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A distribution network planning
method based on the integration
of operation and planning and
coordinated with the transmission
network

Zhongqi Cai1, Kun Yang1, Xiaoyan Guo1, Zhen Xiang1,
Junjie Huang2* and Wenchao Wang3

1Zhuhai Power Supply Bureau of Guangdong Power Grid Co., Ltd., Zhuhai, China, 2School of Electric
Power Engineering, South China University of Technology, Guangzhou, China, 3Guangzhou Shuimu
Qinghua Technology Co., Ltd., Guangzhou, China

With the increasing integration of renewable energy into the power grid, the
traditional roles of the transmission and distribution networks have become less
distinct at the operational level. The integration between distribution network
planning (DNP) and the transmission and distribution networks operation is crucial
to ensure grid stability. Existing research has primarily focused on collaborative
operation control between transmission and distribution networks, leaving a gap
in integrated DNP, since few works can handle the integer variables. This study
proposes a distribution network planning method based on the integration of
operation and planning and coordinated with the transmission network. It aims to
minimize investment and operational costs while considering local generation
units, distributed renewables, and network constraints. Using a heterogeneous
decomposition algorithm (HGD), the optimization model alternates between the
two networks, assisted by injected parameters for global optimality. A
convolutional neural network (CNN) surrogate model is then used to rapidly
optimize precise distribution network plans that coordinate with the
transmission network. Experimental results on IEEE 30 and IEEE 69 cases
demonstrate that the proposed approach offers valuable engineering benefits,
reducing iteration counts by up to 20% and improving accuracy compared to
other distributed algorithms.

KEYWORDS

integrated operation and planning, coordinated transmission and distribution,
distributed generations (DG), distribution network planning (DNP), convolutional
neural network (CNN) surrogate model

1 Introduction

The DNP could ensure the economic and secure operation of power systems. For a long
time, DNP has been closely related to developing and evolving generation-transmission-
distribution characteristics (Wang et al., 2020). The emergence of distributed renewable
energy has brought uncontrollable, stochastic, and fluctuating issues to power flow (Liu et al.,
2022; Lotfi, 2022). The uncertainty of their spatial distribution profoundly impacts DNP,
which also needs to consider the renewable energy consumption capacity to optimize the
allocation of renewable energy output ratios (Wang et al., 2020).

OPEN ACCESS

EDITED BY

Shiwei Xie,
Fuzhou University, China

REVIEWED BY

Hossein Lotfi,
Hakim Sabzevari University, Iran
Yizhou Zhou,
Hohai University, China

*CORRESPONDENCE

Junjie Huang,
junjiehuang1@outlook.com

RECEIVED 18 July 2023
ACCEPTED 11 August 2023
PUBLISHED 24 August 2023

CITATION

Cai Z, Yang K, Guo X, Xiang Z, Huang J
and Wang W (2023), A distribution
network planning method based on the
integration of operation and planning and
coordinated with the
transmission network.
Front. Energy Res. 11:1261028.
doi: 10.3389/fenrg.2023.1261028

COPYRIGHT

© 2023 Cai, Yang, Guo, Xiang, Huang and
Wang. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Energy Research frontiersin.org01

TYPE Original Research
PUBLISHED 24 August 2023
DOI 10.3389/fenrg.2023.1261028

6

https://www.frontiersin.org/articles/10.3389/fenrg.2023.1261028/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1261028/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1261028/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1261028/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1261028/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2023.1261028&domain=pdf&date_stamp=2023-08-24
mailto:junjiehuang1@outlook.com
mailto:junjiehuang1@outlook.com
https://doi.org/10.3389/fenrg.2023.1261028
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2023.1261028


Compared to DNP, the existing research on coordination
optimization of transmission and distribution mainly focuses on
four problems (Xie et al., 2023): economic dispatch (Li et al., 2016,
2018b; Loukarakis, Dent and Bialek, 2016; Yu et al., 2019), unit
commitment (Kargarian and Fu, 2014; Nawaz and Wang, 2021;
Zhang et al., 2022; Zhang et al., 2022), optimal power flow (Li et al.,
2018a; Mohammadi, Mehrtash and Kargarian, 2019; Lin et al., 2020;
Zuo et al., 2020; Tang et al., 2021), and reactive power optimization
(Wang, 2015; Lin et al., 2017; Sun, 2019). These model DNP
problems as optimization problems with nonlinear constraints,
which contain sparse Jacobian matrix due to different
transmission and distribution power grid parameters. Some state-
of-the-art optimization techniques are introduced due to the feature
of problems. The analytical target cascading method (Kargarian and
Fu, 2014; Mohammadi, Mehrtash and Kargarian, 2019; Zhang et al.,
2022; Zhang et al., 2022) is proposed in the literature. However, its
algorithm suffers from slow convergence speed, easy oscillation
around the optimal point, or divergence issues when improper
penalty multiplier selection and imbalanced weights among
subsystems occur. Relatively, the HGD algorithm, which is based
on boundary interaction variables (Li et al., 2016; 2018a), is widely
applied in heterogeneous system solving (Yu et al., 2019) and can be
combined with sensitivity calculation (Li et al., 2018b) or the
alternating direction multiplier method (ADMM) to reach the
optimum of more complex multi-period (Loukarakis, Dent and
Bialek, 2016) and multi-objective (Zuo et al., 2020) problems. Since
the HGD composite algorithm above requires optimization in each
iteration (Wang, 2015; Lin et al., 2017; Zhao et al., 2019),
calculations can be computationally intensive, especially in the
case of large-scale data or complex models, less-iterative (Tang
et al., 2021) algorithms, non-iterative (Lin et al., 2020)
algorithms, mechanism-based algorithms and heuristic algorithms
(Lotfi and Shojaei, 2022) are proposed to substitute for iterative
algorithms, wherein the convergence performance of the first two
and the generality of the latter two cannot be guaranteed.

Although the reported methods show a certain level of
effectiveness in the coordination optimization of transmission
and distribution, they offer the following inadequacies:

1) The composite distributed solution algorithm requires
customization for specific problems; its solution speed
becomes uncontrollable as the problem size increases.
Moreover, its global optimality and algorithm convergence
cannot be adequately demonstrated.

2) The existing academic literature mainly focuses on dealing with
continuous optimization problems, but only some studies on
mixed-integer optimization problems are represented by DNP.
Only one study in the existing literature addresses the
transmission network planning problem using Benders
Decomposition for DC power flow constraints (Liu et al., 2021).
Still, this method cannot be transferred to distribution network
planning problems with nonlinear power flow constraints.
Consequently, more research should be conducted on mixed-
integer optimization problems related explicitly to DNP.

To fill the above gaps, this paper focuses on the DNP method
based on integrating operation and planning and coordinated with
the transmission network.

1) An integrated optimization mathematical model is proposed for
coordinated operation and planning of the distribution and
transmission networks. This model aims to minimize the
investment and construction cost of the distribution network,
along with the generation cost, load shedding cost, and
renewable energy curtailment cost of the transmission and
distribution networks (Lotfi, 2020; Lotfi, Ghazi and Naghibi-
Sistani, 2020; Lotfi and Ghazi, 2021). The model incorporates
heterogeneous DC power flow and distflow constraints in the
transmission and distribution networks to achieve this
optimization.

2) A heterogeneous decomposition of optimization models for both
the transmission and distribution networks was performed,
using substations as boundaries. A concise HGD algorithm
was employed to achieve distributed solving of the
optimization models containing continuous variables. This
approach allows for efficient convergence within a limited
number of steps.

3) For integer variables, due to their association with the
distribution network topology, a correlation matrix is
introduced to describe the distribution network topology. A
convolutional neural network is employed to learn and extract
topological features, enabling the efficient fitting of the non-
linear relationship between integer variables and optimization
objectives. This significantly reduces the overall computational
complexity of the process.

The proposed DNP method has been tested on a benchmark
power system constructed of IEEE CASE 30 and CASE 69,
including the comparative study with a global optimization
algorithm, since there are few relevant studies. The results
indicate that, within the allowed precision of the DNP problem,
the proposed DNP method achieves optimization results
consistent with global optimization algorithms and efficiently
completes the optimization process.

FIGURE 1
Structure diagram of power transmission and distribution
network.
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2 Specific DNP model in synergy with
the transmission network

As shown in Figure 1, the power grid is divided into three parts:
the transmission network, the substation, and the distribution
network. The substation nodes serve as the boundaries between
the transmission and distribution networks.

2.1 Objective function

A DNP model should be built with objective functions
constructed from both planning and operation perspectives to
establish a coordinated transmission and distribution model for
planning and operation. The aim of the planning function should
be based on the investment and construction cost of the
distribution grid. In contrast, the operation objective function
should consider the operating costs of both the transmission grid
and the distribution grid. The operational costs of the
transmission and distribution grid should include the cost of
power generation, the penalty for load shedding, and the cost of
renewable energy curtailment. The objective functions can be
expressed as follows:

min δIC + δOPT,c + δOPT,l + δOPT,r + δOPD,c + δOPD,l + δOPD,r (1)

The symbols in the equation represent the following costs: δIC

represents the investment and construction cost for the distribution
network; δOPT,c represents the conventional generation cost for the
transmission network; δOPT,l represents the loss of load penalty cost
for the transmission network; δOPT,r represents the curtailment cost of
renewable energy for the transmission network; δOPD,c represents the
conventional generation cost for the distribution network; δOPD,l

represents the loss of load penalty cost for the distribution
network; δOPD,r represents the curtailment cost of renewable energy
for the distribution network.

1) Investment and construction costs for the distribution network
δIC.

δIC � ∑
c∈CIC

uIC,cbc (2)

The symbols in the equation are defined as follows: uIC,c is the
investment cost for building cable in the distribution network; bc is
the decision variable for investing and constructing cables in the
distribution network, which is a 0-1 variable and indexed by the
index of the cable to be built; CIC is the set of lines to be invested and
constructed.

2) Conventional generation cost for the transmission network δOPT,c.

δOPT,c � ∑
s∈S

γs,c ∑
∀t∈T

∑
i∈NT

cci,sP
c
i,t,s (3)

In the equation, S represents the set of scenarios; s is the index of
the scenario; γs,c is the weight of the conventional generator
scenario; T represents the set of time sections; t is the index of
the time section; NT represents the set of nodes in the transmission
network; i is the index of the node; cci,s represents the unit generation

cost of the conventional generator at node i under scenario s; and
Pc
i,t,s represents the output of the conventional generator at time t

under scenario s.

3) Loss of load penalty cost for the transmission network δOPT,l .

δOPT,l � ∑
s∈S

γs,l ∑
∀t∈T

∑
i∈NT

cli,sP
l
i,t,s (4)

In the formula, γs,l represents the weight of the loss scenario, c
l
i,s

represents the unit loss cost at the node i under the scenario s, and Pl
i,t,s

represents the amount of loss at the moment t under the scenario s.

4) Curtailment cost of renewable energy for the transmission
network δOPT,l .

δOPT,r � ∑
s∈S

γs,r ∑
∀t∈T

∑
i∈NT

cri,s Pr,max
i,t,s − Pr

i,t,s( ) (5)

In the equation, γs,r represents the scenario weight for renewable
energy, cri,s represents the unit abandonment cost of renewable energy
for the node i in the scenario s, Pr,max

i,t,s represents the maximum output
of renewable energy at the node i during the time period t in the
scenario s, and Pr

i,t,s represents the output of renewable energy at the
node i during the time period t in the scenario s.

5) Conventional generation cost for the distribution network δOPD,c.

δOPD,c � ∑
s∈S

γs,c ∑
∀t∈T

∑
i∈ND

cci,sP
c
i,t,s (6)

In the equation, ND is the set of distribution network nodes.

6) Loss of load penalty cost for the distribution network δOPD,l .

δOPD,l � ∑
s∈S

γs,l ∑
∀t∈T

∑
i∈ND

cli,sP
l
i,t,s (7)

7) Curtailment cost of renewable energy for the distribution
network δOPD,r.

δOPD,r � ∑
s∈S

γs,r ∑
∀t∈T

∑
i∈ND

cri,s Pr,max
i,t,s − Pr

i,t,s( ) (8)

2.2 Constraints

The transmission constraints are described below.

1) Power balance equation for transmission network nodes.

Pc
i,t,s + Pl

i,t,s + Pr
i,t,s + ∑

l∈Lei

Pf
l,t,s � ∑

l∈Lhi

Pf
l,t,s +Di,t,s, i ∈ NT,∀t,∀s (9)

In the equation, Lei represents the set of lines connected to node i as
the ending point, Lhi represents the set of lines connected to node i as the
starting point,Pf

l,t,s represents the flow on line l,Di,t,s represents the load
at node i, and the subscript l represents the index of the line.

2) Power flow equation of transmission network.

Pf
l,i,t,s � Bl θ

h
t,s − θet,s( ), l ∈ LT,∀t,∀s (10)
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In the equation, Pf
l,i,t,s represents the flow of line l, Bl is the

reciprocal of the reactance of line l, θht,s and θet,s are the phase angles
of the starting node and the ending node of line l, respectively. LT is
the set of transmission lines in the power grid.

3) Transmission network line capacity constraints.

Pf,min ≤Pf
l,i,t,s ≤Pf,max, l ∈ LT, i ∈ NT,∀t,∀s (11)

Where: Pf,max and Pf,min are the upper and lower limits of the
line transmission power.

4) Generation output constraints in transmission network.

Pc,min
i ≤Pc

i,t,s ≤P
c,max
i , i ∈ NT,∀t,∀s (12)

ϑ−Pc,max
i ≤Pc

i,t,s − Pc
i,t−1,s ≤ ϑ+Pc,max

i , i ∈ NT,∀t,∀s (13)
Pr,min
i ≤Pr

i,t,s ≤P
r,max
i , i ∈ NT,∀t,∀s (14)

Where: Pc,max
i and Pc,min

i are the upper and lower limits of
conventional generation output at node; ϑ+ and ϑ− are the maximum
change ranges of conventional generation output within a time
interval, expressed as a percentage of unit capacity; Pr,max

i and Pr,min
i

are the upper and lower limits of renewable generation output.

5) Transmission network load shedding constraint.

0≤Pl
i,t,s ≤Pl. max

i,t,s , i ∈ NT,∀t,∀s (15)

In the equation, Pl. max
i,t,s represents the maximum load shedding

capacity at node i.
The distribution constraints are described below.

1) Power balance equation for distribution network nodes.

Pc
i,t,s + Pl

i,t,s + Pr
i,t,s + ∑

l∈Lei

Pf
l,t,s − rlιl,t,s( ) � ∑

l∈Lhi

Pf
l,t,s, i ∈ ND,∀t,∀s

(16)
Qc

i,t,s + Qr
i,t,s + ∑

l∈Lei

Qf
l,t,s − xlιl,t,s( ) � ∑

l∈Lhi

Qf
l,t,s, i ∈ ND,∀t,∀s (17)

ιl,t,s � Il,t,s
∣∣∣∣ ∣∣∣∣2,∀l ∈ LD,∀t,∀s (18)

In the equation: Qc
i,t,s and Qr

i,t,s are the reactive power output of
conventional generators and renewable energy generators,
respectively; Qf

l,t,s is the reactive power flow on the line; rl and xl

are the resistance and reactance of the line, respectively; Il is the
current on the line; LD is the set of distribution network lines; l is the
line index.

2) Distribution network node voltage equation.

vel,t,s � vhl,t,s − 2 rlP
f
l,i,t,s + xlQ

f
l,i,t,s( ) + r2l + x2

l( )ιl,t,s,∀l ∈ LD,∀t,∀s

(19)
vl,t,s � Vl,t,s

∣∣∣∣ ∣∣∣∣2,∀l ∈ LD,∀t,∀s (20)

In the equation, vhl,t,s and vel,t,s represent the squared voltage
magnitudes at the starting and ending nodes of line l,
respectively.

3) Power flow equation of transmission network.

ιl,t,s �
Pf
l,t.s( )2 + Qf

l,t.s( )2
vl,t,s

,∀l ∈ LD,∀t,∀s (21)

4) Upper and lower voltage limits for distribution network nodes.

V min ≤Vl,t,s ≤V max,∀l ∈ LD,∀t,∀s (22)
Where: V max and Vmin are the upper and lower limits of the

distribution network node voltage, respectively.

5) Distributed generation output constraints in transmission
network.

Pc,min
i ≤Pc

i,t,s ≤P
c,max
i , i ∈ ND,∀t,∀s (23)

ϑ−Pc,max
i ≤Pc

i,t,s − Pc
i,t−1,s ≤ ϑ+Pc,max

i , i ∈ ND,∀t,∀s (24)
Pr,min
i ≤Pr

i,t,s ≤P
r,max
i , i ∈ ND,∀t,∀s (25)

6) Distribution network load shedding constraint.

0≤Pl
i,t,s ≤Pl. max

i,t,s , i ∈ ND,∀t,∀s (26)

The substation constraints are described below.

1) Power balance equation for substation network nodes.

Pc
i,t,s + Pl

i,t,s + Pr
i,t,s + ∑

l∈Lei

Pf
l,t,s � ∑

l∈Lhi

Pf
l,t,s +Di,t,s, i ∈ NS,∀t,∀s (27)

Where: NS represents the set of substation nodes.

2) Local generation output constraints in substation network.

Pc,min
i ≤Pc

i,t,s ≤Pc,max
i , i ∈ NS,∀t,∀s (28)

ϑ−Pc,max
i ≤Pc

i,t,s − Pc
i,t−1,s ≤ ϑ+Pc,max

i , i ∈ NS,∀t,∀s (29)

3 Solution method

3.1 Construction of a collaborative operation
model for transmission and distribution

In traditional DNP, the transmission network and substations are
treated as infinite power sources. In collaborative planning between the
transmission and distribution networks, a network model is established
for the transmission network, including line flows, distributed generation
units, and renewable energy, to reflect the real-time operating status of the
transmission network. To achieve optimized calculation of the
collaborative operation between transmission and distribution, variable
exchange is required at the transmission-distribution boundary to achieve
the optimal dispatch under the given planning scheme. The construction
of the collaborative operation optimization model between transmission
and distribution is shown in the following equation:

minOc
T cvT, x

v
T, x

v
S( ) + Oc

D cvD, x
v
D, x

v
S( )

gT cvT, x
v
T, x

v
S( )≥ 0 → μT

hT cvT, x
v
T, x

v
S( ) � 0 → λT

gD cvD, x
v
D, x

v
S( )≥ 0 → μD

hD cvD, x
v
D, x

v
S( ) � 0 → λD

gS cvS, x
v
S( )≥ 0 → μS

hS cvD, x
v
D, x

v
T, x

v
S( ) � 0 → λS

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(30)
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In the equation,Oc
T(cvT, xv

T, x
v
S) represents the operational cost of

the transmission network, corresponding to Eqs 2–4;
Oc

D(cvD, xv
D, x

v
S) represents the operational cost of the distribution

network, corresponding to Eqs 5–7; g and h respectively correspond
to inequality constraints and equality constraints; μ and λ

correspond to Lagrange multipliers for inequality constraints and
equality constraints. cv and xv represents control variables and
represents state variables.

Operating model, the “node splitting” concept is used, and
auxiliary functions for the injection of power from substations
into the distribution network ySD , the injection of power from
the transmission network region into the substation region fTS ,
and the injection of power from the substation region into the
distribution network region fSD are introduced. Therefore, Eq.
27 can be decomposed into the power constraint for the injection
of power from the transmission network region into the
substation region Eq. 32 and the power constraint for the
injection of power from the substation region into the
distribution network region Eq. 33. The abstract expression of
Eq. 27 is shown in Eq. 31.

hS cvD, x
v
D, x

v
T, x

v
S( ) � 0 (31)

fTS cvS, x
v
T, x

v
S( ) � ySD (32)

fSD xv
T, x

v
S( ) � ySD (33)

The Lagrange function of Eq. 30 can be expressed as

L � Oc
T cvT, x

v
T, x

v
S( ) + Oc

D cvD, x
v
D, x

v
S( ) + μTTgT

+λTThT + μTDgD + λTDhD + μTS gS

+λTTS fTS − ySD( ) + λTSD ySD − fSD( ) (34)
Further, the Karush Kuhn Tucher (KKT) condition can be

expressed as.

1) The partial derivative of each variable is equal to 0;
2) Satisfying equality and inequality constraints;
3) The complementary relaxation condition is satisfied.

3.2 Solution for the collaborative operation
model for transmission and distribution

The planning model algorithm utilizes the HGD algorithm for
solving. The solving approach is as follows:

The coordinated operation model of transmission and distribution
(30) can be decomposed into the sub-model of transmission network
operation optimization and the sub-model of distribution network
operation optimization with the aid of auxiliary functions. The
auxiliary functions are used to ensure that the optimization
objectives of the two sub-models after decomposition are consistent
with the optimization objective of the original model.

Specifically, the sub-model of transmission network operation
optimization can be represented by Eq. 35, and the sub-model of
distribution network operation optimization can be represented by
Eq. 36.

minOc
T cvT, x

v
T, x

v
S( ) + AT

s.t. cvT, c
v
S, x

v
T, x

v
S( ) ∈ DT(ySD

* ) (35)

minOc
D cvD, x

v
D, x

v
S*( ) + AD

s.t. cvD, x
v
D, ySD( ) ∈ DD xv

S*( ) (36)

In the equations: DT(y*
SD) represents the feasible domain of the

sub-model of transmission network operation optimization while
ySD � ySD

* ;DD(xvS*) represents the feasible domain of the sub-
model of distribution network operation optimization while
xv
S � xv

S*; AT and AD are auxiliary functions introduced into the
decomposed optimization model to ensure the optimality condition
of the original model is satisfied.

To satisfy the optimality condition, the auxiliary function should
satisfy the following equation:

AT xS( ) � hTBDxS

AD ySD( ) � λTTSySD
{ (37)

Where:

hSD � ∂Oc
D

∂xv
S

+ ∂hTD
∂xv

S

λD + ∂gT
D

∂xv
S

μD + ∂fT
SD

∂xv
S

λSD (38)

The HGD algorithm solves the operation optimization models
of transmission and distribution networks alternately through
iterations until the physical quantities related to the boundary
region converge. The specific steps for solving the coordinated
operation model of transmission and distribution using the HGD
algorithm are shown in Figure 2.

3.3 Construction and optimization of DNP
agent model for coordinated operation of
transmission and distribution based on
convolutional neural network

CNN is one of the classical algorithms in deep learning. Its
internal structure uses weight sharing and local connectivity,
which enables CNN to effectively extract deep-level features
contained in data while reducing algorithm complexity. CNN
mainly consists of a convolutional layer that performs
convolution calculation on the data and extracts potential
features and a pooling layer that downsamples and compresses
network parameters. The alternating use of convolutional and
pooling layers can effectively extract the potential features of the
input data and reduce the errors caused by manual feature
extraction. The structure diagram of one-dimensional CNN is
shown in Figure 3.

The construction and solution of the coordinated operation
model for the transmission and distribution system described in
Section 3.1, Section 3.2 can output the optimal operating cost for
a given planning scheme. Combined with the investment and
construction cost of the distribution network corresponding to
the planning scheme, as shown in Eq. 2, the total cost of the
scheme can be obtained. In practical engineering problems, the
feasible planning schemes for the stock planning of the
distribution network are generated from a planning problem
library accumulated over some time. Therefore the number of
feasible planning schemes is often limited. In addition,
considering the large scale of the distribution network, the
introduction of nonlinear constraints in the distribution
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network power flow, and the growth in the number of operating
scenarios, calculating the total cost for each feasible planning
scheme and seeking optimization will increase the time and space
complexity. However, each planning scheme corresponds to a
topological structure of the distribution network, which an
adjacency matrix can intuitively represent. Therefore, a
convolutional neural network can be introduced to map the
topological structure of the distribution network to the total
cost, constructing a proxy model for the complex coordinated
operation model of the transmission and distribution system and
achieving rapid optimization of the total cost for a limited
number of planning schemes.

4 Case study

4.1 Case construction

The IEEE transmission network test case CASE 30 and IEEE
distribution network test case CASE 69 are concatenated.
Specifically, node 30 of CASE 30 is connected to the root node
of CASE 69 via a single substation node. The voltage amplitude
upper and lower limits for each node in the distribution network are
1.1 p. u. and 0.9 p. u., respectively. In the transmission network test
case CASE 30, nodes 1, 2, 22, 23, and 27 are connected to
conventional thermal power generation units, while nodes 3, 4,

FIGURE 2
HGD algorithm flowchart.

FIGURE 3
CNN structure diagram.
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and 6 are connected to renewable energy generation units. In the
distribution network test case CASE 69, some nodes are connected
to local conventional power generation units and distributed
renewable energy sources, whose parameters are listed in Table 1.
The costs are showed in Table 2. The load coefficients and renewable
energy unit output coefficients are shown in Figures 4, 5. All
calculations are performed by Gurobi 10.0.2 API for Python on
an Intel Core I7 11700F 2.5 GHz processor.

4.2 Example results and analysis

The proposed lines to be built in this case study are (24–50),
(24–52), (16–50), (16–65), (16–69), (50–65), (30–52), (28–60),
(50–60), and (18–67), which can generate a total of
1024 planning schemes through permutation and combination.

The total costs of some planning schemes, calculated by the
model described in Chapter 3, are shown in Table 3.

From Table 3, it can be seen that three planning schemes can be
generated by selecting Line (16–35) and Line (24–50), among which
the planning scheme that only constructs Line (24–50) has the
lowest total cost. The planning scheme that constructs both Line
(16–35) and Line (24–50) is the second cheapest, followed by the
planning scheme that only constructs Line (16–35). In the four
typical scenarios constructed in this paper, operating costs account
for a relatively large proportion of the total cost of the planning
scheme. As the number of typical scenarios inputted further
increases, the proportion of operating costs in the total cost of
the planning scheme will also increase. Theoretically, the more
typical scenarios are inputted, the more the planning scheme can
reflect its impact on the actual operating costs of various levels of
power grids.

Considering the number of typical scenarios increases and the
granularity of a single scenario in practical engineering applications
as the transmission and distribution network scale increases, the
time and space complexity of a single operation of the HGD
algorithm, which is mainly based on iterative calculations, will
increase significantly. Reducing the calls to the HGD algorithm
in the solution algorithm is a vital optimization direction. At this
point, the transmission and distribution coordinated operation
model has a clear input-output relationship with the planning
scheme-total cost. Building a convolutional neural network proxy
model can simplify the planning model by “making the complicated
simple.”

Selecting the planning schemes to form the training and testing
sets, the two-dimensional description of the adjacency matrix
corresponding to the planning scheme is extracted as the carrier
form of the input of the convolutional neural network. The
comparison of the computation speed and accuracy between the
trained convolutional neural network proxy model and the original
model is shown in Table 4. Both the directly solved optimal
construction scheme and the optimal construction scheme found
by the neural network proxy model are to invest in line (24–50) and
(24–52). Furthermore, the computation time for individual
optimization is provided, demonstrating an advantage in
computation time. However, its results lack reference value.

As seen from Table 4, the DNP model that coordinates with the
transmission network for optimization will consume a significant
amount of time and computing power, even for small-scale network
models. However, training a convolutional neural network proxy
model makes it possible to achieve optimal planning solutions that
meet the required precision by calling multi-iteration solving
algorithms on a small scale. Using a convolutional neural
network proxy model can effectively capture the topological

TABLE 1 Distributed renewable energy parameters for distribution network.

Node Maximum active power
output/MW

Minimum active power
output/MW

Maximum reactive power
output/MVar

Minimum reactive power
output/MVar

12 3.0 0 1.0 0

26 2.0 0 1.0 0

42 3.0 0 1.0 0

TABLE 2 Construction and operation costs.

Project Cost

Investment and construction costs 2 M per line

Conventional Generation Cost 0.463 M/MW

Loss of load penalty 0.34 M/MW

Curtailment cost of renewable energy 0.25 M/MW

FIGURE 4
Load factor.
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characteristics corresponding to the planning solutions, map them
to the total cost with high precision, and quickly optimize the
exponential number of planning solutions composed of
numerous lines to be constructed. The optimal solution
corresponds to the boundary node line flow of the substation, as
shown in Figure 6.

Based on Figure 6, it can be seen that the objective function is
constructed with the abandoned energy cost of renewable energy
sources. This is reflected in the optimization results by the low power
flow values at the boundary nodes of the substation, indicating that
the active power injected into the distribution network from the
transmission network is relatively low. As a result, the distribution
network load is mainly provided by local units and distributed
renewable energy output.

In order to validate the applicability of the algorithm, a
comparison between centralized and distributed algorithms was
conducted in the given case study. The distributed algorithms

included the ADMM and the APP (Auxiliary Problem Principle)
methods. Additionally, a comparison of optimization results was
performed using a collaborative optimization model involving
continuous variables in transmission and distribution systems.
The iteration counts for algorithms with varying convergence
accuracy are depicted in Figure 7, while the optimization results
for different algorithms are presented in Figure 8.

From Figures 7, 8 it is evident that the HGD algorithm exhibits
a robust convergence performance compared to other
commonly used decomposition algorithms. The iteration
count of the HGD algorithm is minimally affected by the
convergence accuracy. On the other hand, the iteration
counts of the ADMM and APP algorithms are significantly
influenced by the convergence accuracy; under higher
convergence accuracy requirements, their iteration counts are
much greater than those of the HGD algorithm employed in this
study. When considering the directly solved centralized
algorithm as a benchmark, the HGD algorithm demonstrates
a more minor computational error by up to 2.34%.

Furthermore, decomposition algorithms like ADMM and APP
necessitate the tuning of several constant parameters, the selection of
which directly impacts the algorithm’s convergence performance.
The optimization and tuning of these parameters also require
manual adjustments. In comparison, the HGD algorithm
eliminates the need for parameter setting, resulting in stable
convergence performance.

FIGURE 5
Renewable energy output coefficient.

TABLE 3 Planning schemes and total costs.

Planning scheme Lines construction Total cost/Million

Scheme 1 (16–65) × 1 7.2809

Scheme 2 (24–50) × 1 7.0814

Scheme 3 (16–65) × 1, (24–50) × 1 7.1110

TABLE 4 Comparison of solution methods.

Solution methods time (s) Total cost corresponding to the optimal scheme/Million (error)

Direct solution 677.7 704.84 (−)

Solving surrogate model 380.1 706.11 (0.18%)

Independent optimization 34.2 -
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5 Conclusion

To adapt to the scenario of high-penetration renewable
energy integration into the power grid, where the source-load
roles in the operational perspective of transmission and
distribution networks are blurred, and to conduct DNP with
greater precision, this paper proposes a distribution network
planning method based on the integration of operation and
planning and coordinated with the transmission network. This
method constructs operational models for both the transmission
and distribution networks and substation, as well as a planning

model for the distribution network. The optimization model with
continuous variables is decomposed and solved using the HGD
algorithm. To overcome the challenges of optimizing models
with integer variables, this paper constructs a distribution
network correlation matrix to represent its topological
connections for the integer part optimization model and
employs a CNN surrogate model for global optimization.

Results from case studies constructed using IEEE 30 and IEEE
69 indicate that the proposed solving method reduces computation
time by 43.91% compared to direct solving using centralized
algorithms, with an error of only 0.18% from the direct solving
results. The HGD algorithm used in this study, when compared to
other distributed algorithms like ADMM and APP, achieves
convergence with significantly fewer iterations while maintaining
the same accuracy level. Additionally, the optimization results using
HGD algorithm show a reduction in computation error by 2.34%
compared to the mentioned distributed algorithms. The proposed
method improves solving efficiency and reduces computation errors
to a certain extent, demonstrating its value for engineering
applications.
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Collaborative capacity planning
method of wind-photovoltaic-
storage equipment in microgrids
considering different energy
selling incomes

Lingyu Liang1, Xiangyu Zhao1*, Wenqi Huang1, Liming Sun2,
Ziyao Wang3 and Fengsheng Chen3

1Digital Grid Research Institute of China Southern Power Grid, Guangzhou, China, 2Guangzhou Shuimu
Qinghua Technology Co., Ltd., Guangzhou, China, 3College of Electric Power, South China University of
Technology, Guangzhou, China

A microgrid is a promising small-scale power generation and distribution system.
The selling prices of wind turbine equipment (WT), photovoltaic generation
equipment (PV), and battery energy storage equipment (BES) have a significant
impact on microgrid profits, which, in turn, affects the planning capacity of
renewable energy. However, existing research has not yet conducted in-depth
modeling and analysis for different kinds of energy generation electricity prices.
This paper proposes an optimal capacity planningmethod for wind-photovoltaic-
storage equipment, considering different energy selling incomes in microgrids.
Stochastic characteristics of renewable energy (WT and PV), selling prices of
different types of energy, and timing coupling characteristic are considered in the
proposed model. In addition, the configuration capacities of WT, PV, and BES are
modeled as discrete decision variables, according to the type of specific
equipment. The comprehensive life cycle cost (LCC) is considered an objective
function. It can be found that the proposed collaborative capacity planning model
is a mathematical programming problem with complex nonlinear constraints and
integer variables. To solve this problem, a cultural gray wolf optimization algorithm
(CGWO) is applied in this paper. The proposed method’s efficiency, convergence,
superiority, and effectiveness are verified through a case study. Moreover, the
impact of different new energy sales prices on capacity planning results is also
revealed in the article.

KEYWORDS

microgrid, wind-photovoltaic-storage capacity planning, collaborative planning, cultural
gray wolf optimization algorithm, life cycle cost, selling price

1 Introduction

1.1 Background

Global climate change has brought severe challenges to human survival. In the face of
these challenges, China has put forward the “carbon emissions peak” and “carbon neutrality”
policies (Wang Jiayu et al., 2022). The proposed policies insist on green and low-carbon
development, tackling climate change actively. In this context, a novel power system with
renewable energy is proposed as the main body of future power systems. Nowadays, Chinese
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clean energies mainly contain wind and photovoltaic power
generation, which are the most practical approaches and show
great development potential.

In rural areas, industrial parks, or islands, there are often many
distributed photovoltaic (PV) panels, wind turbines (WTs), and
battery energy storage equipment (BES), which constitute a
“microgrid” (Wei et al., 2014). In areas with abundant wind
energy and light resources, how to optimize the capacity of
different energy equipment in the microgrid, improving the
economic profits, enhancing the reliability of the designed
microgrid, and increasing the accommodation rate of clean
energy, is a crucial but complicated problem (Wang et al., 2022b;
Singh and Sharma, 2017).

1.2 Related work

Scholars around the world conducted research on the location
and capacity of distributed generation (DG) in microgrids from
different perspectives. Recent research studies can be summarized
from model formulation and algorithms, as shown in Table 1.

1.2.1 Model formulation
The objective of a microgrid capacity planning model needs to

consider economy, reliability, and environment protection (Kiptoo
et al., 2023). Economic objectives mainly include costs (annual
investment cost, maintenance cost, main grid electricity purchase
cost, equipment operation cost, etc.) and profits (main grid
electricity selling profits, environmental subsidies, etc.) (Yang
et al., 2020a). Reliability objectives include time-based indicators
(SAIDI and CAIDI), frequency-based indicators (SAIFI and CAIFI),
and energy loss-based indicators (EENS). Environment objectives
are related to emissions of greenhouse gases, which depend on the
output of traditional thermal power and renewable energy

accommodation (Wang et al., 2022c). The constraints of a
microgrid capacity planning model should consider the power
flow equation and operation mode. It can be found that the
capacity configuration of a microgrid is a nonlinear, multi-
objective problem with complicated constraints (Singh and
Sharma, 2017).

A cost-based formulation was performed to determine the
optimal size of BES in the operation cost minimization problem
of a MG under various constraints, such as the power capacity of
distributed generators (DGs), power and energy capacity of BES,
charge/discharge efficiency of BES, operating reserve, and load
demand satisfaction (Sharma et al., 2016; Liu et al., 2016),
focused on optimization of the power source capacity in the
microgrid. In addition, a coordinated planning strategy is
proposed with an integrated consideration of the characteristics
of DG, ES, and load. Kiptoo et al. (2019) investigated the prospects of
interlinking a short-term flexibility value into long-term capacity
planning toward achieving a microgrid with a high renewable energy
fraction. A pumped storage power station capacity planning method
based on the full life cycle cost was proposed to describe a new sizing
optimization methodology of a stand-alone hybrid photovoltaic/
wind/battery system, minimizing the levelized cost of energy
(LCOE), the loss of power supply probability (LPSP), and the
equivalent carbon dioxide (CO2-eq) life cycle emission (Xiao
et al., 2020). However, few studies have analyzed the impact of
price (cost and profit) on the capacity allocation of a microgrid and
carried out in-depth sensitivity analysis based on the proposed
model, providing effective guidance for microgrid planners.

1.2.2 Algorithm
Existing solving algorithms of capacity configuration in a

microgrid mainly include traditional analytical mathematical
algorithms and heuristic optimization algorithms (Abou El-Ela
et al., 2022). Some researchers tried to reformulate the original

TABLE 1 Summary of distributed generator planning models.

Reference Investment
cost

Reliability
cost

Main grid
interaction cost

Maintenance
cost

RES sales
profit

Scrapping
profit

Hung et al. (2014) √ √ × × × ×

Khoubseresht et al. (2023) √ √ × × × ×

(Ali et al., 2023; Prakash et al.,
2022)

× √ √ × × ×

Sharma et al. (2016) √ × √ √ √ ×

Liu et al. (2016) √ √ × √ √ ×

(Kiptoo et al., 2019; Borghei and
Ghassemi, 2021)

√ √ × × × ×

Xiao et al. (2020) √ × √ √ √ √

Khemissi et al. (2021) √ √ × × √ ×

Abou El-Ela et al. (2022) √ √ × √ √ ×

Coelho et al. (2016) √ × √ × √ ×

Kiptoo et al. (2023) √ × √ √ × ×

This paper √ √ √ √ √ √
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problem into a typical mixed-integer linear programming (MILP)
with some approximate techniques (Borghei and Ghassemi, 2021;
Kiptoo et al., 2023). Although these kinds of methods can obtain the
optimal solution to the transformed problem, the obtained solution
may have large deviations from practical solutions due to the
approximation. Furthermore, these algorithms cannot
accommodate to various scenarios, hindering their application in
practical engineering. On the other hand, heuristic optimization
algorithms can solve these complicated planning problems
effectively. However, the selection and improvement of heuristic
algorithms based on the variable form and constraint space of the
specific problem is an urgent and promising research area (Coelho
et al., 2016; Yang et al., 2020b).

1.3 Main purpose

From the aforementioned literature review, it can be found that
existing research has not yet conducted in-depth modeling and
analysis for different kinds of energy generation electricity prices,
given that a significant portion of the revenue from microgrid
operators comes from the selling income of renewable energy. In
addition, the selling prices of different types of renewable energy are
different, while existing research studies have not yet modeled,
solved, and analyzed the differences in selling prices of different
types of new energy. Microgrid planners or electricity market price
setters also require corresponding theoretical basis and guidance
when carrying out microgrid planning or setting electricity prices.
Thus, it is necessary to model the differences in the selling prices of
different types of renewable energy and integrate them into the
microgrid planning model.

1.4 Main contribution

To tackle the aforementioned issues, this paper proposes a novel
microgrid capacity planning model and an improved cultural gray
wolf optimization algorithm. The major contributions of this paper
can be summarized as follows:

(1) Novel microgrid capacity planning model. A novel wind-
photovoltaic-storage microgrid capacity planning model
considering comprehensive cost and profits is put forward.
The different selling prices of WT, PV, and BES are
considered in the paper, which is essential for the planning
model.

(2) Improved cultural gray wolf optimization (CGWO) algorithm.
An improved cultural gray wolf optimization algorithm
(CGWO) is proposed to solve this problem efficiently.
Compared with other heuristic optimization methods, the
proposed method outperforms in convergence and
calculation time when solving the proposed model.

(3) Impact of different energy sale prices and investment costs. The
influence of different selling prices of WT, PV, and BES, and the
investment cost of BES on the microgrid planning scheme is
analyzed. The proposed model mainly focuses on the impact of
the change in the electricity selling price on the planning results,

which is conducive to microgrid planners to analyze the
feasibility of the planning scheme from a new perspective.

1.5 Structure

The remainder of this paper is organized as follows: In Section 2,
the overall architecture of collaborative capacity planning in a
microgrid is presented. In Section 3, a capacity planning model
of WT, PV, and BES in the microgrid is established. In Section 4, the
solution algorithm CGWO is introduced. Subsequently, the testing
of the proposed methods and the sensitivity study are presented in
Section 5. Finally, conclusions and practical suggestions are
summarized in Section 6.

2 Optimal capacity planning model of
wind-photovoltaic-storage equipment
in a microgrid

2.1 Architecture of collaborative capacity
planning in a microgrid

Future smart DS will include various types of novel loads and
DGs, including wind WT, PV, BES, and user load. From the
perspective of optimal planning, DS planners should coordinate
reliability and DS costs through an optimal design of the equipment
capacity to accommodate these loads and DGs. Figure 1 shows the
planning task of capacity planning in a microgrid.

The total objective function F of capacity planning of wind and
solar storage equipment in the microgrid is formulated as follows.

F � CInv + CEENS + CBuy + CMain( ) − ISell + IDrop( ), (1)

where F represents the comprehensive cost of the designed
microgrid system. The objective function of this paper is to
minimize the comprehensive cost of wind-photovoltaic-storage
equipment in the microgrid system, which contains cost and
profits. The cost of the capacity planning model includes the cost
of equipment investment in the microgrid (WT, PV, and BES) CInv,
cost of expected energy not supplied (EENS) CEENS, cost of
electricity purchased from the main grid CBuy, and cost of

FIGURE 1
Framework of collaborative capacity planning in a microgrid.
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equipment maintenance CMain. In addition, the profits of the
designed microgrid system are composed of the profits obtained
from selling electricity ISell and the scrapping of equipment IDrop.

2.2 Annualized cost of investment

In the process of microgrid planning, the investment and
construction cost of each piece of equipment (WT, PV, and BES
in this paper) occupies an important part, which is shown as follows:

CEQ
Inv � SEQpEQ

Inv

r

1 + r( )TEQ − 1
, (2)

where CEQ
Inv represents the investment cost of different equipment,

including WT, PV, and BES. The investment and construction costs
of each piece of equipment are closely related to the capacity of the
equipment SEQ. In addition, pEQ

Inv represents the investment and
construction costs per unit capacity of WT, PV, and BES.

2.3 Annual cost of outage compensation

If a power outage occurs due to insufficient power supply, the
microgrid operator needs to compensate the corresponding users. In
the planning and design of a high-reliability microgrid, it is
necessary to consider the annual outage compensation cost of the
microgrid, which can be written as follows:

CEENS � kEENSEENS, (3)
ΔPun

t � Dt − PW
t − PS

t − SOCt − SOC min( ), (4)
EENSt � ΔPun

t − Ptie,max
t ;ΔPun

t >Ptie,max
t , (5)

EENS � ∑
t

EENSt( ), (6)

where the annual outage compensation cost of planned equipment
CEENS is related to the annual shortage of power supply EENS and
power outage cost coefficient kEENS. Based on the power balance
equation, the unbalanced power ΔPun

t is the part that is still
insufficient after the wind, solar, and storage power output, as
shown in Eq. 4. Then, the power shortage EENSt occurs at the
current time t when the maximum power obtained from the main
grid is added, which is shown in Eq. 5. Eq. 6 considers the power
outage under all operating scenarios.

2.4 Annual cost of electricity purchased
from the main grid

If the wind and solar storage resources are insufficient, the
microgrid needs to purchase electricity from the main network to
meet the load demand of the whole microgrid. The annual cost
calculation formula of purchasing electricity from the main network
is as follows:

CBuy � kbuyP
buy
t , (7)

Pbuy
t � 0; ΔPun

t ≤ 0
ΔPun

t ; ΔPun
t > 0

{ , (8)

where the annual cost of power purchase of the main grid CBuy is
related to the power obtained through the tie line/main grid Pbuy

t

and price coefficient of power purchase from the main grid kbuy.
When the unbalanced power ΔPun

t at time t is less than 0, it means
that the current power of the microgrid is enough to be balanced by
wind and solar storage in the microgrid. In this situation, there is no
need to purchase electricity from main network, and the purchased
power is 0 at this time. When the unbalanced power ΔPun

t at time t is
greater than 0, it means that the current wind and solar storage
resources of the microgrid cannot meet the load demand in the
microgrid. In this situation, it is necessary to purchase electricity
from the main network at this time, and the purchased power of this
part is Pbuy

t .

2.5 Annual cost of equipment maintenance

The equipment invested and built by the microgrid needs to be
operated and maintained in its life cycle. The specific calculation
formula of the cost required for this part is as follows:

CEQ
Main � SEQpEQ

Main

r

1 + r( )TEQ − 1
, (9)

where CEQ
Main represents the maintenance cost of WT, PV, and BES.

Themaintenance cost of each piece of equipment is closely related to
the capacity of the equipment, SEQ. In addition, pEQ

Main represents the
maintenance cost per unit capacity of WT, PV, and BES.

2.6 Annual profit of electricity sales

The microgrid can exchange energy with the main grid through
the main grid bus, which can gain profits if the microgrid has extra
power. The calculation formula of annual electricity sales income
ISell of the microgrid, including the wind-photovoltaic-storage, is
mainly composed of electricity sales income of wind power,
photovoltaic, and battery energy storage.

ISell � pWPW
Sell,t + pSPS

Sell,t + pBPB
Sell,t, (10)

where ~pW, ~pS, ~pB are the electricity sales prices of WT, PV, and BES,
respectively. PW

Sell,t, P
S
Sell,t, andP

B
Sell,t are the sales power of WT, PV,

and BES, respectively.
To calculate the wind selling power at each time, it is necessary

to calculate the wind power PW t.

PW
t �

0; wt ≤wc

SW wt − wc( )/k; wc ≤wt ≤wr

SW; wt ≥wr

⎧⎪⎨⎪⎩ , (11)

where PW
t is the wind power, related to the wind speed at each time.

If the wind speed wt at the current moment is less than the cut-in
wind speed wc, the wind power cannot be output. If the current wind
speed wt is between the cut-in wind speed wc and the cut-out wind
speed wr, the generated power can be calculated from a linear
expression related to the wind speed and the capacity of WT. If
the current wind speed wt is greater than the cut-out wind speed wr,
the rated capacity SW of WT is considered in this paper.

The calculation of solar power PS t is formulated as follows:
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PS
t � SSITt, (12)

where PS
t is the photovoltaic power generation related to the planned

capacity of solar power generation equipment SS and the radiation
intensity of current illumination ITt.

The renewable energy modeling in this paper considers the wind
speed and irradiance in the planning area, establishes a
mathematical relationship between wind or solar resources and
power output under a given new energy installation capacity, and
combines typical power output curves of wind and solar energy to
construct a scenario-based modeling method.

This paper assumes that renewable energy is preferentially
consumed in the system. Therefore, the power shortage at the
current time ΔPt can be expressed as follows.

ΔPt � PW
t + PS

t −Dt. (13)
It can be found that if ΔPt is greater than or equal to 0, indicating

that the current wind power generation power PW
t and the

photovoltaic power generation power PS
t are sufficient to supply

the load Dt, the surplus power at the current time can be provided to
the energy storage equipment for charging. If ΔPt is less than 0, the
current wind power generation power PW

t and photovoltaic power
generation power PS

t cannot meet the current load Dt demand and
need to be provided by the energy storage system.

SOCt is the remaining capacity of the energy storage equipment
at the current time, which is related to the capacity of the energy
storage equipment. The minimum value of SOCt is 30% of the
planned capacity of BES. The maximum value of SOCt is the value
corresponding to the planned capacity of BES. In particular, the
remaining capacity of the energy storage device needs to be limited
between the maximum and minimum values of the remaining
capacity.

SOCt � SOC max; SOCt ≥ SOC max,
SOC min; SOCt < SOC min,

{ (14)

SOCt � SOCt−1 + ΔPt−1Δt, (15)
where SOCt at the current time is the SOC at the previous time t-1
plus the charge/discharge power at the previous time. Then, the
charge/discharge power of battery energy storage is expressed by the
following formula.

PB
Sell,t � SOCt − SOCt−1; SOCt ≥ SOCt−1,

PB
Charg e,t � SOCt−1 − SOCt; SOCt < SOCt−1.

{ (16)

If the SOC at the current moment is larger than the SOC at the
previous moment, the BES in the microgrid is in discharge and sells
power to the main grid. Conversely, if the SOC at the current
moment is larger than the SOC at the previous moment, the BES in
the microgrid is in charge.

Pc,max
t � Dt + Ptie,max

t + PB
t , (17)

PMAR
t � PW

t + PS
t − Pc,max

t , (18)
where Pc,max

t is the maximum consumable power at time t, Ptie,max
t is

the maximum power of the tie line at time t, and PB
t is the battery

energy storage power at time t. It can be found that the maximum
consumable power Pc,max

t at time t is composed of the load Dt, the
maximum power of tie line Ptie,max

t , and the battery discharge power

PB
t at the current time. PMAR

t is the remaining power margin after
consuming wind power and photovoltaic, and its value is the surplus
of wind power output PW

t and photovoltaic output PS
t after

deducting the maximum consumable load power Pc,max
t .

Combined with the power margin and the maximum
consumable power calculated previously, the actual sales power
of WT and PV can be calculated, which are shown as follows:

PW
Sell,t � PW

t ; PMAR
t ≤ 0,

PW
t PW

t + PS
t( )/Pc,max

t ; PMAR
t > 0,

{ (19)

PS
Sell,t � PS

t ; PMAR
t ≤ 0,

PS
t PW

t + PS
t( )/Pc,max

t ; PMAR
t > 0.

{ (20)

Therefore, when the residual power margin is less than 0, WT
and PV power are the actual output power. If the power margin is
greater than 0, WT and PV power can only be consumed
proportionally.

2.7 Annual profit of equipment scrapping

Another part of the income of the wind-photovoltaic-storage
microgrid comes from the scrapping income of wind-photovoltaic-
storage equipment, and the specific calculation formula is as follows:

IDrop � IWDrop + ISDrop + IBDrop, (21)
IEQDrop � SEQpEQ

Drop

r

1 + r( )TEQ − 1
, (22)

where the annual scrapping income of planned equipment consists
of the scrapping income of WT IWDrop, the scrapping income of PV
ISDrop, and the scrapping income of BES IBDrop. The coefficient r is the
discount rate. TEQ are the life cycles of WT, PV, and BES,
respectively. pEQ

Drop represents the scrapping income per unit
capacity of WT, PV, and BES.

3 Improvement in the cultural gray wolf
optimization algorithm

The aforementioned problem is a planning model with complicated
constraints and variables. It contains a large number of logical judgment
constraints, which is intractable to most mathematical solvers.
Furthermore, the traditional optimization algorithm has slow
convergence speed. In addition, traditional mathematical optimization
methods, such as branching-and-cut or cutting plane methods, need to
approximate the non-convex and nonlinear parts, transforming the
model into a tractable form of MILP. Although the precise solution of
the model can be obtained, there is still some deviation between the
transformed model and the original model. In this situation, the
advantages of the heuristic optimization algorithm are more prominent.

This paper improves the GWO algorithm (Mirjalili and Seyed
Mohammad Mirjalilib, 2014) and proposes an improved CGWO
algorithm, which is suitable for the capacity planning model of wind-
photovoltaic-storage equipment in themicrogrid. The proposed CGWO
algorithm enhances the gray wolf optimization method to effectively
solve the capacity planning problem and optimize the performance of
wind-photovoltaic-storage equipment in microgrids.
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A traditional GWO algorithm is based on the classification of
wolves. The weight of wolves with a high level is higher, and the weight
of wolves with a low level is lower. The search range and target of
different wolves are different. Finally, the search information on
different wolves is summarized and synthesized, and the optimal
search mode of the whole wolves is given. The framework of this
algorithm is presented in Figure 2.With the iteration, the search range is
continuously narrowed to achieve the optimal position. However, the
iterative update mode of the traditional gray wolf optimization
algorithm in the evolution process adopts the linear decreasing
strategy to shrink, and the convergence factor calculation formula of
the traditional gray wolf algorithm is as follows:

a � 2 1 − l

T
( ), (23)

where a is the convergence factor, l is the current iterative algebra,
and T is the total number of evolutionary iterations.

Inspired by particle swarm optimization, slowing down the
convergence rate of the convergence factor can enhance its global
search ability and prevent the algorithm from falling into the local
optimal solution. Therefore, to improve the global performance of
algorithm contraction, this paper proposes a new convergence factor
updating method based on exponential law change:

a � 2 exp −l /T( ), (24)

The convergence factor a will decrease in the form of a negative
exponent, and its decreasing speed is lower than that of the linear
decreasing strategy.

Second, to better carry out the global search and consider the
performance of local utilization (the basic idea of the greedy algorithm),
this paper proposes an adaptive search strategy, which makes the
algorithm still attach importance to the role of the first wolf (α
wolf), but at the same time, it does not take the average value of the
positions of the three wolves. The specific expression is as follows:

X l + 1( ) � X1 + X2 + X3

3
1 − l

T
( ) + X1

l

T
, (25)

where X1 is the position of the αwolf, X2 is the position of the β wolf,
and X3 is the position of γ wolf, which indicates the central position
of the population after evolving from the previous generation to the
next generation.

In addition, a better initial solution can significantly
improve the initial search performance. Therefore, this
paper is inspired by the cultural gene optimization
algorithm to give full play to the global search performance
of the genetic algorithm (GA). Before starting iteration, the
initial solution is generated blindly and randomly. First, the
high-quality initial solution is obtained based on GA, and then,
the evolutionary iteration is carried out based on the gray wolf
optimization algorithm.

The steps of the improved gray wolf optimization algorithm are
summarized, as shown in Figure 3.

4 Case study

The following will be combined with the actual solution example
for analysis, based on MatlabR 2020a. The processor parameter of
the computer is Intel(R) Core(TM) i7-8565U CPU @ 1.80 GHz,
1.99 GHz.

4.1 Model parameter description

This paper takes a microgrid as a simulation example. Then,
8,760 h of the actual load demand in the microgrid, the wind speed,
and the light intensity of the microgrid in a year for this area are
collected and uploaded in Liang et al. (2023).

FIGURE 2
Framework of gray wolf optimization (GWO).
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4.2 Algorithm parameter setting

Before solving the model based on the heuristic/meta-heuristic
optimization algorithm, it is necessary to set the memory of each
parameter involved in each algorithm. In order to ensure the
comparability of the algorithms, each heuristic optimization

algorithm sets the same parameters in the population number
and iteration times, and other algorithms determine the optimal
parameter settings according to the grid search method (Bergh and
Engelbrecht, 2003; Baker and Ayechew, 2003). The specific
parameter settings of each algorithm are shown in Table 2;
Table 3; Table 4; Table 5; Table 6.

4.3 Comparison of different optimization
algorithms

To verify the convergence and convergence speed of the
improved CGWO algorithm proposed in this paper, it is
compared with PSO (Prakash et al., 2022), GA (Wang et al.,
2022c, WOA (Singh and Sharma, 2017), and GWO algorithms
(Ali et al., 2023). The convergence curves and convergence times
of different algorithms are shown in Figure 4; Figure 5.

By usingMATLAB, CGWO can converge to the optimal value of
-1.1908 * 106 yuan at a faster speed. To verify the optimality of the
convergence objective, this paper increases the number of
population searches and iterations of other heuristic optimization
algorithms and finally converges to the same objective function
value. Therefore, it can be considered that the convergence value is
the optimal objective function value of the wind-photovoltaic-
storage microgrid planning model, and the specific decision
variables obtained by the convergence of different algorithms are

FIGURE 3
Framework of cultural gray wolf optimization (CGWO). (i)
Initializing CGWOparameters, including the population number N and
total iteration times T. (ii) Giving full play to the global optimization
ability of GA, the initial solution is obtained by a genetic principle,
and the initial gray wolf population is generated. (iii) Calculating the
fitness function of each level of gray wolf in the population. For the
calculation of fitness function in this paper, refer to the objective
function of the optimal capacity planning model of wind and solar
storage equipment in the microgrid, which is presented in Eq. 1. After
the calculation, the fitness function of different gray wolves and its
corresponding position (the value of decision variables) were
recorded. (iv) Judging whether the condition of algorithm termination
is met. For example, whether the algebra of convergence iteration is
reached or not, the optimal solution does not change in K iterations. If
the termination condition is satisfied, the optimal solution of the cycle
output is proposed, and the optimal capacity planning scheme of
wind-photovoltaic-storage equipment in the microgrid is obtained;
otherwise, step (v) is performed. (v) The convergence factor a is
calculated according to Eq. 24. (vi) The gray wolf population was
sorted, and the gray wolf level was divided into three levels. (vii) The
center position of the evolved population is obtained based on
Formula 25, and it is checked whether the center position of the new
population violates the relevant constraints of the model. If the
constraint is violated, it is compressed to the boundary. (viii) The
number of iterations plus 1, that is, l = l+1, return to step (iv).

TABLE 2 Parameter setting of particle swarm optimization (PSO).

Parameter Name Value

N Population number 50

G Maximum number of iterations 50

C1 Learning factor 1 2.0

C2 Learning factor 2 2.0

vmax Maximum speed 0.8

vmin Minimum speed 0.1

TABLE 3 Parameter setting of the genetic algorithm (GA).

Parameter Name Value

N Population number 50

G Maximum number of iterations 50

Pc Crossover rate 0.8

Pm Variation rate 0.05

TABLE 4 Parameter setting of the whale optimization algorithm (WOA).

Parameter Name Value

N Population number 50

G Maximum number of iterations 50
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395.8956, 397.6725, and 864.0066. The calculation time of different
algorithms can be completed within 15 s, the solution efficiency can
meet the requirements of planners for planning and design, and the
efficiency is much higher than that of the manual scheme design and
index comparison.

In this case study, the performance of several optimization
algorithms to solve the planning model is compared. The key
findings are as follows:

(1) PSO produced average initial solutions, eventually converging
to a local optimal solution. PSO’s optimization time was
moderate, but its performance was sensitive to parameter
settings, making it less adaptable and robust.

(2) GA had poor initial solutions and convergence speed, but its
diverse and global solutions made it a valuable component of the
improved GWO, which combined GA with the stable and
powerful optimization performance of GWO.

(3) WOA had better convergence and shorter calculation times
compared to PSO. It is a meta-heuristic algorithm that is easier
to apply and understand than PSO.

(4) CGWO outperformed all other algorithms in convergence
speed and actual calculation time. Its combination of cultural
genes enabled high-quality solutions to evolve and converge
quickly.

To further verify the convergence of the algorithm, different
optimization algorithms were repeated 20 times, and the curves were
plotted in a boxplot, as shown in Figure 6. It can be found that
CGWO has the best convergence, both in terms of the fluctuation of
the boxplot (length of the boxplot) and the mean value of the
boxplot, which are superior to other algorithms. Therefore, it can be

TABLE 5 Parameter setting of the gray wolf optimization algorithm (GWO).

Parameter Name Value

N Population number 50

G Maximum number of iterations 50

TABLE 6 Parameter setting of the improved cultural gray wolf optimization
algorithm (CGWO).

Parameter Name Value

N Population number 50

G Maximum number of iterations 50

Pc Crossover rate 0.8

Pm Variation rate 0.05

FIGURE 4
Convergence curves of different optimization algorithms.

FIGURE 5
Calculation time of different algorithms.

FIGURE 6
Box diagram of convergence values for different optimization
algorithms.
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concluded that the algorithm proposed in this paper has better
convergence compared to other optimization algorithms.

4.4 Sensitivity analysis of the model

4.4.1 Electricity price sensitivity analysis of different
types of generators
4.4.1.1 Sensitivity analysis of wind power selling prices

The sensitivity analysis of different wind power sales prices is
performed and shown in Figure 7. A sensitivity analysis was
conducted on wind power sales prices by multiplying the
reference price with corresponding electricity price coefficients
ranging from 0.5 to 1.5 in increments of 0.05.

Based on the findings presented in Figure 7, it can be inferred
that an increase in the selling price of wind power will lead to an
increase in the planned capacity of wind power equipment. When
the electricity price coefficient exceeds 1 p. u., the planned capacity
of wind power equipment increases, while the planned capacity of
photovoltaic and energy storage equipment decreases. However, due
to the ability of energy storage to smooth fluctuations, a certain
capacity of energy storage equipment is still necessary.

4.4.1.2 Sensitivity analysis of solar power selling prices
The sensitivity analysis of different selling prices of photovoltaic

power generation is performed, and the results are shown in
Figure 8.

When revenue from photovoltaic electricity sales increases, it
often leads to an increase in the construction of photovoltaic
equipment. However, if the revenue from photovoltaic electricity
sales continues to remain high, it may result in a decrease in the
construction of wind power equipment and an increase in the
construction of energy storage equipment. This is because high
revenue from photovoltaic electricity sales may make wind power
projects less financially attractive, and energy storage equipment
becomes more important to balance the intermittency of renewable
energy sources, such as wind and solar energy. Therefore, it is

important to consider the overall energy mix and the balance
between different renewable energy sources and energy storage
technologies to ensure a sustainable and reliable energy system.

4.4.1.3 Sensitivity analysis of storage power selling prices
The sensitivity analysis is conducted on the selling price of

different energy storage power generation, and the results are shown
in Figure 9.

When the revenue generated by selling electricity from energy
storage equipment increases, it incentivizes the expansion of the
energy storage construction capacity. However, as the cost of selling
electricity from energy storage equipment increases to a certain level,
it may become more expensive to rely solely on energy storage to
meet the load power demand. At this point, there may be an
increased incentive to expand the construction capacity of
photovoltaic equipment to help supplement the energy supply
and lower costs.

FIGURE 7
Optimal equipment capacity for different wind power selling
prices.

FIGURE 8
Optimal equipment capacity for different solar power sale prices.

FIGURE 9
Optimal equipment capacity for different battery storage power
selling prices.
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4.4.2 Sensitivity analysis of the BES investment cost
The sensitivity analysis of investment and construction costs of

different energy storage equipment is performed, and the results are
shown in Figure 10.

Figure 10 demonstrates that a decrease in the investment cost of
energy storage equipment results in a significant increase in its
optimal planning capacity. This is because energy storage plays a
vital role in stabilizing power fluctuations within a microgrid. As
such, a reduction in the construction cost of energy storage
equipment incentivizes its greater utilization and expansion
within the system.

4.4.3 Discussion on the costs and benefits
Through sensitivity analysis, the costs and benefits of different

types of renewable energy on the planning results can be
summarized as follows:

①With the increase in the WT selling price, the WT installation
capacity increases. In comparison to PV selling prices, the
advantage of WT will squeeze out some of the PV installation
capacity. However, due to the greater uncertainty of WT
fluctuations compared to PV, the WT installation capacity
rapidly decreases when the selling price is below 1 p. u.

② With the increase in the PV selling price, the PV capacity
increases to a certain extent, but after reaching a certain
point, PV also needs some energy storage support and will
not increase further. In comparison to WT selling prices, the
advantage of PV will squeeze out some of the WT
installation capacity. Since the output of PV is relatively
regular (high radiation intensity at noon and low radiation
intensity at other times), the PV installation capacity is
replaced by the WT installation capacity only when the
price is below 0.8 p. u.

③ BES plays an important role in suppressing the volatility and
uncertainty of wind and solar energy. Therefore, when the
electricity price for energy storage and sales decreases, it is
necessary to retain a certain degree of installed energy storage
capacity to promote the consumption of wind and solar

resources. When the electricity price for energy storage and
sales increases, the efficient combination of energy storage
and photovoltaic will show “bundled growth.”

5 Discussion and limitations

5.1 Advantages and disadvantages of the
proposed method

The advantages of the proposed method for considering the
selling income of renewable energy in microgrid capacity planning
are summarized as follows:

(1) One of the key advantages of the proposed approach is its
ability to capture the impact of varying electricity prices on
microgrid capacity. By incorporating dynamic pricing
models, different scenarios and the capacity planning
solution can be obtained and analyzed. This allows
microgrid operators to make more informed decisions and
maximize their revenue potential.

(2) Another advantage is that the proposed method considers
distributed power generation, which aligns with the growing
trend of renewable energy integration in microgrids. By
incorporating the revenue from selling excess power back to
the grid, the deployment of DGs is incentivized.

(3) The proposed optimization algorithm is stable and has good
convergence effect. Compared with traditional mathematical
methods, such as branch-and-cut or cutting plane methods, the
proposed algorithm can be applied easily to provide several
satisfactory solutions for planners to select.

However, certain limitations are summarized as follows.

(1) Real-time volatility of electricity prices has not been considered.
The uncertainties associated with price forecasting can indicate
potential risks in the process of microgrid capacity planning. In
future research, the uncertainty of prices can be accurately
characterized through distributionally robust optimization
(DRO) and integrated with the optimization model, fully
considering the impact of price volatility on capacity
planning (Zhou et al., 2021).

(2) Although feasible solutions can be provided, the optimal
solution of the model cannot be guaranteed. Due to the non-
convex and nonlinear nature of the proposed model, it can only
be solved with the meta-heuristic optimization algorithm.

5.2 The potential impact of the
communication mechanism

The intensity of communication among components has a
significant impact on the microgrid system structure (Górski,
2022; Menniti et al., 2022). It is crucial to consider the area of
information exchange, messaging patterns, and technologies
employed. The use of messaging patterns in microgrid systems
has gained significant attention due to their ability to facilitate
efficient communication and coordination among various

FIGURE 10
Optimal equipment capacity of different energy storage
equipment investment construction cost.
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components. Górski (2022) provided valuable insights into the
use of messaging patterns in different domains. By leveraging
messaging patterns, microgrid components can exchange
information in a standardized and reliable manner, enabling
effective coordination and control. Menniti et al. (2022)
presented experimental use cases that highlight the potential
of enabling technologies in energy communities. These
technologies can be leveraged in microgrids to enhance
information exchange, such as advanced metering
infrastructure, smart sensors, and real-time data analytics.

Therefore, if the communication between different microgrids
and the communication range constraints between different types of
devices are considered, it may influence the planning result of the
microgrid equipment capacity.

6 Conclusion

This paper proposes a capacity planning model for wind-
photovoltaic-storage equipment in microgrids and solves the
model using the CGWO algorithm. The paper presents the
following conclusions.

(1) This paper analyzes the whole life cycle costs and profits that
need to be considered in the planning of wind-photovoltaic-
storage equipment in a microgrid. Then, a capacity planning
model of wind, photovoltaic, and storage equipment
considering LCC and profits in the microgrid is established.
In terms of life cycle cost, annualized investment cost, annual
power outage compensation cost, annualized main grid
purchase cost, and annualized equipment operation and
maintenance cost are considered. In terms of profits of the
system, the electricity sales income and scrapping income are
considered.

(2) CGWO is applied to solve the proposed model efficiently. From
the simulation results, it can be seen that CGWO improves the
solution efficiency and convergence characteristics without
increasing too much computational complexity. In addition,
the robustness and adaptability of the algorithm are obviously
improved compared with the traditional heuristic optimization
algorithms.

(3) Sensitivity analysis on electricity selling price and energy storage
investment and construction cost in the model are conducted to
analyze the influence of electricity selling price and energy
storage construction cost on the planning scheme. Case
studies reveal the impact of the planned capacity of WT, PV,
and BES increases in varying degrees when the selling price of
different equipment decreases. In addition, microgrid planners
will rapidly increase the proportion of BES investment when the
investment cost of BES decreases.

Future research can investigate the integration of multiple
energy resources, dynamic demand response, multiple microgrid
interaction, and digital techniques and their impact on the capacity
planning of microgrid equipment. Additionally, uncertainty
optimization algorithms that can accurately depict load,
renewable energy, and electricity price fluctuations will be further
studied and applied in depth (MirjaliliSeyedaliLewis, 2016).
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Nomenclature

Variables

F Comprehensive cost of the designed microgrid system

CInv Cost of the capacity planning model includes cost of equipment investment in the microgrid (WT, PV, and BES)

CEENS Cost of expected energy not supplied (EENS)

CBuy Cost of electricity purchased from the main grid

CMain Cost of equipment maintenance

ISell Profits of selling electricity from the designed microgrid system

IDrop Profits of the scrapping of equipment from the designed microgrid system

IWDrop/I
S
Drop/I

B
Drop Profits of the scrapping of WT/PV/BES

CEQ
Inv

Investment cost of WT, PV, and BES

SEQ Capacity of WT, PV, and BES

CEQ
Main

Maintenance cost of WT, PV, and BES

PEQ
Main

Maintenance cost per unit capacity of WT, PV, and BES

EENSt Power shortage at time t

EENS Annual shortage of power supply

ΔPun
t Unbalanced power at time t

PW
t /PS

t Wind power/solar power generation power at time t

SOCt Energy storage value at time t

Pbuy
t

Power obtained through the tie line/main grid at time t

PW
Sell,t /P

S
Sell,t /P

B
Sell,t Sales power of WT/PV/BES at time t

PB
Charge,t Charging power of BES at time t

SW/SS Planned capacity of wind power/solar power generation equipment

ΔPt Power shortage at time t

Pc,max
t Maximum consumable power at time t

PB
t Battery energy storage power at time t

PMAR
t Remaining power margin at time t

X1/X2/X3 Position of α wolf, β wolf, and γ wolf

X (l+1) Position of the next wolf

Parameters

PEQ
Drop

Investment cost per unit capacity of WT, PV, and BES

r Discounted rate

PEQ
Inv

Investment and construction cost per unit capacity of WT, PV, and BES

TEQ Life cycle of WT, PV, and BES

kEENS Power outage cost coefficient

~pW , ~pS , ~pB Electricity sales prices of WT, PV, and BES

Dt Load at time t

kbuy Price coefficient of power purchase from the main grid

ITt Radiation intensity of illumination at time t

SOCmax/SOCmin Maximum/minimum energy storage value
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Ptie,max
t Maximum power of the tie line at time t

wt Wind speed at time t

wc/wr Cut-in wind speed/cut-out wind speed

a Convergence factor

l Current iterative algebra

T Total number of evolutionary iterations
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Multi-stage low-carbon planning
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considering demand response
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In the context of energy crisis, the development of low-carbon integrated
energy systems has become a prominent research area. This article addresses
the challenges posed by high energy consumption and emissions in integrated
energy systems by proposing a multi-stage planning method for low-carbon
integrated energy that considers load time transfer characteristics. The first
step involves examining the time transfer characteristics of demand response
and analyzing the economic benefits of integrated energy systems
participating in the electricity–carbon market. Subsequently, a multi-stage
green low-carbon planning model for the integrated energy system is
constructed. To validate the effectiveness of the proposed model, actual
calculation results are obtained. These results demonstrate that the demand
response, specifically in data centers, can significantly reduce the operational
costs of integrated energy systems. Furthermore, the multi-stage low-carbon
planning approach is shown to be more reasonable and economically
beneficial compared to single-stage planning. Overall, this research article
provides insights into the development of low-carbon integrated energy
systems within the context of energy crisis. By considering load time
transfer characteristics and employing a multi-stage planning method, this
article highlights the potential for reducing costs and improving the overall
efficiency of integrated energy systems.

KEYWORDS

integrated energy systems, multi-stage planning, low-carbon planning, data center,
demand response

1 Introduction

With the energy crisis becoming increasingly serious (Yang L. et al., 2022), energy
conservation and low-carbon development have gradually become the development
philosophy of all countries in the world. The integrated energy system can achieve
multi-energy coupling, improve the consumption rate of renewable energy through
electricity–gas–thermal complementarity, and reduce carbon emissions. It is an
important means to achieve carbon emission reduction goals. Therefore, it has received
widespread attention from countries around the world (Lv et al., 2021). Therefore, in the
context of green and low-carbon development, this article focuses on the planning of
integrated energy systems and conducts research on multi-stage green and low-carbon
comprehensive energy planning considering carbon emissions, providing theoretical and
technical support for relevant researchers and planners.

OPEN ACCESS

EDITED BY

Shiwei Xie,
Fuzhou University, China

REVIEWED BY

Tomasz Górski,
University of Gdansk, Poland
Lv Chaoxian,
China University of Mining and
Technology, China

*CORRESPONDENCE

Tao Yu,
taoyu1@scut.edu.cn

RECEIVED 15 July 2023
ACCEPTED 14 August 2023
PUBLISHED 01 September 2023

CITATION

Huan J, Ding Q, Yu T and Cheng Y (2023),
Multi-stage low-carbon planning of an
integrated energy system considering
demand response.
Front. Energy Res. 11:1259067.
doi: 10.3389/fenrg.2023.1259067

COPYRIGHT

© 2023 Huan, Ding, Yu and Cheng. This is
an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Energy Research frontiersin.org01

TYPE Original Research
PUBLISHED 01 September 2023
DOI 10.3389/fenrg.2023.1259067

30

https://www.frontiersin.org/articles/10.3389/fenrg.2023.1259067/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1259067/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1259067/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2023.1259067&domain=pdf&date_stamp=2023-09-01
mailto:taoyu1@scut.edu.cn
mailto:taoyu1@scut.edu.cn
https://doi.org/10.3389/fenrg.2023.1259067
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2023.1259067


2 Related work

At present, there are relatively mature research studies on the
planning of integrated energy systems that consider carbon
emissions, but the impact of the electricity–carbon market has
not been fully considered in the planning. Chen et al. (2021)
constructed a multi-stage planning method for the integrated
energy system under a tiered carbon trading mechanism. Zhang
et al. (2015) proposed a planning scheme that considers reliability,
energy efficiency, and carbon emissions for the expansion plan of the
electrical thermal coupling integrated energy hub. Xiong et al. (2021)
studied the optimal configuration of hydrogen energy storage based
on the electrical thermal load characteristics of integrated energy
systems and verified its feasibility of reducing energy supply costs
and carbon emissions. Li et al. (1608) proposed a low-carbon
operation optimization strategy considering the electricity gas
thermal hydrogen demand response and stepped carbon emission
costs. Yuan et al. (2023) studied the optimization and scheduling
method of integrated energy at the park level under the carbon green
certificate trading mechanism. Zhang et al. (2020) introduced a
reward and punishment tiered carbon tradingmechanism to address
the collaborative planning problem of integrated energy systems,
taking into account the uncertainty of electric heating flexible loads,
and proposed an integrated energy system planningmodel. Luo et al.
(2021) constructed an integrated energy optimization scheduling
model for the carbon green certificate joint trading mechanism,
which can effectively improve the consumption rate of renewable
energy. Liu et al. (2023) proposed dual-level optimization scheduling
of integrated energy that considers carbon emission flow and
demand side response to address the issue of low-carbon
scheduling of integrated energy, which can achieve low-carbon
economic operation. Qiu et al. (2015a) introduced a carbon
trading mechanism and constructed an electricity gas joint
expansion planning model that considers both economic and
low-carbon aspects. Wang et al. (2019) proposed an optimal-
capacity allocation model for the integrated energy system in the
park, effectively improving the consumption rate of renewable
energy and reducing carbon emissions. Shen et al. (2020)
proposed data-driven robust planning for industrial integrated
energy systems in response to various uncertainties. Zeng et al.
(2023) proposed a double-layer optimization model based on the
improved non-dominated sorting genetic algorithm-II (NSGA-II)
and mixed-integer linear programming (MILP). Zhang et al. (2023)
proposed a low-carbon economic dispatch model for an integrated
energy system that considers an LCES and carbon capture system.
The aforementioned literature conducted in-depth research on the
low-carbon operation planning of integrated energy systems, but did
not consider the impact of electricity markets on the power balance
of integrated energy systems.

Many scholars have conducted multi-stage planning research on
the planning of integrated energy systems. Zhao et al. (2020)
constructed a long-term planning method for the integrated
energy system of a park that takes into account the uncertainty
of wind, light, and load. Wei et al. (2022) proposed a multi-objective
extended planning model for the integrated energy system of
electricity gas interconnection based on IGDT to address the
problem of load fluctuations in the electricity gas system. Cao
et al. (2020) proposed a multi-stage integrated energy system

planning model to address the shortcomings of single-phase
construction issues. Chen et al. (2022) constructed a dual-layer
optimization configuration model for PIES that considers optimal
construction timing and cloud energy storage. This model can
improve the planning economy and equipment utilization
efficiency of PIES. Qiu et al. (2015b) considered the uncertainty
of load and cost and proposed multi-stage planning for a typical
scenario based on an electric pneumatic coupling integrated energy
system. Santos et al. (2015) proposed a multi-stage distributed
generation planning model considering short-term and medium-
and long-term uncertainties. Unsihuay-Vila et al. (2010) proposed
an expansion model for a multi-region and multi-stage integrated
energy system with electricity and gas coupling. Ding et al. (2018)
proposed a multi-stage stochastic programming model for the
electricity gas integrated energy system based on “wait-and-see
decision-making” in response to load uncertainty. However, the
aforementioned literature did not conduct research on how to
achieve multi-stage energy structure transformation of the
integrated energy system while meeting carbon emission
reduction goals.

3 Discussion and limitations

In summary, the current research has not fully considered the
impact of the electricity–carbon market, and the constraints of
different carbon reduction goals on the planning of the
integrated energy system were omitted. The time transfer
characteristics of demand response, such as data centers in the
integrated energy system, were overlooked. In addition, existing
multi-stage planningmethods lack consideration for the exchange of
information among various components of the integrated energy
system, and different components are in a relatively fragmented
state, which cannot coordinate planning and operation well to
achieve economic optimal results (Zhao Ning et al., 2023; Gorski,
2023).

Therefore, this article considers the time transfer
characteristics of data center servers and electric refrigerators,
studies the optimal timing of energy equipment construction,
and constructs a low-carbon multi-stage planning model of an
integrated energy system considering carbon neutrality paths. A
low-carbon integrated energy system planning model with the
goal of minimizing comprehensive costs is proposed. It is
converted into mixed-integer linear programming and solved
by Gurobi. Finally, the effectiveness of the proposed model is
verified by the results of practical examples.

This article is mainly divided into four parts. The first part
constructs the overall framework of the integrated energy system,
clarifying the main energy types, energy equipment types, and load
types included in the integrated energy system. The second part
studies the time transfer characteristic of the demand response and
constructs adjustable models for servers and electric refrigerators.
The third part constructs the income model of integrated energy in
the electricity–carbon market. The electricity market considers the
income of the day-ahead electricity market and the day-ahead
frequency modulation market, and the carbon market considers
the economic income under the stepped carbon trading mechanism.
The fourth part is example verification.
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4 Structure of the integrated energy
system

The structure of the integrated energy system in this article is shown
in Figure 1. The energy supply side of the integrated energy system
includes the superior power grid, natural gas grid, photovoltaic, and
wind turbine. Energy conversion equipment includes cogeneration
units, gas boilers, electric refrigerators, absorption chillers, and P2G
equipment. Energy storage equipment includes electrical energy storage
and heat storage devices. Energy demand includes conventional
electricity, thermal, cooling loads, and new loads. The demand
response refers to data center servers and electric refrigerators.

In the early stage of integrated energy construction, due to factors
such as economic efficiency and power grid foundation, a large number
of high-emission and high-energy-consumption energy equipment was
constructed, resulting in a low penetration rate of renewable energy and
high overall carbon emissions in the park. The energy utilization rate
needs to be improved. Under the carbon goal, the integrated energy
system needs to gradually retire high-emission and high-energy-
consumption units, invest in more green and environmentally
friendly energy equipment, and develop into a green and low-
carbon integrated energy system mainly based on renewable energy.

5 Transfer characteristic of data center
demand response

With the vigorous development of the new generation of
information technology, the scale and volume of data centers
have also grown rapidly. Due to the unique time migration
characteristics of computing resources, the data center has
become one of the most potential demand response resources.
The new load mentioned previously mainly refers to the data

center load, which generally includes servers and electric
refrigerators. An adjustable model for the server and electric
refrigerator is given in the following section.

5.1 Data center server model

The data center server is the main device for processing task
requests. The task requests in data centers can be divided into two
types: delay sensitive and delay tolerant. Among them, delay-
tolerant task requests have lower execution time requirements
and only need to be executed within the delay limit, which has
good time transfer potential. The execution order of delay-tolerant
task requests can be reasonably arranged based on the current
energy supply situation of the integrated energy system.

The total power consumption of data center servers is related to
active servers and task requests processed by servers, which can be
expressed as (Yang T. et al., 2022)

Psrv,n,s,t � mn,s,t Pn + Pp − Pn( )vn,s,t/ mn,s,tF( )[ ]. (1)

Here, Psrv,n,s,t is the total power consumption of the server at
time t under scenario s in the nth year; mn,s,t is the number of active
servers at time t under scenario s in the nth year; Pn is the idle power
consumption of the server; Pp is the full power consumption of the
server; vn,s,t is the total number of tasks processed by all active servers
at time t under scenario s in the nth year; and F is the maximum
number of tasks processed by a single server.

The aforementioned formula is simplified and converted into a
linear function of active servers and task requests:

Psrv,s,t � c1ms,t + c2]s,t, (2)
c1 � Pn, (3)

c2 � Pp( −Pn)/F. (4)

Here, c1 and c2 are server performance-related parameters.
Some task requests are delay tolerant and can be adjusted in

execution time.

vn,s,t � vajn,s,t + vunajn,s,t − vaj−,n,s,t + vaj+,n,s,t, (5)

∑T
t

−vaj−,s,t + vaj+,s,t( ) � 0, (6)

vaj−,s,t, v
aj
+,s,t ≥ 0. (7)

Here, vaj n,s,t is the number of delay-tolerant task requests at time
t under scenario s in the nth year. vunaj n,s,t is the number of delay-
sensitive task requests at time t under scenario s in the nth year. vaj

-,n,s,t is the number of delay-tolerant task requests reduced in
execution at time t under scenario s in the nth year. vaj +,n,s,t is
the number of delay-tolerant task requests increased in execution at
time t under scenario s in the nth year.

The linear relationship between the overall power consumption
of data centers and server power consumption can be expressed as

Pdc,n,s,t � PUE · Psrv,n,s,t. (8)
Here, Pdc,n,s,t are the power consumption at time t under

scenario s in the nth year of the data center and PUE is the
energy efficiency coefficient of the data center.

FIGURE 1
Integrated energy system structure.
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5.2 Adjustable model of the electric
refrigerator

The server generates a certain amount of thermal energy when
processing computing tasks. In order to ensure the normal operation
of the data center servers, the temperature of the data center
computer room needs to be maintained within a certain range,
so the data center needs to be equipped with sufficient electric
refrigerators. At each moment, the data center server generates a
certain amount of thermal energy, while the electric refrigerator
provides a certain amount of cooling capacity. Therefore, based on
the first-order equivalent thermal parameter model, the temperature
variation relationship between the beginning and end of the time
period can be obtained as follows (Ding et al., 2018):

Tin,n,t+1,s � Tout,n,t,s − Qn,s,tR − Tout,n,t,s − Qn,s,tR − Tin,n,t,s( )e− Δt
RC, (9)

Qn,s,t � Qco,n,s,t − ςPsrv,n,s,t, (10)
Ttemp

min ≤Tin,n,t,s ≤Ttemp
max. (11)

Here, Tin,n,t,s is the indoor temperature of the computer room at
time t under scenario s in the nth year. Tout,n,t,s is the outdoor
temperature at time t under scenario s in the nth year. R and C are
the equivalent thermal resistance and equivalent thermal capacity of the
electric refrigerator load, respectively.Qn,s,t is the cooling capacity of the
computer room at time t under scenario s in the nth year. Qco,n,s,t is the
cooling capacity of the electric refrigerator at time t under scenario s in
the nth year. Ϛ is the ratio of server thermal energy to power
consumption. Tmax

temp and Tmin
temp are the upper and lower limits

of the computer room temperature, respectively, to ensure the normal
operation of the data center. This article stipulates that the temperature
of the computer room must be maintained between 18°C and 24°C
(ASHRAE, 2021; Wu et al., 2023).

Considering that the electric refrigerator in the computer room
is a variable-frequency air conditioner, the relationship between air
conditioning power consumption and air conditioning cooling
capacity is

Pco,n,s,t � k1
k2
Qco,n,s,t + k2l1 − k1l2

k2
, (12)

0#Pco,n,s,t#Pco
max. (13)

Here, k1, k2, l1, and l2 are a constant coefficient; Pco,n,s,t is the air
conditioning power consumption of the computer room at time t
under scenario s in the nth year. Pco

max is the rated power
consumption of the computer room air conditioner.

Therefore, while ensuring the temperature of the data center
computer room, the cooling capacity of the air conditioning can be
adjusted by adjusting the power consumption of the air conditioning
to achieve load time transfer.

6 Economic benefit in the
electricity–carbon market

6.1 Economic benefits in the electricity
market

The economic benefits of the integrated energy system in the
day-ahead electricity market conclude the benefits of the day-ahead

electricity market and the day-ahead auxiliary frequency regulation
market. In the day-ahead electricity market, integrated energy
systems can purchase and sell electricity. In the frequency
regulation market, the integrated energy system obtains economic
benefits by providing frequency modulation capacity through the
demand side response. The integrated energy system reports
adjustable capacity, tracks the frequency modulation signal of the
dispatching center, and finally, settles the frequency modulation
capacity and frequency modulation mileage according to market
rules (Liu et al., 2021). The revenue model of the day-ahead
electricity market and frequency regulation market can be
expressed as

C1,n � ∑S
s�1
∑T
t�1

en,s,tPe,sell,n,s,t − en,s,tPe,buy,n,s,t( ), (14)

C2,n � ∑S
s�1
∑T
t�1
CAPn,s,t λcp,n,s,t| + λmp,n,s,tR

mileage( )A, (15)

CDA,n � C1,n + C2,n, (16)
where C1,n and C2,n represent the economic benefits of the day-
ahead electricity market and the frequency regulation market in the
nth year, respectively. en,s,t represents the electricity price at time t of
the sth typical scenario in the nth year. pe,sell,n,s,t represents the power
sold to the superior power grid at time t of the sth typical scenario in
the nth year. Pe,buy,n,s,t represents the power purchased from the
superior power grid at time t of the sth typical scenario in the nth
year. CAPn,s,t represents the bid winning capacity of the frequency
regulation market at time t of the sth typical scenario in the nth year.
λcp,n,s,t is the capacity price at time t of the sth typical scenario in the
nth year. λmp,n,s,t is the mileage price at time t of the sth typical
scenario in the nth year. Rmileage is the mileage coefficient. A is the
demand side response performance coefficient.

6.2 Economic benefits of the carbon trading
market

A certain capacity of P2G equipment has been built in the
integrated energy system. On one hand, it can convert carbon
dioxide generated into methane, effectively reducing carbon
emissions. On the other hand, P2G equipment can play a role in
energy storage. During the peak period of renewable energy
generation, the energy generated from renewable energy that
cannot be consumed is converted into chemical energy for
storage, which effectively improves the renewable energy
consumption rate of the integrated energy system. The integrated
energy system can sell excess carbon quotas in the carbon market for
profit (Zhou et al., 2023).

6.2.1 Integrated energy system carbon emission
quota calculation

The carbon emission sources in the integrated energy system
include electricity purchased from the superior power grid, CHP
units, and gas boilers. Moreover, this article assumes that the
electricity purchased from the superior power grid is all
produced by coal-fired units. Therefore, the carbon emission
quota model is (Yuan et al., 2023)
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E′
IES,n � E′

buy,n + E′
CHP,n + E′

GB,n

E′
buy,n � δ′e∑

S

s�1
∑T
t�1
Pe,buy,n,s,t + δ′g∑

S

s�1
∑T
t�1
Pg,buy,n,s,t

E′
CHP,n � ∑S

s�1
∑T
t�1

δ′CHP,ePCHP,n,s,t + δ′CHP,hHCHP,n,s,t( )
E′
GB,n � δ′GB,h∑

S

s�1
∑T
t�1
HGB,n,s,t

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, (17)

where EˊIES,n, Eˊbuy,n, EˊCHP,n, and EˊGB,n represent the carbon emission
rights quotas obtained by the integrated energy system, purchase of
electricity from the superior power grid, CHP units, and gas boilers in
the nth year, respectively. δˊe, δˊCHP, e, δˊCHP, h, and δˊGB, h represent the
carbon emission rights quotas obtained by the superior power grid for
purchasing electricity per unit, coal-fired unit production per unit, CHP
unit production per unit of electricity and thermal power, and gas boiler
production per unit of thermal power, respectively. Pg,buy,n,s,t is the
purchased gas at time t of scenario s in the nth year. PCHP,n,s,t and
HCHP,n,s,t are the electricity production and residual thermal of the gas
turbine during the time period t of scenario s in the nth year.HGB,n,s,t is
the thermal production of the gas boiler during the time period t of
scenario s in the nth year. T is the scheduling cycle.

The actual carbon emission model of the integrated energy
system can be expressed as

EIES,n � Ee,buy,n + ECHP,n + EGB,n − EP2G,n

Ee,buy,n � δe∑S
s�1
∑T
t�1
Pe,buy,n,s,t

ECHP,n � ∑S
s�1
∑T
t�1

δCHP,ePCHP,n,s,t + δCHP,hHCHP,n,s,t( )
EGB,n � δGB,h∑S

s�1
∑T
t�1
HGB,n,s,t

EP2G,n � ∑S
s�1
∑T
t�1
μP2GPP2G,n,s,t

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

. (18)

6.2.2 Stepped carbon trading mechanism
The number of carbon emission quotas that can be purchased or

sold in the carbon trading market by the integrated energy system
can be expressed as

Etr,n � EIES,n − EIES,n
′. (19)

This article adopts a tiered carbon trading mechanism, setting
multiple price ranges. When the integrated energy system needs to
purchase more carbon emission quotas, the corresponding range
prices will also be higher, thereby further limiting carbon emissions
(Yang T. et al., 2022).

CCO2,n �

λEtr,n, Etr,n ≤d
λ 1 + α( ) Etr,n − d( ) + λd, d<Etr,n ≤ 2d
λ 1 + 2α( ) Etr,n − 2d( ) + λ 2 + α( )d, 2d<Etr,n ≤ 3d
λ 1 + 3α( ) Etr,n − 3d( ) + λ 3 + 3α( )d, 3d<Etr,n ≤ 4d
λ 1 + 4α( ) Etr,n − 4d( ) + λ 4 + 6α( )d, 4d<Etr,n ≤ 5d
λ 1 + 5α( ) Etr − 5d( ) + λ 5 + 10α( )d, 5d≤Etr ≤ 6d

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
,

(20)
where CCO2,n is the economic return of the carbon trading market in
the nth year, λ is the carbon trading base price, α is the price growth
rate, and d is the length of the unit carbon emission interval.

7 Integrated energy system multi-stage
planning

Due to the uncertainty of load growth, for planning over
10 years, single-stage planning easily leads to redundant or
insufficient construction capacity due to inaccurate load
forecasting. Therefore, for long-term planning, multi-stage
planning is generally adopted, which can effectively reduce
planning and construction risks.

7.1 Objective function

The equipment for planning in this article includes
photovoltaics, wind turbines, CHP units, electrical energy storage,
and thermal energy storage.With the goal of minimizing multi-stage
integrated costs, a planning model for the integrated energy system
is constructed. The integrated cost includes construction cost,
operating cost, day-ahead market revenue, and carbon market
revenue (Zhou et al., 2023):

min∑K
k�1

RAk
Cconstr,k +∑N

n�1
Rn Cope,n − CDA,n − CCO2,n( ) − RNLRV, (21)

Rn � 1 + r( )−n, (22)
Cconstr,k � ∑

m∈M
Cm,kXm,kNm,k, (23)

Cope,n � ∑
s∈S

∑
t∈T

Fgrid,n,s,tcg,n,s,t + ∑
m∈M

cope,mPm,n,s,t

⎧⎨⎩ ⎫⎬⎭, (24)

LRV � ∑Mx

j�1
cconstr,j − Tjcdep,j( ), (25)

cdep,j �
cconstr,j 1 − δj( )

Nj
, (26)

where Cconstr,k is the equipment construction cost for the kth
planning stage. Cope,n, CDA,n, and CCO2,n represent the operating
cost of the integrated energy system in the nth year, the daily
market revenue, and the carbon market revenue, respectively.
RAk, Rn, and RN represent the discount coefficients for the Akth
planning year, the nth planning year, and the Nth planning year,
respectively. Ak is the starting year of the kth planning stage. N is
the total planning years. m is the type of equipment.M is the type
of equipment, M = {PV, MT, CHP, GB, ESS, HS}. Cm,k is the cost
per unit capacity of m equipment construction. Xm,k is a
0–1 variable, representing whether m equipment is
constructed. Nm,k is the capacity of m equipment construction.
LRV is the residual value of the equipment at the end of the
planning period.Mx is the remaining equipment at the end of the
planning period. cconstr,j represents the construction cost of j
equipment. Tj is the number of years in use of the jth equipment
among Mx at the end of the planning period. cdep,j is the annual
depreciation cost of the jth equipment.

7.2 Constraints

(1) Energy equipment quantity constraints
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Due to factors such as construction cost, there is an upper limit
on the number of energy equipment to be planned for the integrated
energy station in the station:

0≤Nm,k ≤Nm,k
max, (27)

where Nmax
m,k is the maximum capacity of m-type energy

equipment in the kth planning stage of the integrated energy system.

(2) Energy purchase constraints

Due to capacity limitations of gas and electricity stations, there
are capacity limits for the purchased electricity and gas:

0≤Pe,buy,n,s,t ≤Pgrid
max, (29)

0≤Pg,buy,n,s,t ≤Pg,buy
max. (30)

(3) Energy and heat storage constraints

En,s,t � En,s,t−1 + Pess,n,s,tΔt, (31)
E min ≤En,s,t ≤E max, (32)

Qn,s,t � Qn,s,t−1 +HHS,n,s,tΔt, (33)
Q min ≤Qn,s,t ≤Q max, (34)

where En,s,t is the energy storage capacity at time t of scenario s in the
nth year. Pess,n,s,t is the energy storage capacity at time t of scenario s
in the nth year. Δt is time interval. Emin and Emax are the lower and
upper limits of the energy storage capacity, respectively. Qn,s,t is the
heat of heat energy storage at time t of scenario s in the nth year.
HHS,n,s,t is the power of thermal energy storage at time t of scenario s
in the nth year. Qmin and Qmax are the lower and upper limits of
electric energy storage capacity, respectively.

(4) P2G constraints

GP2G,n,s,t � PP2G,n,s,tηP2G/ξ, (35)
where GP2G,n,s,t is the gas generated by the P2G equipment at time t
of scenario s in the nth year. ηP2G is the efficiency of P2G. ξ is the low
calorific value of gas. PP2G,n,s,t is the electrical power consumed by
the P2G equipment at time t of scenario s in the nth year.

(5) Data center demand response constraint Eqs 1–13.

7.3 Model solving

According to the method proposed by Zhang et al., this article
linearizes the tiered carbon trading price of Eq. 20. The integrated
energy multi-stage planning model is a mixed-integer linear
programming problem. This article uses PyCharm 2019.1.1 x
64 to call Gurobi 9.1.2 to solve the aforementioned model.

8 Case analysis

The calculation example selects an electric gas thermal coupling
integrated energy system with a data center in southern China and
selects four typical-day data of spring, summer, autumn, and winter, as
shown in Supplementary Figure S1 and Supplementary Figure S2 in the

appendix. The electric heating and cooling load curve is shown in
Supplementary Figure S3, and the annual load increases by 5% (Zhao X.
et al., 2023). It is assumed that the planning period of this article is
30 years; carbon neutrality will be achieved at the end of the planning
period, and the planning can be divided into five stages at most (Cao
et al., 2020; Chen et al., 2022) for parameter settings such as investment,
maintenance costs, and lifespan of each equipment to be built. It is
assumed that CHP 1,320 kW and GB 850 kW have existed, the net
residual value of equipment is 0.06, and the discount rate of investment
is 8%. The parameter settings for demand response are shown in
Appendix Table 1. The benchmark value for carbon trading prices in
this article is 50Y/t, with an annual growth rate of 6% (Ding et al., 2022).
To compare and verify the superiority of the multi-stage planning
method for optimizing construction timing proposed in this article, the
following planning schemes are set up:

1) Scheme 1: Single-stage planning without data center demand
response

2) Scheme 2: Single-stage planning with data center demand
response

3) Scheme 3: Multi-stage planning of equipment to be built in the
1st, 7th, 19th, 25th, and 30th years of the planning period without
data center demand response

4) Scheme 4: Multi-stage planning of equipment to be built in the
1st, 7th, 19th, 25th, and 30th years of the planning period with
data center demand response

5) Scheme 5: Multi-stage planning with equipment construction
year to be determined without data center demand response

6) Scheme 6: Multi-stage planning with equipment construction
year to be determined with data center demand response

The configuration results of the equipment in each scenario are
shown in Table 2. The cost composition of each planning scheme is
analyzed, as shown in Figure 2:

(1) By analyzing schemes 1 and 2, 3 and 4, and 5 and 6, it can be
concluded that the solution considering the response to new load
demand has less equipment construction capacity and lower overall
cost. Taking scheme 1 and scheme 2 as examples, it can be observed
from Figure 2 that the construction cost and operation cost of
planning scheme 2 are lower than those of scheme 1. There is no
obvious difference in the carbon emission trading market income,
but the electricity market income increases. This is because scheme
2 considers the demand response of the new load. On one hand, it
can optimize the operation mode of the integrated energy system

TABLE 1 Parameter settings for demand response.

Parameter Value

Proportion of delay-tolerant tasks 50%

Rated power of a single server (kW) 0.35

Maximum power of a single server (kW) 0.75

Maximum number of tasks processed by a single server 50

Delay bound 0.3

Power usage effectiveness 1.5
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and reduce the operation cost through the time transfer of the new
load. In addition, it can increase the flexible adjustment ability of
the integrated energy system and increase the revenue in the day-
ahead frequency regulation market. Similarly, scheme 4 considers
the demand response, and its overall cost is lower than that of
scheme 3. Schemes 5 and 6 also have the same conclusion.

(2) It can be observed that multi-stage planning has lower total
costs and is more economical than single-stage planning
because multi-stage planning can avoid construction
redundancy and unnecessary operating and depreciation costs.

Comparing the aforementioned six schemes, the multi-stage
planning scheme considering the demand response is the most
economical. Therefore, the following is a specific analysis of the
scheduling results and carbon emissions of scheme 6.

8.1 Analysis of integrated energy system
operation results

The integrated energy system includes electricity, thermal,
and cooling loads. The cooling power balance is relatively
simple. Therefore, this article selects scheme 6 to analyze

the electricity and thermal power balance for the summer of
25 years.

It can be observed from Figure 3 that the electrical load of the
integrated energy system is mainly met by photovoltaic power
generation and wind power generation. Among these,
photovoltaic power generation has a significant peak valley
difference, but it can fill the power generation gap in the
morning and evening when there is no light. At the same time,
the peak period of photovoltaic power generation is at noon, and the
peak period of wind power generation is in the morning and
evening. The combination of photovoltaic power generation and
wind power generation can reduce the peak valley difference of
renewable energy power generation so as to better match the load
curve. The power generated by CHP is relatively stable due to the
poor regulation performance and high regulation cost of the CHP
unit, which generally bears the basic load. The adjustable load of the
data center includes electric refrigerators and servers. After the
demand response, the difference between the peak and valley of
the load power of the data center is significantly reduced. Energy
storage provides flexible regulation capabilities for integrated energy
systems, charging during periods of high renewable energy
generation and discharging during periods of low renewable
energy generation, thereby avoiding the phenomenon of wind

TABLE 2 Comparison of planning schemes.

Scheme Year CHP/kW GB/kW ESS/kW HS/kW PV/kW WT/kW P2G/kW Total cost/104Y

1 1 1,054.8 557.1 671.8 487.2 3,174.5 2,987.6 432.5 28,352.7

2 1 931.2 542.6 614.5 476.8 3,087.2 2,911.7 401.8 24,187.6

3 1 318.3 134.1 178.2 104.1 1,176.3 987.5 151.4 22,573.1

7 128.9 54.8 274.3 67.2 784.7 691.2 101.7

19 108.4 137.5 108.5 124.1 571.2 462.2 134.1

25 117.6 104.9 117.2 42.3 647.1 580.6 87.2

30 187.3 102.5 106.3 133.7 506.3 574.7 92.6

4 1 302.7 122.3 168.5 114.8 1,078.3 928.6 142.5 22,087.9

7 114.3 53.7 263.3 57.2 781.5 683.4 97.3

19 97.8 123.8 100.5 110.3 568.3 423.8 118.2

25 110.7 97.5 103.6 38.6 639.6 577.6 81.5

30 178.2 99.6 96.5 123.8 472.3 547.9 90.7

5 1 324.5 126.5 138.5 115.9 1,053.5 927.5 130.7 21,976.2

10 159.6 86.5 244.8 40.5 766.5 681.2 87.2

17 127.1 52.1 105.2 107.6 268.5 104.3 42.5

23 110.7 124.1 96.5 41.2 551.4 462.2 106.5

28 128.5 118.5 97.8 103.3 601.8 580.6 77.2

6 1 317.5 117.8 122.6 112.7 1,018.5 915.5 111.5 21,387.5

11 142.6 85.2 213.5 35.6 761.2 671.5 83.2

18 108.5 49.5 101.5 102.3 253.1 100.1 49.6

25 96.5 106.9 87.5 39.5 547.2 459.2 101.2

30 121.6 103.7 93.5 107.5 628.5 574.1 68.9
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and light abandonment. The power transmission of the power grid
mainly plays a role in suppressing the load and mismatching the
power curve. It serves as the main source of power supply during
periods when renewable energy is scarce, ensuring the balance of
power in the integrated energy system.

It can be observed in Figure 4 that the heat load is mainly borne
by gas boilers and CHP units, with a bimodal thermal load pattern
and peak periods of 7–9 and 17–20. Due to the poor regulation
performance of gas boilers and CHP units, the regulation speed and
range are limited, and the thermal generation power cannot change
rapidly. Heat storage plays a role in suppressing the fluctuation of

thermal load and can, to some extent, reduce the peak valley
difference of thermal load.

As shown in Figure 5, the difference between the peak and
valley of adjusted server power is smaller, and demand response
shifts the load from 8–17 and 19–22 to 1–5, 16–18, and 22–24,
realizing load peak shaving and valley filling. The electric
refrigerator ensures that the temperature of the machine room
is between 19°C and 24°C. Data center demand response can
effectively improve the load curve of the comprehensive energy
system, thereby making the load curve more consistent with the
energy supply curve.

Figure 6 shows that scheme 6 is planned in five stages. In the
starting year of each stage, renewable energy increases significantly
and carbon emissions decrease significantly. This is because
photovoltaic and wind power are invested in the starting year of
each stage. As the years increase, the load constantly increases, with
non-renewable energy sources and carbon emissions slightly
increasing. In the 30th year, the carbon emission of the integrated
energy system is 0, achieving the goal of carbon neutrality.

8.2 Analysis of the impact of carbon
emission targets

The carbon emissions of the integrated energy system depend on
the energy structure and the emission coefficients of various pieces
of energy equipment. Carbon emission targets are one of the most
important factors that influence the energy structure of integrated
energy planning. This article sets different carbon emission targets
and analyzes the impact of different carbon emission constraints on
the results of integrated energy system planning.

1) Carbon-free emission target: no carbon emission constraints
2) Carbon peaking target: carbon peaking is required before the end

of the planning period

FIGURE 2
Cost composition of each scheme.

FIGURE 3
Electric power balance diagram.
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3) Carbon-neutrality goal: to achieve carbon neutrality at the end of
the planning period

4) Carbon-neutrality goal in advance: carbon neutrality before the
end of the planning period

Using scheme 6 for multi-stage planning, the planning results
can be obtained (see Table 3):

(1) The carbon emission target affects the total cost. From the
scheme of carbon target 1, if carbon emission constraints are not

considered, the integrated energy system will greatly reduce the
construction capacity of photovoltaic and wind power.
Therefore, the power balance mainly relies on CHP units
and external power grids. At the same time, the capacity of
energy storage and P2G equipment construction in the
integrated energy system was also greatly reduced. This is
because the capacity of renewable energy decreased, which
leads to integrated energy system reduction in the demand
for flexible resources to handle load and renewable energy
fluctuation.

FIGURE 4
Thermal power balance diagram.

FIGURE 5
Demand response curve of the data center.
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(2) The stricter the carbon emission constraints, the more the
renewable energy needs to be built in the integrated
energy system. At the same time, more energy storage

and P2G equipment need to be built to suppress
fluctuations in renewable energy, resulting in an increase
in total costs.

FIGURE 6
Carbon emission of the integrated energy system.

TABLE 3 Comparison of planning schemes for different carbon emission targets.

Carbon target Year CHP/kW GB/kW ESS/kW HS/kW PV/kW WT/kW P2G/kW Total cost/104

1 1 98.3 104.2 132.4 98.6 88.2 92.1 12.5 20,987.6

8 108.9 54.9 107.6 77.5 63.5 35.4 15.6

16 68.4 117.7 96.5 101.2 93.8 101.2 17.5

22 107.6 105.9 108.5 32.7 113.5 134.2 20.8

28 107.3 110.5 83.5 108.6 89.6 96.2 22.5

2 1 234.1 115.6 105.2 103.5 867.5 678.5 93.2 21,008.5

9 105.2 86.5 89.3 86.2 597.2 563.9 45.2

16 113.6 118.9 96.5 103.5 672.9 521.1 61.5

24 109.8 105.2 81.2 89.5 510.2 780.1 87.2

30 138.5 107.6 102.6 103.2 342.1 321.4 59.3

3 1 317.5 117.8 122.6 112.7 1,018.5 915.5 111.5 21,387.5

11 142.6 85.2 213.5 35.6 761.2 671.5 83.2

18 108.5 49.5 101.5 102.3 253.1 100.1 49.6

25 96.5 106.9 87.5 39.5 547.2 459.2 101.2

30 121.6 103.7 93.5 107.5 628.5 574.1 68.9

4 1 289.5 120.4 153.4 97.6 1,127.6 1,158.2 134.5 21,867.3

10 134.9 93.1 209.8 40.1 931.5 736.9 109.6

17 117.6 37.5 124.7 87.5 304.2 463.1 57.9

24 108.2 85.4 105.6 96.3 670.2 277.8 68.7

30 134.5 107.6 113.9 102.1 353.8 210.4 77.3
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From Figure 7, it can be observed that without carbon
emission constraints, such as carbon target 1, as the load
continues to increase, the carbon emissions of the integrated
energy system continue to increase, which clearly does not
comply with the concept of low-carbon development. For
carbon target 2, the carbon peak target is achieved at the
beginning of the second stage, and the carbon emissions in
the subsequent planning stages are lower than those in carbon
target 1. Carbon targets 3 and 4 have both achieved the carbon-
neutrality goal, while carbon goal 4 is relatively early, which
achieves in the fourth planning stage.

9 Conclusion

This article focuses on the low-carbon planning of an integrated
energy system that includes a data center. It investigates the
adjustable characteristics of the data center and analyzes the
economic benefits of the integrated energy system participating
in the electricity–carbon market. Furthermore, it develops a
multi-stage planning model for achieving low-carbon integration,
taking into account the time transfer characteristics of the data
center in line with carbon neutrality goals. The calculation results
reveal the following findings:

(1) The inclusion of demand response in the data center can lead to
a reduction in the construction, operation, and depreciation
costs of energy equipment. Additionally, demand response
contributes to increased income for the integrated energy
system in the electricity market, resulting in further cost
reduction for the overall planning scheme.

