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Editorial on the Research Topic

Multiscale Modeling of Rhythm, Pattern and Information Generation: from Genome to

Physiome

The rapid advances of technology have revolutionized the research of physiology in the era of
big data. More and more anatomical, physiological, and clinical data are collected to support
precision medicine. Effective progress in research can be obtained only by merging data mining
with modeling and analysis in the frame of Quantitative Physiology. Quantitative Physiology
is the quantitative description, modeling and computational study of physiology, which is an
increasingly important branch of systems biology. It will take the power of physics, mathematics,
information technology, etc., to implement quantitative, testable, and predictable research to boost
understanding the function in living systems. It is quite similar to mathematical physiology and
computational physiology that address the theoretical or computational nature of physiology, but
it is somehow different to stress data acquisition and quantitative description in the era of big data.

In 2003, the completion of the Human Genome Project (HGP) was announced effectively
with the publication of the first complete human genome sequence. Due to the tight correlation
between genes and functions, physiological genomics and functional genomics are hot topics in
modern physiology. Among the long list of “ome” and “omics,” we should pay more attention
to Physiome and Physiomics. Physiome comes from “physio-” (nature) and “-ome” (as a whole).
The Physiome is the quantitative and integrated description of the physiological dynamics and
functional behavior of the physiological (normal) and pathophysiological states of an individual or
species (Bassingthwaighte, 2000). The Physiome describes the physiological dynamics of the normal
intact organism and is built upon information and structure (genome, proteome, and morphome).
Obviously, Quantitative Physiologymatches very well with the definition of Physiome.

Stephen Hawking said that the next twenty-first century would be the century of complexity and
indeed now Systems Biology or Medicine means dealing with complexity. This reality is that a huge
amount of biological or physiological data, emerging from different-omics sources on very different
scales, from genome to Physiome, exceeds our abilities to analyze these data. To link molecular and
cellular events with physiological function and behavior is associated with wide ranges of space and
time scales (Hunter and Borg, 2003). This Research Topic aims to provide state-of-the-art review
of multi-scale modeling and data analysis to investigate the function in living systems, organisms,
organ systems, organs, cells, and biomolecules carrying out the chemical or physical functions that
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exist in a living system. So far, this Research Topic has collected 14
articles (12 original researches and 2 mini reviews) that represent
a cross sectional sample of Quantitative Physiology.

There are 4 typical modeling studies. The multi-scale cardiac
computational modeling (Bai et al.) investigated the potential
effects of a R858H mutation on the intracellular calcium
handling, action potential profiles, action potential duration
restitution curves, dispersion of repolarization, QT interval
and spiral wave dynamics. It revealed that the L-type calcium
current altered by mutation increases arrhythmia risk due
to after depolarizations and increased tissue vulnerability to
unidirectional conduction block. It provided a causal link
between a R858H mutation and ventricular fibrillation. A
neuron-astrocyte network model composed of 100 excitatory
neurons and two astrocytes was developed (Gordleeva et al.).
It showed that spatiotemporal properties of Ca2+ dynamics in
spatially extended astrocyte can coordinate (e.g., synchronize)
networks of neurons and synapses. In addition, A stochastic
model of immune response (Fatehi et al.) and a simple spin glass-
like model for the collective sensing of β-cells were proposed
(Korosak and Rupnik).

Particularly, there are 4 papers of computational studies
on deep brain stimulation (DBS). Tass’ group reviewed that
the dendritic and axonal propagation delays may lead to
the emergence of neuronal activity and synaptic connectivity
patterns, which cannot be captured by classic spike-timing-
dependent plasticity models (Asl et al.). A short-term dosage
regimen of coordinated reset stimulation could induce long-
lasting desynchronization of the networks (Manos et al.). A novel
stimulation method of pulsatile multisite linear delayed feedback
was employed tomodulate the pulse amplitude of high-frequency
DBS (Popovych and Tass). And, a sham stimulation protocol
for multichannel desynchronizing stimulation was proposed
to provide controls (Zeitler and Tass). All these findings and
implementations are helpful to develop therapeutic DBS.

The other 6 papers are all related with data analysis.
Both short-time Fourier transform and multifractal detrended
fluctuation analysis were used to seek the age-related signature
of local field potential recordings (Makra et al.). Another work
implemented the intelligent assessment and classification of ECG
(Zhao and Zhang). Cross-correlation analysis were used in study
of primary immunodeficiency diseases (Korsunskiy et al.) and
development of brain neural networks (Mishchenko et al.). Both
differential expression and network analysis were introduced in

brain transcriptome (Wang and Wang) and functional genomics
(Zhu et al.).

The work in this Research Topic involved the different
levels of biomolecules, cells, organs, and different events of
genetic expression, transcriptional regulation, calcium signaling,
cell signaling, heart beating, brain integration. Here, a central
concept is generation and processing of information. This
Research Topic is devoted to set a paradigm for Quantitative
Physiology by integrating biology, mathematics, physics or
informatics. Both Editors of this Research Topic have joined
the project “Digital Personalized Medicine of Healthy Aging
(DPM-AGING): network analysis of Big Multi-omics data
to search for new diagnostic, prognostic, and therapeutic
targets.” This Research Topic is also a good example of
Quantitative Physiology.

It is not easy to perform multi-scale modeling and data
analysis to investigate the functions in living systems. Just
as Schrödinger’s question and answer: “How can the events
in space and time which take place within the spatial
boundary of a living organism be accounted for by physics
and chemistry? The obvious inability of present-day physics
and chemistry to account for such events is no reason
at all for doubting that they can be accounted for by
those sciences.”
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Computational Cardiac Modeling
Reveals Mechanisms of Ventricular
Arrhythmogenesis in Long QT
Syndrome Type 8: CACNA1C R858H
Mutation Linked to Ventricular
Fibrillation
Jieyun Bai 1, Kuanquan Wang 1*, Yashu Liu 1, Yacong Li 1, Cuiping Liang 1, Gongning Luo 1,

Suyu Dong 1, Yongfeng Yuan 1 and Henggui Zhang 1, 2, 3*

1 School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China, 2 Biological Physics Group,

School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom, 3 Space Institute of Southern

China, Shenzhen, China

Functional analysis of the L-type calcium channel has shown that the CACNA1C

R858H mutation associated with severe QT interval prolongation may lead to ventricular

fibrillation (VF). This study investigated multiple potential mechanisms by which the

CACNA1C R858H mutation facilitates and perpetuates VF. The Ten Tusscher-Panfilov

(TP06) human ventricular cell models incorporating the experimental data on the kinetic

properties of L-type calcium channels were integrated into one-dimensional (1D) fiber, 2D

sheet, and 3D ventricular models to investigate the pro-arrhythmic effects of CACNA1C

mutations by quantifying changes in intracellular calcium handling, action potential

profiles, action potential duration restitution (APDR) curves, dispersion of repolarization

(DOR), QT interval and spiral wave dynamics. R858H “mutant” L-type calcium current

(ICaL) augmented sarcoplasmic reticulum calcium content, leading to the development

of afterdepolarizations at the single cell level and focal activities at the tissue level.

It also produced inhomogeneous APD prolongation, causing QT prolongation and

repolarization dispersion amplification, rendering R858H “mutant” tissue more vulnerable

to the induction of reentry compared with other conditions. In conclusion, altered ICaL due

to the CACNA1C R858H mutation increases arrhythmia risk due to afterdepolarizations

and increased tissue vulnerability to unidirectional conduction block. However, the

observed reentry is not due to afterdepolarizations (not present in our model), but rather

to a novel blocking mechanism.

Keywords: CACNA1C mutations, L-type calcium channel, Long QT syndrome, Timothy syndrome, ventricular

fibrillation, dispersion of repolarization, computational cardiac modeling
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Bai et al. Arrhythmogenesis in LQT8

INTRODUCTION

Congenital long QT syndrome (LQTS) is characterized by
an abnormally prolonged QT and high risk of ventricular
arrhythmias in susceptible families (Goldenberg et al., 2008).
LQTS type 8 (LQT8, Timothy syndrome, TS), a specific subtype
of LQTS, is a dysfunction syndrome involving multiple organs,
which can manifest as severe QT interval prolongation, T
wave alternans, 2:1 atrioventricular block, syndactyly, facial
dysmorphism, autistic spectrum disorders, immunodeficiency,
severe hypoglycemia, etc. (Splawski et al., 2004, 2005; Etheridge
et al., 2011; Gillis et al., 2012). The CACNA1C gene encodes
CaV1.2 that is a subunit of L-type voltage-dependent calcium
channel and gain-of-function mutations in CACNA1C have been
suggested to be responsible for LQT8 manifestations, but the
interplay between CACNA1C genotypes and malignant clinical
phenotypes is likely complex (Giudicessi and Ackerman, 2013).
For instance, the G406R mutation was believed to be the possible
cause of TS associated with many extra-cardiac phenotypes, such
as syndactyly, cognitive delay, and craniofacial abnormalities
(Splawski et al., 2004), while two de novo mutations (G406R and
G402S) also induced QT prolongation but without syndactyly
(Splawski et al., 2005; Frohler et al., 2014; Hiippala et al., 2015).
Recently, a handful of otherCACNA1Cmutations were identified
in patients exhibiting only modest QT prolongation (Gillis et al.,
2012; Boczek et al., 2013, 2015a,b; Fukuyama et al., 2013, 2014;
Hennessey et al., 2014; Wemhöner et al., 2015; Landstrom
et al., 2016; Sutphin et al., 2016). In particular, Fukuyama
et al. identified five novel CACNA1C mutations: G1783C,
P381S, M456I, A582D, and R858H (Fukuyama et al., 2013,
2014). Patients with the R858H mutation displayed excessive
QT prolongation and episodes of ventricular fibrillation (VF).
Although functional analysis of R858Hmutant channels reveals a
significant increase in the L-type calcium current (ICaL), relatively

Abbreviations: VF, Ventricular fibrillation; PVC, premature ventricular complex;

LQTS, long QT syndrome; LQT8, LQTS type 8; TS, timothy syndrome; WT,

wild-type; ECC, excitation-contraction coupling; 1D, 2D, and 3D, one-, two- and

three- dimensional; ICaL, L-type calcium current; INCX , sodium-calcium exchanger

current; Irel , the calcium-induced-calcium release flux; Irel(m), Irel amplitude;

Ito, the transient outward potassium channel current; IKs, slow delayed rectifier

potassium channel current;Cm, the capacitance;D, the effective diffusion constant;

Iion, the total transmembrane current; Vm, the trans-membrane potential;

[Ca2+]i, cytoplasmic calcium concentration; [Ca2+]i(m), [Ca
2+]i amplitude; SR,

sarcoplasmic reticulum; [Ca2+]SR, SR calcium concentration; [Ca2+]SR(m), SR

calcium content; AP, action potential; APD, AP duration; APD90, APD at

90% repolarization; APDR, APD restitution; ENDO, endocardial-cell; MCELL,

midmyocardial-cell; EPI, epicardial-cell; ENDO-EPI, between endocardial- and

epicardial- cells; ENDO-M, between endocardial- and midmyocardial- cells; EPI-

M, between epicardial- and midmyocardial- cells; EAD, early afterdepolarization;

DAD, delayed afterdepolarization; TP06 model, Ten Tusscher-Panfilov human

ventricular cell model; ORd model, O’Hara-Rudy dynamic human ventricular cell

model; I-V relationships, current-voltage relationships; CSF, the scaling factor of

the ICaL conductance; Va,0.5, the midpoint voltage of the voltage-activation curve;

Sa, the slope of the voltage-activation curve; Vina,0.5, the midpoint voltage of

the voltage-inactivation curve; Sina, the slope of the voltage-inactivation curve;

TCSF, the scaling factor of voltage-inactivation time constant; PCL, pacing cycle

length; MPCL, the maximum PCL that produced 2:1 block; DOR, dispersion

of repolarization; RT, repolarization time, SG, spatial gradient of APD; MSG,

maximal SG; δ, the membrane potential gradient; CV, conduction velocity; DI,

diastolic interval.

little is known about the pathogenic mechanisms underlying VF
in the setting of the “mutant” ICaL.

ICaL plays a major role in regulating cardiovascular functions
because it regulates excitation-contraction coupling (ECC) by
triggering the calcium release from the sarcoplasmic reticulum
(SR), modulates cellular excitability, and action potential (AP)
shape by participating in AP repolarization and is thereby
involved in the heart rhythm and contractility (Benitah et al.,
2010). Abnormalities in ICaL due to CACNA1C mutations
have been suggested as factors contributing to ventricular
arrhythmogenesis (Venetucci et al., 2012). In previous simulation
studies, it has been shown that changes in ICaL due to gain-
of-function mutations in CACNA1C prolongs action potential
duration (APD; Faber et al., 2007; Zhu and Clancy, 2007;
Yarotskyy et al., 2009; Morotti et al., 2012; Wemhöner et al.,
2015; Bai et al., 2016c) linked to early afterdepolarizations (EADs;
Sung et al., 2010; Boczek et al., 2015a), and increases SR calcium
content which is then responsible for spontaneous calcium
release and delayed afterdepolarizations (DADs; Splawski et al.,
2005; Thiel et al., 2008; Sung et al., 2010; Yazawa et al., 2011).
Although these studies may provide a potential mechanistic
link between CACNA1C mutations and ventricular arrhythmias,
altered AP in single cells cannot be extrapolated directly to
reentrant arrhythmias in the human heart, where electrotonic
coupling between cardiomyocytes may smooth out electrical
heterogeneity between cells. Integrative computational models
have been widely used to build a bridge between CACNA1C
mutations and pro-arrhythmic phenotypes, and these simulated
results have shed valuable light on the mechanisms of
arrhythmogenesis (Roberts et al., 2012; Bai et al., 2016a).
Indeed, our previous models have indicated that changes in
ICaL due to the reduced voltage-dependent inactivation caused
by the G1911R mutation in LQT8 extremely prolongs APD
and augments dispersion of repolarization (DOR), increasing
susceptibility to reentrant arrhythmias (Bai et al., 2016c). By
contrast, changes in ICaL due to the augmented current density
caused by the R858Hmutation has been suggested to increase the
likelihood of VF (Fukuyama et al., 2014), but this link remains
to be demonstrated directly. In this study, we focus on the
mechanisms by which altered ICaL caused by a R858H CACNA1C
mutation promotes and perpetuates ventricular arrhythmia using
mathematical modeling.

For this purpose, we modified the Ten Tusscher-Panfilov
(TP06) human ventricular cell model (Ten Tusscher et al.,
2004, 2006) to incorporate experimental data on the kinetic
properties of ICaL (Fukuyama et al., 2014). We used this model to
investigate the electrophysiological consequences of CACNA1C
mutations in single cells, wave propagation in one-dimensional
(1D) ventricular cables, and the onset of spiral waves in two-
dimensional (2D) and three-dimensional (3D) models.

In particular, the modified model can reproduce current-
voltage (I-V) relationships of CACNA1C mutations and
prolongation of the QT interval (Fukuyama et al., 2014). We
found that ICaL arising from the CACNA1C R858H mutation
augments SR calcium content, leading to spontaneous calcium
release and afterdepolarizations in single cells, and thereby focal
activity in the 1D fiber. The R858H mutation produced electrical
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heterogeneity within the ventricular wall, amplified the intrinsic
spatial DOR, and increased tissue vulnerability to generate
unidirectional conduction block facilitating the development of
reentry in the transmural ventricular sheet. These simulation
data imply that patients with the R858H mutation are at high
risk of ventricular arrhythmias.

MATERIALS AND METHODS

Model of ICaL
The equations for ICaL in the TP06 model (Ten Tusscher and
Panfilov, 2006a) were modified to incorporate experimental data
on CACNA1C mutation-induced changes. First, we determined
the modifications to the original ICaL model to reproduce
the behavior of the mutant ICaL (Figure 1A) during the same
voltage-clamp employed in experiments (Fukuyama et al., 2014).
Theoretical steady-state activation and inactivation curves which
were used to simulate G1783C, wild-type (WT), P381S, M456I,
A582D, and R858H ICaL, are shown in Figure 1C. Second, based
on experimental I-V relationships (Figure 1B), mathematical
models of ICaL were constructed (formulations are listed in
Supplementary Material). This was achieved by simulating the
experimental voltage-clamp protocol (Fukuyama et al., 2014) and

scaling relative current proportions for G1783C, WT, P381S,
M456I, A582D, and R858H conditions. Peak inward G1783C,
P381S, M456I, A582D and R858H ICaL density was, respectively,
∼0.86-, ∼1.04-, ∼1.08-, ∼1.19-, ∼1.54-fold that for WT ICaL
(Figure 1B). The simulated I-V curves (Figure 1D) matched
closely with the experimental observation (Figure 1B).

Upon biophysical analysis of the experimental data on
CACNA1C mutations (Fukuyama et al., 2014), four major
changes to ICaL were considered. These changes included:
ICaL current densities, steady-state activation curves, voltage-
dependent inactivation curves as well as the time constant
for the voltage-dependent inactivation. Parameters for ICaL,
including the scaling factor of the ICaL conductance (CSF),
the midpoint voltage of the voltage-activation curve (Va,0.5),
the slope of the voltage-activation curve (Sa), the midpoint
voltage of the voltage-inactivation curve (Vina,0.5), the slope
of the voltage-inactivation curve (Sina) and the scaling factor
of voltage-inactivation time constant (TCSF), were modified
to reproduce the experimental I–V relationships (Comparison
between simulation and experimental results for ICaL can be
found in Table S1).

Single Cell Simulations
The TP06 model, based on human experimental data, was
developed to reproduce transmural heterogeneity of electrical
properties (Ten Tusscher et al., 2004; Ten Tusscher and
Panfilov, 2006a) by changing maximum conductivities of
the transient outward potassium channel current (Ito) and
slow delayed rectifier potassium channel current (IKs). The
ICaL formulations were the same for endocardial (ENDO),
midmyocardial (MCELL) and epicardial (EPI) cell models. The
model (Ten Tusscher et al., 2006) was suggested to be suitable
for simulating wave dynamics at the tissue and organ levels (Ten
Tusscher and Panfilov, 2006b; Ten Tusscher et al., 2009). In 2013,

the calcium-induced-calcium release flux (Irel) was modeled as
the combination of both SR calcium release and SR calcium leak
by Lascano et al. (2013). The same modifications were employed
in our previous studies (Bai et al., 2016b, 2017; Liu et al., 2016;
formulations are listed in Supplementary Material).

In single cell simulations, APs were elicited by pre-pacing
the models for 100 cycles to reach a stable steady state. APD
was computed as AP duration at 90% repolarization (APD90).
Changes in ICaL, sodium-calcium exchanger current (INCX), Irel,
cytoplasmic calcium concentration ([Ca2+]i) and SR calcium
concentration ([Ca2+]SR) were used to analyze CACNA1C
mutations-induced calcium handling. Differences of electrical
properties between endocardial- and epicardial- cells (ENDO-
EPI), between endocardial- and midmyocardial- cells (ENDO-
M) and between epicardial- and midmyocardial- cells (EPI-M)
may contribute to transmural electrical heterogeneities in tissues
(Zhang et al., 2008). Transmural electrical heterogeneity caused
by CACNA1C mutations was assessed by quantifying [Ca2+]i
amplitude ([Ca2+]i(m)), SR calcium content ([Ca2+]SR(m)), Irel
amplitude (Irel(m)), and APD. The rate dependence of APD was
also investigated by using a pacing cycle length (PCL) of 2000,
1000, and 500 ms, respectively.

The maximum slope of the APD restitution (APDR) curve
is a main marker for determining whether alternans and spiral
breakup will occur (Ten Tusscher and Panfilov, 2006a). We used
both the standard S1-S2 and dynamic protocols to determine
APDR. For the S1-S2 protocol, 30 S1 stimuli were applied at a
PCL of 1,000 ms, and the S2 stimulus was applied at varying
diastolic intervals (DI) after the AP evoked by the last S1
stimulus. For the dynamic protocol, a series of 30 stimuli were
applied at a PCL of 1,000 ms, after which the PCL was decreased.
APDR curves were obtained by plotting APD against DI.

Multicellular 1D, 2D, and 3D Models
Figure 2 shows multicellular tissue models which consist of
a 1D transmural ventricular fiber (Figure 2A), a 1D MCELL
homogeneous cable (Figure 2B), a 2D transmural ventricular
sheet (Figure 2C), and a 2D MCELL tissue (Figure 2D).

The 1D transmural ventricular fiber of length 24.75mm
(Figure 2A), which contained a 9mm long ENDO region, a
6.75mm long MCELL region and a 9mm long EPI region,
was constructed to compute a pseudo-ECG and investigate
the tissue vulnerability to unidirectional conduction block.
The fiber model consisted of 60 ENDO nodes, 45 MCELL
nodes and 60 EPI nodes (O’Hara et al., 2011). Following the
application of a sequence of 10 conditioning S1 pulses (with
amplitude of −40 µA/cm2 for 3 ms) applied to a 0.45mm
long ENDO segment at a PCL of 1,000 ms, repolarization
characteristics were evaluated by computing repolarization time
(RT), DOR, and maximum spatial gradient of APD (MSG).
RT was computed as the largest APD in the transmural cable.
DOR was measured as the difference between the largest and
smallest APD of cells in the fiber. Spatial gradient of APD
(SG) along the transmural cable was calculated as changes of
APD per millimeter. In addition, the pseudo-ECG was obtained
by using the method of Gima and Rudy (Gima and Rudy,
2002; formulations are listed in Supplementary Material). QT
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FIGURE 1 | Voltage-dependence of activation and inactivation kinetics for G1783C (Magenta), wild-type (WT, Black), P381S (Red), M456I (Green), A582D (Blue), and

R858H (Cyan) conditions. Activation and inactivation curves obtained from experimental data (A) as well as simulated results (C) are shown. Current-voltage (I–V)

relationships obtained from experiments (B) and simulations (D) are compared.

interval, T-wave width and T-wave amplitude were quantified to
examine the changes in the ECG due to CACNA1C mutations.
QT interval was estimated as the time interval between the Q-
wave onset and the T-wave end, T-wave width was computed
as the peak and the end of the T-wave, and T-wave amplitude
was defined as the peak voltage of the T-wave. The T-wave
end was determined by the intersection point of the baseline
(y = 0 mV) and the T wave. The inducibility of unidirectional
conduction block for each mutant CACNA1C was also quantified
by computing the maximum PCL (MPCL) that produced 2:1
block.

A 1D MCELL cable of length 24.75mm (Figure 2B) was used
to measure conduction velocity (CV) by calculating the time 1t
for the wavefront to propagate from x − 1x to x + 1x, defining
CV = 2 1x/1t. To examine whether focal activity in the 1D
cable was induced at a PCL of 500 ms, solitary planar waves were

initiated by applying S1 pulses (with the same size, strength and
duration as the one used for the 1D transmural simulation).

A transmural ventricular sheet (Figure 2C), which was
constructed by expanding the 1D transmural fiber into a sheet
with a length of 24.75mm and a width of 150mm, was developed
to examine tissue vulnerability to the initiation of reentrant
waves. A S1-S1 stimulation (with the same strength and duration
as the one used for the 1D simulations) was applied to a region of
0.45× 75 mm2, located at the center of the left ENDO boundary.

A 2D MCELL tissue model of 375 × 375 mm2 (Figure 2D)
was developed to investigate effects of CACNA1C mutations on
the spatiotemporal behavior of spiral waves. Spiral waves were
induced by a standard S1–S2 stimulation. A plane wave was
initiated by applying the S1 stimulus to the left side of the domain
(0.75 × 375 mm2). Once the plane wave had passed over the
first half of the domain, the S2 stimulus was applied to the first
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FIGURE 2 | Multicellular one-dimensional (1D) and 2D tissue models. (A) A 1D transmural ventricular cable of 24.75mm which contains 9mm long endocardial region

(ENDO), 6.75mm long midmyocardial region (MCELL) and 9mm long epicardial region (EPI).The S1 stimulus is applied to a 0.45mm ENDO region. (B) A 1D

homogeneous ventricular cable of 24.75mm with MCELL cells is constructed and the S1 stimulus is applied to a 0.45mm region at the end of the cable. (C) A 2D

transmural ventricular model was constructed by expanding the 1D transmural fiber into a sheet with a length of 150mm and a width of 24.75mm. The S1-S1

stimulation is applied to the 0.45 × 75 mm2 region at the left side of the ENDO layer. (D) A 375 × 375 mm2 homogeneous tissue with MCELL cells was developed.

Location of S1stimulation (Red) and region of S2 stimulation (Blue) are shown.

quarter of the domain so that a spiral wave was produced. AP
was recorded from the representative point (x = 187.5mm, y =
187.5mm) and the fundamental frequency was obtained from the
power spectra of the AP.

For the 3D model, simulations were performed using an
anatomical human ventricular geometry developed in our
previous studies (Bai et al., 2015, 2016c). It has a spatial resolution
of 0.5mm with ∼6.38 million cells in total. For both left and
right ventricles, the tissue was segmented into distinctive ENDO,
MCELL, and EPI layers with similar contiguous figurations in the
transmural wall as in the 1D transmural ventricular fiber model.
The S1-S1 stimulation was applied to a 2.5mm wide region of
the ENDO layer. For the purposes of the present study, the 3D
anatomical model was assumed to be electrically homogeneous.

Numerical Methods
The cell models were incorporated into a parabolic partial
differential equation (PDE) to construct mono-domain models
of cardiac electrophysiology to describe the reaction-diffusion
system in simulating cardiac dynamics (Clayton and Panfilov,
2008). The governing equation is

Cm

∂Vm

∂t
= D∇

2
Vm − Iion (1)

where Cm = 1 µF/cm2 is the capacitance, D is the effective
diffusion constants, and Iion is the total transmembrane current.

We used a forward-Euler method for marching, with a time
step (∆t) of 0.02 ms and a space step (∆x = ∆y = ∆z),
to solve the PDEs (Equation 1). The value of D is set to
be 0.0385 mm2/ms for simulating excitation waves in the 1D
transmural ventricular fiber, the 1D homogeneous cable, the 2D
transmural ventricular sheet and the 3D ventricular model. The
spatial resolution in 1D, 2D and 3D models are as follows: 1D
ventricular model: ∆x = 0.15mm; 2D transmural ventricular
model: ∆x = ∆y = 0.15mm; 3D ventricular model: ∆x =

∆y = ∆z = 0.5mm. For the 2D MCELL ventricular model,
D is set to be 0.154 mm2/ms and the spatial resolution is
chosen to be 0.25mm to investigate the role of APDR in the
occurrence of electrical instability (Ten Tusscher et al., 2004;
Vandersickel et al., 2014; Nayak and Pandit, 2015; Zimik et al.,
2015; Nayak et al., 2017). We also used Neumann (i.e., no-flux)
boundary conditions (Clayton and Panfilov, 2008). Simulations
were carried out on a 64-bit Intel core i7-3930K CPU system
with 64 GB memory. Efficient parallelization was implemented
using GPU acceleration (Bai et al., 2015). Although different
time, space and diffusion coefficient were used, solutions to
the mono-domain model with isotropic diffusion fulfilled the
stability criterion: (i.e., D∆t/ ∆x2 < 1/2; Clayton and Panfilov,
2008).
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FIGURE 3 | Intracellular calcium handling and action potential. For endocardial cells, time courses of the membrane potential (Em, A), the L-type calcium current

(ICaL, B), the sodium-calcium exchanger current (INCX , C), calcium induced calcium release flux (Irel , D), cytoplasmic calcium concentration ([Ca2+]i , E) and

sarcoplasmic reticulum (SR) calcium concentration ([Ca2+]SR, F) in the G1783C (Magenta), wild-type (WT, Black), P381S (Red), M456I (Green), A582D (Blue), and

R858H (Cyan) conditions are shown. The pacing cycle length (PCL) used in these simulations is 1,000 ms. Action potential duration, INCX , Irel , [Ca
2+]i , and [Ca2+]SR

augment with an increase in ICaL. Changes in action potential duration are indicated by an enlargement of the (A).

RESULTS

Effects of CACNA1C Mutations on
Intracellular Calcium Handling and Action
Potential
ICaL arising from the CaV1.2 mutations altered intracellular
calcium handling and prolonged AP as shown in Figure 3A. For
ENDO cells, the ICaL amplitude was increased progressively from
4.12 pA/pF in the G1783C condition (Magenta) to 4.28 pA/pF
(WT, Black), 4.35 pA/pF (P381S, Red), 4.44 pA/pF (M456I,
Green), 4.71 pA/pF (A582D, Blue), and 5.0 pA/pF (R858H,
Cyan), respectively (Figure 3B). Altered intracellular calcium
handling resulted from increased ICaL was shown by the time
courses of INCX(Figure 3C), Irel (Figure 3D), [Ca2+]i (Figure 3E)
and [Ca2+]SR(Figure 3F). Changes in [Ca2+]i(m), [Ca

2+]SR(m),
and Irel(m) were related to an increase in ICaL (changes are
summarized in Table S2). Increased ICaL during the AP plateau
triggered a large Irel, leading to cytoplasmic calcium overload and
APD prolongation. The measured APD was 264.4 ms (G1783C),
267.8 ms (WT), 271.8 ms (P381S), 277 ms (M456I), 282.6 ms
(A582D), and 294 ms (R858H), respectively.

Simulations of transmural electrical heterogeneity were
performed for each mutation, producing APs of ENDO, MCELL,
and EPI cells. [Ca2+]i(m), [Ca

2+]SR(m), Irel(m), and APDwere used
to quantify electrical properties of the different cell types (listed in
Table S2). The electrical differences associated with each mutant

CACNA1C for ENDO-EPI, ENDO-M as well as EPI-M are
summarized in Table S3. There were small electrical differences
for ENDO-EPI, whilst large electrical heterogeneities were found
for EPI-M and ENDO-M. For one “mutant” ICaL tested (R858H),
[Ca2+]SR(m) of ENDO-EPI (∼0.1mM) was smaller than that of
EPI-M (∼0.64mM) as well as ENDO-M (∼0.74mM). Among
in these mutations, the CaV1.2 R858H mutation with the
largest effect on electrophysiological heterogeneity was present.
For the [Ca2+]SR(m), the ENDO-M difference for the R858H
condition was larger (∼0.74mM) than the one (∼0.64mM)
produced by the presence of the WT ICaL, while other mutations
caused changes ranging from ∼0.59mM to ∼0.69mM. Other
characteristics of transmural heterogeneity are listed in Table
S3, which demonstrate that the largest electrophysiological
heterogeneity is with the R858H condition.

Effects of CACNA1C Mutations on
Induction of Afterdepolarizations
The effects of ICaL associated with CACNA1C mutations on AP
shape are shown in Figure 4. Cell simulations were conducted by
increasing the pacing frequency from 0.5 to 2Hz [corresponding
to PCL of 2,000 ms (Green), 1,000 ms (Red) as well as 500
ms (Black)] and the measured APDs for G1783C, WT, P381S,
M456I, A582D, and R858H cells are listed in Table S4. For
the ENDO (Figure 4, left column), MCELL (Figure 4, middle
column) and EPI (Figure 4, right column) cells, APD90 was
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FIGURE 4 | Simulated action potentials (Em) for the Ten Tusscher-Panfilov (TP06) human ventricular cell model at different pacing cycle lengths (PCL) under G1783C,

wild-type (WT), P381S, M456I, A582D, and R858H conditions. Endocardial (ENDO, left column), midmyocardial (MCELL, middle column) and epicardial (EPI, right

column) action potentials at the PCL of 500 (Black), 1,000 (Red), and 2,000 ms (Green), respectively. Action potential duration abbreviates with a decrease in PCL.

For each mutation, action potential duration of MCELL cells is longer than that of other cells. Among in these mutations, when the PCL is 500 ms for R858H, delayed

afterdepolarizations (DAD, marked with a red circle) were triggered in MCELL cells.

abbreviated with PCL and no afterdepolarizations were triggered
under the G1783C, WT, P381S, M456I, and A582D conditions.
However, under the R858H condition, a DAD in theMCELL cells
was induced, but no ectopic beats in the EPI and ENDO cells were

observed, when the PCL was 500 ms.
To illustrate afterdepolarizations generating events, the time

courses of AP, ICaL, INCX , Irel, [Ca2+]i, and [Ca2+]SR for
the ENDO (Figure 5, left column), MCELL (Figure 5, middle
column) and EPI (Figure 5, right column) cells at PCL of 500
ms (Red) and 1,000 ms (Black) are shown. As can be seen, ICaL
arising from the R858H mutation contributed to an increase
in [Ca2+]SR, which, consequently, enhanced spontaneous Irel,
accompanied by an inward INCX that depolarized the cell.
Subsequently, EADs (marked with a blue circle) and DADs
(marked with red circles) were triggered in R858H-MCELL
cells. Compared with R858H-ENDO and R858H-EPI cells,
spontaneous Irel frequency was higher in R858H-MCELL cells.
Additionally, spontaneous Irel occurred during repolarization
and therefore led to the EADs, however, DADs were induced
by spontaneous Irel after repolarization. In addition, the APD
(≈421.2 ms) of the DAD-induced AP was larger than that (348.2

ms) of the R858H-MCELL cells at a PCL of 500 ms, indicating
QT interval prolongation at rapid heart rates.

Effects of CACNA1C Mutations on APD
Restitution
The effects of the mutant ICaL on ventricular APDR are shown
in Figure 6. The APD reduction was rate-dependent for ENDO
(Figures 6A,D), EPI (Figures 6B,E) and MCELL (Figures 6C,F)
cells. Across the range of DIs tested, themeasured APDwas larger
for the R858H (Cyan) condition than for the G1783C (Magenta),
WT (Black), P381S (Red), M456I (Green), and A582D (Blue)
conditions. For the R858H settings, the maximum restitution
slope of 2 for MCELL cells (Figure 6E) was larger than those
for ENDO (Figure 6D, 1.35) as well as EPI cells (Figure 6F,
1.5). For MCELL cells, the computed APDR slopes of MCELL
cells (Figure 6E) were 2 (G1783C), 1.8 (WT), 1.7 (P381S), 1.7
(M456I), 1.7 (A582D), and 2 (R858H), respectively. Details of
maximum APDR slopes for three cell types can be found in
Table S5.
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FIGURE 5 | Effects of the R858H L-type calcium current (ICaL) on the induction of afterdepolarizations. For endocardial (ENDO, left column), midmyocardial (MCELL,

middle column) and epicardial (EPI, right column) cells, time courses of membrane potential (Em), underlying L-type calcium current (ICaL), the sodium-calcium

exchanger current (INCX ), calcium induced calcium release flux (Irel ), cytoplasmic calcium concentration ([Ca2+]i ) as well as sarcoplasmic reticulum (SR) calcium

concentration ([Ca2+]SR) at the pacing cycle length (PCL) of 500 (Red) and 1,000 ms (Black), respectively. Among different cell types, in MCELL cells early

afterdepolarizations (EAD, marked with a blue circle) and delayed afterdepolarizations (DAD, marked with a red circle) occurred at the PCL of 500 ms. These

afterdepolarizations were triggered by Irel via INCX .

Effects of CACNA1C Mutations on ECG
To examine the manifestation of the temporal and spatial
dispersion of AP in the pseudo-ECG, AP propagation
(Figure 7A), spatial distribution of APD (Figure 7B), spatial
gradient of APD (Figure 7C) and the computed pseudo-ECG
(Figure 7D) of 1D transmural strand at a PCL of 1,000ms for
each “mutant” ICaL are shown. Repolarization time (Figure 7E),
DOR (Figure 7F), the maximum spatial gradient of APD at the
EPI-M junction (Figure 7G), QT interval (Figure 7H), and T
wave width (Figure 7I) were computed for the G1783C, WT,
P381S, M456I, A582D, and R858H conditions. As can be seen
in Figure 7D, the QT interval was prolonged from 397.1ms
(G1783C) to 398.5ms (WT), 401.2ms (P381S), 408.2ms
(M456I), 415.9ms (A582D), and 425.7ms (R858H), respectively
(Figure 7H). The QT interval prolongation underlying increased
APD in single cells has been linked to repolarization time
(RT; Gima and Rudy, 2002). Therefore, the effects of the

mutant ICaL on RT were examined. The computed RT was
360.48ms (G1783C), 363.6ms (WT), 367.34ms (P381S),
374.84ms (M456I), 381.14ms (A582D), and 393.32ms (R858H),
respectively (Figure 7E). The QT prolongation was consistent
with the prediction of RT. Moreover, the APD of MCELL
cells with the longest repolarization time was increased from
359ms (G1783C) to 364.2ms (WT), 370.4ms (P381S), 379.6ms
(M456I), 389.4ms (A582D), and 410.8ms (R858H), respectively
(listed in Table S6). The QT interval prolongation can be
attributed to ICaL due to CACNA1C mutations that influence
APD in single cells and ventricular RT in ventricular tissues.

In addition, changes in the T wave were examined. As is
shown in Figure 7H, the T-wave width was 60ms (G1783C),
59.9ms (WT), 59.9ms (P381S), 61.7ms (M456I), 63.9ms
(A582D), and 64.5ms (R858H), respectively (Figure 7I). The
augmented T-wave width has been attributed to an increase
in DOR (Antzelevitch et al., 1998), therefore the effects of
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FIGURE 6 | Single-cell action potential duration (APD) restitution (APDR) curves for the Ten Tusscher-Panfilov (TP06) human ventricular cell model. (A–C) APDR

curves obtained using a dynamic restitution protocol for the endocardial (ENDO), epicardial (EPI) and midmyocardial (MCELL) cells in the G1783C (Magenta), wild-type

(WT, Black), P381S (Red), M456I (Green), A582D (Blue), and R858H (Cyan) conditions. (D–F) Similar dynamic restitution curves as in (A–C), but these APDR curves

obtained using a S1-S2 restitution protocol for a pacing cycle length (PCL) of 1,000 ms for the six different settings. APD is plotted against diastolic interval (DI). For

each cell type, curves from bottom to top are for the G1783C mutation, for the WT condition, for the P381S mutation, for the M456I mutation, for the A582D mutation

and for the R858H mutation, respectively. Among in these mutations, the R858H mutation obviously shifts APDR curves upwards.

the mutant ICaL on APD dispersion in the transmural strand
were also investigated. The computed DOR was enhanced

from 60.94ms (G1783C) to 61.3ms (WT), 62.2ms (P381S),
64.12ms (M456I), 65.64ms (A582D), and 67.96ms (R858H;
Figure 7F). In addition, it has been suggested that DOR is

a marker of electrical heterogeneity in APD (Antzelevitch,
2001). Comparatively, the maximal APD difference for EPI-

M was 93ms (G1783C), 94.8ms (WT), 97ms (P381S), 101ms
(M456I), 104.8ms (A582D), and 115.2ms (R858H), respectively
(summarized in Table S3). The APD heterogeneity induced by

CACNA1C mutations may contribute to DOR and thereby to
T-wave width.

Similarly, T-wave amplitudes were calculated. The T-wave

amplitude was 1.051mV (G1783C), 1.053mV (WT), 1.056mV
(P381S), 1.075mV (M456I), 1.087mV (A582D), and 1.104mV
(R858H), respectively (listed in Table S6). Compared with the

WT condition, there was no evident difference in T-wave

amplitude. Changes of T-wave amplitude can be attributed to

altered temporal and spatial gradients in membrane potential
(Gima and Rudy, 2002; Zhang et al., 2008). Therefore, the APD
gradient (Figure 7C) and the membrane potential gradient (δ,
Figure 8) were computed. Figure 8A shows simulated ENDO
(Black), EPI (Red), MCELL (Green) APs for each mutant
condition whilst Figure 8B shows corresponding time-course
plots of δ for EPI-ENDO (Light Gray), EPI-M (Gray), and
ENDO-M (Dark Gray). The maximal δs for EPI-M (Figure 8D)

and ENDO-M (Figure 8E) were greater than that for EPI-ENDO
(Figure 8C). This was consistent with the prediction of electrical
heterogeneities of AP in single cells (summarized in Table S3).
There was no significant change in the maximum EPI-ENDO δ

between these mutations (Figure 8F). However, the maximum
EPI-M δ was 73.8mV (G1783C), 74.2mV (WT), 75.2mV
(P381S), 75.6mV (M456I), 77.1mV (A582D), and 79.4mV
(R858H), respectively (Figure 8G), and the maximum ENDO-M
δ was 91.59mV (G1783C), 92.06mV (WT), 93.06mV (P381S),
93.14mV (M456I), 94.69mV (A582D), and 96.27mV (R858H),
respectively (Figure 8H). Also, the maximum spatial gradient
(MSG) of APD at the EPI-M junction was 18ms/mm (G1783C),
18.1ms/mm (WT), 18.5ms/mm (P381S), 18.9ms/mm (M456I),
19.2ms/mm (A582D), and 19.5ms/mm (R858H), respectively
(Figure 7G). Changes inMSG at the EPI-M junction and
maximal EPI-M δ were consistent with the altered T-wave
amplitude.

Taken together, the ECG phenotypes were dependent on
changes of AP caused by altered ICaL due toCACNA1Cmutations
in single cells and the longest QT interval was obtained under the
R858H condition (listed in Table S6).

Effects of CACNA1C Mutations on Action
Potential Propagation
To investigate the cellular level conditions required for
afterdepolarizations to trigger a premature ventricular complex
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FIGURE 7 | Space-time plot of action potential propagation and the computed pseudo-ECG. (A) Color mapping of membrane potential of cells along the

one-dimensional (1D) strand from blue (−86 mV) to red (+42 mV). Space runs from the endocardial (ENDO) region to the midmyocardial (MCELL) and epicardial (EPI)

regions. Spatial distribution of action potential duration (APD, B), spatial gradient of APD (C), and pseudo-ECGs (D) corresponding to the G1783C (Magenta),

wild-type (WT, Black), P381S (Red), M456I (Green), A582D (Blue), and R858H (Cyan) conditions, respectively. Computed repolarization time (RT, E), dispersion of

repolarization (DOR, F), maximum spatial gradient of APD (MSGA) at the epicardial- and midmyocardial- (EPI-M) junction (G), QT interval (H) and T wave width (I) are

shown. From bottom to top, curves for the spatial distribution of APD are for the G1783C mutation, for the WT condition, for the P381S mutation, for the M456I

mutation, for the A582D mutation and for the R858H mutation, respectively. Changes in the spatial gradient of APD at the EPI-M junction (marked with a red circle) are

indicated by an enlargement of the (C). Changes in the T wave (marked with a red circle) are indicated by an enlargement of the (D). RT, DOR, MSGA at the EPI-M

junction and QT interval augment with an increase in APD. T wave widths show no apparent differences between G1783C, WT and P381S.
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FIGURE 8 | Membrane potential heterogeneity (δ) for EPI-ENDO (between epicaridal and endocardial cells), EPI-M (between epicaridal and midmyocardial cells) and

ENDO-M (between endocaridal and midmyocardial cells) in a one-dimensional (1D) transmural ventricular cable. (A) Endocardial (ENDO, Black), epicardial (EPI, Red),

and midmyocardial (MCELL, Green) membrane potentials (Em) for the G1783C, wild-type (WT), P381S, M456I, A582D and R858H conditions. (B) EPI-ENDO (Light

Gray), EPI-M (Gray) and ENDO-M δ (Dark Gray). (C–E) Superimposed EPI-ENDO, EPI-M and ENDO-M δ. (F–H) Absolute maximum EPI-ENDO, EPI-M, and ENDO-M δ.

(PVC) at the multicellular tissue level, a 24.75-mm long MCELL
strand model was constructed and space-time plots of AP
propagation in the 1D homogeneous cable at the PCL of 500
ms are shown in Figure 9. For the G1783C, WT, P381S, M456I
and A582D conditions, no focal activity was observed whilst a
R858H-mediated focal activity (marked with a white rectangle)
was triggered at Time = 35,000 ms. Although a DAD mediated-
AP was induced in MCELL cells (Figure 5, middle column),
such simulations may not necessarily reflect the situation
for intact tissue, in which electrical coupling occurs between
cells and may smooth out these electrical differences. Thus,
the propagation of the DAD mediated-AP was not observed
(Figure S1) and thereby no PVC occurred under the R858H
condition.

To identify the electrophysiological substrates that promote
arrhythmogenesis, tissue vulnerability to unidirectional
conduction block necessary to the genesis of reentry was
investigated, and space-time plots of AP propagation in the
1D transmural cable at different PCLs are shown in Figure 10.
As can be seen, the tissue susceptibility to unidirectional
conduction block showed a RT dependency and increased with
a decrease in PCL. For instance, the MPCL (listed in Table
S6) increased from 350ms (G1783C) to 352ms (WT), 354ms
(P381S), 356ms (M456I), 365ms (A582D), and 370ms (R858H),

respectively, with RT prolongation from 360.48ms (G1783C)
to 363.6ms (WT), 367.34ms (P381S), 374.84ms (M456I),
381.14ms (A582D), and 393.32ms (R858H), respectively. As
for R858H conditions, no unidirectional conduction block was
observed at PCL = 1,000ms, while unidirectional conduction
block occurred at PCL = 370ms. Bidirectional conduction was
obtained in G1783C, WT, P381S, M456I, and A582D conditions
at PCL = 370ms. Therefore, R858H tissue was more vulnerable
to unidirectional conduction block than other type tissues.

Effects of CACNA1C Mutations on
Dynamic Behavior of Reentrant Excitation
Waves in 2D and 3D Models
To examine if mutations-induced changes in APDR curves
promote the breakup of a spiral wave, an idealized homogeneous
tissue model was constructed and spiral waves were induced by
S1-S2 stimulation. Figure 11 shows snapshots of spiral waves
(Time = 5,000ms, left column), time series of action potentials
(middle column) from the point indicated by an asterisk (left
column) and power spectra (right column) for the G1783C,
WT, P381S, M456I, A582D, and R858H conditions. Reentrant
waves were stable and persistent. The fundamental frequencies
obtained from these power spectra of action potentials were
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FIGURE 9 | Space-time plots of midmyocardial action potential propagation in a one-dimensional (1D) homogeneous ventricular cable at the pacing cycle length

(PCL) of 500 ms. Color mappings of membrane potential (left column) are shown under G1783C, wild-type (WT), P381S, M456I, A582D, and H858R conditions,

respectively. The last two beats (the part on the right of the blue line) obtained from 34,000 to 36,000 ms (right column, marked with a black rectangle). A local

region (marked with a white rectangle) close to the pacing site exhibiting a subthreshold delayed afterdepolarization (DAD) with no premature ventricular complex

(PVC) under the R858H condition. Changes in membrane potential of the local region are indicated by an enlargement of the marked zone. Color mapping of

membrane potential from blue (−85 mV) to red (−73 mV).

2.8Hz. These ordered plots of action potential provided evidence
for the rotating spiral state.

To determine if R858H-induced changes were necessary to
induce ventricular arrhythmias, an idealized transmural tissue
model was developed to investigate the initiation of reentry with
a S1-S1 stimulation. As is shown in Figure 12, when the PCL
was 370ms, the first S1 stimulus (t = 0ms) produced a wave to
propagate from the ENDO layer to the EPI layer. The second
S1 stimulus (t = 370ms) produced a conditioning wave and
no unidirectional conduction block occurred under G1783C,
WT, P381S, M456I, and A582D conditions (t = 750ms). A
unidirectional conduction block was initiated under the R858H
condition, leading to the genesis of spiral waves (t = 750ms)
and fibrillation-like activity. The reentry wave for the R858H
conditions was unstable and promoted self-termination when
it collided with its own prolonged repolarization tail or tissue
borders (t = 1,000ms). These results support the previous
notion that the MPCL of 2:1 block for the R858H mutation
is 370ms (shown in Figure 10) and unidirectional conduction
block is responsible for the genesis of reentry. These 2D results
concur with the 1D simulations data, further illustrating the

pro-arrhythmic effects of the R858H mutation. In addition,
reentry can be induced under other conditions (Figure S2) if the
S1-S1 interval was decreased. For instance, the S1-S1 interval
for initiating spiral waves was 365ms (R858H), 340ms (A582D),
335ms (M456I), 320ms (P381S), 315ms (WT), and 310ms
(G1783C), respectively.

