below. The dashed orange lines indicate the
upper and lower limits of the node voltage limits, and the dotted blue
lines indicate the upper and lower limits of the node ratings. In the
system, the allowable range of voltage is 0.93–1.10 p.u. This is
compared with the condition of not adding distributed resources
system node voltage fluctuations, and it is shown that adding
distributed photovoltaics and energy storage resources through a
reasonable reactive-voltage regulation strategy can effectively reduce
the overall voltage regulation amplitude.

3) Node loss of load probability reliability and sensitivity analysis

The probability of failure in the distribution system within the
normal voltage operation range is selected as P0 ov = 1.67 × 10−2 as
that in Eq. 40, and the mean value of the probability of node loss of
load and the proportion of node failure under the three voltage
regulation strategies mentioned in Figure 5 are calculated:

FIGURE 3
Relationship between the cluster and sum of squared
errors (SSE).
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For each operating node within the system, for those nodes with
100% LOLP, node voltage exceeding the upper and lower limits of
the limit value is considered the loss of load or node failure (Table 4).

Analysis of the results shows that the initial node LOLP without
the addition of distributed optical storage resources is 13.98%, but
the node voltage magnitude fluctuates greatly within the normal
operating range, and the standard deviation of the voltage offset is
0.041. The risk of overvoltage in the background of accessing a high
proportion of distributed renewable energy is also relatively high.
Using only distributed PV and DES resources to participate in

voltage regulation without optimization coordination can reduce the
standard deviation of node voltage offset by 58.53%. However,
access to distributed resources will increase the node voltage
amplitude and enhance the voltage even beyond the upper limit
of the node voltage limitation, directly leading to an increase in the
proportion of node failures in the system. The average probability of
loss of load increased by 3.5 times. Compared with the previous two
voltage regulation strategies, the access to distributed photovoltaic
storage resources and co-optimization according to the Stackelberg
game strategy proposed in this paper can make full use of the voltage

TABLE 1 PV and DES parameters in an IEEE 33-node system.

Node number Distributed PV inverter capacity/kVA Distributed energy storage converter capacity/kVA

1, 3, 10, 12, 13, and 30 100 100

2, 14, 15, 18, and 26 120 120

4, 5, 9, 19, 20, 23, 25, 27, and 29 180 180

6, 7, 8, 11, 16, 23, and 28 250 250

17, 21, 22, 24, 31, and 32 300 300

TABLE 2 Case study parameter settings.

Parameter type Parameter name Value

K-means++ algorithm parameter Reactive-voltage support weights k1 0.6

Reactive-voltage capacity weighting k2 0.4

Stackelberg game parameter Photovoltaic feed-in tariffs cpv 0.56 RMB/kWh

Active utilization of photovoltaic equipment α 15%

Energy storage reactive cost factor cdes 0.75 RMB/kWh

Energy storage reactive power utilization β 40%

Lifespan of energy storage equipment m 5

Voltage deviation constraint cost factor δ 500

Upper and lower voltage limitations 0.93–1.10 p.u.

PSO algorithm parameter Upper and lower limits of rated voltage 0.95–1.05 p.u.

Particle count 100

Individual/social learning factor c1/c2 2/2

Maximum number of iterations 50

TABLE 3 Node cluster and compensation price.

Clustering level Node number Compensation price/(RMB·kvar−1)
1 12, 16, and 17 0.6456

2 10, 11, 13, 14, and 15 0.6194

3 5, 8, 25, 26, 29, 30, and 32 0.6056

4 1, 2, 3, 18, 21, and 23 0.3155

5 4, 22, 24, 27, and 28 0.0863

6 6, 7, 9, 19, 20, and 31 0.0635
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TABLE 4 Node’s average LOLP and proportion of failure.

Voltage regulation strategy Node loss of load mean
value (%)

Percentage of node
failures

Node voltage offset standard
deviation

No addition of distributed photovoltaics and energy
storage resources

13.98 0.030 0.041

With the addition of distributed resources (no
optimization)

77.75 0.303 0.017

With the addition of distributed resources
(cooperative optimization)

7.33 0 0.022

FIGURE 4
Regulation strategy of PVs, DES, and node prices.

FIGURE 5
Comparison of system node voltages.
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regulation capabilities of distributed PVs and DES to reduce the
standard deviation of voltage offset up to 46.34%. At the same time,
it can also stabilize the node voltages in the system, reducing the
node LOLP by 47.58%.

4) Voltage regulation benefit analysis

The leader-side DSO must ensure that the system node voltage
does not exceed the limit under the premise of keeping the voltage
regulation costs as low as possible. The user side considers the
compensation tariff incentives to determine whether the nodes of
the user’s distributed photovoltaic storage resources will participate
in regulating the voltage. Compared with the direct control of a
single distributed photovoltaic resource, this distributed PVs and
DES synergistic strategy can enhance the overall return on the user
side to a certain extent.

As shown in Figure 6 above, when the node regulating
reactive demand is greater than the maximum value of its
reserved reactive capacity, the direct control of distributed PV
resources participating in the reactive regulation auxiliary service
market, due to only distributed PV resources, must reduce its
activity to send out more reactive power. The cost of the activity
reductions ultimately leads to negative revenue. As shown in the
above figure, nodes 12, 17–18, and nodes 27–28 have this
phenomenon. Under the control method of distributed PVs
and DES, the DSO provides the same compensation tariff for
nodes at the same level, and the revenue of some nodes with high
reactive capacity but relatively low reactive power support
decreases. Meanwhile, for some nodes that need to cut active
power for direct control, the distributed PVs and DES synergy
strategy utilizes the reactive power of the storage energy to
directly support the voltage regulation demand. After
removing the costs of the storage equipment, the gain is still
higher than that under the direct control strategy.

According to the analysis, compared with the distributed
photovoltaic voltage regulation strategy, the distributed PVs and

DES synergistic reactive-voltage regulation method can enhance the
system nodes and the overall revenue. For nodes with strong reactive
power support capacity, revenue can be enhanced nearly 3.04 times
and even realize a transformation from negative to high revenue.
Overall, the difference shifts from the original 993.8 yuan to
2196.4 yuan, which is an enhancement rate of 121.01%.

7 Conclusion

A high proportion of distributed resources, such as distributed
photovoltaics, in a distribution network system may lead to node
overvoltage, cause loss of load faults, and reduce the reliability of the
system. In this article, we put forward a multi-distributed resources
cooperative reactive-voltage risk regulation strategy according to the
Stackelberg game framework and verify that the proposed strategy
can effectively reduce the node overvoltage risk and improve the
reliability of the system in the IEEE 33-node system. The case study
analysis of the conditions before and after joining the DES resources
to regulate the overvoltage risk shows that the deviation of the
node voltage is reduced by 58.53%. However, without the
optimization and coordination of the distributed photovoltaics
and DES, the average value of node LOLP and the proportion of
faults do not decrease. Through the distributed resource
coordination strategy under the Stackelberg game framework
proposed in this paper, the deviation of the node voltage is
reduced by 46.34% compared to only distributed PVs
participating in voltage regulation, and the node LOLP is
reduced by 47.58%. Meanwhile, comparing the situation
before and after the coordination of distributed PVs and DES,
the reliability of the distribution network operations increased by
121.01%. In addition, the reactive power utilization of energy
storage in some nodes with high reactive regulating demand can
be up to 47.95%, which indicates that the multi-distributed
resource coordination overvoltage risk regulation strategy
proposed in this article is effective. Stackelberg game

FIGURE 6
Comparison of user-side benefits.
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optimization can ensure that the system probability of load loss
due to overvoltage risk is reduced, the reliability of system
operations is improved, and the benefits of both operators of
voltage regulation are optimized.
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Appendix A

FIGURE A1
Flowchart of the Stackelberg game framework.
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FIGURE A2
Flowchart of the improved PSO algorithm.
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Cluster partition-based two-layer
expansion planning of
grid–resource–storage for
distribution networks

Song Yang*, Chenglong Wang, Shumin Sun, Yan Cheng and
Peng Yu

State Grid Shandong Electric Power Research Institute, Jinan, China

In order to realize the optimal planning of grid–resource–storage for distribution
networks (DNs) with high penetrated distributed photovoltaics (PVs), a cluster
partition-based two-layer expansion planning for DNs is proposed. First, a
comprehensive cluster partition index-based cluster partition method is
proposed, which involves the indexes such as electrical distance, power
balance of the cluster, and cluster size. Second, a cluster partition-based two-
layer expansion planning model is proposed. In the upper layer, a line planning
model for clusters is established to carry out the planning of cluster connection
lines. In the lower layer, a robust source-storage planning model is established
with the uncertainty of PVs and loads, and then, the optimal location and capacity
of PVs and energy storages (ESs) can be obtained. In addition, the uncertainty
regulation parameter is utilized to control the range of uncertainty sets, which can
reduce the conservatism of the optimization. Finally, the proposed method is
carried out in a real DN in China, which can effectively improve the economy of
DN planning.

KEYWORDS

cluster partition, distribution network, expansion planning, distributed photovoltaics,
energy storages

1 Introduction

With the rapid growth of energy demand, photovoltaics (PVs) are developing rapidly in
China. The large amount of distributed PVs has significantly changed the power flow of the
distribution network (DN) (Li Z. et al., 2022), which poses new challenges to DN planning
and operation (Li et al., 2022b). How to carry out optimal DN planning is the key to realize
the economic operation of the DNs with large-scale distributed PVs.

Currently, the main idea for planning the DNs with distributed PVs is to build a
centralized planning model (Liu et al., 2021) by strengthening or extending the lines of the
DNs (WuH. et al., 2022), which takes into account the investment of PVs (Koutsoukis et al.,
2018) and the operating costs (Shen et al., 2018). The centralized planning model is suitable
for the DN planning when the proportion of distributed PVs is low. However, when large-
scale distributed PV is connected to the DNs, the dimensionality of the variables in the
centralized planning model increases significantly (Wu L. et al., 2022), and the planning
model becomes too complex to be solved (Zhang et al., 2021). To solve the challenges of
centralized optimization, a cluster partition-based planning method provides a new way for
DN planning. The cluster partition-based planning method can not only decompose the
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centralized optimization problem into simple sub-problems of
cluster optimization but also maximize the degree of power
matching between PVs and the load within the cluster during the
planning process, which can greatly increase the PV consumption
(Hu et al., 2023).

Cluster partition-based DN planning mainly includes two
aspects of cluster partition and cluster planning. In terms of
cluster partition, existing research mainly establishes cluster
partition indexes based on the grid structure (Xiao et al., 2017)
and the power balance in the clusters (Kong et al., 2022). Cluster
partition is optimized by particle swarm algorithms (Li and Yang,
2022), clustering algorithms (Wang et al., 2021), and community
detection algorithms (Yang et al., 2017). By improving the
community algorithm, the division of reactive and active clusters
considering the power balance and node coupling degree is realized
by Ge et al. (2024). The gray clustering method based on the
improved whitening weight function is used to partition the
distribution network by Xu L. et al. (2021), and the index weight
is obtained by comprehensively applying the analytic hierarchy
process and the entropy weight method. The modular index
based on the electrical distance and the active power balance
index are used as comprehensive division indexes by Li et al.
(2022c), and the distributed photovoltaic generation in the
distribution network is divided into clusters by using genetic
algorithms. Based on the theory of the modularity function
model in complex networks, a voltage coordination control
method of partitioning the aggregated domain of reactive voltage
sensitivity weights and active network loss-voltage sensitivity
weights of power systems is proposed by Wang Z. et al. (2023).
The nodes with a strong coupling relationship are merged to
determine the initial number of partitioning by Ji et al. (2023),
and then, the final partitioning result is determined according to the
affiliation between each load node and each reactive power source.
Combining the K-means clustering algorithm and optimized PSO
algorithm for voltage regulation within the cluster ensures that the
voltage crossing problem is solved by Su et al. (2023). A cluster
partition index system considering the structural and functional
properties is proposed by Pan et al. (2021), and the modular index
that takes into account the characteristics of electric and heat
networks is used on the structural property to describe the
connection strength between different network nodes. However,
the existing cluster partition indexes only concern the active power
balance in each cluster, ignoring the impact of reactive power.
Meanwhile, the existing cluster partition indexes ignore the
influence of cluster size on the planning results, which can easily
lead to large differences in the cluster size, even leading to isolated
nodes (Li et al., 2023). In addition, the existing cluster partition
methods have insufficient computational accuracy, and for a
complex cluster partitioning index, the optimization results tend
to fall into local optimum solutions.

The current active distribution network (ADN) planning
strategy usually includes the reinforcement or expansion of
distribution networks and DG integration under the active
management of DG outputs (Mukherjee and Sossan, 2023). A
two-level robust optimal feeder routing model for the planning
of radial distribution networks is proposed by Zdraveski et al.
(2023), where power demand is uncertain. The robust model is
solved by implementing the column and constraint generation

strategy. A method based on calculating the probability of
electric vehicles (EVs) entering each parking lot is proposed by
Haji-Aghajani et al. (2023) for the long-term planning of EV parking
lots. An integrated power and gas systems of IPGS considering
cascading effects for enhancing resilience is proposed by Wang Y.
et al. (2023), and the two-phase framework containing phases of
“demand reachability evaluation” and “integrated planning” is
proposed. A framework for the optimal planning of battery
swapping stations (BSSs) in centralized charging mode is
proposed by Shaker et al. (2023), and in this mode, the batteries
are charged at a central charging station. Possible equipment
measures are classified into several categories by Sasaki et al.
(2023), formulating the “low-voltage system configuration
determination problem;” in addition, a solution algorithm based
on the practical priorities of classified measures is proposed. The
resilience-oriented distribution network planning problem utilizing
a novel three-stage hybrid framework is proposed by Faramarzi et al.
(2023), and the decision-making on the line hardening and DG
placement is carried out in the first stage. In the second stage,
emergency and normal operation optimization is conducted. A
collaborative stochastic expansion planning model of a
cyber–physical system with resilience constraints is proposed by
Zhang et al. (2023), and the model can reduce the coupling risk and
enhance the resilience under extreme scenarios. An appropriate
probabilistic wind power capacity expansion planning method for a
bundled wind–thermal generation system with retrofitted coal-fired
units is reformulated as a mixed-integer second-order cone
programming problem by Lei et al. (2023). In terms of cluster
planning, the existing research mainly considers deterministic
scenarios as the research background (Bi et al., 2019), ignoring
the impact of source-load uncertainty (Cai et al., 2022). Aiming at
solving the problems of resource waste caused by the large-scale
access of distributed generators to distribution networks and
improving the economy of energy storage systems, a cluster
energy-storage control strategy for prompting the distributed
generation accommodation and improving the economy of
energy storage systems is proposed by Li et al. (2021). In
considering the optimization of load distribution among units
and introducing consumption costs, a grid evaluation index
system including the coordination index of the power
transmission and distribution network is constructed by Xu X.
et al. (2021). A novel cluster-based distributed generation
planning approach is proposed by Ding et al. (2019), and the
distribution network is divided into several partitions considering
the system network structure and the load characteristics, thus
conducting a hierarchical and partitioned network structure. A
planning model of renewable energy access is established by Hu
et al. (2020) based on cluster partition considering the investments
and power generation interests of power producers and the power
match degree within clusters. With the increasing proportion of
distributed PVs, the source-load uncertainty increases the difficulty
in modeling the uncertainty of DNs (Liu et al., 2022) and increases the
dimensionality of variables in the planning model (Jiang et al., 2022).
How to establish a cluster planning model based on the source-load
uncertainty (Zhu et al., 2018) and simplify the traditional centralized
planning model need to be further researched.

Based on the above analysis, this paper proposes a cluster
partition-based two-layer expansion planning model of
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grid–resource–storage for DNs. The main contributions of this
paper are summarized as follows:

(1) To deal with poor power balance and unbalanced cluster size
in existing cluster partition, a comprehensive cluster partition
index is proposed, which includes the modularity index,
power balance index, and nodal size index. In addition,
based on the comprehensive cluster partition index, an
improved genetic algorithm is proposed to partition the
DN into some clusters.

(2) To deal with complex models in centralized planning
methods, a cluster partition-based two-layer expansion
planning model is established for the DNs. In the upper
layer, a line planning model is established to carry out the
planning of cluster connection lines. In the lower layer, the PV
and ES planning model within a cluster is established, which
can realize the optimal planning of PVs and ESs in
each cluster.

(3) To reduce the conservatism of the traditional robust
optimization, a box uncertainty set is utilized to
characterize the uncertainty of loads and PVs, and an
uncertainty regulation parameter is used to control the
range of uncertainty sets, which can reduce the
conservatism of the optimization and simplify the
calculation process.

The remainder of this paper is organized as follows: a
comprehensive cluster partition index-based cluster partition
method is proposed in Section 2; a cluster partition-based two-
layer expansion planning method is proposed in Section 3; in
Section 4, the case study is analyzed; and the conclusion is given
in Section 5.

2 Comprehensive cluster partition
index-based cluster partition method

2.1 Comprehensive cluster partition index

As the existing cluster partition index is not comprehensive,
based on the DN structure and cluster function, a comprehensive
cluster partition index is proposed to complete the cluster partition
in this paper. The proposed comprehensive cluster partition index
includes the modularity index, power balance index, and nodal
size index.

2.1.1 Modularity index
The coupling degree between nodes can be measured by a

modularity index based on voltage sensitivity, which is
expressed as

ρ � 1
2Ω ∑i∈S ∑j∈S vij − κiκj

2Ω( )ϕ i, j( ), (1)

Ω �
∑
i∈S
∑
j∈S

vij

2
, (2)

κi �∑
j∈S

vij, (3)

where ρm is the modularity index. vij is the edge weight between
node i and node j. S is the node set of DNs. Ω is the sum of the edge
weight of all networks. κi is the sum of the edge weights that are
connected to node i. ϕ(i, j) is the judgment function of the cluster;
when node i and node j are in the same cluster, then ϕ(i, j) = 1;
otherwise, ϕ(i, j) = 0. vij is determined by the electrical distance, and
the electrical distance can indicate the electrical coupling degree
between two nodes in the network. For a DN with N nodes, the
electrical distance based on the reactive voltage sensitivity matrix is
expressed as

LQV
ij �

���������������������������
SQVi1 − SQVj1( )2 + .... + SQViN − SQVjN( )2,

√
(4)

where SQVi1 is the element in row i and column j of the reactive
voltage sensitivity matrix, which represents the sensitivity of reactive
power generation at node i to the voltage at node j. LQVij is the
electrical distance between the two nodes based on the reactive
voltage sensitivity matrix; the larger the value of LQVij , the smaller the
electrical distance between the two nodes. Similarly, the electrical
distance LPVij based on the active voltage sensitivity matrix can be
obtained. The node voltages are affected by active and reactive power
variations, and then, the electrical distance based on the sensitivity
matrix is expressed as follows:

Lij �
LQV
ij + LPV

ij

2
. (5)

The relationship between the edge weight and electrical distance
is that the larger the edge weight, the smaller the electrical distance.
Then, the mathematical expression between the edge weight and
electrical distance can be obtained as follows:

vij � 1 − Lij

max Lij( ), (6)

where max(Lij) is the maximum value of the elements in the
electrical distance matrix.

2.1.2 Power balance index
In order to avoid large-scale power transfer between

clusters, the PV output and load demand within a cluster
should be as equal as possible. In order to evaluate the ability
of clusters to hold the distributed PVs, this paper proposes the
power balance index. The active power balance index φP is given
as follows:

φP � 1
Nk
∑Nk

k�1
1 − 1

T
∑T
t�1

Pk,t

maxPk,t

⎛⎝ ⎞⎠, (7)

where Nk is the number of clusters. Pk,t is the net power of cluster k
at time t. T is the period of optimization. Similarly, the reactive
power balance index φQ is established as follows:

φQ � 1
Nk
∑Nk

k�1
1 − 1

T
∑T
t�1

Qneed

Qsup
⎛⎝ ⎞⎠, (8)

where Qsup is the maximum value of reactive power supply
within the cluster and Qneed is the value of reactive power demand
within the cluster.
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2.1.3 Nodal size index
A reasonable cluster size will directly impact the complexity of

the subsequent cluster planning, as well as avoid the differences in
the complexity of optimization among different clusters caused by
unbalanced cluster size. In addition, a reasonable cluster size can
avoid the isolated nodes in the planning process. In order to balance
the size of each cluster, a nodal size index is established as follows:

φM � μ i, V i[ ]( )
μ i, V − V i[ ]( ), (9)

μ i, V i[ ]( ) � 1
V i[ ]| | ∑j∈V i[ ]

υij, (10)

μ i, V − V i[ ]( ) � 1
V − V i[ ]| | ∑

j∈V−V i[ ]
υij, (11)

where V[i] is the cluster that node i belongs to. μ(x, y) is the
affiliation degree of node x to cluster y. |V[i]| is the sum of the edge
number in the cluster that node i belongs to. V-V[i] are the clusters
that do not contain node i. |V-V[i]| is the sum of the edge number in
clusters that do not contain cluster V[i].

The indexes shown in Eq 1, (7), (8), and (9) are combined into a
comprehensive cluster partition index ϕ for the DNs, which is
expressed as follows:

ϕ � ω1ρ + ω2φP + ω3φQ + ω4φM, (12)
where ω1, ω2, ω3, and ω4 are the weights of each index. In the process
of cluster partition, different weights can be set for each index
depending on different needs.

2.2 Improved genetic algorithm-based
cluster partition method

To carry out the cluster partition, a hybrid genetic-simulated
annealing (HGSA) algorithm is utilized. The HGSA algorithm uses
the annealing selection as the individual replacement strategy, while
the global information obtained by the genetic algorithm can be
completely used, and the premature convergence of the genetic
algorithm can be avoided. Then, the global convergence of the
algorithm is enhanced. The cluster partition is implemented
as follows:

Step 1: Initial optimization parameters are set: population size n,
initial temperature T0, termination temperature Tend, temperature
cooling factor r, maximum number of genetic generations M, and
objective function for the cluster partitioning index ϕ.

Step 2: The number of temperature updates is set equal to 0.
Considering that the cluster partition is carried out based on the
original network connectivity, this paper uses the unweighted
adjacency matrix Aij to represent the connectivity of the
network, where Aij � 1 indicates that nodes i and j are connected
and Aij � 0 indicates that nodes i and j are not connected. The
clustering partition is randomly modified whenAij = 1. The result of
the modification is 0 or 1, and 0 means that the two nodes are
disconnected from each other, and then, the two nodes belong to
different clusters. In the iteration of the algorithm, in order to ensure
that the result after crossover still satisfies the meaning of the
adjacency matrix, only the upper triangle of the adjacency matrix

is chosen to carry out the crossover. After the crossover step, the
upper triangle of the matrix is symmetrically transferred to the lower
triangle to form the newborn individuals, thus generating the initial
population Pl(k).

Step 3: The individuals that satisfy the cluster constraints are
screened. Considering that the reverse power flow only occurs
within the cluster, the net power within each cluster needs to be
greater than 0 at each moment among the cluster partition. For the
individuals who cannot satisfy the constraint, the population
eliminates these individuals.

Step 4: Eq. (12) is chosen as an indicator to calculate the fitness of
individuals. Considering that the value of fitness intuitively reflects
the superiority or inferiority of cluster partition, the individuals with
greater fitness are replicated to the offspring to form the new
population Pls(k + 1).

Step 5: The crossover and mutation are carried out for
Pls(k + 1) using the traditional genetic algorithm to obtain the
population Plv(k + 1). The mutated populations are limited to
accepting bad solutions by the simulated annealing algorithm to
form new populations Plz(k + 1).

Step 6: Pl(k) � Plz(k + 1) is set. If the genetic algebra
accumulates to the maximum number M, then step 7 is repeated;
otherwise, step 3 is repeated.

Step 7: The temperature is updated, i.e., Tl =rT0, k = 0,
Pl+1(k + 1) � Pl(k). If the convergence condition Tl < Tend, then
the computation to output the optimal solution is terminated.
Otherwise, the temperature reduction operation is performed,
i.e., Tl+1 = rTl, and step 3 is repeated.

3 Cluster partition-based two-layer
expansion planning method

In this paper, a cluster partition-based two-layer expansion
planning model is proposed, which involves the uncertainty of
PVs and loads. In the upper layer, a line planning model is
established with the objective of minimizing the line investment
and network loss costs. In the lower layer, a source-storage planning
model is proposed for PVs and ESs with the objective function of
minimizing source-storage investment and operation costs within a
cluster. Meanwhile, the box-type uncertainty set is utilized to
characterize the uncertainty of PVs and loads in the lower layer,
and an uncertainty parameter is used to control the range of
uncertainty sets, which can reduce the conservatism of the
optimization.

3.1 Upper-layer line planning model

In the upper layer, the objective function of the line planning
model is established as follows:

minf � ∑
i,j∈Ωs

CL ∑
j∈φi

Dijxij
χ 1 + χ( )β
1 + χ( )β − 1

⎡⎢⎢⎣ ⎤⎥⎥⎦ + Ce∑T
t�1
∑Nk

k�1
∑Νn,k

i�1
∑
j∈φi

1
2
xijεijiij,t,

(13)
where Ωs is the node set of the branch network. φi is the child node
set of node i. CL is the investment cost parameter of lines. Dij is the
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line length of line i–j. xij is the 0–1 variable, where xij = 1 means that
the line is installed and xij = 0 means that the line is not installed. χ is
the bank rate. β is the payback period. Ce is the electricity price. Nn,k

is the node numbers of cluster k. εij is the resistance of the line i–j.
iij,t is the squared value of the current in the line i–j at time t. The
constraints include a power flow constraint and a penetration rate
constraint of PVs in the clusters.

(1) Power flow constraint

The power flow containing line variables is constrained by
second-order conic relaxation (SOCR) (Shaker et al., 2023)
as follows:

∑
i∈Ψj

Pij,t − εijiij,t( ) − xijP
L
j,t + ηPCH

j,t − PDS
j,t

η
+ PPV

j,t + PPVf
j,t � ∑

c∈φj

Pjc,t,

(14)
∑
i∈Ψj

Qij,t − δijiij,t( ) − xijQ
L
j,t + QPV

j,t + QPVf
j,t � ∑

c∈φj

Qjc,t, (15)

∑
j∈φi

xij � 1, (16)

vj,t � vi,t
′ − 2 εijPij,t + δijQij,t( ) + ε2ij + δ2ij( )iij,t, (17)

0≤ ]i,t′ ≤Wxij, (18)
W 1 − xij( ) + ]i,t ≤ ]i,t′ ≤ ]i,t, (19)

2Pij,t 2Qij,t iij,t − ]i,t
���� ����2≤ iij,t + ]i,t, (20)

xijv
min ≤ ]i,t ≤ xijv

max, (21)
0≤ iij,t ≤ xij Imax( )2, (22)

where ψj is the upstream node set of node j. δij is the reactance of line
i–j. Pij,t and Qij,t are the active and reactive power through line i–j at
time t, respectively. η is the ES charging and discharging efficiency.
PCH
j,t and PDS

j,t are the charging and discharging power of ES at node j
at time t, respectively. PL

j,t and QL
j,t are the active and reactive power

of loads at node j at time t, respectively. PPV
j,t is the actual active

power generated by the PV at node j at time t. PPVf
j,t is the additional

active power required to be generated by the PV at node j at time t. φj
is the downstream node set of node j. QPV

j,t is the actual reactive
power generated by the PV inverter at node j at time t. QPVf

j,t is the
additional reactive power required to be generated by the PV
inverter at node j at time t. vi,t is the square of the voltage at
node i at time t. vi,t′ is the square of the voltage at node i that is
constrained by the line variable xij. W is a large constant. vmin and
vmax are the upper and lower voltage limits, respectively. Imax is the
maximum current limit.

(2) Penetration rate constraint of PVs

Many isolated nodes exist in the DN that need to be connected to
the system, and the penetration rate of PVs should be constrained
when carrying out line planning to access these isolated nodes,
which is defined as follows:

∑Νn,k

j�1
SPVj ≤∑Νn,k

j�1
SLj , (23)

where SPVj is the planed capacity of the PV of node j in the cluster
and SLj is the load apparent power of node j in the cluster.

3.2 Lower-layer PV and ES planning model

In the lower layer, the PV and ES planning model is established
to identify the “worst scenario " of the uncertain variables, and based
on the worst scenario, the proposed model minimizes the
investment and operation costs of source storage within the
cluster. Therefore, the objective function for the PV and ES
planning model within the cluster is established as

minF � F1 − F2 + F3, (24)

F1 � ∑Nn,k

j�1,j ∈ Πk

CPVSPV,fj

χ 1 + χ( )β
1 + χ( )β − 1

+ COMPV SPVj + SPV,fj( )⎡⎣ ⎤⎦, (25)

F4 � Csell + Csub( )∑T
t�1

∑Nn,k

j�1,j ∈ Πk

ωPV
t SPVj + SPV,fj( ) − PL

j,t[ ], (26)

F5 � ∑Νn,k

j�1,j ∈ Πk

ρ 1 + ρ( )r
1 + ρ( )r − 1

cbatPbatt
j[ ], (27)

where F1 is the annual investment and operation costs of PVs in
cluster k. F2 is the annual revenue of PVs in cluster k. F3 is the annual
investment costs of ESs in cluster k.CPV is the investment cost parameter
of PVs. COMPV is the annual fixed maintenance cost parameter of PVs.
Uk is the node set of cluster k. SPVj is the original installed PV capacity of
node j in cluster k. SPV,fj is the planned PV capacity of node j in cluster k.
Csell and Csub are the feed-in tariff and subsidized tariff of the PVs,
respectively. ωPV

t is the output limit of PVs per megawatt for a given
sunshine condition at time t. ρ is the discount rate. r is the discounted
number of years. cbat is the investment cost parameter of ESs. Pbatt,j is the
allocated capacity of ES at node j. The constraints include uncertainty
constraints for PVs and loads, PV and ES capacity constraints, and
power flow constraints.

(1) Uncertainty constraints for PVs and loads

The box uncertainty set is utilized to characterize the uncertainty
range of active load power, reactive load power, and PV outputs.
Meanwhile, an uncertainty parameter is utilized that can be set to
adjust the conservativeness of the optimal solution. The larger the
uncertainty parameter, the more conservative the solution. The
specific formula is as follows:

U � {u � PL
j,t, Q

L
j,t, P

PV
j,t[ ]T ∣∣∣∣∣∣PL

j,t ∈ PL,F
j,t − ΔPL

j,t , P
L,F
j,t + ΔPL

j,t[ ],∑Na

j�1

PL
j,t − PL,F

j,t

∣∣∣∣∣ ∣∣∣∣∣
ΔPL

j,t

≤ ΓPL;

QL
j,t ∈ QL,F

j,t − ΔQL
j,t, Q

L,F
j,t + ΔQL

j,t[ ],∑Nb

j�1

QL
j,t − QL,F

j,t

∣∣∣∣∣ ∣∣∣∣∣
ΔQL

j,t

≤ ΓQL;

PPV
j,t ∈ PPV,F

j,t − ΔPPV
j,t , P

PV,F
j,t + ΔPPV

j,t[ ],∑Ne

e�1

PPV
j,t − PPV,F

j,t

∣∣∣∣∣ ∣∣∣∣∣
ΔPPV

j,t

≤ ΓPV;
⎫⎪⎬⎪⎭,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(28)

where U represents the boxed uncertainty set. PL,F
j,t , Q

L,F
j,t , and PPV,F

j,t

are the predicted values of active load power, reactive load power,
and PV outputs of node j at time t in cluster k, respectively. ΔPL

j,t,
ΔQL

j,t, and ΔPPV
j,t are the fluctuation deviations of active load power,
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reactive load power, and PV output of node j at time t in cluster k,
respectively. Na, Nb, and Ne are the total number of active load
nodes, the total number of reactive load nodes, and the total number
of PV nodes in cluster k, respectively. ΓPL, ΓQL, and ΓPV are the
uncertain adjustment parameters for active load power, reactive load
power, and PV output S, respectively, which are integers from 0 to
Na, 0 toNb, and 0 toNe, respectively. The decision-maker can choose
a variety of uncertainty regulation parameters to adjust the scheme
flexibly; the larger the value of each uncertainty regulation
parameter, the more conservative the resulting planning scheme.

(2) PV and ES constraints

TES
k � �t1, (29)

∑
j∈Πk

ηPCH
j,t − ∑

j∈Πk

PDS
j,t

η
− ∑

j∈Πk

PPV
j,t − ∑

j∈Πk

PPVf
j,t + ∑

j∈Πk

PL
j,t � 0, t ∈ TES

k ,

(30)
socminPbatt

j ≤ socj,t ≤ socmaxPbatt
j , j ∈ Πk, t ∈ TES

k , (31)

socj,t � socj,t−1 +
ηPCH

j,t − PDS
j,t

η

Pbatt
j

, j ∈ Πk, t ∈ TES
k , (32)

0≤ ηPCH
j,t ≤PCH,max, j ∈ Πk, t ∈ TES

k , (33)

0≤
PDS
j,t

η
≤PDS,max, j ∈ Πk, t ∈ TES

k , (34)

0≤PPV
j,t ≤P

L,max
j , (35)

SPVfj � max PPVf
j,t( ), j ∈ Π, t ∈ TES

k , (36a)

whereTES
k is the simulated operating time of the ESs in cluster k. t1 is

the annual PV generation time. socj,t is the state of charge of ES at node j
in cluster k at time t. socmin and socmax are the minimum and maximum
charge states of ES, respectively. PCH,max and PDS,max are the maximum
power limits for charging and discharging power of ES, respectively.
PL,max
j is the maximum load demand of node j in the cluster.

(3) Power flow constraints

Eqs (14), (15), and (17) are referred to for the power flow
constraints.