(2) Multi-stage low-carbon planning for the integrated energy
system proves to be more reasonable and economically
advantageous than single-stage planning. With multi-stage
planning, the need for pre-building excessive energy
equipment is avoided, thereby reducing unnecessary
operating costs and depreciation expenses. Furthermore,
multi-stage planning enables adjustments in the capacity of
energy equipment construction based on the rate of load

growth, ensuring a more consistent alignment between the
load curve and energy supply curve.

(3) The carbon emission target significantly impacts the planning
scheme of the comprehensive energy system. Stricter
requirements for carbon reduction result in higher total
planning and construction costs for the integrated energy
system. In practical engineering applications, a careful
consideration of the economic and low-carbon aspects is
necessary, taking into account the specific circumstances.

In summary, this article sheds light on the low-carbon planning
of integrated energy systems, specifically focusing on data centers.
By examining the adjustable characteristics of the data center,
analyzing economic benefits, and presenting a multi-stage
planning model, this article highlights the potential for reducing
costs and achieving greater efficiency. The findings emphasize the
importance of balancing economic considerations and low-carbon
objectives in real-world applications.

In future research, the scale of this study can be expanded to
regional integrated energy systems, which include multiple integrated
energy systems, taking into account the resource characteristics of
different integrated energy systems, and achieving overall optimal
operation through power exchange. At the same time, in terms of
demand response, more different types of flexible resources, such as
electric vehicles, can be considered. By coordinating and scheduling
various types of flexible resources, the operational economy and
environmental protection of multiple integrated energy systems can
be optimized, thereby achieving green and low-carbon planning of
regional integrated energy systems.
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Resonance suppression strategy
of DC distribution system based
on reduced-order hybrid control
algorithm
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Ning Liang2

1College of Electrical Engineering and Automation, Fuzhou University, Fuzhou, China, 2Electric Power
Engineering, Kunming University of Science and Technology, Kunming, China

As a complex dynamically strongly coupled system, DC distribution system often
suffers from voltage collapse due to system resonance. In order to suppress
distribution network resonance and bus voltage fluctuation, this paper proposes a
hybrid control algorithm to suppress DC distribution system resonance to further
enhance DC system stability. In this paper, the output voltage of the line regulation
converter (LRC) is the target of the study. A current predictionmodel is introduced
in the inner loop of the converter control, which can enhance the dynamic
responsiveness of the system and eliminate the PWM modulator and
parameter tuning, achieve the unitization of the inner loop of the current. By
constructing the inverse model of the controlled object, the outer voltage loop is
unitized under the control of two-degree-of-freedom. The hybrid control enables
the bus voltage to follow the reference voltage exactly, which suppresses
resonance peaks in the voltage transfer function and reduces bus voltage
fluctuations. Finally, the proposed hybrid control algorithm is simulated and
verified in MATLAB/Simulink platform. The results show that the control
strategy can effectively suppress the resonance and bus voltage fluctuation of
the DC distribution system and enhance the dynamic characteristics and anti-
interference capability of the distribution network.

KEYWORDS

DC distribution system, stability analysis, hybrid control algorithm, model predictive
control, resonance suppression

1 Introduction

In recent years, low-voltage DC power distribution technology (Pan et al., 2020;
Prabhakaran and Agarwal, 2020; Zhao et al., 2021) has gradually developed with the
wide application of high-voltage DC transmission technology in power systems.
Compared with AC distribution systems, DC distribution systems have no problems of
system synchronization, frequency regulation and reactive power control, and they also have
the advantages of high transmission efficiency and low construction cost (Zhang and Ruan,
2019; Jiang et al., 2020). However, there are various technical challenges to the further
utilization of the DC power distribution system, among which the resonance problem is
particularly prominent, which may lead to bus voltage collapse and affect the normal
operation of the distribution system.
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1.1 Previous and related work

The DC power distribution system usually rely on various power
electronic converters to access distributed power sources such as
photovoltaic cells, fuel cells, and wind turbines (Su et al., 2018).
These distributed power sources are influenced by environmental
and climatic factors, while the power electronic converters have
nonlinear characteristics and the constant power load (CPL) in the
system have negative impedance properties (Li et al., 2021), which
make the DC distribution system prone to instability. The existing
research on the analysis of DC distribution system instability
mechanism is mainly divided into two kinds of analysis: small
signal stability analysis and large signal stability analysis. Small
signal stability analysis includes impedance matching analysis
based on frequency domain (Shafiee et al., 2014; Gao et al., 2017)
and eigenvalue analysis (Su et al., 2018; Cheng et al., 2020) and uses a
linearization method to determine the stability of the system when it
is subjected to small disturbances near the operating equilibrium
point. The large-signal stability analysis (Martínez-Treviño et al.,
2021; Kowsari et al., 2021) focuses on the effects of large
disturbances such as sudden load changes and load dumping on
system stability, and estimates the asymptotic stability region of the
system by combining model construction with stability theorems.
According to the study, constant power load (Hamzeh et al., 2016;
Kim et al., 2016; Xu et al., 2019) has a large impact on the DC
distribution system, and its negative impedance nature amplifies the
disturbance signal, which leads to the system instability by failing to
satisfy the stability criterion (Tabari and Yazdani, 2014). To address
the impact of constant power load, a distributed nonlinear controller
based on event-triggered communication is proposed in the
literature (Han et al., 2018), which enhances the damping
performance of the system while achieving accurate equalization
and voltage regulation in the DC distribution system. In addition,
using time-stamp technique and network delay compensator to
calculate and compensate the time delay can enhance the
effectiveness and robustness of the system (Vafamand et al.,
2019) and enhance the effect of constant power load effects.

The main concern of the current research on DC distribution
system is the overall stability of the system, while the resonance
problem of the stability problem, which is the focus of the research
on AC system, is often neglected in DC system, so a comprehensive
and in-depth study of the resonance problem in the DC area is
needed. At this stage, the research methods for DC resonance
suppression are mainly active damping methods that do not
generate additional losses. Literature (Zhang et al., 2022; He
et al., 2020) used the stability enhancement method of virtual
impedance to improve the resonance suppression capability of
DC system, but this kind of method is easy to cause the output
power of the converter to exceed the limit. Literature (Wu et al,
2017) simulates the rotational inertia and damping capacity of a
virtual synchronous generator in a DC system to suppress
resonance. This kind of method does not require precise
acquisition of system parameters, but it tends to lead to uneven
power distribution because it needs to be coupled with sag control.
Another part of the study found that for the second harmonic on the
DC bus and the bandwidth limitation of the voltage control loop, the
resonance effects can be eliminated by enhanced trap filters and
resonance regulators (Liu et al., 2020), but this method requires the

establishment of a high-order system impedance transfer function,
which complicates the analysis process. The literature (Ye et al.,
2017) modifies the DC converter output terminal characteristics
from the perspective of system impedance to eliminate the system
resonance path, thus suppress resonance. Although this method uses
a reduced-order impedance model, which does not require the
establishment of complex impedance transfer function
expressions, there are still some errors in the actual model. Based
on the existing research on DC distribution system resonance, the
reasons for DC distribution system resonance can be summarized
into two aspects: the converter itself and the interaction between
different converters. The converter itself causes include.

1) The existence of nonlinear switch makes the system often run
nonlinear phenomenon.

2) The high order system composed of filter unit and line
impedance makes the transfer function prone to resonance
peaks.

Reasons for different converter interactions include.

1) The filtering devices and line impedances of different converters
interact.

2) The interaction between the power supply and the constant
power load generates resonance.

At the same time, micro source output change, load mutation
and working mode change are easy to increase the resonant risk,
resulting in bus voltage fluctuation.

1.2 Contributions

In view of the above research, this paper proposes a resonance
suppression strategy for DC distribution systems based on a
hybrid control algorithm. This strategy takes the LRC, which
causes the resonance of the DC distribution system, as the
research object, and combines two-degree-of-freedom control
and current model prediction control to accurately suppress the
resonance of the DC bus voltage with known distribution system
structure and parameters. According to the author’s knowledge,
the innovations of this paper compared with other studies are as
follows: 1) The reduced order hybrid control algorithm is
proposed in the LRC for the first time. Compared with the
conventional voltage-current double closed-loop control and
single two-degree-of-freedom control, the completely reduced
order hybrid algorithm has great advantages in dynamic response
speed, flexibility of processing system constraints, etc. At the
same time, it also eliminates the PWM modulator and tuning of
control system parameters, which improves the closed-loop
characteristics of the system. 2) The proposed method
eliminates the resonant peak in the transfer function of the
LRC output voltage and the dynamic interaction between
converter units, effectively suppressing the resonant problem
of the DC distribution system and the bus voltage fluctuation
phenomenon, and maintaining the bus voltage stability of the
distribution network. 3) The method in this paper realizes the
unitization of voltage and current transfer function. The
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influence of line parameters and distributed capacitance is
eliminated in the outer loop, and the prediction of current in
the inner loop enhances the robustness of the system and
improves the power supply quality of the distribution network.

The rest of this work is structured as follows: Section 2
describes the DC distribution system modeling process
including various types of power supplies and loads. Section 3
analyzes the resonant characteristics of the DC distribution
system under the conventional voltage and current double
closed-loop control. In Section 4, the reduced order hybrid
control algorithm is proposed and the resonant characteristics
of the distribution network are analyzed. In Section 5, MATLAB/
Simulink is used to build the DC distribution system topology,
which verifies the superiority of the new control strategy for the

resonant suppression of the DC distribution system and the
reduction of bus voltage fluctuation. Section 6 summarizes this
work and looks forward to future work.

2 DC distribution system modeling

Figure 1 shows the typical structure of a DC distribution
system, which consists of an AC power grid, distributed power
supply, energy storage device and various loads. For a DC/DC
converter where the load is purely resistive, the output power
of the converter remains constant as long as the output voltage
of the converter is strictly regulated to be constant, and in turn
the input power is almost constant, so this converter can
simulate a realistic constant power load (Hassan et al.,
2019). Both the grid and the distributed power sources are
connected to the DC bus through power electronic converters
to inject energy into the system and support the stable
operation of various loads.

Because there are many kinds of power electronic devices
involved in the operation process of DC distribution system, it is
easy to produce complex interactions. In order to verify the
accuracy of the proposed algorithm, a simple DC distribution
system model as shown in Figure 2 is built according to the LRC,
constant power load model and multiple photovoltaic cell
models. The model consists of two LRCs and two CPLs. Due
to the instability of the photovoltaic system output, it is used as a
constant power micro source to add light at 2 s and cut off light at
4 s, so as to simulate the influence of photovoltaic on the whole
system in light and dark conditions. Ceq is the bus support
capacitance, Cxi, Rxi is the line distribution capacitance. The

FIGURE 1
Architecture of the DC distribution system.

FIGURE 2
Simple model of DC distribution system.

Frontiers in Energy Research frontiersin.org03

Zheng et al. 10.3389/fenrg.2023.1260678

44

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1260678


specific values of various system parameters in the figure are
shown in Table 1, and the control parameters are shown in Table
2. The values of parameters listed in the table are the optimal
parameters verified by seveal simulations.

3 Analysis of DC distribution system
resonance under conventional control

For DC distribution system, the most important thing is to
control bus voltage fluctuation and suppress system resonance. The
equivalent impedance analysis can effectively determine the
resonance of the system. By studying the LRC output voltage
transfer function, we can obtain the bus voltage fluctuation of the
DC distribution system, which provides a theoretical basis for
suppressing resonance and bus voltage fluctuation.

In this paper, the photovoltaic system controlled by MPPT is
connected to the power grid as a micro-source disturbance.
Therefore, during the resonance analysis, the small-signal
equivalent circuit of the DC distribution system, as shown in
Figure 3, is established only according to the small-signal models

of LRC and CPL. Where, ZLRCi is the equivalent impedance of LRC.
ΔuLRC is the voltage source obtained by the LRC through the
Davinin equivalent transformation. YCPLi is the equivalent
admittance of CPL. ΔiCPL is the current source obtained by the
Norton equivalent transformation of the CPL. Yceq is the equivalent
admittance corresponding to the bus support capacitance. By further
simplifying the small signal equivalent circuit, the distribution
network model can be obtained including the power supply
subsystem and the load subsystem equivalent, where ZLRC =
ZLRC1//ZLRC2, YCPL = YCPL1+YCPL2+YCeq.

ZLRC and ZCPL can be expressed by Eq. 1, where φ1 and φ2 are the
phase of the equivalent impedance of LRC and CPL respectively.
LLRC and RLRC are the inductive and resistive parts of the equivalent
impedance of LRC. CCPL and RCPL are the capacitive and resistive
parts of the equivalent impedance of CPL, respectively.

ZLRC � ZLRC| |ejφ1 � sLLRC + RLRC

ZCPL � 1
YCPL

� 1
YCPL

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ejφ2 � 1

sCCPL
+ RCPL

⎧⎪⎪⎨⎪⎪⎩ (1)

The expression of DC bus voltage can be calculated as follows:

TABLE 1 Parameter oF DC distribution system.

Symbol Quantity Numerical values

usi Energy storage device body power supply 200 V

Coi/Roi Voltage regulator capacitors and their parasitic resistors 100 μF/0.1Ω

Lsi/Rsi Boost inductors and their parasitic resistance 5 mH/0.1Ω

Rd Sagging coefficient 0.5

Cini/Rini Input capacitors and their parasitic resistance 100 μF/0.1Ω

Rloadi Resistive loads 2.5Ω

Lni/Rni Output inductors and their parasitic resistance 5 mH/0.1Ω

Cri/Rri Load regulator capacitors and their parasitic resistance 1000 μF/0.1Ω

LLi/RLi Line impedance 0.5 mH/0.1Ω

Cxi/Rxi Line distributed capacitance 100 uf/0.1Ω

Ceq Busbar support capacitor 1 mF

udc DC busbar voltage 300 V

Cpv Photovoltaic array output filter capacitor 100 μF

Lpv/Rpv Boost converter energy storage inductance 5 mH/0.1Ω

Cz/Rz Boost converter output filter capacitance 100 μF/0.1Ω

TABLE 2 Control parameters.

Controller scaling factor Numerical values Controller integration factor Numerical values

KLup 0.08 KLui 15

KLip 0.0165 KLii 4

KCup 3.21 KCui 150

KCip 0.03 KCii 0.2

Ku_p 0.08 Ku_i 7
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Δudc � ΔuLRC + ΔiCPL · ZLRC

1 + ZLRC · YCPL
(2)

According to the established distribution network equivalent
model, the frequency responses of the LRC equivalent impedance
ZLRC and the CPL equivalent impedance ZCPL = 1/YCPL are shown
in Figure 4. Literature (He et al., 2013) points out that when the
equivalent impedance of the power supply and the equivalent
impedance of the load cross, the two subsystems may interact.
Therefore, at the frequency of 17.9 and 1030 Hz in Figure 4, the
amplitude characteristic curves of ZLRC and ZCPL have intersection
points A and B, respectively, and the phase difference between
ZLRC and ZCPL at point A is much less than 180°, so there is no
interaction between them. At point B, the phase difference between
the two is close to 180°, which means that the power subsystem
interacts with the load subsystem at this frequency point. And at
the intersection B, LRC appears capacitive and CPL appears
inductive, which forms a resonant loop for the whole system.
Observe the DC bus voltage expression of Eq. 2 so that the
denominator part is zero, which can be approximated as shown
in Eq. 3, which is similar to the second-order system expression 4).
Therefore, the damping coefficient of the micromesh at the
resonant frequency can be obtained according to the
characteristics of the second-order system, as shown in Eq. 5.

1 + ZLRC · YCPL � s2CCPLLLRC + sCCPL RLRC + RCPL( ) + 1
sCCPLRCPL + 1

� 0 (3)

s2 + 2αωs + ω2 � s2CCPLLLRC + sCCPL RLRC + RCPL( ) + 1 � 0 (4)
α � cosφ1 + cosφ2( )

2
												
sinφ1 · sinφ2

∣∣∣∣ ∣∣∣∣√ (5)

FIGURE 3
DC distribution system small signal equivalence model.

FIGURE 4
Bode chart for ZLRC and ZCPL.
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By substituting φ1 = -74.4° and φ2 = 77.1° into the damping
coefficient formula, the equivalent damping coefficient is about
0.25, so the system does not have enough damping to suppress
the resonance. Therefore, there is a risk of resonace in the DC
distribution system under conventional control.

Take LRC1 in simple DC distribution system model as an
example. The conventional control of LRC adopts voltage and
current double-loop control, and the droop control (Sharma
et al., 2023) is adopted between different LRC to ensure power
distribution. The control block diagram is shown in Figure 5. Where
Rd is the sag coefficient; GLu is the conventional voltage outer-loop
transfer function; GLi is the conventional voltage inner-loop transfer
function.Gdc is the transfer function expression of duty cycle dL to im
obtained from the dynamic mathematical model of the LRC after
small signal processing; GCo denotes the frequency domain model of
the voltage regulator capacitor and its parasitic resistance; GLL

denotes the frequency domain model of the line conductance;
GCx represents the frequency domain model of line distributed
capacitance.

According to Figure 5, the following control system output
voltage transfer function can be found:

udc

udc ref
�

GLuGLiGdcGCoGLLGCx

1 + GLiGdc + GCoGLL + GLLGCx + GLuGLiGdcGCoGLLGCx + GLuGLiGdcGCoGLLRd + GLiGdcGCoGLL + GLiGdcGLLGCX

(6)

Here,

GLu � KLup + KLui

s

GLi � KLip + KLii

s

Gdc � 1 −DL( ) sUdcCo1 Rload + Ro1( ) + 2Udc[ ]
Rload sLL1 + RL1 + 1 −DL( )2[ ] − Udc

1 −DLRload( ){ }
÷ 1 + sRo1Co1 1 −DL( )2

sLL1 + RL1 + 1 −DL( )2[ ]
GCo � 1

sCo1
+ RCo1

GLL � 1
sLL1 + RL1

GCx � 1
sCx1

+ Rx1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

The output voltage transfer function udc/udc_ref shown in Eq. 6 of
the control system has complex high order. In MATLAB, the above
formula is used to calculate the highest order term of the numerator
to the 29th power and the highest order term of the denominator to
the 31st power. Based on the analysis of the system structure, it can

be seen that the parallel operation of multiple power supply system
makes the voltage fluctuation of the distribution network more
severe, and the CPL of constant power load has the negative
impedance characteristic, which further affects the complexity of
the voltage fluctuation of the DC distribution system. According to
Eq. 6, the Bode diagram of the LRC output voltage under
conventional voltage and current double-loop control can be
drawn, as shown in Figure 6. In the figure, the amplitude-
frequency characteristic curve of the system appears a resonant
peak at a frequency of about 767Hz, with a peak value of −25dB, and
the phase-frequency characteristic curve of the system also
plummets at this frequency. Therefore, it can be seen that the
output voltage of the system is easily affected by interference,
which will cause fluctuations and affect the stability of the bus
voltage.

4 Reduced-order hybrid control
algorithm

In literature (Xiong et al., 2020), the two-degree-of-freedom
control of double-loop is adopted to simplify the transfer function
and suppress the resonant peak of the multi-inverter system.
However, the differential link is introduced into the inner current
loop of the control, which is easy to magnify the error. In view of
this, a fully reduced-order hybrid control algorithm is proposed in
this paper. The algorithm improves the current inner loop of the
controller by introducing a current prediction algorithm. And it is

FIGURE 5
Conventional control block diagram of simulated energy storage devices.

FIGURE 6
Conventional control of the Bode diagram.
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used in the DC system to control the output voltage of the LRC. That
makes the DC bus voltage follow the reference voltage, enhances the
robustness of the system and suppresses resonance and bus voltage
fluctuations in the DC distribution system.

4.1 Current prediction model control

Compared to conventional PI control, predictive current control
(Cheng et al., 2018; Shan et al., 2019; Restrepo et al., 2020) has great
advantages in dynamic responsiveness and the accuracy of
processing system constraints. It also eliminates the need for
PWM modulators and control system parameter tuning, resulting
in enhanced closed-loop characteristics and robust performance of
the device (Nguyen and Jung, 2018).

According to the dynamic mathematical model of the LRC
established above, we discretize the inductance current of the
boost inductor Ls by the first-order Euler method to obtain:

i1s k + 1( ) � us k( ) − Rsis k( )[ ]Ts

Ls
+ is k( ), dL � 1

i2s k + 1( ) � us k( ) − udc k( ) − Rsis k( )[ ]Ts

Ls
+ is k( ), dL � 0

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(8)

Here, Ts is the sampling period; i1s (k+1) and i2s (k+1) are the boost
inductor current values predicted in the second step at different
switching states. To ensure that the control system can follow the
output signal ins (k+1) accurately, the following value function is defined:

fi � is ref k + 1( ) − ins k + 1( )∣∣∣∣ ∣∣∣∣ (9)

Figure 7 shows the current in-loop predictive control framework of
the LRC. Firstly, parameters such as is and udc are collected as the current
quantity inputs, and the current predictive model is used to calculate the
current values of the boost inductor under different switching states, and
finally the optimal group is selected by the objective function to control
the on/off of the switching tubes, thus realizing fast current regulation.
Figure 8 shows the flowchart of the optimization search.We consider the
existence of control delays in digital control systems, the suitable
switching signal calculated at time k does not act directly on the

system at time k+1, but waits until time k+2 to make the switching
tube act. Therefore, a two-step prediction is used to compensate for the
delay. The actual current value at time k is sampled to calculate the
current value at time k+1, and the predicted current value at time k+2 of
the switching tube is obtained from the calculated current value. Finally,
the control objective is achieved by seeking the objective function and
applying the switching sequence to the switching tube.

4.2 Two-degree-of-freedom control

Figure 9 shows the block diagram of the two-degree-of-freedom
control.WhereM(s) andH(s) are the input and output signals, respectively;
J(s) and T(s) are the feedback link and the target object, respectively; B(s) is
the feedforward controller; and E(s) is the input and output errors.

According to Figure 9, if B(s) = 1/T(s) is controlled, the following
transfer functions between H(s) and M(s), E(s) and M(s) can be
obtained:

H s( ) � M s( ) + T s( )
1 + J s( )T s( )D s( )

E s( ) � 0
1 + J s( )T s( )M s( ) − T s( )

1 + J s( )T s( )D s( )

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(10)

From Eq. 10, there is a term in the expression of H(s) and E(s)
with respect to the perturbation signal I(s). In order to make the
error E(s) equal to 0 and H(s) trackM(s) completely, the part of the

FIGURE 7
Current in-loop predictive control framework.

FIGURE 8
Evaluation process flow chart.

FIGURE 9
Two-degree-of-freedom control block diagram.
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whole block diagram containing the disturbance signal I(s) is
adjusted in the control system by adjusting J(s) to minimise the
effect on the system. When this part is small enough then H(s) is
realised to track M(s) completely and the error E(s) is eliminated.
With a single gain from M(s) to H(s) at all frequencies, the system
bandwidth limitation is eliminated.

The overall control framework of the reduced order hybrid control
algorithm is shown in Figure 10. Among them, the current inner loop
part of the algorithm is the current model predictive control with Ls as
the control object. The predicted current under different switching
states is calculated by using Eq. 8, and the switching sequence of the
control switch tubes S1 and S2 is obtained by value function Eq. 9 to
ensure that LRC has good dynamic and static performance. At the
same time, the PWMmodulator and the tuning of the control system
parameters are omitted. The converter switching frequency is reduced
and no longer fixed, reducing the likelihood of resonance. Since the
current prediction model is used as the current inner loop strategy of
the control system, the transfer function of the input reference current
signal im_ref and the output current im are also unitized (Changliang
et al., 2014), that is, im/im_ref = 1. As the control object of the voltage
outer loop, in order to achieve the bus voltage udc and its reference
value udc_ref equal, that is, udc/udc_ref = 1. According to the two-degree-
of-freedom control principle, T(s) is constructed as the inverse model
of the controlled object to eliminate the influence of the line impedance
in the output voltage transfer function of the converter. Meanwhile,
manual adjustment is combined with Matlab automatic adjustment
tool to input small step signals into the system to observe the output
voltage changes and determine the optimal parameters of PI controller
in J(s). Finally, the order of the system can be completely reduced. By
combining Figure 9 and Eq. 10, the voltage outer loop unitization is
realized.

J(s), B(s), im_FF and im_FB in Figure 10 are shown in Eq. 11.

J s( ) � Ku p + Ku i

s

B s( ) � s3Cx1Co1LL1 + s2Cx1Co1 RL1 + Rx1( ) + sCo1

1 + s Co1Ro1 + Cx1Rx1( ) + s2Co1Cx1Ro1Rx1

im FF � B s( )udc ref

im FB � J s( ) udc ref − udc − Rdidc( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(11)

4.3 Hybrid control algorithm resonance
analysis

In order to analyze the resonance of the DC distribution system
under the new control algorithm, the equivalent model of the DC
distribution system under the reduced order hybrid control
algorithm is established again. At this time, the Bode diagram of
ZLRC and ZCPL is shown in Figure 11. According to the overall
framework of the reduced order hybrid control algorithm, the
overall flow block diagram van be drawn as shown in Figure 12.
MPC is the prediction current model, and the other parameters are
consistent with the above parameters.

In the Bode diagram under the new control, the amplitude-
frequency characteristic curves of ZLRC and ZCPL have no
intersection, and there is no interaction between the two, and no
resonant path is generated. The resonant risk of the DC distribution
system under the conventional control is eliminated.

The presence of the signal iL1 in the external systemof Figure 12 and
the introduction of an opposite iL1 in the control system causes the two
to cancel each other out in the two-degree-of-freedom block diagram.
Sag control acts as an additional operation to balance the power
distribution between different converters and its effect is negligible
in steady state. The current inner loop and voltage outer loop realize the
unitization of the LRC transfer function with udc/udc_ref = 1. Comparing
the unitized transfer function with the output voltage transfer function
under the conventional control of Eq. 6 and the Porter diagram drawn
according to Eq. 6, it can be seen that the LRC output voltage transfer
function is greatly simplified under the control of the hybrid control
algorithm, and the numerator denominator order no longer has a
higher order, realizing the transfer function is completely reduced in
order. And since udc/udc_ref is always 1 in the full frequency band and the
Bode plot gain is a straight line, it can be seen by comparison that the
resonant spikes appearing in the conventional control are damped and
the system output follows the reference voltage completely and remains
in the full frequency band. Therefore, the proposed control strategy can
suppress the resonance phenomenon in the DC distribution system and
keep the bus voltage stable well.

FIGURE 10
General control framework of hybrid control algorithm.

FIGURE 11
Bode chart for ZLRC and ZCPL under new control.
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4.4 Analysis of the effect of inductance
mismatch on the stability of DC distribution
system

Literature (Kwak et al., 2014; Parvez Akter et al., 2016; Makhamreh
et al., 2019) uses Lyapunov stability theorem to analyze the model
predictive control in the consistency algorithm proposed by Lyapunov,
and proves the stability of the algorithm. However, for the inductor
model, the theoretical and actual values may cause some errors, and the
parameters usually vary within ±20%. When the inductor model is
mismatched, the current prediction effect and switching frequency will
be affected. Therefore, the stability of the current prediction model
control algorithm needs to be further studied.

Since RsTs/Ls<<1 and the inductor parasitic resistance Rs can be
neglected, the inductor current prediction model shown in Eq. 8 is
simplified as follows.

i1s k + 1( ) � us k( )Ts

Ls
+ is k( ), dL � 1

i2s k + 1( ) � us k( ) − udc k( )[ ]Ts

Ls
+ is k( ), dL � 0

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (12)

When the actual inductance Lsreal does not match the model
inductance Ls, the actual current value becomes:

i1sreal k + 1( ) � us k( )Ts

Lsreal
+ is k( ), dL � 1

i2sreal k + 1( ) � us k( ) − udc k( )[ ]Ts

Lsreal
+ is k( ), dL � 0

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(13)

Taking the inductive current when the switch tube is off as an
example, the inductive current error can be obtained by calculating the
difference between the reference value and the actual value at the time k+1:

ereal k + 1( )‖ ‖ � is ref k + 1( ) − i2sreal k + 1( )���� ����1
� 1 − Ls

Lsreal
( ) is ref k + 1( ) − is k( )[ ] − Ts

Lsreal
δ k( )

��������
��������
1

≤ 1 − Ls

Lsreal
( ) is ref k + 1( ) − is k( )[ ]
��������

��������
1

+ Ts

Lsreal
δ k( )

�������
�������
1

≈ 1 − Ls

Lsreal
( )e k( )
��������

��������
1

+ Ts

Lsreal
δ k( )

�������
�������
1

≤ 1 − Ls

Lsreal

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ e k( )‖ ‖1 + Ts

Lsreal
φ

(14)

Here, e(k) is the current error at time k. Because of the high
sampling frequency of the converter, e(k) can be approximately
equal to [is_ref (k+1)-is(k)]. δ(k) is the voltage error. φ is the upper
bound of the voltage error.

The current prediction control system is considered stable if the
predicted current error can converge to the closed set Ω (Cheng
et al., 2018).

Ω � e e‖ ‖| 1 ≤
Ts

Ls
φ{ } (15)

When Ls < Lsreal, according to Eqs 14, 16 can be obtained:

0< 1 − Ls

Lsreal

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣< 1

Ls

Lsreal
φ< Ts

Ls
φ

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(16)

Combining Eqs 14, 16, it can be seen that the predicted current error
decays continuously with time and eventually converges to the closed set
Ω1. The system can remain stable, and the current error size can be
guaranteed to be within a given range because Ω1 is contained in Ω.

Ω1 � e e‖ ‖| 1 ≤
Ts

Lsreal
φ{ } (17)

When Lsreal < Ls < 2Lsreal, according to Eqs 14, 18 is obtained:

0< 1 − Ls

Lsreal

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣< 1

Ls

Lsreal
φ> Ts

Ls
φ

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(18)

Similarly, combining Eqs 14, 18, it can be seen that the predicted
current error still decays continuously with time, and the final
current error also converges to the closed set Ω1. The system still
remains stable. In summary, the algorithm proposed in this paper
can meet the system stability requirements because the variation of
inductance parameters is ±20%.

5 Simulation analysis

In order to verify the effectiveness of the reduced order hybrid
control algorithm for resonant suppression of DC distribution

FIGURE 12
Block diagram of the overall flow of the hybrid algorithm.
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system, the DC distribution system modelshown in Figure 2 was
built in MATLAB/Simulink. It consists of two analog energy
storage units with an output voltage of 200 V, several
photovoltaic cells, and two constant power loads with a power
of 4 kW. The photovoltaic cell temperature is 25°C, the solar
irradiance is 1000 W/m2, the power of a single battery is 352 W,
and the photovoltaic array composed of 25 cells is divided into
5 groups, each group of 5 cells in series and 5 groups in parallel. The
switching frequency used for the simulation model is 10 kHz. In the
control part, the conventional voltage-current double closed loop,
single two-degree-of-freedom algorithm and fully reduced order
hybrid algorithm are used respectively. The outer loop of the single
two-degree-of-freedom algorithm is two-degree-of-freedom
control, and the inner loop is PI control. The effectiveness of
the new control algorithm is verified by comparison. The device
parameters and control parameters of the system are consistent
with those in Supplementary Tables S1, S2.

5.1 Simulation of resonance characteristics
of DC distribution system

In this paper, the FFT tool in simulink is used to perform Fourier
decomposition on the DC distribution system bus voltage udc under
three kinds of control, analyze the voltage resonance of the

distribution network bus, and obtain the spectrum diagram as
shown in Figure 13. Figure 13B is the spectrum diagram of the
bus voltage under conventional control. It can be seen from the
figure that the amplitude is 185,600% when the frequency is
768.7Hz, indicating that there is a resonance peak of 768.7 Hz in
the DC bus voltage, and the amplitude of the resonance is much
larger than that generated by other frequencies. Meanwhile, for the
frequency band near this frequency, due to the influence of the
resonant frequency, a higher resonant amplitude is generated
correspondingly, which is consistent with the resonant condition
shown in the comprehensive analysis of the bus voltage amplitude-
frequency and phase-frequency characteristic curves under
conventional control. Figures 13D, F show the bus voltage
spectrum under single two-degree-of-freedom control and new
control, respectively. As can be seen from the figure, the voltage
spectrum under the single two-degree-of-freedom control has been
reduced to a certain extent compared with the conventional control,
and the maximum amplitude at 763 Hz is only 43,010%, but it still
cannot reach the suppression effect of the new control algorithm.
After adopting the new control mode, the resonance amplitude of
the bus voltage is greatly reduced in the full frequency domain. After
magnifying the figure, it can be seen that the amplitude is the largest
at 777Hz, which is 18,330%, nearly one-10th of the amplitude under
the conventional control, and the resonance phenomenon is well
suppressed.

FIGURE 13
Bus voltage resonance simulation results.
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5.2 DC distribution system steady state
characterization

Figures 13A, C, E show the steady state waveforms of the bus
voltage under the conventional control, single two-degree-of-freedom
control and the new control, respectively. During the first 0.2s of
operation of the DC distribution system, the closed-loop dynamic
quality is sensitive to changes in gain, as the conventional PI control
has little margin for dynamic quality. And because the distribution
network model built takes into account the influence of line impedance
as well as distributed capacitance, the bus voltage overshoot of the
conventional control is large and violent oscillations occur. In contrast,
the single two-degree-of-freedom control with the new control
constructs an inverse model of the line parameters eliminating the
influence of the line. As can be seen in Figure 13C, the bus voltage under
single two-degree-of-freedom control eliminates the influence of the
line, but the overshoot is reduced but not eliminated because the inner
loop is still PI controlled, and the oscillations are only slightly reduced.
The new control in Figure 13E is robust and not only achieves voltage
stabilisation in 0.07s, but also has no overshoot. Looking at the voltage
fluctuations under the three controls, it can be seen that the bus voltage
fluctuates around 1.5 V under the conventional control, around 0.4 V
under the single two-degree-of-freedom control, and around 0.2 V
under the new control. From the comparison of the fluctuations in the
same coordinate scale, it is clear that the new control has a better control
effect.

In addition, in order to further reflect the superiority of the new
control strategy, a model with n = 3 was built for simulation
experiments and the results are shown in Figure 14. As the
power supply and the constant power load increase, the voltage
oscillation time of the DC bus voltage under the conventional
control increases from 0.2 s to 1.6s due to the influence of the PI
link, while for the bus voltage under the new control, it still
maintains a good voltage stabilization effect and is able to reach
the desired voltage and maintain stability within 0.1 s.

In a real distribution network, line parameters are often prone to
change due to changes in operating conditions and weather. As can be
seen from Figures 13C, E, the difference in voltage fluctuations between
the single two-degree-of-freedom and the new control at steady state is
not significant, and the corresponding current variations are relatively
similar. This paper simulates the effect of the change in line parameters
of LRC2 on the input currents of the two LRCs under conventional,
single two-degree-of-freedom and new control, as shown in Figure 15.
As can be seen from the figure, the current ripple under the single two-
degree-of-freedom control and the new control are comparable. When
the LRC2 line parameters change, the idc1 current fluctuation is small
under all three control strategies. However, the current ripple under the
new control and the single two-degree-of-freedom control are still
much smaller than under the conventional control. For idc2, as the line
impedance and line distribution capacitance decrease, the conventional
control current ripple gradually increases, the loss increases. The
currents under new control and the single two-degree-of-freedom
control can always maintain a small ripple, with high stability and
resistance to impedance changes. To verify the effectiveness of the
inner-loop predictive current control in the new control, the size of the
controlled inductor Ls2 is changed to 4, 5 and 6 mH, respectively, and
observe the is2 current as shown in Supplementary Figure S1. a) The
current waveform of is2when Ls2 is 4 mH; b) the current waveform of is2

when Ls2 is 5 mH; c) the current waveform of is2 when Ls2 is 5 mH.
From the graphs, it can be seen that the new control is able to maintain
good control current capability despite inductance changes due to the
robustness of the system enhanced by the inner-loop predicted current;
the single two-degree-of-freedom control is also able to achieve stable
current control, but with a large current ripple; while the conventional
control completely shuts down when the inductance changes to 6 mH
and the system collapses without achieving stable control, hence not
shown in the graphs below. In summary, the correctness of the new
control to achieve unitised output voltage is verified from both the outer
and inner loops.

5.3 DC distribution system dynamic
characterization

Supplementary Figures 2A–C show the bus voltage dynamics
during load variations under conventional control, single two-
degree-of-freedom control and the new control, respectively. Load
disturbances of 2, 1 and 0.4 kW are injected into the system at 0.5 s.
In the conventional control, when the load changes abruptly, the DC
bus undergoes violent voltage resonance, and as the load disturbance
increases, the bus voltage oscillations become progressively larger in
amplitude and longer in duration. The single two-degree-of-freedom
control improves the degree of voltage resonance during sudden load
changes and shortens the voltage stabilisation time. The oscillations
caused by sudden load changes are well suppressed in the new control,
and the time for voltage stabilisation is significantly reduced,
maintaining good dynamic characteristics even with a 2 kW load
disturbance. The three control voltage waveforms are compared
under the same coordinate system for a load variation of 2 kW. As

FIGURE 14
n = 3, DC bus voltage waveform.
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shown in Supplementary Figure S2D, the superiority of the new control
in terms of fluctuation suppression and the speed of voltage recovery
can be clearly seen.

The two constant power loads are injected and removed
respectively, as shown in Supplementary Figure S3. a) is about
voltage variation and b) is about power variation. 2kW load
disturbance is injected into CPL1 at 0.5 s and removed at 3 s;
2 kW load disturbance is also injected into CPL2 at 1.5 s and
removed at 4 s. In the conventional control, due to the
unbalanced load, the bus voltage fluctuates with the increase of
different CPL load disturbances, and the fluctuation time and
amplitude increase. The single two-degree-of-freedom control
and the new control always maintain a good voltage recovery
performance and do not increase the fluctuation time due to load
imbalance. The maximum value of voltage change for the new
control is always smaller than the maximum value of fluctuation
for the conventional control and the single two-degree-of-freedom
control, regardless of whether the load disturbance is injected or
removed.

5.4 Analysis of the impact of PV system
joining on bus voltage

Unlike LRCmodules, photovoltaic systems, which act as a power
source with current-source characteristics, are prone to bus voltage
fluctuations when connected via DC-DC converters. And due to the
uncertainty of PV power generation, it is prone to sudden power
failure or sudden turn-on. Supplementary Figure S4 shows the

fluctuation of the bus voltage when light is added to the PV
system and disappears. 2 s when the PV system is exposed to
light and starts to output energy, the power is 8.8 kw and in 4 s
when the PV system is exposed to light disappears. As can be seen
from the graph, the bus voltage under conventional control
fluctuates dramatically due to the addition of the PV system, and
after stabilisation the voltage ripple increases; when the light
disappears the bus voltage also fluctuates dramatically, and after
stabilisation the voltage ripple returns to the situation before the PV
is added. With the single two-degree-of-freedom control, the
addition of the PV still produces oscillations, but the voltage
spikes are reduced and the voltage oscillations are smaller than
with the conventional control. Under the new control, the bus
voltage rises to around 320 v due to the energy injection, but
does not fluctuate dramatically and the bus voltage regains
stability around 0.3 s. Although the steady-state voltage ripple
increases after the addition of PV, the bus voltage distortion is
greatly reduced compared to the conventional control, and the new
control algorithm also has good control effect after the light
disappears. The bus voltage waveforms for the PV system joining
the distribution network in the case of sudden power changes are
shown in Supplementary Figure S5. 2 kW of power is injected into
the system at 2 s and removed at 3 s. From the figure, it can be seen
that the presence of the PV systemmakes the bus voltage fluctuate as
much as 25 V under conventional control when the power changes,
which clearly exceeds the permissible range of voltage fluctuation.
Whereas, both the single two-degree-of-freedom and the new
control are able to keep the steady state voltage fluctuation
around 0.5 V. The superiority of the new control over the single

FIGURE 15
LRC output current comparison when line parameters change.
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two-degree-of-freedom control is that the bus voltage is smaller and
the recovery time is faster during sudden power changes. Therefore,
it can be seen that the conventional control of PV systems can lead to
drastic fluctuations in the bus voltage during sudden power changes,
and even destabilization occurs. The new control can improve the
system stability in both transient and steady state and suppress the
increase of resonance.

From the above analysis of the steady-state and dynamic
characteristics of DC bus voltage, it can be concluded that the
reduced-order hybrid control algorithm can better suppress the DC
distribution system resonance and reduce bus voltage fluctuation,
which is consistent with the previous theoretical analysis.

6 Conclusion

The DC distribution system is a complex dynamic strongly
coupled system and resonance can seriously affect the stable
operation of the distribution system. This paper proposes a DC
distribution system resonance suppression strategy with a reduced-
order hybrid control algorithm, which combines current model
predictive control with two-degree-of-freedom algorithm to
suppress DC distribution system resonance and bus voltage
fluctuations. Through theoretical analysis and simulation
experiments, the effectiveness of the reduced order hybrid control
algorithm in suppressing resonance and bus voltage fluctuation is
verified. Due to the current weak grid situation in the power system,
the following work considers applying the hybrid algorithm to the
working conditions where the distribution network is connected to
the weak grid, so as to improve the power quality of the DC
distribution system under the weak current network and improve
the system stability.
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Enhancing the resilience of the
power system to accommodate
the construction of the new
power system: key technologies
and challenges
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The increasingly frequent extreme events pose a serious threat to the resilience of
the power system. At the same time, the power grid is transforming into a new type
of clean and low-carbon power system due to severe environmental issues. The
system shows strong randomness with a high proportion of renewable energy,
which has increased the difficulty of maintaining the safe and stable operation of
the power system. Therefore, it is urgent to improve the resilience of the new
power system. This paper first elaborates on the concept of power system
resilience, listing the characteristics of new power systems and their impact on
grid resilience. Secondly, the evaluation methods for resilient power grids are
classified into two categories, and measures to improve the resilience of the new
power system are reviewed from various stages of disasters. Then, the critical
technologies for improving the resilience of the new power system are
summarized. Finally, the prospective research directions for new power system
resilience enhancement are expounded.

KEYWORDS

new power system, renewable energy, extreme events, resilience enhancement,
resilience evaluation

1 Introduction

Fossil fuel is one of the most important sources of energy for humanity. With the
development of the global economy in recent years, the consumption of fossil fuels has also
rapidly increased, causing consistently high carbon emissions, the greenhouse effect, and
abnormal global climate changes (Pachauri and Meyer, 2014; Michael, 2016; IEA, 2019). To
address such issues, vigorously developing renewable energy sources such as wind and solar
energy has become a common choice. Countries around the world promulgate energy
policies and promote energiewende. The United States, Canada, Japan, and other countries
have all carried out relevant engineering applications, attempting to upgrade traditional
power systems into green and low-carbon new power systems (Peng et al., 2017). In March
2021, China claimed the goal of “carbon peaking and carbon neutrality” and the
development of a new power system (Hu, 2021). The new power system involving a
high proportion of renewable energy aims to promote energy production and consumption
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and construct a low-carbon, safe, and efficient energy system
(National Development Reform Commission National Energy
Administration, 2021). By March 2023, the total installed
capacity of wind and solar power in China is 0.92 billion and it
is expected to reach over 1.2 billion kW by 2030, and at least 3 billion
kW by 2060 (National Development Reform Commission, 2016).

The new power system can fully utilize various resources and
achieve multi-energy complementarity. The improvement of power
electronics has also made the system more flexible and intelligent.
Non-fossil energy sources such as wind power and photovoltaic will
gradually become the main energy sources. However, as the
proportion of renewable energy continues to increase, the new
power system shows characteristics of large fluctuations and
strong randomness. It is increasingly difficult to balance power
supply and demand in the system (Zhang et al., 2018). With the
frequent occurrence of extreme weather events in recent years,
power systems with a high proportion of renewable energy are
facing huge challenges in power supply (Wang et al., 2014; Lu et al.,
2017). For example, in August 2020, the high-temperature weather
in California caused a sharp increase in load. Meanwhile, the output
of wind power and hydropower decreased, leading to a large-scale
power outage accident ultimately (California ISO, 2020). In
February 2021, Texas experienced extremely cold weather,
causing a rapid increase in heating load. The wind turbine was
shut down with blade icing, and natural gas production decreased as
a result of wellhead freezing, resulting in a cumulative load shedding
of 20,000 MW (Magness, 2021). In July 2022, because of the
continuous high temperature and dry weather, the electricity
consumption of State Grid Sichuan increased by 19.79% year-on-
year. However, the hydropower decreased from about 900 million
kW hours in the same period to about 450 kWh, causing a shortage
of power supply and limited usage (Ma and Wu, 2021).

At present, numerous literature has summarized the research on
the resilience of the current power system (Gao et al., 2023), but little
consideration has been given to the changes in research for
improving the resilience of new power systems with a high
penetration of renewable energy. Studying the related issues of
resilience improvement under the background of the new power
systems construction is significant for further enhancing the
system’s ability to respond to extreme events and maintaining
stable operation. The main contributions of this paper are
summarized as the following:

• This paper elaborates on the concept of power system
resilience, analyzes the impact of new power systems on
grid resilience, and lists methods for evaluating resilient
power grids.

• The measures to enhance the resilience of the new power
system are reviewed from the perspectives of pre-disaster
planning and configuration, disaster management and
control, and post-disaster recovery response.

• The key technologies for improving the resilience of the new
power system are summarized from the perspectives of
planning and operation.

• The further methods for improving the resilience of new
power systems are prospected, and corresponding research
focuses are given, providing suggestions for the clean and low-
carbon energy transformation in China.

2 Definition and evaluation method of
resilient power grid

2.1 Definition of the resilient power grid

The concept of resilience was first proposed by Holling. C. S in
the ecological field in 1973 to measure the ability of ecosystems to
withstand, absorb disturbance, and maintain system stability
(Holling, 1973).

In 2009, the American Department of Energy released the
Smart Grid System Report (U.S. Department of Energy, 2009),
which for the first time clearly stated that smart grids should be
resilient in the face of natural disasters, deliberate attacks,
equipment failures, and human errors. The National
Committee on Critical Infrastructure of the United States
summarized that resilient systems should include four
characteristics (National Infrastructure Advisory Council,
2010), namely, robustness (the ability to absorb disturbances
and operate continuously), agility (the ability to control losses
during the events), recovery (the ability to quickly restore power
grid functions, especially the ability to continuously supply
power to important loads) and adaptability (the ability to
learn from disasters and enhance resilience). The report
released by the UK Energy Research Organization in
2018 defined resilience as the ability to withstand and reduce
the scale and duration of destructive events, including
preparedness, absorption, adaptation, and rapid recovery (The
ERP Working Group Members, 2018). In China, Professor
Ouyang Min from Huazhong University of Science and
Technology introduced the definition of resilience proposed
for earthquake disaster management in the power system in
2014. It is proposed that resilience includes four attributes:
robustness, redundancy, agility, and rapidity (Ouyang and
Dueñas-Osorio, 2014). In 2015, Academician Qiu Aici and
Professor Bie Zhaohong from Xi’an Jiaotong University
proposed the concept of the “resilient power grid” and
recovery ability (Zhaohong et al., 2015; Zhaohong et al.,
2020). In 2015, Professor Chen Ying from Tsinghua
University put forward the concept of “distribution network
resilience,” pointing out that resilience mainly measures the
support and recovery ability of the distribution network to
critical loads in natural disasters. Distribution network
resilience is also defined as whether the distribution network
can take proactive measures to ensure the power supply of critical
loads and quickly recover the outage load in disasters (Gao et al.,
2015).

2.2 The impact of new power systems on the
grid resilience enhancement

The characteristics of the new power system are as follows.

2.2.1 Increased system randomness
The large-scale and high proportion of intermittent renewable

energy inevitably brings strong stochastic output in various time
scales, including seasonal or short-term uncertainty. As a result, it
poses significant challenges to the supply guarantee of the power
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system. Table 1 lists the impacts of various extreme events on the
power system.

2.2.2 Enhanced intelligence
The rising complexity and uncertainty of new power systems

increased the difficulty in resilient modeling, analysis, and precise
prediction. Currently, emerging cutting-edge information
technologies such as artificial intelligence, big data, blockchain,
and the Internet of Things are rapidly developing and is
gradually being applied in smart grid. Various functions such as
monitoring, measurement, control, protection, and scheduling have
become more refined and intelligent after the application of these
technologies (Gao et al., 2022).

2.2.3 Increased complexity
The application of information and communication technology

in new power systems is more widespread. With a large number of
automated and information-based communication devices involved,
the complexity of the power grid is increasing. The interconnection
of power grids in different regions and the coupling of multiple
energy sources promote the consumption of renewable energy while
also making the system more complex (Hui et al., 2022).

The characteristics of the new power system exacerbate the
uncertainty in various stages of the grids (Bie et al., 2017).
Considering the damage caused by disasters to intelligent
monitoring equipment in the power grid, the system’s ability of
real-time situational awareness has decreased. How to clarify the
uncertain factors and accurately constructing a model in uncertainty
is the key to improving the resilience of new power systems.
Meanwhile, for new power systems, the timing of natural
disasters has become even more critical. The system shows
strong randomness with a high proportion of renewable energy.
Each type of renewable power generation resource is affected by
disasters to various degrees, resulting in differences in the system’s
ability to withstand extreme disasters. How to effectively identify the
fault time and location of new power systems in disasters, and
analyze the interaction mechanism between specific disasters and
new power systems, are the foundation for improving the resilience
of new power systems.

2.3 Evaluation methods for power grids
resilience

Power system resilience assessment can be divided into two
categories: one is the static evaluation based on network topology,

component redundancy, and resource adequacy; Another type is the
dynamic evaluation, which establishes corresponding indicators
based on the multiple processes of the system in response to
extreme events.

2.3.1 The static evaluation
Arghandeh et al. (2014) calculated the system connectivity loss

and distributed power redundancy, and evaluated the resilience of
active distribution networks in the fault response and fault recovery
stages; Bajpai et al. (2018) introduced performance indicators such
as the number of common branches, switch operations, path
redundancy ratio, and device availability. The Choquet
integration method was used to quantify the system’s resilience.
Peng et al. (2019) used network graph theory to establish a static
indicator system for resilience evaluation, taking topological
resilience, component failure rate, and load power factor into
account. Chanda and Srivastava (2016) proposed an evaluation
method combining graph theory and analytic hierarchy process,
which used topological characteristics such as Betweenness
centrality, graph diameter, and clustering coefficient to measure
system resilience.

It should be pointed out that static evaluation mainly evaluates
the system’s resilience from a specific aspect, which is difficult to
effectively reflect the performance of grids during the fault recovery
stage. It can also not quantify the differences under different extreme
events. Therefore, it is advisable to use dynamic evaluation which
considers different resilient stages including resistance, absorption,
adaptation, and recovery.

2.3.2 The dynamic evaluation
The classical dynamic resilience evaluation index is

calculated by integrating the system performance curve and
time in Figure 1.

R � ∫t4

t1

F0 − F t( )[ ]dt (1)

where F(t) represents the changes in the system function at each
stage, and F0 represents the system performance under normal
operation. This indicator can to some extent reflect the
robustness and recovery of the system and is widely used.
Reference (Luo et al., 2018) took typhoons as a representative to
draw the vulnerability curve of components. The entire process of
extreme weather disasters was simulated using the Monte Carlo
method. Different weights were assigned based on the importance of
the load. The weighted losses of the load in all stages were selected as
the evaluation index.

TABLE 1 The impact of various extreme events on the power system.

References Extreme events Affected components Specific equipment

Li et al. (2014) Hurricane Lines and towers Distribution network lines, transformers, loads, isolation switches

He and Guo (2012) Earthquake Converting station Traditional power plants, loads, lines, transformers, substations

Zhang et al. (2012) Ice disaster Lines Generators, lines, loads

Wu et al. (2015) Magnetic storm Transformer Transmission lines, transformers, substations

Liu et al. (2017) Cyber attack Protection Equipment Generators, lines, loads, protective equipment
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He et al. (2021) composed resilience indicators based on
robustness, adequacy, and safety, with power sources, power
grids, and users as evaluation objects. Literature Gu et al. (2018),
Li et al. (2020) divided extreme events into the fault prevention stage,
adaptation stage, and recovery stage. Then a resilience evaluation
index system was constructed including the defense time of the
distribution network, coefficient of restitution, island sustainable
time, and average interruption time of important loads. Bessani et al.
(2019), Hosseini et al. (2019), Zhang et al. (2020a), Jiang et al. (2021)
established resilience indicators for different stages of the resilience
trapezoid, including maximum load loss R1, load interruption rate
R2, self-healing recovery time R3, and maintenance time R4.

R1 � ∑
s∈S

πs F0 − Fm( ) (2)

R2 � ∑
s∈S

πs
F0 − Fm

t2 − t1
(3)

R3 � ∑
s∈S

πs t4 − t3( ) (4)

R4 � ∑
s∈S

πs t4 − t1( ) (5)

where Fm represents the system performance during the fault
adaptation stage, corresponding to the lowest system
performance; S represents the set of fault scenarios; πs represents
the probability of failure occurrence. It can be seen that the
maximum load loss R1 and load interruption rate R2 represent
the robustness and absorption of the system; The self-healing
recovery time R3, and maintenance time R4 are used for the
system recovery level after the disaster, representing the system’s
rapidity and activeness.

Moreover, Paul et al. (2014), Dehghanian et al. (2018), Liu et al.
(2021a) considered the dimensions of technology, organization,
economy, and society to create a system resilience assessment
matrix, wherein the technical dimension corresponds to changes
in the system’s power supply capacity; Organizational dimensions
correspond to recovery strategies such as executing decisions,
arranging the personnel, and coordinating resources during fault

recovery; The economic dimension corresponds to the costs caused
by power outages; The social dimension corresponds to the social
impact caused by the loss of power supply to public institutions such
as governments and hospitals.

3 Main measures and key technologies
for improving the resilience of the
power system

3.1 Main measures to improve the resilience
of the power system

After extreme events occur, resilience improvement strategies
can be divided into pre-disaster prevention strategies, disaster
response strategies, and post-disaster recovery strategies.
Measures such as strengthening and deploying flexible power
generation are taken to maintain components with high failure
rates so that resilience is enhanced before disasters (Wang et al.,
2019; Bian et al., 2020); During the disaster phase, scheduling
flexible resources and equipment such as distributed power
sources, energy storage, controllable loads, interconnection
switches, and intelligent soft switches to minimize power loss as
much as possible (Chen et al., 2016; Chen et al., 2020); In the post-
disaster stage, the repair of faulty components and the improvement
of system resilience are achieved through collaborative scheduling of
operation personnel, and emergency resources (Zhang et al., 2020b;
Zhang and Xie, 2021).

The impact of extreme events on power grid infrastructure is
uncertain, which needs to be considered in the modeling. The
resilience enhancement model is commonly constructed as a
three-layer (defense-attack-defense) robust optimization (RO)
model, which can be established as follows (Ma et al., 2018).

min
r

∑
l∈Πline

cstrl rl +max
u∈U

min
y

∑
t∈T

∑
j∈Πnode

ccurj Pcur
j,t

⎧⎨⎩ ⎫⎬⎭
s.t. B1h + C1y +D1a + E1u≤g1

(6)

FIGURE 1
Schematic diagram of power system resilience curve.
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where the binary variable rl represents whether the line l is
reinforced. When the line is reinforced, the value is 1,
otherwise, it is 0; t and T represent the time index and its set,
respectively; j and Πnode represent the distribution network node
index and its set, respectively; Pcur

j,t is the curtailment load of the
node j; r represents the decision vector for line reinforcement
composed of rl; a represents the line state vector composed of al; y
represents a vector composed of continuous variables related to
distribution network power flow optimization; cstrl indicates the
reinforcement cost of the line l; ccurj represents the penalty
coefficient for load curtailment at node j; B1, C1, D1, E1 are
constant coefficient matrices; g1 is the coefficient matrix of the
corresponding constraints.

In response to the influence caused by extreme event attacks,
numerous literature described it using an uncertainty set of damaged
distribution network lines.

U � u ∈ RNline ∑
l∈Πline

kl ≥Nline − n max

∣∣∣∣∣∣∣∣∣∣
⎧⎨⎩ ⎫⎬⎭ (7)

where u represents the uncertainty of line damage; Nline is the
number of distribution network lines; nmax is the maximum number
of damaged lines; l andΠline respectively represent the line index and
its set; binary variables kl represents the state of the line l, kl =
1 indicates the circuit is closed and 0 otherwise.

Since the above model only considers the operation strategy of
power flow optimization for resilience improvement after disasters
occur, the vector y of the inner defense layer only contains
continuous variables. When distribution network reconstruction
and power flow optimization strategies are both considered after
a disaster occurs, the ROmodel established is as follows (BIAN et al.,
2020):

min
r

∑
l∈Πline

cstrl rl +max
u∈U

min
x,y,z

∑
t∈T

∑
j∈Πnode

ccurj Pcur
j,t

⎧⎨⎩ ⎫⎬⎭
s.t. B2h + C2y +D2a + E2u + A2x + G2z≤g2

(8)

where x and z represent vectors composed of continuous and
discrete variables related to network reconstruction, respectively;
A2, B2, C2, D2, E2, and G2 are constant coefficient matrices; g2 is the
coefficient matrix of the corresponding constraints.

In the recovery stage, operations such as repairing faulty
infrastructure and restoring the power supply are carried out to
bring the distribution network back to its normal state. The
operation of repairing faulty components can be modeled as a
maintenance personnel scheduling subproblem (the first stage
problem). Then, a power supply restoration subproblem (the
second stage problem) can be established considering DG
scheduling and network reconstruction. The two-stage
optimization problem mentioned above achieves a smaller
amount of load curtailment.

3.1.1 Measures in pre-disaster prevention stage
The new power system optimizes the energy structure through

various energy combinations, making the system more and more
complex. With the high proportion of various distributed energy, it
is urgent to configure the location and capacity of these resources.
The potential value of various resources should be fully utilized
before disasters for improving resilience.

In the prevention stage, a multi-objective optimization model
was established considering maintenance costs before the
occurrence of faults, which achieved good results in reducing the
overall costs (Liang et al., 2021). References (Arizumi et al., 2014; Bie
et al., 2017) established disaster databases and prediction models
according to historical disaster information. Various events are
classified based on disaster scale and losses. At the same time, it
is advisable to develop emergency plans before disasters occur. The
scope of power outages is reduced by adjusting operation methods,
ensuring the continuous power supply of critical loads.

In the disaster prevention phase, physical means are often used
to enhance resilience, including increasing the strength of power
lines/towers, replacing overhead lines with cables, and tree pruning.
These methods can reduce the physical damage caused by extreme
events, and reduce the failure rate of power system components
(Barnes et al., 2019). However, components replacement in large
quantities will bring high investment costs. It is better to replace key
components that have a significant impact on system resilience or
with a high failure rate. Further research is needed on how to identify
these components and make the corresponding protection strategy.
(Xia et al. 2021) proposed a method for the identification of
vulnerable lines. A comprehensive model based on grid
processing of the distribution network is established. Vulnerable
lines are selected by information entropy to strengthen and reduce
the power failure loss of the system in case of an earthquake disaster.
It is indicated that laying cables can enhance the ability of power
systems to withstand typhoons. However, in earthquake situations,
it will lead to longer repair times for damaged lines.

3.1.2 Measures in response stage in disasters
During the disaster, the corresponding measures include making

full use of the diversified and flexible resources (distributed
generation, interconnection switch, mobile energy storage,
demand response, etc.) to reconstruct the network and optimize
the power flow (Yao et al., 2020b; Nazemi et al., 2021).

In the disaster response phase, ensuring the energy supply is the
most critical goal. Safe and reliable operation of the system takes
priority over minimizing load loss (Zhang et al., 2019). Compared to
traditional power grids, large-scale power electronic devices, and
intelligent control systems are utilized in new power systems,
providing diverse resilient response measures (Zhaohong et al.,
2020). At this stage, the propagation of strong disturbances
should be suppressed. The lines out of service should be cut off
on time to prevent fault propagation and improve system resilience.

Moreover, the short-term resilience of the system can be
improved by enhancing the primary equipment of the system,
such as introducing fault current limiters. Achieving rapid
response of secondary control and protection equipment also has
positive significance. (Ton and Wang 2015) improved the system’s
situational awareness and response speed by configuring intelligent
measurement devices in the power grid. Remote switches and
automation switches were considered in (Bian and Bie 2021),
which quickly changed the topology of the power grid. The
timely operation of backup power sources was enabled and fault
response and recovery time were shortened.

Currently, much literature has explored how to utilize the
emergency response capabilities of distributed power sources and
microgrids to enhance system transient performance (Zhou et al.,
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2020; Chang et al., 2021). When a serious system failure occurs, both
the direct and transfer paths of the superior power supply may be cut
off. Multiple islands emerged. The integration of distributed power
sources and microgrids can greatly increase system flexibility,
provide powerful support for end loads, and ensure a reliable
power supply for loads. (Lei et al. 2018) placed mobile
emergency generators at a predetermined location to maintain
the power supply for important loads.

3.1.3 Measures in post-disaster recovery stage
The post-disaster recovery phase aims to quickly coordinate all

recovery resources and restore as much load as possible. After
extreme disasters, operators need to dispatch maintenance teams
as soon as possible to repair faulty components. Recovery resources
such as locally distributed power sources, emergency power
generation vehicles, and demand-side management should be
scheduled to restore the system to a normal state (Chen et al.,
2019a; Chen et al., 2019b). Based on this, a two-stage optimization
problem is established. The first stage is a sub-problem for
scheduling maintenance teams, and the second stage is for power
supply restoration that combines the scheduling of multiple
recovery resources and network reconstruction.

After a natural disaster, many electrical infrastructures may be
severely damaged, and maintenance personnel needs to be
mobilized to repair or replace the faulty road section. Due to the
limited availability of resources in the system, how to allocate staff
and reasonably arrange the repair sequence of components is an
important issue. (Liu et al., 2021a) proposed a fault location, fault
isolation, and service recovery method for improving system
resilience. Based on the coupling relationship of the above three,
differentiated recovery schemes were implemented for different fault
conditions.

In the post-disaster recovery stage, operations such as black
start, network reconstruction, and component repair are usually
involved. Black start and network reconstruction aim to improve
the short-term resilience of the power system, while component
repair aims to improve the long-term resilience of the system.
During the black start process, the system mainly establishes a

power supply path by restarting some units. (Qiu et al. 2016)
elaborated on the important steps of parallel recovery for multiple
units, namely, the partition method and startup sequence. With
the objective function of minimizing unit startup costs, a fault
recovery strategy was provided. In the later stage of the black start,
the system needs to rely on distributed power sources for network
reconstruction, readjusting the network topology structure, and
restoring important loads (Yao et al., 2020a; Yu et al., 2021).
Existing research utilized heuristic algorithms, mathematical
programming algorithms, and artificial intelligence algorithms
to transform network reconstruction into mixed integer
programming problems so that the optimal solution and fault
recovery strategies were obtained (Liu et al., 2020). (Gilani et al.
2020) proposed a resource scheduling model based on mixed
integer linear programming, and effectively restored the system by
using distributed generation, regional communication system,
and other resources. Figure 2 shows potential measures to
enhance the resilience of the power system, and the
implementation methods of certain strategies are shown in
Table 2.

3.2 Key technologies for improving the
resilience of new power systems

3.2.1 The perspective of grid planning
The probability of extreme events occurring is small and the

frequency is low. If a large amount of funds is invested in the resilient
resources of the power system to cope with extreme events, it will
inevitably reduce the economic efficiency of the system and also
hinder the low-carbon development process of the new power
system (Huy et al., 2020). Therefore, in the planning mode, it is
necessary to consider both economic efficiency and system security.
Based on the characteristics of regional resource distribution and
natural conditions, a detailed evaluation of resilient resources should
be conducted to guarantee the economic benefits of power supply
and consumption. This will provide an effective foundation for the
new power system in the planning stage.

FIGURE 2
Measures to enhance the resilience of the power system.
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China has a vast territory and diverse natural resources in
different regions. The construction of power grids interconnected
with each province can promote the optimal allocation of resources
(Huang et al., 2021). Considering that the uncertainty of wind and
solar power varies in different regions, the construction of
interconnected large power grids can not only achieve a larger
spatial balance between power supply and demand but also
improve the overall resilience of the system (by offering power
support between provinces) (Ding et al., 2022). Meanwhile, mutual
support among different regions through inter-regional
transmission can enhance the flexibility of each regional power
grid, thereby reducing investment in flexible resources and
improving economic efficiency (Yang et al., 2020). These flexible
resources can also help enhance the system resilience under extreme
events.

In the planning stage, it is possible to consider the integration of
hybrid energy storage and other energy conversion technologies
with the new power system to enhance its resilience (Tao et al.,
2020a). In times of power shortage, other forms of energy such as
natural gas and hydrogen can be converted into electricity to ensure
a stable power supply. Conversely, during periods of power surplus,
electricity can be converted into other forms of energy to promote
the complementary use of diverse energy sources (Wu et al., 2022a).

3.2.2 The perspective of grid operation
The scenario of new power system scheduling has multiple

uncertain factors, and it is necessary to fully utilize the
collaborative operation of multiple resources. On the power side,
adjustable power sources represented by thermal power and
hydropower can provide certain resilience. But their response
speed and ability are different, and the flexibility of energy
storage is usually constrained by temporal coupling, which affects
their operation modeling. On the load side, the characteristics of the
fixed load and adjustable load are different in their response
potential, response speed, and response time (Cui and Zhou,
2018). Similarly, when providing resilient support for cross-
regional interconnected power grids, it is also significant to
consider the operational constraints and regulation capabilities of
different regional power grids in different regions. So that the stable
operation of the entire interconnected system is ensured and can
endure extreme events (Hu et al., 2022). Therefore, refining and
organizing resources with different resilience abilities to participate

in multi-time scale scheduling optimization are important. For
example, resilient resources with slower response rates are
preferred to participate in the day-ahead scheduling or even
monthly/weekly plans, while resilient resources with faster
response rates should be utilized in short-term adjustments on a
daily plan. In addition, the collaborative scheduling of resilient
resources under extreme events also requires special attention.
The development trend of disasters can be deduced by analyzing
multiple characteristics. And research on grid scheduling strategies
with high efficiency and self-adaptation based on machine learning
methods can be carried out to enhance the resilience of the system in
collaboration with multiple resilient resources under extreme events.

4 Practice and prospect of resilient grid
construction

4.1 Practice of resilient power grid
construction

At present, there are many resilient power grid construction
practices both domestically and internationally. In terms of policy,
the U.S. government promulgated the “21st Century Energy Act” in
2016 to promote the use of renewable energy and the development of
smart grids, aiming to improve the resilience and flexibility of the
grid. The purpose of this act is to achieve a more reliable, secure,
economical, and environmentally friendly electricity system by
improving energy efficiency, reducing emissions, and encouraging
the use of renewable energy sources (U.S. Department of Energy,
2016). The Japanese government integrated renewable energy with
traditional power systems and promotes the construction of smart
grids. After the Fukushima nuclear disaster in 2011, the Japanese
government invested more resources in the construction of smart
grids to enhance their resilience (Cao, 2018). The German
government has formulated the “Energy Transition” plan, aiming
to make Germany’s electricity completely supplied by renewable
energy by 2050. The core of this plan is to combine renewable energy
with smart grids to enhance the resilience and flexibility of the grid.
The German government also encouraged individuals and
businesses to adopt renewable energy and energy-efficient
technologies (REN21, 2020). The Chinese government proposed
in the 13th Five-Year Plan to accelerate the development of smart

TABLE 2 The implementation method of resilience enhancement strategy.

Resilience indicators Resilience enhancement
measures

Objective function Optimization solution References

Load reduction Optimize the configuration of remote
switches

Minimize post-accident load-shedding
power

C&CG (column and constraint
generation)

Bian and Bie
(2021)

Load supply and fault recovery
time

Active islanding and remote switch fault
isolation

Minimize power outage losses CPLEX/GUROBI Liu et al. (2020)

Fault recovery time Adjusting distributed power sources and
dynamic microgrids

Minimize operating costs and
maximize benefits

Two-stage rolling horizon
optimization

Wang and Wang
(2015)

Load reduction, power outage
level

Optimize scheduling resources and
optimize load reduction

Minimize total expected outage costs GUROBI Ding et al. (2021)

Economic Factors and Resilience
Curve Functions

Improving the penetration rate of
distributed energy

Minimize power outage losses and
minimize maintenance costs

heuristic algorithm Liu et al. (2021b)
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grids and improve the resilience of the power system. The Chinese
government has also introduced a series of policies and measures to
promote the application of renewable energy and energy-saving
technologies, and strengthen the coordination and control of the
power grid (National Energy Administration of the People’s
Republic of China, 2016). The Canadian government improved
the resilience of the power system by promoting the construction
of smart grids. The Canadian government supported the application
of renewable energy and energy-saving technologies and promotes
the reduction of energy efficiency and carbon emissions (Board,
2011). The Australian government is promoting the construction of
smart grids to enhance the resilience of the power system. The
Australian government encourages the application of renewable
energy and energy storage technologies, promotes energy
diversification, and reduces carbon emissions (Australian
Renewable Energy Agency, 2020).

In terms of specific projects, many countries and regions have
begun the construction of resilient power grids. Denmark’s
“Bornholm Energy Island” project (Early Detection Of Value,
2022) aims to build a highly flexible and resilient power grid.
The renewable energy facilities on Bornholm Island were
interconnected to achieve intelligent management of the power
supply. The “Hornsdale Power Reserve” project (Hornsdale
power reserve, 2017) in Australia built a huge energy storage
facility that can store a large amount of solar and wind energy.
The project also includes intelligent grid control technology to
provide a reliable power supply to local communities. The
Funeng cogeneration project by China Huaneng Group in
Longyan City has constructed a flexible, schedulable, and scalable
power system. Renewable energy sources, a large-capacity energy
storage system, and a digital control center are involved to improve
the resilience of the power grid (Ministry of power, 2022). The
resilience microgrid project of Xili Primary School in Shenzhen has
built a microgrid that integrates energy storage, intelligent control,
and multi-energy complementarity, including PV, energy storage,
gas boilers, heat pumps, and ground source heat energy, aiming to
improve power supply reliability and sustainability (SZTV, 2022).
The resilience power grid construction project in Ya’an City,
Sichuan adopts the technology of “energy storage + renewable
energy + smart microgrid”. Through the construction of a smart
microgrid, effective management and scheduling of various
dispersed renewable energy sources such as wind power and
photovoltaic have been achieved (People’s Daily, 2020). The
Huairou District Urban Resilience Grid Demonstration Project in
Beijing has achieved efficient utilization and management of
renewable energy by introducing various renewable energy
technologies and smart microgrid control strategies, improving
the resilience and security of the power grid (Beijing Municipal
People’s Government, 2017).

4.2 Challenges and prospects

4.2.1 Enhancing the perception and prediction of
extreme events

The construction of the new power system, accompanied by
increasing complexity and uncertainty, poses great challenges to the
modeling, analysis, and precise prediction of the system resilience

under extreme events (Wang et al., 2021). The application of
artificial intelligence technology, which has less dependence on
mathematical models of physical systems and possesses the
ability to self-learn from massive data, enables better perception
and prediction of extreme events. Operators rely on the construction
of the Electric Internet of Things to store massive environmental
data on servers and upload them to the cloud through the Internet.
These data are collected by devices such as wide-area monitoring,
sensors, and intelligent devices. It achieves reliable distribution of
multi-source heterogeneous data which provides a platform for
artificial intelligence technology. These are new methods for
improving the resilience of new power systems.

4.2.2 Enhancing the resilience of the system
through multi-network integration

The Energy Internet, centered around the power grid,
connects diversified energy systems such as electricity and
natural gas, as well as transportation, information, and other
non-energy critical infrastructure systems. It forms a multi-layer
coupled network architecture that enables optimal regulation and
efficient utilization of energy flows (Tao et al., 2020b). The
Internet of things (IoT) is an extension and expansion of the
network based on the Internet, which combines various
information sensing devices form a huge network. The
utilization of Internet of Things technology helps the smart
grid better connect and sense each power device. It is
necessary to carry out research on the messaging patterns,
protocols and technologies in the area of information exchange
(Górski, 2022). Considering the existence of diversified coupling
nodes in a multi-network system, the traditional resilience
assessment methods based on a single network are no longer
applicable. Therefore, a unified network topology evolution model
needs to be established for the system to effectively characterize
the propagation mechanism of faults across spatiotemporal scales
in any subsystem. On the other hand, at different stages of
disasters, the operational states of each subsystem show
complex coupling relationships. It is necessary to reveal the
dynamic interaction mechanism of different subsystems for
comprehensive analysis. On this basis, combining the research
of network topology evolution models and system performance
analysis to establish a multi-dimensional system resilience
evaluation is an important focus in the research of resilience
evaluation for multi-network fusion systems.

In the context of the Energy Internet, different dimensional
entities such as the power grid, gas network, transportation network,
and information network are coupled, making disturbance
infiltration and fault propagation in the multi-dimensional entity
fusion system more complex under the influence of extreme events
(Wu et al., 2022b). Disturbance and fault in a certain entity (such as
line fault in the distribution network, pipeline damage in the natural
gas network, road congestion in the transportation network, and
communication interruption in the information network) can
spread to other subjects through energy flow, traffic flow, and
information flow. In serious cases, it may cause in-stability or
even paralysis of the overall fusion system. In addition, the
significant differences in modeling methods and operating time
scales between different networks pose technical challenges to the
research on enhancing the resilience of multi-energy fusion systems.
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Therefore, it is urgent to study resilient improvement measures of
the multiple coupling entities.

4.2.3 Fully utilizing user-side resources
The user side has numerous distributed resources and can

operate in a flexible way. Fully utilizing the resources with
flexible adjustment capabilities on the user side can promote the
further consumption of renewable energy. Virtual power plants
(VPPs) are currently one of the main means of resource
aggregation in distribution networks.

VPPs do not have specific constraints on the geographical
location and operational characteristics of distributed energy,
providing an emerging and highly flexible distributed energy
management approach for power systems. However, the current
research on VPPs only simply aggregate all resilient resources,
without considering the synergy of these resources under
network constraints. In the context of a high proportion of
renewable energy, VPPs need to integrate various types of
flexible resources to provide a larger adjustable power range.
Dealing with the diverse and large-scale distributed energy in
VPPs, existing algorithms of adjustable power domains and cost
aggregation of regulated power cannot simultaneously balance
efficiency and accuracy, so further research is needed. After the
occurrence of extreme disasters, the operational goal of VPPs
needs to be shifted from ensuring economic efficiency to
improving resilience. As disasters cause damage and
disturbance on the grids and various resilient resources, it
increases the difficulty of aggregating resources for VPPs.
Therefore, it is necessary to study post-disaster resource
aggregation technology for VPPs to provide support after
disasters and ensure the safe and reliable operation of the
power grid.

4.2.4 Exploring market mechanisms
A reasonable market mechanism is an important foundation

for building a new power system with a high proportion of
renewable energy. It is necessary to establish a diversified
auxiliary service market with the participation of various
entities, which is no longer limited to thermal power and
hydropower units. Other diversified flexible resources can be
involved (Xiao et al., 2018). In the future, various resources such
as energy storage and distributed resource will gradually be
included in the auxiliary service market. Specifically,
considering the frequent occurrence of extreme events,
auxiliary services that enhance resilience, such as emergency
power supply and black start services are needed. The
compensation mechanism under extreme disasters should be
adjusted to incentivize various resilient resources to
participate in different resilient auxiliary service markets based
on their regulatory capabilities and costs. Their optimal
economic benefits can be achieved while enhancing the ability
to quickly restore power supply after accidents. Furthermore, the
combination of various resilient resources with existing market
mechanisms can be explored, and guide resilient resources to
actively participate in the market through reasonable price
mechanisms under extreme events.

Moreover, blockchain technology can help manage energy
systems with different operators (Yan et al., 2022). Based on

blockchain technology, new mechanisms and platforms for
energy trading can be developed and implemented at various
levels between generators, suppliers, traders, end-users, and
prosumers (Zhao et al., 2023).

5 Conclusion

To achieve the goal of low-carbon and energy transformation in
power systems and cope with the impact of extreme events, it is
imperative to study methods for improving the resilience of new
power systems. The conclusions of this paper can be summarized as
follows:

• This paper gives a broad survey of the concept of power system
resilience and analyzes the impact of the new power system on
grid resilience with the characteristics of high randomness,
high intelligence, and high complexity.

• Static and dynamic resilient evaluation methods are
summarized.

• Research on resilience improvement measures such as pre-
disaster configuration, management and control during
disasters, and post-disaster recovery are summed up.

• Key technologies are outlined from the planning and
operation levels.

• The prospect of improving the power system resilience is
presented from four aspects, i.e., enhancing the perception
and prediction of extreme events, enhancing the overall
resilience of the system through multi-grid integration,
fully utilizing user-side resources, and exploring market
mechanisms.

In general, research on the resilience improvement of new power
systems is still in its infancy. Further in-depth research is needed. It
is recommended that the future work can be focused on Cyber-
Physical Power System. Research on its resilience modeling,
evaluation and enhancement methods can resist cyber attacks
and protect the new power system from the information level. It
is hoped that this article can provide a reference for subsequent
related research.
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Optimal energy management of
an integrated energy system with
multiple hydrogen sources
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Hydrogen is considered a promising alternative to fossil fuels in an integrated
energy system (IES). In order to reduce the cost of hydrogen energy utilization and
the carbon emissions of the IES, this paper proposes a low-carbon dispatching
strategy for a coordinated integrated energy system using green hydrogen and
blue hydrogen. The strategy takes into account the economic and low-carbon
complementarity between hydrogen production by water electrolysis and
hydrogen production from natural gas. It introduces the green hydrogen
production–storage–use module (GH-PSUM) and the blue hydrogen
production–storage–use module (BH-PSUM) to facilitate the refined utilization
of different types of hydrogen energy. Additionally, the flexibility in hydrogen load
supply is analyzed, and the dynamic response mechanism of the hydrogen load
supply structure (DRM-HLSS) is proposed to further reduce operating costs and
carbon emissions. Furthermore, a carbon trading mechanism (CTM) is introduced
to constrain the carbon emissions of the integrated energy system. By
comprehensively considering the constraints of each equipment, the proposed
model aims to minimize the total economic cost, which includes wind power
operation and curtailment penalty costs, energy purchase costs, blue hydrogen
purification costs, and carbon transaction costs. The rationality of the established
scheduling model is verified through a comparative analysis of the scheduling
results across multiple operating scenarios.

KEYWORDS

refined utilization of hydrogen, integrated energy system, dynamic response mechanism
of hydrogen load supply structure, carbon trading mechanism, coordination and
complementarity

1 Introduction

In order to cope with the increasingly serious shortage of fossil energy and climate
problems, wind power generation, photovoltaic energy generation, and other renewable
power generation systems have been widely used (Xu et al., 2023). However, due to the
intermittent and uncertain output of renewable sources, a reliable replacement of
power supply has not been formed yet, resulting in great challenges in the safe and
reliable supply of electricity (Pan G S et al., 2023), and the phenomenon of abandoning
wind power and photovoltaic power generation also occurs from time to time. While
clean and pollution-free hydrogen energy can be stored on a scale, the storage of
hydrogen produced from renewable energy generation provides a new idea to solve the
problems of power supply and consumption of renewable energy under the new power
system (Zuo et al., 2023).
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An integrated energy system (IES) coupled with multiple energy
forms for joint supply can meet the demand for multi-energy loads
with low-carbon emissions (Li et al., 2023). A hydrogen-containing
integrated energy system (HIES) coupled with hydrogen energy
based on traditional IES further promotes the consumption of
renewable energy and carbon emission reduction (Pan et al., 2020a).

At present, most studies on HIESs mainly focus on green hydrogen
production by electrolytic water. For example, based on hydrogen
production by electrolytic water, Fang et al. (2022) established an
optimal scheduling model of integrated energy microgrids including
multiple subsystems of electricity and hydrogen that can be traded with
each other. Fang et al. (2023) established a two-stage schedulingmodel of
an IES based on green hydrogen considering the electro-hydrogen
hybrid replenishment station. However, under the current
background of high cost and low energy conversion efficiency of
green hydrogen (Zhang, 2022) and the prominent price and low
carbon emission advantage of blue hydrogen (Zhao et al., 2022), the
production of blue hydrogen from natural gas has research value. In this
regard, Pan et al. (2020b) argued that the current development of the
electric hydrogen energy system should be fully combined with the price
advantages of traditional fossil energy. Chang (2021) pointed out that
currently hydrogen production from natural gas is the most widely used
method of hydrogen production in theworld.Wu et al. (2022) combined
hydrogen production from natural gas and hydrogen energy storage
configuration, built an IES model of a park with multi-energy
complementation of electricity, heat, and gas, and carried out
hydrogen energy storage capacity configuration. The aforementioned
studies considered the production and utilization of a single form of
hydrogen energy, and some studies also considered the complementary
coordination between gray hydrogen production from coal and green
hydrogen production from electricity. The carbon emission of blue
hydrogen production is much lower than that of gray hydrogen
production; however, few studies consider the coordinated utilization
of green hydrogen and blue hydrogen production.

In HIES based on green hydrogen, the hydrogen load is completely
supplied by green hydrogen. For example, Fang et al. (2023) used green
hydrogen to supply hydrogen load of a hydrogenation station. Li et al.
(2017) used green hydrogen to supply the overall hydrogen load of a
microgrid system. In a gray hydrogen and green hydrogen complementary
IES, Pan Z N et al. (2023) established a virtual hydrogen plant model
including hydrogen production from coal, hydrogen production from
electrolytic water, and hydrogen storage equipment so as to supply
hydrogen load required by transportation, industries, and other fields.
Li et al. (2023) supplied hydrogen load in chemical parks with
complementary gray hydrogen and green hydrogen. However, the
hydrogen utilization of different production methods is not precise
enough, and the resulting scheduling scheme is prone to the extreme
situation that hydrogen load is completely supplied by gray hydrogenwith
a lower economic cost, leading to a low utilization rate of green hydrogen,
and themass production of gray hydrogenwill cause an increase in carbon
emissions. The hydrogen load supply of the Beijing Winter Olympics is a
typical coordination system of blue hydrogen and green hydrogen (Wen
and Tian, 2022). The supply of blue hydrogen and green hydrogen always
maintains a 1:1 proportional structure, but this proportional structure
ignores the complementary characteristics between blue hydrogen and
green hydrogen, reducing the flexibility of system scheduling.

In addition, direct carbon emissions are generated in the production
process of blue hydrogen, while indirect carbon emissions are generated

in the power grid as a result of the electricity consumption of green
hydrogen (Cui et al., 2020). If this is not taken into account, the IES may
have a high carbon footprint. Therefore, the carbon emissions of
hydrogen production should be included in HIES, and a carbon
trading mechanism (CTM) should be introduced. In this regard,
Xiao et al. (2022) believed that introducing a CTM into scheduling is
a new approach for the research on low-carbon IES. Chen et al. (2021)
proved that introducing a CTM into IES containing hydrogen can exert
its great potential for carbon emission reduction. However, the
aforementioned HIESs ignored carbon emissions in the process of
hydrogen production, and the scheduling schemes were not
environmentally friendly.

To deal with the aforementioned issues, this paper considers the
refined coordination and complementarity of green hydrogen and
blue hydrogen and proposes the dynamic response mechanism of
hydrogen load supply structure (DRM-HLSS) by optimizing the
supply ratio of green and blue hydrogen in hydrogen load. We take
the CTM into account and aim to minimize the total cost of the sum
of wind power operation and wind abandoning penalty cost, energy
purchase cost, blue hydrogen purification cost, and carbon trading
cost. The low-carbon scheduling model of HIES with refined and
coordinated utilization of green hydrogen and blue hydrogen was
constructed, and the economic and low-carbon nature of the
proposed scheduling strategy was verified by comparing the day-
ahead scheduling results under different scenarios. The main
contributions are summarized as follows:

(1) In this work, an HIES is established, including GH-PSUM for
electrolytic water hydrogen production and BH-PSUM for natural
gas hydrogen production. This allows for refined coordination and
complementarity of multiple hydrogen sources, making the energy
management mechanism of the system more flexible.

(2) CTM and DRM-HLSS are implemented to restrict the carbon
emissions of the system, fully leveraging the flexibility of
coordination and complementarity of multiple hydrogen
sources in terms of economy and environmental protection.
This leads to a reduction in the daily operation cost of the units.

(3) The proposed energy management solution (EMS) is evaluated
through a case study in several operational scenarios. The
proposed EMS is compared against three benchmark
scenarios: no BH-PSUM, no DRM-HLSS, and no CTM. The
numerical results confirm the economic and environmental
benefits of the proposed EMS.

The remainder of this paper is organized as follows: Section 2
describes the structure of the HIES and the DRM-HLSS. Section 3
presents the low-carbon optimal scheduling model of the system.
Section 4 contains the case studies conducted to verify the
effectiveness. The conclusions are given in Section 5.

2 HIES structure

2.1 Overview of the proposed system

According to the carbon emissions associated with hydrogen
production, hydrogen energy can be categorized into three types:
gray hydrogen, blue hydrogen, and green hydrogen. Gray hydrogen
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production has high carbon emissions but low cost. Blue hydrogen
production has lower carbon emissions and higher energy conversion
efficiency but a slightly higher cost. Green hydrogen production does not
result in direct carbon emissions but has a higher cost. Given the goal of
promoting the widespread use of hydrogen energy, this research focuses
on the coordination between green hydrogen and blue hydrogen. The
refined coordinated comprehensive energy system built with these two
types of hydrogen includes three main components: energy distribution,
energy coupling, and energy consumption. This system integrates
various energy sources, energy conversion, and power supply
equipment. The energy structure of the system is illustrated in Figure 1.

The energy distribution side of HIES consists of the utility grid, wind
power, and natural gas sources. The energy coupling side consists of GH-
PSUM, BH-PSUM, an electric boiler (EB), and a heat storage system
(HSS). The energy consumption side includes electrical, hydrogen, and
heat loads. GH-PSUM consists of an electrolyzer (EL), green hydrogen
storage (GHS), and green hydrogen fuel cell-based combined heat and
power (GHFC-CHP). BH-PSUM includes gas-to-hydrogen (G2H), blue
hydrogen storage (BHS), and blue hydrogen fuel cell-based combined
heat and power (BHFC-CHP). The configuration of these two modules
enables the refined coordination and complementation of green
hydrogen and blue hydrogen. The electrical load of HIES is supplied
by wind power, the grid, GHFC-CHP, and BHFC-CHP. The hydrogen
load is supplied by GHFC-CHP and BHFC-CHP. The heat load is
supplied by EB, GHFC-CHP, and BHFC-CHP. The energy storage
devices in HIES ensure the balance of supply and demand by
implementing time-shifting energy supply.

2.2 Models of hydrogen
production–storage–use modules

The setting of GH-PSUM and BH-PSUM in the system makes
the production, storage, and utilization of green hydrogen and blue

hydrogen completely separate, and the whole chain of hydrogen
energy from production to use can be tracked so as to achieve the
purpose of refined utilization of hydrogen energy and facilitate the
coordination and complementary optimization of green hydrogen
and blue hydrogen.

GH-PSUM includes EL, GHS, and GHFC-CHP. EL converts
electric energy into hydrogen energy without carbon emission in the
whole process but consumes a lot of electric energy and water. The
model of EL is shown in (1) and (2).

VEL
H2 ,t

� ηELPEL
e,t

qH2
Δt, (1)

MEL
H2O,t

� βELH2O
VEL

H2 ,t
, (2)

whereVEL
H2 ,t

represents the green hydrogen production volume of EL
in the t period; ηEL represents the electrical energy to hydrogen
energy efficiency of the conversion of EL; PEL

e,t represents the power
consumed by EL in the t period; Δt represents the length of each
scheduling period; qH2 represents the low calorific value of
hydrogen; MEL

H2O,t
represents the water consumption mass of EL

in the t period; and βELH2O
represents the water consumption

coefficient of EL.
GHS is used to store green hydrogen, but the storage technology

of current high-pressure gaseous hydrogen storage tank has a certain
energy loss during the process of hydrogen energy from input to
output, which can be measured by storage efficiency. The state of
green hydrogen charge (SOGHC) can be described as expressed
in (3).

SGHS
t � SGHS

t−1 + ηHS
in VGHS

in,t − VGHS
out,t/ηHS

out

V GHS
max

, (3)

where SGHS
t represents the SOGHC of GHS in the t period; ηHS

in and
ηHS
out represent the efficiency of the hydrogen energy storage and
output process, respectively; VGHS

in,t represents the input amount of

FIGURE 1
Energy structure of HIES.
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GHS in the t period; VGHS
out,t represents the output of GHS in the t

period; and VGHS
max means the maximum hydrogen storage capacity

of GHS.
GHFC-CHP uses fuel cells to convert hydrogen into electricity

while collecting waste heat for storage or heat load to improve
energy efficiency. The model of the GHFC-CHP is shown in (4)
and (5).

PCHP,g
e,t Δt � ηCHP

e qH2VCHP,g
t , (4)

PCHP,g
h,t Δt � ηCHP

h qH2VCHP,g
t , (5)

where PCHP,g
e,t and PCHP,g

h,t are the power generation and heating
power of GHFC-CHP in the t period, respectively; ηCHP

e represents
the hydrogen electric conversion efficiency for fuel cells; ηCHP

h

represents the hydrogen heat conversion efficiency for fuel cells;
andVCHP,g

t represents the hydrogen consumption of GHFC-CHP in
the t period.

BH-PSUM includes G2H, BHS, and BHFC-CHP. This work
uses the currently mature hydrogen production method of natural
gas steam reforming combined with pressure swing adsorption
(PSA) on G2H to produce blue hydrogen through natural gas,
and its main process is as follows: after pressure desulfurization,
raw natural gas is mixed with steam at high temperature and then
cracked and reformed into conversion gas containing H2, CO, and
CO2 under catalytic action. After the conversion, gas is absorbed by
the waste heat boiler, and CO in it reacts with water vapor to
produce the conversion gas mainly containing H2 and CO2. The
conversion gas can be purified by PSA to obtain finished blue
hydrogen with a purity of 99.99%, and the PSA tail gas is reused
as a fuel. In the whole process of hydrogen production, the mixed
conversion requires the mixed fuel composed of burning fuel,
natural gas, and analytic gas to supply high temperature, so the
process involves CO2 emission and electric energy consumption in
the operation of the equipment. The model of G2H can be described
as follows:

VG2H
H2 ,t

� ηG2HqG

qH2
VG2H

G,t , (6)

PG2H
e,t Δt � αG2HVG2H

H2 ,t
, (7)

MG2H
H2O,t

� βG2HH2O
VG2H

H2 ,t
, (8)

MG2H
CO2 ,t

� βG2HCO2
VG2H

H2 ,t
, (9)

where VG2H
H2 ,t

represents blue hydrogen production in the t period;
ηG2H represents gas-to-hydrogen efficiency; αG2H represents the low
calorific value of natural gas; VG2H

G,t represents the gas consumption
in the t period; PG2H

e,t represents the G2H power consumption in the t
period; αG2H is the power consumption coefficient of G2H; MG2H

H2O,t

represents the water consumption of G2H in the t period; βG2HH2O
is the

G2H water consumption coefficient; MG2H
CO2 ,t

represents the carbon
emissions of G2H in the t period; and βG2HCO2

represents the G2H
carbon emission coefficient.

The BHS principle is the same as that of GHS, and (10)
represents the state of blue hydrogen charge (SOBHC). Similarly,
the principle of BHFC-CHP is the same as that of GHFC-CHP, and
its model is shown in (11) and (12).

SBHS
t � SBHS

t−1 + ηHS
in VBHS

in,t − VBHS
out,t/ηHS

out

V BHS
max

, (10)

PCHP,b
e,t Δt � ηCHP

e qH2VCHP,b
t , (11)

PCHP,b
h,t Δt � ηCHP

h qH2VCHP,b
t , (12)

where the symbols in (10)–(12) are defined as same as those
in (3)–(5).

2.3 Models of other devices

EB converts electric energy into heat energy to supply the heat
load in the HIES, which is described in (13).

PEB
h,t � ηEBPEB

e,t , (13)
where PEB

e,t and PEB
h,t represent the power consumption and heat

production power of EB in the t period, respectively; and ηEB is the
electricity-to-heat conversion efficiency of EB.

HSS is used to store heat energy, and (14) represents its state of
green heat charge (SOGHC).

SHSS
t � SHSS

t−1 + PHSS
in,t − PHSS

out,t

WHSS
max

Δt, (14)

where the symbols in (14) are defined as same as those in (3).

2.4 Dynamic response mechanism of the
hydrogen load supply structure

Hydrogen load is the terminal energy directly supplied to the
user. In the green hydrogen- and blue hydrogen-coordinated IES, it
is supplied by both green hydrogen and blue hydrogen. In this work,
the ratio of green hydrogen to blue hydrogen in the hydrogen load
supply structure at each time is set as a variable to make the rigid
hydrogen load supply structure flexible so that the hydrogen load
supply structure can dynamically respond to the changes in
hydrogen supply capacity and hydrogen production economy of
GH-PSUM and BH-PSUM and further optimize the operation
efficiency of the system. The DRM-HLSS is shown in (15)–(19):

Vload
g,t � wg,tV

load
t , (15)

Vload
b,t � wb,tV

load
t , (16)

wg,t + wb,t � 1, (17)
wg

min ≤wg,t ≤ 1, (18)
0≤wb,t ≤ 1 − wg

min, (19)

where Vload
g,t and Vload

b,t are the supply of green hydrogen and blue
hydrogen in the hydrogen load in the t period, respectively; wg,t and
wb,t are the proportions of green hydrogen and blue hydrogen in the
hydrogen load supply structure in the t period, respectively; andwg

min is
the lowest limit of the minimum proportion of green hydrogen, whose
setting significance ensures the continuous operation of GH-PSUM, so as
to promote the utilization of green hydrogen and the development of
related technologies and policies and avoid the extreme of hydrogen
supply structure. Here, the extreme of hydrogen supply structure means
that the hydrogen load is completely supplied by blue hydrogen, which
has a low economic cost but brings more carbon emissions and is not
conducive to the realization of the goal of “carbon neutrality.”
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After the DRM-HLSS is introduced, because the cost of
producing green hydrogen by purchasing electricity is much
higher than that of blue hydrogen, the priorities of hydrogen
production in the system depend on wind abandonment, natural
gas, and purchasing electricity. In the supply of hydrogen load, if the
wind abandonment used for hydrogen production cannot meet the
minimum supply of green hydrogen, the minimum supply ratio of
green hydrogen should be satisfied by purchasing power from the
grid and outputting hydrogen from GHS, and the rest of the supply
should be produced from natural gas. If this requirement can be met,
but the wind abandonment is not enough to supply the whole
hydrogen load, green hydrogen is produced by wind abandonment
and output by GHS, and the remaining part of the hydrogen load is
supplied by blue hydrogen. If wind abandonment is sufficient to
supply the whole hydrogen load, the whole hydrogen load is
supplied by green hydrogen, and the excess hydrogen produced
is stored. The hydrogen supply mechanism of the system is shown in
Figure 2.

3 Mathematical model of HIES
operation

3.1 Scheduling model

This work constructs the objective function to minimize the
cost, as shown in (20).

F � min fw + fbuy + fPSA + fCO2( ). (20)

Eq. 20 is the objective function of the total cost, including wind
power operation and wind abandon penalty cost, energy purchase
cost, blue hydrogen purification cost, and carbon trading cost. Eq. 21
represents wind power operation and wind abandonment penalty
cost:

fw � ∑T
t�1
cwPw

t +∑T
t�1
λ Pw

t,max − Pw
t( ), (21)

where T is the total number of scheduling periods; λ is the penalty
coefficient for wind curtailment; Pw

t,max and Pw
t are the maximum

output of wind power and the actual output of wind power in the t
period, respectively; and cw is the operating cost factor for wind
power.

The energy purchase cost includes electricity, water, and gas
purchase, as shown in (22).

fbuy � ∑T
t�1
cbuye,t P

buy
e,t +∑T

t�1
cbuyG VG2H

G,t +∑T
t�1
cbuyH2O MEL

H2O,t
+MG2H

H2O,t
( ), (22)

where cbuye,t represents the time-of-use electricity price; Pbuy
e,t

represents electricity purchase in the t period; cbuyG represents the
price of natural gas; and cbuyH2O

represents the price of water.
The utilization of the PSA technology increases blue hydrogen

purity and lowers carbon emissions, but its use is also accompanied
by the purification cost, resulting in an increase in the total cost. The
purification cost is shown in (23):

fPSA � ∑T
t�1
cPSAVG2H

H2 ,t
, (23)

where cPSA represents the cost coefficient of blue hydrogen
purification.

Carbon emissions will be generated in the operation of HIES,
including carbon emissions generated by power generation from the
utility grid and hydrogen production from natural gas. Therefore, it is
necessary to quantify the cost of carbon emissions and measure the cost
of carbon emissions under CTM. Under CTM, system operators need to
purchase corresponding carbon quotas in the carbon trading market
according to the actual carbon emissions of HIES so as to carry out
reasonable and legal carbon emissions in the process of supplying users’
load demands. Enterprises with large-scale carbon emissions generally
have free carbon allowances, but the carbon emissions generated by the
system constructed in this paper are not large during operation.
Therefore, assuming that the system does not have initial free carbon
allowances, all the carbon emissions generated must be purchased in the
CTM. The calculation of carbon trading costs is described in (24).

FIGURE 2
Hydrogen supply mechanism of HIES.
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fCO2 � δ∑T
t�1

ϖPbuy
e,t +MG2H

CO2 ,t
( ), (24)

where δ represents the basic price of carbon trading andϖ represents
the carbon emission factor of the grid.

3.2 Constraints

To ensure that the supply and demand of energy are always
in balance, as well as to avoid energy wastage and shortage of
energy supply, the operation of the HIES should always
maintain the energy balance, including electric energy, heat
energy, and hydrogen energy, as shown in (25)–(28). Among
them, green hydrogen and blue hydrogen in the system are
independently refined utilization, which are modeled as shown
in (27) and (28), respectively, under the constraints of hydrogen
energy balance.

Pbuy
e,t + Pw

t + PCHP,g
e,t + PCHP,b

e,t � Pload
e,t + PG2H

e,t + PEL
e,t + PEB

e,t , (25)
Pload
h,t + PHSS

in,t � PCHP,g
h,t + PCHP,b

h,t + PEB
h,t + PHSS

out,t, (26)
VEL

H2 ,t
+ VGHS

out,t � VCHP,g
t + Vload

g,t + VGHS
in,t , (27)

VG2H
H2 ,t

+ VBHS
out,t � VBHS

in,t + VCHP,b
t + Vload

b,t , (28)

where Pload
e,t represents the electrical load power in the t period

and Pload
h,t represents the heat load power in the t period.

Meanwhile, after considering the DRM-HLSS, corresponding
constraints in (15)–(19) should also be satisfied. Equations 3, 10,
and 14 show that the models of GHS, BHS, and HSS devices are
similar, and the constraints of the three energy storage devices
are described uniformly in (29)–(33). The main constraints that
energy storage devices should meet include the following: the
single charge quantity should not exceed the limit as shown in
(29) and (30), the device cannot be charged and discharged at the
same time as shown in (31), the limit of an equivalent state of
charge should not be exceeded as shown in (32), and the
equivalent state of charge in each scheduling cycle should be
equal from the beginning till the end as shown in (33).

0≤Vi
in,t ≤φ

iIiinV
i
max , (29)

0≤Vi
out,t ≤φ

iIioutV
i
max , (30)

Iiin + Iiout � 1, (31)
S i
min ≤ S

i
t ≤ S i

max , (32)
Si0 � SiT, (33)

where Vi
in,t and Vi

out,t are the input and output of the ith energy
storage device in the t period, respectively; Iiin and Iiout are the input
and output states of the ith device in the t time period. Both are
0–1 variables, where 0 means that the device is in the input state and
1 means that the device is in the output state; V i

max and φi are the
capacity and single charge and discharge limit coefficients of the ith
equipment, respectively; Sit is the equivalent state of charge of the ith
device in the t period; S i

max and S i
min are the upper and lower limits

of the equivalent state of charge of the ith energy storage device,
respectively; and Si0 and SiT are the equivalent state of charge of the
ith device at the beginning and end of a dispatch cycle, respectively.

The actual output of wind power cannot exceed the maximum
output limit, as shown in (34).

0≤Pw
t ≤Pw

max ,t. (34)

The operation of each device must not exceed the upper limit, as
shown in (35)–(39).

0≤PEL
e,t ≤PEL

max ,e, (35)
0≤PCHP,g

e,t ≤PCHP,g
max ,e , (36)

0≤VG2H
H2 ,t

≤VG2H
max ,t, (37)

0≤PCHP,b
e,t ≤PCHP,b

max ,e , (38)
0≤PEB

e,t ≤P
EB
max ,e, (39)

where PEL
max ,e represents the maximum power consumption of EL;

PCHP,g
max ,e represents the maximum power generation of GHFC-CHP;

VG2H
max ,t represents the maximum hydrogen production of G2H;

PCHP,b
max ,e represents the maximum power generation of BHFC-

CHP; and PEB
max ,e represents the maximum power consumption

of EB.
Wind power has significant randomness and volatility. To

reduce the pressure of the main network, this paper does not
consider the system selling electricity to the main network, but
the purchased power must not exceed the port limit, as shown
in (40).

0≤Pbuy
e,t ≤P grid

max , (40)

where P grid
max represents the upper limit of the power exchanged with

the grid.

4 Case study

To evaluate the effectiveness of the proposed scheduling strategy
considering CTM and DRM-HLSS, cases are set under different
operating scenarios for analysis. The problem is implemented in the
YALMIP modeling language as linear programming and solved
using the CPLEX optimizer. In this work, the i5-1035G7 CPU
@1.20 GHz and 8.00 GB RAM are used for computation
hardware, and the optimization is performed in MATLAB
(version 2022a).

The scheduling period is 24 h, and the simulation step is set
to 1 h to optimize the solution. The prediction curves of
electrical load, heat load, hydrogen load, and wind power
output inside the system are shown in Figure 3, while the
prices of electricity, natural gas, and water are shown in
Table 1. The energy storage capacities of GHS, BHS, and HSS
devices are set to 100 Nm3, 100 Nm3, and 300 kWh, respectively.
The maximum operating power of EB and EL is 600 kW and
500 kW, respectively. The maximum hydrogen production rate
of G2H is set to 80 Nm3/h. The maximum power of the GHFC-
CHP and BHFC-CHP is set to 150 kW and 50 kW, respectively.
The upper limit of the switching power with the grid is set to
600 kW. The corresponding parameters of the HIES are shown
in Table 2.
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4.1 Analysis of considering the refined
coordinated utilization of multiple hydrogen
sources and the DRM-HLSS

To assess the effectiveness of the coordinated utilization of green
hydrogen and blue hydrogen, as well as the DRM-HLSS proposed in
this study, three different operating scenarios were set for
comparative analysis. HIES1 represents a single green hydrogen
scenario focused on GH-PSUM. HIES2 represents a traditional
hydrogen supply scenario considering the coordinated utilization
of green hydrogen and blue hydrogen, with a hydrogen supply
structure set at a 1:1 ratio. HIES3 represents a flexible scheduling

scenario that considers the coordinated utilization of green
hydrogen and blue hydrogen, as well as the DRM-HLSS. The
minimum proportion of green hydrogen is set at 0.4. To ensure
comparable scheduling flexibility, the capacities of GHS and GHFC-
CHP devices in HIES1 are set to equal the combined capacities of
green hydrogen and blue hydrogen devices in HIES2. Furthermore,
HIES2 and HIES3 have identical device capacities.

Table 3 presents the scheduling results for the three HIESs. The
data reveal that in terms of environmental impact,
HIES2 demonstrates a 31.78% decrease in carbon emissions
compared to HIES1. Additionally, HIES3 achieves a carbon
emission reduction of 39.84% relative to HIES1 and 11.80%

FIGURE 3
Prediction curves of (A) electrical load, heat load, and wind power output; (B) hydrogen load.

TABLE 1 Purchasing tariffs of the HIES.

Item Period Price

Electricity 01:00–07:00; 23:00–24:00 0.057 $/kWh

08:00–11:00; 15:00–18:00 0.102 $/kWh

12:00–14:00; 19:00–22:00 0.180 $/kWh

Natural gas Whole day 0.485 $/Nm3

Water Whole day 0.566 $/t

TABLE 2 Required parameters for modeling the HIES.

Parameter Value Parameter Value

φ 0.3 cw ($/kWh) 0.6

ηEL/ηG2H/ηEB (%) 55/83/95 cPSA ($/Nm3) 0.093

ηHS
in /ηHS

out (%) 95/99 δ ($/kg) 0.039

ηCHP
e /ηCHP

h (%) 50/35 ϖ (kg/kWh) 0.581

λ ($/kWh) 0.045 - -
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relative to HIES2. Concerning renewable energy consumption, the
curtailment rate of HIES2 is 2.25% higher than that of HIES1. For
HIES3, the curtailment rate increases by 0.48% compared to that of
HIES1 but decreases by 1.77% compared to that of HIES2. In
relation to the total cost, HIES2 has a lower total cost compared
to HIES1. Furthermore, HIES3 exhibits a further cost reduction of
$31.2 compared to HIES2 and $80.9 compared to HIES1. These
findings indicate that the comprehensive consideration of the
coordinated utilization of multiple hydrogen sources and the
DRM-HLSS leads to significant carbon emission reduction and a
relatively balanced utilization of renewable energy. Although the
renewable energy utilization rate is lower than that of a single green
hydrogen scenario, it has increased compared to the traditional
hydrogen supply scenario with a fixed proportion, while also
achieving lower total costs, demonstrating improved economic
feasibility.

According to the wind curtailment situation of each HIES in
Figure 4 and the analysis of carbon emissions and costs associated
with hydrogen production, it can be estimated that the carbon
emissions of green hydrogen from electricity purchase are
3.738 kg/Nm3, while the carbon emissions of blue hydrogen from
natural gas are 0.889 kg/Nm3, implying that under the current
carbon emission factor of the grid, the actual carbon emissions
from producing green hydrogen by purchasing power from the grid
are higher than those from producing blue hydrogen using natural
gas through PSA. Additionally, the cost of producing green
hydrogen is also higher than that of producing blue hydrogen. In
the scenario of solely relying on green hydrogen, the system can only
use electrolytic water to produce green hydrogen for the hydrogen
load, as the system’s own wind power cannot meet the demand for
hydrogen production. Therefore, electricity needs to be purchased
from the grid, resulting in a certain amount of carbon emissions and
high hydrogen supply costs. By considering the coordinated
utilization of green hydrogen and blue hydrogen, a portion of the
hydrogen load is replaced by the supply of blue hydrogen, which has
lower carbon emissions and costs. As a result, the electricity
purchased from the grid is reduced, leading to a reduction in
carbon emissions and costs. However, due to the fixed
proportion of hydrogen supply, some of the wind power initially
allocated for hydrogen production cannot be consumed during
periods of low load at night, leading to an increase in wind

curtailment. With the inclusion of the DRM-HLSS, the
dispatching scheme is further optimized, allowing the system to
fully utilize the internal wind power and reduce external hydrogen
production, gas purchases, and grid electricity purchases. For this
reason, HIES3 is able to achieve a low wind curtailment rate while
maintaining lower carbon emissions and operating costs. However,
compared with scenario 1, scenario 3 introduces blue hydrogen,
whose production cost is much lower than that of green hydrogen.
In order to reduce operating costs, part of green hydrogen in the
hydrogen load will be replaced by blue hydrogen, and the wind
power used to produce this part of green hydrogen will not be able to
be absorbed, so the wind curtailment in scenario 3 is slightly higher
than that in scenario 1.