Further simulations were performed in a 2D slice model.
Figure 13 shows that the R858H ICaL induced reentrant spiral
waves, which lead to sustained multiple reentrant wavelets in a
2D ventricular slice. Snapshots of excitation waves at different
time points (t = 10, 350, 440, 520, and 990ms) are shown for the
G1783C, WT, P381S, M456I, A582D, and R858H conditions. As
can be seen, a S1 stimulus was applied to the four pacing sites
on the ENDO layer (marked with white asterisks, t = 10ms)
and excitation waves were initiated. At t = 350ms, another
S1 stimulus was used to induce spiral waves. At t = 440ms,
excitationwaves propagated to the whole sheet under the G1783C
and WT conditions, local conduction block was observed under
the P381S, M456I, and A582D conditions, and unidirectional
conduction block occurred under the R858H condition. Several
spiral waves were produced at t = 520ms and sustained reentry
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FIGURE 10 | Space-time plots of action potential propagation in a one-dimensional (1D) transmural ventricular cable at different pacing cycle lengths (PCL). At PCL of

1,000 ms, no conduction block is shown. At PCL of 370 ms, unidirectional conduction block occurs under the R858H condition. When the PCL is decreased,

unidirectional conduction block can occur under other conditions. The maximum PCL (MPCL) that produced unidirectional conduction block for G1783C, wild-type

(WT), P381S, M456I, A582D, and H858R is 350, 352, 354, 356, 365, and 370 ms, respectively.

was observed at t = 990ms. It was found that spiral waves can be
induced under other conditions by decreasing S1-S1 interval. The
S1-S1 interval for initiating spiral waves was 310ms (G1783C),
315ms (WT), 320ms (P381S), 325ms (M456I), 330ms (A582D),
and 345ms (R858H), respectively (Figure S3). Detailed movies of
spiral wave initiation can be found in Videos S1–S6.

To examine if R858H-induced changes promote ventricular

arrhythmias in human ventricles, further simulations were
performed using a 3D human heart geometry. As is shown

in Figure 14, the first S1 stimulus (t = 10ms) produced a

wave to propagate from the ENDO layer to the EPI layer.
Ventricular repolarization (marked with a black circle or a

blue circle) under the WT condition occurred much earlier

than that for the R858H settings (t = 340ms). At t =

350ms, another excitation wave initiated by the second S1

stimulus conducted bidirectionally (marked with a bidirectional

arrow) under the WT condition whilst the wave was locally

blocked (marked with unidirectional arrows) by unrecovered
tissues (marked with a red circle). Therefore, spiral waves
(marked with unidirectional arrows) were induced under the
R858H condition (t = 700ms and t = 800ms), and re-
entrant waves were persistent throughout the simulation (t

= 990ms). Moreover, when the S1-S1 interval was gradually
decreased, spiral waves can also be induced (Figure S4).
In details, the S1-S1 interval for initiating spiral waves
was 250ms (G1783C), 300ms (WT), 309ms (P381S), 340ms
(M456I), 345ms (A582D), and 348ms (R858H), respectively.

Detailed movies of the spiral wave initiation can be found in
Videos S7–S12.

Taken together, these data demonstrated that the R858H
mutation facilitates initiation of reentrant excitation waves and
suggested that the R858H tissue was more vulnerable to the
initiation of reentrant excitation waves than other type tissues. A
summary of the effects of CACNA1C mutated ICaL on simulated
human ventricular electrical activity is listed in Table 1.

DISCUSSION

Summary of Major Findings
To our knowledge, this is the first study to investigate
mechanisms underlying the genesis of VF in patients with
the CACNA1C R858H mutation. The study found five major
findings, (i) due to the R858H mutation ICaL caused intracellular
calcium overload, resulting in afterdepolarizations in single cells
and focal activity in 1D fiber tissues; (ii) The R858H mutation
induced an increase in ICaL prolonged APD and augmented RT,
leading to QT interval prolongation; (iii) The R858H mutation-
induced electrical differences between cells augmented electrical
heterogeneity, causing repolarization dispersion and thereby
increasing T-wave width; (iv) Although, the R858H mutation
steepened the APDR relationships in single cells, a stable
spiral wave remained in homogeneous tissues; (v) Changes in
cellular electrophysiology modulated wave conduction at tissue
level facilitating unidirectional conduction block and thereby
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FIGURE 11 | The spiral wave (Time = 5,000 ms, left column), action potential (Em, middle column) and temporal Fourier transforms of Em (right column) for the

G1783C, wild-type (WT), P381S, M456I, A582D, and R858H conditions. Action potential recorded from a representative point (x = 187.5mm, y = 187.5mm) that is

marked by an asterisk.

increasing tissue susceptibility to VF genesis in transmural
ventricular tissues.

These simulation data in this study constitute novel evidence

that the pro-arrhythmic effects of ICaL associated with CaV1.2

R858H mutation involve both increased cell susceptibility to
afterdepolarizations and tissue vulnerability to the reentry. The

effects of the R858H mutation were investigated at cellular, 1D

strand and 2D tissue and 3D organ levels, showing not only
alterations in calcium handling and QT prolongation, but also
repolarization dispersion and reentry.

Computer Modeling of CACNA1C
Mutations
In this study, the electrophysiological consequences ofCACNA1C
mutations were investigated by modeling the ICaL, as in previous
studies (Faber et al., 2007; Zhu and Clancy, 2007; Sung et al.,
2010; Morotti et al., 2012; Boczek et al., 2015a; Bai et al.,
2016c). Based on experimental data on ICaL current densities,
steady-state activation curves, voltage-dependent inactivation
curves as well as the time constant for the voltage-dependent
inactivation (Fukuyama et al., 2014), the ICaL model was
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FIGURE 12 | Snapshots of transmural conduction of electrical waves in a 24.75 × 150 mm2 transmual ventricular sheet. An electrical wave was elicited by the S1

stimulus applied to a 0.45 × 75 mm2 endocardial (ENDO) region at t = 0ms and propagated from the ENDO layer to the epicardial (EPI) layer. Snapshot taken at t =

50ms. Another S1 stimulus applied to the same ENDO region at t = 370ms generated an electrical wave. Snapshot taken at t = 400ms. Action potential

propagation under G1783C, wild-type (WT), P381S, M456I, A582D, and R858H conditions, respectively. A spiral wave developed under the R858H condition at t =

750ms. The pacing cycle length (PCL) used in these simulations is 370ms.

developed by changing the ICaL conductance, the half-activation
voltage, the slope of the activation curve, the half-inactivation
voltage, the slope of the inactivation curve and the scaling
factor of inactivation time constant. The “mutant” ICaL models
successfully reproduced the I-V relationships obtained from
experimental studies (Fukuyama et al., 2014). These ICaL models
were incorporated into a human ventricular cell model, allowing
us to relate changes in ICaL to AP at the cellular level, in
agreement with previous studies (Splawski et al., 2005; Sung
et al., 2010; Wemhöner et al., 2015; Bai et al., 2016c). According
to transmural ventricular wedge preparation models (Gima
and Rudy, 2002; O’Hara et al., 2011), the 1D transmural strand
model, integrating human ENDO-, MCELL- and EPI- cells, was
constructed to compute unipolar pseudo-ECGs. In the cable,
the proportion of each region composed of each distinct cell
type is consistent with that used in other studies (O’Hara et al.,
2011). In agreement with clinical findings, R858H-induced ICaL
led to a QT interval of 425.7 ms, which is within the QT range
(420–476 ms) of R858H-porbands (Fukuyama et al., 2014).
These models could be considered as a first step toward the

validation of electrophysiological model. Thus, cardiac models
provide a powerful tool for the study of mechanisms underlying
ventricular arrhythmias caused by CACNA1C mutation
effects.

Previous studies have demonstrated that distinct mutations
can have variable effects on current morphology and lead to
varying degrees of electrophysiological consequences, depending
on kinetic changes induced by the CACNA1C mutation (Sung
et al., 2010; Wemhöner et al., 2015; Sutphin et al., 2016). The
“mutant” ICaL represents state-specific kinetic properties of ion
channels, allowing us to relate functional changes in ICaL to AP
at the cellular level, the electrocardiogram characteristics at the
fiber tissue level and the spatiotemporal behavior of excitation
waves at the sheet tissue level. In the present study, although
G1783C, P381S, M456I, A582D, and R858H mutations changed
CaV1.2 in activation and inactivation, VF was only observed in
R858H patients (Fukuyama et al., 2013, 2014). Therefore, we have
focused on the R858H mutation marked by an increase in the
ICaL and have investigated mechanisms underlying the genesis of
reentry.
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FIGURE 13 | Snapshots of transmural conduction of electrical waves in a transmural ventricular slice. Electrical waves were elicited by the S1 stimulus applied to four

endocardial (ENDO) sites (marked with white asterisks). Snapshot taken at t =10ms. Another S1 stimulus applied to the same sites at t = 350ms generated several

electrical waves. Action potential propagation under G1783C and wild-type (WT) conditions, local conduction block under P381S, M456I, and A582D conditions, and

unidirectional conduction block under the R858H condition. Snapshot taken at t = 440ms. Several spiral waves developed at t = 520ms and sustained excitation

waves at t = 990ms under the R858H condition.

Ionic Mechanism of Afterdepolarizations in
R858H Cells
These analyses of R858H revealed an unexpected, distinct
electrophysiological phenotype from the classical TS mutations
(G406R/G402S; Splawski et al., 2004, 2005). Electrophysiological
studies of G406R in exon 8A and G406R/G402S in exon8
showed almost complete loss of inactivation of CaV1.2 (Splawski
et al., 2004, 2005). In contrast, R858H showed a significant
gain of current density, ∼2 mV negative shift of activation
and ∼2 mV positive shift of inactivation, resulting in an
increased window current (Fukuyama et al., 2014). Due to the
different electrophysiological phenotypes between the canonical
G406R/G402S mutations and R858H, we performed modeling
studies to better understand how the increased window current
may affect the ventricular AP. Like the modeling studies of
G406R/G402S (Splawski et al., 2004; Zhu and Clancy, 2007),
our results showed prolongation of APD in TP06 and O’Hara-
Rudy dynamic (ORd) human ventricular cell models (Figure S5).
At fast pacing rates, R858H-induced SR calcium loading, which

may lead to spontaneous afterdepolarizations, was also observed
(Figure S6). The result of R858H-induced afterdepolarizations
is consistent with other reports that pro-arrhythmic actions
of CACNA1C mutations are due to SR calcium leak, thereby
enabling an INCX that triggers afterdepolarizations (Splawski
et al., 2005). In agreement with experimental findings (Priori and
Corr, 1990), the R858H induced EADs and DADs share the same
mechanism, where NCX-mediated inward current is involved.

These afterdepolarizations maymainly result from an increase

ICaL arising from the R858H mutation, because the VF in the

R858H patients was completely prevented by atenolol, a beta-
blocker (Fukuyama et al., 2014). Thus, our results support the

concept that the R858H-induced defect is sufficient to cause
significant action potential prolongation and afterdepolarizations

in ventricular myocytes. Our data highlight how small changes in
cellular calcium entry through CaV1.2 can lead to far-reaching
changes in action potentials and intracellular calcium handling.

Computational modeling has shed valuable light on the
cellular mechanisms underlying ventricular arrhythmia. Splawski
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FIGURE 14 | Dynamics of electrical waves in 3D human ventricles under wild-type (WT) and R858H conditions. The S1-S1 stimulation was applied to a 2.5mm wide

region of the endocardial (ENDO) layer to investigate the induction of reentry. A conditioning wave was initiated by the S1 stimulus. Snapshots taken at 10ms.

Compared with the R858H condition, the ventricles began to repolarize earlier under the WT condition at 340ms (marked with a blue circle for the posterior view and

a black circle for the anterior view). Another excitation wave initiated by the second S1 stimulus conducted bidirectionally (marked with a bidirectional arrow) under the

WT condition whilst local conduction block (marked with unidirectional arrows) occurred (t = 350ms) and spiral waves (marked with unidirectional arrows) were

induced under the R858H condition (t = 700ms and t = 800ms). Snapshots for the anterior and posterior views were given. Unrecovered tissues were marked with a

red circle and the S1-S1 interval was 348ms.

et al. showed that a G406R mutation prolonged action potentials,
altered intracellular calcium handling, and triggered DADs
(Splawski et al., 2005). Sung et al. showed that G406R-induced
EADs and DADs shared the same mechanism, with NCX-
mediated inward current (Sung et al., 2010). However, how the
G406R mutation is linked to ventricular arrhythmias is not yet
fully understood. Thiel et al. showed that a G406R mutation
altered intracellular calcium handling and calcium signaling,
which could in turn contribute toDADs due to calcium signaling-
induced SR calcium overload (Thiel et al., 2008). Recently, Dick
et al. suggested that TS mutations (G406R/ G402S) disrupted
calcium-dependent inactivation, which played an important role
in APD prolongation and development of EADs (Dick et al.,
2016). Different from themechanism underlying G406R-induced
arrhythmias, an I1166T mutation led to an EAD due to ICaL
reactivation (Boczek et al., 2015a). Other CACNA1C mutations
also caused QT prolongation and cardiac arrhythmias (Gillis

et al., 2012; Boczek et al., 2013, 2015b; Fukuyama et al., 2013,
2014; Hennessey et al., 2014; Wemhöner et al., 2015; Landstrom
et al., 2016; Sutphin et al., 2016), but their cellular mechanisms
underlying cardiac arrhythmias remain relatively unexplored,
and the causal link between the CACNA1C mutations and
ventricular arrhythmias is not addressed directly. In this study,
the cellular mechanism that ICaL due to the R858H mutation
prolongs APD and increases SR calcium load, resulting in
spontaneous Irel and afterdepolarizations, is proposed. These
simulation data of the present study add to the growing
weight of evidence implicating cellularmechanisms ofCACNA1C
mutations.

Reentry Initiation Mechanism
The LQT8 is associated with malignant ventricular arrhythmias
and a patient with a R858H mutation experienced an episode
of VF (Fukuyama et al., 2013, 2014). Our data showed that
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TABLE 1 | Summary of the effects of CACNA1C mutations (G1783C, WT, P381S, M456I, A582D, and R858H) on human ventricular electrical activity.

Model Quantity G1783C WT P381S M456I A582D R858H

Subcellular (ENDO) ICaL density (%) 86 100 104 108 119 154

[Ca2+]SR(m) (mM) 2.54 2.68 2.82 2.94 3.17 3.51

[Ca2+]i(m) (mM) 3.6e–4 4.0e–4 4.5e–4 4.9e–4 5.7e–4 7.0e–4

Cell (ENDO) Resting potential (mV) −85.87 −85.83 −85.80 −85.75 −85.67 −85.58

APD (ms) 264.4 267.8 271.8 277 282.6 294

APDR maximal slope 1.02 1.08 1.1 1.15 1.15 1.35

1D CV (mm/ms) 0.344 0.344 0.344 0.344 0.344 0.344

MPCL (ms) 350 352 354 356 365 370

T wave width (ms) 60 59.9 59.9 61.7 63.9 64.5

QT (ms) 397.1 398.5 401.2 408.2 415.9 425.7

2D MCELL tissue Life span (ms) >5,000 >5,000 >5,000 >5,000 >5,000 >5,000

Dominant frequency (Hz) 2.8 2.8 2.8 2.8 2.8 2.8

2D transmural tissue (S1-S1 = 365 ms) Life span (ms) <1,000 <1,000 <1,000 <1,000 <1,000 >1,000

S1-S1 interval (ms) 310 315 320 335 340 365

2D slice tissue (S1-S1 = 345 ms) Life span (ms) <1,000 <1,000 <1,000 <1,000 <1,000 >1,000

S1-S1 interval (ms) 310 315 320 325 330 345

3D model (S1-S1 = 348 ms) Life span (ms) − <1,000 – – – >1,000

S1-S1 interval (ms) 250 300 309 340 345 348

R858H-induced electrical heterogeneity increased the transmural
DOR and favored unidirectional conduction block necessary to
the development of VF (Zhu and Clancy, 2007; Sung et al.,
2010). The simulations may provide evidence for the pro-
arrhythmic effects of the R858Hmutation in facilitating reentrant
excitation waves. They support the notion that DOR is a
marker of tissue electrical heterogeneity and a substrate for
reentrant arrhythmias (Antzelevitch and Fish, 2001; Chauhan
et al., 2006). In agreement with previous studies (Zhang
et al., 2008), cell simulation results indicate that membrane
potential differences and inhomogeneous APDs of ventricular
cardiomyocytes contribute to the tissue electrical heterogeneity.
As for membrane potential differences, afterdepolarizations
became inducible under the R858H condition when the SR
calcium load was progressively increased in theMCELL cells. The
maximal membrane potential differences both ENDO-M and
EPI-M APs were significantly increased. As for inhomogeneous
APD, the R858H mutation produced inhomogeneous APD
prolongation in EPI, MCELL and ENDO cells, leading to the
lager spatial gradient of APD along the transmural ventricular
wall. Therefore, these electrical differences due to the R858H
mutation at the cellular level contributed to an augmented
transmural DOR, increasing tissue vulnerability to unidirectional
conduction block.

Linking APDprolongation to unidirectional conduction block
can provide insights into the risk of cardiac arrhythmias. The
APD corresponding to the R858H model was longer than that
of other models at S1-S1 = 1000ms. The RT prolongation was
consistent with the prediction of APD. At S1-S1 = 370ms,

the AP maps showed 2:1 block under the R858H condition. A
similar 2:1 block was also observed under rapid conditions in
the other heart models. Moreover, in the R858H heart, a local
conduction block corresponded to unrecovered tissues and spiral
waves were induced (Figure 14, the R858H heart model at S1-S1
= 348ms). As the S1-S1 interval was further decreased (at PCL
= 300ms), we observed unidirectional conduction block and
reentrant waves in the WT ventricles (Figure S4). This suggested
that the prolonged APD tissues formed excitable obstacles which
can anchor spiral waves.

Our simulations indicate that the pro-arrhythmic effect of
the R858H mutation is reflected by the increased MPCL of
2:1 block. This is compatible with observations from previous
studies (Zhu and Clancy, 2007), in which a long PCL led to 2:1
block under the G406R/G402S mutation condition. Compared
with other mutations, unidirectional conduction block under the
R858H condition occurred at a longer S1-S1 interval, implying
higher risk of cardiac arrhythmias in R858H patients at relatively
slow heart rates. Furthermore, the 2D and 3D simulated results
support the notion that the R858H mutation increases the
proarrhythmic risk. Although the spiral waves can be induced
under all conditions, a relatively long S1-S1 interval is required
for the initiation of reentrant waves under the R858H condition.

Mechanisms for VF
VF is the most common cause of sudden cardiac death.
Fibrillation results when an electrical wave break induces
reentry and triggers a cascade of new wave breaks (Weiss
et al., 2005). In our simulations, three potential mechanisms
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underlying VF caused by the R858H mutation were considered,
(a) the restitution hypothesis; (b) afterdepolarizations-mediated
fibrillation hypothesis; and (c) dispersion of refractoriness
hypothesis.

According to the restitution hypothesis, the chaotic excitation
dynamics during VF are the result of dynamical instabilities
in APD, the occurrence of which requires that the slope of
the APD restitution curve exceeds 1 (Fenton et al., 2002).
Although the APDR relationships were steepened by the R858H
mutation, stable spiral wave dynamics occurred in homogeneous
ventricular tissues. The measured maximum slope of APDR for
the EPI cell was 1.5 which didn’t exceed the minimum APDR
slope (1.5) for the occurrence of spiral breakup in the TP06model
(Ten Tusscher and Panfilov, 2006a). Also, a spiral wave remained
in the MCELL tissue with the APDR slope of 2 which was within
the range of experimentally measured slopes (1.28–3.78; Pak
et al., 2004). In addition, the slopes measured in the ORd model
were within 1 under the R858H condition (Figure S7). Thus,
our study confirmed that the effects of R858H-induced ICaL are
model independent. These results indicated that steep APDR is
not the mechanism of VF caused by the R858H mutation.

According to afterdepolarizations-mediated fibrillation
hypothesis, abnormal electrical excitations caused by
afterdepolarizations can disrupt the normal propagation of
electrical waves and cause life-threatening arrhythmias like VF.
The mechanisms of afterdepolarizations generation include the
reactivation of ICaL and the enhancement of INCX arising from
spontaneous calcium release. Simulation studies showed that
three types of spiral fibrillation emerged when EAD was mainly
induced by reactivation of ICaL (Vandersickel et al., 2014; Zimik
et al., 2015). For the R858H condition, afterdepolarizations
were caused by the enhancement of the INCX arising from
spontaneous calcium release. Although, focal activity occurred in
the 1D fiber tissue, electrical coupling between cells suppressed
the formation of PVC under the R858H condition. Experimental
and computational studies were done to investigate how clumps
of cells, eliciting afterdepolarizations in synchrony, give rise to
triggered activities, which can disturb any prevailing course of
wave propagation and induce electrical-wave turbulence (Sato
et al., 2009; de Lange et al., 2012; Myles et al., 2012). Local
synchronization of afterdepolarizations cells was suggested
the mechanism underlying the formation of PVCs. Of course,
our previous study has demonstrated that afterdepolarizations
induced by SR calcium overload are synchronized to overcome
the source-sink mismatch and produce PVCs in cardiac tissues
(Bai et al., 2017). These studies support the notion that R858H-
induced afterdepolarizations in MCELL cells are implicated in
the induction of electrical-wave turbulence.

According to the dispersion of refractoriness hypothesis,
wave break is produced by electrophysiological and anatomic
heterogeneities in the tissue (Xie et al., 2001). For the
R858H condition, intrinsic electrophysiological heterogeneity
was sufficiently increased by the altered ICaL due to a
R858H mutation. Electrophysiological heterogeneity produced
DOR responsible for 2:1 conduction block necessary for the
fibrillation-like activity. Simulation studies also demonstrated
that this breakup mechanism did not require steep APDR (Xie

et al., 2001; Fenton et al., 2002). Thus, these data indicated that
DOR was a breakup mechanism for the R858H condition.

Taken together, steep APDR is not the mechanism responsible
for VF in the current work. Our results suggest that R858H
induced afterdepolarizations and transmural APD dispersion
are responsible for the potential mechanisms underlying the
formation of VF. For afterdepolarizations-mediated fibrillation,
it must be synchronized across many cells (Xie et al., 2010; Myles
et al., 2012). And DOR caused by the R858H mutation increased
the susceptibility to dynamic instabilities.

Clinical Implications
The presented results showed a QT interval prolongation from
397.1 ms (WT) to 425.7 ms (R858H), which was within the range
of theQTc interval (420–476ms) in R858H-probands (Fukuyama
et al., 2014). Thus, a bridge between CACNA1C mutations and
pro-arrhythmic phenotypes was built by the cardiac model. Also,
the model can be used to investigate the effect of therapies
targeting selected ion channels. More importantly, defining a
classification based on a reliable VF risk factor would be very
useful in guiding the selection of LQT8 patients who are in need
of a ventricular defibrillator. In the current work, we have shown
that, DAD-mediated AP at fast pacing rates isn’t shortened but
further prolonged, indicating QT interval prolongation at fast
pacing (Viskin et al., 2010; Adler et al., 2012; Kaye et al., 2013).
The QT abnormality may become a clinical marker to determine
the VF risk in LQT8 patients.

Limitations of the Study
The TP06 model was used to investigate the pro-arrhythmic
effects of CACNA1Cmutations and its limitations were discussed
elsewhere (Zhang et al., 2008; Bai et al., 2016c). Here, we
address several limitations in this study. (i) Due to the lack of
a precise model of complex calcium cycling, this study does
not consider the effect of a calcium spark on the genesis of
afterdepolarizations and further refinement of the model is
required. (ii) Our simulations show that R858H-induced defects
can lead to the cellular arrhythmogenesis in the absence of neural
influences. However, clinically observed arrhythmias typically
occur in the setting of increased sympathetic tone (Best and
Kamp, 2010), such as crying, and so future efforts will expand the
study to investigate the effects of the autonomic nervous system
on the development of cardiac arrhythmias. (iii) To maintain
structures of the TP06 (Ten Tusscher and Panfilov, 2006a) and
ORd (O’Hara et al., 2011) models, the original ICaL conductance
was used for the WT condition and the maximum conductance
of each “mutant” ICaL was determined by scaling relative current
proportions. In agreement with the TP06 model (Ten Tusscher
et al., 2004; Ten Tusscher and Panfilov, 2006a), the ICaL was same
for ENDO, MCELL and EPI cells in the ORd model (O’Hara
et al., 2011) and electrophysiological heterogeneity caused by
different ICaL densities for three cell types was not considered
in this study. Thus, special attention must be paid to explain
these simulated data. (iv) In the multicellular tissue model, due
to a lack of detailed experimental data on cell properties and
well-delineated regions, the proportion of each region composed
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of each distinct cell type was chosen to produce a positive T-
wave in the 1D transmural cable, similar to those used in other
studies (Gima and Rudy, 2002; O’Hara et al., 2011). However,
simulated ECG, which might be influenced by torso effects and
the dimensions of the regions, wasn’t completely consistent
with clinical findings (Fukuyama et al., 2014). (v) Fibrillation
at the tissue level resulted from afterdepolarizations at a single-
cell level was not observed, but modeling and experimental
studies have suggested that spatial-temporal synchronization
of SR calcium overload and release can overcome the source-
sink mismatch and produce focal arrhythmia in the heart (Xie
et al., 2010; Myles et al., 2012), and so future efforts will
expand the study to investigate that how the heart produces
spatial-temporal synchronization of afterdepolarizations and the
R858H mutation triggers VF in the heart. (vi) In the 1D and
2D tissue models, we assumed isotropic cell-to-cell electrical
coupling. On the one hand, possible anisotropic intercellular
electrical coupling may play important roles in the initiation and
perpetuation of reentry. On the other hand, omitting anisotropy
can be useful, in that changes to tissue behavior observed in
the present study can be attributed with confidence to the
implemented modifications to ICaL. (vii) The space step for the
2D homogeneous ventricular model is different from that used
for 2D transmural ventricular sheet. The space step is chosen to
produce a stable spiral wave close to those in other studies (Ten
Tusscher and Panfilov, 2006a; Vandersickel et al., 2014; Nayak
and Pandit, 2015; Zimik et al., 2015; Nayak et al., 2017), in that
rotating spiral can be attributed with confidence to the APDR
slope which is below the minimum value for the occurrence of
electrical instability. (viii) Although the 2D homogeneous tissue
was designed to examine if mutations-induced changes in APDR
curves promote the breakup of a spiral wave and we expected the
simulated results to hold in tissues of reasonable size, a reasonable
domain cannot avoid the frequent termination of spiral waves
by collisions with the boundaries of the simulation domain.
Therefore, the size of the 2D homogeneous tissue chosen is
similar to that used in other studies (Ten Tusscher and Panfilov,
2006a; Vandersickel et al., 2014; Nayak and Pandit, 2015; Zimik
et al., 2015; Nayak et al., 2017), but it is larger than that of a
typical human heart. Special attention must be paid to explain
these simulated data. (ix) Due to a lack of fiber orientation data,

fiber orientation was not included in the 3D model and its effect
on reentry was not studied. Nevertheless, whilst it is important
to make explicit the potential limitations of the approaches
adopted in the present study, these potential limitations are
not expected to influence fundamental conclusions that can be
drawn from our data on the mechanisms by which increased
ICaL due to the R858H mutation can increase risk of ventricular
arrhythmias.

CONCLUSIONS

Computational modeling indicated that AP shape at the cellular
level, ECG and unidirectional conduction block at the fiber tissue
level, and spiral waves at the sheet tissue level as well as at
the organ level under the R858H condition, provided a causal

link between a R858H mutation and VF. Based on our findings,
we propose that R858H induced transmural APD dispersion
promotes the genesis of VF.
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Major part of a pancreatic islet is composed of β-cells that secrete insulin, a key hormone

regulating influx of nutrients into all cells in a vertebrate organism to support nutrition,

housekeeping or energy storage. β-cells constantly communicate with each other using

both direct, short-range interactions through gap junctions, and paracrine long-range

signaling. However, how these cell interactions shape collective sensing and cell behavior

in islets that leads to insulin release is unknown. When stimulated by specific ligands,

primarily glucose, β-cells collectively respond with expression of a series of transient

Ca2+ changes on several temporal scales. Here we reanalyze a set of Ca2+ spike

trains recorded in acute rodent pancreatic tissue slice under physiological conditions. We

found strongly correlated states of co-spiking cells coexisting with mostly weak pairwise

correlations widespread across the islet. Furthermore, the collective Ca2+ spiking activity

in islet shows on-off intermittency with scaling of spiking amplitudes, and stimulus

dependent autoassociative memory features. We use a simple spin glass-like model for

the functional network of a β-cell collective to describe these findings and argue that

Ca2+ spike trains produced by collective sensing of β-cells constitute part of the islet

metabolic code that regulates insulin release and limits the islet size.

Keywords: collective sensing, pancreatic islets, spin glassmodels, metabolic code, Ca2+ imaging, Ca2+ signaling,

correlations, intercellular communication

1. INTRODUCTION

Endocrine cells in vertebrates act both as coders and decoders of metabolic code (Tomkins, 1975)
that carries information from primary endocrine sensors to target tissues. In endocrine pancreas,
energy-rich ligands provide a continuous input to a variety of specific receptor proteins on and
in individual β-cells and initiate signaling events in and between these cells (Henquin, 2009).
In an oversimplified medical physiology textbook interpretation, glucose is transported into a
β-cell through facilitated diffusion, is phosphorylated and converted within a metabolic black
box to ATP, leading to closure of KATP channels, cell membrane depolarization and activation of
voltage-activated calcium channels (VACCs), followed by a rise in cytosolic Ca2+ to a micromolar
range and triggering of SNARE-dependent insulin release (Ashcroft and Rorsman, 1989). However,
glucose may influence β-cells signaling through several additional routes. There may be alternative

glucose entry routes, like for example active Na-glucose cotransport (Tomita, 1976; Trautmann
and Wollheim, 1987), alternative calcium release sites, like ryanodine (Islam, 2002) and IP3
receptors (Lang, 1999) or glucose may directly activate the sweet taste receptor and initiate
signaling (Henquin, 2012), to name a few. Activation of a β-cell on a single cell level therefore
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likely involves triggering of a variety of elementary Ca2+

events (Berridge et al., 2000), which interfere in space and
time into a unitary β-cell Ca2+ response to support Ca2+-
dependent insulin release. This Ca2+-dependent insulin release
can be further modulated by activation of different protein
phosphorylation/dephosphorylation patterns (PKA, PKC, Cdk5,
etc.) (Mandic et al., 2011; Skelin and Rupnik, 2011) or other
protein modifications (Paulmann et al., 2009) to either reduce or
increase the insulin output.

One of the important features of the sensory collectives is
the optimization of the spatial relations between its elements
to maximize the precision of sensing (Fancher and Mugler,
2017; Saakian, 2017). In islets of Langerhans, β-cells dwell as
morphologically well defined cellulo-social collectives. These
ovoid microorgans are typically not longer than 150µm. The
relatively small and constant pancreatic islet size is an intriguing
feature in vertebrate biology. The size distribution of islets
is comparable in humans, rodents and wider within different
vertebrate species, irrespective of evident differences in overall
body and pancreas size as well as total β-cell mass (Kim et al.,
2009; Dolenšek et al., 2015). In mice, islet sizes range between 50
and 600 µm, with a median values below 150 µm (Lamprianou
et al., 2011). To accommodate differences in the body size,
there is nearly a linear relationship between the total number of
similarly sized islets and body mass across different vertebrate
species (Montanya et al., 2000; Bouwens and Rooman, 2005).
However, why are islets so conserved in size is unknown.

All β-cells within an islet collective represent a single
functional unit, electrically and chemically coupled network,
with gap junction proteins, Connexins 36 (Cx36) (Bavamian
et al., 2007), for short-range interactions and with paracrine
signaling (Caicedo, 2013) for long-range interactions between
cells. The unitary cell response in one β-cell influences
the formation of similar responses in neighboring β-cells
and contributes to coordination of a large number of β-
cells (Cigliola et al., 2013; Stožer et al., 2013a). Explorations of
these functional β-cell networks, constructed from thresholded
pairwise correlations of Ca2+ imaging signals (Stožer et al.,
2013b; Markovič et al., 2015; Johnston et al., 2016; Gosak
et al., 2017a), showed that strongly correlated subsets of β-
cell collective organize into modular, broad-scale networks with
preferentially local correlations reaching up to 40 µm (Markovič
et al., 2015), but understanding of mechanisms that lead to these
strongly correlated networks states in β-cell populations is still
lacking. We argue that β-cells sense, compute and respond to
information as a collective, organized in a network similar to
sensory neuron populations (Schneidman et al., 2006; Tkačik
and Bialek, 2016), and not as a set of independent cells strongly
coupled only when stimulation is high enough.

Here we reanalyze pairwise correlations of Ca2+ spike trains
(unitary β-cell responses on the shortest temporal scale) in β-
cell collective recorded in fresh pancreatic tissues slice under
changing glucose stimulation conditions (6 mM subthreshold–
8 mM stimulatory) using methodological approaches previously
described (Stožer et al., 2013b; Markovič et al., 2015; Gosak et al.,
2017a,b). We specifically look at weak correlations between β-
cells which we found to be widely spread across the islet (Azhar

and Bialek, 2010). Guided by the use of statistical physics models
in describing populations of neurons (Schneidman et al., 2006;
Tkacik et al., 2009), we use a simple spin glass model for Ca2+ β-
cells activity and show that it well captures the features observed
in the measured data. In a way, we recognize this efficiency of
simple models in both neuronal and endocrine cell collectives as
one manifestation of the “beauty in function” (Rasmussen, 1970).

2. SPIN MODEL OF A β-CELL COLLECTIVE

Spin models have been borrowed from statistical physics to
describe the functional behavior of large, highly interconnected
systems like sensory neurons (Schneidman et al., 2006; Tkacik
et al., 2009; Tkačik et al., 2014), immune system (Parisi, 1990),
protein interactions (Bryngelson and Wolynes, 1987), financial
markets (Bornholdt, 2001; Krawiecki et al., 2002), and social
interactions between mammals (Daniels et al., 2016, 2017).

The model of the islet consist of N cells; at time t each of the
cells can be in one of two states, spiking or silent, represented
by a spin variable Si(t) = ±1, (i = 1, ...,N). The discrete time
steps in model computations correspond to 2 s binning size of
the Ca2+ data. The effective field Ei of the i-th cell has two
contributions: one from the cell interacting with all other cells
with interaction strength Jij, and one from external field hi. We
assume that interactions extend over the whole system.

Ei(t) = hi(t)+

N∑

j=1

JijSj(t) (1)

At the next moment (t + 1) each cell updates its state Si(t) with
the probability p to Si(t+ 1) = +1 and with the probability 1− p
to Si(t+1) = −1. The probability p depends on the effective field
Ei that the i-th cell senses:

p =
1

1+ exp(−2Ei)
. (2)

The interaction strength Jij is a fluctuating quantity with
contributions from amplitude J common to all links and from
the pairwise contributions with amplitude I (Krawiecki et al.,
2002): Jij = Jλ(t) + Iνij(t). Here are the fluctuations λ(t) and
νij(t) random variables uniformly distributed in the interval
[−1, 1]. The external field hi(t) = η(t) is also a random variable,
uniformly distributed in the interval η(t) = [hmin, hmax]. In the
mean-field approximation the average state of the systemm(t) =
1
N

∑
j Sj, evolves with time according to Krawiecki et al. (2002):

m(t + 1) = tanh(Jλ(t)m(t)+ hmf (t)), (3)

where we hmf = η(t)/N. In the Results section below we
demonstrate that the model describes the important features
observed in the data well. In all computations we used a model
with N = 200 spins, and we set, following the original
model (Krawiecki et al., 2002), the pairwise interaction amplitude
to I = 2J. The values of the remaining three free parameters
of the model, J, hmax and hmin, were chosen to fit the model
computations to the qualitative features of the Ca2+ data as
described in the next section.
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3. RESULTS

The functional multicellular imaging (fMCI) records a full
temporal activity trace for every cell in an optical plane of an
islet from which meaningful quantitative statements about the
dynamics of unitary Ca2+ responses and information flow in
the β-cell collective are possible (Dolenšek et al., 2013; Stožer
et al., 2013a). Briefly, after the stimulation with increased glucose
level, first asynchronous Ca2+ transients appear, followed by a
sustained plateau phase with oscillations on different temporal
scales, from slow oscillations (100–200 s) to trains of fastest
Ca2+ spikes (1–2 s). As the relation between the rate of insulin
release and cytosolic Ca2+ activity shows saturation kinetics
with high cooperativity (Skelin and Rupnik, 2011), the insulin
release probability is significantly increased during these Ca2+

spikes.
Initially, fMCI has been done at the glucose concentrations

much higher than those at which β-cells usually operate.
The main reason for this was to ensure comparability of the
results with the mainstream research in the field using mostly
biochemical approaches. At 16mM glucose, a collective of β-cells
responds in a fast, synchronized, and step-like manner. Therefore
the first interpretation has been that gap junction coupling
between neighboring β-cells presents a major driving force for
the β-cell activation and inhibitory dynamics (Hraha et al., 2014;
Markovič et al., 2015). Accordingly, the removal of Cx36 proteins
does cause hyperinsulinemia at resting glucose levels and blunted
responses to stimulatory glucose concentration (Speier et al.,
2007). Since β-cells in fresh pancreatic tissue slices are sensitive

to physiological concentration of glucose (6–9 mM) (Speier
and Rupnik, 2003), we here focused on this less explored
concentration range. We looked at the spiking part of the Ca2+

imaging signals for which it has been previously shown to contain
enough information to allow reconstruction of functional cell
networks (Stetter et al., 2012).

For the present analysis we reused a dataset of individual
Ca2+-dependent events from N = 188 ROIs with known
positions from the central part of the fresh rodent pancreatic
oval shaped islet (370 um in length and 200 um wide),
representing β-cells, recorded with fMCI technique at 10 Hz
over period of 40 min (for methodological details see Stožer
et al., 2013b; Markovič et al., 2015; Gosak et al., 2017a,b).
During the recording the glucose concentration in the solution
filling the recording chamber has been increased from 6–8
mM, reaching equilibration at around 200 s after the start of
the experiment, and then decreased to initial concentration
near the end of experiment at around 2,000 s (dashed red
lines in Figures 4, 5 represent points where glucose levels were
completely equilibrated in the recording chamber). We applied
ensemble empirical mode decomposition (Luukko et al., 2016)
on recorded traces to isolate the Ca2+ spiking component of the
signal. Finally, based on previous experiments in our laboratory,
we binarized the signals using 2 s wide bins (Figure 1, left panel)
and obtained binary spike trains Sj(t) ± 1, (j = 1...N), of β-
cells’ Ca2+ activity, each cell represented as a spin. As can be seen
from the Figure 1 the chosen bin width adequately describe the
unitary events seen in the calcium traces. An example of spiking

dynamics of 30 randomly chosen spins is shown as a raster plot
in the right panel of Figure 1.

Statistical methods based on mostly pairwise correlations
between neurons populations have been successfully used in
predicting spiking patterns in cell populations (Schneidman
et al., 2006; Tkacik et al., 2009; Tkačik et al., 2014; Ferrari
et al., 2017). It may seem surprising that models with first and
second-order correlation structure work not only when the cell
activity is very sparse so the correlations could be described
by perturbation theory (Roudi et al., 2009), but can reproduce
the statistics of multiple co-spiking activity (Barton and Cocco,
2013; Merchan and Nemenman, 2016; Ferrari et al., 2017). We
computed truncated correlations

c(i, j) = 〈SiSj〉 − 〈Si〉〈Sj〉 (4)

for all pairs of cells. The pairwise correlations found are mostly
weak with the distribution shown in Figure 2 (left panel),
but they extend widely over the distances up to 170 µm
across the islet, which is larger than an average vertebrate
islet size (Figure 2, right panel). At distances larger than 170
µm the correlations decrease sharply toward zero. Such weak
and long-ranging pairwise correlations could be the root of
criticality and of strongly correlated network states in biological
systems (Schneidman et al., 2006; Azhar and Bialek, 2010; Mora
and Bialek, 2011; Tkačik et al., 2015).

To check for the existence of strongly correlated states in
weakly correlated β-cell collective we computed probability
distributions PN(K) of K simultaneously spiking cells in groups
of N = 10, 20, 30 cells. Here, we used the entire dataset, the
low and the high glucose concentration parts, from which we
sampled cells signals. While the PN(K) of randomly reshuffled
spike trains expectedly follows Poisson distribution (left panel
in Figure 3, black crosses and dashed line for N = 10 spins),
the observed co-spiking probabilities are orders of magnitude
higher (diamonds in left panel of Figure 3 for N = 10 spins)
than corresponding probabilities in groups of independent spins.
The statistics of these co-spiking events were described by an
exponential distribution (Schneidman et al., 2006), by finding
the effective potential (Tkačik et al., 2013, 2014) matching
the observed PN(K) and adding it to the hamiltonian of the

FIGURE 1 | (Left) A Ca2+ trace showing a short train of spikes after

ensemble empirical mode decomposition with overlaid binary form with 2 s

wide bins. (Right) Spin raster plot of 30 randomly picked β-cells.
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model, or by using beta-binomial distribution (Nonnenmacher
et al., 2017) PN(K) = C(N,K)B(α + K,β + N − K)/B(α,β)
where C(N,K) is binomial coefficient and B(α,β) is the beta
function.

We next run the spin model of 200 β-cells and then sampled
the computed spike trains to obtain PN(K) from the model for
N = 10, 20, 30. Despite its simple structure, the model matches
order of magnitude of the observed PN(K) well when we set the
interaction strength at J = 2.0, as shown in the left panel of
Figure 3 (red pluses and red dashed line), particularly for larger

FIGURE 2 | (Left) Distribution of pairwise correlations of β-cell collective

computed from Ca2+ imaging spiking signals. (Right) Pair correlations

distribution over distance. Weak correlations extend over the whole system up

to 170 µm. Black line shows the average values of correlations at particular

cell-cell distances.

FIGURE 3 | (Left) Probability distributions of K cells among N spiking

simultaneously. Randomly shuffled spike trains (black crosses, N = 10) with

dashed line - Poisson distribution; N = 10 (diamonds), N = 20 (squares),

N = 30 (open dots); model (red pluses + red dashed line with J = 2.0 used for

the entire dataset, Nspins = 200 spins, hmin = −2.65, hmax = −1.65),

beta-binomial model (Nonnenmacher et al., 2017) (black dashed line,

α = 0.38, β = 11.0); (Right) Scaling of mean field return: open dots - data,

red pluses - mean field approximation from the spin model of β-cells

computed with J = 2.0, hmf = η(t)/N. Dashed line P(G) ∼ G−2.0

K values. In the model here we did not treat the low and the
high glucose concentration part separately, we used J = 2.0 for
the entire dataset. For comparison, we also show how the beta-
binomial model fits to the observed data using the parameters
α = 0.38, β = 11.0 in all N = 10, 20, 30 cases. These values are
also close to the best-fitting parameters (α = 0.38, β = 12.35) to
the simulated and observer correlated neural population activity
data as reported in Nonnenmacher et al. (2017).

The microscopic model of interacting spins with interactions
randomly varying in time (Krawiecki et al., 2002), adopted
here to describe interacting β-cell collective, exhibits scaling
of price fluctuations (Bornholdt, 2001) observed in financial
markets (Gopikrishnan et al., 1999) and on-off intermittency
with attractor bubbling dynamics of average price (Krawiecki
et al., 2002). Following this idea, we looked at the logarithmic
return of average state of β-cell collective at time t (Bornholdt,
2001):G(t) = log(m(t))− log(m(t−1)). As presented in the right
panel of Figure 3, the distribution P(G) (of positive G values) can
indeed be approximated with a scaling law: P(G) ∼ G−γ with
γ = 2.0. There is an analytical relationship (Krawiecki et al.,
2002) between J and exponent γ of the distribution of amplitudes
of the return of the mean field, J = γ

1/(γ−1), which gives J = 2.0
for γ = 2.0. We used this as a consistency check between the
model computations and mean field approximation. Computing
the average state with the Equation (3) of the model, we can
reproduce the observed distribution by setting on the interaction
strength to J = 2.0 at ton = 400 s and off to J = 0 at toff =

2,200 s. The amplitude of the interaction J is consistent with the
computation of the co-spiking probability.

In Figure 4 we show the plots of both, observed and
computed, returns of average state of interacting β-cells for
comparison. The glucose concentration was changed during
the experiment in a stepwise manner: from 6 to 8 mM at
the beginning and back to 6 mM near the end of recording
period. The effect of both changes is nicely visible in the

FIGURE 4 | (Upper) Observed logarithmic return of the average state of of

β-cell collective G(t), (Lower) logarithmic return of the average state

computed from the model with J = 2.0 for ton < t < toff , denoted with vertical

dashed lines in figures. Dashed red lines represent points where glucose levels

were completely equilibrated in the recording chamber.
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G(t) plot (upper panel, Figure 4) where the on-off intermittent
dynamics of the average state starts around ton = 400 s
and lasts until around toff = 2, 200 s in the experiment.
Both observed events are delayed with respect to the times of
glucose concentration change due to the asynchronous Ca2+

transients (Stožer et al., 2013a). We expect that the response
of β-cell collective to the stimulus increase must be visible
in the variance of average state Var(m) which is in Ising-like
model we are using here equal to susceptibility of the system
χ = Var(m) = 〈m2〉 − 〈m〉2. We used the low glucose
concentration part (6 mM) of the data to estimate the boundaries
of the external field interval [hmax, hmin] to describe the first
part of susceptibility. Using the maximal and minimal spiking
rates of cells (mmax,mmin) in 6 mM glucose from the data and
the mean-field approximation with J = 0 corresponding to
the non-stimulatory glucose regime we have [hmax, hmin] =

[tanh−1(mmax), tanh
−1(mmin)] = [−1.65,−2.65]. In upper panel

of Figure 5 (open black dots) we show the plot of susceptibility
as a function of recording time, focusing around the transition to
increased glucose concentration during the experiment. There is
a sharp increase of susceptibility at around ton, the same time the
on-off intermittency starts to appear in G(t). Using mean field
approximation of the spin model Equation (3) for computation
of susceptibility (averaged over many runs) and setting J = 0
for t < ton and J = 2.0 for t > ton we can well describe
the observed evolution of susceptibility and capture the rapid
onset of increased sensibility of the islet (red line in upper part
of Figure 5).

FIGURE 5 | (Upper) Susceptibility of β-cell collective around transition to

stimulatory glucose level. Open dots are the experimental data, red line shows

the result of the mean field computations with J = 2.0 onset at

t = ton(blackdashedline). Dashed red line represent the point where glucose

level completely equilibrated during the 6–8 mM transition in the recording

chamber. (Lower) Normalized conditional entropy. Open dots are

experimental data at 8 mM glc, open squares at 6 mM glc. Red pluses show

the results of the spin model computations with Nspins = 200 spins, and the

parameters: hmin = −2.65, hmax = −1.65, J = 2.0 for the upper, and J = 0

for lower the lower part.

Pairwise correlation structure enables error-correction
features of population coding in neural systems (Schneidman
et al., 2006). To check for memory-like or error-correcting
properties in islets, we use the conditional entropy H(Si|S), the
measure for the information we need to determine the state of
N-th cell (i.e., spiking or not) if we know the states of N − 1 cells
(S = Sj 6= i) in a group of N cells. If the state of the N-th cell
is completely determined by other N − 1 cells, the conditional
entropy is zero H(Si|S) = 0 and the error correction is perfect.
When Sj are independent random states, the conditional entropy
equals the entropy of the N-th cell H(Si).

We computed the quantity 1 − H(Si|S)/H(Si) (normalized
mutual information) as a function of number of cells (for small
groups of cells) and extrapolate the trend toward the limit
H(Si|S) = 0 that determines the critical number of cells, Nc,
needed to predict the state of another cell. As seen in the
lower panel of Figure 5, the predictability is a glucose-dependent
parameter. With non-stimulatory glucose concentration, the
complete set of data is required for predictions, whereas at 8
mM glucose we find that order of magnitude smaller number
of measured cells are needed to predict the states of other
cells.