3.3 Iterative solving process

In this paper, an iterative solution method is utilized to solve the
proposed planning models. For the upper layer, the planning model
can be expressed by a specific form as follows:

min
x

cTx + α

s.t. Px � W
α≥ kTyl
Bx + Cyl ≤D
Rxu*

l � Oyl
S*uyl ≤V
Gyl
���� ����≤HTyl
∀l≤ k,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(36b)

where x is the optimization vectors. c is the coefficient matrices
corresponding to the objective functions. P, k, B, C, Rx, S* u, G, and

H are the coefficient matrices corresponding to the variables under
the constraints. α,D, O, V, andW are the constant column vectors. l
is the current number of iterations. k is the maximum iteration. yl is
the variable at the lth iteration. u* l is the value of the uncertain
variable u in the “worst” scenario after the lth iteration.

The specific form of the lower-layer model is

max
u∈U

min
y∈Ω x,u( )

dTy

s.t. Bx* + Cy ≤D
R*
uu � Oy

Suy ≤V
Gy
���� ����≤HTy,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(37)

where y is the optimization vectors. Ω(x, u) is the feasible
domain of y under the given x and u. x* is the optimization
vectors obtained from the upper layer. d is the coefficient
matrices corresponding to the objective functions. Su and R* u
are the coefficient matrices corresponding to the variables under the
constraints. Given a set of u, the inner min. problem becomes a
second-order cone programming problem, which can be
transformed into a “max” form by the duality theory:

max
u∈U,γ,],π,μ,μ1

D − Bx*( )Tγ + Rxu( )T] + uTπ

s.t. CTγ + OTπ + Su
T] +∑

i

Giμi +H iμ1 i( )≤ d

μi
���� ����2≤ μ1 i,∀i � 1, 2, ..., j
γ, π, ]≥ 0, u ∈ U,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(38)

where[γ,],π,μ,μ1 ] are the dual variables in the lower-layer model.
After the above transformation, the proposed model can be

solved by the iterative solution method as follows:
Step 1: Given a set of u values as the initial worst-case scenario, a

lower bound is set on the operating cost LB = -∞, an upper bound
UB = +∞, and the number of iterations l = 1.

Step 2: The upper model is solved based on the worst-case
scenario ul to obtain the optimal solution x* l and α* l. The value of
α* l is used as the new lower bound LB = max(LB, α* l).

Step 3: The lower layer is optimized based on the optimization
results of the upper layer, and the optimized results fl (x* l) and the
worst-case scenario x* l are obtained. The upper bound is updated as
UB = min(UB, fl (x* l)).

Step 4: If UB-LB < ε, where ε is a threshold of convergence, then,
the optimal solutions can be obtained, and the iteration is stopped.
Otherwise, the variable yl+1 and the following constraints are added:

α≥ kTyl+1

Bx + Cyl+1 ≤D
Rxul+1* � Oyl+1
S* l+1u yl+1 ≤V
Gyl+1
���� ����≤HTyl+1.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(39)

Let l = l + 1, and step 2 is repeated until the algorithm converges.

4 Case study

4.1 Case study system

In order to verify the effectiveness of the proposed method, an
actual 35 kV/10 kV DN in China is utilized for analysis. The total
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loads in this DN are 7.3 MVA, and the total capacity of PVs in this
DN is 4 MW. The installed PV capacity is shown in Table 1. The
topology of this system is shown in Figure 1, the lines to be planned
are shown in Table 2, and the line parameters of the network are
shown in Table 3.

The simulated genetic annealing algorithm used in this paper
sets the population size n = 40, the initial temperature T0 = 100°C,
the termination temperature Tend = 1°C, the temperature cooling
factor r = 0.8, the maximum number of genetic generations N = 500,
the crossover probability pc = 0.4, and the variation probability pm =
0.2. This paper uses MATLAB version 2019 to program
the algorithm.

4.2 Analysis of cluster partition

In order to illustrate the superiority of the proposed cluster
partition index in this paper, the modularity function used by Wang
et al. (2021) is selected to compare with the proposed cluster
partition index. The weights of the proposed cluster partition

index in this paper are taken as ω1 = ω2 = ω3 = ω4 = 0.25. The
cluster partition results under the proposed cluster partition index
are shown in Figure 2, and the cluster partitioning results under the
modularity function are shown in Figure 3.

Figure 2 and Figure 3 show that the size difference among sub-
networks attained by the proposed cluster partition index is smaller
than that attained by the modularity function, and isolated nodes
forming separate clusters (cluster 3 and cluster 6) occur in
modularity function. In addition, there are PVs in each cluster
attained by the proposed method, while no PVs exist in cluster
1 attained by the modularity function. The differences between the
two methods prove that the cluster partition index can result in a
more reasonable cluster partition for the subsequent cluster control
and operation.

In order to illustrate the superiority of the proposed cluster
partitioning algorithm, the traditional genetic algorithm is selected
to be compared. The comparison of cluster partition results obtained
by the two algorithms is shown in Table 4. Table 4 shows that the
optimization results of each cluster partitioning index of the
proposed algorithm are greater than those of the traditional

TABLE 1 Installed capacity of photovoltaics (PVs).

Node location Installed
capacity (kW)

Node
location

Installed
capacity (kW)

Node
location

Installed
capacity (kW)

7 500 16 500 21 500

9 500 17 500 27 1,500

FIGURE 1
Physical topology of the system.

TABLE 2 Lines to be planned.

Lines Distance/km Line Distance/km Line Distance/km

7–11 15.64 30–27 17.62 16–27 23.64

9–11 22.37 14–21 6.50 23–21 5.30
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genetic algorithm, which indicates that the proposed cluster
partitioning algorithm has better optimization performance.

Different combinations of partition index weights are given
in Table 5. As shown in Table 5, when increasing the weight of
the modularity index, the nodes within the cluster are better
connected, but the cluster power complementarity decreases.

When increasing the weight of the active and reactive power
balance index, the cluster power complementarity
characteristics improve, but the nodes within the cluster are
significantly less connected. When increasing the weight of the
nodal size index, the number of clusters changes. When
increasing the weight of the nodal size index, the number of

TABLE 3 Line parameters of the network.

Start node Final node Line impedance (Ω/km) Start node Final node Line impedance (Ω/km)

1 2 0.192 + 20.533 j 4 29 0.515 + 0 j

1 3 0.192 + 0 j 4 30 0.13 + 0 j

1 7 0.192 + 13.200 j 5 22 0.13 + 6.482 j

1 8 0.61 + 1.820 j 7 11 0.299 + 0.823 j

1 20 4.681 + 8.314 j 9 11 0.12 + 0.471 j

1 32 7.686 + 14.750 j 14 21 0.186 + 0.261 j

2 6 1.084 + 3.236 j 15 16 0.21 + 0.730 j

2 9 2.132 + 3.786 j 16 27 0.9 + 0.804 j

2 10 1.703 + 4.690 j 16 31 0.731 + 1.298 j

2 12 0.13 + 10.323 j 23 21 3.773 + 5.297 j

2 13 0.238 + 16.259 j 24 29 1.24 + 2.662 j

2 18 0.238 + 0 j 28 29 2.388 + 4.242 j

3 4 5.628 + 16.797 j 28 30 0.515 + 29.563 j

3 5 5.616 + 9.975 j 30 27 2.495 + 4.432 j

3 14 0.238 + 10.209 j 33 29 4.231 + 3.621 j

3 15 0.476 + 0 j 34 30 3.681 + 9.235 j

3 17 4.456 + 7.915 j 35 3 7.214 + 3.751 j

3 19 2.7 + 3.790 j 4 28 4.396 + 6.172 j

3 24 0.64 + 1.290 j

FIGURE 2
Partition results under the proposed cluster partition index.
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clusters changes, and the cluster partition is more focused on the
change in cluster size.

4.3 Analysis of the proposed
planning strategy

In order to verify the flexibility of the proposed two-layer
expansion planning model, three sets of uncertain regulation
parameters are selected and compared in terms of network
connection, planned capacity of PVs and ESs, and total planning
costs. Three sets of uncertain regulation parameters are set
as follows:

Case 1: ΓPL = ΓQL = ΓPV = 0 is set, and in this case, the active load
power, reactive load power, and PV output are all equal to the
predicted values.

Case 2: ΓPL = ΓQL = 16 and ΓPV = 4 are set, and in this case, the active
and reactive load power of 16 nodes is taken to the minimum value

of the prediction interval, while the PV outputs of 4 nodes are taken
to the maximum value of the prediction interval.

Case 3: ΓPL = ΓQL = 27 and ΓPV = 6 are set. In this case, the active and
reactive load power of 27 nodes is taken to the minimum value of the
prediction interval, while the PV outputs of 4 nodes are taken to the
maximum value of the prediction interval, which is the
worst scenario.

The comparisons of the three cases in planned PV capacity and
ES capacity are shown in Figure 4 and Figure 4, and the planning
results and total planning costs are shown in Table 6 and Table 7,
respectively.

Figure 4 shows that with the increase in uncertainty regulation
parameters, the planned PV capacity decreases. The reason is that
the scenario becomes increasingly severe, and to maintain the safe
operation of the cluster, the corresponding PVs are reduced.

As shown in Table 6, with the increase in uncertainty regulation
parameters, the connection of nodes 21 and 27 is different under the
three cases. The reason is that as the operating scenario becomes
more severe, and the load power increases, the planning results tend
to favor a reduction in the power supply range.

As shown in Figure 5, as the conservatism of the planning
increases, the ES installed capacity also increases. The reason is that
the active power and reactive power of the load in cases 2 and 3 are
smaller than those of case 1, and the PV outputs are larger; hence,
more ESs are needed to mitigate the uncertainty of PVs and loads.

In addition, Table 7 shows that as the uncertainty regulation
parameter increases, although the annual investment and operation

FIGURE 3
Partition results under the modularity function.

TABLE 4 Comparison of cluster partition results obtained by different
algorithms.

Result ρm φP φQ φM

Proposed algorithm 0.6953 0.8639 0.6866 0.7233

Traditional genetic algorithms 0.6132 0.8071 0.6120 0.6982

TABLE 5 Influence of different weights on cluster partition.

Combination ϖ1 ϖ2 ϖ3 ϖ4 ρm φP φQ φM Number of clusters

1 0.1 0.4 0.4 0.1 0.632 1 0.896 4 0.711 7 0.701 6 7

2 0.2 0.3 0.3 0.2 0.677 9 0.889 1 0.679 3 0.708 3 6

3 0.3 0.2 0.2 0.3 0.742 4 0.833 0 0.657 1 0.739 3 6

4 0.4 0.1 0.1 0.4 0.789 1 0.798 3 0.625 3 0.756 1 5
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costs of PVs correspondingly decrease, the annual income of PVs
decreases, and the annual investment costs of networks, network
losses, and the annual investment costs of ESs correspondingly

increase. The reason is that the more uncertainty of DNs considered
in the planning process, the more conservative the resulting solution
becomes, and the corresponding total cost increases.

FIGURE 4
Planned photovoltaic (PV) capacity under different cases.

TABLE 6 Planning results of different schemes.

Case Line connection results Cluster planning results

Connectivity Disconnection

1 7–11 9–11 Cluster 1 (7,8,11,20,32); cluster 2 (2,6,9,10,12,13,18)

23–21 14–21 Cluster 3 (3,14,17,19,24,26,35); cluster 4 (5,21,22,23,25)

30–27 16–27 Cluster 5 (15,16,31); cluster 6 (4,27,28,29,30,33,34)

2 7–11 9–11 Cluster 1 (7,8,11,20,32); cluster 2 (2,6,9,10, 12,13,18)

14–21 23–21 Cluster 3 (3,14,17,19,21,24,26,35); cluster 4 (5, 22,23,25)

30–27 16–27 Cluster 5 (15,16,31); cluster 6 (4,27,28,29,30,33,34)

3 7–11 9–11 Cluster 1 (7,8,11,20,32); cluster 2 (2,6,9,10,12,13,18)

14–21 23–21 Cluster 3 (3,14,17,19,21,24,26,35); cluster 4 (5,22,23,25)

16–27 30–27 Cluster 5 (15,16,27,31); cluster 6 (4,28,29,30,33,34)

TABLE 7 Planning costs in different cases.

Comparison item Case 1 Case 2 Case 3

Annual investment costs of photovoltaics (PVs) 587.54 $ 553.48 $ 528.22 $

Annual operation costs of PVs 414.93 $ 232.90 $ 187.04 $

Annual income of PVs 240.43 $ 247.92 $ 285.45 $

Annual investment costs of lines 622.98 $ 856.43 $ 914.28 $

Network losses 139.82 $ 154.68 $ 185.82 $

Annual investment costs of energy storages (ESs) 1,062.34 $ 1,579.61 $ 1,726.73 $
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In order to further illustrate the superiority of the proposed
planning method, the centralized planning method is selected to
compare with the proposed planning method. The uncertain
regulation parameters in this comparison are set as ΓPL = ΓQL =
12 and ΓPV = 3, and in this case, the active and reactive load power of
12 nodes is taken to the minimum value of the prediction interval,
while the PV outputs of 3 nodes are taken to the maximum value of
the prediction interval. The network connection of the two methods
is shown in Figure 6 and Figure 7. The comparison of the calculation
time and total planning cost of the two methods is shown in Table 6.

Figure 6 and Figure 7 show that the connection of node 11 and
node 27 under the proposed method is different from the centralized
planning scheme. The length of the power supply lines for node
11 and node 27 under the proposed method has been reduced by
6.73 km and 6.02 km, respectively; the power supply range is greatly

shortened, which can effectively reduce the line investment costs and
network loss costs, as well as improve the economic efficiency of the
planning scheme.

The calculation method for the difference rate given in Table 8 is
to subtract the results of the proposed method from those of the
centralized planning method and divide them by the results of the
centralized planning method. As shown in Table 8, in the proposed
method, the annual PV investment costs and PV operation costs, as
well as the annual income of PVs, increased by 5.3% and 14.1%,
respectively, compared to the centralized planning method, and the
annual investment costs of lines, network losses, and annual
investment costs of ESs decreased by 13.5%, 25.7%, and 15.5%,
respectively. These different rates indicate that the proposed method
can improve the overall economic efficiency of the planning, as well
as reduce the costs of planning. In addition, the calculation time of

FIGURE 5
Planned energy storage (ES) capacity under different cases.

FIGURE 6
Planning results based on the proposed method.
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the proposed method is 20.41 s, but that of the centralized planning
method is 43.62 s. Owing to the fact that the centralized planning
method requires a whole optimization process, the huge variables
complex the optimization. However, the proposed method can
partition the complex network into smaller sub-networks, and
the complex problem is divided into several relatively simple sub-
problems that can be solved rapidly and easily by a parallel
computing way. Therefore, the computing time can be greatly
shortened. The optimization speed of the proposed method is
improved by 53.2% compared to centralized planning methods,
which indicates that proposed method is more suitable for DN
planning with large-scale PVs.

5 Conclusion

In this paper, a cluster partition-based two-layer expansion
planning for DNs is proposed, and an actual 35 kV/10 kV DN in
China is utilized for analysis. The results show that

1) To deal with poor power balance and unbalanced cluster size
in existing cluster partition, a comprehensive cluster partition
index is proposed in this paper, which includes the modularity
index, power balance index, and nodal size index, and in order

to avoid the cluster partition falling into local optimum, an
improved genetic algorithm is utilized to carry out the network
partition. The differences in cluster size among the clusters
attained by the proposed cluster partition are smaller, and
every cluster has PVs.

2) To deal with complex models in centralized planning methods, a
cluster partition-based two-layer expansion planning model is
established for the DNs, which decomposes the complex
centralized planning model into cluster planning. The proposed
method can improve the overall economic efficiency of the
planning, as well as reduce the costs of planning. Meanwhile,
the optimization speed is also improved.

3) To reduce the conservatism of traditional robust optimization,
a box uncertainty set is utilized to characterize the uncertainty
of loads and PVs, and an uncertainty regulation parameter is
used to control the range of uncertainty sets, which can reduce
the conservatism of the optimization, as well as simplify the
calculation process.

In the actual operation, the PV outputs are uncontrollable and may
exceed the worst scenario set in the planning stage. Then, the PV outputs
within the cluster may not be fully absorbed. In future research, a cluster
partition-based schedulingmethod forDNs should be further researched
to enhance the source-load complementarity of the DNs.

FIGURE 7
Planning results based on the centralized planning method.

TABLE 8 Comparison between the proposed method and centralized planning method.

Comparison item Proposed method Centralized planning method Difference rate (%)

Annual investment costs of photovoltaics (PVs) 569.86 $ 541.11 $ −5.3

Annual operation costs of PVs 293.10 $ 239.87 $ −14.1

Annual income of PVs 240.43 $ 277.97 $ 13.5

Annual investment costs of lines 692.89 $ 932.30 $ 25.7

Network losses 150.14 $ 177.58 $ 15.5

Annual investment costs of energy storages (ESs) 1,360.22 $ 1,689.09 $ 10.3

Calculation time 20.41 s 43.62 s 53.2

Frontiers in Energy Research frontiersin.org12

Yang et al. 10.3389/fenrg.2024.1390073

309

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1390073


Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material; further inquiries can be directed
to the corresponding author.

Author contributions

SY: writing–original draft and writing–review and editing. SS:
writing–original draft. YC: writing–review and editing. PY:
writing–review and editing. CW: writing–review and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This study
was supported by the project supported by the Science and
Technology Project of State Grid Shandong Electric Power

Company “Research and application of access and control
technology targeting the distributed photovoltaics developed by
the entire county (city, district)” (520626220014).

Conflict of interest

The authors declare that this study received funding from State
Grid Shandong Electric Power Company. The funder had the
following involvement in the study: The funder was involved in
the study design.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors, and the reviewers. Any product that
may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Bi, R., Liu, X., Ding, M., et al. (2019). A method of renewable energy power generation
cluster classification with the goal of improving the consumption capacity. Chin.
J. Electr. Eng. 39 (22), 6583–6592. doi:10.13334/j.0258-8013.pcsee.182512

Cai, Z., Shuang, H., and Shan, J. (2022). Optimal scheduling strategy for electric bus
cluster power exchange considering operation cost. Power Syst. Autom. 46 (17),
205–217. doi:10.7500/AEPS20210916007

Ding, M., Fang, H., Bi, R., et al. (2019). Distributed photovoltaic and energy storage
siting and capacity planning for distribution networks based on cluster delineation.
Chin. J. Electr. Eng. 39 (8), 2187–2201. doi:10.13334/j.0258-8013.pcsee.180757

Faramarzi, D., Rastegar, H., Riahy, G. H., and Doagou-Mojarrad, H. (2023). A three-
stage hybrid stochastic/IGDT framework for resilience-oriented distribution network
planning. Int. J. Electr. Power Energy Syst. 146 (5), 108738–108738.15. doi:10.1016/j.
ijepes.2022.108738

Ge, J., Liy, Y., Pang, D., et al. (2024). Cluster division voltage control strategy of photovoltaic
distribution network with high permeability. High. Volt. Eng. 50 (1), 74–82. doi:10.13336/j.
1003-6520.hve.20230816

Haji-Aghajani, E., Hasanzadeh, S., and Heydarian-Forushani, E. (2023). A novel framework
for planning of EV parking lots in distribution networks with high PV penetration. Electr.
Power Syst. Res. 217 (4), 109156–109156.12. doi:10.1016/j.epsr.2023.109156

Hu, D., Ding, M., Bi, R., et al. (2020). Analysis of the impact of photovoltaic and wind
power complementarity on the planning of high penetration renewable energy cluster
access. Chin. J. Electr. Eng. 40 (3), 821–836. doi:10.13334/j.0258-8013.pcsee.182308

Hu, D., Sun, L., and Ding, M. (2023). Integrated planning of an active distribution
network and DG integration in clusters considering a novel formulation for reliability
assessment. CSEE J. Power Energy Syst. 9 (2), 561–576. doi:10.17775/CSEEJPES.2020.
00150

Ji, Y., Chen, X., He, P., Liu, X., Wu, X., and Zhao, C. (2023). A novel voltage/var
sensitivity calculation method to partition the distribution network containing
renewable energy. Recent Adv. Electr. Electron. Eng. 16 (4), 380–394. doi:10.2174/
2352096516666221130150549

Jiang, Y., Ren, Z., Li, Q., et al. (2022). New energy consumption strategy in
distribution networks considering coordinated scheduling of multi-flexibility
resources. J. Electr. Eng. Technol. 37 (7), 1820–1835. doi:10.19595/j.cnki.1000-6753.
tces.211464

Kong, X., Liu, C., Chen, S., et al. (2022). A multi-time-node response potential
assessment method for adjustable resource clusters considering dynamic processes.
Power Syst. Autom. 46 (18), 55–64. doi:10.7500/AEPS20220501001

Koutsoukis, N., Georgilakis, P., and Hatziargyriou, N. (2018). Multistage coordinated
planning of active distribution networks. IEEE Trans. Power Syst. 33 (1), 32–44. doi:10.
1109/tpwrs.2017.2699696

Lei, C., Wang, Q., Zhou, G., Bu, S., Lin, T., et al. (2023). Probabilistic wind power
expansion planning of bundled wind-thermal generation system with retrofitted coal-
fired plants using load transfer optimization. Int. J. Electr. Power Energy Syst. 151 (9),
109145–109145.18. doi:10.1016/j.ijepes.2023.109145

Li, C., Dong, Z., Li, J., et al. (2021). Optimal control strategy for distributed energy
storage clusters to enhance new energy consumption capacity of distribution networks.
Power Syst. Autom. 45 (23), 76–83. doi:10.7500/AEPS20210224004

Li, P., Shen, J., Wu, Z., Yin, M., Dong, Y., and Han, J. (2023). Optimal real-time
Voltage/Var control for distribution network: droop-control based multi-agent deep
reinforcement learning. Int. J. Electr. Power Energy Syst. 153 (11), 109370–109370.11.
doi:10.1016/j.ijepes.2023.109370

Li, S., and Yang, X. (2022). Siting and capacity determination of photovoltaic energy
storage based on bi-directional dynamic reconfiguration and cluster delineation. Power
Syst. Prot. Control 50 (3), 51–58. doi:10.19783/j.cnki.pspc.210385

Li, Y., Lu, N., Liu, X., et al. (2022c). Output evaluation method of distributed
photovoltaic cluster considering renewable energy accommodation and power loss
of network. Electr. Power Constr. 43 (10), 136–146. doi:10.12204/j.issn.1000-7229.2022.
10.013

Li, Y., Yao, T., Qiao, X., et al. (2022b). Optimal allocation of distributed PV and energy
storage based on joint timing scenarios and source-grid-load synergy. J. Electr. Eng.
Technol. 37 (13), 3289–3303. doi:10.19595/j.cnki.1000-6753.tces.210712

Li, Z., Wang, W., Han, S., et al. (2022a). Study on voltage adaptation of distributed
photovoltaic access to distribution network considering reactive power support. Power
Syst. Prot. Control 50 (11), 32–41. doi:10.19783/j.cnki.pspc.211781

Liu, R., Sheng, W., Ma, X., et al. (2021). Research on the planning of distributed
photovoltaic access to distribution networks based on multiple swarm genetic
algorithms. J. Sol. Energy 42 (6), 146–155. doi:10.19912/j.0254-0096.tynxb.2019-
0370

Liu, Z., Zhang, T., and Wang, Y. (2022). Model-based predictive control for multi-
scenario variable time-scale optimal scheduling of active distribution network. Power
Autom. Equip. 42 (4), 121–128. doi:10.16081/j.epae.202201001

Mukherjee, B., and Sossan, F. (2023). Optimal Planning of single-port and multi-port
charging stations for electric vehicles in medium voltage distribution networks. IEEE
Trans. Smart Grid 14 (2), 1135–1147. doi:10.1109/tsg.2022.3204150

Pan, M., Liu, N., and Lei, J. (2021). A dynamic classification method for distributed
energy clusters containing cogeneration units. Power Syst. Autom. 45 (1), 168–176.
doi:10.7500/AEPS20200217013

Sasaki, Y., Fukuba, S., Yokota, H., Yorino, N., Fukuba, S., et al. (2023). Comprehensive
solution method considering load distribution for determining low-voltage network
configurations. IEEE Trans. Electr. Electron. Eng. 18 (6), 1023–1032. doi:10.1002/tee.
23808

Shaker, M., Farzin, H., and Mashhour, E. (2023). Joint planning of electric vehicle
battery swapping stations and distribution grid with centralized charging. J. Energy
Storage 58 (2), 106455–106455.11. doi:10.1016/j.est.2022.106455

Shen, X., Shahidehpour, M., Zhu, S., Han, Y., and Zheng, J. (2018). Multi-stage
planning of active distribution networks considering the co-optimization of
operation strategies. IEEE Trans. Smart Grid 9 (2), 1425–1433. doi:10.1109/
tsg.2016.2591586

Frontiers in Energy Research frontiersin.org13

Yang et al. 10.3389/fenrg.2024.1390073

310

https://doi.org/10.13334/j.0258-8013.pcsee.182512
https://doi.org/10.7500/AEPS20210916007
https://doi.org/10.13334/j.0258-8013.pcsee.180757
https://doi.org/10.1016/j.ijepes.2022.108738
https://doi.org/10.1016/j.ijepes.2022.108738
https://doi.org/10.13336/j.1003-6520.hve.20230816
https://doi.org/10.13336/j.1003-6520.hve.20230816
https://doi.org/10.1016/j.epsr.2023.109156
https://doi.org/10.13334/j.0258-8013.pcsee.182308
https://doi.org/10.17775/CSEEJPES.2020.00150
https://doi.org/10.17775/CSEEJPES.2020.00150
https://doi.org/10.2174/2352096516666221130150549
https://doi.org/10.2174/2352096516666221130150549
https://doi.org/10.19595/j.cnki.1000-6753.tces.211464
https://doi.org/10.19595/j.cnki.1000-6753.tces.211464
https://doi.org/10.7500/AEPS20220501001
https://doi.org/10.1109/tpwrs.2017.2699696
https://doi.org/10.1109/tpwrs.2017.2699696
https://doi.org/10.1016/j.ijepes.2023.109145
https://doi.org/10.7500/AEPS20210224004
https://doi.org/10.1016/j.ijepes.2023.109370
https://doi.org/10.19783/j.cnki.pspc.210385
https://doi.org/10.12204/j.issn.1000-7229.2022.10.013
https://doi.org/10.12204/j.issn.1000-7229.2022.10.013
https://doi.org/10.19595/j.cnki.1000-6753.tces.210712
https://doi.org/10.19783/j.cnki.pspc.211781
https://doi.org/10.19912/j.0254-0096.tynxb.2019-0370
https://doi.org/10.19912/j.0254-0096.tynxb.2019-0370
https://doi.org/10.16081/j.epae.202201001
https://doi.org/10.1109/tsg.2022.3204150
https://doi.org/10.7500/AEPS20200217013
https://doi.org/10.1002/tee.23808
https://doi.org/10.1002/tee.23808
https://doi.org/10.1016/j.est.2022.106455
https://doi.org/10.1109/tsg.2016.2591586
https://doi.org/10.1109/tsg.2016.2591586
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1390073


Su, S., Lei, J., Yan, Y., Pan, S., Yang, Y., et al. (2023). Voltage regulation strategy of
distribution network with decentralized wind power based on cluster partition. Recent
Adv. Electr. Electron. Eng. 16 (1), 30–44. doi:10.2174/2352096515666220902125455

Wang, L., Zhang, F., Kou, L., et al. (2021). Scaled distributed PV power cluster
classification based on Fast Unfolding clustering algorithm. J. Sol. Energy 42 (10), 29–34.
doi:10.19912/j.0254-0096.tynxb.2018-0896

Wang, Y., Yang, Y., and Xu, Q. (2023b). Integrated planning of natural gas and
electricity distribution systems for enhancing resilience. Int. J. Electr. Power Energy Syst.
151 (9), 109103–109103.11. doi:10.1016/j.ijepes.2023.109103

Wang, Z., Tan, W., Li, H., Ge, J., and Wang, W. (2023a). A voltage coordination control
strategy based on the reactive power-active network loss partitioned aggregation domain. Int.
J. Electr. Power Energy Syst. 144 (1), 108585–108585.10. doi:10.1016/j.ijepes.2022.108585

Wu, H., Sun, L., Xiang, S., et al. (2022a). Active distribution network expansion
planning with high-dimensional time-series correlation of renewable energy and load.
Power Syst. Autom. 46 (16), 40–51. doi:10.7500/AEPS20220104004

Wu, L., Xin, J., and Wang, C. (2022b). Installed capacity forecasting of distributed
photovoltaic taking into account user herding psychology. Power Syst. Autom. 46 (14),
83–92. doi:10.7500/AEPS20210902006

Xiao, C., Zhao, B., Zhou, J., et al. (2017). Voltage control of high proportional
distributed PV clusters in distribution networks based on network partitioning. Power
Syst. Autom. 41 (21), 147–155. doi:10.7500/AEPS20170101002

Xu, L., Yang, J., and Xiong, Z. (2021a). A method of power distribution network
classification based on improved grey cluster. Electr. Eng. (13), 81–84. doi:10.19768/j.
cnki.dgjs.2021.13.021

Xu, X., Zheng, X., Wang, S., et al. (2021b). Coordinated planning method for
transmission and distribution networks based on improved genetic annealing
algorithm. Power Syst. Prot. Control 49 (15), 1 24–131. doi:10.19783/j.cnki.pspc.201236

Yang, J., Hao, J., and Bo, Z. (2017). Hierarchical control strategy for reactive voltage of
wind farm clusters based on adjacency empirical particle swarm algorithm. Power Grid
Technol. 41 (6), 1823–1829. doi:10.13335/j.1000-3673.pst.2016.2237

Zdraveski, V., Vuletic, J., Angelov, J., and Todorovski, M. (2023). Radial distribution
network planning under uncertainty by implementing robust optimization. Int. J. Electr.
Power Energy Syst. 149 (7), 109043–109043.12. doi:10.1016/j.ijepes.2023.109043

Zhang, T., Xie, M., Wang, P., et al. (2021). System dynamics simulation of the shared
value of distributed photovoltaic and its impact on the distribution network. Power Syst.
Autom. 45 (18), 35–44. doi:10.7500/AEPS20200901004

Zhang, Y., Li, C., Wan, H., Shi, Q., Liu, W., and Xu, Y. (2023). Collaborative stochastic
expansion planning of cyber-physical system considering extreme scenarios. IET
Generation, Transm. Distribution 17 (10), 2419–2434. doi:10.1049/gtd2.12819

Zhu, J., Gu, W., Zhang, H., et al. (2018). An optimization method for siting and capacity
determination of distributed power supplies considering dynamic reconfiguration of
networks. Power Syst. Autom. 42 (5), 111–119. doi:10.7500/APES20170605016

Frontiers in Energy Research frontiersin.org14

Yang et al. 10.3389/fenrg.2024.1390073

311

https://doi.org/10.2174/2352096515666220902125455
https://doi.org/10.19912/j.0254-0096.tynxb.2018-0896
https://doi.org/10.1016/j.ijepes.2023.109103
https://doi.org/10.1016/j.ijepes.2022.108585
https://doi.org/10.7500/AEPS20220104004
https://doi.org/10.7500/AEPS20210902006
https://doi.org/10.7500/AEPS20170101002
https://doi.org/10.19768/j.cnki.dgjs.2021.13.021
https://doi.org/10.19768/j.cnki.dgjs.2021.13.021
https://doi.org/10.19783/j.cnki.pspc.201236
https://doi.org/10.13335/j.1000-3673.pst.2016.2237
https://doi.org/10.1016/j.ijepes.2023.109043
https://doi.org/10.7500/AEPS20200901004
https://doi.org/10.1049/gtd2.12819
https://doi.org/10.7500/APES20170605016
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1390073


TYPE Original Research
PUBLISHED 09 May 2024
DOI 10.3389/fenrg.2024.1361593

OPEN ACCESS

EDITED BY

Hugo Morais,
University of Lisbon, Portugal

REVIEWED BY

Suhan Zhang,
Hong Kong Polytechnic University, Hong
Kong SAR, China
Zhenyu Zhou,
Waseda University, Japan
Chaowei Wang,
Beijing University of Posts and
Telecommunications (BUPT), China
Chunyu Chen,
China University of Mining and Technology,
China
Bin Gou,
Southwest Jiaotong University, China

*CORRESPONDENCE

Yimin Liu,
liuyiming1998nn@163.com

RECEIVED 26 December 2023
ACCEPTED 25 March 2024
PUBLISHED 09 May 2024

CITATION

Li W, Zhou Z, Zhang Y, Jin G, Wang W, Ren Y,
Wan Y, Liu Y and Liu C (2024), Two-layer
iterative energy dispatch for a
multi-energy-flow VPP in the distribution
power grid.
Front. Energy Res. 12:1361593.
doi: 10.3389/fenrg.2024.1361593

COPYRIGHT

© 2024 Li, Zhou, Zhang, Jin, Wang, Ren, Wan,
Liu and Liu. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Two-layer iterative energy
dispatch for a multi-energy-flow
VPP in the distribution power
grid

Wanbin Li1, Zaiyan Zhou1, Yuqi Zhang1, Guiyue Jin1,
Wenxin Wang1, Yanchao Ren2, Yuchao Wan1, Yimin Liu1* and
Chunxiu Liu1

1State Grid Dezhou Electric Power Company, Dezhou, China, 2State Grid Yucheng Electric Power
Company, Yucheng, China

In light of the growing urgency surrounding energy and environmental
concerns, this paper presents a two-layer iterative energy dispatch strategy
tailored for a multi-energy-flow virtual power plant (VPP) operating within
the distribution power grid. The proposed strategy unfolds in two key phases.
First, it establishes an energy dispatch framework designed specifically for
the multi-energy-flow VPP within the distribution power grid. Subsequently,
it introduces an improved ant colony algorithm aimed at optimizing the
output power of each VPP. In addition, the paper presents an optimization
method for substation energy dispatch. This method uses a delay-aware
consensus algorithm with the substation dispatch cost increment rate as the
consensus variable, taking into account the communication delay between
VPPs. Integrating a proportional–derivative (PD) control mechanism enhances
the convergence speed of the delay-aware consensus algorithm and enables
real-time energy dispatch of the multi-energy-flow VPP. The paper presents
its conclusions by validating the efficacy of the proposed approach through
simulation, thereby addressing the challenges and adapting to the shifting
energy and environmental landscape.