Under the HIES3 model, Figure 5 depicts the operation of each
device in a system dispatching cycle, while Figure 6 shows the
dynamic supply structure of hydrogen load. During the low-load
period from night to morning, wind power is sufficient to meet the
demand for electric load and electric boiler heat load. Excess wind
power is then used to produce green hydrogen, with the whole
hydrogen load being supplied by green hydrogen and any remaining
excess being stored. Additionally, a small amount of blue hydrogen
is produced using low-cost electricity for storage. During the high-
load and flat-load stages from morning to night, wind power alone
cannot satisfy the electric heating load. Therefore, electricity
purchasing, hydrogen cogeneration operation, and wind power
are combined to achieve the electric and heating balance. During
this period, green hydrogen generation is absent, so blue hydrogen is
primarily used to supply the hydrogen load, while the hydrogen
storage tank continuously outputs green hydrogen to meet the
minimum demand. It is evident that by considering the DRM-
HLSS, the flexibility of system scheduling improves, allowing for
dynamic optimization of the hydrogen load supply structure based
on wind power output. This approach also reduces wind power
output fluctuations and enhances wind power absorption capacity
through flexible adjustment of each device’s output.

4.2 Analysis of considering the CTM

To analyze the effectiveness of the CTM after careful
consideration, HIES4 was configured to include the coordinated
utilization of green hydrogen and blue hydrogen, as well as the
DRM-HLSS system, excluding the CTM. The scheduling results of

TABLE 3 Comparison of scheduling results of HIESs.

Item HIES1 HIES2 HIES3

Carbon emission (kg) 1472.8 1004.7 886.1

Carbon trading cost ($) 57.4 39.2 34.6

Curtailment rate (%) 0.63 2.88 1.11

Curtailment cost ($) 8.8 40.2 15.5

Wind power operating cost ($) 1847.0 1805.1 1838.0

Electricity purchase cost ($) 311.1 124.6 119.8

Natural gas purchase cost ($) 0 113.3 92.7

Water purchase cost ($) 0.5 0.8 0.8

Total cost ($) 2224.8 2175.1 2143.9

FIGURE 4
Wind power output in each HIES.
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HIES4 andHIES3mentioned previously are presented in Table 4. As
shown in the table, the carbon emissions of HIES3 are 113.5 kg lower
than those of HIES4, representing a reduction of 11.4%. This
demonstrates that considering the carbon trading mechanism can
effectively achieve the goal of carbon reduction.

Further analysis reveals that without considering the carbon
trading mechanism, power purchased from the grid has no
restrictions on carbon emissions. In such cases, the cost of
directly using electric energy is lower than that of hydrogen
energy. Due to the anti-peak regulation characteristic of wind

FIGURE 5
Results of (A) electricity, (B) heat, and (C) hydrogen balance considering the refined coordinated utilization of multiple hydrogen sources and the
DRM-HLSS.
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power, the load of wind power is low, its output is high during
periods of low electricity prices, and, during the remaining
periods, the output is small and even insufficient to meet the
demand for electric heating load. To address this, the system
chooses to increase the purchase of parity electricity during the
flat-load stage to supply electricity and heating load, thereby
reducing the operation of the hydrogen cogeneration device,
which only runs during periods of high load. Additionally, the
supply of green hydrogen produced by electricity in the
hydrogen load is also increased. When considering the
carbon trading mechanism, not only the hydrogen load but
also the conversion and utilization of hydrogen energy are
increased, resulting in higher costs but lower carbon
emissions. The operation of all devices takes into account the
requirements of low cost and low carbon emissions, ultimately
obtaining a low carbon dispatching scheme with slightly higher
costs but less carbon emissions.

Different grid carbon emission factors can affect the operation of
the system. In fact, these factors are constantly changing as the
proportion of renewable energy increases. Therefore, it is necessary
to analyze the system’s operation results as these factors change.

The operation results of HIESs under different grid carbon
emission factors are shown in Figure 7. It can be observed that
as the grid carbon emission factor decreases, both the total cost and
carbon emission of HIES1 and HIES3 show a gradually decreasing
trend. The total cost of HIES3 declines more slowly than that of
HIES1, but it is always lower. Similarly, the decline in carbon
emissions of HIES3 is consistently slower than that of HIES1,
with an initial slow trend followed by a faster decrease. At
approximately 0.2 kg/kWh grid carbon emission factor, the
carbon emission curves of the two HIESs intersect. From that
point onward, the carbon emission of HIES1 is consistently lower

FIGURE 6
Hydrogen load supply structure in HIES3.

TABLE 4 Comparison of scheduling results of the HIESs.

Item HIES3 HIES4

Carbon emission (kg) 886.1 999.6

Carbon trading cost ($) 34.6 39.0

Curtailment rate (%) 1.11 1.11

Curtailment cost ($) 15.5 15.5

Wind power operating cost ($) 1838.0 1838.0

Electricity purchase cost ($) 119.8 162.9

Natural gas purchase cost ($) 92.7 62.7

Water purchase cost ($) 0.8 0.6239

Total cost ($) 2143.9 2108.5

FIGURE 7
Impacts include (A) total cost and (B) carbon emissions of
different grid carbon emission factors on two HIESs.
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than that of HIES3. This is because HIES1 relies more on purchasing
electricity and is greatly influenced by changes in the grid’s carbon
emission factors. However, the production cost of green hydrogen is
higher than that of blue hydrogen, resulting in a higher total cost for
HIES1. It can be observed that under the continuous reduction in
the grid carbon emission factor, a single green hydrogen system will
have a lower carbon footprint compared to a coordinated green
hydrogen and blue hydrogen system.

5 Conclusion

This study considers the refined coordinated utilization of
multiple hydrogen sources, the DRM-HLSS, and the CTM,
constructing a low-carbon economic dispatching model for
HIES. By solving and analyzing the dispatching scheme, it is
found that the refined coordinated utilization of green hydrogen
and blue hydrogen, along with the DRM-HLSS, can
simultaneously ensure high renewable energy consumption,
reduce carbon emissions, and lower operating costs. The
DRM-HLSS improves system scheduling flexibility, reduces
wind power output fluctuations, and enhances wind power
consumption capability. Additionally, the introduction of a
CTM restricts carbon emissions in the comprehensive energy
system, achieving carbon emission reduction goals and
promoting greater utilization of hydrogen energy. It is worth
noting that the current coordination system between green
hydrogen and blue hydrogen effectively leverages the
economic benefits of fossil fuels and the low-carbon nature of
carbon capture technology. However, as the carbon emission
factor of the power grid continues to decrease in the future, this
system will no longer offer advantages in terms of economy and
low carbon emissions. Consequently, the operation of HIES
should gradually transition toward a single green hydrogen
system, aligning with reduced carbon emission factors of the
power grid.

For future work, it is recommended to consider flexible load
demand response mechanisms, such as electricity and heat, in the
optimization scheduling of the system for further research.
Additionally, the uncertainty of renewable energy output should
be taken into account in subsequent optimization scheduling
research to ensure that the scheduling results align more closely
with actual conditions.
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The increasing penetration of renewable energy sources (RES) brings volatile
stochasticity, which significantly challenge the optimal dispatch of power systems.
This paper aims at developing a cost-effective and robust policy for stochastic
dynamic optimization of power systems, which improves the economy as well as
avoiding the risk of high costs in some critical scenarios with small probability.
However, it is hard for existing risk-neutral methods to incorporate risk measure
since most samples are normal. For this regard, a novel risk-averse policy learning
approach based on deep reinforcement learning with risk-oriented sampling is
proposed. Firstly, a generative adversarial network (GAN) with graph convolutional
neural network (GCN) is proposed to learn from historical data and achieve risk-
oriented sampling. Specifically, system state is modelled as graph data and GCN is
employed to capture the underlying correlation of the uncertainty corresponding
to the system topology. Risk knowledge is the embedded to encourage more
critical scenarios are sampled while aligning with historical data distributions.
Secondly, a modified deep reinforcement learning (DRL) with risk-measure under
soft actor critic framework is proposed to learn the optimal dispatch policy from
sampling data. Compared with the traditional deep reinforcement learning which
is risk-neutral, the proposed method is more robust and adaptable to
uncertainties. Comparative simulations verify the effectiveness of the proposed
method.
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1 Introduction

With the rapid development of power electronics, it is foreseeable that the proportion of
renewable energy sources (RES) in the power system will continue to increase (Mathiesen
et al., 2015). On the one hand, utilizing RES in future smart grids can help energy systems
cope with energy depletion crisis. On the other hand, the uncertainty brought by RES makes
the scheduling decision of the power system a greater security risk (Zhang et al., 2021). These
challenges have a profound impact on the reliability and economy of power grid operations.
Consequently, finding effective and reliable dispatch decisions has become a critical scientific
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challenge with direct implications for operational safety. Dynamic
economic dispatch (DED) is a dispatch strategy which allows
dispatch decision to be given and adapted in response to the
realizations of uncertainties evolutions. In this regard, developing
the optimal policy (policy is a function about how system operator
makes dispatch decision) for stochastic dynamic dispatch is crucial
to maintain the supply-demand balance for power system under
high renewable energy penetration. However, accurately modeling
and solving the DED are required to address the challenges
associated with uncertainties which attract substantial interest
from both the electricity industry and academia.

Theoretically, stochastic dynamic dispatch of power systems is a
typical multistage sequential decision problem. It usually contains
enormous state and action space, and complex uncertainty
variations, which makes its optimal policy almost intractable. In
the past decade, extensive studies have devoted to developing the
optimal policy for stochastic dynamic dispatch, mainly including
look-ahead dispatch policy (also known as model predictive
control), dynamic programming, and reinforcement learning.
Among these methodologies, deep reinforcement learning (DRL)
(Silver et al., 2016) is regarded as a promising alternative due to its
strong nonlinear fitting ability, adaptability, and generalization.
Through enough learning from training samples, its decision is
adapted to the uncertainties observed overtime. Owing to these
advantages, DRL has been widely applied to corresponding dynamic
dispatch problems in smart grids. Reference (Hua et al., 2019)
adopts a synchronous advantage actor-critic (A3C) to solve the
energy management problem of continuous time coupling.
Meanwhile Bedoya et al. (2021) solve an MDP problem
considering the asynchronous data arrival using deep Q-network
(DQN) and (Zhao and Wang, 2021) proposed an approach
combining a GCN with a DQN to conduct sequential system
restoration.

Although RL has been successfully applied in the optimal
dispatch problem, most of them consider a risk-neutral objective.
That is, they directly use original historical data as training samples
and minimize the expectation of accumulative rewards. Such policy
performs well in most scenarios or normal scenarios, however, when
encountering some critical scenarios of which the possibility is small
but the outcome is severe, e.g., network constraints violation or even
supply-demand unbalance. The main difficulties to incorporate risk
measurement can be summarized as follows: firstly, the critical
scenarios with small possibility may be drown in massive normal
scenarios, it is hard for algorithm to distinguish and learn these
critical scenarios. Secondly, most RL methods use the average
reward of batch samples for learning, risk measure is not
considered. Some studies and our previous researches (Pan et al.,
2020) have proposed a risk-averse RL for stochastic dynamic
dispatch of multi-energy system, however, they directly used
original historical data or Monte-Carlo sampling to form large
batch of samples to compute risk adjusted objective. Note that
the distribution of critical scenarios is quite sparse. Such
approach cannot ensure critical scenarios with high cost and
small probability are effectively sampled, leading to slow
convergence and low sample efficiency. Reference (Liu et al.,
2018) employs function approximation to avoid the trouble of
stochastic modeling. Some literature simplify the problem by
discretization, bringing the dilemma of inaccuracy and dimension

disaster (Yu et al., 2015; Chen et al., 2019). Guo et al. deployed a
novel policy-based PPO algorithm for a real-time dynamic optimal
energy management in microgrids to make optimal scheduling
decisions (Guo et al., 2022). Chen et al. developed a DDPG
algorithm based on hybrid energy scheduling, which can learn
the optimal policies from historical experiences, avoid inadequate
exploration by introducing decaying noise (Chen et al., 2022).
Reference (GUAN et al., 2020; Lv et al., 2020) has undertaken
initial explorations into the utilization of deep reinforcement
learning for real-time grid scheduling optimization. While these
preliminary forays have delved into the optimization of grid
scheduling, they have not yet been extended to address
intricacies such as intra-day rolling scheduling, multi-objective
grid scheduling, and the dynamic considerations arising from
maintenance or minor faults in the system’s topology. The above
studies focus on simplified models for training RL and lack analysis
and discussion of historical data.

Since RL can be regarded as a data-driven approach, its
performance depends on the sampling data. Although a risk-
averse or robust objective can be merged into traditional RL,
another critical problem is how to ensure the risk scenarios with
small probability are effectively sampled during learning? Since
power system is mostly in a normal state, critical scenarios, e.g.,
line overloading, voltage violations, and load shedding unusually
occurs. Existing methods directly use historical data as learning
samples, however, this leads to slow convergence or invalid learning
since critical scenarios are insufficient sampled.

To address the aforementioned key technical challenges,
including the lack of risk-directed samples and the low
robustness of policy, a novel risk-averse policy learning approach
based on DRL with risk-oriented sampling is proposed. Firstly, a
graph generative adversarial network (GGAN) that combines GANs
(Goodfellow et al., 2014; Arjovsky and Bottou, 2017; Chen et al.,
2018; Zhang et al., 2021) and GCNs (Shervashidze et al., 2009) is
proposed. This integration allows to leverage historical graph data
and capture the underlying correlation of the uncertainty
corresponding to the system topology. Notably, GGAN
incorporates risk knowledge to ensure that critical scenarios can
be sufficiently generated while aligning with the underlying original
data distribution. This modification boosts the interaction frequency
between the agent and risk scenarios, enabling the identification and
learning of crucial embeddings. Secondly, the existing DRL
framework, specifically the SAC algorithm, is modified by
incorporating risk measure. Consequently, the agent is
incentivized to develop a cost-effective and robust policy for
stochastic dynamic optimization, resulting in not only
enhancement of the economy but also mitigating the risk of high
costs in critical scenarios with low probabilities.

The specific contributions of this paper are as follows.

1) Risk-averse stochastic dynamic dispatch scheme: A DRL based
risk-averse stochastic dynamic dispatch approach is proposed to
enhance the robustness and economy of policy when
encountering critical risk scenarios in power systems. To
tackle the challenges of existing methods in inadaptability of
risk measure and invalid sampling, this paper focuses on two
aspects: data expansion and algorithm improvement.
Specifically, firstly, risk-oriented sampling is proposed to
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generate enough critical scenarios. Then, these samples are
leaned by a risk measure incorporated DRL algorithms. By
such way, the dispatch policy not only improves the economy
but also avoid the risk of high costs in some rare but critical
scenarios.

2) Risk-oriented sampling: to avoid the critical scenarios with small
possibility being drown in massive normal scenarios, a risk-
oriented sampling is proposed to generate more critical scenarios
while maintaining the original data distribution. To achieve this,
KEG_GAN (Knowledge Embedding Graph Generative
Adversarial network) is proposed. Firstly, a graph
representation is proposed to integrate node features with
topology changes, allowing for the incorporation of topology
information into the system state while achieving efficient
expression of operational state. Secondly, through
incorporating regularization terms into the loss function and
leveraging topological connection relationship in the graph
structure, the knowledge embedding guides data-driven model
to generate risk-oriented samples. Thirdly, this paper proposed
differentiated weighting method for batch samples with
hierarchic stepped thresholds to enhance the utilization
efficiency of critical samples.

2 Problem statement and proposed
method

We first discuss the challenges in applying DRL for grid control
under fast-changing power grid operation scenarios with increased
uncertainties, which necessitates and highlights the need of risk
control capability for DRL-based agents. Then, we introduce the
framework of the method we proposed and how they solve the
problem of optimal dispatch in power systems.

2.1 Problem statement and formulation

With the increased integration of RES into the power grid,
ensuring economic efficiency in power system dispatching
operations requires the consideration of operational risks in low-
probability scenarios. While these risks may have a low likelihood of
occurrence, their potential impact on the safety of the power grid
cannot be underestimated.

The optimal dispatch problem entails learning a policy that
enhances economic performance while mitigating the risk of
incurring high costs in critical scenarios with small probabilities.
Consequently, the dispatch problem in power systems, taking risk
into account, can be represented by the following equation:

obj1minE ∑t

t�0Cr xt( )[ ]
obj2minE ∑t

t�0Ce xt( )[ ] (1)

s.t.
hk xt( )≤ 0, k � 1, . . . , m
Ij xt( ) � 0, j � 1, . . . , n

Where E(x) represents the expectation operator. Ce(x) represents
economic costs and Cr(x) represents the cost of risk. hk(x) and Ij(x)
represent the physical constraints of the power system.

During power system operation, the primary objective is to
guarantee the safety and reliability of the grid. Therefore, in addition
to minimizing obj1 (e.g., risk considerations), obj2 (e.g., economic
costs) should be taken-into-accounted as a secondary objective. The
dispatch policy should prioritize minimizing obj1 while considering
obj2 to ensure that the power system operates efficiently while
maintaining a high level of safety and reliability.

The process of DRL solving the above problem can be defined as
policy search in a Markov Decision Process (MDP) defined by a
tuple (S, A, p, r, y), where S is the state space, A is the action space, p:
S×A→S is the transition function and p:S×A→R is the reward
function. The goal of DRL is to learn a policy πθ(st):S→A, such
that it maximizes the expected accumulative reward J (πθ) over time
under p:

J πθ( ) � Es0 ,a0 ,...,st ,st ∑t

t�0yir st, at( )[ ] (2)
r st, at( ) � f Ce xt( ) + Cr xt( )( ) (3)

Where at~πθ(st) and st+1~p (st, at), and τ is the dispatch period.
Note that maximizing the cumulative reward is the opposite of
minimizing the cost, f(x) achieving the conversion from cost to
reward. The policy is parameterized by a neural network with
weights θ in DRL. The traditional DRL framework is shown in
the upper part of Figure 1.

There is a notable discrepancy in sample sizes across various
scenarios, such as normal operation scenarios and high-risk
operation scenarios or critical scenarios. During the agent’s
interaction with the environment, infrequent critical scenarios
inundate the buffer, leading to policy updates that prioritize
minimizing economic costs without adequately considering the
security of power systems.

The uncertainty associated with RES presents a challenge for
DRL, often leading to decisions that result in unsafe grid operations.
Additionally, the uneven distribution of samples further compounds
these issues, making it even more difficult to address the
aforementioned challenges. To overcome these challenges, this
paper proposes a method to enhance the DRL and effectively
tackle these issues.

2.2 The basic framework of our method

The fundamental framework of the proposed risk-oriented
Graph-Gan sampling assisted DRL for risk-averse stochastic
dynamic dispatch, as well as the comparison with traditional
DRL are illustrated in Figure 1.

The following improvements are made.

(1) Risk scenario generation: The sampling process for scenarios
from the power system is modified to increase the proportion of
risk scenarios while maintaining an appropriate balance with
normal operation scenarios. This adjustment leads to a more
risk-averse strategy, as depicted by the red circle in Figure 1.

(2) Risk probability sampling: To enhance the decision-making
robustness of the intelligent agent, the importance of risk
experience sampling is given higher priority during the
update process. The policy is updated to ensure that the
intelligent agent primarily learns from experiences related to
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high-risk operation scenarios. This adjustment is visualized by
the red circle in Figure 1.

3 Risk scenarios generation

The operation scenario data which is used to train the agent
primarily originates from the measurement data of the actual power
system. Critical scenarios, which often involve network constraints
and can be mathematically described, usually occur very rarely in
datasets. To address the issue of sparse data in the training scenario,
data augmentation techniques can be employed to enhance the
learning ability of the agent. However in the traditional data

augmentation techniques such as GAN, only the path
represented by the blue arrow in Figure 2 is considered. The
model incorporates a deep understanding of the data distribution
and is less inclined to generating outputs based on extremely
scenarios during the generation process.

To address these limitations, this paper introduces KEG_GAN,
which integrates risk knowledge and equations to effectively guide
the training process. This approach leverages data-driven methods
while incorporating additional guidance from risk knowledge, as
depicted by the blue and green arrows in Figure 2. By combining
data-driven learning with the integration of domain-specific
knowledge, KEG_GAN aims to overcome the aforementioned
challenges.

FIGURE 1
The framework of DRL with risk-oriented Graph-Gan sampling.

FIGURE 2
The framework of generation of extreme operation scenario sample based on KEG_GAN.
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This framework begins by acquiring the operation scenario
dataset and power grid topology information from measurement
data and simulation systems within the power system. During the
process of embedding knowledge into the model, the operation
scenario data incorporates risk constraints. Drawing upon risk
knowledge, the mechanism model of power grid operation scenes
is formulated and analyzed, leading to the identification and
extraction of risk equations present within the operation
scenarios. These equations, such as power flow constraints and
section constraints, are regularized and integrated into the GAN
architecture to guide the model’s learning process. In this paper, the
operation scenarios are categorized into two groups: extreme
operation scenarios with low safety margins and safe operation
scenarios with high safety margins.

3.1 Feature extraction of power grid
operation scene based on graph
representation

In addition to node attributes and outputs, the power grid
topology information plays a crucial role in capturing the key
characteristics of operation scenarios. However, many
conventional methods for generating scenarios focus solely on
node-level data without considering the integration of power grid
topology information. This limitation makes it difficult to generate
operation scenarios that reflect the inherent coupling relationships
between nodes using GAN-based approaches.

To address this limitation, effectively combining power grid
topology information with operation scenario data becomes an
essential approach to enhance the generation of power grid
operation scenarios. In this paper, a graph representation is
employed by combining node-level data of operation scenarios
with power grid topology information. To effectively capture the
information embedded in power grid operation scenarios, GCN are
introduced to enhance the traditional GAN framework. This
integration allows for the effective exploration and mining of
critical information within power grid operation scenarios using
GAN-based techniques.

The idea of GCN is to aggregate the information of neighbor
nodes and obtain more powerful feature expression, which can dig
deeply into the potential distribution of power grid operation
scenario data. The calculation formula is shown as follows:

H l+1( ) � f H l( ), A( ) � σ D−0.5A′D−0.5H l( )W l( )( ) (4)

Where, A’ = A + IN is an adjacency matrix with self-connection,
IN is the identity matrix.Dii =∑j Aij’ is the degree matrix ofA’.W(l) is
the trainable parameter in the convolutional layer of the GCN, and
H(l) represents the input characteristics of the l layer. After matrix
multiplication of the above formula, forward propagation is carried
out through activation functions σ(·) such as RELU(·) (Thomas and
Max, 2016).

The topological information is constructed and processed by
GCN to mine the correlation between neighbor nodes and improve
the learning effect of GAN. For this reason, the graph representation
of the power grid operation scenario is shown in Figure 3. Firstly,
sampling is conducted from the power system to obtain the

operation scenario data of load, node voltage, the output of
traditional unit and RES, etc. Then, the characteristic matrix H
of the power grid operation scenario is constructed. The matrix size
is N*T, where T = {load, voltage., renewable energy output}, and the
grid topology represents the connection relationship between nodes,
which is represented by the adjacency matrix A. Therefore, the grid
operation scenario is represented by the adjacency matrix A and the
characteristic matrix H of the grid topology.

3.2 Knowledge embedding within agents
considering operational risk

As mentioned previously, the data collected from the power
system for generating operation scenarios includes various
parameters such as active and reactive power of each node, node
voltage, generator terminal voltage, and power output. However,
when these data are not separated, it becomes challenging to extract
the underlying physical constraints through data-driven methods
alone. Considering the operational risks involved, it becomes
necessary to incorporate human knowledge to uncover the
physical mechanisms behind power grid operation scenarios and
integrate them into the model to guide its learning process.

To address this, this paper introduces the concept of embedding
knowledge into the model, with the goal of leveraging human knowledge
to analyze and model the problem. This approach involves constructing
mathematical equations that accurately represent the real physical
situation. By incorporating a regularization term into the loss
function, the mathematical equations derived from human knowledge
are embedded into the neural network model, enabling guidance and
modification of the data-driven model.

In line with the widespread concern regarding the risk of
terminal voltage crossing the lower limit in power grid operation,
this paper considers the scenario where the voltage at key nodes in
the system approaches the critical lower limit as one of the critical
scenarios. The physical constraints of this scenario are represented
by Eqs 5–8, with the power flow constraints being expressed using
simplified linear power flow equations (Baran and Wu, 1989).

∑
i∈BI,j

Pij �∑
k∈BO,j

Pjk + Pj (5)
∑

i∈BI,j
Qij �∑

k∈BO,j
Qjk + Qj (6)

Ui − Uj � 2 rijPij + xijQij( ) (7)
Uj,min ≤Uj ≤Uj,max (8)

Where, BI,j,BO,j represent the node set that injects and flows
node j along the reference direction. Pij,Qij,Pj,Qj represent active and
reactive power of branch lij and node j. Rij and xij are the resistance
and reactance of the branch. The voltage of node j needs to meet its
upper and lower limit constraints (8). Ukey,min is the lower limit of
the voltage of the key node.

Simultaneously, the key section of the power system bears the
significant responsibility of power transmission during grid
operation. Thus, ensuring the reliability of electric energy
delivered through the key section is a crucial task for the
system’s safe operation. However, the availability of extreme
operation scenario where the power at the critical cross-section
approaches the maximum transmission limit is relatively limited.
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Therefore, determining the critical upper limit for power
transmission at the critical section of the power grid becomes a
vital aspect of generating extreme operation scenarios. The
corresponding constraints can be mathematically expressed
through Eqs 9–10.

Pij,min ≤Pij ≤Pij,max (9)
Qij,min ≤Qij ≤Qij,max (10)

Where, Pij,min,Pij,max,Qij,min,Qij,max represent the maximum and
minimum values of active power and reactive power that the tidal
current section can flow through respectively.

Furthermore, the primary focus of this paper is on critical
scenarios where the power flow in certain key branches, denoted
as Pkey, exceeds the upper limit threshold, posing a risk. To address
this concern, equation constraint (11) is introduced, where Pkey,max

represents the power flow upper limit of the key branches.
Consequently, in the KEG_GAN framework, it is essential to
ensure that the generated operation scenes comply with the
aforementioned constraints to the best extent possible. The loss
function of KEG_GAN can be formulated as follows:

Ltotal � Lmodel + Lconstraint,i, i � 1, 2 (11)
Where, Lmodel represents the loss function of Graph-GAN, and

Lconstraint,i represents the loss function of the regularization
knowledge embedding model with section constraint or voltage
constraint. Therefore, in KEG_GAN, according to the training
objectives of generator G and discriminator D, the sum of loss
functions of the KEG_GAN are shown in Eqs 12, 13, respectively.

LG � −Ez~ pz z( ) log 1 −D G z( )( )( )[ ] (12)
LD � −Ex~ pdata x( ) logD x( )[ ] + Ez~ pz z( ) log 1 −D G z( )( )( )[ ] (13)

Where, E represents the distribution expectation of samples,
pdata(x) represents the probability distribution of real sample x, and
pz(x) represents the probability distribution of generating sample z.
Based on the above equation, the objective function of the
adversarial network generated by Eq. 14 can be derived:

Lmodel � min
G

max
D

W D,G( )
� Ex~ pdata x( ) logD x( )[ ]
+Ez~ pz z( ) log 1 −D G z( )( )( )[ ] (14)

Key section constraints are written into the model by means of
loss function regularization, which can be expressed by Equation 15:

Lconstraint,1 � min
1
Nl

∑Nu

i�1
Pkey − Pkey, max

∣∣∣∣ ∣∣∣∣2⎛⎝ ⎞⎠
� min MSEPkey ,Pkey, max( )

(15)

Where, Nl represents the number of key cross sections; MSE
represents the mean square error loss function in the neural network
model; voltage constraint of key nodes is expressed in Eq. 16:

Lconstraint,2 � min
1
Nu

∑Nu

i�1
Ukey − Ukey, min

∣∣∣∣ ∣∣∣∣2⎛⎝ ⎞⎠
� min MSEUkey ,Ukey, min( )

(16)

Where, Nu represents the number of key nodes; MSE represents
the mean square error loss function in the neural network model.

Hence, the objective of the knowledge embeddingmodel is twofold:
not only to minimize the loss of the GAN but also to ensure that the
operation scenarios generated by the model adheres to the physical
constraints of key sections, guided by the incorporation of risk
knowledge. Its objective function can be written as:

Ltotal � min
G,L

max
D

W D,G, L( )
� Ex~ pdata x( ) logD x( )[ ]
+Ez~ pz z( ) log 1 −D G z( )( )( )[ ] + aLconstraint,i

(17)
Where a represents the hyperparameter.

4 Risk probability sampling

In the presence of a significant number of risk scenarios in the
environment, the interaction between the DRL agent and the
environment results in the accumulation of a substantial amount
of experience in the buffer. Effectively utilizing this experience to
update the intelligence becomes the second challenge addressed in
this paper, as depicted in Figure 4.

To tackle this challenge, we enhance the Soft Actor-Critic (SAC)
algorithm in DRL (Haarnoja Zhou et al., 2018; Christodoulou,

FIGURE 3
The graph representation of the power system operation scene.
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2019). Specifically, when risk scenarios are sampled, they are marked
in the buffer. During the sampling process, weights are assigned to
these risky scenarios, influencing the update process of the strategy
network and value network. By assigning appropriate weights, the
agent can be updated more effectively, leveraging the experience
gained from risky scenarios.

These improvements aim to optimize the utilization of
experience stored in the buffer, allowing the DRL agent to learn
from and adapt to risk scenarios, ultimately enhancing its
performance in handling risk scenarios in power systems.

The traditional SAC algorithm relies on an averaging approach
during the updating process, which can overlook risk scenarios
stored in the buffer. This limitation hinders the agent’s ability to
effectively adapt to reward changes in these scenarios. To address
this issue, we propose an enhancement in this paper by introducing
labels to identify the risk scenarios encountered by the agent. These
labels are used to assign significant weights during the network
parameter update of the SAC algorithm. The specific weights are
determined to meet the following constraints:

n0 + n1 � Sbatch
n0W0 + n1W1 � 1

(18)

Where Sbatch represents the size of the batch, n0 represents the
number of normal scenarios in the batch, n1 represents the number
of risk scenarios in the batch, andW0 andW1 represent the weights
of normal and risk scenarios, respectively.

5 Case study

5.1 The construction of environment

The study in this paper enhances the existing IEEE30-node
system by incorporating two wind power stations and two
photovoltaic power stations. The power upper limit of the critical
branch is set at 100 MW. The specific topology is illustrated in
Figure 5.

In this paper, the environment comprising
4,800 operation scenarios spanning a duration of 200 days
is generated using Monte Carlo simulation (Rubinstein and
Kroese, 2016).

Each time-step agent achieved a maximum reward of 2, which
consisted of two components: 1 reward for ensuring grid operational
safety and 1 reward for optimizing grid economics. The specific
reward value is set as shown in the following equations:

r1 �
1 pline <pline,max

1 − 10
pline

pline,max
pline,max ≤pline ≤ 1.1pline,max

−2 pline > 1.1pline,max

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(19)

r2 �
∑Nnew

j�1 Pj

∑Nnew
j�1 Pj

− ∑NGen
i�1 aP2

i + bPi + c( )
∑NGen

i�1 aP2
i, max + bPi,max + c( ) (20)

R � w1r1 + w2r2 (21)
Where pline represents the transmission power of the key line

and pline,max represents the max transmission power of the key line.
NGen and Nnew represent the number of thermal and RES units.

The first component, grid operational safety, accounted for
1 reward point. This reward was earned by making decisions that
maintained the safety and stability of the grid. If a −2 reward is
earned, it will trigger an automatic termination of your policy within
the grid, rendering it impossible to earn any subsequent reward.

The second component, grid economics, also contributed
1 reward point. This reward was obtained by making decisions
that effectively managed and optimized the economic aspects of the
grid such as promoting the rate of RES consumption.

5.2 The details of experiments

The proposed approach in this paper is subjected to three
experiments to evaluate its effectiveness. Here are the details of
each experiment.

1) Performance of different GAN models:

This experiment aims to assess the capabilities of KEG_GAN in
generating critical scenarios while maintaining the invariance of the
data distribution.

2) Different training data on the performance of KEG_GAN:

FIGURE 4
The framework of risk probability sampling.
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In this experiment, the impact of different training data on the
performance of KEG_GAN is investigated. Datasets with different
critical scenarios proportions may be used as training data, and the
performance of KEG_GAN is measured and compared across these
different datasets. This experiment helps determine the robustness
and adaptability of KEG_GAN to different training data sources.

3) The influence of different scenarios on DRL:

The last experiment aims to assess and compare the
performance of conventional DRL methods with our proposed
improved DRL. By conducting a comparative analysis, valuable
insights can be gained regarding the applicability and
effectiveness of KEG_GAN in enhancing the performance of DRL.

5.3 Case analysis

5.3.1 The model structure of KEG_GAN
In this case, the KEG_GAN model extends the traditional GAN

architecture by incorporating two additional layers of graph convolution.
The generator component of the model takes a randomly sampled vector
from a 200-dimensional standard normal distribution as input. It then
passes through two layers of graph convolution to extract node

information. Finally, a 30 × 3 matrix is outputted through a multilayer
perceptron. The discriminator component of the model takes the 30 ×
3matrix as input and processes it through two layers of graph convolution
and amultilayer perceptron. The final output is a scalar value representing
the discriminant result. The ReLU function is employed as the activation
function between the neural networks of each layer. The KEG_GAN
model employs the generative adversarial loss as the loss function for the
discriminator andLtotal for the generator. It utilizes theAdamoptimization
algorithm to perform gradient descent and update the model parameters.
Table 1 provides an overview of the model parameters.

5.3.2 Experiment 1
To assess the performance of KEG_GAN and analyze the

disparity in data distribution between the generated samples and
the training samples, this paper employs the KL divergence as a
metric. The calculation formula of KL divergence is shown in
Formula (22):

DKL H‖K( ) � ∑M

i�1 h xi( )log h xi( ) − h xi( )log k xi( )[ ] (22)

Where H is the data distribution of the guided samples, and K is
the data distribution of the guiding samples. In this paper, H
represents the operation scene distribution generated by the
generator, and K represents the operation scene training set

FIGURE 5
IEEE30 node system environment.
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distribution. Where the smaller KL divergence proves that
the samples generated by the model are closer to the real samples.

In contrast, KEG_GAN is designed to address this issue by
learning and capturing more diverse data distributions. This enables
the model to generate samples that better conform to the
distribution of the training data, even in scenarios characterized
by higher levels of randomness and uncertainty. By leveraging the
capabilities of KEG_GAN, the generated samples exhibit greater
variability and better match the diversity present in the training data
distribution. This allows for more accurate representation and
generation of operation scenarios, particularly in scenarios with
increased complexity and uncertainty introduced by the integration
of RES.

As shown on Table 2, the results of our study demonstrate the
enhanced sample generation capability of KEG_GAN. The incorporation
of GCN enhances the information extraction capability of the model,
minimizing the distance between the generated operation scenarios and

real operation scenarios. Furthermore, knowledge embedding in KE-
GAN leads to an increase in the KL divergence of the model. This
knowledge embedding step changes the distribution of the generated data.

In the distributed network system with RES, the operation
scenarios exhibit greater diversity, leading to a more varied data
distribution. GAN’s performance is significantly reduced in such
scenarios, with the KL divergence of active power sharply increasing.
This divergence indicates a significant deviation from the real data
distribution, making it challenging for the generated samples to
meet the requirements of intelligent algorithms.

However, the proposed KEG_GAN method in this paper
addresses these challenges by representing the grid operation
scenarios graphically and embedding the neural network model
within the physical mechanisms. By maintaining the same data
distribution, KEG_GAN achieves the generation of high-quality grid
operation scenario samples.

In large-scale power grid operation scenarios, it is common to
encounter a significant imbalance in sample distribution, where
there are more samples representing normal operation conditions
and fewer samples representing risky operation scenarios. In this
paper, we address this issue by incorporating knowledge embedding
into the neural network model, allowing the generated scenarios to
consider the inherent risks in power grid operations. To assess the
effectiveness of knowledge embedding in generating extreme
operation scenarios, we focus on the power distribution of key
branches as an example. To analyze the generated samples, we
perform power flow calculations and examine the power
distribution of these key branches. Figure 6 illustrates the power
distribution of the key branches.

In particular, we set the maximum allowable transmitting
power of the key branch to 100 MW. Any scenario in which the
difference between the transmission power of the key branch and
the maximum allowable transmission power exceeds 25 MW is

TABLE 1 The model structure of KEG_GAN.

Model Network structure Input dimension Output dimension

Generator

GCN 30*3 and 30*30 30*16

GCN 30*16 30*8

MLP 30*8 30*3

Discriminator

GCN 30*3 and 30*30 30*16

GCN 30*16 30*8

MLP 30*8 1

TABLE 2 KL divergence of different models.

Network DKL(P) DKL(Q) DKL(V)

GAN 0.2592 0.1542 0.0026

KE-GAN 0.2788 0.1513 0.0076

G-GAN 0.2087 0.1526 0.0031

KEG_GAN 0.2252 0.1596 0.0028

FIGURE 6
Key branch power distribution of test model.

TABLE 3 The proportion of critical scenarios.

Network Proportion (%)

Train data 1.37

GAN 1.54

KE-GAN 3.10

G-GAN 1.38

KEG_GAN 5.15
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considered an extreme operation scenario. By evaluating the
power distribution of key branches, we can gauge the
capability of knowledge embedding in generating extreme
operation scenarios. This analysis provides insights into the
effectiveness of our approach in capturing and representing
the risks associated with power grid operations.

As depicted in Figure 6, the width of the violin plot illustrates the
proportion of different data. Notably, the key branch power
generated by G-GAN closely aligns with the distribution of the
training data. While G-GAN minimizes KL divergence, it does not
yield an improvement in the performance of critical scenarios. On
the other hand, KE-GAN enhances the proportion of critical
scenarios in the operation scenarios. Although KE-GAN
improves the performance of critical scenarios, it leads to a
reduction in the performance of data distribution.

As shown on Table 3, the results indicate that KEG_GAN achieves
the greatest improvement in the performance of critical scenarios while
minimizing the decline in the performance of data distribution. By
combining the strengths of G-GAN and KE-GAN, KEG_GAN
effectively increases the proportion of extreme operation scenarios in
the generated scenarios while preserving the same data distribution.
This addresses the challenge of extremely sparse samples in extreme
operation scenarios. KEG_GAN achieves this by incorporating basic
physical constraints such as power flow and section constraints, which
regulate the generated samples according to the power flow section
constraint, bringing them closer to the extreme operation scenarios.
Consequently, KEG_GAN offers a solution for the highly imbalanced
distribution of extensive power grid operation scenarios.

5.3.3 Experiment 2
In this paper, we want to explore the effect of different training

samples on the model performance so that the extreme scenario
percentages of 0, 5, 10 and 20 are set to verify the extreme scenario
sample generation capability of the proposed method. The proportion
of critical scenarios in the generated sample is shown in Figure 7.

As the proportion of critical scenarios in the operation scenarios
increases, the proportion of critical scenarios in the scenarios
generated by GAN and KEG_GAN also increases. However, the
performance improvement of GAN in generating critical scenarios
is not significant. Additionally, the proportion of critical scenarios
generated by GAN is consistently lower than the proportion of
critical scenarios in the training scenarios.

On the other hand, when the proportion of critical scenarios in
the training scenarios varies, KEG_GAN demonstrates an
improvement in generating critical scenarios compared to the
training scenarios. By leveraging knowledge embedding to
incorporate features of critical scenarios, KEG_GAN directs the
agent’s focus towards critical scenarios, thereby increasing their
proportion in the generated scenarios. In contrast, GAN tends to
prioritize the data distribution in the operation scenarios and tends
to neglect the extreme operation scenarios, resulting in a decreasing
proportion of extreme operation scenarios in the generated
scenarios. Consequently, relying solely on increasing the
proportion of critical scenarios for GAN to generate critical
scenarios often proves ineffective.

Furthermore, when there are no critical scenarios present in the
training samples, KEG_GAN exhibits the capability to generate
approximately 5% of critical scenarios. This demonstrates that
our method possesses few-shot (Sung et al., 2018) or zero-shot
(Xian et al., 2018) capabilities, while GAN struggles to generate
unseen samples.

5.3.4 Experiment 3
The training data comprised different sets of samples. Following

the completion of training, the agents were tested over a period of
10 consecutive days, with decision-making intervals of 15 min for
both training and testing phases. The training result is presented in
Figure 8.

During the training process, we observed that the reward of the
agent trained solely on real data was not significantly different from
the agent trained using data generated by GAN. However, SAC
trained with real data contained a small number of infrequent

FIGURE 7
The proportion of critical scenarios generated by GAN and
KEG_GAN.

FIGURE 8
The training reward for different agents.
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critical scenarios, which were sampled less frequently. As a result,
the overall training process exhibited minimal fluctuations. On the
other hand, SAC-GAN tended to overlook such critical scenarios,
leading to smoother loss curves for the agent. Unfortunately, this
smoothness also made it difficult for the agent to adequately account
for these critical scenarios.

By incorporating KEG_GAN enhanced data into the training
process, we enable the SAC-KEG_GAN to explore a broader range
of risk scenarios. As a result, the training reward exhibits oscillations
when compared to the traditional SAC algorithm.

This oscillation is challenging to achieve when relying solely on
raw data. Consequently, SAC focuses on minimizing the training
cost, thereby attaining a stable reward.

To evaluate the performance of various agents, we carried
out a comprehensive 10-day testing phase. During this period,
the agents actively responded to the changing environmental
conditions by making decisions every 15 min. In a single day,
there were a total of 96 time sections in which decisions were
made. One crucial aspect we assessed was the impact of key
branch crossings on grid safety. If an agent’s decision resulted in
crossing the safety limit of the grid, it rendered the grid unsafe,
and the agent was unable to continue participating in the
decision-making process. The test results, presented in
Figure 9 and Table 4, provide a clear visualization of the
agents’ performance throughout the testing phase.

It becomes evident that as the number of training iterations
increases, both SAC and SAC-GAN fail to ensure the safe and stable
operation of the grid. The test consistently gets interrupted on
certain days due to the key branch surpassing its limit.
Consequently, the smart body is unable to receive subsequent
rewards. However, SAC-KEG_GAN incorporates a
comprehensive consideration of the risk associated with grid
operations. It evaluates both the risk and the economic aspects of
the grid, enabling it to provide a more robust strategy. After a certain
number of training iterations, the decisions made by SAC-KEG_
GAN lead to a grid that can operate safely and steadily for a duration
of 10 days. In the analysis, the best strategies from the

aforementioned testing process were selected and their results are
presented in Table 4. The best successful operation rate of SAC is 0.7,
SAC-GAN achieves a successful operation rate of 0.5, while SAC-
KEG_GAN demonstrates a successful operation rate of 1.

Upon closer examination, it is discovered that SAC fails to
obtain subsequent rewards on days 2, 6, and 7 due to the given
decision’s critical section crossing its limit. On the contrary, the
performance of SAC-GAN is marginally inferior to that of SAC.
This can be attributed to SAC-GAN’s tendency to overlook
samples from high-risk scenarios during the process of data
augmentation. As a consequence, the generated scenarios
might lack the critical instances that contribute to the overall
performance of the policy learned by the intelligent agent.
Although the cumulative reward of the strategy provided by
SAC-KEG_GAN may be lower than that of SAC on certain
days, it effectively evaluates the risk and economic aspects of
grid operation by learning from experiences gained in risky
scenarios. As a result, it generates decisions that enable the
grid to operate safely and improve the economics of grid
operation while ensuring grid safety.

6 Conclusion

In the context of high-dimensional uncertainty, this paper
addresses the limited adaptability of policies in critical risk
scenarios. By adopting a multi-objective modeling approach
that incorporates both security and economy, the original
problem is formulated as a multi-stage risk-averse stochastic
sequential decision-making problem with dynamic risk
metrics. To tackle this challenge, Risk-averse stochastic
dynamic dispatch of power systems based on deep
reinforcement learning with risk-oriented Graph-Gan
sampling is proposed. This policy aims to overcome the
shortcomings of existing methods in risk sample generation
and scenarios identification, enabling the rapid solution of
optimal risk-averse intraday dispatch policy. Simulation
results demonstrate that proposed approach outperforms other
commonly used online dispatch policies, which not only
improves the economic efficiency of power system operations

FIGURE 9
The successful operation rate for different agents.

TABLE 4 The Reward of different agents.

Day SAC SAC-GAN SAC-KEG_GAN

1 189.5729 180.5112 175.8437

2 158.3673 179.2283 179.1771

3 187.39 178.6056 177.0162

4 187.6509 179.9945 176.9828

5 188.0185 130.5518 171.3925

6 128.6596 118.0459 172.5115

7 164.0986 32.2041 171.3697

8 184.9219 159.9455 174.9195

9 187.6598 50.10933 174.6427

10 188.1027 188.3726 153.0167
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but also reduces the potential high costs associated with critical
scenarios. This algorithm incorporates risk-averse preferences to
avoid unnecessary load shedding, particularly in scenarios involving
RESs abandonment. Hence, it is crucial to carefully consider the risk
aversion preferences of the algorithm in the specific application.
Furthermore, the proposed algorithm achieves high computing
efficiency in real-time scheduling through offline learning and does
not rely on predictive information for real-time scheduling. Its
promising application prospects and scalability extend to addressing
other complex online stochastic optimization scheduling problems in
future smart grids.
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Research on the identification of
high-resistance ground faults in
the flexible DC distribution
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VMD–inception–CNN
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With the rapid development of flexible DC distribution networks, fault detection
and identification have also attracted people’s attention. High-resistance
grounding fault poses a great challenge to the distribution network. The fault
current is very small and random, which makes its detection and identification
difficult. The traditional overcurrent protection device cannot identify and act on
the fault current. Therefore, this paper proposes a fault detection method based
on variational mode decomposition (VMD) combined with the convolutional
neural network (CNN) of the inception module. This method first uses VMD to
decompose the positive transient voltage. Second, it inputs the decomposed
signal into CNN for training to obtain the optimal parameters of the model. Finally,
the model performance is tested based on the PSCAD/EMTDC simulation
platform. Experiments show that the detection method is accurate and
effective. It can realize the accurate identification of seven different fault types.

KEYWORDS

flexible DC distribution network, variational modal decomposition, fault detection,
inception module, convolutional neural network

1 Introduction

The AC distribution network faces problems such as tight power supply corridor and
poor power quality. In recent years, medium-low voltage flexible DC distribution networks
are widely used in power systems, which have the advantages of small line loss, large
transmission capacity, and flexible operation mode. However, like the AC distribution
network, high-resistance grounding faults are prone to occur due to the complex operating
environment. The characteristics of faults are weak, thus making their detection impossible
using common fault detection techniques (Silva et al., 2018). If they run for a long time, they
will damage the wire insulation and pose a great threat to personal safety (Taheri and Razavi,
2018). On the other hand, the other faults and normal disturbances in the distribution
network can also cause changes in voltage and current, causing difficulties in detection and
identification. Therefore, how to accurately identify the faults is the focus of DC distribution
network operation.
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1.1 Previous and related work

At present, ground fault detection often uses signal processing
methods. The collected signal usually includes voltage, current,
magnetic field strength, and impedance. The commonly used
signal decomposition methods are Fourier transform (FFT),
empirical mode decomposition (EMD), and wavelet transform
(WT). The Fourier transform can transform a continuous signal
with a non-periodic time domain into a continuous signal with a
non-periodic frequency domain. However, this method can only
extract the information of the signal in the frequency component
and is only applicable to non-stationary signals (Liu, 2022). EMD is
a time-frequency processing method, which can reflect the local
characteristics of non-stationary signals; however, the phenomenon
of modal confusion occurs (Robertas et al., 2017). Adaptive noise-
complete ensemble empirical mode decomposition mitigates the
phenomenon of modal aliasing by adding Gaussian white noise to
the signal to be processed; however, it does not make the
phenomenon disappear completely and the added noise causes
some interference (Xu et al., 2021). WT has advantages of
processing non-stationary signals but requires artificial selection
of the mother wavelet (Sarwagya and Ranjan, 2020). Gautam and
Brahma (2013) used mathematical morphology-based methods that
rely on irregularities in the current waveforms as HIF inception
features. Satpathi et al. (2018) used short-time Fourier transform to
quantitatively study high-frequency components under transient
conditions and were able to distinguish between short-circuit faults
and transient cases of sudden load changes. Song et al. (2022) used
Minkowski distance measurement to measure the correlation of
wave impedance and construct a fault detection scheme. Yao et al.
(2019) proposed a feature extraction algorithm to extract scales with
the essential fault features and determined the coefficient of the
selected scale signal. Routray et al. (2015) presented a novel
S-transform-based approach to detect the high-impedance fault
in the distribution line. Xiang et al. (2019) extracted the high-
frequency components in transient voltages by wavelet transform
and proposed a fault identification method based on the difference
of square of transient voltages to identify the fault lines for DC grids
using overhead lines. Song et al. (2021) used the Hilbert–Huang
transform to extract the transient frequency and transient amplitude
of the DC voltage. The aforementioned signal extraction methods
face some problems, such as the need to construct criteria manually
and the lack of effective distinction between other types of faults and
normal interference. Reliability needs to be further improved.

With the sudden rise in the scale of power grid data and the
significant increase in computing power, the artificial neural
network intelligent algorithm shows great superiority. With
the enhancement of network depth, data dimension reduction
and processing capability are further improved. It can extract
useful information for fault identification accurately and
effectively under the influence of complex external and
internal environments. Chopdar and Koshti (2022) extracted
fault feature signals using wavelet transform and trained these
signals using the artificial neural network (ANN) to complete the
detection and classification; however, the accuracy of this
detection method for the normal state is only 90.8%, which
still needs further improvement. Zheng et al. (2021) used the
mean, standard deviation, information entropy, and kurtosis

values of the current to detect different fault locations and
used DBNs for training; however, whether the detection
method is resistant to noise interference has not been verified
yet. Fault detection and identification using the 1D CNN is
presented by Kiranyaz et al. (2019) on a four-cell, eight-switch
MMC topology (Bagheri et al., 2018). A four-cell is an application
of deep CNN for voltage dip classification in general, with results
showing the average classification rate as 97% and the false alarm
rate as 0.0526. Naidu (2022) described the novel technical results
in detecting and identifying all types of AC and DC faults in the
HVDC station by using a fully convolutional neural network
(FCNN) deep learning algorithm. Most of these models have the
problem of too many parameters and too much computation.
With the increase in network depth and width, overfitting is easy
to occur.

The disadvantages of existing methods are as follows:
The current fault detection methods rely on fixed basis functions

to capture various fault signals, which can lead to limitations in the
adaptability of the feature extraction process. This limitation can
hinder subsequent fault analysis and identification. Existing
methods, such as WT, S-transform, multiscale morphology
(MM), and Prony, rely heavily on the selection of basic
functions, which can significantly impact the quality of the
extracted features. Although the traditional Hilbert–Huang
transform (HHT) algorithm is self-adaptive, its intrinsic mode
function (IMF) components are vulnerable to modal aliasing.
This issue can introduce unwanted frequency components in
IMF components, which can further complicate the fault
diagnosis process.

1.2 Contributions

The contributions of this paper can be summarized as follows:

1) Feature extraction aspect: Aiming at the problems existing in
feature extraction of fixed basis functions, we proposed the
algorithm: VMD. VMD is used to extract time–frequency
features of fault voltage. This method has anti-interference
capability and can accurately describe fault features of the
original signal in the case of noise.

2) Detection criterion aspect: CNN is used to identify the modal
components after VMD. It can distinguish small impedance fault
(SIF), middle impedance fault (MIF), high-impedance fault
(HIF), pole-to-pole fault (PPF), load switch (LS), AC-side
symmetrical fault (symmetrical fault, SF), and AC-side
asymmetrical fault (ASF). The validity of this proposed
criterion is tested by the flexible DC distribution network.

2 Theoretical analysis

2.1 Variational modal decomposition

VMD is a time–frequency analysis algorithm, which can
decompose the original signal into a series of IMFs by
redefining a signal that can adjust the amplitude and
frequency. It can construct and solve the variational problem
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and extract the useful components in the frequency domain. The
mode overlap and endpoint effect can be overcome. The
algorithm has certain anti-interference capability, which can
decompose the fault signal comprehensively. It can also obtain
the hidden feature information of the signal and obtain the
optimal solution to the variational problem (Sharma et al., 2022).

The VMD algorithm has two constraints: 1) the sum of the
modes is equal to the input signal f. The central frequency and
bandwidth of each decomposition component are obtained by
iteratively searching for the optimal solution of the model under
this constraint. 2) By constructing and solving the variational
problem, the sum of the estimated bandwidths of the center
frequencies uk (t) is minimized. The calculation steps are as follows:

(1)For the eigenmode components obtained after the
decomposition, the resolved signal of uk (t) is calculated by the
Hilbert transform.

δ t( ) + j

πt
[ ]*uk t( ). (1)

(2)By estimating the center frequency ωk of each analytic signal,
the unilateral spectrum obtained using Eq. 1 is multiplied by an
exponential signal. The frequency spectrum of each analytic signal is
converted into the base frequency band.

δ t( ) + j

πt
( )*uk t( )[ ]e−jωkt. (2)

(3)The signal is demodulated by Gaussian smoothing to prevent
overfitting. The bandwidth of each mode function is estimated, and
the final constraint variational problem can be expressed as follows:

min
uk{ }, ωk{ }

∑
k
∂t[δ t( ) + j

πt]*uk t( )]e−jωkt

�������
�������
2

2

{ },
s.t∑

k

uk � f,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(3)

where uk{ } � u1, ..., uk{ } denotes the decomposed kmodal functions.
ωk{ } � ω1, ...,ωk{ } denotes the center frequency corresponding to
each IMF component. f denotes the signal before decomposition.

(4)The solution to this constrained variational problem requires
the introduction of a quadratic penalty term α and the Lagrange
multiplicative operator λ(t). Constrained issues are transformed
into unconstrained issues. The specific expression is as follows:

L uk{ }, ωk{ }, λ( ) � α∑
k
∂t[δ t( ) + j

πt]*uk t( )]e−jωkt

�������
�������
2

2

+ f t( ) − ∑
k
uk t( )

��������
��������
2

2

+ 〈λ t( ), f t( ) −∑
k

uk t( )〉.

(4)

2.2 Convolutional neural network

CNN is a type of supervised machine learning, which has been
widely used in image recognition, object detection, and fault
recognition. The main learning process is divided into the
forward propagation (FP) process and backward propagation
(BP) process. FP mainly includes the convolution layer, pooling
layer, and dense layer. The basic model structure is shown in
Figure 1. This process can realize the extraction and pre-
classification of the pre-processed signal. BP can compare the
pre-classification results with the expected results and
automatically adjust the parameters of the model to achieve
accurate classification of fault categories.

2.2.1 Forward propagation process
The convolutional neural network processes the output of the

previous layer as the input of the next layer and constructs multiple
filters capable of extracting input features. It can achieve the
extraction of multi-sensitive features of hidden data. The essence
is a mapping relationship between the input and output. The
mathematical model is expressed as follows:

xl
j � f ∑

i∈Mj

xl−1
i *ωl

ij + blj⎛⎝ ⎞⎠, (5)

where xl
j is the output of the jth neuron of the layer l; x

l−1
i is the input

of the ith neuron of the layer l − 1; Mj is the input feature map; l is
the network of the layer l; ω is the weight matrix; blj is the bias of the
jth neuron network of the layer l; and f is the activation function. In
this paper, a non-linear function—ReLU—is used as the activation
function. The expression is given as follows:

f x( ) � max 0, x( ). (6)

FIGURE 1
Basic model structure of CNN.
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If the input is greater than 0, return the input value directly. If
the output is less than or equal to 0, return 0. In contrast to the
activation function tanh and sigmoid, ReLU can speed up the
training of the model. It can reduce the difficulty in the
calculation and has strong robustness. The gradient
disappearance problem is solved to some extent.

The pool sampling layer extracts the local features. It can detect
the same features under different locations with better spatial and
structural invariance. There are two common sampling methods:
maximum pooling and average pooling. This paper adopts the
maximum pooling method. The mathematical model of the pool
sampling layer is as follows:

xl
j � f βljdown xl−1

j( ) + blj( ), (7)

where down() is the pool sampling function; β is the network bias.
The features owned by the sampling and convolutional layers
remain the same in number but decrease in size by a factor of n
after pool sampling.

After several convolution and pooling oparations, a fully
connected layer is used to connect the neuron weights. Softmax
is used as the activation function to place the probability of each
output in [0,1]. Different features are classified.

2.2.2 Backward propagation process
For classification problems, it is important to minimize the loss

function of the model and improve the accuracy of the model as
much as possible. The selection of the loss function is very
important. The common loss functions are the root mean square
error function, mean absolute error function, and cross-entropy cost
function. In this paper, the cross-entropy function is selected as the
loss function with the following expression:

E � −1
n
∑n
k�1

yk ln tk[ + 1 − yk( ) ln 1 − tk( )⎤⎦, (8)

where n is the total number of samples of the input data; t is the
predicted value; and y is the actual value. In the backward
propagation process, the gradient descent method is commonly
used to continuously update the iterative process. The first derivative

of Eq. 8 is obtained so that the network parameters can be adjusted
specifically as follows:

ω′ � ω − η
∂E
∂ω

, b′ � b − η
∂E
∂b

, (9)

where ω′ is the updated weight; b′ is the updated bias; ω is the weight
before update; b is the bias before update; and η is the learning rate
parameter to control the step size of the weight update.

2.2.3 Inception module
The increase in network depth or width leads to two problems in

the convolutional network: 1) network parameters will increase with
the increase in the number of network layers, which inevitably leads
to the overfitting problem; 2) with the increase in training
parameters, the training speed of the model will decrease, which
makes the application of the convolution model challenging in
practical engineering.

The inception module is introduced into the convolutional
network. The core idea of this module is to combine different
convolutional layers by parallel connection, as shown in Figure 2.
Inception V1 extensively uses the convolution kernel of 5 × 5 and
3 × 3 and introduces the convolution kernels of 1 × 1. It can increase
the depth and width of the network, reduce the data dimension,
transform the fully connected structure into sparse connections,
effectively reduce the number of parameters, and significantly
improve the accuracy of the model.

2.2.4 Fault identification process
The flow of CNN-based distribution network fault identification

is shown in Figure 3.
The steps for fault identification are as follows:

(1) Distribution network simulation data acquisition

Training of CNN models requires a large number of fault
samples. In real life, two ways are commonly used to obtain the
required data: 1) obtaining the recorded wave data of the actual
distribution network according to its operation. 2) Simulating the
structure of the actual distribution network and building the

FIGURE 2
Diagram of the inception model.
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simulation model. Since distribution network faults do not occur
often and the flexible DC distribution network is still in the
demonstration stage, the actual engineering recorded wave data
are relatively small. The first way is more difficult to obtain data to
meet the required sample size. It is also more difficult to provide
comprehensive coverage of various faults due to the different
probabilities of occurrence of different faults. The second way
can simulate the corresponding operating conditions as needed,
which is a strong complement to the first way. The relevant literature
proves its reliability and accuracy (de Toledo Silva et al., 2020;
Krishna, 2022). The simulation test enables comprehensive multiple
simulations for different faults and solves the problem of sample
imbalance. PSCAD is a widely used electromagnetic transient
simulation software application and has been used in a large
number of simulation studies for running simulations in many
types of power systems. Therefore, this paper takes the approach
of obtaining the required fault waveforms by performing PSCAD
simulations on the scenarios.

(2) Sample set classification

CNN training requires a large amount of data. The training
samples are generally divided into the training set and test set by
means of stratified sampling. All the input data are classified
according to the unified division standard. The ratio of the
training set to test set is generally 1:4–1:2, and the ratio used in
this paper is 3:7.

(3) Time window selection

The power electronic device has limited ability to withstand
inrush current. The system converter blocking time is generally
2~5 ms. The fault time in this paper is set to 1 ms before and after the

fault point, and the size of the time window is 2 ms. The fault is set to
occur at 2 s, and the system sampling frequency is 20 kHz.

(4) Pre-processing of the sample set

To speed up the model solution and enable the model to
converge, the eigenmodal components decomposed by VMD
need to be normalized. In this paper, we use min–max
normalization to map the input data into [0,1].

xnorm � x −Min

Max −Min
. (10)

Define different fault labels for seven different fault types. Set
different fault labels [l1, l2, l3, l4, l5, l6, l7] for the output of this
network. The specific label classification is shown in
Supplementary Exhibit S1.

(5)Building and training of the CNN model

Before training the model, the weights and biases of the
convolutional kernel need to be set, with the initial value set to 0.
Using the feedback from the training set results, parameters such as
the number of layers, training times, and learning rate of the
network are adjusted. The 1D convolutional neural network
structure in this paper includes one input layer, five
convolutional layers, seven pooling layers, two inception layers,
two dense layers, and one output layer. The step size of
convolution is set to 2, the number of training times is 300, the
size of the convolutional kernel is 4, and the learning rate is 0.02.
Dropout is set to 0.2. The basic idea is to let each layer of neurons
randomly discard part of the training, so that these discarded parts
are not activated. The next network is used as the target of this
update. With each iteration, the sub-networks are updated

FIGURE 3
CNN fault identification process.
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continuously. The probability of repeated training is greatly reduced,
making the model more robust.

The optimizer can calculate the gradient of the loss function in
each iteration and update the parameters so that the loss function is
minimized. In this paper, the adaptive moment estimation (Adam)
optimization function is used, which is suitable for non-smooth
objectives and has an intuitive interpretation.

(6)Construction of the confusion matrix and evaluation index

The confusion matrix is a visualization tool in deep networks to
compare the predicted data with the real results. The matrix can
visually characterize the accuracy of the model. Each column of this
matrix characterizes the predicted category of different faults. Each
row characterizes the actual fault category represented by the data, as
shown in Figure 4.

In this structure, true positive (TP) indicates that the actual value
is positive and the predicted value is also positive, and true negative
(TN) indicates that the actual value is negative and the predicted
value is also negative. In these cases, the identification is correct.
Wrong Positive (WP) indicates that the actual value is negative, but
the model prediction is considered positive. False negative (FN)
indicates that the actual value is positive, but the model
identification is considered negative. In these cases, the
identification is incorrect.

The total number of samples of the model = TP + FP + TN + FN,
and the correctness (accuracy), precision (precision), recall (Recall),
and F1 score of the CNN model recognition results are expressed as
follows:

Accuracy � TP + TN

TP + TN + FP + FN
,Precision � TP

TP + FP
,

Recall � TP

TP + FN
, F1Score � 2PR

P + R
,

(11)

where p denotes precision and R denotes recall.
Accuracy can represent the proportion of the predicted

value of all the correct results in the classification model.
Precision represents the proportion of correct values in the
results where the model prediction is positive. Recall represents
the proportion of correct values that the actual value is positive.
The F1 score metric combines precision and recall outputs and
ranges from 0 to 1. The F1 score index comprehensively
considers the result of accuracy and recall rate output,
ranging from 0 to 1. The closer the F1 score index is to 1,
the better the model output.

3 Model building

The PSCAD/EMTDC simulation platform is used to build
the ±10 kV DC distribution network structure (Figure 5). The
AC-side voltage is 10 kV. The AC-side transformer adopts the Δ/
Yn type via large resistance grounding. The system frequency is
50 Hz. The bridge arm reactance is 10 mH. The sub-module
capacitance is 4500 uF. The number of sub-modules is 50. The
cable is connected to the AC grid through a multilevel
converter (MMC).

The system is a small-current grounding system. When a
single-pole ground fault occurs in a DC line, the fault current
has no ground circuit. The DC line current is still rated. The
system zero potential shift occurs. The grounding pole line
voltage drops to 0. Non-grounding pole line voltage rises to
twice the original voltage. Inter-pole voltage remains
unchanged. The system can still run for 2 hours after a
single-pole ground fault.

Compared to the single-pole ground fault, the inter-pole
short-circuit fault in the DC distribution network is more
serious. This fault will cause the current to rise sharply, and
the positive and negative voltage of the ground pole will drop to
0 rapidly. The inter-pole voltage will also drop to 0. After the
converter is locked, if the fault cannot be removed in time, the
system will remain in this state. It will cause damage to
distribution network equipment and pose a threat to personal
safety (Zheng et al., 2019).

The zero-sequence voltage component in the asymmetric
fault of the AC side will cause the power frequency common
mode fluctuation of the positive and negative voltage of the DC
side (Baoguo et al., 2021). The transient characteristics are
similar to those of the DC high-resistance ground fault.

The fault line selection method based on the transient
component can overcome the shortcomings of low
sensitivity and poor reliability in the case of an intermittent
ground fault. Due to the weak transient fault characteristics,
the existence of unstable fault arc, internal and external
random factors, and modern signal processing technology is
widely used. Signal processing technology can be used to
improve the identification and extraction ability of weak
features.

Since the process of positive and negative voltage change is
similar, only the positive voltage of the grounding pole is used as the
characteristic pre-processing quantity in this paper.

FIGURE 4
Diagram of the confusion matrix structure.
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4 Result analysis

Build the system simulation as shown in Figure 1, and obtain
200 groups of data for each fault type. For a single-pole ground fault,
set the fault type to SIF, MIF, and HIF. The resistance value of SIF is
set between 0 and 100 Ω. The resistance value of MIF is set between
100 Ω and 1000 Ω (Wang et al., 2014). When the HIF fault occurs,
the fault point will appear as arc extinguishing and re-ignition. The
arc current fluctuates at high frequency, and the grounding line pole
voltage also oscillates at high frequency. It cannot be simulated by
simply increasing the resistance of the grounding resistor to simulate
the fault situation. The Emanuel model is widely used to accurately
describe the characteristics of the HIF arc (Gautam and Brahma,
2013). This paper uses the Emanuel arc model to simulate the HIF.
The specific model structure is shown in Figure 6.

The model consists of two DC voltage sources Vm and Vn, two
diodes Dm and Dn, and two variable resistors Rm and Rn. The model
can simulate the characteristics of the arc under HIF. The zero rest
time of the arc voltage can be adjusted by changing the value of the
DC voltage. The diodes are used to reflect the different cycles of the
waveform on and off. Variable resistors are used to simulate the
asymmetry of the current under the fault. In this paper, the

parameters are set as follows: Vm varies randomly between
0.5 and 0.8 kV, Vn varies randomly between 0.9 and 1.1 kV, Rm

and Rn vary randomly between 450Ω and 1000Ω, and R is obtained
between 800 and 3000 Ω.

For the inter-pole fault, the transition resistance is set to vary
from 0 to 5Ω. Considering that there will be a large load disturbance
in the distribution network, it is necessary to take the load switching
as one of the conditions. In this paper, the capacity of LS is set from
0 to 10 MW. In addition, the impact of the AC-side fault on the DC-
side voltage should be considered, so two types of symmetrical and
asymmetrical faults are also required on the AC side.

The seven operating conditions of the ground positive voltage
fault waveforms under the selected time window are shown in
Figure 7, where the fault occurs at the 0 ms moment.

The line positive voltage drops to 5.63 kV and then slowly
decreases when SIF occurs, as shown in Figure 7A. The line
positive voltage fluctuates, the high-frequency component
appears in the waveform, and then the voltage value slowly
decreases when MIF occurs, as shown in Figure 7B. The
sudden change is not so drastic when HIF occurs compared
with SIF and MIF, as shown in Figure 7C. The line positive
voltage under the fault has a more obvious oscillation

FIGURE 5
Structure of the 10-kV flexible DC distribution network.

FIGURE 6
Emanuel arc model circuit diagram.
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FIGURE 7
Positive voltage waveform of the grounding line under different fault conditions.

FIGURE 8
IMF1 after VMD.
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characteristic, and the fluctuation is small and random. The line
positive voltage drops to 0 kV instantaneously, and thereafter it is
consistently maintained at 0 kV when PPF occurs, as shown in
Figure 7D. The power transfer between converters stops. The
voltage value undergoes an abrupt change when LS disturbance
occurs, as shown in Figure 7E. Thereafter, it shows a steady-state
response state. The voltage and current on the AC side of the
converter will have a negative sequence component when the AC
asymmetric fault occurs, as shown in Figure 7G, which will cause
an even number of non-characteristic harmonics on the DC side,
resulting in fluctuations in the voltage at the ground terminal.
The simulation results remain consistent with the theoretical
analysis.

4.1 VMD algorithm decomposition

To further differentiate the fault categories, VMD is used to
decompose the grounding pole positive voltage to obtain the
eigenmodal components IMFs. Figure 8 and Figure 9 show the
IMF1 and IMF2 waveforms after VMD, respectively.

As shown in Figure 8, the similarity of waveforms under
different working conditions is high, such as SIF and MIF, PPF,
and LS. Furthermore, there is a possibility of confusion in the
subsequent model training. The decomposed results are fed into
the CNN training model, and the accuracy is 90.48%. The
recognition accuracy is not high, so it is not suitable to use
IMF1 as the input of the training model.

As shown in Figure 9, the difference between the fault waveform
and amplitude under IMF2 is high. These differences are suitable for
constructing detection criteria, so IMF2 is chosen as the input data
for the CNN in this paper.

4.2 CNN model training results

In order to further clarify the effectiveness and superiority of the
proposed algorithm, the t-SNE method is used for visualization. The
original data, the characteristic modal component IMF2 after VMD,
and the CNN model training results are visualized by t-SNE. The
experimental results are shown in Figure 10. Categories 0, 1, 2, 3, 4,
5, and 6 represent SIF, MIF, HIF, PPF, LS, SF, and ASF, respectively.
Figure 10A shows the distribution of the original data. Due to the
redundancy of the original data, various categories are difficult to
distinguish and easy to confuse. Figure 10B shows the
dimensionality reduction result of the characteristic modal
component IMF2 after VMD, which is further distinguished
from the original data. However, there is still a large overlap
between categories 2, 4, and 5. Figure 10C shows the
visualization of classification results after CNN model training. It
can be seen that each category is clearly distinguished, which verifies
that the proposed algorithm has a high fault recognition rate.

The pre-processed data are fed into the network. The parameters
of the CNN are adjusted using the network error loss values. The
total sample is randomly sampled. Figure 11 shows the CNN
recognition results.

FIGURE 9
IMF2 after VMD.
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From this confusion matrix and Supplementary Exhibit S2,
the CNN trained model has 100% correctness, 100% accuracy,
100% recall, and 100% F1 score. The actual and predicted values
under different faults remain the same. The probability of the
detection error or omission is 0. Using the model training
established in this paper, various fault types can be accurately
and effectively identified.

5 Validation

5.1 Identification results after EMD

The results of using EMD to extract the characteristic modes for
the seven working conditions are shown in Figure 12. The results
show that although EMD can also extract the corresponding high-
frequency components, the resulting modal components contain

more noise components, which has some interference in the
subsequent recognition accuracy.

The results of EMD were fed into the CNN model for training.
The results are shown in Figure 13, with an accuracy of 87.62%. It is
not accurate and not suitable for using the eigenmodal components
decomposed by EMD as the input to the CNN model.

5.2 Different fault locations

To test the applicability of the algorithm proposed in this
paper at different faults, the situation of different faults among
SIF, MIF, HIF, LS, PPF, SF, and ASF occurring at 6 km from the
cable line is simulated (Figure 11 shows the training results at the
fault location of 10 km). The training results at this fault location
are shown in Supplementary Exhibit S3. The figure shows the
training model at different fault locations. The accuracy of the
training model at different fault locations is 100%. It shows that
the discrimination method proposed in this paper can be
applied to discriminate different fault types at different fault
locations.

5.3 Adding strong noise

To verify the applicability of the algorithm proposed in this
paper during strong noise, white Gauss noise with a signal-to-
noise ratio of 1 db is added to the DC line pole voltage. Taking the
single-pole high-resistance grounding fault as an example, the
waveform of the positive voltage decomposed by VMD after
adding strong noise is examined and shown in Figure 14. The
addition of noise causes a certain degree of waveform fluctuation,
which has some interference with the training recognition of the
model.

FIGURE 10
Visualization of feature learning at different stages. (A)
Distribution of raw data samples. (B) Sample distribution after VMD
feature extraction. (C) Distribution of raw data samples.

FIGURE 11
CNN recognition results.
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The feature components after adding noise are fed into the CNN
for recognition, and Figure 15 shows the recognition results with
99.76% recognition accuracy. The results show that the CNN
discriminative model accuracy is still reliable under the
interference of strong noise.

FIGURE 12
IMF2 after EMD.

FIGURE 13
Training results of IMF2 under EMD.

FIGURE 14
Waveform after adding noise.

FIGURE 15
Recognition accuracy under 1 dB noise.
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5.4 Change in the time window

The setting of the time window directly affects the amount of
data. The more the time windows of the data, the more the test
samples contained. Based on the system’s converter blocking time,
the selected time window is now changed to 2 ms before and after
the fault for testing. Figure 16 shows the results after VMD under the
selected time window. The results are input into the CNN for
training. The accuracy achieved 100%. It can be seen that the
proposed discrimination method in this paper can be applied to
discriminate different fault types under different time windows.

5.5 Different sampling frequencies

To verify the accuracy of the proposed algorithm, a system
sampling frequency of 10 kHz is adopted. The model recognition
results are shown in Figure 17. It can be seen that the proposed
algorithm is still accurate and reliable under different sampling
frequencies.

5.6 Comparison with the unimproved CNN

To verify the performance of the CNN model proposed in this
paper, each feature modal component decomposed by VMD is now
fed into the improved inception–CNN model and the traditional
CNN model. The recognition accuracy is shown in Supplementary
Exhibit S4.

Supplementary Exhibit shows that the different eigenmodal
components as the input of the improved CNN model proposed
in this paper have significantly improved the accuracy rate
compared with the traditional CNN. Overall, the accuracy rate
and recall rate have also been improved. The F1 score is closer to
1 in the improved CNN model. These features indicate that the
output effect of the improved inception–CNN model is more
effective and is even better than the unimproved CNN performance.

6 Conclusion

In this paper, a DC distribution network fault identification
scheme based on VMD and inception–CNN is proposed. It is

FIGURE 16
Different data window tests.

FIGURE 17
Recognition accuracy at 10 kHz sampling frequency.
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simulated and verified in the PSCAD platform. The following
conclusions can be obtained:

(1)The proposed scheme uses variational modal decomposition to
process the simulation data. The processed eigenmodal components
are used as the input of the training model, which has good
generalization capability and anti-interference capability against
noise. It also has an excellent reliability performance in different
application scenarios.
(2)The proposed training model can not only identify single-
pole, double-pole, and AC-side faults but also effectively
discriminate the fault types with different resistance changes
under single-pole faults. It has high recognition accuracy.
(3)The complex structure of the CNNmodel makes it possible to
abstract the feature signal and effectively identify the weak
changes under the high-resistance ground fault.
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The growing scale of electric vehicles (EVs) brings continuous challenges
to the energy trading market. In the process of grid-connected charging
of EVs, disorderly charging behavior of a large number of EVs will have a
substantial impact on the grid load. Aiming to solve the problem of optimal
scheduling for charging and discharging of EVs, this paper first establishes
a model for the charging and discharging scheduling of EVs involving the
grid, charging equipment, and EVs. Then, the established scheduling model
is described as a partially observable Markov decision process (POMDP) in
the multi-agent environment. This paper proposes an optimization objective
that comprehensively considers various factors such as the cost of charging
and discharging EVs, grid load stability, and user usage requirements. Finally,
this paper introduces the long short-term memory enhanced multi-agent
deep deterministic policy gra dient (LEMADDPG) algorithm to obtain the
optimal scheduling strategy of EVs. Simulation results prove that the proposed
LEMADDPG algorithm can obtain the fastest convergence speed, the smallest
fluctuation and the highest cumulative reward compared with traditional deep
deterministic policy gradient and DQN algorithms.

KEYWORDS

electric vehicles (EVs), deep reinforcement learning, partially observable markov
decision process (PODMP), multi-agent deep deterministic policy gradient (MADDPG),
long short-term memory (LSTM)

1 Introduction

Electric vehicles (EVs), with their outstanding advantages of being clean,
environmentally friendly, and low noise, have become the focus of industries around
the world. However, as the scale of EVs continues to expand, their high charging
demand is gradually increasing its proportion within the power system, posing significant
challenges to the stability and safety of the smart grid (Chen et al., 2021; Chen et al.,
2023). The behavior of EV owners directly influences the spatiotemporal distribution
of charging demand, introducing uncertainties in charging time and power for EVs.
These uncertainties could have a significant impact on the normal operation and
precise control of the smart grid (Wen et al., 2015; Liu et al., 2022). Simultaneously, EVs
can act as an excellent mobile energy storage device and can serve as a distributed
power source to supplement the power system when necessary. This capability creates
a source-load complementary intelligent power dispatch strategy (Lu et al., 2020).
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Therefore, it is imperative to manage the charging and discharging
of EVs. A rational charging and discharging strategy will not only
effectively mitigate the adverse effects of charging behavior on
the grid load but also play a positive role in peak shaving, load
stabilization, and interaction with the grid (Zhao et al., 2011).

Traditional methods for optimizing the scheduling of EV
charging and discharging are divided into three main categories:
methods based on dynamic programming, methods based on
day-ahead scheduling, and model-based methods (Zhang et al.,
2022). However, the application of traditional algorithms to the
optimization of EV charging scheduling faces two major challenges:
the massive number of EVs results in high-dimensional scheduling
optimization variables, often leading to the 'curse of dimensionality'
(Shi et al., 2019); the fluctuations within the energy system and the
uncertainty of EV user demandmake it difficult to establish accurate
models, limiting the control effectiveness and performance of the
algorithm.

Reinforcement learning methods, which can obtain optimal
solutions to sequential decision-making problems without explicitly
constructing a complete environment model, have been widely
deployed in addressing the charging scheduling problem of EVs.
Deep reinforcement learning-based charging scheduling methods
can be divided into two categories: value-based algorithms and
policy-based algorithms (Xiong et al., 2021). Regarding value-based
algorithms (Liu et al., 2019), developed an incremental update-
based flexible EV charging strategy.This approach considers the user
experience of EV drivers and aims to minimize their charging costs
(Vandael et al., 2015). sought to learn from transitional samples and
proposed a batch reinforcement learning algorithm. This method
ultimately resulted in the optimal charging strategy for reducing
charging costs (Wan et al., 2018). innovatively used a long short-
term memory (LSTM) network to extract electricity price features.
They described the scheduling of EV charging and discharging
as a Markov decision process (MDP) with unknown probabilities,
eliminating the need for any system model information.

Value-based algorithms are suitable only for discrete action
spaces, while policy-based algorithms can handle continuous action
spaces (Nachum et al., 2017; Jin and Xu, 2020) proposed an
intelligent charging algorithm based on actor-critic (AC) learning.
This method successfully reduced the dimensionality of the state
variables for optimization in EVs (Zhao and Hu, 2021). employed
the TD3 algorithm for modeling and introduced random noise into
the state during the training of the intelligent agent. This approach
achieved generalized control capability over the charging behavior
of EVs under various states (Ding et al., 2020). established an MDP
model to characterize uncertain time series, thereby reducing the
system's uncertainty. They subsequently employed a reinforcement
learning technique based on the deep deterministic policy gradient
(DDPG) to solve for a charging and discharging scheduling strategy
that maximizes profits for the distribution network.

Currently, the main challenge facing reinforcement learning
algorithms for optimizing EV charging and discharging is the issue
of algorithm non-convergence caused by the high-dimensional
variable characteristics in the multi-agent environment (Pan et al.,
2020). utilized the approximate dynamic programming (ADP)
method to generalize across similar states and actions, reducing
the need to explore each possible combination exhaustively.
However, the ADP method requires manual design and feature

selection, which is less automated compared to deep reinforcement
learning (DRL) (Long et al., 2019). formulated the EV clusters
charging problem as a bi-level Markov Decision Process, breaking
down complex tasks to enhance convergence and manage high
dimensions. However, its hierarchical structure can hinder end-to-
end learning, potentially leading to suboptimal strategies, unlike
DRL which can map states directly to actions. Therefore, this
paper proposes a reinforcement learning algorithm specifically
for the optimal scheduling of EV charging and discharging. The
algorithm integrates LSTM and MADDPG, where LSTM is utilized
to extract features from historical electricity prices, and MADDPG
is employed to formulate charging and discharging strategies. This
algorithm aims to solve the problem of non-convergence in multi-
agent environments while also fully utilizing historical time-of-use
electricity price data to aid the agent in decision-making.The major
contributions of this paper are as follows.

• This paper establishes a model for optimizing the scheduling
of EV charging and discharging in a multi-agent environment.
The model involves the power grid, charging equipment, and
EVs, and the flow of electricity and information is controlled
by different entities. Besides, the charging control model is
characterized as a partially observable Markov decision process
(POMDP).
• This paper sets the optimization objective of the algorithm
by considering three main factors: the cost of charging and
discharging, the impact of EV charging and discharging on
the grid load, and users' usage requirements. Corresponding
constraint conditions of above objectives are also provided.
• This paper introduces the long short-term memory enhanced
multi-agent deep deterministic policy gradient (LEMADDPG)
algorithm to obtain the optimal scheduling strategy of
EVs. The LSTM network is utilized to extract features
from the TOU electricity price data in order to guide the
EV exploring the optimal charging and discharging action
strategy.
• Complete simulation results prove that the proposed
LEMADDPG algorithm can obtain the fastest convergence
speed, the smallest fluctuation and the highest cumulative
reward compared with the DDPG and deep Q-network (DQN)
algorithms. In addition, results also indicate that the LSTM
network can extract features of time-of-use electricity price
data and make reasonable predictions for future prices.

2 Scheduling model

The electrical usage scenario in this paper is a smart residential
community. This community consists of multiple households
that own electric vehicles. Ample charging devices are installed
throughout the area for EV usage. In the process of charging and
discharging, users can determine the duration themselves. Aside
from purchasing electricity to charge their EVs, users can also use
their vehicles as home energy storage devices to sell excess electricity
back to the grid.

This paper establishes a simple EV charging and discharging
optimization scheduling model, as shown in Figure 1. The model
involves three primary components: the power grid, charging
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FIGURE 1
Diagram of charging and discharging scheduling for EVs.

equipment, and electric vehicles. Specifically, the power grid is
responsible for providing electrical supply and real-time time-of-
use price information. The charging equipment fulfills the role of
purchasing electricity from the grid based on the needs of EVs and
then distributing this electricity to the vehicles. It also transfers price
information to EVs and the current status of the vehicles to the
grid system. Electric vehicles are managed to charge or discharge
based on real-time price information and provide feedback to the
charging equipment about their current state information. The
scheduling process can be divided into three steps: information
collection, real-time decision-making, and command sending. First,
the decision-making unit collects information on electricity prices
provided by the grid, demand information, and the battery status of
the EVs. Next, the decision-making unit inputs the collected status
information into the decision network and outputs the charging
and discharging plans for each EV. Finally, upon receiving the
commands, the grid dispatches the corresponding electricity to
various charging devices, completing the energy scheduling for that
time period.

2.1 Basic assumptions

In the community, there are a total of N EVs. The set of EVs
is designated as B = {1,…, i,…,N}. It is assumed that EVs start
charging and discharging immediately after being connected to the
charging equipment. The scheduling process only considers EVs in
the state of charging and discharging. A scheduling period is set as
24 h, with a scheduling step of 1 h.The set of time slots is designated
as H = {1,…, t,…,24}.

In each scheduling step, EVs are divided into online and offline
states. The set of online time slots for EV i is denoted as Tonline

i =
{Tstart

i ,…, t,…,T
end
i },0 ≤ T

start
i ≤ t ≤ T

end
i ≤ 23. T

start
i is the time slot

when the EV connects to the charging equipment to start charging.
Tend
i is the time slot when the EV finishes charging and leaves.

Assuming that all EVs arrive or leave at the whole hour, the
online time slots should be a continuous set of natural numbers.
In other time slots, if EV i is not connected to the charging
equipment, it is considered as not participating in the current
scheduling.

2.2 Optimization objective

The primary objective of the optimized scheduling for EV
charging and discharging is to minimize the cost associated with
EV charging and discharging. It also takes into account the impact
of the total power of the EV cluster's charging and discharging
activities on the stable operation of the power grid, as well as user
usage requirements. Based on the previous assumptions, this paper
considers the following cost factors.

2.2.1 Cost of charging and discharging C
charge
i,t

Under the time-of-use (TOU)pricing policy, the cost of charging
and discharging Ccharge

i,t depends on the current electricity price and
the amount of charging and discharging.Thus, the cost generated by
charging and discharging behavior can be represented as:

Ccharge
i,t = λt ⋅ li,t (1)
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where λt is the current electricity price during time slot t. li,t is the
total charging and discharging quantity of EV i in time slot t. It can
be specifically expressed as follows:

li,t =
{
{
{

pi,t, t ∈ T
online
i

0, t ∉ T online
i

(2)

where pi,t is the average charging and discharging power of EV i
during time slot t. It is positive during charging and negative during
discharging. T online

i is the set of online time slots.

2.2.2 Cost of state of charge (SOC) CSOC
i,t

The randomness of EV charging behavior mainly manifests as
uncertainty in the start time and duration of charging. Furthermore,
the state of charge at the start of charging is influenced by
the usage and charging habits of the EV user (Kim, 2008).
Considering the user's usage needs for EVs, the state of charge
after charging and discharging should meet the user's upcoming
driving needs. To simplify the model, we make the following
assumptions:

EVs arrive at the charging equipment to charge at any time
within 24 h and leave after several hours of charging. Both the
arrival time and departure time follow a uniform distribution, with
a probability density function of:

f (t) =
{
{
{

1
b− a
, a ≤ t ≤ b

0, other
(3)

where, a = 0,b = 23.
The initial SOC of EVs follows a normal distribution, with a

probability density function of:

fint (SOC) =
1

σ√2π
e
[− (SOC−μ)

2

2σ2
]

(4)

where μ = 0.5,σ = 0.16.
While the usage needs of a single user are difficult to predict,

extensive data shows that user requirements follow a normal
distribution. Thus, the usage requirement SOCideal also follows a
normal distribution, with a probability density function of:

fideal (SOC) =
1

σ√2π
e
[− (SOC−μ)

2

2σ2
]

(5)

where, μ = 0.5,σ = 0.16.
Based on the above description, the cost of state of charge CSOC

i,t
incurred to meet user usage needs can be expressed as:

Csoc
i,t = δ ⋅ [E ⋅ (SOCideal − SOCi,Tend

i +1
)]2 (6)

where SOCideal represents the user's expected SOC for an EV. It
describes the user's usage needs. For example, if the user expects to
travel a long distance after charging, this value is higher. SOCi,Tend

i +1
represents the SOC of EV i when it leaves the equipment after
charging. δ is the coefficient of the SOC cost, 0 ≤ δ ≤ 1. E is the
maximum capacity of the EV battery, determined by the EV model.
According to the above formula, if the SOCafter charging SOCi,Tend

i +1
deviates significantly from the user's expected value SOCideal, it will
result in a higher penalty cost.

2.2.3 Cost of grid load impact C
impact
i,t

During the charging and discharging process, EVs' behaviors
impact the load curve of the power grid (Rawat et al., 2019). Based
on previous discussions, the power grid system is expected to
operate smoothly. This requires certain restrictions on the total
charging and discharging power of the EV cluster. Therefore, this
paper introduces the impact cost of the EV cluster's charging and
discharging behavior on the power grid, which is represented as:

Cimpact
i,t =
{
{
{

μ ⋅ λt ⋅ li,t, lt ≥ lth
0, lt < lth

(7)

where μ denotes the cost coefficient for load impact. λt is the current
electricity price. li,t is the total amount of charging and discharging
for EV i in period t. lt is the total load generated by the EV cluster in
period t, defined as:

lt =
N

∑
i=1

li,t (8)

The cost of grid load impact is incurred only when the total load
of the EV cluster exceeds a certain threshold (Shao et al., 2011). The
threshold lth can be defined as:

lth = kth ⋅ pmax ⋅N (9)

where kth represents the percentage threshold of the charging and
discharging power of the EV cluster in the current grid load. This
threshold limit is set by the power grid system based on recent load
conditions and is released to all EVs participating in charging and
discharging. pmax is the maximum charging power of the EV cluster,
defined as follows:

pmax =max(pi,max) , i ∈ B (10)

Based on the above assumptions, we propose the optimization
objective to minimize the comprehensive cost C generated in the
charging and discharging process. The comprehensive cost C can be
defined as:

minC =
N

∑
i=1
{

24

∑
t=1
[Ccharge

i,t +C
soc
i,t ] +C

impact
i,t }

s.t.

{{{{{{{{{{{{{{
{{{{{{{{{{{{{{
{

0 ≤
T

∑
t
Ccharge
i,t ≤ 1, i = 1,2,…,N

0 ≤
T

∑
t
Csoc
i,t ≤ 1, i = 1,2,…,N

0 ≤
T

∑
t
Cimpact
i,t ≤ 1, i = 1,2,…,N

0 ≤ C ≤ 3N

(11)

2.3 Constraint condition

The SOC for EV i should satisfy the constraint:

SOCmin ≤ SOCi,t ≤ SOCmax (12)

Generally, the SOC of an EV is represented as a percentage, with
SOCmin = 0%, SOCmax = 100%.
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The charging and discharging power of EV i during time period
t is subject to the constraint:

|pi,t| ≤ pmax,i,pmax,i =min(ω ⋅ SOCi,t,Pmax) (13)

whereω is the charging power limit coefficient.Pmax is themaximum
charging power of EV i, depending on the specific EV model. The
real-time charging power of EVs is influenced by both the SOC and
themaximum charging power.When the SOC is high, to protect the
battery, the EV does not charge and discharge at full power. Instead,
it operates at a lower power level based on the current SOC.

3 POMDP model

During the charging and discharging process, each EV agent
is unable to acquire a complete observation of the system. They
are unaware of the states and actions of other agents. The agent
must make charging and discharging decisions that can achieve
higher benefits based on their current observations and strategies to
obtain the optimal scheduling strategy (Dai et al., 2021). Therefore,
in contrast to the general Markov decision process model in
reinforcement learning, we describe the charging and discharging
optimization scheduling problem in this multi-agent environment
as a POMDP model (Loisy and Heinonen, 2023).

State Observation:The state information that EV i can observe
at time period t is assumed to be:

oi,t = {λt,ui,t,SOCi,t} (14)

where λt is the current TOU electricity price. ui,t indicates whether
EV i is connected to the charging equipment for charging in period
t, i.e., the online status of EV. Specifically, it can be represented as:

ui,t =
{
{
{

1, t ∈ T online
i

0, t ∉ T online
i

(15)

where SOCi,t is the SOC of EV i in period t.
The system state includes the current state information of all EVs

and the current electricity price information. It can be described as
the combination of the EV cluster and the current time-of-use price
information, which is:

Ot = {o1,t,o2,t,…,oN,t}

= {λt,u1,t,…,uN,t,SOC1,t,…,SOCN,t} (16)

Action: We select the average charging and discharging power
pi,t of EV i in period t as action ai,t of the agent, that is:

ai,t = pi,t (17)

where ai,t is positive when the EV is charging and negative when
discharging.

The agent can charge the EV during low electricity price periods
and sell electricity to the grid through the EV battery during peak
price periods to obtain economic benefits. The joint action taken by
all EV agents in period t is denoted as at = {a1,a2,…,aN}.

Reward: Reward is an important factor in evaluating the quality
of the action strategies adopted by each agent. Based on the above

discussion and the optimization objective of the model, we set the
reward as follows:

ri =
{
{
{

rchi + r
punish
i + rsoci , t = T end

i

rchi + r
punish
i , t ≠ T end

i

(18)

rchi is the reward for the charging and discharging behavior of EV
i, defined as:

rchi = −λtai,t (19)

It indicates that high electricity prices and high charging power
will reduce the rewards obtained by the agent.

rpunisht is the reward for the total impact on the grid load of the
charging and discharging behavior of the EV cluster in time period
t, defined as:

rpunisht =

{{{{{
{{{{{
{

−ρ ⋅ λtai,t,
N

∑
i=1

ai,t ≥ lth

0,
N

∑
i=1

ai,t < lth

(20)

where lth is the threshold limit of the grid for the total charging and
discharging power of the EV cluster. ρ is the load reward conversion
factor.

rSOCi is the reward for EV imeeting the user's usage requirements
at the end of charging, defined as:

rsoci = −υ ⋅C
soc
i,t (21)

where υ is the SOC reward conversion factor. Csoc
i,t is the cost of SOC.

State Transition: After the EV agent cluster executes the joint
action at = {a1,a2,…,aN}, the system state transitions from Ot to
Ot+1. Each agent receives the corresponding rewards and state
observation information for the next stage from the environment.
This transition process can be represented as a function:

Ot+1 = f (Ot,at) (22)

4 LEMADDPG algorithm design

Based on the previous discussion, we modeled the problem of
optimizing the charging and discharging schedule of the EV cluster
as a POMDP in amulti-agent environment. However, reinforcement
learning algorithms in multi-agent environments often face the
challenge of environmental instability (Wu et al., 2020). This is due
to each agent constantly learning and improving their strategy.
From the perspective of a single agent, the environment is in
a dynamic state of change, and the agent cannot adapt to the
changing environment by simply altering its own strategy. To
address this challenge, researchers have begun to focus on multi-
agent reinforcement learning methods, aiming to resolve the issue
of the non-convergence of reinforcement learning algorithms caused
by environmental instability.

Furthermore, extracting discriminative features from raw data
is a key method to improve reinforcement learning algorithms. In
this problem, we expect a good algorithm to fully utilize the trend
information of TOU electricity prices to guide the action selection
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FIGURE 2
LSTM network structure (Wan et al., 2018).

of agents. It should result in an optimal scheduling strategy that
minimizes the overall cost (He et al., 2021; Liao et al., 2021). Since
TOUelectricity prices fluctuate in a quasi-periodicmanner and have
a natural time sequence, it is suitable to use past prices to infer future
price trends.

Therefore, this paper takes the multi-agent deep deterministic
policy gradient (MADDPG) (Lowe et al., 2017) algorithm as the
main body and uses the long short-term memory (LSTM) network
(Shi et al., 2015) to extract features from the input TOU electricity
price data. These feature data are used to guide the EV agent
to explore the optimal charging and discharging action strategy.
Consequently, we propose the long short-term memory enhanced
multi-agent deep deterministic policy gradient (LEMADDPG)
algorithm.

4.1 Electricity price feature extraction

LSTM (Shi et al., 2015) is a type of recurrent neural network
specifically designed to address the long-term dependency problem
that is prevalent in regular recurrent neural networks (RNNs).
The key characteristic of LSTM is the introduction of a memory
cell, also referred to simply as a cell. The memory cell can retain
additional information and controls the flow of information via
three gate structures: input gate, forget gate, and output gate. The
input gate determines whether to accept new input data. The forget
gate decides whether to retain the contents of the old memory
cell. The output gate decides whether to output the contents of the
memory cell as a hidden state. In this way, LSTM can alleviate the
vanishing gradient problemand capture long-distance dependencies
in sequences, making it highly suitable for processing and predicting
time series data. A typical LSTM network structure is shown in
Figure 2.

In this paper, before the algorithm starts training, the real
historical TOU electricity price data are input into the LSTM
network for pre-training. The trained LSTM network can output

the extracted electricity price features. Later, during the training
process, the LSTM network outputs the corresponding electricity
price features based on the current system state to guide the action
selection of the agents.

4.2 LEMADDPG algorithm structure

The algorithm adopts the enhanced actor-critic structure
(Konda and Tsitsiklis, 1999) from MADDPG, as shown in Figure 3.
Each agent includes two types of networks: the policy network
(Actor), responsible for making appropriate decision actions based
on the current observation information, and the value network
(Critic), which evaluates the quality of the actions output by the
policy network.

In the policy network section, the algorithm uses the idea
of the deterministic policy gradient (DPG) (Silver et al., 2014): it
changes from outputting the probability distribution of actions
to directly outputting specific actions and updates the network
parameters by maximizing the expected cumulative reward of each
agent. This is conducive to the agent's learning in continuous action
spaces. The agent first obtains its own observed information o
from the environment. Then, it chooses and outputs the current
action a according to the current policy π in its own policy
network. Notably, the agent uses only its own local information for
observation and execution, without needing to know the global state
information. After the agent obtains the current observation oi,t in
the environment, it selects the current action ai,t through the policy
network μi to provide its own current policy selection. Meanwhile,
to improve the degree of exploration of the agent during training in
a specific environment, a white noise signal Nt is added each time
the policy network outputs an action, that is

ai,t = μi (oi,t) +Nt (23)

In the value network section, to solve the non-stationarity
problem in the multi-agent environment, the algorithm uses a
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FIGURE 3
Structure of LEMADDPG algorithm.

centralized method to evaluate the policy of each agent. When each
agent's value network Critic evaluates the policy value Q, it not only
uses its own Actor information but also considers the information
of all agents. In other words, the Critic of each agent is centralized.
This is key to implementing centralized training and distributed
execution.

The LEMADDPG algorithm uses the experience replay
(Mnih et al., 2013) strategy to enhance the stability of the learning
process. The experience replay method stores the interaction data
of each agent in the environment in a shared replay buffer. During
training, a batch of data is randomly sampled for repetitive learning,
significantly increasing the learning efficiency of the algorithm.The
specific method is as follows: Each time the agent's policy network
generates action ai,t based on the current observation oi,t, the
environment returns the current reward value ri and the observation
at the nextmoment oi,t+1 based on the action. At this point, all related
information set {o1,t,o2,t,…,oN,t,a1,t,…,aN,t, r1,…, ri,o1,t+1,…,oi,t+1}
is stored in the experience replay pool D, waiting to be used as
training samples for the neural network. Following this, the system
undergoes a state transition.

The target network strategy refers to each agent maintaining
a target network that has the same structure as its current
network but updates parameters more slowly. The target network
is used to calculate the approximation of the expected cumulative
reward, thereby reducing the oscillation of the target function and
accelerating the convergence speed of the algorithm, as shown in
Figure 4. Similar to the original network, the target network contains
policy and value networks. The parameters at initialization use the
policy network parameters and value network parameters from the
original network, but their update methods differ substantially.

The objective of training the original network is to maximize
the expected reward of its policy network while minimizing the loss
function of the value network (Dai et al., 2021). The specific update
procedures are as follows:

The update formula for the policy network is:

∇θiJ(μi) = Ex,a∼D [∇θiμi (ai|oi)∇aiQ
μ
i (x,a1,…,aN) |ai=μi(oi)] (24)

where ∇θiJ(μi) is the gradient of the expected reward of the policy
network with network parameters θi. ∇aiQ

μ
i (x,a1,…,aN) is the

gradient of the action value function output by the network under
the current state x and joint action at = {a1,a2,…,aN} with respect
to the action. ∇θiμi(ai|oi) is the gradient of the action output of the
policy network with respect to network parameter θi.

The update formula for the value network is:

L(θi) = Ex,a,r,x′ [(Q
μ
i (x,a1,…,aN) − y)

2] (25)

where L(θi) is the loss function of the value network. y is the actual
action value function, which can be represented as:

y = r+ γQμ′

i (x
′,a1
′,…,a′N) |a′j=μ′j(oj) (26)

where γ is the discount factor, 0 ≤ γ < 1. Qμ′

i (x
′,a1
′,…,a′N) is the

action value function of the target network.
After a complete round of learning, we use α as the update step

size to update the parameters of the original network, which can be
expressed as:

θi← θi + α ⋅∇θiJ(μi) ,

θi← θi − α ⋅∇θiL(θi)
(27)

The target network uses a soft update method to update
the network parameters. It assigns a weight τ (0 ≤ τ < 1) to
the parameters about to be updated, preserving a portion of
the original parameters. This results in smaller changes in the
target network's parameters and smoother updates, which can be
expressed as:

θi
′← τθi + (1− τ)θi

′ (28)

4.3 Algorithm overflow

The structure of the LEMADDPG algorithm is shown in
Figure 3. The specific flow is shown in Algorithm 1. The system first
initializes the EV charging and discharging environment according
to the set parameters and then generates the initial observation O0.
For each EV agent, it selects the action ai,t according to its current
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FIGURE 4
Network structure and training process of MADDPG.

Algorithm 1. LEMADDPG algorithm.

observation oi,t and strategy. Then, the joint action at is performed,
each agent obtains its own reward ri,t from the environment and
obtains the observation oi,t+1 of the next stage.The system records all
information (Ot,at, rt,Ot+1) at this time and stores the quadruple in
the experience replay poolD. Then, the current system observation
Ot is input into the LSTM network, and the electricity price feature
ξt output under the current state is obtained. The current time
electricity price feature ξt replaces the real electricity price λt for state
update, that is:

oi,t = {λt,ui,t,SOCi,t} → o′i,t = {ξt,ui,t,SOCi,t} (29)

Next, the system state is transferred. If the experience replay
poolD is full, random sampling is performed for the agent to learn
from experience. The agent uses the minimization loss function to
update its Critic network and the gradient policy to update its Actor
network. Then, all target network parameters are updated using a
soft update method. At this point, a round of training is over, and
the system returns to the initial state to start the next round of
training.

TABLE 1 EV related parameters.

Parameter Value Unit

Maximum SOC SOCmax 100 %

Minimum SOC SOCmin 0 %

Charging efficiency η 0.9 -

Maximum battery capacity E 24 kW⋅h

Maximum charging power Pmax 6 kW

TABLE 2 EV charging and dischargingmodel parameters.

Parameter Value Unit

Grid load threshold kth 20 %

SOC cost coefficient δ 0.08 -

Load impact cost coefficient μ 0.7 -

Load reward discount coefficient ρ 3 -

SOC reward discount coefficient ν 0.5 -

5 Experimental results

5.1 Environment setup

We consider a smart community with a total of N EVs, and we
simulate the process of the fleet plugging into the charging device
over a 24-h period, from 0:00 on 1 day to 0:00 the next day, totaling
24 time periods.The relevant parameters of the vehicle are shown in
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FIGURE 5
The TOU electricity prices of a city in the UK: (A) Electricity price from April 2019; (B) Electricity price from April 2020.

Table 1. The parameters of the EV charging and discharging model
are shown in Table 2.

The training process uses TOU electricity price data provided by
a power company in a city in the UK.We select the electricity prices
from April 2019 as the training dataset and electricity prices from
September 2020 as the validation dataset. The TOU electricity price
data is shown in Figure 5.

5.2 MADDPG results analysis

Upon initialization of the environment, we use the Monte Carlo
method to simulate and generate the relevant initial variables for
each EV. This includes the initial SOC, the desired SOC, and the
times when the EV arrives at and leaves the charging station.
The initial system observation includes the relevant states of all
EVs, which can be represented by a 4N-dimensional vector O0 =
{SOC1,0, SOC2,0,…, SOCN,0, SOC1,ideal,…,SOCN,ideal,T

start
1 ,…T

start
N ,

T end
1 ,…T

end
N }. The algorithm first starts from the initial state and

advances according to the scheduling step size. Each agent in the EV
cluster sequentially selects charging or discharging actions under
its current policy and then receives rewards from the environment.
Then, the EV cluster carries out all actions and receives observations
for the next period from the environment.The related data are stored
in the experience replay pool, and the environment state transitions
until the maximum number of scheduling steps is reached or the
total reward of all agents in the system reaches a steady state.

To study the effectiveness of the MADDPG algorithm for the
EV charging and discharging optimization scheduling problem, we
first use the traditional MADDPG algorithm to run this case. The
algorithm parameter settings are shown in Table 3.

The total reward curve of the MADDPG-based EV cluster's
charging and discharging is shown in Figure 6, with the following
analysis.

(1) The horizontal axis represents the training round. The vertical
axis represents the total reward obtained by the EV agent cluster
in the corresponding round. For easy observation, the data have
been smoothed with a smoothing factor of 0.95.

TABLE 3 MADDPG algorithm parameters.

Parameter Value

Maximum training episodes 5,000

Number of agents N 3

Maximum episode steps 24

Experience replay memory size 1e6

Experience replay batch size 256

Future returns discount factor γ 0.95

Soft update discount factor τ 0.1

Network learning rate lr 0.001

Number of fully connected layers 64

(2) The total number of training episodes is 5,000. The experiment
runs for 30 min under the given conditions. As shown in the
figure, the total reward curve rises rapidly in the initial 800
rounds, after which the reward curve gradually becomes smooth
and converges. Finally, it stabilizes around 0.42, indicating that
the algorithm has converged.

The converged MADDPG algorithm is validated on the TOU
electricity price dataset for September 2020. For ease of
observation, we extract the change in TOU electricity price and the
corresponding action curve of the EV agents within 50 scheduling
steps for comparison. Figure 7 shows the charging and discharging
schemes of a certain EV following the TOU electricity price. The
analysis is as follows.

(1) The blue curve represents the time-of-use electricity price, the
purple curve represents the charging and discharging power
of the EV, and the black dashed line marks the observation
points.
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FIGURE 6
Total reward curve of the MADDPG algorithm.

FIGURE 7
Charging and discharging schemes of a certain EV following the TOU electricity price.

(2) At each observation point, the agent chooses to charge at a higher
power when the electricity price is at a low point and chooses to
charge at a lower power when the electricity price is at a peak.
This indicates that the converged algorithm can timely adjust the
charging and discharging power based on changes in the TOU
electricity price.

(3) The Kendall correlation coefficient between the TOU electricity
price and the charging and discharging actions of the agent is

−0.245. Since the electricity price is one of the factors affecting
the charging and discharging of EVs, the two do not show
a strong negative correlation but a weak negative correlation.
However, this still indicates that to some extent, the agent can
follow the changes in electricity prices and make corresponding
actions, i.e., tending to reduce charging power when the price is
high and increase power when the price is low.This is consistent
with the expected results of the experiment.
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FIGURE 8
Electricity prices predicted by the LSTM network.

5.3 LEMADDPG results analysis

To fully utilize the historical data of TOU electricity prices, this
paper adopts an LSTM network to extract the temporal features of
electricity prices to guide the agent in decision making. We choose
the TOU electricity price data fromApril 2019 as the input for LSTM
training, with the output being a price series with temporal features.
The learning rate is set to 0.01. Figure 8 shows the results after 2000
rounds of LSTM training.The blue curve in the figure represents the
original electricity prices, and the orange curve represents the prices
predicted by the LSTM using temporal features. The results indicate
that LSTM can extract the features of time-of-use electricity price
data and make reasonable predictions for future prices.

During themodel training process, we replace the real electricity
price information with the electricity price features extracted by the
LSTMwhen updating the system state observation.The total reward
curve for charging and discharging of the EV cluster based on the
LEMADDPG algorithm is shown in Figure 9, with the following
analysis.

(1) Thehorizontal axis is the number of training rounds.The vertical
axis is the total reward obtained by the EV agent cluster in the
corresponding round. For ease of observation, the data have been
smoothed with a smoothing factor of 0.95.