4. DISCUSSION

Pancreatic β-cell continuously intercepts a variety of energy-
rich or signaling ligands using the whole spectrum of specific
receptors on the cell membrane, as well as in metabolic and
signaling pathways within the cell. The cell converts these
signals into a binary cellular code, for example a train of
Ca2+ spikes, which drive insulin release that fits current
physiological needs of the body. This allow already a single
cell to sense its chemical environment with extraordinary,
often diffusion limited precision (Bialek and Setayeshgar,
2005), however, judging by their heterogeneous secretory
behavior in cell culture, the precision of sensing among
the individual β-cells is quite diverse (Hiriart and Ramirez-
Medeles, 1991). Recent experimental evidence and modeling
have shown that cell collectives sense better compared to
an individual cell. The precise mechanism of this collective
sensing improvement depends on cell-cell communication type,
which can be short-range with direct cell contacts or long-
range with paracrine signaling (Fancher and Mugler, 2017;
Saakian, 2017). Furthermore, also long-range interaction have
its finite reach which can poise a limit to the cell collective
size and therefore determines its optimal as well as maximal
size. As mentioned in the Introduction here, it is intriguing
how well conserved the pancreatic islet size is in vertebrates of
dramatically different body dimensions (Montanya et al., 2000).
In a single vertebrate organism the size of the islets can be
bigger that 150 um, but functional studies revealed that the
islets bigger than 200 um secrete 50% less insulin after glucose
stimulation (Fujita et al., 2011). These functional differences
between small and large islets have been partially attributed to
diffusion barriers for oxygenation and nutrition, limiting the
survival of core β-cells in bigger islets after isolation. However,
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reducing these diffusion barriers had no influence on insulin
secretory capacity (Williams et al., 2010) suggesting that other
factors, like diffusion of paracrine signaling molecules (Caicedo,
2013), could limit the collective β-cell function in bigger islets.
This dominance of a long-range information flow, likely limited
to some physical constraints, has indicated the use of the
mathematical equivalency with spin glass-like systems (Tkačik
and Bialek, 2016).

We strongly believe that advanced complex network analysis
based on strong short-range correlations can continue to provide
valuable information regarding the β-cell network topologies,
network on network interactions and describe the functional
heterogeneity of individual β-cells (Gosak et al., 2015, 2017a;
Markovič et al., 2015; Johnston et al., 2016). However, the main
goal of the present study was to determine the influence of
weak long-range correlations between pairs of β-cells on the
probability of activation of single β-cells. Recently has been
shown that it suffice to use pairwise correlations to quantitatively
describe the collective behavior of cell collectives (Merchan
and Nemenman, 2016). The typically small values of pairwise
correlation coefficients with the median values below 0.02,
would intuitively be ignored and β-cells described as if they
act independently, however in larger populations of cells this
assumption completely fails (Schneidman et al., 2006). In fact,
at physiological stimulatory glucose levels between 6 and 9
mM, β-cell collectives are entirely dominated by weak average
pairwise correlations (Figure 2). Nevertheless, this is the glucose
concentration range, where β-cells are most responsive to the
nutrient to, as a collective, compute their activity state and
pulsatile insulin release, and to meet the organismal needs
between the environmental and behavioral extremes of food
shortage and excess (Schmitz et al., 2008)?

Based on the range of the calculated weak pairwise
correlations of up to 170 um (Figure 2), we predict that β-
cells collective falls into a category of sparse packed tissues
with dominant paracrine interactions and that cell-cell distances
contribute to optimal sensing and functional response in creating
the metabolic code governing the release of insulin. It remains
unclear whether and how the position of β-cells within an islet
is controllable. As many other cells, β-cells are polarized and
possess a primary cilium (Gan et al., 2017), which should have a
primary role in sensory function, i.e., insulin sensing in paracrine
signaling (Doğaner et al., 2016), and not in cell motility. It is quite
interesting though, that the ciliopathies are highly associated
with reduced β-cell function and increased susceptibility to
diabetes mellitus (Gerdes et al., 2014). Future experiments are
required to test for the possible motility of β-cells within the
islet to adopt an optimal separation of key sensitive β-cells.
To further extrapolate the collective sensing idea, it is also
possible that the diffuse arrangement of a collective of islets
within different parts of pancreas, which are exposed to different
vascular inputs (Dolenšek et al., 2015), serves to optimize
nutrient sensing experience, yet on a higher organizational level,
providing a topological information regarding the nutrient levels
in different parts of the gastrointestinal tract. The nature and
level of interactions between individual islets in the pancreas are
currently also unknown.

As in retinal neuron networks, β-cells encode information
about the presence of energy-rich nutrients into sequences of
intermittent Ca2+ spikes. In a natural setting of sensory neural
networks with stimuli derived from a space with very high
dimensionality the coding seems challenging and interpretations
require some strong assumptions (Tkačik et al., 2014). We
currently do not understand the input dimensionality of a typical
ligand mixture around the β-cells, we simply assume it is not
high. As in retinal networks (Schneidman et al., 2006; Tkačik
et al., 2014), the predictability regarding the functional state of
individual β-cells is defined by the network and not the chemical
environment. This suggests that the sensory information at
physiological glucose levels is substantially redundant. It is likely
that the nutrient mixture presents a noisy challenge for the
information transfer which is typical for biological system. But
why study the insulin release pattern or the metabolic code? The
β-cell network possess associative or error-correcting properties
(Figure 5), so this idea from the sensory neuron networks can be
generalized also to populations of endocrine cells (Schneidman
et al., 2006), which may again influence the optimal islet size and
suggest the presence of functional subunits within the islet that
could adapt, for example, to changing environment in a dynamic
fashion. Furthermore, error-correction properties are glucose
dependent and can be physiologically modulated (Figure 5). The
trains of Ca2+ spikes at constant glucose stimulation (8 mM)
are inhomogeneous, display on-off intermittency (Figure 4) and
scaling of log returns of average state (Figure 3) analog to
models of financial time series (Krawiecki et al., 2002). For
the spin glass approach we also postulate that the sources of
stochasticity in an islet collective are various. On one hand,
the β-cells make decisions on activation under the influence of
the external environment and other β-cells. Second, also the
time-dependent interaction strength among β-cells is random,
which could reflect their socio-cellular communication network
and indicate that the external environment can be sensed
differently between different β-cells in an islet (Gosak et al.,
2017b).

Biological systems seem to poise themselves at criticality,
with a major advantage of enhanced reactivity to external
perturbations (Mora and Bialek, 2011). Often a limited number
of individual functional entities, cell or groups of cells as
found in pancreatic islets, appeared to be limiting to address
criticality. However, it has been recently demonstrated that
even in biological systems with small number of interacting
entities one can operationally define criticality and observe
changes in robustness and sensitivity of adaptive collective
behavior (Daniels et al., 2017). Our results suggest that β-cells
collective within the islet sits near its critical point and we could
determine the susceptibility in the islet. Stimulatory glucose
concentration (8 mM) has been decreasing distance to criticality
by increasing sensitivity (Figure 5). Smaller distance to criticality
at unphysiologically high glucose levels has its possible adverse
consequences in a phenomenon called critical slowing down as
the system takes more and more time to relax as it comes nearer
to the critical point (Mora and Bialek, 2011). Our preliminary
results show that at very strong stimulation (i.e., glucose levels
above 12 mM) the whole system freezes into a certain state where
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short-term interaction take over enabling global phenomena
within the islets, e.g., Ca2+ waves (Stožer et al., 2013b) requiring
progressively longer periods to relax to baseline with increasing
glucose concentrations.

Further work will be needed to exploit at what circumstances
deviations in islet size can contribute to islet malfunction
and pathogeneses of different forms of diabetes mellitus. Until
recently it has been thought that insulin release is no longer
functional in type 1 diabetes mellitus. We now know that even
in type 1 diabetic patients small and functional collectives of β-
cells persist in the pancreata of these patients even decades after
the diagnosis (Faustman, 2014). On the other hand, the β-cells
mass in an islet can be increased in type 2 diabetic patients in
the initial phases after the diagnosis (Rahier et al., 2008) or in
animal models (Daraio et al., 2017) and can only be reduced
in the later phases (Rahier et al., 2008). The detailed relations

between the reduced or increased insulin release, changed
islet size and therefore changed circumstances for paracrine
signaling in disturbed collective nutrient sensing and during the
aforementioned pathogeneses of diabetes mellitus remain to be
established.
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Demand-controlled deep brain stimulation (DBS) appears to be a promising approach

for the treatment of Parkinson’s disease (PD) as revealed by computational, pre-clinical

and clinical studies. Stimulation delivery is adapted to brain activity, for example, to the

amount of neuronal activity considered to be abnormal. Such a closed-loop stimulation

setup might help to reduce the amount of stimulation current, thereby maintaining

therapeutic efficacy. In the context of the development of stimulation techniques that aim

to restore desynchronized neuronal activity on a long-term basis, specific closed-loop

stimulation protocols were designed computationally. These feedback techniques, e.g.,

pulsatile linear delayed feedback (LDF) or pulsatile nonlinear delayed feedback (NDF),

were computationally developed to counteract abnormal neuronal synchronization

characteristic for PD and other neurological disorders. By design, these techniques are

intrinsically demand-controlled methods, where the amplitude of the stimulation signal

is reduced when the desired desynchronized regime is reached. We here introduce a

novel demand-controlled stimulation method, pulsatile multisite linear delayed feedback

(MLDF), by employing MLDF to modulate the pulse amplitude of high-frequency (HF)

DBS, in this way aiming at a specific, MLDF-related desynchronizing impact, while

maintaining safety requirements with the charge-balanced HF DBS. Previously, MLDF

was computationally developed for the control of spatio-temporal synchronized patterns

and cluster states in neuronal populations. Here, in a physiologically motivated model

network comprising neurons from subthalamic nucleus (STN) and external globus

pallidus (GPe), we compare pulsatile MLDF to pulsatile LDF for the case where the

smooth feedback signals are used to modulate the amplitude of charge-balanced

HF DBS and suggest a modification of pulsatile MLDF which enables a pronounced

desynchronizing impact. Our results may contribute to further clinical development of

closed-loop DBS techniques.

Keywords: neuronal synchronization, delayed feedback, deep brain stimulation, desynchronization, electrical

pulse stimulation, closed-loop stimulation

1. INTRODUCTION

High-frequency (HF) deep brain stimulation (DBS) is the standard therapy for medically refractory
Parkinson’s disease (PD), where electrical pulse trains are permanently delivered via depth
electrodes at high frequencies (> 100Hz) (Benabid et al., 1991, 2009; Kuncel and Grill, 2004;
Johnson et al., 2008). The mechanism of action of HF DBS is still debated (Johnson et al., 2008;
Gradinaru et al., 2009; Deniau et al., 2010). HF DBS may cause side effects by stimulation of the
target as well as surrounding structures (Ferraye et al., 2008; Moreau et al., 2008; van Nuenen
et al., 2008; Xie et al., 2012). It is, hence, desirable to reduce the integral current delivered.
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Accordingly, different types of closed-loop, demand-controlled
and adaptive DBS (aDBS) have been developed in computational
and engineering studies (Tass, 2001, 2003; Rosenblum and
Pikovsky, 2004a,b; Hauptmann et al., 2005a,b; Popovych et al.,
2005, 2006; Kiss et al., 2007; Pyragas et al., 2007; Tukhlina et al.,
2007; Luo et al., 2009; Popovych and Tass, 2010; Montaseri et al.,
2013). Closed-loop aDBS approach received recent development
in pre-clinical and clinical studies (Graupe et al., 2010; Rosin
et al., 2011; Carron et al., 2013; Little et al., 2013; Priori et al.,
2013; Yamamoto et al., 2013; Grahn et al., 2014; Hosain et al.,
2014; Rosa et al., 2015).

Closed-loop aDBS was successfully tested in parkinsonian
monkeys under acute conditions (Rosin et al., 2011). In
the considered setup the globus pallidus internal (GPi) was
stimulated by a short pulse train delayed by 80 ms following an
action potential recorded from the primary motor cortex. Under
such conditions aDBS was shown to bemore effective in reducing
pallidal discharge rate and pathological oscillatory neuronal
activity as well as in alleviation of akinesia than the conventional
continuous HF DBS (cDBS). In a proof of principle study in
PD patients (Little et al., 2013), aDBS was switched on and off
depending on whether the amplitude of the subthalamic nucleus
(STN) local field potential (LFP) in the beta band increased above
or decreased below a certain threshold. During aDBS the clinical
motor scores strongly improved by about 30% better than during
cDBS, whereas aDBS was switched on during 44% of the time
(reduced by 56%) as compared to 100% of cDBS (Little et al.,
2013). Demand-controlled aDBS was applied for suppression of
essential tremor (Graupe et al., 2010). The onset of the tremor was
predicted from the measured electromyographic (EMG) signal,
which was used to initiate aDBS stimulation epochs. In patients
with intention tremor aDBS was switched on and off based on the
threshold crossing by EMGpower (Yamamoto et al., 2013), where
the accurately triggered switching of aDBS resulted in a complete
control of the tremor.

Instead of the on-off strategy of the papers (Graupe et al.,
2010; Rosin et al., 2011; Little et al., 2013; Yamamoto et al.,
2013) mentioned above, the stimulation intensity can also be
adapted in real time to the amplitude of the synchronized
neuronal activity. Such an approach was used in a clinical
study (Rosa et al., 2015), where the voltage of the stimulation
was adapted to the beta-band power of the LFP each second
(Rosa et al., 2015). The latter approach resembles closed-loop
methods that have been developed in the past for the specifically
desynchronizing control of abnormal neuronal synchronization
that is characteristic for several neurological disorders including
PD (Nini et al., 1995; Hammond et al., 2007), essential tremor
(Schnitzler et al., 2009), epilepsy (Wong et al., 1986), and tinnitus
(Llinas et al., 1999; Weisz et al., 2005; Eggermont and Tass, 2015).
These techniques are feedback approaches utilizing the mean
field of the synchronized population, which is measured and
processed (e.g., filtered, delayed, amplified, etc.), and then fed
back as stimulation signal to desynchronize neuronal populations
(Rosenblum and Pikovsky, 2004a,b; Hauptmann et al., 2005a,b;
Popovych et al., 2005, 2006; Kiss et al., 2007; Pyragas et al.,
2007; Tukhlina et al., 2007; Luo et al., 2009; Popovych and Tass,
2010; Montaseri et al., 2013). Direct electrical stimulation of

the neuronal tissue with smooth and slowly oscillating feedback
signal may however cause an irreversible charge deposit in the
neuronal tissue that can exceed safety limits (Harnack et al., 2004;
Kuncel andGrill, 2004;Merrill et al., 2005). Two desynchronizing
delayed feedback methods, linear delayed feedback (LDF) and
nonlinear delayed feedback (NDF) were recently adapted and
computationally tested for electrical closed-loop DBS (Popovych
et al., 2017a,b). In both cases, the amplitude of charge-balanced
short pulses composing the stimulation signal of the standard HF
DBS was modulated by the slow feedback signal. The feedback
method with such a pulsatile stimulation signal is referred to as a
pulsatile feedback stimulation that can be used for electrical DBS.

In principle, abnormal neuronal synchronization can be
counteracted in different ways. For instance, LDF (Rosenblum
and Pikovsky, 2004a,b) and NDF (Popovych et al., 2005, 2006;
Popovych and Tass, 2010) aim at restoring incoherent neuronal
activity. In contrast, in this study we consider a multisite
linear delayed feedback (MLDF) which has been designed for
the control of excessive neuronal synchronization (Hauptmann
et al., 2005a,b, 2007a,b; Popovych et al., 2006; Omel’chenko
et al., 2008). In previous modeling studies it was observed that
MLDF stimulation can counteract the synchronized dynamics
by inducing clustering states, which may lead to a variety of
spatio-temporal patterns of neuronal activity. Such patterns of
the neuronal activity are important, for example, in the context
of central pattern generators (CPG) (Marder and Calabrese,
1996; Yuste et al., 2005), where synchronized neuronal discharges
have to be well-coordinated both in space and time. The MLDF
stimulation approach was suggested for inducing and control
of such a patterned activity, for example, in the case when
physiological CPG dynamics needs to be restored (Hauptmann
et al., 2007a,b; Omel’chenko et al., 2008).

We introduce a pulsatileMLDF for electrical brain stimulation
and test it on a physiologically motivated model of interacting
neuronal populations of STN and external globus pallidus
(GPe) neurons (Terman et al., 2002; Rubin and Terman, 2004).
We show that for four-site stimulation setup of MLDF with
smooth stimulation signals, a weak clustering, mostly two-
cluster states can be observed in a limited parameter range. For
pulsatile MLDF stimulation the stimulation-induced clustering
becomes even less pronounced such that the main impact of
the pulsatile MLDF stimulation consists in a desynchronization,
i.e., a suppression of in-phase synchronization in the stimulated
population. The pulsatile MLDF stimulation is however less
effective in inducing desynchronization than the pulsatile LDF.
For effective desynchronization, we here introduce differential
pulsatile MLDF stimulation and show this stimulation method
can effectively and robustly desynchronize the model STN
neurons.

2. METHODS

2.1. Model
We consider a model network of STN and GPe neuronal
populations suggested by Terman et al. (2002), where the
dynamics of individual neurons is described by the following
system:
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Cmv
′
= −IL − IK − INa − IT − ICa − IAHP

−Isyn + Iapp + Istim, (1)

[Ca]′ = ε
(
−ICa − IT − kCa [Ca]

)
, (2)

X′
= φX

(
X∞(v)− X

)
/τX(v). (3)

In Equations (1–3), v is a membrane potential of the neuron,
the currents IL, IK, INa, IT, ICa, IAHP, Isyn, and Iapp are the
corresponding leak, potassium, sodium, low threshold calcium,
high threshold calcium, afterhyperpolarization potassium,
synaptic, and external current, respectively. [Ca] is the
intracellular concentration of Ca2+ ions, and X = n, h, r
are the gating variables.

The following currents are given by the same expressions for
STN and GPe neurons:

IL = gL(v− vL), IK = gKn
4(v− vK),

INa = gNam
3
∞(v)h(v− vNa), ICa = gCas

2
∞(v)(v− vCa),

IAHP = gAHP(v− vK)([Ca] /([Ca]+k1)).

On the other hand, current IT is different for the excitatory STN
neurons for the inhibitory GPe neurons:

STN: IT = gTa
3
∞(v)b2∞(r)(v− vCa), GPe: IT = gTa

3
∞(v)r(v− vCa),

where b∞(r) = 1/(1+ exp[(r− θb)/σb])− 1/(1+ exp[−θb/σb]).
The functions X∞(v) and τX(v) used in the above equations read

X∞(v) = 1/
(
1+ exp[−(v− θX)/σX]

)
, X = n, h, r, m, s, a;

τX(v) = τ
0
X + τ1X/

(
1+ exp[−(v− θτX)/σ

τ

X ]
)
, X = n, h, r.

For GPe neurons τr(v) = τr is a constant parameter.
The STN and GPe neuronal populations contain N = 200

neurons each and arranged on 1Dim lattices with periodic
boundary conditions. Each GPe neuron receives an exitatory
input from a single neighboring STN neuron and inhibits
three neighboring STN neurons. The considered model was
introduced to study pathological neuronal dynamics in PD and
was investigated in several papers (Terman et al., 2002; Rubin and
Terman, 2004; Park et al., 2011; Popovych et al., 2017a,b). The
neurons are interacting via chemical synapses, where the synaptic
currents are

STN : Isyn = gG→S(v− vG→S)
∑

sj,

GPe : Isyn = gS→G(v− vS→G)
∑

sj.

Summation is taken over all corresponding presynaptic neurons,
where j is the index of neurons. The coupling strength between
neurons is defined by parameters of synaptic weights gS→G =

0.4 nS/µm2 (from STN to GPe) and gG→S (from GPe to STN,
will be specified below). The reversal potential for the excitatory
coupling from STN toGPe vS→G = 0mV, and vG→S = −100mV
for the inhibitory coupling from GPe to STN. Synaptic variables
sj are governed by

s′j = αH∞(vj − θg)(1− sj)− βsj,

H∞(x) = 1/(1+ exp
[
−(x− θHg )/σH

g

]
). (4)

The neurons are nonidentical such that the applied currents
Iapp = Iapp, j for STN neurons are Gaussian distributed
around the mean 10 pA/µm2 and with the standard deviation
0.015 pA/µm2. For GPe neurons the parameter ε = εj are also
Gaussian distributed around the mean 0.0055 ms−1 and with the
standard deviation 2 · 10−5 ms−1. The other parameters for the
STN and GPe neurons and their values are listed in Table S1.

2.2. Synchronized Dynamics of STN
Neurons
In this study we investigate how the synchronized dynamics
of the STN-GPe network can be controlled by an external
stimulation. We estimate the extent of synchronization by the
order parameters (Haken, 1983; Kuramoto, 1984; Tass, 1999).

Rk(t) =

∣∣∣∣∣∣
N−1

N∑

j=1

exp(ikψj(t))

∣∣∣∣∣∣
, k = 1, 2, . . . , (5)

where ψj(t) is the phase of neuron j, which attains the values
ψj(tn) = 2πn, n = 0, 1, . . . at the burst onset time moments
tn of the jth neuron. The phase linearly increases between two
consecutive bursts ψj(t) = 2π(t − tn)/(tn+1 − tn) + 2πn for
t ∈ (tn, tn+1), n = 0, 1, . . . (Pikovsky et al., 2001). The order
parameters Rk(t) range from 0 to 1, where the values of the first
order parameter R = R1 correspond to the extent of in-phase
synchronization in the population. Large values of the k-th order
parameter Rk together with small values of the order parameters
Rn of smaller degree n < k are characteristic for a k-cluster
state, where the oscillators are in-phase synchronized within the
clusters, but the clusters are time (and phase) shifted with respect
to each other equidistantly in the oscillation period.

Examples of the collective dynamics of STN neurons without
stimulation (Istim = 0 in Equation 1) are illustrated in Figure 1.
Depending on the coupling strength as given by the values of
parameter gG→S, STN neurons can exhibit synchronization of
different extents and forms. For weak coupling, e.g., gG→S =

1.28 nS/µm2, the neurons are weakly and intermittently
synchronized, and the order parameter fluctuates around small
values 〈R〉 ≈ 0.2, see Figure 1A (black curve). STN neurons
exhibit desynchronized bursting dynamics (Figure 1B, black
dots), where the individual bursting frequencies (number of
bursts per second) of STN neurons are relatively broadly
distributed in the range 9.91 ± 0.017 Hz (mean ± standard
deviation), see Figure S1. The firing patters exhibit strong
variation as time evolves (Figure S1). The inter-bursts intervals
(IBI, time intervals between the first spikes of two consecutive
bursts) vary irregularly from one burst to the next, which is
illustrated in Figure 1E (black circles), where the next IBIn+1 are
plotted vs. the previous IBIn as a scatter plot of the first return
map.

An increase of the coupling leads to synchronized dynamics
of bursting STN neurons as illustrated by the spike raster plot
in Figure 1C (black dots) for gG→S = 1.38 nS/µm2. The
order parameter fluctuates around a larger value 〈R〉 ≈ 0.8
(Figure 1A, blue curve). The individual bursting frequencies
become much narrowly distributed in the range 9.75± 0.003 Hz
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FIGURE 1 | Collective dynamics of STN-GPe neurons (Equations 1–4) without

stimulation. (A) Time courses of the order parameter R = R1 of the STN

neurons obtained for the same initial conditions, but for different coupling

parameter gG→S as indicated in the legend. (B–D) The corresponding spike

raster plots of N = 200 STN neurons, where the spike onsets are indicated by

black dots for (B) gG→S = 1.28 nS/µm2, (C) gG→S = 1.38 nS/µm2 and (D)

gG→S = 1.7 nS/µm2. The raw LFP (ensemble-averaged synaptic variables sj )

and filtered LFP (variable u̇ of the linear oscillator, Equation 6) scaled by the

factor 1,000 are depicted by blue and red curves, respectively. (E) Scatter plot

of the first return map of the inter-burst intervals (IBI, time intervals between the

first spikes of two consecutive bursts) of the STN neuron j = 100 for the values

of the coupling parameter indicated in the legend.

indicating that most neurons become frequency synchronized,
see Figure S1. Although the firing patters still vary in time, they
clearly demonstrate an in-phase synchronized dynamics of STN
neurons (Figure 1C and Figure S1). The behavior of the IBIs
remains however irregular (Figure 1E, blue diamonds).

Only stronger coupling can regularize the dynamics of IBIs.
For example, for gG→S = 1.7 nS/µm2 the IBIs can attain
only two values as illustrated in Figure 1E (red triangles) such
that IBIs periodically alternate between them in a period-2
manner. STN neurons synchronize at the same frequency in the
very narrow range 9.06 ± 2 · 10−6 Hz, and the firing pattern
demonstrates periodic dynamics, see Figure S1. In such a way
the STN neurons become periodically synchronized for strong
coupling (Figure 1D, black dots), and the order parameter is
nearly constant with 〈R〉 ≈ 0.7 (Figure 1A, red curve).

The extent of synchronization is also reflected by the
amplitude dynamics of the local field potential (LFP). The latter
can be modeled as an ensemble-averaged synaptic activity of
the neuronal population LFP(t) = N−1

∑N
j=1 sj (Buzsaki, 2004),

where sj(t) are the synaptic variables (Equation 4). For a more
sophisticated approach see the papers (Lindén et al., 2011;
Parasuram et al., 2016) . The measured raw LFP(t) can be on-line
filtered by means of a linear damped oscillator

ü+ αdu̇+ ω
2u = kfLFP(t), (6)

where ω approximates the mean frequency of the LFP
oscillations, ω = 2π/T, and T is the LFP mean period. Variable
x(t) = u̇ of Equation (6) has a zero phase shift with respect to the
input raw LFP signal (Tukhlina et al., 2007), and we consider it
as the filtered LFP. The other parameters of Equation (6) were
chosen αd = kf = 0.008, which approximately preserves the
amplitude of the input LFP signal (Popovych et al., 2017a,b).

The dynamics of raw and filtered LFP is illustrated in
the raster plots in Figures 1B–D (blue and red curves) for
the above three considered values of the coupling parameter,
where large- and small-amplitude oscillations of LFP are in
correspondence with strong and weak neuronal synchronization,
respectively.

2.3. Delayed Feedback Stimulation
We stimulate the considered STN-GPe model neuronal network
by multisite linear delayed feedback (MLDF), where the
stimulation is administered to the STN neurons only. This
stimulation techniques has been suggested and investigated in
the papers (Hauptmann et al., 2005a,b, 2007a,b; Popovych et al.,
2006; Omel’chenko et al., 2008). We assume that, for example, 4
stimulation sites are implanted in the STN population ofN = 200
neurons at the equidistant lattice coordinates (index of neurons)
j = 25, 75, 125, and 175 as schematically illustrated in Figure 2A

(upper plot). The feedback stimulation signal Si(t) administered
via the i-th stimulation site is calculated as (Hauptmann et al.,
2005a,b, 2007a,b; Popovych et al., 2006; Omel’chenko et al., 2008)

Si(t) = K · x(t − τi), τi =
11− 2(i− 1)

8
τ , i = 1, 2, 3, 4. (7)

The delays τi are considered in such a form in order to achieve a
time shift by T/4 between the feedback signals for τ = T. Indeed,
if the measured signal x(t) is periodically oscillating with period
T, the corresponding oscillating feedback signals (Equation 7)
with neighboring indices will be time shifted with respect to each
other by T/4 (e.g., τ1 − τ2 = T/4) including S1 with respect to
S4, where the latter signal is considered over the next oscillation
period, i.e., T + τ4 − τ1 = T/4.

To calculate the feedback signals (Equation 7), the LFP
of synchronized STN neurons is measured, filtered by the
linear oscillator (Equation 6), i.e., the signal x(t) = u̇ from
Equation (6) is delayed with delays τi from Equation (7), and
amplified by the factor K that is a dimensionless feedback
gain and will be referred to as parameter of the stimulation
intensity.

Instead of four delays, we use only two of them, e.g., τ1 and
τ2, and calculate the feedback signals S1 and S2 according to
Equation (7). The other two feedback signals are defined by
reversing polarity S3 = −S1 and S4 = −S2 (Hauptmann et al.,
2005a,b, 2007a,b; Popovych et al., 2006; Omel’chenko et al.,
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FIGURE 2 | Stimulation setup of MLDF. (A) Four stimulation sites (color dots)

equidistantly located within the 1-Dim lattice of STN neurons (upper plot) and

example of the corresponding feedback signals Si for delay τ = 102 ms and

K = 1 (lower plot). The filtered LFP is depicted by the dashed red curve. (B)

Pulsatile stimulation signal, where the amplitude of charge-balanced biphasic

pulses composing a high-frequency stimulation train (solid lines) is modulated

by the feedback signal (dashed curve). For details see Popovych et al.

(2017a,b). The shape of a single pulse is shown in the insert, where the pulse

can contain an interphase gap between the negative and positive phases of

the pulse.

2008). We thus have two stimulation parameters that can be
varied: The stimulation intensity (feedback gain) K and the
stimulation delay τ . We also assume that neurons within the
same sub-population assigned to the corresponding stimulation
site receive approximately the same signal administered via that
stimulation site, which is called a segmental stimulation, see
Hauptmann et al. (2005a,b), Popovych et al. (2006), Hauptmann
et al. (2007a,b), and Omel’chenko et al. (2008). More precisely,
the neurons j = 1, 2, . . . , 50 are stimulated with the same signal
S1, neurons j = 51, 52, . . . , 100 are stimulated with the same
signal S2, and so on.

The feedback signals Si are illustrated in Figure 2A (lower
plot) together with filtered LFP (dashed red curve). For the
considered delay τ ≈ T, where T ≈ 102 ms is the mean
period of LFP oscillations, the neighboring feedback signals are
time shifted by approximately T/4 with respect to each other
if the filtered LFP signal is periodic or close to that. Delayed
feedback stimulation with such smooth signals may be referred to
as smooth feedback stimulation. Direct electrical stimulation of
the brain with such signals might violate safety requirements and
cause an irreversible charge deposit to the neuronal tissue and
could lead to its damage (Harnack et al., 2004; Kuncel and Grill,

2004; Merrill et al., 2005). This problem was studied recently
for single-site delayed feedback stimulation (Popovych et al.,
2017a,b). By a similar token, we here use a high-frequency
stimulation pulse train of the standard HF DBS consisting of
biphasic charge-balanced pulses (Volkmann et al., 2002; Kuncel
and Grill, 2004; Butson and McIntyre, 2007), whose amplitude
is modulated by the slowly oscillating feedback signals Si(t) as
schematically illustrated in Figure 2B, where an example of the
pulsatile stimulation current Istim in Equation (1) is shown. The
cathodic and anodic phases of the pulses administer the same
charge of opposite polarity, and a charge-balanced stimulation is
realized in this way. The resulting zero net charge injection after
each short biphasic pulse can prevent from damaging nervous
tissue (Lilly et al., 1955; Harnack et al., 2004; Kuncel and Grill,
2004; Merrill et al., 2005). Each pulse can contain an interphase
time gap between its cathodic and anodic phases (Figure 2B,
insert). We refer to the stimulation with such pulsatile signal
whose amplitude is modulated by the smooth MLDF signals Si(t)
as pulsatile MLDF stimulation.

3. RESULTS

3.1. Smooth MLDF
The impact of the smooth MLDF is illustrated in Figure 3,
where synchronized STN neurons are directly stimulated by
the smooth feedback signals (Equation 7), i.e., the stimulation
currents Istim = Si in Equation (1) for STN neurons. Depending
on the parameter of the stimulation delay τ , the stimulation
can induce several qualitatively different dynamical regimes as
reflected by the values of the order parameters R1, R2, and
R4 (Figure 3A). The stimulation can desynchronize the STN
neurons, where all order parameters are small as illustrated in
Figure 3B for τ = 72 ms. Another stimulation-induced regime
is a two-cluster state characterized by small values of R1 and
large values of R2, see Figure 3A (red circles and green squares).
One of such regimes is illustrated in Figure 3C for τ = 10 ms,
where the stimulation splits the stimulated neuronal population
into two groups of nearly in-phase synchronized neurons which
are shifted by approximately 48 ms with respect to each other.
These two clusters are thus nearly in anti-phase to each other
(LFP oscillation period T ≈ 103), which results in a small
first order parameter R1 and large second order parameter R2
(Figure 3C). Further regimes mimic a four-cluster state, where
the fourth order parameter R4 attains greater values as compared
to R1 and R2, see Figures 3A,D for τ = 114 ms. Although
for such parameters the stimulation clearly splits the stimulated
population into four distinct groups phase shifted with respect
to each other (with the borders at the lattice coordinates i =

1, 50, 100, and 150, see Figure 3D, right panel), the neurons
within these clusters can be far from in-phase synchronization.
This leads to relatively small values of R4 and little pronounced
four-cluster states.

3.2. Pulsatile MLDF
As mentioned above, the safety requirements for the electrical
stimulation of neuronal tissuemay be violated for direct electrical
stimulation with smooth and slowly oscillating feedback signals.
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FIGURE 3 | Impact of smooth MLDF on the STN-GPe neurons

(Equations 1–4). (A) Time-averaged order parameters
〈
R1

〉
,
〈
R2

〉
, and

〈
R4

〉
(as

indicated in the legend) vs. parameter of the feedback delay τ for fixed

stimulation intensity K = 10. The horizontal dashed line indicates the value of

the time-averaged order parameter
〈
R1

〉
of the STN neurons without

stimulation (K = 0). (B–D) Corresponding time courses of the order

parameters (left plots) and spike raster plots of STN neurons (right plots) for

fixed delay (B) τ = 72 ms, (C) τ = 10 ms, and (D) τ = 114 ms. The

stimulation starts at t = 20 s. In plot (B) the time course of the order parameter

R1 of the stimulation-free STN population is also shown (black curve).

Coupling gG→S = 1.38 nS/µm2.

We thus utilize a pulsatile stimulation protocol for MLDF,
see section Methods and Figure 2B. Such a pulsatile MLDF
stimulation is administered to synchronized STN neurons
(Figure 1) for different values of the stimulation parameters τ
and K. The time-averaged first order parameter of the obtained
stimulation-induced regimes is depicted in Figure 4 in color vs.
parameters (τ , K) for width of the interphase gap GW = 0 ms
(Figure 4A) and 5 ms (Figure 4B). As compared to the case of
smooth MLDF stimulation (Figure 3) the first order parameter
R1 exhibits much more pronounced alterations when the delay
parameter τ is varied such that several desynchronization regions
emerge in the parameter space characterized by small values
of R1.

FIGURE 4 | Desynchronization of STN-GPe neurons (Equations 1–4) by

pulsatile MLDF. The values of the time-averaged order parameter
〈
R1

〉
are

encoded in color vs. the stimulation intensity K and the stimulation delay τ for

the width of the interphase gap (A) GW = 0 ms and (B) 5 ms. Coupling

gG→S = 1.38 nS/µm2.

When stimulation pulses include an interphase gap
(Figure 2B) the desynchronizing effect of the pulsatile MLDF
stimulation can significantly be improved as illustrated in
Figure 4B for the interphase gap GW = 5 ms. In fact, for
vanishing interphase gap the desynchronizing effect is only
moderate (Figure 4A). The structure of the parameter space with
desynchronization regions is preserved, but the extent of the
stimulation-induced desynchronization is enhanced, as reflected
by the values of the first order parameter, i.e., the values of R1
get smaller, compare Figure 4A and Figure 4B. This indicates a
favorable effect of the interphase gap on the desynchronization
outcome of the pulsatile MLDF.

A detailed consideration by calculating all order parameters
R1, R2, and R4 reveals that pulsatile MLDF stimulation with
zero gap does not induce any kind of clustering. This is implied
by relatively large values of the first order parameter R1 and
small values of the other order parameters, see Figure 5A. As
mentioned above (Figure 4), an increase of the interphase gap
results in a decrease of the first order parameter, which can also
be observed in Figures 5A–C (red circles). Simultaneously the
other order parameters increase. For example, for the stimulation
intensity K = 20, delay τ = 30 ms, and interphase gaps GW =

0 ms, 2 ms, and 5 ms the order parameters R1 ≈ 0.54, 0.4, 0.3,
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FIGURE 5 | Effect of the interphase gap on the dynamics of STN-GPe neurons

(Equations 1–4) induced by pulsatile MLDF. (A–C) Time-averaged order

parameters
〈
R1

〉
,
〈
R2

〉
, and

〈
R4

〉
(as indicated in the legends) vs. the stimulation

time delay τ for fixed stimulation intensity K = 20 and width of the interphase

gap (A) GW = 0 ms, (B) 2 ms, and (C) 5 ms. The first order parameter
〈
R1

〉
for

K = 10 is also shown for comparison (black solid curves). (D,E) Raster plots of

the stimulation-induced cluster dynamics for K = 20, GW = 5 ms, and (D)

τ = 30 ms and (E) τ = 212 ms. Coupling gG→S = 1.38 nS/µm2.

R2 ≈ 0.23, 0.41, 0.5, and R4 ≈ 0.14, 0.16, 0.26, respectively. A
relatively large R2 and small R1 are indicative for a two-cluster
state. The pattern of the neuronal firing of STN neurons for
such parameters is illustrated in Figure 5D, where two groups
of neurons (clusters) with different patterns of activity can be
distinguished for neuron indices i < 100 and i > 100. Another
example of a two-cluster state is illustrated in Figure 5E for the
gap width GW = 5 ms and delay τ = 212 ms from another
parameter region of a two-cluster regime of large R2 and small
R1, see Figure 5C.

FIGURE 6 | Desynchronization of STN-GPe neurons (Equations 1–4) by

pulsatile LDF. (A,B) Time-averaged order parameters
〈
R1

〉
and

〈
R2

〉
(as

indicated in the legend) of the STN neurons stimulated by pulsatile LDF vs. the

stimulation delay τ for fixed stimulation intensity K = 20 and interphase gap

(A) GW = 0 ms and (B) 5 ms. The first order parameter
〈
R1

〉
for pulsatile

MLDF stimulation is also shown for comparison (black solid curves, see

Figures 5A,C, red circles). (C) Example of the time courses of the order

parameters R1 and R2 (left plot) and the corresponding spike raster plot of

STN neurons (right plot) for pulsatile LDF stimulation for fixed K = 20,

τ = 60 ms, and GW = 5 ms (from plot B). Coupling gG→S = 1.38 nS/µm2.

We compare the desynchronizing impact of the pulsatile
MLDF to that of pulsatile linear delayed feedback (LDF). The
smooth and pulsatile LDF administered to synchronized STN
neurons has been investigated in Popovych et al. (2017a,b)
together with smooth and pulsatile nonlinear delayed feedback
(NDF). The feedback signal S(t) of the differential LDF can be
obtained as (Rosenblum and Pikovsky, 2004a,b):

S(t) = K(x(t − τ )− x(t)), (8)

where, as before, the variable x(t) is a filtered LFP and calculated
by means of Equation (6), i.e., x(t) = u̇, and K and τ are the
parameters of the stimulation intensity and delay, respectively.
The smooth feedback signal S(t) of LDF is then used to modulate
the amplitude of the stimulation pulses as discussed above, where
we assume that all STN neurons receive the same stimulation
current Istim depicted in Figure 2B.

STN neurons can be desynchronized by the pulsatile LDF
stimulation as illustrated in Figure 6. The parameter space of
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FIGURE 7 | Desynchronizing outcome of pulsatile MLDF and LDF stimulations administered to STN-GPe neurons (Equations 1–4). (A,B) Time-averaged first order

parameter
〈
R1

〉
and the absolute value

〈∣∣S
∣∣〉 of the feedback signal (A) Equation (7) of MLDF and (B) Equation (8) of LDF vs. parameter K of the stimulation intensity for

two widths GW = 0 ms and 5 ms of the interphase gap as indicated in the legends. The scale of
〈∣∣S

∣∣〉 is indicated on the right vertical axis. (C,D) Administered amount

of the stimulation as given by the values of
〈∣∣S

∣∣〉 vs. the reached extent of the stimulation-induced desynchronization as given by values of
〈
R1

〉
for (C) pulsatile MLDF

and (D) pulsatile LDF for different width of the interphase gap as indicated in the legends. Stimulation delay (A,C) τ = 90 ms for MLDF and (B,D) τ = 60 ms for LDF.

Coupling gG→S = 1.38 nS/µm2.

the pulsatile LDF contains large desynchronization regions,
where the first order parameter R1 exhibits pronounced minima
(Figures 6A,B, red circles). An interphase gap of a finite width
can enhance the desynchronizing effect of pulsatile LDF, where
the desynchronization regions are enlarged and deepened such
that the stimulation induces stronger desynchronization as
reflected by smaller values of R1 for larger interphase gap,
compare Figure 6A and Figure 6B (red circles). The other
order parameters of higher degree are however not significantly
affected by the values of the interphase gap. For example, the
values of the second order parameter R2 are nearly preserved
within the desynchronization regions when the width of the
interphase gap increases from GW = 0 to 5 ms, compare
Figure 6A and Figure 6B (green squares). Albeit the suppressed
second order parameter R2 can still be somewhat larger than the
first order parameter R1 (Figure 6B), the stimulated neurons do
not exhibit any consistent clustering as illustrated in Figure 6C.
This indicates that the pulsatile LDF stimulation does not induce
clustering among stimulated STN neurons for any widths of the
interphase gap, which is different to the impact of the pulsatile
MLDF, see Figure 5.

The pulsatile LDF is more efficient in inducing
desynchronization than the pulsatile MLDF. For the same
stimulation intensity K and width of the interphase gap, the
pulsatile LDF can induce much stronger desynchronization

than the pulsatile MLDF as given by the values of the first
order parameter R1 within desynchronization regions, see
Figures 6A,B and compare black solid curves (R1 for MLDF)
to red circles (R1 for LDF). For a more detailed comparison, we
fix optimal stimulation delay τ = 90 ms for pulsatile MLDF
and τ = 60 ms for pulsatile LDF, where the stimulation induces
strongest desynchronization, see Figures 4–6, and increase the
stimulation intensity K. We find that both pulsatile MLDF
and LDF stimulations with larger intensity can induce stronger
desynchronization, and the first order parameter R1 decreases
when K increases, see Figure 7A for MLDF and Figure 7B for
LDF (empty symbols). We also observe that R1 decreases much
faster with increasing K and can reach much smaller values
for pulsatile LDF than for MLDF for the same range on the
stimulation intensity.

An important characteristics of the stimulation of the
neuronal tissue is the amount of the administered stimulation.
We thus estimate it for the considered feedback stimulations by
the time-averaged absolute value 〈|S|〉 of the smooth feedback
signals (Equation 7) for MLDF and (Equation 8) and LDF. The
amount of the administered stimulation is depicted in Figure 7A

for MLDF and Figure 7B for LDF (filled symbols) vs. parameter
K of the stimulation intensity. When K increases, the amount
of the administered stimulation also increases such that stronger
desynchronization can be obtained at stronger stimulation. Since
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the amplitude of the feedback signals depends on the amplitude
of the LFP, it also inversely relates to the extent of the stimulation-
induced desynchronization. For a given value of the stimulation
intensity K, the amount of the administered stimulation 〈|S|〉

will be smaller if the stimulation-induced desynchronization is
stronger, i.e., when the order parameter R1 and amplitude of the
LFP are smaller. Therefore, for the considered range of parameter
K, 〈|S|〉 increases more slowly for pulsatile LDF than for pulsatile
MLDF with increasing stimulation intensity, see Figures 7A,B

(filled symbols). For both stimulation methods larger interphase
gap leads to better desynchronization and smaller amount of the
administered stimulation.

The latter claim is also supported by Figures 7C,D, where
the amount of the administered stimulation 〈|S|〉 is depicted
vs. the extent of the stimulation-induced desynchronization as
reflected by the first order parameter R1. As follows, the same
extent of desynchronization can be obtained at smaller amount
of the administered stimulation for larger interphase gap. In such
a way we can compare the efficacy in inducing desynchronization
of MLDF and LDF methods by comparing the amount of the
administered stimulation necessary to achieve the same extent
of the stimulation-induced desynchronization. Comparing the
depicted data for pulsatile MLDF (Figure 7C) and pulsatile
LDF (Figure 7D) we conclude that the pulsatile LDF is more
effective in inducing desynchronization than pulsatile MLDF,
where desynchronization can be obtained for much smaller
amount of the administered stimulation.

The above results obtained for the synchronized regime of
STN-GPe neurons with irregular interburst intervals (Figure 1
for coupling gG→S = 1.7 nS/µm2) are preserved for
other parameters and synchronized regimes in the considered
populations of the STN-GPe neurons. We consider, for instance,
stronger coupling gG→S = 1.7 nS/µm2, where the STN-GPe
neurons are periodically synchronized, see Figure 1A (red curve)
and Figure 1D. The desynchronizing effect of the pulsatileMLDF
and LDF on the periodically synchronized STN-GPe neurons is
illustrated in Figure 8A. The structure of the parameter space
is preserved for both stimulation methods except for that the
pulsatile MLDF induces a somewhat weaker desynchronization
as compared to the above case of a weaker coupling. The
clustering induced by the pulsatile MLDF for the considered
stronger coupling also becomes less pronounced. The efficacy of
the pulsatile MLDF and LDF in inducing desynchronization is
compared in Figure 8B, where the amount of the administered
stimulation 〈|S|〉 is depicted vs. the time-averaged first order
parameter 〈R1〉. As for the case of the irregular synchronization
for weaker coupling (Figure 7), the interphase gap has the
same favorable impact on the stimulation outcome, and the
pulsatile LDF is apparently superior to MLDF and can induce
stronger desynchronization for smaller amount of administered
stimulation.

3.3. Differential MLDF
To overcome the limitations of pulsatile MLDF revealed above,
we suggest to use a differential MLDF. The feedback signals are
constructed by analogy with the differential LDF (Equation 8)
and read.

FIGURE 8 | Desynchronization of periodically synchronized STN-GPe neurons

(Equations 1–4) by pulsatile MLDF and LDF stimulations. (A) Time-averaged

order parameter
〈
R1

〉
of the STN neurons stimulated by pulsatile MLDF with

K = 30 and pulsatile LDF with K = 10 vs. the stimulation delay τ for two

widths of the interphase gap GW = 0 ms and 5 ms as indicated in the legend.

(B) Administered amount of the stimulation as given by the values of
〈∣∣S

∣∣〉 vs.
the reached extent of the stimulation-induced desynchronization as given by

values of
〈
R1

〉
for pulsatile MLDF (empty symbols) with τ = 50 ms and LDF

(filled symbols) with τ = 70 ms. The width of the interphase gap is indicated in

the legend. Coupling gG→S = 1.7 nS/µm2.

Si(t) = K ·
(
x(t − τi)− x(t)

)
, i = 1, 2, 3, 4, (9)

where the signal x(t) is the filtered LFP fromEquation (6), and the
delays are as in Equation (7). As before, we reverse the polarity of
the two feedback signals, such that S3 = K ·

(
−x(t − τ1)− x(t)

)

and S4 = K ·
(
−x(t − τ2)− x(t)

)
. An example of the feedback

signals Si is illustrated in Figure 9A. As for the case of direct
MLDF (Equation 7), the feedback signals of the differential
MLDF are time shifted with respect to each other, but, in contrast
to the direct MLDF, they may however have very different
amplitude.

Stimulation by differential smooth MLDF can perturb the
neuronal synchronization of the stimulated STN neurons as
illustrated in Figures 9B–D, where the time-averaged order
parameters 〈R1〉, 〈R2〉, and 〈R4〉 are plotted vs. the stimulation
delay τ . Based on the values of the first order parameter
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FIGURE 9 | Impact of the differential smooth MLDF on collective dynamics of

STN-GPe neurons (Equations 1–4). (A) Example of the feedback signals Si of

the differential MLDF (Equation 9) for delay τ = 90 ms. The filtered LFP is

depicted by dashed red curve. (B) Time-averaged order parameters
〈
R1

〉
,
〈
R2

〉
,

and
〈
R4

〉
(as indicated in the legend) vs. parameter of the feedback delay τ for

fixed stimulation intensity K = 10. The first order parameter
〈
R1

〉
of the STN

neurons for direct smooth MLDF stimulation (Equation 7) is also shown by the

black solid curve for comparison (copied from Figure 3A, red circles). The

horizontal dashed line indicates the value of
〈
R1

〉
without stimulation (K = 0).