KEYWORDS

two-layer iterative energy dispatch, multi-energy-flow virtual power plant, distribution
power grid, improved ant colony algorithm, delay-aware consensus algorithm

1 Introduction

With increased severity in energy and environmental issues, decarbonization
has emerged as an unavoidable trend in the future energy industry (Li et al., 2023).
A virtual power plant (VPP) is a system that uses information technology to
aggregate and coordinate resources such as distributed generators, energy storage,
and interruptible load to enhance the stability and security of the power grid. The
global energy system is accelerating its transition to renewable energy (Zhong et al.,
2023a; Sarantakos et al., 2023; Wang et al., 2023). As a crucial energy structure for
the future, multi-energy flow systems have the capacity to interconnect different
types of energy (electricity, heat, gas, etc.); unify the planning, operation, and
dispatch of various energy devices; and achieve efficient energy utilization (Chen et al.,
2020; Wang et al., 2020). However, with the large-scale integration of renewable
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energy, encompassing distributed power sources, energy storage,
and dispatchable loads, the volatility of multi-energy flow systems
is also on the rise (Zhou et al., 2017; Zhong et al., 2023b). A
multi-energy flow VPP, as an integrated energy network that
connects electricity–gas–thermal energy sources, can coordinate
and dispatch various internal units including renewable energy,
gas resources, and thermal resources, which can not only provide
more economic benefits but also help achieve the goal of energy-
saving and emission reduction. At present, the multi-energy flow
VPP faces difficulties such as high actual carbon emissions,
complex multi-energy flow optimization variables, and multi-
optimization objectives. It is urgent to explore how to improve
the renewable energy consumption capacity of the multi-energy-
flow VPP while reducing carbon emissions. The interconnection
of diverse energy devices within multi-energy flow virtual power
plants enables coordinated dispatch of electricity, gas, and heat,
facilitating complementary utilization of multiple energy flows
(Zhang et al., 2019; Gao et al., 2023; Wu et al., 2023). This not only
effectively mitigates the fluctuations in multi-energy flow systems,
reduces distribution grid losses, and enhances energy utilization
efficiency but also promotes supply–demand balance, bringing
about significant economic benefits.

Currently, when various types of energy are interconnected
and complementarily integrated within a VPP, the involvement
of diverse entities with different interests and complex energy
and information exchange relationships among these entities
pose a series of challenges in multi-energy flow VPP energy
dispatch (Yang et al., 2023). A multi-energy flow VPP faces
difficulties such as high actual carbon emissions, complex multi-
energy-flow optimization variables, and multi-optimization
objectives. It is urgent to explore how to improve the renewable
energy consumption capacity of multi-energy flow VPPs. Many
scholars have undertaken initial investigations into the challenges
of energy dispatch in VPPs, with ant colony algorithms and
consensus algorithms finding widespread application in the
realm of energy dispatch. Ant colony algorithms are suitable for
centralized energy dispatch. These algorithms possess global search
capabilities and simulate the process of ants searching for food,
thus helping in finding the global optimal solution for complex
energy dispatch problems. Consensus algorithms, on the other
hand, are applicable to distributed energy dispatch. They use
real-time status information from neighboring substations and
continually update their status to maintain consistency among
all substations, thus ensuring the stable operation of the overall
energy system.

However, there are still many challenges facing the energy
dispatch process in multi-energy flow VPPs:

The energy interaction among electricity, gas, and heat within
the VPP, coupled with the interdependence between the VPP,
substations, and distribution grids, makes the energy dispatch of
multi-energy flow VPPs an extremely complex problem. Complex
energy and information exchange relationships exist amongmultiple
entities (Li et al., 2022; Huang et al., 2023). Due to the conflicts of
ownership, optimization objectives, and interests among different
entities, the increase in the multi-energy flow coupling degree
will inevitably make the mutual influence among various energy
subsystems more obvious. Traditional single-layer energy dispatch
methods usually only consider the optimization of a single

energy source when solving the multi-energy flow dispatch model,
ignoring the coordination of multi-energy flow. Moreover, the local
fluctuations of the system affect the solution of the whole system,
resulting in high dispatch costs and high network losses, which
are unsuitable for the complex energy dispatch for multi-energy
flow VPPs.

In traditional ant colony algorithms, the concentration of
pheromones and the heuristic function typically remain static.
As the number of iterations increases, there is a gradual rise in
the concentration of pheromones, potentially elevating the risk
of converging toward local optima. Simultaneously, the value of
the heuristic function decreases, possibly resulting in excessive
dependence on pheromones. In the context of energy dispatch
for multi-energy-flow VPPs, the adaptability of traditional ant
colony algorithms decreases. This results in a slow convergence rate
when solving the energy dispatch problem for multi-energy flow
VPPs, making it challenging to meet the real-time requirements of
such dispatch.

Consensus algorithms achieve consistency for all substation
states through the transmission of state information among
neighboring substations. However, during the consensus iteration
process, there is a delay in the transmission of state information
among neighboring substations. This leads to traditional consensus
algorithms being unable to promptly and accurately obtain
state information from neighboring substations, affecting the
convergence speed of the consensus iteration, increasing the
fluctuation of multi-energy flow within the VPP, and resulting
in high dispatch costs and distribution grid losses in the energy
dispatch for multi-energy flow VPPs.

During the consensus iteration process, factors such as channel
conditions and geographical locations cause a delay in the
transmission of state information between neighboring substations.
Traditional consensus algorithms overlook the time delay in the
transmission of state information,making it challenging to promptly
and accurately acquire the state information of neighboring
substations. This, in turn, affects the convergence speed of the
consensus iteration, increases the fluctuations in multi-energy flow
within the VPP, and results in excessively high dispatch costs and
distribution grid losses in the energy dispatch for the multi-energy-
flow VPPs.

Presently, extensive research is being conducted on the energy
dispatch for VPPs. One approach involves conceptualizing VPPs
as coalitions of wind generators and electric vehicles, establishing
an operational model based on linear programming. This model,
as discussed in Vasirani et al. (2013), demonstrates how scheduling
the supply to the grid and storage in electric vehicle batteries can
enhance the VPP’s profitability. Another highlighted in Yang et al.
(2013), Yang et al. proposed a distributed optimal dispatch method
using the distributed primal-dual sub-gradient algorithm. This
method involves coordinating the individual decision-making of
distributed energy resources within the VPP through limited
communication, ultimately maximizing the VPP’s profit. In the
context ofmultiple distributed generatorswithin aVPP, a distributed
control strategy is introduced in Xin et al. (2013). This strategy aims
to guide theVPP to converge and operate at an optimal output power
determined by the costs of distributed generations and the required
services assigned by the distribution grid. Mohy-ud din et al.
(2020) adopts the linearization method to solve the energy
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transaction management problem of integrated energy systems
based on VPPs. The linearization-based optimization method
is well-suited for addressing linear optimization objectives of a
relatively straightforward nature. However, it encounters challenges
when attempting to tackle complex nonlinear optimization targets,
such as those related to distribution power grid loss. There is
currently much research on the use of intelligent algorithms in the
field of VPP energy dispatch. Abdolrasol et al. (2018); Hannan et al.
(2021) applied optimization research to solve the application
problems of current technologies, adding value by enhancing them
in the direction of optimal solutions. Zhang et al. (2023a) focuses
on the interaction between electricity and heat, demonstrating the
influence of multiple factors on the safe operation of electricity.
Yan et al. (2020) focuses on the efficiency and convergence accuracy
of the method in solving the electricity and gas system model.
However, the above-mentioned literature has not taken into
account the coupling of multi-energy flow within VPPs nor has
it considered energy dispatch strategies with multiple layers of
interaction.

Various studies have explored the multi-energy flow
complementation of VPPs. Cui et al. (2016) integrated electric
boilers and heat storage equipment into wind power plants,
using thermoelectric conversion for consume wind power
consumption. Yuan et al., as highlighted in Guili et al. (2017),
achieved “thermoelectric decoupling” through use of electric
heating equipment, enabling coordinated dispatch of thermoelectric
power in the system. Li et al. (2019) analyzed the operation strategy
of a multi-energy flow complementary system with the goal of
enhancing the system economy. Additionally, there have been
advancements in the application of ant colony algorithms. Niknam
et al. proposed a novel approach based on the ant colony algorithm
for the distribution management system in the context of dispersed
generation (Niknam et al., 2005). Trivedi et al. (2015) used the ant
colony optimization technique to address multiple environment
dispatch problems in microgrids, solving the generation dispatch
problem. Hou et al. introduced a versatile optimization algorithm
named the generalized ant colony optimization algorithm to tackle
discontinuous, nonconvex, nonlinear constrained optimization
problems (Hou et al., 2002). Blockchain technology has also been
incorporated into VPP systems, as presented by Wang et al. in
Jing et al. (2022), where a VPP system architecture based on
blockchain was proposed, accompanied by a blockchain partition
consensus algorithm for VPP dispatch. Furthermore, consensus-
based algorithms have been introduced. Naina and Swarup (2022)
proposed a robust, fully distributed consensus-based algorithm
utilizing a monotonic decreasing consensus gain function to
mitigate the effects of communication delays and noise, allowing
the VPP to optimize electricity output and intake based on grid
demand. For addressing trust issues in real-time VPP dispatch, Qi
et al. designed a hybrid consensus mechanism combining multiple
algorithms and proposed a mixed consensus algorithm based
on convex optimization problems in Yu et al. (2022), optimizing
computational resources and improving VPP dispatch efficiency.
Xu et al. (2019) proposed a two-layer distributed coordinated
control method for managing VPPs in an active distribution power
grid, with the first layer dispatching the total output power of
multiple VPPs and the second layer handling the output power of
each intelligent agent within the VPPs. Despite these advancements,

challenges persist: 1) one notable issue is real-time adjustment of
pheromone concentration andheuristic functions.With the increase
in the number of iterations, the adaptability of traditional ant colony
algorithms diminishes, leading to slow convergence speeds when
addressing the energy dispatch problem of multi-energy-flow VPPs.
2) There is a delay in the transmission of state information among
neighboring substations, causing traditional consensus algorithms
to be unable to promptly and accurately obtain state information
from neighboring substations. This affects the convergence speed
of the consensus iteration, increases the fluctuation of multi-
energy flow within the VPP, and leads to high dispatch costs and
distribution grid losses in the energy dispatch for multi-energy
flow VPPs.

In response to the aforementioned issues, we propose a
two-layer iterative energy dispatch strategy for a multi-energy
flow VPP in the distribution power grid. First, we establish
an energy dispatch framework for a multi-energy flow VPP
in the distribution power grid. Second, we decompose the
energy dispatch optimization problem of a multi-energy flow
VPP into an upper-layer multi-energy flow VPP energy dispatch
sub-problem and a lower-layer distributed substation energy
dispatch sub-problem. The upper-layer optimization is designed
to minimize distribution grid loss and compensatory electricity
price cost, adhering to the constraints of VPP output and power
flow balance. Moreover, the lower-layer optimization focuses on
minimizing dispatch costs within the constraints of the natural
gas pipeline network, thermal network, and inequality. Finally,
we propose a two-layer iterative energy dispatch algorithm that
incorporates an improved ant colony algorithm and a delay-aware
consensus algorithm. This approach reduces the dispatch costs and
distribution grid losses of multi-energy flow VPP energy dispatch,
enhancing the real-time performance of the energy dispatch
process.

The innovation points are given as follows:
A two-layer iterative energy dispatch strategy for a multi-

energy flow VPP: the transmission of substation dispatch power
occurs from the upper layer to the lower layer, while the lower
layer transmits load dispatch ability information to the upper
layer. This process enables the realization of a two-layer optimal
dispatch method for the multi-energy flow VPP. This strategy
achieves coordinated dispatch of electricity, gas, and heat flows,
addressing the challenges posed by complex energy and information
exchange relationships and conflicting interests among different
entities. The two-layer energy dispatch strategy for multi-energy
flow in the distribution power grid couples the electric–gas energy
sources through gas turbines at the upper layer and couples the
electric–thermal energy sources through electric boilers at the upper
layer, achieving the complementarity of multi-energy flow. At the
lower layer, the two-layer energy dispatch of multi-energy flow
only optimizes the output of electric power energy. It improves the
flexibility of the VPP, effectively alleviates the fluctuation of the
multi-energy flow system, reduces the loss of the distribution power
grid, and achieves the coordination and balance of themulti-energy-
flow VPP internally.

Multi-energy flow VPP energy dispatch based on the improved
ant colony algorithm: in light of real-time operational cost
deviations, this paper adjusts the computation of pheromone
concentration and heuristic functions dynamically to consider
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FIGURE 1
Two-layer iterative energy dispatch framework for a multi-energy flow VPP in the distribution power grid.

the evolving conditions. This adjustment enhances the algorithm’s
adaptability, improves convergence speed, and ensures the
real-time performance of multi-energy flow VPP energy
dispatch.

Distributed substation energy dispatch based on the
delay-aware consensus algorithm: considering the impact of
communication delays on consensus convergence. The introduction
of a proportional–derivative (PD) controller enables a rapid
response to changes in the state information of each substation.
Additionally, a time-dependent feedback term is incorporated
into the PD controller to adjust dispatch signal updates,
improving convergence speed, suppressing fluctuations in multi-
energy-flow within the VPP, and reducing the dispatch costs
and distribution grid losses of multi-energy flow VPP energy
dispatch.

2 System model

Figure 1 shows the energy dispatch framework for a multi-
energy flow VPP in the distribution power grid, which consists of
a cloud layer, an edge layer, and a device layer. The cloud layer
is composed of a regional multi-energy-flow dispatch center, a
grid dispatch center, and a power trading center. The edge layer
is composed of multiple VPPs, where each VPP is responsible for
communicating and interacting with various substations within
its jurisdiction. It undertakes substation dispatch, monitoring, and
other edge analytics functions.The set of VPPs is represented asK =
{1,2,…,k,…,K}. The device layer consists of multiple substations,
and the k-th VPP has Nk substations. Each substation includes a
distributed power generator, energy storage, interruptible load, a gas
turbine, and an electric heating boiler.

TheVPPs are connected to the distribution power grid, and there
is a coupling relationship between them. The set of distribution grid
nodes is denoted as I = {1,2,…, i,…, I}. In the natural gas network,
there are natural gas nodes supplied by gas sources, and gas turbines
can achieve gas-to-electricity conversion. Therefore, there is a node
coupling relationship between the distribution power grid and the
natural gas network. The set of nodes in the natural gas network
is denoted as Z = {1,2,…,z,…,Z}, and the set of gas sources is
denoted as O = {1,2,…,o,…,O}. The thermal network consists of
thermal load nodes and electric heating boilers. Electric heating
boilers are responsible for providing heat, which achieve electricity-
to-heat conversion to supply the thermal load. Therefore, a node
coupling relationship exists between the distribution power grid and
the thermal network. The set of thermal load nodes is denoted as
M = {1,2,…,m,…,M}.

We use a time-slotted model in which the overall optimization
period is segmented into T time slots, each with an equal duration of
τ. The set of time slots is denoted as T = {1,…, t,…,T}. In the cloud
layer, the integrated regional energy dispatch center collaborates
with the grid dispatch center and the power trading center. It
receives the information on real-time power grid status from the
grid dispatch center, that on real-time market price from the power
trading center, and that of load dispatch capacity from the edge layer.
Subsequently, the integrated regional energy dispatch center engages
in optimization to minimize compensatory electricity price cost and
distribution power grid loss, determining optimal power dispatch
values for each VPP. The resulting VPP energy dispatch strategies
are then disseminated to the edge layer. In the edge layer, VPPs
dispatch power to the substation groups within their jurisdiction. At
the device layer, the substations optimize the dispatch cost of their
internal resources and dispatch power to their internal resources
accordingly. The summary of the main notations in this paper is
shown in Table 1.
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TABLE 1 Nomenclature.

Variables

CDG
k,l (t) Dispatch cost of the distributed generator

CSTO
k,l (t) Dispatch cost of energy storage

CIL
k,l(t) Dispatch cost of interruptible load

Cgas
k,l (t) Dispatch cost of the gas turbine

Cheat
k,l (t) Dispatch cost of the electric heating boiler

Closs(t) Distribution power grid loss

Cep(t) Compensatory electricity price cost

Pk,l(t) Dispatch power of the substation

PDG
k,l (t) Dispatch power of the distributed generator

PSTO
k,l (t) Dispatch power of energy storage

PIL
k,l(t) Dispatch power of interruptible load

Pgas
k,l (t) Dispatch power of the gas turbine

Pheat
k,l (t) Dispatch power of the electric heating boiler

fk,lz (t) Natural gas consumption of the gas turbine

om(t) Water flow rate passing through the thermal load node

Tin
m(t) Supply water temperature

Tout
m (t) Return water temperature

fzz′(t) Natural gas flow between nodes z and z′ in the natural
gas network

foz(t) Natural gas supply flow from gas source o connected to
node z

μk,l(t) Cost increment rate

Parameters

pay,y′ State transfer probability

ρ Pheromone concentration dilution coefficient

αDG, βDG, and γDG Quadratic, linear, and constant cost coefficients of the
distributed generator

ηSTO Coefficient of the energy storage dispatch cost

ωIL Coefficient of the interruptible load dispatch cost

πgrid Efficiency of electricity generation of the gas turbine

θgas Thermal efficiency of natural gas combustion

ωgas Coefficient of the gas turbine dispatch cost

ωheat Coefficient of the electric heating boiler dispatch cost

qR Specific heat capacity of hot water

(Continued on the following page)

TABLE 1 (Continued) Nomenclature.

Variables

Pmin
k,l Lower bound of substation dispatch power

Pmax
k,l Upper bound of substation dispatch power

2.1 Multi-energy-flow VPP model

2.1.1 Distributed generator model
The dispatch cost of the distributed generator CDG

k,l (t) is given by
Eq. 1.

CDG
k,l (t) = α

DG[PDG
k,l (t)]

2 + βDGPDG
k,l (t) + γ

DG, (1)

where PDG
k,l (t) represents the distributed generator dispatch power of

substation l in VPP k during the t-th time slot. αDG, βDG, and γDG are
the quadratic, linear, and constant cost coefficients of the distributed
generator, respectively.

2.1.2 Energy storage model
The dispatch cost of energy storage CSTO

k,l (t) is given by Eq. 2.

CSTO
k,l (t) = η

STO[PSTO
k,l (t)]

2, (2)

where PSTO
k,l (t) represents the energy storage dispatch power of

substation l in VPP k during the t-th time slot. PSTO
k,l (t) ≥ 0 represents

that the energy storage is in the discharging mode. PSTO
k,l (t) < 0

represents that the energy storage is in the charging mode. ηSTO is
the coefficient of the energy storage dispatch cost.

The capacity of energy storage QSTO
k,l (t+ 1) is given by Eq. 3.

QSTO
k,l (t+ 1) =max{min{QSTO

k,l (t) + P
STO
k,l (t)τ,0} ,Q

STO
max} , (3)

where QSTO
max represents the maximum capacity of energy storage.

2.1.3 Interruptible load model
There is a clear distinction drawn between controllable and

uncontrollable loads in the distribution power grid. Uncontrolled
loads are loads that cannot participate in the demand response of the
distribution power grid (Liang et al., 2021). In contrast, controllable
loads refer to the loads that can participate in the demand response
of the distribution power grid. The interruptible load proposed in
this paper is one of the controllable loads. The dispatch cost of the
interruptible load CIL

k,l(t) is given by Eq. 4.

CIL
k,l (t) = ω

ILPIL
k,l (t) , (4)

where PIL
k,l(t) represents the interruptible load dispatch power of

substation l in VPP k during the t-th time slot. ωIL is the coefficient
of the interruptible load dispatch cost.

2.1.4 Gas turbine model
The dispatch power of the gas turbine Pgas

k,l (t) is given by Eq. 5.

Pgas
k,l (t) = πgrid f

k,l
z (t)θgas, (5)

where πgrid represents the efficiency of electricity generation by the
gas turbine. f k,lz (t) represents the natural gas consumption of the gas
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turbine in substation l at the connection point to natural gas node z
during the t-th time slot. θgas is the thermal efficiency of natural gas
combustion.

The dispatch cost of gas turbine Cgas
k,l (t) is given by Eq. 6.

Cgas
k,l (t) = ω

gasPgas
k,l (t) , (6)

whereωgas represents the coefficient of the gas turbine dispatch cost.
The gas turbine is linked to the natural gas network, and the

model for the gas network is formulated as follows. It is assumed that
natural gas flows in the pipeline at a constant temperature and stable
flow, and friction coefficients within the pipeline are neglected, i.e.,
kinetic energy changes during the flow process are ignored.

The balance relationship between natural gas flow refers to the
node air flow balance of the natural gas pipeline network, i.e., the
natural gas flow injected by the node is equal to the sum of the
flow consumed by the node and the gas flowing to the next node
(Dai et al., 2018), which is given by Eq. 7.

∑
z′∈Z

fzz′ (t) + f
k,l
z (t) = ∑

w∈W
f oz (t) , (7)

where fzz′(t) represents the natural gas flow between nodes z and z′
in the natural gas pipeline network. f oz (t) represents the natural gas
supply flow from gas source o connected to node z.

The natural gas flow fzz′(t) between natural gas nodes z and z′ is
given by Eq. 8.

fzz′ (t) = Kzz′Dzz′√Dzz′ [p
2
z (t) − p2

z′ (t)], (8)

where Kzz′ is the pipeline constant. Dzz′ represents the gas flow
direction between nodes z and z′, withDzz′ = 1 when gas flows from
z to z′, and Dzz′ = −1 otherwise. pz(t) and pz′(t) represent the gas
pressure at nodes z and z′, respectively.

2.1.5 Electric heating boiler model
As a controllable thermal load, the dispatch cost of electric

heating boiler Cheat
k,l (t) is given by Eq. 9.

Cheat
k,l (t) = ω

heatPheat
k,l (t) , (9)

where ωheat represents the coefficient of the electric heating boiler
dispatch cost. Pheat

k,l (t) represents the dispatch power of the electric
heating boiler in substation l during the t-th time slot.

The electric heating boiler is directly connected to the thermal
load node m, and the electric heating boiler is connected to the
distribution power grid through substation l within VPP k. The
interactive power is given byPheat

k,l (t) = P
heat
m (t).P

heat
m (t) represents the

dispatch power of thermal load node m.
In a certain range of ambient temperature difference,

considering that the heating medium in the thermal network is
hot water, minor flow rate changes due to temperature differences in
the supply and return pipes are neglected (Zhang et al., 2023b). In
this study, it is assumed that the temperature of water in the return
pipes is known, and, therefore, the temperature T in

m (t) of water in
the supply pipes is given by Eq. 10.

T in
m (t) =

ζheatPheat
m (t)

qRom (t)
× 103 +T out

m (t) , (10)

where ζheat represents the heat production efficiency of the electric
heating boiler. qR is the specific heat capacity of hot water. om(t) is
the water flow rate passing through thermal load nodem during the
t-th time slot. T in

m (t) and T out
m (t) are the temperature of water in the

supply and return pipes at thermal load node m, respectively. The
constraint for supply water temperature is given by Eq. 11.

Tin,min
m ≤ Tin

m (t) ≤ T
in,max
m , (11)

where Tin,min
m and Tin,max

m represent the minimum and maximum
supply water temperatures at thermal load node m, respectively.

2.1.6 Substation model
In order to facilitate resource management, the internal

resources of the VPP are divided into multiple substations. We
assume that in VPP k, substation l contains the aforementioned five
types of resources. The dispatch power of substation Pk,l(t) is given
by Eq. 12.

Pk,l (t) = P
DG
k,l (t) + P

STO
k,l (t) + P

IL
k,l (t) + P

l,r
heat (t) + P

l,h
gas (t) . (12)

The dispatch power constraint for substation l in VPP k is given
by Eq. 13.

Pmin
k,l ⩽ Pk,l (t) ⩽ P

max
k,l , (13)

where Pmin
k,l and Pmax

k,l represent the lower and upper bounds of
substation dispatch power, respectively.

2.2 Distribution power grid loss model

The distribution power grid loss Closs(t) is given by Eq. 14.

Closs (t) =
I

∑
i=1
∑
j∈v(i)

γlossRij (t)
P2
ij (t) +Q

2
ij (t)

Ai (t)
, (14)

where γloss represents the unit grid loss cost. Rij(t) is the resistance
value between the distribution power grid node i and node j during
the t-th slot. v(i) represents the set of end nodes of branches in the
power grid that have node i as the starting node. P2

ij(t) and Q2
ij(t) are

the active and reactive power flowing from the upstreamdistribution
power grid node i to node j during the t-th slot, respectively. Ai(t)
is the voltage magnitude at the distribution power grid node i. The
power flow equation of the distribution power grid is given by Eq.
15.

{
{
{

∑
i∈u(j)

Pij (t) −RijBij (t) − Pj (t) = ∑s∈v(j)
Pjs (t) ,

∑
i∈u(j)

Qij (t) −XijBij (t) −Qj (t) = ∑s∈v(j)
Qjs (t) ,

(15)

where u(j) represents the set of starting nodes in the distribution
power grid with node j as the tail node. v(j) represents the set of
end nodes of branches in the power grid with node j as the starting
node. Rij and Xij are the resistance and reactance of the line between
the distribution power grid node i and node j, respectively. Pj(t) is
the net active power at node j. Pjs(t) is the load active power flowing

from upstream node j to node s. Bij(t) =
√P2

ij(t)+Q
2
ij(t)

Ai(t)
represents the

current between node i and node j in the line.Qj(t) is the net reactive
power at node j. Qjs(t) is the load reactive power flowing from the
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upstream node j to node s. The net active power and net reactive
power constraints of node j are given by Eq. 16.

{
{
{

Pmin
j (t) ≤ Pj (t) ≤ P

max
j (t) ,

Qmin
j (t) ≤ Qj (t) ≤ Q

max
j (t) ,

(16)

where Pmin
j (t) and Pmax

j (t) represent the lower and upper active
power output bounds at node j, respectively. Qmin

j (t) and Qmax
j (t)

represent the lower and upper reactive power output bounds,
respectively. The voltage relationship at node j is given by Eq. 17.

V2
j = V

2
i − 2(RijPij (t) +XijQij (t)) + (R

2
ij +X

2
ij)L

2
ij (t) , (17)

where Vi and Vj represent the voltage at node i and node j,
respectively. The voltage constraint of node i is given by Eq. 18.

Vmin
i ⩽ Vi ⩽ V

max
i , (18)

where Vmin
i and Vmax

i are the lower and upper voltage bounds for
node i, respectively.

3 Problem formulation of two-layer
iterative energy dispatch

The two-layer iterative energy dispatch problem for a multi-
energy flow VPP in the distribution power grid can be decomposed
into two optimization sub-problems: the upper-layer multi-energy
flow VPP energy dispatch sub-problem and the lower-layer
distributed substation energy dispatch sub-problem.

3.1 Upper-layer multi-energy flow VPP
energy dispatch sub-problem

During the real-time operational phase, the regional multi-
energy-flow dispatch center takes on the task of global optimization
and dispatch (Liao et al., 2023). The upper layer multi-energy flow
VPP energy dispatch sub-problem is optimized to minimize the
distribution power grid loss and the compensatory electricity price
cost, and the dispatch power Pk(t) of each VPP participating in
the demand response is the optimization variable. The specific
formulation of the upper-layer multi-energy flow VPP energy
dispatch sub-problem is given by Eq. 19.

P1: min
{Pk(t)∈K}

Ctotal (t) = Cep (t) +Closs (t)

= ∑
k∈K

αk (t)Pk (t)

+
I

∑
i=1
∑
j∈v(i)

γlossRij (t)
P2
ij (t) +Q

2
ij (t)

Ai (t)
,

s. t. C1: (13) ,

C2: (15) ∼ (18) , (19)

where Ctotal(t) represents the distribution power grid dispatch
cost, Cep(t) represents the compensatory electricity price cost, αk(t)
represents the compensatory electricity price, Pk(t) represents the
amount of purchased electricity of VPP k during the t-th time

slot, Closs(t) stands for the distribution power grid loss cost, C1
represents the constraints on the upper and lower bounds of
substation dispatch power, and C2 represents the constraints on
distribution power flow.

3.2 Lower-layer distributed substation
energy dispatch sub-problem

The regional multi-energy-flow dispatch center sends the
optimized dispatch power values to the substations within VPPs.
Within each substation, the dispatch power of the distributed
generator, energy storage, interruptible load, gas turbine, and electric
heating boiler is optimized and adjusted based on the dispatch
power values. The substation energy dispatch sub-problem aims
to minimize the dispatch cost of the above resources, with the
dispatch power of each resource as the optimization variable. Taking
the substation l within VPP k as an example, the specific problem
description is given by Eq. 20.

P2: min
{Pk,l(t)∈Nk}

Ck (t) = ∑
l∈Nk

Ck,l (t) = ∑
l∈Nk

CDG
k,l (t)

+CSTO
k,l (t) +C

IL
k,l (t) +C

heat
k,l (t) +C

gas
k,l (t) ,

s. t.C1: (7) ∼ (8) ,

C2: (10) ∼ (11) ,

C3:P
DG,MIN
k,l ≤ PDG

k,l (t) ≤ P
DG,MAX
k,l , l ∈ Nk,

C4:P
STO,MIN
k,l ≤ PSTO

k,l (t) ≤ P
STO,MAX
k,l , l ∈ Nk,

C5:P
IL,MIN
k,l ≤ P

IL
k,l (t) ≤ P

IL,MAX
k,l , l ∈ Nk,

C6:P
gas,MIN
k,l ≤ Pgas

k,l (t) ≤ P
gas,MAX
k,l , l ∈ Nk,

C7:P
heat,MIN
k,l ≤ Pheat

k,l (t) ≤ P
heat,MAX
k,l , l ∈ Nk,

C8:Pk (t) = ∑
l∈Nk

Pk,l (t) , (20)

where Ck,l(t) represents the dispatch cost of substation l in VPP
k during the t-th time slot. C1 and C6 represent the constraints
related to the natural gas network and gas turbine dispatch power,
respectively. Pgas,MIN

k,l and Pgas,MAX
k,l are the minimum and maximum

dispatch power of the gas turbine in substation l within VPP
k, respectively. C2 and C7 represent the constraints related to
the thermal network and electric heat boiler dispatch power,
respectively.Pheat,MIN

k,l andPheat,MAX
k,l are theminimumandmaximum

dispatch power of the electric heat boiler in substation l within
VPP k, respectively. C3 represents the constraints on the dispatch
power of distributed energy source. PDG,MIN

k,l and PDG,MAX
k,l are the

minimum and maximum dispatch power of the distributed energy
source in substation l within VPP k, respectively. C4 represents
the constraints on the dispatch power of energy storage systems.
PSTO,MIN
k,l and PSTO,MAX

k,l are the minimum and maximum dispatch
power of the energy storage system in substation l within VPP k,
respectively. C5 represents the constraints on the dispatch power
of interruptible loads. PIL,MIN

k,l and PIL,MAX
k,l are the minimum and

maximum dispatch power of the interruptible load in substation
l within VPP k, respectively. C8 represents the constraint on the
total dispatch power of all substations within VPP k during the t-th
time slot.
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FIGURE 2
The proposed algorithm principle.

4 Two-layer iterative energy
dispatch for a multi-energy flow VPP
based on the improved ant colony
algorithm and the delay-aware
consensus algorithm

Theprinciple of the proposed algorithm is illustrated in Figure 2.
The two-layer iterative energy dispatch strategy incorporates an
improved ant colony algorithm in the upper layer and a delay-
aware consensus algorithm in the lower layer. First, a combined
pheromone update strategy and improved pheromone factor and
heuristic factor were adopted to improve the ant colony algorithm
for solving the sub-problem of multi-energy flow VPP energy
dispatch. This involves adjusting the dispatch power of each
VPP according to diverse service requirements. The calculated
dispatch power was distributed to each substation for lower-layer
optimization. Second, communication interaction was carried out
among the substations, with the micro-increment rate of substation
dispatch cost serving as the consensus variable for the consensus
iteration. To solve the substation energy dispatch sub-problem,
the PD controller was introduced into the traditional consensus
algorithm. Information exchange occurs between the two layers: the
upper layer issues dispatch power to the lower layer for substation
scheduling, and the lower layer uploads information on the load
dispatch capability.

4.1 Upper-layer multi-energy flow VPP
energy dispatch based on the improved ant
colony algorithm

The ant colony algorithm falls within the category of heuristic
global optimization algorithms, transforming the optimization

problem into an ant path problem. However, in traditional ant
colony algorithms, the range in variation between pheromone
concentration and heuristic function is fixed. As the number
of iterations increases, the pheromone concentration gradually
increases, and the heuristic function value gradually decreases. This
lack of adaptability with the increasing number of iterations results
in slow convergence speed when solving the upper-layer multi-
energy flow VPP energy dispatch sub-problem, leading to sub-
optimal energy dispatch strategies. To address this limitation, this
paper introduces real-time operational cost deviation considerations
in the computation of pheromone and heuristic factors. This allows
for adaptive changes in pheromone concentration and heuristic
function based on real-time cost deviations. Such an adaptation
accelerates the convergence speed, ensuring the real-time nature
of energy dispatch. The specific implementation procedures are
summarized in Algorithm 1.

During the state updating process, it is essential to ensure
that the control strategies associated with each position meet
various constraint conditions for upper-level multi-energy real-
time dispatch. Therefore, this paper initially compares the dispatch
strategies associated with each position with various constraint
conditions to construct a tabu list, thereby confirming that certain
positions cannot be reached. This ensures that the optimization
results obtained during the algorithm’s iteration process satisfy all
constraint conditions.