(2) The total number of training episodes is 5,000. The red curve
represents the total reward change of the original MADDPG
algorithm. The blue curve represents the total reward change of
the MADDPG algorithm after adding the LSTM. Both curves
show a rapid rise for the first 600 rounds. After 600 rounds,
the reward curve of LEMADDPG has converged, while the
reward curve of MADDPG begins to flatten after 800 rounds.
After repeating the experiment five times, it can be calculated

that the average convergence speed of the improved MADDPG
algorithm has increased by 19.72% compared to that of the
originalMADDPG. After 1,000 rounds, the total rewards of both
eventually stabilize around 0.42.

(3) The initial state of the system differs due to the substitution of
the input electricity price informationwith the temporal features
extracted by LSTM, resulting in a distinct difference in the initial
segments of the two curves.

(4) The above results show that after adding the LSTM network in
MADDPG, there is almost no change in the stable value of the
total reward after convergence. However, the convergence speed
of the algorithm has significantly improved.

5.4 Comparative experiment

To validate the adaptability and superiority of the proposed
LEMADDPG algorithm, we conducted two comparative
experiments, one involving the performance comparison of different
algorithms under the same scale of EVs, and the other involving
different algorithms under varying scales of EVs. The parameter
settings of the algorithms are the same as those in Table 3.

Figure 10 shows the comparative results of comprehensive costs
under the same scale of EVs. The comprehensive cost is calculated
as the cumulative value every 24 h. The results indicate that the
comprehensive cost of the policy obtained by LEMADDPG is the
lowest, at 2.94, which is 2.97% lower than the cost of DDPG, and
6.67% lower than the cost of DQN. The total reward with 3 EVs
of the LEMADDPG, DDPG, and DQN algorithms are shown in
Table 4. In terms of the speed of reward convergence, compared
to LEMADDPG, the benchmark algorithms DQN and DDPG
converge even faster at 120 and 500 rounds, respectively. This
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FIGURE 9
Total reward curves of MADDPG before and after the adding LSTM.

FIGURE 10
Composite cost curves of three algorithms.

is because the LEMADDPG algorithm is more complex and its
advantages are not obvious when addressing small-scale decision
problems. In terms of the steady-state value of the reward, the policy
obtained by LEMADDPGachieves higher reward values, converging
to 0.42.The above results show that the LEMADDPG algorithm has
the best steady-state reward value and a fast response speed.

Table 4 shows the training comparison results for different
algorithms with EV quantities of 3, 9, and 27, respectively. It can
be observed that compared to the two benchmark algorithms,
LEMADDPG has achieved higher convergence reward values with
all three scales. This indicates that LEMADDPG can seek better

charging and discharging strategies for different scales of EVs.
As for convergence speed, larger scales require more resources
for the algorithm to find the optimal strategy, leading to a
delay in the convergence points for all three algorithms as the
scale of EVs increases. However, it can be observed that due to
its simple structure, DQN has the fastest convergence speed in
scenarios with 3 and 9 EVs, converging in 120 and 1,250 episodes
respectively. However, as the number of EVs grows exponentially,
the LEMADDPG algorithm demonstrates a clear advantage. When
managing 27 EVs, the convergence speed of the LEMADDPG
algorithm is 33% faster than DQN.This indicates that the algorithm
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TABLE 4 Comparison of rewards and convergence points under different scales of EVs.

Number of EVs Reward Convergence point

DQN DDPG LEMADDPG DQN DDPG LEMADDPG

3 0.24 −0.69 0.42 120 500 600

9 0.13 −0.72 0.43 1250 1480 1270

27 0.08 −1.17 0.38 2290 3850 1520

FIGURE 11
LEMADDPG Total Reward Curves with Different Soft Update Discount Factors τ.

proposed in this paper is capable of addressing the charging
management problem of a large number of EVs.

5.5 Impact of parameters

The MADDPG algorithm is highly sensitive to network
parameters. This section focuses on some parameters in MADDPG,
demonstrating and comparing the impact of different parameters on
the performance of the algorithm.

5.5.1 Soft update frequency
The frequency of soft updates is primarily controlled by the

soft update discount factor τ. The smaller the τ value is, the less
the target network parameters change, and the more stable the
algorithm will be. However, the convergence speed will also be
slower. Conversely, the larger the τ value is, the faster the network
parameters change, and the algorithm can accelerate convergence.
However, it may become unstable during the training process more
easily. Therefore, to balance the convergence speed and stability of
the algorithm, an appropriate τ value should be chosen. Figure 11
shows the total reward variation curves of the LEMADDPG
algorithm with τ = 0.01 and τ = 0.1, respectively, with the following
analysis.

(1) The total reward curve for τ = 0.1 gradually stabilizes after
600 rounds, while the total reward curve for τ = 0.01 tends to
converge around 500 rounds.

(2) After 2000 episodes, both have converged to fluctuate within a
certain area.There is no significant difference in the steady-state
values of the total rewards.

(3) The above results indicate that, assuming steady-state
convergence is assured, choosing τ = 0.01 can accelerate the
convergence of the algorithm without significantly affecting the
steady-state value of the total reward.

5.5.2 Learning rate
The learning rate lr represents the update speed of the neural

network's own strategy. If lr is too small, the network tends to
converge slowly. If lr is too large, the network loss will exacerbate
oscillation or even result in divergence. Therefore, an appropriate
network learning rate must be selected to ensure that the network
can converge quickly. Figure 12 shows the total reward variation
curves of the LEMADDPG algorithm with lr = 0.001 and lr = 0.01.
The analysis is as follows.

(1) The reward curve of lr = 0.001 is close to a logarithmic function.
Overall, it shows a steady rise and eventually tends to converge.
The reward curve of lr = 0.01 has significant fluctuations, and it
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FIGURE 12
LEMADDPG Total Reward Curves with Different Learning Rates lr.

FIGURE 13
LEMADDPG Total Reward Curves with Different Long-term Return Discount Factors γ.

diverges in the first 1500 episodes. After 1500 episodes, it starts
to rise. It eventually tends to converge near 2000 episodes, but
the fluctuations are still large.

(2) In terms of the steady-state value of the total reward, the curve of
lr = 0.01 eventually tends to −2.84. The curve of lr = 0.001 tends
to 0.42.

(3) The above results show that choosing lr = 0.001 ismore beneficial
to obtain a stable and higher total reward network. Increasing the
learning rate has a clear negative impact on the network, which
reduces the steady-state value of the total reward and makes the
algorithm unstable.

5.5.3 Expected return rate
To reflect the continuity of decisions, we hope that the policy

network of EV agents can consider not only the current action's
income but also the income of several steps after executing the
action based on the current observationwhen selecting actions.That
is, we expect agents to perceive the future situation to a certain
extent.When the policy network of the agent outputs actions that are
given high-value scores by the evaluation network, we use the long-
term return discount factor γ to express the consideration degree
of the evaluation network for the future. The larger the γ, the more
the agent can consider future returns. An excessively small γ will
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make the evaluation network unable to foresee future events in
time, leading to a slower update speed of the policy network. By
contrast, an excessively large γ will lead to low prediction accuracy
of the future of the agent's evaluation network, making its prediction
results less credible, thereby making the policy network's updates
more frequent, slowing the convergence speed and even causing the
algorithm to diverge.

In the problem of optimizing the charging and discharging
scheduling of EVs, we hope that the agent can consider future factors
such as electricity price changes and environmental information
changes to a certain extent. Therefore, it is necessary to select
an appropriate return discount factor γ. Figure 13 shows the total
reward variation curves of the LEMADDPG algorithm with γ = 0.9
and γ = 0.99. The analysis is as follows:

(1) The curve of γ = 0.9 tends to converge near 800 episodes, while
the curve of γ = 0.99 gradually becomes stable and converges
after 1100 episodes.

(2) After 2800 episodes, both have converged.The steady-state value
of the γ = 0.9 curve is 0.42, and the steady-state value of the
γ = 0.99 curve is 0.38.

(3) The above results show that choosing a lower long-term return
discount factor γ = 0.9 is beneficial to algorithm training. If the
discount factor is too large, the agent is significantly influenced
by future factors when making decisions and cannot find an
appropriate improvement direction in the initial exploration
stage, leading to relatively slow convergence of the algorithm.

6 Conclusion

Aiming at solving the optimization scheduling problem of EV
charging and discharging in the smart grid, this paper establishes
a grid model involving the grid, charging equipment, and EVs. In
thismodel, EVs can conduct real-time bidirectional communication
with the grid through the charging device, exchanging current
TOU electricity prices and state information of the EVs. By taking
into account factors such as charging and discharging costs, user
demands, and grid stability, the model aims to minimize the
comprehensive cost during the charging and discharging process.
This paper enhances the MADDPG algorithm with LSTM network,
which is used to extract time series features fromhistorical electricity
price data, thereby guiding the charging and discharging strategies
of the agents.The simulation results demonstrate that, the proposed
method LEMADDPG algorithm improves the training convergence
speed by 19.72% compared to the MADDPG algorithm. More
critically, when addressing charging issues of EVs of various scales,
the proposed method shows the obvious advantages in formulating
strategies for large-scale EVs. Compared to DQN, it converges 33%
faster and achieves a superior policy optimization.

Our combined LSTM and MADDPG method demonstrates
potential, yet faces challenges in data dependency and
interpretability. While we've ensured robust training in data-
rich environments, practical applications may require strategies
like transfer learning. Moreover, addressing model transparency
remains a priority, and our future study will explore integrating
explainable AI techniques to enhance model clarity and
interpretability, aiming to make our contributions even more
valuable to the broader scientific community.
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Electric vehicle charging load
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With the large-scale development of electric vehicles, the accuracy of electric
vehicle charging load prediction is increasingly important for electric power
system. Accurate EV charging load prediction is essential for the efficiency of
electric system planning and economic operation of electric system. This paper
proposes an electric vehicle charging load predicting method based on variational
mode decomposition and Prophet-LSTM. Firstly, the variational mode
decomposition algorithm is used to decompose the charging load into several
intrinsicmode functions in order to explore the characteristics of EV charging load
data. Secondly, in order to make full use of the advantages of various forecasting
methods, the intrinsic mode functions are classified into low and high frequency
sequences based on their over-zero rates. The high and low frequency sequences
are reconstructed to obtain two frequency sequences. Then the LSTM neural
network and Prophet model are used to predict the high and low frequency
sequences, respectively. Finally, the prediction results obtained from the
prediction of high frequency and low frequency sequences are combined to
obtain the final prediction result. The assessment of the prediction results shows
that the prediction accuracy of the prediction method proposed in this paper is
improved compared to the traditional prediction methods, and the average
absolute error is lower than that of ARIMA, LSTM and Prophet respectively by
7.57%, 8.73%, and 46.02%. The results show that the prediction method proposed
in this paper has higher prediction accuracy than the traditional methods, and is
effective in predicting EV charging load.

KEYWORDS

electric vehicles charging load, prophet prediction model, neural network, variational
mode decomposition, time series prediction

1 Introduction

At present, the problems of environmental pollution and energy resource crisis are
becoming more and more serious. Oil-fueled automobiles are causing serious environmental
pollution and high energy consumption. Electric vehicles (EVs) offer cleaner energy and
environmental advantages over petrol vehicles, effectively alleviating problems such as
energy resource shortages and severe air pollution (Wu and Zhang, 2017). Consequently,
EVs have been widely promoted globally, and in China, the government has vigorously
advanced the construction of public and private EV charging stations (Gao and Zhang,
2011). However, a significant number of EVs connecting to the power grid can also have an
impact on the power grid. According to (Das et al., 2020), EV charging equipment may cause
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harmonic pollution to the grid, and the clustering effect of EV
charging will have a significant impact on distribution networks.
Chen and Huang (2019) demonstrates that the disordered charging
of huge numbers of EVs will have impact on the safety and reliability
of electric power system. At the same time, since the effective
prediction of EV charging load is a prerequisite for the analysis
of the impact of EV charging on the power grid, it is of great
significance to conduct accurate EV charging load prediction (Yin
et al., 2023).

Significant progress has been made in research on EV charging
load predicting all over the world. EV charging load predicting can
be divided into two categories: statistical model-based predicting
methods and deep learning-based predicting methods (Yin et al.,
2023). The methods based on statistical models are relatively simple,
computationally efficient, and have faster prediction speeds (Luo
et al., 2019). Selvi and Mishra (2021) utilizes a functional linear
regression model to predict the day-ahead power load. Bahrami et al.
(2014) employs a short-term power load prediction model that
combines wavelet transform with grey model, and the high
frequency component of the load is effectively eliminated, and
the prediction accuracy is improved. de Oliveria and Oliveria
(2018) forecasts medium-term electricity load using an
autoregressive integrated moving average model (ARIMA) with a
seasonal trend decomposition model combining weighted
regression. Luzia et al. (2023) forecasts Brazilian electricity
demand with ARIMA combined with Wavelet Transform and
Fourier Transform. Wang (2022) utilities ARIMA combined with
BP neural network to predict per capita coal consumption of China.
The above-mentioned models can achieve rapid predictions for
simple time series with high accuracy. However, these models
have poor robustness and perform less effectively in predicting
power loads with abrupt variations.

Deep learning-based prediction methods can overcome the
limitations of statistical model-based methods in predicting
complex sequences. Nikolaev et al. (2019) predicts wind power
generation using recurrent neural network (RNN). However,
RNN may encounter issues such as vanishing or exploding
gradients during the training process, which can affect the
prediction accuracy. Bouktif et al. (2018) predicts electricity
consumption in a particular city with Long Short-Term Memory
(LSTM) neural networks. They further optimized the time lag
features of the LSTM network using genetic algorithms (GAs).
LSTM networks address the problems of vanishing and exploding
gradients that occur in RNNs. Liu et al. (2019) utilizes support vector
machines (SVMs) to predict electricity load and employs empirical
mode decomposition (EMD) for denoising the power load data.
Wang et al. (2021) proposes a short-term electricity load predicting
model based on a locally random sensitivity deep autoencoder
(D-LiSSA). The model utilizes a nonlinear fully connected
feedforward neural network as the regression layer and utilizes
the learned hidden representations from D-LiSSA to enhance the
generalization ability of the model.

While deep learning-based prediction methods are effective in
handling nonlinear problems, their performance is influenced by the
quality of input data. In real-world scenarios, EV charging loads are
affected by many factors like electricity prices, temperature, date and
so on. Forecasting using only a single forecasting method can have
an impact on forecasting effectiveness (Luo et al., 2019). Therefore, it

is necessary to preprocess the data using appropriate methods and
employ ensemble predictionmodels for forecasting the preprocessed
data. To address this, Lu et al. (2019) utilizes convolutional neural
networks (CNNs) to extract feature vectors from a massive amount
of electricity load data and uses them as inputs to an LSTM neural
network to obtain load predictions. However, this approach only
utilizes superficial features of the data and does not perform deep
analysis. Time series data can be divided into components with
different characteristics using certain methods. The effect of disjoint
features on prediction can be avoided by predicting the partitioned
components. Therefore, Yang et al. (2021) decomposes the
photovoltaic power output into components with different
frequencies with Variational Mode Decomposition (VMD) and
uses LSTM to predict them, then, integrates predicting results to
get the final predicting result. In a similar manner, Wang et al.
(2020) uses a deep echo state network (DESN) to establish
prediction models for each component obtained through VMD,
and the predicting results are integrated to get the result. However,
these methods do not consider the characteristics of each
component during the predicting process and solely used a single
model to predict each component. In order to get better predicting
result, researchers have divided the components obtained through
VMD decomposition of electricity load data into high-frequency
and low-frequency sequences (Cai et al., 2022; Yu et al., 2022). Cai
et al. (2022) employes gate recurrent units (GRUs) and temporal
convolutional networks (TCNs) to predict the high-frequency and
low-frequency sequences, respectively. Then reconstructs the final
predicting result. Similarly, Yu et al. (2022) utilizes GRUs and
ARIMA models to predict the high-frequency and low-frequency
sequences separately and combines the predicting results to obtain
the result. These ensemble prediction methods consider the
characteristics of each component, leveraging the advantages of
different prediction models for high and low frequency sequences.
Compared to utilizing a single prediction model, these approaches
enhance the prediction accuracy. However, the ARIMA algorithm
requires more background knowledge and parameter tuning,
making it more complex. Moreover, when dealing with missing
data, manual imputation and handling are necessary for the ARIMA
algorithm. On the other hand, the Prophet algorithm overcomes
these drawbacks of the ARIMA algorithm and is better suited for
medium-scale time series data forecasting.

Based on the above analysis, an EV charging load predicting
method based on VMD and Prophet-LSTM is proposed in this
paper to improve the prediction accuracy of EV charging loads.
Firstly, for mining the characteristics of EV charging load data,
the load data is decomposed into several intrinsic mode
functions (IMFs) using VMD algorithm. Secondly, to fully
leverage the superiorities of each prediction model, the IMFs
are divided into high and low frequency sequences using zero-
crossing rates, and each sequence is reconstructed individually.
Then the high and low frequency sequences are predicted using
LSTM neural networks and the Prophet model, respectively.
Finally, the predicting results for high and low frequency
sequences are combined to get the final predicting result.
Evaluation of the predicting results shows that the predicting
method proposed in this paper achieves improved prediction
accuracy compared to traditional methods. The average
absolute error of the proposed method is lower than ARIMA,
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LSTM, and Prophet prediction models by 7.57%, 8.73%, and
46.02%, respectively.

2 Decomposition of EV charging load

2.1 VMD

The VMDmethod is a technique for estimating individual signal
components by solving a variational optimization problem in
frequency domain (Dragomiretskiy and Zosso, 2014). This
method can decompose complex unstable sequences into IMFs
with finite bandwidths, denoted as ui(t), where i � 1, 2, 3,/k,
and the central frequencies ωi of each IMF are determined
during the decomposition process, the parameter k above denotes
the number of IMFs after decomposition.

The principle of the variational problem is that the decomposed
sequence is a finite bandwidth modal component with a central
frequency. The original sequence is decomposed into k sub-
sequences, and the sum of all sub-sequences is guaranteed to be
the original sequence, while the sum of the estimated bandwidths of
the sub-sequences is minimum. The constrained variational
problem is shown as follows:

min
ui{ }, ωi{ }

∑k
i�1 ∂t δ t( ) + j/πt( )*ui t( )[ ]e−jωtt
������

������2
2

{
s.t.∑k

i�1ui − f

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (1)

where k represents the number of desired mode components to
be decomposed; ωi{ } and ui{ } represent the central frequency of
the i-th decomposed mode component and i-th component after
decomposition, respectively; δ(t) denotes the Dirac function,
and * represents the convolution operator. The selection of k is
typically done using optimization algorithms, based on central
frequencies, or through specific formulas. In this study, a
criterion is used to obtain the value of i (Zhang et al., 2021),
and the criterion is expressed as follows:

Ek � ∑k

i�1

��������∑len
j�1I

2
i j( )

len

√
(2)

θk � Ek+1 − Ek| |
Ek

(3)

where len represents the length of the time series; Ii represents the
i-th IMF, and Ek represents the energy of each intrinsic mode
function. When the θk suddenly increases after a certain value of k, it
is considered as the optimal value of k for that moment.

The constrained variational problem can be transformed into an
unconstrained variational problem by introducing the Lagrange
multiplier operator and the augmented Lagrange expression is as:

L uk{ }, ωk{ }, λ( ) � α∑k

i�1 ∂t δ t( ) + j/πt( )*ui t( )[ ]e−jωi t
������

������2
2

+ f t( ) −∑k

i�1ui t( )
������

������22 + 〈λ t( ), f t( ) −∑k

i�1ui t( )〉
(4)

where α is the quadratic penalty factor, which is used to decrease the
disturbance of Gaussian noise. The optimal modal component and

center frequency can be obtained by the alternating direction
multiplier (ADMM) iterative algorithm combined with Fourier
iso-distance transform and Parseval/Plancherel, and the saddle
point of augmented Lagrange function can be obtained. The
process of alternating optimization iteration for uk, ωk and λ is
as follows:

ûn+1
k ω( ) ← f̂ ω( ) −∑i≠kûi ω( ) + λ̂ ω( )/2

1 + 2α ω − ωk( )2 (5)

ωn+1
k ←

∫∞
0
ω ûn+1

k ω( )∣∣∣∣ ∣∣∣∣2dω
∫∞
0
ûn+1
k ω( )∣∣∣∣ ∣∣∣∣2dω (6)

λ̂
n+1

ω( ) ← λ̂
n
ω( ) + γ f̂ ω( ) −∑

k
ûn+1
k ω( )( ) (7)

where γ represents the noise margin, which meets the fidelity
requirement of decomposition of signal; ûn+1k (ω), ûi(ω), f̂(ω),
and λ̂(ω) correspond to the Fourier transforms of un+1k (t), ui(t),
f(t), and λ(t).

2.2 Division of high and low frequency
sequences

Sequences with high frequency that possess poor stationarity
and complexity are predicted by LSTM neural network. This paper
uses the Prophet model to predict sequences with low frequency that
are stable and periodic. Therefore, it is necessary to divide the
intrinsic mode functions obtained by VMD processing into
sequences with high and low frequencies.

This paper primarily utilizes the over zero rate of a sequence to
divide the high and low frequency sequences. The over zero rate of a
sequence is defined by the following equation:

PsZC �
nZC

N
(8)

where nZC represents the number of passing zero in the sequence;N
represents the length of the sequence.

3 Predicting method of EV charging
load based on Prophet-LSTM

3.1 Prophet model

The Prophet model is a time series forecasting model developed by
the Facebook team (Taylor and Letham, 2018). This model fits the time
series by considering trend components, seasonal components, holiday
effects, periodic components, and error terms. The prediction results are
obtained by combining these fitted components. The Prophet model
can be represented by the following equation:

y t( ) � g t( ) + h t( ) + s t( ) + ε t( ) (9)
where g(t) represents the trend term, which captures the non-
cyclical trends in the time series; h(t) represents the holiday term,
accounting for the impact of holidays on the time series; s(t)
represents the seasonal term, typically defined at the weekly or
yearly level; ε(t) represents the error term, which captures the
unexpected fluctuations of the time series.
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The trend term can be expressed as:

g t( ) � C
1 + e −k t−m( )( ) (10)

where C represents the load capacity; k represents the rate of
increase; m represents the deviation parameter.

The holiday effect can be represented by the following equation:

FIGURE 1
The structure of LSTM neural network.

FIGURE 2
Forecasting process of Prophet-LSTM prediction model.
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h t( ) � Z t( )κ
Z t( ) � 1 T ∈ D1( ),/, 1 TDL( )[ ]

κ ~ Normal 0, v2( ) (11)

where Di represents the set of the past and future dates of holiday i.
The Prophet model is a model-based forecasting method.

Currently, another popular model-based forecasting method is
the ARIMA model. The Prophet model incorporates the
advantages of the ARIMA model while avoiding its disadvantages
such as limited robustness and the inability to consider external
factors that influence time series changes. Therefore, this paper
chooses the Prophet model to predict stationary low-frequency
sequences.

3.2 LSTM neural network

LSTM neural networks are a variant of recurrent neural
networks (RNNs) that were primarily developed to address the
issue of vanishing and exploding gradients that can occur in RNNs

during long sequence predictions (Li et al., 2018). Compared to
traditional RNNs, LSTM neural networks have improved
performance in long sequence predictions.

LSTM networks extend the basic structure of RNNs by
introducing additional components such as input gates, forget
gates, output gates, and a concept known as the cell state. These
additions allow LSTMs to selectively retain and discard information
over time, enabling them to capture long-term dependencies more
effectively. The architecture of an LSTM network is illustrated in
Figure 1.

LSTM neural network has a more complex structure compared
to traditional RNNs, as shown in Figure 1. LSTM introduces the
concept of a cell state and utilizes input, output and forget gates to
control and retain information. The calculation for LSTM at time
step t is as follows:

f t � σ Wf · ht−1, xt[ ] + bf( )
it � σ Wi · ht−1, xt[ ] + bi( )
~ct � tanh Wc · ht−1, xt[ ] + bc( )
ct � f t*ct−1 + it*~ct
ot � σ Wo · ht−1, xt[ ] + bo( )
ht � ot*tanh ct( )

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(12)

where ft, it, and ot denotes the forget, input, and output gate layer,
respectively; ct denotes the cell state; ~ct denotes the cell state
candidate value; ht represents the hidden state; W and b denotes
the weights and biases.

The forget gate combines the foregoing hidden state with the
present input, and utilities the sigmoid function to determine which
information to discard. The sigmoid function outputs values
between 0 and 1. It discards part of the information when its
value is approaching to 0 and keeps the information when its
value is nearly 1.

FIGURE 3
Charging power diagram of EV charging station.

TABLE 1 VMD algorithm parameters.

Parameters Value of parameters

Data fidelity constrains balance parameters α 8,000

Double ascending time step tau 0

Label value of whether the first mode is DC False

Center frequency label value init 0

Convergence criterion tolerance tol 1e-7
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The input gate and the tanh function determine which new
information to incorporate from the foregoing hidden state and the
present input, resulting in a candidate value ~ct.Then, the forget and
input gates are combined to discard or retain information, resulting
in the current cell state ct.Finally, the output gate combines with the
tanh function to determine which information from ht−1, xt and ct
to output as the current hidden state ht at the current time step.

The LSTM neural network constructed in this study consists of a
96-dimensional input layer, a 1-dimensional output layer, two
LSTM layers, and four fully connected layers. The number of
neurons in these layers is 128, 64, 32, and 16, respectively. The
activation function chosen for the LSTM layers is the hyperbolic
tangent (tanh) function. The Adam optimization algorithm is used
to minimize the error during training. This LSTM neural network is
utilized for predicting high-frequency sequences with significant
variations. Through multiple iterations and training, an effective
LSTM prediction model is obtained, which is capable of capturing
complex temporal dependencies and making accurate predictions.

3.3 Prophet-LSTM combination model

Since the EV charging load time series is highly influenced by
real-world factors, the time series exhibits pronounced variations.
Predicting such time series using a single forecasting method
without considering the relevant factors often results in poor
prediction performance and large errors. Therefore, it is
necessary to utilize a combination forecasting model. In this
study, a Prophet-LSTM prediction model is established. The
proposed model takes the advantages and disadvantages of both
the Prophet and LSTM model into account. The Prophet model is
employed to predict low-frequency sequences with relatively smooth
variations, while the LSTM neural network is used to predict

sequences with high frequency with more pronounced variations.
By dividing the original complex time series prediction problem into
two relatively simpler time series prediction problems, better
prediction results can be achieved. The overall prediction process
is illustrated in Figure 2.

3.4 Error evaluation index selection

To assess the prediction performance of the Prophet-LSTM
model, this study uses the mean absolute error (MAE) as well as
the goodness-of-fit to evaluate(R-squared) the prediction
results. The calculation methods for MAE and R-squared are
as follows:

XMAE � ∑l

n�1
ŷn − yn
ŷn

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ (13)

R2 � 1 − ∑l
n�1 ŷn − yn( )2

∑l
n�1 �y − yn( )2 (14)

where l represents the length of the sequence; ŷn denotes the
predicted value of the model for the nth data in the sequence; �y
denotes the mean of the sample.

4 Results

The hardware environment for the experiments includes an
Intel i5 8300H 2.3 GHz CPU and an NVIDIA GTX 1050Ti
graphics card, with 16 GB of memory. The model was
implemented using Python 3.9 as the programming language,
utilizing software architectures such as TensorFlow, Keras, and
the Prophet algorithm framework for power load forecasting.

FIGURE 4
Changing map of θk .
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4.1 Data processing

This study utilizes EV charging data from a charging station in
Fujian Province, China, spanning from January to April 2022. The

sample time of the data is 15 min. The EV charging power curve is
depicted in Figure 3.

Each red “q” in Figure 3 represents 24:00 of the previous day
and 0:00 of the next day. The power data between two consecutive

FIGURE 5
Sequence diagram after VMD decomposition.

TABLE 2 Over zero rate of each IMF.

IMF Zero-crossing rate

IMF1 0

IMF2 0.041

IMF3 0.063

IMF4 0.083

IMF5 0.106

IMF6 0.125

Based on the threshold of 0.05 for the zero-crossing rate, the division between high-frequency and low-frequency sequences can be defined as follows: when the zero-crossing rate of an intrinsic

mode function is greater than 0.05, it is considered as a high-frequency sequence, and when the zero-crossing rate is less than 0.05, it is considered as a low-frequency sequence.
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“q” markers is complete data set for each day. From Figure 3, it
can be observed that the raw data has a certain periodicity. Given
the 15-min data granularity, this study defines 96 time steps as
1 week. However, the daily variation of the charging load is quite
volatile, and the sequence is not sufficiently stationary. Using a

single forecasting method for prediction would result in poor
performance. Therefore, this paper employs the VMD algorithm
to partition the time series into components with high and low
frequency. The parameters for the VMD algorithm are shown in
Table 1.

FIGURE 6
Predicting result of low frequency sequence.

FIGURE 7
Predicting result of high frequency sequence.
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First, the value of k in the VMD algorithm needs to be
determined using Eqs 2, 3. The variation of θk with the value of
k is illustrated in Figure 4.

From Figure 4, it can be observed that θk reaches its minimum
value during a decreasing process when k is equal to 7. However,
when k is equal to 8, θk increases dramatically. Additionally, since
the values of θk are close when k equals 6 and k equals 7. Based on
the selection rule mentioned above, it can be considered that an
appropriate value for k is 6. By applying the VMD algorithm with
k = 6, the sequence is divided into six IMFs by the VMD algorithm,
and the individual IMFs are illustrated in Figure 5.

Based on Figure 5, it can be observed that the magnitude of
fluctuations increases from IMF1 to IMF6. In this paper, the zero-
crossing rate is used to divide the decomposed IMFs into sequences
with high and low frequency. The zero-crossing rates of the obtained
intrinsic mode functions are provided in Table 2.

4.2 Results analysis

Through the application of the VMD algorithm, the data was
processed and divided into the high-frequency sequence with more
pronounced variations and the low-frequency sequence with
relatively stable variations. The low-frequency sequence was then
predicted using the Prophet model, while the sequence with high

frequency was predicted using LSTM neural network. The resulting
predictions for sequences with high and low frequency are shown in
Figures 6, 7, respectively.

Finally, the predicting results for the sequences with high and
low frequency are combined to obtain the final prediction result. The
comparison between the predicting result of the Prophet-LSTM
method and other predicting methods is illustrated in Figure 8.

As can be seen from Figure 8, compared with several other
predicting methods, the predicting method proposed in this paper
has a better performance. The predicting results are better fitted to
the real data curve. Additionally, the error values and R-squared
values for eachmodel’s predicting results are summarized in Table 3.

Table 3 presents the assessed values of predicting results of each
method. According to Table 3, the VMD-Prophet-LSTM prediction
method proposed in this study exhibits the highest accuracy. The
average absolute errors of the VMD-Prophet-LSTM model are
7.57% lower than those of the ARIMA model, 8.73% lower than
those of the LSTM model, and 46.02% lower than those of the
Prophet model. This indicates that the VMD technique utilized in
the proposed model enables the Prophet model to be applied for
predicting sequences with pronounced variations and improves its
performance in predicting sequences with high volatility. Moreover,
it ensures the predicting performance of the LSTM model.

Additionally, the coefficient of determination (R-squared) value
achieved by the proposed prediction model is 0.8411. Generally, a value
of 0.8 or higher indicates a good fit. Therefore, the prediction
performance of the proposed method is satisfactory, and it
demonstrates improvements compared to current prediction methods.

5 Conclusion

This paper proposes a combined forecasting method for EV
charging load predicting. The proposed method is based on the
VMD technique and integrates the advantages of the Prophet model
and LSTM neural network. Through the application of the VMD

FIGURE 8
Comparison of prediction results.

TABLE 3 Evaluation value of different model predicting results.

Forecasting methods MAE/kW R2

Prophet-LSTM 109.22 0.8411

ARIMA 118.16 0.8227

LSTM 119.67 0.8202

Prophet 202.32 0.4936
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algorithm, the EV charging load time series is divided into sequences
with high and low frequency, allowing the Prophet model and LSTM
neural network to leverage their advantages for prediction. The
conclusions drawn from the case analysis are as follows:

(1) Compared to using a single method to predict the EV charging
load time series, the proposed combined forecasting method
demonstrates better prediction performance.

(2) By employing the VMD technique and zero-crossing rate, the EV
charging load time series is effectively partitioned into a relatively
stable sequence with low frequency and a highly volatile sequence
with high frequency. The Prophet model and LSTM neural
network are then applied to predict the sequences with low and
high sequency, respectively. The case analysis demonstrates that
this partitioning approach helps overcome the limitations of the
Prophet model in predicting sequences with high volatility, thereby
reducing the errors in the combined forecasting results.

Overall, the proposed method proves effective in improving the
EV charging load prediction accuracy by leveraging the advantages
of both the Prophet model and LSTM neural network, while
addressing the challenges posed by highly volatile sequences
through the utilization of the VMD technique.

In the future research, the combined prediction method
proposed in this paper will be applied to different fields (such as
photovoltaic power prediction) to further verify the prediction
performance and generalization ability of this method.
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Precise emergency load shedding
approach for distributed network
considering response time
requirements
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Emergency load shedding (ELS) is a vital measure for power systems to manage
extreme events, ensuring the safety, stability, and economic operation of the grid.
The integration of distributed energy resources and controllable devices in
modern power systems has bolstered grid flexibility. Consequently, developing
precise load shedding strategies to balance economic and security goals has
emerged as a prominent subject in power system optimization. However, existing
methods exhibit inadequacies, including overlooking practical operability, privacy
concerns, and a lack of adaptability to response time requirements. To address
these gaps, this paper introduces a precise ELS approach for distributed networks
with a focus on response time needs. Contributions encompass designing load
shedding processes for various response times, integrating demand response, and
partitioning networks for optimized load shedding. Through validation using
standard test cases, the proposed approach effectively utilizes response time
and demand-side resources for precise ELS control in distribution networks. It
accommodates different scenarios, offering a robust solution for rapid and
accurate load shedding during emergencies.

KEYWORDS

load shedding, demand response, G-H Tree, distributed optimization, network
reconfiguration

1 Introduction

Precise ELS is an essential measure for power systems to cope with extreme events,
playing a crucial role in ensuring the safety, stability, and economic operation of the power
grid. In modern power systems, the increasing integration of distributed energy resources
and controllable devices has significantly enhanced the flexibility and responsiveness of the
grid. Therefore, how to develop accurate load shedding control strategies to achieve a balance
between economic and security objectives has become a hot topic in power system
optimization and control research.

The approaches can be divided into two categories: optimization-based and AI-based
approaches. The optimization-based approach models ELS as an optimization problem with
nonlinear constraints or objectives. As to constraints, voltage/frequency deviation security is
always considered a nonlinear constraint, which can lead to transient angle stability
constraints (Xu et al., 2017), multi-operation modes constraints (Xu et al., 2019), voltage
stability constraints (Al-Rubayi and Abd, 2020), stochastic correlation constraints (Jiang
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et al., 2019), etc. Some methods are used to enhance optimization
efficiency, such as the constraint relaxation method (Li et al., 2017)
and the parallel methods (Jiang, Wang and Geng, 2014; Gan et al.,
2018). These approaches suffer from their slow reaction to the
intense system state variation and require a specific to-decide
time (Liu et al., 2022).

Artificial intelligence (AI) techniques have been identified as an
effective and efficient data-driven tool for ELS problems and other
power system applications, which can be divided into economic
dispatch (Xu et al., 2017), operation (Mohandes et al., 2019) and
planning (Deng and Lv, 2020). Its purpose is to find the
approximation form of real electrical phenomena by learning the
nonlinear mapping between operation features and targets from the
offline or online database, in which the latter can update model
parameters in a rolling manner. The neural networks (Zhang et al.,
2015; Zhang et al., 2017) and deep learning methods (Yu et al., 2018)
are proposed for the fast ELS problem. In (Wang et al., 2021), a load
shedding contribution indicator is introduced as a load shedding
criterion into the reward value function of dueling deep Q learning.
In (Vu et al., 2021), a safe RL-based load shedding of power systems
that can enhance the safe voltage recovery of the electric power grid
after experiencing faults is proposed. In (Chen et al., 2023), An
emergency load shedding method based on data-driven strategies
and deep RL which constructs a typical mismatch scenario is
proposed. Regarding ELS, the extreme learning machine (ELM)
algorithm is applied in (Dai et al., 2012; Li et al., 2021) to maintain
the frequency, which is further advanced in (Gomez-Exposito,
Conejo and Caizares, 2008).

Although the reported methods show high effectiveness in
solving ELS problems, they show the following inadequacies:

(1) The approach subdivides the load to be shed into precise-
grained units and ideally treats users in low-voltage
distribution areas as fully controllable entities. However, it
overlooks the minimum units for load shedding and users’
controllable willingness based on cost, leading to a lack of
practical operability.

(2) Using user-controllable cost as all known information for multi-
objective optimization neglects the issue of information privacy.
Moreover, this centralized solving approach may encounter
infeasibility or excessive computation time when dealing with
a large number of users, making it challenging to meet the time
constraints for emergency load shedding.

(3) The methods lack a design to address the response time
requirement of control instructions and apply a uniform
direct optimization approach for all scenarios. This may
result in situations where control decisions cannot be made
within the required response time under high-speed response
demands.

To fill the above gaps, this paper focuses on the precise ELS
approach for distributed networks considering response time
requirements. The main contributions of the proposed methods
are as follows:

(1) Designing a precise emergency load shedding optimization
process for distribution networks with different response
time requirements; clarifying the load shedding control

approach under various response time demands to ensure a
rapid and effective response to load shedding instructions from
the main station.

(2) Developing an emergency load shedding control method for
distribution networks with low response time requirements,
based on demand response; under high time requirements,
giving priority to load shedding in regions with higher load
importance to achieve fast load shedding in a short period.

(3) Building an emergency load shedding control method for
distribution networks with low response time requirements,
considering users’ willingness to respond; Incorporating the
users’ winning demand response bid to mitigate the societal
impacts of load shedding during emergencies and ensuring
precise execution of main station instructions. Incorporate
user-initiated response capabilities.

(4) Creating a fast load shedding control optimization method for
distribution networks with low response time requirements,
based on network partitioning; by equivalently dividing the
distribution network into zones, reducing the complexity of load
shedding optimization problems based on tie switches and
supply switches, and achieving rapid load shedding with a
certain level of accuracy.

Through verification with standard test cases, the proposed
approach in this study effectively utilizes response time and
demand-side resources to achieve precise emergency load
shedding (ELS) control in distribution networks. The method is
capable of providing fast load shedding with lower precision under
high response time requirements, and appropriately balancing speed
and accuracy for ELS under low response time requirements. These
results demonstrate that the approach can adapt to different
scenarios, offering an effective solution for rapid and accurate
load shedding in distribution networks during emergencies.

2 Precise ELS optimization formulation

In actual load shedding control, to ensure the stability of the
power system during extreme events, the most critical aspect is to
execute the minimum load shedding commands within the required
control time. However, the precise ELS control relies on the
optimized consideration of discrete control objects such as power
supply switches and tie switches between different branches. The
resulting mixed-integer programming problem often requires
lengthy optimization calculations and is not well-suited for load
shedding commands with high response time requirements.
Therefore, it is necessary to execute load shedding control
commands differently for different response time requirements.

To address this, this study proposes two distinct methods for
load shedding control based on different response time
requirements. The first method is a fast ELS control based on the
weighted method, suitable for high response time requirements. The
second method is an optimal load shedding control considering
demand response and network partitioning, specifically designed for
low response time requirements. This approach achieves rapid load
shedding control with lower accuracy for high response time
requirements and appropriately paced load shedding control with
higher accuracy for low response time requirements in the
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distribution network. The basic control logic is illustrated in the
following flowchart Figure 1.

2.1 Fast ELS control without regard to
substation network reconfiguration

When the response time requirement issued by the master
station is lower than the substation control threshold, the load
shedding control process with a high response time requirement is
activated. In the fast ELS control phase, to meet the response time
requirement, the substation only performs disconnection operations
on distribution line closing switches without regard to complex
distribution network reconfiguration. Specifically, the substation
determines the downstream load nodes that are affected by the
resection of each closing switch and screen the switches to
disconnect according to the control command and load
importance ranking.

The specific process of the precise load shedding control strategy
for the power grid without regard to network reconfiguration is shown
in Figure 2. In this, offline phase before accepting the command, the
substation computes the sets of downstream nodes supplied by
different switches. This can usually be accomplished by graph-
theoretic methods such as the shortest path method and does not
take up command execution time. In the execution phase, the
equivalent loss caused by the disconnection of each switch is
calculated and sorted. The switches are added to the action switch
set from smallest to largest until the control command is satisfied.

Ks � ∑
j∈N s

ajpj (1)

ΔPsub � ∑
s∈SA

∑
j∈N s

pj (2)

Where, Ks represents the equivalent loss after disconnecting
switch s; N s represents the set of downstream loads supplied by
switch s; aj represents the importance of the j-th load (where higher

FIGURE 1
Optimization process for precise ELS at substations based on response time requirement differences.

FIGURE 2
The specific process of the fast ELS control without regard to network reconfiguration.
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values indicate greater significance); pj represents the active power
of the j-th load; ΔPsub represents the load shedding capacity of the
substation; SA the set of switches to be disconnected;

2.2 Demand response-based ELS control
method at substations under low response
time requirement

When the response time requirement issued by the master
station falls below the substation control threshold, the load
shedding control process with a low response time requirement
is activated. The demand response resources on the user side are
abundant and can actively participate in the load shedding control
process. Considering it can provide effective support for overall load
control, this study incorporates the demand response resources that
won bids in the ancillary service market and possesses fast response
capabilities into the load shedding consideration.

Taking the common day-ahead solicitation type demand
response as an example, the trading center collects the response
volume and price reported by the user and determines the clearing
price and the winning volume of the user. Then, the control
substations and execution substations interact with the trading
center to identify users’ specific adjustable boundaries. The
control substations optimize the formulation of control
instructions for adjustable resources at various nodes based on
specific distribution network operation information and then
proceed with the issuance. During the optimization control
process of the controlling substations, the distribution network’s
power flow constraints need to be considered, and the solution space
for this optimization can be described as follows.

∑
k: j,k( )∈L

Pjk � ∑
i: i,j( )∈L

Pij − rij
P2
ij + Q2

ij

V2
i

− pj( ) (3)

∑
k: j,k( )∈L

Qjk � ∑
i: i,j( )∈L

Qij − xij

P2
ij + Q2

ij

V2
i

− qj( ) (4)

V2
j � V2

i − 2 rijPij + xijQij( ) + r2ij + x2
ij( )P2

ij + Q2
ij

V2
i

(5)
V0 � Vref (6)

P2
ij + Q2

ij ≤ S
2
ij (7)

Vi,min ≤Vi ≤Vi,max (8)
Pij,min ≤Pij ≤Pij,max (9)
Qij,min ≤Qij ≤Qij,max (10)

Where,L represents the set of all branches in the distribution
network, Pij and Qij represent the active power flow and reactive
power flow of the branch, respectively, rij and xij represent the
resistance and reactance of the branch, respectively, pj, qj, Vj

represent the active and reactive power, and voltage at node j ,
respectively, Vref represents the reference voltage at the upper-level
grid connection point (node 0), in this study, the reference voltage
per unit value is set to 1.05, Vi,min and Vi,max represents the upper
and lower bounds of the voltage squared at node i, respectively,
Pij,min, Pij,max, Qij,min, Qij,max represent the active and reactive
power limits of the branch ij, respectively, Sij represents the
apparent power flowing through the branch.

Clearly, this constraint exhibits typical nonlinear non-convex
characteristics, and solving it usually requires a considerable amount
of time, with difficulty in guaranteeing optimality. This contradicts
the requirement for load control to be fast and cost-effective.
Therefore, this study considers introducing second-order cone
relaxation to convexify the space of the aforementioned power
flow constraints, and the results are as follows:

∑
k: j,k( )∈L

Pjk � ∑
i: i,j( )∈L

Pij − rijlij − pj( ) (11)

∑
k: j,k( )∈L

Qjk � ∑
i: i,j( )∈L

Qij − xijlij − qj( ) (12)

Uj � Ui − 2 rijPij + xijQij( ) + r2ij + x2
ij( )lij (13)

U0 � Uref (14)
P2
ij + Q2

ij ≤Uilij (15)
Ui,min ≤Ui ≤Ui,max (16)
Pij,min ≤Pij ≤Pij,max (17)
Qij,min ≤Qij ≤Qij,max (18)

Where:lij and Uj represents the square of the current in branch ij
and the square of the voltage at node j, respectively.

For each node, its controllable resources on the load side can be
aggregated (Lu et al., 2020), presenting clear controllable boundaries
and participating in the demand response bidding market.
Therefore, in the specific load shedding control process, the load-
side resources can be simplified and considered as upper and lower
limit constraints on node load regulation.

pj,base ≥pj ≥pj,base − Δpj,max (19)
qj,base ≥ qj ≥ qj,base − Δqj,max (20)

Where:pj,base and qj,base represent the pre-ELS reference active and
reactive power at node j, respectively, Δpj,max and Δqj,max represent
the total winning bid and corresponding reactive power in demand
response for the users located at node j, respectively.

Furthermore, it is necessary to consider the response of
substation load control to the master station. However, since
even with the complete removal of demand response resources at
the substations, it may still be challenging to ensure that the load
shedding amount meets the master station’s control requirements.
Therefore, it is difficult to include it directly as a constraint in the
optimization model. In this regard, the constraint for the minimum
response requirement is relaxed and formulated as a soft constraint
in the optimization objective. Additionally, considering that the cost
of load control under demand response is determined through
market clearing, and the importance of load is not considered at
this stage, the optimization objective is formulated as follows:

min
pj,qjUjlij ,Pij ,Qij{ }F1 + F2 (21)

F1 � ∑nB
j�1

pj,base − pj( ) (22)

F2 � α p0 − p0,base − ΔPD( )2 (23)
Where:F1 and F2 represent the substation demand response
compensation cost and penalty cost for instruction response
deviation, respectively, α represents the penalty cost coefficient
for instruction response deviation should be chosen as a
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relatively large constant (considered as 10,000 in this study) to
ensure the priority fulfillment of the master station control
instruction ΔPD, nB represents the total number of nodes in the
substation network, where node 0 is the connection point to the
upper-level grid, p0 represents the negative value of the power
supplied by the upper-level grid.

Clearly, in this scenario, when there are sufficient demand
response resources at the substations to respond to the master
station’s control instructions, the optimization results will
prioritize achieving response effectiveness and subsequently
minimize the load shedding control. However, when it is not
possible to fulfill the master station’s control instructions with
the available resources, the optimization results will attempt to
utilize all demand response resources as much as possible. Later
on, the subsequent partitioned load shedding control model will
provide support to compensate for any response shortfall.

2.3 Fast load shedding control optimization
method based on substation partitioning
under low response time requirement

As mentioned above, when the load shedding optimization at
the substation based on demand response cannot fully meet the
master station’s load shedding instruction, the load shedding control
process described in this section will be activated. In this section,
after fully utilizing the continuous adjustable demand-side
resources, the focus will shift to consider the operation of tie
switches and node supply substation switches in the substation
grid. At this point, the problem will exhibit typical characteristics of
a mixed-integer programming problem, and solving it will face
difficulties due to the large-scale integer variables, making it
challenging to fully satisfy the load shedding control time
requirement.

In practice, it is often unnecessary to optimize load shedding for
all global switch variables, as the control benefits gained from
optimizing the entire system may not significantly improve
compared to optimizing specific local regions. However, the
computational cost required for solving the optimization for all
global variables will substantially increase. Therefore, for
engineering implementation purposes, this study adopts a
partitioned optimization approach for load shedding control at
the substations, aiming to narrow down the optimization scope
as much as possible and achieve rapid switch actions within a short
time. Specifically, by partitioning, the original large-scale problem is
approximated into multiple small-scale problems. Each problem
focuses on a part of integer variables, resulting in a decrease in time
complexity for the problem. The control logic is illustrated in the
Figure 3. The upper level optimization optimizes the contact switch
state and subarea load-shedding commands to achieve coordination
of the lower-level subregions.

2.3.1 Substation ELS global optimal control
constraint model

After demand response, the controllable objects for ELS are all
the controllable switches in the network. At this point, the network
structure and the power supply to loads have changed, making it
difficult to guarantee radial network constraints and power flow

constraints. Therefore, in the optimal control at this stage,
comprehensive considerations are necessary.

(1) Radial constraints in the distribution network

The current distribution network generally follows the principle
of “closed-loop construction and open-loop operation” to ensure the
effective operation of distribution network relay protection devices.
Therefore, in reconstruction and other relevant optimization
decisions after faults, the constraints of the radial network are
usually crucial and cannot be ignored. Currently, many studies
have focused on models related to commodity flow, but they
have issues such as poor scalability and weak adaptability to
large-scale networks. In contrast, the radial constraint method
based on graph theory and maximum density has been proven to
be a simpler andmore general approach. Thus, this study adopts it as
the radial network constraint model, and the expression is as follows:

f+
ij + f−

ij � cij,∀ i, j( ) ∈ L (24)

∑
j: i,j( )∈L

f+
ji + ∑

j: i,j( )∈L
f−
ij ≤

N∣∣∣∣ ∣∣∣∣ − S| |
N∣∣∣∣ ∣∣∣∣ − S| | + 1

,∀i ∈ N /S (25)

∑
i∈S

∑
j: i,j( )∈L

f+
ji + ∑

j: i,j( )∈L
f−
ij

⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦≤ N∣∣∣∣ ∣∣∣∣ − S| |
N∣∣∣∣ ∣∣∣∣ − S| | + 1

(26)

f+
ji, f

−
ij ≥ 0,∀ i, j( ) ∈ L (27)

Where:N and S represent the set of internal nodes in the
distribution network and the set of supply nodes from the upper-
level grid have the number of elements as |N | and |S|, respectively,
cij is binary variable that represents the connectivity status of branch
ij (0 for disconnected, 1 for connected), f+

ij and f−
ij represents the

auxiliary variable, with a value greater than or equal to 0.

(2) Distribution network power flow constraints considering line
transfers and load supply constraints

In the previous section, this study has already introduced the
second-order cone relaxation results for distribution network power
flow constraints, which are applicable only to modeling power flow
in a deterministic topology and not suitable for scenarios involving
dynamic line transfers and load shedding. Therefore, this study
introduces integer variables to describe load transfers and load
shedding constraints separately and establishes their correlation
with radial network constraints. The expressions Eqs 11–13) are
rewritten as Eqs 28–30), and expressions (Eqs 17, 18) are rewritten
as (Eqs 31, 32). Additionally, expressions (Eqs 33, 34) are included to
implement faulted line constraints and their correlation with radial
constraints. The resulting power flow constraints are as follows:

∑
k: j,k( )∈L

Pjk � ∑
i: i,j( )∈L

Pij − rijlij − wjpj( ) (28)

∑
k: j,k( )∈L

Qjk � ∑
i: i,j( )∈L

Qij − xijlij − wjqj( ) (29)

Uj − Ui � −2 rijPij + xijQij( ), if zij � 1
−∞≤Uj − Ui ≤∞, if zij � 0

{ (30)
zijPij,min ≤Pij ≤ zijPij,max (31)
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zijQij,min ≤Qij ≤ zijQij,max (32)
zij � cij (33)

zij � 1,∀ i, j( ) ∉ B (34)
Where:zij is binary variable which represents the connectivity
control status of branch ij, where 0 indicates that branch ij is
disconnected (open), and 1 indicates that branch ij is connected
(closed), wj is binary variable which represents the load shedding
instruction for node j, where 0 indicates load shedding (cut-off), and
1 indicates no load shedding (not cut-off), B represents the set of
branches with tie switches.

As can be seen, expression Eq. 30) is a significant logical
constraint, which can be linearized as follows:

O − 1 − zij( )M≤Uj − Ui ≤O + 1 − zij( )M
O � −2 rijPij + xijQij( )

⎧⎨⎩ (35)

Where:O represents continuous auxiliary variable, M represents a
very large constant.

(3) Optimization objective

Different from the load shedding step in demand response
where controllable resources are limited, the constraints on the
response to the main station control instructions can be relaxed and
converted into penalty terms in the optimization objective. This step
is the final stage of precise load shedding, and it must strictly satisfy
the constraints of the main station control instructions. Therefore, at
this stage, load shedding should minimize its impact while meeting
the requirements of the control instructions. The corresponding
constraints and objectives are shown below.

max
zij ,aj ,f+

ij ,f
−
ij ,Pij ,Qij{ } ∑

j∈N
wjajpj( ) (36)

p0 ≥p0,base + ΔPD (37)

2.3.2 Partitioning method for substation
distribution network based on Gomory-Hu
algorithm

As can be seen, to fully describe the network constraints and load
shedding constraints in the distribution network, the load control
model introduces a large number of integer variables. The overall

FIGURE 3
Fast load shedding control optimization method based on substation partitioning under low response time requirement.

FIGURE 4
Partitioning schematic diagram.
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optimization problem belongs to a complex mixed-integer problem,
and its solution process will require a considerable amount of
computation time, making it difficult to meet the requirements of
load control speed. Therefore, this study considers partitioning the
overall power grid, establishing an equivalent simplified network,
determining the optimization results of the equivalent network, and
then performing small-scale optimization control. One of the key
aspects of partitioning is to ensure the consistency of distribution
network constraints before and after partitioning. The distribution
of tie switches should be an important basis for partitioning to avoid
conflicts in radial network constraints between partitions. Please
refer to the Figure 4 for more details.

As can be seen in the schematic on the left side of the diagram,
the partitioning includes branches with tie switches, and the
equivalent simplified network with radial topology requires
coordination of internal switches. This necessitates the design of
an appropriate iterative method to achieve connectivity
coordination. On the right side of the partitioning, there are no
tie switches in the internal branches, so only ensuring the
connectivity constraint of the optimized simplified network is
required, making it an ideal partitioning method.

In practice, to achieve the ideal partitioning method mentioned
above, the goal is to include tie switches in the cutting planes as
much as possible. This problem can be transformed into a classic
graph theory partitioning problem. Therefore, this study introduces
the Gomory-Hu algorithm to achieve the ideal partitioning of the
substation distribution network.

(1) Transformation of the minimum cut problem in an undirected
weighted graph

First, transform the substation network into an undirected
weighted graph G � (V, E), where V is the set of nodes, and E is
the set of edges formed by branches. The weight of each edge can be
set based on the presence or absence of tie switches; if there is a tie
switch, the weight of the edge is set to 1, and if there is no tie switch,
it is set to a large value (determined based on the network size,
usually set to 100), as follows:

ω u, v( ) � 1, if u, v( ) ∈ B
ω u, v( ) � 100, if u, v( ) ∉ B{ (38)

Where:u and v represent the node u and node v, respectively, (u, v)
and ω(u, v) represent the edge between nodes u and v and their
corresponding weight values.

Consequently, the partitioning of the power grid can be
viewed as a division of the node set V. All nodes in graph G
can be divided into two sets, denoted as S and T. If nodes u ∈ S and
v ∈ T are involved, this partition is referred to as a cut concerning
u and v. The edges (u, v) ∈ E involved in this cut are known as cut
edges, and the capacity of the cut is defined as the sum of all cut
edges.

Based on this, the minimum cut for nodes u and v refers to the
cut (u, v) with the smallest capacity. Therefore, solving the problem
of the optimal partitioning of the power grid is equivalent to finding
the minimum cut of graph G. Assuming that the power grid is
divided into k disjoint sets C1, C1, . . . , Ck, the minimum cut
problem can be represented as follows:

min∑k−1
i�1

∑k
j�i+1

∑
u∈Ci,v∈Cj

ω u, v( ), k ∈ 2, 3,/, V| |{ } (39)

As shown in the above equation, the computational complexity
is O(|V|2), which becomes impractical when the number of network
nodes or k is large. It is almost impossible to find the optimal
solution through numerical simulations on a computer. Therefore,
this study considers using the Gomory-Hu algorithm to solve the
minimum cut problem and divide the power grid into different load
shedding control regions.

(2) The Gomory-Hu algorithm

The Gomory-Hu algorithm is an effective method for solving
graph partitioning problems, and it has the characteristic of
providing the theoretically optimal solution.

The equivalent Gomory-Hu tree (G-H tree) of the graph is
constructed by computing the maximum flow minimum cut
problem |V| − 1 times (with a computational complexity of
O(|V|)). The G-H tree can represent the minimum cut value
between any adjacent pair of nodes in an undirected weighted
graph and preserves the complete structural information of the
original graph, making it easier to map the partitioning results back
to the original graph. The steps to construct the equivalent G-H tree
are as follows:

1) Initialization: Set the iteration count as the set of regions formed
after the partitioning graph G. Initially, Z � G;

2) Arbitrarily choose one partition to obtain a subregion Zi ⊂ Z,
|VZi ∩ V|> 1 from Z;

3) Arbitrarily select a pair of nodes u, v{ } ⊂ (VZi ∩ V) from the
region Zi;

4) Find the minimum cut between nodes u and v, and divideZi into
two subregions SZi and TZi; (the complexity of this minimum cut
problem is only O(|V|));

5) Translation: Add a new edge eSZi,TZi
between regions SZi and TZi,

and set its weight to be the capacity of the minimum cut;
6) Update the edge weights between the nodes in regions SZi and

TZi, as well as between the nodes and the regions:

ω u, TZi( ) � ∑
v∈TZi

ω u, v( ),∀u ∈ SZi (40)

ω v, SZi( ) � ∑
u∈SZi

ω u, v( ),∀v ∈ TZi (41)

7) Update the set Z to include the new regions SZi and TZi.
8) If i≤ |V| − 1, go back to step 2); otherwise, proceed to step 9);
9) Obtain the equivalent Gomory-Hu tree G′ � (V′, E′), where

V′ � V ∩ VZ, E′ � W.

On the equivalent Gomory-Hu tree G′ � (V′, E′), each edge
weight represents the minimum cut value between two nodes.
Arrange the edge weights in ascending order and select edges
with weights less than 100 as the basis for partitioning. Remove
these selected edges to obtain the final partitioning result. Map the

Frontiers in Energy Research frontiersin.org07

Li et al. 10.3389/fenrg.2023.1276005

140

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1276005


partitioning result back to the original graphG to obtain the optimal
partitioning of the network.

2.3.3 Fast load shedding control optimization
model based on substation partitioning

After completing the partitioning, the next step is to consider how
to achieve simplified solutions to the above global optimization
problem based on the partitioning. Taking the example of the
diagram below, if the internal network structure within each
partition is ignored (since the voltage drop in the distribution
network sub-area is relatively small, ignoring the small-scale scope
is in line with engineering requirements), the original 9-node
distribution network topology can be simplified to a 3-node network.

At this point, the original global optimization problem can be
approximately simplified into a two-level hierarchical problem. In
the upper level, optimization is performed based on the obtained
simplified network to determine the status of interconnecting
switches and identify the subregions for load shedding tasks.
Based on the upper-level optimization results, a precise-grained
optimization of node load supply switches is conducted for the
designated load shedding areas in the lower level. The optimization
models for the upper and lower levels can be expressed as follows.

(1) Upper simplified model

In the upper simplified model, the control substations will
optimize the partitioned equivalent network, and the discrete
load-shedding commands are relaxed as continuous variables. In
addition, the optimization objective is to minimize the impact of
load shedding. And the importance of load shedding in each region
is determined based on the average importance of unit load shedding
within the region, as calculated by the following formula:

a′i � ∑ni
j

ajpj
⎛⎝ ⎞⎠/ ∑ni

j

pj
⎛⎝ ⎞⎠ (42)

Where:ni represents the total load count in the equivalent node of
region i, a′i represents the average importance of the equivalent
node load.

The overall optimization model can be listed as follows:

min
zij′ ,a′j,f

’+
ij ,f

’−
ij ,Pij

′ ,Qij
′{ } ∑

j∈N
a′j p′

j − pj,base
′( )( )2

s.t. 1( ) − 6( ), 14( ) − 17( ), 21( ) − 23( ), 25( ), 27( )
(43)

Where:(•)′ represents the equivalent network parameters.
The objective is set as the square of the load shedding impact to

evenly distribute the load shedding instructions among the
subregions as much as possible.

(2) Lower optimization model

At this point, the upper model publishes the obtained results to
each subregion, and each subregion performs optimization control
based on the received results. At this stage, the internal subregion no
longer needs to consider the radial network constraints; it only needs
to control the internal node supply switches to meet the control
instructions from the upper layer. Here, the power of the
corresponding branches is calculated based on the solution

obtained from the upper layer model. The interconnection
branches between region r and other regions are abstracted as
source nodes, and a certain upward adjustment range (set as 1 in
this study) is defined to meet the power balance requirements. The
control response constraint can be expressed as follows:

∑
j∈S r( )

−pj( )≤p′
r (44)

Where:S(r) represents the set of source nodes in region r.
In summary, the model can be expressed as follows:

max
aj,wj,Pij ,Qij{ } ∑

j∈N r( )
j ∉ S r( )

wjajpj( )
s.t. 18( ) − 19( ), 4( ) − 7( ), 35( )

(45)

By now, the large-scale mixed-integer programming problem
has been simplified into several small-scale mixed-integer
programming problems within each subregion, significantly
improving the overall efficiency of the solution. Taking Figure 5
as an example, the time complexity of the original problem is
reduced from O(212) to 3 × O(24). The time complexity of both
the upper level problem and each lower level problem is O(24). It
ensures the response to the main station’s instructions and
effectively addresses the speed issues related to precise-grained
optimization.

3 Case study

3.1 Case setup

To validate the effectiveness of the load shedding control
algorithm proposed in this study, we selected the IEEE-33
standard test case as the substation network for testing and
verification. The network structure of the test case is shown in
Figure 6 and Table 1. In this case, the distribution network has
controllable telecommunication equipment deployed on the branch
with the following numbered set 0, 3, 12, 32, 33, 34, 35, 36{ }, and the
power supply of each node is determined by the status of a
controllable switch. As shown in the diagram below, the first-
level load node set is 3, 8, 9, 15, 18, 20, 25{ }, and the second-level
load node set is 4, 7, 10, 11, 14, 16, 17, 26, 30, 31{ }. The details of each
line number and its associated nodes are shown in the table below
(with impedance parameters as in the standard test case).

Furthermore, the total load at each node in the substation
network (normalized with a base voltage of 10 kV and a base
capacity of 5.68 MW), the demand response adjustable amount,
and their importance (calculated from the previous sections) can be
summarized in the following Table 2.

Regarding the scenario settings, to verify the effectiveness of the
proposed precise-grained ELS optimization method for different
response time requirements, there are three emergency load control
scenarios based on varying response time demands and main station
load shedding instructions. The scenarios are as follows, with a time
response gap threshold set at 5 s:

Scenario 1: The main station issues a control instruction to limit
the substation’s power consumption to no more than 0.6 (per unit
value) with a response time of 4 s.
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FIGURE 5
Schematic diagram of network topology simplification.

FIGURE 6
IEEE-33 topology.

TABLE 1 Network line connection information.

Line Injection node Outflow node Line Injection node Outflow node

0 0 1 19 19 20

1 1 2 20 20 21

2 2 3 21 2 22

3 3 4 22 22 23

4 4 5 23 23 24

5 5 6 24 5 25

6 6 7 25 25 26

7 7 8 26 26 27

8 8 9 27 27 28

9 9 10 28 28 29

10 10 11 29 29 30

11 11 12 30 30 31

12 12 13 31 31 32

13 13 14 32 7 20

14 14 15 33 8 14

15 15 16 34 11 21

16 16 17 35 17 32

17 1 18 36 24 28

18 18 19 19 19 20
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Scenario 2: The main station issues a control instruction to limit
the substation’s power consumption to no more than 0.6 (per unit
value) with a response time of 6 s.

Scenario 3: The main station issues a control instruction to limit
the substation’s power consumption to no more than 0.3 (per unit
value) with a response time of 8 s.

All the examples in this chapter were simulated on a
computer with an Intel(R) Core(TM) i7-7700 CPU, operating
at a frequency of 3.60 GHz, and 8 GB of memory. The
optimization problems were solved using the Gurobi solver in
Python 3.7.

3.2 Simulation results and analysis of
numerical examples

Scenario 1, 2, and 3 respectively represent the triggering of
different load shedding control links in this project. The specific
analysis is as follows.

3.2.1 Scenario 1 simulation result analysis
In scenario one, the response time requirement is 4 s, which is

below the time response difference threshold. Therefore, the load
shedding control enters the high time response control phase. In this
case, the substation is also the executing station. It directly controls
the normally closed switches for ELS control. The results are shown
in Figure 7 and Figure 8.

In this control phase, the current power supply value from the
upper-level grid is 0.6872 (the power injection at node 0, assuming it
is obtained from the optimal power flow calculation with minimum
line losses). In this control phase, the normally closed switch on
branch 12 (between nodes 12 and 13) is opened, and the load at
nodes 13 to 17 is shed, resulting in an overall load shedding of
0.0687. The load shedding action at this point is not sufficient to
meet the main station’s load control instruction
(0.6872–0.0687 > 0.6).

Therefore, the substation will make further decisions and open
the interconnection switch at nodes 3 and 4 (branch 3–4), resulting
in a total load shedding of 0.3724, which meets the main station’s

TABLE 2 Network line connection information.

No. Load
capacity

Adjustable
capacity

Priority No. Load
capacity

Adjustable
capacity

Priority No. Load
capacity

Adjustable
capacity

Priority

1 0.0176 0.0088 0.0194 12 0.0106 0.0053 0.0188 23 0.0739 0.0370 0.0190

2 0.0158 0.0079 0.0185 13 0.0211 0.0106 0.0198 24 0.0739 0.0370 0.0199

3 0.0211 0.0106 0.7771 14 0.0106 0.0053 0.1719 25 0.0106 0.0053 0.7310

4 0.0106 0.0053 0.1749 15 0.0106 0.0053 0.7787 26 0.0106 0.0053 0.1665

5 0.0106 0.0053 0.0180 16 0.0106 0.0053 0.1756 27 0.0106 0.0053 0.0187

6 0.0352 0.0176 0.0190 17 0.0158 0.0079 0.1763 28 0.0211 0.0106 0.0194

7 0.0352 0.0176 0.1702 18 0.0158 0.0079 0.7619 29 0.0352 0.0176 0.0192

8 0.0106 0.0053 0.7422 19 0.0158 0.0079 0.0184 30 0.0264 0.0132 0.1649

9 0.0106 0.0053 0.7826 20 0.0158 0.0079 0.7833 31 0.0370 0.0185 0.1737

10 0.0079 0.0040 0.1768 21 0.0158 0.0079 0.0190 32 0.0106 0.0053 0.0198

11 0.0106 0.0053 0.1746 22 0.0158 0.0079 0.0198 Total 0.6541 0.3270 ——

FIGURE 7
Scenario 1 branch 12 contact switch action control result.
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control instruction requirement. The decision is then issued
accordingly.

Overall, under high response time requirements, the decision-
making time for fast load shedding actions can be negligible. The
resulting unplanned load shedding impact on society is 0.065107
(obtained by multiplying the load shedding amount by its
importance). It can be observed that load shedding actions in the
distribution network under high time response requirements can
effectively achieve load shedding in a short time and reliably execute
main station instructions. However, there is a significant over-
shedding in the control total, which will result in a certain
impact on load control.

3.2.2 Scenario 2 simulation result analysis
In Scenario 2, the total load control from the main station is the

same as in Scenario 1, but the response time requirement is 6 s,
which is higher than the time response gap threshold. Therefore, the
load control enters the low response time requirement phase based
on demand response for substation ELS. At this time, the substation
completes load shedding control by invoking demand response
resources. The load values before and after load shedding for
each node are shown in the Figure 9.

As seen, different nodes have been called to varying degrees in
response to demand response resources. Nodes at the end of the
power supply are prioritized for adjustment to reduce overall network
losses, thereby compressing the total load shedding value under the
load control command. The changes in upper-level power supply and
user-side response before and after load shedding are further
presented in Table 3. It is evident that the substation now closely
adheres to the main station’s control instructions. Compared to
Scenario 1, which exhibited significant over-shedding, the demand
response resources are effectively utilized in this case, achieving
precise load control with a solution time of 0.064 s, meeting the
power grid’s load shedding response time requirements.

3.2.3 Scenario 3 simulation result analysis
(1) Partition result

In this scenario, themain station’s response command is set to 0.3,
which is lower than the adjustable capacity of the load-side demand
response resources. Therefore, after fully utilizing the demand
response resources, it will further enter the fast zone partition load
shedding action stage. The connection relationships of the Gomory-
Hu tree for the current substation network can be obtained through

FIGURE 8
Scenario 1 branch 3 contact switch action control result.

FIGURE 9
Adjustment results of demand response for each node in Scenario 2.
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offline calculations, as shown in Table 4. The weight of branches with
controllable tie switches is set to 1, while branches without
controllable tie switches weight 100.

Clearly, among the branches, the ones with weights lower than
100 are (1,0), (5,1), and (14,8). Resolving them visually, the partition
is divided into 4 regions as follows:

1. Region 1: 0{ } 2. Region 2: 1, 2, 3, 22, 23, 24, 18, 19, 20, 21{ } 3.
Region 3: 5, 4, 6, 7, 8, 9, 10, 11, 12, 25, 26, 27, 28, 29, 30, 31, 32{ } 4.
Region 4: 14, 13, 15, 16, 17{ }

After mapping it back to the original substation network, the
specific partition is shown in the Figure 10 and Figure 11. The
branches with controllable tie switches are all included in the cut set.

Based on the obtained partitioning results, rapid load control is
executed. At this point, since the load control response time
requirement is greater than the threshold, it enters the demand
response load control stage first. The results are shown in the
Table 5 and Figure 12. It can be seen that the demand response
resources are fully activated, but the response results do not meet
the requirements of the main station control instructions.
Therefore, it will further enter the rapid partitioning load
control stage.

Based on the results obtained from the load control response, the
power grid status is updated, and the obtained results are fed into the
optimization calculation of the upper simplified network. The
equivalent simplified network, derived from the obtained
partitioning results, is shown in Figure 13.

By summing up the loads within each partition and considering
each partition’s load as a continuous adjustable variable, we can

obtain the model given in equations Eqs 32–34). With this, we
complete the optimization calculation for the upper level. At this
point, the upper-level problem needs to deal with integer variables
for the status of the interlocking switches, with a total of 8 variables.
The problem size is small, and the solution time is only 0.0788 s. The
results are shown in Table 6 and Table 7.

It can be observed that the upper-level optimization results
distribute the load shedding branches as evenly as possible among
the different regions, and the allocated results are consistent with
the importance of each region’s load. Subregion 2 has low
importance, and its control amount is the largest, which is
0.0101. On the other hand, Subregion 4 has the highest load
importance, with a load shedding control amount of 0.0075,
which is the smallest within the region. Subregion 3 has a load
shedding instruction of 0.099.

After obtaining their respective control instructions, each
region updates its network parameters and obtains the model
Eqs 35–37) for solving independently. At this stage, the
decision variables for each region are the states of the node
supply switches, determining whether the load points are
supplied or not. Compared to the global solution, the number
of integer variables is greatly reduced. The load shedding results
and solving time for each region are shown below.

Considering that the optimization of each subregion can be
conducted in parallel, the overall optimization time for load
control is the sum of the maximum computation time in the
subregions and the solution time for the upper-level problem. It
can be observed that the maximum optimization computation
time for each subregion is 0.0598 s. When combined with the
upper-level problem’s solution time of 0.0788 s, the overall

TABLE 3 Result before and after control in Scenario 2.

Upper-level power supply Total power consumption of load Loss

Before control 0.6872 0.6541 0.0331

After control 0.6000 0.5830 0.0170

TABLE 4 G-H tree connection relationships and weights.

Join nodes Priority Join nodes Priority Join nodes Priority

(1, 0) 1.0 (12, 11) 101.0 (23, 22) 101.0

(2, 1) 102.0 (13, 14) 101.0 (24, 23) 101.0

(3, 2) 101.0 (14, 8) 3.0 (25, 5) 102.0

(4, 5) 101.0 (15, 14) 101.0 (26, 25) 102.0

(5, 1) 4.0 (16, 15) 101.0 (27, 26) 102.0

(6, 5) 103.0 (17, 16) 101.0 (28, 27) 102.0

(7, 6) 103.0 (18, 1) 102.0 (29, 28) 101.0

(8, 7) 102.0 (19, 18) 102.0 (30, 29) 101.0

(9, 8) 102.0 (20, 19) 102.0 (31, 30) 101.0

(10, 9) 102.0 (21, 20) 101.0 (32, 31) 101.0

(11, 10) 102.0 (22, 2) 101.0
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FIGURE 10
G-H characterization result.

FIGURE 12
Adjustment results of demand response for each node in Scenario 3. (3) Analysis of load control execution based on fast partition action

FIGURE 11
Substation network partition result. (2) Analysis of load control execution based on demand response
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computation time required is 0.1386 s. To demonstrate the
necessity of subregion partitioning in this study, a comparison
is made with the centralized optimization results without
subregion partitioning. This refers to the optimization results
obtained from the global optimal control model Eqs 14–27).
The comparison between the optimization results of the
centralized model and the subregion-based control model
proposed in this study is shown in the Figure 14. The Tables 8,
9 illustrate the connection between upper-level instructions and
lower-level decision outcomes. It shows the subregions’ accurate
execution of the upper-level instructions.

As observed, the subregion-based control optimization
exhibits some degree of over-shedding. However, the overall
over-shedding is not significant and primarily occurs in less
critical load nodes. Meanwhile, the corresponding
computational time has significantly improved. The time it
takes to solve the problem after partitioning is only 1/38th of
the global control. This meets the requirement for rapid load
shedding control effectively.

4 Conclusion

To achieve precise-grained ELS control in extreme events and
ensure the safety, stability, and economy of the power system,
avoiding excessive over-shedding which increases control costs,
as well as issues related to unstable limits in under-shedding,
overloaded tie lines, and bus voltage problems, this study focuses
on effectively utilizing the adjustable capacity of distributed
resources and formulating precise load shedding control
strategies to achieve a balance between economic and safety
objectives. In this section, the specific work of this study is as follows:

(1) A precise ELS approach for distributed networks considering
response time requirements is proposed. For the differences in
control instruction response time requirements, this study
devised a fast load shedding control method based on the
weight method for high response time requirements, and an
optimal load shedding control method considering demand
response and controllable switches for low response time
requirements. Under high response time requirements, the
main station’s instructions are rapidly responded to by
controlling the tie-line switches simply and quickly. Under
low response time requirements, the demand response
resources are fully utilized for load shedding control, and
for the portion exceeding the demand response
adjustability, a hierarchical and partitioned control method
is employed to achieve rapid response to the main station’s
instructions.

FIGURE 13
Equivalent simplified network topology.

TABLE 6 Partition control upper layer contact switch branch results in
Scenario 3.

Branch no. 0 3 12 32 33 34 35 36

Status before control 1 1 1 0 0 0 0 0

Status after control 1 1 0 0 0 0 1 0

TABLE 7 Status before and after controlling each subregion in Scenario 3.

Region no. Subregion 1 Subregion 2 Subregion 3 Subregion 4

Outflow before control −0.3348 0.1408 0.1518 0.0343

Outflow after control −0.3000 0.1307 0.1419 0.0268

Priority — 0.1609 0.1646 0.2200

TABLE 5 Result before and after demand response control in Scenario 3.

Upper-level power supply Total power consumption of load Loss

Before control 0.6872 0.6541 0.0331

After control 0.3348 0.3270 0.0078
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(2) Through validation with standard test cases, the proposed
method in this study effectively utilizes response time and
demand-side resources, achieving fast ELS with lower

precision under high response time requirements, and
appropriate ELS with higher precision under low response
time requirements for the distribution network.

TABLE 8 Internal control actions in each subregion (subregion 1 as the upper-level grid injection node) in Scenario 3.

Region no. Subregion 1 Subregion 2 Subregion 3 Subregion 4

Cutting nodes — 2、19 5、12、27 13

Upper-level problem removal instruction 0.0101 0.099 0.0075

Total load shedding — 0.0158 0.0158 0.0106

Cutting load effects — 0.0003 0.0003 0.0002

Solving time — 0.0359 0.0598 0.0309

TABLE 9 Internal control actions in each subregion (subregion 1 as the upper-level grid injection node) in Scenario 3.

Solution model Time(s) Total load shedding Load shedding impact

global control 5.2634 0.0336 0.0006

Partition control 0.1386 0.0422 0.0008

FIGURE 14
Global optimal control model results. Fast partition optimal control model results.
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A joint clearing model for the
participation of renewable energy
and energy storage in the
frequency modulation ancillary
service market considering
performance differences

Chang Wang1,2, Yu Jiang1,2, Hao Guo1,2, Kun Bai1,2,
Xiangyu Zhang3 and Aoer Wang3*
1State Grid Jibei Electric Power Economic Research Institute, Beijing, China, 2Beijing Jingyan Electric
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with Renewable Energy Sources, North China Electric Power University, Baoding, China

The increasing growth in installed capacity for renewable energy sources has
progressively replaced traditional thermal power units as synchronous power
contributors. This transition has led to a reduction in system inertia and resources
for frequency regulation, creating a need for renewable energy and energy
storage to participate in system frequency modulation. Empirical studies
indicate that the current market mechanism for frequency modulation auxiliary
services, which predominantly rely on thermal power, is suboptimal for leveraging
the unique capabilities of diverse frequency modulation resources. This
inadequacy hinders the power industry’s pursuit of the “dual carbon”
goals—carbon neutrality and carbon peak. Hence, this paper proposes a joint
clearingmodel for the involvement of renewable energy and energy storage in the
frequency modulation auxiliary service market. It considers performance
differences and employs the Analytic hierarchy process (AHP) to guide the
optimization of the weights of frequency modulation performance indicators
for various frequency modulation resources. This approach allows renewable
energy, energy storage, and thermal power to maximize the benefits of their own
differentiated advantages in various frequency modulation performance
indicators. Consequently, this fosters an increased share of renewable energy
within the system while ensuring frequency stability, thereby expediting the
achievement of the power industry’s “dual carbon” goals. Finally, computational
analyses substantiate that the proposed joint clearing model, accounting for
performance differentials, can enhance the renewable energy share in the
system and simultaneously reduce the societal costs associated with frequency
modulation services.

KEYWORDS

renewable energy frequency modulation, energy storage frequency modulation,
frequency modulation performance indicators, frequency modulation auxiliary
services, AHP—analytic hierarchy process
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1 Introduction

The development of the electricity market in China, particularly
in the area of ancillary services, has been relatively nascent compared
to its Western counterparts, such as the United States and Northern
Europe, where the frequency modulation ancillary service market
has seen matured more rapidly (PJM manual energy & ancillary
services market operations, 2017). Currently, China predominantly
operates under a “dual-detailed rules” system for frequency
modulation services (Santos et al., 2021). However, this
framework suffers from inefficiencies, including an incomplete
service price compensation mechanism and an inequitable cost
distribution. The market’s inherent ability to efficiently allocate
resources through supply-demand dynamics has led to the
emergence of the frequency modulation ancillary service market
as a timely necessity. In the current market structure, synchronous
machines serve as the principal providers of frequency modulation
services. As the share of renewable energy sources continues to grow,
renewable energy and energy storage systems are poised to play a
more significant role in frequency modulation (Peng et al., 2019).
Unlike traditional thermal power units, these emerging resources
offer advantages such as reduced start-up times and faster frequency
adjustments (Hu et al., 2019). Nevertheless, the current market
design, which relies heavily on the dominant role of thermal power
units in frequency modulation, fails to capitalize on the unique
attributes of renewable energy and energy storage systems (Liao and
Dai, 2005). Consequently, there is an imperative need to reevaluate
the market mechanisms. Future research in the electricity market
must focus on accounting for the performance differentials among
traditional thermal units, renewable energy, and energy storage
systems. This involves developing nuanced bidding mechanisms
and clearing strategies that can fully leverage the distinct
characteristics of diverse frequency modulation resources, thereby
promoting a more synergistic approach to system frequency
modulation tasks (Yuan and Xi, 2020).

The inherent intermittency and unpredictability of renewable
energy generation, as seen in wind and photovoltaic power systems,
presents unique challenges for grid stability. Initially, these energy
sources operate solely in maximum power tracking mode, refraining
from participating in system frequency modulation (Iliana and
Torjus, et al., 2014). However, as their scale expands, there is an
imperative growing for these renewable sources to assume the roles
previously held by synchronous generators within the power grid.
Consequently, integrating renewable energy into the frequency
modulation ancillary services market is becoming an undeniable
trend. European initiatives have already begun incorporating wind
and photovoltaic power into frequency modulation services (Meeus
et al., 2005).

Traditionally, renewable energy systems have operated in
maximum power tracking mode, lacking the capability for
frequency modulation. Existing literature (De Paola et al., 2017)
developed a demand model for frequency modulation within the
ancillary service market and introduced a novel distributed control
scheme, accompanied by an iterative control algorithm, to optimize
customer satisfaction while minimizing energy costs. However, this
model does not take into account the incorporation of a large
number of new energy units, which is one-sided and does not
adapt to the existing new energy grid connection situation. For

wind farms, adjustments such as rotor over speeding or blade pitch
angle control are requisite to participate in frequency modulation
effectively (Cui et al., 2016). Similarly, photovoltaic systems must
transition from maximum power tracking to incorporate frequency
modulation capabilities, which can be achieved through load
shedding or DC capacitance controls (Zhao et al., 2020). Energy
storage systems, characterized by their flexible charging and
discharging capabilities and rapid response times (Zhong et al.,
2006), are also well-suited for frequency modulation tasks. In the
broader context of the power market, the energy market and the
frequency modulation ancillary services market have traditionally
operated as separate entities. However, empirical studies (Csereklyei
et al., 2019) have demonstrated that joint market clearing can yield
optimized comprehensive interests, reducing overall electricity costs
and enhancing societal welfare. Therefore, integrating renewable
energy and energy storage systems into a unified frequency
modulation ancillary service market is feasible and economically
advantageous. But at present, the existing research is only limited to
taking new energy units into the joint market, ignoring the
evaluation of a series of their performance, and can not
guarantee the fairness of the market.

In the existing regulatory framework for frequency
modulation ancillary services in China, unit quotations are
typically revised based on historical performance metrics,
which subsequently lead to a hierarchical sorting of the units
according to these revised quotations. Although this approach
effectively incentivizes superior frequency modulation
performance among thermal power plants, it falls short in
harmonizing the interplay between thermal power, renewable
energy, and energy storage systems. Hence, this paper
introduces a comprehensive joint clearing model for frequency
modulation ancillary services to address this limitation. This
model allows for the participation of thermal power, renewable
energy, and energy storage systems in the grid while considering
the distinct frequency modulation performance attributes of each
type of power plant. Utilizing the Analytic Hierarchy Process
(AHP) (Deng, 2019), the model assigns weights to frequency
modulation performance indicators across various types of
frequency modulation plants. This methodological innovation
enables the maximization of the unique advantages inherent in
each type of frequency modulation plant, ultimately fostering a
more coordinated and efficient approach to system-wide
frequency modulation tasks. Compared with the traditional
joint market clearing model, this model can make the power
system obtain more superior frequency modulation performance,
ensure the stability of the power system and better power quality
on the basis of ensuring the economy.

2 The joint clearing model of electricity
market and ancillary service market

2.1 Objective function

Given the multifaceted participation of wind power,
photovoltaic power generation, thermal power, and energy
storage systems in both of the ancillary service market and the
broader energy market, this study develops a joint clearing
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optimization model. The total social electricity cost encompasses
various components, including the energy market quotation,
primary frequency modulation quotation, and secondary
frequency modulation quotation.

F � min∑T
i�1

∑N
i�1

CE
i,tPi,t + KF

i,tC
F
i,t,mile + CF

i,t,cap( )PF
i,t

+ KS
i,tC

S
i,t,mile + CS

i,t,cap( )PS
i,t

⎡⎣ ⎤⎦⎛⎝ ⎞⎠ (1)

where T offers total time period, N offers number of units, CE
i,t

offers price of the producer in the energy market in hour t, CF
i,t,mile

indicates the price of a participant in the reserve market in hour t,
CF
i,t,cap denotes frequency modulation mileage quotation in the

primary frequency modulation market in hour t, CS
i,t,mile

represents capacity price in the secondary frequency
modulation market in hour t, and CS

i,t,cap signifies frequency
modulation mileage quotation in the secondary frequency
modulation market in hour t. In addition, Pi,t symbolizes the
bid power of producer in the energy market in hour t, PF

i,t defines
the bid capacity of producer in the reserve market in hour t, and
PS
i,t represents bid capacity of the producer in the secondary

frequency modulation in hour t. Finally, KF
i,t and KS

i,t are power
plant comprehensive frequency modulation performance index
parameters.

2.2 Constraints

The premise of safe system operating frequency lies in the
necessity for a balance between the electric energy supply and
demand. Therefore, the clearing results must adhere the power
balance constraints as follows:

∑Ncoal

i�1
Pcoal
i.t +∑Nw

i�1
Pw
i.t + ∑Npv

i�1
Ppv
i.t +∑Ne

i�1
Pdis
i.t −∑Ne

i�1
Pcha
i.t � Pload

t (2)

where Pload
t represents system load forecast value in hour t, Pcoal

i.t

indicates bid power of thermal power unit i the in the energy market
in hour t, Pw

i.t signifies bid power of wind farm unit i the in the energy
market in hour t, and Ppv

i.t denotes bid power of photovoltaic unit i in
the energy market in hour t, Pcha

i.t symbolizes charging power of
energy storage in hour t, and Pdis

i.t defines discharging power of
energy storage in hour t.

Conventional unit operation constraints include output upper
and lower limit constraints, climbing constraints, and minimum
start and stop time constraints:

Pcoal
i. min ≤Pcoal

i.t ≤Pcoal
i. max

−Pcoal
i.down ≤Pcoal

i.t − Pcoal
i.t−1 ≤Pcoal

i.up

Bi.t−1 − Bi.t( ) Ton.i.t−1 − Ton.i( )≥ 0
Bi.t − Bi.t−1( ) Toff .i.t−1 − Toff .i( )≥ 0

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (3)

where Bi.t indicates the on-off state of the unit i at time t,
Pcoal
i. max/P

coal
i. min indicates the maximum/minimum output power of

unit i, Pcoal
i.up /P

coal
i.down represents the upward/downward ramping

capability of unit i, Ton.i.t−1 denotes the continuous operation
time of unit i to time t-1, Ton.i/Toff .i represents the minimum
start/stop time of unit i, and Toff .i.t−1 defines the continuous
outage time of the out-of-service unit i to time t-1.

Frequency modulation capacity constraints of thermal power
units are as follows:

0≤Pcoal.f
up.i.t ≤Pcoal.f

i. max

0≤Pcoal.f
down.i.t ≤Pcoal.f

i. max

{ (4)

0≤Pcoal.f
up.i.t + Pcoal.s

up.i.t ≤Pcoal
up. min .t

0≤Pcoal.f
down.i.t + Pcoal.s

down.i.t ≤P
coal
down. min .t

{ (5)

Pcoal
up. min .t � min Pcoal

up.i , Pcoal
i. max − Pcoal

i.t( )[ ] (6)
Pcoal
down.min .t � min Pcoal

down.i, Pcoal
i.t − Pcoal

i. min( )[ ] (7)

The load-shedding rate of wind power involved in frequency
modulation complies with the reserved maximum load-shedding
rate requirements.

0≤ dw
i.t ≤ dw

i. max (8)
where dwi. max represents the maximum load-shedding rate reserved
for wind farms. Wind farm frequency modulation capacity
constraints are as follows:

0≤Pw.f
up.i.t ≤P

w.f
i. max

0≤Pw.f
down.i.t ≤Pw.f

down.i. max

{ (9)

0≤Pw.f
up.i.t + Pw.s

up.i.t ≤dw
i.t × Pw

i.t

0≤Pw.f
down.i.t + Pw.s

down.i.t ≤ 1 − dw
i.t( ) × Pw

i.t

{ (10)

where Pw
i.t is the predicted available output power of wind in hour t.

The quotation limit for wind farms in the electricity market is
given below.

0≤Pw.e
i.t ≤ 1 − dw

i.t( )Pw
i.t (11)

Operational constraints on photovoltaic participation in the
electricity market can be presented below.

0≤ dpv
i.t ≤ dpv

i. max
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i. max
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down.i.t ≤P

pv.f
down.i. max

0≤Ppv.f
up.i.t + Ppv.s

up.i.t ≤d
pv
i.t × Ppv

i.t

0≤Ppv.f
down.i.t + Ppv.s

down.i.t ≤ 1 − dpv
i.t( ) × Ppv

i.t

0≤Ppv.e
i.t ≤ 1 − dpv

i.t( )Ppv
i.t

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(12)

Constraints on energy storage participation in electricity market
and ancillary services market bidding are:

Pe.cha
min ≤Pe.cha

t ≤Pe.cha
max

Pe.dis
min ≤Pe.dis

t ≤Pe.dis
max

Pe
t � Pe.dis

t − Pe.cha
t

Pe.f
up.t + Pe.s

up.t ≤Pe.dis
max − Pe.dis

t

Pe.f
down.t + Pe.s

down.t ≤Pe.cha
max − Pe.cha

t

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(13)

where Pe
t indicates bid power of energy storage in the energy market

in hour t, and Pe.cha
t /Pe.dis

t denotes the charging/discharging power of
energy storage in hour t.

Operational constraints of energy storage:

SOC t( ) � SOC t−1( ) + ρcP
e.cha
t

E
− Pe.dis

t

ρdE

SOC min ≤ SOC t( )≤ SOCmax

Be.cha
t + Be.dis

t ≤ 1

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(14)

where ρc/ρd indicates the charging efficiency of energy storage, and
Be.cha
t /Be.dis

t represents the binary variable of charging/discharging
status.

System backup constraints:
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Dup
t − ∑Mnew

i�1
ΔPnew,i,t ≥Dup

d,t

Ddown
t − ∑Mnew

i�1
ΔPnew,i,t ≥Ddown

d,t

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(15)

where Dup
t indicates the capacity of thermal power unit in hour t,

Ddown
t indicates the lower standby capacity provided by thermal

power units in hour t, ΔPnew,i,t represent the prediction error value
of new energy units in hour t,Dup

d,t represent the required value of the
standby power of the system in hour t,Ddown

d,t represent the required
value of the standby power of the system in hour t.

3 Optimization of frequency
modulation performance indicator
weights for different frequency
modulation resources considering
performance differences

The frequency modulation ancillary service market is typically
structured and cleared through a multi-faceted evaluation
framework considering variables, including frequency modulation
demand, quotations submitted by service providers, and historical
frequency modulation performance metrics. The primary objective
of this market mechanism is to minimize the procurement cost
associated with frequency modulation services. To assess the
capabilities of power plants in providing frequency modulation, a
historical frequency modulation performance index is employed,
which serves as a quantifiable metric calculated based on a power
plant’s past contributions to frequency modulation and acts as a
quality assessment tool that gauges the efficacy of a given power
plant’s frequency modulation capabilities. Subsequently, this index
adjusts the initial quotations submitted by each frequency
modulation service provider, thereby establishing a prioritized
queue for market clearing.

3.1 Calculation of frequency modulation
performance indicators

Historical frequency modulation performance indicators are
pivotal metrics for evaluating the service quality of frequency
modulation service providers. These indicators directly influence
on the clearing eligibility of each service provider, thereby shaping
the revenue streams of individual suppliers (Li, 2014). Generally, the
composite frequency modulation performance index comprises
three constituent components as follows: the adjustment rate, the
adjustment deviation, and the response time.

The computational methodology for deriving these performance
indices is expressed in Eqs. 15–17.

K1,i,j� 2 − 2
vN,i − vi,j
∣∣∣∣ ∣∣∣∣

vN,i
(16)

K2,i,j� 2 − 2
ΔPi,j

∣∣∣∣ ∣∣∣∣
ΔPD

i,j

(17)

K3,i,j� 2 − 2
ti,j
tN

(18)

where K1,i,j represents the extent to which the adjustment rate of
resource i during its jth adjustment process compares to the
standard adjustment rate it is expected to achieve, K2,i,j indicates
the degree of actual adjustment deviation compared with the
allowed deviation amount during the jth adjustment process of
adjustment resource i, and K3,i,j denotes the degree to which the
actual response time of the jth adjustment process of resource i
compared with the standard response time. Moreover, vi,j
symbolizes the adjustment rate of the jth adjustment process of
frequency modulation resource i, vN,i signifies the standard
modulation rate, ΔPi,j represents the actual response power of
the jth adjustment of resource i, and ΔPD

i,j indicates the
adjustment command demand response amount. Finally, ti,j and
tN are the response time of the jth adjustment of resource i, and
standard response time, respectively.

The comprehensive frequency modulation performance index
Ki,j after normalization is shown in (Eq. 18).

Ki,j � 1 /

3 K1,i,j + K2,i,j + K3,i,j( ) (19)

As derived for each power plant, the synthesized frequency
modulation performance index serves as a mechanism for revising
the plant’s initial bid quotation. This revised bid price is
subsequently integrated into a unified sorting algorithm, forming
the basis for organizing the market clearing process.

CF.line
i � CF

i

s Ki.j( ) (20)

where CF
i represents the power plant initial quotation, C

F.line
i denotes

the power plant frequency modulation quotation for clearing sorting
after correction of frequency modulation performance indicators,
and s(Ki,j) indicates historical frequency modulation performance
index adjustment value.

s Kpi( ) � 1
s′ Kpi( )
0.1

⎧⎪⎨⎪⎩
Kpi ≥Kpsaturation

Kpmin ≤Kpi <Kpsaturation

Kpi <Kpmin

(21)

s′ Kpi( )� 0.5+ 0.5
Kpsaturation −Kpmin

× Kpi −Kpmin( ) (22)

where Kmin indicates the minimum market access indicator, and
Ksaturation denotes the maximum performance index.

3.2 Performance index weight optimization
considering the difference infrequency
modulation performance of different types
of power plants

The prevailing methodologies for calculating frequency
modulation indices across diverse types of frequency modulation
power plants have conventionally assigned equal weights to the
adjustment rate, adjustment deviation, and response time indicators.
However, this uniform weighting scheme falls short of adequately
capturing the unique advantages inherent to different categories of
frequency modulation power plants. For instance, renewable energy
and energy storage systems exhibit markedly shorter frequency
modulation response times compared to traditional thermal
power units. This characteristic is of paramount importance for
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maintaining frequency stability, especially in systems with reduced
synchronous inertia. Unlikely, this intrinsic advantage is not
sufficiently leveraged in the current competitive market
landscape. To address this shortcoming, this study introduces an
index weight optimization methodology that considers the
performance differentials among various types of power plants.
This approach aims to provide a more accurate representation of
the distinct advantages in frequency modulation capabilities across
different categories of power plants, ultimately promoting a more
equitable and efficient market mechanism.

The AHP is a robust quantitative tool that converts
perceptual judgments into evaluative metrics. By scrutinizing
the interrelationships among various indicators within the
system under assessment, AHP facilitates the determination
of the relative importance of elements at a given hierarchical
level with respect to the established criteria at a higher level.
This method constructs a judgment matrix using a comparative
analysis of these characteristics, thereby providing a structured
framework for multi-criteria decision-making (U-Dominic
et al., 2021).

The judgment matrix A is shown in (Eq. 22).

A �

a11 / a1j / a1n

..

.
1

ai1 aij

..

.
1

an1 / anj / ann

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(23)

The element in the judgment matrix represents the importance
of indicator i compared with indicator j, as shown in Table 1.

All elements in the judgment matrix satisfy the two following
points.

1) The diagonal elements are all 1, that is, aii� 1;
2) All elements that are symmetrical along the main diagonal are

the same, that is, aij� 1/aji;

To avoid contradictions in the judgment matrix constructed
from experiential data, it must undergo a consistency test before
practical application. The initially constructed matrix can be used as
a judgment matrix only after successfully passing the
consistency test.

The initial weight distribution for the adjustment rate,
adjustment deviation, and response time index weights within the
frequency modulation performance indicators is presented in
Table 2.

The first-level judgment matrix is derived by considering the
proportion of the frequency modulation capacity of each type of unit
within the total system’s frequency modulation capacity. According
to the differences in frequency modulation performance across
different types of power plants, the secondary judgment matrix
for modulation rates, modulation deviations and response time
indicators of different types of power plants is established based
on the frequency modulation performance. Specifically, energy
storage units exhibit a shorter adjustment response time
compared to conventional and renewable energy units.
Renewable energy units have significantly lower requirements for
absorbing task adjustment deviations and are lower than other units
to avoid high frequencymodulation performance indicators that will
cause renewable energy to lose the scalar.

TABLE 1 Meaning of scale in AHP.

Scaling Meaning

1 The two factors are equally important

2 One factor is slightly more important than the other

3 One factor is obviously more important than the other

4 One factor is much more important than the other

5 One factor is extremely more important than the other

TABLE 2 Initial weight configuration.

First-level indicators Second-level indicators Initial weight distribution

Thermal power unit indicators Speed of adjustment K1,i,j K � 1
3 (K1,i,j + K2,i,j +K3,i,j)

Accuracy of adjustment K2,i,j

Response time K3,i,j

Renewable energy unit indicators Speed of adjustment K1,i,j

Accuracy of adjustment K2,i,j

Response time K3,i,j

Energy storage device indicators Speed of adjustment K1,i,j

Accuracy of adjustment K2,i,j

Response time K3,i,j
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Following the consistency test, the weights of the frequency
modulation performance indicators for renewable energy, energy
storage, and thermal power units, considering performance
differences, are shown in Table 3 below.

The weighting coefficients for each frequency modulation index
concerning various types of generating units are computed utilizing
the AHP. In practical applications, operators within the ancillary
service market can flexibly allocate these weight values to adjustment
rates, adjustment deviations, and response time indicators based on
the real-time operational conditions of the respective units. This
nuanced approach ensures cost-effective and operationally efficient
execution of the system’s frequency modulation tasks.

4 Example

The case study comprises ten thermal power units, two wind
farms, one photovoltaic power station, and four independent energy
storage devices. Detailed parameter settings can be found in Tables
5–7, while the load curve and renewable energy output curve are
illustrated in Figure 1.

According to China’s regulations on the frequency limit of
power systems, the frequency fluctuation range is ±0.2 Hz. The
parameters of the thermal power units are shown in Table 4.

The parameters of the wind farms and photovoltaic power
stations are shown in Table 5.

The parameters of the independent energy storage devices are
listed in Table 6.

4.1 The influence of renewable energy
penetration rate on the clearing result of
frequency modulation market

With the construction of new power systems, the penetration
rate of new energy has been increasing. The following two scenarios
are set for analysis to verify the model’s applicability for different
new energy penetration rates.

Scenario 1: New energy permeability and low penetration
scenario: wind power capacity installed at 150MW, along with
photovoltaic capacity at150 MW.

Scenario 2: New energy permeability and high penetration
scenario: wind power capacity installed at 200MWand
photovoltaic capacity at 200 MW.

In the above two new energy penetration scenarios, the model
conducts joint clearance procedures. The clearance results under low
permeability of new energy are shown in Figure 2, while Figure 3
illustrates the clearance results under high permeability of new energy.

As seen in Figure 2, the system fluctuation is small in the scenario of
low penetration of new energy, and the frequency modulation demand
is relatively small. Thus, the total revenue of the frequency modulation
service provider is also small. At this time, thermal power units
contribute significantly to the energy and frequency modulation
market. Due to the consistent total load demand, the quotation of
new energy in the electricity energy market remains relatively low.
However, as the penetration rate of new energy increases, the bid
capacity of new energy rises, leading to an overall decrease in revenue of
the electricity energy market. The joint market income under the
penetration scenario of the two new energy sources is listed in Table 7.

As shown in Table 7, the overall market revenue increases after
the proportion of new energy rises, with a significant boost in
revenue from the frequency modulation market. The

TABLE 3 Post-optimized weight configuration.

First-level indicators Second-level indicators Initial weight distribution

Thermal power unit indicators Speed of adjustment K1,i,j Kfire� 0.1512K1,i,j+0.6976K2,i,j+0.1512K3,i,j

Accuracy of adjustment K2,i,j

Response time K3,i,j

Renewable energy unit indicators Speed of adjustment K1,i,j Knew� 0.232K1,i,j+0.536K2,i,j+0.232K3,i,j

Accuracy of adjustment K2,i,j

Response time K3,i,j

Energy storage device indicators Speed of adjustment K1,i,j Kenergy� 0.1261K1,i,j+0.7478K2,i,j+0.1261K3,i,j

Accuracy of adjustment K2,i,j

Response time K3,i,j

FIGURE 1
Load forecasting curve and new energy out put curve.
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introduction of a high proportion of new energy contributes more
frequency modulation reserve capacity to the power system,
consequently reducing the frequency modulation contribution
rate of conventional thermal power units.

4.2 The influence of independent energy
storage devices on the clearing results of
frequency modulation market

The frequency modulation contribution after energy storage
participation is shown in Figures 4, 5.

Compared to the electricity energy market, energy storage plays
a more significant role in the frequency modulation auxiliary service
market, which has an unparalleled advantage in the frequency
modulation market due to the higher adjustment accuracy and
faster response time of the energy storage device. The winning
result shows that other units win the bid successively after the scalar
in the energy storage reaches the technical boundary of its operation.
Therefore, the extra energy storage relieves the frequency
modulation pressure of conventional units, in which conventional
units can have more ability to bid in the energy market. In addition,
comparing the bid capacity of the frequency modulation market
before and after introducing energy storage reveals that due to the

TABLE 4 Parameters of thermal power unit.

Number Node
number

Pmax
(p.u)

Pmin
(p.u.)

Generation
quotation
($/MWh)

Ru/Rd
Up/
down
climb
rate
(p.u./
h)

H
Startup
cost
($per
time)

J
Shutdown
($per time)

Mileage
quotation
($/MW)

Capacity
quotation
($/MW)

Frequency
modulation
performance

1 30 1.5 0.15 200 0.35 1750 1250 18 12 0.5

2 31 1.35 0.2 250 0.25 2000 1000 18 13 0.5

3 32 0.95 0.2 250 0.3 1500 750 18 14 0.44

4 33 1.1 0.2 250 0.35 1500 750 18 13.5 0.45

5 34 1.15 0.15 250 0.25 1750 1000 18 12.5 0.51

6 35 1.15 0.2 300 0.25 2000 1000 18 14.5 0.45

7 36 1.2 0.25 300 0.35 2500 1200 18 12 0.5

8 37 1.35 0.15 500 0.15 2200 1100 18 12 0.5

9 38 1.45 0.15 500 0.2 1760 950 18 12 0.5

10 39 1.2 0.2 500 0.35 1780 950 18 12 0.5

TABLE 5 Parameters of wind farm and photovoltaic power station.

Number Node
number

Generation
quotation
($/MWh)

Mileage
quotation
($/MW)

Capacity
quotation
($/MW)

Frequency
modulation
performance

Frequency
modulation
capacity ratio

Historical
mileage
capacity
ratio

Maximum
load

reduction
rate

1 2 250 16 13 0.9 0.2 8 0.4

2 5 300 15 14 0.8 0.2 8 0.4

3 6 400 18 14 0.95 0.2 8 0.4

TABLE 6 Parameters of independent energy storage device.

Number Node
number

Discharge
quotation
($/MWh)

Charging
quotation
($/MWh)

Charge
and

discharge
power
(p.u.)

Capacity
(p.u.)

Charge
and

discharge
efficiency

Generation
quotation
($/MWh)

Mileage
quotation
($/MW)

Capacity
quotation
($/MW)

Frequency
modulation
performance

1 10 160 160 0.2 0.6 90% 259 12 15 1

2 13 200 200 0.2 0.6 90% 233 16 13 1.2

3 19 150 150 0.2 0.6 90% 224 18 20 1.1

4 22 250 250 0.2 0.6 90% 262 16 24 1

Frontiers in Energy Research frontiersin.org07

Wang et al. 10.3389/fenrg.2023.1332041

156

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1332041


increase in the output of photovoltaic power stations at noon, a
higher proportion of photovoltaic power stations participate in
primary frequency modulation at this time compared to wind
farms. With the introduction of the energy storage device, more
photovoltaic power plant output in the larger period of photovoltaic
output is used for the frequency modulation.

To investigate the impact of energy storage on the stability of the
system’s operating frequency, the maximum power disturbance is
applied to the simulation of the system under two conditions: with
or without energy storage. Then, the maximum frequency deviation
is calculated. The results are shown in Figure 6.

Figure 6 illustrates that the operating frequency of the energy
storage system remains within the safety limit, indicating that the
system frequency is very safe. The analysis of the maximum
frequency deviation of the system before and after adding energy
storage shows a reduction in the maximum frequency deviation of
the system after the configuration of energy storage compared with that
without energy storage. Furthermore, energy storage effectively
improves the frequency security of the system operation. In
addition, the participation of energy storage devices makes more
thermal power units with low declared frequency modulation
capacity and relatively poor frequency modulation performance bid

FIGURE 2
Bid capacity of low permeability (A) powermarket bidding results, (B) primary frequencymodulationmarket up-modulation bid capacity, (C) primary
frequency modulation market low-modulation bid capacity, (D) secondary frequency modulation market up-modulation bid capacity, (E) secondary
frequency modulation market low-modulation bid capacity.
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compared with the participation of energy storage in the frequency
modulation market. Thus, the overall share of wind power in the
frequency modulation market has been reduced, making wind power

more capable of participating in the electricity energy market and
enhancing the absorption of wind power. The FM market settlement
price has changed as shown in Figure 7.

FIGURE 3
Bid capacity of high permeability (A) power market bidding results, (B) primary frequency modulation market up-modulation bid capacity, (C)
primary frequency modulation market low-modulation bid capacity, (D) secondary frequency modulation market up-modulation bid capacity, (E)
secondary frequency modulation market low-modulation bid capacity.

TABLE 7 The influence of renewable energy penetration rate change on market income.

Primary FM market revenue/$
1,000

Secondary FM market revenue/$
1,000

Electricity market revenue/$
1,000

Total revenue/$
1,000

Case1 275.70 171.70 24203.00 24650.40

Case2 417.00 261.00 24230.00 24908.00
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Table 8 compares the total costs with and without energy storage
participating in primary frequency modulation. The total cost of
primary frequency modulation with energy storage is generally
lower than without energy storage because energy storage devices
replace thermal power units to perform frequency modulation tasks
during periods of high-frequency modulation demand, thereby
reducing the total cost. Table 8 shows the revenue from the
electricity market and frequency modulation ancillary services for
energy storage devices under the two participation scenarios.

As seen in Table 8, energy storage can benefit from the energy
market and the frequency modulation market to improve its
earnings with excellent charge and discharge performance, which
can increase the enthusiasm of energy storage to participate in the
energy and auxiliary services markets, thereby improving the
flexibility of system operation to enhance the frequency safety of
system operation.

4.3 Frequency modulation performance
index weight modification considering unit
performance difference

Considering the difference infrequency modulation
performance between new energy, energy storage, and
conventional units, the weights of frequency modulation
performance indicators of various frequency modulation
resources are corrected. Therefore, different frequency
modulation resources can better play their own performance
advantages. The winning result of the frequency modulation
market after the index weight correction is shown in Figure 8.