(C,D) Spike raster plots of STN neurons for fixed stimulation intensity K = 10

and delays (C) τ = 10 ms and (D) τ = 90 ms. Coupling

gG→S = 1.38 nS/µm2.

R1, smooth differential MLDF is less effective in inducing
desynchronization than smooth direct MLDF, compare values of
R1 in Figure 9B of differential MLDF (red circles) to those of
direct MLDF (black curve). For differential MLDF large values
of the other order parameters are accompanied by large values
of R1. This indicates that clusters of a possible clustered state
are not equidistantly spaced over the oscillation period. Indeed,
this is illustrated in Figure 9C for delay τ = 10 ms, where the
fourth order parameter R4 attains maximal values, see Figure 9B.
In this example the stimulation divides the neurons into two
groups, where the burst onsets of the two clusters are time shifted
with respect to each other by 1T ≈ 26 ms (Figure 9C). Such
firing patterns result in large values of the order parameters
R1 and R4, but in small values of R2 as depicted in Figure 9B

for the mentioned value of the stimulation delay. The best
desynchronization can be achieved, for example, at τ = 90 ms

as reflected by small values of R1 (Figure 9B). The corresponding
firing pattern of STN neurons is illustrated in Figure 9D.

In contrast to the stimulation with smooth signals,
the differential pulsatile MLDF can induce stronger
desynchronization as compared to the direct pulsatile MLDF.
Two-parameter diagrams for differential pulsatile MLDF,
where the order parameters are depicted in color in the

(τ , K)-parameter plane, are shown in Figure 10. For the same
range of the stimulation parameters the first order parameter
R1 (Figures 10A,B) exhibits smaller values as compared
to those depicted in Figure 4 for direct pulsatile MLDF.
Interphase gap enhances the extent of the stimulation-induced
desynchronization, compare Figure 10A and Figure 10B.
For large interphase gap the (τ , K)-parameter plane contains
a narrow region around τ ≈ 15 ms, where the second
order parameter R2 is relatively large (Figure 10C). For such
parameters of the best two-cluster regime, the pattern of the
neuronal firing looks similar to that in Figure 5D, i.e., there are
no pronounced two- and four-cluster states.

To evaluate the stimulation outcome of the differential
pulsatile MLDF we calculate the amount of the administered
stimulation 〈|S|〉 that is approximated by the average of the
absolute values of the MLDF feedback signals (Equation 9). In
Figure 11A 〈|S|〉 is depicted together with the extent of the
stimulation-induced desynchronization as given by the values of
the first order parameter 〈R1〉 vs. parameter of the stimulation
intensity K. For the differential pulsatile MLDF, the order
parameter 〈R1〉 decreases much faster than for the direct pulsatile
MLDF, and, as a results, 〈|S|〉 increases more slowly, compare
Figure 11A to Figure 7A. The efficacy of the differential pulsatile
MLDF in inducing desynchronization is comparable with that
of the pulsatile LDF, see Figure 7B. Indeed, this conclusion
apparently follows from Figure 11B, where a given extent of
the stimulation-induced desynchronization as given by values
of R1 can be obtained at approximately the same amount of
the administered stimulation for differential pulsatile MLDF
(Figure 11B, empty symbols) and for pulsatile LDF (Figure 11B,
filled symbols).

We also verified that differential pulsatile MLDF stimulation
is robust with respect to the extent of the initial synchronization
in the stimulated neuronal population. If the stimulation is
administered to weakly synchronized neurons as, for example,
for the coupling parameter gG→S = 1.28 nS/µm2, see Figure 1,
the synchronization can further be suppressed by differential
pulsatile MLDF practically irrespective of the values of the delay
parameter τ , see Figure 12. Such a reduction of an already weak
and intermittent neuronal synchronization is comparable with or
even slightly better than that of pulsatile LDF, see also Popovych
et al. (2017a,b).

4. DISCUSSION

Multisite linear delayed feedback (MLDF) has been suggested
for control of neuronal synchronization patterns (Hauptmann
et al., 2005a,b, 2007a,b; Popovych et al., 2006; Omel’chenko et al.,
2008). As shown computationally, stimulation by MLDF can
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FIGURE 10 | Desynchronization of STN-GPe neurons (Equations 1–4) by the differential pulsatile MLDF (Equation 9). The values of the time-averaged order

parameters (A,B)
〈
R1

〉
, (C)

〈
R2

〉
, and (D)

〈
R4

〉
are depicted in color vs. the stimulation intensity K and delay τ for the width of the interphase gap (A) GW = 0 ms and

(B–D) 5 ms. Coupling gG→S = 1.38 nS/µm2.

suppress synchronization in a stimulated neuronal population
and was, hence, suggested for counteracting abnormal neuronal
synchronization characteristic for several neurological disorders
(Hauptmann et al., 2005a,b, 2007b; Popovych et al., 2006). The
desynchronization induced by MLDF stimulation was found to
be accompanied by the emergence of several interacting clusters
of neurons equidistantly distributed over the oscillation period
and space. Depending on the stimulation setup and parameters
the stimulation-induced spatio-temporal patters can consist of
two or four clusters, for example, for four-site MLDF stimulation
(Hauptmann et al., 2005a,b, 2007a,b; Popovych et al., 2006;
Omel’chenko et al., 2008). These properties of MLDF made the
method appropriate for the control of spatio-temporal patterns
of neuronal activity, for example, for regulating activity of
central pattern generator (CPG) in case of its malfunction as
suggested in Hauptmann et al. (2007a,b) and Omel’chenko et al.
(2008).

In this study we adapted the MLDF technique for electrical
stimulation of the neuronal tissue. As mentioned above, direct
electrical stimulation with smooth feedback signals may violate
safety aspects like charge density limits (Harnack et al., 2004;
Kuncel and Grill, 2004; Merrill et al., 2005). The feedback
signals are slow, so that an irreversible charge can be deposited
into the neuronal tissue during the comparably long feedback
stimulation periods, which can exceed safety limits. We resolved
this problem and showed that the demand-controlled character
and desynchronizing impact of the MLDF feedback technique
can be preserved together with gaining the advantages of the
pulsatile HF DBS signal with the charge-balanced property. For
this, the slow feedback signal is used to modulate the amplitude
of the HF train of charge-balanced pulses of HF DBS. We
computationally illustrated the desynchronizing properties of

smooth and pulsatile MLDF in a network of STN-GPe neurons
suggested to model parkinsonian neuronal dynamics (Terman
et al., 2002; Rubin and Terman, 2004).

We showed that both smooth and pulsatile MLDF stimulation
can suppress neuronal synchronization in the stimulated STN
neurons. While smooth MLDF could induce relatively well
pronounced two-cluster states in some parameter ranges, the
expected four-cluster states were only weakly expressed and
could be observed in a limited parameter range. For pulsatile
MLDF we found that interphase gap in the stimulation pulses
could significantly enhance the desynchronizing impact of
the stimulation. The clustering state was observed for large
interphase gap only, where some two-cluster states could
be induced by the stimulation for some selected parameter
values. We thus conclude that the pulsatile MLDF is mostly a
desynchronizing stimulation rather than inducing coordinated
spatio-temporal clustering patterns.We however showed that the
efficacy of the pulsatile MLDF in inducing desynchronization
was much lower than that of the pulsatile LDF. Therefore, in
the standard realization the pulsatile MLDF can be suggested
as effective method neither for desynchronization nor for the
control of spatio-temporal clustering patterns.

We therefore proposed to use a differential pulsatile MLDF.
Such a modified pulsatile MLDF turned out to hardly induce
clustering for any width of the interphase gap. Nevertheless,
we showed that differential pulsatile MLDF can effectively and
robustly desynchronize the stimulated neurons. We verified
that the efficacy of the differential pulsatile MLDF in inducing
desynchronization is comparable with that of the pulsatile LDF,
and we suggest this technique for closed-loop desynchronizing
DBS together with pulsatile LDF and NDF investigated in recent
papers (Popovych et al., 2017a,b). The differential pulsatile
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FIGURE 11 | Stimulation outcome of the differential pulsatile MLDF stimulation

administered to STN-GPe neurons (Equations 1–4). (A) Time-averaged first

order parameter
〈
R1

〉
and the averaged absolute value

〈∣∣S
∣∣〉 of the feedback

signals (Equation 9) of differential MLDF vs. parameter K of the stimulation

intensity for two widths GW = 0 ms and 5 ms of the interphase gap as

indicated in the legend. The scale of
〈∣∣S

∣∣〉 is indicated on the right vertical axis.

(B) Administered amount of the stimulation as given by the values of
〈∣∣S

∣∣〉 vs.
the reached extent of the stimulation-induced desynchronization as given by

values of
〈
R1

〉
for differential pulsatile MLDF (empty symbols) for delay

τ = 90 ms and pulsatile LDF (filled symbols, copied from Figure 7D for

comparison) for delay τ = 60 ms for different width of the interphase gap as

indicated in the legend. Coupling gG→S = 1.38 nS/µm2.

MLDF is robust with respect to variations of the stimulation
parameters, in particular, if initially weakly synchronized
neuronal populations need to be further desynchronized.
However, MLDF requires several stimulation sites to be placed
in the neuronal target population. In the case of small targets
this might be difficult, so that single-site stimulation techniques
such as pulsatile LDF and NDFmay be more appropriate in those
cases. It would be interesting to investigate how the effectiveness
and efficacy of pulsatile NDF stimulation are affected if amultisite
stimulation protocol is adapted for this method. It would also be
interesting to use a realistic 3-Dim reconstruction of the target
neuronal structures, e.g., STN and GPe, as well as localization of
the stimulation sites within these structures to explore the spatio-
temporal patterns induced by a multisite stimulation (Ebert
et al., 2014), which however essentially requires the usage of a
supercomputer.

However, as a word of caution, it should be noted that
the approach presented in this study relies on the assumption
that abnormal neuronal synchrony is recordable and represents

FIGURE 12 | Impact of the differential pulsatile MLDF on collective dynamics

of weakly coupled and weakly synchronized STN-GPe neurons

(Equations 1–4). Time-averaged order parameters
〈
Ri

〉
, i = 1, 2, 4, are plotted

(as indicated in the legend) vs. parameter of the feedback delay τ for fixed

stimulation intensity K = 10. The first order parameter
〈
R1

〉
of the STN neurons

stimulated by pulsatile LDF is also shown by the black solid curve for

comparison. The horizontal dashed line indicates the value of
〈
R1

〉
without

stimulation (K = 0), see Figure 1A (black curve). Coupling

gG→S = 1.28 nS/µm2 and interphase gap GW = 5 ms.

the patient’s individual symptoms in a sufficient manner, like
a biomarker (Beudel and Brown, 2016; Kühn and Volkmann,
2017). For instance, it is doubtful that beta band oscillations
might be a biomarker-like feedback signal (Özkurt et al.,
2011; Johnson et al., 2016; Kühn and Volkmann, 2017). Beta
band oscillations are no stand-alone oscillations, but interact
with brain oscillations in other frequency bands under both
physiological (Yanagisawa et al., 2012) and pathological (Yang
et al., 2014; Beudel and Brown, 2016) conditions. Different
PD phenotypes might require different biomarkers, since the
amplitude of beta band oscillations may decrease during tremor
epochs in tremor dominant PD patients (Quinn et al., 2015).
Changes of the amplitude of abnormal brain oscillations in the
course of physiological processes have to be taken into account,
too. For instance, in an MPTP monkey study HF DBS and
closed-loop DBS (CL-DBS) reduced rigidity to a comparable
extent, where CL-DBS reduced the DBS ON time by approx.
50% (Johnson et al., 2016). However, only HF DBS improved
bradykinesia during a cued reaching task, likely because the
amplitude of beta band oscillations was reduced related to the
reaching process, in this way reducing the extent of the presumed
biomarker (Johnson et al., 2016). Also, beta band oscillations
need not be entirely pathological. Rather activity in the beta
frequency range might be key for compensatory purposes, as
demonstrated in an MPTP monkey study with sensorimotor
rhythm neurofeedback (Philippens et al., 2017).

Apart from merely reducing the stimulation current,
differential pulsatile MLDF may be beneficial because of its
specifically desynchronizing effect. As shown computationally in
the context of Coordinated Reset (CR) stimulation (Tass, 2003),
desynchronizing stimulation may cause an anti-kindling, where
abnormal synaptic connectivity and neuronal synchrony can
be unlearned, ultimately leading to sustained desynchronizing
effects (Tass and Majtanik, 2006; Popovych and Tass, 2012).
In accordance with these theoretical predictions, long-lasting
therapeutic effects were demonstrated in pre-clinical studies
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in MPTP monkeys with CR-DBS (Tass et al., 2012b; Wang
et al., 2016) as well as in a clinical proof of concept study
with CR-DBS in Parkinson’s patients (Adamchic et al., 2014).
Analogously, long-lasting therapeutic effects were observed in a
proof of concept study with acoustic CR stimulation in tinnitus
patients (Tass et al., 2012a) as well as in a first in man study with
vibrotactile CR stimulation in patients with Parkinson’s disease
(Syrkin-Nikolau et al., 2018).

The requirements for CR-DBS and MLDF are quite different.
CR stimulation can be administered in open loop as well as
closed loop, e.g., demand-controlled manner (Tass, 2003). In
particular, CR stimulation does not require a feedback signal.
So far, pre-clinical (Tass et al., 2012b; Wang et al., 2016) and
clinical (Adamchic et al., 2014) proof of concept of CR-DBS
were obtained with open loop CR-DBS. In contrast, MLDF
requires a reliably measurable clean biomarker signal sufficiently
representing the amount of abnormal synchronization. Despite
first positive results (Little et al., 2013; Rosa et al., 2015), several
findings indicate that beta-band STN LFP does not provide
a reliable biomarker (Özkurt et al., 2011; Quinn et al., 2015;
Johnson et al., 2016; Kühn and Volkmann, 2017; Philippens
et al., 2017), see above. In addition, MLDF requires a challenging
registration-stimulation setup: An LFP signal, representative for
the entire neuronal target population, has to be measured at one
site, while stimuli have to be delivered to different sites of the

target population. Because of stimulation artifacts this might be
difficult. However, to overcome this limitation, alternatively, one
might try to measure a representative LFP and stimulate different
parts of fibers projecting on the target population. One could also
separate stimulation and recording in time (Ratas and Pyragas,
2014).

AUTHOR CONTRIBUTIONS

PT conceived HFS amplitude modulation by feedback. OP
performed the experiments, analyzed the data, and prepared the
initial draft of the manuscript. PT contributed to the numerical
analysis and extended the manuscript. All authors reviewed the
manuscript.

FUNDING

The study was funded by the Helmholtz Society and by the John

A. Blume Foundation.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fphys.
2018.00046/full#supplementary-material

REFERENCES

Adamchic, I., Hauptmann, C., Barnikol, U. B., Pawelczyk, N., Popovych,

O., Barnikol, T. T., et al. (2014). Coordinated reset neuromodulation for

Parkinson’s disease: proof-of-concept study. Mov. Disord. 29, 1679–1684.

doi: 10.1002/mds.25923

Benabid, A. L., Chabardes, S., Mitrofanis, J., and Pollak, P. (2009). Deep brain

stimulation of the subthalamic nucleus for the treatment of Parkinson’s

diseaseegge. Lancet Neurol. 8, 67–81. doi: 10.1016/S1474-4422(08)70291-6

Benabid, A. L., Pollak, P., Gervason, C., Hoffmann, D., Gao, D. M., Hommel, M.,

et al. (1991). Longterm suppression of tremor by chronic stimulation of ventral

intermediate thalamic nucleus. Lancet 337, 403–406.

Beudel, M., and Brown, P. (2016). Adaptive deep brain stimulation

in Parkinson’s disease. Parkinsonism Relat. Disord. 22, S123–S126.

doi: 10.1016/j.parkreldis.2015.09.028

Butson, C. R., and McIntyre, C. C. (2007). Differences among implanted

pulse generator waveforms cause variations in the neural response

to deep brain stimulation. Clin. Neurophysiol. 118, 1889–1894.

doi: 10.1016/j.clinph.2007.05.061

Buzsaki, G. (2004). Large-scale recording of neuronal ensembles. Nat. Neurosci. 7,

446–451. doi: 10.1038/nn1233

Carron, R., Chaillet, A., Filipchuk, A., Pasillas-Lépine, W., and Hammond, C.

(2013). Closing the loop of deep brain stimulation. Front. Syst. Neurosci. 7:112.

doi: 10.3389/fnsys.2013.00112

Deniau, J.-M., Degos, B., Bosch, C., andMaurice, N. (2010). Deep brain stimulation

mechanisms: beyond the concept of local functional inhibition. Eur. J. Neurosci.

32, 1080–1091. doi: 10.1111/j.1460-9568.2010.07413.x

Ebert, M., Hauptmann, C., and Tass, P. (2014). Coordinated reset stimulation in

a large-scale model of the STN-GPe circuit. Front. Comput. Neurosci. 8:154.

doi: 10.3389/fncom.2014.00154

Eggermont, J. J., and Tass, P. A. (2015). Maladaptive neural synchrony in tinnitus:

origin and restoration. Front. Neurol. 6:29. doi: 10.3389/fneur.2015.00029

Ferraye, M. U., Debû, B., Fraix, V., Xie-Brustolin, J., Chabardès, S., Krack, P., et al.

(2008). Effects of subthalamic nucleus stimulation and levodopa on freezing

of gait in parkinson disease. Neurology 70, 1431–1437. doi: 10.1212/01.wnl.

0000310416.90757.85

Gradinaru, V., Mogri, M., Thompson, K. R., Henderson, J. M., and Deisseroth, K.

(2009). Optical deconstruction of parkinsonian neural circuitry. Science 324,

354–359. doi: 10.1126/science.1167093

Grahn, P. J., Mallory, G.W., Khurram, O. U., Berry, B. M., Hachmann, J. T., Bieber,

A. J., et al. (2014). A neurochemical closed-loop controller for deep brain

stimulation: toward individualized smart neuromodulation therapies. Front.

Neurosci. 8:169. doi: 10.3389/fnins.2014.00169

Graupe, D., Basu, I., Tuninetti, D., Vannemreddy, P., and Slavin, K. V.

(2010). Adaptively controlling deep brain stimulation in essential tremor

patient via surface electromyography. Neurol. Res. 32, 899–904. doi: 10.1179/

016164110X12767786356354

Haken, H. (1983). Advanced Synergetics. Berlin: Springer.

Hammond, C., Bergman, H., and Brown, P. (2007). Pathological synchronization

in Parkinson’s disease: networks, models and treatments. Trends Neurosci. 30,

357–364. doi: 10.1016/j.tins.2007.05.004

Harnack, D., Winter, C., Meissner, W., Reum, T., Kupsch, A., and Morgenstern,

R. (2004). The effects of electrode material, charge density and stimulation

duration on the safety of high-frequency stimulation of the subthalamic nucleus

in rats. J. Neurosci. Methods 138, 207–216. doi: 10.1016/j.jneumeth.2004.04.019

Hauptmann, C., Omelchenko, O., Popovych, O. V., Maistrenko, Y., and Tass,

P. A. (2007a). Control of spatially patterned synchrony with multisite delayed

feedback. Phys. Rev. E 76:066209. doi: 10.1103/PhysRevE.76.066209

Hauptmann, C., Popovych, O., and Tass, P. A. (2005a). Delayed feedback control of

synchronization in locally coupled neuronal networks.Neurocomputing 65–66,

759–767. doi: 10.1016/j.neucom.2004.10.072

Hauptmann, C., Popovych, O., and Tass, P. A. (2005b). Effectively desynchronizing

deep brain stimulation based on a coordinated delayed feedback stimulation

via several sites: a computational study. Biol. Cybern. 93, 463–470. doi: 10.1007/

s00422-005-0020-1

Hauptmann, C., Popovych, O., and Tass, P. A. (2007b). Demand-

controlled desynchronization of oscillatory networks by means of a

multisite delayed feedback stimulation. Comput. Visual. Sci. 10, 71–78.

doi: 10.1007/s00791-006-0034-9

Hosain, M. K., Kouzani, A., and Tye, S. (2014). Closed loop deep brain stimulation:

an evolving technology. Aust. Phys. Eng. Sci. Med. 37, 619–634. doi: 10.1007/

s13246-014-0297-2

Frontiers in Physiology | www.frontiersin.org 13 February 2018 | Volume 9 | Article 4649

https://www.frontiersin.org/articles/10.3389/fphys.2018.00046/full#supplementary-material
https://doi.org/10.1002/mds.25923
https://doi.org/10.1016/S1474-4422(08)70291-6
https://doi.org/10.1016/j.parkreldis.2015.09.028
https://doi.org/10.1016/j.clinph.2007.05.061
https://doi.org/10.1038/nn1233
https://doi.org/10.3389/fnsys.2013.00112
https://doi.org/10.1111/j.1460-9568.2010.07413.x
https://doi.org/10.3389/fncom.2014.00154
https://doi.org/10.3389/fneur.2015.00029
https://doi.org/10.1212/01.wnl.0000310416.90757.85
https://doi.org/10.1126/science.1167093
https://doi.org/10.3389/fnins.2014.00169
https://doi.org/10.1179/016164110X12767786356354
https://doi.org/10.1016/j.tins.2007.05.004
https://doi.org/10.1016/j.jneumeth.2004.04.019
https://doi.org/10.1103/PhysRevE.76.066209
https://doi.org/10.1016/j.neucom.2004.10.072
https://doi.org/10.1007/s00422-005-0020-1
https://doi.org/10.1007/s00791-006-0034-9
https://doi.org/10.1007/s13246-014-0297-2
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Popovych and Tass Multisite Delayed Feedback Brain Stimulation

Johnson, L. A., Nebeck, S. D., Muralidharan, A., Johnson, M. D., Baker, K. B., and

Vitek, J. L. (2016). Closed-loop deep brain stimulation effects on Parkinsonian

motor symptoms in a non-human primate - is beta enough? Brain Stimul. 9,

892–896. doi: 10.1016/j.brs.2016.06.051

Johnson, M. D., Miocinovic, S., McIntyre, C. C., and Vitek, J. L. (2008).

Mechanisms and targets of deep brain stimulation in movement

disorders. Neurotherapeutics 5, 294–308. doi: 10.1016/j.nurt.2008.

01.010

Kiss, I. Z., Rusin, C. G., Kori, H., and Hudson, J. L. (2007). Engineering complex

dynamical structures: sequential patterns and desynchronization. Science 316,

1886–1889. doi: 10.1126/science.1140858

Kühn, A. A., and Volkmann, J. (2017). Innovations in deep brain stimulation

methodology.Mov. Disord. 32, 11–19. doi: 10.1002/mds.26703

Kuncel, A. M., and Grill, W. M. (2004). Selection of stimulus parameters for deep

brain stimulation. Clin. Neurophysiol. 115, 2431–2441. doi: 10.1016/j.clinph.

2004.05.031

Kuramoto, Y. (1984). Chemical Oscillations, Waves, and Turbulence. Berlin:

Springer.

Lilly, J. C., Hughes, J. R., Alvord, E. C., and Galkin, T. W. (1955). Brief,

noninjurious electric waveform for stimulation of the brain. Science 121,

468–469. doi: 10.1126/science.121.3144.468

Lindén, H., Tetzlaff, T., Potjans, T., Pettersen, K., Grün, S., Diesmann, M.,

et al. (2011). Modeling the spatial reach of the LFP. Neuron 72, 859–872.

doi: 10.1016/j.neuron.2011.11.006

Little, S., Pogosyan, A., Neal, S., Zavala, B., Zrinzo, L., Hariz, M., et al. (2013).

Adaptive deep brain stimulation in advanced Parkinson disease. Ann. Neurol.

74, 449–457. doi: 10.1002/ana.23951

Llinas, R. R., Ribary, U., Jeanmonod, D., Kronberg, E., and Mitra, P. P. (1999).

Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome

characterized by magnetoencephalography. Proc. Natl. Acad. Sci. U.S.A. 96,

15222–15227.

Luo, M., Wu, Y. J., and Peng, J. H. (2009). Washout filter aided mean field feedback

desynchronization in an ensemble of globally coupled neural oscillators. Biol.

Cybern. 101, 241–246. doi: 10.1007/s00422-009-0334-5

Marder, E., and Calabrese, R. L. (1996). Principles of rhythmic motor pattern

generation. Physiol. Rev. 76, 687–717.

Merrill, D. R., Bikson, M., and Jefferys, J. G. R. (2005). Electrical stimulation of

excitable tissue: design of efficacious and safe protocols. J. Neurosci. Methods

141, 171–198. doi: 10.1016/j.jneumeth.2004.10.020

Montaseri, G., Yazdanpanah, M. J., Pikovsky, A., and Rosenblum, M. (2013).

Synchrony suppression in ensembles of coupled oscillators via adaptive

vanishing feedback. Chaos 23:033122. doi: 10.1063/1.4817393

Moreau, C., Defebvre, L., Destée, A., Bleuse, S., Clement, F., Blatt, J. L., et al. (2008).

STN-DBS frequency effects on freezing of gait in advanced Parkinson disease.

Neurology 71, 80–84. doi: 10.1212/01.wnl.0000303972.16279.46

Nini, A., Feingold, A., Slovin, H., and Bergmann, H. (1995). Neurons in the globus

pallidus do not show correlated activity in the normal monkey, but phase-

locked oscillations appear in theMPTPmodel of parkinsonism. J. Neurophysiol.

74, 1800–1805.

Omel’chenko, O. E., Hauptmann, C., Maistrenko, Y. L., and Tass, P. A. (2008).

Collective dynamics of globally coupled phase oscillators under multisite

delayed feedback stimulation. Physica D 237, 365–384. doi: 10.1016/j.physd.

2007.09.019

Özkurt, T. E., Butz, M., Homburger, M., Elben, S., Vesper, J., Wojtecki, L.,

et al. (2011). High frequency oscillations in the subthalamic nucleus: a

neurophysiological marker of the motor state in Parkinson’s disease. Exp.

Neurol. 229, 324–331. doi: 10.1016/j.expneurol.2011.02.015

Parasuram, H., Nair, B., D’Angelo, E., Hines, M., Naldi, G., and Diwakar, S. (2016).

Computational modeling of single neuron extracellular electric potentials and

network local field potentials using lfpsim. Front. Comput. Neurosci. 10:65.

doi: 10.3389/fncom.2016.00065

Park, C., Worth, R. M., and Rubchinsky, L. L. (2011). Neural dynamics in

parkinsonian brain: the boundary between synchronized and nonsynchronized

dynamics. Phys. Rev. E 83:042901. doi: 10.1103/PhysRevE.83.042901

Philippens, I., Wubben, J., Vanwersch, R., Estevao, D., and Tass, P. (2017).

Sensorimotor rhythmneurofeedback as adjunct therapy for Parkinson’s disease.

Ann. Clin. Transl. Neurol. 4, 585–590. doi: 10.1002/acn3.434

Pikovsky, A., Rosenblum, M., and Kurths, J. (2001). Synchronization, A Universal

Concept in Nonlinear Sciences. Cambridge: Cambridge University Press.

Popovych, O. V., Hauptmann, C., and Tass, P. A. (2005). Effective

desynchronization by nonlinear delayed feedback. Phys. Rev. Lett. 94:164102.

doi: 10.1103/PhysRevLett.94.164102

Popovych, O. V., Hauptmann, C., and Tass, P. A. (2006). Control of

neuronal synchrony by nonlinear delayed feedback. Biol. Cybern. 95, 69–85.

doi: 10.1007/s00422-006-0066-8

Popovych, O. V., Lysyansky, B., Rosenblum, M., Pikovsky, A., and Tass, P. A.

(2017a). Pulsatile desynchronizing delayed feedback for closed-loop deep brain

stimulation. PLoS ONE 12:e0173363. doi: 10.1371/journal.pone.0173363

Popovych, O. V., Lysyansky, B., and Tass, P. A. (2017b). Closed-loop deep brain

stimulation by pulsatile delayed feedback with increased gap between pulse

phases. Sci. Rep. 7:1033. doi: 10.1038/s41598-017-01067-x

Popovych, O. V., and Tass, P. A. (2010). Synchronization control of interacting

oscillatory ensembles by mixed nonlinear delayed feedback. Phys. Rev. E

82:026204. doi: 10.1103/PhysRevE.82.026204

Popovych, O. V., and Tass, P. A. (2012). Desynchronizing electrical and sensory

coordinated reset neuromodulation. Front. Hum. Neurosci. 6:58. doi: 10.3389/

fnhum.2012.00058

Priori, A., Foffani, G., Rossi, L., and Marceglia, S. (2013). Adaptive deep brain

stimulation (aDBS) controlled by local field potential oscillations. Exp. Neurol.

245, 77–86. doi: 10.1016/j.expneurol.2012.09.013

Pyragas, K., Popovych, O. V., and Tass, P. A. (2007). Controlling synchrony in

oscillatory networks with a separate stimulation-registration setup. Europhys.

Lett. 80:40002. doi: 10.1209/0295-5075/80/40002

Quinn, E. J., Blumenfeld, Z., Velisar, A., Koop, M. M., Shreve, L. A., Trager,

M. H., et al. (2015). Beta oscillations in freely moving Parkinson’s subjects are

attenuated during deep brain stimulation.Mov. Disord. 30, 1750–1758. doi: 10.

1002/mds.26376

Ratas, I., and Pyragas, K. (2014). Controlling synchrony in oscillatory networks via

an act-and-wait algorithm. Phys. Rev. E 90:032914. doi: 10.1103/PhysRevE.90.

032914

Rosa, M., Arlotti, M., Ardolino, G., Cogiamanian, F., Marceglia, S., Di Fonzo, A.,

et al. (2015). Adaptive deep brain stimulation in a freely moving parkinsonian

patient.Mov. Disord. 30, 1003–1005. doi: 10.1002/mds.26241

Rosenblum, M. G., and Pikovsky, A. S. (2004a). Controlling synchronization

in an ensemble of globally coupled oscillators. Phys. Rev. Lett. 92:114102.

doi: 10.1103/PhysRevLett.92.114102

Rosenblum, M. G., and Pikovsky, A. S. (2004b). Delayed feedback control

of collective synchrony: an approach to suppression of pathological brain

rhythms. Phys. Rev. E 70:041904. doi: 10.1103/PhysRevE.70.041904

Rosin, B., Slovik, M., Mitelman, R., Rivlin-Etzion, M., Haber, S. N., Israel, Z.,

et al. (2011). Closed-loop deep brain stimulation is superior in ameliorating

parkinsonism. Neuron 72, 370–384. doi: 10.1016/j.neuron.2011.08.023

Rubin, J. E., and Terman, D. (2004). High frequency stimulation of

the subthalamic nucleus eliminates pathological thalamic rhythmicity

in a computational model. J. Comput. Neurosci. 16, 211–235.

doi: 10.1023/B:JCNS.0000025686.47117.67

Schnitzler, A., Munks, C., Butz, M., Timmermann, L., and Gross, J. (2009).

Synchronized brain network associated with essential tremor as revealed

by magnetoencephalography. Mov. Disord. 24, 1629–1635. doi: 10.1002/mds.

22633

Syrkin-Nikolau, J., Neuville, R., O’Day, J., Anidi, C., Koop, M. M., Martin,

T., et al. (2018). Coordinated reset vibrotactile stimulation shows prolonged

improvement in Parkinson’s disease. Mov. Disord. 33, 179–180. doi: 10.1002/

mds.27223

Tass, P. A. (1999). Phase Resetting in Medicine and Biology: Stochastic Modelling

and Data Analysis. Berlin: Springer.

Tass, P. A. (2001). Desynchronizing double-pulse phase resetting and

application to deep brain stimulation. Biol. Cybern. 85, 343–354.

doi: 10.1007/s004220100268

Tass, P. A. (2003). A model of desynchronizing deep brain stimulation with a

demand-controlled coordinated reset of neural subpopulations. Biol. Cybern.

89, 81–88. doi: 10.1007/s00422-003-0425-7

Tass, P. A., Adamchic, I., Freund, H.-J., von Stackelberg, T., and Hauptmann,

C. (2012a). Counteracting tinnitus by acoustic coordinated reset

Frontiers in Physiology | www.frontiersin.org 14 February 2018 | Volume 9 | Article 4650

https://doi.org/10.1016/j.brs.2016.06.051
https://doi.org/10.1016/j.nurt.2008.01.010
https://doi.org/10.1126/science.1140858
https://doi.org/10.1002/mds.26703
https://doi.org/10.1016/j.clinph.2004.05.031
https://doi.org/10.1126/science.121.3144.468
https://doi.org/10.1016/j.neuron.2011.11.006
https://doi.org/10.1002/ana.23951
https://doi.org/10.1007/s00422-009-0334-5
https://doi.org/10.1016/j.jneumeth.2004.10.020
https://doi.org/10.1063/1.4817393
https://doi.org/10.1212/01.wnl.0000303972.16279.46
https://doi.org/10.1016/j.physd.2007.09.019
https://doi.org/10.1016/j.expneurol.2011.02.015
https://doi.org/10.3389/fncom.2016.00065
https://doi.org/10.1103/PhysRevE.83.042901
https://doi.org/10.1002/acn3.434
https://doi.org/10.1103/PhysRevLett.94.164102
https://doi.org/10.1007/s00422-006-0066-8
https://doi.org/10.1371/journal.pone.0173363
https://doi.org/10.1038/s41598-017-01067-x
https://doi.org/10.1103/PhysRevE.82.026204
https://doi.org/10.3389/fnhum.2012.00058
https://doi.org/10.1016/j.expneurol.2012.09.013
https://doi.org/10.1209/0295-5075/80/40002
https://doi.org/10.1002/mds.26376
https://doi.org/10.1103/PhysRevE.90.032914
https://doi.org/10.1002/mds.26241
https://doi.org/10.1103/PhysRevLett.92.114102
https://doi.org/10.1103/PhysRevE.70.041904
https://doi.org/10.1016/j.neuron.2011.08.023
https://doi.org/10.1023/B:JCNS.0000025686.47117.67
https://doi.org/10.1002/mds.22633
https://doi.org/10.1002/mds.27223
https://doi.org/10.1007/s004220100268
https://doi.org/10.1007/s00422-003-0425-7
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Popovych and Tass Multisite Delayed Feedback Brain Stimulation

neuromodulation. Rest. Neurol. Neurosci. 30, 137–159. doi: 10.3233/RNN-

2012-110218

Tass, P. A., and Majtanik, M. (2006). Long-term anti-kindling effects of

desynchronizing brain stimulation: a theoretical study. Biol. Cybern. 94, 58–66.

doi: 10.1007/s00422-005-0028-6

Tass, P. A., Qin, L., Hauptmann, C., Doveros, S., Bezard, E., Boraud, T., et al.

(2012b). Coordinated reset has sustained aftereffects in parkinsonian monkeys.

Ann. Neurol. 72, 816–820. doi: 10.1002/ana.23663

Terman, D., Rubin, J. E., Yew, A. C., andWilson, C. J. (2002). Activity patterns in a

model for the subthalamopallidal network of the basal ganglia. J. Neurosci. 22,

2963–2976.

Tukhlina, N., Rosenblum, M., Pikovsky, A., and Kurths, J. (2007). Feedback

suppression of neural synchrony by vanishing stimulation. Phys. Rev. E

75:011918. doi: 10.1103/PhysRevE.75.011918

van Nuenen, B. F. L., Esselink, R. A. J., Munneke, M., Speelman, J. D., van Laar,

T., and Bloem, B. R. (2008). Postoperative gait deterioration after bilateral

subthalamic nucleus stimulation in parkinson’s disease.Mov. Disord. 23, 2404–

2406. doi: 10.1002/mds.21986

Volkmann, J., Herzog, J., Kopper, F., and Deuschl, G. (2002). Introduction to the

programming of deep brain stimulators. Mov. Disord. 17, S181–S187. doi: 10.

1002/mds.10162

Wang, J., Nebeck, S., Muralidharan, A., Johnson, M. D., Vitek, J. L., and Baker,

K. B. (2016). Coordinated reset deep brain stimulation of subthalamic

nucleus produces long-lasting, dose-dependent motor improvements in

the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine non-human primate

model of parkinsonism. Brain Stimul. 9, 609–617. doi: 10.1016/j.brs.2016.

03.014

Weisz, N., Moratti, S., Meinzer, M., Dohrmann, K., and Elbert, T. (2005).

Tinnitus perception and distress is related to abnormal spontaneous

brain activity as measured by magnetoencephalography. PLoS Med. 2:e153.

doi: 10.1371/journal.pmed.0020153

Wong, R. K., Traub, R. D., and Miles, R. (1986). Cellular basis of neuronal

synchrony in epilepsy. Adv. Neurol. 44, 583–592.

Xie, T., Kang, U. J., and Warnke, P. (2012). Effect of stimulation frequency on

immediate freezing of gait in newly activated stn dbs in parkinson’s disease.

J. Neurol. Neurosurg. Psychiatry 83, 1015–1017. doi: 10.1136/jnnp-2011-3

02091

Yamamoto, T., Katayama, Y., Ushiba, J., Yoshino, H., Obuchi, T., Kobayashi,

K., et al. (2013). On-demand control system for deep brain stimulation

for treatment of intention tremor. Neuromodulation 16, 230–235.

doi: 10.1111/j.1525-1403.2012.00521.x

Yanagisawa, T., Yamashita, O., Hirata, M., Kishima, H., Saitoh, Y., Goto,

T., et al. (2012). Regulation of motor representation by phase-amplitude

coupling in the sensorimotor cortex. J. Neurosci. 32, 15467–15475.

doi: 10.1523/JNEUROSCI.2929-12.2012

Yang, A. I., Vanegas, N., Lungu, C., and Zaghloul, K. A. (2014). Beta-coupled high-

frequency activity and beta-locked neuronal spiking in the subthalamic nucleus

of parkinson’s disease. J. Neurosci. 34, 12816–12827. doi: 10.1523/JNEUROSCI.

1895-14.2014

Yuste, R., MacLean, J. N., Smith, J., and Lansner, A. (2005). The cortex as a central

pattern generator. Nat. Rev. Neurosci. 6, 477–483. doi: 10.1038/nrn1686

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Popovych and Tass. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Physiology | www.frontiersin.org 15 February 2018 | Volume 9 | Article 4651

https://doi.org/10.3233/RNN-2012-110218
https://doi.org/10.1007/s00422-005-0028-6
https://doi.org/10.1002/ana.23663
https://doi.org/10.1103/PhysRevE.75.011918
https://doi.org/10.1002/mds.21986
https://doi.org/10.1002/mds.10162
https://doi.org/10.1016/j.brs.2016.03.014
https://doi.org/10.1371/journal.pmed.0020153
https://doi.org/10.1136/jnnp-2011-302091
https://doi.org/10.1111/j.1525-1403.2012.00521.x
https://doi.org/10.1523/JNEUROSCI.2929-12.2012
https://doi.org/10.1523/JNEUROSCI.1895-14.2014
https://doi.org/10.1038/nrn1686
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


HYPOTHESIS AND THEORY
published: 02 February 2018

doi: 10.3389/fphys.2018.00045

Frontiers in Physiology | www.frontiersin.org 1 February 2018 | Volume 9 | Article 45

Edited by:

Alexey Zaikin,

University College London,

United Kingdom

Reviewed by:

Anna Zakharova,

Technische Universität Berlin,

Germany

Silvina Ponce Dawson,

Universidad de Buenos Aires,

Argentina

*Correspondence:

Konstantin B. Blyuss

k.blyuss@sussex.ac.uk

Specialty section:

This article was submitted to

Computational Physiology and

Medicine,

a section of the journal

Frontiers in Physiology

Received: 19 October 2017

Accepted: 15 January 2018

Published: 02 February 2018

Citation:

Fatehi F, Kyrychko SN, Ross A,

Kyrychko YN and Blyuss KB (2018)

Stochastic Effects in Autoimmune

Dynamics. Front. Physiol. 9:45.

doi: 10.3389/fphys.2018.00045

Stochastic Effects in Autoimmune
Dynamics
Farzad Fatehi 1, Sergey N. Kyrychko 2, Aleksandra Ross 1, Yuliya N. Kyrychko 1 and

Konstantin B. Blyuss 1*

1Department of Mathematics, University of Sussex, Brighton, United Kingdom, 2 Institute of Geotechnical Mechanics, Dnipro,

Ukraine

Among various possible causes of autoimmune disease, an important role is played by

infections that can result in a breakdown of immune tolerance, primarily through the

mechanism of “molecular mimicry”. In this paper we propose and analyse a stochastic

model of immune response to a viral infection and subsequent autoimmunity, with

account for the populations of T cells with different activation thresholds, regulatory

T cells, and cytokines. We show analytically and numerically how stochasticity can

result in sustained oscillations around deterministically stable steady states, and we

also investigate stochastic dynamics in the regime of bi-stability. These results provide

a possible explanation for experimentally observed variations in the progression of

autoimmune disease. Computations of the variance of stochastic fluctuations provide

practically important insights into how the size of these fluctuations depends on various

biological parameters, and this also gives a headway for comparison with experimental

data on variation in the observed numbers of T cells and organ cells affected by infection.

Keywords: pathogen-induced autoimmunity, immune response, mathematical model, bi-stability, stochastic

effects

1. INTRODUCTION

Breakdown of immune tolerance and the resulting autoimmune disease occur when the immune
system fails to distinguish the host’s own healthy cells from the cells affected by the infection,
thus triggering an immune response that also targets healthy cells. Autoimmune disease is usually
focused in a specific organ or part of the body, such as retina in the case of uveitis, central
nervous system in multiple sclerosis, or pancreatic β-cells in insulin-dependent diabetes mellitus
type-1 (Prat and Martin, 2002; Kerr et al., 2008; Santamaria, 2010). Whilst it is close to impossible
to pinpoint precise causes of autoimmunity in each individual case, it can usually be attributed to a
number of factors, which can include the genetic predisposition, age, previous immune challenges,
exposure to pathogens etc. A number of distinct mechanisms have been identified for how an
infection of the host with a pathogen can result in the subsequent onset of autoimmune disease,
and these include bystander activation (Fujinami, 2011) and molecular mimicry (von Herrath
and Oldstone, 1996; Ercolini and Miller, 2008), which is particularly important in the context of
autoimmunity caused by viral infections.

Over the years, a number of mathematical models have investigated various origins and aspects
of immune response, with an emphasis on the onset and the development of autoimmune disease.
Some of the earlier models studied interactions between regulatory and effector T cells without
looking at causes of autoimmunity but instead focusing on T cell vaccination (Segel et al., 1995).
Borghans et al. (Borghans andDe Boer, 1995; Borghans et al., 1998) looked into this process inmore
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detail and showed the onset of autoimmunity, which was defined
as oscillations in the number of autoreactive cells that exceeded
a certain threshold. León et al. (2000, 2003, 2004) and Carneiro
et al. (2005) have analyzed interactions between different T cells
and their effect on regulation of immune response and control
of autoimmunity. More recently, Iwami et al. (2007, 2009)
considered a model of immune response to a viral infection,
in which they explicitly included the dynamics of a virus
population. Although this model is able to demonstrate an
emergence of autoimmunity, it fails to produce a regime of
normal viral clearance. Alexander and Wahl (2011) have focused
on the role of professional antigen-presenting cells (APCs) and
their interactions with regulatory and effector effector cells for
the purposes of controlling autoimmune response. Burroughs
et al. (2011a,b) have analyzed the autoimmunity through the
mechanism of cytokine-mediated bystander activation. A special
issue on “Theories and modeling of autoimmunity” provides an
excellent overview of recent research in the area of mathematical
modeling of various aspects of onset and development of
autoimmune disease (Root-Bernstein, 2015).

These are several different frameworks for modeling the role
of T cells in controlling autoimmune response. Alexander and
Wahl (2011) and Burroughs et al. (2011a,b) have explicitly
included a separate compartment for regulatory T cells that
are activated by autoantigens and suppress the activity of
autoreactive T cells. Another modeling approach is to consider
the possibility of the same T cells performing different
immune functions through having different or tunable activation
thresholds, which allows T cells to adjust their response to T cell
antigen receptor stimulation by autoantigens. This methodology
was originally proposed theoretically to study peripheral and
central T cell activation (Grossman and Paul, 1992, 2000;
Grossman and Singer, 1996), and has been subsequently used
to analyse differences in activation/response thresholds that are
dependent on the activation state of the T cell (Altan-Bonnet and
Germain, 2005). van den Berg and Rand (2004) and Scherer et al.
(2004) have studied stochastic tuning of activation thresholds.
Interestingly, the need for T cells to have tunable activation
can be shown to emerge from the fundamental principles of of
signal detection theory (Noest, 2000). A number of murine and
human experiments have confirmed that activation of T cells can
indeed dynamically change during their circulation (Nicholson
et al., 2000; Bitmansour et al., 2002; Stefanova et al., 2002; Römer
et al., 2011), thus supporting the theory developed in earlier
papers.

Since immune response is known to be a complex multi-factor
process (Perelson and Weisbuch, 1997), a number of studies
have looked into various stochastic aspects of immune dynamics,
such as T cell selection and proliferation. Deenick et al. (2003)
have analyzed stochastic effects of interleukin-2 (IL-2) on T
cell proliferation from precursors. Blattman et al. (2000) have
shown that repertoires of the CTL (cytotoxic T cell lymphocyte)
populations during primary response to a viral infection and
in the memory pool are similar, thus providing further support
to the theory of stochastic selection for the memory pool.
Detours and Perelson (2000) have explored the distribution
of possible outcomes during T cell selection with account for

variable affinity between T cell receptors and MHC-peptide
complexes. Chao et al. (2004) analyzed a detailed stochastic
model of T cell recruitment during immune response to a viral
infection. Stirk et al. (2010a,b) have developed a stochastic model
for T cell repertoire and investigated the role of competitive
exclusion between different clonotypes. Using the methodology
of continuous-time Markov processes, the authors computed
extinction times, a limited multivariate probability distribution,
as well as the size of fluctuations around the deterministic steady
states. Reynolds et al. (2012) have used a similar methodology
to investigate an important question of asymmetric cell division
and its impact on the extinction of different T cell populations
and the expected lifetimes of naïve T cell clones. With regards
to modeling autoimmune dynamics, Alexander andWahl (2011)
have studied the stochastic model of immune response with an
emphasis on professional APCs to show that the probability
of developing a chronic autoimmune response increases with
the initial exposure to self-antigen or autoreactive effector T
cells. An important aspect of stochastic dynamics that has
to be accounted for in the models is the so-called stochastic
amplification (Alonso et al., 2007; Kuske et al., 2007), which
denotes a situation where periodic solutions with decaying
amplitudes in the deterministic model can result in sustained
stochastic periodic oscillations in individual realizations of
the same model. This suggests that whilst on average the
behavior may show decaying-amplitude oscillations, individual
realizations represented by stochastic oscillations can explain
relapses/remissions in clinical manifestations of the disease as
caused by endogenous stochasticity of the immune processes.

Blyuss and Nicholson (2012, 2015) have proposed and
analyzed a mathematical model of immune response to a viral
infection that explicitly takes into account the populations
of two types of T cells with different activation thresholds
and also allows for infection and autoimmune response to
occur in different organs. This model supports the regimes of
normal viral clearance, a chronic infection, and an autoimmune
state represented by exogenous oscillations in cell populations,
associated with episodes of high viral production followed by
long periods of quiescence. Such behavior, that in the clinical
observation could be associated with relapses and remissions,
has been observed in a number of autoimmune diseases, such
as MS, autoimmune thyroid disease and uveitis (Ben Ezra and
Forrester, 1995; Davies et al., 1997; Nylander and Hafler, 2012).
Despite its successes, this model has a limitation that the periodic
oscillations are only possible when the amount of free virus
and the number of infected cells are also exhibiting oscillations,
while in laboratory and clinical situations, one rather observes
a situation where the initial infection is completely cleared, and
this is then followed by the onset of autoimmune reaction. To
overcome this limitation, Fatehi et al. (unpublished) have recently
extended the model of Blyuss and Nicholson to also include the
population of regulatory T cells and the cytokine mediating T cell
activity.