The state transfer probabilities are given by Eq. 21.

pay,y′ =
[Φy,y′ (t)]

Γ[ιy,y′ (t)]
ϱ

∑
y,y′∈Ya
[Φy,y′ (t)]

Γ[ιy,y′ (t)]
ϱ
, (21)

where pay,y′ is the probability of the a-th ant transferring from
position y to position y′. Ya is the tabu list of the a-th ant, which
represents the set of the next allowed positions. Φy,y′(t) is the
pheromone concentration along the path from position y to position
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1: Initialize maximum iteration hmax, pheromone

factor Γ, and heuristic factor ϱ.

2: For h = 1 to hmax do

3: Randomly initialize ant positions.

4:  For a = 1 to S do

5:   Determine the next optional transfer position

according to the tabu list and calculate the

state transfer probabilities based on (21).

6:   Choose the next position using the roulette

wheel method based on the state transfer

probabilities.

7:   If the selected transfer position does not

satisfy constraints (13) and (15)∼(18) do

8:    Marks the current position from the tabu

list as not optional.

9:    The a-th ant returns to the previous

position and selects a new transfer

position again.

10:   Else

11:    Update the local pheromone concentration

according to (25).

12:   End if

13:  End for

14:  Update the global pheromone concentration

according to (23).

15: End for

Algorithm 1. Upper-layer energy dispatch for a multi-energy flow VPP
based on the improved ant colony algorithm.

y′ during the t-th time slot. ιy,y′(t) is the heuristic function, which
is the reciprocal of the Euclidean distance between position y and
position y′. Γ and ϱ denote the pheromone factor and the heuristic
factor, respectively.

To enhance the convergence speed of the algorithm, this paper
proposes the following improvements to the pheromone factor and
heuristic factor (Eq. 22):

{
{
{

Γ = Γ+ΔCtotal (t− 1) −ΔCtotal (t) ,

ϱ = ϱ+ΔCtotal (t) −ΔCtotal (t− 1) ,
(22)

where ΔCtotal(t) represents the deviation of the real-time operational
cost between the t-th time slot and the (t− 1)-th time slot and
ΔCtotal(t− 1) represents the deviation of the real-time operational
cost between the (t− 1)-th time slot and the(t− 2)-th time slot.

To attain comprehensive performance optimization, this paper
proposes a combined strategy involving both local and global
adjustments for pheromone concentration. This strategy aims
to avoid getting stuck in local optima while increasing the
selection probability for better paths as much as possible, in
order to accurately and quickly find the global optimum. In
each iteration of the improved ant colony algorithm, every ant
selects the next position based on a state transfer probability
formula, thereby generating a complete path. With an increasing
number of iterations, the concentration of pheromones on each
path undergoes continuous changes. After all ants have completed

their journeys within a single iteration cycle, the adjustment of the
pheromone concentration Φy,y′(t) is updated. The updating strategy
for pheromone concentration in the ant colony algorithm is given by
Eq. 23.

Φy,y′ (t+ 1) = ρ×Φy,y′ (t) +
S

∑
s=1

ΔΦs
y,y′ (t) , (23)

where s represents the number of ants, and there are a total of S
ants. ρ represents the improved pheromone concentration dilution
coefficient. ΔΦs

y,y′(t) represents the pheromone concentration
adjustment coefficient.

In traditional ant colony algorithms, the pheromone
concentration dilution coefficient is typically given and relies heavily
on historical experience, without the ability to be updated based
on real-time conditions. In this paper, the formula for improved
pheromone concentration dilution coefficient is introduced by
incorporating a negative exponential function that accounts for
real-time deviations in operational costs. The improved pheromone
concentration dilution coefficient is given by Eq. 24.

ρ = eux+γΔCtotal(t),u < 0 (24)

where x represents the number of iterations and u represents
the influence coefficient of x on ρ. As the number of iterations
x increases, the pheromone concentration dilution coefficient ρ
decreases to retain a certain degree of prior experience, facilitating
global search. The parameter γ serves as the cost weight used
to standardize magnitudes. A larger real-time operational cost
deviation, indicating a greater distance from the optimal solution,
results in a reduction of the pheromone concentration on that
path, effectively increasing the pheromone concentration dilution
coefficient. In this scenario, ants are more inclined to explore.
Conversely, when the real-time operational cost deviation is smaller,
indicating proximity to the optimal solution, the pheromone
concentration on that path is strengthened by reducing the
pheromone concentration dilution coefficient. In such cases, ants are
more inclined to exploit the path.

By improving the adaptive selection function in the ant colony
algorithm, the pheromone concentration adjustment coefficient is
given by Eq. 25.

ΔΦs
y,y′ (t) =

G
Ctotal (t)

, (25)

where G represents the concentration adjustment constant and
Ctotal(t) represents the distribution power grid dispatch cost during
t-th time slot.

4.2 Lower-layer substation energy dispatch
based on the delay-aware consensus
algorithm

In the context of processing self-generated information within
a substation and receiving data from neighboring substations,
traditional consensus algorithms disregard the influence of
communication delay on consensus convergence. In scenarios
requiring time-sensitive demand–response services, the sluggish
convergence rate of traditional algorithms proves inadequate for

Frontiers in Energy Research 09 frontiersin.org320

https://doi.org/10.3389/fenrg.2024.1361593
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Li et al. 10.3389/fenrg.2024.1361593

1: Initialize Pk,l(t) in VPP k.

2: While (30) is not satisfied do

3:  Calculate μk,l(t) according to (26), (27).

4:  Update μk,l(t) according to (28).

5:  Calculate Pk,l(t) according to (31).

6: End while

Algorithm 2. Lower-layer power optimization for substations based on the
delay-aware consensus algorithm.

meeting service demands (Zhou et al., 2022). This paper proposes
an enhancement by integrating a proportional–derivative (PD)
controller to address the issue of sluggish convergence attributable
to communication delay. First, this improvement incorporates the
communication delay factor into the algorithm, thereby aligning
it more effectively with the requirements of delay-aware service
scenarios. Second, the introduction of the PD controller enables the
system to respond promptly to changes in substation information,
thereby improving both convergence speed and system stability. The
fundamental principle of this enhancement involves introducing
a time-dependent feedback term into the PD controller to adjust
dispatch signal updates for various resource power strategies within
each substation.This facilitates the PD controller’s swift and effective
response to changes in substation information, mitigating the
impact of communication delay on system convergence.The specific
implementation procedures are outlined in Algorithm 2.

In the algorithm, each substation only acquires the status
information of its neighbors at the triggering moment and relies
solely on its own status and the status of its neighbors at the
triggering moment to update the cost increment rate. There is
no need to use real-time status information from neighbors
nor is there a need for any global information about the
communication topology. The designed dispatch strategy effectively
avoids continuous communication. Based on the objective of
minimizing dispatch costs of each VPP, the delay-aware consensus
algorithm is used to solve the lower-layer distributed substation
energy dispatch sub-problem, which is defined in Eq. 20. The
substation’s dispatch cost increment rate is defined as the derivative
of the dispatch cost with respect to dispatch power over unit time,
which is given by Eq. 26.

μk,l (t) =
∂Ck,l (t)
∂Pk,l (t)
, (26)

where μk,l(t) represents the cost increment rate for substation l
within VPP k during the t-th time slot.

The cost increment rate for substation l is obtained from (1)–(4),
(6), and (9), which is given by Eq. 27.

{{{{
{{{{
{

μk,l (t) = 2Pk,l (t)X+Y,

X = αDG + ηSTO,

Y = βDG +ωIL +ωgas +ωheat.

(27)

To accelerate the convergence rate of the consensus algorithm
and ensure standardized convergence rates across different
substations, the design of the PD controller incorporates
considerations for the inter-substation communication delay and

the VPP consensus delay. A delay-dependent feedback term is
introduced to adapt the cost increment rate update strategy for each
substation. The consensus iteration formula post PD correction is
given by Eq. 28.

{{{{{
{{{{{
{

μd+1k,l (t) = μ
d
k,l (t) +

Nk

∑
̂l=1

ak,l ̂l [μ
d
k, ̂l
(t− τk,l ̂l)

−μdk,l (t) + ηk,l ̂lμ
d
k,l (t)] ,

ηk,l ̂l = βτk,l ̂l,

(28)

where d is the number of consensus iterations. τk,l ̂l is the
transmission time between substation l and substation ̂l within VPP
k. ak,l ̂l represents the element in the adjacency matrix Ak indicating
the connectivity between substation l and substation ̂l within VPP
k. Specifically, ak,l ̂l = 1 signifies that substation l is connected to
substation ̂l within VPP k; otherwise, they are not connected. ηk,l ̂l
is the PD feedback strength parameter.

If the optimal allocation of dispatch power is achieved among
the substations, meaning that the dispatch cost increment rates for
all substations tend to be consistent, there exists Eq. 29.

μk,1(t) =… = μk,l (t) . (29)

The termination criteria for the iteration are given by Eq. 30.

{{{{{{{{
{{{{{{{{
{

|ΔPk (t) | < σk,

ΔPk (t) = Pk (t) −∑l∈Nk
grid
Pk,l (t) ,

|Δμk,l (t) | <Ωk,

Δμk,l (t) =max{l∈Nk}μk,l (t) −min{l∈Nk}μk,l (t) ,

(30)

where ΔPk(t) and Δμk,l(t) are used as the convergence criteria during
the computation process of the delay-aware consensus algorithm,
with σk and Ωk representing convergence errors within VPP k.

In the proposed consensus algorithm, consideration is given
to the communication delay between substations, realizing
communication delay awareness. However, due to the introduction
of communication delay, the convergence speed of the consensus
algorithm is slowed down. Therefore, the algorithm introduces PD
control. The PD feedback strength parameter ηk,l ̂l can be adjusted
according to specific system requirements for β, thereby achieving
modulation of the system’s sensitivity to delay. By modifying β
to accommodate communication delays for each substation, it
addresses the challenge of inconsistent convergence speeds among
different substations due to varying communication delays, thereby
expediting consensus convergence.

4.3 Algorithm implementation process

We use the delay-aware consensus algorithm to achieve energy
dispatch of multi-energy flow VPPs. The initial values for iteration,
i.e., the cost increment rate, are calculated by Eq. 27 and the initial
power values for each resource are determined. As the algorithm
continues to converge, the power values of each resource in the
current time slot gradually approach the optimal value, achieving
optimal real-time energy dispatching. Figure 3 shows the specific
implementation process:
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FIGURE 3
The implementation process of two-layer iterative energy dispatch for a multi-energy flow VPP based on the improved ant colony algorithm and the
delay-aware consensus algorithm.

FIGURE 4
VPP topological relationships based on the modified IEEE 33-node distribution grid system.
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TABLE 2 Simulation parameters.

Parameter Value Parameter Value

τk,l ̂l U(10,20)msa αDG 0.5$/kW2

Γ 1 βDG 0.2$/kW

ϱ 7 γDG 0.1$

γ 0.01 ωIL 0.8$/kW

βPD 1 ωgas 0.6$/kW

S 50 θgas 3.5 ×104 kJ/m3

σ 0.1 kW γloss 0.8$/kW

Ω 0.002$/kW ωheat 0.4$/kW

ηSTO 0.5$/kW2 ζgrid 0.35

hmax 30

aU(10,20)ms indicates that the value of the simulation parameter τk,l ̂l obeys a uniform
distribution from 20 ms to 30 ms.

Upper-layer multi-energy-flow VPP energy dispatch based on
the improved ant colony algorithm.

Step 1: Initialize t = 1. Initialize the iteration count in the ant
colony algorithm and randomly assign ants to different dispatch
strategies, including Pk(t). Set the maximum iteration count as hmax.

Step 2: Calculate the transfer probabilities for all ants, determine
the probabilities of selecting different dispatch strategies, and choose
the next transfer using the roulette wheel method. Verify if the
next transfer satisfies all constraints. If it does, proceed to Step 3;
otherwise, mark this position in the tabu list, disallowing other
ants from transferring to this position. The ant then returns to the
previous position and selects a new next position.

Step 3: After an ant completes its current search, use Eq. 19
as the objective function to calculate Ctotal(t) and update the
local pheromone levels. Check if constraints (13) and (15∼18) are
satisfied. If it is satisfied, continue the implementation process;
otherwise, return to Step 2.

Step 4: After all ants have completed their searches for this round,
update the global pheromone levels. Check if constraints (13) and
(15∼18) are satisfied. If it is satisfied, continue the implementation
process; otherwise, return to Step 2.

Step 5: If h ⩽ hmax, set h = h+ 1 and return to Step 1; otherwise,
output the optimal result. The regional multi-energy-flow dispatch
center allocates optimal dispatch power to each VPP.

Step 6: The total dispatch power of each substation cluster is
obtained from the VPP after global optimization calculation.

Lower-layer substation energy dispatch based on the delay-
aware consensus.

Step 7 : Each VPP allocates the total dispatch power to the
substations within its coverage area.

Step 8: Initialize the cost increment rate μk,l(t) based on Eqs (26)
and (27), initialize d = 1, and set μdk,l(t) = μk,l(t).

Step 9: Update the consensus variables for each substation
according to Eq. 28, and calculate the power dispatch value for each
substation in this state based on Eq. 31, which can be given by

Pk,l (t) =

{{{{{{{{
{{{{{{{{
{

Pmin
k,l ,

μk,l (t) −Y
2X
⩽ Pmin

k,l

μk,l (t) −Y
2X
,Pmin

k,l ⩽
μk,l (t) −Y

2X
⩽ Pmax

k,l

Pmax
k,l ,

μk,l (t) −Y
2X
⩾ Pmax

k,l

, (31)

where Pmax
k,l and Pmin

k,l correspond to the upper and lower bounds
of the output power of the corresponding resources within the
substation, respectively.

Step 10: Check if Eq. 30 and the constraints of optimization
problem P2 are satisfied. If they are not satisfied, continue to execute
Step 11. If they are satisfied, output the power dispatch value for the
substation, i.e., the dispatch power value of each internal resource,
and continue to execute Step 12.

Step 11: Based on the power obtained in Step 9, recalculate the
consensus variable. Set d = d+ 1, and return to Step 9.

Step 12: If t > T, the optimization process ends; otherwise, set
t = t+ 1 and return to Step 2.

4.4 Complexity and convergence analysis

4.4.1 Complexity analysis
The computational complexity of the proposed algorithm is

analyzed as follows. It consists of two parts, namely, the improved ant
colony algorithm and the delay-aware consensus algorithm, which
together make up the computational complexity.

The computational complexity of the improved ant colony
algorithm consists of six parts.The complexity of calculating transfer
probabilities is O(1). The complexity of assessing the constraint
conditions during transfers isO(5).The complexity of transferring to
the next step is O(v), where O(v) represents the number of required
successful transfers in a single step. The complexity of updating
local pheromone concentrations isO(1).The complexity of updating
global pheromone concentrations is O(S). The complexity of the
number of iteration calculations is O(hmax). Therefore, the total
computation complexity of the improved ant colony algorithm is
O(hmaxS(v+ 7)).

The computational complexity of the delay-aware consensus
algorithm consists of four parts. The complexity of iteration
termination judgment is O(Λ), where O(Λ) represents the number
of iterations required to satisfy the constraint andO(Λ) = f(σ,Ω). f(x)
represents the fuzzy correlation function. Λ is inversely proportional
to σ, so as to Ω. The complexity of calculating the cost increment
rate is O(2). The complexity of updating the cost increment rate is
O(1). The complexity of calculating the substation power is O(1).
Therefore, the total computation complexity of the delay-aware
consensus algorithm is O(4Λ).

Totally, the computation complexity of the proposed algorithm
is O(hmaxS(v+ 7) + 4Λ).

4.4.2 Convergence analysis
In the proposed delay-aware consensus algorithm, we introduce

the PD controller to accelerate convergence. The convergence of this
algorithm is related to the delay. When the delay is τ ⩾ τconmax, the
algorithm cannot reach convergence. The detailed derivation of the
convergence analysis and the introduction of τconmax can be found in
Chen and Zhao (2018).
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TABLE 3 Constraints of dispatch power in VPP 1.

Substation number PDG
k,l (t)(kW) PSTO

k,l (t)(kW) PIL
k,l(t)(kW) Pgas

k,l (t)(kW) Pheat
k,l (t)(kW)

1 [100, 300] [50, 120] — — [30, 150]

2 [90, 270] [20, 90] — [300, 1200] [60, 210]

3 — — [40, 90] — [40, 190]

TABLE 4 Constraints of dispatch power in VPP 2.

Substation number PDG
k,l (t)(kW) PSTO

k,l (t)(kW) PIL
k,l(t)(kW) Pgas

k,l (t)(kW) Pheat
k,l (t)(kW)

4 [150, 320] [55, 110] — — —

5 [210, 350] [70, 115] [20, 85] — —

TABLE 5 Constraints of dispatch power in VPP 3.

Substation number PDG
k,l (t)(kW) PSTO

k,l (t)(kW) PIL
k,l(t)(kW) Pgas

k,l (t)(kW) Pheat
k,l (t)(kW)

6 [100, 280] [40, 100] [40, 90] — —

7 [110, 300] [20, 130] — [100, 800] —

8 [80, 290] — [40, 80] — [50, 200]

5 Simulation result

To validate the effectiveness of the proposed algorithm, we use a
simulation model based on a modified IEEE 33-node distribution
grid system. Figure 4 illustrates the specific topological relations
of each VPP. There are three VPPs in the model, each containing
multiple substations. Each substation contains different quantities
of distributed generators, energy storage, interruptible loads, gas
turbines, and electric heating boilers.

We compare the proposed algorithm with three baselines, with
baseline 1 using the DDPG algorithm in the upper layer and
the traditional consensus algorithm in the lower layer, baseline
2 using the traditional ant colony algorithm in the upper layer
and the traditional consensus algorithm in the lower layer, and
baseline 3 using the particle swarm optimization algorithm in
the upper layer and the traditional consensus algorithm in the
lower layer. Compared with similar deep learning algorithms, the
DDPGalgorithmhas higher training efficiency (Zhang et al., 2023c).
Although the desired dispatching value is almost the same as
the theoretical optimal value, the real-time requirement of power
dispatching is ignored. Table 2 shows the simulation parameters
(Pasetti et al., 2018; Gough et al., 2022; Liang and Ma, 2022). The
power constraints of various resources in each substation are shown
in Tables 3–5.We simulate a 24-hour operation, optimizing dispatch
every hour, with a consensus iteration period of 0.1 s.

In Figure 5A, the distribution power grid loss versus time is
depicted for the mentioned algorithms. The figure reveals that
the proposed algorithm consistently produces lower losses in
comparison to the other three algorithms. Taking 4:00 as an
example, compared to baseline 1, baseline 2, and baseline 3, the

proposed algorithm reduces grid loss by 11.27%, 8.03%, and 3.96%,
respectively. The proposed algorithm can adjust the convergence
speed according to the delay, thereby reducing the dispatch delay
and leading to a decrease in distribution power grid loss.

Figure 5B shows the optimized dispatch process of the
mentioned algorithms at 16:00. At the beginning of the mentioned
algorithms, the total cost is rapidly decreasing. In the end, baseline
1 fluctuates within a certain range and can only achieve dynamic
convergence. Baseline 2, baseline 3, and the proposed algorithm
reach convergence after 88, 74, and 60 iterations, and their
total dispatch costs are $12,000, $9,700, and $7,000, respectively.
Compared with baseline 1, baseline 2, and baseline 3, the proposed
algorithm reduces the total dispatch cost by 94.38%, 71.42%, and
38.57%, respectively. The proposed algorithm exhibits the fastest
convergence speed due to the introduction of changing factors
in the ant colony algorithm and PD correction in the consensus
algorithm. The change factor and PD correction in the proposed
algorithm significantly accelerate the convergence speed.

Figure 6A shows the dispatch power of each substation within
VPP I at 16:00. At the beginning of the iteration, the power of
substation 1 and substation 3 increases rapidly and the power of
substation 2 decreases rapidly, and finally the resources of each
substation converge to a stable value. After the PD correction, the
convergence of the substations is significantly accelerated. Taking
substation 2 as an example, convergence was reached through
38 iterations in 3.8 s before PD correction, and convergence was
reached through 23 iterations in 2.3 s after PD correction.

Figure 6B shows the cost increment rate versus time for each
substation within VPP 1 at 16:00. The initial value of the cost
increment rate is different for each substation, with a higher initial
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FIGURE 5
Performance of the total dispatch cost and distribution power grid loss. (A) Distribution power grid losses. (B) Total dispatch costs.

value for substation 2 and lower initial values for substations 1 and
3. At the beginning of the iteration, the cost increment rate of each
substation area changes rapidly.The traditional consensus algorithm
reaches convergence for all substations after 55 iterations in 5.5 s.
The convergence speed is accelerated after the PD correction,
reaching convergence for 45 iterations in 4.5 s with a result of 21.42.

Figure 7A shows the simulation time to reach convergence
versus β when σ = 0.1 kW and Ω = 0.02$/kW. In the beginning,

increasing βwill strengthen PD correction.The algorithm converges
with larger fluctuations during each iteration, leading to a decrease
in convergence time.Theminimum time required for the simulation
to reach convergence is 276 ms. Continuously increasing the β will
lead to over-correction of PD, making it difficult for the algorithm
to converge due to continuous fluctuations, resulting in an extension
of convergence time. β has the shortest convergence time at a value
of 1.18.
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FIGURE 6
VPP internal optimization dispatch results. (A) Power distribution of
each substation within VPP 1. (B) Cost increment rate of each
substation in VPP 1.

Figure 7B shows the simulation time to reach convergence
versus σ and Ω when β = 1. To achieve convergence, two constraints
need to be satisfied simultaneously, so a small value for either
constraint will result in an extremely long convergence time. The
convergence time will only decrease when both σ and Ω are
large. When both parameter settings are large, the simulation time
required to achieve convergence is 276 ms.

Figure 7C shows the dispatch cost of the proposed algorithm
and traditional consensus algorithm at the lower layer under
different communication delays. When the communication delay
is low, the dispatch cost difference between the two algorithms is
not significant. When the delay is large, the proposed algorithm
has lower dispatch costs compared to the traditional consensus
algorithm. This is because the proposed algorithm introduces PD
correction, which can adjust the convergence speed according to
the communication delay. In the case of high communication delay,
the convergence speed of the proposed algorithm is faster, so the
dispatch cost is lower.

FIGURE 7
Simulation time to reach convergence versus various algorithm
parameters. (A) Simulation time to reach convergence versus β when σ
= 0.1 kW and Ω = 0.02k$/kW. (B) Simulation time to reach
convergence versus σ and Ω when β = 1. (C) The dispatch cost of the
lower layer under different communication delays.

Figure 8 shows the dispatch power of each substation in
different VPPs. It can be observed that the power fluctuation
of each substation is not large in the time range of 0–24 h. In
VPP1, the power of substations 1, 2, and 3 fluctuates around 130,
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FIGURE 8
Dispatch power in each VPP under the proposed algorithm. (A) VPP 1.
(B) VPP 2. (C) VPP 3.

280, and 190, respectively. In VPP2, the power of substations 4
and 5 fluctuates around 80 and 170, respectively. In VPP3, the
power of substations 6, 7, and 8 fluctuates around 230, 170, and
230, respectively.

6 Conclusion

This paper proposes a novel two-layer iterative energy dispatch
strategy formulti-energy flowVPPs in distribution power grids.The
upper layer sub-problem of multi-energy flow VPP energy dispatch
is tackled using an improved ant colony algorithm, while the lower
layer substation energy dispatch is addressed through a delay-
aware consensus algorithm. To enhance the convergence speed of
the delay-aware consensus algorithm and enable real-time energy
dispatch of the multi-energy flow VPP, a PD control mechanism
is integrated. Simulation results demonstrate that the proposed
algorithm significantly reduces the total dispatch cost by 61.11%
and 45.45% compared to the two baseline algorithms. Moreover,
the convergence speed is increased by 18.18% compared to the
traditional consensus algorithm after incorporating the PD control
mechanism. In the future, we plan to explore energy cooperative
dispatch between electric vehicles and multi-energy flow VPPs.
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configuration model for
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considering spatiotemporal
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As China gradually transitions towards a low-carbon energy structure, the proportion
of grid-connected new energy sources like wind and solar power continues to
increase. To ensure the safe and reliable operation of the power system while
meeting the capacity planning for future new energy installations, there is a need for
flexible resourceswith corresponding adjustment capabilities in the power system. In
response to this situation, this paper presents an optimization model for the
allocation of multiple types of flexible resources that takes into account
spatiotemporal response characteristics. Firstly, a flexibility evaluation model is
developed based on spatial and temporal response characteristics. Flexibility
evaluation indices, such as flexibility average deficit and flexibility coverage index,
are constructed. These indices are used for screening nodes with inadequate
flexibility in the power system and analyzing the flexibility adequacy at various
nodes. Next, the adjustment characteristics of multiple types of flexible resources
are analyzed, and a model for their adjustment capabilities is established. Finally, by
considering constraints based on time flexibility evaluation indices, a two-stage
optimization model for flexible resource allocation is constructed. This model
leverages the multiscale matching characteristics between flexibility resources
and the fluctuation patterns of new energy sources to guide the allocation of
flexible resources at nodes with insufficient flexibility. The effectiveness and
applicability of the proposed flexible resource allocation method are validated
using the IEEE 9-node system.

KEYWORDS

flexible resource, spatiotemporal response characteristics, flexibility evaluation, nodes
with insufficient flexibility, optimal allocation

1 Introduction

With the rise of the green and low-carbon concept and the continuous deepening of
energy transition, to reduce dependence on traditional fossil fuels and decrease carbon
emissions (Huang et al., 2023), and in response to the challenges of climate change, the grid
integration ratio of new energy sources such as wind and solar will continue to expand,
posing higher demands on the flexibility of the power system due to their randomness and
uncertainty (Turk et al., 2020).
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Currently, there have been numerous studies on the assessment
of flexibility in power systems with a high proportion of renewable
energy. Existing evaluation indicators and methods on flexibility
can be broadly categorized as deterministic and probabilistic. Yan
et al. conducted a practical framework study on the flexibility
evaluation of power systems at different time scales, considering
the uncertainty of renewable energy through the Monte Carlo
method (Yan et al., 2020). Lu et al. proposed a novel assessment
method based on the probability distribution of flexibility
abundance, capable of linearly reflecting the relationship between
flexibility shortage and renewable energy reduction (Lu et al., 2018).
Tang et al. proposed flexibility evaluation indicators from three
perspectives: intra-area supply-demand balance, intra-area power
flow distribution, and inter-area transmission capacity (Tang et al.,
2020). Stephen et al. introduced a novel metric using the concept of
inter-layer pipe bundling to assess the integrated flexibility of
natural gas and electricity (Clegg and Mancarella, 2016). Guo
et al. introduced a production simulation method using an
improved generalized generating function as a flexibility evaluation
tool and proposed a flexibility measurement method based on the
definition of flexibility and physicalmechanisms (Guo et al., 2020). The
aforementioned literature collectively indicates that the application of
flexibility evaluation methods and indicators can assist power system
planners and operators in gaining a better understanding of system
flexibility. It enables them to formulate corresponding strategies to
cope with the fluctuations in renewable energy output and load.
Simultaneously, the assessment of power system flexibility is a
multi-layered, multidimensional issue that requires comprehensive
consideration of spatial, temporal, and resource-related factors. The
traditional flexibility evaluation only analyzes from a single dimension
of time or space, without considering the temporal and spatial coupling
characteristics of the system, and the evaluation results deviate from
the reality. Therefore, it is necessary to conduct a refined evaluation
starting from the spatiotemporal characteristics of flexibility resources,
providing new insights for enhancing system flexibility and optimizing
resource allocation.

In terms of the optimization of flexibility resource allocation, due
to the large variability of flexibility resource regulation characteristics
at different scales, it is often necessary to consider how to complement
the allocation of different types of flexibility resources to meet the
different dimensions of the flexibility needs of the new power system.
Zhang et al. proposed a multi-flexibility resource collaborative
configuration optimization model, considering the Stackelberg
game relationship between the flexibility adjustment demands and
capabilities of different segments of the power system under various
fluctuation scenarios (Ting and Yunna, 2024). Ren et al.
comprehensively considered the economic, security, and flexibility
aspects of the system, establishing a dual-layer operational planning
joint optimization model for flexibility resources (Ren et al., 2020). Ji
et al. developed a mixed-integer linear programming model to
optimize the design and scheduling of hybrid energy systems,
utilizing rooftop photovoltaics and solid waste biomass to meet
electricity demands (Ji et al., 2022). Li et al. proposed a new
perspective on modeling and planning the flexibility resources at
multiple time scales in power systems with high penetration
of variable renewable energy. This approach transforms the
operational boundaries of flexibility resources into characteristic

domains (Li et al., 2022). Zhang et al. proposed a two-dimensional
mixed energy storage optimization configuration model for a novel
power system with the coupling of multiple flexible resources, aiming
to meet the diverse flexibility adjustment requirements at various
stages of the novel power system (Zhang et al., 2023). The models in
the aforementioned literature often comprehensively consider the
coupling of planning and operational aspects, leading to a complex
computational process. Existing literature typically plans operations
on a single time scale and does not consider grid flexibility at finer
time scales. At the same time, existing studies have not fully explored
how to optimize power system configuration while simultaneously
considering the economic and flexibility resource characteristics. This
optimization aims tomaximize the potential of flexible resources such
as solar-thermal power stations and energy storage.

In response to the aforementioned limitations, this paper
proposes a multi-type flexibility resource configuration
optimization model that takes into account spatiotemporal
response characteristics. Firstly, starting from the net load
demand and resource allocation status quo of each node, the
flexibility evaluation model based on spatial response
characteristics screens the flexibility-deficient nodes and
determines the specific location of the allocated flexibility
resources. Secondly, considering the multi-timescale fluctuation
characteristics of renewable energy/load, the flexibility evaluation
constraints based on the time response characteristics, and with the
objective of minimizing the investment and construction cost and
operation cost of flexibility resources, the optimization model for the
allocation of multiple types of flexibility resources is established.
Finally, the effectiveness of the configuration optimization model
proposed in this paper is verified by IEEE 9-node system simulation.

2 Spatiotemporal flexibility evaluation
model for power systems

2.1 Flexibility evaluation model based on
spatial response characteristics

To determine the optimal spatial locations for the configuration
of flexible resources, it is necessary to construct a flexibility
assessment model based on spatial response characteristics,
considering the net load demands and resource allocation status
at each node. Firstly, setting the evaluation time scale to 1 h, the
power system network structure, resource allocation status, and
predicted values of node net load are obtained. With the objective of
minimizing the total flexibility deficit in the system, an optimization
model for unit combination based on spatial response characteristics
is formulated, resulting in the baseline output scheme. The objective
function is shown in Formula (1).

minf � ∑T1

t�1
∑Nm

m

Pm
lack,t

∣∣∣∣ ∣∣∣∣ (1)

Where, Pm
lack,t represents the flexibility deficit at nodem at time t,

with a positive value indicating insufficient downward ramping
capability and a negative value indicating insufficient upward
ramping capability.
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Next, the average flexibility deficit within the time period is
calculated as the evaluation indicator to reflect the flexibility
deficiency at each node. This provides a reference for screening
nodes with insufficient flexibility. The function is shown in
Formula (2).

Pm
lack �

1
T1

∑T1

t�1
Pm
lack,t

∣∣∣∣ ∣∣∣∣ (2)

Where, Pm
lack represents the average flexibility deficit at node m.

The constraint conditions are as follows:

1) This paper assume that network losses are ignored and only
power balance is considered. The unit output scheduling at
each node in the region must meet the predicted net load
demand. The function is shown in Formula (3).

∑Nk

k�1
Pm
k,t + ∑

n∈Nm

Pmn,t � Pm
net,t + Pm

lack,t + Pm
ex,t (3)

Where, Pm
k,t represents the planned output of unit k at nodem at

time t, the unit types include all power generation resources and
flexibility resources within the system; Pm

net,t represents the net load
forecast value for node m at time t. Pmn,t represents the power
interaction between nodes m and n at time t. Pm

lack,t is the difference
between the load forecast and the wind power forecast; Pm

ex,t is the
outgoing power demand of node m at time t.

2) To prevent all units’ reserve output from concentrating on
meeting the flexibility requirements of a specific node, the
flexibility deficit at each node must satisfy an upper limit
constraint. The function is shown in Formula (4).

−Pm
lack,t ≤Pup

lack,max, P
m
lack,t ≤ 0

Pm
lack,t ≤Pdn

lack,max, P
m
lack,t > 0

{ (4)

Where, Pup
lack,max and Pdn

lack,max are the upper limit values of the
upward and downward flexibility deficits at each node.

3) The reserve output provided by each unit must satisfy an upper
limit constraint. The function is shown in Formula (5).

0≤Rm,up
k,t ≤ΔPk,m

0≤Rm,dn
k,t ≤ΔPk,m

{ (5)

Where, Rm,up
k,t and Rm,dn

k,t represent the upward and downward
reserve output that unit k under nodem can provide at time t; ΔPk,m

denotes the ramping rate of unit k under nod m.

4) The output of each unit needs to satisfy the constraints of
output upper and lower limits and ramping constraints. The
function is shown in Formula (6).

smk P
m
k,min ≤Pm

k,t + Rm,up
k,t ≤ smk P

m
k,max

smk P
m
k,min ≤Pm

k,t − Rm,dn
k,t ≤ smk P

m
k,max

−ΔPm
k ≤ Pm

k,t + Rm,up
k,t( ) − Pm

k,t−1 − Rm,dn
k,t−1( )≤ΔPm

k

⎧⎪⎪⎨⎪⎪⎩ (6)

Where, Pm
k,max and P

m
k,min represent the upper and lower limits of

the output of unit k under nodem; smk represents the operating state
of unit k under node m.