As shown in Figure 8, when considering the difference in
frequency modulation performance of different frequency
modulation resources, the clearance results show a significant
decrease in the frequency modulation bid-winning capacity of
thermal power units from 0:00 to 8:30. The reason is that the
frequency modulation performance of this part of the thermal

FIGURE 4
Up-modulation contribution rate.

FIGURE 5
Low-modulation contribution rate.

FIGURE 6
Changes of frequency stable before and after energy storage’s
participation.

FIGURE 7
Changes of cost of FM before and after energy storage’s
participation.
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power unit is poor. Figure 9 displays the up-down contribution
of different frequency modulation resources before and after
considering the difference in frequency modulation
performance. Meanwhile, the winning capacity of up-down
frequency modulation is shown in Figure 10.

As can be seen, the frequency modulation capacity and
contribution of new energy and energy storage are significantly
improved by considering the performance differences. This
enhancement is precisely attributed to the ability of the proposed

method to purchase more frequency modulation resources with
good performance and make them undertake more frequency
modulation tasks, improving the overall frequency modulation
performance of the system’s frequency modulation resources and
the frequency security of the system.

The price of the frequency modulation market before and after
considering the difference in frequency modulation performance of
various frequency modulation resources is shown in Figure 11.
Additionally, the final settlement cost of the frequency
modulation market can be found in Table 9.

As can be seen in the figure and table, considering the variations
in frequency modulation performance of different frequency
modulation resources results in a reduction in the total frequency
modulation cost of the system.

Incorporating the difference in frequency modulation
performance of various frequency modulation resources, the
clearing model leads to a minor reduction in the bid capacity of
conventional thermal power units in the primary frequency
modulation market while slightly increasing the bid capacity of new
energy and energy storage. This is due to considering both the load-
shedding constraint of wind power and the improved frequency
modulation performance of the modified independent energy
storage device. Consequently, the lower frequency modulation
scalar of wind power and the medium scalar of independent energy
storage have been significantly improved. Furthermore, the fluctuation
amplitude of the State of charge (SOC) in energy storage is reduced
compared with the frequency before, which is conducive to enhancing
the service life of the energy storage, thus further decreasing the
frequency modulation cost of the system.

TABLE 8 Market revenue comparison before and after energy storage participation.

Energy storage participates in the electric energy market Electricity market revenue/$ 1,000 Energy Storage 1 4.19

Energy Storage 2 0.23

Energy Storage 3 11.02

Energy Storage 4 0

Frequency modulation market revenue/$10,000 Energy Storage 1 0

Energy Storage 2 0

Energy Storage 3 0

Energy Storage 4 0

Total revenue/$ 1,000 15.44

Energy storage participates in the electric energy market + frequency
modulation auxiliary service market

Electricity market revenue/$ 1,000 Energy Storage 1 6.66

Energy Storage2 0.01

Energy Storage 3 10.12

Energy Storage 4 0.02

Frequency modulationmarket revenue/$ 1,000 Energy Storage 1 60.13

Energy Storage 2 60.64

Energy Storage 3 59.79

Energy Storage 4 60.74

Total revenue/$ 1,000 258.10

FIGURE 8
First FM market bid capacity after AHP.
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The clearing model, considering the difference infrequency
modulation performance of diverse frequency modulation resources,
reveals that the clearing sorting order changes due to the change of
frequency modulation performance index for the secondary frequency
modulation market. Within the existing rules, thermal power units
struggle to prioritize winning bids and complete clearance, whereas new
energy units can achieve complete clearance of frequency modulation
capacity. This is because new energy and energy storage are adjusted
faster than thermal power units. However, it is worth noting that the
frequency modulation accuracy of new energy is poor. In light of the
difference infrequency modulation performance among various
frequency modulation resources, thermal power units can basically
achieve full clearance of bid capacity in each period. In contrast with

primary frequency modulation, secondary frequency modulation
should pay more attention to the precision and accuracy of
frequency regulation. Therefore, the weight of the adjustment
accuracy part is further increased compared with the primary
frequency modulation market when the AHP judgment matrix is
written in the clearing model column considering the difference in
frequency modulation performance of various frequency modulation
resources. Thus, the comprehensive frequency modulation
performance index can better reflect the frequency modulation
accuracy performance of each unit.

The clearing model, considering the difference infrequency
modulation performance among different frequency modulation
resources, demonstrates that there are no significant changes in the

FIGURE 9
Contribution rate of (A) up modulation and (B) low modulation of modulation before and after AHP.

FIGURE 10
Bid capacity of (A) up modulation and (B) low modulation of modulation before and after AHP.
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overall clearing result for the electricity energy market. The majority
of capacity storage is involved in frequency modulation auxiliary
services. Additionally, the charging behavior of energy storage
devices in the main energy market has increased relative to
discharging. This allows the storage device to charge and apply
the power profitably to the frequency modulation market when the
main energy market has more energy than required.

5 Conclusion

The development of China’s auxiliary service power market is
still in its infancy, and various rules and systems are gradually
being improved. According to the existing frequency modulation
auxiliary service market rules in China, this paper proposed a
joint clearing model of new energy and the participation of
energy storage in frequency modulation auxiliary service
market considering performance differences. The following
conclusions are drawn:

1) The integration of new energy and energy storage enriches the
frequency modulation resources of the power system. Thus, the
power system has more adjustment flexibility in dealing with the
new energy with strong uncertainty. Moreover, this integration
can alleviate the tight supply and demand of frequency
modulation resources in the power system, leading to a

reduction in the overall frequency modulation costs for the
system.

2) Integrating energy storage with superior regulatory performance
can optimize the overall frequency modulation capability of the
system and alleviate the frequency modulation burden on
thermal power units with less efficient performance.
Participating in both the energy market and auxiliary service
market simultaneously can boost the revenue of independent
energy storage, thus improving the enthusiasm of energy storage
to participate in system scheduling.

3) The comprehensive frequency modulation performance index
quantifies the frequency modulation capabilities of each power
unit type. AHP adjusts the weight of the three indicators, namely,
adjustment speed, adjustment precision, and response time,
according to the frequency modulation characteristics of
different power unit types, which is conducive to giving full
play to the characteristics of different frequency modulation
resources to serve the system better and enhance the
frequency security of the new power system.
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FIGURE 11
Changes of settlement price before and after AHP.

TABLE 9 Purchasing tariffs of the HIES.

Primary FM settlement
fee/$ 1,000

Secondary FM settlement
fee/$ 1,000

Electricity energy market
settlement fee/$ 1,000

Total cost/$
1,000

Before the correction
of AHP

41.70 26.10 2423.00 2490.80

After the correction
of AHP

40.90 25.20 2423.00 2489.10
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Bi-level optimal dispatching of
distribution network considering
friendly interaction with electric
vehicle aggregators
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Thewidespread application of electric vehicles (EVs) is a positive force driving green
development. However, their widespread penetration also poses significant
challenges and threats to the security and stable operation of the power grid. To
address this urgent issue, this article constructs a bi-level optimal dispatchingmodel
fostering collaboration between electric vehicle aggregators and the distribution
network. The upper-level optimization targets the minimization of peak-valley
differences in the distribution network via considerably arranging power outputs
of gas turbines, while the lower-level one focuses on reducing the charging expense
of EV aggregators via efficient charging transfer. Note that the charging expense is
not only composed of electric cost but also a dynamic carbon emission factor-
based cost, which contributes to the electricity economy and carbon reduction
concurrently. A geometric mean optimizer (GMO) is introduced to solve the mode.
Its efficiency is evaluated against three typical algorithms, i.e., genetic algorithm,
great-wall construction algorithm, and optimization algorithm based on an
extended IEEE 33-bus system with different charging behaviors of EVs on both a
typical weekday and weekend. Simulation results demonstrate that the GMO
outperforms other competitive algorithms in accuracy and stability. The peak-
valley difference between the distribution network and the total cost of EV
aggregators can be decreased by over 98% and 76%, respectively.

KEYWORDS

distribution network, economic dispatching, electric vehicle, geometric mean optimizer,
dynamic carbon emission factor

1 Introduction

With the increasingly prominent issue of climate change, reducing carbon emissions has
become the common goal of the international community (Hu and Man, 2023). The power
industry is widely regarded as one of the key areas to reducing carbon footprint because of its
important position in global carbon emissions (Xu et al., 2020a). Meanwhile, the rapid
popularization of electric vehicles (EVs) is considered to be a powerful means to reduce road
traffic carbon emissions and improve urban air quality (Tan et al., 2023). However, large-
scale electric vehicles connected to the power grid for disorderly charging will bring
problems such as the increase in power loss (Manzolli et al., 2022), the decline of power
quality, and the difficulty of optimal control of power grid operation (Xu et al., 2020b).

To address these tricky problems, extensive studies have been undertaken regarding
vehicle-to-grid (V2G) in the past few years, which can be classified into two aspects,
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i.e., economic optimization (Ahmadpour et al., 2022) and safety
enhancement (Sperstad et al., 2020). For instance, reference (Gan
et al., 2020) proposed a probabilistic evaluation method to investigate
household EVs’ dispatching potential when considering users’
multiple h2h travel needs, which gave a significant foundation for
EVs to participate in power grid regulation. Literature (Chen et al.,
2017) constructed an EV aggregationmodel to participate in auxiliary
services to achieve effective scheduling management and improve the
economy of the system. Literature (Long et al., 2021) presented an
ordinal optimization-based real-time scheduling method for large-
scale EV charging stations, which reduced 6% of operation cost. In
reference (Liu et al., 2019), a two-stage economic charging framework
for EV aggregators was developed. Reference (Manzolli et al., 2022)
developed a charging schedule optimization model of battery electric
buses considering the aging of the batteries, which pointed out that the
charging cost is expected to reduce by 38% in 2030. Besides, extensive
studies focused on the time-of-use (ToU) electricity pricemechanism-
guided charging schedule (Manzolli et al., 2022; Yan et al., 2021).
References (Mathioudaki et al., 2021; Ghosh and Aggarwal, 2018)
designed a price-based service menu for EV charging to maximize
profits. A deep reinforcement learning based approach was
constructed to address optimal charging scheduling under
uncertain electric prices (Wan et al., 2019). Li Z. et al. (2023)
established a price-based transfer model to avoid charging congestion.

Nevertheless, the above-mentioned studies mainly concentrated
on economic scheduling, which unfortunately ignored the effects of
carbon emission. Recently, calls have come for carbon assessment to
reflect the nature of the grid generation mix via dynamic approaches
(Khan et al., 2018). The research on the carbon reduction of electric
vehicle cooperative power grid dispatch has gradually emerged (Wu
et al., 2023). Daneshzand et al. (2023) developed a scheduling
framework for EVs and assessed the power grid carbon emissions
under various tariff designs and multiple vehicle adoption levels. In
Wang et al. (2023), the park EV agent participates in the carbon
market by selling carbon emission allowances to increase profits. In
Zhang G. et al. (2023), source-load coordinated carbon reduction
based bi-layer economic scheduling models were established when
EVs were considered as controllable loads and mobile energy
storage. However, these current studies only calculated the total
carbon emission on the source side. The real-time carbon emission
on the load side was ignored, which resulted in an unideal emission
reduction on EVs.

In this context, this paper proposes a dynamic carbon emission-
factor-based bi-level optimal dispatching of the distribution network
considering friendly interaction with electric vehicles. Its main
contributions are summarized as follows:

➢A bi-level friendly interactionmodel between the EV aggregator
and distribution network is established, upon which the upper-
level optimization attempts to reduce the peak-valley difference
of the distribution network and the lower-level one aims to
minimize the operation cost of the EV aggregator;

➢ Dynamic carbon emission-factor-based emission cost is
combined with electric cost to guide the charging behaviors
of EV aggregator effectively, thus reducing combined charging
cost;

➢A novel meta-heuristic algorithm, namely, geometric mean
optimizer (GMO) (Rezaei et al., 2023), is induced to solve the

upper-level model, while three typical competitive algorithms
are used to validate the outperformance of GMO under an
extended IEEE 33-bus system, i.e., genetic algorithm (GA),
great-wall construction algorithm (GWCA), optimization
algorithm (WOA).

The rest of this paper is organized as follows: Section 2 models
the distribution network; Bi-level optimization framework is
introduced in Section 3; Two case studies are executed in Section
4; Section 5 summarizes this paper.

2 Modeling of distribution network

A common distribution network with different distributed
power sources and loads can be depicted in Figure 1, which
includes power flow and carbon emission flow.

2.1 Charging model of electric vehicle

When the EV aggregator optimizes the scheduling of the single
electric vehicle in the area, its charging time characteristics
determine whether the single electric vehicle can participate in
the scheduling task in this period of time. For electric vehicles in
a charging station, the charging time characteristics mainly include
plug-in time Tn

in (h), plug-out time Tn
out (h) and schedulable time Tn

s

(h), which can be described as Eq. (1)

Tn
s � Tn

out − Tn
in (1)

where n represents the nth EV.
Besides, the charging demand of each EV is determined by

Eq. (2)

En
d � En

max ·(SoCn
ecp − SoCn

in) (2)

where En
d (kWh) means the charging demand of the nth EV; En

max

(kWh) is the capacity of the nth EV. SoCn
ecp and SoCn

in stand for the
excepted and initial SoC of the nth EV, respectively. Assuming that the
charging demand of every EV can bemet, the SoCn

ecp can be calculated by
Eq. (3)

SoCn
ecp � SoCn

in +∑T

t�1
Pn
c t( )·Δt
En
max

(3)

where Pn
c (kW) and En

max (kWh) are individually defined as charging
power and battery capacity of the nth EV; t, Δt (h), and T denote the
current period, scheduling interval, and the maximum number of
intervals, respectively. The maximum number of interval T is
determined by Eq. (4)

T � Tn
s

Δt
(4)

2.2 Dynamic carbon emission factor

According to the proportional sharing principle, the electric
carbon factor of the node is carbon emission per unit of electricity of
the power flow out of it, which yields Eq. (5)
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δi �
Pi
G × δiG +∑j∈Ωi

Pji × δj

Pi
L +∑j∈Ωi

Pij
(5)

where δi (kgCO2/kWh), δj (kgCO2/kWh) and δiG (kgCO2/kWh)
represent the ECFs of the ith node, the jth node, and the generator
connected with the ith node, respectively; Pij (kW) is the active
power flow from the ith node to the jth one; Pi

L (kW) denotes the
load power of the ith node (Zhang XS. et al., 2023).

3 Bi-level optimization framework of
distribution network

3.1 Upper-level optimization

Upper-level optimization aims to reduce the regulation burden
of grid operators. Thus its objective function is designed to minimize
the difference of peak-valley power in slack bus, which can be
expressed by Eq. (6), as follows:

minfup x( ) � var PSlack x( )( ) (6)
where PSlack represents injected active power of slack bus; x stands
for decision-making variables, which can be set as the controllable
elements in the distribution network.

The constraints of upper-level optimization composed of power
balance, the voltage of nodes, the power output of generators, and
the capacity of transformation lines, which can be mathematized as
Eq. (7)

PGi − PDi − Vi∑j∈Ni
Vj gij cos θij + bij sin θij( )� 0

QGi − QDi − Vi∑j∈Ni
Vj gij sin θij + bij cos θij( )� 0

PGi
min ≤PGi ≤PGi

max, i ∈NG

QGi
min ≤QGi ≤QGi

max, i ∈NG

Vi
min ≤Vi ≤Vi

max, i ∈NB

Si| |≤ Simax, i ∈NL

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(7)

where PGi (kW) and QGi (kVar) stand for the active power and
reactive power of the generator connected with the ith node,
respectively; PD (kW) and QD (kVar) are individually active and
reactive power demands; PG

min (kW) and PG
max (kW) are upper and

lower bounds of the active power of the generator, respectively;QG
min

(kVar) and QG
max (kVar) are upper and lower bounds of the reactive

power of the generator, individually; Vi
min (kV) and Vi

max (kV)
represent the lower limitation and upper limitation of the voltage of
the ith node, respectively; Si (kVA) and Simax (kVA) are respectively
defined as the current value and maximum value of capacity of the
ith line; NG, NB, and NL denote the number of generators, PQ
nodes, and branches, respectively.

3.2 Lower-level optimization

Unlike upper-level optimization, the lower one attempts to
protect the interests of the EV aggregator by optimizing EVs’
charging strategies. Thus its objective is the cost minimization of
the EV aggregator, expressed by Eq. (8)

minflower xEV( ) � Ccharge xEV( ) + Cems xEV( ) (8)
where Ccharge ($) represents electricity charging cost; Cems ($)
denotes carbon emission cost, which can be measured by Eq. (9)

Cems � ρems ·∑T

t�1δEV t( ) · Pcharge
EV t( )·Δt (9)

where ρems ($/kgCO2) means the unit price of carbon emission;
δEV(t) (kgCO2/kWh) is the carbon emission factor of the node
connecting EV aggregators at time t; Pcharge

EV (kW) represents the
charging power of the EV aggregator, which is determined by
Eq. (10)

Pcharge
EV t( ) � ∑Ncl

cl
∑N cl( )

n
Pn
c t( ) (10)

where cl andNcl denote the clth EV cluster and the total number of
EV clusters, respectively;N(cl) is the total number of EVs in the clth
cluster.

Additionally, the electricity charging cost Ccharge ($) of EV
aggregators is given by Eq. (11)

Ccharge � ρcharge ·∑T

t�1P
charge
EV t( ) · Δt (11)

where ρcharge ($/kWh) stands for the unit cost of charging.

FIGURE 1
A common distribution network with power and carbon emission flows.
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The solution of the lower-level optimization consists of charging
strategies of different EV aggregators, which yields Eqs (12), (13)

xEV � x1EV,/, xclEV,/, xNcl
EV[ ] (12)

xnEVEV � xcl
EV 1( ), xcl

EV 2( ),/, xcl
EV T( )[ ] (13)

where xclEV denotes the charging and discharging strategy clth EV
cluster.

To ensure the charging demand of each EV, lower-level
scheduling satisfies the following power balance constraint:

sum xclEV( ) � Pcl∑ (14)

In Eq. (14), Pcl∑ (kW) represents the total charging power of the clth
EV cluster.

3.3 Design of GMO-based bi-level optimal
scheduling

3.3.1 Principle of basic GMO
GMO is a meta-heuristic algorithm that uses the behavior of

multiple search agents in social interaction to search for the best
results, and its optimization performance has been effectively
verified in various test problems (Rezaei et al., 2023).

In GMO, the position Xi and velocity Vi of the ith agent are
defined as Eqs (15), (16)

Xi � xi1, . . . ,xid, . . . ,xiD( ) (15)
Vi � vi1, . . . , vid, . . . , viD( ) (16)

where xid and vid stand for the dth dimension variables of the
position and velocity, respectively; D is the maximum dimension of
the problem to be solved.

Unlike traditional mate-heuristic algorithms, GMO adopts a
dual-fitness index (DFI) to evaluate current solutions, which can be
calculated by Eq. (17)

DFIki � ∏NP

j�1
j ≠ i

MFk
j (17)

whereDFIki represents theDFI value of the ith agent at the kth iteration;
NP denotes the population size; MFk

j means membership function
value of the jth personal agent, which can be measured by Eq. (18)

MFk
j �

1

1 + exp − 4
σt


co

√ Fk
best,j − μk( )[ ] ,j� 1, 2, . . . , NP (18)

where Fk
best,j stands for the fitness value of the jth personal best agent

at the kth iteration; σ and μ are the standard deviation and mean of
fitness values of all personal best-so-far agents, respectively; co
represents the Napier’s constant.

A weighted average of all opposite personal best-so-far agents is
designed to make full use of the advantages of these best agents, as
follows:

Yk
i �

∑NP
j�1 DFIkj ·Xbest

j∑NP
j�1 DFIkj

(19)

In Eq. (19), Yk
i denotes the global guide vector for the agent i;X

best
j is

the personal best position of the jth search agent; ε is a small constant

to void singularity. Besides, a Gaussian mutation mechanism of
global guide vector is introduced to preserve the diversity of the
guide agents, which yields Eq. (20)

Yk
i,mu � Yk

i + w · RV · Std k
max − Stdk( ) (20)

where Yt
i,mu is the mutated global guide vector; RV is a random

vector generated from the standard normal distribution; Std t
max and

Stdt stand for a vector composed of the maximum standard
deviation values of the personal best agents’ dimensions and the
standard deviation vector, respectively; w is an adaptive parameter,
which is determined by Eq. (21)

w � 1− k

K max
(21)

The updating equations of position and velocity are defined as
Eqs (22), (23)

Vk+1
i � w · Vk

i + φ · Y( k
i,mu −Xk

i ) (22)
Xk+1

i � Xk
i + Vk

i (23)
where φ represents a scaling parameter vector to delineate the steps
between the agent i and its guide, which can be formulated by
Eq. (24)

φ � 1+ 2 · R−1( )·w (24)
where R is a random parameter distributed in [0,1].

The specific process of GMO solving optimization problems can
be referred to (Rezaei et al., 2023).

3.3.2 Execution framework of GMO-based bi-level
optimal scheduling

Above all, the execution framework of GMO-based bi-level
optimal scheduling is illustrated in Figure 2. GMO is utilized to
find the most considerable power outputs of controllable resources
(CS) in the distribution network. The interior point method (IPM) is
applied to solve the lower-level model for the best charging strategies.
Peak-valley difference of the slack bus and DECFs of EV access points
obtained by power flow calculation are the interactive information
optimized for upper and lower levels, respectively.

4 Case studies

In this section, an extended IEEE 33-bus system is introduced to
verify the validation of the proposed method, as depicted in Figure 3,
whichmainly attaches two same gas turbines (GTs), awind turbine (WT),
a PV unit, and three types of EV clusters on the basis of the standard
system. The slack bus is connected to a main grid to ensure the power
balance of the distribution network. Its time-of-use (ToU) electricity prices
and DCEF are employed to guide economic low-carbon operations,
illustrated in Figure 4A. The price of carbon emission is 0.0068 $/kg.

In addition, the power outputs of two GTs and the charging
strategies of EV aggregators are set as decision-making variables for
upper-level and lower-level optimizations. The upper and lower
bounds of power outputs of GTs are set as 1,240 and 0 kW, and their
unit generation cost is both 0.0822 $/kWh (Cao et al., 2022). For EV
aggregators, charging behaviors of EV users on a weekday and
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weekends are taken into account. The initial state of charge (SoC) of
EVs can be characterized by a normal distribution from 20% to 50%
(Li YP. et al., 2023), as shown in Figure 4B. Their other critical
parameters are offered in Table 1. Note that the dwell time of EVs
are individually increased by an hour at night and decreased by two
hours by day on weekend against weekday (Zheng et al., 2023). The
scheduling time and interval are 24 and 1 h, respectively.

GMO and three competitive algorithms, i.e., GA (Wang et al.,
2022), GWCA (Guan et al., 2023), and WOA (Mirjalili and Lewis,
2016), are adopted to solve the bi-level optimization model. For fair
and objective comparisons, the population size and iteration
number of each algorithm are identically set to 30 and 100,
respectively. Results obtained by different approaches in
10 independent runs are recorded, upon which the best result of

each method is selected and compared. Additionally, the main
parameters of competitive algorithms are tabularized in Table 2.

4.1 Interactive scheduling test on a weekday

Here, an interactive scheduling test on a weekday is executed to
evaluate the performance of various algorithms. Figure 5A depicts
the convergence curve of upper-level optimization obtained by
various algorithms, which indicates GMO outperform others.
Specifically, while GA enjoys the fastest convergence speed, its
final fitness value is the largest, which means it traps in the local
optimum. After around 30 additional iterations, GMO searches for
the smallest fitness value, which validates the high accuracy of GMO.

FIGURE 2
The flowchart of GMO-based bi-level optimal scheduling.

FIGURE 3
Extended IEEE 33-bus system.
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Furthermore, a boxplot comparison based on 20 independent runs
of different algorithms is given in Figure 5B. One can observe the
boxplot of GMO exhibits the smallest distribution, upper bound,
and lower bound, which demonstrates GMO also wins other
competitive algorithms in stability performance.

Table 3 statistics the optimum results and mean computation
time of various algorithms, including the fitness value of upper-
level optimization, electricity cost, carbon emission cost, and total
cost of lower-level optimization, upon which the best indicator is
highlighted in bold. WO means without optimization: the power
outputs of two GTs only depend on ToU price and each EV is

charged via average power. When the generation cost of GTs is
lower than the ToU price, its power output is set to the rated value,
otherwise, it is equal to zero. GMO obtains the best indicators in
the upper-level optimization task. Its fitness value is only 6.018 ×
10–4 times that obtained by WO, which indicates GMO
significantly helps minimize power fluctuation of the
distribution network. Under lower-level optimization, various
algorithms acquire slightly different results. Based on
satisfactory optimization results of GMO, the total cost of the
EV aggregator is decreased by 76.18% (from 108.9666 $ to 25.9558
$) a day.

Figure 6 provides the optimal solutions on a weekday. The
power outputs of GTs are obviously decreased from 5:00 to 16:
00 and increased at night to minimize the peak-valley difference
of the distribution network, as shown in Figure 6A. As illustrated
in Figure 6B, the charging power of EVs is significantly
transferred from 18:00–24:00 and 0:00–2:00 to 3:00–5:00,
which is mainly because the electric price is the lowest at 3:
00–5:00.

Figure 7A gives the cost comparison of various algorithms on a
weekday. Figure 7B illustrates the CEFs of each EV cluster obtained
by WO and GMO, in which the CEF of EV cluster #2 is significantly
reduced from 7:00 to 17:00 after optimization via GMO. The CEF of
EV cluster #3 is always equal to zero because it is only charged
by WT.

FIGURE 4
Initial conditions of IEEE 33-bus system: (A) ToU price and DCEF of the slack bus; and (B) initial SoC of EVs.

TABLE 1 Main parameters of different clusters of EVs (Cao et al., 2022; Li YP. et al., 2023).

Typical days EVs Emax (kWh) Pmax (kW) Initial SoC (%) Plug-in (h) Plug-out (h) Number of EVs

Weekday Cluster #1 24 3.52 U(20,50) 20:00 7:00 50

Cluster #2 36 7.04 U(20,50) 8:00 17:00 40

Cluster #3 48 10 U(20,50) 19:00 7:00 10

Weekend Cluster #1 24 3.52 U(20,50) 21:00 9:00 50

Cluster #2 36 7.04 U(20,50) 9:00 16:00 40

Cluster #3 48 10 U(20,50) 20:00 9:00 10

TABLE 2 Main parameters of different competitive algorithms.

Algorithms Parameters Definition Value

GA Pc Crossover probability 0.95

Pm Mutation probability 0.001

GWCA PGWCA Gamma parameter 9

TGWCA The thrust generated by the tool 6

mGWCA The mass of the rock 3

WOA aWOA Coefficient [0,2]

bWOA Constant 1
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4.2 Interactive scheduling test on weekend

In addition, the interactive scheduling test on weekends is
designed to further validate the feasibility of the proposed
method. Similar to the upper optimization on a weekday, GMO
acquires the smallest fitness value with the most powerful stability
compared with other algorithms, as shown in Figure 8.

Statistic results of various algorithms on weekends are tabulated
in Table 4. The lowest total cost and carbon emission cost are
simultaneously acquired by GMO. There are only slight differences
between the smallest fitness value and shortest mean computation
time and those obtained by GMO. In particular, the fitness value of
upper-level optimization and total cost of the EV aggregator is
decreased by 99.82% and 77.27%, respectively.

FIGURE 5
Comparisons of various algorithms for upper-level optimization on a weekday: (A) Convergence curve; and (B) Boxplot.

TABLE 3 Statistic results of various algorithms on a weekday.

Algorithms Fitness vaule Electricity cost ($) Carbon emission cost/$ Total cost ($) Mean computation time (s)

WO 2.6585 104.8578 4.1088 108.9666 —

GA 0.3842 21.8659 4.0410 25.9070 412.5858

GWCA 0.0057 21.8599 4.0804 25.9402 421.6216

WOA 0.0796 21.8600 4.1050 25.9650 412.4805

GMO 0.0016 21.8591 4.0967 25.9558 383.9965

FIGURE 6
Optimal scheduling solutions on a weekday: (A) Upper-level; and (B) Lower-level.

Frontiers in Energy Research frontiersin.org07

Xin et al. 10.3389/fenrg.2023.1338807

170

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1338807


FIGURE 7
Result comparison of lower-level optimization on a weekday: (A) Costs; and (B) CEFs.

FIGURE 8
Comparisons of various algorithms for upper-level optimization on weekend: (A) Convergence curve; and (B) Boxplot.

FIGURE 9
Optimal scheduling solutions on a weekend: (A) Upper-level; and (B) Lower-level.
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Besides, the optimal solutions on a weekend are illustrated in
Figure 9, in which the power outputs of GTs are obviously
transferred from daytime to night duration. Similarly, EVs are
assigned to charge with maximum power from 3:00 to 5:00 to
maximize total cost. Figures 10A, B offer the cost comparison of
various algorithms and the CEFs of each EV cluster obtained by WO
andGMOonweekends, respectively. One can easily observe that similar
optimization results are acquired compared with those on the weekdays.

5 Conclusion

This paper develops a bi-level optimal dispatching of
distribution network considering friendly interaction with
electric vehicles, in which a dynamic electrical carbon
emission factor is introduced to precisely calculate the carbon
emission of each node. According to two typical case studies
based on an extended IEEE 33 bus system, three conclusions can
be summarized as follows:

➢ The proposed bi-level optimal dispatching framework
significantly contributes to the security and stability of the
distribution network and the cost decrease of EV aggregators
by considerable planning in power outputs of GTs and
charging transformation of EVs. Peak-valley difference of
the distribution network and the total cost of the EV

aggregator can be decreased by over 98% and 76%,
respectively;

➢ Compared with competitive algorithms, GMO acquires more
satisfactory optimization indicators both in interactive
scheduling tests on the weekday and weekend, which
especially outperform others in convergence accuracy and
stability;

➢ Due to the small cost of carbon emissions compared to
electricity consumption, the reduction in electricity prices
is dominant in the lower-level optimization, and the effect of
electric vehicles participating in carbon reduction is not
obvious. Higher carbon emission prices or multi-objective
optimization may achieve more carbon reduction.

Notably, meta-heuristic algorithms used in this paper may be
limited in accuracy and speed when various complex constraints
are taken into consideration, such as start-stop constraint and
climbing constraint of gas turbines, discharge constraint of
electric vehicles, etc.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding author.

TABLE 4 Statistic results of various algorithms on weekend.

Algorithms Fitness value Electricity cost ($) Carbon emission cost/$ Total cost ($) Mean computation time (s)

WO 2.6103 110.9100 4.1047 115.0147 —

GA 0.4195 22.1036 4.0996 26.2033 420.3615

GWCA 0.0045 22.1021 4.0877 26.1898 420.4186

WOA 0.1034 22.1230 4.0575 26.1804 406.8009

GMO 0.0046 22.1115 4.0364 26.1479 410.0813

FIGURE 10
Result comparison of lower-level optimization on weekend: (A) Costs; and (B) CEFs.
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Optimal economic dispatch of a
virtual power plant based on
gated recurrent unit proximal
policy optimization
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Xing-Chen Shangguan3*
1Hubei Branch of State Power Investment Group Co, Ltd, Wuhan, China, 2Institute of New Energy,
Wuhan, China, 3School of Automation, China University of Geosciences, Wuhan, China

The intermittent renewable energy in a virtual power plant (VPP) brings generation
uncertainties, which prevents the VPP from providing a reliable and user-friendly
power supply. To address this issue, this paper proposes a gated recurrent unit
proximal policy optimization (GRUPPO)-based optimal VPP economic dispatch
method. First, electrical generation, storage, and consumption are established to
form a VPP framework by considering the accessibility of VPP state information. The
optimal VPP economic dispatch can then be expressed as a partially observable
Markov decision process (POMDP) problem. A novel deep reinforcement learning
method called GRUPPO is further developed based on VPP time series
characteristics. Finally, case studies are conducted over a 24-h period based on
the actual historical data. The test results illustrate that the proposed economic
dispatch can achieve a maximum operation cost reduction of 6.5% and effectively
smooth the supply–demand uncertainties.

KEYWORDS

virtual power plant, demand response, deep reinforcement learning, gated recurrent
unit, proximal policy optimization

1 Introduction

1.1 Background and motivation

With the global energy shortage and environmental deterioration becoming increasingly
prominent, distributed renewable energy resources have gained popularity in the power
system and developed rapidly (Naveen et al., 2020; Huang et al., 2021; Liu et al., 2023).
Although the renewable energy implementation can generally reduce the dependence on fossil
generation, the low unit capacity and high fluctuation hinder its reliable supply. As a result of
inherent temporal–spatial complementarities, virtual power plants (VPPs) integrated with
cooperative and transactive energy management can effectively cope with the core issues and
enhance the overall economy (Koraki and Strunz, 2017).

The VPP is defined as an aggregator of distributed supply–demand resources, which would
independently perform a transactive behavior with the market or operator (Etherden et al., 2015;
Lin et al., 2020; Gough et al., 2022). However, due to its lower capacity and inherent sporadic
nature, its integration into the current power system is complicated (Xu et al., 2021). Although
VPPs have developed rapidly, the high penetration of renewable energy and the proactive end
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usersmakeVPPsmore uncertain. These uncertainties cause disturbances
in the optimal VPP economic dispatch and preventVPPs fromproviding
a reliable and user-friendly power supply. Therefore, it is essential to
design an effective VPP economic dispatchmethod to enhance economic
benefits and smooth the supply–demand uncertainties.

1.2 Literature review

In order to handle the uncertainties in the VPP dispatch, various
optimization methods have been proposed, including stochastic
optimization and robust optimization. Liu et al. (2018) proposed an
interval-deterministic combined optimization method to maximize the
deterministic profits and profit intervals of VPPs (Liu et al., 2018). A data-
adaptive robust optimizationmethodwas proposed byZhang et al. (2018)
to optimize the dispatch scheme with adjustable robustness parameters.
A deterministic price-based unit commitment was proposed by
Mashhour and Moghaddas-Tafreshi (2010), and a genetic algorithm
was used to solve the uncertainties. Chen et al. (2018) presented a fully
distributed method for VPP economic dispatch using the alternating
direction multiplier method (ADMM) and the consensus algorithm
(Chen et al., 2018). Yang et al. (2013) proposed a consensus-based
distributed economic dispatch algorithm through the iterative
coordination of local agents.

When faced with the supply–demand uncertainties, these
traditional optimization-based methods usually rely on accurate
system models and a priori knowledge, which are difficult to obtain
in practice (Xu et al., 2019). Although robust optimization methods can
deal with uncertainties to some extent, these methods are very
conservative. Meanwhile, these methods cannot deal with dynamic
and random changes, due to which real-time information and
interactions with various energy sources may not be able to capture.
Traditional optimization-based methods also rely on reliable solvers or
heuristic algorithms (Xu et al., 2020), which is time-consuming and
cannot meet the real-time requirements of practical VPP problems.

Reinforcement learning has become a highly effective approach
for addressing optimization problems in various domains (Książek
et al., 2019). Unlike traditional optimization methods that often rely
on extensive domain knowledge or problem-specific heuristics,
reinforcement learning allows agents to discover effective
strategies through trial-and-error processes (Bui et al., 2020).
Reinforcement learning is well suited for sequential decision-
making. In many optimization problems, decisions must be made
in a sequential manner with each decision influencing future
decisions. Reinforcement learning algorithms, such as Q-learning
and policy gradient methods, explicitly model this sequential aspect
of decision-making by updating the agent’s policy based on the
outcomes of previous actions. This allows the agent to learn optimal
sequences of decisions that lead to desired outcomes (Huang et al.,
2021). In many real-world optimization problems, the agent may
not have complete information about the state of the system.
Reinforcement learning agents learn to make decisions based on
partial information, effectively reasoning about the most likely state
of the system and taking actions accordingly. This ability to handle
incomplete information makes reinforcement learning suitable for a
wide range of real-world optimization problems with uncertainties.

Deep reinforcement learning integrates deep learning and
reinforcement learning, which has been widely adopted for solving

VPP problems in the Internet of Energy (IoE) domain. For instance,
Sun et al. (Hua et al., 2019) mainly studied IoE management, and
reinforcement learning was adopted to formulate the best operating
strategies. Du et al. (2018) studied the IoE architecture design and
adopted reinforcement learning to optimize electric vehicle charging.
Liu et al. (2018) combined deep learning with reinforcement learning for
improving the generating unit tripping strategy. Combining
reinforcement learning and deep neural network, Lu et al. (2019)
presented a demand response algorithm for the IoE system based on
real-time execution. However, the reinforcement learningmethods in the
above studies are all based on Q-learning or deep Q-learning methods,
which are limited to discrete action spaces. To address this problem, Zhao
et al. (2022) adopted a proximal policy optimization (PPO)-based
reinforcement learning method, which contains both continuous and
discrete action spaces. Zhao et al. (2022) proved that the system cost is
reduced by 12.17% compared to the Q-learning method.

However, two problems still remain to be addressed in the
existing reinforcement learning-based VPP economic dispatch
method. The first problem is that the historical VPP information
is not considered in the above studies. Actually, the VPP economic
dispatch cannot follow the Markov decision process (MDP) since
the integration of renewable energy sources makes it a sequential
decision process problem. As a type of artificial neural network, the
recurrent neural network (RNN) is commonly used to address these
ordinal or temporal problems, which can extract the time series
information effectively. The gated recurrent unit (GRU), which
optimizes the update and reset gates, is another type of the long
short-term memory network. Compared to RNN, GRU offers
computational efficiency, superior long-term dependency capture,
effective vanishing gradient solution, and remarkable generalization
capabilities (Canizo et al., 2019). These key advantages make the
GRU an excellent choice for various sequential learning tasks,
particularly in domains where capturing long-term dependencies
is of paramount importance (Thanh et al., 2022).

The second problem is that the above methods all need a central
agent to coordinate the VPP supply–demand balance. Actually, the
VPP would not be managed with a single operator, and this
centralized management would give rise to various disadvantages,
including intensive information transmission and low-efficiency
operation. It is a foreseeable trend that the VPP would gradually
form a distributed manner, which could potentially satisfy
geographical end users. Various decomposition techniques,
including ADMM (Chen et al., 2018; Xu et al., 2019) and
consensus algorithm (Yang et al., 2013), have been successfully
applied for decentralized/distributed decision-making. Compared
with the central method based on the single agent, the multi-agent
optimization method can assign dispatch tasks to multiple agents for
processing, which improves the processing capacities and solution
efficiency. In addition, even if one agent fails or another agent is
added, the entire system can still maintain a stable operation. In
other words, the multi-agent approach will be more scalable,
adaptive, and robust (Gronauer et al., 2023).

1.3 Contribution

To sum up the above discussion, this paper proposes a gated
recurrent unit proximal policy optimization (GRUPPO)-based
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optimal VPP economic dispatch method. The contributions of this
article are as follows:

(1) The PPO-based deep reinforcement learning method is
developed to handle both continuous and discrete action
spaces. Compared with the traditional method, including
the deterministic optimization and robust optimization in
Mashhour and Moghaddas-Tafreshi (2010), Yang et al.
(2013), Chen et al. (2018), Liu et al. (2018), and Zhang
et al. (2018), the proposed approach can better deal with
the supply–demand uncertainties and meet the real-time
economic dispatch requirement for the VPP.

(2) The GRU network is equipped into the PPO-based deep
reinforcement learning method to form the GRUPPO
approach. Different from the reinforcement learning
approaches in Sun et al. (2017), Du et al. (2018), Liu et al.
(2018), and Lu et al. (2019), the proposed GRUPPO scheme
can fully consider the historical time series information for
economic decision-making, effectively reducing the VPP
operation cost.

(3) A multi-agent optimization framework is developed to
capture the distributed characteristics in the VPP. The
optimization framework adopts centralized training and
distributed execution, thereby performing higher flexibility
and scalability against complex situations.

The remainder of this paper is organized as follows: in Section 2,
the modeling of the VPP economic dispatch is established, and its
objective function is designed. In Section 3, the GRUPPO strategy
and its multi-agent framework are proposed for the optimal VPP
economic dispatch. In Section 4, case studies are conducted based on
the actual historical data. Conclusions are drawn in Section 5.

2 VPP economic dispatch

2.1 Framework and assumptions

The VPP leverages advanced information communication
technology to aggregate and coordinate multiple distributed
energy resources. The core concept of a VPP is aggregation and
coordination. The following assumptions and simplifications are
considered:

1) The VPP is assumed to have access to real-time data on
generation, demand, and grid conditions. These data are
necessary for the VPP to make decisions about power
generation and distribution.

2) The VPP is assumed to have efficient and reliable control and
communication systems to coordinate multiple distributed
energy resources.

3) Thermal properties of heating, ventilation, and air-
conditioning (HVAC), including heat generation, storage,
and transfer, are assumed to happen only in thermal nodes.

Though raising concerns over the inaccuracy issues, reasonable
assumptions and simplifications here could render the model a more
computationally tractable and more practically meaningful analysis.

2.2 VPP supply–demand model

The VPP components comprise thermal power generation,
photovoltaic generation, battery energy storage, the basic load,
the power flexible load, and the temperature-adjustable load.

1) Thermal power generation unit

The VPP relies on small-scale thermal power units to maintain
the flexibility and stability. The operation of thermal power
generation unit in the VPP meets the output constraints and the
ramp constraints:

PTH,min ≤PTH,t ≤PTH,max; (1)
RTH,min ≤PTH,t − PTH,t−1 ≤RTH,max, (2)

where PTH,t and PTH,t-1 are the thermal power output at moments t
and t−1, respectively; PTH,min, PTH,max, RTH,min, and RTH,max are
minimum output power, maximum output power, ramp-down
power, and ramp-up power of the thermal unit, respectively.

2) Power flexible loads

The power flexible loads, including LED lights with adjustable
brightness or electric fans with adjustable speed, can participate in
the VPP economic dispatch as a flexible load. In general, these loads
can be adjusted within the rated capacity range. Their total power
needs to meet the following constraints:

Ppf,min ≤Ppf,t ≤Ppf,max; (3)
Ppf, exp ,t � Ppf, exp ,t−1 + Ppf,t( ); (4)

Ppf, exp ,T ≥Ppf, exp, (5)

where Ppf,min and Ppf,max are minimum power and maximum
power of these loads, respectively; Ppf,exp,t, Ppf,exp,T, and Ppf,exp
are total power of the previous moment t, the total power of
the whole time period T, and the minimum power to meet user
needs, respectively.

3) Temperature flexible loads

Heating loads, including pitch heating, water heating, and
HVAC, are taken as temperature-adjustable loads. The common
feature of these heating loads is that the operating temperature t can
be adjusted according to artificial settings. The working temperature
t should be enforced to ensure the safe and reliable operation of
the equipment:

THVAC,t � THVAC,t−1 + a1 Tout,t − THVAC,t−1( ) + a2aHVACPHVAC,heat,t

− a2 1 − aHAVC( )PHVAC,cool,t;

(6)
aHVAC ∈ 0, 1{ }; (7)

Tmin ≤THVAC,t ≤Tmax, (8)
where Tmin and Tmax are the lower and upper temperatures,
respectively; a1 and a2 are the physical parameters which is
jointly calculated via thermal capacities and resistances; THVAC,t-1

is the temperature of the last time moment t−1; Tout,t represents the
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current outside temperature; PHVAC,heat,t and PHVAC,cool,t denote the
heating and cooling power of the air-conditioner, respectively; and
aHVAC is the running state of the air-conditioner, where aHVAC =
1 and 0 indicate that the air-conditioner is in a state of heating and
cooling, respectively.

4) Battery energy storage

Battery energy storage is an important energy storage, which has
the advantages of strong environmental adaptability, short
construction period, and convenient small-scale configuration.
The charge and discharge states of the battery energy storage
system must be limited to a certain range so as to avoid
overcharge or discharge:

SOCt � SOCt−1 + ηchaSOC,tPSOC,ch,t−1Δt
ESOC

− 1 − aSOC,t( )PSOC,dis,t−1Δt
ηdisESOC

;

(9)
aSOC,t ∈ 0, 1{ }, (10)

where SOCt and SOCt-1 are the current charge of the battery energy
storage and the charge of the last time t−1, respectively; ηch, ηdis,
PSOC,ch,t-1, and PSOC,dis,t-1 are charge efficiency, discharge
efficiency, charge power, and discharge power, respectively; Δt
is the unit time; and aSOC,t is the status of the battery charge and
discharge, where aSOC,t = 1 indicates that the battery is being
charged and aSOC,t = 0 indicates that the battery is being
discharged.

In addition, the operation of the battery energy storage needs to
meet the battery capacity limit:

SOCmin ≤ SOCt ≤ SOCmax; (11)
0≤PSOC,ch,t ≤PSOC,ch,max; (12)
0≤PSOC,dis,t ≤PSOC,dis, max, (13)

where SOCmin and SOCmax represent the minimum and maximum
battery capacities, respectively; PSOC,ch,max and PSOC,dis,max are the
maximum charging and discharge power, respectively.

5) Power balance

With the regulation from energy storage and market buying/
selling, power generation can be used to fulfill the power demand:

Pbuy,t + PTH,t + PSOC,dis,t + PPV,t � PSOC,ch,t + Ppf,t + PHVAC,heat,t

+ PHVAC,cool,t + Psell,t,

(14)
where Pbuy,t, PPV,t, and Psell,t are the purchased electricity power,
photovoltaic power, and electricity sold, respectively.

2.3 Objective function

The objective function in the VPP economic dispatch consists of
the coal consumption cost, battery degradation cost, air-
conditioning discomfort cost, and buying/selling electricity cost.

1) Coal consumption cost

The coal consumption cost function of the thermal power unit
can use the quadratic function related to the unit output:

CTH � ∑T
t�1
a · P2

TH,t + b · PTH,t + c, (15)

where a, b, and c are the coefficients of the quadratic function; PTH,t
is the power of thermal power. Through the linearization of the
quadratic function, the cost function of the coal consumption is
divided into M parts and denoted by

CTH � ∑T
t�1

∑M
m�1

Km,tPTH,m,t + Ct; (16)

Ct � a · P2
TH,min + b · PTH,min + c;

0≤PTH,m,t ≤
PTH,max − PTH,min

M
;

PTH,t � ∑M
m�1

PTH,m,t + PTH,min;

Km � 2a 2m − 1( )PTH,max − PTH,min

M
+ b,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

where Km,t is the slope of section m at time t of the coal
consumption function after piecewise linearization; Ct is the
coal consumption caused by starting up the thermal power unit
and running at the minimum output PTH,min; and PTH,m,t

represents the output power of the thermal power unit in the m
section at the t period.

2) Battery degradation cost

The battery degradation cost can be represented by

CSOC � ∑T
t�1
μSOC PSOC,ch,t + PSOC,dis,t( )Δt, (18)

where T, Δt, PSOC,ch,t, and PSOC,dis,t are dispatch cycle, unit time,
charging power, and discharge power, respectively; μsoc is the unit
average/amortized degradation cost of charging/discharging over
the whole service time, which can be calculated with its capital cost,
cycling numbers, capacity, and reference state of charge (Xu
et al., 2021).

3) Air-conditioning discomfort cost

While the constraints (Eqs 6–8) enforce the physical operation
of air-conditioning, the discomfort level is introduced to measure
the degree of satisfaction. The air-conditioning discomfort cost is
related to the set temperature and current temperature.

CHVAC � ∑T
t�1
μHVAC Tset − THVAC,t( )2Δt, (19)

where Tset and THVAC,t are set temperature and current time period
temperature, respectively; μHVAC is the discomfort cost coefficient,
which is used to measure the discomfort level.

4) Buying and selling electricity costs

The buying and selling electricity costs are calculated as follows:
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Cbuy � ∑T
t�1

abuy,tλbuy,tPbuy,t − 1 − abuy,t( )λsell,tPsell,t( )Δt; (20)

abuy ∈ 0, 1{ }, (21)

where abuy,t denotes the status of buying and selling electricity in the
VPP, where abuy = 1 means that the VPP buys electricity from the
market and abuy = 0 means that the VPP sells electricity to the
market; λbuy,t and λsell,t are electricity buying price and electricity
selling price, respectively.

The objective function is defined as

C � λTHCTH + λSOCCSOC + λHVACCHVAC + λbuyCbuy, (22)

where λTH, λSOC, λHVAC, and λbuy represent the cost coefficients of
the coal consumption, battery degradation, air-conditioning
discomfort, and buying and selling electricity, respectively.

3 The GRUPPO-based optimal VPP
economic dispatch

In this section, the designed GRUPPO-based optimal VPP
economic dispatch will be presented. First, the VPP economic
dispatch is expressed as a partially observable Markov decision
process (POMDP). Then, a GRUPPO-based deep reinforcement
learning approach is introduced to optimize the VPP
economic dispatch.

3.1 POMDP for the VPP economic dispatch

When using the reinforcement learning method to solve
problems, MDP is usually used to describe the environment.
MDP is characterized by the environment that is completely
observable, and the current state can fully represent the process.
That is, according to the current state, the next state can be
deduced, the current state captures all relevant information
from history, and the current state is a sufficient statistic for
the future. However, for the VPP economic dispatch problem,
the model contains random renewable energy. In the dispatch
process, the next state of the VPP is not only completely
determined by the current state but also depends on external
random factors. The model state is not completely observable,
and it is reasonable to express the VPP economic dispatch problem
as a POMDP. Its structure diagram is shown in Figure 1. Generally,
POMDP can be realized as a 7-tuple model {S, A, s, a, T, R, λ}
(Wang et al., 2023).

The VPP model shown in Figure 1 represents the environment,
and the agent is a hypothetical entity responsible for the VPP
economic dispatch. The agent makes a corresponding decision
based on the state of the environment, where the state and
decision represent the observations and actions of the agent,
respectively. The environment accepts the action of the agent and
produces the corresponding change, which depends on the state
transfer function T(st, at, χ). The environment gives the
corresponding reward according to the agent action, and the
reward received by the agent is related to the objective function
of the VPP economic dispatch.

1) Environment

Considering the supply–demand uncertainties, the
reinforcement learning environment operates according to the
individual device models in Chapter 2 and also needs to satisfy
their physical constraints in Chapter 2. These devices include
thermal power generation, photovoltaic power generation,
battery storage, base load, flexible load, and temperature-
adjustable load.

2) Agent

The VPP dispatch agent is a deep neural network, which obtains
the reward by constantly interacting with the environment and then
updates the neural network parameters according to the reward. The
interaction process between the agent and environment is to output
the VPP dispatch instructions through the neural network and
calculate the corresponding objective function value. The
construction process of the specific agent will be described in
detail in the next section.

3) State and observation

The agent needs to implement the corresponding action
according to the environment state, which is the state space. For
the VPP economic dispatch, the state observation space st ∈ S of the
agent is shown as follows:

st � λbuy,t, λsell,t, PTH,t, SOCt, THVAC,t, PPV,t, Pbase,t, Ppf, exp ,t{ }. (23)

4) Action space

The action carried out by the agent according to the
environment state is the action space. Lower-dimensional
actions help the agent learn faster. Since battery charging and
discharging cannot take place simultaneously, the charging and
discharging of the battery are combined into a single action
(instead of positive and negative). The same applies to the air-
conditioner. For the economic dispatch task, the action space is
expressed as follows:

at � PTH,t, PHVAC,t, PSOC,t, Ppf,t{ }; (24)
PSOC,t � aSOC,tPSOC,ch,t − 1 − aSOC,t( )PSOC,dis,t; (25)

PHVAC,t � aHVAC,tPHVAC,heat,t − 1 − aHVAC,t( )PHVAC,cool,t. (26)

5) State transition

Based on a policy π(at|st), the agent could calculate and perform
an action after its current observation st. Afterward, based on the
state transition function st+1 = T(st, at, χ), the environment proceeds
to st+1, which is impacted by state st, actions at, and the
environmental randomness χt.

Here, χt = [λbuy,t, λsell,t, THVAC,t, PPV,t, Pbase,t] indicates the
exogenous states, which are unrelated to the agent’s actions and
show model variability. In general, reinforcement learning could
cope with such variabilities in a data-driven way. It does not rely on
precise probability uncertainty distributions and updates state
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characteristics from the dataset. The state of χ′t = [PTH,t, SOCt,
THVAC,t, Ppf,exp,t] has no association with the external environment
but is associated only with the policy π(at|st). The state update is
required to satisfy the system constraints.

6) Reward

The reward function is to drive the agent’s decision-making, and
reward signals can be of any value (Canizo et al., 2019). The reward
function is generally set in the range of 0–1 to enhance and ensure
the convergence and optimality. Since the goal is to minimize the
dispatch cost, the establishment function of each time step is
designed as follows:

rt � λTHCTH,t + λSOCCSOC,t + λHVACCHVAC,t + λbuyCbuy,t. (27)

7) Objective

Each episode is divided into discrete time nodes t∈{0,1,2, . . . ,T}.
The agent starts from an initial state s0. At each time point t, the
agent moves to the next state st+1 based on the observation of the
environment state st, action at, and an immediate reward rt. Based on
this, the agent creates its trajectories of observations, actions, and
rewards: τ = s0, a0, r0, s1, a1, r1 . . . , rT. In the POMDP, the agent seeks
an optimal policy π(at|st) for the maximization of the
discounted reward:

R � ∑T
t�0
γtrt, (28)

where γ∈[0,1] is the discount factor to decide the importance of
immediate and future rewards.

3.2 GRUPPO-based deep
reinforcement learning

In this subsection, a reinforcement learning method called
GRUPPO is used for optimizing the VPP economic dispatch
based on the POMDP. The GRUPPO approach includes the
following three crucial steps:

1) Update the dispatch policy via a standard PPO algorithm

PPO, as a policy gradient algorithm, has been employed in a
multitude of optimization models. Generally, PPO is featured by an
actor–critic network and is able to handle high-dimensional
continuous spaces. Through the Gaussian distribution, a
stochastic policy πθ (at|st) of the actor network could be
developed to feature the continuous action spaces in (24). It gives
the standard deviation σ and mean μ, sampling the action at on st for
all VPP economic dispatch agents. The PPO renews the policy πθ (at|
st), maximizing the following clipped surrogate.

Jt θ( ) � Et min ζ tÂt, clip ζ t, 1 − ε, 1 + ε( )Ât( )[ ], (29)

where the product of ζt and Ât is the policy gradient; ζt is the
probability ratio clipped by clip(.). ε∈[0,1] is used to limit the policy
gradient update against its old version, if ζt is beyond [1−ε, 1+ε]. This
technique ensures that the policy gradient is updated to a stable area.

ζt in the PPO clipped policy (29) is expressed as follows:

ζ t � πθ at st|( )
πold
θ at st|( ), (30)

where πθ (at|st) and πθ
old (at|st) are the current and old policies,

respectively. The advantage function Ât is expressed as follows:

FIGURE 1
POMDP of the VPP economic dispatch.
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Ât � δt + γλ( )δt+1 + · · · + γλ( )T−t+1δT−1; (31)
δt � rt + γVϕ st+1( ) − Vϕ st+1( ), (32)

where Vϕ(s) denotes the state-value function approximated by a
critic network parameterized by ϕ; γ ∈ [0,1] and λ ∈ [0,1].

2) Introduce GRU into PPO to consider the time characteristics

Since the proposed VPP economic dispatch model is partially
observable, the Markov property is not valid. Compared with MDP,
the next state in a POMDP is not completely determined by the
present observations and actions (Ma et al., 2023). Conversely, the
complete history of the observation sequences ought to be taken into
account. By adding a GRU layer before the multi-layer perceptron
(MLP) to concisely capture the history, recursion is introduced to
deal with the non-Markovian nature of the POMDP.

GRUs are well suited for capturing and modeling time series
characteristics due to their ability to control information flow using

gates and adapt to long-term dependencies. GRUs comprise two
gates: the reset gate (r) and the update gate (z). The reset gate
controls how much of the previous hidden state is passed on to the
next time step, while the update gate determines how much of the
new input information is incorporated into the updated hidden
state. The reset gate effectively “forgets” or disregards part of the
previous state, allowing the network to focus on relevant
information and adapt to changing patterns in the time series. By
using gates to control the flow of information, GRUs can handle long
sequences more effectively than traditional RNNs. They are less
likely to suffer from exploding or vanishing gradients, which can be a
problem for long sequences. GRUs also have fewer parameters than
some other RNN variants, making them more efficient and less
prone to overfitting. When applied to a time series analysis, GRUs
can capture dependencies across time steps and generate meaningful
representations of the sequence data. GRUs can also be combined
with other techniques, such as attention mechanisms, to further
improve their performance in specific tasks.

The GRU and actor–critic networks are given in Figures 2, 3.

rt � σ Wrxt, Urht−1( ); (33)
zt � σ Wzxt, Uzht−1( ); (34)

~ht � tanh Wcxt, Uc rt · ht−1( )( ); (35)
ht � zt · ht−1 + 1 − zt( ) · ~ht, (36)

where rt is the reset gate; zt is the update gate;Wr,Ur,Wz,Uz,Wc, and
Uc are neural network weight matrices; σ is the sigmoid activation
function; and tanh is the hyperbolic tangent activation function.

The leveraged GRUPPO method is used to apply the PPO
algorithm together with the recurrent neural network. The actor
and critic networks include GRU and MLP layers. The network
structure is regulated via tuning the amounts of network layers and
neurons. For the activation function, tanh is chosen in the GRU layer
and the output layer of MLP. In other layers of MLP, ReLU is used
due to its fast convergence and low computational complexity.
However, the phenomenon of gradient disappearance and
gradient explosion will occur when the ReLU is used directly in
the experiment. In order to solve the problem of gradient

FIGURE 2
GRU network.

FIGURE 3
Actor–critic network.
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disappearance and gradient explosion caused by the ReLU activation
function, the layer is standardized to the neural network. In the
actual experiment, this operation can effectively alleviate the
phenomenon of gradient disappearance and gradient explosion
so that the neural network can be trained normally.

The VPP dispatch problem using the PPO algorithm is realized
through the neural network. The actor network uses the Gaussian
strategy to output mean and variance. πθ obeys the following
Gaussian distribution:

πθ a | s( ) � 1���
2π

√
σθ s( )e

− a−μθ s( )( )2
2σθ s( )2 , (37)

where a represents the action taken in state s; θ represents the policy
function parameters; μθ(s) represents the average value of action a in

state s; and σθ(s) represents the standard deviation of action a in state
s. The real action is randomly sampled according to the mean and
standard deviation of the actor network output. The other network is
the critic network, which outputs the value of the state according to
the current state of the VPP.

3) Construct the safety layer to meet the VPP model
constraints

The training reinforcement learning algorithm is an unconstrained
optimization algorithm via deep neural networks, which disregards
model constraints. Deploying the reinforcement learning actions to the
VPP would violate the constraints, and thus a safety layer is introduced.
It shows that the calculated reinforcement learning actions would be
slightly updated (only when facing system safety).

FIGURE 4
Performance comparison of PPO and GRUPPO.

FIGURE 5
Results of the economic dispatch of the VPP under the GRUPPO approach.
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Safe operation is the premise of VPP economic dispatch
tasks. For the VPP economic dispatch, the physical
constraints are to ensure the normal operation, while the
illegal actions will violate the constraints. In general, there are
two ways to ensure the constraint satisfaction of the action
output. The first method is to add the penalty terms for the
constraint violations to the reward so that the agent can avoid
making illegal action. The other method is to set the agent to take
action within the allowable range. The first step is to calculate the
boundary between the current state and the constraint. The
action lower boundary a− and upper boundary a+ are
calculated based on the current state st and constraints as follows:

a−t � P−
TH,t, P

−
HVAC,t, P

−
SOC,t, P

−
pf,t{ }; (38)

a+t � P+
TH,t, P

+
HVAC,t, P

+
SOC,t, P

+
pf,t{ }. (39)

The second step is to cut the action according to the clip
function. a is a constant value when the action meets the above
range. When action a exceeds the boundary, the clip function is used
to limit the action a within its boundary.

at � clip at, a
−
t , a

+
t( ). (40)

For the GRUPPO training process, the agent is equipped with πθ
(a|s) to interact with the environment. Then, the trajectory τ is

collected and utilized to evaluate the discounted reward

R̂t � ∑T
h�t

γh−trh. The goal of πθ (a|s) is to find actions that are

FIGURE 6
Results of the economic dispatch of the VPP under the PPO approach.

FIGURE 7
Results of the non-economic dispatch.
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potentially more rewarding so that they correspond to greater
probabilities, and thus the strategy is more probable to choose
them. For this purpose, the maximization objective function can
be defined as follows:

max
θ

Jα θ( ) � max
θ

Eτ~πθR τ( ) � max
θ

∑
τ

P τ; θ( )R τ( ). (41)

According to the PPO algorithm, the corresponding gradient
formula can be derived. Ât can also be computed with the state-value
function Vϕ(s) and trajectory τ. The actor network can be trained
while maximizing

Ja θ( ) � ∑T
t�1
min ζ tÂt, clip ζ t, 1 − ε, 1 + ε( )Ât( ). (42)

Accordingly, the critic network of GRUPPO can be trained by
minimizing the following loss function of the mean-
squared error:

Jc ϕ( ) � ∑T
t�1

Vϕ st( ) − R̂t( )2. (43)

A weighting update for the actor and critic networks is

θ ← θ + αθ∇θJ
a θ( ); (44)

ϕ ← ϕ + αϕ∇ϕJ
c ϕ( ), (45)

where αθ and αϕ are the learning rates of actor and critic networks,
respectively.

FIGURE 8
Operational results of the battery energy storage.

FIGURE 9
Operational results of the flexible adjustable load power.
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Finally, the pseudo-code of GRUPPO is given in Algorithm 1.
First of all, GRUPPO initializes the agent’s policy network and value
function network. The agent collects empirical data by interacting
with the environment and stores these data for subsequent training.
Then, the value function network is used to compute the advantage
function of the agent. Finally, the agent’s strategy network is updated
until a satisfactory level of performance is reached.

1: Initialize θ, ϕ for the actor–critic network

2: Set learning rates αθ, αϕ

3: For episode (i.e., an operating day) data � 1 to E

4: Initialize VPP state s0
5: For the VPP agent, create a new trajectory τ = []

6: For each time step (e.g., 1 hour) t � 1 to T

7: Chooses PPO action at according to observation st via

the policyπθ (a|s)

8: Correct action at values based on the security layer

9: Observes reward rts and the next observation st+1
10: Stores the sample experience into trajectory τ + =

[st, ats, rts]

11: Updates observation st → st+1 for the VPP agent

12: End for

13: Approximates discounted reward-to-go r̂t r and

advantage function Ât utilizing trajectory τ

14: Updates the parameters θ, ϕ of networks in (44)–(45)

15: End for

Algorithm 1. GRUPPO for the agent.

3.3 Multi-agent framework for GRUPPO

When using a single agent for the VPP economic dispatch, the
stable operation can be drastically affected by agent failure or a new
plug-and-play framework. The motivation behind the multi-agent
framework is to harness the power of autonomous agents and

enable collaborative problem-solving in VPP systems. By distributing
tasks among multiple agents, the multi-agent framework enhances
scalability, robustness, adaptability, and coordination. They allow for
parallel processing, fault-tolerance, and efficient utilization of resources,
making them suitable for various domains and dynamic environments.
The multi-agent-based GRUPPO strategy can be developed based on
the above GRUPPO approach. In the multi-agent GRUPPO method,
each agent is directly responsible for its own device or area, which
makes it easy to expand. Here, the detailed implementation method of
the multi-agent GRUPPO is given as follows:

st ∈ S, si,t ∈ st, (46)
where st represents the overall observation value of the agent at
time t; si,t represents the observation value of the i agent
at time t.

The training steps for the multi-agent framework differ from
those of the single-agent framework, specifically in the computation
of gradients and rewards. The reward function needs to compute the
overall value since multiple agents are included. During training, the
actor and critic network update of each agent i is

Ja θi( ) � 1
N

∑N
i�1
∑T
t�1
min ζ i,tÂi,t, clip ζ i,t, 1 − ε, 1 + ε( )Âi,t( ); (47)

Jc ϕi( ) � 1
N

∑N
i�1
∑T
t�1

Vϕ si,t( ) − R̂t( )2; (48)

θi ← θi + αθi∇θiJ
a θi( ); (49)

ϕi ← ϕi + αϕi∇ϕiJ
c ϕi( ), (50)

where ζt, Ât, and Vϕ(s) represent probability ratio, advantage function,
and state-value function, respectively; αθ and αϕ denote the learning
rates of actor and critic networks of the ith device, respectively.

Finally, the pseudo-code of multi-agent GRUPPO is given in
Algorithm 2. First of all, multi-agent GRUPPO initializes the

FIGURE 10
Operational results of the thermal power unit.
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policy network and the value function network of each agent. The
agents collect experience data by interacting with the environment
and store these data in a shared experience pool so that other
agents can access and learn from it. Then, centralized-distributed
training is performed, where agents perform training locally but
share global information to facilitate better collaborative learning.
A value function network is utilized to compute the advantage
function for each agent. Finally, the policy network is updated for
each agent until a satisfactory level of performance is reached.

Initialize θi, ϕi for the actor–critic network

Set learning rates αθ, αϕ

For episode (i.e., an operating day) data � 1 to E

Initialize both the local observation si,0 and

global state s0
For each time step (e.g., 1 hour) t � 1 to T

For VPP agents, i = 1 to N do

Chooses PPO action ai,t according to observation si,t via

the policy πθi (a|s)

Correct action ai,t of all agent values based on the

security layer

Observes reward rts and the next observation si,t+1
Stores the sample experience into trajectory τi + =

[si,t, ai,ts, rts]

End for

Updates observation si,t → si,t+1 for the VPP agent i

End for

For VPP agents, i = 1 to N

Approximates discounted reward-to-go r̂t r and advantage

function Âi,t utilizing trajectory τi

Updates the parameters θi, ϕi of networks in (49)–(50)

End for

End for

Algorithm 2. Multi-agent GRUPPO for agents.

4 Case studies

In this section, case studies are conducted to show the
effectiveness and advantages of the proposed GRUPPO approach
for the VPP economic dispatch. The simulation tests are undertaken
based on the actual historical data, which are compared with the
other two schemes: the PPO scheme and the non-economic dispatch
scheme. The detailed parameters of electrical generation, storage,
and consumption can be found in Xu et al. (2020), Wang et al.
(2023), and Xu et al. (2023).

4.1 Comparison of the convergence and
stability performance

In order to compare the stability and convergence, the
GRUPPO and PPO algorithms are implemented to optimize
the VPP economic dispatch. In order to avoid the randomness
of the test results, 10 different random seeds are used to conduct
1,000 rounds. In order to capture the uncertainties of PV power
and base load, the Monte Carlo method is implemented to obtain
1,000 scenarios for simulation, where forecasting errors were
assumed to follow a normal distribution function.
Subsequently, the optimization results of 10 groups of
economic dispatch are recorded and depicted in Figure 4. The
mean variances of the corresponding 1,000 rounds are also
calculated to further explain the differences in stability and
convergence performance.

It can be seen in Figure 4 that both methods can achieve
almost stable rewards after approximately 30 rounds. However,
the reward in the PPO scheme shows a significant increase after
420 rounds in the test, i.e., from approximately −4,600 to −4,900. In
contrast, the reward of the proposed GRUPPO still fluctuates up and
down near −4,600. Thus, it can be concluded that the GRUPPO
approach has better convergence and is more stable to optimize the

FIGURE 11
Operational results of the HVAC power.
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VPP economic dispatch. These results also illustrate that the
introduction of the GRU network into PPO can fully consider the
historical time series information and effectively improve the
performance of the PPO algorithm.

4.2 Comparison of the VPP
economic dispatch

Based on the actual data, the VPP economic dispatch results are
tested using GRUPPO and PPO approaches. The general
supply–demand results under three schemes are shown in Figures
5–7, and Figures 8–11 depict the detailed operational results of VPP
components. Compared with other two schemes, the battery energy
storage under the GRUPPO approach can appropriately store the
excess photovoltaic power for later release. It can be observed that the
flexible load of the VPP can increase its demand as the PV generation
increases. In contrast, in the non-economic dispatch scenario, these
loads are evenly distributed over the 24-h period. Although the PPO
method can also dispatch all components, the flexible loads do not
exhibit higher demand during the high PV generation for 10–15 h.
This would increase the pressure on the thermal power units and the
power purchase cost.

It can be seen in Figure 10 that the power generation of the
thermal power units in the GRUPPO method shows more intense
fluctuations compared to that in the other two methods. This
indicates that the proposed method can better adjust the thermal
power generation to follow the changes in PV power, thereby
reducing the VPP operating costs. Moreover, it can be observed
from Figure 11 that the HVAC power increases with the increase in
PV power. In contrast, in the absence of the economic dispatch, the
HVAC power changes with the daytime temperature. Although
PPO can also dispatch the HVAC power to follow the power
fluctuation, its sensitivity is lower than that of the GRUPPOmethod.

The overall operating costs of three schemes are 4,322$, 4,431$, and
4,620$, respectively. It is evident that the operating cost of the GRUPPO
method is the lowest. Specifically, compared to the PPOmethod andnon-
economic dispatch scheme, the proposed GRUPPO method reduces the
operating costs by 2.4% and 6.5%, respectively. Overall, these results
demonstrate the effectiveness and superiority of the proposed GRUPPO
method in reducing the VPP economic dispatch costs.

5 Conclusion

This paper proposed a deep reinforcement learning-based VPP
economic dispatch framework. The VPP economic dispatch is
captured via a POMDP, which is then solved using a novel
GRUPPO approach. The findings of this paper are summarized
as follows:

(1) Compared with PPO, the proposed GRUPPO approach can
make full use of the time series characteristics, improving its
convergence and stability performance.

(2) Based on the POMDP, GRUPPO learns to make decisions
based on partial information, which is suitable to handle real-
world optimization problems with uncertainty.

(3) Both continuous and discrete actions can be effectively
handled using the proposed GRUPPO approach, thereby
achieving a maximum cost reduction of 6.5%.

(4) The GRUPPO strategy can outperform other methods in
higher economy and scalability, exhibiting huge development
and application potentialities in the high-renewable modern
power system.

Electrical market development has become an inevitable trend
under the background of economic globalization and industrial
revolution. Further research would focus on strategic offering of
the VPP in the electrical market.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material; further inquiries can be directed
to the corresponding author.

Author contributions

ZG: investigation, project administration, writing–original
draft, writing–review and editing, and conceptualization. WK:
formal analysis, funding acquisition, methodology,
writing–original draft, writing–review and editing, and
conceptualization. XC: conceptualization, methodology,
visualization, writing–original draft, and writing–review and
editing. SG: data curation, methodology, writing–original draft,
and writing–review and editing. ZL: conceptualization, formal
analysis, investigation, writing–original draft, and
writing–review and editing. DH: conceptualization, formal
analysis, investigation, methodology, writing–original draft,
writing–review and editing, and resources. SS: writing–original
draft, writing–review and editing, investigation, methodology,
software, validation, and visualization. X-CS: conceptualization,
investigation, supervision, writing–original draft, writing–review
and editing, and validation.

Funding

The author(s) declare that financial support was received for
the research, authorship, and/or publication of this article. The
authors gratefully acknowledge the support of the Hubei
Provincial Natural Science Foundation of China under Grant
2022CFB907.

Conflict of interest

Authors ZG, WK, XC, SG, and ZL were employed by Hubei
Branch of State Power Investment Group Co., Ltd.

The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Frontiers in Energy Research frontiersin.org13

Gao et al. 10.3389/fenrg.2024.1357406

186

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1357406


Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors, and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Bui, V., Hussain, A., and Kim, H. M. (2020). Double deep $Q$ -Learning-Based
distributed operation of battery energy storage system considering uncertainties. IEEE
Trans. Smart Grid 11, 457–469. doi:10.1109/TSG.2019.2924025

Canizo, M., Triguero, I., Conde, A., and Onieva, E. (2019). Multi-head CNN–RNN for
multi-time series anomaly detection: an industrial case study. Neurocomputing 363,
246–260. doi:10.1016/j.neucom.2019.07.034

Chen, G., and Li, J. (2018). A fully distributed ADMM-based dispatch approach for virtual
power plant problems. Appl. Math. Model. 58, 300–312. doi:10.1016/j.apm.2017.06.010

Du, L., Zhang, L., Tian, X., and Lei, J. (2018). Efficient forecasting scheme and optimal
delivery approach of energy for the energy Internet. IEEE Access 6, 15026–15038. doi:10.
1109/ACCESS.2018.2812211

Etherden, N., Vyatkin, V., and Bollen, M. H. J. (2015). Virtual power plant for grid
services using IEC 61850. IEEE Trans. Ind. Inf. 12, 437–447. doi:10.1109/TII.2015.2414354

Gough, M., Santos, S. F., Lotfi, M., Javadi, M. S., Osorio, G. J., Ashraf, P., et al. (2022).
Operation of a technical virtual power plant considering diverse distributed energy
resources. IEEE Trans. Ind. Appl. 58, 2547–2558. doi:10.1109/TIA.2022.3143479

Gronauer, S., and Diepold, K. (2023). Multi-agent deep reinforcement learning: a
survey. Artif. Intell. Rev. 55, 895–943. doi:10.1007/s10462-021-09996-w

Hua, H., Qin, Y., Hao, C., and Cao, J. (2019). Optimal energy management strategies
for energy Internet via deep reinforcement learning approach. Appl. Energy. 239,
598–609. doi:10.1016/j.apenergy.2019.01.145

HuangYangZhang, S. M. C., Gao, Y., and Yun, J. (2021). A control strategy based on
deep reinforcement learning under the combined wind-solar storage system. IEEE
Trans. Ind. Appl. 57, 6547–6558. doi:10.1109/TIA.2021.3105497

Koraki, D., and Strunz, K. (2017). Wind and solar power integration in electricity
markets and distribution networks through service-centric virtual power plants. IEEE
Trans. Power Syst. 33, 473–485. doi:10.1109/TPWRS.2017.2710481

Książek, W., Abdar, M., Acharya, U. R., and Pławiak, P. (2019). A novel machine
learning approach for early detection of hepatocellular carcinoma patients. Cogn. Syst.
Res. 54, 116–127. doi:10.1016/j.cogsys.2018.12.001

Lin, L., Guan, X., Peng, Y., Wang, N., Maharjan, S., and Ohtsuki, T. (2020). Deep
reinforcement learning for economic dispatch of virtual power plant in internet of
energy. IEEE Internet Things J. 7, 6288–6301. doi:10.1109/JIOT.2020.2966232

Liu, L., Xu, D., and Lam, C. S. (2023). Two-layer management of HVAC-based multi-
energy buildings under proactive demand response of fast/slow-charging EVs. Energy
Convers. Manag. 289, 117208. doi:10.1016/j.enconman.2023.117208

Liu, W., Zhang, D., Wang, X., and Hou, J. (2023). A decision making strategy for
generating unit tripping under emergency circumstances based on deep reinforcement
learning. Proc. CSEE 38, 109–119. doi:10.13334/j.0258-8013.pcsee.171747

Liu, Y. Y., Li, M., Lian, H., Tang, X., Liu, C., and Jiang, C. (2018). Optimal dispatch of
virtual power plant using interval and deterministic combined optimization. Int.
J. Electr. Power Energy Syst. 102, 235–244. doi:10.1016/j.ijepes.2018.04.011

Lu, R., and Hong, S. H. (2019). Incentive-based demand response for smart grid with
reinforcement learning and deep neural network. Appl. Energy. 236, 937–949. doi:10.
1016/j.apenergy.2018.12.061

Ma, Y., Hu, Z., and Song, Y. (2023). A Reinforcement learning based coordinated
but differentiated load frequency control method with heterogeneous frequency
regulation resources. IEEE Trans. Power Syst. 39, 2239–2250. doi:10.1109/TPWRS.
2023.3262543

Mashhour, E., and Moghaddas-Tafreshi, S. M. (2010). Bidding strategy of virtual
power plant for participating in energy and spinning reserve markets—Part I: problem
formulation. IEEE Trans. Power Syst. 26 (2), 949–956. doi:10.1109/TPWRS.2010.
2070884

Naveen, R., Revankar, P. P., and Rajanna, S. (2020). Integration of renewable energy
systems for optimal energy needs-a review. Int. J. Energy Res. 10, 727–742. doi:10.20508/
ijrer.v10i2.10571.g7944

Thanh, P., Cho, M., Chang, C. L., and Chen, M. J. (2022). Short-term three-phase load
prediction with advanced metering infrastructure data in smart solar microgrid based
convolution neural network bidirectional gated recurrent unit. IEEE Access 10,
68686–68699. doi:10.1109/ACCESS.2022.3185747

Wang, Y., Qiu, D., Sun, X., Bie, Z., and Strbac, G. (2023). Coordinating multi-energy
microgrids for integrated energy system resilience: a multi-task learning approach. IEEE
Trans. Sustain. Energy, 1–18. doi:10.1109/TSTE.2023.3317133

Xu, D., Wu, Q., Zhou, B., Bai, L., and Huang, S. (2019). Distributed multi-energy
operation of coupled electricity, heating, and natural gas networks. IEEE Trans. Sustain.
Energy 11, 2457–2469. doi:10.1109/TSTE.2019.2961432

Xu, D., Zhou, B., Wu, Q., Chung, C. Y., Huang, S., Chen, S., et al. (2020). Integrated
modelling and enhanced utilization of power-to-ammonia for high renewable
penetrated multi-energy systems. IEEE Trans. Power Syst. 35, 4769–4780. doi:10.
1109/TPWRS.2020.2989533

Xu, D., Zhou, B., Liu, N., Wu, Q., Voropai, N., Li, C., et al. (2021). Peer-to-peer
multienergy and communication resource trading for interconnected microgrids. IEEE
Trans. Ind. Inf. 17, 2522–2533. doi:10.1109/TII.2020.3000906

Xu, D., Zhong, F., Bai, Z., Wu, Z., Yang, X., and Gao, M. (2023). Real-time multi-
energy demand response for high-renewable buildings. Energy Build. 281, 112764.
doi:10.1016/j.enbuild.2022.112764

Yang, S., Tan, S., and Xu, J. X. (2013). Consensus based approach for economic
dispatch problem in a smart grid. IEEE Trans. Power Syst. 28, 4416–4426. doi:10.1109/
TPWRS.2013.2271640

Zhang, Y., Ai, X., Wen, J., Fang, J., and He, H. (2018). Data-adaptive robust
optimization method for the economic dispatch of active distribution networks.
IEEE Trans. Smart Grid 10 (4), 3791–3800. doi:10.1109/TSG.2018.2834952

Zhao, L., Yang, T., Li, W., and Zomaya, A. Y. (2022). Deep reinforcement learning-
based joint load scheduling for household multi-energy system. Appl. Energy. 324,
119346. doi:10.1016/j.apenergy.2022.119346

Frontiers in Energy Research frontiersin.org14

Gao et al. 10.3389/fenrg.2024.1357406

187

https://doi.org/10.1109/TSG.2019.2924025
https://doi.org/10.1016/j.neucom.2019.07.034
https://doi.org/10.1016/j.apm.2017.06.010
https://doi.org/10.1109/ACCESS.2018.2812211
https://doi.org/10.1109/ACCESS.2018.2812211
https://doi.org/10.1109/TII.2015.2414354
https://doi.org/10.1109/TIA.2022.3143479
https://doi.org/10.1007/s10462-021-09996-w
https://doi.org/10.1016/j.apenergy.2019.01.145
https://doi.org/10.1109/TIA.2021.3105497
https://doi.org/10.1109/TPWRS.2017.2710481
https://doi.org/10.1016/j.cogsys.2018.12.001
https://doi.org/10.1109/JIOT.2020.2966232
https://doi.org/10.1016/j.enconman.2023.117208
https://doi.org/10.13334/j.0258-8013.pcsee.171747
https://doi.org/10.1016/j.ijepes.2018.04.011
https://doi.org/10.1016/j.apenergy.2018.12.061
https://doi.org/10.1016/j.apenergy.2018.12.061
https://doi.org/10.1109/TPWRS.2023.3262543
https://doi.org/10.1109/TPWRS.2023.3262543
https://doi.org/10.1109/TPWRS.2010.2070884
https://doi.org/10.1109/TPWRS.2010.2070884
https://doi.org/10.20508/ijrer.v10i2.10571.g7944
https://doi.org/10.20508/ijrer.v10i2.10571.g7944
https://doi.org/10.1109/ACCESS.2022.3185747
https://doi.org/10.1109/TSTE.2023.3317133
https://doi.org/10.1109/TSTE.2019.2961432
https://doi.org/10.1109/TPWRS.2020.2989533
https://doi.org/10.1109/TPWRS.2020.2989533
https://doi.org/10.1109/TII.2020.3000906
https://doi.org/10.1016/j.enbuild.2022.112764
https://doi.org/10.1109/TPWRS.2013.2271640
https://doi.org/10.1109/TPWRS.2013.2271640
https://doi.org/10.1109/TSG.2018.2834952
https://doi.org/10.1016/j.apenergy.2022.119346
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1357406


Multi-scenario renewable energy
absorption capacity assessment
method based on the
attention-enhanced time
convolutional network

Yang Wu1, Han Zhou1, Congtong Zhang1, Shuangquan Liu1* and
Zongyuan Chen2*
1Yunnan Electric Power Dispatching and Control Center, Kunming, China, 2College of Electric Power,
South China University of Technology, Guangzhou, China

As the penetration rate of renewable energy in modern power grids continues to
increase, the assessment of renewable energy absorption capacity plays an
increasingly important role in the planning and operation of power and
energy systems. However, traditional methods for assessing renewable energy
absorption capacity rely on complex mathematical modeling, resulting in low
assessment efficiency. Assessment in a single scenario determined by the source-
load curve is difficult because it fails to reflect the random fluctuation
characteristics of the source-load, resulting in inaccurate assessment results.
To address and solve the above challenges, this paper proposes a multi-scenario
renewable energy absorption capacity assessment method based on an
attention-enhanced time convolutional network (ATCN). First, a source-load
scene set is generated based on a generative adversarial network (GAN) to
accurately characterize the uncertainty on both sides of the source and load.
Then, the dependence of historical time series information inmultiple scenarios is
fully mined using the attention mechanism and temporal convolution network
(TCN). Finally, simulation and experimental verification are carried out using a
provincial power grid located in southwest China. The results show that the
method proposed in this article has higher evaluation accuracy and speed than
the traditional model.

KEYWORDS

renewable energy absorption capacity, attention-enhanced, time convolutional
network, uncertainty, multi-scenario

1 Introduction

Mitigating global warming, preventing climate damage, and achieving net-zero
emissions of greenhouse gases have become a global consensus. As an important way
to solve the global energy and environmental crisis, renewable energy power generation has
become a hot issue of concern for countries worldwide. Many countries are vigorously
developing renewable energy sources. As of the end of 2022, global renewable energy
installed capacity reached 3,372 GW, accounting for 83% of newly installed capacity with a
growth rate of 9.6%. The rapid development of a high proportion of renewable energy has
gradually transformed the power system into a new power system dominated by renewable
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energy. However, the intermittency, volatility, and uncertainty of
renewable energy output also pose serious challenges to power
system planning and operation. On the one hand, insufficient
long-distance transmission capacity and limited energy storage
capacity prevent the high proportion of renewable energy from
being fully absorbed by the power system, which will cause grid
security problems such as overloading of transmission lines,
unstable static voltage, and increased voltage deviation. In order
to reduce grid security risks, renewable energy power curtailment
often occurs. On the other hand, if the renewable energy
accommodation capacity of the main grid is not considered, the
integration of distributed renewable energy that exceeds the
penetration limit will inevitably lead to insufficient peak shaving
capacity of the main grid or transmission congestion, which will
further aggravate the phenomenon of power abandonment in
centralized renewable energy stations (Cui et al., 2022).
Therefore, an accurate assessment of renewable energy
absorption capacity is conducive to medium- and long-term
planning of the power system and adjustments to the power
system dispatch plan so as to improve the renewable energy
absorption level of the new power system.

Specifically, the current research methods on renewable energy
absorption capacity assessment are mainly divided into two
categories: model-based methods and machine learning-based
methods. The model-based method is mainly the typical day
method and time series production simulation method. The
typical day method only considers renewable energy absorption
in typical or extreme scenarios. The calculation time is fast, but the
calculation results are too conservative to accurately describe the
random fluctuation characteristics on both sides of the source-load.
Zhou et al. (2022) and Yan et al. (2022) put forward a renewable
energy absorption capacity evaluation model and a power grid
aggregation model based on time series production simulation.
Taking the annual maximum capacity of renewable energy as the
goal, the quantitative analysis of renewable energy absorption
capacity can be realized. Su et al. (2021) adopted the method of
zoning the power grid, divided the power grid according to the
congestion of renewable energy transmission, and aggregated the
load model, tie line model, and power supply model in each zone so
as to evaluate the renewable energy consumption capacity of the
entire power grid. Suo et al. (2022) proposed a time series
production simulation method for multi-energy power systems,
considering section constraints based on the equivalent energy
function method, and the calculation results are closer to the true
values of system operation. Li et al. (2019) proposed a renewable
energy absorption capacity calculation model that considers the
utilization level of inter-provincial tie lines, making full use of inter-
provincial and inter-regional tie lines to effectively improve the level
of renewable energy utilization across provinces and regions. Li et al.
(2023) proposed a multi-objective probabilistic optimal power flow
(MOPOPF) model, which aims to absorb renewable energy by
minimizing its curtailment while supporting security and
economic objectives. Ma et al. (2022) proposed a medium- and
long-term optimization model considering cross-regional power
trading and renewable energy absorption interval, and the
penalty term of renewable energy absorption interval is added to
the objective function. Yu et al. (2023) proposed a renewable energy
absorption capacity assessment method that considers peak

regulation and frequency response requirements. The original
complex peak regulation mechanism and frequency response are
equivalent to several mixed integer linear equations to reduce the
computational complexity. Li et al. (2021) established a functional
analysis model for wind power absorption capacity assessment,
taking the singular parameters of wind power as independent
variables, which effectively simplifies the calculation process of
wind power absorption capacity assessment and helps dispatchers
make reasonable decisions. Khalkho et al. (2022) developed a
general model to represent solar radiation based on Weibull
distribution and used smart grid discrete production simulation
(SGDPS) to evaluate the uncertainty of solar power generation. The
above model-based method carries out simulation calculations for
each time period; the solution is accurate, and the calculation results
are relatively reliable. However, the disadvantages are complex
modeling, a large amount of calculation, and limited applicable
scenarios (Li et al., 2018). The uncertainty on both sides of the source
and load leads to the complexity and diversity of power system
operation scenarios (Wang et al., 2023). On the source side, large-
scale access to renewable energy with strong randomness makes the
operation of power systems significantly uncertain.

On the load side, with the extensive access to new loads such as
electric vehicles, microgrids, and energy storage, the interaction
between supply and demand is becoming increasingly frequent, and
the load composition is becoming increasingly complex, showing
the characteristics of initiative and complexity, bringing multi-
source uncertainty to the operation of the power system (Wu
et al., 2020). It is difficult to truly reflect the random fluctuation
characteristics of the source and load when evaluating renewable
energy absorption capacity under a single scenario determined by
the source-load curve. Second, the model-based method is used to
evaluate a large number of renewable energy absorption scenarios,
which will consume a lot of computing time.

With the rapid development of artificial intelligence technology, the
renewable energy absorption capacity assessment method based on
machine learning provides a new way to improve the renewable energy
absorption level of new power systems. The key problem solved by
machine learning is to automatically extract complex and abstract
feature information from simple original features. It also has
powerful nonlinear expression and model recognition capabilities.
Chen et al. (2018) proposed using generative adversarial network
(GAN) to learn the time-space correlation of renewable energy
output and used the Wasserstein distance as a discriminator loss
function to improve network training quality. Generative adversarial
networks automatically learn the potential distribution patterns of data
samples through an end-to-end working method, thereby generating
data samples that are consistent with the distribution patterns of real
samples. Therefore, it provides an effective solution for the complex
modeling of uncertain scenes with source-load. The evaluation of
renewable energy absorption capacity based on machine learning
can be seen as constructing a nonlinear mapping relationship
between key variables of grid operation and the actual power
generation of renewable energy. Using the nonlinear mapping
relationship learned by the machine learning model, renewable
energy absorption capabilities can be quickly evaluated under
different operating scenarios. Lahouar and Slama (2015) proposed a
short-term prediction model based on random forest, which is mainly
applied to short-term load prediction. The model shows high accuracy
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and effectiveness on typical days such as four seasons, weekends, and
holidays. However, the use of multiple decision trees lead to a high
computational complexity of random forest, which often faces the
problem of overfitting when there is large noise in the data. Jia et al.
(2012), Liu et al. (2014), Li et al. (2016), and Varganova et al. (2022)
used principal component analysis to screen and reduce the
dimensionality of multivariate time series and then proposed a
renewable energy absorption capacity assessment model based on
long short-term memory (LSTM), establishing the key influencing
factors of renewable energy absorption and the actual absorption of
renewable energy. The dynamic correlation between them can
accurately assess the renewable energy absorption capacity under
future scenarios (Zhang et al., 2017). However, recurrent neural
networks such as LSTM need to wait for the forward pass of the
previous time step to complete before proceeding to the forward pass of
the next time step, which has the problem of slow training. The gradient
backpropagation process will accumulate along the time dimension,
and there is a gradient diffusion problem (Chen et al., 2017). Second,
due to the lack of convolution, the feature extraction capability of LSTM
and other recurrent neural networks for long time series needs to be
improved. At the same time, it is difficult to give more attention to the
key feature information that affects the prediction results. In recent
years, the time convolutional network (TCN) model has been widely
used in power grid business scenarios such as load forecasting (Wang
et al., 2020), renewable energy forecasting (Zhang et al., 2023), and
transient voltage stability assessment (Chen and Xie, 2022), but it is
relatively rarely used in the task of renewable energy absorption
capability assessment. Because of the integration of parallel feature
processing in the CNN and time domain modeling capability of RNN,
TCN has advantages in extracting long-term time series features (Song
et al., 2020).

In view of the above research status, we propose a multi-scenario
renewable energy absorption capacity evaluation method based on
an attention-enhanced time convolutional network (ATCN). The
main contributions of our work are threefold, as discussed below.

(1) Generative adversarial networks are used to generate source-
load scenario sets for multi-scenario renewable energy
absorption capacity assessment, which avoids the problem
that a single scenario assessment cannot truly reflect various
uncertain factors in actual operation.

(2) The long-term dependence of renewable energy absorption
historical data is more efficiently captured through the
temporal convolution network and attention mechanism,
and the overall evaluation accuracy of the model is improved.

(3) The temporal convolutional network does not use cyclic
connections and can input time series data in parallel so
that it can achieve faster model training speed and has more
advantages in long-term series training.

The remainder of this paper is organized as follows: Section 2
introduces the mechanism model of renewable energy absorption
capacity. Section 3 introduces the scenario generation method for
renewable energy absorption capacity assessment. Section 4
introduces the attention-enhanced time convolutional network.
In Section 5, a comprehensive numerical study is performed, and
the superiority of the proposed method is demonstrated. Finally, a
conclusion is drawn in Section 6.

2 Mechanism model of renewable
energy absorption capacity

Renewable energy absorption capacity is affected by the
following factors: power supply structure of the power grid, grid
topology, load demand, delivery market, and system peak shaving.

FIGURE 1
Schematic diagram of renewable energy absorption capacity.

FIGURE 2
Schematic diagram of the multi-scenario renewable energy
absorption capacity evaluation model.
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The mechanism model of renewable energy absorption capacity is
shown in Figure 1. The difference between load and external power
and the minimum technical output of conventional units is the
theoretical maximum absorption capacity of renewable energy.
When the output of renewable energy is less than the maximum
absorption capacity of renewable energy, the renewable energy
power generation can be fully absorbed. When the output of
renewable energy is greater than the maximum absorption
capacity of renewable energy, the excess power cannot be
absorbed by the system, resulting in the phenomenon of
renewable energy abandonment.

From Figure 1, we can intuitively analyze the main factors that
affect the absorption capacity of renewable energy, including
electricity load, external power, system backup, the minimum
technical output of conventional units, and the output level of
renewable energy. In order to explore the complex temporal
dependencies between renewable energy absorption capacity and
its main influencing factors, a data-driven approach can be used to
learn historical renewable energy absorption data.

The overall framework of the multi-scenario renewable energy
absorption capacity evaluationmodel is shown in Figure 2. According
to the input historical load data and historical renewable energy data,
the scene is generated using the Wasserstein generative adversarial
network–gradient penalty (WGAN-GP) algorithm, and the scene is
reduced using the K-medoids algorithm so that the wind power,
photovoltaic, and load scenes that conform to the real distribution of
historical data are obtained, respectively. The generated source-load
scene set is divided into datasets, and the attention-enhancing time
convolution network is trained based on massive historical data from
multiple scenes. The trained multi-scenario renewable energy
absorption capacity evaluation model can quickly and accurately
output the evaluation results of renewable energy absorption
capacity in a given scenario.

3 Renewable energy absorption
capacity assessment scenario
generation

A generative adversarial network is an adversarial learning
framework. Its core idea comes from the two-person zero-sum

game in game theory. It consists of a generator and a
discriminator, as shown in Figure 3. The entire game process
requires the generator and discriminator to find the Nash
equilibrium between the two through continuous learning and
optimization, thereby learning the potential distribution of real data
to simulate and generate complex laws that are difficult to describe in
the real world. It is suitable for the description of source-load
uncertainty scenarios. Compared with traditional probabilistic
modeling methods, the scene generation method based on
generative adversarial networks does not rely on statistical
assumptions about the data, avoids the process of scene sampling,
and can accurately capture the true distribution of historical data.

The input of the generator is a set of random noise data z to
represent the probability distribution of Pz, and the output G(z) is
the generated data sample. The input of the discriminator is
historical scene data x and data G(z) generated by the generator,
and the output is a probability value to determine whether the data
comes from real data samples. The training of a generative
adversarial network can be regarded as a minimax game model,
which is defined as follows:

min
G

max
D

V D,G( ) � Ex~Pr logD x( )[ ] − Ez~Pz log 1 −D G z( )( )( )[ ],
(1)

where E(·) represents the expected value, D(x) represents the
probability that the real data are judged to be true in the
discriminator, and D(G(z)) represents the probability that the
input data follow the historical data distribution Pr.

Based on the original generative adversarial network, WGAN-
GP adopts the observable Wasserstein distance as the training target
of the model and introduces the gradient penalty term, which is
conducive to measuring the distribution difference of different data
and can effectively solve problems such as gradient explosion,
training instability, and convergence difficulties in the training
process of the traditional generative adversarial network.

Wasserstein distance is defined as

W pr, pg( ) � 1
K

sup
f‖ ‖L ≤K

Ex~pr f x( )[ ] − Ex~pg f x( )[ ], (2)

where W(pr, pg) represents the Wasserstein distance between the
distribution of real and generated data, K represents the Lipschitz

FIGURE 3
Structural diagram of the generative adversarial network.
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constant of f(x), ‖f‖L represents the function f(x) satisfying
A-Lipschitz continuity, L represents the Lipschitz, and sup
represents the least upper bound.

The gradient penalty term is defined as

GP � λEx~Px̂ ∇D x( )‖ ‖p − 1[ ]2, (3)

where λ represents the penalty coefficient, Px̂ represents the random
interpolation sampling between the generated and real samples, and
∇D(x) represents the gradient of the discriminator.

The objective function of WGAN-GP training is defined
as follows:

min
G

max
D

V D,G( ) � Ex~Pr D x( )[ ] − Ez~Pz G z( )[ ] + GP. (4)

After the scene generation based on WGAN-GP, it is necessary
to reduce the massive scenes using the K-medoids algorithm to get
the typical source-load scene set (Yu et al., 2018). Compared with the
traditional K-means clustering algorithm, the K-medoids algorithm
chooses the object closest to the cluster mean as the cluster center,
which reduces the influence of abnormal data on the clustering effect
and is more robust to noise and outliers. Therefore, using the
K-medoids algorithm, we select the source-load scene with
obvious characteristics and high probability from the original
source-load scene. The K-medoids algorithm is mainly divided
into three steps. First, the number of clustering centers in the
k-medoids algorithm is preset, and the optimized clustering
center is obtained in the clustering process. Then, according to
the principle of being closest to the cluster center, the remaining
points are assigned to the class represented by the current best
cluster center. Finally, when all the clustering centers no longer
change, it means that the scene reduction is completed.

4 Attention-enhanced time
convolutional network

4.1 Attention mechanism

In reality, time series information usually contains a lot of
redundant information. If the redundant information is treated
as important information, it will interfere with the performance
of the model to extract information. The introduction of the
attention mechanism in the first layer of each residual module of
the TCN is helpful to improve the model’s focus on key information
in data features and reduce the risk of overfitting.

In essence, the attention mechanism is a method of weight
allocation of input features. By calculating the weight coefficient of
input features on output results, features with a high weight
coefficient are given more attention so as to highlight the
influence of key features and improve the accuracy of the
prediction model. For an input sequence x1, x2, . . . , xT of length
T, the attention weight βti of the hidden state of the historical input
to the current input state is calculated using the following formula:

βti �
exp sti( )
∑T
i�1

exp sti( )
, (5)

sti � v tanh Wht−1 + Uht + b( ), (6)

where sti represents the energy value of the hidden layer state hi at
the time t, v represents the input value, W and U are the weight
coefficient matrices, and b is an offset item.

By multiplying and summing the hidden layer state of the
history node of the input sequence, the feature vector is
obtained, which is expressed as follows:

Ct � ∑T
i�1
βtiht, (7)

where Ct represents the calculated eigenvector of the input sequence
and βti represents the attention weight of the hidden state
corresponding to the history input when transitioning to the
current input state.

The state value of the last node is output, which is expressed
as follows:

Ht � f Ct,Ht−1, yt−1( ), (8)
whereHt represents the status value of the last output node and yt−1
represents the output at the time t-1.

4.2 Temporal convolutional network

A TCN is a neural network model that integrates dilated causal
convolution (DCC) and residual connection (RC). Its network
architecture is shown in Figure 4, which is stacked by an input
layer, multiple residual blocks, and an output layer.

4.2.1 Dilated causal convolution
Causal convolution can effectively avoid future information

leakage problems caused by convolution operations in traditional
convolutional neural networks, but it is difficult to capture the
characteristics of long-term historical information. On the basis
of causal convolution, dilated causal convolution can obtain a larger
receptive field by increasing the convolution kernel size K and
expansion coefficient d. It is more suitable for processing

FIGURE 4
Structural diagram of the temporal convolutional network.
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historical data with a long time span and a large amount of data. The
structure of dilated causal convolution is shown in Figure 5.

Multi-layer stacking combined with dilated causal
convolutions can enable deep learning networks to achieve very
large receptive fields with fewer network layers. In addition, since
each layer of the network uses filters of the same size, it is
conducive to parallel computing processing and improving
computing efficiency. Therefore, in view of the characteristics of
historical renewable energy absorption data with a large data scale
and a long time span, dilated causal convolution and residual
modules are used to construct a TCN to capture the long-term
dependence between renewable energy absorption capacity and its
main influencing factors in parallel. It can effectively improve the
efficiency of model evaluation. The expression of dilated causal
convolution is

F T( ) � ∑K−1
n�0

f i( )XT−di, (9)

where d represents the expansion coefficient, K represents the size of
the convolution kernel, f(i) represents the ith piece of data in the
convolution kernel, and T − di indicates that the convolution
operation is performed only on data from time T past time di.

4.2.2 Residual module
With the increase in the depth of the TCN, its ability to mine

complex correlation features between time series information is
enhanced, but it also brings about gradient explosion, gradient
disappearance, and other problems. In order to solve the
degradation problem of deep learning networks, the residual
module is introduced for error correction, which is defined
as follows:

x′ � Activation x + R x( )( ), (10)
where x represents the input sequence of the residual module, R(x)
represents the residual term, and Activation(·) represents the
activation function.

Each residual module is composed of two nonlinear, dilated
causal convolution layers. After each dilated causal convolution
layer, a batch standardization layer is added so that the input of each
layer network can be normalized. After the standardization layer, the
ReLU activation function is used to improve the model’s ability to fit
nonlinear data, and Dropout is introduced to mitigate the risk of
overfitting the model.

5 Numerical study

5.1 Experiment data description

In order to verify the feasibility and superiority of the proposed
attention-enhanced time convolutional network in renewable energy
absorption assessment, this paper carries out a case simulation and
analysis using the real SCADA data of a provincial power grid in
southwest China. The complete dataset contains historical data on the
province’s renewable energy absorption from 2018 to 2022, and the
data sampling frequency is every 15 min. Daily data with renewable
energy powermissing values or outliers were screened and eliminated,
resulting in a total of 143,191 valid datasets. The example dataset is
divided into a training set, verification set, and test set in the ratio of 6:
2:2. The zero-mean normalization method is adopted for data
standardization preprocessing, and its conversion function is
as follows:

x* � x − μ

σ
, (11)

where μ represents the mean of all sample sequences and σ

represents the standard deviation of all sample sequences.

5.2 Evaluation indicators

In order to verify the accuracy of the proposed method to
evaluate the renewable energy absorption capacity, this paper

FIGURE 5
Structural diagram of dilated causal convolution.
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uses the mean absolute percentage error eMAPE and root mean
square error eRMSE, which are widely used in statistics as error
evaluation indicators. The smaller the value of the above evaluation
index, the higher the evaluation accuracy. In addition, using the
determination coefficient R2 to evaluate the effectiveness of the
model, the larger the value, the more significant the fitting effect of
the evaluation model to the data. The specific calculation formulas
for different performance indicators are as follows:

eMAPE � 100%
N

∑N
t�1

yt − ŷt

yt

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣, (12)

eRMSE �


1
N

∑N
t�1

yt − ŷt( )2,
√√

(13)

R2 � 1 −
∑N
t�1

yt − ŷt( )2
∑N
t�1

yt − �y( )2 , (14)

where yt and ŷt, respectively, represent the predicted and real values
of the absorption capacity of renewable energy under the t time
section, �y represents the average consumption capacity of renewable
energy, and N represents the number of samples.

5.3 Model parameter setting

The proposed ATCN model is verified on a PC platform
featuring an Intel Core i7-11700F 2.5 GHz CPU, 16 GB RAM,
and GTX 1660 SUPER GPU, and the operation environment is
Torch 1.8.0 based on Python. The ATCN model parameters are
shown in Table 1.

5.4 Experimental results and analysis

5.4.1 Scene generation results
Using historical load data and historical renewable energy data,

the scene is generated through the use WGAN-GP and reduced
using the K-medoids algorithm. The source-load scene generation

based on WGAN-GP has been carried out for 250 iterations. With
the continuous updating of the data, the Wasserstein distance
decreases and finally fluctuates at approximately 0.03, as shown
in Figure 6. WGAN-GP uses the Wasserstein distance as the loss
function, and there is always gradient guidance, which can ensure
that the generated distribution is close to the real data distribution.
By increasing the gradient penalty term, the gradient distribution is
more uniform, and the training process is more stable.

The load, wind power, and photovoltaic scenarios conforming to
the true distribution of historical data are obtained, respectively, as
shown in Figure 7.

The probability of each typical scenario in the source-load scenario
set is shown in Table 2. The generated source-load scenario set can
effectively describe the random fluctuation characteristics on both sides
of the source and load, provide scenario support for the evaluation of
renewable energy absorption capacity, and reflect the influence of
various uncertain factors on renewable energy absorption in the
actual operation of power systems. The time convolution network of
the multi-scenario renewable energy absorption capacity evaluation
model has the characteristics of a parallel input of time series data. In the
training process of the renewable energy absorption capacity evaluation
model, the long-term dependence between renewable energy
absorption capacity and its main influencing factors can be captured
in parallel by inputting each typical scenario in the source-load scenario
set. Finally, the output results are weighted and summed according to
the probability of typical scenarios, which realizes an accurate capture of
the uncertain characteristics on both sides of the source and load
considering multiple scenarios.

5.4.2 Comparison of evaluation indexes in
different seasons

In order to verify the superiority of the proposed evaluationmethod
of renewable energy absorption capacity, this paper selects the typical
daily method and time series production simulation based on the
model, the long short-term memory neural network, and the random
forest based on machine learning as the benchmark prediction
methods. The accuracy of renewable energy consumption capacity

TABLE 1 ATCN model parameter.

Parameter Value

Sequence input length 96

Time window length 12

Convolution kernel size 3

Coefficient of expansion 4

Activation function ReLU

Dropout rate 0.3

Learning rate 0.003

Optimizer Adam

Learning decay rate 0.15

Batch size 128

FIGURE 6
Change in the Wasserstein distance.
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evaluation is compared and analyzed between theATCNmodel and the
abovemethods. Table 3 gives the average performance evaluation index
results of different methods in all scenarios in four seasons in detail.
From the comparative analysis in Table 3, it can be seen that the ATCN
model has achieved the best evaluation accuracy in three evaluation
indexes: MAPE, RMSE, and R2. That is, compared with all benchmark
evaluationmethods, the ATCNmodel has different degrees of accuracy

improvement in three different performance evaluation indexes.
Compared with the model-based time series production simulation,
the proposed method in this paper has a decrease of 3.11% inMAPE, a
relative decrease of 51.58% in RMSE, and an increase of 0.59% in R2.
Compared with the long short-term memory neural network based on
machine learning, the proposed method in this paper has a decrease of
6.12% inMAPE, a relative decrease of 54.80% in RMSE, and an increase
of 0.71% in R2. The typical day method only considers the operation of
the system in typical or extreme scenarios and cannot accurately
characterize the time series fluctuation characteristics on both sides
of the source and load of the system. The time series production
simulation method relies on complex mathematical modeling and time
series deduction and simplifies the model in the modeling process.
Therefore, it is difficult to understand the real operation of the system.
The LSTM method cannot extract the feature information of different
time scales by stacking multiple convolution layers, and it is difficult to
effectively capture the local dependencies in sequence data. The random
forest method will have overfitting problems when modeling datasets
with specific noise, and it is difficult to make predictions beyond the
data range of the training set, so it will not perform well when the scene
changes greatly. The attention mechanism and time convolution
network of the ATCN model can extract features of different scales
from the historical data of massive renewable energy absorption in
different scenarios by stacking convolution layers and increasing the
receptive field of the convolution kernel, effectively capture the long-
term dependence between sequence data, and fully explore the implicit
correlation between key variables of power grid operation and the actual
absorption of renewable energy.

5.4.3 Comparison of the results of 1 week selected
in different seasons

In order to verify the evaluation effect of the model proposed in
this paper on the absorption capacity of renewable energy in
different seasons, 1 week in each of the four seasons is selected
for comparative analysis. The spring period is from 21 March to
27 March 2021. The summer period is from 21 June to 27 June 2021.
The autumn period is from 21 September to 27 September 2021. The
winter period is from 21 December to 27 December 2021. The
comparison of the evaluation results of different methods is shown
in Figure 8.

FIGURE 7
Scene generation results: (A) Load; (B) Wind power; (C)
Photovoltaic.

TABLE 2 Results of scene reduction.

Scene Scene probability

1 0.103

2 0.123

3 0.089

4 0.112

5 0.098

6 0.093

7 0.105

8 0.084

9 0.102

10 0.091
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It can be seen from Figure 8 that the fluctuation range of renewable
energy absorption capacity in spring is larger, while the fluctuation
range of renewable energy absorption capacity in autumn is smaller.
Under different seasonal conditions, the model proposed in this paper
has the smallest error and the highest evaluation accuracy in evaluating
renewable energy absorption capacity, showing good robustness and
adaptability. This is because the ATCN model proposed in this paper
can effectively learn the random fluctuation characteristics of both sides
of the source and the load after training based on the source-load
scenario set and achieve accurate capture of the fluctuation
characteristics of renewable energy absorption capacity.