In this paper we analyse the effects of stochasticity on
the dynamics of immune response in a model with the
populations of T cells with different activation thresholds,
regulatory cells and cytokines, as presented in Methods. Starting
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with a system of ordinary differential equations, we apply the
methodology of continuous-time Markov chains (CTMC) to
derive a Kolmogorov, or chemical master equation, describing
the dynamics of a probability distribution of finding the system
in a particular state. To make further analytical and numerical
progress, we derive an Itô stochastic differential equation, whose
solutions provide similar stochastic paths to those of the CTMC
models. This then allows us to numerically study the stationary
multivariate probability distributions for the states in the model,
explore stochastic amplification, determine how the magnitude
of stochastic fluctuations around deterministic steady states
depends on various parameters, and investigate the effects of
initial conditions on the outcome in the case of bi-stability
between different dynamical states. These results suggest that
the experimentally observed variation in the progression of
autoimmune disease can be attributed to stochastic amplification,
and they also provide insights into how the variance of
fluctuations depends on parameters, which can guide new
laboratory experiments.

2. METHODS

2.1. Continuous-Time Markov Chain Model
of Immune Dynamics
In a recent paper we introduced and analyzed a deterministic
model for autoimmune dynamics with account for the
populations of T cells with different activation thresholds
and cytokines (Fatehi et al. unpublished). The analysis showed
that depending on parameters and initial conditions, the model
can support the regimes of normal disease clearance, where

an initial infection is cleared without further consequences
for immune dynamics, chronic infection characterized by a
persistent presence of infected cells in the body, and the state of
autoimmune behavior where after clearance of initial infection,
the immune system supports stable endogenous oscillations in
the number of autoreactive T cells, which can be interpreted
in the clinical practice of autoimmune disease as periods of
relapses and remissions. This work extended earlier results on
modeling the effects of tunable activation thresholds (Blyuss and
Nicholson, 2012, 2015) by including regulatory T cells, as well
as the cytokine mediating proliferation and activity of different
types of T cells.

A deterministic model for immune response to a viral
infection, as illustrated in a diagram shown in Figure 1, has the
form

dS

dt
= rS

(
1−

S

N

)
− βSF − µaTautS,

dF

dt
= βSF − dFF − µFTnorF − µaTautF,

dTin

dt
= λin − dinTin − αTinF,

dTreg

dt
= λr − drTreg + p1αTinF + ρ1ITreg , (1)

dTnor

dt
= p2αTinF − dnTnor + ρ2ITnor ,

dTaut

dt
= (1− p1 − p2)αTinF − daTaut − δTregTaut + ρ3ITaut ,

dI

dt
= σ1Tnor + σ2Taut − diI,

FIGURE 1 | A schematic diagram of immune response to infection. Blue indicates host cells (susceptible and infected), red denotes T cells (naïve, regulatory, normal

activated, and autoreactive), yellow shows cytokines (interleukin-2).
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where S(t) is the number of susceptible organ cells, F(t) is the
number of infected cells, Tin(t) is the number of naïve T cells,
Treg(t) is the number of regulatory T cells, Tnor(t) is the number
of activated T cells which recognize foreign antigen and destroy
infected cells, Taut(t) is the number of autoreactive T cells which
destroy cells presenting both foreign and self-antigen, and I(t)
is the amount of interleukin 2 (IL-2) cytokine. In this model,
it is assumed that in the absence of infection, organ cells in
the host reproduce logistically with a linear growth rate r and
carrying capacity N, and they can become infected at rate β

by already infected cells that are producing new virus particles.
Unlike earlier models (Blyuss and Nicholson, 2012, 2015; Fatehi
et al. unpublished), we consider the situation where the process
of producing virions by infected cells is quite fast, hence, we
do not explicitly incorporate a separate compartment for free
virus. Regarding immune response, we assume that naïve T cells
remain in homeostasis, and upon activation at rate α by a signal
from infected cells, a proportion p1 of them will develop into
regulatory T cells, a proportion p2 will become normal activated
T cells able to destroy infected cells at rate µF , and the remaining
T cells will become autoreactive, in which case their threshold
for activation by susceptible cells is reduced, and hence, they
will be destroying both infected and susceptible host cells at rate
µa. The effect of regulatory T cells is in reducing the number of
autoreactive T cells at rate δ, and regulatory T cells are themselves
assumed to be in a state of homeostasis. Finally, normal and
autoreactive T cells produce IL-2 at rates σ1 and σ2, and IL-2 in
turn facilitates proliferation of regular, normal and autoreactive
T cells at rates ρ1, ρ2, and ρ3, respectively. One should note that

in light of experimental evidence suggesting the possibility of
autoimmunity in the absence of B cells (Wolf et al., 1996) and
the fact that the development of antibodies can itself depend on

prior T cell activation with bacteria (Wu et al., 2010), the above
model does not take into account antibody response, but rather
focuses on T cell dynamics.

As a first step in the analysis of stochastic effects in immune
dynamics, we construct a CTMC model based on the ODE
model (1) using the methodology developed earlier in the context
of modeling stochastic effects in epidemic and immunological
models (Brauer et al., 2008; Stirk et al., 2010a; Allen, 2011). To
this end, we introduce variables X1(t), . . . ,X7(t) ∈ {0, 1, 2, . . .} as
discrete random variables representing the number of uninfected
cells, infected cells, naïve T cells, regulatory T cells, normal
activated T cells, autoreactive T cells, and interleukin-2 at time
t, respectively. Let the initial condition be fixed as

X0 = (X1(0), . . . ,X7(0)) = (n10, n20, n30, n40, n50, n60, n70).

The probability of finding the system in the state n =

(n1, n2, n3, n4, n5, n6, n7) with ni ∈ {0, 1, 2, ...} at time t can be
defined as

P(n, t) = Prob{X(t) = n|X(0) = X0}.

Let 1t be sufficiently small such that 1Xi(t) = Xi(t + 1t) −
Xi(t) ∈ {−1, 0, 1} for 1 ≤ i ≤ 7. The CTMC can then
be formulated as a birth and death process in each of the
variables (Allen, 2011). The infinitesimal transition probabilities
corresponding to Figure 1 are as follows,

Prob(1X = i|X = n) =






q11t + o(1t), i = (1, 0, 0, 0, 0, 0, 0),

q21t + o(1t), i = (−1, 0, 0, 0, 0, 0, 0),

q31t + o(1t), i = (−1, 1, 0, 0, 0, 0, 0),

q41t + o(1t), i = (0, 0, 1, 0, 0, 0, 0),

q51t + o(1t), i = (0, 0,−1, 0, 0, 0, 0),

q61t + o(1t), i = (0, 0,−1, 0, 1, 0, 0),

q71t + o(1t), i = (0, 0,−1, 0, 1, 0, 0),

q81t + o(1t), i = (0, 0,−1, 0, 0, 1, 0),

q91t + o(1t), i = (0,−1, 0, 0, 0, 0, 0),

q101t + o(1t), i = (0, 0, 0, 1, 0, 0, 0),

q111t + o(1t), i = (0, 0, 0,−1, 0, 0, 0),

q121t + o(1t), i = (0, 0, 0, 0, 1, 0, 0),

q131t + o(1t), i = (0, 0, 0, 0,−1, 0, 0),

q141t + o(1t), i = (0, 0, 0, 0, 0, 1, 0),

q151t + o(1t), i = (0, 0, 0, 0, 0,−1, 0),

q161t + o(1t), i = (0, 0, 0, 0, 0, 0, 1),

q171t + o(1t), i = (0, 0, 0, 0, 0, 0,−1),

1−
17∑
i=1

qi1t + o(1t), i = (0, 0, 0, 0, 0, 0, 0),

o(1t), otherwise,

(2)
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where

q1 = b1n1 + b2n
2
1, q2 = d1n1 + d2n

2
1 + µan1n6, q3 = βn1n2, q4 = λin,

q5 = dinn3, q6 = p1αn2n3, q7 = p2αn2n3, q8 = (1− p1 − p2)αn2n3,

q9 = (dF + µFn5 + µan6)n2, q10 = λr + ρ1n4n7, q11 = drn4, q12 = ρ2n5n7,

q13 = dnn5, q14 = ρ3n6n7, q15 = (da + δn4)n6, q16 = σ1n5 + σ2n6, q17 = din7.

Here, b1n1 + b2n
2
1 and d1n1 + d2n

2
1 are natural birth and death

rates for uninfected cells with b1 − d1 = r and d2 − b2 =

r/N (Allen, 2011).
The probabilities P(n, t) satisfy the following master equation

(forward Kolmogorov equation)

dP(n, t)

dt
={(ε−1 − 1)q1 + (ε+1 − 1)q2 + (ε+1 ε

−

2 − 1)q3 + (ε−3 − 1)q4 + (ε+3 − 1)q5

+ (ε+3 ε
−

4 − 1)q6 + (ε+3 ε
−

5 − 1)q7 + (ε+3 ε
−

6 − 1)q8 + (ε+2 − 1)q9 + (ε−4 − 1)q10

+ (ε+4 − 1)q11 + (ε−5 − 1)q12 + (ε+5 − 1)q13 + (ε−6 − 1)q14 + (ε+6 − 1)q15

+ (ε−7 − 1)q16 + (ε+7 − 1)q17}P(n, t). (3)

where the operators ε
±

i are defined as follows,

ε
±

i f (n1, n2, n3, n4, n5, n6, n7, t) = f (n1, ..., ni ± 1, ..., n7, t),

for each 1≤ i ≤ 7, and if ni < 0 for any 1 ≤ i ≤ 7, then
P(n, t) = 0.

By solving this master equation, one can find the probability
density function for this model. However, since this is a high-
dimensional difference-differential equation, solving it is a very
challenging task. Normally, the number of events occurring in
a small time step in the CTMC model is extremely large, hence
using the CTMC model for plotting stochastic trajectories is
very computationally intensive (Mandal et al., 2014). A much
more computationally efficient approach is to use chemical
Langevin equations (Gillespie, 2000, 2002), also known as Itô
stochastic differential equation (SDE)models, which provide very
similar sample paths to those of the CTMC models (Mandal
et al., 2014). While both Itô and Stratonovich interpretations of
stochastic calculus can be applied (Øksendal, 2000), in biological
applications Itô formulation is more frequently used due to its
non-anticipatory nature and a closer connection to numerical
implementation (Allen, 2007, 2011; Braumann, 2007).

2.2. Stochastic Differential Equation Model
To derive Itô SDE model, let Y(t) = (Y1(t),Y2(t),
Y3(t),Y4(t),Y5(t),Y6(t),Y7(t)) be a continuous random vector
for the sizes of various cell compartments at time t. Similar
to the CTMC model, we assume that 1t is small enough so
that during this time interval at most one change can occur in
state variables. These changes together with their probabilities
are listed in Table 1, which is again based on Figure 1 and

transitions in the CTMC model (2). Using this table of possible
state changes, one can compute the expectation vector and
covariance matrix of 1Y for sufficiently small 1t (Allen et al.,
2008; Mandal et al., 2014). The expectation vector to order 1t is
given by

E(1Y) ≈

17∑

i=1

Pi(1Y)i1t = µ1t,

where

µ =





P1 − P2 − P3
P3 − P9

P4 − P5 − P6 − P7 − P8
P6 + P10 − P11
P7 + P12 − P13
P8 + P14 − P15

P16 − P17





TABLE 1 | Possible state changes 1Y during a small time interval 1t.

i (1Y)T
i

Probability Pi1t

1 (1, 0, 0, 0, 0, 0, 0) (b1Y1 + b2Y1
2)1t

2 (−1, 0, 0, 0, 0, 0, 0) (d1Y1 + d2Y1
2
+ µaY6Y1)1t

3 (−1, 1, 0, 0, 0, 0, 0) βY1Y21t

4 (0, 0, 1, 0, 0, 0, 0) λin1t

5 (0, 0,−1, 0, 0, 0, 0) dinY31t

6 (0, 0,−1, 1, 0, 0, 0) p1αY3Y21t

7 (0, 0,−1, 0, 1, 0, 0) p2αY3Y21t

8 (0, 0,−1, 0, 0, 1, 0) (1− p1 − p2)αY3Y21t

9 (0,−1, 0, 0, 0, 0, 0) (dF + µFY5 + µaY6)Y21t

10 (0, 0, 0, 1, 0, 0, 0) (λr + ρ1Y7Y4)1t

11 (0, 0, 0,−1, 0, 0, 0) drY41t

12 (0, 0, 0, 0, 1, 0, 0) ρ2Y7Y51t

13 (0, 0, 0, 0,−1, 0, 0) dnY51t

14 (0, 0, 0, 0, 0, 1, 0) ρ3Y7Y61t

15 (0, 0, 0, 0, 0,−1, 0) (da + δY4)Y61t

16 (0, 0, 0, 0, 0, 0, 1) (σ1Y5 + σ2Y6)1t

17 (0, 0, 0, 0, 0, 0,−1) diY71t

18 (0, 0, 0, 0, 0, 0, 0) 1−

17∑

i=1
Pi1t
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is the drift vector, which can be easily seen to be identical to
the right-hand side of the deterministic model Equation (1). The
covariance matrix is obtained by keeping terms of order 1t only,
i.e.,

cov(1Y) = E
[
(1Y)(1Y)T

]

− E [1Y] (E [1Y])T ≈ E
[
(1Y)(1Y)T

]

=

17∑
i=1

Pi(1Y)i(1Yi)
T
1t = 61t,

where

6 =





P1 + P2 + P3 −P3 0 0 0 0 0
−P3 P3 + P9 0 0 0 0 0
0 0 P4 + P5 + P6 + P7 + P8 −P6 −P7 −P8 0
0 0 −P6 P6 + P10 + P11 0 0 0
0 0 −P7 0 P7 + P12 + P13 0 0
0 0 −P8 0 0 P8 + P14 + P15 0
0 0 0 0 0 0 P16 + P17





is a 7 × 7 covariance matrix. To derive Itô SDE model, we need
to find a diffusion matrix H defined according to HHT = 6.
Although this matrix is not unique, different forms of this matrix
give equivalent systems (Allen, 2007; Allen et al., 2008).

If one rewrites the covariance matrix 6 in the form

6 =




U 0 0

0 W 0

0 0 Z



 ,

with

U =

(
P1 + P2 + P3 −P3

−P3 P3 + P9

)
, Z = P16 + P17,

and

W =





P4 + P5 + P6 + P7 + P8 −P6 −P7 −P8
−P6 P6 + P10 + P11 0 0
−P7 0 P7 + P12 + P13 0
−P8 0 0 P8 + P14 + P15



 ,

we can define three matrices H1, H2 and H3 as follows,

H1 =

(√
P1 + P2 −

√
P3 0

0
√
P3

√
P9

)
, H3 =

√
P16 + P17,

H2 =





√
P4 + P5 −

√
P6 −

√
P7 −

√
P8 0 0 0

0
√
P6 0 0

√
P10 + P11 0 0

0 0
√
P7 0 0

√
P12 + P13 0

0 0 0
√
P8 0 0

√
P14 + P15



 .

Now if we consider

H =




H1 0 0

0 H2 0

0 0 H3



 ,

then HHT = 6, where H is a 7× 11 matrix. The Itô SDE model
now has the form
{
dY(t) = µdt +HdW(t),

Y(0) = (A(0), F(0),Tin(0),Treg(0),Tnor(0),Taut(0), I(0))
T ,

(4)

and W(t) = [W1(t),W2(t), ...,W11(t)]
T is a vector of 11

independent Wiener processes (Allen, 2007).
In order to make further analytical progress, we find

an approximate probability density function for the model
(4) as given by an approximate solution of the master
equation (van Kampen, 1981; Allen, 2007). Let P(Y, t) be
the probability density function of the model (4). Then
P(Y, t) satisfies the following Fokker-Planck equation (Gardiner,
2004; Allen, 2007) which is an approximation of the master
equation






∂P(Y, t)

∂t
= −

7∑

i=1

∂

∂yi

[
µiP(Y, t)

]
+

1

2

7∑

i=1

7∑

j=1

∂
2

∂yi∂yj

[
6ijP(Y, t)

]
,

P(Y, 0) = δ7(Y− Y0).

By solving this PDE, one can find the probability density function
of our model, but since this equation is high-dimensional and
nonlinear, solving it analytically is impossible. Hence, we use
another approach, a so-called system size expansion or van
Kampen’s �-expansion (van Kampen, 1981), which is a method
for constructing a continuous approximation to a discrete
stochastic model (Stirk et al., 2010a,b), which allows one to study

stochastic fluctuations around deterministic attractors (Black
et al., 2009).

2.3. System Size Expansion
In order to apply the van Kampen’s approach, we consider
fluctuations within a systematic expansion of themaster equation
for a large system size �. Specifically, we write each ni(t) as a
deterministic part of order � plus a fluctuation of order �

1/2 as
follows,
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ni(t) = �xi(t)+ �
1/2

ζi(t), i = 1, . . . , 7, (5)

where xi(t) and ζi(t) are two continuous variables, and �xi(t) =
E[ni(t)]. The probability density P(n, t) satisfying the master
Equation (3) is now represented by the probability density
5(ζ , t), i.e., 5(ζ , t) = P(n, t) = P

(
�x+ �

1/2ζ , t
)
, which implies

dP(n, t)

dt
=

∂5

∂t
−

7∑

i=1

�
1/2
dxi

dt

∂5

∂ζi
. (6)

To expand the master equation (3) in a power series in �
− 1/2, we

use the following expansion for the step operators

ε
±

i = 1± �
−1/2

∂

∂ζi
+

1

2
�

−1 ∂
2

∂ζ
2
i

± · · · . (7)

Substituting expressions (6, 7) into the master equation (see
Supplementary Material for details) and collecting terms of order
�

1/2 yields the following deterministic model for macroscopic
behavior

dx1

dt
= b1x1 + b̃2x

2
1 − d1x1 − d̃2x

2
1 − β̃x1x2 − µ̃ax1x6,

dx2

dt
= β̃x1x2 − dFx2 − µ̃Fx2x5 − µ̃ax2x6,

dx3

dt
= λ̃in − dinx3 − α̃x2x3,

dx4

dt
= λ̃r − drx4 + p1α̃x2x3 + ρ̃1x4x7,

dx5

dt
= p2α̃x2x3 − dnx5 + ρ̃2x5x7,

dx6

dt
= (1− p1 − p2 )̃αx2x3 − dax6 − δ̃x4x6 + ρ̃3x6x7,

dx7

dt
= σ1x5 + σ2x6 − dix7,

(8)

where

b2 =
b̃2

�
, d2 =

d̃2

�
, β =

β̃

�
, µa =

µ̃a

�
,

µF =
µ̃F

�
, α =

α̃

�
, δ =

δ̃

�
,

ρi =
ρ̃i

�
, i = 1, 2, 3, λin = λ̃in�, λr = λ̃r�.

Model (8) has been analyzed in Fatehi et al. (unpublished), and
it can have at most four biologically feasible steady states. The

A =





b1 + 2̃b2x1 − d1 − 2̃d2x1 − µ̃ax6 − β̃x2 −β̃x1 0 0 0 −µ̃ax1 0

β̃x2 β̃x1 − dF − µ̃Fx5 − µ̃ax6 0 0 −µ̃Fx2 −µ̃ax2 0

0 −α̃x3 −din − α̃x2 0 0 0 0

0 p1α̃x3 p1α̃x2 ρ̃1x7 − dr 0 0 ρ̃1x4
0 p2α̃x3 p2α̃x2 0 ρ̃2x7 − dn 0 ρ̃2x5
0 (1− p1 − p2 )̃αx3 (1− p1 − p2 )̃αx2 −δ̃x6 0 ρ̃3x7 − da − δ̃x4 ρ̃3x6
0 0 0 0 σ1 σ2 −di





,

first one, a disease-free steady state, is given by

S∗1 =

(
b1 − d1

d̃2 − b̃2
, 0,

λ̃in

din
,
λ̃r

dr
, 0, 0, 0

)
,

and it is stable if dF > β̃ . The second and third steady states can
be found as

S∗2 =

(
0, 0,

λ̃in

din
, x∗4 , 0,

di
(
da + δ̃x∗4

)

ρ̃3σ2
,
da + δ̃x∗4

ρ̃3

)
,

and

S∗3 =



 ρ̃3σ2(b1 − d1)− µ̃adi
(
da + δ̃x∗4

)

ρ̃3σ2

(
d̃2 − b̃2

) ,

0,
λ̃in

din
, x∗4 , 0,

di
(
da + δ̃x∗4

)

ρ̃3σ2
,
da + δ̃x∗4

ρ̃3

)
,

where x∗4 satisfies the following quadratic equation

ρ̃1δ̃
(
x∗4
)2

+
(
ρ̃1da − ρ̃3dr

)
x∗4 + ρ̃3̃λr = 0. (9)

These steady states are stable, provided

σ2

µ̃adi
K <

da + δ̃x∗4
ρ̃3

<
dn

ρ̃2
, δ̃ρ̃1(x

∗
4)

2
> λ̃rρ̃3,

ρ̃3̃λ
2
r + ρ̃3dĩλrx

∗
4 − ρ̃3dida(x

∗
4)

2 − δ̃(ρ̃1da + ρ̃3di)(x
∗
4)

3

−ρ̃1δ̃
2(x∗4)

4
> 0,

where K = 1 for S∗2 , and K =
(
β̃ − dF

)
/
(
1+ β̃

)
for S∗3 .

Biologically, the steady state S∗2 represents the death of organ
cells, while S∗3 corresponds to an autoimmune regime.

The last steady state S∗4 has all of its components positive and
corresponds to the state of chronic infection.

At the next order, stochastic fluctuations are determined by
linear stochastic processes, hence, this is known as a linear noise
approximation (van Kampen, 1981; Wallace et al., 2012). The
dynamics of these fluctuations is described by the following linear
Fokker-Planck equation

∂5(ζ , t)

∂t
= −

∑

i,j

Aij
∂

∂ζi
(ζj5)+

1

2

∑

i,j

Bij
∂
2
5

∂ζi∂ζj
, (10)

where A is the Jacobian matrix of system (8)
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and B is a 7× 7 symmetric matrix given by

Bij =






b1x1 + b̃2x
2
1 + d1x1 + d̃2x

2
1 + β̃x1x2 + µ̃ax1x6, if (i, j) = (1, 1),

β̃x1x2 + dFx2 + µ̃Fx2x5 + µ̃ax2x6, if (i, j) = (2, 2),

λ̃in + dinx3 + α̃x2x3, if (i, j) = (3, 3),

λ̃r + drx4 + p1α̃x2x3 + ρ̃1x4x7, if (i, j) = (4, 4),

p2α̃x2x3 + dnx5 + ρ̃2x5x7, if (i, j) = (5, 5),

(1− p1 − p2 )̃αx2x3 + dax6 + δ̃x4x6 + ρ̃3x6x7, if (i, j) = (6, 6),

σ1x5 + σ2x6 + dix7, if (i, j) = (7, 7),

−β̃x1x2, if (i, j) = (1, 2) or (2, 1),

−p1α̃x2x3, if (i, j) = (3, 4) or (4, 3),

−p2α̃x2x3, if (i, j) = (3, 5) or (5, 3),

−(1− p1 − p2 )̃αx2x3, if (i, j) = (3, 6) or (6, 3),

0, otherwise.

Since the Fokker-Planck Equation (10) is linear, the probability
density5(ζ , t) is Gaussian, and hence, just the first twomoments
are enough to characterize it (Hayot and Jayaprakash, 2004; Pahle
et al., 2012). Due to the way the system size expansion was
introduced in (Equation 5), the mean values of fluctuations for
all variables are zero, i.e., 〈ζi(t)〉 = 0 for all 1 ≤ i ≤ 7, while
the covariance matrix 4 with 4ij = 〈ζi(t)ζj(t)〉 − 〈ζi(t)〉〈ζj(t)〉 =
〈ζi(t)ζj(t)〉 satisfies the following equation (van Kampen, 1981;
Pahle et al., 2012)

∂t4 = A4 + 4AT
+ B, (11)

where AT is the transpose of A.
We aremainly interested in the dynamics of fluctuations when

the oscillations of the deterministic model have died out, and
the system is in a stationary state, i.e., the fluctuations take place
around the steady states (Black et al., 2009). If the model (8)
tends to a steady state as t → ∞, then in the equation (10) one
can substitute the values of xi’s with the corresponding constant
components of that steady state to study the fluctuations around
it, as described by the linear Fokker-Planck equation. At any
steady state, the covariance matrix 4 is independent of time, and
the fluctuations are described by a Gaussian distribution with the
zero mean and the stationary covariance satisfying the equation

A4 + 4AT
+ B = 0.

In order to be able to relate the results of this analysis to
simulations, it is convenient to express the covariance matrix in
terms of actual numbers of cells in each compartment, rather
than deviations from stationary values. To this end, we instead
use the covariance matrix C defined as Cij = 〈(ni − 〈ni〉)(nj −
〈nj〉)〉, which, in light of the relation Cij = �4ij, satisfies the
following Lyapunov equation (Pahle et al., 2012)

AC + CAT
+ �B = 0. (12)

This equation can be solved numerically for each of the stable
steady states to determine the variance of fluctuations around
that steady state depending on system parameters.

3. RESULTS

To simulate the dynamics of the model, we solve the system
Equation (4) numerically using the Euler-Maruyama method
with parameter values given inTable 2, and� = 1000. The initial
condition is chosen to be of the form

(x1(0), x2(0), x3(0), x4(0), x5(0), x6(0), x7(0))

= (18, 2, 7.2, 6.3, 0, 0, 0), (13)

which corresponds to a small number of host cells being initially
infected.

Figure 2 shows the results of 20,000 simulations with the
initial condition (13) and σ2 = 1. In the deterministic
model (8), for σ2 = 1 both steady states S∗1 (disease-free)
and S∗3 (autoimmune state) are stable, but with the initial
condition (13) the system is in the basin of attraction of S∗3 .
In the stochastic model, the majority of trajectories also enter
the attraction region of S∗3 , but a small proportion of them
went into the basin of attraction of S∗1 . This figure illustrates
a single stochastic path around S∗1 , and a single stochastic
path around S∗3 , together with the deterministic trajectory.
These individual solutions indicate that whilst deterministically,
the system exhibits decaying oscillations around S∗3 , the same
behavior is observed in the stochastic simulations only upon
taking an average of a very large number of simulations. At the
same time, individual realizations exhibit sustained stochastic
oscillations in a manner similar to that observed in models of
stochastic amplification in epidemics (Alonso et al., 2007; Kuske
et al., 2007). Figure 2 also illustrates the size of areas of one
standard deviation from the mean for trajectories in the basins
of attraction S∗1 and S

∗
3 , in which individual stochastic trajectories

may exhibit stochastic oscillations (Conway and Coombs, 2011;
Reynolds et al., 2012).

Figures 3A,B show temporal evolution of the probability
distribution in the case of bi-stability between the steady states
S∗1 and S∗3 , as illustrated in Figure 2. They indicate that after
some initial transient, the system reaches a stationary bimodal
normal distribution. The width of the probability distribution
around each stable steady state, as described by its variance
or standard deviation, gives the size of fluctuations around
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TABLE 2 | Table of parameters.

Parameter Value Parameter Value

b1 2.5 dr 0.8

b̃2 0.1 p1 0.4

d1 0.5 ρ̃1 10/9

d̃2 0.2 p2 0.4

β̃ 0.1 dn 2

µ̃a 40/9 ρ̃2 4/45

dF 2.2 da 0.002

µ̃F
4/3 δ̃ 1/4500

λ̃in 18 ρ̃3 2/9

din 2 σ1 0.3

α̃ 0.04 σ2 0.4

λ̃r 108 di 1.2

FIGURE 2 | Numerical simulation of the model (4) with parameter values from

Table 2, σ2 = 1, and the initial condition (13). Red curves are two sample

paths that have entered the basins of attraction of S*1 or S*3, black curve is the

deterministic trajectory from (1), and the shaded areas indicate the regions of

one standard deviation from the mean.

this steady state observed in individual stochastic realizations,
as is shown in Figure 2. Similar behavior has been observed
in stochastic realizations of other deterministic models with
bi-stability (Earnest et al., 2013; Bruna et al., 2014; Hufton
et al., 2016). For the parameter values given in Table 2, the
deterministic system exhibits a bi-stability between S∗1 and S

∗
2 , and

with the initial condition

(x1(0), x2(0), x3(0), x4(0), x5(0), x6(0), x7(0))

= (18, 9, 7.2, 6.3, 0, 0, 0), (14)

it is in the basin of attraction of S∗2 . Due to stochasticity, the
stationary probability distribution in this case is also bimodal,
with the majority of solutions being distributed around S∗2 , and
a very small number being centered around S∗1 , as can be seen
in Figures 3C,D. Increasing the system size � is known to result
in the bimodal distribution becoming unimodal due to the size
of fluctuations scaling as �

−1/2, which results in a reduced

variability in trajectories (Black and McKane, 2012; Hufton et al.,
2016), and the same conclusion holds for the system (4).

To gain better insights into the role of initial conditions, in
Figure 4 we fix all parameter values, and vary initial numbers
of infected cells and regulatory T cells. For the parameter
combination illustrated in Figure 4A, the deterministic model
exhibits a bi-stability between a stable disease-free steady state S∗1
and a periodic oscillation around the state S∗3 , which biologically
corresponds to an autoimmune regime. In the deterministic case,
the black boundary provides a clear separation of the basins of
attraction of these two dynamical states, in a manner similar to
that investigated recently in the context of within-cell dynamics
of RNA interference (Neofytou et al., 2017). For stochastic
simulations, the color indicates the probability of the solution
going to a disease-free state S∗1 , and it shows that even in the case
where deterministically the system is in the basin of attraction
of one of the states, there is a non-zero probability that it will
actually end up at another state, with this probability varying
smoothly across the deterministic basin boundary. This figure
suggests that if the initial number of infected cells is sufficiently
small, or if the number of regulatory T cells is sufficiently
large, the system tends to clear the infection and approach
the disease-free state. On the contrary, for higher numbers of
infected cells and lower numbers of regulatory cells, autoimmune
regime appears to be a more likely outcome. Qualitatively similar
behavior is observed for another combination of parameters
illustrated in Figure 4B, in which case the deterministic system
has a bi-stability between a disease-free steady state S∗1 , and a state
S∗2 which represents the death of host cells.

In order to understand how biological parameters affect
the size of fluctuations around steady states, in Figure 5 we
explore several parameter planes by first identifying parameter
regions where the deterministic system has a stable steady state
S∗3 , and then for each combination of parameters inside these
regions, we use the Bartels-Stewart method (Bartels and Stewart,
1972; Hammarling, 1982) to numerically solve the Lyapunov
equation (12) and compute the variance in the number of
regulatory T cell when the deterministic model is at the steady
state S∗3 . The value of variance gives the square of the magnitude
of oscillations observed in individual stochastic realizations. One
should note that getting closer to the deterministic boundary of
stability of S∗3 increases the stochastic variance of fluctuations
around this steady state. The reason for this is that closer
parameters are to the deterministic stability boundary, the less
stable is the steady state, hence the larger is the amplitude of
stochastic oscillations around it. Moreover, the variance increases
with the rate of production of IL-2 by autoreactive T cells and the
rate at which regulatory T cells suppress autoreactive T cells; it
decreases with the higher rate of production of regulatory T cells,
and it appears to not depend on the rate at which autoreactive T
cells destroy infected cells, or on the infection rate.

4. DISCUSSION

In this paper we have analyzed stochastic aspects of immune
response against a viral infection with account for the

Frontiers in Physiology | www.frontiersin.org 9 February 2018 | Volume 9 | Article 4560

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Fatehi et al. Stochastic Effects in Autoimmune Dynamics

FIGURE 3 | Probability distribution of solutions out of 20,000 simulations. (A,B) with parameters from Table 2, but σ2 = 1 and the initial condition (13). (C,D) with

parameters from Table 2 and the initial condition (14). In (A,C), the probability histogram is fit to a bimodal normal distribution at different times. (B,D) illustrate

stationary joint probability histograms.

populations of T cells with different activation thresholds, as
well as cytokines mediating T cell activity. The CTMC model
has provided an exact master equation, for which we applied
a van Kampen’s expansions to derive a linear Fokker-Planck
equation that characterizes fluctuations around the deterministic
solutions. We have also explored actual stochastic trajectories of
the system by deriving an SDE model and solving it numerically.

One biologically important aspect we have looked at is the
influence of stochasticity on the dynamics of the system in the
case where deterministically it exhibits a bi-stability between
either two steady states, or a steady state and a periodic solution.
In such a situation, bi-stability in the deterministic version of the
model translates in the stochastic case into a stationary bimodal
distribution for the probability density. To obtain further insights
into details of how stochasticity affects bi-stability, we have
investigated how for the fixed parameter values time evolution
of the system changes depending on the initial numbers of the
regulatory T cells and infected cells.

Our analysis reinforces the need to distinguishmean dynamics
from individuals realizations: where in the deterministic case
the system can approach a stable steady state (which represents
mean behavior of a very large number of simulations), individual
realizations can exhibit sustained stochastic oscillations around
that steady state, as we have seen in numerical simulations. Since
in the clinical or laboratory setting one is usually dealing with
single measurements of some specific biological quantities rather
than their averaged values, the stochastic oscillations exhibited
by our model may quite well explain observed variability in the
measured levels of infection or T cell populations. To better
understand the magnitude of stochastic fluctuations around
the deterministic steady states, we have solved the Lyapunov
equation, which has provided us with a quantitative information
on the dependence of variance of fluctuations on system
parameters.

There are several directions in which the work presented
in this paper can be extended. In terms of fundamental
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FIGURE 4 | Probability of solution entering and staying in the basin of attraction of the disease-free steady state S*1 in the bi-stability regime with A(0) = 18, 000 and

Tin(0) = 7, 200. Black curves are the boundaries between different basins of attraction in the deterministic model. (A) With parameter values from Table 2, λ̃r = 45

and µ̃a = 10/9, in the region below the black curve, the deterministic model exhibits a periodic solution around S*3, and above this curve is the deterministic basin of

attraction of S*1. (B) With parameter values from Table 2, area below the black curve is the basin of attraction of S*2, and above it is again the basin of attraction of S*1.

FIGURE 5 | Variance of the number of regulatory T cells Treg with parameter values from Table 2. Colored regions indicate areas in respective parameter planes in

which the autoimmune steady state S*3 is deterministically stable.
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immunology, the model can be made more realistic by
including additional effects, such as the control of IL-2
secretion by regulatory T cells (Burroughs et al., 2006), or
the memory T cells (Antia et al., 2005; Skapenko et al.,
2005). Whilst we have used numerical simulations to compute
the probability of attraction to a given steady state in the
case of bi-stability, one could approach the same problem
theoretically from the perspective of computing extinction
probability within the framework of the CTMC model (Yuan
and Allen, 2011; Mandal et al., 2014). The van Kampen’s
system size expansion could yield an expression for the power
spectrum, which allows one to compute the peak frequency
and amplification (McKane and Newman, 2005; Alonso et al.,
2007; Black et al., 2009; Black and McKane, 2010). From a
practical perspective, future work could focus on validating
theoretical results presented in this paper using experimental
measurements of the progress of autoimmune disease in animal
hosts, with experimental autoimmune uveoretinitis (EAU), an
autoimmune inflammation in the eyes, being one interesting
possibility. In one such recent experiment, all animals were
genetically identical C57BL/6 mice, but once the EAU was
induced in them through inoculation, the autoimmune disease
then progressed at slightly different rates (Boldison et al.,
2015; Boldison and Nicholson, unpublished) and the measured
variability in the numbers of infected cells and T cell responses
could be compared to theoretical estimates of the variance as

predicted by our model. From a clinical perspective, comparison
of variance in the measured populations of different cells with
the model conclusions will facilitate an efficient parameter
identification and provide a set of prognostic criteria for
the progress of autoimmunity, which can be used for risk
stratification and assessment of patients with autoimmune
disease.
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In this paper, we computationally generate hypotheses for dose-finding studies

in the context of desynchronizing neuromodulation techniques. Abnormally strong

neuronal synchronization is a hallmark of several brain disorders. Coordinated

Reset (CR) stimulation is a spatio-temporally patterned stimulation technique that

specifically aims at disrupting abnormal neuronal synchrony. In networks with

spike-timing-dependent plasticity CR stimulation may ultimately cause an anti-kindling,

i.e., an unlearning of abnormal synaptic connectivity and neuronal synchrony. This

long-lasting desynchronization was theoretically predicted and verified in several

pre-clinical and clinical studies. We have shown that CR stimulation with rapidly varying

sequences (RVS) robustly induces an anti-kindling at low intensities e.g., if the CR

stimulation frequency (i.e., stimulus pattern repetition rate) is in the range of the frequency

of the neuronal oscillation. In contrast, CR stimulation with slowly varying sequences

(SVS) turned out to induce an anti-kindling more strongly, but less robustly with respect to

variations of the CR stimulation frequency. Motivated by clinical constraints and inspired

by the spacing principle of learning theory, in this computational study we propose a

short-term dosage regimen that enables a robust anti-kindling effect of both RVS and

SVS CR stimulation, also for those parameter values where RVS and SVS CR stimulation

previously turned out to be ineffective. Intriguingly, for the vast majority of parameter

values tested, spaced multishot CR stimulation with demand-controlled variation of

stimulation frequency and intensity caused a robust and pronounced anti-kindling. In

contrast, spaced CR stimulation with fixed stimulation parameters as well as singleshot

CR stimulation of equal integral duration failed to improve the stimulation outcome. In the

model network under consideration, our short-term dosage regimen enables to robustly

induce long-term desynchronization at comparably short stimulation duration and low

integral stimulation duration. Currently, clinical proof of concept is available for deep brain

CR stimulation for Parkinson’s therapy and acoustic CR stimulation for tinnitus therapy.

Promising first in human data is available for vibrotactile CR stimulation for Parkinson’s

treatment. For the clinical development of these treatments it is mandatory to perform

dose-finding studies to reveal optimal stimulation parameters and dosage regimens. Our

findings can straightforwardly be tested in human dose-finding studies.

Keywords: coordinated reset, desynchronization, spike time-dependent plasticity, anti-kindling, stimulation

patterns, dosing
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INTRODUCTION

To establish a pharmacological treatment for clinical use,
in humans typically a 4-phase sequence of clinical trials is
performed (Friedman et al., 2010). In pre-clinical studies

pharmacokinetic, toxicity and efficacy are studied in non-human
subjects. In first in human-studies (phase I) safety and tolerability
of a drug are studied in healthy volunteers. Proof of concept
studies (phase IIA) determine whether a drug can have any
efficacy, whereas dose-finding studies (phase IIB) are performed
to reveal optimum dose at which a drug has biological activity
with minimal side-effects. Effectiveness and the clinical value
of a new intervention are studied in a randomized controlled
trial (phase III), compared with state of the art treatment, if
available. Finally, post-marketing surveillance trials (phase IV)
are performed to detect rare or long-term adverse effects within
a much larger patient population and over longer time periods.
There might also be combinations of different phases.

In principle, this 4-phase pattern is also valid for medical

technology, e.g., neuromodulation technologies. However, if
neuromodulation technologies aim at the control of complex
dynamics of e.g., neural networks, different parameters and
dosage regimens may have complex, non-linear and even
counterintuitive effects, (see e.g., Gao et al., 2014; Popovych et al.,
2015; Gates and Rocha, 2016; Zañudo et al., 2017; Zhang et al.,
2017). This computational paper illustrates how computational
modeling can be used to generate hypotheses for dose-finding
studies. In general, performing dose-finding studies simply by
trial and error may be impossible because of the substantial
parameter space to be tested, with trial durations and related costs
getting out of hands.

The development of proper dosage strategies and regimens

enables favorable compromises between therapeutic efficacy and
detrimental factors such as side-effects or treatment duration.
This is relevant, e.g., for the development of pharmaceutical
(Williams, 1992; Bertau et al., 2008; Peters, 2012; Dash et al.,
2014) or radiation therapy (Symonds et al., 2012). Deep brain
stimulation (DBS) is the standard treatment of medically
refractory movement disorders (Benabid et al., 1991; Krack et al.,
2003; Deuschl et al., 2006). The clinical (Temperli et al., 2003)
and electrophysiological (Kühn et al., 2008; Bronte-Stewart et al.,
2009) effects of standard high-frequency (HF) DBS occur only
during stimulation and cease after stimulation offset.

Coordinated reset (CR) stimulation (Tass, 2003a,b) was
computationally developed to specifically counteract abnormal
neuronal synchrony by desynchronization. CR stimulation uses
sequences of stimuli delivered to neuronal sub-populations
engaged in abnormal neuronal synchronization (Tass, 2003a,b).
As shown computationally, in neuronal populations with spike-
timing-dependent plasticity (STDP) (Gerstner et al., 1996;
Markram et al., 1997; Bi and Poo, 1998) CR stimulation may
have long-lasting, sustained effects (Tass and Majtanik, 2006;
Hauptmann and Tass, 2007; Popovych and Tass, 2012). This is
because in the presence of STDP, CR stimulation reduces the rate
of coincidences. Accordingly, the network may be shifted from
an attractor with abnormal synaptic connectivity and abnormal
neuronal synchrony to an attractor with weak connectivity and

synchrony (Tass and Majtanik, 2006; Hauptmann and Tass, 2007;
Popovych and Tass, 2012). This process was termed anti-kindling
(Tass and Majtanik, 2006).

Abnormal neuronal synchronization has been shown to
be associated with a number of brain diseases, for example,
Parkinson’s disease (PD) (Lenz et al., 1994; Nini et al., 1995;
Hammond et al., 2007), tinnitus (Ochi and Eggermont, 1997;
Llinás et al., 1999; Weisz et al., 2005; Eggermont and Tass,
2015), migraine (Angelini et al., 2004; Bjørk and Sand, 2008). In
parkinsonian non-human primates it was shown that electrical
CR stimulation of the subthalamic nucleus (STN) has sustained,
long-lasting after-effects on motor function (Tass et al., 2012b;
Wang et al., 2016). In contrast, long-lasting after-effects were
not observed with standard HF DBS (Tass et al., 2012b; Wang
et al., 2016). For instance, unilateral CR stimulation of the STN
of parkinsonian MPTP monkeys, delivered for only 2 h per
day during 5 consecutive days led to significant and sustained
bilateral therapeutic after-effects for at least 30 days, whereas
standard HF DBS had no after-effects (Tass et al., 2012b). By
the same token, cumulative and lasting after-effects of electrical
CR stimulation of the STN were also observed in PD patients
(Adamchic et al., 2014).

HF DBS may not only cause side effects by electrical current
spreading outside of the target region, but also by chronic
stimulation of the target itself or by functional disconnection of
the stimulated structure (Ferraye et al., 2008; Moreau et al., 2008;
van Nuenen et al., 2008). Accordingly, it is key to reduce the
integral stimulation current. Electrical CR stimulation of the STN
employs significantly less current compared to HF DBS (Tass
et al., 2012b; Adamchic et al., 2014; Wang et al., 2016). However,
to further improve the CR approach, in a previous computational
study the spacing principle (Ebbinghaus et al., 1913) was
used to achieve an anti-kindling at subcritical intensities, i.e.,
particularly weak intensities rendering permanently delivered
CR stimulation ineffective (Popovych et al., 2015). According
to the spacing principle (Ebbinghaus et al., 1913), learning
effects can be improved by repeated stimuli spaced by pauses
as opposed to delivering a massed stimulus in a single long
stimulation session. The spacing principle was investigated on
different levels, ranging from behavioral and cognitive (Cepeda
et al., 2006, 2009; Pavlik and Anderson, 2008; Xue et al., 2011;
Kelley and Whatson, 2013) to neuroscientific and molecular
(Itoh et al., 1995; Frey and Morris, 1997; Menzel et al.,
2001; Scharf et al., 2002; Naqib et al., 2012). Computationally
it was demonstrated that the spacing principle can also be
applied to unlearn unwanted, upregulated synaptic connectivity
at subcritical stimulation intensities (Popovych et al., 2015).
In principle, the results were intriguing, but required rather
long pauses and total stimulation durations (Popovych et al.,
2015). Spaced CR stimulation at subcritical intensities might
possibly be applied to CRDBS. However, for clinical applications,
in particular, for non-invasive applications of CR stimulation
(Popovych and Tass, 2012), such as acoustic CR stimulation
for tinnitus (Tass et al., 2012a) or vibrotactile stimulation for
PD (Tass, 2017; Syrkin-Nikolau et al., 2018), it is crucial to
achieve therapeutic effects within a reasonable amount of time.
Applications of non-invasive medtech devices typically rely on

Frontiers in Physiology | www.frontiersin.org 2 April 2018 | Volume 9 | Article 37667

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Manos et al. Short-Term Dosage Regimen for Desynchronization

the patients’ compliance and should favorably require short
stimulation durations. Accordingly, we here set out to apply the
spacing principle to CR stimulation at supercritical intensities, i.e.,
intensities that enable an anti-kindling for moderate stimulation
duration and properly selected stimulation frequencies. The
overall goal of this study is to design short-term dosage regimen
that improve CR stimulation efficacy, while keeping the integral
amount of stimulation as well as the overall duration of the
protocols at comparably low levels.

In Manos et al. (in review) we studied the influence of the
CR stimulation frequency and the intensity on the outcome of
CR stimulation with Rapidly Varying Sequences (RVS) and Slowly
Varying Sequences SVS (Zeitler and Tass, 2015). CR stimulation
consists of sequences of stimuli delivered to each sub-population
(Tass, 2003a,b). For RVS CR stimulation, the CR sequence is
randomly varied from one CR stimulation period to another
(Tass and Majtanik, 2006). Conversely, SVS CR stimulation is
characterized by repeating a sequence for a number of times
before randomly switching to the next sequence (Zeitler and Tass,
2015). In Manos et al. (in review) we demonstrated that the
efficacy of singleshot CR stimulation with moderate stimulation
duration depends on the stimulation parameters, in particular, on
the intensity as well as the relationship between CR stimulation
frequency and intrinsic firing rates. RVS CR stimulation turned
out to induce pronounced long-lasting desynchronization, e.g.,
at weak intensities and CR stimulation frequencies in a certain
range around the neurons’ intrinsic firing frequencies. In
contrast, SVS CR stimulation enabled even more pronounced
anti-kindling, however, at the cost of a significantly stronger
dependence of the stimulation outcome on the CR stimulation
frequency.

Dosage regimen design is an integral part of pharmacokinetic
methodology, aiming at an optimization of drug delivery and
effects (Williams, 1992). By a similar token, we hypothesize that
appropriate dosage regimens might further enhance the efficacy
of RVS and SVS CR stimulation. To probe different dosage
regimens, we here consider different stimulation singleshot and
multishot CR stimulation protocols. Protocols A and B have
identical integral stimulation duration, whereas Protocols C and
Dmay require less stimulation.

Protocol A: Spaced Multishot CR
Stimulation With Fixed Stimulation
Parameters
Instead of one singleshot CR stimulation we deliver the identical
CR shot five times, where the duration of each single pause equals
the duration of each identical singleshot. Intersecting singleshot
stimuli by pauses to increase stimulation efficacy, resembles
the so-called spacing principle, a learning-related mechanism
that is well-established in psychology (Ebbinghaus et al., 1913),
education (Kelley and Whatson, 2013), and neuroscience (Naqib
et al., 2012). According to the spacing principle, learning effects
can be enhanced by delivering a stimulus in a spaced manner,
as opposed to administering a massed stimulus in a single
long stimulation session. Computationally, it was shown that
subcritical CR stimulation at subcritical (ineffective) intensities

may become effective if intersected by rather long pauses and
delivered sufficiently often, e.g., eight times (Popovych et al.,
2015). However, shorter pauses were not sufficient (Popovych
et al., 2015). As yet, spaced CR stimulation at supercritical
intensities was not studied. Here, we focus on comparably short
stimulation protocols. Accordingly, we use CR stimulation of
sufficient intensity and deliver five single CR shots intersected by
pauses. We consider a symmetric dosage regimen, with identical
duration of single shots and pauses.

Protocol B: Long Singleshot CR
Stimulation With Fixed Stimulation
Parameters
To assess the impact of the spacing principle, as a control
condition we simply stimulate five times longer, without any
pause and with stimulation parameters kept constant. Protocol B
is shorter, but employs the same integral stimulation duration as
Protocol A.