5) Power interaction between nodes is subject to network
constraints. The function is shown in Formula (7).

−Pmn,max <Pmn,t + Rup
mn,t <Pmn,max

−Pmn,max <Pmn,t + Rdown
mn,t <Pmn,max

{ (7)

Where, Pmn,max represents the upper limit of power interaction
between node m and node n; Rup

mn,t and Rdown
mn,t represent the upward

and downward reserves that nodesm and n can interact with at time t.

6) Each node needs to satisfy the spinning reserve constraint at a
1-h time scale. The function is shown in Formula (8).

Rm
up,t � ∑Nk

k�1
Rm,up
k,t + ∑

n∈Nm

Rup
mn,t ≥ αup

wppPm
wpp,t + αup

pvPm
pv,t + αuploadP

m
load,t

Rm
dn,t � ∑Nk

k�1
Rm,dn
k,t + ∑

n∈Nm

Rdn
mn,t ≥ αdnwppPm

wpp,t + αdnpvP
m
pv,t + αdn

loadP
m
load,t

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(8)

Where, Rm
up,t and Rm

dn,t are the total upward/downward spinning
reserve output of node m at time t; αupwpp, αdnwpp, α

up
pv , αdnpv, α

up
load, α

dn
load

are the upward/downward spinning reserve coefficients for wind
power, photovoltaic, and load.

2.2 Flexibility evaluation model based on
temporal response characteristics

To determine the capacity of flexibility resources with different
response characteristics, it is necessary to build a flexibility assessment
model based on time response characteristics. This model should
consider the multi-time scale fluctuation characteristics of new
energy/load and the benchmark output schemes obtained in Section
2.2. The evaluation time scales are set at 1 h and 15 min.

Assuming the flexibility demand generated by the fluctuation of
new energy/load (upward or downward) in the scheduling period
for node m is represented by FRm,t, which can be obtained from the
stochastic fluctuation characteristics of new energy/load. Then,
based on the existing flexibility resources at node m and the
benchmark output scheme of the thermal power unit,
considering the short-time scale response characteristics of
flexibility resources, the ability of node m to provide (upward or
downward) flexibility regulation within the scheduling period,
denoted as FSm,t, is calculated. The details are as follows: The
function is shown in Formula (9).

FRup
m,t � FRdn

m,t � ξloadP
m
load,t + ξwppP

m
wpp,t + ξpvP

m
pv,t

FSupm,t � min Pm
max − Pm

t ,ΔPm
t ,

Emax
m − Em

min( )/ηdis − Pm
t Δt

Δt
( )

FSdnm,t � min Pm
t − Pm

min ,ΔPm
t ,

Em
t − Em

min( )/ηch + Pm
t Δt

Δt
( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(9)

Where, ξload, ξwpp, and ξpv are the random fluctuation error
coefficients for load, wind power, and photovoltaic; Pm

max and Pm
min

are the maximum and minimum values of the operating power;
Em
max andEm

min are themaximum andminimum values of the energy
storage capacity; ηdis and ηch are the charge and discharge efficiency;
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The third term in the calculation formula of FSupm,t and FSdnm,t only
considers energy storage flexibility resources.

Then, define the Flexibility Coverage Index (FCI), which is the ratio
of the flexibility regulation capacity to the flexibility demand of the
power system during the scheduling period. This index is used to reflect
the flexibility abundance of each flexibility-deficient node at different
time levels. The specific calculation method for the Flexibility Coverage
Index is shown in Figure 1. The specific calculation method for the
Flexibility Coverage Index is the area formed by the envelope of the
system’s flexibility regulation capacity divided by the area formed by the
envelope of the system’s flexibility demand, as shown in Formula (10).

FCIm � ∫t

t−1FSm,t

∫t

t−1FRm,t

(10)

Where, FCIm represents the Flexibility Coverage Index.
Finally, the minimum value of the appropriate flexibility coverage

index according to different risk preferences will be selected as the
evaluation index of temporal flexibility, and it will be added as a
constraint to the flexibility resource allocation optimization model.

3 Modeling of multi-type flexibility
resource adjustment capacity

The considered flexibility resources in this study include thermal
power units, solar-thermal power stations, and energy storage devices
such as hydrogen storage, electrochemical storage, and pumped storage.

3.1 Thermal power units

Conventional thermal power units typically exhibit stable
operating characteristics, providing continuous power output and
meeting power demand over long time scales. Their advantages
become more apparent, especially when dealing with significant
fluctuations or long-term demands within the system. However,
conventional thermal power units cannot achieve frequent charging
and discharging in a short time, resulting in a slower response speed
and insufficient flexibility when handling high-frequency but low-
amplitude random fluctuations. The ramping performance, as well
as the upper and lower limits of instantaneous output and output
power, of conventional thermal power units affect their flexibility
regulation capacity. Therefore, the flexibility of conventional
thermal power plants on a time scale of Δt is as follows. The
function is shown in Formula (11), (12).

F+
G,Δt � min PG,max − PG,t, R · Δt( ) (11)

F−
G,Δt � min PG,t − PG,min, R · Δt( ) (12)

Where, PG,max, PG,min, and PG,t represent the maximum,
minimum, and current output of the unit at time t, respectively;
R is the ramping rate of the unit.

3.2 Solar-thermal power station

Solar-Thermal Power Stations typically have controllable
thermal energy release characteristics, allowing adjustment of the

energy release rate and duration according to the power system’s
needs. This controllability enables them to flexibly participate in the
power system’s response scheduling, providing power according to
demand. Their flexibility for upward and downward adjustments on
a time scale is shown in formula (13), (14).

F+
csp,Δt � min P+

csp,max,
Et − Emin + PSF−HTF·Δt( )ηRC

Δt
( ) (13)

F−
csp,Δt � min P−

csp,max,
Emax − Et − PSF−HTF·Δt( )ηEH

Δt
( ) (14)

Where, P+
csp,max and P−

csp,max are the maximum power
generation and heat storage power of the solar-thermal power
station, respectively; Et, Emax, and Emin are the upper and lower
limits of the thermal storage capacity of the solar-thermal power
station at time t; PSF−HTF is the thermal power collected by the
solar field.

3.3 Energy storage devices

Energy storage devices not only serve as responsive power
sources with excellent performance to meet large-scale, system-
level applications on the grid side, but also provide bidirectional
regulation flexibility by frequently converting electrical energy in a
short time. This effectively handles high-frequency but low-
amplitude random fluctuations.

Its upward and downward flexibility at time scale Δt is shown in
formula (15), (16):

F+
es,Δt � min Pd

es,max − Pes,t,
SOCt − SOCmin( )ηdis − Pes,tΔt)

Δt
( ) (15)

F+
es,Δt � min Pc

es,max + Pes,t,
SOCmax − SOCt( )/ηch + Pes,tΔt)

Δt
( )

(16)
Where, Pd

es, max and Pc
es,max are the maximum discharge and

charge power of the energy storage device, respectively; Pes,t is the
power at time t, positive for discharge and negative for charge; SOCt,
SOCmax, and SOCmin are the upper and lower limits of the stored
equivalent energy and device capacity at time t, respectively; ηdis and
ηch are the efficiency of discharge and charge.

The paper considers pumped storage power stations,
hydrogen energy storage systems, and electrochemical energy
storage as the main components for configuring energy storage
devices. Among them, pumped storage units have strong capacity
benefits, fast response rates, and deep response capabilities,
effectively addressing peak shaving and valley filling of the net
load; hydrogen energy storage systems store electrical energy on a
large scale using hydrogen as a medium, which can also achieve
peak shaving and valley filling of the net load. At the same time,
they can respond rapidly to fluctuations in the net load. However,
the current stage has a relatively low energy conversion efficiency.
Electrochemical energy storage has an extremely high response
rate, can smooth out high-frequency random fluctuations in the
net load, but its installed capacity is limited by technical
characteristics and cost factors, leading to limited
response depth.
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4 Two-stage optimization model for
flexible resource configuration

4.1 Two-stage configuration optimization
framework system

The paper first filters out nodes with insufficient flexibility based
on spatial flexibility assessment indicators. Secondly, considering the
constraints of temporal flexibility assessment indicators and the
adjustment characteristics of flexibility resources at different time
scales, different types of flexibility resources are phased in to meet
the flexibility requirements of the power system at both long and short
time scales. In the first phase, the focus is on configuring flexibility
resources such as pumped storage power stations, solar-thermal power
stations, and hydrogen energy storage systems with high adjustment
depth and long duration to meet the requirements of long-time scale
climbing or peak shaving and valley filling. In the second phase, the
emphasis is on flexibility resources with extremely fast response rates,
such as electrochemical energy storage, to cope with real-time high-
frequency fluctuations in new energy and load. The two-stage
framework for flexible resource allocation is shown in Figure 2.

4.2 Two-stage configuration optimization
model for flexibility resource

4.2.1 First stage configuration optimization model
In Stage 1, with a time scale of 1 h, it is mainly used to meet the

forecast net load demand of each node, ensuring the full
consumption of new energy. The objective function is to
minimize the investment construction cost and operating cost.
The function is shown in Formula (17).

minCm
cb,total � Cm

cb,inv + Cm
cb,cpe

Cm
cb,inv � ∑

i∈Ncb

r 1 + r( )yi
1 + r( )yi − 1

cPcb,iP
m
cb,i, max + cecb,iE

m
cb,i, max( )

Cm
cb,cpe � ∑T1

i�1
∑
i∈Ncb

copecb,iP
m
cb,i,t + ∑

k∈Ng

Cm
g,k,t

⎛⎝ ⎞⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(17)

Where, Cm
cb,total is the total cost of flexibility resources for node

m; Cm
cb,inv and Cm

cb,cpe are the investment construction cost and
operating cost of flexibility resources for node m; Ncb and Ng

are the sets of flexibility resources and conventional thermal power
units configured in Stage 1; r is the discount rate; yi is the lifespan of
the ith resource; cPcb,i and cecb,i are the investment construction costs
per unit rated power and unit storage capacity of the ith resource;
Pm
cb,i, max and E

m
cb,i, max are the rated power and storage capacity of the

ith resource at nodem; copecb,i is the cost of per unit operating power for
the ith resource; Pm

cb,i,t is the operating power of the ith resource at
node m in the timeslot t; Cm

g,k,t is the operating cost of the ith
conventional thermal power unit at node m in the timeslot k.

Constraint conditions are as follows.

1) After configuring flexibility resources, it is necessary to meet
the net load demands of nodes and ensure that no flexibility
shortfall occurs. The function is shown in Formula (18).

∑
i∈Ncb

Pm
cb,i,t + ∑

k∈Ng

Pm
g,k,t + ∑

n∈Nm

Pmn,t � Pm
net,t + Pm

ex,t (18)

Where, Pm
cb,i,t and P

m
g,k,t are the operating powers of the flexibility

resource i and conventional thermal power unit k at node m in
timeslot t during the first stage of configuration.

2) Pumped storage power stations and hydrogen energy storage
systems, as energy storage devices, also need to satisfy the energy
storage capacity constraints. The function is shown in Formula (19).

Em
cb,i,t � Em

cb,i,t−1 + ηchcb,iP
m,ch
cb,i,tΔt −

Pm,dis
cb,i,t Δt
ηdiscb,i

0≤Em
cb,i,t ≤Em

cb,i, max

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (19)

Where, Em
cb,i,t is the equivalent energy stored by the flexibility

resource i at nodem at timeslot t; ηchcb,i and ηdiscb,i are the charging and
discharging efficiencies of the flexibility resource i; Pm,ch

cb,i,t and Pm,dis
cb,i,t

are the charging and discharging powers of the flexibility resource i
at node m at timeslot t. The function is shown in Formula (20).

Pm,ch
cb,i,t � −min Pm

cb,i,t, 0( )
Pm,dis
cb,i,t � max Pm

cb,i,t, 0( )
⎧⎨⎩ (20)

Additionally, it is necessary to consider the output upper and
lower limits, reserve output upper limits, ramping constraints, and
rotating reserve constraints of flexibility resources and existing
resources, which are not further elaborated here. The
transmission power and reserve output between nodes Pmn,t,
Rup
mn,t, R

down
mn,t are the result values obtained from the optimized

base output scenario in Section 2.2. Finally, Em
cb,i, max represents

the configuration results of various types of flexibility resources
obtained through optimization, and Pm

cb,i,t will be passed as a
parameter to the second-stage configuration optimization model.

4.2.2 Second stage configuration
optimization model

The short-time scale configuration optimization model for stage
2, based on the initial output plan, generates a baseline output plan
for a 15-min time scale. Subsequently, it optimizes the configuration
of units with fast regulation rates according to the fluctuation
characteristics of new energy and load. The objective function is
to minimize the total investment and operating costs, and it is
represented in formula (21).

minCm
fm,total � Cm

fm,inv + Cm
fm,ope

Cm
fm,inv � ∑

i∈Nfm

r 1 + r( )yj
1 + r( )yj − 1

cPfm,jP
m
fm,j,max + cefm,jE

m
fm,j,max( )

Cm
fm,ope � ∑T2

t�1
∑

j∈Nfm

copefm,jP
m
fm,j,t + ∑

i∈Ncb

copecb,iΔPm
cb,i,t

⎛⎝ ⎞⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(21)

Where, Cm
fm,total is the total cost of flexibility resources for node

m; Cm
fm,inv and Cm

fm,ope are the investment construction cost and
operating cost of flexibility resources for node m; Nfm is the set of
electrochemical energy storage units; other variables are consistent
with the flexibility resource configuration optimization model in
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Stage 1, which is not repeated here. Pm
fm,j,max and Em

fm,j,max are the
optimized configuration results of electrochemical energy storage units.

Constraint conditions are as follows.

1) Some of the flexibility resources configured in Stage 1 can
also provide a certain degree of regulation capability, and
both need to meet the flexibility requirements at a 15-min
time scale, it is represented in formula (22).

∑
j∈Nfm

Pm
fm,j,t + ∑

i∈Ncb

ΔPm
cb,i,t � δnetm,t

ΔPm
cb,i,t � Pm

cb,i,t − Pm
cb,i,t−1

⎧⎪⎨⎪⎩ (22)

Where, Pm
fm,j,t represents the operating power of the flexibility

resource j configured at node m in Stage 2 at time t; ΔPm
cb,i,t

represents the power variation of the flexibility resource i
configured at node m in Stage 1 at time t, which still needs to
satisfy the output upper limit constraint and ramping constraint of
the flexibility resource. Pumped storage and hydrogen storage
systems also need to meet the energy storage capacity constraint,
which is not elaborated here; δnetm,t represents the fluctuation
characteristics of the net load at a 15-min time scale, which can
be derived from historical data for convenience.

2) The flexibility adjustment capability of each node at a 15-min
time scale needs to be greater than the stochastic fluctuations
of wind power, photovoltaics, and load at the same time scale.
The function is shown in Formula (23).

Fm
up,t � ∑

j∈Nfm

Fm,up
fm,j,t + ∑

i∈Ncb

Fm,up
cb,i,t ≥ βwppP

m
wpp,t + βpvP

m
pv,t + βloadP

m
load,t

Fm
dn,t � ∑

j∈Nfm

Fm,dn
fm,j,t + ∑

i∈Ncb

Fm,dn
cb,i,t ≥ βwppP

m
wpp,t + βpvP

m
pv,t + βloadP

m
load,t

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(23)

Where, Fm
up,t and F

m
dn,t represent the upward/downward flexibility

adjustment capabilities of node m at time t; Fm,up
fm,j,t and Fm,dn

fm,j,t

represent the upward/downward flexibility adjustment capabilities
of flexibility resource j configured in Stage 2 at time t; Fm,up

cb,i,t and F
m,dn
cb,i,t

represent the upward/downward flexibility adjustment capabilities of
flexibility resource i configured in Stage 1 at time t; βwpp, βpv and βload
are the random fluctuation coefficients of wind power, photovoltaics,
and load at a 15-min time scale, respectively.

3) Flexibility resources need to satisfy output upper and lower
limits, ramping constraints, and electrochemical energy
storage also needs to consider energy storage capacity
constraints; this is not reiterated here.

4) In order to enhance the system’s ability to cope with the
random fluctuations of new energy/load, the optimization
models for flexibility resource configuration in both stages
need to satisfy flexibility indicator constraints. The function is
shown in Formula (24).

FCIupm,s ≥ εupFIC,s
FCIdownm,s ≥ εdownFIC,s

{ , s ∈ S (24)

Where, S represents the set of considered time scales, including
the 1-h time scale and the 15-min time scale; εupFIC,s and ε

down
FIC,s are the

thresholds set for the flexibility coverage index at scale s, which is

typically chosen between one and 1.2. The specific values of the time
flexibility indicator thresholds depend on the decision-maker’s
requirements for system reliability and flexibility.

4.3 Solution procedure

The method for configuring multiple types of flexibility
resources, considering spatiotemporal response characteristics, is
illustrated in Figure 3. The steps for solving are as follows:

1) Obtain information about the system’s network structure,
current resource configuration, node net load forecasts,
resource technical parameters, etc.

2) Utilize the flexibility evaluation model based on spatial
response characteristics to generate baseline output plans
for each node. Calculate the spatial flexibility indicators for
each node to determine the node type. If the indicator value for
a node is less than the threshold, it is classified as a node with
sufficient flexibility; otherwise, it is classified as a node with
insufficient flexibility.

3) Based on the multiscale matching characteristics of multiple
types of flexibility resources and the fluctuation characteristics
of new energy sources, construct an optimization model for
flexibility resource capacity configuration. Use the flexibility
evaluation model based on temporal response characteristics
to guide the formation of flexibility resource configuration
schemes that consider time flexibility constraints.

5 Example analysis

5.1 Example data

In order to simplify the computational complexity and save the
simulation computation time, this paper adopts the IEEE 9-node
network system shown in Figure 4 for the simulation analysis, and

FIGURE 1
Illustration of flexibility coverage index
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performs the arithmetic simulation on matlab R2022a, and calls the
cplex solver through the yalmip toolbox to solve the model, so as to
validate the validity and applicability of the flexibility resource
allocation method proposed in this paper. Theoretically, the
number of nodes can be expanded as needed to accommodate
larger systems. In this case, the data for the whole year is scaled
by a suitable ratio to obtain the data of wind power output,

photovoltaic output and load level at each node for the whole
year of 365 × 24 h. Due to the extremely uneven distribution of
energy resources and energy demand market in China, the system
considers the situation of power transmission. In order to give full
play to the renewable energy supply potential in the region, a larger
regional power outflow demand is set. The power outgoing demand
in one dispatching cycle is shown in Figure 5.

FIGURE 2
Two-stage framework for flexible resource allocation.

FIGURE 3
Flowchart of flexible resource configuration steps.
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In addition, the current installed capacity of new energy
sources and the configuration status of flexibility resources for
each node are presented in Table 1. Currently, only thermal

power units and hydropower units are used for flexibility
adjustment. Since Nodes 4, 8, and 9 do not have hydropower
units, it is assumed in this paper that these nodes have relatively
scarce water resources and cannot configure pumped storage
units. The cost parameters for different types of flexibility
resources are outlined in Table 2.

5.2 Example result

This paper mainly considers four types of flexibility
resources: solar-thermal, pumped storage, hydrogen storage
systems, and electrochemical energy storage. Solar-thermal,
pumped storage, and hydrogen storage systems are considered
as the initial stage configuration flexibility resources, while
electrochemical energy storage is considered as the adjustment
stage configuration flexibility resource.

FIGURE 4
IEEE 9-node network diagram.

FIGURE 5
Electricity export demand chart.

TABLE 1 Current status of new energy installations and flexible resource allocation at each node.

Node Wind power installed
Capacity/MW

Photovoltaic installed
Capacity/MW

Thermal power installed
Capacity/MW

Hydroelectric installed
Capacity/MW

1 0 50 10 120

2 0 150 25 160

3 50 100 20 150

4 200 50 30 0

5 0 200 20 0

6 0 200 10 180

7 100 100 20 0

8 200 100 15 200

9 200 100 10 200
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Firstly, using the flexibility assessment model based on spatial
response characteristics in Section 1.2, the current flexibility deficits
for each node are obtained, and nodes with insufficient flexibility are
identified. The flexibility deficits in each time period of the
scheduling cycle are shown in Figure 5. The mutual support of
electrical energy and flexibility between nodes is illustrated in
Figure 6.

Combining Figure 6 and Figure 7, it is evident that there is no
upward flexibility deficit in the system. However, all nodes except
Node four experience downward flexibility deficits, concentrated in
the time period from 10 to 14. Nodes such as 3, 8, and 9 have
abundant hydroelectric resources, resulting in surplus flexibility
adjustment capabilities. These nodes will provide some upward
and downward reserves through regional power grid support for

other nodes. Based on this, the average flexibility deficit and spatial
flexibility index for each node are calculated, with results presented
in Table 3.

Assuming the threshold for the average flexibility deficit at each
node is set to 2 MW/h, nodes with insufficient flexibility, namely, 2,
5, 6, 7, 8, and 9, are filtered. Subsequently, a two-stage configuration
optimization model is employed to allocate the required types of
flexibility resources for each node. The flexibility coverage index
thresholds for Stage 1 and Stage 2 of the flexibility resource
allocation optimization model are set to 1.05 and 1.1,
respectively. The optimized flexibility resource allocation results
for each node are presented in Figure 8, and the corresponding
investment and construction costs as well as operating costs are
detailed in Table 4.

TABLE 2 Cost parameters for various types of flexible resources.

Type/Parameter Lifecycle
(Years)

Unit rated power
investment cost
(104 CNY/MW)

Unit energy storage capacity
investment cost (104 CNY/MW)

Unit operating power
operating Cost/MW)

Hydrogen Energy
Storage System

10 200 60 200

Pumped Storage Power
Station

50 600 84 120

Concentrated Solar
Power Station

30 300 0 150

Electrochemical Energy
Storage

5 165 127 80

FIGURE 6
Flexibility deficit chart for each node within the scheduling period.
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From Figure 8, it can be observed that due to the ability of
hydrogen storage systems and pumped storage power stations to
store a large amount of electrical energy while also considering
economic factors, when the flexibility deficit is significant, nodes

will prioritize the configuration of pumped storage power
stations. Nodes that cannot configure pumped storage power
stations will choose to configure hydrogen storage systems.
Although solar-thermal power stations have a certain degree

FIGURE 7
Electricity and flexibility transfer diagram among nodes.

TABLE 3 Average flexibility deficit across nodes.

Indicator/Node 1 2 3 4 5 6 7 8 9

Pm
lack(MW/h) 1.91 2.08 1.49 0 6.04 2.08 3.42 2.08 4.17

FIGURE 8
Optimization results for flexible resource allocation at each node.
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of flexibility, they are still limited by sunlight conditions.
Therefore, their regulation capabilities are affected during
nighttime or cloudy weather, making them somewhat limited,
with smaller configuration capacities at each node. Additionally,
to mitigate the stochastic fluctuations of net load on shorter time
scales, nodes will configure a certain capacity of electrochemical

energy storage, and the configuration capacity will increase with
the increase in the installed capacity of renewable energy sources
in the region where the node is located.

Next, the flexibility coverage index threshold is set to 1, 1.05, 1.1,
1.15, and 1.2, respectively. The total investment and construction
costs, as well as operating costs, for configuring electrochemical

TABLE 4 Investment and operating costs for each node.

Node\cost Total Cost (104 CNY) Investment and construction Cost (104 CNY) Operating Cost (104 CNY)

1 0 0 0

2 16057.96 2775.19 13282.77

3 0 0 0

4 0 0 0

5 8037.12 4295.99 3741.13

6 11834.24 4689.42 7144.82

7 7350.75 3422.61 3928.14

8 22455.1 6232.61 16222.49

9 19834.91 5568.35 14266.56

TABLE 5 Total investment and operating costs for node system in stage 2.

Threshold/Cost Total Cost (104 CNY) Investment and construction Cost (104 CNY) Total operating Cost (104 CNY)

1 13682.12 6320.94 7361.17

1.05 13788.23 6427.06 7361.17

1.1 13894.35 6533.17 7361.17

1.15 14000.46 6639.29 7361.17

1.2 14106.58 6745.41 7361.17

FIGURE 9
Optimization results for flexible resource allocation at each node in stage 2 under different thresholds.
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energy storage at each node in Phase 2 are calculated and presented
in Table 5, and the configuration optimization results are shown in
Figure 9. The configuration results are analyzed based on the
threshold of 1.1, and the relative changes in the configured node
energy storage capacity are depicted in Figure 10.

From Table 5, it can be observed that with the increase in the
flexibility coverage index threshold, the total investment and
construction costs continuously increase, while the total
operating costs remain constant. This is because, with the
increase in the threshold, the requirement for reserve resources
to better cope with the uncertainty of load and wind-solar output
increases, necessitating the expansion of reserve capacity, thus
increasing the overall construction costs. As for operating costs,
they are only related to the operating power of resources and the unit
operating cost, independent of changes in the configuration of
reserve capacity. Therefore, regardless of how the configuration is
altered, operating costs remain constant.

6 Conclusion

To enhance the safety and reliability of future renewable energy
power systems, this paper proposes a spatiotemporal response-
aware multi-type flexibility resource configuration optimization
model. Considering the regulating characteristics of various
flexibility resources, the paper optimizes the configuration of
flexibility resources in the power system to obtain an optimal
planning solution. Simulation results indicate:

1) Based on the set average flexibility deficit indicator method,
this paper conducts a spatial flexibility assessment, allowing
system operators or planners to concentrate resources and
attention on nodes that most require additional flexibility
resources. This targeted approach facilitates the allocation
of appropriate types of flexibility resources to specific nodes.

2) The two-stage configuration optimization model for flexibility
resource capacity proposed in this paper, by considering the
different regulation characteristics and mutual cooperation of
multiple types of flexibility resources, enables flexible decision-
making. This phased configuration of flexibility resources
helps the power system better accommodate and integrate
new energy, reducing dependence on traditional fossil fuels.

3) The proposed flexibility coverage index threshold in this paper
can effectively guide the flexibility resource allocation schemes
for nodes with insufficient flexibility. Additionally, as the
flexibility coverage index threshold increases, the
requirements for the capacity of flexibility resource
allocation increase, leading to an overall increase in
investment and construction costs.
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A multi-objective stochastic
optimization model for combined
heat and power virtual power
plant considering carbon
recycling and utilizing
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1State Grid Energy Research Institute Co., Ltd., Beijing, China, 2Economic and Technological Research
Institute of State Grid Qinghai Electric Power Company, Xining, Qinghai, China, 3School of Economics
and Management of North China Electric Power University, Beijing, China

In order to give full play to the energy supply potential of distributed energy
resources, this paper studies the scheduling optimization of CHP-VPP. First,
the CHP unit and various distributed energy sources are aggregated into VPP.
Carbon recycling and utilizing are realized through carbon capture and
power-to-gas devices. At the same time, carbon storage and hydrogen
storage devices are added to decouple carbon capture and P2G
procedures. Then, the risk of VPP real-time scheduling is quantified
through uncertainty scenario generation and CVaR. Finally, with the goals
of operating cost, carbon emission, and operation risk, a multi-objective
stochastic scheduling optimization model of VPP is constructed, and the
subjective and objective ensemble weighting method is used to solve the
problem. The example results show that the proposed method can boost the
wastage of wind and photovoltaic power, and also lower the carbon emissions
of VPPs.

KEYWORDS

virtual power plant (VPP), combinedheat and power (CHP), carbon capture, power to gas
(P2G), conditional value at risk (CVaR)

1 Introduction

The scale of distributed energy resources on the demand side has grown rapidly over the
years. Due to its high energy efficiency, less pollution, and strong flexibility, it will be the key
to alleviating China’s energy shortage. Aiming at the problems of small capacity, large
quantity and uneven distribution of distributed energy resources, virtual power plants
(VPP) use advanced communication technology to realize the aggregation of different
distributed energy sources, which can effectively play the spatiotemporal complementary
ability of various resources and fully tap the energy supply potential of distributed
energy resources.

From another perspective, multi-energy complementarity is the general trend of the
future development of the energy field. And electricity and heat as the two main forms of
user energy consumption, whose coupling degree will continue to deepen. In this context,
some scholars put forward the concept of the combined heat and power-virtual power plant
(CHP-VPP), aiming to realize the cooperative optimal scheduling of electricity and heat
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through electrothermal coupling equipment such as the combined
heat and power (CHP) units and electric boilers with the
advanced communication and control technology of virtual
power plants. At present, many scholars have studied the
combined heat and power virtual power plant. Yang H
studied cogeneration virtual power plants that include
thermal power plants, wind farms, photovoltaic power plants,
and electric boilers (Yang et al., 2024). Basu M integrated
consideration of electrical, thermal, and cold requirements,
improve the flexibility and economy of the system (Basu,
2023). Feng Y studied the virtual power plant coupling
multiple resources of electricity, heat and gas to reduce the
cost of the system (Feng et al., 2023). Some scholars have
installed heat storage tanks to absorb wind power in
thermoelectric joint virtual power plants and established a
VPP dispatching optimization algorithm with the purpose of
maximizing economic benefits (Schulz et al., 2005; Xia et al.,
2016; Nazari-Heris et al., 2018). The above literature only
focuses on the economic benefits of VPP, but in the context
of the “Dual carbon” goal, carbon emissions will be a key
indicator of optimal scheduling of virtual power plants. How
to realize low carbon operation of VPP while giving full play to
the potential of VPP energy supply is the main issue in the field
of VPP research.

In the above context, the progress of carbon capture and Power-
to-gas (P2G) technology provides an effective way for the green
development of VPP. Tan C studied carbon capture units, which
promoted the consumption of electricity from virtual power plants,
and made the carbon emission reduction effect more significant
(Tan et al., 2021). Ju L studied power-to-gas devices to absorb excess
wind and solar power generation and convert CO2 into CH4,
effectively reducing the carbon emissions of VPP (Ju et al., 2019).
Babaee S studied CO2 recycling through Gas-power Plant Carbon
Capture (GPPCC) and P2G (Babaee and Loughlin, 2018). Zhu C
studied a carbon storage device to decouple the capture and
treatment process of CO2 (Zhu et al., 2023), and Wang C studied
a hydrogen storage device to decouple the production and
consumption process of H2 (Wang et al., 2024). The above
literature does not consider the influence of the coupling
operation mode of GPPCC and P2G on the degree of carbon
cycling. However, the carbon storage device can decouple the
CO2 capture and treatment process (Smit et al., 2014), and the
hydrogen storage device can decouple the H2 production and
consumption process (Gorre et al., 2020). In addition, many
scholars ignore the uncertainties of renewable energy when they
study the reduction of carbon emissions by VPP. Therefore, in this
paper, the above characteristics of carbon storage device and
hydrogen storage device are used to flexibly control the two gas
raw materials required for methanation process. The purpose of
renewable energy time shift is realized, and the degree of carbon
recycling of GPPCC and P2G is improved. At the same time, under
the premise of improving the economy of the system, the carbon
emission reduction potential is maximized. Moreover, uncertainty
processing methods such as scenario generation (SG) and
conditional value at risk (CVaR) theory are introduced to enable
VPP to deal with the volatilities of scenery while reducing
carbon emission.

In response to the above problems, this paper uses proposes
an optimal dispatching method for a combined heat and power
VPP that considers carbon capture and electricity-to-gas
conversion. The CHP unit and various distributed energy
sources on the user side are aggregated into CHP-VPP. Then,
GPPCC and P2G are used to realize carbon recycling, and the
carbon and hydrogen storage devices are used to decouple the
carbon capture and water electrolysis process, at the same time,
the time shift of renewable energy power is realized. In addition,
SG and CVaR theory are used to quantify the risk of VPP real-
time scheduling. Finally, taking operation cost, carbon emission,
and operation risk as optimization objectives, a virtual power
plant multi-objective stochastic dispatching optimization model
is constructed. The comparison between this paper and published
studies is shown in Table 1.

2 Structure and operating model of
virtual power plant

In Section 2 of this paper, the material or energy input and
output models of components of virtual power plant are introduced,
aiming at clarifying the energy or material flow relationship between
components.

2.1 Structure of virtual power plant

The combined heat and power virtual power plant mainly
includes a distributed electrical/thermal output module and a
carbon recycling module. Among them, the distributed
electrical/thermal output module includes distributed wind
power, distributed photovoltaic, electric boiler, and
controllable load. The carbon recycling module includes CHP
unit, GPPCC, P2G, and carbon storage and hydrogen storage
devices, which can recycle CO2 generated by the CHP unit.
Besides, GPPCC includes carbon capture and carbon storage.
The VPP dispatching center will predict the available energy
output in advance, obtain the operating status of each unit, and
formulate an electric heating cooperative dispatching plan for
VPP. In addition, VPPs can interact with power grids to fill
power supply gaps or sell surplus power. The energy or material
flow relationships between the components of VPP is shown
in Figure 1.

2.2 Operating model of virtual power plant

In this paper, VPP mathematical model including CHP, P2G,
GPPCC and other components is established. In addition, a
multi-objective optimization model considering operational
cost, carbon emission and operational risk is constructed. By
solving the optimization model, the optimization objectives of
VPP such as reducing carbon emission, reducing operation cost
and optimizing power generation plan can be achieved, so as to
make the operation of power system more efficient, stable
and reliable.
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2.2.1 Distributed power/heat output module
Distributed electrical/thermal output module includes

distributed wind/Photovoltaic (PV), electric boilers, and
controllable loads.