5.4.4 Comparison of the results of different
hyperparameters

In order to further verify the effectiveness of the model, we
consider changing the network structure hyperparameters of the
model and verifying the influence of different hyperparameters on
the model. Four kinds of hyperparameters that affect the evaluation
accuracy of renewable energy absorption capacity are considered:
sequence input length, time window length, convolution kernel size,
and expansion coefficient. The experimental results are shown in
Table 4. During the experiment, except for the corresponding
hyperparameters, other hyperparameters remain unchanged, and
the experimental results are averaged 10 times.

With the gradual increase in the sequence input length, time
window length, and expansion coefficient, the accuracy of the model
shows an increasing trend first and then decreasing. In a certain range,
with an increase in the sequence input length or time window length,
the model can make full use of more input data, and the increase in
extracted features is beneficial to improving the performance of the
model. However, when the length exceeds a certain range, the model
cannot fully capture the long-term time dependence of time series,
which leads to the gradual decline ofmodel’s performance. In a certain

range, the increase in the expansion coefficient will lead to the
enlargement of the receptive field, which will help the network
capture the dependence of longer time series. However, with the
increase in the expansion coefficient, the number of network layers
gradually deepens, and the amount and complexity of calculations
increase, which makes the model more difficult to train, so the
accuracy of the model decreases. The performance of the model
decreases with the increase in the convolution kernel size, which is due
to the loss of too much detailed information transmitted to the high-
level convolution kernel when using a large-size convolution kernel.
Finally, when the sequence input length is 96, the time window length
is 12, the convolution kernel size is 3, and the expansion coefficient is
4, the ATCN model obtains the best evaluation effect.

5.4.5 Comparison of the calculation efficiency of
different methods

Table 5 shows the comparison of the average training time and
average evaluation time in the source-load scenario set between the
renewable energy absorption capacity evaluation method proposed
in this article and other methods.

As can be seen from the table, the method proposed in this paper
avoids the complex mathematical modeling and model solving of the
model-driven method and has fast solving speed and high prediction
accuracy. By avoiding the use of circular connections and inputting
time series data in parallel for training, the training time and
evaluation time are significantly shortened. The typical day
method takes the absorption of renewable energy in typical scenes
as a reference and does not need complicated training. It only needs to
analyze and calculate the data of typical scenes in the source-load
scene set, which is fast in calculation time. The time series production
simulationmethod needs to comprehensively consider the constraints
of various types of units and large-scale power grids to realize time-by-
time simulation of power grid dispatching operation conditions.

TABLE 3 Accuracy of different assessment methods.

Season Index Typical day Production simulation LSTM RF ATCN

Spring eMAPE 64.52% 3.21% 6.62% 35.04% 1.92%

eRMSE 1,892.74 143.83 172.43 1,006.71 74.67

R2 53.15 99.25 99.04 71.04 99.83

Summer eMAPE 77.58% 5.32% 6.29% 28.08% 1.86%

eRMSE 1,857.63 163.62 170.67 819.04 76.88

R2 51.26 99.21 99.11 75.94 99.79

Autumn eMAPE 89.21% 6.13% 14.11% 91.04% 3.36%

eRMSE 2,354.36 168.23 175.41 864.67 61.08

R2 47.23 99.24 97.36% 53.19 99.67

Winter eMAPE 65.41% 3.35% 8.29% 37.33% 2.02

eRMSE 1,733.58 145.26 187.79 756.52 89.63

R2 53.23 99.24 98.58 76.88 99.67

Average eMAPE 70.43% 5.35% 8.36% 45.20% 2.24%

eRMSE 1,975.32 165.25 177.05 909.66 80.02

R2 54.65 99.23 99.12 76.74 99.82
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Complex mechanismmodeling leads to the time-consuming problem
of finding the optimal solution in multiple scenarios. Because of the
internal structural characteristics of LSTM, its training process is
processed sequentially with the passage of time, and it is impossible to
realize the parallel processing of time series data, which leads to the
time-consuming training and evaluation in the source-load scene set.
Because each decision tree can be trained independently, the random
forest can be processed in parallel, but with the increase in the number
of decision trees, its computational complexity is greatly improved,
especially when facing multi-scene source and load data. Therefore, it

FIGURE 8
Comparison of evaluation results of renewable energy absorption capacity: (A) Spring; (B) Summer; (C) Autumn; (D) Winter.

TABLE 4 ATCN hyperparametric analysis.

Hyperparameter Value eMAPE (%) eRMSE R2

Sequence input length 24 4.38 153.29 99.14

48 3.26 145.76 99.24

96 2.24 80.02 99.82

192 2.86 102.98 99.46

Time window length 3 5.39 166.34 99.21

6 3.37 146.31 99.24

12 2.24 80.02 99.82

24 5.28 161.33 99.22

Convolution kernel size 3 2.24 80.02 99.82

4 2.73 99.78 99.49

5 2.97 101.23 99.47

Coefficient of expansion 2 3.57 149.79 99.24

4 2.24 80.02 99.82

8 3.21 143.67 99.27

16 5.31 163.24 99.21

TABLE 5 Calculation time of different assessment methods.

Method Training
time (min)

Assessment
time (min)

Typical day 5.8

Production
simulation

627.6

LSTM 87.3 3.8

RF 134.2 4.3

ATCN 27.7 1.2
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is necessary to train multiple decision trees at the same time, which
further increases the training time and evaluation time of the random
forest algorithm.

6 Conclusion

In this paper, aiming at problems such as the low evaluation
efficiency of the traditional renewable energy absorption capacity
evaluation method and the inaccurate evaluation results caused by
the evaluation in a single scene determined by the source-load curve,
a multi-scenario renewable energy absorption capacity evaluation
method based on an attention-enhanced time convolution network
is proposed. The simulation analysis is carried out using the real
renewable energy historical absorption data of a provincial power
grid in southwest China. The main results are as follows:

(1) The trained generator network can fully mine the implicit
association of massive historical data, generate the source-
load scene set in line with the actual operation law of the
system, and provide scene support for the evaluation of
renewable energy absorption capacity.

(2) The attention mechanism and time convolution network help
in fully mining the long-term dependence of historical time
series information in multiple scenarios so as to effectively
improve the evaluation accuracy of the model. In addition, the
training speed of the model is effectively improved through
parallel training.

(3) The ATCN model is trained based on massive historical data
of multiple scenarios, which can fully learn the random
fluctuation characteristics of both sides of the source-load
under different scenarios and realize an accurate capture of
the fluctuation characteristics of the absorption capacity of
renewable energy so as to effectively improve the robustness
and adaptability of the model.

It is worth noting that the training of the neural network is
highly dependent on the quality of the data. The follow-up work will
integrate a data-driven and knowledge-driven model and further
improve the performance and interpretability of renewable energy
absorption capacity evaluation by embedding prior knowledge in the
model training process.
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The household energy management system (HEMS) has become an important
system for energy conservation and emission reduction. In this study, home
energy management considering carbon quota has been established. Firstly, the
household photovoltaic output model, load model of various electrical
appliances, battery load model, and charging and discharging of electric
vehicles (EVs) model are established. Secondly, the carbon emission and
carbon quota of household appliances and EVs are considered in these
models. Thirdly, the energy optimization model of minimum the household
user’s total comprehensive operation cost with the minimum total electricity
consumption, carbon trading cost, battery degradation cost, and carbon quota
income are proposed, taking into account constraints such as the comfort of
users’ energy use time. Subsequently, the improved particle swarm optimization
(IPSO) algorithm is used to tackle the problem. Compared to the standard particle
swarm optimization (PSO), the IPSO has significantly improved the optimization
effect. By comparing the optimization results in different scenarios, the
effectiveness of the strategy is verified, and the influence of different carbon
trading prices on optimal energy scheduling has been analyzed. The result shows
that the comprehensive consideration of carbon trading cost and total electricity
cost can reduce the household carbon emissions and the total electricity cost of
the household user. By increasing the carbon trading price, the user’s carbon
trading income and the EV carbon quota income increase, and the overall
operating cost decreases; the guidance and regulation of carbon trading price
can make a valuable contribution to HEMS optimization. Compared to the
original situation, the household carbon emissions are reduced by 14.58 kg, a
decrease of over 21.47%, while the total comprehensive operation cost are
reduced by 14.12%. Carbon quota trading can guide household users to use
electricity reasonably, reducing household carbon emissions and the total cost of
household electricity.

KEYWORDS

home energy management, comfort, carbon quota, the battery degradation, IPSO

1 Introduction

With the economy increasing and society developing, carbon emission reduction has
become a hot research topic. The proportion of household electricity in economic and social
development is gradually increasing, and household energy management is becoming more
important. Analyzing users’ electricity consumption habits, adjusting their electricity
consumption mode, and realizing energy-saving and low-carbon operation will help to
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improve power system operation. It is effective in achieving the dual
carbon goal on the end user by reducing their electricity
consumption cost and carbon emissions.

The studies using home energy management systems (HEMSs)
essentially pursue the optimal energy consumption scheme for
energy users.

Researchers have focused the optimization problem on various
objectives. The objective of many studies is to minimize operation
cost (Javadi M S et al., 2020; Lu Q et al., 2020; Sarker E et al., 2020;
Thabo G et al., 2021; Ubaid ur Rehman et al., 2022). Sarker E et al.
(2020) studied a model of household load management, aiming to
minimize the total electricity cost. The response effects of different
types of households to price demand with the goal of minimizing
cost were analyzed. Javadi M S et al. (2020) proposed an effective
HEMS for the self-scheduling of users, and this model considered a
dynamic pricing scheme. Lu Q et al. (2020) proposed a model
aiming to minimize the peak load and electricity cost to better
coordinate household appliances. Thabo G et al. (2021) studied the
impact of user’s price and incentive demand response on dynamic
economic dispatch and established a multi-objective model
considering operating costs and renewable energy penetration.
Meanwhile, Marcos Tostado-Véliz et al. (2022) developed a
HEMS that incorporates three different strategies of demand
response; it also used a novel scenario-based approach. Marcos
Tostado-V´eliz et al. (2023) proposed a fully robust model and used
it to solve the inherent uncertainties whichmay arise in home energy
management. H. Merdanoglu et al. (2020) focused on optimal
appliance power to minimize energy cost. The uncertainties from
renewable energy, the end user, and the Real-time Transport
Protocol were incorporated into the mixed integer linear
programming problem through simple stochastic models. Based
on the purpose of reducing electricity charges, the above documents
considered the guidance of price and incentive on household energy
scheduling, but the user’s comfort requirements and other aspects
were not considered.

As mentioned above, these studies ineluctably require users to
compromise between electricity costs and comfort. This would
inherently change user’s energy comfort. Some researchers have
studied the end user’s comfort/discomfort from a multi-objective
optimization perspective. A.H. Sharififi et al. (2019) proposed a
method that can reduce electricity cost while taking into account the
residents’ comfort, and it can improve the peak-to-average ratio.
Pamulapati T et al. (2020) established a multi-objective optimization
model for intelligent electrical equipment based on economy and
comfort. ALIC O et al. (2021) considered the compromise between
user cost and comfort goal and analyzed the impact of various
electricity prices on user energy management. The above studies
considered the comfort of electricity, but the carbon emission cost
and carbon trading mechanism of the user were ignored. Li ZK et al.
(2020) established a bi-layer optimization model which mainly
considered the power station and fully participating
householders. Lu Q et al. (2020) aimed to minimize the energy
consumption cost and comfort deviation, and it built six modeled by
comfort deviation for different kinds of uncertain behaviors.

Optimizing the charging/discharging behaviors of both EVs and
energy storage in HEMSs has been widely discussed. Wang S et al.
(2020) and Marcos Tostado-V´eliz et al. (2023) studied the cost of
battery degradation. Sun C et al. (2016) focused on the economics

between lithium-ion battery aging and economic performance in
energymanagement. The battery degradation cost will affect the EVs
and energy storage participating in home energy management. To
encourage the users to participate in home energy management, a
main method is to design a reasonable method for battery
degradation costs’ compensation. Wang Y et al. (2020) and Nie
Q et al. (2022) thought the carbon trading mechanism is an
important way to compensate for the battery degradation cost.
Lu Q et al. (2021) proposed a two-level community integrated
energy service system optimization model. Gao JW et al. (2021)
proposed a comprehensive energy multi-objective scheduling
model, which considered the utility of decision makers. The
communities’ carbon emissions are taken into account. Tan QL
et al. (2019) proposed a model with multiple hybrid energy
scheduling for an integrated power system, and it considered five
different scheduling modes and a dynamic carbon trading system.
Cheng X et al. (2021) built a carbon emission flow model and used it
to reduce carbon emissions by carbon trading. These studies on
carbon emissions pay close attention to the energy sector,
production enterprises, and the community integrated energy,
but the end-users in HEMSs are often ignored. This paper will
focus on the optimization of the HEMS considering user’s
satisfaction and carbon emission.

Ali Abdelrahman O. Ali et al. (2022) have reviewed some
optimization schedule methods, which include the mathematical,
metaheuristic, and artificial intelligence optimization techniques.
Mathematical techniques contain two main groups: linear
programming and non-linear programming. Rahima S et al.
(2016) conducted a study verifying that the mathematical
methods cannot deal with large number of different domestic
appliances having unpredictable, non-linear, and complicated
energy consumption models. H. Merdanoglu et al. (2020) and El
Sayed F. Tantawy et al. (2022) thought heuristic optimization is a
strategy intended to solve any problem more efficiently when
mathematical approaches are too slow to solve complex
problems. Many heuristics optimization scheduling methods are
available for HEMS, such as Genetic Algorithm (GA) (Li S et al.,
2019; J. Zupan cic et al., 2020; A.H. Sharififi et al., 2019), PSO
(Rahima S et al., 2016), and hybrid algorithm A (Ahmad et al., 2017;
Z. A. Khan et al., 2019). To avoid the local optimal phenomenon in
the solution, improved algorithms are used to quickly solve the
model (Rezaee Jordehi A et al., 2019; Zhu J et al., 2019). Shintaro
Ikeda et al. (2019) used differential evolution (DE) to apply district
energy optimization, and it was proved the method has high
potential to provide comprehensive district energy optimization
within a realistic computational time. Ima O et al. (2019)
proposed an improved enhanced DE for implementing demand
response between aggregator and consumer. Its results show that the
algorithm is able to optimize energy usage by balancing load
scheduling and the contribution of renewable sources while
maximizing user comfort and minimizing the peak-to-average
ratio. It is clearly justified that heuristic optimization is suitable
for HEMSs. The IPSO has been proven to have good performance in
terms of computational speed and solution accuracy.

The main contributions of this paper are as follows:

(1) This paper classifies the loads and establishes models for
different loads, and the charging/discharging of household
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batteries (BT) and electric vehicles (EV) are considered. The
load working characteristics and power demand are taken as
constraints, and the energy consumption time of time-
transferable loads is used to represent user satisfaction.

(2) The household user carbon trading cost model and carbon
quota income model for EVs are established, and the battery
degradation cost is considered. The optimal scheduling model
of the HEMS is formed which aims to minimize the total
electricity cost and carbon trading cost, while obtaining the
EV carbon quota income of household users. It explores the
allocation of household energy and EV carbon.

(3) The IPSO algorithm is used; several scenarios are designed in
the calculation examples and the sensitiveness of carbon
trading price is analyzed. When carbon trading is
considered, the system obtains the carbon quota income,
the comprehensive total cost is reduced without carbon
trading, and its carbon emissions are also reduced.

The rest of the paper is as follows: Section 2 introduces the
HEMS framework; Section 3 constructs the load model; Section 4
establishes the household energy scheduling model considering
electricity price, user’s energy consumption time, carbon quota
mechanism, and battery degradation; in Section 5, the IPSO is
used to solve the problem. In Section 6, examples are given. The
household user’s energy management objective under fixed carbon
trading price and changing carbon trading price on dispatching are
analyzed. Section 7 gives some conclusions.

2 The HEMS framework

The HEMS is supported by advanced measurement monitoring
and control technology, a bidirectional communication network,
and artificial intelligence technology. The composition for the
HEMS is shown in Figure 1. It shows the proposed HEMS
integrates the photovoltaic power, household electricity
load, and BT.

For the effective dispatch of the household electricity load, this
study has classified the load into two categories: uncontrollable load
and controllable load. The uncontrollable load covers all necessary
appliances (e.g., light, television (TV), computer, and refrigerator).
Because of the user’s habits with these appliances, these devices can
acquire power at any time without interruption.

The other category is controllable load, including time-
transferable load and power-adjustable load. The power-
adjustable loads (e.g., EV, water heater, and air conditioner) are
scheduled with the user’s preferences. For the time-transferable load,
it includes the electric cooker, washing machine, dishwasher, etc.
Based on the reasonable electricity price and corresponding
constraints, the HEMS can execute the optimal scheduling for
the time-transferable loads.

This model contains the time of use pricing, photovoltaic power,
and the demand of household electricity loads considering
consumer personal preferences. This paper mainly focuses on the
energy management and carbon trading of the HEMS, the HEMS
structure is shown in Figure 1. The purpose of the HEMS is to reduce

FIGURE 1
HEMS structure.
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the electricity cost, satisfy the electricity needs, and reduce the
carbon emissions for household users, and it can also assist in
peak load shifting.

3 Load modeling

The usage status of the uncontrollable load has a huge
impact on normal life. The time-transferable load will not be
interrupted during the whole operation time, the power
consumption of such loads generally accounts for a large
proportion, and consumers can transfer such loads from
peak hours to other periods based on electricity price or the
users’ preference. The power-adjustable load can be switched on
and off under the condition of meeting the basic working hours,
and the power can be adjusted according to the demand.

3.1 Power-adjustable load model

pi t( ) � pN
i × ui t( )

ui t( ) � 0, t ∈ 1, 24[ ] ∪ t ∉ αi, βi[ ]∑t�βi
t�αi ui t( ) � Hi

αi < t< βi, αi − βi ≥Hi

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (1)

As shown in Eq. 1, where i denotes power-adjustable load, pi(t) is
the power consumed by power-adjustable load i at time t, and pN

i is
the nominal power of power-adjustable load i. The ui(t) is the status
of load i at time t, where 0 is off and 1 is on; αi and βi are the working
time range for power-adjustable load i; and Hi is the duration time
of load i.

Air conditioners, water heaters, household batteries, and EVs are
power-adjustable loads. Air conditioners have two states, cooling
and heating, and its load models are as follows Eqs 2–6:

uAC,C t( ) �
1, TAC,C,S + ΔTAC,C <Tin t( )
uAC,C t − 1( ), TAC,C,S <Tin t( )≤TAC,C,S + ΔTAC,C

0, Tin t( )≤TAC,C,S

⎧⎪⎨⎪⎩ (2)

HC � ∑24

t�1uAC,C t( ) (3)

uAC,H t( ) �
1, TAC,H,S + ΔTAC,H <Tin t( )
uAC,H t − 1( ), TAC,H,S − ΔTAC,H <Tin t( )≤TAC,H,S

0, Tin t( )≤TAC,H,S

⎧⎪⎨⎪⎩ (4)

HH � ∑24

t�1uAC,H t( ) (5)

pj t( ) � PNC × uAC,C t( )refrigeration
pj t( ) � PNH × uAC,H t( )heating (6)

The relationship between the indoor temperature change and
operating power of air condition can be expressed as Eq. 7:

Tin t( ) � Tin t − 1( ) + a Tout t( ) − Tin t − 1( )( ) + bp t( ) (7)
where TAC,C,S and TAC,H,S are the temperature set in the cooling
and heating state of the air conditioner at time t, respectively;

ΔTAC,C and ΔTAC,H are the room temperature range set in the
cooling and heating state of air conditioners, respectively; Tin(t)
is the indoor temperature at time t; Tout(t) is the outdoor
temperature at time t; a is the influence coefficient of outdoor
temperature on indoor temperature; b is the operating coefficient
of the air conditioner, where b< 0 means that the air conditioner
operates in the cooling state and b> 0 means the air conditioner
operates in the heating state; and uAC,C(t) and uAC,H(t) are the
start-stop variable of the air conditioner at time t period, where
0 is stopping and 1 is starting.

The water heater load model is shown in Eq. 8:

uWH t( ) �
1, TWH t( )<TWH,S − ΔTWH

uWH t − 1( ), TWH,S − ΔTWH ≤TWH t( )<TWH,S

0, TWH,S ≤TWH t( )

⎧⎪⎨⎪⎩ (8)

where TWH,s is the water temperature set by the water heater;
ΔTWH is the set range of water temperature; TWH(t) is the water
temperature at time t; and uWH(t) is the start-stop variable of the
water heater at time t, where 0 is stopping and 1 is starting.

The output model of the BT is shown in Eq. 9:

SOCBT t( ) � CBT,net t( )/CBT,bct

SOCBT t + 1( ) � SOCBT t( ) + pBT,c t( ) ×Δt × θBT,c/CBT,bat

SOCBT t + 1( ) � SOCBT t( ) − pBT,d t( ) ×Δt × θBT,d/CBT,bat

0≤pBT,c t( )≤pBT,c,max

0≤pBT,d t( )≤pBT,d,max

SOCBT,min ≤ SOCBT t( )≤ SOCBT,max∑T
t�1 uBT t + 1( ) − uBT t( )| |≤ λBT

pBT,c t( ) × pBT,d t( ) � 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

Output model of an EV shown in Eq. 10:

SOCEV t( ) � CEV,net t( )
CEV,bat

SOCEV t + 1( ) � SOCEV t( ) + pEV,c t( ) ×Δt × θEV,c
CEV,bat

SOCEV t + 1( ) � SOCEV t( ) − pEV,d t( ) ×Δt × θEV,d
CEV,batt

0≤pEV,c t( )≤pEV,c,max

0≤pEV,d t( )≤pEV,d,max

SOCEV,min ≤ SOCEV t( )≤ SOCEV,max

∑T
t�1 uEV t + 1( ) − uEV t( )| |≤ λEV

pEV,c t( ) × pEV,d t( ) � 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

where SOCBT(t) and SOCEV(t) are the BT and EV state of charging
(SOC) at time t, respectively; CBT,net(t) and CEV,net(t) are the
remaining battery capacity of the BT and EV at time t,
respectively; pBT,C(t) and pBT,d(t) are the charging and
discharging power of the BT at time t, respectively; pEV,c(t)
and pEV,d(t) are the EV charging and discharging power at
time t, respectively; θBT,c and θBT,d are the BT charging and
discharging efficiency, respectively; θEV,c and θEV,d are the EV
charging and discharging efficiency, respectively; PBT,c,max and
PBT,d,max are the maximum charging and discharging power of the
BT, respectively; PEV,c,max and PEV,d,max are the maximum
charging and discharging power of the EV, respectively;
SOCBT,max and SOCBT,min are the maximum and minimum
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charge state value of the BT, respectively; SOCEV,max and
SOCEV,min are the maximum and minimum SOC value of the
EV, respectively; uBT(t) and uEV(t) are the charging and
discharging variables of the BT and EV at time t, respectively,
where the value is 0 or 1; and λBT and λEV are limit of charging
and discharging times of the BT and EV, respectively.

3.2 Time-transferable load

The time-transferable load has the delayed start function, which can
transfer the working interval but cannot reduce the load. The startup
and running time can be flexibly set according to the needs of users.

pj t( ) � pN
j p uj t( )

ui t( ) � 0, t ∈ 1, 24[ ] ∪ t ∉ αj, βj[ ]
∑tendj

t�tstartj
uj t( ) � ∑βj

t�αjuj t( ) � Hj

tendj − tstartj + 1 � Hj

αj ≤ tstartj ≤ t≤ tendj ≤ βj
βj − αj ≥Hj

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(11)

As shown in Eq. 11, where j denotes the time-transferable load;
pj(t) is the electricity power of the time-transferable load j at time t;
pNj is the rated power of time-transferable load j; uj(t) is start-
variable 0–1, where 1 represents the operation of time-transferable
load j and 0 indicates the time-transferable load is off; αj and βj are
the time-transferable load j allowable start and stop time of
operation, respectively; tstartj and tendj are the time-transferable
load j start and end time of actual operation, respectively; and
Hj is duration over which time-transferable load j needs to work.

3.3 Uncontrollable load

The uncontrollable load scheduling model is shown in Eq. 12:

uk t( ) � 0, t ∈ 1, 24[ ] ∪ t ∉ αk, βk[ ]
1, t ∈ αk, βk[ ]{ (12)

where uk(t) is the start-stop variable of uncontrollable load k at time
t, where 0 indicates off; αk and βk are the allowable start and end
time of uncontrollable load k, respectively.

4 Household energy scheduling model
based on time-of-use tariff and carbon
quota mechanism

An energy scheduling model is proposed considering the power
consumption cost, carbon trading cost, EV carbon quota income,
and battery degradation cost.

4.1 Household user electricity cost model

For household users, the electricity purchase costC1 includes the
electricity consumption cost of the uncontrollable load, time-
transferable load, and power-adjustable load. A complete

dispatching cycle can be divided into T periods, and the
household user’s electricity purchase cost C1 can be expressed as
Eq. 13:

C1 � ∑T

t�1E t( ) − pv,used t( )( )prib t( ) (13)

where prib(t) is the time-of-use electricity price at time t; pv,used(t)
is the photovoltaic power consumed by household appliances at time
t; and E(t) is the total energy consumption of all appliances at time t.

Ecc t( ) � ∑m

i�1 pi t( )ui t( )Δt (14)

Ecu t( ) � ∑m

j�1 pj t( )uj t( )Δt (15)

Eun t( ) � ∑m

k�1 pk t( )uk t( )Δt (16)
E t( ) � Ecc t( ) + Ecu t( ) + Eun t( ) (17)

As shown in Eqs 14–17, where pi(t), pj(t), and pk(t) are the power
of the power-adjustable load, time-transferable load, and
uncontrollable load at time t, respectively; m, n, and l are the
number of the corresponding load; Ecc(t), Ecu(t), and Eun(t) are
the power consumption of power-adjustable load, time-transferable
load and uncontrollable load at time t, respectively.

Household user’s profit C2 from selling electricity is shown in
Eqs 18–20:

C2 � ∑T

t�1 pg t( )prig t( ) (18)
pg t( ) � pv,g t( ) + pEV,d t( ) (19)
pv t( ) � pv,used t( ) + pv,g t( ) (20)

where pv(t) is the photovoltaic supply power at time t and pv,g(t) is
the photovoltaic power sold to the grid at time t. The pg(t) is the
power that household users sell electricity to the grid at time t;
prig(t) is the price that users sell electricity at to the grid at time t;
and pEV,d(t) is the discharge power of EV at time t.

The total electricity cost C includes electricity purchase cost C1

and profit from selling electricity, as shown in Eq. 21:

C � C1 − C2 (21)

4.2 Household user carbon trading
cost model

The carbon dioxide emission generated by the household user is
shown in Eq. 22:

Qc t( ) � Eth Ecc t( ) + Ecu t( ) + Eun t( ) − pv t( )( ) (22)
where Qc(t) is the carbon dioxide emission generated by the
household user’s electricity usage at time t, and Eth is the carbon
emission coefficient.

The amount of carbon emission quota Mc(t) obtained by
household users from external electricity purchase at time t is
shown as Eq. 23:

Mc t( ) � ε Ecc t( ) + Ecu t( ) + Eun t( ) + pEV,c t( )( ) (23)
where ε is the carbon emissions quota allocation coefficient.

Frontiers in Energy Research frontiersin.org05

Yucheng et al. 10.3389/fenrg.2024.1356704

204

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1356704


When the free carbon quota received by households is greater
than their actual carbon emissions, household users can sell their
excess carbon emissions to gain profits. If the free carbon quota
received by household users is less than their actual carbon
emissions, household users need to buy the required carbon
emissions from the carbon trading market. Therefore, the carbon
trading cost of household users at time t is shown as Eq. 24:

Rgenbon t( ) � qth Qc t( ) −Mc t( )( ) (24)

where Rgenbon(t) is the carbon trading cost of households at time t.
WhenRgenbon(t) is positive, it means households need to spend extra
money to buy the required carbon quota; when Rgenbon(t) is
negative, it means the income of households that can sell carbon
quota. qth is the carbon trading price.

4.3 Carbon quota income model for EV

The carbon quotaMEV(t) obtained by the discharge of an EV at
time t is as follows Eqs 25, 26:

MEV t( ) � pEV,c t( ) − pEV,d t( )( )ΔtLEVEgas − pEV,c t( )β t( )ΔtEth

+ pEV,d t( )ΔtEth

(25)
β t( ) � E t( ) − pv t( )

E t( ) (26)

where Δt is the time step;MEV(t) is the carbon quota owned by the
EV at time t; LEV is the distance that 1 kwh EV can travel; Egas is the
carbon emission of the fuel-using car driving 1 km; Eth is the carbon
emission of per output power of thermal power; and β(t) is the
proportion of thermal power capacity in EV charging quantity at
time t, with the proportion of the total thermal power output in the
total system output at time t used for calculation.

The carbon quota income Rcarbon(t) that the EV can sell at time t is
shown in Eq. 27:

Rcarbon t( ) � qevMEV t( ) (27)
where qev is the EV carbon quota price.

4.4 System objective function

Considering the total electricity cost of the household,
household user’s carbon trading cost, battery degradation cost,
and EV carbon quota income comprehensively, the objective of
the HEMS is to minimize the total comprehensive operation cost:

minF � min C +∑t�1
T

Rgenbon t( ) − Rcarbon t( ) + Cbattery t( )( )( ) (28)

As shown in Eq. 28, where Cbattery(t) represents the cost of battery
degradation in both the EV and the BT.

Cbattery t( ) � cbatEbat + cL( ) × pEV,d t( )
Lc × EbatDOD

(29)

As shown in Eq. 29, where cbat is the battery cost (which includes the
EV battery and BT); cL is the labor cost for battery replacement; Ebat

represents the battery capacity; Lc is the cycle life of batteries; and
DOD is the discharge depth at Lc.

The expected operation time represents the user’s comfort of
energy use. Therefore, the energy consumption time of the time-
transferable load is used to represent user satisfaction, and its
satisfaction constraint is shown in Eq. 30:

tstartj ≤ t≤ tendj (30)

During the scheduling process, users need to comply with the
following power balance constraints:

pbuy t( ) + pV t( ) + pEV,d t( ) + pBT,d t( ) � Ecc t( ) + Ecu t( ) + Eun t( )
(31)

As shown in Eq. 31, where the pbuy(t) is the user’s purchased power
at time t.

In summary, the objective function is Eq. 28, and the power
balance equality constraint is Eq. 31. Other relevant constraints have
been given in the corresponding load models above.

5 Optimization of HMES based on
IPSO algorithm

For the optimization of the HEMS, it requires a large amount of
calculation. Because there are too many variables in the HEMS,
heuristic algorithms can tackle these problems efficiently. At
present, heuristic algorithms are widely used in related fields
such as community and household energy scheduling. Although
heuristic algorithms may not ultimately obtain the ideal value, the
IPSO algorithms can obtain the optimal solutions that are extremely
close to the ideal value.

5.1 IPSO algorithm

During the parameter initialization phase, the standard PSO
algorithm initializes particle positions and velocities with
random numbers, resulting in suboptimal exploration of the
solution space and limited global search capabilities,
particularly in constraint optimization scenarios. Furthermore,
the standard PSO algorithm is susceptible to premature
convergence and loss of diversity, ultimately hindering its
ability to attain highly accurate optimal solutions in HEMS
optimization contexts.

The IPSO retains the population diversity, and the initial
population is within the feasible domain of particles, which
improves the quality of the initial population particle solution.
The initial moment the particle swarm population is generated as
shown in Eq. 32:

xi,int � Lbi + rnew Ubi − Lbi( ) (32)
where xi,int is the initial particle population of the IPSO; rnew are
uniform random numbers for the IPSO; Lbi is the lower limit of the i
th particle solution in the IPSO; and Ubi is the upper limit of the i th
particle solution in the IPSO algorithm.

After the improvement, the PSO algorithm first compares the
fitness value Fiti of each particle with the individual extreme pid, and
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if Fiti <pid, pid is replaced with Fiti. Fiti is then compared with the
global extremum pgd, and if Fiti <pgd, pgd is replaced with Fiti.

At the same time, in order to alleviate the shortcomings of
premature convergence and diversity loss in the standard PSO and
improve the solvability of the algorithm in constrained optimization
problems, the IPSO improves the update of the standard PSO, and
the update formula is shown in Eq. 33:

xi,n+1 � xi,n + beta × pid − xi,n( ) + alpha × rnew Ubi − Lbi( ) (33)
where n is the current iteration number, xi,n is the position of the i th
population in the IPSO; beta is adaptive coefficient; alpha is
convergence factor pid is Individual extremum.

The IPSO algorithm using Eq. 33 can update and be solved
during the optimization process, effectively improving the
algorithm’s constraint solving ability and enhancing the PSO
algorithm’s ability to find the global optimal solution. However,
after updating the position of particles in the population, there may
be situations where some particles exceed the population constraint
boundary, which greatly reduces the efficiency of the algorithm in
searching for particles in the feasible domain. The IPSO algorithm
improves the above situation by applying a boundary function to the
updated particle population, thereby enhancing the efficiency of the
algorithm in searching for feasible solutions. The boundary function
of the IPSO algorithm is as follows Eq. 34:

xi,n+1 �
Lbi, if xi,n+1 ≤ Lbi
xi,n+1, if Lbi< xi,n+1 <Ubi
Ubi, if xi,n+1 ≥Ubi

⎧⎪⎨⎪⎩ (34)

5.2 DE algorithm

DE has fewer parameters and is relatively simple to calculate,
making it widely used in power scheduling problems. The main
process of DE can be shown as five parts (Initialization, Mutation,
Crossing, Selection, and Termination):

(1) Initialization:

X i,G � xi1,G, xi2,G,/, xiD,G[ ]T, i � 1, 2,/, NP (35)
As shown in Eq. 35, where xid,G (d = 1, 2, . . . , D) is the dth
component of Xi,G, which satisfies the constraint condition xi,d ∈
[xid,low, xid,up]. The xid,low and xid,up represent the lower and upper
limits of the search range, respectively.

(2) Mutation: The most common mutation strategies are as
follows Eqs 36–38:
DE/rand1

V i,G+1 � Xr0 ,G + Fi Xr1 ,G − Xr2 ,G( ) (36)

DE/current-to-rand/1

V i,G+1 � X i,G + Fi Xbest,G − X i,G( ) + Fi Xr1 ,G − Xr2 ,G( ) (37)

DE/best/1

V i,G+1 � Xbest,G + Fi Xr1 ,G − Xr2 ,G( ) (38)

where r0, r1, r2 ∈[1,NP], NP is a random number that is not
identical to each other. The Xr1 ,G and Xr2 ,G is the difference of
randomly selecting two vectors. The Xbest,G is the optimal
individual in the G generation population. The scaling factor
is Fi.

(3) Crossing:

uij,G � vij,G, rand 0, 1[ ]#Pci or j � jrand
xij,G

{ (39)

As shown in Eq. 39, where Pci represents the probability of crossing,
with values ranging from 0 to 1, and jrand is a random integer
on 1, 2, . . . ,D.

(4) Selection:

X i,G+1 � X i,G, f X i,G( )<f U i,G( )
U i,G

{ (40)

As shown in Eq. 40, where Xi,G+1 refers to the parent individual who
successfully enters the next-generation after comparison.

(5) Termination: When G reaches Gmax, the requirement is
met.

5.3 Algorithm comparison

This study assesses the performance of the algorithm by
employing the Sphere, Ackley, Rastrigin, and Griewank functions,
with an optimal value of 0 for these functions. The pertinent
parameters of the test functions are presented in Table 1.
Additionally, the DE, PSO, and IPSO methods are concurrently
selected for comparison. Figure 3 illustrates the convergence
trajectories of these algorithms, each independently solving the
functions 500 times in a 100-dimensional space.

Figure 2 verifies the effectiveness of the IPSO. The IPSO has the
best convergence effect compared to PSO and DE, while its final
convergence value is closest to the optimal extreme value. The PSO
optimization effect is the worst. By adjusting with the introduction
of random learning factors, the convergence of the algorithm has
been improved.

From Table 2, comparing the algorithms in solving complex
functions, the IPSO has a faster convergence time than the DE. For
the optimization process of the HEMS, a large amount of computing

TABLE 1 Function for comparison.

Function Expression

Sphere F1(x) � ∑n

i�1 x
2
i

Ackley F2(x) � −20 exp(−0.2
��������
1
n∑n

i�1 x
2
i

√
)

− exp(1n∑n

i�1 cos(2πxi)) + 20 + e

Rastrigin F3(x) � ∑n

i�1 [x2i − 10 cos 2πxi + 10]

Griewank F4(x) � 1
4000∑n

i�1 x
2
i −∏n

i�1 cos xi�
i

√ + 1
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resources is necessary. After comparing the above algorithms, this
study selects the IPSO for optimization.

5.4 The IPSO algorithm process of HEMS

In summary, the IPSO algorithm can enhance
computational efficiency and global search capability. The
flow chart of the HEMS can be seen in Figure 3. The steps
and procedures of the HEMS optimization based on the IPSO
algorithm are as follows:

Step 1: Initialize the EV charging power, wind power generation,
etc., as well as the initial parameters of the PSO algorithm such as
attenuation coefficient alpha, beta, individual extremum pid, global
extremum pgd, etc.

Step 2: Determine whether the time condition and the number of
iterations conditions are met. If the conditions are met, proceed to
Step 3, otherwise exit the program.

Step 3: Calculate the medium and inequality constraints of the
household energy management system and their penalty functions.

Step 4: Obtain the objective function value.

Step 5: If the individual extremum pid is less than or equal to the
global extremum pgd, the value of the global optimization solution is
updated, otherwise Step 4 is returned at the same time.

Step 6: Update particle swarm attenuation coefficient alpha, beta.

Step 7: Update the position of the particle according to Eq. 33.

Step 8: Determine whether the end condition is met, and if so, exit
(error reaches set accuracy or reaches the maximum number of
cycles), otherwise return to Step 3 to continue the calculation.

6 Case studies

Simulations are given in some cases for the performance of the
proposed HEMS model. The scheduling time horizon is 24 h and the
scheduling slot is 1 h. The load curve is divided into three different
parts: the valley period (from 22:00 to 06:00), when the electricity price
is 0.3 CNY/kWh (China yuan/kWh); the off-peak period (from 13:
00 to 17:00), when the electricity price is 0.45 CNY/kWh; and the peak
period (from 06:00 to 13:00 and from 17:00 to 22:00), when the
electricity price is 0.6 CNY/kWh. The discharging of EVd and PV grid
price is 0.45 CNY/kWh. The EV battery capacity is 16 kWh, the
maximum power of charging/discharging is 1.5 kW, and the
charging/discharging efficiencies are 90%. The BT capacity is
10 kWh, the maximum power of charging and discharging is
1 kW, the charge and discharge efficiencies are 90%, and the
maximum/minimum state of charge of the EV and BT are 0.9/0.2.
When the indoor temperature is higher than 26°C, the air conditioner
is turned on; when the temperature is lower than 24°C, it is off. The
water heater starts heating while the water temperature is lower than
46°C, and stops heating while the water temperature is higher than
52°C. The electricity consumption of different appliances can be seen
in Tables 3, 4. The start-end time of the appliances shows the users’
preferable timings. Other simulation parameters [17] are listed in
Table 5. This article uses an IPSO algorithm to solve the problem.

FIGURE 2
Function value convergence curve.
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6.1 Optimization analysis of household
energy under fixed carbon trading price

The following scenarios are set for the comparison of several
different schemes:

Scenario 1: Initial household electricity cost and carbon emissions
do not consider optimal scheduling;

Scenario 2: Optimal scheduling of household energy does not
consider carbon trading and time satisfaction;

Scenario 3: Optimal scheduling of household energy only
considers time satisfaction and does not consider carbon trading;

Scenario 4: Optimal scheduling of household energy only
considers carbon trading and does not consider time satisfaction;

Scenario 5: Optimal scheduling of household energy considering
carbon trading and time satisfaction.

Scenario 2, Scenario 3 show that the carbon trading cost of
household users and the carbon quota income of EVs are not
considered. Scenario 4, Scenario 5 show that the carbon trading
cost of household users and the carbon quota income of EVs are
considered. Scenario 1 is the initial electricity cost and carbon
emissions of households without considering optimal scheduling;
in Scenario 2, time satisfaction constraints, user carbon trading
costs, and the carbon quota income of EVs are not considered,
and the goal is minimizing the total electricity cost; in Scenario 3,

TABLE 2 Comparison of results.

Function Sphere Ackley Rastrigin Griewank

Algorithm DE IPSO DE IPSO DE IPSO DE IPSO

Optimal result 2.88*10−15 2.31*10−20 9.89*10−06 7.86*10−10 20.4 0 7.77*10−16 0

FIGURE 3
The flow chart of the HEMS.
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carbon trading is not considered, but the time satisfaction
constraint is considered, and the total electricity cost is
minimized; Scenario 4 considers the user’s carbon trading
cost, EV carbon trading income, and the user’s total electricity
cost, and the objective is minimizing the user’s comprehensive
operation cost, but the time satisfaction constraint is ignored;
Scenario 5 considers the user’s total electricity cost, carbon
trading cost, and EV carbon trading income, with the
objective being minimizing the household user’s
comprehensive operating cost with time satisfaction
constraints. During the optimization process, the user’s typical
daily load in summer is selected as the optimization data.

Figure 4 shows the typical outdoor temperature, the optimized
indoor temperature, and the water heater temperature. Figures 5–10

show the power in Scenario 1, Scenario 2, Scenario 3, Scenario
4, Scenario 5.

As shown in Figure 4, the air conditioner remains on, the indoor
temperature decreases significantly, and the user’s room can reach
the required temperature range. After the water heater is turned on,
the water temperature rises to meet the user’s needs.

Figure 5 shows the load comparison between different scenarios.
The load increased sharply from 3:00 to 6:00, and the load also
increased between 22:00 and 24:00. From 8:00 to 16:00, the load of
users decreased sharply. The reason for this was that some of the
load was transferred to other periods to reduce the costs.

In Figure 6, the air conditioner has been turned on and the user
does not consider the influence of the electricity price on the total
household appliances’ cost. When the electricity price is high, the

TABLE 3 Description of time-transferable appliances.

Appliances Rated
power (W)

Working
hours (h)

Operating time
interval

Best run time Demand

Washing machine 750 1 16:00–24:00 17:00–22:00 —

Electric cooker 800 1 10:00–14:00 17:00–21:00 10:00–13:00 —

17:00–19:00

Dish washer 700 2 8:00–11:00 13:00–18:00 19:
00–24:00

8:00–11:00 13:00–16:00
19:00–22:00

—

Smoke exhaust
ventilator

225 1 10:00–14:00 17:00–21:00 11:00–13:00 17:00–20:00 —

Vacuum cleaner 1,200 1 14:00–22:00 5:00–11:00 17:00–21:00 6:00–10:00 —

Electric kettle 1,500 0.5 8:00–13:00 16:00–23:00 11:00–13:00 17:00–20:00 —

Water heater 1,500 — 19:00–24:00 — Temperature deviation shall not
exceed 2°C

Air conditioner 2,000 — 10:00–15:00 18:00–4:00 — Temperature deviation shall not
exceed 2°C

EV 1,500 — 18:00–9:00 — Emergency power: 15%, Leaving home
power: ≥90%

BT 1,000 — 0:00–24:00 — Emergency power: 15%, Leaving home
power: ≥90%

TABLE 4 Description of uncontrollable appliances.

Appliance Rated power (W) Working hours (h) Working time range

Refrigerator 610 24 0:00–24:00

Television 150 5 17:00–22:00

Computer 300 4 18:00–22:00

Headlamp 240 7 17:00–24:00

TABLE 5 The related parameters of carbon trading.

Parameter Meaning Value

LEV 1 kWh EV can travel distance (km/kWh) 5

qthqEV Carbon trading price and the EV carbon quota price (CNY/kg) 0.49

Egas Carbon emissions of fuel-using vehicles running 1 km (kg/km) 0.197

Eth Carbon emission per power of thermal unit (kg/kW) 0.91
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cost of electricity consumption increases accordingly. Discharge of
the EV is not used and the charging/discharging behavior of the BT
is relatively random. In Figure 7, all electrical appliances run at the
lowest electricity price within the allowable time period. Meanwhile,
EVs and batteries charge when at low electricity prices and discharge
when at high electricity prices. When the photovoltaic output and
BT discharge exceed the electricity used by electrical appliances, the
user will sell the excess electricity at noon.

In Scenario 1, the electricity cost of the air conditioner is
13.8 CNY; in Scenario 2, the operation time of the air
conditioner is significantly reduced, and its electricity cost is
3 CNY and 21.7% less than Scenario 1, and the indoor

temperature meets the requirements of the user. The total
electricity consumption of the water heater remains unchanged;
in Scenario 1, its running time is 19:00 to 22:00 and the electricity
cost is 2.7 CNY; in Scenario 2, the running time is 19:00 to 21:00 and
23:00 to 24:00 and the electricity cost is 2.25 CNY and 0.45 CNY,
respectively, and 16.7% less than Scenario 1. The user’s water
demand is met.

In Scenario 1, the EV is charged between 21:00 and 05:00, and
the battery is charged. In Scenario 2, the EV and battery are charged
between 23:00 and 07:00, and the electricity cost is 2.25 CNY less
than in Scenario 1. In Scenario 1, the EV does not discharge and the
BT discharges randomly. In Scenario 2, the discharge of the EV is at

FIGURE 4
Indoor/outdoor temperature and water heater temperature.

FIGURE 5
Load in different scenarios.
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19:00 to 23:00, the BT discharges at 10:00–15:00 and 20:00–23:00,
and the electricity cost of the EV and BT is 3.91 CNY less than
Scenario 1. The washing machine, rice cooker, dishwasher, vacuum
cleaner, and electric kettle all operate during the valley period, when
the electricity price is lowest, which significantly cuts the total
household electricity cost compared with Scenario 1. However, in

Scenario 2, the use of vacuum cleaners is advanced to 5:00, and the
use of washing machine and dishwashers is delayed to 23:00, but the
user’s usage habits are not considered, resulting in low satisfaction.
Compared with Figure 6, considering the time satisfaction of the
user with electricity consumption in Scenario 3 of Figure 8, the usage
time distribution of the electrical appliances is more reasonable. The

FIGURE 7
Power consumption in Scenario 2.

FIGURE 6
Power consumption in Scenario 1.
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vacuum cleaner is transferred from 05:00 to 09:00, the dishwasher
changes working time from 23:00 to 21:00, the washing machine
changes working time from 23:00 to 17:00, and the electric kettle
from 22:00 to 19:00. When the users’ time satisfaction constraint is

met, the electricity cost of the time-transferable load is 1.32 CNY
more than Scenario 2. In Figures 9, 10, the running conditions of
most appliances do not change greatly when carbon trading is
considered. In Scenario 4, Scenario 5, carbon trading is

FIGURE 9
Power consumption in Scenario 4.

FIGURE 8
Power consumption in Scenario 3.

Frontiers in Energy Research frontiersin.org13

Yucheng et al. 10.3389/fenrg.2024.1356704

212

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1356704


considered. The reduction in EV mileage is no less than the increase
in the discharge of the EV. Figure 11 gives a comparison of the cost
and emissions in each scenario, and the battery degradation cost in
each scenario is shown in Table 6.

As shown in Figure 11, compared with Scenario 1, the total
comprehensive operation cost and carbon emissions of Scenario

2, Scenario 3, Scenario 4, Scenario 5 have significantly
decreased. After considering the time satisfaction constraint
in Scenario 3, Scenario 5, compared with Scenario 2, Scenario
4, the electricity purchase cost increases by 1.13 CNY and
0.63 CNY, respectively. In Scenario 4, Scenario 5, when the
carbon trading is considered, the system obtains carbon quota

FIGURE 11
Cost and carbon emissions.

FIGURE 10
Power consumption in Scenario 5.
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income, and the comprehensive total cost is reduced without
carbon trading, and its carbon emissions are also reduced. As
shown in Table 6, the battery degradation cost in Scenario 1 is
much less than it in other scenarios, because EVs do not
participate in scheduling, there is no battery degradation cost
for EVs, and the overall battery degradation cost for households
is lower than in other scenarios.

6.2 Influence of carbon trading price on
dispatching

This paper discusses the influence of carbon trading price on
dispatching and adjusts the carbon trading price to
0.39 CNY/kg, 0.49 CNY/kg, 0.59 CNY/kg, and 0.69 CNY/kg,
respectively. Table 7 shows the impact of carbon trading prices
on the HEMS.

With the increase in carbon trading price in Table 7, the
negative carbon trading cost of users is increasing, the EV
carbon quota income is also increasing, and the overall
operating cost is decreasing. Therefore, the guidance and
regulation of carbon trading prices can play a guiding role
in the HEMS.

7 Conclusion

In this paper, the household users’ electricity consumption
behavior and carbon quota are considered, and the optimization
model of the HEMS which uses price incentives to encourage the
users to participate in the carbon interaction is established. A
comprehensive total operating cost considering carbon quota
and time satisfaction constraints is used to find the solution. The
constraints of the user’s load and consumption habits are
considered, while considering the cost of battery degradation
in both the EV and BT. Then the IPSO algorithm is used to
optimize the HEMS, and the effectiveness of IPSO has been
demonstrated by a comparison.

Five scenarios were designed based on the optimization
model. By the analysis and comparison, it is proved that the

comprehensive consideration of carbon trading cost, the battery
degradation cost, and total electricity cost can reduce the
household carbon emissions and the total electricity cost of
the household user better, giving consideration to the user’s
electricity habit, operation economy, and battery lifespan. It
encourages the end-users to allocate electrical power
reasonably. Compared to Scenario 1, the household carbon
emissions have been reduced 14.58 kg in Scenario 5, a
decrease of over 21.47%, while the total comprehensive
operation cost has been reduced by 14.12%. After considering
the time satisfaction constraint in Scenario 3, Scenario 5,
compared with Scenario 2, Scenario 4, the comprehensive
operation cost of the system increases by 1.27 CNY and
1.2 CNY, respectively.

On this basis, the guiding and regulating influences of the
carbon trading price on home energy management are analyzed.
By the increasing of carbon trading price from 0.39 CNY to
0.69 CNY, the user’s carbon trading income and the EV carbon
quota income are increasing from 0.36 CNY to 0.64 CNY, and the
overall operating cost is decreasing from 26.03 CNY to
24.79 CNY. The next research direction is to deeply analyze
the user’s comfort and load structure utilizing price incentives
and carbon trade. Lu and Zhang, 2020.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary material, further inquiries can be directed
to the corresponding author.

Author contributions

RY: Writing–original draft, Writing–review and editing. HL:
Writing–original draft, Writing–review and editing. CX: Data
curation, Formal Analysis, Writing–review and editing. HY: Data
curation, Formal Analysis, Methodology, Writing–review and
editing. ZY: Data curation, Formal Analysis, Writing–review
and editing.

TABLE 7 Impact of carbon trading price on the HEMS.

Carbon trading
price (CNY/kg)

Carbon quota
income (CNY)

User carbon
transaction cost (CNY)

Total electricity
cost (CNY)

Total comprehensive
operation cost (CNY)

0. 39 0. 36 −1. 54 26.03 32.62

0. 49 0. 46 −1. 94 25.32 31.82

0. 59 0. 61 −2. 36 25.31 31.66

0. 69 0. 64 −2. 72 24.79 31.10

TABLE 6 Battery degradation cost.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Battery degradation cost (CNY) 3.80 8.50 6.95 6.85 6.95
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Research on data-driven power
flow calculationmethod based on
undirected-graph
delooping-backtracking

Hong Zhu, Zijian Hu*, Zichen Liu and Yandi Wang

Nanjing Power Supply Company, State Grid Jiangsu Electric Power Co., Ltd., Nanjing, China

As the scale of the power grid expands and distributed energy sources are
integrated, along with the emergence of random loads, topological control of
distribution networks has become a novel means of control. Therefore, data-
driven power flow calculations must be capable of rapidly and accurately
computing power flow results even when there are changes in the network’s
topology. In this paper, a data-driven power flow calculation method is proposed
to take topological changes into account. Based on initial loop data, we employ
an undirected-graph delooping-backtracking method to generate a set of
feasible topological samples. Using the Monte Carlo method on this basis, we
generate feasible samples for the network’s topology and power injection,
thereby establishing a training dataset. By training a deep neural network on
these samples and adjusting network parameters, we effectively address power
flow calculations in the presence of topological changes. Case study results
demonstrate that the data-driven power flow calculation method, considering
topological changes, can rapidly and accurately compute power flow results
when topology alterations occur.

KEYWORDS

data-driven, distributed energy sources, power flow calculation, delooping-
backtracking, deep neural network

1 Introduction

Power flow calculation in electric power systems is the process of determining voltage,
current, and power distribution throughout the entire system based on given operational
conditions and network structure. It is a fundamental technique that underpins various
aspects of electric power systems, including system planning, dispatch, stability analysis,
and power market operations, playing a crucial role in ensuring the stability, reliability, and
efficient operation of the power grid.

Traditional power flow calculation methods, including the Gauss-Seidel method,
Newton’s method, and the Fast Decoupled method, are widely used. However, these
methods are all model-based approaches. On the one hand, these methods rely on complex
mathematical models and detailed network parameter information, which can be difficult to
obtain and prone to errors. On the other hand, these methods require iterative calculation
for solving nonlinear power equations, posing challenges to computational speed in large-
scale systems.

With the advancement of machine learning technology, data-driven power flow
calculation has garnered significant attention from scholars. In comparison to
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traditional power flow calculation methods, data-driven
approaches offer notable advantages. On one hand, data-
driven power flow calculation does not require an in-depth
understanding of network parameters, thus improving its
applicability and accuracy. On the other hand, it does not
necessitate complex iterative computations and can rapidly
provide results using pre-trained models, making it more
suitable for real-time scheduling and emergency response in
power systems.

In recent years, scholars have conducted extensive research
around data-driven power flow calculation.

In reference (Tan et al., 2020), a hybrid physical model-
driven and data-driven approach for linearizing power flow
model is proposed. It can retain the useful inherent
information from the physical model and utilize the ability of
data analysis to extract the inexplicit linear relationship. A data-
driven linearization approach of PF equations is proposed in
(Liu et al., 2019). Both partial least squares and Bayesian linear
regression based algorithms are introduced to address the
collinearity. In (Cui et al., 2020), a data-driven slow dynamic
characteristic extraction and state estimation method are
proposed to overcome the shortcomings of the computational
burden caused by the Jacobian matrix inversion of the
traditional method. A data-driven chance-constrained
optimal gas-power flow (OGPF) calculation method without
any prior assumption on the distribution of uncertainties of
wind power generation is proposed in reference (Wang et al.,
2021). Chen J et al. (2022) proposes a data-driven power flow
(PF) linearization approach for three-phase SPF calculation. An
approach with high adaptability to the nonlinearity of power
flow is proposed in 6, which can significantly improve the
calculation accuracy. Reference (Xing et al., 2022; Xing et al.,
2022) respectively introduce a single bus data-driven power
estimation based on modified linear power flow model and a
modified data-driven power flow model for power estimation
with incomplete bus data. The models proposed in these
references exhibit higher accuracy compared to the linear
power flow model. In (Crozier and Baker, 2022), a data-
driven method for determining constraints that may be
excluded from the formulation is proposed. A novel machine
learning (ML) based data-driven risk assessment model for
early-warning of power system transmission congestion is
proposed in (Zhang et al., 2022). Chen Y et al. (2022)
presents a novel data-driven power flow (DDPF)calculation
method based on exact linear regression equations (ELREs),
which offers higher computation efficiency. Liu et al. (2022a)
and Chen et al. (2020) introduce a data-driven-aided linear
three-phase power flow model for distribution power systems
(DPSs), which offers higher accuracy and robustness. In (Liu
et al., 2022b), a robust data-driven linear power flow (RD-LPF)
model is constructed, which can significantly reduce average
errors and unacceptable worst-case linearization errors.
Reference (Li et al., 2023) introduces a data-driven linear
power flow calculation model that incorporates the
Kirchhoff’s Current Law(KCL). This model can be embedded
in optimal power flow for distribution networks. A regression
approach combining the principal component analysis (PCA),
support vector regression (SVR) and ridge regression (RR) is

developed, which improves the accuracy of PF calculation
especially in the presence of bad data. A novel multi energy
flow analysis method for integrated energy systems is proposed
in (Zhu and Zhou, 2023) to learn the mapping relationship
between the given variable and the demanded variable from the
historical operation data. In (Shao et al., 2023), a physical-
model-aided data-driven linear power flow (PD-LPF) model is
proposed as a solution for addressing the issue of insufficient
training data. It introduces physical model parameters to
assist the data-driven training process, demonstrating
excellent accuracy and robustness under severe missing-data
conditions.

However, the data-driven power flow calculation problems
addressed in the aforementioned studies assume that the
topology of the electrical grid remains fixed. This allows for
accurate power flow calculations in networks with a static
structure. However, for distribution networks where topology
changes due to network reconfiguration operations are possible,
this can result in inaccurate power flow calculation results. This
paper focuses on data-driven power flow calculations that take
into account topological changes. To obtain a set of topological
samples for training, we employ an undirected-graph
delooping-backtracking method. To establish a more accurate
relationship between topology and voltage/power, we utilize
deep neural networks to learn from these samples, effectively
addressing power flow calculation challenges posed by
topological changes. The overall framework of the proposed
data-driven power flow calculation method is presented
in Figure 1.

The contributions of this paper are as follows:

1) A feasible topological sample generation method based on
undirected-graph delooping-backtracking is proposed, and
feasible topological samples are established through loop
data initialization, loop breaking and loop backtracking
operations.

2) A data-driven power flow calculation method considering
topological changes is proposed, and a power flow
calculation model considering topological changes is
obtained by encoding the topological data and integrating it
into the input of the data-driven model, and using DBN
for training.

The structure of this paper is as follows: Section 2 introduces
the method for generating topological samples based on
undirected-graph delooping-backtracking. Section 3 presents
the data-driven power flow calculation model. Section 4
provides the case studies conducted in this paper.
Finally, Section 5 offers the conclusions drawn from
the research.

2 Topological samples generating
based on undirected-graph delooping-
backtracking

Radiation constraints are fundamental constraints in the
operation of distribution networks. Neglecting radiation
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constraints during the process of generating topological samples can
result in a large number of infeasible topological samples being
incorporated into the data-driven model. This section employs the
undirected-graph delooping-backtracking method to generate a
feasible set of network topologies. Based on this, topological
samples for training neural networks are generated through
Monte Carlo simulations, ensuring that each topological sample
satisfies radiation constraints.

The undirected-graph delooping-backtracking method involves
obtaining a feasible set of topologies by breaking loops and
backtracking on the complete network graph. The specific
process includes three main steps: loop data initialization, loop
breaking, and loop backtracking.

2.1 Loop data initialization

The first step is loop data initialization, and the algorithm is
given in Algorithm 1. Initially, identify all fundamental loops in the
network, denoted as Li, and find a total of NL fundamental loops.
Assuming that the network branches are represented as
B � b1, b2, . . . , bNB{ }, the algorithm involves determining which
branches are included in each fundamental loop Li. If a branch
bm belongs to Li, it is added to the fundamental loop Li. Additionally,
shared branches among the fundamental loops should be identified,
and be denoted asCij. If bm belongs to both Li and Lj, then it is added
to the shared branches set Cij. In the end, the loop data for the
network can be obtained as Li � li,1, li,2, . . . , li ,Nli{ }, and

FIGURE 1
The overall framework of the proposed data-driven power flow calculation method.
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Cij � {cij,1, cij,2, . . . , cij,Ncij
}. Here, Nli represents the number of

branches in Li, and Ncij represents the number of branches in Cij.

Input: Branch data of the network B � b1 ,b2, . . . ,bNB{ }
Output: Loop data of the network

Li � li ,1,li ,2, . . . ,li ,Nli{ }, Cij � cij ,1,cij ,2, . . . ,cij ,Ncij
{ }

Find NL fundamental loops of the network

For m from 1 to NB
For i from 1 to NL

If bm belongs to Li (bm∈Li)

Add bm into Li:

End if

For j from i+1 to Nli
If bm belongs to Cij (bm∈Li & bm∈Lj)

Add bm into Cij:

End if

End for

End for

End for

Output loop data

Li � li ,1,li ,2, . . . ,li ,Nli{ }, Cij � cij ,1,cij ,2, . . . ,cij ,Ncij
{ }

Algorithm 1. Loop Data Initialization.

2.2 Loop breaking

After obtaining the set of branches for each fundamental loop,
the next step is to break the loops, and the algorithm is presented in
Algorithm 2. For each fundamental loop, we iteratively disconnect
one branch at a time. Assuming that the branches disconnected from
each fundamental loop are respectively l1,k1, l1,k2, . . . , lNL,kNL

, the set
sn � l1,k1, l1,k2, . . . , lNL,kNL

{ } represents a potential loop-breaking
strategy. By identifying all potential loop-breaking strategies,
denoted as sap={s1, s2, . . ., sNs}, sap can be used to represent
potential topological sets.

Input: Loop data of the network Li � li ,1,li ,2, . . . ,li ,Nli{ }
Output: Potential open branches sap
n=1

For k1 from 1 to Nl1
For k2 from 1 to Nl2

. . .

For kNL from 1 to NlNL
sn � l1,k1 ,l1,k2

, . . . ,lNL ,kNL
{ }

n=n+1

End for

. . .

End for

End for

Output sap={s1, s2, . . ., sNs}

Algorithm 2. Loop Breaking.

2.3 Loop backtracking

The potential topological sets obtained through loop breaking may
still contain islands that need to be further eliminated using loop

backtracking, as given in Algorithm 3. Assuming sap*represents the
final feasible topology, start by initializing s*to be equal to sap. Then,
iterate through each element sn in sap*. If sn contains more than two
elements from Cij, it inevitably indicates the presence of islands, so sn
needs to be removed from sap* (Condition 1). Additionally, if sn
contains elements from Cij, Cik, and Cjk simultaneously, and the
fundamental loops Li, Lj and Lk share nodes, their shared nodes will
become islands as well, and sn should also be removed from sap*
(Condition 2). After backtracking and eliminating infeasible topologies,
sap* represents the final set of feasible topologies obtained.

To illustrate the undirected-graph delooping-backtracking
method proposed in this paper, a simple 5-node example system
is considered. First, the fundamental loops and the shared branch
sets between loops are determined, as shown in Figure 2. The
network contains a total of 3 fundamental loops and 3 shared
branch sets between loops, of which details are given in Table 1.

Input: Potential open branches sap, Loop data of the

network Li � li ,1,li ,2, . . . ,li ,Nli{ }, Cij � {cij ,1,cij ,2, . . . ,cij ,Ncij
}

Output: Reduced potential open branches sap*

Initialize sap*=sap
For n from 1 to Ns

For i from 1 to NL
For j from i+1 to NL

If sn satisfies Condition 1

Delete sn from sap*

End if

For k from j+1 to NL
If sn satisfies Condition 2

Delete sn from sap*

End if

End for

End for

End for

End for

Output sap*

Condition 1: sn contain more than one elements of Cij.

Condition 2: sn contain element in Cij, Cik and Cjk and Li Lj

and Lk share common nodes.

Algorithm 3. Loop Backtrack.

By breaking loops in the network as shown in Figure 2, all potential
topological sets, denoted as sap, can be obtain. Through loop
backtracking, the final feasible topological set can be established, and
denoted as sap*. During the loop backtracking process, an example of
feasible topology (that satisfy neither Condition 1 nor Condition 2) is
illustrated in Figure 3A. Infeasible topologies satisfying Condition 1 are
depicted in Figure 3B, and those satisfying Condition 2 are shown in
Figure 3C. From Figure 3B, it is apparent that due to the simultaneous
disconnection of two branches in the shared branch set C12, Node
2 becomes an island, rendering the topology infeasible. From Figure 3C,
it can be seen that the simultaneous disconnection of branches in the
shared branch setsC12,C13, andC23 results in Node 3, a common node
among L1, L2, and L3, becoming an island, making the topology
infeasible. However, topologies that exclude both Condition 1 and
Condition 2 can satisfy radiation constraints and prevent islands
from forming.
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3 Data-driven power flow calculation
model incorporating topological
changes

This section develops the entire data-driven power flow
calculation model based on the feasible topological set sap*
established in the previous section.

3.1 The establishment of the overall model

A typical power flow calculation problem involves computing
the voltage magnitudes and phase angles at various nodes under the
condition of known injected power at each node. Assuming the set
of active power injections at each node is denoted as P={P1, P2, . . .,
PN}, the set of reactive power injections as Q = {Q1, Q2, . . ., QN}, the
topological vector as S, the set of voltage magnitudes as U = {U1, U2,
. . ., UN}, and the set of voltage phase angles as δ = {δ1, δ2, . . ., δN}
(where N is the number of nodes in the network), the inputs and
outputs of the data-driven power flow calculation model can be
defined as Eqs (1) and (2):

I � P,Q, S{ } (1)
O � U, δ{ } (2)

where I represents the set of input vectors for the data-driven
model, O represents the set of output vectors for the data-
driven model.

Unlike the potential loop-breaking strategy sn, the topological
vector S records the switch states of each branch using a
0–1 representation, providing a more accurate reflection of the
impact of branch switch states on power flow. Since the
dimensions of the sets P, Q, U, and δ are all N, while the
dimension of S is NB, the dimensions of the input vectors I and
output vectors O are 2N + NB and 2N, respectively.

Based upon the definition of input and output variables, the
entire data-driven power flow calculation model is further
constructed using Deep Belief Networks (DBN) (Zhang et al.,
2018). DBN, as a form of deep learning, consists of multiple
layers of Restricted Boltzmann Machines (RBM) (Zhang et al.,
2018; Tao et al., 2020; Wang et al., 2022). In this network
architecture, there are connections between layers, but units
within each layer are not interconnected. After training the
neural network parameters layer by layer, DBNs are effective in
fitting a large number of data samples, enabling estimation and
prediction tasks (Wang et al., 2022).

The data-driven power flow calculation model based on DBN is
shown in Figure 4. It can be seen that the input variables (I) pass
through the Input Layer, hidden layers, and output layer to
ultimately yield the required power flow calculation results (O).

3.2 The training of the model

The data-driven power flow calculation model depicted in
Figure 4 requires training before it can conduct rapid power flow
calculations. Training samples play a crucial role in the accuracy
of the power flow calculation model. In practical applications,
training samples for the data-driven power flow calculation
model can be sourced from actual measurements of power and
voltage data in the electrical grid. However, on one hand,
measured data samples are limited in quantity and may lack
diversity, making it challenging to cover fewer common
scenarios. On the other hand, from a model validation
perspective, it is not easy to design a comprehensive
validation method to verify the effectiveness of the model for
various scenarios. In this paper, Monte Carlo simulations are
employed to generate training samples.

Assuming that the rated active and reactive powers of the nodes
in the network are represented as Pr = {Pr,1, Pr,2, . . .,Pr,N} and Qr =
{Qr,1, Qr,2, . . ., Qr,N}, respectively, the active and reactive power
values for the kth node in the ith training sample can be obtained by
adding noise to Pr,k and Qr,k as follows:

Ptrain,i,k � Pr,k + εP,k (3)
Qtrain,i,k � Qr,k + εQ,k (4)

where εP,k and εQ,k represent the noise added to the active and
reactive powers, respectively, and they follow a normal
distribution:

TABLE 1 The fundamental loops and shared branch sets for the 5-node
system.

Loops Branches

Fundamental Loops L1 b1, b2, b3, b5

L2 b1, b2, b4, b6

L3 b3, b4, b7

Inter-loop shared branches C12 b1, b2

C13 b3

C23 b4

FIGURE 2
5 Node example system.
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εP,k ~ N 0, σ2
P,k( ) (5)

εQ,k ~ N 0, σ2
Q,k( ) (6)

where σP,k and σQ,k are the standard deviations of the noise. Through
Eqs 3, 4, the sets of active and reactive powers for the ith training
sample can be obtained as Ptrain,i = {Ptrain,i,1, Ptrain,i,2, . . ., Ptrain,i,N}
and Qtrain,i = {Qtrain,i,1, Qtrain,i,2, . . ., Qtrain,i,N}.

Topology set Strain,i is obtained by sampling from the feasible
topological set sap* and can be represented by the formula:

Strain ,i ~ sap* (7)

Thus, the input variables for the ith training sample can be
obtained as follows:

Itrain,i � Ptrain,i,Qtrain,i , Strain,i{ } (8)

Using Itrain,i and the network’s own parameters,
traditional power flow calculations can be performed. In this

case, the Newton-Raphson method is adopted to calculate
the power flow for Itrain,i, resulting in: Utrain,i = {Utrain,i,1,
Utrain,i,2, . . ., Utrain,i,N}, δtrain,i = {δtrain,i,1, δtrain,i,2, . . .,
δtrain,i,N}, which can be served as the output variables for the
ith training sample in the data-driven power flow
calculation model:

Otrain,i � Utrain,i, δtrain,i{ } (9)

By repeatedly perform Formulas 3ormulas –Formulas 9, a large
number of training samples can be generated. Eventually, a training
sample set can be obtained as: Itrain = {Itrain,1, Itrain,2, . . ., Itrain,Ntr},
Otrain = {Otrain,1, Otrain,2, . . ., Otrain,Ntr}. Where Ntr is the number of
training samples.

Using these training samples, the DBN can be trained, ultimately
creating a data-driven power flow calculation model that takes into
account topological changes and can rapidly compute power flow results.

4 Case study

The case study involves an IEEE 33-node distribution network
system, as shown in Figure 5. This system comprises 33 nodes,
37 normally closed branches, and 10 branches equipped with
controllable switches, denoted as b4, b7, b18, b23, b27, b33, b34, b35,
b36, b37. The controllable branches allow for changes in the network
topology while ensuring that the entire distribution network adheres
to radiation constraints.

4.1 Topology sample set generation

From Figure 5, it can be observed that the IEEE 33-node system
consists of a total of 5 fundamental loops. Since normally closed
branches do not affect the network topology, only the branches
equipped with controllable switches are listed in the loop data
initialization. The results of loop data initialization are as shown in
Table 2. Performing loop-breaking operations on the loop data yields a
set of potential topologies, denoted as sap, which contains a total of

FIGURE 3
The three possible scenarios of feasible topologies obtained by loop breaking. (A) Feasible topology that satisfy neither Condition 1 nor Condition 2.
(B) Infeasible topologies satisfying Condition 1. (C) Infeasible topologies satisfying Condition 2.

FIGURE 4
DBN-based data-driven power flow calculation model.
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1024 potential topologies. Based on this set, loop backtracking
operations are conducted to obtain the feasible topology set, denoted
as sap*, which includes a total of 63 feasible topologies.

4.2 The power-flow calculation in the IEEE
33-node system with topology changes

The case study involves the validation of the data-driven power
flow calculation method proposed in this paper for four different

topological scenarios, as shown in the left column of Figure 6. To
facilitate comparative analysis, the case study considers the
following four methods:

1) Regression Method

Without considering the network’s topology, a linear regression
model is employed to establish the relationship between active
power, reactive power, voltage magnitude, and phase angles.

2) Traditional DRB Method

Without considering the network’s topology, a Deep Belief
Network (DBN) is used to establish the relationship between
active power, reactive power, voltage magnitude, and phase angles.

3) Topology-based Regression Method

Considering the network’s topology, a linear regression model is
employed to establish the relationship between active power,
reactive power, voltage magnitude, and phase angles while
accounting for the network’s topology.

4) Topology-based DRB Method (The proposed method)

The feasible topological sample set is generated using the
undirected-graph delooping-backtracking method, and the DBN is
used to establish the relationships between active power, reactive
power, voltage magnitude, and phase angles while considering the

FIGURE 5
IEEE 33-node system.

TABLE 2 The basic loops and shared branches in the IEEE 33-node system
(only listing branches equipped with controllable switches).

Loops Branches

Fundamental Loops L1 b4, b23, b27, b37

L2 b7, b27, b34, b36

L3 b34

L4 b18, b20, b33

L5 b33, b35

Inter-loop shared branches C12 b27

C14 b4

C23 b34

C24 b3

C45 b33
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network’s topology. Due to the IEEE 33-node system comprising a
total of 33 nodes and 10 controllable switches, according to the
model described in Section 3.1, the dimensions of the input and
output layers for the DBN are 76 and 66, respectively. In addition
to the input and output layers, the DBN includes two hidden
layers, each containing 500 neurons and the activation function
chosen is the sigmoid function.

The comparison between the node voltages obtained from the
four data-driven power flow calculation methods and the actual
node voltages is shown in the right column of Figure 6. It can be seen
that the RegressionMethod and the Traditional DRBMethod do not
consider the impact of topology changes on power flow, resulting in
significant errors in the power flow calculation results. Topology-
based Regression Method takes topology into account in its input

FIGURE 6
The results of power flow calculations using various methods in multiple topology scenarios.

Frontiers in Energy Research frontiersin.org08

Zhu et al. 10.3389/fenrg.2024.1347834

223

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1347834


variables, leading to a noticeable reduction in node voltage errors
compared to the regression method. However, due to limitations in
fitting nonlinear power equations, errors are still non-negligible. The
Topology-based DRB Method (The proposed method), which
combines variable topology and deep learning, output node
voltage calculation results that are very close to the actual
node voltages.

To further numerically compare the effectiveness of different
data-driven power flow calculation methods, the Mean Absolute
Error (MAE) is used to calculate the errors. The formula for
calculating MAE is as Eq. (10):

MAE �
∑N
k�1

Utest,k − Uk

∣∣∣∣ ∣∣∣∣
N

(10)

The bar chart in Figure 7 and the statistical results in Table 3
depict the MAE for power flow calculation results using different

methods across various topological scenarios. It is evident
from Figure 7 and Table 3 that the MAE for node voltages
obtained using the Topology-Based DRB Method (the
proposed method) is significantly lower than that of the other
three methods. This demonstrates that the proposed data-driven
power flow calculation method proposed offers higher precision
and is more suitable for scenarios involving network
topology changes.

5 Conclusion

This paper introduces a data-driven power flow calculationmethod
based on undirected-graph delooping-backtracking. It utilizes the
undirected-graph delooping-backtracking technique to generate a
feasible set of topological samples based on the initialization of loop
data. Furthermore, it establishes a data-driven power flow calculation

FIGURE 7
MAE statistical results of different methods in multiple topology scenarios.

TABLE 3 MAE statistics table with different methods.

Methods MAE (p.u.)

Topology
scenario 1

Topology
scenario 2

Topology
scenario 3

Topology
scenario 4

Regression method 0.0581 0.0433 0.0607 0.0324

Traditional DRB method 0.0350 0.0414 0.1168 0.0746

Topology-based regression method 0.0207 0.0231 0.0293 0.0234

Topology-based DRB method (The proposed
method)

0.0005 0.0006 0.0014 0.0008
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model based on Deep Belief Networks (DBN). This approach enables
accurate power flow calculations even in scenarios with changing
network topologies. From the analysis results of the test case, we
draw the following conclusions:

1) Through operations such as loop data initialization, loop-
breaking, and loop backtracking, it is possible to effectively
eliminate infeasible topologies and obtain feasible topologies
on the basis of generating all potential topologies for the
distribution network. For the 33-node testing system, by
screening out infeasible topologies, the number of potential
topologies is reduced from 1024 to 63, significantly reducing
the computational complexity for training the data-driven
power calculation model.

2) By incorporating topology information into the DBN-based
numerical-driven power flow calculation model, it becomes
possible to consider changes in the topology during the power
flow calculation process. This allows the data-driven power flow
calculation model to have an advantage over models that do not
take topology information into account. Moreover, due to its
excellent ability to learn complex features and handle large
amounts of training data, the DBN achieves more accurate
power flow calculation results compared to traditional
neural networks.

The future work will focus on applying the proposed data-driven
power flow calculation method to various aspects of power grid
operations, including economic dispatch, topology optimization,
and operational control, etc.
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Large-scale deep reinforcement
learning method for energy
management of power supply
units considering regulation
mileage payment

Ting Qian1* and Cheng Yang2

1Shanghai Electronics Industry School, Shanghai, China, 2School of Electronic and Information
Engineering, Shanghai University of Electric Power, Shanghai, China

To improve automatic generation control (AGC) performance and reduce the
wastage of regulation resources in interconnected grids including high-
proportion renewable energy, a multi-area integrated AGC (MAI-AGC)
framework is proposed to solve the coordination problem of secondary
frequency regulation between different areas. In addition, a cocktail
exploration multi-agent deep deterministic policy gradient (CE-MADDPG)
algorithm is proposed as the framework algorithm. In this algorithm, the
controller and power distributor of an area are combined into a single agent
which can directly output the power generation command of different units.
Moreover, the cocktail exploration strategy as well as various other techniques are
introduced to improve the robustness of the framework. Through centralized
training and decentralized execution, the proposed method can nonlinearly and
adaptively derive the optimal coordinated control strategies for multiple agents
and is verified on the two-area LFC model of southwest China and the four-area
LFC model of the China Southern Grid (CSG).

KEYWORDS

automatic generation control, multi-agent deep deterministic policy gradient algorithm,
optimal coordinated control, frequency regulation mileage payment, China
Southern Grid

1 Introduction

The development of interconnected power systems (Li et al., 2021; Li et al., 2022) and the
increasing application of large-scale renewable energy and generating units with multiple
energy coupling characteristics have led to more frequent random disturbances in power
systems, which generate significant coordination problems with regard to frequency control
within such power systems (Qu et al., 2023). Nowadays, the two major coordination
problems affecting secondary frequency regulation in multi-area power systems
(hereinafter referred to as the “two coordination problems”) are as follows: (1) there is a
coordination problem between the automatic generation control (AGC) controller and
distributor, which reduces the frequency regulation efficiency of the system and reduces the
adjustment resources of the system; (2) the coordination problems of AGC in various areas
will affect each other, resulting in frequency oscillation and regulation waste and reduced
control performance. In this situation, conventional AGC (Qu et al., 2022) cannot meet the
network demand due to its failure to allow for the above problems (Huan et al., 2023).
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In the AGC controller and distributor, the existing AGC-related
algorithms can be divided into two categories. One is the control
algorithm of AGC, which consists of the PID-based algorithm (Li
et al., 2023a), neural network (Li et al., 2023b), slidingmode control, and
(Yu et al., 2011a) learning (Yu et al., 2011b). The purpose of these
control algorithms is to minimize deviations in the control frequency.

The other category is the optimization algorithm for the distributor,
which consists of the intelligent optimization algorithm (Yu et al., 2015),
the fixed pattern dispatch (Yu et al., 2012), group optimization
algorithm (Xi et al., 2020), and traditional optimization algorithm
(Mirjalili et al., 2014). The optimization algorithm is used to send
commands to each unit in order to minimize the regulation payment.

The payment calculated dynamically based on regulation
mileage has replaced the original fixed regulation payment in the
AGC, which aggravates the coordination problem between the
controller and the distributor. Thus, the combination of these
two categories of algorithms (hereafter termed “combinatorial
algorithm”) increases the frequency deviation and the regulation
payment, which will lead to poor AGC performance.

Regarding the coordination problem affecting secondary frequency
regulation between different areas, the independent supplier operator
(ISO) of each area has a certain interest independence, whereby the ISO
of each area wants to restore the frequency but has no intention to pay
too much frequency regulation payment during mutual support
(Bahrami et al., 2014; Mirjalili, 2016; Xi et al., 2016).

An increasing number of researchers have opined that a data-
driven control scheme based on multi-agent deep reinforcement
learning (MA-DRL) holds significant potential. For example, Yu
et al. have demonstrated a novel MA-DRL algorithm, which is
designed for solving the coordinated control problem (Yu et al.,
2016). However, an increase in the number of agents leads to a
lower convergence probability of the algorithm; this property limits
its application in real-world systems. Moreover, Xi et al. have developed
a “wolf climbing” MA-DRL algorithm (Xi et al., 2015) and solved the
problem ofmulti-area control. However, because the action space of the
algorithm is discrete, there arises the problem of the dimensionality
curse, which makes it difficult to realize continuous control. Xi et al.
have proposed a multi-agent coordination method for inter-area AGC
(Xi et al., 2020); however, continuous control of inter-area AGC cannot
be realized for the discrete action space (Li et al., 2023c; Li and Zhou,
2023). However, the current MA-DRL-based data-driven control
method still has the following problems: the comprehensive
coordination of multi-agent was not achieved; low robustness. In
order to solve the “two coordination problems” and further improve
the AGC performance and reduce wastage of regulation resources in a
multi-area power system, a multi-area integrated AGC (MAI-AGC)
framework is proposed. In this framework, a novel deep reinforcement
learning algorithm, known as cocktail exploration multi-agent deep
deterministic policy gradient (CE-MADDPG), has been proposed,
which uses the cocktail exploring strategy and other techniques to
improve the robustness of the MADDPG. Based on this algorithm, the
controller and distributor are combined into a single agent which can
output the commands of the various units. Due to the employment of
centralized training and decentralized execution, each agent only needs
local information in its control area for delivering optimal control
signals. The simulation of the LFC model shows that the method
achieves the comprehensive optimization of performance
and economy.

The innovations demonstrated in this paper are as follows:

(1) An MAI-AGC framework based on multi-area coordination is
proposed to achieve coordination between the controller and
distributor, which reduces the cost and fluctuation of frequency
regulation, and enables each agent tomake optimal decisions based
on local information without relying on the global status of the
whole power grid (Yu et al., 2011a; Yu et al., 2011b; Yu et al., 2012;
Bahrami et al., 2014; Mirjalili et al., 2014; Yu et al., 2015; Mirjalili,
2016; Xi et al., 2016; Yu et al., 2016; Xi et al., 2020).

(2) A CE-MADDPG algorithm is introduced to improve the
robustness of the MAI-AGC framework, which employs cocktail
exploration and other techniques to overcome the problem of
sparse rewards of conventional deep reinforcement learning
methods and to achieve multi-objective optimization of control
performance and regulation mileage payment (Xi et al., 2015; Xi
et al., 2020; Li et al., 2023c).

The MAI-AGC model is elaborated in in Section 2, CE-
MADDPG is introduced in Section 3; in Section 4, a new
approach was used throughout the event, and the conclusion is
given in Section 5.

2 MAI-AGC framework

2.1 Performance-based frequency
regulation market

Frequency regulation mileage is a novel technical indicator for
identifying the actual regulating variable of each unit (Li et al., 2021).
According to the calculation rules of China Southern Grid (CSG) in
China, the frequency regulation mileage payment of each unit is as
Eqs (1)–(10) (Li et al., 2021):

Di � ∑N
k�1

λ · kpi ·Mi k( ) � ∑N
k�1

λ · kpi · ΔPGi k + 1( ) − ΔPGi k( )| |, (1)

Sratei � ΔPrate
i

ΔPrate
a

Sdelayi � 1 − Td
i

5min

Sprei � 1 − 1
N

∑N
k�1

ΔPorder−i k( ) − ΔPGi k + 1( )
ΔPi,a

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

Spi � ω1Sratei + ω2S
delay
i + ω3S

pre
i

ω1 + ω2 + ω3 � 1,ω1 ≥ 0,ω2 ≥ 0,ω3 ≥ 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, (2)

where ∫t

0
ΔfAdt, eAACE, and ∫t

0
eAACEdt are 0.50, 0.25, and 0.25,

respectively.

2.2 Frequency operating standards

CPS1 can best represent the performance of AGC (Qu et al.,
2023). The calculation method of the area control error (eACE) is
as follows:

eACE � ΔPtie − 10BΔf. (3)
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The CPS1 indicator is as follows:

CCPS1 � 2 − CCF1( ) × 100%, (4)
where

CCF1 � ∑ eACEAVE·min*ΔfAVE−min( )
−10Bintimeε21

. (5)

2.3 Control framework of MAI-AGC

As shown in Figure 1, in the MAI-AGC framework, the AGC
controller and power distributor of each area are replaced by a
centralized agent, which can output the power generation
commands of multiple units in the area simultaneously and
obtain the optimal coordinated strategy via training so that
during online application, the coordination with agents in other
areas can be realized while reducing the frequency deviation and
payment in different areas.

2.4 Objective function

The aim was to achieve the optimum performance of AGC and
its economic efficiency. The objective of the agent in the ith area is
expressed as follows:

minfi � μ1∑
N

k�1
Δfi k( )2 + μ2∑

N

k�1
eACEi k( )∣∣∣∣ ∣∣∣∣ + μ3∑

n

j�1
Dj

i . (6)

2.5 Constraint conditions

The constraint conditions for the coal-fired unit, LNG units, oil-
fired unit, hydro unit, and DERs in the SVPP are represented as Eq.
12. The constraint of DERs in the FVPP, which employs DC/DC
convert to control the energy, excludes the generation climbing
speed constraint.

∑n
j�1
ΔPin

j k( ) � ΔPorder−∑ k( )
ΔPorder−∑ k( )*ΔPin

j k( )≥ 0
ΔPj

min ≤ΔPin
j k( )≤ΔPj

max

ΔPout
j k + 1( ) − ΔPout

j k( )
∣∣∣∣∣ ∣∣∣∣∣≤ΔPrate

j

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
. (7)

3 Principle of the MAI-AGC-based CE-
MADDPG algorithm

3.1 Design of MAI-AGC based on the EE-
MAPDDG algorithm

There are n agents in this MA-DRL framework of one area, with
agenti corresponding to the agent of the ith area. The method
comprises offline centralized training and online application.

The global optimal coordinated control strategy can be obtained
by fully off-line training agents. In online applications, the policy
function πϕ

i (s) of agenti is responsible for outputting the actions
under that particular state, i.e., the generation factor for each unit in
the ith area. The control interval of agenti is set to 4 s. The control
objective is to eliminate the ACE and reduce the mileage payment of
each area. The control framework is shown in Figure 2.

3.1.1 Action space
For any time t, in the ith area, the AGC generation factor of n

units and VPP are selected as action, and there are a total of n
actions, as shown in the following equation:

ai1a
i
2 . . . a

i
j . . . a

i
n[ ], aij ≤ 1

ΔPi
order−j � aij*P

max−i
jG

{ . (8)

3.1.2 State space
A state refers to an ordered collection of the smallest number

of variables that can determine the state of the system in the
system, and the state space of the agent of area i is shown as
Figure 3:

FIGURE 1
MAI-AGC framework.

FIGURE 2
MAI-AGC system based on the CE-MADDPG algorithm.
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Δfi∫t

0
Δfidte

ACE
i ∫t

0
eACEi dtΔPout−i

1 . . .ΔPout−i
j . . .ΔPout−i

n[ ]. (9)

3.1.3 State space of the EIE-MATD3 algorithm
By referring to Eq. 11, the reward of the agent in the ith area is

expressed as follows:

ri t( ) � − μ1Δfi k( )2 + μ2 e
i
ACE k( )∣∣∣∣ ∣∣∣∣ + μ3∑

n

j�1
di
j k( )⎡⎢⎢⎣ ⎤⎥⎥⎦ + A, (10)

di
j k( ) � λ*Spj* ΔPout−i

j k( ) − ΔPout−i
j k + 1( )

∣∣∣∣∣ ∣∣∣∣∣, (11)

Ai � 0 Δfi k( )∣∣∣∣ ∣∣∣∣< 0.05Hz
−10 Δfi k( )∣∣∣∣ ∣∣∣∣≥ 0.05Hz.

{ (12)

3.2 Deep reinforcement learning

3.2.1 MA-DDPG
TheMADDPG algorithm (Lowe et al., 2017) is an algorithm that

extends the DDPG algorithm into a multi-agent environment. In
training, each agent can obtain the state and actions of all agents.
The loss of agents is calculated as Eq. (13) and Eq. (14):

L θQ( ) � 1
K
∑K
j�1

yj − Q sj, a1, a2,/aN, θ
Q( )( )2. (13)

The policy gradient is as follows:

∇ϕπJ � 1
K
∑K
j�1
∇ϕπ π o,ϕπ( )∇aQ s, a1, a2,/aN, θ

Q( ). (14)

3.3 Training framework of CE-MADDPG

CE-MADDPG is an MA-DRL algorithm, which is a
modification of MA-DDPG. CE-MADDPG adopts the cocktail
exploration distributed MA-DRL training framework, and this
algorithm improves the efficiency of MADDPG. The training
framework adopts centralized training and decentralized
execution for parallel optimization. According to Figure 4, taking
the four-area LFC model as an example, the framework includes
several explorers, integrators, and four leaders.

The purpose of this novel scheme is to improve the detection
capability and robust performance of the proposed method, in which
there are 10 parallel systems, and each of them is associated with a
different power disturbance. In the case of an LFC model having four
areas, each of the parallel systems 1–6 is provided with four explorers,
which serve as an AGC integration agent for four areas, to output a
command for the respective unit in the area. These four explorers
adopt the same exploration principle. Each of the parallel systems
7–12 has four integrators, and each integrator contains a combination
of different control algorithms and optimization algorithms. During
training, the explorers in different areas simultaneously explore the
environment in parallel, and each explorer generates a sample. Each
integrator generates an integration sample. Different parallel spaces
are shown in Eq. 15.

FIGURE 3
Training flow of CE-MADDPG.

FIGURE 4
Training framework of the CE-MADDPG algorithm.
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3.3.1 Explorer
The explorer in different systems employs different exploration

actions. The action of the explorer in parallel systems 1–2 is shown
as Eq. (15):

alε � { πl
ϕ s( ) With ε probability
alrand With 1 − ε probability

, (15)

where l refers to the lth agent.

FIGURE 5
Case 1 results.
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The action of the explorer in parallel systems 3–4 is as
Eq. (16):

ajOU � πj
ϕ s( ) +Nj

OU, (16)

where j refers to the jth agent.
The action of the explorer in two parallel systems is as

Eq. (17):

ajGaussian � πj
ϕ s( ) +Nj

Gaussian. (17)

An SAC explorer is set in parallel systems 9–12 to create the
samples in collaboration with three demonstrators.

In this paper, the demonstrator adopts various controllers on
different principles. PSO-fuzzy-PI is used in parallel systems
5 and 9; GA-fuzzy-PI is used in parallel systems 6 and 10; TS-
fuzzy-PI is used in parallel systems 7 and 11; type-II fuzzy-PI is
used in parallel systems 8 and 12. The target function of the
controllers is as Eq. (18):

F t( ) � ∫∞

0
t eji t( )( )2dt. (18)

3.3.2 Integrators
The design of the CE-MADDPG incorporates imitation

learning. The integrator includes a controller and a distributor.
The controllers and power distributors among different integrators
employ different principles. During training, every integrator gives a
reasonable result according to its own controller and power
distributor, converts it into a sample, and puts it into the
experience pool, which makes the public experience pool to make
valuable samples.

In the integrators, PI, PSO-PI, FOPI, PSO-tuned fuzzy-PI,
and fuzzy-PI algorithm are adopted in the controller. Due to the

frequent occurrence of big amplitude disturbances in area A,
when PSO-PI and PSO-fuzzy-PI factors in area A are optimized,
the other control parameters are adjusted manually. The
objective of the integrators for the controller is shown as Eq. (19):

minFC t( ) � ∫∞

0
t eACEi t( )( )2dt. (19)

The principles of the power distributor for generation power
command dispatch corresponding to each integrator are as follows:
PROP, GA, and PSO. Various learning samples are provided for the
public experience pool through the integrator interacting with the
environment.

In the integrator, only ACE is taken into account in the
control algorithm, and the regulation payment is considered in
the dispatch algorithm for the distributor. In optimization, the
fitness function for the distributor is shown in Eq. 20. The fitness
function is as Eq. (20):

minFD t( ) � ∑T
t�1

μ1∑
N

i�1
ΔP2

error−i t( ) + μ2∑
N

i�1
dj
i t( )⎛⎝ ⎞⎠. (20)

3.3.3 Classified prioritized replay
Classified prioritized replay is adopted in the experience replay

mechanism. In CE-MADDPG, two experience pools are employed.
The samples obtained by the explorers are put into pool 1, and those
collected by the integrators are put into pool 2.

The probability ξ is shown in Eq. 21:

ξ �
0.8 Episodes≤ 1000
0.9 1000< Episodes≤ 2000.
1 Episodes> 2000

⎧⎪⎨⎪⎩ (21)

TABLE 1 Result of case 1.

Area Algorithm |Δf|avg/Hz |EACE| avg/MW CCPS1/% Payment/$

Area A CE-MADDPG 0.0178 5.6989 199.199 1210

Ape-x-MADDPG 0.0249 6.6120 199.197 1431

MATD3 0.0255 6.8245 199.163 1423

MADDPG 0.0249 6.7474 199.179 1303

PI + PSO 0.0227 6.9281 199.210 1495

PI + GA 0.0225 6.8718 199.220 1501

PI + PROP 0.0231 7.1580 199.199 1523

Area B CE-MADDPG 0.0195 2.8156 200.075 389

Ape-x-MADDPG 0.0255 3.1224 200.064 549

MATD3 0.0263 3.1985 200.067 558

MADDPG 0.0258 3.2446 200.062 538

PI + PSO 0.0267 3.5875 200.062 463

PI + GA 0.0266 3.6248 200.008 458

PI + PROP 0.0279 3.9294 199.997 457

Bold indicates that this metric of the algorithm is the most outstanding compared to other algorithms.
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3.3.4 Training flow
The training flow of the CE-MADDPG algorithm is shown

as follows:

3.4 Case studies

In case studies, the performance of the CE-MADDPG algorithm
is compared with that of other MA-DRL algorithms (Ape-x-
MADDPG, MATD3, and MADDPG) and combinatorial

algorithms, which include controllers with power distributors (PI
+ PROP, PI + PSO, PI + GA) in the two cases.

3.4.1 Case 1: stochastic step disturbance
In case 1, three random step perturbations were introduced to

test the effectiveness of the method.
1) Performance of MA-DRL algorithms. From Table 2, it can be

known that the CPS1 indexes of CE-MADDPG in areas A and B
are 199.199 and 200.075, respectively, which are the largest
among these algorithms. In addition, |Δf |avg and |EACE| avg of

FIGURE 6
Results of case 2.
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CE-MADDPG are the smallest in MA-DRL algorithms. In
addition, the payments of CE-MADDPG in the two areas are
$1,210 and $389, respectively, which are much lower than those
of other MA-DRL algorithms.

Based on the above results, it can be argued that CE-
MADDPG uses more techniques for improving its exploration
capability and training efficiency, and thus a better coordinated
control strategy can be obtained. Therefore, when confronted
with different disturbances, the CE-MADDPG algorithm exhibits
better performance; conversely, due to the lack of corresponding
techniques, in each case, a suboptimal coordinated control
strategy is obtained by other MA-DRL algorithms, thereby
leading to suboptimal coordinated control performance.

According to Figures 5A, B and Figure 5G, the coordinated
control strategy adopted by the CE-MADDPG algorithm calls
more rapid-regulating units for frequency regulation. In
addition, other MA-DRL algorithms are subjected to larger
overshoot, which leads to serious frequency regulation
resource wastage and increases the payment. As shown in
Figures 5C, E, the CE-MADDPG achieves more stable
frequency deviation and ACE.

2) Performance of combinatorial algorithms. According to
Table 1, in area A, for combinatorial algorithms, the CE-
MADDPG algorithm can reduce |Δf |avg by 26.4%–29.5%, |EACE|

avg by 20.58%–25.6%, and the regulationmileage payment by 22.8%–

24.82%; it also has the largest CPS1 index value. In area B, the CE-

TABLE 2 Statistical results of case 2.

Area Algorithm |Δf|avg/Hz |EACE| avg/MW CCPS1/% Payment/$

Area A CE-MADDPG 0.00199 5.6413 199.881 9,950

Ape-x-MADDPG 0.00233 7.9635 199.057 24,498

MATD3 0.00278 7.2853 198.914 17,935

MADDPG 0.00255 7.4202 198.818 16,195

PI + PSO 0.00253 8.3808 198.691 16,195

PI + GA 0.00264 8.3673 198.547 12,947

PI + PROP 0.00269 8.4222 198.534 11,078

Area B CE-MADDPG 0.00346 6.7533 194.020 17,931

Ape-x-MADDPG 0.00726 10.2614 186.250 57,875

MATD3 0.00532 7.2476 191.586 36,206

MADDPG 0.00475 6.3865 192.638 30,859

PI + PSO 0.00478 5.9463 193.179 30,859

PI + GA 0.00450 5.5413 193.708 27,846

PI + PROP 0.00437 5.3884 193.882 25,005

Area C CE-MADDPG 0.00365 5.5323 194.800 10,931

Ape-x-MADDPG 0.00484 6.3594 193.462 16,478

MATD3 0.00425 5.8505 194.209 12,708

MADDPG 0.00435 5.4815 193.374 13,638

PI + PSO 0.00440 5.9513 194.392 13,638

PI + GA 0.00428 5.8644 194.406 13,447

PI + PROP 0.00425 5.8624 194.376 12,212

Area D CE-MADDPG 0.00319 3.6097 197.211 7,553

Ape-x-MADDPG 0.00424 4.8727 196.476 12,178

MATD3 0.00378 4.1069 196.763 9,130

MADDPG 0.00390 4.1245 195.981 9,077

PI + PSO 0.00387 4.0885 196.793 9,076

PI + GA 0.00381 3.9727 196.859 7,834

PI + PROP 0.00381 3.9633 196.832 7,908

Bold indicates that this metric of the algorithm is the most outstanding compared to other algorithms.
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MADDPG algorithm can reduce |Δf |avg by 36.03%–42.6%,| EACE |

avg by 27.4%–39.6%, and the regulation mileage payment by
17.46%–29.05%.

Based on the above results, it can be argued that as shown in
Figure 6B, the other combinatorial algorithms are also subjected to
larger overshoot due to the PI controller being contained in these
combinatorial algorithms. When the parameters are not set
properly, there will arise instability in terms of total generation
power command and overshoot, which will lead to degradation of
performance and increased payment (Figures 5D, F, G, H). By
contrast, the CE-MADDPG algorithm can significantly improve
the response capability of AGC, which, in turn, reduces the
occurrence of “overshoot,” thereby reducing its payment.

3.4.2 Case 2: four-area LFC model under
disturbance with large-scale DERs

In case 2, WT disturbance, PV disturbance, and stochastic
disturbance occur across the four areas.

As shown in Table 2, in area A, CE-MADDPG reduces |Δf |avg
by 16.79%–39.69%, |EACE| avg by 29.14%–48.56%, and the
payment by 11.33%–146.21%; it also attains the largest
CPS1 index value. In addition, CE-MADDPG exhibits the
minimum |Δf |avg and payment in other areas. However, since
other areas will give emergency support when a disturbance
occurs in one of the areas, the |EACE| avg of the CE-MADDPG
algorithm is not the lowest in areas B and C (which provide more
support). However, the CPS1 index of the CE-MADDPG
algorithm across the different areas is the largest.

According to Figures 6A, B, for the CE-MADDPG algorithm,
when a disturbance occurs in an area, the AGC of that area can
respond rapidly, and the influence of coordination among
controllers in multiple areas is considered while at the same
time avoiding the degradation of performance caused by the
combinatorial algorithm. Therefore, the CPS1 of AGC in all the
areas is better; also, the peak value of its frequency is smaller,
which reduces unnecessary load shedding caused by the
operation of the emergency control device due to frequency
fluctuation.

It can, therefore, be argued that in the event of a disturbance, and
with large-scale DERs, compared with the MA-DRL algorithms and
combinatorial algorithms, the CE-MADDPG algorithm is
advantageously characterized by better performance and can
realize multi-area secondary frequency regulation coordination.

4 Conclusion

Based on the study, we can draw the following conclusions:

1) In this paper, an MAI-AGC framework is designed in the
performance-based frequency regulation market. The
controller and the distributor are integrated into a single
agent, which can resolve the cooperative problem of the
controller and distributor.

2) A CE-MADDPG algorithm is proposed as the framework
algorithm from the perspective of AGC. This algorithm uses
multiple groups of explorers with different exploration strategies

combined with integrators to improve training efficiency. It
introduces a variety of techniques to guide the strategy
objectives in striking a balance between exploration and
utilization and then realizing the optimal coordinated control
of AGC with greater robustness. Moreover, the utilization
framework of decentralized execution is adopted to realize the
coordination control of different areas.

3) The results of two cases show that, compared with the three MA-
DRL and three combinatorial algorithms, the proposed
algorithm exhibits enhanced performance and
economic efficiency.

4) Future work: We will conduct research based on practical
examples in the future.
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Nomenclature

Ai Control penalties

CCF1 CF1 indicator

CCPS1 CPS1 indicator

eACEi ACE of the ith area

eei The sample created by the explorer

Fd(t) Objective function of the distributor

Fc(t) Objective function of the controller in the integrator

fi Objective function of the agent in the ith area

gij Generation factor of the jth unit in the ith area

Q*(s′, a′) Target Q function

n Number of AGC units

Sprei
Regulation accuracy of the ith unit

Greek symbols

μ1 Weight coefficient

μ2 Weight coefficient

μ3 Weight coefficient

∇ϕπ J Policy gradient

ε1 The root-mean-square control target

π Policy of the agent

Δf i Frequency deviation of the ith area
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Distributed photovoltaic systems can actively contribute to the primary frequency
regulation of the power grid by reserving capacity. Traditional power reduction
methods often employ fixed load reduction ratios, potentially resulting in
inadequate frequency regulation capacity and unnecessary reserve power.
This paper centers on optimizing power reserve control, starting with the
construction of a two-stage model for a photovoltaic grid-connected inverter
power generation system. It includes the design of a maximum power estimation
method and the implementation of photovoltaic power reduction operation. The
article proposes a strategy to utilize photovoltaic backup capacity for achieving
primary frequency modulation effects in a short time scale. Additionally, it adopts
a variable power reserve ratio operation strategy over the long term, aiming to
enhance photovoltaic power generation and optimize solar energy utilization
without compromising the grid’s frequency and quality. Finally, a MATLAB/
Simulink model is developed to validate the effectiveness of the control
strategy. Simulation results indicate that the proposed strategy satisfies
frequency regulation requirements, enhances power generation efficiency,
and improves the economic viability of photovoltaic operations.
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1 Introduction

In recent years, amid the pursuit of the “dual carbon” goal, the rapid development of
new energy generation, particularly wind and photovoltaic power, has unfolded. As these
sources become increasingly integrated into the power grid, they play a pivotal role in
diminishing reliance on fossil fuels and fostering environmental conservation. However, the
rise of new energy sources coincides with a decline in the share of traditional energy derived
from hydroelectric and thermal power generation units. This shift results in a reduction of
rotating reserve capacity and moment of inertia within the power system (Lv et al., 2014).
Nevertheless, the integration of new energy units into the grid typically involves the use of
power electronic devices, such as inverters, which are unable to provide the traditional
inertia characteristic. Consequently, the emerging power system exhibits the attribute of
“low inertia,” posing new challenges and issues for the secure and stable operation of the
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power grid (Zhao et al., 2011). Simultaneously, since photovoltaic
units often operate in Maximum Power Point Tracking (MPPT)
mode to enhance energy utilization (Wang et al., 2018), there is a
lack of excess frequency regulation resources. In instances of
frequency fluctuations, photovoltaics cannot partake in primary
frequency regulation and must rely on the gradual reduction of
output from traditional units. This dependence inevitably leads to
heightened frequency fluctuations, posing a threat to the safety of
the system’s frequency.

To address the aforementioned challenges, enabling
photovoltaics to actively engage in the primary frequency
regulation of the power grid is imperative. This involves
allocating a specific backup capacity for photovoltaics. Currently,
there are two predominant approaches in the global academic
community to achieve this objective. One method involves the
incorporation of energy storage components for photovoltaics,
creating a Virtual Synchronous Generator (VSG). This setup
emulates traditional rotary synchronous generators by leveraging
the external characteristics of photovoltaics (National Energy
Administration, 2018). The resulting VSG exhibits high inertia
and robust damping characteristics, allowing photovoltaics to
autonomously contribute inertial support to the system without
relying on frequency controllers. The alternative approach is the
implementation of photovoltaic power reserve operation. This
method enables the photovoltaic system to output power based
on a predetermined ratio of reserved fixed capacity or maximum
power (Xie et al., 2021). Given the relatively high cost and
suboptimal economic efficiency of energy storage equipment
(Zhang et al., 2021), coupled with the widespread occurrence of
“light curtailment” in photovoltaic power stations (Guo et al., 2020),
photovoltaic power reserve operation strategically utilizes the
generated electricity from this “abandoned light.” Therefore, this
article primarily focuses on the involvement of photovoltaic power
reserve operation in the primary frequency regulation of
the power grid.

In the context of primary frequency regulation, reference (Zhang
et al., 2019) conducted an analysis of the photovoltaic grid-
connected power generation system utilizing DC voltage sag
control through the electrical torque method. The study
demonstrated that the energy storage effect of capacitors on
medium and short time scales could confer certain inertia
characteristics to the system. Notably, the photovoltaic modules
operated in MPPT mode, without accounting for reserving spare
capacity for participation in primary frequency regulation.
Reference (Wu et al., 2022) suggests augmenting frequency
control through the addition of an integral loop to the traditional
primary frequency modulation droop control. While this approach
enhances the support of photovoltaics for grid frequency, it
necessitates parameter readjustment in response to changing
environmental conditions, limiting its universality. In contrast,
reference (Li, 2022) introduces an adaptive droop control based
on quantized minimum error entropy and an improved universal
gravity search algorithm. This method aims to enhance the primary
frequency modulation effect of the system and mitigate frequency
deviations induced by disturbances. By optimizing the droop control
coefficient in real-time, it improves the system’s frequency response.
Reference (Zhang et al., 2020) proposes a function with irradiance as
the independent variable and the droop coefficient as the dependent

variable, allowing the droop coefficient to adapt to external
irradiance conditions. However, the provided example only
considers working conditions with irradiance exceeding 1,000.

In the realm of optimizing power reserve, a majority of pertinent
literature has predominantly concentrated on the domain of wind
power. Reference (Wang and Yuvan, 2024) introduced an evaluation
function grounded in power generation and frequency regulation
capability, ultimately deriving the optimal power reserve ratio curve
under full wind speed conditions. By integrating wind speed
predictions, a dynamically adjustable power reserve ratio was
achieved. Similarly, reference (Xu et al., 2021) established a power
reserve benefit function, employing the particle swarm optimization
algorithm to determine the optimal power reserve ratio across diverse
scenarios. The ratio was dynamically adjusted based on varying load
levels. Currently, there is a dearth of an evaluation system for
determining the optimal power reserve level specifically for
photovoltaics. This is intricately linked to various environmental
factors such as irradiance and temperature. Consequently, fixed
power reserve ratios or static power reserve powers are often
employed for photovoltaic power reserve operations, but this
approach sacrifices adaptability to changing environmental conditions.