Protocol C: Spaced Multishot CR
Stimulation With Demand-Controlled
Variation of the CR Stimulation Frequency
and Intensity
As in Protocol A, we deliver spaced CR stimulation comprising
five identical CR shots, intersected by pauses, where all shots and
pauses are of equal duration. However, at the end of each CR
shot we monitor the stimulation effect and perform a three-stage
control: (i) If no pronounced desynchronization is achieved,
the CR stimulation frequency of the subsequent CR shot is
mildly varied by no more than ±3%. (ii) If an intermediate
desynchronization is observed, the CR stimulation frequency
remains unchanged and CR stimulation is continued during
the subsequent shot. (iii) If a pronounced desynchronization is
achieved, no CR stimulation is delivered during the subsequent
shot. Note, for stage (i) we do not adapt the CR stimulation
frequency to a measured quantity. We consider two different
variation types employed for stage (i): with regular and with
random variation of the CR stimulation frequency. Regular
variation means to increase or decrease the CR stimulation
frequency in little unit steps. In contrast, random variation
stands for randomly picking the CR stimulation frequency from
a restricted interval.

Protocol D: Long Singleshot CR
Stimulation With Demand-Controlled
Variation of the Stimulation Frequency
To assess the specific pausing-related impact of the evolutionary
spacing principle, as a direct control condition we perform
Protocol C without pauses. To this end, we string five CR shots
together, without pauses, and evaluate the stimulation effect at
the end of each CR shot. If no pronounced desynchronization is
achieved, the CR stimulation frequency is slightly varied by no
more than ±3% for the subsequent CR shot. During each single
CR shot stimulation parameters are kept constant. Only from one
CR shot to the next the CR stimulation frequency can be varied.
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Overall, Protocol D is shorter than Protocol C, but uses the same
integral stimulation duration as in Protocols A-C.

CR stimulation and, especially, SVS CR stimulation has
pronounced periodic characteristics. Accordingly, the CR
stimulation frequency turned out to be a sensitive parameter, in
particular, for SVS CR stimulation (see Manos et al., in review).
For this reason, for stage (i) of Protocol C and D we perform
a demand-controlled variation of the CR stimulation frequency
to prevent from, e.g., unfavorable resonances or phase locking
dynamics. Note these demand-controlled changes of the CR
stimulation frequency are mild and hardly change the networks’
firing rates.

In this study, we test the performance of the different
Protocols A-D by selecting unfavorable stimulation parameters,
which render CR stimulation ineffective according to Manos
et al. (in review). By design, Protocols C and D work well for
all parameter pairs (K,Ts) related to effective singleshot CR
stimulation. In that case, CR stimulation actually ceases due to
lack of demand. Note, in all four stimulation protocols we keep
the stimulation intensity fixed. Only Protocols C and D require
feedback of the stimulation outcome.

This paper is organized as follows: in the Materials and
Methods section we briefly describe the computational model,
the neural network (and its initialization), the synaptic plasticity
rule, the CR stimulation, the analysis methods used throughout
the paper as well as the summary of the CR frequency and
intensity global trends which were thoroughly studied in Manos
et al. (in review). In the Results section, we present all the
different Protocols in detail and our main findings regarding their
comparison. Finally, in the Discussion section, we discuss our
findings and set this work in more general perspective, related
to medical applications.

MATERIALS AND METHODS

Model and Network Description
In this study we use the conductance-based Hodgkin-Huxley
neuron model (Hodgkin and Huxley, 1952) for the description
of an ensemble of spiking neurons. The set of equations and
parameters read (see Hansel et al., 1993; Popovych and Tass,
2010):

C
dVi

dt
= Ii − gNam

3
i hi (Vi − VNa) − gKn

4
i (Vi − VK)

−gl (Vi − Vl) + Si + Fi, (1a)

dxi

dt
= αx (Vi) (1− xi) − βx (Vi) xi. (1b)

Variable Vi denotes the membrane potential of neuron i (i =

1, . . . ,N), while the variable x stands for the three gating
variables m, n and h. The αx and βx variables are described
in the standard model definition (see Manos et al., in review).
The network consists of N = 200 neurons placed on a ring.
The constant sodium, potassium and leak reversal potentials
and the maximum conductance per unit area are (VNa, gNa) =

(50 mV, 120 mS/cm2), (VK , gK) = (−77 mV, 36 mS/cm2)
and (V l, gl) = (−54.4 mV, 0.3 mS/cm2), while the constant

membrane capacitance is C = 1 µF/cm. Ii denotes the constant
depolarizing current injected into neuron i, regulating the
intrinsic firing rate of the uncoupled neurons. For the realization
of different initial networks, we used the same random initial
conditions drawn from uniform distributions as used in Manos
et al. (in review), i.e., Ii ∈ [I0 − σI , I0 + σl ] (I0 = 11.0
µA/cm2 and σl = 0.45 µA/cm2), hi,mi, ni ∈ [0, 1 ] and Vi ∈

[−65, 5 ] mV. In addition, in order to model variations of the
model parameters (see Discussion and Supplementary Material),
we add a sinusoidal external current input of the form Ivar =

A ·sin(2π · f · t) to the right-hand side of Equation 1a, where f and
A are the frequency and the amplitude of the signal respectively.

The initial values of the neural synaptic weights cij are
picked from a normal distribution N(µc = 0.5 mS/cm2, σc =

0.01 mS/cm2) as in Manos et al. (in review, see Popovych and
Tass, 2012; Zeitler and Tass, 2015 for details). Si(t) denotes the
internal synaptic input within the network to neuron i. The
neurons interact via excitatory and inhibitory chemical synapses
si, by means of the post-synaptic potential (PSP) si which is
triggered by a spike of neuron i (Gerstner et al., 1996; Izhikevich,
2010) and modeled using an additional equation (see Golomb
and Rinzel, 1993; Terman et al., 2002):

dsj

dt
=

0.5(1− sj)

1+ exp
[
−

(
Vj + 5

)
/12

] − 2sj. (1c)

Initially we draw si ∈ [0, 1 ] (randomly from a uniform
distribution). The coupling term Si from Equation 1a (see
Popovych and Tass, 2012) contains a weighted ensemble average
of all post-synaptic currents received by neuron i from the other
neurons in the network: Si = N−1

∑N
j=1

(
Vr,j − Vi

)
cij

∣∣Mij

∣∣ sj,
where Vr,j is the reversal potential of the synaptic coupling
(20mV for excitatory and −40mV for inhibitory coupling), and
cij is the synaptic coupling strength from neuron j to neuron
i. There are no neuronal self-connections within the network
(cii = 0 mS/cm2). The variable:

Mij =

(
1− d2ij / σ

2
1

)
exp

(
−d2ij /

(
2σ 2

2

))
(2)

describes the spatial profile of coupling between neurons i and
j and is of a Mexican hat-type (Wilson and Cowan, 1973;
Dominguez et al., 2006; de la Rocha et al., 2008) with strong
short-range excitatory

(
Mij > 0

)
and weak long-range inhibitory

interactions
(
Mij < 0

)
. Here dij = d

∣∣i− j
∣∣ is the distance

between neurons i and j, while d =

(
d0

N−1

)
determines the

distance on the lattice between two neighboring neurons within
the ensemble. d0 is the length of the neuronal chain (d0 = 10).
σ1 = 3.5, and σ2 = 2.0. In order to limit boundary effects, we
consider that the neurons are distributed in such a way that the
distance dij is taken as: d ·min(

∣∣i− j
∣∣ , N−

∣∣i− j
∣∣) for i, j > N/2.

Spike-Timing-Dependent Plasticity
The synaptic weights cij are dynamical variables that depend on
the time difference, 1tij = ti − tj, between the onset of the
spikes of the post-synaptic neuron i and the pre-synaptic neuron
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j, denoted by ti and tj, according to Bi and Poo (1998) and
Popovych and Tass (2012):

1 cij =





β1e

−1tij
γ1 τ , 1tij ≥ 0

β2
1tij
τ
e

1tij
γ2 τ , 1tij < 0

, (3)

with parameters β1 = 1, β2 = 16, γ1 = 0.12, γ2 = 0.15, τ = 14
ms and with learning rate δ = 0.002, while the values of cij are
confinded to the interval [0, 1] mS/cm2 for both excitatory and
inhibitory synapses and, hence, remain bounded.

Coordinated Reset Stimulation
The term Fi in Equation 1a represents the current induced
in neuron i by the CR stimulation delivered at Ns = 4
stimulations sites, equidistantly placed at the positions of
neurons i = 25, 75, 125, 175 (Tass, 2003b). One stimulation site
was active during Ts/Ns, while the other stimulation sites were
inactive during that time window. After this, another stimulation
site was active during the next Ts/Ns window. All Ns stimulation
sites were stimulated exactly once within one CR stimulation
period of duration Ts. The spatiotemporal activation pattern of
stimulation sites is represented by the indicator functions ρk (t)
(kǫ {1, . . . , N}), taking the value 1 when the kth stimulation
site is active at t and 0 else. The stimulation signals induced
single brief excitatory post-synaptic currents. The evoked
time-dependent normalized conductances of the post-synaptic
membranes are represented by α-functions given in Popovych
and Tass (2012) as Gstim (t) =

t−tk
τstim

e−(t−tk)/τstim , tk ≤ t ≤ tk+1.

τstim =

(
Ts
6Ns

)
denotes the time-to-peak of Gstim, and tk is

the onset of the kth activation of the stimulation site. Note,
τstim determines the onset timing of each single signal as well
as its duration. The spatial spread of the induced excitatory
post-synaptic currents in the network is defined by the quadratic
spatial decay profile D (i, xk) =

1

1+d2(i−xk)
2
/σ

2
d

, a function of the

difference between the index of neuron i and the index xk of
the neuron at stimulation site k. d is the lattice distance between
two neighboring neurons, and σd = 0.8 the spatial decay
rate of the stimulation current (see Popovych and Tass, 2012
for details). Thus, the total stimulation current from Equation

1 reads Fi =
[
Vr − Vi(t)

]
· K

∑Ns

k=1
D (i, xk) ρk (t)Gstim (t) ,

where Vr = 20 mV is the excitatory reverse potential, and K the
stimulation intensity.

Macroscopic Measurements
We measure the strength of the coupling within the neuronal
population at time t by calculating their total synaptic
weight (averaged over the neuron population) Cav (t) =

N−2
∑

i,j sgn
(
Mij

)
cij (t) , where Mij is defined in Equation 2,

sgn is the sign-function, while Cav is calculated by averaging
over the last 100 · Ts. The extent of in-phase synchronization
within the network is assessed by the order parameter (Haken,

1983; Kuramoto, 2012) R (t) =

∣∣∣N−1
∑

j e
iϕj(t)

∣∣∣ , where ϕj (t) =

2π(t−tj,m)

(tj,m+1−tj,m)
for tj,m ≤ t < tj,m+1 is a linear approximation

of the phase of neuron j between its mth and (m+ 1)th spikes

at spiking times tj,m and tj,m+1. R (t) = 1 for complete in-
phase synchronization, and R (t) = 0 in the absence of in-phase
synchronization. Because of strong fluctuations of the order
parameter, we calculate the moving average < R > over a time
window of 400 · Ts, to investigate the time evolution of the order
parameter. Moreover, we use the quantity Rav , which is the order
parameter R (t) averaged over the last 100·Ts of a pause following
a CR shot or of the end of the post-stim epoch. For the statistical
description and analysis of the non-Gaussian distributed Rav
data (n = 11 samples), we use boxplots (Tukey, 1977). Their
Inter-Quartile Range measures the statistical dispersion around
the median, which is defined as width of the middle 50% of
the distribution and is represented by a box. It is also used to
determine outliers in the data: an outlier falls more than 1.5 times
IQR below the 25% quartile or more than 1.5 times IQR above the
75% quartile.

Dependence of CR Stimulation Outcome
on CR Stimulation Frequency and Intensity
This section provides a short overview of the results of a
study where CR stimulation frequency and intensity were varied
in detail (Manos et al., in review). That study revealed the
dependence of the outcome of RVS and SVS CR on the CR
stimulation frequency and intensity and, in particular, possible
limitations thereof, especially for SVS CR stimulation. Based on
these limitations, the present study presents an approach that
enables to overcome these issues.

In the present study, for each initial network condition and its
corresponding parameters (simply denoted as network), we apply
RVS and SVS CR stimulation with different realizations of the CR
sequence orders per network. We start the simulations with an
equilibration phase without STDP, which lasts for 2 s. From this
point on, the network evolves in the presence of STDP, starting
with a 60 s integration with STDP only (i.e., without stimulation),
where a rewiring of the connections takes place, resulting in a
strongly synchronized state with intrinsic firing rate fint ≈ 71.4
Hz (corresponding to a period ofTint = 14ms).We then run four
different CR stimulation protocols, resetting the starting time
to t = 0 s. We use 3:2 ON-OFF CR stimulation, where three
stimulation ON-cycles (with stimulation on) alternated with two
OFF-cycles (without stimulation), with ON-/OFF-cycle duration
of Ts. 3:2 ON-OFF CR stimulation was used in a number of
computational, pre-clinical and clinical studies, for details and
motivation (see Manos et al., in review).

To study dosage regimens that potentially improve reliability
and stimulation outcome of RVS and/or SVS stimulation, in
the present study we focus on parameter ranges where RVS
and/or SVS CR stimulation did not reliably elicit long-lasting
desynchronization according to Manos et al. (in review). In
Manos et al. (in review), we delivered CR single shots of 128 s
duration followed by a 128 s CR-off period and varied the CR
stimulation frequency and intensity over a wider range. In this
way, we showed that RVS CR stimulation turned out to be
more robust against variations of the stimulation frequency,
while SVS CR stimulation can obtain stronger anti-kindling
effects. This dependence on the CR stimulation intensity and
frequency is summarized in Figure 1. Figures 1A,E show the
boxplots for the time-averaged mean synaptic weights Cav (at
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FIGURE 1 | Dependence of stimulation outcome on CR stimulation intensity and frequency. (A,E) Boxplots for the time-averaged mean synaptic weights Cav (at the

end of the CR-off period) with values belonging to the same intensity value K for RVS (top row) and SVS CR (bottom row) stimulation, respectively. (B,F) Boxplots for

the time-averaged order parameter Rav (at the end of the CR-off period) with values belonging to the same intensity value K for RVS (top row) and SVS CR (bottom

row) CR stimulation respectively. (C,G) Boxplots for the time-averaged mean synaptic weights Cav (at the end of the CR-off period) with values belonging to the same

frequency ratio (fstim/f0) · 100 for RVS (top row) and SVS CR (bottom row) CR stimulation respectively. (D,H) Boxplots for the time-averaged order parameter Rav (at

the end of the CR-off period) with values belonging to the same frequency ratio (fstim/f0) · 100 for RVS (top row) and SVS CR (bottom row) CR stimulation respectively

(taken from Manos et al., in review).

the end of the 128 s CR-off period) with values belonging to
the same intensity value K for RVS and SVS CR stimulation,
respectively, but CR stimulation frequency varying in the interval
[25%f0, . . . , 175%f0], with f0 as defined below. The motivation
for restricting the CR stimulation intensity to the interval K ǫ

[0.20, . . . , 0.50] is discussed in Manos et al. (in review). In
a similar manner, Figures 1B,F show boxplots for the time-
averaged order parameter Rav (again at the end of the CR-off
period) with values belonging to the same intensity value K for
RVS and SVS CR stimulation respectively. Figures 1C,G depict
the boxplots for the time-averaged mean synaptic weights Cav (at
the end of the CR-off period) but now with values belonging
to the same frequency ratio (fstim/f 0) · 100 for RVS and
SVS CR stimulation, respectively, but intensity value K ∈

[0.20, . . . , 0.50]. The CR stimulation frequency fstim takes values
in the interval [25%f0, . . . , 175%f0], where f0 = 1/T0 denotes
the initial stimulation frequency. The choice of the frequency f0
(or period T0) of the CR stimulation is made with respect of the
intrinsic network’s firing rate frequency (or period) fint(or Tint)
and is meant to have a value close to that (in this case T0 = 16 ms
with f0 = 62.5 Hz). More details can be found in Manos et al. (in
review). Figures 1D,H show the boxplots for the time-averaged
order parameter Rav (at the end of the CR-off period) with values
belonging to the same frequency ratio (fstim/f 0) · 100 for RVS and
SVS CR stimulation, respectively.

RESULTS

Simulation Description
We investigate two singleshot and two multishot, spaced CR
stimulation protocols (Figure 2). The multishot Protocols A
and C consist of five single CR shots of 128 s duration, each

followed by a pause of 128 s, respectively (Figures 2A,C). The
CR singleshot Protocol B consists of a long singleshot of 5 ×

128 s followed by a pause of 5 × 128 s (Figures 2B). The CR
singleshot Protocol D consists of a long singleshot consisting
of five single shots of 128 s duration, strung together without
pauses in between, followed by a pause of 5× 128 s (Figures 2D).
The integral stimulation duration is identical for Protocols A
and B. In Protocols A and B all stimulation parameters are
kept constant. In contrast, in Protocol C at the end of each
pause the amount of synchrony is evaluated in a time window
of 100 stimulation periods length (Figure 2) and a three-stage
control scheme is put in place: (i) If the amount of synchrony
does not fall below a pre-defined threshold, the CR stimulation
frequency is mildly varied. (ii) If the desynchronization effect is
moderate, the CR stimulation frequency remains unchanged. (iii)
If desynchronization is achieved, the stimulation intensity is set
to zero for the subsequent shot. Analogously, in Protocol D at
the end of each single shot the amount of synchrony is evaluated
in a time window of 100 stimulation periods length (Figure 2)
and the three-stage control scheme is executed. The difference
between Protocol C and D is that the evaluation for the control
intervention is performed in a pause subsequent to a single shot
(Protocol C) as opposed to during a single shot (Protocol D).

For the stage (i) control, the variation of the CR stimulation
frequency is not adapted to frequency characteristics of the
neuronal network. Rather a minor variation of the CR
stimulation frequency is performed to make a fresh start with
the subsequent single CR shot. These minor changes of the CR
stimulation frequency do not lead to changes of the neurons’
intrinsic firing rates of more than±3%.

Due to the stage (iii) control, the demand-controlled
shutdown of CR stimulation, the maximum integral stimulation
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FIGURE 2 | Schematic summary of the CR stimulation protocols. (A) Protocol A: Spaced multishot CR stimulation with fixed stimulation parameter. (B) Protocol B:

Long singleshot CR stimulation with fixed stimulation parameters. (C) Protocol C: Spaced multishot CR stimulation with demand-controlled variation of the CR

stimulation frequency and intensity. (D) Protocol D: Long singleshot CR stimulation with demand-controlled variation of the stimulation frequency and intensity (see

text).

duration of Protocol C and D can reach the level of Protocols A
and B, but may well fall below. We use the order parameter
to assess the amount of synchronization (see Materials and
Methods).

Protocol A: Spaced Multishot CR Stimulation With

Fixed Stimulation Parameters
For this stimulation protocol all stimulation parameters are kept
constant (Figure 2). Accordingly, the CR stimulation period
Ts remains constant, too. We study the stimulation outcome
of only five symmetrically spaced consecutive single CR shots.
To this end, for both RVS CR and SVS CR stimulation we
consider two unfavorable parameter pairs of fixed CR stimulation

period and intensity, respectively. One example refers to cases
where CR stimulation induces acute effects, but no long-lasting
desynchronizing effects (Cases I and IV). The other example
concerns the case where CR stimulation causes neither acute nor
long-lasting desynchronizing effects in a reliable manner (Cases
II and III).

RVS CR stimulation: Case I: (K ,Ts) = (0.30, 11)
At a stimulation duration of 128 s these parameters caused only
an acute, but no long-lasting desynchronization in the majority
of networks studied [Figure 4B of Manos et al. (in review),
where Ts = 11 ms corresponds to ∼127% of the intrinsic
firing rate (or ∼91Hz)]. Case II: (K,Ts) = (0.20, 28). In the
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majority of networks tested, these parameters did neither lead to
acute nor long-lasting desynchronization after administration of
a single CR shot [Figure 5B of Manos et al. (in review), where
Ts = 28 ms corresponds to ∼50% of the intrinsic firing rate
(or ∼36Hz)]. For both cases, we investigate the order parameter
< R > averaged over a sliding window for 11 different networks
(markedwith different color/line types) (Figures 2A,C). Boxplots
of the order parameter Rav averaged over a window of
length 100 · Ts at the end of each pause demonstrate
the overall stimulation outcome for all tested 11 networks
(Figures 2B,D).

Case I:
RVS CR stimulation induces a desynchronization during
the CR shots (Figure 3A), but no reliable, long-lasting
desynchronization in the subsequent pauses (Figure 3B).
The spacing protocol with five identical RVS CR shots does not
significantly improve the desynchronizing outcome of a single
RVS CR shot. In fact, in the boxplots the large dispersion around
the median value remains almost unchanged in the course of this
protocol (Figure 3B). Case II: Neither during the RVS CR shots
nor during the subsequent pauses a sufficient desynchronization
is observed (Figures 2C,D). The spacing protocol does not cause
an improvement of the stimulation outcome in this case, too
(Figure 3D).

SVS CR stimulation: Case III: (K ,Ts) = (0.20, 9)
Single shot SVS CR stimulation with these parameters caused
neither pronounced acute nor long-lasting desynchronization
[Figure 6D of Manos et al. (in review), where Ts = 9
ms corresponds to ∼156% of the intrinsic firing rate (or
∼111Hz)]. Case IV: (K,Ts) = (0.20, 14). Single shot SVS CR
stimulation with these parameters led to acute, but no long-
lasting desynchronization in the majority of networks tested
[Figure 7B of Manos et al. (in review), where Ts = 28 ms
corresponds to∼50% of the intrinsic firing rate (or∼36Hz)]. For
both cases we performed the same analysis as shown in Figure 3.

Case III:
SVS CR stimulation neither induces a pronounced and reliable
desynchronization during the CR shots (Figure 4A) nor during
the pauses (Figure 4B). In fact, the dispersion around the median
value is increased during the fourth and fifth pause (Figure 4B).

Case IV:
During the SVS CR shots a desynchronization occurs
(Figure 4C). However, no reliable and pronounced
desynchronization is observed during the pauses (Figure 4D).

In summary, for both RVS CR and SVS CR stimulation the
spacing protocol with five consecutive CR shots does not cause
an improvement of the long-lasting desynchronization (assessed
after cessation of stimulation). We performed the same analysis

FIGURE 3 | Protocol A: Spaced multishot RVS CR stimulation with fixed stimulation period Ts. (A,C) Time evolution of the order parameter < R > averaged over a

sliding window during 5 consecutive RVS CR shots with fixed CR stimulation period. Different colors correspond to different networks. Stimulation parameters are

unfavorable for anti-kindling in Case I (A,B) and Case II (C,D) (see text). (A,C) The horizontal solid red lines indicate the CR shots, while the horizontal dashed gray

lines serve as visual cues. Spacing is symmetrical, i.e. CR shots and consecutive pauses are of the same duration. (B,D) Boxplots for Rav, averaged over a window of

length 100 · Ts at the end of each pause, illustrate the overall outcome for all tested 11 networks. Case I: (K,Ts) = (0.30, 11). Case II: (K, Ts) = (0.20, 28).
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FIGURE 4 | Protocol A: Spaced multishot SVS CR stimulation with fixed stimulation period Ts. (A,C) Time evolution of the time-averaged order parameter < R >

during 5 consecutive SVS CR shots with fixed CR stimulation period. Stimulation parameters are unfavorable for anti-kindling in Case III (A,B) and Case IV (C,D) (see

text). (B,D) Boxplots for Rav, averaged over a window of length 100 · Ts at the end of each pause, illustrate the overall outcome for all tested 11 networks. Case III:

(K,Ts) = (0.20, 9). Case IV: (K,Ts) = (0.20, 14). Same format as in Figure 3.

for a larger set of (K,Ts) pairs in the parameter plane analyzed
in Manos et al. (in review), with K ranging from 0.2 to 0.3 (weak
intensities) and Ts ranging from 9 to 28ms (around the intrinsic
period). For all parameter pairs tested, the spacing Protocol A did
not improve the long-term desynchronization effect.

Protocol B: Long Singleshot CR Stimulation With

Fixed Stimulation Parameters
For this stimulation protocol all stimulation parameters are
kept constant, too (Figure 2). Instead of five single CR shots of
128 s duration each (Figures 1–3), we deliver one fivefold longer
singleshot of 5 × 128 s duration (Figure 2). For both RVS CR
and SVS CR stimulation we consider the corresponding two
unfavorable parameter pairs of fixed CR stimulation period and
intensity already studied above (Cases I-IV). This is to study
whether a fivefold prolongation of the stimulation duration leads
to an improvement of the stimulation outcome.

RVS CR stimulation:
For comparison, we consider the cases studied above. Case I:

(K,Ts) = (0.30, 11). Case II: (K,Ts) = (0.20, 28). We study
the order parameter < R > averaged over a sliding window
for 11 different networks (marked with different color/line types
in Figure 5A). The overall stimulation outcome for all tested
11 networks is illustrated with boxplots of the order parameter
Rav averaged over a window of length 100 · Ts at the end of the
post-stimulus epoch (Figure 5B).

Case I:
RVS CR stimulation induces a desynchronization during the
long RVS CR singleshot (Figure 5A), but no reliable, long-
lasting desynchronization in the subsequent pauses (Figure 5B).
The median of the order parameter of the long-term outcome
hardly changes, but the dispersion around the median value
is greater for the post-stim order parameter (as the IQR
of the boxplots in Figure 5B show). Note, the overall long-
term desynchronization for the long singleshot (Figure 5B) is
more pronounced compared to the spaced RVS CR stimulation
Protocol A (Figure 3B).

Case II:
Neither during the long RVS CR singleshot nor during the
subsequent stimulation-free epoch a reliable and pronounced
desynchronization is observed (Figures 4C,D). Interestingly, the
network that undergoes an acute desynchronization during the
singleshot relaxes back to a synchronized state (Figure 5B,
green curve). Conversely, the only network that displays a
long-term desynchronization does not undergo a pronounced
desynchronization during the singleshot (Figure 5B, magenta
curve).

SVS CR stimulation:
For comparison, we consider the time course of the time-
averaged order parameter < R > (Figures 5A,C) and the
corresponding boxplots of the order parameter Rav averaged over
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FIGURE 5 | Protocol B: Long singleshot RVS CR stimulation with fixed Ts. (A,C) Time evolution of the time-averaged order parameter < R > during and after one

long RVS CR singleshot with fixed CR stimulation period. Stimulation parameters are unfavorable for anti-kindling for short singlehots of 128 s duration in Case I (A,B)

and Case II (C,D) (see text). (B,D) Boxplots for Rav, averaged over a window of length 100 · Ts at the end of the singleshot and at the end of the post-stim epoch

illustrate the overall outcome for all tested 11 networks. Case I: (K,Ts) = (0.30, 11). Case II: (K,Ts) = (0.20, 28). Same format as in Figure 3.

a window of length 100 · Ts at the end of the post-stimulus
epoch (Figures 5B,D) for 11 different networks (marked with
different color/line types) for the cases studied above. Case III:

(K,Ts) = (0.20, 9). Case IV: (K,Ts) = (0.20, 14).

Case III:
In the majority of networks SVS CR stimulation does not
induce a pronounced and reliable desynchronization during
the fivefold longer SVS CR singleshot as well as in the
post-stim epoch (Figure 6A). Three out of 11 networks
display a pronounced acute and long-lasting desynchronization
(Figure 6A). Accordingly, the dispersion around the median is
large during and after the singleshot (Figure 6B).

Case IV:
During the long SVS CR singleshot a pronounced
desynchronization occurs (Figure 6C), as reflected by the
small dispersion around the small median in the corresponding
boxplot (Figure 6D). However, in the post-stimulation epoch
most of the networks relax to a synchronized state, with only
a few networks remaining in a long-term desynchronized state
(Figure 6D). Accordingly, there is a large dispersion around a
large median in the boxplot (Figure 6D).

In summary, for both RVS CR and SVS CR stimulation
the fivefold increase of the stimulation duration does not lead
to a reliable and pronounced long-lasting desynchronization.
Again, we performed the same analysis for a larger set

of (K,Ts) pairs in the parameter plane analyzed in Manos
et al. (in review), with K ranging from 0.2 to 0.3 (weak
intensities) and Ts ranging from 9 to 28ms (around the
intrinsic period value). For all parameter pairs tested, the spacing
Protocol B did not lead to a reliable and pronounced long-term
desynchronization.

Protocol C: Spaced Multishot CR Stimulation With

Demand-Controlled Variation of Stimulation Period Ts

and Intensity
We study the stimulation outcome of only five symmetrically
spaced consecutive single CR shots with stimulation period Ts

and intensity varied according to a three-stage control scheme.
To this end, for both RVS CR and SVS CR stimulation we
consider two unfavorable parameter pairs of fixed CR stimulation
period and intensity, respectively. One example refers to cases
where CR stimulation induces acute effects, but no long-lasting
desynchronizing effects (Cases I and IV). The other example
concerns the case where CR stimulation causes neither acute nor
long-lasting desynchronizing effects in a reliable manner (Cases
II and III). We consider a regular and a random type of demand-
controlled variation of the CR stimulation period Ts. Note, in
both cases the CR stimulation period is not adapted to frequency
characteristics of the network. We consider the time courses of
the time-averaged order parameter < R > and Rav, the order
parameter averaged over a window of length 100 ·Ts at the end of
pause.
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FIGURE 6 | Protocol B: Long singleshot SVS CR stimulation with fixed Ts. (A,C) Time evolution of the time-averaged order parameter < R > during and after one

long SVS CR singleshot with fixed CR stimulation period. Stimulation parameters are unfavorable for anti-kindling for short singlehots of 128 s duration in Case III

(A,B) and Case IV (C,D) (see text). (B,D) Boxplots for Rav , averaged over a window of length 100 · Ts at the end of the singleshot and at the end of the post-stim

epoch illustrate the overall outcome for all tested 11 networks. Case III: (K, Ts) = (0.20, 9). Case IV: (K,Ts) = (0.20, 14). Same format as in Figure 3.

Demand-controlled regular variation of the CR stimulation

period and demand-controlled variation of the intensity
At the end of each pause we calculate the order parameter
Rav averaged over a window of length 100 · Ts. We vary
the CR stimulation period and intensity according to
the amount of synchrony, based on a three-stage control
scheme:

(i) Insufficient desynchronization: If Rav > 0.4, we decrease
the CR stimulation period of the subsequent RVS shot by
Ts

(
j+ 1

)
= Ts

(
j
)
−1ms, where the index j stands for

the j-th CR shot. As lower bound we set Ts = 9 ms
(corresponding to ∼156% of the intrinsic firing rate), in
order to avoid undesirably high CR stimulation frequencies.
In a previous computational study the latter turned out to
be unfavorable for desynchronization (see Manos et al., in
review). As soon as Ts reaches its lower bound of 9ms, it is
reset to Ts(1)+ 1 ms.

(ii) Moderate desynchronization: If 0.2 ≤ Rav ≤ 0.4, we
preserve the CR stimulation period for the subsequent CR
shot: Ts

(
j+ 1

)
= Ts

(
j
)
, where the index j denotes the j-th

CR shot. 0.2 ≤ Rav ≤ 0.4 is considered to be indicative of a
desynchronization effect.

(iii) Sufficient desynchronization: If Rav < 0.2, the CR
stimulation is suspended for the subsequent shot by setting
K = 0 for the next shot and until 0.2 ≤ Rav. Rav < 0.2 is
considered a sufficient desynchronization.

Spaced Multishot RVS CR Stimulation With

Demand-Controlled Regular Variation of the Stimulation

Period Ts and Demand-Controlled Variation of the Intensity
In both Cases (I and II) this protocol reliably induces a
desynchronization for all networks tested (Figures 7A,C). After
the second RVS CR shot the median of the time-averaged order
parameter Rav at the end of the corresponding pauses falls below
0.4, with moderate dispersion (Figures 7B,D). Note, already after
the first mild variation of the CR stimulation period Ts the
amount of synchrony is strongly reduced. In several networks
and pauses, the desynchronization criterion, Rav < 0.2, is
fulfilled, so that during the subsequent CR shots no stimulation
is delivered (Figures 7A,C). Accordingly, Protocol C enables to
reduce the integral amount of stimulation.

Spaced Multishot SVS CR Stimulation With

Demand-Controlled Regular Variation of the Stimulation

Period Ts and Demand-Controlled Variation of the Intensity
This protocol causes a desynchronization for all networks tested
in both Cases (III and IV) (Figures 8A,C). After the third (Case
III, Figure 8B) or the second SVS CR shot (Case IV, Figure 8D)
a pronounced desynchronization is achieved, as reflected by
a median of Rav close to 0.2 (Figures 8B,D). Accordingly,
about half of the networks fulfilled the desynchronization
criterion Rav < 0.2 after the third SVS CR shot and, hence,
did not require further CR stimulation. The mean firing rate,
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FIGURE 7 | Protocol C: Spaced multishot RVS CR stimulation with demand-controlled regular variation of the stimulation period Ts and with demand-controlled

variation of the intensity. (A,C) Time evolution of the order parameter < R > averaged over a sliding window during 5 consecutive RVS CR shots. If Rav, the order

parameter averaged over a window of length 100 · Ts at the end of a pause, exceeds 0.4, the CR stimulation period of the subsequent RVS shot is decreased by

Ts → Ts−1ms (see text). Stimulation parameters are unfavorable for anti-kindling in Case I (A,B) and Case II (C,D) (see text). (A,C) The horizontal solid red lines

indicate the CR shots, while the horizontal dashed gray lines serve as visual cues. Spacing is symmetrical, i.e. CR shots and consecutive pauses are of the same

duration. (B,D) Boxplots for the time-averaged order parameter Rav at the end of each pause, illustrate the overall outcome for all tested 11 networks. Case I:

(K,Ts) = (0.30, 11). Case II: (K,Ts) = (0.20, 28).

measured at the end of each pause did not deviate from the
baseline firing rates by more than±3%, irrespective of the extent
of protocol-induced variation of the stimulation period Ts (data
not shown).

We do not adapt the CR stimulation period Ts to
frequency characteristics of the stimulated network. To further
illustrate this aspect, we replace a regular, increasing or
decreasing variation of the stimulation period by a random

variation.

Demand-Controlled Random Variation of the CR

Stimulation Period and Demand-Controlled Variation of the

Intensity
Again, at the end of each pause we calculate the order parameter
Rav averaged over a window of length 100·Ts. A random variation
of the CR stimulation period is performed, depending on the
amount of synchrony detected. To this end, we select the interval
[Ts (1) − 4 ms, Ts (1) + 4 ms], where Ts (1) denotes the CR
stimulation period of the first shot. By design, this interval has a
lower bound at 9ms. The three-stage control scheme is governed
by:

(i) Insufficient desynchronization: If Rav > 0.4 at the end of the
pause of the j-th CR shot, we randomly pick Ts

(
j+ 1

)
and

skip inefficient values used before.

(ii) Moderate desynchronization: If 0.2 ≤ Rav ≤ 0.4, we preserve
the CR stimulation period for the subsequent CR shot:
Ts

(
j+ 1

)
= Ts

(
j
)
, where the index j denotes the j-th CR

shot.
(iii) Sufficient desynchronization: If Rav < 0.2, the CR

stimulation is suspended for the subsequent shot by setting
K = 0 for the next shot and until 0.2 ≤ Rav.

The feasibility of this protocol is demonstrated by considering
one example for RVS CR stimulation (Case II, Figure 9) and
one for SVS CR stimulation (Case IV, Figure 10). For both cases
we additionally provide the mean firing rate of the networks
at the end of each shot and at the end of each subsequent
pause to demonstrate that deviations do not exceed ±3%
(Figures 9C, 10C). In the RVS case (Figure 9), the time course of
the order parameter < R > (Figure 9A) and the corresponding
boxplots of Rav (Figure 9B) display a similar pattern of reliable
desynchronization as obtained by Protocol C with regular
variation of the CR stimulation duration Ts (Figure 7). In
principle, the SVS case (Figure 10) provides similar findings
as with a regular variation of the CR stimulation duration Ts

(Figure 8). However, one network relaxes back to a strongly
synchronized state (Figure 10A, dashed blue line). Delivering
a sixth SVS CR shot with randomly varied Ts to that network
caused a desynchronization (data not shown). This example
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FIGURE 8 | Protocol C: Spaced multishot SVS CR stimulation with demand-controlled regular variation of the stimulation period Ts and with demand-controlled

variation of the intensity. (A,C) Time evolution of the order parameter < R > averaged over a sliding window during 5 consecutive SVS CR shots. If Rav, the order

parameter averaged over a window of length 100 · Ts at the end of a pause, exceeds 0.4, the CR stimulation period of the subsequent SVS shot is decreased by

Ts → Ts−1ms (see text). Stimulation parameters are unfavorable for anti-kindling in Case III (A,B) and Case IV (C,D) (see text). (B,D) Boxplots for the

time-averaged order parameter Rav at the end of each pause, illustrate the overall outcome for all tested 11 networks. Case III: (K,Ts) = (0.20, 9). Case IV:

(K,Ts) = (0.20, 14). Same format as in Figure 7.

illustrates that a sequence of five SVS CR shots might not be
sufficient to induce desynchronization in all possible networks.

In summary, for the five-shot RVS CR as well as SVS
CR stimulation Protocol C with regular as well as random
variation of the CR stimulation duration Ts we observed
a pronounced desynchronization, with the exception of one
network (Figure 10A, dashed blue line). Our analysis was
performed for a larger set of (K,Ts) pairs in the parameter plane
analyzed in Manos et al. (in review), with K ranging from 0.2 to
0.3 (weak intensities) and Ts ranging from 9 to 28ms (around
the intrinsic period). For all parameter pairs tested, the spacing
Protocol C with regular and random variation of Ts led to a
reliable and pronounced long-term desynchronization in the vast
majority of networks tested.

Protocol D: Long Singleshot CR Stimulation With

Demand-Controlled Variation of the Stimulation

Frequency
Protocol D consists of five consecutive shots. Unlike in Protocol C,
there are no pauses between the five consecutive shots, so that
they form one long singleshot.

Demand-controlled regular variation of the CR stimulation

period and demand-controlled variation of the intensity
At the end of each shot we calculate the order parameter Rav
averaged over a window of length 100 · Ts. We vary the CR

stimulation period and intensity according to the amount of
synchrony, based on the three-stage control scheme as used for
Protocol C (see above).

Long singleshot RVS CR stimulation with demand-controlled

variation of the stimulation frequency
In Case I this protocol seems to perform similarly well
(Figures 11A,B) as Protocol C (Figures 7A,B) and Protocol B
(Figures 5A,B) which is also an alternative long singleshot
but with fixed Ts. After the second RVS CR shot almost all
networks reach a moderate or sufficient desynchronization which
is maintained fairly well after the RVS CR is ceased. Nonetheless,
this particular protocol does not perform equally well for Case II
(Figures 11C,D). Even in the cases, where the variation of Ts

leads to some improvement, the overall long-lasting effect is
worse than with Protocol C (Figures 7C,D).

Long singleshot SVS CR stimulation with demand-controlled

variation of the stimulation frequency
In Case III this protocol does not show any systematical
improvement (Figures 12A,B). In fact, this is partly due to the
fact that in some cases the network gets trapped in an unfavorable
parameter variation loop, bouncing between Ts = 9 ms and
Ts = 10 ms. In Case IV (Figures 12C,D) the global evolution
is quite similar to the one found for Protocol B (Figures 6C,D),
i.e., pronounced desynchronization during a single shot, with a
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FIGURE 9 | Protocol C: Spaced multishot RVS CR stimulation with demand-controlled random variation of the stimulation period Ts and with demand-controlled

variation of the intensity. (A) Time evolution of the order parameter < R > averaged over a sliding window during 5 consecutive RVS CR shots. The CR stimulation

period is randomly varied depending on Rav, by randomly picking a value from a narrow interval around the start period (see text). The horizontal solid red lines

indicate the CR shots, while the horizontal dashed gray lines highlight the two control thresholds (see text). (B) Boxplots for the time-averaged order parameter Rav at

the end of each pause, illustrate the overall outcome for all tested 11 networks. (C) For each (vertically aligned) network the table presents CR intensity (K = 0.2 if CR

is ON or K = 0 if CR is OFF during a CR shot) and stimulation period Ts used for each CR shot (indicated by red bars) together with the mean firing rate of the network

at the end of each CR shot (“ON”) and at the end of the subsequent pause (“OFF”). The mean firing rate was strongly fluctuating and, hence, calculated in a window of

length 200 · Ts. Case II stimulation parameters are unfavorable for anti-kindling: (K,Ts) = (0.20, 28) (see text).

tendency to relapse back to the synchronized state while some of
the networks remain desynchronized. However, the overall final
outcome is rather poor as the corresponding boxplot (blue color)
at the end of the CR-off period indicates.

In summary, for the singleshot RVS CR as well as SVS
CR stimulation Protocol D with regular variation of the
CR stimulation duration Ts (without pauses between two
consecutive shots) did not lead to a reliable and systematic
long-lasting desynchronization.

DISCUSSION

By comparing spaced CR stimulation with fixed stimulation
parameters (Protocol A) and massed, continuous CR stimulation
with equal integral duration (Protocol B) with a flexible spaced CR
stimulation with demand-controlled variation of CR stimulation
frequency and intensity (Protocol C), and with a flexible
non-spaced CR stimulation with demand-controlled variation

of CR stimulation frequency and intensity (Protocol D), we
demonstrated that Protocol C enables to significantly improve
the long-term desynchronization outcome of both RVS and SVS
CR stimulation, even at comparatively short integral stimulation
duration. Remarkably, spacing alone (Protocol A) is not sufficient
to provide an efficient short-term dosage regimen (Figures 2, 3).
In fact, in particular cases fivefold longer stimulation duration
might even be more efficient than five consecutive single
CR shots with identical integral stimulation duration, at least
for RVS CR stimulation (Figure 2B vs. Figure 4B). The low
performance of pure spacing (Protocol A) might be due to
the low number of single CR shots, here five, as opposed to
slightly larger numbers of CR shots, say eight, tested for the
case of subcritical CR stimulation before (Popovych et al., 2015).
However, more important might be the approximately fifty-
fold longer stimulation and pause duration used for the spaced
subcritical CR stimulation protocol (Popovych et al., 2015).
The long spaced subcritical CR stimulation protocol might be
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FIGURE 10 | Protocol C: Spaced multishot SVS CR stimulation with demand-controlled random variation of the stimulation period Ts and with demand-controlled

variation of the intensity. (A) Time evolution of the order parameter < R > averaged over a sliding window during five consecutive RVS CR shots with

demand-controlled random variation of Ts (see text). (B) Boxplots for the time-averaged order parameter Rav at the end of each pause, illustrate the overall outcome

for all tested 11 networks. (C) For each (vertically aligned) network the table presents CR intensity (K = 0.2 if CR is ON or K = 0 if CR is OFF during a CR shot) and

stimulation period Ts used for each CR shot (indicated by red bars) and the mean firing rate of the network at the end of each CR shot (“ON”) and at the end of the

subsequent pause (“OFF”). Case IV stimulation parameters are unfavorable for anti-kindling: (K,Ts) = (0.20, 14) (see text). Same format as in Figure 9.

beneficial for invasive application, such as DBS, and help reduce
side-effects by substantially reducing stimulation current intake
of the issue.

However, computationally we show that a spacing with
rigid five-shot timing structure, but flexible, demand-controlled
variation of stimulation frequency and intensity (Protocol C)
provides a short-term dosage regimen that significantly
improves the long-term desynchronization outcome of
RVS and SVS CR stimulation (Figures 6–9). At the end
of each pause between CR shots, the stimulus after-effect
is assessed. If the desynchronization is considered to be
insufficient, a mild variation of the CR stimulation frequency
is performed to possibly provide a better fit between network
and CR stimulation frequency, without actually adapting the
stimulation frequency to frequency characteristics of the network
stimulated. If desynchronization is considered to be moderate,
the subsequent CR shot is delivered with parameters unchanged.
If desynchronization is sufficient, CR stimulation is suspended
during the subsequent shot. Intriguingly, in the vast majority of

parameters and networks tested, this short-term dosage regimen
induces a robust and reliable long-lasting desynchronization
(Figures 6–9). This protocol might be a candidate especially for
non-invasive, e.g., acoustic (Tass et al., 2012a) or vibrotactile
(Tass, 2017; Syrkin-Nikolau et al., 2018), applications of CR
stimulation to increase desynchronization efficacy, while keeping
the stimulation duration at moderate levels.

Demand-controlled variation of CR stimulation frequency
and intensity (Protocol D) alone (i.e., without inserting pauses)
is not sufficient to significantly improve the outcome of RVS
and SVS stimulation (Figures 11, 12). Hence, introducing pauses
significantly improves the effect of the demand-controlled
variation of CR stimulation frequency and intensity.

In principle, stimulation parameters other than the CR
stimulation frequency might be varied depending on the
stimulation outcome. However, in this study we have chosen to
vary the CR stimulation frequency, since the latter turned out to
be a sensitive parameter, especially for SVS CR stimulation (see
Manos et al., in review). In fact, the short-term dosage regimen
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FIGURE 11 | Long singleshot CR stimulation with demand-controlled variation of the stimulation frequency. (A,C) Time evolution of the order parameter < R >

averaged over a sliding window during 5 consecutive RVS CR shots. If Rav, the order parameter averaged over a window of length 100 · Ts at the end of a shot,

exceeds 0.4, the CR stimulation period of the subsequent RVS shot is decreased by Ts → Ts−1ms (see text). Stimulation parameters are unfavorable for

anti-kindling in Case I (A,B) and Case II (C,D) (see text). (B,D) Boxplots for the time-averaged order parameter Rav at the end of each shot (red color) and at the end

of CR-off period (blue color), illustrate the overall outcome for all tested 11 networks. Case I: (K, Ts) = (0.30, 11). Case II: (K,Ts) = (0.20, 28). Same format as in

Figure 7.

with demand-controlled variation of stimulation parameters
(Protocol C) might help to turn SVS CR stimulation in a method
that causes a particularly strong anti-kindling in a robust and
reliable manner.

Protocol C does not require a direct adaption of the
CR stimulation frequency to measured quantities reflecting
frequency characteristics of the network. We have chosen this
design, since it might be an advantage not to rely on specific
biomarker-type of information. For instance, in the case of PD
a number of relevant studies were devoted to closed-loop DBS
(Graupe et al., 2010; Rosin et al., 2011; Carron et al., 2013;
Little et al., 2013; Priori et al., 2013; Yamamoto et al., 2013;
Hosain et al., 2014; Rosa et al., 2015). A relevant issue in this
context is the availability of a biomarker adequately reflecting
the individual patient’s extent of symptoms (Beudel and Brown,
2016; Kühn and Volkmann, 2017). In fact, it is not clear whether
low or high frequency beta band oscillations might be more
appropriate as biomarker-type of feedback signal (Beudel and
Brown, 2016). For several reasons, beta band oscillations might
possibly not be an optimal feedback signal (Johnson et al., 2016;
Kühn and Volkmann, 2017). Enhanced beta band oscillations
are not consistently found in all PD patients (Kühn et al., 2008;
Kühn and Volkmann, 2017). The clinical score of PD patients
might more appropriately be reflected by the power ratio of
two distinct bands of high frequency oscillations around 250

and 350Hz (Özkurt et al., 2011). Appropriate biomarkers might
depend on the patient phenotype (Quinn et al., 2015): In tremor
dominant (compared to akinetic rigid) PD patients resting state
beta power may decrease during tremor epochs (Bronte-Stewart
et al., 2009; Quinn et al., 2015). By a similar token, theta and
beta oscillations interact with high-frequency oscillations under
physiological (Yanagisawa et al., 2012) as well as pathological
(Yang et al., 2014) conditions. Also, quantities assessing the
interaction of brain oscillation, e.g., phase amplitude coupling
(PAC) might be used as biomarker to represent the amount of
symptoms (Beudel and Brown, 2016). Also, activity in the beta
band might be relevant for compensatory purposes, as recently
shown in a parkinsonian monkey study with sensorimotor
rhythm neurofeedback (Philippens et al., 2017).