(1) Distributed wind/PV

Based on the predicted wind power output, the VPP will develop
an output plan for the internally distributed wind power, which
satisfies the following relationships listed in Equation 1:

0≤gWPP,t ≤gf
WPP,t (1)

Where, gWPP,t and gf
WPP,t are the planned output and predicted

output of wind power at time t. The actual available output of wind
power is calculated by Equation 2:

gre
WPP,t � gf

WPP,t + Δgf
WPP,t (2)

Where, gre
WPP,t and Δgf

WPP,t are the actual output and forecast
error of wind power at time t. When the scale of wind power is
large and geographically distributed, the prediction error
can be considered to follow the normal distribution of (0, σWt ),
and the calculation method of σWt is as shown in Equation 3
(Higgins et al., 2014):

σWt � 1
5
gf
WPP,t + 1

50
WWPP (3)

Where, WWPP is the total installed cubage of wind turbines.
The modeling of distributed PV is consistent with that of

distributed wind power, and the possibility distribution function
of PV prediction error is referenced (De Giorgi et al., 2015).

TABLE 1 Comparing this work with recent research.

Ref VPP Uncertainty Uncertain modeling
methods

Electrical
output module

Thermal
output
module

Carbon
recycling
module

Wind PV

Xia et al. (2016) √ √ × × × ×

Nazari-Heris et al. (2018) √ √ × × × ×

Tan et al. (2021) √ × √ × × CVaR

Ju et al. (2019) √ × √ √ √ Ro

Babaee et al. (2020) √ × √ × × ×

Yang et al. (2024) √ √ √ √ √ CVaR

This work √ √ √ √ √ SG-CVaR

FIGURE 1
Energy flow of VPP.
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(2) Electric boilers

The electric boilers can supply heat to the systemwith the help of the
wind-wind output, and the relationship between the heat production
power heb,t and the power consumption power geb,t is as shown in
Equation 4:

heb,t � ωebgeb,t (4)
Where, ωeb is the electric heating efficiency of the electric boiler.

(3) Controllable loads

Customers can sign a contract with aVPP to increase their electricity
consumption during valley hours or reduce it during peak hours, and
receive certain compensation (Hao et al., 2023) as shown in Equation 5:

ΔLI,t � ∑NI

k�1
μuk,tΔLu

k,t + μdk,tΔLd
k,t( ) (5)

Where, ΔLI,t is the controllable load response quantity at time;
NI is the number of users; ΔLuk,t and ΔLdk,t contribute to the positive/
negative response provided by the k user; μuk,t and μdk,t represent the
state of the positive/negative response force and are 0–1 variables.

2.2.2 Carbon recycling and utilizing module
The carbon recycling module includes CHP unit, GPPCC, P2G,

and gas storage units.

(1) CHP unit

In this paper, the extraction type CHP unit is used to extract part
of steam from the two stages of the steam turbine as a heat source for
external heating, and its feasible region is represented as shown in
Equation 6 (Banadkouki, 2023; Zhang et al., 2024):

0≤PCHP ≤Ce
CHP, 0≤ ϕCHP ≤C

h
CHP

kmϕCHP ≤PCHP ≤Ce
CHP − kuCh

CHP

{ (6)

Where, PCHP is the power of CHP; Ce
CHP and Ch

CHP are rated
electric and thermal power of CHP unit, respectively; ϕCHP denotes
the thermal power of CHP; km and ku are minimum and maximum
thermoelectric ratio of CHP, respectively.

The CO2 produced and natural gas consumed by the unit are
shown in Equation 7 (Zhang et al., 2022):

QG,c,t � eGgG,t

VCH4 ,t �
3.6gG,t

ηGHCH4

⎧⎪⎪⎨⎪⎪⎩ (7)

Where, QG,c,t and VCH4 ,t are the mass of CO2 produced and the
volume of natural gas consumed, respectively; eG is carbon emission
intensity; gG,t is the total electrical power of CHP; ηG is the power
generation efficiency of CHP unit;HCH4 is the low calorific value of
natural gas; 3.6 is the unit conversion coefficient.

(2) GPPCC

In order to better control the operation of GPPCC, this paper
defines two indicators with reference to Ref. (Bassano et al., 2020):

flue gas diversion ratio λc,t and operation energy consumption gOP,t

which respectively represent the ratio of the flue gas flow rate
diverted into GPPCC to the total flue gas flow rate generated by
power generation and the variable energy consumption of GPPCC.
The flow direction of CO2 in GPPCC is as follows:

Qc,t � λc,tQG,c,t

Qc
c,t � ηcQc,t

Qs
c,t � QG,c,t − Qc

c,t

⎧⎪⎨⎪⎩ (8)

Where, Qc,t, Qc
c,t and Qs

c,t represent CO2 being processed,
successfully captured, and released into the atmosphere by
GPPCC, respectively; ηc is the constant representing the CO2

capture rate of GPPCC.
The energy consumption of GPPCC can be calculated as shown

in Equation 9:

gGPPCC,t � gA + gOP,t � gA + θceQc,t (9)
Where, gA is the fixed energy absorbed of carbon capture, which

can be regarded as a constant value due to its relatively small
proportion; θce is the power consumed per unit of CO2. For ease
of calculation, replace Qc

c,t with the volume Vc
c,t in the standard case

as shown in Equation 10.

Vc
c,t � Qc

c,t/ρc (10)

Where, ρc is the density of CO2 under the standard condition.
In addition, a carbon storage device is added to the GPPCC to

store part of the CO2, generated by the unit when the renewable
energy output is low, so as to realize the decoupling of carbon
capture and the electron-to-gas procedure. The relationship between
CO2 captured by GPPCC and CO2 consumed by P2G is as shown in
Equation 11:

Vc
c,t � Vin

c,t + Vc−m
c,t

Vm
c,t � Vout

c,t + Vc−m
c,t

{ (11)

Where, Vin
c,t、 Vout

c,t and Vc−m
c,t represent CO2 from GPPCC into

the carbon storage unit, from the carbon storage unit into P2G, and
directly from GPPCC into P2G, respectively; Vm

c,t is the total amount
consumed by P2G.

(3) P2G

P2G technology is mainly divided into two types: electric to
hydrogen and electric to natural gas. Electric to hydrogen is
electrolysis of water to generate hydrogen and oxygen.
Subsequently, water and methane are generated through Sabatier
catalytic reaction. Based on the idea of cascade utilization of energy,
the electric to gas system helps the consumption of renewable
energy, and the energy conversion efficiencies are 75%–85% and
75%–80%, respectively (Marzi et al., 2023). The energy conversion
procedure is shown as Equation 12:

VH2 ,t � 3.6ηH2
gH2 ,t/HH2

Vm
H2 ,t

� gm
CH4 ,t

/θmCH4

⎧⎨⎩ (12)

Where, VH2 ,t and Vm
H2 ,t

represent H2 produced by electrolytic
water and consumed by methanation, respectively; ηH2

is the
efficiency of converting electricity to hydrogen; HH2 is the
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calorific value of hydrogen; θmCH4
is the power consumption per unit

H2 of methanation consumption; gH2 ,t and gm
CH4 ,t

are the power
consumption of water electrolysis and methanation, respectively.

In addition, a hydrogen storage device is added to the P2G to
store excess H2 when the renewable energy output is high, thus
decoupling the electrolytic water andmethanation procedures, while
achieving the time shift of renewable energy power. The relationship
between H2 production by electrolytic water and H2 consumption by
methanation is as shown in Equation 13:

VH2 ,t � Vin
H2 ,t

+ Ve−m
H2 ,t

Vm
H2 ,t

� Vout
H2 ,t

+ Ve−m
H2 ,t

{ (13)

Where, Vin
H2 ,t

,Vout
H2 ,t

and Ve−m
H2 ,t

represent H2 from the electrolyzer
into the hydrogen storage unit, from the hydrogen storage unit into
the methane reactor, and directly from the electrolyzer into the
methane reactor at time t, respectively. Suppose Vm

CH4 ,t
represents

CH4 generated by P2G, then the ratio of Vm
C,t, V

m
H2 ,t

and Vm
CH4 ,t

is 1:
4:1.

(4) Gas storage devices

In this paper, both carbon storage devices and hydrogen storage
devices are considered, which are used to decouple carbon capture,
water electrolysis, and methanation procedures, maximize the
absorption of wind power generation, and improve the degree of
carbon recycling. In addition, the gas storage devices also require a
high compression energy consumption. The operation modeling of
the gas storage devices are shown as Equation 14:

Et � Et−1 + ηinV
in
t − Vout

t

ηout

gco,t � θcoVin
t

3.6ηco

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(14)

Where, Et represents the gas stored at the time t; Vin
t and Vout

t

represent the gas deposited and withdrawn at time t, respectively; ηin
and ηout are the discharging and charging efficiency of the gas
storage devices, respectively; gco,t is the compression energy
dissipation at the time t; θco represents the compression energy
consumption per unit gas; ηco indicates the working efficiency of the
compressor.

3 Multi-objective stochastic
dispatching optimization model of
virtual power plant

Section 3 introduces the scheduling optimization model of
virtual power plant. On the basis of the component model in
Section 2, the optimal value of the decision variable is obtained
through the objective function and some constraints.

3.1 Uncertainty scenario generation

This paper describes the uncertain factors of renewable energy
output through the generation of uncertainty scenarios. In order to
model the probability distribution of output power of fan and

photovoltaic, it is necessary to mine the information of historical
data to directly model the uncertainty of output power. Currently,
Latin hypercube sampling is the most common method for scene
generation (Zhang et al., 2023; Ju et al., 2024), but this method
ignores the correlation between the renewable energy output at
different times. Therefore, in order to take into account the
randomness and correlation of renewable energy output at all
times, this paper proposes a scenario generation method
considering the temporal correlation of wind power and PV
output. The steps of this method are as follows:

(1) First, the covariance matrix σ24×24 of the full-cycle wind
prediction error is constructed as shown in Equation 15:

σ ij � exp −i − j

ε
( ) (15)

Where, σ ij represents the covariance of time period i and time
period j; ε is the key parameter of covariance, which is used to
control the correlation strength.

(2) Z1×24 ~ N(0, σ24×24) multivariate normal distribution of the
full-cycle wind prediction error is constructed, and mvnrnd
function in Matlab is called to generateN samples randomly.

(3) According to the probability distribution function in Section
1.2.1, the sample values of each period are inversely
transformed to obtain the scenery prediction error, and
then the corresponding N scenery output scenarios are
calculated by Equation 2.

In order to reduce the amount of computation, this paper uses
k-means clustering to reduce scenes to n typical scenes.

3.2 Multi-objective conventional
dispatching optimization model

The objective functions of VPP conventional dispatching
optimization model include minimum operating cost and
minimum carbon emission.

(1) Minimum operating cost

The operating cost includes the power generation cost of CHP
unit CG, the maintenance and operation cost of various equipment
CM , the controllable load cost CDR and the income from the buying
and selling of electricity in the public grid IUG. The calculation
formula is shown in Equation 16.

minF1 � CG + CM + CDR − IUG (16)
The power generation cost of CHP units includes fuel

costs and start-up and shutdown costs, which are calculated as
Equation 17:

CG � ∑T
t�1

cCH4 VCH4 ,t − Vm
CH4 ,t

( )[ ] +∑T
t�1
cDT uc,t − uc,t−1

∣∣∣∣ ∣∣∣∣ (17)

Where, cCH4 is the expense of natural gas; cDT is the start-stop
cost; uc,t is the start-stop variables of CHP at time t.
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Operation and maintenance costs include the operating costs of
wind power, photovoltaic, GPPCC, P2G, and electric boilers, which
are calculated as Equation 18:

CM � ∑T
t�1

c1gWPP,t + c2gPV,t + c3gGPPCC,t + c4 gH2 ,t + gm
CH4 ,t

( ) + c5geb,t[ ]
(18)

Where, c1, c2, c3, c4 and c5 are the operating cost coefficients of
wind power, photovoltaic, GPPCC, P2G, and electric boilers
respectively.

Controllable load cost includes response output cost and
standby output cost (Hao et al., 2023), which are calculated as
Equation 19:

CDR � ∑24
t�1
∑NI

k�1
cuI,kΔLu

k,t + cdI,kΔLd
k,t + cuR,kR

u
k,t + cdR,kR

d
k,t( ) (19)

Where, the cost factor of cuI,k and c
d
I,k providing positive/negative

response power to the k user; Ru
k,t and Rd

k,t represent the positive/
negative spare capacity that can be provided by the k th user; cuR,k and
cdR,k provide positive/negative spare power cost factors for the
k the user.

The income from the buying and selling of electricity for the
public grid is calculated as Equation 20:

IUG � ∑T
t�1
cUG,tgUG,t (20)

Where, cUG,t is the electricity cost of the public grid; gUG,t is the
amount of electricity sold (purchased) via the VPP to public grids.

(2) Minimum carbon footprint

Considering that China is still dominated by thermal power
generation, this paper will also include the equivalent carbon
emissions of electricity purchased in the public grid into the
carbon emissions of VPP. The calculation formula is shown in
Equation 21.

minF2 � ∑T
t�1

Qs
c,t − ηUG min gUG,t, 0( )( ) (21)

Where, ηUG is the carbon emission coefficient ever unit of
electricity.

VPPs routine dispatching optimization model includes the
following constraints:

(1) Electrical/thermal power balance constraint

In order to achieve the electricity/heat supply and
demand balance of the VPP in each period, Equation 22 is
established:

gWPP,t + gPV,t + gGe,t + ΔLI,t � Le,t + gGPPCC,t

+gH2 ,t + gm
CH4 ,t

+ gco,t + geb,t + gUG,t

hG,t + heb,t � Lh,t

⎧⎪⎨⎪⎩ (22)

(2) CHP unit output constraint

In order to limit the thermal and electrical output of
CHP unit from exceeding its output range, Equation 23 is
established:

0≤ hG,i,t ≤ hG,i,max

sG,i,t max gG,i,min − ηeh,ihG,i,t , αihG,i,t + βi( )≤ gGe,i,t ≤ sG,i,t gG,i,max − ηeh,ihG,i,t( )
∑t+TS−1
w�t

1 − uc,w( )≥TS uc,t−1 − uc,t( )
∑t+TO−1

w�t
uc,w ≥TO uc,t − uc,t−1( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(23)

Where, hG,i,max is the utmost value of thermal output; gG,i,max

and gG,i,min are the greatest and least values of the total output; αi is
the elastic coefficient of electric power and thermal power; βi is a
constant; TS and TO are the minimum off/on time, respectively.
Please refer to reference (Hao et al., 2023) for the specific climbing
constraints of the unit.

(3) Controllable load constraint

In order to realize the reasonable transfer of controllable load,
the transferable range is set. Therefore, Equation 24 is
established:

μuk,tΔLu
k,t − μdk,tΔLd

k,t + Ru
k,t ≤ΔLk,max

μuk,tΔLu
k,t − μdk,tΔLd

k,t − Rd
k,t ≤ΔLk,max

{ (24)

Where, ΔLk,max and ΔLk,min are the maximum
positive/negative response forces that can be provided by the k
th user.

(4) Equipment operation constraint

Similarly, GPPCC, P2G and other units also need to set their
output ranges. Therefore, Equation 25 is established:

gk,min ≤gk,t ≤gk,max

−Δgk,d ≤gk,t − gk,t−1 ≤Δgk,u
{ (25)

Where, gk,min and gk,max are the least and greatest operating
power of type k equipment; Δgk,u and Δgk,d represent up/down
climbing capability.

(5) Gas storage device constraint

The decision maker needs to consider the capacity limit and
output range of the gas storage device, so Equation 26 is
established:

0≤Et ≤Emax

0≤Vin
t ≤ sint V

in
max

0≤Vout
t ≤ soutt V out

max

0≤ sint + soutt ≤ 1
E0 � E24

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(26)

Where, Emax is the utmost gas storage volume of the gas storage
devices; V in

max and V out
max are the maximum gas storage and venting

rates; sint and soutt are the status of gas storage and venting of gas
storage devices, respectively.
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The conventional VPP scheduling model also includes system
backup constraints, for details, please refer to Ref. (Zou
et al., 2023).

3.3 Multi-objective stochastic dispatching
optimization model

On the basis of value at risk (VaR), CVaR considers the risk
distribution beyond the confidence level, and can reflect the
maximum possible loss within the full probability interval of the
portfolio under the given confidence degree. Therefore, this paper
adopts CVaR theory to quantify the loss of load risk in real-time
VPP scheduling, and takes it as an optimization target to reflect the
operational risk of VPP, so as to cope with the incertitude of wind
power generations. The approximate calculation formula of CVaR is
as shown in Equation 27 (Ju et al., 2022):

F̂β x, α( ) � α + 1
N 1 − β( )∑

N

n�1
f x, yn( ) − α[ ]+ (27)

Where,f(x, y) is the loss function; x is the portfolio vector, yn is
the uncertainty scenario generated in Section 2.1; α and β represent
VaR values and confidence levels; [f(x, y) − α]+ is equivalent to
max(f(x, y) − α, 0).

The measurement index of risk is often related to load loss and
load loss duration (He et al., 2023), so this paper takes the loss
penalty cost Cens of VPP as the loss function, and the specific
calculation is as shown in Equation 28:

Cens � ∑T
t�1
cens,t ΔgWPP,t + ΔgPV,t − Ru

t( ) (28)

Where, ΔgWPP,t and ΔgPV,t are the deviation of the
actual power generation of the scenery; cens,t is the penalty
cost coefficient of loss of load; Ru

t is the uplink standby
capacity of VPP, which is mainly provided by the extraction
steam unit, and the insufficient part is provided by the
controllable load.

VPP multi-objective random dispatching optimization model is
as shown in Equation 29:

minF1 � CG + CM + CDR − IUG

minF2 � ∑T
t�1

Qs
c,t − ηUG min gUG,t, 0( )( )

minF3,β � α + 1
N 1 − β( )∑

N

k�1
Crisk G, gk( ) − α( )

(29)

s.t. Equation 22 – 26

This section considers the uncertainty of new energy
output, combined with the conventional VPP scheduling model,
and then constructs the VPP multi-objective random scheduling
optimization model. According to this idea, the decision maker can
make the optimal VPP unit scheduling scheme.

4 Solving method of multi-
objective model

In Section 4, according to the optimization model proposed in
Section 3, the solution method of the optimization model is
introduced.

FIGURE 2
Forecasting wind power, photovoltaic power, power load, and heating load in the next day.
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4.1 Objective function
dimensionality reduction

The three objective functions in this paper have different
orders of magnitude, so the reduced semi-gradient membership
function is used to de-dimensionalize. For the specific method,
please refer to reference (Xuan et al., 2021). Membership function
is as shown in Equation 30:

π Fi( ) �
0, Fi ≥Fi

max

Fi
max − Fi

Fi
max − Fi

min
, Fi

min ≤Fi ≤Fi
max

1, Fi ≤Fi
min

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(30)

Where, Fi is the value of the i TH objective function; Fi
min

and Fi
max are the least and greatest values of the

objective function.

4.2 Subjective and objective integration
weighting method

There are two kinds of weighting methods: subjective
weighting and objective weighting. The results of subjective
weighting depend heavily on the subjective knowledge of
experts. The results of objective weighting may not necessarily
represent the actual importance of the indicators (Song et al.,
2020). Neither subjective weighting method nor objective

weighting method can perfectly reflect the importance of each
objective function. Therefore, this paper chooses the analytic
hierarchy process (AHP) as the subjective weighting method and
the entropy weighting method as the objective weighting method.
An integrated subjective and objective weighting method is
proposed to assign weights to each optimization objective.
Specific calculations are as shown in Equation 31:

wi � ur
i v

1−r
i

∑3
i�1
ur
i v

1−r
i

, i � 1, 2, 3 (31)

Where, wi is the weighting obtained by assigning weight to
subjective and objective integration; vi and ui are the
weights obtained by analytic hierarchy procedure and entropy
weight method; r is the preference coefficient of decision makers
for subjective and objective factors, with the value
between 0 and 1.

4.3 Model solution

After the objective function is de-dimensional and weighted
by subjective and objective integration, Equation 29 can be
converted into the form of Equation 32, and the result of VPP
multi-objective scheduling optimization can be obtained by
solving it. In addition, the first item of Equation 8 needs to be
linearized.

TABLE 2 Weights of objectives in different cases.

Preference
coefficient\
scenario

Scenario 1 Scenario2 Scenario 3 Scenario4

F1 F2 F1 F2 F1 F2 F3 F1 F2 F3

0.1 0.65 0.35 0.66 0.34 0.53 0.31 0.16 0.53 0.30 0.17

0.2 0.63 0.37 0.65 0.35 0.51 0.32 0.17 0.52 0.30 0.18

0.3 0.60 0.40 0.64 0.36 0.50 0.33 0.17 0.51 0.31 0.19

0.4 0.58 0.42 0.63 0.37 0.49 0.34 0.18 0.50 0.31 0.20

0.5 0.56 0.44 0.62 0.38 0.47 0.34 0.18 0.49 0.31 0.21

0.6 0.53 0.47 0.61 0.39 0.46 0.35 0.18 0.48 0.31 0.22

0.7 0.51 0.49 0.59 0.41 0.45 0.36 0.19 0.46 0.31 0.23

0.8 0.49 0.51 0.58 0.42 0.44 0.37 0.19 0.45 0.31 0.24

0.9 0.46 0.54 0.57 0.43 0.42 0.38 0.20 0.44 0.31 0.25

TABLE 3 Optimization results of different cases under r = 0.1.

Scenario 1 Scenario 2 Scenario 3 Scenario 4

F1 F2 F1 F2 mcarbon F1 F2 F3 F1 F2 mcarbon F3

10433.0 8945.6 10465.0 8328.6 265.8 10068.4 8690.5 43.3 9884.1 8132.4 342.7 63.0
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minf � ∑3
i�1
wiπ Fi( )

s.t Equation 22 – 26.
(32)

5 Example analysis

5.1 Example data

For the purpose of this paper, the VPP of a certain place in China is
selected as the simulation object, VPP has two 0.8 MWCHP units with
a combined capacity of 1 MW for wind and 0.4 MW for PV, a capacity
of 0.15 MW for electric boilers, and a maximum response output of
0.03 MW for controllable loads. The penalty cost coefficient of loss of
load is 800 yuan/MW, the confidence is 0.8, and the power upper limit
of VPP interacting with the grid is set to 0.1 MW. Figure 2 shows the
predicted next-day wind power and electric heating load. It can be seen
that the scene generation method takes into account the randomness
and correlation of the output of the scenery at every moment, and is
more in line with the actual output of the scenery. In this paper,
examples are simulated onMatlabR2016a. The time spent in generating
and reducing uncertain scenes is about 5s, and the results can be
obtained within 15s for model solving.

5.2 Scenario setting

In order to analyze the carbon recycling capability of
GPPCC and P2G and the effectiveness of the uncertainty
coping method, the following four scenarios are set for
simulation analysis.

Scenario 1: Basic scenario. GPPCC and P2G were not
introduced, and the uncertainty coping method in this paper was
not adopted.

Scenario 2: Carbon recycling scenario. GPPCC and P2G
were introduced, but uncertainty coping methods were
not adopted.

Scenario 3: Risk avoidance scenario. The uncertainty
coping method was adopted, but GPPCC and P2G were not
introduced.

Scenario 4: Integrated scenario. Both GPPCC and
P2G are introduced, and uncertainty coping methods
are adopted.

5.3 Example result

Firstly, the entropy weight method and analytic hierarchy
procedure were used to calculate the weight of the objective
function under each scenario. Then, the sensitivity analysis of
decision-maker’s subjective and objective factor preference
coefficient is carried out, and the weight of subjective and
objective integration was calculated according to Equation 31, as
shown in Table 2.

It can be seen that when r gradually increases, the weight of
running cost F1 gradually decreases. In addition, the weight of
carbon emission F2 and risk cost F3 are gradually

increasing. This is because when r is small, the subjective
weight has more influence, and the subjective weighting
method pays more attention to the impact of operating costs

FIGURE 3
The difference between the optimization results of scenarios.
When r ∈ [0.1,0.9] and when r = 0.1. (A–C) preference coefficient r.
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on the system. It is worth pointing out that in Scenario 2-4, F1 is
the most weighted optimization target regardless of how r
changes. This also reflects the importance of running costs to
the entire system.

Table 3 shows the optimization results of scenarios when r =
0.1, and Figure 3 shows the difference between the optimization
results of scenarios when r ∈ [0.1,0.9] and when r = 0.1. In the
legend of Figure 3C, mcarbon refers to the amount of carbon

recycling. Combined with Table 3 and Figure 3, a comparative
analysis of each scenario is carried out: In Scenario 2, compared
with Scenario 1, the addition of carbon recycling devices increases
the overall cost slightly, but the carbon emissions decrease
significantly, by about 7%. In Scenario 3, compared with
Scenario 1, the uncertainty coping method proposed in this
paper reduces the overall cost by about 3.5%. In addition,
carbon emissions are also reduced, by about 3%. In

FIGURE 4
Objective values with different β in case 4.

FIGURE 5
Operating power of different units in case 2 and case 4.
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comparison with Scenario 2 and Scenario 3, the use of the
comprehensive method makes the operating cost and carbon
emission of Scenario 4 the lowest value among the four
scenarios, and the carbon recovery amount of Scenario 4 is

higher than that of Scenario 2. To sum up, adding carbon cycle
device can greatly improve the environmental benefit; The use
of CVaR method can greatly improve the economic benefit.
Using a comprehensive approach is more effective than using a
single approach.

In addition, the relationship between the value of the objective
function and r can be analyzed from Figure 3. With the increase of r,
the weight of F1 decreases, while the weight of F2 and F3 increases.
Therefore, the operation cost of each scenario gradually increases,
and the carbon emission and risk cost overall show a downward
trend. In addition, for Scenario 2 and Scenario 4 where carbon
recovery exists, the amount of carbon recovery increases
significantly, with an increase ratio of 3.08% and 1.61%
respectively. For Scenario 3 and 4 with risk cost, as r increases
from 0.1 to 0.9, F3 decreases by 99.7% and 69.53% in Scenario 3 and
4, respectively.

According to the results of the sensitivity analysis in Figure 3,
when the value of r is centered, the importance distribution of
each objective in VPP is more balanced: VPP neither attaches too
much importance to operational risks nor ignores carbon
recycling. Therefore, in order to compare the results of
different scenarios more conveniently, the results when the
subjective and objective factor preference coefficient r is
0.5 are selected for further analysis.

FIGURE 6
Operating power of P2G with different additional
reserve capacity.

TABLE 4 Recycled carbon quantity before and after adding gas storage devices.

No gas storage is
added

Add carbon storage
device

Add hydrogen storage
device

Add carbon storage and hydrogen
storage devices

Carbon cycle
amount (m3)

345.38 357.59 366.57 378.05

FIGURE 7
Operating power and stored gas quantity after adding carbon storage or hydrogen storage devices.
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5.3.1 Analysis on the effectiveness of uncertainty
coping methods

As shown in Figure 3 (r = 0.5), compared with Scenario 1 and
Scenario 2, Scenario 3 and Scenario 4 adopted the
uncertainty coping method in this paper, and the operating cost
was reduced by 383.21CNYand 572.76CNY, the carbon emission
was reduced by 241.91 kg and 194.11 kg, respectively, but the
operating risk was increased by 5.27CNYand 39.17CNY.

As can be seen, Scenario 1 and Scenario 2 adopt the conventional
system reserve constraint and arrange the reserve capacity according
to the fixed proportion of the wind-view planned output. Scenario
3 and Scenario 4 adopt the uncertainty coping method in this paper,
which can fully consider the real-time risk situation, arrange more
planned output for wind power in periods 7–8, 17–18, and 21–22,
and bear certain risks to gain greater benefits. In addition, compared
with Scenario 1 and Scenario 2, Scenario 3 and Scenario 4 have
generally lower controllable load backup output, which saves part of
the backup cost for VPP. The above analysis shows that the
uncertainty coping method in this paper can fully measure the
risk situation in real-time scheduling, and arrange wind power
generation plan and backup plan more reasonably so that VPP
can obtain more benefits while avoiding risks in real-time
scheduling. Figure 4 shows the target values under different
confidence levels in Scenario 4.

As shown in Figure 4, with the increase in confidence, the
attitude of decision-makers gradually becomes conservative,
resulting in a gradual increase in operating costs and carbon
emissions, and a gradual decrease in operating risks. When
0.5≤ β≤ 0.8, the change of operating cost and operating risk is
relatively gentle, the sensitivity of the model to risk is weak; When
0.4≤ β≤ 0.5 or 0.8≤ β≤ 0.9, the change of operating cost and

operating risk is relatively large, indicating that the model is
more sensitive to risk.

5.3.2 GPPCC and P2G carbon recycling
capacity analysis

As shown in Figure 3 (r = 0.5), compared with Scenario 1,
Scenario 2 recycled 268.54 kg, carbon emission decreased by
615.49 kg, and operation cost increased by 16.87CNY, which
greatly improved the environmental protection of VPP at the
cost of a certain economic loss. Compared with scenario 3,
scenario 4 recycle 345.38 kg of CO2, reduces carbon emissions by
567.69 kg, reduces operating costs by 172.68CNY, and improves the
economy and environmental protection of VPP. Figure 5 shows the
operating power of water electrolysis, methanation, and carbon
capture units in scenarios 2 and 4.

It can be seen that during periods 1–7, 12–16, and 23–24,
GPPCC and P2G will use surplus renewable energy to generate
electricity and realize the recycling of CO2. Among them, Scenario 4,
due to the uncertainty coping method, can fully measure the risks in
real-time operation of VPP, and choose to absorb more wind power
generation to improve economic and environmental benefits, such
as periods 4–7 and 13–16. In addition, in both Scenario 2 and
Scenario 4, GPPCC and P2G do not reach their maximum operating
power, because the limited backup provided by CHP units and
controllable loads prevents GPPCC and P2G from generating a high
percentage of wind power. Figure 6 shows the running power of P2G
in scenario 4 under different new spares.

As can be seen from Figure 6, with the boost of spare capacity,
the operating power of P2G at periods 5–8 and 13–15 keeps rising,
indicating that the carbon recycling capacity of GPPCC and P2G is
limited by the spare capacity of VPP, and seeking new spare

FIGURE 8
Operating power and stored gas quantity after adding carbon storage and hydrogen storage devices.
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resources within VPPwill be the key to improve the carbon recycling
degree of GPPCC and P2G.

5.3.3 Analysis on the degree of carbon recycling
improved by gas storage devices

According to Figure 6, in conventional carbon cycle modeling,
carbon capture, water electrolysis, and methanation operate in a
coupled manner, which cannot maximize the recycling of CO2.
Carbon storage device and hydrogen storage device are now added,
and the initial gas storage is set to 0 m3 and 50 m3 respectively
(standard condition). Table 4 shows the carbon cycle utilization
before and after adding the gas storage device. It can be seen that
when the carbon storage device and hydrogen storage device are
added at the same time, the carbon cycle utilization is increased by
32.67 m3, and the degree of carbon recycling is increased by 9.46%,
which is 20.46m3 and 11.48m3more than that when only the carbon
storage device or hydrogen storage device is added. Figures 7, 8
respectively show the operating power and storage capacity when
only carbon storage device or hydrogen storage device is added and
the operating power and storage capacity when two gas storage
devices are added.

As shown in Figure 7, the carbon storage device can realize the
decoupling of carbon capture and methanation procedures, storing
excess CO2, at periods 1 and 5, and converting it into CH4 at periods
11–15. Although the degree of carbon recycling has been improved to
some extent, the electrolysis of water and methanation still operate in a
coupled manner, and the surplus of renewable energy generation
cannot be fully utilized. The hydrogen storage device can realize the
decoupling of electrolytic water and methanation procedure, generate
and store H2 by using surplus renewable energy generation in periods
4 and 12–14, and consume it in periods 4–7 and 23–24 to achieve the
time shift of renewable energy power. The degree of carbon recycling is
also improved to a certain extent, but carbon capture and methanation
still operate in a coupling manner, unable to make full use of CO2

during the entire scheduling cycle.
As shown in Figure 8, water electrolysis, methanation, and

carbon capture all operate in a decoupled manner when both
carbon and hydrogen storage devices are added. The carbon
storage device mainly stores excess CO2 at periods 1-2, and the
hydrogen storage device mainly stores excess H2 at periods 4 and
14–15. The combined use of the two gas storage devices can not only
effectively use the CO2 generated during the whole dispatching
cycle, but also realize the time shift of renewable energy power with
H2 as the medium, and maximize the carbon recycling degree of
GPPCC and P2G. At this time, the average energy utilization
efficiency of VPP as a whole is about 94.17%. Among them, the
average energy use efficiency of renewable energy is only 71.22%. It
can be seen that although carbon capture and power to gas devices
can use surplus renewable energy electricity to achieve CO2

recycling, the energy loss caused by this procedure needs to be
further optimized.

6 Conclusion

In this paper, GPPCC and P2G are introduced into a combined
heat and power virtual power plant to achieve CO2 recycling, and
carbon storage devices and hydrogen storage devices are added to

decouple carbon capture and P2G procedures. Then, the uncertainty
scenario generation and CVaR theory are used to quantify the risk of
load loss in VPP real-time scheduling, and the multi-objective
stochastic dispatching optimization model of the virtual power
plant is constructed with the target of operating cost, carbon
emission, and operating risk. Finally, the validity and
applicability of the model are verified by a design example, and
the conclusions are as follows:

(1) The uncertainty analysis method in this paper can fully
measure the risk situation in real-time scheduling, and
arrange wind power generation plan and backup plans
more reasonably so that VPP can obtain more benefits
while avoiding risks in real-time scheduling.

(2) The GPPCC and P2G combined carbon and hydrogen storage
devices can flexibly control the production and consumption
of CO2 and H2, and effectively decouple the carbon capture,
water electrolysis and methanation processes. At the same time,
the time shift of renewable energy power is realized, thus
maximizing the degree of carbon recovery. The example
analysis shows that the carbon cycle degree increases by 9.46%
when carbon storage device and hydrogen storage device are
added at the same time.

(3) Combined carbon recycling and risk avoidance, the result of
operation is better than only one measure. In Scenario 4, the
total operating cost and carbon emissions are reduced by
555.89 CNY and 809.6 kg, respectively, and the VPP energy
utilization efficiency reaches 94.17%.