The initial segment of this paper discusses the implementation of
photovoltaic power reserve operation, as introduced in reference
(Zhou, 2021). This method empowers photovoltaic modules to
modify the power reserve level using a predefined numerical curve
for the power reserve ratio. The subsequent section elucidates the
primary frequency regulation strategy outlined in this article. It
integrates droop control and virtual inertial control to enhance the
system’s frequency response during short-term load fluctuations. The
third section introduces an optimization function for the power
reserve ratio, influenced by light intensity and load level. This aims
to refine frequency characteristics, augment total photovoltaic power
generation, and conserve synchronous machine output over an
extended duration. Finally, the fourth segment constructs a
synchronous machine photovoltaic microgrid model using Matlab/
Simulink. It validates the effectiveness of the proposed control
strategies in this paper across both short-term and long-term scales.

2 PV load reduction control strategy

2.1Maximumphotovoltaic power estimation

The crux of photovoltaic power reduction operation lies in the
real-time estimation of its maximum power. Accurate control of

FIGURE 1
Equivalent circuit of the solar cell.
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photovoltaic power reduction operations, contingent upon load
reduction levels, hinges upon the prior estimation of the
photovoltaic system’s maximum power. The following elucidates
the principles and steps involved in implementing photovoltaic
power reserve operation in this article.

2.1.1 Offline model of photovoltaic array
The photovoltaic array model employed in this study adopts the

widely used five-parameter single diode model. The equivalent
circuit principle is illustrated in Figure 1, and the
corresponding mathematical expressions are presented in
Eqs 1–5.

IPV � IPh − I0 e
Vpv+RSIpv( )

VT − 1( ) − Vpv + RSIpv
Rsh

(1)

VT � AkT/q (2)
Iph � S

SSTC
Isc,STC 1 + α T − TSTC( )[ ] (3)

I0 � Iph − Voc

Rp
( ) e

qVoc
kAT( ) − 1( )−1

(4)

Voc � Voc,STC 1 + β T − TSTC( )[ ] + VT0
S

SSTC
( ) (5)

In these equations, Ipv is the PV output current; Iph is the
photogenic current; I0 is the diode reverse saturation current; q is
the electron charge, q = 1.6 × 10−19°C; k is Boltzmann’s constant;
Vpv is the PV output voltage; RS is the series resistance; Rsh is the
parallel resistance; A is the ideal diode factor; S is the irradiance;
Voc and Isc are the PV array open-circuit voltage and short-
circuit current; SSTC = 1,000 W/m2 and TSTC = 25°C are the
standard test conditions; Isc,STC and Voc,STC are the short-
circuited current and the open-circuit voltage under standard
test conditions, respectively; and α and β are the thermal
correlation coefficients.

2.1.2 Linear expression for maximum power short-
circuit current

Reference (Kato T et al., 2018) suggests the existence of an
approximately linear functional relationship between the
maximum power Pmap of photovoltaics under specific

conditions and the short-circuit current Isc under these
conditions, as illustrated in Eq. 6:

Pmap � kmIsc (6)

where km is the fitting coefficient.
The photovoltaic cell model utilized in this example is the

SunPower SPR-305E-WHT-D, featuring 66 parallel cells, 5 series
cells, and a rated power of 100725 W. For the purpose of analysis, the
parameters of the photovoltaic cell are detailed in Table 1.
Maintaining a constant temperature of T = 25°C, the irradiance
gradually increases from 50W/m2 to 1,200 W/m2 at intervals of
50 W/m2. Offline data for short-circuit current and maximum
power under various irradiance conditions are measured.
Through the use of curve-fitting tools for linear regression on the
acquired data, a value of km = 253.5 is obtained. Throughout the
fitting process, the maximum fitting error is 0.020355, and the root
mean square error is 0.00207482, indicating a robust linear
relationship between the maximum photovoltaic power and
short-circuit current.

2.1.3 Maximum power estimation expression
To reserve a certain amount of active power, photovoltaic

power generation should operate at a deviation from the
maximum power point. This article employs a proportional
power reserve method and defines the target power reserve
ratio as r*%, expressed as Eq. 7:

r*% � Pmap − Pr*%

Pmap
(7)

where Pmap represents the maximum power of a photovoltaic
array, and its magnitude is influenced by external irradiance
and temperature; Pr*% denotes the target power reserve
point power.

To estimate the short-circuit current, we introduce a new
intermediate variable Ir*%/Isc and explore its relationship with the
target power reserve ratio r*%. Here, Ir*% represents the current
corresponding to the specified power reserve ratio r*%, i.e., the target
power reserve point current.

Here is the segmented fitting relationship for Ir*%/Isc as follows
in Eq. 8:

Ir*%
Isc

� a0 − a1r*% + a2
r*% + a3

, r*%≤ 0.1

a4r*% + a5, r*%> 0.1

⎧⎪⎪⎨⎪⎪⎩ (8)

In the above equation, when r*%>1, the Ir*%/Isc-r*% curve is a
linear function. The value of Ir*%/Isc-r*%, at r*% = 0.1, can be
determined through offline experimental testing. Subsequently, in
conjunction with another data point r*%<=1, Ir*%/Isc = 1, the values
of a4 and a5 can be derived. For the nonlinear curve with r*%<=1 in
the functional relationship, measure the Ir*%/Isc values
corresponding to the target load reduction ratios r*% of 0, 0.025,
0.05, 0.075, and 0.1, respectively, to construct an offline data table.
Employ curve-fitting tools to perform linear regression on the data
in the table to obtain the coefficients a0~a3. Throughout the fitting
process, the maximum fitting error is 0.00161, and the root mean
square error is 0.000894. Therefore, it can be considered that the
piecewise function in Eq. 8 exhibits a favorable fitting effect.

TABLE 1 Photovoltaic cell parameters.

Parameter Meaning Value

Voc,STC Open circuit voltage
under standard conditions

64.2 V

Isc,STC Short circuit current under
standard conditions

5.96 A

RS Parallel resistance 0.37152Ω

Rsh Series resistance 269.5934Ω

α Short-circuit current therm-al
correlation coefficient

0.061745

β Open circuit voltage therm-al
correlation coefficient

−0.27269

A Diode ideal factor 0.94504
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After modifying Eq. 8, the resultant expression for short-circuit
current estimation is as follows in Eq. 9:

Isc �
r*% + a3( )Ir*%

a0 − a1( )r*% + a0a3 + a2
, r*%≤ 0.1

Ir*%
a4r*% + a5

, r*%> 0.1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(9)

The expression for maximum power estimation derived from
simultaneous Eqs 6, 9 is as follows in Eq. 10:

Pest � kmIsc �
r*% + a3( )kmIr*%

a0 − a1( )r*% + a0a3 + a2
, r*%≤ 0.1

kmIr*%
a4r*% + a5

, r*%> 0.1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(10)

The specific values of each parameter in Eq. 10 are presented in
Table 2. When applying this relationship in practice, estimate the
sampling point current Ipv by substituting it into Eq. 10.

2.2 Power reserve control and
voltage tracking

Upon obtaining the estimated maximum power Pest following
Eq. 10, power reserve control is applied to achieve the targeted
power reserve ratio for the photovoltaic system. Reference (Zhou,
2018) details an enhanced mountain climbing method for real-time
voltage tracking; however, it utilizes a fixed step size, potentially
leading to voltage fluctuations. To mitigate such fluctuations, this
paper introduces a variable-step voltage tracking strategy with real-
time iteration capability. The procedural steps of the flowchart are
outlined in Figure 2.

After the photovoltaic system is initiated, the current output
voltage Vpv, output current Ipv, and the pre-set target power reserve
ratio r*% are collected. In this procedure, the maximum power
estimation value Pest at the current moment is determined according
to Eq. 10. When combined with the calculated photovoltaic array
output power Ppv, the current power reserve ratio rest% can be
obtained. This is given in Eq. 11.

rest% k( ) � Pest k( ) − Ppv k( )
Pest k( ) � 1 − Ppv k( )

Pest k( ) (11)

There still exists a deviation between the current power reserve
rate rest% and the target power reserve ratio r*%, expressed as in
Eq. 12:

Δr% k( ) � r*% k( ) − rest% k( ) (12)

This article employs a voltage controller to achieve tracking of
the target operating point. Eq. 12 is utilized as the deviation for
voltage tracking, and a variable step voltage tracking control strategy
is adopted to mitigate power fluctuations. The design is outlined as
follows in Eqs 13, 14:

Vpvref k + 1( ) � Vpvref k( ) + ΔV k( ) (13)

ΔV k( ) � −γΔr% k( ), dP/dV> 0
−Vcons, dP/dV< 0{ (14)

where Vpvref is the voltage reference value of the controller; γ is the
proportion coefficient for the variable step size; Vcons is a fixed
voltage control step size. In the model presented in this article, the
initial value of Vpvref is set to 150 V, γ is taken as 100, and Vcons is set
to 0.01 V.

3 Primary frequency modulation
control strategy based on power
reserve control

This article employs a two-stage photovoltaic power generation
system as an illustrative example to elucidate the proposed control
strategy. The topology structure and overall control diagram are
depicted in Figure 3. In Figure 3, S represents ambient light intensity,
T signifies ambient temperature, Cpv denotes the photovoltaic-side
capacitor, Cdc is the DC-side capacitor, Lg stands for the filtering
inductance, Cf represents the filtering capacitor, ugabc is the grid-
connected voltage, igabc is the grid-connected current, and f is the
grid frequency measured through a phase-locked loop (PLL). In this
example, Cdc = 2.5 mF, Cf = 8 μF, Lg = 5 mH.

TABLE 2 The specific values of each parameter in Eq. 10.

Parameter Value

km 253.5

a0 1.165

a1 0.1896

a2 0.00374

a3 0.01568

a4 0.03393

a5 0.9661

FIGURE 2
The control flow chart of the power reserve control.
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The control strategy presented in this article is primarily divided
into three components: frequency control, power reserve control,
and inverter control. In the inverter control segment, the collected
ugabc and igabc are decoupled using Park transformation. The
traditional voltage and current dual closed-loop control strategy
is then employed for the decoupled signals, ensuring the stability of
DC voltage and inverter current.

The role of the frequency control section is to relay the target
power reserve ratio r*% received from the power reserve control
section based on changes in the grid frequency measured by the
phase-locked loop. This allows the photovoltaic power generation
system to exhibit a primary frequency modulation response akin to
that of traditional power generation units. To endow photovoltaic
systems with droop and inertia characteristics resembling
synchronous machines, this paper adopts the frequency control
strategy diagram depicted in Figure 4. The control block diagram
encompasses both droop control and inertial control, with the
expression for the target power reserve ratio r*% as follows in
Eq. 15:

r*% � r0% + r1% + r2% � r0% + kdΔf + ki
df

dt
(15)

In Figure 4, f0 denotes the rated frequency of the power grid, set
at 50 Hz; kd represents the sag coefficient, which is set to 1.3 in this
article; ki is the inertia coefficient, established as 0.08 in this article;

r0% denotes the given initial power reserve ratio, set at 10% in this
article; r1% and r2% are the deviation values of the load reduction
ratio caused by droop control and inertia link, respectively. The r*%
is derived by adding the initial power reserve ratio r0% to the
deviation values r1% and r2% of the power reserve ratio. It serves
as the reference value for the power reserve ratio and acts as the
input for the power reserve control section.When the grid frequency
f deviates from the rated frequency f0, a frequency deviation occurs,
leading to a droop power reference power reserve ratio r1% and an
inertia power reference power reserve ratio r2%. This results in the
generation of a new reference power reserve ratio r*% enabling the
photovoltaic system to track this new reference power reserve ratio.

The power reserve control segment employs the iterative process
illustrated in the flowchart in Figure 2. Through the close
coordination of the frequency control and power reserve control
components, the ultimate objective of having photovoltaic modules
output power reserve power towards the target is achieved.

4 Variable power reserve ratio setting

4.1 National standard

To advance the development of photovoltaic virtual
synchronous generators, the State Grid of China issued the
“Technical Guidelines for Virtual Synchronous Generators” (State
Grid Corporation of China, 2016a) and the “Technical
Requirements and Test Methods for Unitary Photovoltaic Virtual
Synchronous Generators” (State Grid Corporation of China, 2016b).
These regulations hold guiding significance for the photovoltaic
units operating under power reserve in this article. In the
specifications concerning the primary frequency regulation
function, it is stipulated that assuming the rated power of the
photovoltaic system is Pn, when the system frequency decreases,
the virtual synchronous generator should increase the active output
in response to the system frequency change. The maximum
adjustable amount of active output should be at least 10% of Pn.

FIGURE 3
Structure block diagram of the proposed control strategy.

FIGURE 4
Primary frequency regulation control strategy for PV.
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Conversely, when the frequency increases, the virtual synchronous
generator should reduce the active power output, with themaximum
reduction amount being at least 20% of Pn. Once it reaches 20% of
Pn, it can no longer continue to adjust downwards.

While photovoltaic power reduction and load reduction
operations maintain active power reserve similar to traditional
synchronous machines, they also result in the wastage of
photovoltaic energy and a reduction in the overall power
generation of the photovoltaic system. Essentially, this entails
trading a portion of sunlight for the frequency regulation
capability of the photovoltaic system. In light of this, the
National Energy Administration has laid out specific
requirements for wind and solar power curtailment: in the
pursuit of advancing clean energy development, the consumption
of clean energy should decrease annually, and the proportion of
wind and solar power curtailment and power rationing should be
minimized. Specifically, the curtailment rates for wind, solar, and
hydropower in the Three North regions should be kept below 10%,
while in other regions, the curtailment rates should be below 5%.
This aims to fundamentally address the issue of wind and solar
power curtailment.

The determination of backup power size should consider both
frequency regulation capability and light curtailment factors.
Regarding the stipulations for primary frequency regulation of
virtual synchronous generators, it is emphasized that active
power regulation should be at least 10% of Pn, with a maximum
curtailment limit of 10% in the Three North region and 5% in other
regions for wind and light curtailment. In summary, this article
establishes a benchmark power reserve ratio of 10%, satisfying both
the minimum requirements for active power output in primary
frequency regulation and the limits for abandoned light.

4.2 Variable power reserve ratio function
based on light intensity and load level

To enhance the long-term power generation efficiency of
photovoltaics and address the power redundancy issue associated
with fixed power reserve ratios, this section proposes a variable
power reserve ratio function based on light intensity and load level.
Light intensity plays a decisive role in the output of photovoltaic
power plants due to its correlation with environmental factors.
Hence, the establishment of power reserve ratios needs to
account for the impact of variations in light intensity. When light
intensity increases, photovoltaic output rises. Consequently, the
power reserve ratio should be increased to curtail photovoltaic
power generation in the prevailing environment, mitigating the
frequency elevation resulting from the augmented power.
Conversely, when light intensity decreases, photovoltaic output
diminishes. In such instances, the power reserve ratio should be
reduced to augment photovoltaic power generation, addressing the
frequency reduction induced by power curtailment. Based on this
analysis, defining a variable power reserve ratio curve over an
extended time scale can alleviate frequency fluctuations stemming
from changes in irradiance conditions.

In contrast, traditional power reserve control does not account
for the system load situation, leading to poor flexibility and reduced
power generation efficiency. This section incorporates

considerations for load levels. When the system load is low, a
higher power reserve ratio can be implemented to curtail the
output of photovoltaic units, augmenting additional active power
reserves. Conversely, when the system load is high, a lower power
reserve ratio can be adopted to boost active power output and
achieve a balance in success ratio. Based on this analysis, it is
imperative to comprehensively consider the impact of changes in
load levels when defining the power reserve ratio curve for variations
over an extended period.

Considering the analyses above, this article proposes the variable
power reserve ratio function for photovoltaic power stations as
follows in Eq. 16:

r% � 10%*
S

1000
*
Pav

PL
(16)

In Eq. 16, S represents the predicted future illumination intensity
based on the illumination intensity at a specific time, PL is the
instantaneous load of the system at the same future time in the daily
load curve predicted by load forecasting, and Pav is the average load
of that day. By configuring the variable load reduction rate in Eq. 16,
the frequency regulation performance of the photovoltaic unit is
maintained without compromise, while simultaneously improving
power generation efficiency and economic performance. Essentially,
it involves striking a balance between photovoltaic output and the
output of traditional units.

5 Case study

5.1 Case description

This article relies onMATLAB/Simulink simulation software and
constructs a simulation system illustrated in Figure 5. The system
comprises a photovoltaic power plant with a rated power of 100 kW, a
synchronous generator set with a rated power of 200 kW (comprising
a synchronous generator, turbine, and speed control system), and a
load PL. The efficacy of the power reserve control, primary frequency
modulation, and variable power reserve ratio strategies proposed in
this article will be validated through three simulation scenarios.

5.2 Sudden load changes on a short-
term scale

The simulation scenario maintains the light intensity S at a
constant level of 1000 W/m2 and the temperature T at 25°C. The
initial power reserve ratio r0% is set to 10%. At the 8th second of

FIGURE 5
Structure diagram of simulation.
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system operation, the load PL undergoes a sudden increase of 8 kW.
Before this abrupt change, the steady-state frequency of the power
grid was 50 Hz. The simulation results are presented in Figure 6.

Figure 6 compares the simulation results of three control strategies
employed by the system in response to frequency reduction caused by a
sudden increase in load. From Figure 6A, it can be observed that when

the photovoltaic system does not engage in frequency regulation, the
lowest point of the grid frequency drop is 49.916 Hz, and the steady-
state frequency is 49.928 Hz.When the photovoltaic system participates
in frequency regulation and employs a fixed power reserve ratio, the
lowest point of the grid frequency drop is 49.924 Hz, and the steady-
state frequency is 49.953 Hz.When the photovoltaic system participates
in frequency regulation and adopts a variable power reserve ratio, the
lowest point of the grid frequency drop is 49.931 Hz, and the steady-
state frequency is 49.957 Hz. As shown in Figure 6B, when the
photovoltaic system does not partake in frequency regulation, its
output power remains nearly constant at the given power reserve
power, and the power stabilizes around 90 kW. When the
photovoltaic system engages in frequency modulation and adopts a
fixed power reserve ratio, due to the frequency decrease, the reference
power reserve ratio correspondingly decreases in the primary frequency
modulation stage, leading to an increase in photovoltaic output power,
which stabilizes around 94.5 kW. When the photovoltaic system
engages in frequency regulation and adopts a variable power reserve
ratio, the photovoltaic output power stabilizes around 95.1 kW.

Similarly, by maintaining the light intensity S at a constant level of
1000W/m2, keeping the temperature T at 25°C, and leaving the initial
power reserve ratio r0% unchanged at 10%, the system experiences a
sudden decrease of 8 kW in load PL at the 8th second of operation.
Prior to this sudden change, the steady-state frequency of the power
grid was 50 Hz. The simulation results are depicted in Figure 7.

Figure 7 compares the simulation results of three control strategies
implemented by the system in response to frequency increase caused
by a sudden reduction in load. As illustrated in Figure 7A, when the
photovoltaic system does not engage in frequency regulation, the
highest point of frequency increase in the power grid is 50.095 Hz,
and the steady-state frequency is 50.08 Hz. When the photovoltaic
system engages in frequency regulation and employs a fixed power

FIGURE 6
Simulation result chart for sudden increase in load.

FIGURE 7
Simulation result chart during sudden load reduction.

FIGURE 8
The variation curve of irradiance and load.
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reserve ratio, the highest point of frequency increase in the power grid
is 50.075 Hz, and the steady-state frequency is 50.51 Hz. When the
photovoltaic system engages in frequency regulation and adopts a
variable power reserve ratio, the highest point of frequency increase in
the power grid is 50.072 Hz, and the steady-state frequency is 50.48 Hz.
As shown in Figure 7B, when the photovoltaic system does not partake
in frequency regulation, its output power remains nearly constant at
the given power reserve power, and the power stabilizes around 90 kW.
When the photovoltaic system engages in frequency modulation and
employs a fixed power reserve ratio, due to the increase in frequency,
the reference power reserve ratio increases correspondingly in the
primary frequency modulation stage, resulting in a reduction in
photovoltaic output power that stabilizes around 85.7 kW. When
the photovoltaic system engages in frequency regulation and adopts
a variable power reserve ratio, the photovoltaic output power stabilizes
around 85.1 kW.

In summary, by implementing the primary frequency regulation
strategy proposed in this article, the system promptly adjusted its output
to engage in frequency regulation when confronted with frequency
changes resulting from sudden load variations. This adjustment
improved frequency fluctuations and laid the groundwork for
subsequent secondary frequency regulation, thereby validating the
feasibility of the proposed strategy in the short time scale.

5.3 Fluctuations in irradiance and load on a
long-term scale

In this scenario, the effectiveness of the variable power
reserve ratio strategy is tested by considering long-term
fluctuations in irradiance and load. Due to the memory
constraints of the simulation software, the total simulation
duration is limited to 60 s. For the first 10 s of the simulation,
light intensity, temperature, load, and synchronous machine
output are maintained at constant levels, allowing the system
to operate stably at the rated frequency of 50 Hz. Starting from
the 10th second, fluctuations in light intensity and load are
introduced for a total duration of 50 s. The planned output of
the synchronous machine is adjusted based on offline
experimental data, and the irradiance curve and load curve are
proportionally reduced according to actual measurement data
from the photovoltaic power station and the daily load curve
provided by the power grid company. The simulated time period
from 10 s to 60 s corresponds to a specific day from 8:00 to 16:
20 in real time. This time period is selected because only when the
photovoltaic output exceeds 20% of the rated power, primary
frequency regulation capability is required. During the rest of the
time periods, the system operates in Maximum Power Point
Tracking (MPPT) mode, and the photovoltaic output is higher
between 8:00 and 16:20, meeting the conditions for having
primary frequency regulation capability. The irradiance and
load fluctuations introduced in the simulation are illustrated
in Figure 8.

The simulation results are shown in Figure 9.
In Figure 9A, it is observed that in the scenario of long-term

load and irradiance fluctuations, the frequency response curves of
the photovoltaic system participating in frequency regulation
using fixed and variable power reserve ratio strategies almost
overlap. The maximum frequency deviation between the two
curves is only 0.008163 Hz. Therefore, it can be generally inferred
that the fixed power reserve ratio strategy does not significantly
compromise the primary frequency regulation performance of
the system when compared to traditional fixed power reserve
ratio strategies. Figure 9B illustrates the comparison of
photovoltaic power generation using different power reserve
strategies in the system. The simulation results statistics for
the two strategies are presented in Table 3. It can be observed
that the adoption of the variable power reserve ratio strategy has
led to an improvement in photovoltaic power generation
compared to the traditional strategy, with an increase of
approximately 4.26%.

In summary, the variable power reserve ratio strategy has
effectively achieved the intended objectives by enhancing the
utilization of light energy and improving the system’s overall

FIGURE 9
Simulation results on a long-term scale.

TABLE 3 Frequency and power Generation.

Strategy Highest point of
frequency (Hz)

Lowest point of
frequency (Hz)

Total photovoltaic power
generation (kW·h)

Fixed power reserve ratio 50.089 49.915 493.047

Variable power reserve
ratio

50.071 49.943 514.066
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economic efficiency without compromising its frequency
modulation performance.

6 Conclusion

This article introduces a primary frequency modulation strategy
that combines droop control and inertial control on a short time
scale. This approach enables the photovoltaic system to adjust its
output in response to real-time reference power reserve ratios,
effectively managing frequency changes caused by power
imbalances. Additionally, a variable power reserve ratio function
based on light intensity and load level has been proposed on a long-
term scale. Compared to traditional strategies, this strategy has
stronger primary frequency regulation capability and overall
photovoltaic power generation has also been improved. It
maximizes the use of clean energy, relieves the output pressure of
traditional units, and improves the economic benefits of long-term
operating scenarios.

Future research in this field could explore the impact of energy
storage and supercapacitors on short-term frequency modulation
effects. Additionally, efforts can be made to enhance and refine the
elements considered in the variable power reserve ratio function. This
may involve proposing clearer and quantifiable numerical indicators
to further determine the optimal real-time power reserve ratio.
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Amulti-objective spatio-temporal
pricing method for fast-charging
stations oriented to transformer
load balancing

LiangSong Guo, Ming Jin, Bin Jing, LeiLei Lv*, Min Guo, Hao Ding,
JiaBin Zhang and JianPing Wang

Hetian Power Supply Branch of State Grid Xinjiang Power Co., LTD, Hetian, China

To address the challenges posed by the fast-charging demand of electric
vehicles, causing feeder load and voltage imbalances during operation, this
paper introduces a spatio-temporal pricing strategy tailored to enhance
feeder operation equilibrium. This approach facilitates the spatio-temporal
guidance of fast-charging loads for electric vehicles in operation. This paper
begins by formulating a spatio-temporal distribution model for electric vehicle
fast-charging loads, considering owners’ preferences. It further develops a
behavioral model for the travel choices of electric vehicles, illustrating the
impact of spatio-temporal electricity pricing at fast-charging stations on load
distribution. Next, it proposes a multi-objective spatio-temporal pricing model
and its solution method specifically designed for feeder-balance-oriented fast-
charging stations. This model targets the minimization of the spatio-temporal
imbalance in feeder voltage and load. It takes a comprehensive approach,
considering the constraints of the spatio-temporal load distribution model
and optimal power flow model. The resulting spatio-temporal pricing model
for fast-charging stations is effectively solved using the extended Pareto
evolutionary algorithm. To validate the effectiveness of the proposed method
in achieving feeder balancing, this paper analyzes two examples: a self-built 29-
node road network and a 9-node distribution network, as well as a 66-node road
network and a 33-node distribution network in the Xinjiang region. The results
show that the proposed method can effectively guide the charging of electric
vehicles and make the load distribution more balanced.

KEYWORDS

electric vehicles, spatio-temporal pricing, load balancing, multi-objective optimization,
improved Strength Pareto Evolutionary Algorithm

1 Introduction

With the advancement of low-carbon economy construction, electric vehicles (EVs) are
rapidly replacing gasoline vehicles. According to the statistics of the Ministry of Industry
and Information Technology of China, the number of pure EVs in China has exceeded
1,310 units by the end of 2022 (The Central People’s Government of the People’s Republic
of China, 2023). Large-scale EV appear to the distribution network has become an inevitable
trend that can be predicted in the short term. The huge charging demand of EVs will lead to
a rapid and unbalanced growth of regional loads in a short period, which will have a
significant impact on the safe and economic operation of the distribution network (Chen
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et al., 2018; Lei et al., 2020; Mei et al., 2020). Under the uncontrolled
access of EVs, the distribution network often needs to carry out
super-redundant capacity expansion and reconstruction of some
distribution substations to ensure the peak charging demand of EVs.
However, due to urban road construction and other reasons, the
distribution of EV charging loads shows serious uneven
characteristics, which results in the inefficient phenomenon of
redundant construction of some stations and incomplete capacity
utilization of some stations (Liu et al., 2012; Cao et al., 2021; CUI
et al., 2021).

Therefore, the optimization of EV charging loads has become a
hot topic in the current distribution network research. Many studies
have obtained information such as the start and end time of
charging, state of charging, and expected power of EVs through
the statistical analysis of the historical travel pattern of EVs (Kang
et al., 2004; Yao et al., 2007; WANG et al., 2019). Then, the
adjustable boundaries of EVs were determined and used as
constraints to optimize the EV charging power (ChenPan and
Yu, 2019; Pan et al., 2019). These studies have considered only
the temporal tunability of EV charging loads and neglected their
spatial flexibility. In addition, these works require the EV dwell time
to be longer than the minimum charging time for charging to the
desired power level, which is more suitable for slow-charging
scenarios such as homes or commercial buildings. In fact, the
impact of EV charging loads on the distribution network comes
more from operating vehicles, which frequently have fast-charging
needs. Operational vehicles are usually expected to complete
charging in a short period, and their charging options are highly
autonomous, with large power impacts and little adjustable space.
However, due to its profitability, this type of vehicle usually
considers the charging price and geographical location when
choosing a charging station, which is highly flexible in both time
and space dimensions. Therefore, knowing how to rationally
consider the spatial location of fast-charging stations and the
temporal characteristics of grid loads to effectively set price and
realize the guidance of temporal and spatial flexibility of operating
vehicles is important to reduce the load imbalance phenomenon in
the transformer stations.

Among them, time flexibility has been discussed by the
engineering and academic communities for a long time. In
engineering, the current charging price composition of
mainstream service providers such as “Special Calls” and “XiaoJu
Charging” is composed of time-of-use electricity prices and service
fees, and the time guidance for EV access is realized through the
electricity price setting of three periods of peaks and valleys.
However, in the actual research, it is found that these service
providers have greater autonomy in setting the price and have
not been effectively regulated. The service charge depends on the
price of urban lots, which, to some extent, realizes the guidance of
EV spatial flexibility, but it fails to consider the load distribution of
the grid and may instead exacerbate phenomena such as the
imbalance of the transformer stations. In the academic
community, a wide range of scholars have discussed the
development of time-of-use charging price for various scenarios
(LI et al., 2022; WANG Jun et al., 2023; WANG Yifei et al., 2023). LI
et al. (2022) used time-of-use electricity prices to guide EV charging
in residential areas for a long time to reduce the peak-to-valley
difference. WANG Jun et al. (2023) took the carbon price into

account and designed the transfer response function of EV charging
load, to optimize the EV charging cost and the carbon emission cost
of power generation at the same time. On the other hand, WANG
Yifei et al. (2023) designed a game model for distribution network
operators and charging service aggregators to simplify the EV
charging selection process using virtual energy storage for time-
of-use price development. It can be seen that the above studies are
generally for EV charging loads with long access times, and the
simplified expression of the EV charging load transfer process as a
supply and demand function is only applicable to non-fast-charging
demand scenarios such as home-based charging piles.

Spatial flexibility has gradually become a hot topic of academic
discussion in recent years with the deepening of the coupling of the
transportation network and the power grid. The current research
can be further divided into two directions: marginal pricing (Li et al.,
2013; Liu et al., 2016; Xie et al., 2021) and integrated pricing. The
former uses the distribution locational marginal power price
(DLMP) as the basis price (Li et al., 2013), which solves the
distribution optimal power flow (DOPF) to determine the
constraint multipliers and serves as the shadow price to realize
spatial pricing (ALIZADEH et al., 2016; Wei et al., 2018). This
approach is a good representation of the marginal cost of node
charging when blockage occurs in the distribution network
(ALIZADEH et al., 2016). Furthermore, at the present stage
when the distribution network is operated in a radial shape and
the phenomenon of large-scale current reversal does not appear
widely, the blockage phenomenon of the distribution network can
usually be solved by the expansion and reconstruction project. At
this time, the method can only reflect the marginal network loss cost
brought by each node and cannot play a role in promoting regional
load balance. As for integrated pricing (Cai et al., 2022; XIE et al.,
2022), pricing is discussed to be achieved through an interactive and
iterative pricing approach of traffic and power simulation systems,
led by integrated grid demands such as peak–valley differentials and
economic dispatch. Unlike slow-charging scenarios for EVs in
households or commercial buildings, the charging behavior of
operating vehicles with fast-charging loads is influenced by a
combination of factors such as the current location of the EV,
charging station fees, EV user charging preferences, and road
congestion. Therefore, the prediction of the EV charging
behavior needs to be based on the coupling of distribution
network–road network–EVs (Shao et al., 2017). On the one
hand, the travel and charging behavior of EVs are influenced by
road traffic flow and charging costs. On the other hand, the travel
and charging behavior of EVs also have a reverse effect on changes in
road traffic flow and distribution network trends. Reasonable
guidance methods can improve the trend of road and
distribution grids (Li et al., 2023). Therefore, it is crucial to
accurately characterize EV travel behavior, predict changes in
road traffic flow, and propose reasonable guidance methods. In
existing studies, the elasticity matrix (Cai et al., 2022), static traffic
equilibrium model (XIE et al., 2022), and semi-dynamic traffic
equilibrium model have been used to portray the EV charging
load-shifting process under the guidance of price, achieve the
evaluation of price, and carry out iterative optimization. Most of
these studies still focus on simulating the interaction of non-
dynamic traffic flows in fixed scenarios, which, to some extent,
ignores the stochastic nature of EV traveling. In addition, these
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studies usually take the traditional distribution system as the object
of discussion, ignoring the active support capability of distributed
resources in distribution networks.

Therefore, in Section 2, this article first constructs a spatio-
temporal pricing framework based on the interaction process
between the transportation system and the power system. In
Section 3, the EV driving path and its fast-charging station
selection process are simulated dynamically by constructing a
spatio-temporal distribution model for fast-charging loads
considering the owner’s preference. Then, in Section 4, the
distribution optimal power flow model considering the energy
resource is introduced to realize the calculation of the voltage
and load ratio imbalance under the price-guided EV charging.
Furthermore, a fast-charging station pricing method oriented to
the load balance is further proposed to realize the spatio-temporal
power pricing and reduce the load ratio imbalance of transformer
stations. Specifically, it is based on the improved Strength Pareto
Evolutionary Algorithm (SPEA2) (Shao et al., 2017), which
accomplishes the interaction between the spatio-temporal
distribution model for fast-charging loads and the optimal power
flow model to realize the iterative search of spatio-temporal prices.
Finally, in Section 5, the validity and laudability of the proposed
methodology are verified on a self-built small-scale test case and a
real road network case in a region of Xinjiang.

2 A spatio-temporal pricing framework
for fast-charging stations

The spatio-temporal pricing problem for fast-charging stations,
which is essentially a power system optimization problem based on
dynamic traffic flow, can be decomposed into the power system
pricing optimization problem at the upper level and the traffic flow
solving problem considering the impact of electricity price at the
lower level, whose relationship is shown in Figure 1. At the lower
layer, the traffic flowmodel is introduced to portray the EV traveling
path cost. The subjectivity of EV traveling path selection is described
by the owner’s preference model, to incorporate the pricing strategy
into the traffic flow solving problem. Furthermore, the randomness
of EV traveling choice is ensured using the stochastic Monte Carlo
probability sampling method, and the shortest circuit method is
used to solve the traveling paths of the final EV monoliths, which

form the spatio-temporal fast-charging loads of EV in the day ahead.
In the upper layer, the distribution network operator relies on the
SPEA2 to generate the spatio-temporal pricing population to be sent
down to the lower layer of the problem. After obtaining the
corresponding charging loads, the optimal power flow is solved
by using the second-order conical planning, and the overall spatio-
temporal imbalance of the voltage and load for the transformer
station is then calculated. The price population is updated according
to the obtained results. The above process is repeated until
acceptable spatio-temporal price results are obtained.

3 The spatio-temporal distribution
model for fast-charging loads
considering EV owners’ preferences

To reflect the dynamic impact of different prices on the spatio-
temporal distribution of EV loads, the preference of vehicle owners for
road access time and price is modeled to simulate the driving behavior
choices of EV owners. Thus, it indirectly reacts to the influence of price
on road flow and power grid currents and assists in accomplishing the
spatio-temporal pricing for charging stations. The road network is a
typical graph structure, which can be represented as Gr(Vr, Er), where
Er is the set of road segments andVr is the set of road network nodes. In
addition, a road weight matrixD of size |Er| × |Er| is set to describe the
length of each road segment and the connection relationship between
nodes. When there is no road segment in road network nodes i, j,
D(i, j) takes the value of infinity. Otherwise, D(i, j) takes the value to
indicate the length of road segments i, j.

3.1 EV travel patterns and speed
modeling methods

In the urban road network, there are mainly two types of
vehicles: private vehicles and operating vehicles. First, to simulate
the traveling pattern and dynamic driving process of EVs, EV travel-
return probability distribution, EV destination dynamic selection,
and EV dynamic speed calculation models are constructed.

In terms of the probability distribution of EV travel-return trip,
according to the statistical fitting of the traveling pattern, the EV
driving traveling time approximately obeys the normal distribution,

FIGURE 1
Spatio-temporal pricing framework.
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and its return time approximately obeys the Cauchy distribution.
The corresponding distribution of the probability density function is
shown as Eqs (1)–(3):

ft1 t( ) � 1���
2π

√
*0.6

e−
t−8.75( )2
2*0.62 , 0≤ t≤ 24, (1)

ft2 t( ) � 1

0.75π 1 + 3 t − 17.2( )2[ ], t1 ≤ t≤ 24, (2)

ft3 t( ) � 1

0.25π 1 + 16 t − 22( )2[ ], t1 ≤ t≤ 24, (3)

where the demand for commuting trips by a private vehicle is
obtained from the probability distribution of t1, t2. The operation
start time and operation end time of the operating vehicle are
obtained from the probability distribution of t1, t3, respectively.
In addition, according to the 2011 Beijing Transportation
Development Annual Report, the fitting of data on the
commuting time of Beijing citizens on weekdays could
be obtained.

In addition, for the dynamic selection of EV destinations, it is
necessary to determine the origin–destination (O–D) of EVs at
different moments (Zhang et al., 2017). In fact, there are significant
functional differences between different areas of the urban road
network. According to the functional classification in the
government control plan, urban areas can be roughly divided
into three types: residential areas, work areas, and commercial
areas. Different EV traveling directions are closely related to the
functions of the areas. Private cars usually travel in the direction of
“residential area–work area” during commuting time. Operational
vehicles are more flexible as they usually undertake multiple
consecutive trips, but their choice of traveling area also has a
typical temporal distribution. In order to realize the simulation of
EV trips and charging loads of operating vehicles, it is necessary to
determine the function of the area to which the nodes belong.
Therefore, the residential area node set Vr,R, the work area node set
Vr,W, and the commercial area node set Vr,B are set. Specifically, the
operating vehicle needs to select the next destination according to
the passenger demand after the execution of the O–D pair. To reflect
the time distribution characteristics of regional function selection
and the randomness of passenger selection, the weight wi,t of node i
being selected as the new destination at moment t is described as the
sum of the discrete probability values of node function attributes and
white noise. Then, the probability Pi,t of node i being selected
according to the obtained weight is calculated, as shown in
Eqs (4)–(9).

wi,t � fEr,R t( ) +Wi,t, i ∈ Er,R, (4)
wi,t � fEr,W t( ) +Wi,t, i ∈ Er,W, (5)
wi,t � fEr,B t( ) +Wi,t, i ∈ Er,B, (6)

fEr,B t( ) + fEr,W t( ) + fEr,B t( ) � 1, (7)
0≤Wi,t ≤ 1, (8)

Pi,t � wi,t∑
i∈Vr,R

wi,t + ∑
i∈Vr,W

wi,t + ∑
i∈Vr,B

wi,t
, (9)

where fEr,R(t), fEr,W(t), a fEr,B(t) represent the discrete probabilities
of nodes with different functional attributes, and their sum is 1.Wi,t

is the white noise with values from 0 to 1, which represents the
randomness of node i being selected. Pi,t is the probability that node

i is selected as the new starting point, which is equal to the ratio of
the selected weight of node i to the total weight of all nodes.

After specifying the EV travel options, the speed of road network
traveling also needs to be considered to dynamically simulate the EV
travel. The EV traveling speed is affected by the road class and traffic
volume of the road section, which can be portrayed using the speed-
flow utility model (Shao et al., 2017) as follows:

vij t( ) � vij,m/ 1 + qij t( )/Cij( )( β), (10)
β � a + b qij t( )/Cij( )n, (11)

where vij,m represents the zero flow velocity of the EV in the directly
connected road section (i, j); Cij represents the traffic capacity of
road section (i, j), which depends on the road grade; qij(t)
represents the traffic rate of road section (i, j) at time t; the ratio
of qij(t) toCij represents the saturation of road section at time t; and
a、b、n represent the adaptive coefficients at different road grades.

3.2 EV owner path selection
preference model

The path selection of operational EVs is usually affected by
several aspects, which can be divided into the following: 1) when the
power is sufficient, the path communication time is usually the most
concerned factor for operational vehicles; 2) when the power is
insufficient, the vehicle owner needs to recharge the vehicle as
quickly as possible to continue the operation at the lowest
possible price, in which case the access time and the cost of
recharging together become the most important factors affecting
their decision.

It can be seen that for the simulation of operating vehicle path
selection, the influencing factors can be summarized into two
aspects: path travel time and charging cost. The path traveling
time is decomposed into the traveling time of the multiple road
sections passed through, which, in turn, depends on the length of the
road sections and the traveling speed of the road sections. The length
of the road section is characterized by D(i, j), and the road section
traveling speed can be calculated by (4). Therefore, the road section
passage delay matrix Tt can be formed at any moment t, and the
passage time of its road section (i, j) is calculated as follows:

Tt i, j( ) � D i, j( )/vij t( ). (12)

For each fully charged EV owner, the route selection is
dynamically adjusted at each moment according to the real-time
traffic flow and roadway passing time. At this point, the O–D pair
and delay matrix Tt are known to any EV owner. Therefore, EV
traffic path selection can be abstracted into the global shortest path
problem of the weighted graph Gr(Vr, Er,Tt), and its travel time
Ct(OEV,t, DEV,t) is characterized as follows:

Ct Ot, Dt( ) � min
xt i,j( ) ∑i ∑j Tt i, j( ) × xt i, j( ), (13)

where OEV,t represents the starting point of the EV owner at time t
(or the end point of the road section if it is in the road section);DEV,t

represents the end point of the EV owner at time t; and xEV,t(i, j)
represents the path selection of the EV owner at time t, which is the
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0–1 variable, and when the car owner selects the road section from i
to j, its value is 1; otherwise, it is 0. At the same time, the path
selection of the owner’s EV needs to satisfy the following constraints:

∑
i

xt i, j( )≤ 1,∀j ∈ Vr, (14)

∑
j

xt i, j( )≤ 1,∀i ∈ Vr, (15)

∑
i

xt i, j( ) −∑
k

xt j, k( ) � 0,∀j ∈
Vr

Ot, Dt{ }, (16)

∑
j

xt Ot, j( ) � 1, (17)

∑
i

xt i, Dt( ) � 1, (18)

where Eqs 14–15 indicate the radial constraint of the path; i.e., any
node can only be used as a starting and ending point once. Equation
16 indicates the connectivity of the intermediate segment selection
of a non-starting node. Equations 17–18 indicate that the starting
node must be passed once as the starting and ending points.

Notably, this problem belongs to the integer programming
problem, which will be difficult to solve under larger road
networks. Therefore, Dijkstra’s algorithm, which is widely used in
graph theory (Zhang et al., 2017), is used here to solve it, and the
path selection with sufficient power can be obtained.

As for EVs with charging needs, they need to target several
nearby fast-charging stations for destination selection. In this case,
the EV’s path selection needs to solve the globally shortest path
problem for several O–D pairs and calculate its traveling time and
charging cost. An example of a fast-charging station c located at
node Dc is illustrated.

First, according to Eqs 13–18, the traveling time Ct(Ot, Dc) can
be calculated as follows:

Ct Ot, Dc( ) � min
xt i,j( ) ∑i ∑j Tt i, j( ) × xt i, j( )

s.t. 14( ) − 18( )
⎧⎪⎨⎪⎩ . (19)

Based on the results obtained, the cost of its charging is further
calculated as follows:

Cp Ot,Dc( ) � ∑tc,max

tc�ta,c
ρDc,tc

× Etc, (20)

ta,c � t + ⌈Ct Ot, Dc( )⌉, (21)

tc,max � ⌈Eexp ,c

Ac
⌉, (22)

Eexp ,c � lSOC,pre − lSOC,c( ) × Emax, (23)
lSOC,c � lSOC,t − Ct Ot, Dc( ) × Eper

Emax
, (24)

Etc � Eexp ,c − Ac × tmax − 1( ), if tc � tmax

Ac ×Δt, else{ , (25)

where Cp(Ot,Dc) represents the charging cost of the EV at the fast-
charging station c; tc is the charging time at the fast-charging station
c at this time; and ρDc,tc

, Etc represent the charging price at the node
and the charging power of EV at time tc, respectively. ta,c is the time
when the EV arrives at the fast-charging station c; tc,max is the
charging end time at the fast-charging station c; Eexp ,c is the expected

charging power of the EV after it reaches c; Ac is the charging power
per unit time of the fast-charging station c; lSOC,pre, lSOC,c are the
expected state of charge of the EV and the state of charge when it
reaches c, respectively; lSOC,t is the state of charge of the EV at time t;
Emax is the EV capacity; Eper is the power consumption per unit time
of EV driving; Δt is the simulation time interval; and �•� is an
upward rounding operation.

Considering the different sensitivities of different EV owners to
time and electricity price, this paper sets the distance loss weight ω1

and charging electricity price weight ω2 to measure the willingness
of different EV owners in charging station selection. At this time, the
fast-charging station choices of each EV owner are as follows:

D*
c � argmin

c
ω1Ct Ot, Dc( ) + ω2Cp Ot, Dc( ) c ∈ C|{ }, (26)

where C represents the set of fast-charging stations to be selected;D*
c

is the node where the selected fast-charging station is located.

3.3 Simulation of the spatio-temporal
distribution of fast-charging loads based on
the Monte Carlo method

After completing the construction of the relevant model for the
dynamic simulation of EV travel, the stochastic simulation of the
electricity price’s guidance on the spatio-temporal distribution of
regional fast-charging loads is realized based on the Monte Carlo
method, the steps of which can be summarized as follows:

Step 1: The time is initialized to 0, and each EV is assigned an
initial location Oi, an initial travel-return time t1, t2, t3, an
initial state of charge lSOC,t, a spatio-temporal price, and
other relevant parameters based on the type of car using
random sampling.

Step 2: The state of each EV is iterated at time t, and O–D pairs
are formed according to the EV type. For the private car, it
has a fixed O–D pair and only needs to determine whether
its time is t1, t2 to be clear; for the operating car, on the
basis of the private car, it also needs to determine whether
it completes the current order trip, i.e., whether it arrives at
the end point of the current O–D pair, and if it does, then
the current node is taken as the starting point, and
according to the results obtained from (9), random
sampling generates the destination of its trip in order
to update the O–D pairs.

Step 3: If the O–D pair of the EV is confirmed, its path selection is
dynamically updated at the moment t. Equations 13–18
and 19–26 are solved to develop optimal traveling paths
for different EVs with sufficient power and charging
demand for EVs, respectively.

Step 4: At the same time, we iterate over all EVs and combine the
velocity-flow model (10–11) to calculate and update the
state of each EV at moment t.

Step 5: We determine whether the moment t reaches the
simulation maximum moment. If not, we update t =
t+1 and re-enter Step 2; if yes, we end the computation
and output the driving behavior of each EV at the
simulation moment, as well as output the spatio-
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temporal distribution of fast-charging loads according to
each fast-charging station accessing the distribution
network node.

4 The spatio-temporal pricing model of
fast-charging stations for load balance

4.1 Spatio-temporal pricing model
construction

Large-scale demand for fast-charging loads will exacerbate the
degree of load imbalance among transformer stations and
consequently bring about serious redundancy in grid investment
and construction. Distribution network operators should endeavor
to set reasonable spatio-temporal price for fast-charging stations to
effectively guide the orderly access of fast-charging loads by
stimulating vehicle owners’ preferences. The necessity of spatio-
temporal guidance is illustrated in the previous section. In a single
time section under the effect of time-guided signaling such as time-
of-day price, the load balance of each station is difficult to be taken
into account. The charging price is generally determined by
combining the time-of-use electricity price and charging service
fee, which is determined by the location of the charging station. To a
certain extent, it is possible to guide the selection of charging sites for
EVs, but in the pricing mechanism of spatial service fees, time is
directly decoupled, and insufficient consideration is given to the
short-term impact of distribution system loads. Therefore, the article
simultaneously calculates the price from two perspectives, time and
space, to achieve balanced operation of transformer stations in the
spatio-temporal dimension.

The power distribution system can be represented as a strong
connection graph G � N ,L{ }, where N is the set of nodes of the
distribution system and L ⊆ N × N is the branch (i, j) between the
two nodes. In fact, the spatio-temporal price will affect the spatio-
temporal distribution of the load, which is reflected in the spatio-
temporal voltage balance fV and the spatio-temporal load balance
fP, which can be expressed as shown in the following equation:

fV �
∑H
t�1
∑
i∈N

Vi,t − ~V( )2( )
H × N∣∣∣∣ ∣∣∣∣( ) , (27)

fP � ∑H
t�1
∑

i∈N /S
Pi,t

∣∣∣∣ ∣∣∣∣ − ~P( )2/H × N∣∣∣∣ ∣∣∣∣ − S| |( )⎛⎝ ⎞⎠, (28)

~V �
∑H
t�1
∑
i∈N

Vi,t( )
H × N∣∣∣∣ ∣∣∣∣( ) , (29)

~P �
∑H
t�1
∑
i∈NS

Pi,t

∣∣∣∣ ∣∣∣∣⎛⎝ ⎞⎠
H × N∣∣∣∣ ∣∣∣∣ − S| |( )( ), (30)

where H represents the number of scheduling intervals; Pi,t and Vi,t

are the injection power and the voltage of node i at time t,
respectively, where Pi,t is a positive number that represents the
node as a load node, and a negative number represents a power
generation node; and S represents the power supply node of the

upper power grid, and it is mostly a radial network in the
distribution system, so |S| � 1. In addition, considering that the
upper power supply node bears the load demand of the whole area,
the power supply node is ignored when calculating the imbalance of
the station area. For the possible bidirectional power flow problem,
the absolute value |Pi,t| is used to analyze the calculation process,
and ~V and ~P represent the average absolute values of all node
voltages and node power during the scheduling time, respectively.

In fact, the spatio-temporal tariff will affect the load spatio-
temporal distribution. Representing the spatio-temporal tariff vector
by a matrix ρ � [ρi,t] of size |N | × H, the spatio-temporal
distribution of fast-charging loads will be obtained by the
stochastic simulation of the model developed in Section 3, and
then, Pi,t can be expressed as a function of the tariff and stochastic
parameters.

Pi,t � Pi,t ρ, γ( ) � M ρ, γ( ) + Pi,t,Base ρ( ), γ ∈ Γ. (31)

In the formula, the parameters determined by random sampling,
such as the starting point of EVs in the charging load distribution
model, are defined as vector γ; Γ represents the distribution space of
random parameter γ; M(ρ, γ) represents the spatio-temporal
distribution of the fast-charging load under electricity price ρ and
random parameter γ (a simplified expression of the Monte Carlo
calculation in Section 3); and Pi,t,Base(ρ) is used for the basic node
load of a non-EV. In fact, the distribution of the spatio-temporal
price at the nodes also affects the load of the customers, but this is
not the focus of the discussion here, so this part is treated as a
constant only.

The spatio-temporal tariff affects the loads and then changes the
current distribution, causing a change in the voltage spatio-temporal
distribution. Among them, considering the economic requirements
of the distribution system operation, the node voltage is formulated
to rely on the DOPF calculation. The DistFlow model (DIJKSTRA,
1959), which is the most widely used model in distribution systems,
is used here, and based on the second-order cone to achieve
convexity, the DOPF can be expressed as follows as the solution
to the following optimization problem:

l, p, q,U � argmin∑H
t�1

∑
i,j( )∈L

rijlij,t

s.t. 33( ) − 40( )

⎧⎪⎪⎨⎪⎪⎩ , (32)

∑
k: j,k( )∈L

pjk,t � ∑
i: i,j( )∈L

pij,t − rijlij,t − Pj,t( ), (33)

∑
k: j,k( )∈L

qjk,t � ∑
i: i,j( )∈L

qij,t − xijlij,t − Qj,t( ), (34)

Uj,t � Ui,t − 2 rijpij,t + xijqij,t( ), (35)
Ui,t � Uref , i ∈ S, (36)
p2
ij,t + q2ij,t ≤Ui,tlij,t, (37)

Ui,min ≤Ui,t ≤Ui,max, (38)
pij,min ≤pij,t ≤pij,max, (39)
qij,min ≤ qij,t ≤ qij,max, (40)

where pij,t and qij,t represent the active power and reactive power of
the branches between nodes i and j at time t, respectively; rij and xij

are defined as resistance and reactance of branch ij ; Pj,t, Qj,t, Uj,t,

Frontiers in Energy Research frontiersin.org06

Guo et al. 10.3389/fenrg.2024.1362343

253

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1362343


and lij,t are defined as the active power, reactive power, voltage of
node j and the square of the current of branch ij at time t,
respectively; Uref represents the square of the reference voltage at
the upper grid access point, and the reference voltage is set to 1.05 in
this paper; Ui,min and Ui,max represent the upper and lower bounds
of the square of the voltage of node i, respectively; and Pij,min,
Pij,max, Qij,min, and Qij,max represent the active and reactive power
boundaries of the branch ij. l, p, q,U are the vector expressions of
related variables.

Combining Eqs 27–32, the optimization problem for the spatio-
temporal price can be formulated as the solution process of the
following equation:

min
ρ,l,p,q,U

fV, fP[ ]
s.t. 27( ) − 32( ) . (41)

4.2 Spatio-temporal pricing model solution

Notably, Eq. 31 couples the EV travel simulation model in
Section 3, possessing stochasticity and non-linearity. There are
many recent studies that have thoroughly discussed the EV travel
simulation model and tried to equate it to a mathematical planning
model. However, due to its nature being the same as the traveler
problem, which belongs to the same NP-hard problem, the
computational efficiency of these studies cannot be effectively
guaranteed when the network size becomes larger. Therefore, in
order to obtain an acceptable suboptimal solution in an efficient
time, this article still uses a heuristic algorithm in conjunction with
the simulation model in Section 3.

At the same time, considering that the voltage balance is not
equivalent to the balance of loads, problem 41 cannot be simply
transformed into a single-objective problem to be solved. Therefore,
the classical multi-objective optimization algorithm SPEA2 is
chosen here to solve the problem iteratively. The solution process
is shown below (mainly for the determination of the day-ahead
spatio-temporal price).

Step 1: The road network information and topology information
of the power system of the regional transportation system
before the day is imported, and the spatio-temporal
electricity price population before the day is initialized.

Step 2: This step involves entering the traffic system simulation
link. The start and end points and state of charge of EVs
are randomly generated according to the probability, and
the spatio-temporal electricity price information in the
population is imported into the spatio-temporal
distribution simulation model of EV load considering
the preference of vehicle owners so as to obtain the
nodal load distribution under the current spatio-
temporal electricity price.

Step 3: This step involves entering the optimal power flow
solution of the power system. The nodal load
corresponding to each spatio-temporal electricity price
in the current population is taken as the input of DOPF in
Eq. 32, and the power flow distribution of each electricity
price is calculated separately.

Step 4: This step involves entering the calculation of the
imbalance in the station area. Based on the power flow
results of each spatio-temporal price, Eqs 27–30 are used
to obtain the voltage balance degree and the spatio-
temporal load balance degree under each electricity price.

Step 5: The Pareto surface is updated according to the obtained
results, and it is determined whether the maximum
number of iterations has been reached. If so, the
spatio-temporal electricity price with the smallest sum
of the two targets in the current Pareto surface is selected
as the output, and if not, the SPEA2 will update the
population and enter a new iteration, repeating
Step 2–Step 5.

It should be noted that the solution of the proposed framework
can be based on similar multi-objective heuristic optimization
algorithms, and only SPEA2, which performs consistently in the
example, is chosen for the analysis.

5 Case studies

5.1 Experimental environment

All the algorithms in this article were written in Python 3.9 on a
personal computer with a CPU configuration of Intel® Core (TM) i7-
10700F CPU@ 2.90 GHz and 16 GB of RAM and were simulated
using the Spyder compilation platform. The mathematical
optimization problems involved in the algorithms are all solved
based on the Gurobi 9.5.2 solver.

5.2 Case settings

To verify the effectiveness of the proposed fast-charging station
spatio-temporal price on the load and voltage balance aspects of the
station, simulation cases are set up as follows:

Case 1: Based on the proposed method and DLMP method, the
spatio-temporal pricing results of fast-charging stations are
calculated in the self-built 9-node distribution power network
and 29-node road network, and the total load, load voltage
distribution, and electricity price distribution are compared
and analyzed.
Case 2: Based on the proposed method and DLMP method, the
spatio-temporal pricing results of fast-charging stations are
calculated in the self-built 33-node distribution network and
the real 66-node road network system in a certain region of
Xinjiang, and the total load, load voltage distribution, and
electricity price distribution are compared and analyzed.

5.3 Case analysis

5.3.1 Analysis results in case 1
Case 1 compares the proposed pricing algorithmwith the DLMP

algorithm. It consists of a 29 node road network and a 9 node power
network, as shown in Figure 2. The area type of each road node is
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shown in Table 1. Road nodes 5, 14, and 28 are equipped with fast-
charging stations, which are connected to nodes 2, 6, and 8 of the
power network, respectively.

Considering the power purchase cost of the grid-connected
nodes considered in the DLMP follows the setting of the time-of-
use (TOU) tariff of the upper grid, TOU prices are set here as shown
in Table 2.

5.3.1.1 Comparative analysis of EV with different charging
preferences for case 1

To verify the different sensitivities of different EV users to
charging costs and time costs, which lead to changes in the road
network traffic flow, we now simulate the changes in the traffic
flow under different charging strategies for two types of charging
users. Two roads near the charging station in the commercial area
are randomly selected for display. Assuming that all charging
users are time-sensitive, the changes in the road traffic flow are
shown in Figure 3A. Assuming that all charging users are price-
sensitive, the changes in the road traffic flow are shown in
Figure 3B. Comparing the difference in the traffic flow
between the two charging strategies, it can be seen that
compared to price-sensitive users, time-sensitive users have a
significant reduction in their traffic flow curves. During the
period from 17:00 to 20:00, there is a significant peak in the
traffic flow. For time-sensitive charging users, they will choose to
avoid this section of the road and choose charging stations that
are far away but require less time for charging, resulting in a
reduction in the traffic flow on that road.

5.3.1.2 Comparative analysis of the total distribution
network load for case 1

The total loads of the proposed method with DLMP and
uncontrolled charging are demonstrated in Figure 4. It can be
seen that both tariff setting methods have limited effects on peak
shaving and valley filling of the fast-charging load for EVs. The
reason is that the distance between different fast-charging stations
on the mini road network is small, and EVs with fast-charging needs
do not have a huge difference in access time when choosing different
fast-charging stations, so their overall time-adjustable margin
is small.

5.3.1.3 Comparative analysis of load and voltage
distribution in the distribution network of case 1

The load distribution of each node of the DLMP algorithm and
themethod proposed in this paper is calculated as shown in Figure 5.
It can be seen that, compared with the DLMP method, the method
proposed in this paper can reduce the heavy-load problem at end
node 8 to a certain extent and transfer the fast-charging load of EVs
to node 6, which has a lower load, so as to achieve a certain degree of
balancing the uneven spatial distribution of the load of
the power grid.

In terms of voltage, the voltage distribution at each node of the
DLMP algorithm and the proposed method is shown in Figure 6. It
can be seen that the proposed method is slightly better than the
DLMP method in improving the voltage at the end node (node 8)
and the overall voltage spatio-temporal average. However, due to the
small topology of the distribution network in case 1, the overall
solution space is limited, and there is no significant difference in the
voltage distribution under the two methods, and the advantage of
the proposed method is not reflected. In fact, this advantage will be
exploited on a larger-scale network, which is also proven by the
subsequent analyses in case 2.

Furthermore, end nodes 6–8 of the network during the peak
load hours 7:30–15:00 are selected to be analyzed to compare the
voltage distribution of the proposed spatio-temporal tariff
method with the DLMP, and the results are shown in
Figure 7. It can be seen that although voltage security can be
ensured under both methods, the proposed method enhances the
voltage magnitude when the load is heaviest and is able to
attenuate the voltage fluctuation over a short period of time.
This shows the effectiveness of the proposed method in the
spatial balancing of voltage in the station area.

5.3.1.4 Comparative analysis of the spatio-temporal price in
the distribution network for case 1

The finalized prices of cases 1 and 2 are displayed in the form of
heat maps, as shown in Figures 8, 9. As shown in Figure 8, the
proposed method can effectively achieve differential pricing in terms
of spatio-temporal pricing. In terms of time, the pricing during the
peak load period is generally higher than the tariff performance
during the load valley period. In terms of space, there is a significant

FIGURE 2
Test case 1: 9-node distribution network topology and 29-node road network.
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difference in the price of electricity at different fast-charging stations
within the same time period. Combined with Figure 5 and its
analysis results, it can be seen that the spatio-temporal pricing
results of the proposed method have a significant positive
correlation with the spatial loads, and the results obtained by the
proposed method can effectively realize the guidance of EVs.

Specifically, the load of fast-charging station 1 located at node
2 is generally lower, and its tariff results are significantly lower
than those of fast-charging stations located at nodes 6 and 8. In
addition, the tariff of node 5, where a new energy generator set is
deployed, is significantly lower than that of the other nodes. This
suggests that the proposed pricing methodology, in the medium-to-
long-term application, can guide the siting of new fast-charging
stations toward the nodes with new energy generating sets to a
certain extent.

In contrast, the pricing of DLMP shown in Figure 9 relies on the
time-of-day pricing setting for temporal flexibility, while the spatial
aspect is largely ineffective. In fact, the DLMP algorithm is
composed of a marginal power purchase cost and a network loss
cost when there is no network congestion. Of these, the network loss
cost is usually small. Therefore, in the absence of network
congestion, there is usually no significant difference in the spatial
pricing differences of the DLMP. On the other hand, in time, the
DLMP relies on time-of-day tariff settings (the marginal cost of
purchasing and selling electricity from the upper grid). Specifically,
time-of-day pricing is usually set based on the trend of the unified
load, which makes it difficult to provide good peak shaving and
valley filling in local distribution network areas. As a result, the price
obtained by the DLMP has a significant gap in spatial and temporal
guidance compared to the proposed methodology and is difficult to
be used to guide the work of balancing in the station area.

FIGURE 3
Traffic flow for different charging users. (A) Traffic flow for time-sensitive users. (B) Traffic flow for time price users.

TABLE 2 Peak, normal, and valley tariff settings.

$/kWh Time period

Peak tariff: 1.4 10:00–12:00、14:00–19:00

Normal tariff: 1.0 8:00–10:00、12:00–14:00、19:00–24:00

Valley tariff: 0.68 0:00–8:00

TABLE 1 Area type of each road network node in the self-constructed
example.

Area type Road node

Residential area 1、2、3、4、5、6、7、8、9、10、11、22、23、24

Commercial area 12、13、14、15、16、21、25、26、27、28、29

Work area 17、18、19、20
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5.3.2 Analysis results in case 2
In order to verify the scalability and applicability of the

proposed method in the actual system, a larger scale of the
arithmetic example is selected for verification. In this case, the
traffic road network is modeled according to the 66-node actual
road network in a region of Xinjiang shown in Figure 10 and
associated with the IEEE 33-node network, as shown in Figure 11.
Among them, the whole system is set up with eight fast-charging
stations, whose road network and power grid locations are detailed
in Figure 11.

5.3.2.1 Comparative analysis of the total distribution
network load in case 2

The results of the total load of the distribution network under
different pricing methods are shown in Figure 12. The results show
that the proposed spatio-temporal tariff method is significantly
better than the DLMP pricing method in smoothing out the
peak-to-valley difference of the total load in a larger-scale system.

The spatio-temporal tariff developed using the proposed
methodology enables the steering of EV charging loads in terms
of timing flexibility and effectively shifts the loads from peak
distribution network loads to off-peak hours.

5.3.2.2 Comparative analysis of load and voltage
distribution in the distribution network in case 2

As shown in Figure 13, the load profile of each node of the
distribution network is analyzed. It can be found that compared to
the original DLMP algorithm, the proposed method cuts the three
load spikes present in the most heavily loaded grid node into one
and allocates the load to another charging station with a lighter load,
while there is a time lag in this part of the shifted load due to the fact
that the charging station chosen by the EV after responding to the
spatio-temporal tariff will be farther away from the charging station
than the charging station chosen in case of non-response. This again
explains the source of the temporal flexibility of the fast-
charging load.

FIGURE 5
Load distribution in distribution networks under different pricing methods (case 1). (A) Load distribution in distribution networks under the DLMP. (B)
Load distribution in distribution networks under the proposed method.

FIGURE 4
Total distribution network load under different methods (case 1).
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Furthermore, the nodal voltage distribution on the trunk
lines (nodes 0–17) in the distribution network is calculated,
and the results are shown in Figure 14. As in the case of
experiment 1, the voltage drops and is more pronounced in
experiment 2 during peak loads. Compared with the notable
voltage drop at the end nodes (nodes 15–17) in the DLMP
algorithm, the proposed method is still able to effectively

reduce the degree of low voltage at peak load, which fully reflects
the ability of the proposed method to guarantee the voltage support.

5.3.2.3 Comparative analysis of the road traffic flow of
case 2

Figures 15A, B illustrates the traffic flow on selected roads,
comparing the outcomes between the DLMP and the proposed

FIGURE 7
Voltage distribution at end nodes under different pricing methods (case 1, 7:30–15:00). (A) Voltage distribution at end nodes under the DLMP. (B)
Voltage distribution at end nodes under the proposed methodology.

FIGURE 6
Distribution network voltage distribution under different pricing methods (case 1). (A) Distribution network voltage distribution under the DLMP. (B)
Distribution network voltage distribution under the proposed method.
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method. Notably, these selected roads represent the highest
traffic volumes in the Case 2. It can be seen that during the
peak electricity consumption period, road 150 presents a peak,

and road 150 happens to be the road leading to fast-charging
station 3. The power grid node connected to fast-charging
station 3 is node 20, and the branch node where node 20 is
located has fewer branch nodes, resulting in lower energy supply
demand. By guiding EVs to charge toward fast-charging station
3, the power supply pressure of other branches can be reduced,
thereby increasing the voltage at the end nodes of other branches
in order to achieve the goal of balancing the voltage in the
substation area. Therefore, the spatio-temporal electricity
pricing method proposed in this article can effectively balance
the substation voltage of the power grid by guiding the selection
of charging stations for EVs.

5.3.3 Results of station balance analyses for cases
1 and 2

To further quantitatively compare the effectiveness of the
proposed method and DLMP in terms of a station balancing
degree, the node power and voltage variance under experiments
1 and 2 are calculated according to Eqs 27–28, as shown in Table 3.
The results show that the proposed methods all achieve effective
improvement in the balance degree, and the improvement effect is

FIGURE 10
Map display of a region in Xinjiang.

FIGURE 9
DLMP pricing results (case 1).

FIGURE 8
Spatio-temporal pricing results of the proposed method (case 1).
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more notable on larger-scale arithmetic cases. In summary, the
spatio-temporal pricing approach described in this paper well takes
into account the spatial sensitivity of fast-charging loads, effectively
optimizes the peak-to-valley difference of the grid by guiding the
selection of EV charging stations, attenuates the problem of notable
voltage reduction at the end grid nodes during the peak loads, and
effectively brings into play the voltage-supporting capability of fast-
charging EVs.

Furthermore, a comprehensive comparison of different
algorithms, including SPEA2, NSGA-II (Deb et al., 2002),

R-NSGA-II (Kalyanmoy and Sundar, 2006), U-NSGA-III (Seada
and Deb, 2016), and AGE-MOEA (Panichella, 2019), is performed
using case 1 as the target. Specifically, we chose as the optimal
outcome the individual with the largest average value of each
objective on the Pareto surface. As shown in Table 4, the
SPEA2 outperforms the other algorithms and shows its
superiority in our problem setting.

It is crucial to highlight that, while SPEA2 exhibited better
performance, the differences in the results’ order of magnitude
among algorithms were not substantial. This underscores

FIGURE 11
Test case 2: 33-node distribution network and 66-node road network.
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FIGURE 12
Total distribution network load under different methods (case 2).

FIGURE 13
Load distribution in distribution networks under different pricingmethods (case 2). (A) Load distribution in distribution networks under the DLMP. (B)
Load distribution in distribution networks under the proposed method.

FIGURE 14
Trunk node voltage distribution under different pricingmethods (case 2). (A) Trunk node voltage distribution under the DLMP. (B) Trunk node voltage
distribution under the proposed methodology.
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FIGURE 15
Traffic flow under different pricing methods (case 2). (A) Traffic flow under the DLMP. (B) Traffic flow under the proposed methodology.

TABLE 3 Nodal voltage and power variance under the proposed method with the DLMP.

Method Power variance (kW2) Voltage variance (kV2)

Case 1 DLMP 28,519,544 0.0467,442

Proposed method 26,673,724 0.0383,601

Case 2 DLMP 69,799,988 0.058982

Proposed method 62,459,511 0.046803
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our work does not hinge on the intricacies of complex
algorithms.

6 Conclusion

In this paper, a fast-charging pricing strategy considering load
spatio-temporal equilibrium and elastic response is proposed, and
the conclusions obtained are as follows:

(1) A spatio-temporal distribution model of EV fast-charging
load considering the vehicle owner’s preference is designed.
The EV travel law and speed modeling method and EV owner
path selection preference model are constructed to form a
mapping of the dynamic impact of electricity price on EV
charging loads.

(2) A multi-objective spatio-temporal pricing model for fast-
charging stations oriented toward station balancing is
proposed. The two objectives of voltage balance and
load balance are considered comprehensively, and the
impact of price on the dynamics of EV charging loads is
mapped in the form of constraints so that the obtained
tariff results have a guiding effect on EV fast-
charging loads.

(3) An enhanced Pareto evolutionary algorithm is used to solve
the model efficiently, and the results show that the proposed
method has stronger spatio-temporal guidance compared to
the DLMP pricing method and is more effective when applied
to large-scale systems.

However, it should be noted that the larger the system scale, the
longer the simulation time of the spatio-temporal distribution
model of the fast-charging load of EVs, and the cost of solving will
increase. Therefore, how to simplify the fast-charging load
distribution model and realize the fast calculation of large-scale
applications in the future is an important extension of this research
in the future. Indeed, we hold the conviction that adopting a data-
driven approach serves as a crucial method to strike a balance
between the accuracy and speed of traffic flow simulation. This
represents one of our key priorities moving forward.
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The intermittence and unpredictability of large-scale renewable integration
poses significant challenges to the operation of the electricity market. New
paradigms of the joint electricity spot market (EM) and ancillary service market
(ASM) incorporating frequency regulation (FR) and flexible ramping product (FRP)
are considered as potential solutions, addressing the challenge of limited
compatibility in the electricity market with the widespread integration of
renewable sources. This work focuses on three critical technical obstacles:
optimizing the joint market mechanisms, constructing bidding models, and
exploring algorithmic solutions. This paper presents a brief review of recent
research on bidding mechanisms, models, and strategies for the electricity joint
market with high-penetration renewable integration. Furthermore, challenges
and future research prospects of these issues are also discussed.

KEYWORDS

renewable sources, spot market, ancillary service market, market mechanisms,
bidding model

1 Introduction

Global climate change problem has become increasingly serious in recent years, and
reducing greenhouse gas emissions is one of the main challenges facing the industry.
Burning fossil fuels at thermal power plants play a significant role in greenhouse emissions,
accounting for over 60% of the European Union’s total emissions (Andersson and
Börjesson, 2021). Therefore, decarbonizing power sector, i.e., promoting wide-scale
penetration of renewable generation to replace thermal generators, has drawn
considerable attention from academia and industry (Bistline and Blanford, 2021).
Nevertheless, the uncertainty and intermittence of renewable generations also threaten
the security of power grid operation.

Facing these new challenges, the electricity market is considered the macro-level
approach to achieving power system operation security, economic efficiency, and
environmental friendliness. In order to accommodate the vast amount of renewable
generation resources, the emerging features of the worldwide electricity market can be
summarized as follows: (1) High penetration distributed resources such as photovoltaics
and wind power are more inclined to generate and participate in the electricity market as
stakeholders. (2) The demand for balancing products in the ancillary service market (ASM)
has increased due to the necessity of hedging uncertainties caused by high penetrations of
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renewable generations (Nelson and Johnson, 2020; Wang and
Hobbs, 2015). For instance, the flexible ramping product (FRP)
proposed by California ISO (CAISO) facilitates real-time (RT)
balancing in a time slot of 5–15 min (Wang et al., 2020).
Therefore, the joint energy spot market (EM) and ASM will
become a dominant force in the global power industry, making it
necessary to extensively study the joint market mechanism. This
paper reviews the market mechanism optimization, the construction
of the bidding models, and the algorithmic solutions.

2 Literature review

2.1 Current research on market mechanism
optimization theory for large-scale
penetration of renewable energy

Optimizing market mechanisms, typically grounded in
microeconomic theory, involves the proposal of bidding or
pricing mechanisms, which are then validated through
equilibrium analysis. This process often models the market as an
Equilibrium Problem with Equilibrium Constraints (EPEC).
Worldwide research has explored the strategic bidding behaviors
of large-scale renewable energy suppliers in electricity markets, such
as wind farms, electric vehicle integrators, and energy storage
facilities (Morales et al., 2010; Pousinho et al., 2013; Zugno et al.,
2013; Alabdulwahab et al., 2016; Zou et al., 2016; Xiao et al., 2023).
Some research has considered the collaborative operational bidding
strategies of various renewable energy sources (Mohammadi et al.,
2011; Vagropoulos et al., 2013; Agustin et al., 2016; Cao et al., 2024),
while others have proposed short-term bidding strategies for virtual
power plants that incorporate various flexibility resources
(Rahimiyan and Baringo, 2016). Countries like
Denmarkanticipate a complete transition to renewable energy for
power supply by 2050, particularly in Northern Europe. However,
China faces the challenge of being unable to replace fully traditional
power plants with renewable energy sources in the short term
(Jacobson et al., 2017). Consequently, when investigating the
strategic bidding of large-scale renewable energy suppliers in the
market, the presence of traditional power plants should not be
overlooked alongside flexible resources like wind, solar, and energy
storage. Furthermore, integrating carbon markets into the power
market has prompted studies on the effects of European Union
carbon emission trading rights and carbon emission costs on power
market dynamics and generator bidding strategies (Weigt et al.,
2013; Anke et al., 2020). With the spot market overlooking the
carbon market’s impact on power market transactions, electricity-
carbon market mechanisms operate relatively independently in
regions such as Guangdong Province.

Research onmarket mechanisms varies depending on the type of
market. Some focus on the bidding and settlement mechanisms of
the energy quantity market from the generation side (Ela et al., 2016;
Mozdawar et al., 2022; Silva-Rodriguez et al., 2022), while others
concentrate on the pricing and deployment strategies of ancillary
services, primarily frequency regulation (Arteaga and Zareipour,
2019; Maria Luisa et al., 2019; Godoy et al., 2020; Stavros et al., 2020;
Luis et al., 2022). These studies explore various market clearing
methods (deterministic or stochastic) and compensation

mechanisms (pay-as-bid or opportunity cost payment). In the
United States, markets such as CAISO and MISO independently
trade, optimize, and price ramp capabilities, introducing a new
ancillary service product, FRP (Casio, 2015; Navid and
Rosenwald, 2024). This addition mitigates the uncertainty of
system load and renewable energy variations, ensuring sufficient
ramping capability to match net load changes and maintain system
real-time balance. Although the introduction of FRP for joint market
clearing can enhance the regulatory capacity of the system, research
in this area is still in its nascent stages. Various studies have
examined the market mechanisms of Energy Markets (EM) and
Ancillary Service Markets (ASM) from different perspectives,
including market time frames, equilibrium models based on non-
strategic bidding (actual cost functions), incentive-compatible
clearing mechanisms, and the formulation of Locational Marginal
Pricing (LMP) (Sorourifar et al., 2018; Zhou et al., 2018; Wu et al.,
2020; Zhang et al., 2020; Hu et al., 2021). In the joint optimization of
the Energy Market (EM) and Ancillary Services Market (ASM), FPR
does not possess the autonomy to bid independently.

The ultimate objective of optimizing market mechanisms is to
maximize the overall social welfare of the integrated market. The
mechanisms across different markets must be harmonized to
gradually steer the bidding strategies of market participants
towards Pareto optimality while preventing cross-market
collusion arbitrage and market power abuse. For example, the
compensation that market participants receive is tied to the
difference between Day Ahead (DA) and real-time EM prices. If
there are flaws in the market mechanisms, speculators can
manipulate DA and real-time prices to reap substantial profits.
However, the current evaluation of market mechanisms lacks
quantitative indicators, making it challenging to verify their
effectiveness. Indeed, existing market mechanisms, primarily
established based on domestic and international experience and
theoretical knowledge, are constrained by computational
limitations. The efficiency and security of the market largely
hinge on the bidding strategies of participants, but assessing the
impact of market mechanisms on participants’ bidding strategy
preferences remains a formidable challenge. Thus, optimizing
market efficiency and stability through empirical market
mechanisms is not feasible.

2.2 Current research on the multi-agent
bidding model of the electricity market

In the Multi-agent bidding model, human candidates with
varying degrees of expertise in electricity markets will participate
in the trading with a virtual market environment, representing
different generation companies to submit their bids to maximize
potential profits. After repeated bids submission, the game may
gradually converge to the equilibrium, allowing for the detection of
potential abuses of market power through the convergence
procedure. The aforementioned process can be simulated as a
two-layer bidding game model of GENCOs, and the solutions for
this model are typically obtained through mathematical methods
based on equilibrium models (Dou et al., 2016) and Agent-based
Models (ABM) (Guevara C et al., 2012). A significant number of
research on equilibrium models using mathematical programming
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focused on optimizing bidding strategies, including chance-
constrained stochastic optimization (Zhao et al., 2018; Hosseini
et al., 2020), robust optimization (Pousinho et al., 2015; Baringo and
Sánchez Amaro, 2017), and distributional robust optimization (Han
and Hug, 2020; Hajebrahimi et al., 2020). However, the diverse
operational characteristics (such as on-and-off or up-and-down
constraints for switches and generators) and the immense scale
of expanded power networks render these problems highly
dimensional, non-convex, and subject to non-observable
uncertainty. Consequently, using traditional optimization tools in
these contexts becomes exceedingly complex and imposes a
substantial computational load. The existing research regarding
scale and market rules is overly simplified compared to real-
world electricity markets. ABM is typically more flexible, as it
allows us to model all market participants individually and treat
them as distinct agents. Each agent continuously updates its data
through repeated interactions with the simulated market
environment. After repeated bidding, the game may gradually
converge to an equilibrium state. It should be noted that
potential market power abuse phenomena can be discovered
through the convergence process, resembling a real electricity
market (Azadeh et al., 2012). In the ABM model, heuristic
algorithm models are commonly used (Boonchuay and Ongsakul,
2011a; Elsakaan et al., 2018; Kong et al., 2019a; Hematabadi and
Foroud, 2019; Du et al., 2021; Qiu et al., 2023), including genetic
algorithms (GA) (Boonchuay and Ongsakul, 2011a), particle swarm
optimization (PSO) (Kong et al., 2019a), artificial immune system
algorithms (AIS) (Qiu et al., 2023), bacterial foraging optimization
(BFO) (Elsakaan et al., 2018), krill herd algorithms (KHA)
(Hematabadi and Foroud, 2019), and water wave optimization
(WWO) (Du et al., 2021). These algorithms are inspired by the
cooperative behaviors of gregarious animals, evolution, and heredity
and have exhibited superior computational performance compared
to conventional mathematical programming techniques. Model-
based intuitive learning and applying genetic algorithms are
utilized separately to determine the optimal bidding curves, as
demonstrated in (Zhang et al., 2014; Weidlich and Veit, 2008).
However, these algorithms are designed to formulate the bidding
strategy of individual agents, where each agent makes decisions
independently without considering the actions of the competitors.
Although numerous studies (Boonchuay and Ongsakul, 2011b;
Javaid et al., 2017; Kong et al., 2019b) have utilized group
optimization algorithms to model the dynamic bidding process,
these methods yield the optimal Pareto frontier in a cooperative
setting, where agents can freely exchange search strategies.
Nevertheless, this study aims to find the Nash Equilibrium within a
competitive bidding environment. This necessitates fully distributed
training that precludes any communication among the participating
GENCOs. This strategy ensures privacy and mitigates the risk of
collusion, thereby preserving the competitive integrity of the bidding
process. Consequently, these methods prove unsuitable for a
competitive market where each agent seeks to achieve its objectives
by adjusting its behavior in response to other agents. As the model-free
characteristic of reinforcement learning techniques, they eliminate the
need for intricate mathematical modeling, empowering the agent to
pursue the optimal decision more conveniently through direct
interaction with the environment. The comparison of various
electricity market bidding models is presented in Table 1.

2.3 Current research on bidding strategy
algorithms of multi-agent market
participant

This section comprehensively reviews the Reinforcement
Learning (RL) fundamentals, encompassing all necessary concepts
and algorithms that will be further utilized in elaborating the RL
applications on marketized power systems presented in the
subsequent sections. An RL algorithm comprises a model-based
RL such as dynamic programming and model-free RL, further
extending to value-based RL (including Q-learning, DQN and
WoLF-PHC) and policy-search-based RL (including stochastic
and deterministic policy gradient, Actor-critic (AC), Trust
Region/Proximal Policy Optimization (TRPO/PPO), Deep
Deterministic Policy Gradient (DDPG) methods). As a set of RL
algorithms, numerous Q-learning algorithms have found broad
application in the multi-agent electricity market for exploring
bidding strategies. Najafi et al. (2019) present the development of
a decentralized multi-agent model for bidding by Electric Vehicle
(EV) owners, which is based on a Q-learning algorithm and crafted
without the necessity for environmental modeling. For instance, Liu
et al. (2021) introduced a quarter-hourly dynamic pricing strategy,
leveraging the DDPG algorithm, to address the discretization issue
encountered in traditional time-division pricing models. Lee et al.
(2021) present an innovative energy trading system among
Microgrids (MGs), incorporating a DDQN algorithm and a
double Kelly strategy. Although these techniques have explored
the dynamic interaction of numerous agents, the optimality
search process relies on cooperation and communication among
individual agents, which is inconsistent with competitive market
bidding in the absence of knowledge about other rivals.

Qiu et al. (2023) and Elsakaan et al. (2018) employ the Multi-
Agent-Based Models (MABM) for simulating market participant
bidding models and consider the game issues of updating the multi-
agent bidding strategies of energy suppliers in large power systems
and regional integrated energy systems, respectively. However, in
the process of making bidding decisions, multi-agents require
historical bidding information of competitors. Although this
model offers certain advantages compared to models with fully
disclosed information, the real market is an incomplete information
market. Indeed, in a real market, each participant only knows their
own cost function and bidding strategy, lacking any information
about other competitors (Hematabadi and Foroud, 2019).
Moreover, market participants are unwilling to share their
historical bidding information with competitors, rendering this
algorithm still impractical for real-world market scenarios.

Zhao et al. (2022) list several Multi-agent Reinforcement
Learning (MARL) methods and developed a time-varying model
with an updating strategy to simulate bidding games with
incomplete information. Gao et al. (2021) employ the WoLF-
PHC method to ascertain the Nash Equilibrium (NE) in a pool-
based energy market comprised of large-scaled wind turbines and
EV aggregators. However, the computational performance is
unstable with the increase of variables. Fang et al. (2021)
introduce a market mechanism for double auctions in regional
microgrids (MGs), utilizing a Multi-Agent Deep Q-Network
(MADQN) algorithm to identify the optimal bidding strategy for
these MGs. Furthermore, an Optimal Equilibrium Selection (OES) is
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proposed to guarantee benefit fairness, execution efficiency, and
privacy protection during the interactive learning process of
MADQN. Ye et al. (2023) introduced a generalized strategic
bidding model for energy producers and solved it using the Deep
Deterministic Policy Gradient (DDPG) method, which uses a neural
network to estimate the optimal Q function. However, this
algorithm based on policy gradient descent is constrained by the
instability of the learning environment and the interaction of
multiple agents, rendering it unsuitable for multi-agent
environments. In Xu et al. (2018), Qiu et al. (2021), Li et al.

(2022), and Mehdipourpicha et al. (2023), the Multi-agent Deep
Deterministic Policy Gradient (MADDPG) algorithm and its
modified versions were used to simulate the bidding game in
competitive electricity markets taking into account privacy
protection. Overall, the computational performance of existing
RL algorithms is highly sensitive to hyperparameters. Therefore,
for the bidding simulation of large-scale electricity markets,
adjusting hyperparameters significantly impacts them and affects
simulation convergence’s stability. Moreover, pressure on storage
space can also make equilibrium point calculations time-consuming

TABLE 1 Comparison of different bidding model of the electricity market.

Model Algorithm Multi-agent
environment

Competitive
environment

Speedy
computation

Tractable in
continuous

space

Privacy
protection

Sensitivity
to hyper-
parameters

Equilibrium
models

Stochastic optimization × × × × × ✓

Robust optimization × × × × × ✓

Distributed robust
optimization

× × × × ✓ ✓

Agent-based
models

Heuristic algorithm ✓ ✓ ✓ ✓ ✓ ✓

Multi-agent
Reinforcement

Learning

Q-learning × × ✓ × × ✓

DDPG × × ✓ ✓ × ✓

DQN × × ✓ ✓ × ✓

WoLF-
PHC

✓ ✓ ✓ × ✓ ✓

MAQ ✓ × ✓ × × ✓

MADQN ✓ ✓ ✓ ✓ × ✓

MAAC ✓ ✓ ✓ ✓ × ✓

MAPPO ✓ ✓ ✓ ✓ ✓ ×

MADDPG ✓ ✓ ✓ ✓ ✓ ✓

FIGURE 1
Various algorithm of the bidding model.
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and challenging. The applicability of these MARL algorithms in
bidding strategy is compared as shown in Table 1. The bidding
model with corresponding algorithms is summarized as Figure 1.

3 Challenges and future trends

Although the research mentioned above has played a significant
role in integrating renewable energy into the optimal mechanism of
the emerging joint energy and ancillary service market, this paper
proposes three major technical challenges and future trends:

(1) Integrating large-scale renewable energy entities into the
combined electricity spot and ancillary services markets
has rendered the research into power market mechanisms
increasingly complex. The inherent intermittency of
renewable energy sources poses substantial threats to the
reliability and safety of the power system, consequently
impacting the dispatching, investment, and operation of
the electricity market. Inadequate market mechanisms may
lead to some renewable energy participants engaging in
detrimental price competition or exploiting market power
to establish monopolies, thereby affecting overall societal
welfare and market efficiency. Furthermore, there has been
little research on how to optimize the market mechanisms
and improve market operational efficiency. With the
penetration of large-scale renewable energy, future research
could focus on investigating integrated electricity market
mechanisms to address the aforementioned challenges.
Integrated market encompasses the Energy Market (EM)
and the Ancillary Services Market (ASM), which includes
components such as Frequency Regulation (FR) and Flexible
Ramping Product (FRP). It would be beneficial to develop
pertinent evaluation metrics to optimize these market
mechanisms effectively.

(2) The bidding model utilized in the current electricity market
trading mechanisms is overly simplified, particularly in the
market scale, the simulation of participant bidding strategies,
and market rules. Compared to the real electricity market, this
excessive simplification leads to a lack of reliability and
credibility in the simulated results of the model. In
response to the issues outlined above, future research
should focus on MABM to simulate the bidding behavior
of market participants in a competitive market environment.
The model will explore the relationship among factors such as
bidding, profitability, and market settlement conditions to
validate and iteratively optimize the market mechanisms.

(3) Existing methodologies employed to solve bidding models of
multi-agent market participants encounter limitations in
computational performance. This is particularly evident in
the bidding simulations of large-scale electricity markets,
where adjusting hyperparameters in reinforcement learning
methods can significantly impact the algorithm’s convergence
performance. Further research should explore a multi-agent
deep reinforcement learning algorithm for the bidding model
of market participants. The method safeguards agents’
privacy, allowing them to fully exert their autonomy in

bidding without any information exchange among them.
Moreover, this approach successfully mitigates the
influence of hyperparameters and exhibits excellent
convergence properties.

4 Conclusion

In a carbon-constrained environment, the fundamental purpose
of market mechanisms, with the electricity market as the primary
tool, is to promote the development of the electricity industry
towards cleaner, more efficient, and lower-carbon directions. It
also aims to facilitate the large-scale penetration of renewable
energy generation replacing fossil-fuel-based power generation.
The intermittent and uncertain nature of large-scale renewable
energy grid-integrated generation poses significant challenges to
the operation of electricity markets. To address the issue of
suboptimal compatibility in electricity markets, this paper reviews
three aspects: the optimization of mechanisms in the integrated
market of electricity spot and ancillary services, the construction of
bidding models, and the resolution of associated algorithms. In
addition, the challenges and potential future developments in the
field are also discussed.
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Resilience-oriented repair crew
and network reconfiguration
coordinated operational
scheduling for post-event
restoration

Fuju Zhou1*, Peng Zhou2, Tianchen Shi3, Jiangping Jing4,
Gaige Liang2, Shengrong Xu1, Jianda Zhou1 and Kai Yang1

1State Grid Suqian Power Supply Company, Suqian, China, 2State Grid Xuzhou Power Supply Company,
Xuzhou, China, 3College of Energy and Electrical Engineering, Hohai University, Nanjing, China, 4State
Grid Jiangsu Electric Power Co., Ltd., Nanjing, China

This paper introduces a post-disaster load restoration approach for the
distribution grid, utilizing network reconfiguration (NR) and dispatching of
repair crews (RCs) to significantly enhance grid resilience. We propose an
RC–NR coordinated model that leverages diverse flexible resources within the
active distribution network (ADN), aimed at not only enhancing the grid’s
resilience level but also efficiently mending the fault lines. The model
introduces fault repairing and sequential NR coupled constraints to devise an
optimal resilience strategy within temporal domain cooperation, focusing on
minimizing repair and penalty costs associated with the restoration process. To
tackle the challenge of computational complexity, the nonlinear model is
reformulated into a mixed-integer second-order cone programming model.
The efficacy of the approach is validated through case studies on an IEEE 33-
bus system, in which simulation results demonstrate a considerable improvement
in grid resilience, achieving optimal load recovery with reduced restoration time
and costs. The proposed approach outperforms traditional methods with optimal
repair sequence and RC scheduling, alignedwith NR efforts, and contributes to an
improved system resilience level.

KEYWORDS

resilience, active distribution network, repair crews, restoration, load recovery

1 Introduction

In recent decades, a series of frequent and severe extreme events, exemplified by
incidents like the 2021 Texas power blackouts (Zhang et al., 2022), the Zhengzhou flood
blackouts, and the Taiwan rolling blackouts in 2022, have had a profound impact on grid
resilience (Perera et al., 2020). These occurrences have resulted in energy deficiencies and
prolonged power interruptions, posing a severe challenge to the power system operation.
Concurrently, the power distribution network is undergoing a significant transition from
the traditional network to the active distribution network (ADN). Explicitly highlighted
during the 2008 International Large Power Grid Conference, the ADN possesses the
capability to autonomously control and manage locally distributed energy resources
(DERs), adjusting the network topology in real time based on the system operational
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status to precisely regulate the power flow (Li et al., 2017). This
concept has been consistently embraced within the academic
community. It is crucial to emphasize that unlike the autonomy
of microgrids, under normal circumstances, the ADN, as a public
distribution networkmanaged by power companies, does not permit
islanded operation. However, in emergency situations, a judicious
configuration of switching points can enable specific areas of the
ADN to function as isolated microgrids in an unconventional
manner to support the ADN operation (Konakalla et al., 2019).
Therefore, leveraging the resources within the ADN to enhance its
resilience against extreme natural disasters is of paramount
significance, aiming to mitigate economic losses caused by
power outages.

As the foundation for the resilience operation of the ADN, it is
crucial to model and evaluate the fault scenarios caused by extreme
disasters. Typhoons are one of the most frequently occurring
extreme disasters. Mu et al. (2022), using the classic Batts
typhoon model, obtained time-varying wind speed curves at
various points of the lines. Combining the vulnerability model of
distribution network components, they generated fault scenarios
using a non-time-series Monte Carlo simulation method. Hussain
et al. (2019) considered the spatial distribution characteristics of
faulty and outage equipment under typhoon disasters, categorizing
them into centralized, decentralized, and centralized–decentralized
distributions. They generated a set of fault scenarios for the ADN
based on the fault rate distribution functions of different typhoon
grades. Hou et al. (2021), starting from historical data on typhoon
damage, established a prediction and evaluation model for user
power outage grids under typhoon disasters using data mining and
grid partitioning methods. Building upon classical models, Hou et al.
(2023) made uncertainty improvements to the typhoon wind field
and line fault models, considering the effects of diverse wind speeds.
They proposed an improved model for line stress interference. In
summary, the existing models describe the time and space
characteristics of typhoons, analyze the impact mechanism of
extreme disasters on distribution networks, and ultimately
determine damaged scenarios by establishing component
vulnerability models. These above research studies provide the
fundamental models and methods for evaluating the potential
faults of extreme disasters, which contributes to further
investigation of the resilience operation methods.

To deal with the extreme disasters, the main measures adopted
include network reconfiguration (NR) and emergency islanding.
The ADNs are generally designed as closed-loop systems but operate
in an open-loop manner to improve the reliability of the system.
This characteristic provides a prerequisite for the implementation of
network reconstruction and islanding. The NR involves the rational
configuration of tie points, remotely activating or deactivating the
corresponding circuit breakers, allowing specific local areas of the
distribution network to operate as microgrids in an abnormal state.
By this measure, the critical loads can be supplied to avoid economic
losses. Demetriou et al. (2016) and Liu et al. (2019a) formulated the
islanding division and power output adjustment problem as a
mixed-integer linear programming model. They determined
optimal islanding strategies by first obtaining a DC-feasible
solution and then determining the operating point for AC
steady-state islanding. Hafez et al. (2018) proposed a novel
method for radial network constraints suitable for the flexible

reconstruction of distribution networks. This method significantly
enhances the flexibility of the network topology, thereby improving
the feasibility and optimality of optimization problems related to
reconstruction. Liu et al. (2019b) comprehensively considered
proactive fault islanding and restoration. Lei et al. (2020)
proposed a novel approach for radiality constraints, which fully
enables the topological and some other related flexibilities of
systems. However, only adjusting the grid structure is
insufficient. The faults caused by the restoration should be
inspected and repaired timely to reduce the duration of the faults
and power outage. Hence, it is of great significance to consider the
dispatching of the repair crews (RCs) to repair and restore the ADN
against extreme disasters.

The RCs stand out as crucial resilience enhancement forces that
find wide applications in distribution networks. Specifically, RCs play
a vital role in facilitating coupling repair and restoration processes.
Efficiently dispatching RCs to repair specific damaged components is
essential for fully restoring a power grid following disasters, thereby
supporting the network restoration of distribution networks (Van
Hentenryck et al., 2011; Zhang et al., 2020). Bian et al. (2021) proposed
a RC deployment model for fault repair and system restoration by
solving a two-stage stochastic optimization problem. Arif et al. (2017)
delved into the co-optimization of RC routing and reconfiguration for
distribution network restoration. Considering the resource capacity
limits, the fault repair and restorationmodel was proposed by Shi et al.
(2022) to optimize the scheduling for RCs to repair faulted lines.
Notably, recent studies have explored strategies such as coordinating
energy scheduling with dynamic microgrid formation to reduce post-
disaster recovery costs and co-optimizing RC routing with ADN
reconfiguration for efficient restoration (Yao et al., 2019; Yao et al.,
2020). However, existing research often addresses NR and RCs in
isolation. Nevertheless, RC dispatching in the aftermath of extreme
disasters poses a significant challenge as it involves addressing the
combinatorial optimization issues related to depot location,
equipment transportation, allocation, and crew assignment
(Golshani et al., 2019; Inanlouganji et al., 2022). Thus, how to
tackle the coordination between RC dispatching and NR is still a
remaining key issue.

However, these works mentioned above still have two challenges
to overcome: one challenge is how to enhance the resilience level of
the ADNwith accurate fault scenarios. The other challenge is how to
solve and obtain the NR and RC repair and restoration scheduling
for the ADN against extreme disaster scenarios. Based on the above,
the contributions of this paper are concluded as follows:

1) The RC dispatching and fault repair sequence model is
proposed to reduce the fault time period and the
corresponding economic losses under extreme disasters. RC
numbers and material capacity limits are modeled as
constraints to describe the repair decision, while the fault
repair sequence constraints are also integrated in the model
to obtain optimal repair scheduling.

2) The RC and NR coordinated ADN operation method is
devised to support critical loads and reduce the economic
loss during the fault periods. Compared with conventional
methods, the proposed method can effectively achieve optimal
repair routing and load recovery scheduling for a fast and
secure restoration.
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2 Resilience-oriented ADN
restoration framework

The conceptual resilience curve is illustrated in Figure 1. The
ADN’s resilience level is measured by the ratio of the supplied load.
Before and after the extreme event, the ADN typically encompasses
five states: pre-event (t0−te), event unfolding (te − tpe), post-event
(tpe−tlr), restoration (tlr−tir), and post-restoration states (tir−).
These states commonly represent the total energy supplied to the
critical loads. In this concept, progression of the MDS during a
natural disaster can be explained as follows: in the pre-event state,
the ADN can operate in a normal state. When the disaster occurs at
te, the power supply to loads is disrupted, leading to a decrease in the
load supply level (event unfolding state). After the event, the ADN
reaches the post-event state at tlr, representing the worst system
condition and load recovery initiation in the ADN. As critical loads
are gradually restored, the system state progresses toward the next
state until the faults are repaired at tir. After all the faults are
repaired, it is ensured that the loads of the ADN recover to the pre-
event level. Thus, the ADN gradually returns to the normal state,
and the whole process ends.

In this study, we propose a resilience-oriented ADN restoration
approach where fault scenarios are generated before extreme events
by the proposed fault possibility model. Then, the RC and NR
coordinated load restoration problem is solved to obtain the optimal
ADN restoration scheduling during the post-event, restoration, and
post-restoration states until all the faults are repaired. Hence, the
proposed resilience-oriented ADN restoration framework can
leverage all the resources, including the power supply, system
topology adjustment measures, and RCs, to effectively enhance
the resilience level against a disaster.

3 Resilience-oriented ADN
restoration model

In this study, in order to supply critical loads, the ADNmakes use of
strategies such as topology reconfiguration and island partition through
the deployment of flexible resources. Furthermore, in the resilience-
oriented ADN restoration model, local flexible resources, including

controllable diesel generators (DGs), and energy storage systems (ESSs)
are utilized with the distributed generation systems, such as
photovoltaic (PV) systems and wind turbine (WT) systems, to
provide energy to the loads in the ADN. Furthermore, line switches
are operated by the DSO for NR by considering the DistFlow power
flow model. Additionally, RCs are dispatched to repair the faults with
limitations of the numbers and material resources.

3.1 Local flexible resources

Regarding flexible resources, both DGs and ESSs possess flexible
capabilities. These are designated as the power source within the
isolated islands to provide electricity for shed loads.

3.1.1 Model of the DGs
Distribution grids often rely on controllable distributed power

sources, primarily utilizing DGs. DGs are commonly employed in
isolated grids that are not connected to the upstream network or
used as emergency power sources during grid failures. They can even
be utilized in more complex scenarios such as peak shaving and
power support. The model of the DGs is given in Eqs. (1)–(3)
as follows:

−P
DG
i,t

�������
1 − κi( )2

√
κDGi

≤QDG
i,t ≤

PDG
i,t

�������
1 − κi( )2

√
κDGi

, ∀t ∈ NT ,∀i ∈ NDG
, (1)

��������������
PDG
i,t( )2 + QDG

i,t( )2√
≤ SDGi , ∀t ∈ NT ,∀i ∈ NDG , (2)

P min
DG ≤PDG

i,t ≤P max
DG , ∀t ∈ NT ,∀i ∈ NDG , (3)

where PDG
i,t and QDG

i,t are the active and reactive power generation of
the DG at node i at time t, respectively; κDGi is the power factor of the
DG; SDGi denotes the DG capacity at node i; and Pmin

DG and Pmax
DG are

the lower and upper limits of the output power generation of the DG,
respectively.

3.1.2 Model of the ESSs
ESSs provide possibility and solutions for post-disaster emergency

dispatch in distribution networks. They can act as a fast reserve to
effectively support regional control, scheduled dispatch, frequency
regulation, and peak shaving. In the distribution phase, the
introduction of energy storage devices can effectively mitigate the
fluctuation between uncontrollable distributed power generation and
load demand. ESSs interact with the grid by controlling the charging
and discharging of batteries based on received control commands.
Additionally, the inverters of the ESSs have a certain reactive power
support capability, providing voltage support to blackout nodes
according to the operational requirements of the grid. Detailed
model of the ESSs are given in Eqs. (4)–(9).

EESS
i,t � EESS

i,t−1 1 − AESS
i( ) + PESSC

i,t ηCΔt − PESSD
i,t

ηDΔt, ∀t ∈ NT ,∀i ∈ NESS ,

(4)
0≤PESSC

i,t ≤P max
ESS · SESSCi,t , ∀t ∈ NT ,∀i ∈ NESS , (5)

0≤PESSD
i,t ≤P max

ESS · SESSDi,t , ∀t ∈ NT ,∀i ∈ NESS , (6)
E ESS

min ≤EESS
i,t ≤EESS

max , ∀t ∈ NT ,∀i ∈ NESS , (7)
SESSCi,t + SESSDi,t ≤ 1, ∀t ∈ NT , ∀i ∈ NESS , (8)

FIGURE 1
Resilience curve and ADN restoration framework.
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���������������
P( ESS
i,t )2 + Q( ESS

i,t )2√
≤ SESSi , ∀t ∈ NT ,∀i ∈ NESS , (9)

where EESS
i,t represents the SOC of the ESS at time t at node i; AESS

i

is the loss coefficient of the ESS; PESSC
i,t , PESSD

i,t , and PESS
i,t are the

charging, discharging, and the net ESS power injection into node
i at time t, respectively; ηC and ηD are the charging and
discharging efficiencies of the ESS, respectively; SESSCi,t and
SESSDi,t denote the charging and discharging binary status,
respectively; Pmax

ESS is the upper limit of the ESS charging and
discharging power limit; SESSmin and S max

ESS are the SOC limits of the
ESS; SESSi is the capacity of the ESS; and QESS

i,t is the reactive power
of the ESS.

3.1.3 Model of the RES
Distributed RES can also be utilized to support the ADN

resilience level. The corresponding model of the RES generation
are represented in Eqs. (10)–(12) as follows:

−P
RES
i,t

�������
1 − κi( )2

√
κRESi

≤QRES
i,t ≤

PRES
i,t

�������
1 − κi( )2

√
κRESi

, ∀t ∈ NT ,∀i ∈ NPV ⋃ NWT,

(10)���������������
PRES
i,t( )2 + QRES

i,t( )2√
≤ SRESi , ∀t ∈ NT ,∀i ∈ NPV ⋃ NWT, (11)

0≤PRES
i,t ≤P max

RES ,RES ∈ PV,WT{ },∀t ∈ NT ,∀i ∈ NPV ⋃ NWT, (12)

where PRES
i,t andQRES

i,t are the active and reactive power generation of
the PVs and WTs at time t at node i, respectively; κRESi is the power
factor of PVs and WTs; SRESi denotes the RES capacity at node i; and
Pmax
RES is the maximal power limit of the PVs and WTs.

3.2 DistFlow model of the ADN

The DistFlow model (Baran and Wu, 1989a) is typically used
in the literature for simplifying the power flow equations to make
them more tractable for analysis. This simplification, while
enabling easier computation, can lead to inaccuracies in
modeling the real behavior of the electrical distribution
network, particularly under heavy loading conditions or when
dealing with complex network topologies. Furthermore, the
DistFlow model is primarily designed for radial distribution
networks, which can be formulated as Eqs. (13)–(16):

∑k∈a i( )P
line
ki,t − rkiI2ki,t � ∑j∈b i( )P

line
ij,t + Pi,t,∑k∈a i( )Q

line
ki,t − xkiI2ki,t � ∑j∈b i( )Q

line
ij,t + Qi,t,

{ , ∀t ∈ NT ,∀ij ∈ B,

(13)

U2
j,t � U2

i,t − 2 rijP
line
ij,t + xijQ

line
ij,t( ) + r2ij + x2

ij( )I2ij,t, ∀t ∈ NT ,∀ij ∈ B,
(14)

I2ij,t �
Pline
ij,t( )2 + Qline

ij,t( )2
U2

i,t

, ∀t ∈ NT ,∀ij ∈ B, (15)

Ui,t
min ≤Ui,t ≤Ui,t

max, ∀t ∈ NT , (16)
where Pline

ij,t and Qline
ij,t are the active and reactive power on branch

ij in the branch set B over a time period t, respectively; rkiand xki

are the resistance and reactance parameters of branch ki,

respectively; Iki,t is the current through branch ki; a(i) is the
set of ancestor nodes; b(i) is the set of child nodes; and Ui,t is the
voltage of node i at time t, which is within the range of the
minimal limit Ui,t

min and the maximal limit Ui,t
max.

In addition, Pi,t and Qi,t represent the active and reactive
power injections, respectively, which can be formulated as in the
Eq. (17).

Pi,t � PDG
i,t + PPV

i,t + PWT
i,t + PESSD

i,t − PESSC
i,t − λiPload

i,t ,
Qi,t � QDG

i,t + QPV
i,t + QESS

i,t − λiQload
i,t ,

{ ,∀t ∈ NT ,

(17)
where λi denotes the binary load state of node i; Pload

i,t and Qload
i,t are

the active and reactive power loads, respectively.

3.3 Model of RC dispatching and fault repair

In response to natural disasters and power line faults, the
power grid needs to sequentially repair each affected line to
shorten the damage period. It is crucial to find the optimal
maintenance sequence within the fault period. The method for
optimizing the fault repair strategy involves the introduction of a
series of constraints to the switch status variables during network
restructuring and island partitioning. These constraints are
integrated into a unified model for fault recovery during the
restructuring and islanding process. When faults occur, it ensures
that the lines remain disconnected. At the same time, it is
restricted to restoring a maximum of h faulty lines. The
constraints on the open/close status of the faulty lines in the
model represent the maintenance strategy given in Eqs. (18), (19)
as follows:

α0
ij � 0, ∀ij ∈ BF , (18)

αtn
ij ≤ α

tm
ij , ∀ij ∈ BF, tn ≤ tm , (19)

∑Fα
t+Tf

ij −∑Fα
t
ij ≤ h, ∀ij ∈ BF,∀t ∈ NT , (20)

where αtij is the line switch status of branch ij in the fault branch set
BF; h represents the maximum number limit of the power lines that
can be simultaneously repaired at a time period; and Tf denotes the
fault repair time. Equation 18 describes the initial state when faults
occur; all fault lines are in the open state. Equation 19 represents that
the fault line should be repaired only once. Equation 20 ensures that
during the fault recovery process, a maximum of ℎ faulty lines can be
repaired at each time period.

Resource availability is ensured by Eq. (21), which stipulates
that the resource capacity of each crew should be sufficient to
meet the total resource demand of the damaged components in
its assigned route:

∑
m∈M

∑
F

YRC
ij,τ · rmm

ij ≤RS
m
τ ,∀τ ∈ Ξ, ∀ij ∈ BF , (21)

where YRC
ij,τ denotes the binary variable, which equals 1 if the fault

line ij ∈ BF is fixed by the crew team τ in the RC team set Ξ; rmm
ij

represents the required mth kind of material to repair the fault line
ij ∈ BF; and RSmτ represents the capacity limit of the crew team τ

with the mth kind of material.
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3.4 Radial operation constraints of the ADN

The ADNmust satisfy the following radial constraints which can
be formulated as Eqs. (22)–(25):

αij � μij + ]ij, (22)
∑ij∈Ωi,A

μij +∑ij∈Ωi,C
]ij � 1, ∀i ∈ Ωn , (23)

∑ij∈Ωi,A
μij + ∑ij∈Ωi,C

]ij � 0, ∀i ∈ Ωs, (24)
αij ∈ 0, 1{ }, μij ∈ 0, 1{ }, ]ij ∈ 0, 1{ }, (25)

where μij and ]ij are the binary variables representing the virtual power
flow directions of branch ij, with μij = 1 indicating the default power
flow direction and ]ij = 1 indicating the inverse power flow direction;
Ωn is the set of normal nodes; Ωs is the set of alternative island source
nodes;Ωi,A is the set of branches with i as the ancestor node; andΩi,C is
the set of branches with i as the child node.