It might be another potential advantage for clinical
applications that the three-stage control of the proposed
short-term dosage regimen (Protocol C) could possibly be
approximated by scores reflecting the patient’s state or the
amount symptoms. A simple three-stage rating of the patient’s
state (bad, medium, and good) might replace the feedback
signal-based stages (i), (ii), and (iii). Assessments of the patient’s
state might be performed in a pause after a CR shot. Depending
on the rating, the CR stimulation frequency or intensity of
the subsequent CR shot may be varied. In particular, for
non-invasive application of CR stimulation a non-invasive
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FIGURE 12 | Long singleshot CR stimulation with demand-controlled variation of the stimulation frequency. (A,C) Time evolution of the order parameter < R >

averaged over a sliding window during 5 consecutive RVS CR shots. If Rav, the order parameter averaged over a window of length 100 · Ts at the end of a shot,

exceeds 0.4, the CR stimulation period of the subsequent RVS shot is decreased by Ts → Ts−1ms (see text). Stimulation parameters are unfavorable for

anti-kindling in Case III (A,B) and Case IV (C,D) (see text). (A,C) The horizontal solid red lines indicate the CR shots, while the horizontal dashed gray lines serve as

visual cues. (B,D) Boxplots for the time-averaged order parameter Rav at the end of each shot (red color) and at the end of CR-off period (blue color), illustrate the

overall outcome for all tested 11 networks. Case III: (K, Ts) = (0.20, 9). Case IV: (K,Ts) = (0.20, 14).

assessment of the stimulation effect might straightforwardly be
realized.

In realistic biological systems intrinsic (model) parameters
typically vary over time. These variations may be of complex
dynamical nature (see e.g., Timmer et al., 2000; Yulmetyev et al.,
2006). To obtain some indication as to whether Protocol C is
robust against low-amplitude intrinsic variations of the neuronal
firing rates, we added a low-amplitude term Ivar = A·sin(2π ·f ·t)
to the right-hand side of Equation 1a. In the stimulation-free case,
Ivar causes variations of the neurons’ firing rates in the order of
±3% and no qualitative changes of the network dynamics (data
not shown). For different frequencies f this type of variation
does not significantly affect the long-term desynchronization
outcome of Protocol C (f = 0.004, 4, and 20Hz in Supplementary
Figure 1). By the same token, the neuronal firing rates are not
significantly altered by the additional periodic force (data not
shown).

Note, this is not intended to be a comprehensive study of
the impact of periodic forcing of arbitrary frequency on the
spontaneous or stimulation-induced dynamics of the model
network under consideration. Rather, the slow oscillatory forcing
is meant to model slow physiological modulatory processes in
an illustrative manner. In the extreme case of f = 0.004 Hz
the slow oscillatory modulation acts on the same time scale as a
cycle comprising shot and pause and, hence smoothly emulates

the step-wise modulation of the CR stimulation frequency in
Protocol C.

Conversely, intrinsic variations of sufficient size might
naturally mimic variations of the relationship between CR
stimulation frequency and intrinsic neuronal firing rates as
introduced on purpose in Protocol C. Accordingly, already the
purely spaced stimulation without demand-controlled variability
(Protocol A) might display some variability of the relationships
between intrinsic firing rates and CR stimulation frequency
simply due to the intrinsic variability. However, at least with
the frequencies 0.004, 4, and 20Hz in the low-amplitude term
Ivar = A · sin(2π · f · t) added to the right-hand side
of Equation 1a, we were not able to observe any substantial
improvement of the desynchronizing outcome of Protocol A
(Supplementary Figure 2). However, more physiological patterns
of firing rate modulations might have a more significant impact
on the stimulation outcome of Protocol A. In future studies
typical variations of the signals relevant to a particular pre-
clinical or clinical application might be taken into account to
further improve desynchronizing short-term dosage regimen.
The additional periodic forcing considered here was meant
to illustrate the stability of the suggested control approach.
However, future studies could also provide a detailed analysis of
the interplay of one or more periodic inputs and noise, thereby
focusing on stochastic resonance and related phenomena (e.g.,
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Pikovsky and Kurths, 1997; Gammaitoni et al., 1998; Manjarrez
et al., 2002; Torres et al., 2011; Bordet et al., 2015; Yu et al., 2016;
Guo et al., 2017; Uzuntarla et al., 2017 and references therein).
The number of stimulation sites and CR stimulation spatial decay
was based on Lysyansky et al. (2011). In accordance to that study,
adding more stimulation sites does neither lead to qualitatively
different results nor does it improve the stimulation outcome (see
Supplementary Figure 3).

The short-term dosage regimen proposed here provides a
closed-loop CR stimulation concept that enables to significantly
increase the robustness and reliability of the stimulation
outcome. Our results motivate to further improve the CR
approach by closed loop or feedback-based dosage regimen.
Compared to the computationally developed initial concept of
demand-controlled CR-induced desynchronization of networks
with fixed coupling constants (Tass, 2003a,b), the focus will
now be on a feedback-adjusted modulation of synaptic patterns
to induce long-lasting therapeutic effects. Currently, clinical
proof of concept (phase IIa) is available for deep brain CR
stimulation for the therapy of Parkinson’s disease (Adamchic
et al., 2014) and acoustic CR stimulation for the treatment
of chronic subjective tinnitus (Tass et al., 2012a). In addition,
promising first in human (phase I) data are available for
vibrotactile CR stimulation for the treatment of Parkinson’s
disease showing pronounced and highly significant sustained
therapeutic effects (Syrkin-Nikolau et al., 2018). For the clinical
development of these treatments it is mandatory to perform
dose-finding studies (phase IIb) to reveal optimal stimulation
parameters and dosage regimens, for comparison (see Friedman
et al., 2010). The latter are required to get properly prepared
for large efficacy (phase III) trials (Friedman et al., 2010). Since

CR stimulation modulates complex neuronal dynamics, dose-
finding studies are sophisticated, since stimulation parameters as
well as dosage patterns have to be chosen appropriately. Selecting
appropriate stimulation parameters and dosage regimens by
trial and error may neither be effective nor affordable, since
it would require a huge number of patients. In contrast,
our manuscript illustrates the important role of computational
medicine in generating hypotheses for dose-finding studies.
Specifically, we show that spacing (i.e., adding pauses in between
stimulation epochs) as well as moderate and unspecific parameter
variations adapted in the course of the therapy are not sufficient
to overcome limitations of CR stimulation. Intriguingly, the
combination of both, spacing plus adaptive moderate parameter
variation increases the robustness of the stimulation outcome
in a significant manner. This computational prediction can
immediately be tested in dose-finding studies and, hence, help
to optimize the CR therapy, shorten the development time and
reduce related costs.
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A characteristic pattern of abnormal brain activity is abnormally strong neuronal

synchronization, as found in several brain disorders, such as tinnitus, Parkinson’s

disease, and epilepsy. As observed in several diseases, different therapeutic interventions

may induce a placebo effect that may be strong and hinder reliable clinical evaluations.

Hence, to distinguish between specific, neuromodulation-induced effects and unspecific,

placebo effects, it is important to mimic the therapeutic procedure as precisely as

possibly, thereby providing controls that actually lack specific effects. Coordinated

Reset (CR) stimulation has been developed to specifically counteract abnormally strong

synchronization by desynchronization. CR is a spatio-temporally patterned multichannel

stimulation which reduces the extent of coincident neuronal activity and aims at an

anti-kindling, i.e., an unlearning of both synaptic connectivity and neuronal synchrony.

Apart from acute desynchronizing effects, CR may cause sustained, long-lasting

desynchronizing effects, as already demonstrated in pre-clinical and clinical proof of

concept studies. In this computational study, we set out to computationally develop

a sham stimulation protocol for multichannel desynchronizing stimulation. To this end,

we compare acute effects and long-lasting effects of six different spatio-temporally

patterned stimulation protocols, including three variants of CR, using a no-stimulation

condition as additional control. This is to provide an inventory of different stimulation

algorithms with similar fundamental stimulation parameters (e.g., mean stimulation rates)

but qualitatively different acute and/or long-lasting effects. Stimulation protocols sharing

basic parameters, but inducing nevertheless completely different or even no acute effects

and/or after-effects, might serve as controls to validate the specific effects of particular

desynchronizing protocols such as CR. In particular, based on our computational

findings we propose a multichannel sham (i.e., inactive) stimulation protocol as control

condition for phase 2 and phase 3 studies with desynchronizing multichannel stimulation

techniques.

Keywords: sensory neurostimulation, non-invasive neuromodulation, coordinated reset, spike timing-dependent

plasticity, desynchronization, anti-kindling, sham stimulation, placebo

INTRODUCTION

To establish a pharmacological therapy for clinical use, clinical trials are performed in humans

that are typically classified into four phases (Friedman et al., 2015): First, in pre-clinical
studies pharmacokinetic, toxicity, and efficacy are studied in non-human subjects. In phase
I trials, so-called first in human-studies, safety and tolerability of a drug are investigated in

86

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2018.00512
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2018.00512&domain=pdf&date_stamp=2018-05-08
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:ptass@stanford.edu
https://doi.org/10.3389/fphys.2018.00512
https://www.frontiersin.org/articles/10.3389/fphys.2018.00512/full
http://loop.frontiersin.org/people/53911/overview
http://loop.frontiersin.org/people/2560/overview


Zeitler and Tass Computationally Developed Sham Stimulation

healthy volunteers. Phase II trials aim to determine whether a
drug can have any efficacy. More specifically, phase IIA trials
typically aim at demonstrating clinical efficacy or biological
activity (“proof of concept” studies), whereas phase IIB trials
are dose-finding studies, performed to reveal optimum dose at
which a drug has biological activity with minimal side-effects.
Phase III trials investigate effectiveness and the clinical value of
a new intervention in a larger patient group. In a randomized

controlled trial the effect size of a new intervention is compared
with state of the art treatment, if available. Finally, a phase
IV trial is a postmarketing surveillance trial, performed e.g.,
to study whether any rare or long-term adverse effects occur
within a much larger patient population and over longer time
periods. Individual trials may actually comprise more than only
one phase. For instance, there are combined phase I/II or phase
II/III trials. Accordingly, given the different purpose of clinical
trials, one may also distinguish between early phase studies and
late phase trials (Friedman et al., 2015—see above). In principle,
this 4-phase pattern also holds for medical technology, e.g.,
neuromodulation technologies.

Apart from investigating safety and tolerability, it is key to

study whether a new therapeutic intervention is superior to
pre-existing therapeutic options (Friedman et al., 2015). To this
end, one has to take into account non-specific, placebo effects.
A placebo effect is a psychobiological phenomenon that causes
symptom relief after delivery of inert substances or other types
of sham treatment, such as sham surgery or sham stimulation, in
combination with verbal instructions suggesting clinical benefit
(Price et al., 2008; Benedetti et al., 2011). Note, in clinical
trials the terms placebo and sham are basically synonymous,
while a placebo typically refers to an inactive substance used
in pharmacological trials, whereas a sham stimulation/operation

refers to a stimulation/operation without specific therapeutic
effect (Price et al., 2008; Benedetti et al., 2011; Friedman et al.,
2015). Real placebo effects go beyond spontaneous remission due

to the natural history of a disease, regression to the mean induced
by selection biases or expectation-related biases of patients and
doctors (Benedetti, 2008a).

There are many different placebo effects, caused by different

mechanisms and related to different types of interventions
and different diseases (Benedetti, 2008b; Enck et al., 2008).
Expectation, anxiety, reward, and different types of learning
mechanisms may contribute to placebo effects (Benedetti et al.,
2011). For instance, according to the Hawthorne effect, patients
may simply improve because they are enrolled in a clinical trial
(Last, 1983). Placebo treatments can decrease anxiety levels
(Vase et al., 2005) and, in general, modulate emotions (Petrovic
et al., 2002). Conversely, an inert substance combined with an
instruction inducing negative expectations may cause a nocebo
effect (Enck et al., 2008), e.g., an increase of pain (Colloca et al.,
2008).

Placebo effects may actually be related to objective changes of
brain action (Benedetti et al., 2011), e.g., release of endogenous
dopamine (de la Fuente-Fernández et al., 2001), changes in brain
glucose metabolism (Mayberg et al., 2002) or changes of the
activity of specific neuronal populations (Benedetti et al., 2004).

Different types of learning mechanisms, e.g., conditioning,
may play important roles in placebomechanisms (Benedetti et al.,

2011). For instance, administration of a placebo after delivery of
active drugs may be more effective than placebo administration
without the previous experience with the corresponding active
drug (Sunshine et al., 1964; Batterman, 1966; Batterman and
Lower, 1968; Laska and Sunshine, 1973; Amanzio and Benedetti,
1999; Colloca and Benedetti, 2006). Not only features related
to a drug or therapeutic procedure may contribute to placebo-
mediated clinical improvement, but also many other stimuli,
related to medical environment, equipment, and personnel
(Benedetti et al., 2011). From a clinical trials standpoint it is,
hence, important to mimic the entire procedure of treatment
delivery as well as possible, since even instructions and rituals of
the treatment delivery and procedure may cause actual changes
in brain activity that may be the same as those induced by the
specific treatment (Benedetti et al., 2011). Accordingly, a vast
majority (97%) of surveyed Parkinson’s disease (PD) clinical
researchers in the United States and Canada believe that even
in the case of neurosurgical cell-based and gene therapies for
PD double-blind, placebo-controlled trails have to be performed
to assess safety and efficacy (Kim et al., 2005; Olanow, 2005).
Ninety percentage of PD clinical researchers consider burr holes
as justified for sham neurosurgery procedures, and a minority
(<22%) even consider penetration of brain tissue to be justified
for the neurosurgical sham control (Kim et al., 2005; Olanow,
2005). Hence, even in the case of clinical trials performed
according to highest quality standards, e.g., in the field of
deep brain stimulation (DBS) (Schuepbach et al., 2013), the
comparison between qualitatively different therapeutic regimes,
e.g., invasive neuromodulation plus medication vs. medication
only, caused debates on whether the study design could reliably
rule out placebo effects (Schüpbach et al., 2014).

There is a variety of strategies for the development of sham
stimulation protocols. For instance, in the context of transcranial
current stimulation a number of studies were devoted to the
development of appropriate sham stimulation protocols, since
current flow can elicit tingling or itching skin sensations,
where different transcranial electrical stimulation methods have
different cutaneous perception thresholds (Ambrus et al., 2010).
In a comparative transcranial electrical stimulation study, a
short-duration active protocol was used as sham, where the
active stimulation was turned on only for a brief period, during
which stimulation-related unwanted effects/perceptions were
elicited (Inukai et al., 2016). Accordingly, the dose should be
insufficient, but the patient should get the impression of receiving
stimulation. Alternatively, off-target stimulation strategies were
developed. In that case, the patient perceives stimuli and/or
side effects thereof, but stimulation is directed to targets
putatively rendering stimulation ineffective. For instance, for
a sham condition for transcranial direct current stimulation a
current configuration was chosen such that the current primarily
traversed across the scalp, through adjacent pairs of electrodes of
opposite polarity, in this way sparing cortical tissue (Richardson
et al., 2014; Garnett and den Ouden, 2015). Another off-
target stimulation sham strategy is used in the field of tinnitus,
where stimulation tones are delivered at sufficiently detuned
pitch compared to the tonal tinnitus, putatively activating brain
sites sufficiently remote from the brain regions engaged in
the tinnitus-related abnormal neuronal synchrony (Tass et al.,
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2012a; Adamchic et al, 2017). In contrast, we here consider
the situation when clinical constraints are not permitting an
off-target stimulation for sham purposes. We hypothesize that
an appropriate stimulation pattern may render stimulation
ineffective, although the single stimuli are delivered to target sites.

This computational study is dedicated to the development
of sham stimulation protocols for desynchronizing multi-
channel stimulation techniques, specifically coordinated reset
(CR) stimulation (Tass, 2003a). The latter was computationally
designed to specifically antagonize abnormal neuronal synchrony
by desynchronization (Tass, 2003a,b). To this end, sequences of
stimuli are administered to different neuronal sub-populations
engaged in abnormal neuronal synchronization (Tass, 2003a).
In computational studies it was shown that in the presence of
spike-timing-dependent plasticity (STDP) (Gerstner et al., 1996;
Markram et al., 1997; Bi and Poo, 1998) CR stimulation may
have long-lasting, sustained effects (Tass and Majtanik, 2006;
Hauptmann and Tass, 2007; Popovych and Tass, 2012). This anti-
kindling effect (Tass and Majtanik, 2006) is caused by a CR-
induced reduction of the rate of coincidences which, in turn,
induces a decrease of synaptic weights, ultimately shifting the
stimulated network from an attractor with abnormal synaptic
connectivity and abnormal neuronal synchrony to an attractor
with weak connectivity and synchrony (Tass and Majtanik, 2006;
Hauptmann and Tass, 2007; Popovych and Tass, 2012).

Abnormal neuronal synchronization was found in a number
of brain diseases, e.g., Parkinson’s disease (Lenz et al., 1994;
Nini et al., 1995; Hammond et al., 2007), tinnitus (Ochi
and Eggermont, 1997; Llinas et al., 1999; Weisz et al., 2005;
Eggermont and Tass, 2015), migraine (Angelini et al., 2004;
Bjørk and Sand, 2008). Standard high-frequency (HF) DBS is the
standard treatment of medically refractory movement disorders,
such as PD (Benabid et al., 1991; Krack et al., 2003; Deuschl
et al., 2006). Standard HF DBS only has acute clinical (Temperli
et al., 2003) and acute electrophysiological (Kühn et al., 2008;
Bronte-Stewart et al., 2009) effects, which are present only
during stimulation and vanish after cessation of stimulation.
In contrast, in parkinsonian nonhuman primates it was shown
that electrical CR-DBS of the subthalamic nucleus (STN) has
sustained, long-lasting after-effects on motor function (Tass,
2003b; Wang et al., 2016). Analogously, cumulative and lasting
after-effects of electrical CR-DBS of the STN were also observed
in PD patients (Adamchic et al., 2014).

For the clinical development, in particular, of non-invasive
applications of CR stimulation (Popovych and Tass, 2012), such
as acoustic CR stimulation for tinnitus (Tass et al., 2012a)
or vibrotactile stimulation for PD (Tass, 2017; Syrkin-Nikolau
et al., 2018), it is key to compare the effects of CR stimulation
with an appropriate sham stimulation protocol in phase II
and phase III clinical trials. The sham stimulation protocol
should be reasonably similar to the CR stimulation pattern, to
prevent patients from being able to distinguish between actual
treatment and control. Accordingly, performing double-blind,
placebo-controlled trails for non-invasive, sensory multichannel
stimulation therapies requires multichannel sham stimulation
protocols.

We here computationally develop a multichannel sham
stimulation protocol. To this end, we investigate the anti-kindling

effect of several multichannel stimulation protocols that share
basic features with CR stimulation. We apply the different
stimulation protocols to a one-dimensional computational
network model with spiking neurons and study the stimulation
effects at different levels, ranging from the macroscopic network
level, via subpopulations down to the single neuron level. We
obtain an inventory of qualitatively different stimulation effects
elicited by the different stimulation protocols. Intriguingly, we
found an inert stimulation protocol which caused only weak
acute and hardly any long-lasting effects. The latter is a potential
sham candidate to be tested for clinical studies in the context of
desynchronizing sensory multichannel stimulation techniques.

MATERIALS AND METHODS

In this section, we describe the equations used to model
the dynamics of our one-dimensional neuronal network, the
plasticity of the synapses, and the different stimulation protocols
as well as the data analysis methods.

Neuronal Network
The model we use is a one-dimensional ring composed of

N spiking Hodgkin-Huxley neurons which interact via strong
excitatory short-range and weak inhibitory long-range synapses
(Popovych and Tass, 2012). The membrane potential Vi of the
i-th neuron (i= 1: N) is given by:

CV̇ i = Ii − gNam
3
i hi (Vi − VNa)

−gkn
4
i (Vi − VK) − gl (Vi − Vl) + Si + Fi,

ẋi = αx (Vi) (1− xi) − βx (Vi) xi, (1)

ṡi =
0.5 (1− si)

1+ exp [− (Vi + 5) /12]
− 2si,

where C denotes the membrane capacitance, the
injected constant currents Ii are uniformly distributed
(Iiǫ [I0 − 1I , I0 + 1I]) and Fi represents the current
induced by an external stimulation signal (see section Simulation
Details for more details). The voltage-dependent rate constants
αx and βx of the time-varying ion gate variables x ǫ {m, n, h} are
given by αm (V) = (0.1V + 4) /

[
1− exp (−0.1V − 4)

]
,

βm (V) = 4 exp [(−V − 65) /18], αh (V) =

0.07 exp [(−V − 65) /20], βh (V) = 1/
[
1+ exp (−0.1V − 3.5)

]
,

αn (V) = (0.01V + 0.55) /
[
1− exp (−0.1V − 5.5)

]
, and

βn (V) = 0.125 exp [(−V − 65) /80].
The coupling term Si in Equation (1) stands for the weighted

ensemble average of all postsynaptic currents received by neuron
i from the other neurons in the network and can be given in terms
of the synaptic variable sj as:

Si = N−1
∑N

j= 1

(
Vr,j − Vi

)
cij|Mij|sj, (2)

where N is the number of neurons within the network, Vr,jthe
reversal potential of the synaptic coupling between neurons j
and i and cij is the synaptic coupling from neuron j to neuron
i. Mij has the form of a Mexican hat (Wilson and Cowan, 1973;
Dominguez et al., 2006; de la Rocha et al., 2008) and determines
the type of the neuronal connection between neurons i and j:
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Mij < 0 represents an inhibitory coupling,Mij > 0 an excitatory
coupling. The value of Mij determines the distance dependent
maximal strength between those neurons:

Mij =

(
1− d2ij/σ

2
1

)
exp

(
−d2ij/

(
2σ 2

2

))
(3)

with σ1 = 3.5 and σ2 = 2.0 as in Popovych and Tass (2012), and
dij = d ·min

(∣∣i− j
∣∣ ,N −

∣∣i− j
∣∣) is the shortest distance between

neurons i and j. To avoid boundary effects, the neurons form a
one-dimensional ring. Therefore, the shortest distance between
the neurons with indices 1 andN is 1 instead ofN−1. The lattice
distance between two adjacent neurons is given by:

d = d0/ (N − 1) (4)

with d0 the length of the neuronal chain.
Values used in this study are N = 200, C = 1 µF/cm2,

maximum conductance per unit area for the sodium, potassium
and leak currents gNa = 120 mS/cm2, gK = 36 mS/cm2, gl = 0.3
mS/cm2, sodium, potassium, and leak reversal potentials VNa =

50 mV, VK = −77 mV, and Vl = −54.4 mV, reversal potential
for excitatory respectively inhibitory coupling Vr,j = 20 mV
respectively−40mV. For the constant injected current we used
I0 = 11.0 µA/cm2 and I = 0.45 µA/cm2. The length of the
neuronal chain is defined as d0 = 10.

Spike Timing-Dependent Plasticity
The dynamical synaptic weights cij are influenced by the precise
timing of the pre- and postsynaptic spikes and are updated in an
event-based manner every time a neuron spikes. This is realized
by adding δ ·1cij to the excitatory and−δ ·1cij to the inhibitory
synaptic weights cij with learning rate δ > 0 every time neuron
i or j spikes. According to the spike timing-dependent plasticity
(STDP) rule (Bi and Poo, 1998) the change in synaptic weight is
given by (Popovych and Tass, 2012):

1cij =





β1e

−1tij
γ1 τ , 1tij ≥ 0

β2
1tij
τ
e

1tij
γ2 τ , 1tij < 0

(5)

with 1tij = ti − tj and ti is the spike time of the postsynaptic
neuron i and tj the spike time of the pre-synaptic neuron j.

Gs,k (t) =






t−tn
k

τ
exp

[
−

t−tn
k

τ

]
, tn

k
≤ t ≤ min(tn

k
+

Ts
2 , t

n+1
k

)

t−tn
k

τ
exp

[
−

t−tn
k

τ

]
+

t−tn+1
k
τ

exp

[
−

t−tn+1
k
τ

]
, tn+1

k
≤ t ≤ tn

k
+ Ts/2

0, otherwise

(8)

Synaptic weights are restricted to the interval cij ∈ [0, 1] mS/cm2

to avoid unbounded strengthening and weakening. Other values
used in relation to the STDP learning rule are as in Popovych
and Tass (2012): β1 = 1, β2 = 16, γ1 = 0.12, γ2 = 0.15,
τ = 14 ms, and δ = 0.002. With these parameter values, the
plastic neuronal network under study is multistable, comprising
stable desynchronized and stable synchronized states (Popovych
and Tass, 2012).

External Stimulation
The aim of this study is to compare the effects of different
stimulation algorithms on the neuronal connectivity as well
as on the synchronization of the neuronal activity. In this
section, we describe six different stimulation protocols as well
as a no-stimulation control protocol to investigate the influence
of the different stimulation protocols on the connectivity and
synchronization.

Stimulation Implemented in the Model
Each stimulation onset induces single brief excitatory post-
synaptic currents, with spatial spread in the network given by a
quadratic spatial decay profile:

D (i, xk) =
1

1+ d2(i− xk)
2
/σ

2
d

(6)

where d is the lattice distance between adjacent neurons
(Equation 4), i− xk the difference in index of neuron i and index
xk of the neuron at stimulation site k, and σd the spatial decay rate
of the stimulation current (Popovych and Tass, 2012).

The total stimulation current induced in neuron i is given by:

Fi = [Vr − Vi (t)] · K
∑Ns

k=1
D (i, xk)Gs,k (t) (7)

with the excitatory reversal potential Vr = 20mV, Vi (t) the
membrane potential of neuron i (Equation 1), K the stimulation
intensity and D the spatial decay profile (Equation 6). Gs,k is
the stimulation (at stimulation site k) evoked time-dependent
normalized conductance of the post-synapticmembranes defined
by α-functions. Since in this study the minimal time difference
between two stimulation onsets within the network is not
restricted to Ts/Ns = 4 ms, we have adapted Gs from
Popovych and Tass (2012) by allowing a summation of two
stimulation evoked time-dependent normalized conductances
of the post-synaptic membranes if the two stimulations occur
within a certain time interval. We have set this time interval
to 2 · Ts/Ns = 8 ms, since at 8ms the value of the α-
function is marginal (only 0.02% of the peak value). Our
adapted stimulation (at stim site k) evoked time-dependent
normalized conductance of the post-synaptic membranes is
now given by:

Here tn
k
is the onset of the nth activation of the kth stimulus site,

τ = Ts/(6Ns) represents the time-to-peak of Gs,k, and min(t1, t2)
is the minimum value of t1, t2 and thus represents the earliest
time event of t1 and t2.

Stimulation Signal Features
As a control condition we use the situation where no stimulation
signal is applied and thus no stimulation current is delivered
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to the N neurons: Fi = 0 for all i ∈ {1, ..,N}. We denote the
control condition as no stimulation (no-stim) protocol. The other,
active stimulation protocols last 128 s and consist of stimulation
ON and stimulation OFF cycles (briefly ON- and OFF-cycles),
of duration Ts each. Ns equidistantly spaced stimulation sites
are activated exactly once during one ON-cycle. After three
consecutive ON-cycles, two OFF-cycles follow, before the next
three ON-cycles take place. At the end of the stimulation period
(briefly stim-on period) each stimulation site will have been
activated exactly 4,800 times (=4,800 ON-cycles). In this study,
each cycle lasts for Ts = 16 ms, and for all stimulation signals the
same Ns = 4 equidistantly spaced stimulation sites are activated.
The four stimulation sites are located at the neurons with index
25, 75, 125, and 175.

The first of the six stimulation signal approaches is the purely
periodic multichannel stimulation (PPMS). The first stimulation
onset of the k-th stimulation site, t1

k
, is drawn randomly (with

equal distribution within an ON-cycle), the next stimulation
onsets occur exactly a multiple of Ts later: t

n
k

= t1
k
+ n · Ts

(with k ∈ {1, 2, . . . , Ns} and n ∈ N). Another feature of this
PPMS approach is that all four stimulation sites are activated
simultaneously (see Figure 1A), which implies that tn

k
= tn1 for

all stimulation sites k.
The correlated multichannel noisy stimulation (CMNS)

activates, like the PPMS, all four stimulation sites simultaneously,
but the stimulation onsets are no longer periodic, but
rather noisy: For each ON-cycle the stimulation onset is
drawn randomly, with equal probability within the ON-cycle
(Figure 1B). In this case, the four stimulation sites are also active
simultaneously: tn

k
= tn1 for all stimulation sites k.

For the uncorrelated multichannel noisy stimulation (UMNS)
the stimulation onsets tn

k
are determined for each stimulation

site k separately. To this end, for each stimulation site k
and ON-cycle n the stimulation onset tn

k
is drawn randomly,

with equal distribution within the n-th ON-cycle. The random
processes that generate the stimulation onsets tn

k
for the different

stimulation sites k ∈ {1, 2, . . . , Ns} are completely uncorrelated
between stimulation sites and, hence, typically do not coincide
(Figure 1C).

The other three stimulation protocols are different variants
of coordinated reset (CR) stimulation (Tass, 2003a,b). For CR
stimulation, within each ON-cycle the activations of the Ns = 4
different stimulation sites are equidistantly spaced in time, with
a time shift of Ts/Ns (Figures 1D–F). The different stimulation
onsets are at the beginning of the ON-cycle, 4, 8, and 12ms later.
The order in which the stimulation sites are activated exactly
once during an ON-cycle is called a stimulation sequence, briefly
sequence. For the RVS CR the sequence randomly changes for
one ON-cycle to the next. In contrast, for the fixed CR the
same sequence is maintained for all ON-cycles (Figure 1E). For
the slowly varying sequences (SVS-n) CR a sequence is applied
during n ON-cycles, before randomly switching to another
sequence which is, in turn, used for the next n ON-cycles etc
(Zeitler and Tass, 2015). Figure 1F illustrates SVS-4 CR, where
each sequence is repeated four times before another sequence is
drawn randomly. In the SVS CR protocols of this study we will
only apply n = 100 consecutive repetitions of a sequence before

FIGURE 1 | Schematic of the spatio-temporally patterned stimulation

protocols as used in this study. (A) The purely period multichannel stimulation

(PPMS) simultaneously activates all stimulation sites at the same time instance

within each stimulation ON-cycle. (B) The correlated multichannel noisy

stimulation (CMNS) activates all stimulation sites simultaneously, but at

different, random time instances, equally distributed within each stimulation

ON-cycle. (C) The uncorrelated multichannel noisy stimulation (UMNS)

activates the stimulation sites sequentially in a random order at different time

instances within different stimulation ON-cycles. Stimulation onsets are equally

distributed within each stimulation ON-cycle, where the random processes for

the different channels are uncorrelated. (D) The rapidly varying sequences

(RVS) CR stimulation activates the stimulation sites in a random temporal order

at times n · Ts/4 (n ∈ {0, 1, 2, 3}) within each stimulation ON-cycles. (E) The

fixed CR stimulation approach employs a fixed sequence during the entire

CR-on period, and stimulation onsets times within the stimulation ON-cycles

are at multiples of n · Ts/4 (n ∈ {0, 1, 2, 3}). (F) In this example, for the sake

of illustration, the slowly varying sequences (SVS) CR stimulation repeats the

first sequence four times, before a new sequence is drawn. Different

stimulation sequences are randomly drawn with equal probability. For the

remainder of this study each sequence is repeated 100 times and not just four

times (SVS-100 instead of SVS-4). Stimulation onsets are as for the RVS CR at

n · Ts/4 (n ∈ {0, 1, 2, 3}) within the stimulation ON-cycles. All stimulation

protocols have four equidistantly distributed stimulation sites, stimulation ON-

and OFF- cycles of 16ms, a total stimulation on period of 128 s, in which three

ON-cycles are alternated by two OFF-cycles. No stimulation is applied during

OFF-cycles. Stimulation ON- and OFF-cycles are separated by dashed vertical

lines. A change of color indicates a change of the pattern of stimulus onsets

compared to the previous ON-cycle.

we draw the next sequence. Therefore, we will use the term SVS
instead of SVS-100 CR for the remainder of this work.

Simulation Details
A simulation contains four different simulation periods: first
an initializing period of 2 s, then a 60 s period with STDP
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and without external stimulation (denoted as STDP-only period)
which is followed by a stim-on period of 128 s in which the
network receives an external stimulation and after withdrawal
of the stimulation follows a stimulation off period (denoted
as stim-off period) of 128 s. During the initializing period
- the only period without STDP - a network is built by
drawing random numbers for each of the N = 200 neurons
from uniform distributions for the injected constant current
Ii ∈ [I0 − 1I , I0 + 1I], for the membrane potential Vi ∈

[−65, +5] ms, for the time-varying ion gate variables xi ∈ [0, 1]
and the synaptic variable si ∈ [0, 1]. The initial synaptic weights
cij are drawn from aGaussian distribution withmean 0.5µA/cm2

and standard deviation 0.01 µA/cm2. During the initializing
period the neuronal network evolves without influences of
external stimulation signals or STDP.

For this selected initial distribution of the synaptic weights,
during the STDP-only period the network can develop into a
strongly connected network with strongly synchronized neuronal
activity. The time at which the first stimulation signal is delivered
to the network is defined as t = 0 s. During the stim-on period
the stimulation signals are applied to the network as described
in section Stimulation Implemented in the Model. After 128 s no
stimulation signals are applied anymore and the evolution of the
network is monitored for another 128s (stim-off period). After
going through this whole process, the procedure is repeated from
t = 0 s on for a different stimulation intensity, K, and/or for a
different stimulation signal approach.

From previous studies (Zeitler and Tass, 2015, 2016) we
know that different initial network conditions and different
stimulation signal realizations have an influence on the anti-
kindling effects. Therefore, we draw eleven different sets of initial
values from the distributions as described above at the start
of the initializing period. For each of these eleven different
initial network conditions we generate one realization for each
stimulation signal approach. In the remainder of this study
the combination of a stimulation signal realization with one
set of initial network conditions is referred to as sample. All
simulations were executed in Matlab R2007a. The differential
equations were solved by the built-in function ODE45 with a
relative tolerance of 10−5.

Data Analysis
In this computational study we came up with a larger set of acute
and long-lasting effects of different stimulation protocols applied
to the plastic neural network as described in section Neuronal
Network. We are particularly interested in whether the different
stimulation protocols might induce qualitatively different anti-
kindling effects. In this section, we will discuss the methods
used to investigate the neuronal connectivity at several levels, the
synchronization and a quantification of the acute stimulation and
acute after-effects, as well as the phase resetting and entrainment
induced by the different stimulation protocols. Matlab R2015a
was used for the data analysis and for plotting the results.

Connectivity
In this study, the synaptic weights can change according to the
STDP-rule (see Equation 5). On the network level the dynamics

of the synaptic connectivity is monitored by the synaptic weight
averaged over all synapses within the network:

Cav (t) = N−2
∑N

i= 1

∑N

j= 1
sign

(
Mij

)
cij (t) , (10)

where N is the number of neurons within the network,
sign(Mij ) is negative for inhibitory synapses and positive for

excitatory synapses (with Mij defined as in Equation 3), and cij
is the synaptic coupling strength from neuron j to i. A decrease
of Cav over time may indicate that there is mainly a decrease
in the average excitatory synaptic weights or an increase in
average inhibitory weights or a combination of both. To unravel
the contributions of the excitatory and the inhibitory synaptic
weights, we introduce the average excitatory synaptic weight

cEE (t) = N−2
EE

∑N

i= 1

∑N

j= 1

[
sign

(
Mij

)]
+
cij (t) , (11)

and the average inhibitory synaptic weight

cII (t) = N−2
II

∑N

i= 1

∑N

j= 1

[
sign

(
−Mij

)]
+
cij (t) , (12)

where [z]+ stands for the half-wave rectification operation
([z]+ = z if z > 0 and [z]+ = 0 otherwise),NEE is the number of
excitatory synapses, and NII is the number of inhibitory synapses
within the whole neuronal network.

On the neuronal level the connectivitymatrices are analyzed at
the end of the stim-on and at the end of the stim-off period, since
we are interested in the acute and the long-lasting effects. Instead
of considering the cij-values, we first multiplied each cij-value by
the sign-function of the Mexican Hat, sign(Mij) (see Equation

3 for Mij). This allows to recognize the type of each synapse
in a color plot of the connectivity matrix (negative values for
inhibitory and positive values for excitatory synapses). For each
synapse eleven cij-values exist since each stimulation protocol
is applied at stimulation intensity K to eleven different initial
networks. By determining the median and the inter-quartile-
range (IQR) of these eleven cij-values for all i, j ∈ {1, 2, . . . ,N] we
obtained a larger reduction of the amount of data. Unfortunately,
due to the different initial network conditions the general
connectivity pattern induced by a stimulation protocol does not
straightforwardly reveal at which locations neurons are coupled
mainly by bidirectional weak as opposed to unidirectional strong
synapses.

To get a better idea of what happens due to a stimulation
signal, we first sorted for each sample the cij(t) values such that
the strongest synaptic weight between two neurons i and j is
placed in the lower right triangle at location (i′,j′) = (min(i,j),
max(i,j)) and the weaker synaptic weight between those two
neurons i and j in the upper left triangle of the connectivity
matrix at location (i′,j′) = (max(i,j), min(i,j)). This is repeated
for all combinations of two neurons. After that the result is
multiplied by sign(Mij). We call this newly defined matrix the

sorted connectivity matrix. After calculating the median of the
eleven sorted connectivity matrices the general pattern is more
evident for all stimulation protocols and the IQRs provide a
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clearer picture than for the unsorted connectivity matrices. By
sorting the data like this, one can determine from the median if
the synapses are in general strong in both directions or just in
one direction ormaybe even weak in both directions between two
neurons. Furthermore, the IQR showswhich type of synapses and
at which spatial location the largest differences occur as an effect
of the different samples. Note that the location (i, j) in this sorted
connectivity matrix does not indicate that neuron i is the post-
synaptic neuron and neuron j the pre-synaptic one as is the case
for the unsorted connectivity matrices, but that if i < j (lower
right triangle of the sorted matrix) than csortedij = max

(
cij, cji

)

with cij, cji elements of the unsorted connectivity matrix. For the
upper left triangle of the sorted matrix where i > j this means
that csortedij = min

(
cij, cji

)
.

Synchronization
The effect of the external stimulation signals on the strongly
synchronized neuronal activity is investigated on the network
level by the order parameter R (Haken, 1983; Kuramoto, 1984)
defined by

R (t) exp [iΦ] = N−1
∑N

j= 1
exp

[
iϕ(t)

]
(13)

where Φ(t) is the circular mean phase of the entire group of N
neurons in the network, and

ϕj (t) = 2π(t − tj,m)/(tj,m+1 − tj,m) for tj,m ≤ t < tj,m+1 (14)

is a linear approximation of the phase of neuron j between itsm-
th and (m+ 1)-th spikes at spike times tj,m and tj,m+1 (Rosenblum
et al., 2001). The minimum value of R is zero and indicates a
complete lack of in-phase synchronization, whereas its maximum
value (R = 1) indicates perfect in-phase synchronization.

For our analysis, we have calculated R, Φ , and all ϕj at eachms
of the stim-on and stim-off period. In case an R-value is shown at
a certain time instance t the R-values of the preceding 5 s period
are averaged and denoted as Rav at t.

On a mesoscopic level the amount of synchronization of the
k-th subpopulation can be defined as

R
pre

k = < Rk >last 5 s before stim−ON

R
on
k = < Rk >last 5 s of stim−ON

R
off

k = < Rk >last 5 s of stim−OFF

were Rk denotes the synchronization order parameter of the k-th
subpopulation (k ∈ {1, 2, . . . , Ns}) as determined by

Rk (t) exp [iΦk (t)] = N−1
k

∑Nk

j= 1
exp

[
iϕj (t)

]
(15)

with Nk = 49 the number of neurons within subpopulation k,
and ϕj(t) the linear approximation of the phase of neuron j in
subpopulation k at time t as determined by Equation (14). Using
this definition, we can determine the acute stimulation effect on
the k-th subpopulation by

1−
R
on
k

R
pre

k

(16)

and the acute after-effect on the k-th subpopulation by

1−
R
off

k

R
pre

k

(17)

A negative outcome indicates a synchronizing effect, a zero
outcome indicates that there is no acute stimulation effect
or after-effect, respectively, and a positive outcome means a
desynchronizing effect within the k-th subpopulation due to
application of that particular stimulation protocol.

Stimulus-Locked Phase Dynamics of a

Subpopulation
To shed more light on the mechanisms of the different
stimulation protocols and reveal, e.g., phase resetting or
entrainment processes, we investigate the stimulus-locked
dynamics on a mesoscopic scale. We do this by considering
subpopulations of neurons as given by their proximity to the
Ns = 4 different stimulation sites located at neuron indices
25, 75, 125, and 175. This implies that each subpopulation k
containsNk = N/Ns−1 = 49 neurons, since the subpopulations
are separated by a neuron which has an equal distance to the
stimulation sites in the two neighboring subpopulations, e.g., the
neuron at index 50 has the same distance to the stimulation site
at neuron index 25 as well as to the stimulation site at neuron
index 75 and is therefore excluded from subpopulation 1 as well
as from subpopulation 2. Themean phaseΦk(t) of subpopulation
k (k ∈ {1, 2, . . . , Ns}) is determined by Equation 15. We focus on
the distribution of the stimulus-locked phase dynamics within a
time window Wof 32ms before and up to 32ms after each of
the L stimulation onsets tn

k
(n = 1, .., L) for each subpopulation

k separately (Tass, 2003c)

{
8k

(
tnk + 1t

)
(mod 2π)

}
n=1,...,L

. (18)

These distributions of the stimulus-locked phase dynamics of a
subpopulation will be displayed in color plots as a function of
1t ∈ W. To quantify the amount of stimulus locking of the
phase dynamics of subpopulation k, we use the resetting index
Ek(t) (Tass, 2003c; see also Tallon-Baudry et al., 1996) as given by

Ek (1t) =
∣∣∣L−1

∑L

n=1
exp

[
iΦk(t

n
k + 1t)

]∣∣∣ . (19)

In case of a phase entrainment (a permanent stimulus-locking
of the phase dynamics) Ek(1t) results in a uniform distribution
throughout the window W = [−32 , +32] ms. For a stimulus-
induced phase reset, Ek(1t) will be small in the period before
stimulus onset (corresponding to a uniform phase distribution)
and will increase after stimulus onset, reflecting the emergence of
a unimodal phase distribution (Tallon-Baudry et al., 1996; Tass,
2003c). For a stimulus-locked disruption of a phase entrainment
the phase distribution will be unimodal before stimulus onset
and decrease due to stimulus onset. Since all our stimulation
protocols have the same ratio of ON: OFF cycles, namely 3:2,
we can split each set of the L stimulation onsets tn

k
(n = 1, .., L)

for each subpopulation k into three subsets. The first subset
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contains only the L/3 stimulation onsets tn
k
(n = 1, 4, .., L − 2)

within the first of the three consecutive ON-cycles, the second
one contains the L/3 stimulation onsets tn

k
(n = 2, 5, .., L − 1)

during the middle of each block of three consecutive ON-cycles
and the last subset contains the L/3 stimulation onsets tn

k
(n =

3, 6, .., L/3) within the third ON-cycle of each three consecutive
ON-cycles. By using these three subsets separately instead of the
three subsets together, the corresponding three resetting indices
can be determined in a similar way as in Equation 19. This
detailed analysis shows how the phase reset and entrainment
processes evolve depending on the rank order of the onset after
the OFF-cycles.

Statistics
To test whether an increase of the median of the eleven Cav or Rav
values obtained by stimulations with protocol A at stimulation
intensity KA compared to stimulation protocol B applied at KB

is statistically significant, we used the Matlab R2015a built-in
left-sided Wilcoxon rank sum test with significance level α: [p,
h] = ranksum(A,B, “alpha”,0.05, “tail,” “left,” “method,” “exact”).
This test is equivalent to the Mann-Whitney U-test. The built-in
right-sided Wilcoxon rank sum test tests if a decrease in medians
is statistically significant. In this study, we use significance level
α = 0.05 and nA = nB = 11 samples unless stated otherwise.

RESULTS

Acute Effects
In this section, we study the acute stimulation effects of the
different spatio-temporally patterned stimulation protocols at K
= 0.25 by comparing their effects on the connectivity as well as
the synchronization at the end of the stim-on period (t = 128 s).

External stimulation signals can change the network’s
connectivity (due to STDP) and the amount of synchronized
neuronal activity. The control signal (no-stim) has no influence
on the average synaptic weight, Cav (Figure 2A) and on the
synchronization of the population activity (shown by the order
parameter Rav in Figure 2B). For the same initial network
conditions the other stimulation signals applied at intensity K =

0.25 show an acute reduction of Cav as well as of Rav (see results
at t = 128 s in Figures 2A,B). Only the correlated multichannel
noisy stimulation (CMNS) results in an increase of Cav and
a small reduction of Rav. The boxplots in Figures 2C,D show
that these acute effects are representative for all 11 samples:
compared to the control signal all stimulation protocols induce a
statistically significant decrease of Cav and Rav, except the CMNS
which induces also a statistically significant decrease of Rav, but a
statistically significant increase of Cav (left-sided Wilcoxon rank
sum test with α = 0.05). The corresponding p-values are given in
Supplementary Table 1.

The CMNS-induced increase of Cav is the result of a
statistically significant increase of the average excitatory synaptic
weight cEE in combination with a statistically significant decrease
of the average inhibitory synaptic weight cII (see Figures 3A,B

for one set of initial network conditions and Figures 3C,D

for all 11 samples). The other stimulation protocols show an
opposite behavior: the combination of a statistically significant

decrease of cEE with a statistically significant increase of cII
(Figure 3) explains the statistically significant decreases of Cav

(Figure 2C).
According to the median of the unsorted connectivity

matrices induced by the control protocol (no-stim) there are
many strong excitatory (and inhibitory, respectively) synapses
without a spatial pattern in relation to the stimulation sites
at locations (25,25), (75,75), (125,125), and (175,175) (upper
panel of Figure 4A). Note, the excitatory (respectively inhibitory)
synapses have positive (respectively negative) values. The
corresponding IQRs show that there are large differences between
the synaptic weights induced by the different samples for almost
all synapses (bottom panel of Figure 4A). By first sorting for
each sample the cij(t = 128 s) values such that the strongest
synaptic weight between two neurons i and j is placed in the lower
right triangle and the weaker synaptic weight between those two
neurons i and j in the upper left triangle (see section Connectivity
for more details) and then determining the median and IQR,
it becomes clear that in general the control protocol results in
only one strong synapse (|cij|

∼= 1) between two neurons and
in the reverse direction the synaptic weight is approximately
zero (upper panel of Figure 4B). The corresponding IQR shows
that the (sorted) synaptic strengths are rather independent of
the actual sample (bottom panel of Figure 4B). So, the general
pattern is that due to the control signals the synaptic weights
between any two neurons are unidirectional (strong in one
direction, weak in the reverse direction). This is similar for the
synaptic weights at the beginning of the stim-on period (t = 0 s,
result not shown).

Figure 4C shows that if all Ns = 4 stimulation sites
are activated simultaneously and periodically (PPMS) more
bidirectional strong inhibitory synapses exist at the end of the
stim-on period and on the other hand some excitatory synapses
are bidirectional and weak. Differences between the results
induced by different samples are mainly found in the indices of
the neurons which have bidirectional strong inhibitory synapses
and in the indices of those neurons which have bidirectional weak
excitatory synapses (Figure 4C).

In case all Ns = 4 stimulation sites are simultaneously
stimulated in a noisy manner (CMNS), the median of the sorted
connectivity matrices shows that besides the induction of some
bidirectional strong excitatory synapses the median is similar
to the median of the control signals (Figures 4B,D). However,
the IQRs vary: compared to the no-stim condition (Figure 4B),
different samples with CMNS will induce bidirectional strong
excitatory synapses between different neuronal locations and
also the induced bidirectional weak inhibitory synapses differ in
locations (Figure 4D).