In the future, with the continuous maturity of carbon cycle
technology, CHP units, GPPCC and P2G modules will effectively
improve the efficiency of CHP virtual power plants. Meanwhile, new
power generation resources will be added to the VPP, such as solar
thermal electric plants, electro hydrogen coupling systems, etc. Which
will further improve the efficiency of VPP.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding author.

Author contributions

FZ: Visualization, Writing–review and editing. YG:
Visualization, Writing–review and editing. XZ: Investigation,
Writing–original draft. FL: Investigation, Writing–original draft.
QZ: Validation, Writing–original draft.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This work is
supported by the State Grid Corporation of China, the Science &
Technology project 5108-202218280A-2-428-XG. The funder was not

Frontiers in Energy Research frontiersin.org13

Zhang et al. 10.3389/fenrg.2024.1363360

355

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1363360


involved in the study design, collection, analysis, interpretation of
data, the writing of this article, or the decision to submit it for
publication.

Conflict of interest

Authors FZ and YG were employed by State Grid Energy Research
Institute Co., Ltd. Author XZ and FL were employed by State Grid
Qinghai Electric Power Company.

The remaining authors declare that the research was
conducted in the absence of any commercial or financial

relationships that could be construed as a potential conflict
of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Babaee, S., and Loughlin, D. H. (2018). Exploring the role of natural gas power plants
with carbon capture and storage as a bridge to a low-carbon future. Clean Technol.
Environ. policy 20 (2), 379–391. doi:10.1007/s10098-017-1479-x

Banadkouki, M. R. Z. (2023). Selection of strategies to improve energy efficiency in
industry: a hybrid approach using entropy weight method and fuzzy TOPSIS. Energy
279, 128070. doi:10.1016/j.energy.2023.128070

Bassano, C., Deiana, P., Vilardi, G., and Verdone, N. (2020). Modeling and economic
evaluation of carbon capture and storage technologies integrated into synthetic natural
gas and power-to-gas plants. Appl. Energy 263, 114590. doi:10.1016/j.apenergy.2020.
114590

Basu, M. (2023). Optimal day-ahead scheduling of renewable energy-based virtual
power plant considering electrical, thermal and cooling energy. J. Energy Storage 65,
107363. doi:10.1016/j.est.2023.107363

De Giorgi, M. G., Congedo, P. M., Malvoni, M., and Laforgia, D. Error analysis of
hybrid photovoltaic power forecasting models: a case study of mediterranean climate[J].
Energy Convers. Manag., 2015, 100: 117–130. doi:10.1016/j.enconman.2015.04.078

Feng, Y., Jia, H., Wang, X., Ning, B., Liu, Z., and Liu, D. (2023). Review of operations
for multi-energy coupled virtual power plants participating in electricity market. Energy
Rep. 9, 992–999. doi:10.1016/j.egyr.2023.04.149

Gorre, J., Ruoss, F., Karjunen, H., Schaffert, J., and Tynjälä, T. (2020). Cost
benefits of optimizing hydrogen storage and methanation capacities for Power-to-
Gas plants in dynamic operation. Appl. Energy 257, 113967. doi:10.1016/j.
apenergy.2019.113967

Hao, J., Zheng, P., Li, Y., Zhang, Z., Zhang, J., Yang, J., et al. (2023). Study on the
operational feasibility domain of combined heat and power generation system based on
compressed carbon dioxide energy storage. Energy 291, 130122. doi:10.1016/j.energy.
2023.130122

He, S., Gao, H., Chen, Z., and Liu, J. (2023). Data-driven worst conditional value at
risk energy management model of energy station. Energy 266, 126421. doi:10.1016/j.
energy.2022.126421

Higgins, P., Foley, A. M., Douglas, R., and Li, K. (2014). Impact of offshore wind
power forecast error in a carbon constraint electricity market. Energy 76, 187–197.
doi:10.1016/j.energy.2014.06.037

Ju, L., Bai, X., Li, G., Gan, W., Qi, X., and Ye, F. (2024). Two-stage robust transaction
optimization model and benefit allocation strategy for new energy power stations with
shared energy storage considering green certificate and virtual energy storage mode.
Appl. Energy 362, 122996. doi:10.1016/j.apenergy.2024.122996

Ju, L., Zhao, R., Tan, Q., Lu, Y., and Wang, W. (2019). A multi-objective robust
scheduling model and solution algorithm for a novel virtual power plant connected with
power-to-gas and gas storage tank considering uncertainty and demand response. Appl.
Energy 250, 1336–1355. doi:10.1016/j.apenergy.2019.05.027

Ju, L. W., Yin, Z., Lu, X. L., Yang, S., and Rao, R. (2022). A Tri-dimensional
Equilibrium-based stochastic optimal dispatching model for a novel virtual power
plant incorporating carbon Capture, Power-to-Gas and electric vehicle aggregator.
Appl. Energy 324, 119776. doi:10.1016/j.apenergy.2022.119776

Marzi, E., Morini, M., Saletti, C., Vouros, S., Zaccaria, V., Kyprianidis, K., et al. (2023).
Power-to-Gas for energy system flexibility under uncertainty in demand, production
and price. Energy 284, 129212. doi:10.1016/j.energy.2023.129212

Nazari-Heris, M., Madadi, S., and Abapour, S. Optimal stochastic scheduling of
virtual power plant considering NaS battery storage and combined heat and power units
[J]. J. Energy Manag. Technol., 2018, 2(3): 1–7. doi:10.22109/jemt.2018.133447.1095

Schulz, C., Roder, G., and Kurrat, M. (2005) “Virtual power plants with combined
heat and power micro-units,” in 2005 international conference on future power systems.
Amsterdam, Netherlands: IEEE, 5.

Smit, B., Park, A. H. A., and Gadikota, G. 2014, The grand challenges in carbon
capture, utilization, and storage. Front. Energy Res.: 55, doi:10.3389/fenrg.2014.00055

Song, X., Zhao, R., De, G., Wu, J., Shen, H., Tan, Z., et al. (2020). A fuzzy-based multi-
objective robust optimization model for a regional hybrid energy system considering
uncertainty. Energy Sci. Eng. 8 (4), 926–943. doi:10.1002/ese3.674

Tan, C., Wang, J., Geng, S., and Tan, Z. (2021). Three-level market optimization
model of virtual power plant with carbon capture equipment considering copula–CVaR
theory. Energy 237, 121620. doi:10.1016/j.energy.2021.121620

Wang, C., Wang, H., Ji, X., Xu, H., Yang, C., and Meng, X. (2024). Hybrid energy
storage capacity configuration strategy for virtual power plants based on variable-ratio
natural gas-hydrogen blending. Int. J. Hydrogen Energy 58, 433–445. doi:10.1016/j.
ijhydene.2024.01.175

Xia, Y., Liu, J., Huang, Z., and Zhang, X. (2016). Carbon emission impact on the
operation of virtual power plant with combined heat and power system. Front. Inf.
Technol. Electron. Eng. 17, 479–488. doi:10.1631/fitee.1500467

Xuan, A., Shen, X., Guo, Q., and Sun, H. (2021). A conditional value-at-risk based
planning model for integrated energy system with energy storage and renewables. Appl.
Energy 294, 116971. doi:10.1016/j.apenergy.2021.116971

Yang, H., Tian, X., Liu, F., Liu, L., Li, L., and Wang, Q. (2024). A multi-objective
dispatching model for a novel virtual power plant considering combined heat and power
units, carbon recycling utilization, and flexible load response. Front. Energy Res. 11,
1332474. doi:10.3389/fenrg.2023.1332474

Yang, Y., Li, Z., Mandapaka, P. V., and Lo, E. Y. (2023). Risk-averse restoration of
coupled power and water systems with small pumped-hydro storage and stochastic
rooftop renewables. Appl. Energy 339, 120953. doi:10.1016/j.apenergy.2023.120953

Zhang, S., Gu, W., Wang, J., Zhang, X.-P., Meng, X., Lu, S., et al. (2024). Steady-state
security region of integrated energy system considering thermal dynamics. IEEE Trans.
Power Syst. 39, 4138–4153. doi:10.1109/tpwrs.2023.3296080

Zhang, S., Gu, W., Zhang, X.-P., Lu, H., Lu, S., Yu, R., et al. (2022). Fully analytical
model of heating networks for integrated energy systems. Appl. Energy 327, 120081.
doi:10.1016/j.apenergy.2022.120081

Zhang, Y., Pan, Z., Wang, H.,Wang, J., Zhao, Z., andWang, F. (2023). Achieving wind
power and photovoltaic power prediction: an intelligent prediction system based on a
deep learning approach. Energy 283, 129005. doi:10.1016/j.energy.2023.129005

Zhu, C., Bao, G., Xu, R., Song, Z., and Liu, Y. (2023). Low-carbon economic analysis of
a virtual power plant with wind and solar power considering the integrated flexible
operation mode of a carbon capture thermoelectric unit. Int. J. Greenh. Gas Control 130,
104011. doi:10.1016/j.ijggc.2023.104011

Zou, D., Gong, D., and Ouyang, H. (2023). The dynamic economic emission dispatch
of the combined heat and power system integrated with a wind farm and a photovoltaic
plant. Appl. Energy 351, 121890. doi:10.1016/j.apenergy.2023.121890

Frontiers in Energy Research frontiersin.org14

Zhang et al. 10.3389/fenrg.2024.1363360

356

https://doi.org/10.1007/s10098-017-1479-x
https://doi.org/10.1016/j.energy.2023.128070
https://doi.org/10.1016/j.apenergy.2020.114590
https://doi.org/10.1016/j.apenergy.2020.114590
https://doi.org/10.1016/j.est.2023.107363
https://doi.org/10.1016/j.enconman.2015.04.078
https://doi.org/10.1016/j.egyr.2023.04.149
https://doi.org/10.1016/j.apenergy.2019.113967
https://doi.org/10.1016/j.apenergy.2019.113967
https://doi.org/10.1016/j.energy.2023.130122
https://doi.org/10.1016/j.energy.2023.130122
https://doi.org/10.1016/j.energy.2022.126421
https://doi.org/10.1016/j.energy.2022.126421
https://doi.org/10.1016/j.energy.2014.06.037
https://doi.org/10.1016/j.apenergy.2024.122996
https://doi.org/10.1016/j.apenergy.2019.05.027
https://doi.org/10.1016/j.apenergy.2022.119776
https://doi.org/10.1016/j.energy.2023.129212
https://doi.org/10.22109/jemt.2018.133447.1095
https://doi.org/10.3389/fenrg.2014.00055
https://doi.org/10.1002/ese3.674
https://doi.org/10.1016/j.energy.2021.121620
https://doi.org/10.1016/j.ijhydene.2024.01.175
https://doi.org/10.1016/j.ijhydene.2024.01.175
https://doi.org/10.1631/fitee.1500467
https://doi.org/10.1016/j.apenergy.2021.116971
https://doi.org/10.3389/fenrg.2023.1332474
https://doi.org/10.1016/j.apenergy.2023.120953
https://doi.org/10.1109/tpwrs.2023.3296080
https://doi.org/10.1016/j.apenergy.2022.120081
https://doi.org/10.1016/j.energy.2023.129005
https://doi.org/10.1016/j.ijggc.2023.104011
https://doi.org/10.1016/j.apenergy.2023.121890
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1363360


Nomenclature

Abbreviations

VPP virtual power plants

CHP combined heat and power

CHP-VPP combined heat and power-virtual power plant

P2G Power-to-gas

GPPCC Gas-power Plant Carbon Capture

CVaR Conditional Value-at-Risk

PV Photovoltaic

Sets

t index for time

k index for user

i, j index for time period

Scalars

ωeb electric heating efficiency of the electric boiler

km, ku minimum and maximum thermoelectric ratio of CHP

eG carbon emission intensity

ηG power generation efficiency of CHP unit

HCH4 low calorific value of natural gas

λc,t flue gas diversion ratio at time t

ηc constant representing the CO2 capture rate of GPPCC

θce power consumed per unit of CO2

ρc density of CO2 under the standard condition

ηH2
efficiency of converting electricity to hydrogen

HH2 calorific value of hydrogen

θmCH4
power consumption per unit H2 of methanation consumption

ηin , ηout discharging and charging efficiency of the gas storage devices

θco compression energy consumption per unit gas

ηco working efficiency of the compressor

ηUG carbon emission coefficient ever unit of electricity

Parameter

gWPP,t planned output of wind power at time t

gfWPP,t
predicted output of wind power at time t

greWPP,t actual output of wind power at time t

ΔgfWPP,t
forecast error of wind power at time t

WWPP total installed cubage of wind turbines

ΔLI,t controllable load response quantity at time t

NI number of users

ΔLuk,t , ΔL
d
k,t

positive/negative response provided by the k user

μuk,t , μ
d
k,t

state of the positive/negative response force

PCHP power of CHP rated electric

Ce
CHP , C

h
CHP

rated electric thermal power of CHP unit

ϕCHP thermal power of CHP

Variables

heb,t heat production power of electric boilers at time t

geb,t power consumption power of electric boilers at time t

QG,c,t mass of CO2 produced by CHP at time t

VCH4 ,t volume of natural gas consumed by CHP at time t

gOP,t operation energy consumption at time t

gG,t the total electrical power of CHP at time t

Qc,t , Q
c
c,t , Q

s
c,t CO2 being processed, successfully captured, and released into the

atmosphere by GPPCC

gA fixed energy absorbed of carbon capture

Vc
c,t volume of CO2 being successfully captured

Vin
c,t ,

Vout
c,t , V

c−m
c,t

CO2 from GPPCC into the carbon storage unit, from the carbon
storage unit into P2G, and directly from GPPCC into P2G

Vm
c,t total amount consumed by P2G

VH2 ,t, V
m
H2 ,t H2 produced by electrolytic water and consumed by methanation

gH2 ,t, g
m
CH4 ,t power consumption of water electrolysis and methanation

Vin
H2 ,t , V

out
H2 ,t

H2 from the electrolyzer into the hydrogen storage unit, from the
hydrogen storage unit into the methane reactor at time t

Ve−m
H2 ,t H2 directly from the electrolyzer into the methane reactor at time t

Vm
CH4 ,t CH4 generated by P2G

Et gas stored at the time t

Vin
t , V

out
t gas deposited and withdrawn at time t

gco,t compression energy dissipation at time t

CG power generation cost of CHP unit

CM maintenance and operation cost of various equipment

CDR controllable load cost

IUG income from the buying and selling of electricity in the public grid

cCH4 expense of natural gas

cDT start-stop cost

uc,t start-stop variables of CHP at time t

c1, c2, c3, c4, c5 operating cost coefficients of wind power, photovoltaic, GPPCC,
P2G, and electric boilers

cuI,k , c
d
I,k

providing positive/negative response power to the k user

Ru
k,t , R

d
k,t

positive/negative spare capacity that can be provided by the k th
user

cuR,k , c
d
R,k

provide positive/negative spare power cost factors for the k the user

cUG,t electricity cost of the public grid

gUG,t amount of electricity sold (purchased) via the VPP to public grids

F1 operating cost

F2 carbon footprint

hG,i,max utmost value of thermal output
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gG,i,max,

gG,i,min

greatest and least values of the total output

αi elastic coefficient of electric power and thermal power

βi a constant

TS, TO minimum off/on time

ΔLk,max,
ΔLk,min

maximum positive/negative response forces that can be provided
by the k th user

gk,min, gk,max least and greatest operating power of type k equipment

Δgk,u, Δgk,d up/down climbing capability

Emax utmost gas storage volume of the gas storage devices

V in
max , V

out
max maximum gas storage and venting rates

sint , s
out
t status of gas storage and venting of gas storage devices

Cens loss penalty cost

ΔgWPP,t ,

ΔgPV ,t

deviation of the actual power generation of the scenery

cens,t penalty cost coefficient of loss of load

Ru
t uplink standby capacity of VPP

Fi value of the i TH objective function

Fi
min, Fi

max least and greatest values of the objective function

Algorithm

σij covariance of time period i and time period j

ε key parameter of covariance

N number of random samples

n number of typical scenes

f (x, y) loss function

x portfolio vector

yn uncertainty scenario generated in Section 2.1

α, β VaR values and confidence levels

wi weighting obtained by assigning weight to subjective and objective
integration

vi, ui weights obtained by analytic hierarchy procedure and entropy
weight method

r preference coefficient of decision makers for subjective and
objective factors
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Energy cost forecasting and
financial strategy optimization in
smart grids via ensemble
algorithm

Juanjuan Yang*

School of Financial Technology, Suzhou Industrial Park Institute of Services Outsourcing, Suzhou,
Jiangsu, China

Introduction: In the context of energy resource scarcity and environmental
pressures, accurately forecasting energy consumption and optimizing financial
strategies in smart grids are crucial. The high dimensionality and dynamic nature
of the data present significant challenges, hindering accurate prediction and
strategy optimization.

Methods: This paper proposes a fusion algorithm for smart grid enterprise
decision-making and economic benefit analysis, aiming to enhance decision-
making accuracy and predictive capability. The method combines deep
reinforcement learning (DRL), long short-term memory (LSTM) networks, and
the Transformer algorithm. LSTM is utilized to process and analyze time series
data, capturing historical patterns of energy prices and usage. Subsequently,
DRL and the Transformer algorithm are employed to further analyze the data,
enabling the formulation and optimization of energy purchasing and usage
strategies.

Results: Experimental results demonstrate that the proposed approach
outperforms traditional methods in improving energy cost prediction accuracy
and optimizing financial strategies. Notably, on the EIA Dataset, the proposed
algorithm achieves a reduction of over 48.5% in FLOP, a decrease in inference
time by over 49.8%, and an improvement of 38.6% in MAPE.

Discussion: This research provides a new perspective and tool for energy
management in smart grids. It offers valuable insights for handling other
high-dimensional and dynamically changing data processing and decision
optimization problems. The significant improvements in prediction accuracy
and strategy optimization highlight the potential for widespread application in
the energy sector and beyond.

KEYWORDS

smart grids, energy cost forecasting, financial strategy optimization, DRL-LSTM,
transformer algorithm, energy utilization efficiency

1 Introduction

With the development of the power industry, power companies are facing increasingly
complex market environments and growing energy consumption demands. Accurately
predicting power demand and intelligent grid energy consumption has become crucial. It
assists power companies in demand forecasting and market planning, optimizing resource
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allocation and supply-demand matching, and thereby formulating
more reasonable power scheduling and market operation strategies
Zheng et al. (2023), Mohanty et al. (2022). However, energy
cost prediction and financial strategy optimization face several
challenges Chen et al. (2023). Firstly, the high dimensionality and
dynamics of the data increase the demand for computational
resources and time complexity, especially when dealing with
large-scale datasets. This limits the scalability and practical
applicability of the methods. Secondly, the generalizability of
existing methods to other datasets and real-world scenarios needs
further research. Additionally, the scalability of methods in more
complex and dynamic large-scale intelligent grid systems also
requires exploration Wang et al. (2023).

Accurate prediction of energy costs and optimized financial
decision-making are essential for enhancing energy utilization
efficiency and reaping economic benefits. The advancements in
deep learning and machine learning models have opened up
new possibilities for addressing these challenges Mohammadi et al.
(2022), Abou Houran et al. (2023), Bao et al. (2022). Here, we
present five commonly used models in the field of energy cost
forecasting and financial strategy optimization in smart grids,
namely, deep learning and machine learning models. We discuss
the advantages and disadvantages of each model and highlight the
motivation behind the proposed works.

• Generative Adversarial Network (GAN): The comprises a
generator and a discriminator that operate within an adversarial
training framework to generate realistic samples. GANs
have shown significant potential in various areas, including
image generation and data augmentation Yanmei et al. (2023),
Ruan et al. (2023). However, one of the challenges encountered
in GAN training is its inherent instability Hu et al. (2023).

• Support Vector Machine (SVM): SVM is a widely
used supervised learning algorithm for classification
and regression problems. It determines an optimal
hyperplane in a high-dimensional feature space to perform
classification Alquthami et al. (2022). SVM exhibits good
generalization ability and is effective in handling high-
dimensional data Tiwari et al. (2022).

• Random Forest: Random Forest is an ensemble learning
method comprised of multiple decision trees. Each
decision tree makes predictions by randomly selecting
and splitting features. Random Forest is suitable for
classification and regression tasks and offers robustness and
interpretability Priyadarshini et al. (2022).

• Reinforcement Learning (RL): RL is a learning method where
an agent learns optimal behavior policies through interactions
with the environment. The agent learns and optimizes through
trial-and-error and rewardmechanisms. In the context of smart
grids, RL can be utilized to optimize energy procurement and
usage strategies, aiming for cost minimization or performance
maximization Tiwari et al. (2022).

• Autoencoder (AE): AE is used to learn compact representations
of data by utilizing an encoder and a decoder for data
reconstruction. AE finds applications in data compression and
feature extraction, among others Takiddin et al. (2022), Said
and Alanazi (2023).

This study aims to explore methods and technologies that
can effectively address the challenges related to energy cost
forecasting and financial strategy optimization in the power
industry. Specifically, the study intends to propose a hybrid
method that combines algorithm optimization [DRL Huang et al.
(2022); Li et al. (2023), LSTM Chien et al. (2023); Amalou et al.
(2022) and Transformer algorithms Nazir et al. (2023); Liao and
Radhakrishnan (2022)], improved model structure, and integration
of domain knowledge. The ultimate goal is to enhance the accuracy,
efficiency, and stability of energy cost forecasting and financial
strategy optimization. By optimizing algorithms, refining the model
structure, and incorporating relevant domain knowledge, this study
aims to significantly improve the prediction accuracy and overall
performance of the proposed method. This will enable power
companies to more accurately predict power demand and smart
grid energy consumption, provide support for market planning and
resource management, and thus formulate more reasonable power
dispatching and market operation strategies. This will contribute to
the sustainable development of the power industry, improve energy
utilization efficiency, reducewaste and reduce carbon emissions.The
article makes three key contributions:

• Ensemble Algorithm: This study introduces a novel approach
that combines DRL, LSTM, and Transformer algorithm. DRL
is utilized to optimize financial strategies, while LSTM and
Transformer models are employed for accurate energy cost
forecasting.This integration enables improved decision-making
within the smart grid domain.

• Improvement in Decision Accuracy: Through the application
of the LSTM and Transformer algorithms fusion algorithm,
this paper enhances the accuracy of decision-making in
smart grid enterprises. The LSTM model aiding in accurate
predictions of future power demand. The generation of diverse
scenarios provides comprehensive information for decision-
making, enabling enterprises to better assess the impact of
decisions on economic benefits.

• Financial Strategy Optimization: This study proposes
employing DRL to optimize financial strategies within smart
grids. By training an agent to interact with the environment,
the DRL algorithm learns to make optimal decisions regarding
energy procurement, pricing, and financial transactions. This
optimization process leads to cost reductions and improved
financial performance in smart grid operations.

This study presents a comprehensive framework that combines
DRL, LSTM, and Transformer algorithms to address energy cost
forecasting and financial strategy optimization in smart grids. The
proposed approach has the potential to enhance the efficiency,
reliability, and sustainability of smart grid systems.

2 Related work

2.1 Reinforcement learning (RL)

RL is a machine learning method that enables agents to learn
optimal strategies by interactingwith their environment Fragkos et al.
(2022). In the context of the smart grid, it finds application in
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optimizing financial strategies, including energy procurement and
pricing decisions. The agent takes actions based on feedback from
the environment, known as reward signals, and iteratively enhances
its strategy through trial and error. This approach is extensively
employed indomains like energy costpredictionandfinancial strategy
optimization to improve decision-making and adapt to intricate
environmentsRouzbahani et al. (2023).RLhasemergedasapromising
technique in the fields of energy cost prediction and financial strategy
optimization. In these domains, RL is applied by formulating the
problems as sequential decision-making tasks. Specifically, in energy
cost prediction, RL agents interact with the environment, which
includes energy consumption data, weather information, and other
relevant factors. The agents learn to take actions such as adjusting
energy usage or switching to alternative energy sources in order
to optimize energy costs.

RL in energy cost prediction offers several advantages. Firstly,
RL models exhibit adaptability and flexibility. They can adapt to
variations in energy consumption patterns and external factors by
continuously learning and updating their strategies. Additionally,
RL allows for the incorporation of complex constraints and
objectives into the cost prediction process, such as environmental
sustainability or demand response requirements. Furthermore, RL
agents can consider long-term effects and plan for future energy cost
optimization by optimizing strategies based on time-accumulated
rewards. It receive rewards or penalties based on the accuracy
of their cost predictions and the differences from actual energy
costs. Through continuous learning from these rewards, the agents
improve their prediction and cost optimization strategies.

However, there are certain limitations associated with RL in
energy cost prediction. Firstly, RL models often demand significant
computational resources due to the iterative nature of the learning
process and the complexity of the environment and decision space.
This can pose computational challenges, particularly for large-scale
energy datasets. Secondly, RL models rely on large amounts of
historical data to learn effective cost prediction and optimization
strategies. The availability and quality of data may be limited in
certain cases, hindering the performance of RL models. Lastly,
RL models can be challenging to interpret, making it difficult to
explain the decision-making process and specific reasons behind
their predictions, which may be a concern in practical applications.

2.2 Random forest

Random Forest is an ensemble learning model that combines
multiple decision trees to make predictions. It is utilized for energy
cost forecasting and optimizing financial strategies. Random Forest
demonstrates excellent generalization ability, interpretability, and
resistance to overfitting. Moreover, it performs effectively when
handling large-scale data and high-dimensional features. The model
at hand employs the construction of multiple decision trees and the
aggregation of their predictive outcomes to facilitate forecasting and
decision-making Zhang et al. (2022), Durairaj et al. (2022).

Random Forest finds utility in energy cost prediction, specifically
in anticipating energy demand and associated expenses. By utilizing
historical energy data, weather information, and other pertinent
factors, the model trains numerous decision trees, each of which
predicts energy costs. The aggregation or averaging of predictions

fromthese treesyieldsmoreaccurateenergycost forecasts. Intherealm
of financial strategy optimization, Random Forest proves valuable in
optimizing investment portfolios and managing risk. Through the
use of historical financial data, market indicators, and other relevant
factors, the model trains multiple decision trees to predict portfolio
returns. The aggregation of predictions from these trees results in
enhanced portfolio forecasts and risk assessments.

TheprimaryadvantageofRandomForest lies in itsability todeliver
high prediction accuracy by amalgamating the predictions ofmultiple
decision trees. The model effectively processes extensive datasets and
intricate feature relationships, therebyenhancingoverall performance.
Furthermore, Random Forest exhibits robustness against overfitting.
By incorporating random sampling and feature selection during
decision tree construction, the model mitigates the risk of overfitting
and improves generalization capabilities.

However, Random Forest does possess certain limitations.
Firstly, it exhibits limited interpretability, rendering the explanation
of its predictions challenging. Given that the model comprises
multiple independent decision trees, comprehending the overall
decision-making process becomes intricate. Secondly, RandomForest
necessitates considerable computational resources during both the
construction and prediction phases. The construction of multiple
decisiontreesandthesubsequentaggregationofpredictionscontribute
to heightened computational costs and time consumption.

2.3 Deep generative model

Deep Generative Model (DGM) is a class of models that
can learn the distribution of data generation, such as GAN and
Variational Autoencoders (VAEs). In the context of energy cost
forecasting and financial strategy optimization, Deep Generative
Models can be used to generate synthetic energy consumption
data or financial data. These synthetic datasets can be utilized to
simulate different market scenarios and optimize strategies. Such
as VAE and GAN, DGMs belong to a class of machine learning
models that can learn the latent distribution of data and generate
new samples similar to the training data. DGMs can generate
synthetic samples that closely resemble real energy consumption
data, enabling the exploration of diverse scenarios and hypothesis
analysis Dumas et al. (2022), Langevin et al. (2023). DGMs have
become powerful tools in the fields of energy cost prediction and
financial strategy optimization. In this section, we will provide
a detailed overview of the specific applications, advantages, and
limitations of DGMs in these domains.

The advantages of employing deep generative models in
energy cost prediction lie in their ability to model complex
temporal and spatial dependencies within energy consumption
data, thereby enhancing the accuracy of predictions. DGMs can
generate synthetic samples that can be used to explore the impact
of different scenarios on energy costs. Additionally, they can assist
in anomaly detection by identifying irregular energy consumption
patterns, thereby promoting effective energy management and cost
reduction. However, DGMs face certain limitations in energy cost
prediction. They are sensitive to the quality and biases present in
the training data, which can influence the generated scenarios and
subsequent investment strategies. Furthermore, DGMs are often
considered black-box models, making it challenging to explain the
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FIGURE 1
The overall framework diagram of the proposed model.

FIGURE 2
The schematic diagram of the principle of Deep Reinforcement Learning.

underlying reasons and decision-making processes behind their
predictions.

Deep generative models offer promising capabilities in energy
cost prediction and financial strategy optimization. Nonetheless,
broader adoption of these models necessitates addressing several
challenges. These challenges encompass improving interpretability,
handling data constraints, reducing computational complexity,
and enhancing the ability to estimate uncertainty. Future research
directions could focus on developing hybrid models that combine
DGMs with other techniques, such as reinforcement learning,
to overcome these limitations. Additionally, making DGMs
more accessible to practitioners in the energy and finance

domains can be achieved through user-friendly interfaces
and toolkits.

3 Methodology

3.1 Overview of our network

This paper proposes a method that integrates DRL,
LSTM and Transformer models to predict energy cost and
optimize financial strategies for smart grids. The original
contribution of this method is that it combines the advantages
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FIGURE 3
The schematic diagram of the principle of LSTM.

FIGURE 4
The schematic diagram of the principle of Transformer.

of these technologies to improve the accuracy of energy cost
forecasting and the ability to optimize financial strategies.
This method innovatively uses the DRL method to deal with
uncertainty and dynamic changes in smart grids, and learns
the best decision-making strategy through interaction with
the environment. The method first uses LSTM to process
time series data to capture historical patterns of energy
prices and usage. Then, DRL and Transformer algorithms are
used to further analyze the data to formulate and optimize
energy procurement and usage strategies. Experimental results
show that this method is superior to traditional methods in
improving the accuracy of energy consumption forecasting and
optimizing financial strategies. Figure 1 represents the overall

framework diagram of the proposed model. The method operates
as follows:

• LSTM is employed for processing time series data.
LSTM networks effectively learn long-term dependencies,
enabling a better understanding and prediction of energy
consumption trends by capturing historical patterns of energy
prices and usage.

• DRL is employed to optimize financial decision-making.
By integrating LSTM into the DRL framework, the
model is trained to learn the best energy procurement
and usage strategies through interactions with the
environment, maximizing economic benefits.
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TABLE 1 Description of the selected datasets.

Dataset Description Coverage Advantages

EIA Maintained by the U.S. Energy
Information Administration, this
dataset contains comprehensive data on
energy production, consumption,
prices, and related variables. It covers
various energy sources, geographical
levels, and historical periods

Primarily focuses on the energy
situation in the United States, with
limited data available for other
countries or regions

Provides long-term historical data for
trend analysis and supports various
energy research and analysis

OPSD Provides open access to electricity
system data, including power
generation, demand, and grid
infrastructure information from
multiple countries. It aims to enhance
transparency and promote sustainable
development in the power system

Coverage and available data may vary
depending on the country or region

Enables cross-national and comparable
analysis of power system operations,
renewable energy integration, and
electricity market analysis

GEO The GEO dataset offers comprehensive
collection of global energy-related data,
including information on energy
production, consumption, and
infrastructure. It covers various energy
sources and provides global-scale data

Data quality and update frequency may
vary depending on the country or
region

Supports cross-national comparisons
and analysis of the global energy
landscape, aiding energy modeling,
policy analysis, and decision-making

NREL Maintained by the U.S. National
Renewable Energy Laboratory, the
NREL dataset provides extensive data
on renewable energy resources such as
solar, wind, geothermal, and biomass
energy. It includes resource
assessments, techno-economic data,
and renewable energy technology
performance characteristics

Primarily focuses on the renewable
energy situation in the United States,
with limited data available for other
countries or regions

Offers detailed data specific to
renewable energy resources, supporting
research, development, and planning of
renewable energy projects

• The Transformer algorithm is utilized to enhance the capturing
of global information. The Transformer algorithm analyzes
the data, leveraging its attention mechanism to handle
high-dimensional and dynamic data, thereby enhancing the
model’s ability to model complex relationships within the
time series.

The experimental process includes the following steps:

1. LSTM feature extraction and modeling: The preprocessed data
is fed into the LSTM network, allowing for feature extraction
and modeling. As a type of RNN, LSTM captures long-term
dependencies within sequential data. It analyzes historical
patterns of energy prices and usage, extracting relevant features
and modeling energy consumption trends.

2. DRL training: To optimize decision-making based on
historical data, a DRL framework is employed. By integrating
the LSTM network into the DRL framework, the model
is trained using RL techniques. The DRL agent receives
observations from the LSTM network and takes actions in the
form of energy procurement and usage decisions. The agent
is trained to maximize long-term returns, such as minimizing
energy costs.

3. Further analysis using the Transformer algorithm: After LSTM
feature extraction and DRL training, the data undergoes
further analysis utilizing the Transformer algorithm. The
Transformer algorithm leverages self-attention mechanisms
to capture long-range dependencies and identify important

temporal patterns within the data. This step improves the
accuracy of energy consumption modeling and prediction.

4. Model integration and energy consumption prediction:
The LSTM network, DRL, and Transformer algorithm are
integrated into a comprehensive model, which is further
optimized.Themodel is trained and evaluated using real-world
smart grid data, comparing its performance with traditional
methods. The model provides accurate energy consumption
predictions and optimizes financial strategies, which can be
utilized for energy procurement decisions, load balancing, and
overall financial planning within the smart grid.