4 Resilience-oriented RC and NR
coordinated operational
scheduling method

4.1 Model reformulation

4.1.1 Big M method
With the Big M method, the Eq. 14 can beeformulated into the

following constraints in Eqs. (26)–(30):

Mαij ≤Pline
ij,t ≤Mαij, ∀t ∈ NT ,∀ij ∈ B, (26)

−Mαij ≤Qline
ij,t ≤Mαij, ∀t ∈ NT ,∀ij ∈ B, (27)

0≤ I2ij,t ≤Mαij, ∀t ∈ NT ,∀ij ∈ B , (28)
U2

j,t − U2
i,t + 2 rijPline

ij,t + xijQline
ij,t( ) − r2ij + x2

ij( )I2ij,t
−M 1 − αij( )≤ 0, ∀t ∈ NT ,∀ij ∈ B, (29)

U2
j,t − U2

i,t + 2 rijPline
ij,t + xijQline

ij,t( ) − r2ij + x2
ij( )I2ij,t

+M 1 − αij( )≥ 0, ∀t ∈ NT ,∀ij ∈ B, (30)

where M is a big enough positive number.

4.1.2 SOCP relaxation of the DistFlow power
flow model

A new set of variables U i,t and I ij,t are presented to replace the
voltage and current as Eqs. (31)–(33):

U i,t � U2
i,t

I ij,t � I2ij,t
{ , ∀t ∈ NT ,∀ij ∈ B, (31)

I ij,t ≥
Pline
ij,t( )2 + Qline

ij,t( )2
U i,t

, ∀t ∈ NT ,∀ij ∈ B, (32)

2Pline
ij,t

2Qline
ij,t

I ij,t − U i,t

������������
������������
2

≤ I ij,t + U i,t, ∀t ∈ NT ,∀ij ∈ B. (33)

Based on above, the relaxation gap of the DistFlow model can be
defined as Eq. (34).

gapij,t � I ij,t −
Pline
ij,t( )2 + Qline

ij,t( )2
U i,t

∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣, ∀t ∈ NT ,∀ij ∈ B. (34)

4.1.3 SOCP relaxation of the DG and ESS
Similar to the relaxation of the DistFlow model, the SOCP

relaxation of the DG and ESS are given as Eqs. (35), (36).

PDG
i,t

QDG
i,t

��������
��������≤ SDGi , ∀t ∈ NT , (35)

PESS
i,t

QESS
i,t

��������
��������≤ SESSi , ∀t ∈ NT . (36)

4.2 Objective function

The objective function of RCs repair and system restoration is
formulated as Eq. (37).

O � ∑NT

t�1 ∑ΩADN

i�1 θi 1 − λi( )Pload
i,t +∑NDG

i�1 CDGPDG
i,t +∑NESS

i�1 CESSPESS
i,t(

+∑NPV

i�1 C
PVPPV

i,t +∑NWT

i�1 CWTPWT
i,t ), (37)

where θi is the importance coefficient of the load at node i, which can be
evaluated by the value of the lost load (Kariuki and Allan, 1996); CDG,
CPV, CWT, and CESS are the operational costs of DG, PV,WT, and ESS,
respectively.

4.3 RC and NR coordinated ADN
restoration method

After the above steps, the overall RC and NR coordinated ADN
restoration model can be solved using a commercial solver. Figure 2
shows the flowchart of the proposed method.

5 Case studies

To evaluate the proposed method, the IEEE 33 bus active
distribution system is used (Baran and Wu, 1989b). System
configuration is shown in Figure 3. Five WTs, three PVs, one set
of DGs, and one ESS are integrated into the ADN. Time duration
and equipment configuration parameters for the fault scenario are
listed in Table 1 and Table 2, respectively. Figure 4 shows the
predicted power generation curve of the PVs andWTs. The problem
is solved using the MATLAB R2018b platform with Gurobi 10.0.0
(Gurobi Optimization and LLC, 2023). The results demonstrate that
our approach can achieve optimal load recovery strategies within
226 s, which is computationally feasible in real-world applications.

5.1 Network reconfiguration and fault repair
scheduling results

To show the importance of NR and RC coordinated resilience
dispatching, the ADN topologies during the fault duration are
established, as illustrated in Figures 5A–F. As mentioned in
Table 1, initially, at 8:00, there are six faults in branches 6, 12,
18, 21, 24, and 32, which are marked in red in Figure 5A.

During the first fault duration period 8:00–9:00, the ADN is
reconfigured into three islands as the temporary status for resilience
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FIGURE 2
Flowchart of the RC and NR coordinated ADN restoration method.

FIGURE 3
System configuration of the case study.
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operation. Nodes 1–6, 23–24, and 26 are in the first island that is
connected to the upstream network and the DG to supply the demand.
Nodes 7–8 and 19–21 are in the second island to support the local
power demand using PVs in node 7. Nodes 9–18, 22, 25, and 27–33 are
divided into the third island, with fiveWTs and the BESS in node 31 for
resilience operation. In addition to the normal power line branches, four

power-tie lines are all deployed to further improve the power exchange
ability in the ADN to enhance the resilience level. Meanwhile, RCs are
all scheduled to start the repair process of the fault lines between nodes
6–7 and nodes 12–13, which can be illustrated in the next fault duration.

During the second fault duration period 9:00–10:00, in Figure 5B,
the fault in the branches between nodes 6–7 and nodes 12–13 are
repaired, respectively. Then, the ADN is reconfigured into two islands
for resilience enhancement. Nodes 1–11, 19–21, and 23–33 in the first
island are meant to support critical loads supplied by the main grid, the
DG, fiveWTs, two PVs, and the BESS. The second island includes nodes
12–14 and 22 to support the local power demand using the PV in node
13. Similar to the situation during the fault duration period 8:00–9:00,
the four power tie line branches are all still kept closed to enhance the
resilience level.Meanwhile, the RCs are all scheduled to start the fault line
repair process between nodes 24 and 25.

For the third fault duration period 10:00–11:00 (Figure 5C), the
fault in the branches between nodes 24 and 25 is repaired by the RCs.
Hence, the ADN is mitigated into a radial network topology with all the
energy units engaged. Different from the situation before, the power tie
line between nodes 25 and 29 is kept open to avoid the loop circuit
in the ADN.

Figure 5D shows the ADN topology during the fourth fault duration
period 11:00–12:00. The RCs repaired the fault line between nodes 2 and
19, which contributes to the improvement in the ADN resilience level by
increasing the power exchange ability in the network. It should be noted

TABLE 1 Fault scenario parameters.

Fault
branch

Branch 6
(nodes 2–19)

Branch 12
(nodes
12 and 13)

Branch 18
(nodes 2–19)

Branch 21
(nodes
21 and 22)

Branch 24
(nodes
24 and 25)

Branch 32
(nodes
32 and 33)

Time duration 8:00–14:00 8:00–14:00 8:00–14:00 8:00–14:00 8:00–14:00 8:00–14:00

TABLE 2 Energy equipment configuration parameters.

Equipment Location Capacity

PV Node 7 500 kVA

Node 13 300 kVA

Node 27 400 kVA

WT Node 10 500 kVA

Node 16 300 kVA

Node 17 200 kVA

Node 30 200 kVA

Node 33 300 kVA

DG Node 4 200 kWh

ESS Node 31 500 kWh

FIGURE 4
Predicted power generation of the WTs and PVs in p.u.
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that constrained by the radial network topology, the power tie line
between nodes 9 and 15 is opened. RCs are scheduled to start the fault
line repair process between nodes 21 and 22.

Finally, as shown in Figures 5E, F, in the last duration period 12:
00–14:00, the RCs repaired the last fault line between nodes 32 and 33,
and after the repair process, the ADN is restored to the normal mode
topology, ensuring that the system resilience level achieves a 100%
recovery. Hence, the proposedNR andRC coordinated operationmodel
can effectively improve the system resilience level by repairing the faults
and operating the power line switches using the optimal strategy.

5.2 Load recovery and voltage
management results

Regarding the improvement in the resilience level of the
ADN, Figure 6 illustrates the resilience level and the lost load,
the preserved load, and total load demands. It can be concluded
that the resilience level of the ADN is improved from 37% at 8:

00 to 100% at 14:00, which indicates that the NR and RC can
effectively reduce load shedding. Furthermore, by repairing faults
lines, the resilience level is improved by 30%, 23%, 7%, 2%, and
1%. This indicates that the optimal RC scheduling strategy can
effectively obtain the maximal resilience level improvement
during every repair process. Meanwhile, the decline in the lost
load demand and the increase in the preserved load also prove
that the proposed NR and RC coordinated operation method can
effectively improve the system resilience level and eventually
restore the ADN to the normal status.

Figure 7 shows the nodal voltages of the ADN at each time slot.
The nodal voltages are measured by the per-unit value by setting the
voltage base values to 12.66 kV. The maximum and the minimum
voltages are 1.05 and 0.95, respectively. The nodal voltage is acceptable
in practice, considering that the voltage limits are 0.9–1.1 p.u. It
should be noted that after the repair of fault lines in each duration
period, the nodal voltages in the ADN are improved to be closer to the
base value, which illustrates that the proposed method can effectively
secure ADN operation with the optimal repair strategy.

FIGURE 5
Network reconfiguration and the fault repair scheduling results of the ADN.
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FIGURE 6
Resilience level and load preserve in the ADN (in p.u.).

FIGURE 7
Voltage management in the ADN (in p.u.).
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5.3 Result comparison

To further evaluate the proposed model and method, three
methods are compared as follows:

Method #1—NRmethod: Only NR is considered in this method
to support the load demand, and all faults are repaired at the end of
the fault duration.

Method #2—NR operation method with a fixed repair sequence:
The ADN resilience level is enhanced using the NR operation method,
and the fault lines are repaired using a fixed sequence with the distance
measured between the fault lines and node 1 in the ADN.

Method #3—NR and RC scheduling coordinated operation
method: Three groups of RCs are scheduled to repair the fault
lines simultaneously with NR of the ADN.

From Table 3, it can be concluded that the load shedding loss of
Method #1 is larger than those of Method #2 and Method #3 with
gaps of $16,140.12 and $5,963.67, respectively. This is because in
Method #1, the RC repair capability is not considered. All the faults
are repaired until the end of the fault duration, which weakens the
power supply capacity of the ADN. In Method #2, the RCs only
repair the fault lines by following the geographical distance
sequence, which may lead to suboptimal scheduling routing and
the increase in economic losses. Among the three approaches,
Method #3 can obtain the minimal load shedding loss.

The operational cost to reduce carbon emissions increases from
$1,198.92 in Method #1 to $2,332.54 and $3,791.08 in Method #2 and
Method #3, respectively. This is tenable since with NR and RC
coordination, more nodes in the ADN and in the same island are
connected with the DG, which leads to an increase in the fuel cost
of the DG.

Meanwhile, despite the increase in the operational cost of Method
#3, the total costs of the three methods are $34,037.09, $19,030.59, and
$14,525.46, respectively. Therefore, the proposed Method #3 achieves
the best performance in reducing the total cost of load shedding and
system operation. Thus, the resilience of the ADN is effectively
enhanced, and the proposed NR and RC coordinated method can
reduce the economic loss caused by disasters.

6 Conclusion

In this paper, a resilience-oriented operational scheduling method is
proposed by coordinating RCs and NR within an ADN to effectively
counteract faults. Compared to traditional methods, this method not
only establishes power supply islands but also ensures continuous power
delivery to critical loads during blackouts by strategically deploying local
and external resilience resources and RCs. The synergy between NR and
RCs is meticulously orchestrated to simultaneously determine the repair

sequence of fault lines and the reconfiguration of theADN topology. The
effectiveness of our approach is demonstrated through numerical
simulations, highlighting its superiority in enhancing system resilience
and minimizing economic losses when compared to traditional grid
recoverymethods.Ourfindings affirm that the coordinated optimization
of RC scheduling and NR actions significantly improves the system’s
resilience. Furthermore, the integration of renewable energy sources and
storage systems within the proposed framework could offer benefits to
optimize system resilience. Future investigations can be conducted to
explore the AI techniques, such as deep reinforcement learning, for
further reducing the computation time, which is critical for NR
following disasters.
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TABLE 3 Result comparison.

Result Method #1 Method#2 Method
#3

Load shedding
loss (US$)

32,838.17 16,698.05 10,734.38

Operational cost (US$) 1,198.92 2,332.54 3,791.08

Total cost (US$) 34,037.09 19,030.59 14,525.46
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Quantum-inspired deep
reinforcement learning for
adaptive frequency control of low
carbon park island microgrid
considering renewable
energy sources
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Co., Ltd., Qingyuan, China

The low carbon park islanded microgrid faces operational challenges due to the
high variability and uncertainty of distributed renewable energy sources. These
sources cause severe random disturbances that impair the frequency control
performance and increase the regulation cost of the islanded microgrid,
jeopardizing its safety and stability. This paper presents a data-driven
intelligent load frequency control (DDI-LFC) method to address this problem.
The method replaces the conventional LFC controller with an intelligent agent
based on a deep reinforcement learning algorithm. To adapt to the complex
islanded microgrid environment and achieve adaptive multi-objective optimal
frequency control, this paper proposes the quantum-inspired maximum entropy
actor-critic (QIS-MEAC) algorithm, which incorporates the quantum-inspired
principle and the maximum entropy exploration strategy into the actor-critic
algorithm. The algorithm transforms the experience into a quantum state and
leverages the quantum features to improve the deep reinforcement learning’s
experience replay mechanism, enhancing the data efficiency and robustness of
the algorithm and thus the quality of DDI-LFC. The validation on the Yongxing
Island isolated microgrid model of China Southern Grid (CSG) demonstrates that
the proposed method utilizes the frequency regulation potential of distributed
generation, and reduces the frequency deviation and generation cost.

KEYWORDS

load frequency control, deep meta-reinforcement learning, islanded microgrid,
maximum entropy exploration, quantum-inspired

1 Introduction

Distributed power supply has strong randomness and weak controllability, and its
output mode is highly intermittent. Moreover, the load demand-side response is uncertain
and the grid interconnection factors are sudden. These all affect the balance of supply and
demand and the quality of power in the power system, leading to various problems for
industrial and agricultural production and daily life. They cause economic losses and may
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even endanger the safe operation of the power grid. Frequency is an
important measure of power quality. As one of the key indicators
of power quality, frequency can directly reflect the balance between
the load power on the demand side and the generator’s power
generation in the power system. Therefore, maintaining the
frequency stability is a feasible way to ensure the dynamic
stability of the system under strong random disturbances. LFC
1 is a kind of ultra-short-term frequency regulation technology.
The LFC controller uses closed-loop feedback control to adjust the
output power of the LFC unit according to a certain control
strategy. It senses a series of state indicators such as frequency,
area control error (ACE), contact line exchange power, and output
power of the unit. This achieves the dynamic balance of the power
generation and the load power, and then keeps the grid frequency
at the specified value and the contact line exchange power at the
planned value. Thus, LFC control technology has been widely used
in power system operation control. However, the traditional
centralised LFC system (Li et al., 2020; Sun et al., 2023) always
prioritises the optimal control performance of its own region, and
the information synergy between regions is low. It is hard to meet
the control performance demand of a high proportion of large-
capacity new energy grid-connected mode with the traditional
centralised AGC as a vital means of grid scheduling. Moreover, the
control performance of LFC largely depends on the control
strategy 4, while the traditional LFC control strategy 5 is no
longer adequate to cope with the regulation and control tasks
under the trend of large-scale new energy grid-connectedness and
the stochastic fluctuation of uncertain loads on the customer side
(Ferrario et al., 2021; Li et al., 2022). Therefore, from the
perspective of distributed LFC, it is of great significance to seek
a class of optimal LFC control strategies for large-scale grid
integration of new energy sources based on modern control
theory and intelligent optimization methods. These strategies
can meet the control performance and operation requirements
of power grids under strong stochastic perturbations in the new
type of power systems. The traditional methods include two types:
the centralised hierarchical LFC strategy and the fully distributed
LFC strategy.

1.1 Centralized hierarchical LFC strategy

Some notable examples of this strategy include Model Predictive
Control (MPC) (Zheng et al., 2012), Adaptive Control (AC) (Wen
et al., 2015), Learning-Based Control (LBC) (Qadrdan et al., 2017),
and Adaptive Proportional-Integral (PI) Control (El-Fergany and
El-Hameed, 2017). Zheng et al. (Zheng et al., 2012) introduced a
Distributed Model Predictive Control (DMPC) strategy that relies
on the mutual coordination of global performance optimization
metrics. Wen et al. (Wen et al., 2015) proposed a Composite
Adaptive Centralized Load Frequency Control (CALFC) strategy
for regulating the frequency of source-net-load systems, addressing
the challenge of source-load cooperative frequency regulation. Qu
et al. (Qadrdan et al., 2017) developed a Data-Driven Centralized
Load Frequency Control (DLCFC) method, treating load frequency
control as a stochastic dynamic decision-making problem for
source-load cooperative frequency regulation. Qadrdan et al. (El-
Fergany and El-Hameed, 2017) designed an LFC method based on

the “Social Spider” Genetic Optimization Algorithm to tackle the
tuning of PI parameters in microgrids.

However, these methods do not adequately consider load
modeling or the time series dependence of random disturbances
from sources like wind power and photovoltaic systems.
Furthermore, their impact on the system’s frequency control
performance is relatively limited.

Centralized LFC control offers the advantage of reflecting the
entire network’s state, but it also comes with drawbacks. Firstly, the
controller and power distributor employ distinct algorithms for
control and optimization, resulting in independence and differing
objectives, potentially compromising frequency control
performance. Secondly, concentrated communication within the
microgrid dispatch center can lead to inconsistencies and delays
in frequency control due to communication overload, and may even
trigger frequency collapse in some instances. Lastly, centralized LFC
control makes it challenging to consider the consistent performance
of regulation service providers in the performance-based regulation
market across different regions, potentially leading to providers
prioritizing local units over those in other areas and grid operators.

1.2 Fully distributed LFC strategy

Research on fully distributed Load Frequency Control (LFC)
structures primarily centers on the multi-agent control framework.
This framework comprises agent layers that analyze and process
received information, determine suitable control strategies, and
cooperate with other agent layers to ensure seamless LFC
operation. The prevailing methods in this context are multi-agent
collaborative consistency and stochastic consistency methods.

Li et al. (Qing et al., 2015) introduced a Collaborative Consistent
Q-Learning (CCQL) algorithm that leverages a distributed power
dispatch model to swiftly and optimally dispatch power commands
for distributed LFC control, even in scenarios with high
communication demands among units. Xi et al. (Xi et al., 2016b)
proposed a Wolf-Pack Hunting Strategy (WPHS) to handle
topological changes arising from power constraints. Wang et al.
(Wang and Wang, 2019) devised a discrete-time robust frequency
controller for islanded microgrids, capable of achieving frequency
restoration and precise active power dispatch through an iterative
learning mechanism. Lou et al. (Lou et al., 2020) aimed to reduce the
operational costs of isolated microgrids by considering the active
output costs. They implemented a distributed LFC control strategy
based on the consistency approach, leading to an optimal LFC
strategy that benefits both global and self-reliance aspects
through effective communication among various units. This
approach facilitates coordination between controllers and
distributors, akin to centralized LFC, while ensuring smooth
frequency control and minimizing conflicts of interest among
different units. However, it relies heavily on communication
among units and areas, making it less suitable for multi-area
islanded microgrids.

Reinforcement Learning (RL) is a machine learning technique
(Yu et al., 2011; Wiering and Otterlo, 2012) that operates without
precise knowledge of the model. It offers the advantages of self-
learning and dynamic stochastic optimization. RL does not rely on
predefined systematic knowledge but continually adapts and
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optimizes strategies by interacting with the environment and
learning through trial and error. This allows RL to find optimal
solutions for sequential problems. RL-based control algorithms excel
in decision-making, self-learning, and self-optimization, primarily
due to the relatively straightforward design of reward functions. As
the Load Frequency Control (LFC) process follows a Markov
Decision Process (MDP), RL based on MDP can enhance LFC
control strategies by crafting suitable reward functions to translate
contextual information into appropriate control signals. It also aids
in selecting control signals for optimal sequential decision-making
iterations, improving aspects such as data processing, feature
expression, model generalization, intelligence, and sensitivity of
the LFC controller.

This paper explores optimal LFC control strategies for new
energy grid integration using RL algorithms, focusing on multi-
region collaboration and addressing issues arising from the high
proportion of large-capacity new energy sources, which introduce
strong random disturbances. This approach aims to enhance the
compatibility between new energy sources and the power system,
ultimately promoting the development of the new power system. RL
is a pivotal topic in Artificial Intelligence, with Imthias et al.
(Ahamed et al., 2002) being among the first to apply it to power
system LFC. RL is favored for its high control real-time capabilities
and robustness, as it responds primarily to the evaluation of the
current control effect. It has found extensive use in ensuring the safe
and stable control of power systems.

In addition to RL, classical machine learning algorithms have
been widely adopted in Automatic Generation Control (AGC)
strategies. Yinsha et al. (Yinsha et al., 2019) introduced a multi-
agent RL game model based on MDP, capable of handling single-
task multi-decision game problems, which enhances agent
intelligence and system robustness. Sause et al. (Sause, 2013)
proposed an algorithm combining Q-learning and SARSA time
variance within the collaborative reinforcement learning
framework of “Next Available Agent,” effectively addressing
resource competition among multiple agents in a virtual
environment. This improves agents’ exploration abilities in both
static and dynamic environments. An algorithm integrating deep
deterministic policy gradients and preferred experience replay is
presented in (Ye et al., 2019), rapidly acquiring environmental
feedback in a multi-dimensional continuous state-action space.
Yin et al. (Yin et al., 2018) introduced an algorithm based on
Double Q Learning (DQL) to mitigate the positive Q bias issue
in Q learning algorithms through underestimation of the maximum
expected value.

Ensemble learning, a specialized type of machine learning
algorithm that enhances decision-making accuracy through
collective decision-making, is less commonly applied in AGC.
However, Munos et al. (Munos et al., 2016) introduced an
Ensemble Bootstrapping for Q-Learning algorithm, which
combines Q-learning within ensemble learning to correct the
positive Q-value bias problem in Q-learning algorithms. This
algorithm addresses high variance and Q-value deviation in the
Q-learning iteration process, achieving effective control.

The methodologies employed for value function estimation in
reinforcement learning algorithms are fundamentally divided into
two distinct categories, predicated on the alignment between the
target policy (the policy under evaluation) and the behavior policy

(the policy enacted by the intelligent agent during environmental
interaction). These categories are identified as in-policy and off-
policy algorithms. In-policy algorithms undertake the evaluation of
the target policy through the utilization of sample data directly
derived from the target policy itself, a process typically exemplified
by the Sarsa algorithm. Conversely, off-policy algorithms engage in
the assessment of the target policy via sample data procured from
the behavior policy, a method commonly exemplified by the
Q-learning algorithm. Within the context of real-world
engineering applications, in-policy algorithms may encounter
challenges in efficiently generating requisite sample data or may
incur elevated operational costs, which can severely restrict their
applicability in complex decision-making scenarios. Off-policy
algorithms emerge as a solution to these constraints, offering
broad utility in practical Load Frequency Control (LFC)
engineering projects. Nevertheless, these algorithms are not
without their limitations, primarily due to their reduced
robustness and the discrepancies in data distribution between the
sample data utilized for target policy evaluation and that required for
the off-policy algorithm’s evaluation process. Such disparities can
lead to phenomena known as “overestimation” or
“underestimation” of action values, which adversely affect the
decision-making precision and convergence efficiency of off-
policy algorithms. This issue represents a substantial impediment
to the broader application of off-policy reinforcement learning
algorithms, especially in the domain of frequency control for
islanded microgrids.

In the contemporary landscape of science and technology, where
interdisciplinary integration is increasingly becoming a norm, the
borrowing and application of concepts from the natural world to
information processing technologies are gaining momentum.
Among these integrations, the incorporation of quantum physics
principles into information processing technologies stands out,
promising substantial performance improvements. The
amalgamation of quantum physics with artificial intelligence
algorithms, in particular, has shown to yield significant
enhancement effects. The introduction of quantum characteristics
into the frameworks of reinforcement learning algorithms, especially
within the deep reinforcement learning experience replay
mechanism, has attracted considerable academic interest. By
integrating quantum features, the robustness of reinforcement
learning algorithms can be significantly improved, offering a
promising avenue for enhancing algorithmic performance in
complex applications such as LFC in islanded microgrids. This
innovative approach demonstrates the potential to mitigate the
challenges posed by traditional off-policy algorithms, thereby
advancing the field of reinforcement learning and its application
in critical engineering solutions.

This paper introduces the Quantum-Inspired Maximum
Entropy Actor-Critic (QIS-MEAC) algorithm, which incorporates
quantum-inspired principles and the maximum entropy exploration
strategy into the original actor-critic algorithm. It transforms
experiences into a quantum state and utilizes quantum properties
to enhance the experience replay mechanism in deep reinforcement
learning. Consequently, this enhancement improves the algorithm’s
data efficiency and robustness, leading to an overall enhancement in
the quality of Data-Driven Intelligent Load Frequency Control
(DDI-LFC).
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Building upon this algorithm, we have developed a Data-
Driven Intelligent Load Frequency Control (DDI-LFC)
method. This method replaces the conventional LFC
controller with an intelligent agent based on a deep
reinforcement learning algorithm. This agent is capable of
handling the complex environment of isolated island
microgrids and achieving adaptive multi-objective optimal
frequency control.

Verification using the South Grid Yongxing Island isolated
island microgrid model demonstrates the effectiveness of
the proposed method. It fully leverages the frequency
regulation capabilities of distributed power sources and
energy storage, resulting in minimized frequency deviation
and generation costs.

The innovations in this paper can be summarized as follows:

1) This paper introduces a novel approach known as Data-Driven
Intelligent Load Frequency Control (DDI-LFC) to tackle the
problem at hand. Instead of the traditional LFC controller, this
method employs an intelligent agent built upon a deep
reinforcement learning algorithm.

2) Furthermore, this paper puts forward the Quantum-Inspired
Maximum Entropy Actor-Critic (QIS-MEAC) algorithm,
which seamlessly integrates quantum-inspired principles
and the maximum entropy exploration strategy into the
actor-critic algorithm.

Section 2 provides an in-depth description of the islanded
microgrid system model. In Section 3, we present a novel
method, presenting its comprehensive framework. Section 4 is
dedicated to conducting case studies that assess the effectiveness
of the proposed approach. Finally, in Section 5, we conclude the
paper by summarizing key insights and discussing the primary
research findings.

2 Model for island microgrid

2.1 Microgrids and distributed
power sources

An islanded microgrid is a small-scale system that generates and
distributes power using various distributed sources, storage devices,
converters, loads, and monitoring and protection devices.
Microgrids can operate autonomously and independently, with
self-control, protection and management functions. The purpose
of microgrid is to enable the flexible and efficient use of distributed
sources and to address the challenge of connecting a large number
and variety of distributed sources to the grid. Microgrid can utilize
renewable energy and cogeneration, among other forms of energy, to
enhance energy efficiency and power reliability, to lower grid losses
and pollution emissions, and to facilitate the transition to smart grid.
Photovoltaic, wind, internal combustion engines, fuel cells, and
storage devices are some of the common distributed sources in
microgrids. A quick and effective control strategy is needed to
ensure the safe and stable operation of the microgrid, by
maintaining the balance of voltage, frequency and power. The
transfer function of an islanded microgrid is shown in Figure 1.

2.2.1 Photovoltaic systems
To model the electrical behavior and power production of the

PV power generation system, the mathematical model incorporates
the PV array, the MPPT controller, the DC-DC converter, and other
components. The following equations express the mathematical
model of the PV array: Details as Eq. 1.

I � Iph − IS e
q V+IRs( )

AkT − 1( ) − V + IRS

Rp
(1)

where I is the PV array output current, V is the PV array output
voltage, Iph is the photogenerated current, IS is the reverse saturation
current, q is the electron charge, A is the diode quality factor, k is the
Boltzmann’s constant, T is the cell temperature, RS is the series
resistor, Rp is the parallel resistor.

2.2.2 Wind power systems
The mathematical model of the wind power system includes

wind turbine, wind wheel, generator, inverter etc. to simulate the
mechanical and electrical characteristics of the wind power system.
The mathematical model of the wind turbine can be represented by
the following equations. Details as Eq. 2.

Pw � 1
2
ρACp λ, β( )v3w (2)

where Pw is the wind turbine output power, ρ is the air density, A is
the swept area of the wind turbine, Cp is the wind turbine power
coefficient, λ is the wind turbine rotational speed ratio, β is the wind
turbine blade inclination angle, vw is the wind speed.

2.2.3 Fuel cells
The mathematical model of a fuel cell includes electrochemical

reactions, thermodynamics, hydrodynamics, mass transfer, heat
transfer, etc. to simulate variables such as voltage, current,
temperature, concentration, etc. of the fuel cell. The

FIGURE 1
Model for Island microgrid.
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mathematical model of a fuel cell can be represented by the following
equations. Details as Eq. 3.

Vfc � E0 − ηa − ηc − ηohm (3)

Where Vfc is the fuel cell output voltage, E0 is the fuel cell open
circuit voltage, ηa is the anode polarisation loss, ηc is the cathode
polarization loss and ηohm is the ohmic loss.

2.2.4 Micro gas turbine modelling
Conventional power generators used in microgrids are generally

microfuel generators. Compared with diesel generators, these
generators have cleaner emissions and lower operation and
maintenance costs, so they are mostly used for daily power
supply. According to the analysis of (Xi et al., 2016b), the
frequency control model of microfuel generator can be
represented by the model in Figure 1 Details as Eqs. 4, 5.

CMT,OM � ∑T
t�1
kMT,OMPMT t( ) (4)

CMT,fuel � CMTΔt
1

LHV
∑T
t�1

PMT t( )
ηMT

(5)

where CMT is the maintenance cost of the power consumption, the
value of CMT,fuel is the unit price of MT fuel gas, LHV is the low
calorific value of natural gas, and PMT is the operating
efficiency of MT.

2.2.5 Diesel generators
Sag control is a technique that enables diesel generators to keep

their frequency and voltage output stable. With sag control, each
unit can adjust its power output to the voltage sag, without requiring
any communication or coordination with other units. With sag
control, each unit can adjust its power output to the voltage sag,
without requiring any communication or coordination with other
units. This enhances the reliability and flexibility of the distributed
generation system. Details as Eqs. 6, 7.

CDG,OM � ∑T
t�1
kDG,OMPDG t( ) (6)

CDG,fuel � α + β∑T
t�1
PDG t( ) + γ∑T

t�1
P2
DG t( ) (7)

where CDG,OM is the cost of the DG, kDG,OM is the DG maintenance
factor; PDG is the fuel cost of the DG, and α, β, and γ are the fuel cost
coefficients.

2.2.6 Electrochemical energy storage devices
Energy storage device: the mathematical model of the energy

storage device includes charge/discharge characteristics, energy
management system, voltage control, etc. to simulate the charge/
discharge process and power output of the energy storage device.
The mathematical model of the energy storage device can be
represented by the following equations. Details as Eqs. 8–10.

E � Pch − Pdis (8)
SOC � E

Emax
(9)

Vbat � Eoc − Rint Ibat (10)
where E is the energy change rate of the energy storage device, Pch is
the charging power of the energy storage device, Pdis is the
discharging power of the energy storage device, SOC is the state
of charge of the energy storage device, Emax is the maximum energy
of the energy storage device, Vbat is the output voltage of the energy
storage device, Eoc is the open-circuit voltage of the energy storage
device, Rint is the internal resistance of the energy storage device, Ibat
is the output current of the energy storage device.

2.2 Objective functions and constraints

The traditional LFCmethod formicrogrids only focuses on reducing
the frequency error of the isolatedmicrogrid, without taking the cost into
account. This paper presents a DD-LFC method that achieves both
objectives: minimising the frequency variation and the power generation
cost of the units. The DD- LFC method employs an integrated multi-
objective optimization, such that the frequency error of the isolated
microgrid is reduced to aminimum. LFCmethod employs an integrated
multi-objective optimization, such that the sum of the absolute values of
the frequency variation and the power generation cost is minimized. The
constraints are shown below. Details as Eqs. 11, 12.

min∑T
t�1

Δf
∣∣∣∣ ∣∣∣∣ +∑T

t�1
∑n
i�1

αiΔP2
Gi + βiΔPGi + γi( ) (11)

∑n
i�1
ΔPin

i � ΔPorder−∑

ΔPorder−∑*ΔPin
i ≥ 0

ΔPi
min ≤ΔPin

i ≤ΔPi
max

ΔPGi t( ) − ΔPGi t + 1( )| |≤ΔPrate
i

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(12)

where ΔPorder-∑ is the total command, ΔPimax and ΔPimin are the
limits of the ith unit, ΔPirate is the ramp rate of the ith unit, and ΔPiin
is the command of the ith unit.

3 Training for proposed method

3.1 MDP modelling of DDI-LFCs

RL aims to determine the optimal policy for a Markov Decision
Process (MDP) where an agent engages in continuous exploration.
The policy function, denoted as π, maps the state space (S) to the
action space (A). The optimal policy is the one that maximizes the
cumulative reward.

In the context of microgrid Load Frequency Control (LFC),
Markov Decision Process modeling involves the utilization of MDP,
a mathematical framework, to characterize and optimize load
dispatch and frequency stabilization problems within microgrids.
MDP serves as a discrete-time stochastic control process that models
decision-making in situations with uncertainty and partial control.
It comprises four key components: the state space, action space, state
transition probability, and reward function.

The primary objective of modeling using MDP is to identify an
optimal strategy for the microgrid. This strategy is essentially a
mapping function from the state space to the action space, designed
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to maximize or minimize the cumulative rewards over the long term
for the microgrid. The cumulative reward Gt from time t is defined
as. Details as Eq. 13.

Gt � ∑n
i�0
γirt+i � rt + γrt+1 + γ2rt+2 +/γnrt+n (13)

where λ is the discount factor, which value lower than 1 is typically
used to avoid the endless accumulation of expected rewards that
causes the learning process to diverge. The distributor employs the
PROP allocation method to guarantee the reasonableness of the
power distribution for each unit.

3.1.1 Action space
The agent generates the total command that determines the

unit’s output. The only variable that the agent can control is its
action, which accounts for 10% of this command. The only variable
that the agent can control is its action, which accounts for 10% of
this command. Details as Eq. 14.

ΔPorder−∑/10[ ] (14)

where ΔPorder−∑ is the total command.

3.1.2 State space
The microgrid system has two state variables: the frequency

error and its integral. The frequency error measures the difference
between the actual and the target frequency of the microgrid, while
the integral accumulates the error over time. The frequency error
measures the difference between the actual and the target frequency
of the microgrid, while the integral accumulates the error over time.
The output variable is the total power generated by the distributed
energy sources in the microgrid. Details as Eq. 15.

Δf ∫t

0
Δfdt ΔPtotal

G[ ] (15)

where ΔPtotal
G is the total output.

3.1.3 Reward functions
The controller aims to reduce both the frequency variation and

the production cost. To encourage the agent to find the best policy, a
penalty for control actions is included in the reward function. The
reward function is defined as follows. Details as Eqs. 16, 17.

r � −μ2 Δf
∣∣∣∣ ∣∣∣∣ + μ3∑

n

i�1
Ci (16)

T � 0 Δf
∣∣∣∣ ∣∣∣∣< 0.01HZ

−3 Δf
∣∣∣∣ ∣∣∣∣≥ 0.01HZ

{ (17)

where r is the reward and A is the punishment function.

3.2 Quantum-inspired QIS-MEAC
algorithm framework

3.2.1 QIS-MEAC foundation framework
This paper proposes a novel experience replay mechanism for

quantum-inspired deep reinforcement learning algorithms, which

leverages some quantum properties and applies them to
reinforcement learning. The aim of this improvement is to offer
a natural and user-friendly experience replay method that
transforms experiences into quantized representations that
correspond to their importance and sampling priority, thereby
altering their likelihood of being sampled.

Current deep reinforcement learning algorithms still have some
room for improvement in terms of data utilization efficiency,
reference adjustment complexity, and computational cost,
especially as the reinforcement learning application scenarios
become more complex and dynamic, making the interaction with
the environment very expensive. Therefore, the demand for data
utilization efficiency and robustness of the algorithms is also
increasing. By incorporating quantum properties into the
experience replay mechanism of deep reinforcement learning, we
can achieve better results with less effort in practical control tasks.
The DDI-LFC method proposed in this paper improves the
experience replay mechanism of deep reinforcement learning by
using quantum properties, which enables it to effectively learn more
samples and prior knowledge, thus enhancing its robustness and
allowing the LFC to perform better under various complex load
disturbances and achieve multi-objective optimal control.

Figure 2 above illustrates the experience replay process of the
quantum-inspired deep reinforcement learning algorithm, and
Figure 2 shows its overall structure. In each training iteration
cycle, the agent interacts with the environment and reads the
required state and reward information at step t, and then
generates a state transition et based on its chosen actions. This
state transition is first transformed into a quantum state
representation, or more precisely, a mathematical expression of
the kth qubit in the quantum integrated system, where k is the
index of the qubit in the cache pool. Next, the qubit undergoes a
quantum preparation operation and becomes a quantum in a
superposed state. Then, by observation, the quantum state
representation of the experience collapses into either an
acceptance or a rejection state, with a probability that reflects its
importance, and a small data batch is drawn from the accepted
experience and fed into the neural network for training. Moreover,
after each training, the extracted experience is returned to the
experience pool and converted back into the quantized
representation of the experience. This conversion process
involves a combination of two kinds of western operations:
quantum preparation operation and quantum depreciation
operation. The quantum preparation operation adjusts the
probability amplitude of the quantized representation of the
experience to match its TD-error, and the quantum depreciation
operation considers the number of times the experience is replayed,
and adding the replay frequency of the experience will diversify the
sampled experience, so as to make the experience replay more
balanced. The whole process repeats until the algorithm stops,
and the following sections will explain the operations in more detail.

The QIS-MEAC algorithm aims to maximize both the
cumulative reward and the entropy. Entropy quantifies the
uncertainty of stochastic strategies, and in deep reinforcement
learning, higher entropy implies more diverse and exploratory
strategies. Therefore, the QIS-MEAC algorithm has a greater
ability to explore. The following is the optimal policy function of
the QIS-MEAC algorithm with entropy. Details as Eq. 18.
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π* � argmaxπs st,at( )τπ ∑T
t�0
γt r st, at( ) + αH π ·| st( )( )( ) | s0 � s⎡⎣ ⎤⎦

H π at | st( )( ) � −∑
st

π at | st( )log π at | st( )

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(18)

where π* denotes the optimal policy function, st denotes the t
momentary state, at denotes the t momentary action, τπ denotes
the distributional trajectory under the policy π, r is the reward, γ

denotes the discount factor, H denotes the entropy, and α is the
parameter used to determine the degree of importance of
the entropy.

3.2.2 Quantitative representation of experience
In quantum theory, a quantum can be realised by a two-level

electron, a rotating system or a photon. For a two-level electron, |0>
can represent the ground state and, in contrast, |1> the excited
state. For a rotating system, |0> can represent accelerated rotation,

FIGURE 2
Experience pool quantum operations.

FIGURE 3
Experience pool quantum operations.
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while |1> represents decelerated rotation. For a photon, |0> is
considered as a quantum system, and its two eigenstates |0> and
|1> represent the acceptance or rejection of the empirical quantum
bit, respectively. In order to better demonstrate the empirical
quantum bit and its eigenstates, their details are shown in Figure 3.

Throughout the learning process, the agent continuously tries to
interact with the environment, and this learning process can be
modelled as a Markov decision process. For each time step t, the
state of the agent can be written as st, at which the agent chooses an
action at according to the action strategy and a specific exploration
strategy, and after the action, it moves to the next state st+1, and
obtains a reward rt from the environment. Eventually, the four
elements together make up a state transfer, and are put into the
experience cache pool after being assigned with the new index k. The
state transfer process is converted into a state transfer process by
converting it into an experience cache. By converting this state
transfer process into a quantum representation, we define
acceptance and rejection of a state transfer as two eigenstates.
The state transfer is then considered as a quantum bit.

Since the quantised expression of the kth experience in the
experience pool is of the form |ψ(k) > , the state of the experience
cache pool consisting of M experience quantum bits can be
expressed as a tensor product of M quantum subsystems of the
form. Details as Eq. 19.

ψtotal
∣∣∣∣ 〉 � ψ 1( )∣∣∣∣ 〉 ⊗ ψ 2( )∣∣∣∣ 〉 ⊗ . . . ψ M( )∣∣∣∣ 〉 (19)

3.3.3 Replay mechanisms for quantized
experiences

The following page shows the pseudo-code for an integrated
quantum-inspired deep reinforcement learning algorithm. At each
time step, the agent produces a state transition by interacting with
the environment. Since a new state transition does not have
associated TD-errors, we assign it the TD-error with the highest
priority in the experience pool, whichmeans giving it a higher replay
priority. This ensures that every new experience will be sampled at
least once with the highest priority. This experience is then
transformed into a quantum bit. A quantum preparation
operation that uses Grover iteration as the fundamental
operation is applied to the quantum representation of the
experience in the uniform state until it reaches the final state.
When the experience pool is full, the state transition is sampled
with a probability amplitude that is proportional to the probability
amplitude of its quantum representation, and the chosen
experiences form a small data batch that is fed into the neural
network for training. For those chosen experiences, when they are
returned to the experience pool and prepared as uniform states
again, their corresponding quantum representations are also subject
to a quantum preparation operation to adjust to the new priority of
the experience, and a quantum depreciation operation to adapt to
the change in the number of times the experience is replayed. This
operation is repeated until the algorithm converges.

An experience pool is established in deep reinforcement learning
to store the experience data that are utilized to train and adjust the
neural network parameters of an agent. The agent interacts with the
environment once more under the direction of the neural network
with the new parameters after training it with a small amount of

data, and simultaneously produces new empirical data. Hence, the
data in the experience pool have to be renewed and replaced
periodically to attain better training outcomes. For this purpose,
the experience pool has a fixed size, and when the pool is full (as
shown by k>M in the algorithm’s pseudo-code) and new experience
data are created, the oldest experience is removed to accommodate
the new experience (as shown by k reset to 1 in the pseudo-code of
the algorithm). Moreover, the neural network parameters are only
updated after the experience pool is full, which corresponds to after
LF is set to True in the pseudo-code.

4 Experiment and case studies

This paper validates the proposed algorithm in the LFCmodel of
an isolated island microgrid on Yongxing Island. This refers to a
smart energy system consisting of diesel power generation,
photovoltaic power generation, and energy storage, built on
Yongxing Island, the largest island among the South China Sea
islands. This system can be connected to or disconnected from the
main power grid as needed. The size and parameters of the
microgrid on Yongxing Island are as follows. The microgrid has
a total installed capacity of 1.5 MW, including 1 MW from the diesel
generator, 500 kW from the photovoltaic power generation, and
200 kWh from the energy storage system. The microgrid can achieve
100 per cent priority use of clean energy sources such as
photovoltaic, and it can also flexibly access a variety of energy
sources in the future, such as wave energy and portable power. The
completion of this microgrid increases the power supply capacity of
Yongxing Island by eight times, making the power supply stability of
the isolated island comparable to that of a city. In this paper, we also
perform simulations and tests on the DDI-LFC that employs the
QIS-MEAC algorithm and compare it with other control algorithms,
such as DDI-LFC based on SQL algorithm (Li et al., 2021), DDI-LFC
based on SAC algorithm (Xi et al., 2016), DDI-LFC based on PPO
algorithm (Xi et al., 2016b), DDI-LFC based on TRPO algorithm (Xi
et al., 2021), DDI-LFC based on MPC algorithm Xi et al., 2021),
DDI-LFC based on Fuzzy-FOPI algorithm (Xi et al., 2021), TS-
fuzzy-PI (Xi et al., 2022), PSO-PI (Li and Zhou, 2024), and GA-PI
(Li and Zhou, 2023). To run the simulation models and methods
that we present in this paper, we use a computer with 2 CPUs of
2.10 GHz Intel Xeon Platinum processor and 16 GB of RAM. The
simulation software package that we use is MATALB/Simulink
version 9.8.0 (R2020 a).

4.1 Case 1: step disturbance

As displayed in Table 1, the Quantum-Inspired Maximum
Entropy Actor-Critic (QIS-MEAC) algorithm outperforms the
other algorithms significantly, resulting in a substantial reduction
in frequency deviation ranging from 9.65% to 75.55% and a decrease
in generation cost ranging from 0.0004% to 0.012%. The microgrid’s
frequency response and diesel generator’s output power are both
affected by various control methods.

The simulation outcomes unequivocally highlight QIS-MEAC
as the leading performer among the four intelligent algorithms, with
soft Q-learning following closely. This can be attributed to the fact
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that both QIS-MEAC and soft Q-learning possess the capability of
maximum entropy exploration. This enables them to dynamically
adjust the learning pace, continuously update the function table
through shared experiences, and determine the relative weight of
each region. Consequently, each control region can adapt its control
strategy effectively, enhancing control flexibility.

Unlike soft Q-learning, QIS-MEAC doesn’t require averaging
strategy evaluations. Instead, it can directly make decisions based on
dynamic joint trajectories and historical state-action pairs.
Additionally, it exhibits strong adaptability to the learner’s
instantaneous learning rate, leading to improved coordinated
Load Frequency Control (LFC). QIS-MEAC demonstrates
remarkable adaptability and superior control performance under
varying system operating conditions, thereby confirming the
algorithm’s effectiveness and scalability.

RL offers advantages over many methods due to its
straightforward and universally applicable parameter settings.
Nevertheless, the application of RL theory encounters new
challenges. Firstly, for large-scale tasks, determining an optimal
common exploration goal for the reinforcement learning of multiple
individual intelligences becomes complex. Secondly, each
intelligence must record the behaviors of other intelligences
(leading to reduced stability) to interact with them and attain
joint behaviors, consequently slowing down the convergence
speed of various methods. In light of these issues, multi-
intelligence reinforcement learning techniques with collective
characteristics have emerged and gained widespread adoption.
The core concern of reinforcement learning is how to solve
dynamic tasks in real-time using intelligent entities’ exploration
techniques in dynamic planning and temporal difference methods.
The Quantum-Inspired Maximum Entropy Actor-Critic (QIS-
MEAC) proposed in this paper is innovative and efficient, thanks
to its precise independent self-optimization capabilities.

In Figure 4A below, the illustration demonstrates how the total
power output of the unit effectively manages load variations,
including scenic and square wave fluctuations. The active output
curve of the LFC unit exhibits overshooting to counteract the effects
of random power fluctuations. Figure 4B presents the output

regulation curves for different LFC unit types. As shown in the
figure, when the load increases, smaller hydro and micro-gas units
with lower regulation costs are preferred for increasing output.
Conversely, when the load decreases, biomass and diesel units
with higher regulation costs are prioritized to reduce output,
leading to improved frequency control. The LFC output
allocation adheres to the equal micro-increment rate principle,
ensuring that the final active output of each unit aligns with the
economic allocation principle. Other Deep Reinforcement Learning
(DRL) algorithms face challenges in producing satisfactory curves
due to the lack of performance enhancement techniques.
Furthermore, model-based control algorithms encounter
difficulties in demonstrating effective control capabilities due to
their heavy reliance on models.

New energy units offer distinct advantages, including rapid start
and stop capabilities, high climb rates, and extensive regulation
ranges compared to diesel units. They play a pivotal role in the
system, taking on most of the output tasks to address power grid
load fluctuations. The controller’s online optimization results
highlight the smoother and more stable regulation process
achieved by the proposed method. This ensures that unit outputs
quickly stabilize under new operational conditions, enabling optimal
collaboration in response to sudden load changes in the
power system.

4.2 Case 2: step disturbance and renewable
disturbance

This study presents a smart distribution network model that
integrates various new energy sources, including Electric Vehicles
(EVs), Wind Power (WP), Small Hydro (SH), Micro-Gas Turbines
(MGTs), Fuel Cells (FCs), Solar Power (SP), and Biomass Power
(BP). The model is employed to assess the control effectiveness of
Quantum-Inspired Maximum Entropy Actor-Critic (QIS-MEAC)
in a highly stochastic environment.

Electric vehicles, wind power, and solar power are considered as
stochastic load disturbances due to their significant uncertainty in

TABLE 1 Statistical results for Case 1.

Algorithm Average frequency deviation (Hz) Power generation costs ($)

|Δf |avg Ctotal

QIS-MEAC 0.01150 7,253.07

SQL 0.01261 7,253.88

SAC 0.01988 7,253.98

PPO 0.01329 7,253.82

TRPO 0.01568 7,253.57

MPC 0.01369 7,253.82

Fuzzy-FOPI 0.01396 7,253.82

TS- fuzzy-PI 0.01577 7,253.57

PSO-PI 0.01655 7,253.48

GA-PI 0.02019 7,253.10

Frontiers in Energy Research frontiersin.org09

Shen et al. 10.3389/fenrg.2024.1366009

291

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1366009


output. Consequently, they are excluded from the Load-Frequency
Control (LFC) analysis. The output of the wind turbine is
determined by simulating stochastic wind speed, using finite
bandwidth white noise as input. The solar power model derives
its output from the simulated variations in sunlight intensity
throughout the day.

To comprehensively investigate the intricate effects of random
load variations within a power system experiencing uncertain large-
scale integration of new energy sources, we introduce random white
noise load disturbances into the smart distribution network model.
Our objective is to evaluate the performance of Quantum-Inspired
Maximum Entropy Actor-Critic (QIS-MEAC) under challenging
random perturbations.

We utilize 24 h of random white noise disturbance as the
evaluation criterion to gauge QIS-MEAC’s long-term
performance in the face of significant random load disturbances.

QIS-MEAC demonstrates remarkable accuracy and rapid
responsiveness in tracking these random disturbances. The
statistical results of the simulation experiments are presented in
Table 2, where the generation cost represents the total regulation
cost of all generating units over 24 h.

The distribution network data reveals that the frequency
deviation in other algorithms is 1.12–1.71 times higher than that
in the QIS-MEAC algorithm, while the QIS-MEAC algorithm
reduces the generation cost by 0.067%–0.085%. Analysis of
control performance metrics underscores QIS-MEAC’s superior
economy, adaptability, coordination, and optimization control
performance compared to other intelligent algorithms.

Furthermore, we conducted tests involving various disturbance
types, including step waves, square waves, and random waves. The
experimental outcomes demonstrate that Multi-Intelligence Actor-
Critic exhibits strong convergence performance and high learning
efficiency. Notably, in a random environment, it displays
exceptional adaptability by effectively suppressing random
disturbances and enhancing dynamic control performance in
interconnected grid environments. It establishes a balanced
relationship between the output power of different unit types and
the load demand across a 24-h period. Consequently, it ensures that
the total power output of the units accurately tracks load variations,
achieving complementary and synergistic optimal operation among
multiple energy sources in each time period.

5 Conclusion

The manuscript delineates the development and
implementation of a Data-Driven Intelligent Load Frequency
Control (DDI-LFC) strategy, aimed at facilitating adaptive, multi-
objective optimal frequency regulation through the application of a
Quantum-Inspired Maximum Entropy Actor-Critic (QIS-MEAC)
algorithm. The salient contributions of this research are articulated
as follows:

1) Integration Challenges of Distributed Energy Resources: The
manuscript identifies the complexity introduced into islanded
microgrid operations by the large-scale integration of
distributed, renewable energy sources. These sources exhibit
high degrees of randomness and intermittency, resulting in
severe random perturbations that compromise the frequency
control performance and elevate regulation costs, thereby
posing significant challenges to the system’s safety and
stability. In response, the DDI-LFC method is introduced,
replacing traditional Load Frequency Control (LFC)
mechanisms with a deep reinforcement learning algorithm-
based agent, aimed at enhancing frequency regulation amidst
these challenges.

2) Quantum-Inspired Algorithmic Enhancement: To navigate
the intricate environment of the islanded microgrid and
achieve adaptive, multi-objective optimal frequency control,
the research proposes the Quantum-Inspired Maximum
Entropy Actor-Critic (QIS-MEAC) algorithm. This
innovative algorithm integrates quantum-inspired principles
and a maximum entropy exploration strategy with the
conventional actor-critic algorithm framework. By

FIGURE 4
Results for case 1. (A) Frequency deviation. (B) Total
regulated output.
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transforming experiences into quantum states and exploiting
quantum properties, the algorithm significantly enhances the
efficiency and robustness of data utilization within the deep
reinforcement learning experience replay mechanism, thereby
augmenting the effectiveness of the DDI-LFC approach.

3) Empirical Validation and Impact: The efficacy of the proposed
DDI-LFC method is empirically validated using the Yongxing
Island isolated microgrid model within the South China Grid.
Results demonstrate the method’s proficiency in leveraging the
frequency regulation capabilities of distributed power sources and
energy storage systems. Consequently, it substantially mitigates
frequency deviations and reduces generation costs, underscoring
the potential of the DDI-LFC strategy to improve the operational
reliability and economic efficiency of islanded microgrids.

Through these contributions, the manuscript not only addresses
critical challenges associated with the integration of renewable
energy sources into microgrids but also showcases the potential
of quantum-inspired algorithms in enhancing the landscape of
intelligent load frequency control.
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TABLE 2 Data of case 2.

Control algorithms Average frequency error (Hz) Generation cost ($)

|Δf |avg Ctotal

QIS-MEAC 0.029923 18,704.22

SQL 0.035237 18,719.8

SAC 0.048217 18,720.18

PPO 0.033610 18,719.42

TRPO 0.039404 18,718.66

MPC 0.034195 18,719.06

Fuzzy-FOPI 0.035101 18,718.52

TS- fuzzy-PI 0.040360 18,718.12

PSO-PI 0.041450 18,718.28

GA-PI 0.051276 18,716.76
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Fault location method for
distribution networks based on
multi-head graph
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The precise fault localization holds significant importance in reducing power
outage duration and frequency in power systems. The widespread application of
synchrophasor measurement technology (PMU) has laid the foundation for
achieving accurate fault localization in distribution networks. However, fault
localization methods based on PMU often suffer from a significant decrease in
accuracy due to topological reconstruction and inaccurate parameters. To
address these challenges, this paper proposes a fault location method for
distribution networks based on Multi-head Graph Attention Networks (GATs).
The proposed method begins by modeling the distribution network as a graph,
where nodes represent network components and edges represent the
connections between these components. GATs have been employed to learn
the underlying relationships between topological structure and electrical
characteristics of the distribution network. The results demonstrate that our
approach outperforms traditional fault location methods in terms of accuracy
and speed. The proposed method achieves high precision which reducing the
time required for fault location and enabling faster response times for network
maintenance personnel.

KEYWORDS

fault location, distribution networks, graph attention networks, graph convolutional
networks, smart grids

1 Introduction

The reliable operation of distribution networks is of paramount importance for
ensuring uninterrupted power supply to consumers. However, faults in distribution
networks are inevitable and can lead to power outages and disruptions. Therefore,
efficient fault location methods are crucial for minimizing downtime and improving the
overall reliability of distribution networks. For highly urbanized distribution networks,
precise fault localization techniques can reduce the workload of fault restoration and
shorten the outage duration for end-users. On the other hand, the techniques can narrow
down the patrol range and improve patrol efficiency in rural and remote areas with harsh
deployment conditions. However, the current development of precise fault localization in
distribution networks faces several challenges, including: 1) Complex line structure. 2)
Widespread asymmetry in line parameters. 3) Incomplete measurement systems and lack of
clock synchronization mechanisms to support precise fault localization technology.
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In recent years, synchrophasor measurement units (PMUs)
(Dashtdar et al., 2023) have been successfully applied in
transmission systems (Swetapadma et al., 2022). The
development of distribution network synchrophasor
measurement units (D-PMUs) has achieved goals such as
miniaturization, cost reduction, easy installation, and
maintenance-free operation. The application and development of
D-PMUs provide more clock synchronization information for fault
localization in distribution networks. This advancement has led to
significant developments in both traditional methods and artificial
intelligence approaches.

Traditional fault location has relied on manual inspection and
laborious calculations based onmeasurements. These methods are
often time-consuming and prone to errors and they will result in
delays in identifying and repairing faults. Moreover, the
increasing complexity and scale of distribution networks pose
additional challenges for traditional fault location approaches.
Traditional fault location methods include impedance method
(Ishnathevar and Ngue, 2011), traveling wave method (Tang et al.,
2013) and matrix method (Wu et al., 2011; Majidi and Etezadi-
Amoli, 2018). All of the aforementioned techniques assess the
characteristics of distribution networks during fault occurrences,
encountering issues related to reliability due to challenges in
establishing thresholds and relying on single characteristics. In
Dai and Xu (2017), an enhancement to the impedance method is
introduced by integrating it with the phase analysis method. This
approach enables the analysis of power characteristics for various
fault types at the specific fault location. Zhu (2006) leverages
the direct proportionality between the reactance of the faulty
circuit and the fault’s distance to determine the line distance
from the measurement point to the fault location. Xing et al.
(2017) constructs a topological correlation matrix for each
network element, offering adaptability to changes in network
topology. However, it still struggles to handle complex network
configurations. The methods discussed above in the distribution
network domain frequently necessitate the establishment of fixed
thresholds through empirical or simulation-based means to create
fault diagnosis and localization criteria. This poses difficulties in
adapting to structural changes in intricate distribution networks.
And it presents challenges in maintaining applicability during
network reconfigurations and various scenarios.

With the recent advancements in multi-source data fusion and
artificial intelligence, there is a technical foundation for precise
fault localization techniques based on multiple sources of
information, including D-PMU data. This is expected to
revolutionize fault diagnosis and localization techniques
(Phadke et al., 1983). In Sapountzoglou et al. (2020), a fault
diagnosis model for low-voltage smart distribution networks is
developed using gradient boosting trees. It used a fixed number of
interpolations are employed to replace specific branch
measurements. While the aforementioned literature can to some
extent adapt to changes in network topology, it falls short of
accurately pinpointing fault segments.

The development of graph neural networks (GNN) has provided
a solution for fault localization based on D-PMUs. Leveraging
complex graph theory analysis and the feature extraction
capabilities of neural networks, it can address fault localization
problems in scenarios with complex topological changes. By

representing a distribution network as a graph, GNN becomes
possible to exploit the inherent structure and connectivity of the
network for fault location purposes. Currently, the most widely used
GNN include Graph Convolutional Networks (GCN) (Shervashidze
et al., 2009; Kipf and Welling, 2016) and Graph Attention Networks
(GAT) (Velickovic et al., 2022). Compared to GCN, GAT
incorporates attention mechanisms from computer vision,
allowing it to focus more on neighboring nodes, thereby better
meeting the requirements of inductive learning tasks. As a result,
GAT is more suitable for tasks with frequent topological changes.
GATs are designed to capture the relationships between different
nodes in a graph by assigning attention weights to neighboring
nodes, enabling the network to focus on the most relevant
information for a given task. Choi et al. (2017) suggests a novel
approach that merges Long Short-Term Memory (LSTM) with an
attention mechanism, employing it for the task of node
classification in graph data. Meanwhile a distinct technique is
introduced which effectively utilizes the graph attention
mechanism for node embedding purposes (Lee et al., 2018). All
of the mentioned articles have successfully applied GAT to a
variety of graph tasks. However, the application of GAT in the
field of fault localization in power systems is still in its nascent
stages (Chen et al., 2020).

Motivated by the potential of GATs for graph-based
applications, this paper proposes a fault location method based
on GAT. The method aims to leverage the advantages of GATs in
capturing the complex relationships between network components
and improve the accuracy and efficiency of fault location.
Moreover, this paper proposes the mechanism of multi-head
attention on top of GAT. By employing mutually independent
multi-head attention mechanisms, the allocation of attention
weights among nodes becomes more explicit. This enhances the
model’s learning capability while mitigating the risk of overfitting.
Finally, this paper demonstrates its effectiveness through
experimental evaluation. The historical fault data containing the
current, voltage and topology of distribution network is used to
train the GATmodel. Through the training process on this dataset,
the GAT model acquires the capability to discern various fault
types and locations.

The subsequent sections of this paper are structured as follows:
Section 2 elucidates the framework of the fault localization
technique for distribution networks, which is grounded in GAT.
Section 3 expounds upon the methodology which encompassing the
graphical representation of the distribution network and the design
of the GAT architecture. Section 4 outlines the experimental
configuration and provides an assessment of the obtained results.
Section 5 engages in a discussion of the outcomes and offers a
concise summary of the proposed approach.

2 The framework of fault localization
algorithm based on GATs using D-PMU

2.1 Acquisition of distribution network
measurement data

D-PMU can provide synchronized phasor and waveform data
with time stamps. It is a crucial source of information for fault
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localization in medium-voltage distribution networks. Additionally, it
can serve as an important pathway for synchronizing and transmitting
information from other new types of sensors. However, due to the
characteristics of medium-voltage distribution network structures and
economic considerations, it is not feasible to fully deploy D-PMUs
throughout the distribution network. Therefore, the deployment of
D-PMUs must ensure that the voltage and current at both ends of any
line within the localization area can be calculated based on D-PMU
data. In other words, the configuration of D-PMUs should meet the
calculation requirements for the voltage at any bus and the current in
any branch within the area. The installation positions of D-PMUs in a
distribution network are illustrated in Figure 1.

The measurement data obtained from D-PMU can provide
synchronized data for distribution networks through the
principle of double-end measurement fault localization. This
enables data-driven fault localization techniques to be fully
supported by comprehensive data.

2.2 Fault localization methods based on GAT

Traditional fault localization methods for distribution networks
primarily rely on fault characterization. These algorithms often face
challenges when dealing with intricate scenarios, such as fault
reconstruction in distribution networks. In our study, this paper
proposes a novel fault localization approach that integrates the
topology of the distribution network which offering solutions to the
aforementioned issues. Figure 2 showcases the deployment of the GAT
model for fault localization in distribution networks. The model’s
implementation proceeds through the following steps.

1) Step1: Acquisition of datasets. We begin by obtaining the real
topology of a distribution network. Subsequently, we combine
this topology with its operational data to create a
comprehensive simulation environment for the purpose of
fault localization in distribution networks. The distribution
network fault data and labels are gathered by introducing
various fault types into the network, allowing us to construct a
dataset that represents different fault scenarios.

2) Step2: The construction and training of GAT. We visually
represent the distribution network fault data as a graph,
enabling us to partition the fault dataset efficiently. With
this partitioned dataset, we proceed to build a GAT model
designed specifically for fault localization within
distribution networks. The training process employs end-
to-end supervised learning techniques to renew the model’s
parameters.

3) Step3: Applications and Testing. In the final step, we
evaluate the practicality and effectiveness of our GAT
model. To do so, we conduct extensive testing and
application scenarios, including situations where the
distribution network’s topology undergoes changes. Our
model takes as input various features such as three-phase
currents, voltages, and the topological information of
network nodes. The model’s output consists of the
identification of faulty lines and the classification of fault
types, making it a valuable tool for real-world fault
detection and localization in distribution networks.

3 Methodology

3.1 The graph representation of distribution
network fault

Apart from considering voltage and current values at nodes
in distribution network fault data, it is essential to acknowledge
that changes in network topology significantly influence fault
characteristics. Conventional fault localization methods solely
rely on fault characteristics for diagnosis. When the distribution
network’s topology shifts, these methods necessitate
recalculations and adjustments, leading to computational
complexity and limited applicability. Hence, it becomes
imperative to seamlessly incorporate both distribution
network topology and fault characteristics. By effectively
integrating these factors and transforming them into inputs
for AI algorithms, we enhance our ability to adapt to
alterations in distribution network topology. This integration
not only simplifies fault localization but also enhances its
performance, particularly in scenarios involving distribution
network reconfiguration.

Therefore, this paper integrates three-phase current and voltage
data with the topological information of the distribution network to
create a graphical representation. This combined dataset is then
inputted into the model in the form of a fault graph representing the
distribution network. The detailed process is elucidated in Figure 3.
Specifically, the three-phase currents and voltages of the network
nodes are represented as feature matrices of dimensions N*T, where
N signifies the number of nodes, and T denotes the feature
dimension. The network’s topology is conveyed through an N*N
adjacency matrix.

A precise topological model serves as the foundation for fault
localization, and the number of nodes and branches in the
distribution network may change under network
reconfiguration. Distribution network reconfiguration is
typically a means of altering the topological structure of the
grid to enhance system economic and security aspects.

FIGURE 1
The installation position of D-PMU.
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FIGURE 2
The process of fault localization based on graph attention networks.

FIGURE 3
The graph representation of distribution network fault.
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Economical reconfigurations maintain the same number of nodes
before and after without any faulty lines, whereas fault-driven
reconfigurations may involve the removal of certain lines and
nodes. Reconfiguration scenarios result in changes to the
adjacency matrix, as illustrated in Figure 4 for a simple
distribution network reconfiguration.

The distribution network depicted in the figure comprises 13
vertices and 12 edges. In the event of circumstances such as load
transfer, the connections between node one and node seven are
severed and linked to node six instead, resulting in a transformation
of its adjacency matrix from A to A’ as shown on Eq. 1.

A �

0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0 0 1 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0
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0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1
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(1)

Both GCN and GAT can handle topological changes in the
aforementioned scenarios, albeit in different manners. Subsequent
Sections 3.2, 3.3 will elaborate on this matter.

3.2 The model of GCN

GCN utilizes the convolutional kernel derivation operation
from convolutional neural networks, enabling convolutional
operations on data incorporating the connectivity of the
distribution network. Defining the Laplacian matrix of a graph
as L = D-A, where D is the degree matrix and A is the adjacency
matrix. Its normalized Laplacian matrix as △, the eigenvalue
decomposition is performed on it as shown in the following
Eqs 2, 3.

Δ � I − D−1
2AD−1

2 (2)

Δ � U−1
λ1 0... 0
0 ... 0
0 0... λn

⎛⎜⎝ ⎞⎟⎠U−1 (3)

Where I is the identity matrix. U � ( �u1, �u2, ..., �un) and λ �
diag(λ1, λ2, ..., λn) are the eigenvectors and eigenvalues after
eigenvalue decomposition, respectively.

Using U as the basis for the Fourier transform on the graph, the
Fourier transform on the spectral domain graph and its matrix form
can be obtained as shown on Eq. 4.

F λl( ) � ∑n
i�1
f i( )u*

l i( )
F x{ } � UTx

⎧⎪⎪⎨⎪⎪⎩ (4)

Where f(i) is the signal at the ith vertex of the graph. u*l(i)
represents the conjugate of the eigenvector u*l(i). F(x) denotes the
matrix form of the Fourier transform. Because convolution can be
expressed as the inverse transform of the product of the Fourier
transforms of the signal functions, the convolution formula on the
graph can be obtained as shown on Eq. 5.

g*f � U UTg · UTf( ) (5)

Where g is the convolutional kernel function. f represents the
signal vector on the graph.

By utilizing this, GCN achieves convolutional operations on
graphs. And it can enable feature extraction from data incorporating
the topological structure of the distribution network. However, due
to parameter sharing of GCN convolutional kernels within the same

FIGURE 4
A sample of distribution network reconfiguration.
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layer, each update requires access to the original connectivity
information of the distribution network. Consequently, GCN is
relatively limited in the scenarios of topology changing.

3.3 The model of GAT

GAT is a concept that leverages the attention mechanism within
GNN. It operates by dynamically adjusting the weights associated
with neighboring nodes based on their relative importance through
the connections in the graph. This adaptation facilitates the
aggregation of information from neighboring nodes in a highly
effective and context-aware manner. The core component of GAT is
the Graph Attention Layer (GAL). It represents the fusion of
attention mechanisms with GNN. GAL takes as input the feature

vectors of each node and these feature vectors are derived after GAL
has performed the aggregation of information from neighboring
nodes. The input and output feature vectors of GAL can be
mathematically expressed using the following Eq. 6:

h � �h1, �h2, ..., �hn{ }, �hi ∈ RF

h′ � �h1
′, �h2

′, ..., �h
′
n{ }, �h′i ∈ RF′

⎧⎪⎨⎪⎩ (6)

Where h and hʹ are the input and output feature vectors of the
GAL with different dimensions respectively. n is the number of
nodes. F and Fʹ are the input and output node features.

In Figure 5, the aggregated node is assumed to be Vi, which has
three first-order neighboring nodes. The correlation degree eij
between the nodes can be obtained through the calculation. In
order to better assign weights, the correlation degrees calculated for
all neighboring nodes are softmax normalized. The attention
coefficient aij is obtained as shown in the following Eq. 7:

aii � softmax eii( ) � exp L α Whi,Whj[ ]( )( )
∑

vk∈N vi( )
exp L α Whi,Whj[ ]( )( ) (7)

Where L denotes the activation function LeakyReLU. α denotes
the function that calculates the correlation between two nodes and
W corresponds to the weight parameter matrix used for the
transformation of node features from the input feature
dimension to the output feature dimension.

Following the formula (5) for obtaining the attention coefficients
and adhering to the weighted summation concept of the attention
mechanism, the output feature can be computed, denoted as hi’, for
the node Vi which is shown on Eq. 8:

h′i � σ ∑
vj∈N vi( )

aijWhj⎛⎝ ⎞⎠ (8)

Where σ represents the activation function which is typically
implemented using the eLU function.

To enhance the expressive capabilities of the GAL, it is common
practice to use the multi-head attention mechanism. This
mechanism involves the independent computation of attention
coefficients by M distinct groups. For example, with M = 2, the
multi-head attention mechanism is illustrated in Figure 6.

FIGURE 5
Graph attention layer.

FIGURE 6
Multi-head attention mechanism, M = 2.
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The aim is to amalgamate these independently computed
attention coefficients to capture a more comprehensive set of
features. In practical implementations, either a concatenation
(splicing) operation or an averaging operation is typically
employed to combine the outputs of multiple attention heads, as
illustrated by the following Eq. 9:

splicing: h′i � M
m�1σ ∑

vj∈N vi( )
amijW

mhj⎛⎝ ⎞⎠
����������

averaging: h′i � σ
1
M

∑
vj∈N vi( )

amijW
mhj⎛⎝ ⎞⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(9)

where || denotes the splicing operation. aij
m and Wm denote the

weight coefficients and learning parameters, which are associated
with the mth ensemble of attention mechanisms.

4 Case study

4.1 The construction of environment

The fault localization task is built based on nodes for GAT, with
all downstream nodes of the faulty line considered as fault nodes.
While GCN is built based on graphs, requiring the entire graph to be
updated for each calculation. Consequently, the GAT model faces
issues of data sample imbalance, whereas GCN does not encounter
such issues. The imbalance between fault and non-fault data may
lead the model to learn an excessive amount of non-fault sample
data. The accuracy of the model is more focused on the
discrimination results of fault data. This can result in the model’s
final performance not accurately representing its actual application
performance. To address this, random under sampling is employed,
where a subset of data is randomly selected from the class with a

FIGURE 7
The topology of 125 node Distribution network.

TABLE 1 The specific network structure of Multi-head GAT.

Input dimension Output dimension Multi-head

GAL 125*6 125*64 3

GAL 125*64 125*64 3

GAL 125*64 125*64 3

MLP 125*64*3 125*4 —

This paper adopts the F1-score metric to evaluate the fault localization model for distribution networks, with its calculation formula as follows.
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larger volume and combined with the class with a smaller volume.
Thus, this paper randomly removes a portion of non-fault data to
form a new dataset together with the fault data.

Additionally, to mitigate the adverse effects of outlier data, the
data is scaled proportionally using the method of min-max
normalization as shown in the following equation, constraining
the input features within the range of [0, 1] as shown on Eq. 10.

x′ � x − min x( )
max x( ) − min x( ) (10)

Where x represents the feature vector in the input samples. x′
represents the standardized feature vector. max(x) is the maximum
value in the samples. min(x) is the minimum value in the samples.

In order to verify the feasibility of the proposed method, this
paper applies the method in 125 nodes of the distribution network,
the specific topology is shown in Figure 7.

Among them, three-phase short circuits, inter-phase short
circuits and single-phase short circuits are set up to verify the
effectiveness of the method in this paper. In the above fault
samples, considering the reality that there are more normal
samples and fewer fault samples, as well as the fact that the
faults are dominated by single-phase ground faults, the ratio of

FIGURE 8
The specific network structure of Multi-head GAT.

FIGURE 9
Accuracy of fault localization and classification for different
models in training process.

FIGURE 10
Accuracy of fault localization and classification for different
models in testing process.

FIGURE 11
Accuracy of fault localization and classification for different fault
resistance.
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normal samples to fault samples is 1:1, where the fault samples are
single-phase faults: inter-phase faults: three-phase faults = 3:1:1. In
this paper, a total of 3,000 samples of three types of faults
are simulated.

For the above samples were input to the graph attention network
for training respectively. The graph convolutional neural network
(GCN) [ (ABU-EL-HAIJA et al., 2022; Shervashidze et al., 2009)]
and multilayer perceptron (MLP) were used for comparison. The
specific network structure is shown in Table 1 and Figure 8.

F1 � 2
pr

p + r

p � T1

T1 + T2

r � T1

T1 + T3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(11)

T1 represents true positives, where actual positive samples are
correctly predicted as positive. T2 represents false positives, where
actual negative samples are wrongly predicted as positive. T3

represents false negatives, where actual positive samples are
incorrectly predicted as negative. The F1-score metric which is
shown on Eq. 11 is the harmonic mean of precision p and recall
r. A higher F1-score indicates better fault discrimination accuracy
and better model performance.

4.2 Case analysis

Utilizing the constructed fault feature graph, the GAT model
undergoes training. The dataset is partitioned into training and test
sets with a ratio of 8:2. Training proceeds through 200 rounds, with a
test conducted every 10 rounds. The specific training and testing
results are illustrated in the following figure.

From Figures 9, 10, it is evident that the fault localization
accuracy and classification accuracy of both GAT and GCN
improve with the increase of training rounds. Specifically, the
fault localization accuracy of GCN stabilizes at around 60%,
while MLP achieves approximately 45%. In contrast, GAT
maintains a stable fault localization accuracy of over 80%.
Additionally, the fault classification accuracy of GAT surpasses
that of GCN. These observations highlight GAT’s superior
capability in extracting key information from feature maps,
resulting in more accurate fault localization and precise sample
classification. This trend underscores GAT’s effectiveness as a graph
neural network model, particularly in extracting features from
complex graph data such as fault feature graphs.

During the testing process, the range of fault resistance is set
from 0.01 to 1,000 to examine its impact on fault localization
accuracy and fault classification accuracy, as illustrated in Figure 11.

Analysis of Figure 11 reveals that the localization and
classification accuracy of the method outlined in this paper
consistently exceeds 90%, indicating minimal impact from
variations in fault resistance. Simultaneously, to investigate the
effect of fault initial phase angle on the proposed method, the
initial phase angles are set at 0, 90, and 180°, as detailed in the
table below.

Examination of Table 2 reveals that variations in the fault initial
phase angle lead to a slight decrease in fault localization accuracy,
albeit with minimal overall change. This is because GAT is able to
effectively capture characteristic changes in the fault initial phase
angle and maintain stable learning. Due to the diverse and complex
topology patterns of distribution networks, it is challenging to
directly apply fault localization algorithms from one distribution
network to another. To explore the impact of topology changes on
fault localization accuracy and classification accuracy, we conducted
experiments and present the specific results in Table 3.

TABLE 2 Impact of fault resistance on fault localization models.

GAT GCN MLP

Fault
accuracy

Classification
accuracy

Fault
accuracy

Classification
accuracy

Fault
accuracy

Classification
accuracy

0 93.1% 90.8% 72.5% 69. 3% 63.2% 62.8%

90 91.24% 89.38% 66.2% 65.53% 61.8% 60.4%

180 90.65% 88.54% 67.36% 66.6% 58% 57.6%

TABLE 3 Impact of topology changes on fault localization models.

GAT GCN MLP

Fault
accuracy

Classification
accuracy

Fault
accuracy

Classification
accuracy

Fault
accuracy

Classification
accuracy

Case1 90% 88% 66% 63% 55% 53%

Case2 86% 84.5% 53% 51% 49% 46%

Case3 85% 83.5% 56% 55% 48% 44.5%

Case4 83% 81.5% 52% 49.9% 41% 36%
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Where case1 represents a scenario with no change in topology,
case2 represents the reduction of a line (125, 122), case3 represents
the addition of a line (117, 118), and case4 represents the reduction
of a line (125, 122) with the addition of a line (117, 118).

Based on the data provided in the table, it is evident that fault
localization accuracy and classification accuracy decrease when there is
a change in the topology of the distribution network, regardless of
whether it is GCN, MLP, or GAT. However, it is noteworthy that GAT
demonstrates better adaptability to topology changes, showing a
relatively minor decrease in accuracy compared to GCN and MLP.
Both GCN and MLP exhibit a decreasing trend in fault localization
accuracy and classification accuracy when topology changes occur, with
MLP experiencing a particularly pronounced decrease in accuracy. This
suggests that GAT possesses stronger robustness and adaptability in
handling topology changes, allowing it to better maintain its model
performance. In contrast, GCN displays some sensitivity to topology
changes and may require more tuning and adaptation to maintain
stable performance levels. Overall, this underscores the superior
performance of GAT in addressing complex topology change scenarios.

5 Conclusion

The paper proposes a fault localization method based on GAT to
address the limitations of traditional distribution network fault
localization methods, particularly in scenarios involving fault
reconfiguration of the distribution network. Firstly, the proposed
method models the distribution network as a graph. And then
GATs have been employed to learn the underlying relationships
between topological structure and electrical characteristics of the
distribution network. The GAT learning process enables the accurate
extraction of potential fault features which facilitating precise fault
localization. The results demonstrate that the proposed method
achieves higher fault localization accuracy and classification accuracy
compared to traditional artificial intelligence methods. Furthermore,
even when the network topology changes, the proposed method
maintains a higher accuracy rate, enabling more precise fault
localization. This evidence underscores the greater potential of our
proposed method in the domain of fault localization and it offer robust
support for ensuring the reliable operation and maintenance of power
systems. We will involve integrating fault recovery mechanisms and
exploring the potential of accurate fault localization techniques based on
GAT in facilitating fault recovery processes in future research.
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Nomenclature

D The degree matrix

L The Laplacian matrix

A The adjacency matrix

I The identity matrix

U The eigenvectors

λ The eigenvalues

F The Fourier transform

g The convolutional kernel function

f The signal vector

h/hʹ The input/output feature vectors

F/Fʹ The input/output node features

α The function that calculates the correlation between two nodes

W The weight parameter matrix

M The number of multi-head
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Research on reactive power
compensation controlmethod for
improving the voltage stability of
photovoltaic station area

Wei Zhang1, Zhe Zhang1*, Yuanyi Dai1, Chen Dong1, Zhijia Yu1

and Yue Hu2

1State Grid Jiangsu Electric Power Co., Ltd., State Grid Changzhou Electric Power Supply Company,
Changzhou, China, 2China University of Mining and Technology, Xuzhou China

In the case of resistance-inductance lines in PV station area, the problem of
voltage overstep is easy to occur. This article proposes a reactive power
compensation control method to improve the voltage stability in the
photovoltaic power plant area, which addresses the problem of voltage at the
point of common coupling (PCC) exceeding the upper limit due to resistance
circuits and exceeding the lower limit due to relatively insufficient reactive power
output when the output active power is high. The idea is to achieve dynamic
adjustment of PCC voltage by paralleling a static reactive power generator (SVG)
at the grid connection point and using a variable droop control method. In
addition, a reactive power optimization method based on improved particle
swarm optimization (IPSO) algorithm is proposed to address the changes in
power flow caused by photovoltaic integration in the distribution network
system. The proposed improvement method not only effectively reduces
network losses but also significantly improves voltage stability.

KEYWORDS

distributed network, droop control, particle swarm optimization, photovoltaic
generation, reactive power compensation, voltage beyond limits

1 Introduction

With the increasingly serious problems of energy shortage and environmental
pollution, photovoltaic power generation has become a representative new energy
generation technology. (Gunannan et al., 2016). Due to the uncertainty and
intermittency of photovoltaic output, when photovoltaic is connected to the grid, it will
have a certain impact on the power quality of the distribution network, such as voltage
beyond limits, voltage imbalance, flicker, and harmonic overload. In the case of resistor-
inductance circuits, the problem of voltage beyond limits is more serious.When the capacity
of photovoltaic power supply is large, it may change the direction of the system’s power
flow, which has a significant impact on the voltage deviation and network loss of the
distribution network.

To maintain the voltage stability of the power grid, reactive power compensation
devices are usually installed in renewable energy station. Traditional reactive power
equipment mainly includes on load tap changer (OLTC), parallel capacitor (SC),
parallel reactor (SR), and SVG. As the most widely used reactive power regulation
device, SVG has advantages such as wide compensation space, fast response speed, and
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low harmonic content. In recent years, SVG has become the
mainstream equipment for future reactive power compensation
devices. (Woei-Luen et al., 2010). It is necessary to use SVG
reasonably to improve the transmission stability and capacity of
the new power system, avoid voltage fluctuations, which can also
ensure low harmonic content, fast response speed, and high
reliability in the output of PV station. (Ruiling et al., 2023).

The existing reactive power and voltage regulation strategies are
mainly studied from two aspects. One is local voltage control, which
only considers the impact of photovoltaic integration into the grid
on the PCC voltage. The other, from a system perspective, aims at
ensuring that the voltage deviation and network losses of each node
in the distribution network are maintained within a reliable
operating range.

For local control, Xiaohu et al. (2012), Young-Jin et al. (2013)
propose a coordinated control method for active/reactive power,
which adjusts the voltage by controlling the output power of the
photovoltaic grid inverter. However, this method limits the capacity
of photovoltaic power generation and reduce efficiency. Yan et al.
(2017) proposes a method to compensate uncertain voltage
fluctuations and maintain a safe voltage level under random load
demands by changing the power of grid connected reactive power
equipment and transformer joints. However, this method only
focuses on voltage fluctuations at grid nodes and does not
consider the impact of active power loss. Hiroo et al. (2012) uses
a three-layer allocation strategy to coordinate the allocation of
reactive power shortage in large photovoltaic power stations
among SVG, photovoltaic power generation units, and
photovoltaic inverters. This strategy adopts voltage reactive
power sensitivity method to improve the accuracy of reactive
power control in photovoltaic power stations. Huimin et al.
(2022) presents a multi-layer coarse-to-fine grid searching
approach for calibrating SVG dynamic model parameters using
particle swarm optimization to address the known issues of low
identification accuracy and long computation time faced by the
traditional SVG parameter identification methods.

When considering the voltage of each node in the distribution
network, Chao and Luis (2016) studies the combined effect of
photovoltaic power sources and loads on the voltage fluctuations
of each node. The result indicates that photovoltaic integration
poses a risk of instability in node voltage. Puyu et al. (2022) study
the impact of the PV location on the network power losses and
voltage fluctuations under the premise of considering line
impedance. A PSO algorithm is used to synthesize an optimal
compromised solution so as to determine the PV location. Te-
Tien et al. (2016) points out that the voltage of each node on the
feeder line increases after the photovoltaic power sources
connected, which is significantly different from the traditional
trend of node voltage gradually decreasing from the first node to
the end on the feeder line. Voltage sensitivity matrices are
fundamental for the model-based control of the distribution
networks. Maharjan et al. (2020) proposes an enhanced
method, which comprises of analytical expressions for direct
estimation of the voltage sensitivity to tap-position and active/
reactive power injections for any strength of the external grid. A
new virtual power/voltage sensitivity method is derived in
Saurabh et al. (2019), Wenshu et al. (2021), and based on this,
an optimal constraint method for wind farm group voltage is

proposed. In Mendoza et al. (2018), a new method for optimal
reactive power planning considering photovoltaic output
fluctuations is proposed to minimize the annual equivalent
operating cost. The reactive power allocation of SVG is based
on the cumulative probability curve of annual power fluctuations.
In Chenyu et al. (2022), a reactive power compensation model
that combined reactive power compensation devices as a
regulation method to reduce system line loss and voltage
deviation was proposed. In Yu and Shan (2015), parallel
capacitors and SVG are set as controllable variables, and
particle swarm optimization (PSO) using Latin hypercube
sampling is explored to minimize the annual equivalent
operating cost.

In summary, the above local voltage control methods mainly
focus on the voltage exceeding the lower limit at PCC when the line
impedance is inductive and neglects the adverse effects of resistance
in low-voltage distribution lines. In addition, traditional particle
swarm control cannot balance optimization speed and accuracy.
During the iteration process, the inertia factor and learning factor
should be reasonably configured with the number of iterations.

Therefore, this paper mainly focuses on solving the three
problems brought about by photovoltaic grid connection: PV
access point voltage exceeding limits, distribution network
voltage deviation, and distribution network loss. Firstly, the
resistance and inductance lines of photovoltaic power plants
will cause the voltage the upper limit at PCC. And when the
output active power is relatively high, the relatively insufficient
reactive power will cause the voltage to exceed the lower limit at
PCC. Therefore, the method of parallel connection of a static
reactive power generator at PCC was adopted, and an improved
reactive voltage droop control method was proposed. This method
is simple to implement, greatly improves voltage stability. For
distribution network voltage deviation and distribution network
loss, an improved particle swarm optimization algorithm is
proposed to ensure the minimum voltage deviation and
network active power loss under photovoltaic integration.
Figure 1 gives the research route.

2 System model

2.1 Photovoltaic station topology

Figure 2 is a structure chart of photovoltaic platform area,
including PV inverter, AC bus, SVG, transmission line
impedance Rs + jXs, load and grid. The photovoltaic inverter
outlet is collected to the AC bus, and the AC bus is connected to
the grid through the boost transformer and line impedance. The
photovoltaic power generation cluster and the grid jointly supply
power to the load. SVG is connected to the low voltage side of the
transformer to compensate the reactive power and dynamically
adjust the grid-connected voltage to improve static stability.

2.2 Basic SVG control strategy

SVG is essentially a grid following inverter that can achieve
flexible reactive power compensation. It is possible to control
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reactive power by controlling the output current of SVG. The
traditional control block diagram of SVG is shown in Figure 3.

DC outer loop of SVG generates the d-axis reference current
of inner loop through a PI controller after differential comparison
between DC capacitor voltage and DC voltage reference value.
The d-axis current reference can be obtained according to
Equation 1.

Idref � Udcref − Udc( ) kpv + kiv
s

( ) (1)

where Udcref and Udc are the reference values of DC voltage and DC
voltage respectively. kpv and kiv are proportional gain and integral
gain of voltage regulator respectively.

The reactive power loop of SVG generates the q-axis reference
current of the inner loop through a PI controller after comparing

Qref and QSVG. The q-axis current reference can be obtained
according to Equation 2.

Iqref � Qref − QSVG( ) kpq + kiq
s

( ) (2)

where Qref and QSVG are the reactive power reference value and the
reactive power provided by SVG respectively. kpq and kiq are the
proportional gain and integral gain of the reactive power regulator
respectively.

In the current inner loop, a PI controller is used to control the
output reactive current of SVG. As shown in Figure 3, idref is the
active current reference output by the DC outer loop, and iqref is the
reactive current reference generated by the reactive outer loop. id and
iq are the active and reactive components of the current output by
SVG respectively. The ωL is decoupling of the current inner loop, ud

FIGURE 1
Research route.

FIGURE 2
Structure chart of photovoltaic platform area.
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and uq are voltage feedforward control to speed up the response, iCd
and iCq are capacitive current proportional feedback to damp
LCL resonance.

3 SVG control method based on
variable droop coefficient

3.1 Mechanism of voltage exceeding limit
at PCC

Figure 4 gives the photovoltaic grid connection diagram. The
output active power and reactive power of the photovoltaic source
are PPV and QPV, and the impedance value of transmission line is
Rs + jXs.

Phasor of grid voltage is _Ug. SVG is connected to the
photovoltaic source outlet, and the compensated reactive power
value is set to QSVG. Suppose _I is the current sent out of the line by
the photovoltaic source, _Ug � E∠0, _UPCC � UPCC∠θ. The PCC point
voltage can be obtained according to Equation 3.

_UPCC � _Ug + Rs + jXs( ) _I (3)

The complex power injected into the grid by the photovoltaic
power station and SVG can be expressed as Equation 4.

PPV + j QPV + QSVG( ) � _UPCC
UPCC

* − E*
Rs − jXs

(4)

Then, the PCC voltage can be derived as Equation 5.

UPCC � ���������
± U1 + U2

√
(5)

where

U1 �

�����������������������������
E2

2
+ PPVRs + QPV + QSVG( )Xs( )2

− P2
PV + QPV + QSVG( )2( ) R2

s + X2
s( )

√√√

U2 � E2

2
+ PPVRs + QPV + QSVG( )Xs

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(6)

The expression of the PCC voltage contains two different
solutions according to Equations 5–6, a high voltage value and a
low voltage value, corresponding to the stable and unstable points of
the voltage respectively. When both the photovoltaic inverter and
SVG do not emit reactive power, the above voltage expression can be
simplified as

UPCC �

����������������������������������������
±

��������������������������
E2

2
+ PPVRs( )2

− P2
PV R2

s + X2
s( )

√√
+ E2

2
+ PPVRs

√√√
(7)

Figure 5 shows the relationship curve between photovoltaic output
active power and PCC voltage. Equation. 7 corresponds to the situation
Q = 0 in Figure 5A. When SVG provides reactive power output, P-U
curve corresponds to the situation Q = −0.1p.u.and Q = 0.1p.u. which
are also shown in Figure 5B. Due to line containing resistance and
inductance, the voltage of PCC of rises first then decreases and finally
reaches the critical stable point with the increase of active power.
Therefore, if the reactive power capacity is insufficient, there is a risk of
exceeding the lower voltage limit when the photovoltaic active power is
large; The reactive power can support the voltage of PCC, but the
fluctuation of output active power may cause the PCC voltage to exceed
the upper limit.

FIGURE 3
Traditional control block diagram of SVG.

FIGURE 4
Photovoltaic grid connection diagram.
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P-U curves under different line impedances can also be obtained
from the above formulas, as shown in Figure 5B. When the line is
pure inductive, the voltage gradually decreases with the increase of
the output active power. In this case, the problem of voltage beyond
the lower limit caused by insufficient reactive power is more likely to
occur. When the line is pure resistance, with the increase of output
active power, the voltage gradually increases, in this case, the voltage
will exceed the upper limit; When the line is resistance-inductance,
both situations can occur.

3.2 Improved local control strategy

Suppose that Uset is the target value of voltage, when the voltage
exceeds the limit, SVG can adjust the voltage to the target value.
When the photovoltaic inverter operates in unit power factor mode,
the value of Uset is

Uset �

����������������������������������������������������������������������������������
E2

2 + PPVRs + QSVGXs( )2 − P2
PV + Q2

SVG( ) R2
s + X2

s( )√
+ E2

2 + PPVRs + QSVGXs

√√
(8)

According to the Equation 8, the reactive power required by
SVG can be calculated as

QSVG � −

���������������������������������������������
−U2

set + 2U2
set

E2

2 + PPVRs( ) − P2
PV R2

s + X2
s( )

R2
s + X2

s

+ U4
setX

2
s

R2
s + X2

s( )2
√√

+ U2
setXs

R2
s + X2

s

(9)
From Equation 9, it can be seen that the SVG output reactive

power QSVG is a function of PPV. The reactive power that SVG needs
to emit can be obtained based on the active power output from the
photovoltaic source. According to the above equation, a reactive
power voltage droop control can be proposed, and the droop
coefficient is set to a function of PPV, as shown in Figure 6. Then
the droop coefficient multiplied by the difference between the Uref

and Ud is reactive power reference of SVG. The droop coefficient of
SVG can be derived as Equation 10.

k �
−

�������������������������������
−U2

set+2U2
set

E2
2 +PPVRs( )−P2

PV R2
s +X2

s( )
R2
s +X2

s
+ U4

setX
2
s

R2
s +X2

s( )2
√

+ U2
setXs

R2
s +X2

s��������������������������������������������������������������
E2

2 + PPVRs( )2 − P2
PV R2

s + X2
s( )√
+ E2

2 + PPVRs

√
− Uset

(10)

4 Reactive power optimization of
distribution network under PV
connection

4.1 The impact of PV output active power on
PCC voltage

Figure 7 shows a diagram of photovoltaic connection to
distribution network, assuming that the line has n nodes and PV
is connected at k point. The following analysis will be conducted
according to different situations.

A. Before photovoltaic connection

Before photovoltaic integration into the distribution network,
the voltage Um at any point on the feeder line is

Um � UN − ∑m
j�1 Rj∑n

i�jPL,i + Xj∑n
i�jQL,i[ ]

UN
(11)

where PL,i is the active load at point i. Due to the majority of load
power factor being above 0.9, when analysing the impact of active

FIGURE 5
P-U curve of grid-connected point. (A) Different reactive power conditions. (B) Different line conditions.

FIGURE 6
Variable droop coefficient control of SVG.
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power, the reactive power of the load can be ignored first. Equation
11 can be transformed into

Um � UN − ∑m
j�1 Rj∑n

i�jPL,i[ ]
UN

(12)

Due to the constant positive power consumption of the load, it
can be seen from Equation 12 that Um is always less than UN.
Therefore, the voltage always decreases from the beginning to the
end of the feeder line.

B. After photovoltaic connection

Considering that photovoltaic inverters generally operate at a
unit power factor when connected to the grid, Qpv is temporarily
assumed to be 0. The node voltage Um at the front end of the
photovoltaic connection point is

Um � UN − ∑m
j�1 Rj ∑n

i�mPL,i − PPV( )[ ]
UN

(13)

According to Equation 13, the voltage difference between the two
points before the photovoltaic connection point can be expressed as

Um − Um−1 � −Rj ∑n
i�mPL,i − PPV( )
UN

(14)

According to Equation 14, it can be concluded that:
When ∑n

i�mPL,i >PPV, that is, the sum of the load power behind
point m is greater than the active output of the photovoltaic system,
Um-Um-1<0. The feeder voltage decreases before the photovoltaic
connection point.

When ∑n
i�mPL,i <PPV, that is, the sum of the load power behind

point m is less than the photovoltaic active output, Um-Um-1>0. The
feeder voltage increases before the photovoltaic connection point.

As mentioned above, the output reactive power and load
consumption reactive power of photovoltaic source will not be
considered temporarily. The voltage Um at any point at the front
end of the photovoltaic connection point is:

Um � UN − ∑k
j�1 Rj ∑n

i�jPL,i − PPV ,i( )[ ]
UN

− ∑m
j�k+1 Rj∑n

i�jPL,i( )
UN

(15)

According to Equation 15, the voltage difference between the
two points after the photovoltaic connection point is:

Um − Um−1 � −Rj∑n
i�mPL,i

UN
(16)

According to Equation 16, it can be concluded that
due to the constant value of Um- Um-1 being less than 0, the
voltage of the nodes at the back end of the photovoltaic
connection point gradually decrease as the length of the
feeder line.

C. Summary

By analysing the above derivation results, it can be seen that
the voltage of the distribution network is related to the
photovoltaic output power and load. Assuming that the
system power supply voltage remains constant, as the
photovoltaic output changes, the feeder voltage will have the
following situations.

(1) When the photovoltaic output is low, the line voltage
gradually decreases along the feeder line.

(2) As the photovoltaic output increases, the line voltage may
show a trend of first decreasing, then increasing, and finally
decreasing again.

(3) As the photovoltaic output exceeds the line load by a large
amount, it may first increase and then decrease.

In cases (2) and (3) above, the photovoltaic connection point is
the highest local voltage, and the voltage value can be expressed as
Equation 17.

Um � UN − ∑k
j�1 Rj ∑n

i�jPL,i − PPV ,i( )[ ]
UN

(17)

FIGURE 7
Diagram of photovoltaic connection to distribution network.
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4.2 The impact of photovoltaic output
reactive power on grid voltage

The widely used photovoltaic inverters currently have power
scheduling functions, allowing them to operate at non unit power
factors and send reactive power to regulate voltage. If only
considering the reactive power output of the inverter, the impact
on voltage can be expressed as:

Um � UN − ∑k
j�1 Xj∑n

i�jQPV ,i[ ]
UN

(18)

According to Equation 18, when the inverter outputs inductive
reactive power (with a specified direction of positive), the voltage can be
reduced. When the inverter outputs capacitive reactive power (with a
specified direction of negative), the voltage can be increased. In addition,
the larger the reactive power output of distributed photovoltaic sources,
the closer the installation position is to the end of the line, and the
stronger the regulation effect on the feeder voltage. Photovoltaic
integration has changed the original power flow of the distribution
network and increased the risk of node voltage exceeding the limit.

4.3 Reactive power optimization model for
distribution network

The mathematical model of the reactive power optimization
including photovoltaic power and SVG considering local control is
expressed as follows.

A. The Objective Function

In this paper, the objective function of reactive power
optimization is expressed as Equations 19–21.

min F � min α1P1,total + α2Vd,total (19)
Pl,total � ∑

i,j∈NL

Gij V
2
i + V2

j − 2ViVj cos θij( ) (20)

Vd,total � ∑N
i�1

Vi − �Vi

Vi,max − Vi,min
( ) (21)

Pl,total is the total active power loss; Vl,total is the accumulated
voltage deviation; α1, α2 is weight coefficient; Vi, Vj are the voltage of
nodes i and j; Gij, θij are the conductivity and phase angle between
nodes i and j; �Vi is the expected value of node voltage; Vi,max, Vi,min

are the constraints of the node voltage.

B. The Equality Constraint of Power Flow

The power flow constraint condition is the power constraint
balance equation for each node in the distribution network with
photovoltaic power sources, which can be expressed as Equation 22.

PGi � Vi∑N
j�1
Vj Gij cos θij + Bij sin θij( ) + PDi

QGi � Vi∑N
j�1
Vj Gij sin θij + Bij cos θij( ) + QDi − QCi

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(22)

PGi, QGi refer to the active and reactive power injected by node i.
PDi, QDi refer to the active and reactive power of the load at node i;
QCi represents the reactive power of compensation device for node i;
N is the total number of distribution network nodes.

C. Node voltage constraint

Vi,min ≤Vi ≤Vi,max (23)
In Equation 23, Vi,max, Vi,min are the upper and lower limits of

the node voltage.
D. Reactive output constraint.
To prevent reactive power backflow caused by excessive reactive

power compensation capacity, it is necessary to constrain the
reactive power compensation capacity which can be expressed as
Equation 24.

Qci,min ≤QCi ≤Qci,max (24)

QCi,max, QCi,min refer to the upper and lower limits of reactive
power compensation capacity.

4.4 Proposed particle swarm
optimization algorithm

The particle swarm optimizer (PSO) is a stochastic, population-
based optimization technique that can be applied to a wide range of
problems, including reactive power optimization. (Xiaofang et al.,
2020). Reactive power optimization is a complex nonlinear
optimization problem, which holds a large number of local
minimum, multi discontinuous variables and constraints. On the
premise of meeting all constraints, the reactive power optimization
improves the quality of voltage, reduces the network loss of system
operation and ensures stability of the system voltage, which are got
by the existing optimization method to adjust controlled variables
reasonable and utilize grid equipment resources. (Kennedy and
Eberhart, 1995).

The speed and accuracy of particle iteration updates are directly
affected by inertia weight factor and learning factor. Considering
that standard particle swarm optimization algorithms cannot
balance optimization speed and accuracy, it is necessary to
improve the inertia weight coefficients and learning factors.
Generally speaking, in the initial stage of algorithm iteration, it
should meet the requirements of global search, and in the middle
and later stages, it should meet the requirements of local
optimization until it converges to the global optimal solution.
The biggest problem with PSO is getting stuck in local optima.
Therefore, improved PSO enhances the quality of the initialized
population, and improving the search efficiency to enable the
algorithm to escape local optima and seek global optimum
solutions more effectively.

The probability density function of the standard normal
distribution has good properties and can be used to improve the
inertia factor and learning factor. The probability density
function of the standard normal distribution can be
expressed as Equation 25.

f x( ) � 1���
2π

√
σ
exp − x − u( )2

2σ2
( ) (25)
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Based on the characteristics of the density function of a normal
distribution, the probability of the numerical distribution in (u-3σ,
u-3σ) is 0.9973. It can be considered that the values of x are almost
entirely concentrated in (u-3σ, u-3σ). Therefore, the maximum
number of iterations is applied to a normal distribution, which
can be expressed as Equation 26.

3σ � kmax (26)
According to a large number of experimental conclusions,

the optimization effect of the algorithm is the best when w varies
between 0.4 and 0.9. In addition, considering the possibility of
the algorithm falling into local optima in the later stage, a
random number part can be added to the formula, and the
numerical characteristics of trigonometric functions can be
used to limit the value of the random number to prevent the
algorithm from converging. In summary, the improved inertia
coefficient w can be expressed as Equation 27.

w � 1
2
exp − 9k2

2kmax
( ) + 1

2
+ r × cos

π

2
×

k
kmax

( ) − 0.1 (27)

where, k is the number of iterations, kmax is the maximum number of
iterations, and r is a random number in the range of [0,1].

The learning factor represents the self-learning and collective
learning abilities of particles in the population. The learning factors
c1 and c2 generally take values of 2. In order to ensure the efficiency
of the algorithm, the learning factor can be obtained through
Equation 28.

c1 � 1 + exp − 9k2

2kmax
( )

c2 � 3 − exp − 9k2

2kmax
( )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(28)

The range of values for learning factors c1 and c2 is [1,2], which is
beneficial for global particle traversal in the early stage and
convergence of the algorithm in the later stage.

Using the improved particle swarm optimization algorithm to
solve the optimization model, the flowchart is shown in Figure 8.

5 Simulation results

In order to verify the effectiveness of the theoretical analysis
and design mentioned above, a simulation model was built in the
Matlab/Simulink environment for verification. First is the
verification of local control. Figure 9 is structure of
photovoltaic grid connected system, which includes DC side
PV system, SVG, line impedance and grid. SVG is connected to
the PCC. Figure 10 is control structure of SVG. It can be seen that
the d-axis current reference is generated by DC voltage loop, and
the q-axis current reference is generated by the variable droop
coefficient control mentioned above. Under local control, SVG
detects the voltage at the PCC to determine if the voltage is
beyond the limit. When the voltage exceeds the limit, SVG
adopts the reactive voltage droop control to output the
corresponding reactive power and adjust voltage at the PCC.
Set the upper and lower limits of voltage at 390 V and 375 V

respectively, which satisfies the grid connection standards. The
line impedance contains the resistive and inductive, and the
voltage beyond limits occurs as the photovoltaic output active
power increases. Add the control strategy of SVG mentioned
above at 1 s, and the d-axis voltage reference value of SVG is set
to 311 V, which corresponds to the rated voltage of 380 V. The
simulation results are shown in the following figures. Figures 11,
12 show the waveform of the PCC voltage exceeding the upper
and lower limits under the local control. It can be seen that the
SVG adjusts the PCC voltage to set value at approximately 1.05 s.
Figure 13 shows the line voltage at PCC, it can be seen that the
addition of the above control enables SVG to quickly adjust the
PCC voltage to 380 V.

The next is verification of the reactive power optimization
method based on improved particle swarm optimization. Taking
a 33 node distribution network as an example, the photovoltaic

FIGURE 8
Particle swarm optimization algorithm flowchart.
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FIGURE 9
System structure.

FIGURE 10
SVG control structure.

FIGURE 11
Voltage waveform exceeding the lower limit.
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system is connected to the 15th node. Through sensitivity analysis,
SVG access points are selected as the 18th node and 33rd node. The
simulation results for voltage deviation and power loss in the
distribution network are shown as follows. The comparison of
node voltages before and after optimization is shown in
Figure 14. It can be seen that the average voltage of distribution
network nodes is significantly improved and the voltage deviation is
reduced after reactive power compensation. The comparison of

network power loss before and after optimization is shown in
Figure 15. It can be seen that the power loss of each node in the
system has been reduced after optimization.

6 Conclusion

This paper mainly conducts research from two aspects. First is
the problem of exceeding the voltage limits of photovoltaic grid
connection points under resistive and inductive lines. It is revealed
that when the line is pure inductive, the voltage gradually decreases
with the increase of the output active power, the problem of voltage
beyond the lower limit caused by insufficient reactive power may
occur. When the line is pure resistance, the voltage gradually
increases with the increase of output active power, the voltage
will exceed the upper limit problem; When the line is resistance-
inductance, with the increase of the output active power, the PCC
voltage increases first, and then decreases, finally reaches the critical
stable point, in which case the voltage beyond the upper and lower
limits may occur. In order to ensure the voltage stability of
photovoltaic station area, a variable droop control method for
SVG is proposed. The effectiveness of this method in regulating
the voltage of photovoltaic grid connection points is verified through
simulation.

Next is voltage deviation and network loss issues caused by
photovoltaic integration into the distribution network. Photovoltaic
integration has changed the power flow distribution of the
distribution network, making voltage deviation related to photovoltaic
injection power.When the output active power of photovoltaic source is
large, it is not only possible to cause the voltage of photovoltaic grid
connection to exceed the limits, but also increase the voltage deviation.
At the same time, the active power loss of the distribution network also
increases. To address these issues, this paper establishes a mathematical
model for reactive power optimization with the objectives of minimizing
active power loss and node voltage deviation in the distribution network.
On this basis, an improved particle swarm optimization algorithm is
proposed to optimize the scheduling of reactive power in distribution
network. The validation is conducted using a 33 nodes distribution
network as an example. The results show that the reactive power
optimization method based on IPSO algorithm can effectively reduce
voltage deviation and network loss, and improve voltage stability.

FIGURE 12
Voltage waveform exceeding the upper limit.

FIGURE 13
PCC voltage adjustment process for local control.

FIGURE 14
Node voltage variation diagram.

FIGURE 15
Network loss variation diagram.
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Nomenclature

Udcref Reference values of the DC voltage

Udc DC voltage

kpv, kiv Proportional and integral gain of the voltage regulator

Qref Reference values of the reactive power

QSVG Reactive power provided by SVG

kpq, kiq Proportional and integral gain of the reactive power regulator

idref Active current reference

iqref Reactive current reference

id, iq Active and reactive components of the current output by SVG

ud, uq d-axis and q-axis voltage of PCC

iCd, iCq d-axis and q-axis components of capacitive current

_Ug Grid voltage

_I Output current of the PV source

Uset Set limit value of voltage

Um Voltage at point m

UN Nominal voltage

PPV, QPV Active power and reactive power of the PV source

PL,i Active load at i point

Pl,total Total active power loss

Vl,total Voltage deviation

α1α2 Weight coefficients

c1, c2 Learning factors

Vi, Vj Voltage of node i and j

Gij, θij Conductivity and phase angle between node i and j

�Vi Expected value of node voltage

Vi,max, Vi,min Constraints of the node voltage

PGi, QGi Active and reactive power injected by node i

PDi, QDi Active and reactive power of the load at node i;QCi Reactive power of
compensation device for node i; N Total number of distribution
network nodes

QCi,max,
QCi,min

Upper and lower limits of reactive power compensation capacity

k Number of iterations

kmax Maximum number of iterations

r Random number
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