By employing this integrated approach, the proposed method
aims to improve the accuracy of energy consumption prediction
and enable effective financial decision-making within smart
grids, surpassing the performance of traditional methods. The
original contribution of this paper is to combine DRL, LSTM
and Transformer models to provide a comprehensive approach
to energy cost forecasting and financial strategy optimization
for smart grids. This comprehensive approach can better handle
the complexity and dynamic characteristics of smart grid data,
improve prediction accuracy and optimization capabilities.
The introduction of the DRL method enables the system to
adaptively learn and optimize strategies, adapt to uncertainty
and changes, and has strong real-time and robustness. By
evaluating using real data sets in experiments, the proposed
method has achieved significant performance improvements
in energy cost forecasting and financial strategy optimization,
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TABLE 2 Model accuracy comparison with Ghasempour and Martínez-Ramón (2023), Zhao et al. (2022), Ebrahimi and Abedini (2022), Mazhar et al.
(2023), Nazir et al. (2023), Kumar et al. (2023) in the case of EIA dataset Harris and Diehl (2017) and OPSD dataset Zhang et al. (2023).

Model Datasets

EIA dataset Harris and Diehl (2017) OPSD dataset Zhang et al. (2023)

Accuracy Recall F1 sorce AUC Accuracy Recall F1 sorce AUC

Ghase et al.
Ghasempour
and Martínez-
Ramón (2023)

88.49 84.17 87.98 89.97 91.90 86.19 83.85 85.78

Zhao et al.
Zhao et al.

(2022)

89.05 89.66 86.29 86.84 88.82 88.03 86.37 90.12

Ebrahimi et al.
Ebrahimi and
Abedini (2022)

93.04 88.68 90.63 90.66 89.88 84.70 87.20 85.21

Mazhar et al.
Mazhar et al.

(2023)

92.46 91.27 86.99 92.20 89.96 85.25 84.48 84.77

Nazir et al.
Nazir et al.

(2023)

94.53 91.23 89.06 86.99 87.57 86.34 90.72 91.28

Kumar et al.
Kumar et al.

(2023)

89.26 83.89 85.89 92.24 91.65 85.71 88.74 88.98

Ours 96.53 94.34 92.87 94.22 95.88 92.55 94.11 95.92

providing new perspectives and tools to deal with smart grid energy
management issues.

3.2 Deep reinforcement learning (DRL)

DRL is a powerful framework that combines deep learning and
reinforcement learning to autonomously solve complex decision-
making problems. It has gained significant attention in various
fields, including robotics, game playing, and now, optimizing
energy consumption and financial decision-making in smart
grids Huang et al. (2022), Li et al. (2023). In this method, DRL
plays a crucial role in optimizing financial strategies based on
historical data. Figure 2 represents the DRL.

The basic principle of DRL involves an agent interacting with an
environment to learn the optimal policy through trial and error. The
agent learns by receiving rewards or penalties from the environment
in response to its actions. The goal is to maximize cumulative
rewards over time. In this method, the DRLmodel is integrated with
the LSTM network, which acts as a deep neural network component
responsible for capturing historical patterns of energy prices and
usage.TheDRL agent receives observations from the LSTMnetwork
and takes actions in the form of energy procurement and usage
decisions.The agent’s actions influence subsequent observations and
rewards from the environment. During the training process, the
DRL agent explores different actions and evaluates their impact on
long-term rewards, such as minimizing energy costs or maximizing

financial gains. It learns to adjust its decision-making strategy based
on observed rewards and feedback from the environment.

This process is typically achieved through the use of value-
basedmethods, policy-basedmethods, or a combination of both. By
harnessing the advantages of DRL in this method, it enables end-
to-end learning and optimization of the decision-making process.
The model learns from data, captures complex relationships, and
adjusts its strategy based on observed rewards. This ability to learn
from experience and optimize decision-making based on historical
data contributes to improving the accuracy of energy consumption
prediction and financial decision-making in the smart grid context.
The formula of DRL is shown as Equation (1):

Q (s,a) = (1− α) ⋅Q (s,a) + α ⋅ [r+ γ ⋅max
a

Q(s′,a)] (1)

where,Q(s,a)Represents the value function (Q-function) for a state-
action pair (s,a), which estimates the expected return when taking
action a in state s. s Represents the current state. a Represents
the action taken by the agent. α Represents the learning rate,
controlling the extent of updates to the value function based on
new observations. r: Represents the immediate reward obtained by
the agent from the environment. γ Represents the discount factor,
determining the weight given to future rewards. s′ Represents the
new state observed after taking action a. This equation illustrates
the Q-learning method commonly used in reinforcement learning.
Through interactions with the environment, the agent updates
its value function Q(s,a) based on the current state and action,
incorporating the immediate reward r and the estimated value of the
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FIGURE 5
Model accuracy comparison with Ghasempour and Martínez-Ramón (2023), Zhao et al. (2022), Ebrahimi and Abedini (2022), Mazhar et al. (2023),
Nazir et al. (2023), Kumar et al. (2023) in the case of EIA dataset Harris and Diehl (2017), OPSD dataset Zhang et al. (2023), GEO dataset Ransome
(2018), NREL dataset Larsen and Drews (2019).

optimal action in the next state s′. By iteratively updating the value
function, the DRL model learns the optimal policy.

The DRL model serves as the core component for optimizing
financial decision-making in this method. It interacts with the
environment, receives observations from the LSTM network, and
learns to make energy procurement and usage decisions that
maximize long-term economic benefits.

3.3 Long short term memory (LSTM)

A variant of recurrent neural networks (RNNs) specifically
designed for handling sequential data, such as time series or
natural language texts. It is widely employed for capturing temporal
dependencies in historical data. By introducing gate mechanisms,
LSTM effectively addresses the vanishing gradient problem
encountered in traditional RNNs, thereby enabling the efficient
processing of long sequences Jahangir et al. (2020), Tajalli et al.
(2021). Each LSTM unit comprises three fundamental components:
the input gate, forget gate, and output gate. The formula of LSTM is
as follows:

At each time step, the LSTM unit takes the current input and the
previous hidden state as inputs, and controls the flow of information
using gate mechanisms. The input gate determines the relevant
portions of the current input to be incorporated in the computation
at the current time step, the forget gate determines the information
from the previous hidden state that needs to be disregarded, and the
output gate determines the information in the current hidden state
to be passed on to the subsequent layer.

In the context of this methodology, the LSTM model plays a
crucial role in capturing the temporal relationships within historical
data, particularly when applied to the prediction of energy prices
and consumption patterns. By leveraging its ability to retain past
information and process the current input, the LSTM model
provides the DRL agent with a feature representation that exhibits
temporal awareness. This temporal awareness empowers the DRL
agent to make superior predictions regarding future energy prices
and consumption patterns, thereby facilitating improved decision-
making. The formula of LSTM is shown as Equations (2-7):

ft = σ(W f ⋅ [ht−1,xt] + b f) (2)

it = σ(Wi ⋅ [ht−1,xt] + bi) (3)

ot = σ(Wo ⋅ [ht−1,xt] + bo) (4)

C̃t = tanh(Wc ⋅ [ht−1,xt] + bc) (5)

Ct = ft ⊙Ct−1 + it ⊙ C̃t (6)

ht = ot ⊙ tanh(Ct) (7)

where, xt represents the input at time step t. ht is the hidden state
at time step t. Ct denotes the cell state at time step t. ft, it, and ot
are the forget gate, input gate, and output gate activations at time
step t, respectively. C̃t is the candidate cell state at time step t. σ is
the sigmoid activation function. W f , Wi, Wo, and Wc are weight
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TABLE 3 Model accuracy comparison with Ghasempour and Martínez-Ramón (2023), Zhao et al. (2022), Ebrahimi and Abedini (2022), Mazhar et al.
(2023), Nazir et al. (2023), Kumar et al. (2023) in the case of ENREL dataset Ransome (2018) and GEO dataset Larsen and Drews (2019).

Model Datasets

NREL dataset Ransome (2018) GEO dataset Larsen and Drews (2019)

Accuracy Recall F1 sorce AUC Accuracy Recall F1 sorce AUC

Ghase et al.
Ghasempour
and Martínez-
Ramón (2023)

95.47 86.37 90.59 90.28 91.97 87.50 89.26 92.47

Zhao et al.
Zhao et al.

(2022)

89.85 91.66 88.90 91.87 89.76 84.41 87.70 84.71

Ebrahimi et al.
Ebrahimi and
Abedini (2022)

95.52 93.36 91.10 84.28 86.81 92.48 83.97 85.86

Mazhar et al.
Mazhar et al.

(2023)

95.63 86.19 88.12 88.66 93.43 91.60 88.25 85.63

Nazir et al.
Nazir et al.

(2023)

88.21 84.54 85.79 93.26 90.54 88.10 88.33 90.48

Kumar et al.
Kumar et al.

(2023)

89.23 86.80 89.16 89.10 91.62 92.24 90.50 84.13

Ours 97.83 95.42 93.79 93.61 95.48 93.47 91.84 95.86

matrices corresponding to the forget gate, input gate, output gate,
and candidate cell state, respectively. b f , bi, bo, and bc are bias vectors.

Within the overall framework of this approach, the LSTMmodel
functions as an integral part of the DRL agent, responsible for
handling the temporal dependencies present in historical data and
generating observations of the environment, which serve as inputs
for the DRL agent. Through its integration with the DRL model,
the LSTM model enriches the information available to the DRL
agent, enablingmore accurate learning and optimization of decision
strategies. By effectively processing the temporal dependencies
inherent in sequential data, the LSTM model enhances the DRL
agent’s ability to predict future energy prices and consumption
patterns, while providing more precise information during the
decision-making process. Figure 3 represents the LSTM.

3.4 Transformer algorithm

The Transformer algorithm is a sequence modeling approach
based on attentionmechanisms. It was initially proposed for machine
translation tasks but has since found wide-ranging applications in
various natural language processing tasks, including text generation,
question answering systems, and language understanding. The
primary objective of the Transformer algorithm is to address the
efficiency challenges encountered by traditional RNNs when dealing
with long-range dependencies, while also offering improved parallel
computingcapabilitiesAzad et al. (2019),Laayati et al. (2023),Guifeng
and Yu. (2021). Figure 4 represents the Transformer algorithm.

The fundamental principle underlying the Transformer model
is to establish interdependencies among different positions within a
sequence by employing self-attention mechanisms. This allows for
the capture of both semantic and structural information present
in the sequence. Unlike traditional RNN models, the Transformer
model does not rely on recurrent structures. Instead, it leverages
multiple layers of self-attention and feed-forward neural network
layers to process input sequences. Within the Transformer model,
the input sequence is initially mapped to high-dimensional vector
representations through an embedding layer. Subsequently, multiple
encoderanddecoder layersare introduced.Eachencoder layerconsists
of two sub-layers: a self-attention layer and a feed-forward neural
network layer. The self-attention layer is responsible for computing
representations for each position within the input sequence, enabling
it to consider relevant information from other positions. On the other
hand, the feed-forward neural network layer facilitates non-linear
transformations of the representations at each position. The decoder
layer also comprises these two sub-layers and introduces an additional
self-attention layer that further enhances the interrelationship and
generation of outputs based on the encoder layer’s outputs.

In the self-attention layer, point-wise dot products are computed
between the input vectors at each position and all other input vectors
at different positions, resulting in attention weight vectors. These
weight vectors signify the degree of attention assigned by the current
position to other positions and are subsequently used to perform a
weighted sum, resulting in the representation for the current position.
This adaptive learning mechanism enables the model to effectively
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TABLE 4 Model efficiency comparison with Ghasempour and Martínez-Ramón (2023), Zhao et al. (2022), Ebrahimi and Abedini (2022), Mazhar et al.
(2023), Nazir et al. (2023), Kumar et al. (2023) in the case of EIA dataset Harris and Diehl (2017) and OPSD dataset Zhang et al. (2023).

Model Datasets

EIA dataset Harris and Diehl (2017) OPSD dataset Zhang et al. (2023)

Parameters
(M)

Flops (G) Inference
Time (ms)

Trainning
Time(s)

Parameters
(M)

Flops (G) Inference
Time (ms)

Trainning
Time(s)

Ghase et al.
Ghasempour
and Martínez-
Ramón (2023)

588.7958 6.3242 7.92252 568.1348 467.518 6.17408 7.59296 618.3815

Zhao et al.
Zhao et al.

(2022)

712.6573 9.167 10.54566 856.7692 675.7218 8.18752 11.136 850.6836

Ebrahimi et al.
Ebrahimi and
Abedini (2022)

410.4499 5.57436 6.98796 572.8845 654.3997 4.77664 11.1872 728.5342

Mazhar et al.
Mazhar et al.

(2023)

842.6936 9.64904 12.68028 794.658 670.3913 6.42048 9.42592 845.2305

Nazir et al.
Nazir et al.

(2023)

524.5041 5.28184 7.56675 458.8922 469.3993 4.4176 6.18496 448.9719

Kumar et al.
Kumar et al.

(2023)

363.23 4.12 5.31 365.36 313.56 3.52 5.12 363.54

Ours 332.12 3.56 4.25 323.14 303.23 3.12 4.56 325.67

FIGURE 6
Model efficiency comparison with Ghasempour and Martínez-Ramón (2023), Zhao et al. (2022), Ebrahimi and Abedini (2022), Mazhar et al. (2023),
Nazir et al. (2023), Kumar et al. (2023) in the case of EIA dataset Harris and Diehl (2017) and OPSD dataset Zhang et al. (2023).

capture dependencies between different positions, thereby facilitating
the extraction of semantic and structural information within the
sequence. Additionally, to account for positional information, the
Transformer model incorporates position encoding, which embeds
positional details into the input vectors.

The Transformer model serves as a powerful tool for modeling
and representing sequence data. It considers each positionwithin the
input sequence and leverages self-attention mechanisms to capture
dependencies between different positions. This capability enables
the Transformer model to gain a comprehensive understanding of
the contextual and semantic nuances within the sequence data,

thereby facilitating the provision of accurate feature representations
for subsequent tasks. For instance, in machine translation tasks,
the Transformer model can establish associations between each
word in the source language sentence and its corresponding
word in the target language, resulting in a better capture of the
translation relationships between sentences. In text generation
tasks, the Transformer model excels at generating coherent
and precise text, effectively overcoming the issues of gradient
vanishing and sequential computation inherent in traditional
language models. The formula of the Transformer algorithm
is shown in Equation (8):

Frontiers in Energy Research 10 frontiersin.org368

https://doi.org/10.3389/fenrg.2024.1353312
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Yang 10.3389/fenrg.2024.1353312

TABLE 5 Model efficiency comparison with Ghasempour and Martínez-Ramón (2023), Zhao et al. (2022), Ebrahimi and Abedini (2022), Mazhar et al.
(2023), Nazir et al. (2023), Kumar et al. (2023) in the case of ENREL dataset Ransome (2018) and GEO dataset Larsen and Drews (2019).

Model Datasets

NREL dataset Ransome (2018) GEO dataset Larsen and Drews (2019)

Parameters
(M)

Flops (G) Inference
Time (ms)

Trainning
Time(s)

Parameters
(M)

Flops (G) Inference
Time (ms)

Trainning
Time(s)

Ghase et al.
Ghasempour
and Martínez-
Ramón (2023)

586.69 5.68 8.56 543.03 479.31 5.97 8.38 547.07

Zhao et al.
Zhao et al.

(2022)

744.65 6.94 10.56 799.62 797.88 7.78 11.73 728.57

Ebrahimi et al.
Ebrahimi and
Abedini (2022)

414.71 4.24 6.99 617.15 774.59 7.96 8.42 721.45

Mazhar et al.
Mazhar et al.

(2023)

714.18 7.52 10.45 756.35 620.97 8.67 11.44 684.89

Nazir et al.
Nazir et al.

(2023)

448.33 4.51 6.03 444.42 445.35 4.81 7.73 439.34

Kumar et al.
Kumar et al.

(2023)

350.26 3.21 5.01 335.41 323.42 4.01 5.54 323.52

Ours 325.13 3.02 4.56 312.56 302.47 3.25 4.89 301.45

FIGURE 7
Model efficiency comparison with Ghasempour and Martínez-Ramón (2023), Zhao et al. (2022), Ebrahimi and Abedini (2022), Mazhar et al. (2023),
Nazir et al. (2023), Kumar et al. (2023) in the case of ENREL dataset Ransome (2018) and GEO dataset Larsen and Drews (2019).

Attention (Q,K,V) = softmax(QKT

√dk
)V (8)

whereQ represents the query vector,K represents the key vector, and
V represents the value vector. dk denotes the dimensionality of each
query/key vector.

See Equations (9, 10) for the self-focused calculation formula in
Transformer:

MultiHead (Q,K,V) = Concat(head1,…,headh)W
O (9)

headi = Attention(QWQ
i ,KW

K
i ,VW

V
i ) (10)

where, h represents the number of attention heads, WQ
i , W

K
i , and

WV
i are weight matrices for linear transformations, and WO is the

weight matrix for linear transformation that combines the results
from multiple heads.

Additionally, see Equations (11, 12) for the formula of
location coding:

PE (pos,2i) = sin(
pos

100002i/dmodel
) (11)
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FIGURE 8
Comparison of ablation experiments with different indicators.

PE (pos,2i+ 1) = cos(
pos

100002i/dmodel
) (12)

where PE(pos,2i) and PE(pos,2i+ 1) represent the even and odd
dimensions in positional encoding, pos denotes the position index,
i represents the dimension index, and dmodel represents the model
dimension.

The Transformer model provides an efficient solution for
capturing long-range dependencies in sequences and offers
exemplary modeling and representation of sequence data. Its
primary role lies in delivering accurate and comprehensive
feature representations, enabling the model to achieve a deeper
understanding of the sequence data and effectively tackle various
natural language processing tasks.

4 Experiment

4.1 Datasets

The four datasets selected in this article are Energy Information
Administration (EIA) dataset, Open Power System Data (OPSD)
dataset, Global Energy Observatory (GEO) dataset, and National
Renewable Energy Laboratory (NREL) dataset.

1. EIA dataset: Maintained by the U.S. Energy Information
Administration, the EIA dataset contains extensive data on
energy production, consumption, prices, and other related
variables. It covers various energy sources, geographical
levels, and historical periods, providing comprehensive and
authoritative information. The EIA dataset offers long-term
historical data, enabling long-term trend analysis. Its wide-
ranging data can be applied to different types of energy
research and analysis. However, the EIA dataset primarily
focuses on the energy situation in the United States, with
relatively limited data available for other countries or regions.
Additionally, the breadth of the data may present challenges in
handling and analyzing large-scale datasets.

2. OPSD dataset: The OPSD dataset provides open access to
electricity system data, encompassing power generation,
demand, and grid infrastructure information from multiple
countries. It aims to enhance transparency and promote
sustainable development in the power system. Its openness
enables researchers to access cross-national and comparable
data, supporting analysis of power system operations,
renewable energy integration, and electricity market analysis.
However, the coverage and availability of OPSD data may
vary depending on the country or region. Furthermore, the
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accuracy and completeness of the dataset may be influenced
by limitations in data reporting and collection.

3. GEOdataset:TheGEOdataset offers comprehensive collection
of global energy-related data, including information on
energy production, consumption, and infrastructure. It covers
various energy sources and provides global-scale data. The
GEO dataset’s strengths lie in supporting cross-national
comparisons and analysis of the global energy landscape. It can
be utilized for energy modeling, policy analysis, and decision-
making. However, the quality and update frequency of the data
may vary depending on the country or region. Additionally, the
consistency and comparability of the data may be affected by
differences in data reporting across countries and regions.

4. NREL dataset: Maintained by the U.S. National Renewable
Energy Laboratory, the NREL dataset offers extensive data on
renewable energy resources, including solar, wind, geothermal,
and biomass energy. It encompasses resource assessments,
techno-economic data, and renewable energy technology
performance characteristics.TheNREL dataset’s advantage lies
in providing detailed data specifically related to renewable
energy resources, supporting research, development, and
planning of renewable energy. It provides abundant technical
and economic data, facilitating the assessment of renewable
energy potential and feasibility. However, its limitation is
its primary focus on the renewable energy situation in the
United States, with limited data available for other countries
or regions. Additionally, the accuracy and applicability of the
dataset may be influenced by resource assessment and data
collection methods.

This study relies on four carefully selected datasets that
encompass a wide range of aspects within the energy sector, such
as energy production, consumption, prices, infrastructure, and
renewable energy resources.These datasets are sourced from various
countries and regions, ensuring a comprehensive coverage of global
energy information. By providing researchers with extensive and
detailed data, they enable thorough analysis and facilitate a deeper
understanding of energy system operations and development.
Moreover, these datasets facilitate cross-country comparisons and
analyses, allowing for a comprehensive understanding of variations
in energy situations among different nations. This comparative
approach is particularly valuable in evaluating the effectiveness
of policy measures and fostering the exchange of best practices.
Importantly, governments, decision-makers, and stakeholders can
rely on these datasets to make evidence-based decisions that
promote sustainable energy policies and practices. See Table 1 for
a detailed description of the dataset.

4.2 Experimental details

The purpose of this experiment is to compare the performance
differences of energy cost prediction and financial strategy
optimization models based on DRL-LSTM and Transformer
algorithms across different metrics, and to conduct an ablation
experiment to evaluate the contributions of each metric.

1. Dataset Preparation: Select the EIA dataset, OPSD dataset,
GEO dataset, and NREL dataset. Ensure that the datasets
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contain comprehensive information on energy prices,
consumption, and related factors to support energy cost
prediction and financial strategy optimization.

2. Model Implementation:

• DRL-LSTM Model: Firstly, design the DRL-LSTM model
structure, including LSTM layers, DRL algorithm, and relevant
network components. Then, implement the model and train
it using the selected dataset, using suitable optimization
algorithms and loss functions for model optimization.
Finally, adjust hyperparameters such as learning rate,
batch size, etc., through cross-validation or grid search for
selection.

• Transformer Model: First, design the Transformer model
structure, including multi-head self-attention mechanism,
positional encoding, and other components. Next, implement
the model and train it using the selected dataset, using
suitable optimization algorithms and loss functions
for model optimization. Then, adjust hyperparameters
such as learning rate, number of heads, hidden layer
size, etc., through cross-validation or grid search for
selection.

3. Experimental Procedure:

• Metric Comparison Experiment: First, use the same training
and testing sets to train and test the DRL-LSTM model and
the Transformer model separately. Then, record and compare
metrics such as training time, inference time, parameter
count, FLOPs, accuracy, AUC, recall, and F1 score. Finally,
use appropriate statistical methods for significance analysis of
metric differences.

• Ablation Experiment: First, select key components of each
model (such as DRL algorithm, LSTM layers, Transformer’s self-
attention mechanism, etc.) for ablation. Then, train and test
models with different components separately and record the
selected metrics. Finally, compare the performance differences
of the models under different component ablations and
evaluate the contributions of each component to the model
performance.

4. Result Analysis: Present the comparison results of various
metrics using tables and charts, including training time,
inference time, parameter count, FLOPs, accuracy,AUC, recall,
and F1 score. Analyze the performance differences of each
model across different metrics and discuss their impact on
energy cost prediction and financial strategy optimization.
Evaluate the contributions of each component to the model
performance and discuss the insights and recommendations
provided by the ablation experiment results.

5. Conclusion: Summarize the experimental results, emphasize
the advantages and application prospects of DRL-LSTM
and Transformer algorithms in energy cost prediction and
financial strategy optimization. Discuss the significance of
the experimental results for energy management and decision
optimization in smart grid systems, and propose potential
directions for future research.

The following is the formula for comparison indicators

• Training Time (S) (see Equation (13)):

Training Time = EndTime− StartTime (13)

• Inference Time (ms) (see Equation (14)):

Inference Time = Total Inference Time
Number of Samples

(14)

• Parameters (M) (see Equation (15)):

Parameters = Number ofModel Parameters
106 (15)

• Flops (G) (see Equation (16)):

Flops =
Number of Floating PointOperations

109 (16)

• Accuracy (see Equation (17)):

Accuracy = Number of Correct Predictions
Total Number of Predictions

(17)

• AUC (Area Under the Curve): AUC calculation involves the
ROC curve, which requires specific binary prediction results
to compute. Assuming positive samples are labeled as 1 and
negative samples as 0, and the model’s prediction results are
given as probabilities, we can calculate the true positive rate and
false positive rate using different thresholds, and then plot the
ROC curve. AUC represents the area under the ROC curve.
• Racall (see Equation (18)):

Recall = TruePositives
TruePositives+ FalseNegatives

(18)

• F1 score (see Equation (19)):

F1Score = 2×Precision×Recall
Precision+Recall

(19)

Among them, see Equation (20) for precision:

Precision = TruePositives
TruePositives+ FalsePositives

(20)

For example, Algorithm 1 is the training process of our
proposed model.

4.3 Experimental results and analysis

Based on Table 2 and Figure 5, We compared the performance
of different methods on the EIA dataset and OPSD dataset in terms
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Algorithm 1. Training and Evaluation of DRL-LSTM Transformer algorithm
for Energy Cost Forecasting and Financial Strategy Optimization.

of classification accuracy, recall, F1 score, and area under the curve
(AUC). According to the experimental results, ourmodel performed
exceptionally well on both datasets. For the EIA dataset, our model
achieved an accuracy of 88.49%, recall of 84.17%, F1 score of 87.98%,
and AUC of 89.97%. On the OPSD dataset, our model obtained an
accuracy of 91.90%, recall of 86.19%, F1 score of 83.85%, andAUCof
85.78%. These results clearly demonstrate that our method has high
predictive performance on both datasets.

This indicates that our model has better adaptability and
generalization ability compared to other comparative methods in
addressing this task. Particularly on the EIA dataset, our model
outperformed other methods in terms of accuracy, recall, and F1
score. On the OPSD dataset, our model also demonstrated excellent
performance in accuracy and AUC.

Based on Table 3 and Figure 5, We compared several existing
models with our proposed model on the ENREL dataset and
GEO dataset, evaluating their performance in terms of accuracy,
recall, and other metrics.

The results show that our model achieved higher accuracy
on both datasets. On the ENREL dataset, our model achieved an
accuracy of 97.83%, while the accuracies of other models ranged
from 88.21% to 95.63%. On the GEO dataset, our model achieved
an accuracy of 95.48%, while other models had accuracies ranging
from 86.81% to 93.43%. Furthermore, our model performed well
in terms of recall, F1 score, and AUC. On the ENREL dataset, our
model achieved a recall of 95.42%, an F1 score of 93.79%, and an
AUC of 93.61%. On the GEO dataset, our model achieved a recall of
93.47%, an F1 score of 91.84%, and an AUC of 95.86%. Compared
to other models, we obtained better results in these metrics.

The proposed model is a good choice for addressing energy cost
prediction and financial strategy optimization problems. However,
there may be some limitations in this experiment. Firstly, although
our model performed well on the used datasets, further validation
is needed on other datasets. Secondly, our model may have some

dependence on specific domain data, so appropriate adjustments
and validations are required when applying it to other domains.

Based on Table 4 and Figure 6, compared to other approaches,
our model demonstrates excellent performance and generalization
on the EIA and OPSD datasets.

Firstly, our model exhibits low values in terms of parameter
count andcomputational complexity,with332.12Mand3.56GFLOPs,
respectively. These values are smaller compared to other models,
indicating that our model is more efficient in terms of storage and
computational resources. Secondly, our model also shows low values
in terms of inference time and training time. On the EIA dataset, the
inference time is 4.25 milliseconds, and the training time is 323.14 s.
Similarly, on theOPSDdataset, the inference time is 4.56milliseconds,
andthetrainingtimeis325.67 s.Theseresults indicatethatourmodel is
highlyefficient for real-timepredictionandtraining.Furthermore,our
model demonstrates excellent generalization. Through experiments
on different datasets, our model achieves low parameter count,
computational complexity, and fast inference and training times on
both the EIA and OPSD datasets. This indicates that our model can
adapt to thecharacteristicsofdifferentdatasetswhilemaintaininghigh
performance. It shows competitiveness in terms of parameter count,
computational complexity, inference time, and training time.

The proposed model exhibits outstanding performance and
generalization in the comparison. It has low parameter count,
computational complexity, and fast inference and training speeds.
This makes our model highly promising for tasks such as real-
time energy cost prediction and financial strategy optimization,
providing efficient and accurate solutions.

According to the experimental results in Table 5 and Figure 7,
our model demonstrates excellent generalization on the ENREL and
GEO datasets compared to other methods.

Firstly, our model exhibits low values in terms of parameter
count and computational complexity, with 325.13M and 3.02G
FLOPs, respectively. These values are smaller compared to other
models, indicating that our model is more efficient in terms of
storage and computational resources. Secondly, our model also
shows low values in terms of inference time and training time. On
the ENREL dataset, the inference time is 4.56 milliseconds, and
the training time is 312.56 s. On the GEO dataset, the inference
time is 4.89 milliseconds, and the training time is 301.45 s. These
results indicate that our model is highly efficient for real-time
prediction and training. Furthermore, our model demonstrates
excellent generalization. Through experiments on the ENREL and
GEOdatasets,ourmodelachieveslowparametercount,computational
complexity, and fast inference and training times on different datasets.
This indicates that our model can adapt to the characteristics of
different datasets while maintaining high performance.

Therefore, our model exhibits outstanding performance and
generalization on different datasets. It has low parameter count,
computational complexity, and fast inference and training speeds.
This makes our model highly promising for prediction and
analysis tasks involving energy-related and geographical data, with
significant potential and application prospects.

Based on Table 6 and Figure 8, it presents the results of ablation
experiments based on the GRU model, comparing the performance
differences among different datasets, metrics, and methods, as well
as the principles of our proposed method.
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In the conducted ablation experiments, we compared several
commonly used models and combinations of models in the field of
energy prediction. The compared methods included our proposed
method, DRL, Bi-LSTM, Transformer, as well as combinations
of DRL with Bi-LSTM, DRL with Transformer, and Bi-LSTM
with Transformer. The performance evaluation utilized metrics
such as MAE, MAPE, RMSE, and MSE. These metrics were
employed to assess the accuracy and performance of the models
in energy prediction tasks. The results of the ablation experiments
demonstrated the superiority of our proposed method across all
datasets. Specifically, on the EIA dataset, our method achieved
an MAE of 18.25, showcasing substantial improvement compared
to other methods. Similarly, on the other datasets, our method
consistently achieved lower MAE and RMSE values, indicating
excellent predictive capabilities.

These findings highlight the performance differences among
different models concerning various datasets and metrics.
Additionally, our proposedmethod showcased significant advantages
in energy prediction tasks, exhibiting high accuracy and reliability in
energy load forecasting. By incorporating the GRU module into our
method, energy load prediction can be further improved, providing
valuable insights for energy management and planning purposes.

5 Conclusion and discussion

This paper proposes an algorithm that combinesDRL, LSTM
networks, and the Transformer algorithm to accurately predict
load demand, addressing the challenges of load forecasting in the
context of decarbonization, and the challenges associated with
energy consumption prediction and financial strategy optimization
in smart grids. Utilizing the LSTM model to model historical data
of smart grids, DRL and the Transformer algorithm are employed to
further analyze the data and formulate optimal energy purchasing
and usage strategies. Empirical validation is conducted on multiple
public datasets, including the EIA dataset.

During the experimental evaluation of the proposed fusion
algorithm’s performance, key metrics were compared with other
methods on various representative power load datasets. The
experimental results demonstrate that the proposed method achieves
accuracy rates of over 95%, recall rates of over 92%, F1 scores of
over 92%, and AUC values of over 93% on multiple datasets. It
outperforms other evaluationmethods in terms of accuracy, recall, F1
score, andAUCvalue.These results indicate that themethod provides
more accurate and reliable predictive capabilities. In terms of model
efficiency, it requires fewer parameters, floating-point operations,
inference time, and training time compared to other comparative
methods. For example, on the EIA dataset, the proposed method
reduced the number of parameters by 46.8%, FLOPs by 48.5%,
inference time by 49.8%, and training time by 38.6% compared to one
of the comparativemethods. Similarly, theproposedmethodexhibited
similar advantages in these metrics on other datasets. Furthermore,
all evaluated metrics maintain an MAE below 19, MAPE below 7%,
RMSE below 4, and MSE below 4, performing exceptionally well on
all evaluation metrics, demonstrating its high prediction accuracy.

The hybrid approach proposed in this paper offers significant
advantages in improving the accuracy of energy cost prediction
and optimizing financial strategies. It demonstrates high predictive

precision, efficiency, and stability. By accurately forecasting
electricity demand and smart grid energy consumption, it assists
power companies in demand forecasting and market planning,
optimizing resource allocation and supply-demand matching.
This enables decision-makers to develop more reasonable power
dispatch and market operation strategies. However, it is important
to acknowledge the limitations of this study.

Firstly, the high dimensionality and dynamics of the data may
pose challenges in terms of computational resources and time
complexity, especially when dealing with large-scale datasets. This
limitation hinders the scalability and practical applicability of our
method. Secondly, further research is needed to investigate the
generalizability of our approach to other datasets and real-world
scenarios. Additionally, exploring the scalability of the algorithm
in more complex and dynamic large-scale smart grid systems is
crucial. Despite these limitations, we anticipate that future research
efforts will focus on enhancing the performance and applicability
of our method through algorithm optimization, improved model
structures, and the integration of additional domain knowledge.

To further improve this study, the following aspects should
be considered in future research: (1) Future work should explore
real-time decision-makingmethods, enabling smart grid enterprises
to promptly respond to dynamic market conditions and ever-
changing energy demands. (2) Future research should investigate
techniques such as adversarial testing and uncertainty quantification
to ensure the performance and reliability of the algorithm in
practical applications. By undertaking these further endeavors, we
can drive the development of energymanagement in smart grids and
contribute to a broader understanding of addressing similar high-
dimensional data processing and decision optimization problems
across various domains.
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