If the stimulation sites are not activated simultaneously
but sequentially and still noisy (UMNS) then the number of
unidirectional strong excitatory neurons decreases in such a
way that they exist between neighboring neurons and between
neurons nearby the stimulation sites, but not between more
distant neurons (Figure 4E). Further, all inhibitory synapses are
bidirectional and strong. Differences between samples are mainly
found in the size of the region with strong excitatory synapses
nearby the stimulation sites and between neighboring neurons
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FIGURE 2 | Acute and long-term effects depend on the stimulation protocol. (A) Stimulation effect on the connectivity on the population level. All stimulation protocols

induce a decrease of the average synaptic weight Cav, except the CMNS, which induces an increase during the stim-on period. This increase evolves to the initial

value after withdrawal of the stimulation. (B) Stimulation effect on the synchronization of the population activity. All stimulation protocols induce a decrease of the

amount of synchronization Rav, except the CMNS, which basically only causes fluctuations during the stim-on period. These fluctuations vanish after stimulation

withdrawal. In contrast, all other stimulation protocols cause a long-lasting desynchronization. All stimulation protocols are applied to the same initial network

conditions and with stimulation intensity K = 0.25 during the stim-on period (t = 0–128 s). The red horizontal bar represents the stim-on period. No stimulation signals

are delivered during the subsequent 128 s stim-off period. (C) Boxplots of Cav (t = 128 s) for different stimulation protocols show a statistically significant decrease

compared to the no-stim approach except for the CMNS, which induces an increase of Cav. (D) Boxplots of Rav (t = 128 s) show a statistically significantly

desynchronization induced by the different stimulation protocols compared to the control condition (no-stim). Eleven samples (different combinations of initial network

conditions and sequence orders) are used for each boxplot. The horizontal line within the box represents the median, the length of the box the IQR (middle 50%) and

the whiskers below and above the box the first and last 25%. Outliers are defined as 1.5 times the length of the box below or above the box and are represented by

open circles. P-values of the left-sided Wilcoxon rank sum test are given in Supplementary Table 1.

and in the occurrence of bidirectional strong excitatory synapses
nearby the stimulation sites (Figure 4E).

To some extent, RVS CR is similar to UMNS, but stimulation
onsets are equidistantly spaced at 0, 4, 8, or 12ms after onset of
the ON-cycle instead of at random time instances as for UMNS.
The median and IQR of the sorted connectivity matrices induced
by RVS CR (Figure 4F) is similar to the results induced by
UMNS. Small differences are obtained for the RVS CR compared
to the UMNS: the unidirectional strong excitatory neurons exist
in a smaller neighborhood of each neuron as well as of the
stimulation sites. These small differences are in agreement with
the decrease of excitatory synaptic weights in Figure 3C and with
the smaller Cav-values induced by RVS CR compared to those
induced by UMNS in Figure 2C.

The fixed CR activates the stimulation sites sequentially at 0,
4, 8, and 12ms after onset of the ON-cycle, while the sequence
does not change during the stim-on periods. This repetition
of sequence has several effects (compare Figures 4F,G). Most
prominent is the fact that due to the fixed CR (Figure 4G) the
neurons close to a stimulation site are not so strongly coupled
as in case of the RVS CR (Figure 4F). Furthermore, in general,
the neurons halfway between two stimulation sites are not

strongly coupled anymore with their direct neighbors. Due to the
repetition of the sequence strong excitatory couplings between
neurons surrounding two consecutively activated stimulation
sites remain present. For the eleven different samples (each with
another sequence), this leads to some large IQRs for couplings
between more distant excitatory synapses. By changing now and
then the sequence during the stim-on period (SVS CR), these
large IQRs between more distant excitatory neurons disappear
(Figure 4H).

In Figure 2D we have seen how the amount of
synchronization of the complete network Rav, changes under
influence of the different stimulation approaches at stimulation
intensity K = 0.25. On a mesoscopic level we investigate the
desynchronizing effect in the four subpopulations containing
Nk = 49 neurons near the stimulation sites. For each stimulation
protocol Figure 5A illustrates at K = 0.25 the distribution
of the Ns · n = 44 determined acute stimulation effects. All
stimulation approaches induce a statistically significant acute
stimulation effect whereby the weakest effect is induced by the
CMNS (right-sided Wilcoxon rank sum test, α = 0.05, n =

44; see Supplementary Table 2 for p-values). The order of the
stimulation protocols in having a stronger desynchronizing
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FIGURE 3 | CMNS induces reversed changes in average excitatory, respectively, inhibitory synaptic weights (cEE , respectively cII ) compared to other stimulation

protocols. All stimulation protocols, except the CMNS, show an acute and long-lasting decrease in excitatory synaptic weights (A) as well as an acute and long-lasting

increase in inhibitory synaptic weights (B) of the same network as studied in Figures 2A,B. CMNS induces an increase of the average excitatory synaptic weights and

a decrease of the average inhibitory synaptic weights. The red horizontal bar represents the stim-on period. Boxplots confirm the results for excitatory (C) as well as

for inhibitory synaptic weights (D) (11 samples). p-values of the left-sided Wilcoxon rank sum test are given in Supplementary Table 1. All stimulations are applied at

K = 0.25.

effect is clear for the macroscopic measure Rav: only RVS CR and
fixed CR have a similar effect on Rav. On the mesoscopic level
this order is slightly different: the PPMS turned out as good as
RVS CR, while fixed CR caused a better desynchronization of the
neuronal activity than RVS CR (compare Figures 2D, 5A; one-
sided Wilcoxon rank sum test with α = 0.05; see Supplementary
Table 1 respectively 2 for p-values corresponding by Figure 1D

respectively Figure 5A).
Figure 6 shows the raster plots and spike counts induced

by the different stimulation protocols (K = 0.25) for the same
samples as used in Figures 2A,B, 3A,B, 4 during the last
100ms of the stim-on period. Activating the stimulation sites
simultaneously does not cause a pronounced desynchronization
(compare the results for no-stim with K = 0.25 in Figures 6A,B).
A sequential random activation of the stimulation sites can
broaden the synchronized spike-volley (Figure 6C). RVS-CR
stimulation counteracts in-phase synchronization, typically by
causing cluster states, where the network forms several phase-
shifted (synchronized) subpopulations (see e.g., Figure 6D). A
more pronounced overall desynchronization is achieved by
means of the fixed CR stimulation and the SVS-CR stimulation
(e.g., Figures 6E,F).

The spike counts suggest that activating the stimulation sites
simultaneously can result in stronger synchronization of the
activity of the whole network, while sequential stimulation can
divide the network in several synchronized, but mutually phase-
shifted subpopulations, which in turn causes a pronounced

overall (i.e., close to uniform) desynchronization, as reflected
by Rav. Since each single stimulus synchronizes the nearby
neurons, while desynchronizing the entire neuronal network, on
a macroscopic scale the in-phase synchronization (and hence
Rav) may vanish, while the order parameters of the different
subpopulations may still attain high values. Put otherwise, the
acute stimulation effect will be weaker on the mesoscopic than
on the macroscopic level (e.g., for UMNS and RVS CR). For
the PPMS and the CMNS, which activate all stimulation sites

simultaneously, the order parameter of each subpopulation
represents the order parameter of the macroscopic network quite
well and, hence, the acute stimulation effect is comparable on the
mesoscopic and macroscopic level.

Our analysis continues on the mesoscopic level to study
the mechanisms by which the different stimulation protocols
influence the synchronization. For this we use the cross-trial
analysis, which investigates the subpopulations’ phases time-
locked to the corresponding stimulus onset, averaged over all
stimulus onsets of stimuli delivered to a particular subpopulation
during the stim-on period. For subpopulation 2 (comprising
neurons 51-99), Figures 7A–F show a clear difference between
the stimulation protocols with periodic delivery pattern, PPMS,
fixed CR and SVS CR, and those which have no strictly
periodic stimulus delivery pattern (CMNS, UMNS, and RVS
CR). The latter protocols cause phase resets of the stimulated
subpopulations: Before stimulus onset (for 1t < 0 m) the
phase distributions are close to uniform, whereas after stimulus
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FIGURE 4 | Small differences in stimulation protocols can result in very different connectivity patterns at the end of the stim-on period (t = 128 s). The median and IQR

of the eleven unsorted connectivity matrices are shown in color code for the control signals (no-stim) (A). The median and IQR of the eleven sorted connectivity

matrices are shown for no-stim (B), PPMS (C), CMNS (D), UMNS (E), RVS CR (F), fixed CR (G), and SVS CR (H). Negative values represent inhibitory synaptic

weights, positive values relate to excitatory synaptic weights. All stimulation signals are applied with intensity K = 0.25. (B–H) are sorted matrices as described in the

Methods section. The sorted matrices indicate whether or not a stimulation approach induces strong or weak bidirectional synapses and where the differences

between samples occur.

delivery a stereotypical restart of the subpopulation phase occurs,
which is reflected by the emergence of a pronounced peak
of the distribution (for 1t > 0 ms in Figures 7B–D). In
contrast, in case of the periodic stimulus patterns, PPMS, fixed
CR and SVS CR, a pronounced peak of the phase distribution
increasingly vanishes in the absence of stimulation (for 1t <

0 m) and re-occurs after stimulus delivery (for 1t > 0 ms)
(Figures 7A,E,F). The corresponding resetting indices E2(1t)
show that the non-periodic stimulation protocols induce a phase
reset (Figures 7B–D): Following stimulus onset, the initially
quite homogeneously distributed subpopulation phase turns into
a unimodal phase distribution. In contrast, for the periodic

stimulation protocols, the resetting indices display a completely
different time course: Starting at a large value, they first decrease,
then re-increase due to the first stimulus (at 1t = 0 ms) and
further increase due to the subsequent stimulus (1t ∼ 16 ms)
(Figures 7A,E,F). More precisely, at 1t ∼ 16 ms in only 2/3
of all stimulation onsets there is indeed a stimulation, since the
third ON-cycle of each block of three consecutive ON-cycles is
not directly followed by an ON-cycle but instead by two OFF-
cycles. This implies that after three activations of the stimulation
site within the subpopulation with an inter-stimulus-interval
of 16ms, the next inter-stimulus-interval is equal to 48ms.
Accordingly, by sorting the stimulation onsets according to their
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FIGURE 5 | Most stimulation protocols induce acute stimulation- and acute after-effects. Boxplots show the distributions of the acute stimulation-effect (A) and the

acute after-effect (B) induced in all subpopulations of the eleven networks by the different stimulation protocols (n = 44 samples). Acute stimulation effects are

determined by Equation (16), acute after-effects by Equation (17). Statistically significantly stronger effects are determined by the right-sided Wilcoxon rank sum test

with significance level α = 0.05 (see for p-values Supplementary Table 2). All stimulations are applied at K = 0.25.

order in the blocks of three consecutive ON-cycles, reveals the
effect of the different stimuli. The first of the three stimuli
destroys most of the phase entrainment which is present during
the OFF-cycles and then builds up the entrainment up to a lower
level than the initial entrainment (Figure 7G). The second of the
three stimuli further increases the extent of phase entrainment
(Figure 7H), and the third stimulus finally increases the phase
entrainment to the initial level (Figure 7I). The maximum values
of the resetting indices of the periodic stimulation protocols
increase within a block of three consecutive stimuli (i.e., ON-
cycles) from one stimulus to the subsequent one, indicating a
further increase of the phase entrainment between stimulated
subpopulation and corresponding stimulus train (compare the
maxima in Figures 7G–I). Accordingly, the effect of the three
consecutive periodic stimuli on the phase builds up within each
block. In contrast, each subsequent non-periodic stimulus causes
a new phase reset (Figures 7G–I).

Sequential stimulation patterns (UMNS, RVS CR, fixed CR,
SVS CR) cause a more pronounced reduction of synchrony
and the mean synaptic weight on the network level (Figure 2)
as well as on the subpopulation level (Figures 3, 5) compared
to simultaneous stimulation patterns (PPMS, CMNS). On the
level of the individual neurons the sequential stimulation
patterns induce strong bidirectional inhibitory synapses and
subpopulations with strong unidirectional excitatory coupling
of the neurons near the stimulation sites, whereas the
simultaneous stimulation protocols only induce some strong
bidirectional inhibitory synapses and no spatial pattern of
the strong unidirectional excitatory synaptic weights (compare
Figures 4E–H with Figures 4C,D).

Another important aspect refers to the sequential
arrangement of stimulation sequences. Repeating a sequence
many times in a row (by fixed CR or SVS CR) causes a more
pronounced reduction of Cav than random variations of
the sequences (by UMNS or RVS CR) (Figure 2). Sufficient

repetition of stimulation sequences results in a stronger
reduction of cEE (Figure 3) caused by the fact that less neurons
are coupled within a subpopulation around each stimulation
site together with a weaker synaptic strength for those who are
coupled (Figure 4G,H compared with Figures 4E,F). Although
on the network level no clear difference in the amount of
desynchronization is observed (RVS CR and fixed CR induced
similar Cav –values; Figure 2D), on the subpopulation level the
repetitive sequences induce a stronger acute stimulation effect
(Figure 5). This suggests that different mechanisms of action
may cause different types of macroscopic desynchronization:
desynchronization between subpopulations which themselves
can still be highly synchronized as opposed to a more overall,
uniform desynchronization, affecting the subpopulations as
well. According to the raster plots in Figure 6, a more uniform
desynchronization is typically observed as a result of repetitive
sequence CR (fixed CR and SVS CR). Figure 7 shows that on
the subpopulation level there is an entrainment between the
stimulation signal and the subpopulation activity in the networks
exposed to repetitive sequence CR. In contrast, phase resets are
the salient mechanism of those CR variants without sequence
repetition.

Intriguingly, all stimulation protocols except the CMNS
protocol induce a decrease of cEE and an increase in cII
compared to the no-stim protocol (Figure 3). In contrast,
the CMNS protocol induces exactly the opposite (Figure 3),
resulting in an increase of Cav, in contrast to all other active
stimulation protocols (Figure 2C). Since also the median of
the sorted connectivity matrix induced by CMNS is similar to
the one of the control (no-stim) signal and not for the other
stimulation protocols (Figures 4B,D), the CMNS seems to be
the best candidate for a sham stimulation protocol for sensory
CR stimulation. While the stimulation shares some perceptual
features with CR stimulation, the acute effects of CMNS on
connectivity and desynchronization are minimal.
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FIGURE 6 | Raster plots and spike counts at the end of the stim-on period (t = 128 s) show that sequential stimulation causes a desynchronization, whereas

simultaneous stimulation may even increase synchronization. (A) Raster plot and spike count (spikes/ms) of the last 100ms of the 128 s stim-on period of the PPMS

stimulation applied at K = 0.25 (blue dots) and the control signal (no-stim; K = 0.0, cyan dots). Each dot in the raster plot represents the spike time of the

corresponding neuron. Each red diamond shows the stimulation onset of the corresponding stimulation site. Spike counts for the last 100ms of the stim-on period

show how many neurons fire within each time interval of 1ms. (B–F) as (A) for CMNS (B), UMNS (C), RVS CR (D), fixed CR (E), and SVS CR (F).

Long-Term Effects
It is a key goal for non-invasive neuromodulation techniques to
cause long-lasting, sustained effects that persist after cessation
of stimulation. Sufficiently pronounced long-lasting effects may
open up the possibility to deliver stimulation only regularly or
occasionally e.g., for a few hours only, to maintain substantial
relief. Therefore, we are particularly interested in the effects of the
different stimulation protocols after withdrawal of stimulation.
In this section, we study these long-term effects at the end of
the stim-off period (t = 256 s) unless stated otherwise. Again, the
stimulations during the stim-on period were applied at intensity
K = 0.25.

For the same initial network configuration, a stimulation
epoch of duration t = 128 s can have different acute and long-
term effects on the average synaptic weight Cav, depending on the
stimulation protocol selected (Figure 2A). To focus on the long-
term effects, the distributions of the Cav (t = 256 s) at the end
of the stim-off period are shown in Figure 8A for the different
stimulation protocols. The SVS CR protocol induces the greatest

reduction ofCav (t= 256 s), while the CMNS induces even a small
increase. These long-term effects (Figure 8A) are qualitatively
comparable with the acute effects (Figure 2A) and statistically
significant. None of the stimulation protocols induces Cav effects
statistically equivalent to the no-stim protocol. However, CMNS
induces Rav (t = 256 s) values similar to the control signal
(no-stim) (Figure 8B), and there are no statistically significant
differences. In contrast, the SVS CR stimulation induces the
smallest Rav values at t = 128 s (acute effect; Figure 2B) as well as
at t = 256 s (long-term effect; Figure 8B). Therefore, the CMNS
protocol turns out to be the best candidate for sham stimulation.
The p-values obtained by the left-sided Wilcoxon rank sum tests
for the long-term effects as shown in Figures 8A–D are given in
Supplementary Table 3.

The strongest Cav is induced by the CMNS protocol
(Figure 8A) and can be disentangled in the strongest average
excitatory synaptic weight cEE of the tested protocols (Figure 8C)
in combination with the weakest inhibitory synaptic weight cII of
the tested protocols (Figure 8D). The weakest Cav as shown in
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FIGURE 7 | Periodic stimulus repetition results in an entrainment of the mean phase of the subpopulation by the stimulation signal, whereas varying

inter-stimulus-intervals cause phase resets. Cross-trial distributions of the mean phase of subpopulation 2 (neurons 51–99) Φ2(1t), averaged across the 4,800

stimulation onsets of subpopulation 2 within a time window locked to the corresponding stimulus onsets for PPMS (A), CMNS (B), UMNS (C), RVS CR (D), fixed CR

(E), and SVS CR (F) are color coded with a minimum of zero (blue) and a maximum value (in red) of 404 (A), 145 (B), 117 (C), 114 (D), 238 (E), and 192 (F). The

resetting index of subpopulation 2, E2, is shown by a white curve superimposed to each phase distribution diagram. The resetting index is also calculated for the

distributions of Φ2(1t), averaged across the 1,600 stimulation onsets within the first (G), the second (H), and the third (I) of the three consecutive ON-cycles for the

different stimulation protocols. K = 0.25 for all panels.

Figure 8A is induced by the SVS CR stimulation protocol and is
a combination of the weakest cEE (Figure 8C) and the strongest
cII (Figure 8D) of the tested protocols. In general, a weaker Cav

value obtained by a particular stimulation protocol compared to
another protocol can be explained by a significantly reduced cEE
and increased cII of the first stimulation protocol except for the
comparison between fixed CR and SVS CR. These two protocols
induce a similar cII and thus only the stronger reduced cEE
induced by the SVS CR stimulation contributes to the smaller Cav

value compared to the fixed CR stimulation (Figures 8A,C,D).
Comparing the medians and IQRs of the unsorted

connectivity matrices at t = 256 s (long-term effect) for
CMNS (Figure 9A) with those for the no-stim protocol at
t = 128 s (Figure 4A) show similar patterns. Note that the

patterns do not change for the no-stim protocol at different
times e.g., at t = 0 or 256 s (results not shown). At the end of the
stim-off period the medians and IQRs of the sorted connectivity
matrices of CMNS (Figure 9D) and of the no-stim protocol
(Figure 9B) look also similar and are comparable to those of the
no-stim protocol at the end of the stim-on period (Figure 4B):
strong unidirectional synaptic connections, with only a very
small difference between the sorted connectivity matrices of
different samples. Compared to the acute effect induced by
CMNS (Figure 4D) the network has lost its strong bidirectional
excitatory synapses during the stim-off period (Figure 9D) for
all samples.

In case the stimulation onsets of the simultaneous stimulation
patterns are not random as for CMNS but periodic (PPMS),
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FIGURE 8 | Long-lasting anti-kindling effects for different stimulation protocols. (A) Boxplots of Cav (t = 256 s) for different stimulation protocols show a statistically

significant decrease compared to the control condition (no-stim) for the stimulation protocols with sequential activation of the four stimulation sites. In contrast, CMNS

causes no decrease of Cav . (B) Boxplots of Rav (t = 256 s) show a statistically significant desynchronization induced by the different stimulation protocols compared

to the control signal (no-stim) except for the inert CMNS. All stimulation protocols, except CMNS, induce a long-lasting decrease in the average excitatory synaptic

weight cEE (C) and a long-lasting increase in the average inhibitory synaptic weight cII (D). Each boxplot represents the results of 11 samples. The horizontal line

within the box represents the median, the length of the box the IQR (middle 50%), whereas the whiskers below and above the box indicate the first and last 25%.

Outliers are defined as 1.5 times the length of the box below or above the box and are represented by open circles. p-values of the left-sided Wilcoxon rank sum test

are given in Supplementary Table 3. K = 0.25 for all panels.

bidirectional strong inhibitory synapses exist at the end of the
stim-off period and most excitatory synapses are unidirectional
and strong, while some of them are bidirectional and weak
(Figure 9C). Indices of the neurons which have bidirectional
strong inhibitory synapses or bidirectional weak excitatory

synapses can differ for other samples (Figure 9C).
For the CR protocols, the medians of the sorted connectivity

matrices have lost their connectivity patterns of the short-
range excitatory synapses during the stim-off period (compare
Figures 9E–H with Figures 4E–H). Mainly the CR protocols
without repetition (Figures 9E,F) show a loss of some
bidirectional strong inhibitory synapses, which were formed
during the stim-on period (Figures 4E,F). For the CR protocols
the IQRs of the sorted connectivity matrices are different at the
end of the stim-off period compared with those at the end of the
stim-on period (compare the bottom panels of Figures 9E–H
with those of Figures 4E–H): at the end of the stim-off period
large IQR are not only found for the strongest synapse between
neighboring neurons (diagonals) or nearby stimulation sites, but
without a clear spatial pattern in the lower right triangle large
IQRs can be found for the excitatory synapses and in the upper
left triangle for the inhibitory synapses influenced mainly by
UMNS or RVS CR (bottom panels of Figures 9E–H) .

Although on the macroscopic neural network level there is
no significant difference between the desynchronization induced

by the CMNS and by the no-stim protocol (Figure 8B), on the
subpopulation level, there is a statistically significant acute after-
effect (Figure 5B): An increase in the amount of synchronization
is induced by CMNS. All other stimulation protocols have
a stronger desynchronizing effect than the no-stim protocol,

whereby the acute after-effects of the RVS, fixed and SVS
CR are increased compared to their acute stimulation effects
(Figures 5A,B). These increases are statistically significant (see
Supplementary Table 2 for the p-values of the right-sided
Wilcoxon rank sum test with significance level α = 0.05).

Accordingly, we conclude that sequential activation of the
stimulation sites also induces more pronounced long-term anti-
kindling effects except for UMNS, which tends to induce better
long-term anti-kindling effects than PPMS, but the improved
medians are not statistically significant (network level see
Figures 8A,B; subpopulation level see Figures 5B, 8C,D). At the
end of the stim-off period the results induced by consecutively
repeating each sequence many times (fixed CR and SVS CR) are
still better than without repetition (UMNS and RVS CR) on the
network level (Figures 8A,B), as well as on the subpopulation
level (Figures 8C,D for the connectivity; Figure 5B for the
desynchronizing effect).

Even at the end of the stim-off period the CMNS protocol
results in the strongest cEE and the weakest cII , and therefore
gives rise to the largest Cav value of all stimulation protocols
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FIGURE 9 | Sorted connectivity matrices at the end of the stim-off period (t = 256 s) differ from the control signal (no-stim) except for the CMNS protocol. (A) The

median and IQR of the 11 unsorted connectivity matrices induced by the CMNS stimulation protocol are shown in color code. Negative values represent inhibitory

synaptic weights, positive values excitatory ones. The median and IQR of the 11 sorted coupling matrices are color coded as in (A) for the control signal (no-stim) (B),

PPMS (C), CMNS (D), UMNS (E), RVS CR (F), fixed CR (G), and SVS CR (H). All stimulation signals are applied with intensity K = 0.25. (B–H) are sorted matrices as

described in the Methods section.

(Figures 8A,C,D). The long-term Rav shows no difference with
the control signals (no-stim; Figure 8B), but it does show a
synchronizing effect on the subpopulation level, which implies
that within the subpopulations the amount of synchronization
has increased compared to the beginning of the stim-on period
(Figure 5B). Despite these small differences the median and IQR
of the sorted connectivity matrices induced by the no-stim and
CMNS protocols appear to be similar. From all the investigated
stimulation protocols at K = 0.25 the CMNS protocol turns
out to be the one which induces the most similar results as the
control signal (no-stim), despite small but statistically significant
differences.

Robustness Against Stimulation Intensity
In this section, we investigate acute and long-term effects elicited
by stimulation intensities weaker than K = 0.25. From the
previous sections, we can conclude that a small difference in
stimulation protocols might result in completely different acute
as well as long-term effects. For instance, the simultaneous
and noisy stimulation (CMNS) does not decrease Cav as the
simultaneous and period stimulation (PPMS) does. By the
same token, at weaker intensities (K = 0.10, 0.15, and 0.20)
PPMS induces statistically significantly smaller values of Cav

and Rav values than CMNS (Figures 10A,B). See Supplementary
Tables 1, 3, 5–7 for the corresponding p-values of the left-sided
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Wilcoxon rank sum test with significance level α = 0.05. The
basic difference in the stimulation protocol feature between
UMNS and fixed CR is the same as between PPMS and CMNS,
namely noise or periodic stimulation. By comparing the p-
values for the UMNS and the fixed CR it follows that for K
= 0.10 UMNS induces smaller Cav and Rav values than fixed
CR (Supplementary Table 5), but for K = 0.25 it is just the
other way around (Supplementary Tables 1,3). Since for the
investigated K-range PPMS always induces smaller Cav and Rav
values than the CMNS, we can only conclude that the effect of
noise stimulation also depends on how the stimulation sites are
activated: simultaneously or sequentially. In case of sequential
stimulation it depends strongly on K.

Fixed CR and SVS CR differ in the number of different
sequences applied to the network. For fixed CR one sequence
is applied 4,800 time during the on-period, whereas for SVS CR
each sequence is applied 100 times before the next sequence is
applied. For weak stimulation intensities up to K = 0.15 there is
no difference in the anti-kindling effects. In contrast, at higher
intensities changing the sequence from time to time, as for SVS
CR, decreases the Cav and Rav values even more (Figures 10E,F)
than the fixed CR does.

Cross-trial analysis shows that already for K = 0.10 a weak
phase reset is observed for CMNS, UMNS, and RVS CR and a
weak entrainment followed by a stimulus-locked disruption of
the weak phase entrainment for PPMS, fixed CR, and SVS CR
(Figure 11). Increasing the intensity also increases the amount
of entrainment as well as the strength of the phase reset (e.g.,
Figures 11A,D,G). During the first ON-cycle, PPMS, fixed CR
as well as SVS CR stimulation destroy the entrainment of the
subpopulation phase-dynamics with the stimulation signal in the
entire investigated K-range. During the second ON-cycle, this
entrainment is partly recovered by the stimulation except for
stimulations at K = 0.15. In the latter case the entrainment is
destroyed even further. During the third ON-cycle entrainment
is restored in the entire K-range (K ∈ {0.10; 0.15; 0.20; 0.25}),
where the amount of entrainment increases with increasing K.
The phase rest seems to increase slightly from the first to the
second and, finally, to the third ON-cycle, but clearly increases
with increasing K (K ∈ {0.10; 0.15; 0.20; 0.25}).

DISCUSSION

We studied acute and long-lasting effects of six different
stimulation protocols and compared the observed effects on a
plastic neural network with a no-stimulation control condition.
While sharing the same average rate of stimuli per channel, the
tested stimulation protocols differ with respect to their amount of
periodicity as opposed to randomness, both between ON-cycles
and between stimulation sites. One of the tested stimulation
protocols, CMNS, turned out not to induce desynchronization.
In fact, comparing CMNS with the no-stimulation control
condition showed that CMNS is nearly inert. More precisely,
during stimulation (Figure 2), CMNS caused a significant
increase of the strength of the mean synaptic connectivity by 49%
compared to the no-stimulation control condition. Intriguingly,

during CMNS the overall synchrony nevertheless was 8% smaller
than for the no-stimulation control. Remarkably, there was
hardly any long-term post-stimulation effect of CMNS compared
to the no-stimulation control condition (Figure 8): While the
mean synaptic weight increased significantly, but only slightly
by 7%, the spontaneous (i.e., stimulation-free) synchronization
did not significantly differ between the CMNS and the no-
stimulation condition. Whether a slight, but significant increase
of the mean synaptic weight might be relevant in a non-
spontaneous context, where the network is, e.g., subjected to
other types of stimuli, remains to be tested. Ultimately, clinical
studies will provide the necessary tests.

In this study, we have shown that stimulation protocols,
that differ by just one, putatively minor feature, may cause
massively different anti-kindling effects, robustly over a range
of stimulation intensities as well as for different samples at the
end of the stim-on period and also at the end of the stim-
off period (see e.g., Figure 10). Stimulating simultaneously or
sequentially has a big influence on the synchronization and
connectivity of the network at all levels (e.g., compare CMNS
vs. UMNS in Figures 2C,D, 3C,D, 4D,E, 5, 6B,C, 8, 9D,E, 10).
Another influential feature of some stimulation protocols is
repetition (compare e.g., PPMS vs. CMNS or RVS vs. fixed
CR), which goes along with a different dynamical stimulation
mechanism: entrainment caused by repetition vs. phase reset
otherwise (Figures 7, 10). In this study, we restricted ourselves
to cycle durations of 16ms, which is slightly above the intrinsic
firing period of the individual neurons (14ms). For a more
pronounced mismatch of ON-cycle duration and firing periods,
stimulus-locked entrainment of subpopulations may probably
become more difficult if not completely impossible. Another
drawback of the SVS and fixed CR is that they have to be
applied at slightly stronger intensities than UMNS and RVS to be
effective. However, SVS and fixed CR may, in principle, induce
more pronounced long-term anti-kindling effects than UMNS
and RVS CR (see e.g., Figures 8A,B).

Compared to all stimulation protocols tested in this study, the
anti-kindling effects induced by the CMNS protocol are most
similar to the control (i.e., no-stim) protocol (Figures 2C,D,
3C,D, 4D,E, 5, 6B,C, 8, 9D,E, 10), although the similarity
is not always statistically significant. The CMNS protocol is
also the only protocol which induced opposite effects on the
connectivity, both on the network as well as subpopulation level,
compared to all other active protocols (Figures 3, 8). Although
the implementation of the stimulation in the model used here is
for sensory stimulation, we expect similar results for electrical
stimulation. For comparison between electrical and sensory
stimulation effects and their qualitative similarities in our model,
see Popovych and Tass (2012).

In addition, we also performed simulations which extended
the finished trials with the CMNS protocol (K = 0.20) by adding
a second, additional 128 s lasting stim-on period at t = 256 s
with the RVS CR protocol as well as with the SVS CR protocol,
each at K = 0.20. Anti-kindling effects induced at t = 384 s
(i.e., at the end of the second stim-on period) as well as at t =
512 s (the end of the second stim-off period) were statistically
significantly similar with the anti-kindling effects at t = 128 s
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FIGURE 10 | Boxplots of Cav and Rav show the effect of one difference between stimulus signal features. (A,B) PPMS and CMNS differ in the time between two

consecutive stimulation onsets: PPMS has a constant period of 16ms in consecutive ON-cycles, whereas CMNS has changing periods between stimulation onsets.

The induced anti-kindling effects induced by PPMS are better than those induced by CMNS at the end of the stim-on period (A) as well as at the end of the stim-off

period (B). (C,D) For UMNS stimulation onsets are random and uncorrelated between different sites, whereas for RVS CR they are restricted to only four equidistant

moments within the ON-cycle. RVS CR induces a stronger reduction of Cav and Rav than UMNS for most K-values at t = 128 s (C) as well as at t = 2 56 s (D). (E,F)

Fixed CR applies the same sequence during the stim-on period, whereas SVS CR randomly draws a new sequence after 100 consecutive repetitions of a sequence.

For K = 0.10 and K = 0.15 there are no statistically significant differences in the distributions of Cav and Rav at t = 128 s (E) and t = 256 s (F). However for K = 0.15

and K = 0.20 SVS CR reduces the medians and IQRs of Cav and Rav more than the fixed CR does. Each boxplots represents eleven samples. p-values of the

left-sided Wilcoxon rank sum test are given in Supplementary Tables 1, 3, 5–7.

(the end of the first and only stim-on period) and t = 256 s (the
end of the first and only stim-off period) for the RVS and SVS
CR only protocols applied during only one stim-on period as
shown in Figures 10C–F (data not shown). Accordingly, from
a computational standpoint there is no reason to assume that
application of CMNS sham stimulation might render subsequent
delivery of RVS or SVS CR stimulation ineffective.

Apart from the stimulation-related aspects, our findings
are relevant with respect to the assessment of changes of
synchronization and synaptic connectivity patterns and their
mutual interrelation. Although the macroscopic measures Cav

and Rav were often strongly correlated, an increase in Cav

did not necessarily imply an increase in Rav. For example, in
Supplementary Table 4, we show that for the CMNS protocol
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FIGURE 11 | Maximum of the resetting index E2 increases with stimulation intensity K. (A) The resetting index within a window around the stimulus onset of the first

ON-cycles of the three consecutive ON-cycles (in total 1,600 first ON-cycles) for different stimulation protocols at K = 0.10. (B) as (A) for the second of the three

consecutive ON-cycles. (C) as (A) for the third of the three consecutive ON-cycles. (D) as (A) for K = 0.15. (E) as (B) for K = 0.15. (F) as (C) for K = 0.15. (G) as (A)

for K = 0.20. (H) as (B) for K = 0.20. (I) as (C) for K = 0.20. The RVS and SVS CR results are shown by a dashed curve to improve visibility of the UMNS and fixed

CR results.

applied at K = 0.25 during the stim-off period a statistically
significant decrease in Cav is combined with a statistically
significant increase in Rav. Accordingly, it is not sufficient
to exclusively monitor the connectivity in our model. Rather,
we also have to determine the amount of synchronization.
By a similar token, comparable amounts of macroscopic
synchronization/desynchronization, as assessed by the order
parameter, may differ on the mesoscopic, i.e., subpopulation level
(see e.g., Figure 7). Accordingly, there is not just one type of (e.g.,
uniform) desynchronization. In summary, the analysis of both
synchrony and synaptic connectivity on macroscopic as well as
mesoscopic network levels may further the development of both
active and inactive (sham) stimulation protocols.

In the field of drug development, a placebo treatment is
realized by delivering a substance with no active therapeutic
effect (Friedman et al., 2015). Accordingly, placebo effects can, for
instance, be assessed with a parallel group design by comparing

a placebo group with a natural history (i.e., no-treatment) group
(Wager and Atlas, 2015). According to our computational results,
CMNS is a promising candidate for a sham (i.e., inactive)
stimulation protocol in the field of desynchronizing multi-
channel stimulation. In the present study, we did not aim at
developing a biophysical, microscopic model. Rather, we used a
minimal model, equipped with robust spontaneous multistable
dynamics, comprising synchronized and desynchronized states,
that served as testbed for different stimulation protocols to
generate first and experimentally testable hypotheses. By a similar
token, several previous computational studies in the field of
CR stimulation were carried out in minimal models and led to
a number of clinically significant predictions, e.g., concerning
cumulative effects and stimulation intensity (Hauptmann and
Tass, 2009; Lysyansky et al., 2011), that were verified in pre-
clinical and clinical studies (Tass et al., 2012b; Adamchic et al.,
2014; Wang et al., 2016). In the same manner, the present
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computational study yields the testable hypothesis that CMNS
might serve as sham stimulation protocol. Accordingly, the
effects of CMNS should be tested in pre-clinical and, in particular,
in clinical studies in order to disentangle CMNS effects from
placebo effects in the best possible way. For instance, in a
phase 1 (first in man) study feasibility and tolerability could be
tested. In addition, in a phase 2 study an assessment of effects
should be performed, possibly in comparison to a no-stimulation
control and/or an active control group. Obviously, this adds to
the complexity of the clinical development of neuromodulation
treatments.

Furthermore, CMNS may be useful in clinical studies
focusing on revealing predictive EEG markers for optimizing
stimulation parameters of desynchronizing neuromodulation
interventions, see Adamchic et al (2017). CMNS does
neither cause substantial acute nor long-lasting effects.
Nevertheless, CMNS might have unspecific EEG effects,
e.g., on brain rhythms and/or brain areas less important to
the disease related network dynamics. In this way, CMNS
might help to separate EEG responses related to core
stimulation effects from concomitant EEG responses. In
addition, CMNS may also be helpful in pre-clinical studies to
elucidate mechanisms by which stimulation protocols cause
a desynchronization. Furthermore, CMNS might also help to
reveal mechanisms that might be related to, but go beyond
desynchronization, such as therapeutic rewiring (Tass and
Majtanik, 2006) or neuroprotective effects (Musacchio et al.,
2017).

Wherever appropriate and possible, sham procedures and
double-blind protocols should be developed to scrutinize
specific effects of neuromodulation interventions by adequate
clinical trials and rule out placebo effects. However,
placebo effects should not just be considered as a nuisance,
requiring cumbersome clinical study protocols. Rather, the
mechanisms underlying different placebo effects (Benedetti
et al., 2011) could actually be specifically exploited to
better neuromodulation techniques. For instance, similar to
conditioned immunomodulation (Metal’nikov and Chorine,
1926; Ader and Cohen, 1975; Ader, 2003), one could condition
specific desynchronization stimulation delivered invasively and
causing long-lasting effects with unspecific non-invasive, sensory
stimuli (Tass, 2011).

For the clinical implementation of multichannel sham
stimulation protocols, one should take into account possible
side effects related to the technical generation of the stimuli.
For instance, in the field of transcranial magnetic stimulation
(TMS) the current gold standard for sham TMS appears to be
the use of a shielded coil, generating characteristic stimulus-
related auditory stimuli, but no magnetic brain stimuli, together
with surface electrodes for skin stimulation, mimicking magnetic
skin stimulation (Duecker and Sack, 2015). Intriguingly, sham
TMS may have specific side effects (Duecker and Sack, 2013,
2015). Obviously, TMS is not just a purely magnetic stimulation
modality, but may constitute a compound stimulation approach
which may cause specific effects caused by stimuli of different

modality (Duecker and Sack, 2013, 2015). For the clinical
development of multichannel sham stimulation protocols such
aspects might be relevant, for instance, when vibrotactile
mulitchannel stimulation causes auditory and possibly other
sensory side effects.

This computational study is a first step for the development of
a sham stimulation protocol for multichannel desynchronizing
stimulation techniques. For comparison, for the development
of CR stimulation, in computational studies predominantly
minimal models were used (Tass, 2003a,b; Tass and Majtanik,
2006; Hauptmann and Tass, 2007, 2009; Lysyansky et al., 2011;
Popovych and Tass, 2012; Zeitler and Tass, 2015, 2016), as
opposed to biophysically realistic models (Ebert et al., 2014).
These computational studies revealed non-trivial predictions,
e.g., concerning the emergence of long-lasting, sustained (Tass
and Majtanik, 2006) as well as cumulative (Hauptmann and Tass,
2009) effects and concerning the amplitude of the stimulation
amplitude (Lysyansky et al., 2011). These predictions were
verified in pre-clinical (Tass et al., 2012b; Wang et al., 2016)
and clinical studies (Tass et al., 2012a; Adamchic et al., 2014;
Syrkin-Nikolau et al., 2018). The computational predictions were
used as hypotheses for the design of the corresponding study
protocols. Analogously, the development of sham stimulation
protocols requires a combined effort, comprising computational,
pre-clinical, and clinical studies. The effect of a sham stimulation
protocol may depend on the type of the stimulated neurons,
the target area of the stimulation and the mechanism of the
stimulation. Accordingly, future studies should also use other
neuronal network models, e.g., network of FitzHugh-Rinzel
bursting neurons (Rinzel, 1987; Izhikevich, 2001). By the same
token, sham stimulation should ideally be inactive also in the
presence of additional features and mechanisms, such as synaptic
noise (Destexhe et al., 2003), propagation delays (Madadi Asl
et al., 2017) as well for different stimulation mechanisms, e.g.,
excitatory vs. inhibitory stimulation (Popovych and Tass, 2012).
Hence, future computational studies should take into account
these refinements, too.
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Communication Engineering, Hangzhou Dianzi University, Hangzhou, China

For both the acquisition of mobile electrocardiogram (ECG) devices and early warning

and diagnosis of clinical work, high-quality ECG signals is particularly important. We

describe an effective system which could be deployed as a stand-alone signal quality

assessment algorithm for vetting the quality of ECG signals. The proposed ECG quality

assessment method is based on the simple heuristic fusion and fuzzy comprehensive

evaluation of the SQIs. This method includes two modules, i.e., the quantification and

extraction of Signal Quality Indexes (SQIs) for different features, intelligent assessment

and classification. First, simple heuristic fusion is executed to extract SQIs and determine

the following SQIs: R peak detectionmatch qSQI, QRSwave power spectrum distribution

pSQI, kurtosis kSQI, and baseline relative power basSQI. Then, combined with

Cauchy distribution, rectangular distribution and trapezoidal distribution, themembership

function of SQIs was quantified, and the fuzzy vector was established. The bounded

operator was selected for fuzzy synthesis, and the weighted membership function was

used to perform the assessment and classification. The performance of the proposed

method was tested on the database from Physionet ECG database, with an accuracy

(Acc) of 97.67%, sensitivity (Se) of 96.33% and specificity (Sp) of 98.33% on the

training set. Testing against the test datasets resulted in scores of 94.67, 90.33, and

93.00%, respectively. There’s no gold standard exists for determining the quality of ECGs.

However, the proposed algorithm discriminates between high- and poor-quality ECGs,

which could aid in ECG acquisition for mobile ECG devices, early clinical diagnosis and

early warning.

Keywords: electrocardiogram(ECG), quality assessment, signal quality indexes (SQIs), heuristic fusion, fuzzy

comprehensive evaluation
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INTRODUCTION

With the wide application of mobile ECG in the fields of
financial safety, security monitoring, medical insurance, and
data confidentiality, ECG recording devices are not limited to
professional training staff.

From the perspective of mobile ECG collection, most of the
available ECG recording devices lack real-time feedback about
the signal quality. Thus, it is difficult for non-professionals to
collect high-quality ECG signals. The mobile recorders record
the ECG in normal lifestyle condition. So there is movement
of the recorders electrodes (Clifford et al., 2006). The existence
of noise prevents the accurate detection of important clinical
characteristics, thus reducing the quality of the ECG signal
(Tob’on and Falk, 2015).

Regarding the clinical application of ECG signals, an
ECG signal contains abundant physiological and pathological
information, which can help clinical staff observe the early
warnings of diseases and make a diagnosis. For instance, for the
diagnosis of cardiovascular disease (World Health Organization,
2016), the high costs of primary health care make follow-
up treatment unaffordable. To circumvent this problem, many
countries transmit real-time ECG data recorded by patients
to clinical experts to diagnose patients. In addition to the
professional judgment of clinical experts, the accuracy of remote
diagnosis should reduce the number of low-quality ECGs sent to
experts, so we need to determine whether the quality of recorded
ECGs is sufficient. In addition, in the ICU early warning system,
the high false positive rate of monitors is caused by noise and
data loss (Lawless, 1994). A survey demonstrated that only 10%
of the alerts are related to treatment (Allen and Murray, 1996;
Chambrin et al., 1999), which increases the workload of ICU staff
and ultimately desensitize them.

Therefore, establishing a suitable assessment mechanism that
divides the signal results into several different levels is particularly
important.

The technology for signal quality assessment is gradually
emerging. Currently, numerous research reports regarding
quality assessment technology for ECG signals are available.
However, the gold standard of ECG quality has not been
evaluated to date. According to the existing research results,
the research ideas for evaluation methods of ECG signal quality
can be roughly divided into the following four methods: the
waveform shape of the time domain signal, the characteristics
of each frequency band of the frequency domain signal, signal
quality characteristics extracted using the nonlinear tool, and
signal quality parameters.

In this paper, we discuss the correlation between ECG signal
quality and noise and ECG waveform characteristics to obtain
accurate assessment results using simple rules and complex
classification techniques. Our method of assessing ECG quality
is divided into two steps:

Step1: Feature Extraction
Based on the noise characteristics and ECG waveform features,
six quality assessment parameters are extracted and quantified:
the matching degree of R peak detection, power spectrum

distribution of QRS wave, variability in the R-R interval, kurtosis,
skewness, and baseline relative power. The advantages and
disadvantages as well as the accuracy, sensitivity, and specificity
of each of the quality assessment parameters of ECG quality are
obtained by conducting quality assessment on the six quality
assessment parameters. Using a simple heuristic fusion operation,
the best accuracy based on the combination of 2–6 parameters is
selected.

Step2: Intelligent Classification
Using the fuzzy comprehensive evaluationmethod that combines
Cauchy distribution, rectangular distribution, and trapezoidal
distribution, the membership of the signal to be evaluated is
calculated based on the parameters of the logical combination
of the best accuracy selected in step 1. By establishing the
fuzzy vector and choosing bounded calculation Sub-fuzzy
synthesis, the ECG signal is divided into the evaluation level set
V = {E,B,U} through the principle of weighted membership
decision-making division.

The above algorithm evaluation is based on a single-lead
ECG signal. If ECG signals are collected for multiple leads that
are independent of each other, each channel can be processed
separately.

METHODS AND MATERIALS

Databases
To determine the parameters of the fuzzy comprehensive
evaluation (correlation matrix R, weight vector A, synthesis
operator) and verify the effectiveness of our algorithm.In this
work, the ECG signals were obtained from ECG database
(Physionet ECG database). We adopt two of these databases,
Physionet/Cinc Challenge 2017 (Physionet, 2017), marked as
database D1 and Physionet/Cinc Challenge 2011 (Physionet,
2011), marked as database D2.

The database D1 is single-lead ECG records, which is
coincided with the ever-evolving mobile measurement and
wearable measurement methods, supplied by AliverCor, which
was annotated by clinical experts and categorized into one of four
groups (i.e., normal rhythm, atrial fibrillation, other rhythm, and
noisy recordings). We randomly selected 150 groups of normal
rhythm, 150 groups of noisy recordings, and the length of each
group is 9,000 data points.

The database D2 is standard 12-lead ECG recordings, in which
the quality of ECGs were reviewed and examined by a group of
annotators with varying amounts of expertise in ECG analysis. In
our present work, we have used only lead II(Set-a) and randomly
selected 150 groups of acceptable, 150 groups of unacceptable,
and the length of each group is 9,000 data points.

To maximize contrast and create a balanced database, a
10-fold cross-validation method was used 10 times to reduce
the generalization error in the training set (Zhihua, 2016),
Figure 1 below shows the schematic diagram of 10-fold cross
validation.

The database is first divided into 10 equally sized mutually
exclusive subsets: D = D1 ∪ D2 ∪ ... ∪ D10. Di ∩ Dj is
empty. Each subsection maintains the consistency of the data
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distribution, which is obtained through hierarchical sampling
from D. Then, every nine subsets of the union is considered
as a training set, and the remaining subset serves as the test
set. Thus, 10 training and test sets are obtained. Thus, we can
conduct 10 training and testing assessments and obtained the
mean of 10 final test results. In this paper, the mean of 10
test sets is used as the result of cross validation to evaluate the
performance of the algorithm. Numerous methods are available
to divide database D into 10 subsets. To reduce the difference
caused by different sample divisions, we randomly apply different
divisionmethods by repeating the process 10 times. The resulting
assessment is the average of the 10 replicates of the 10-fold cross-
validation results, the mean of the obtained results is the final
performance indicator. Obviously, the stability and fidelity of
the cross-validation method evaluation results are considerably
improved compared with those of the commonly used single-
division leave-one-out method.

Method Outline
Two methods for fusing the signal quality information were
compared. The first step is based on simple heuristic fusion.
Through the ECG waveform characteristics, time-frequency
characteristics, and the time-frequency characteristics of the
noise source, we propose six quality evaluation parameters and
adjust the reasonable range of SQI. ECG quality [accuracy

(Acc), sensitivity (Se) and specificity (Sp)] was analyzed using
a simple logical combination to obtain the best combination
of signal quality indexes (SQIs) U = {u1, u2, u3, ...}. The
second step applied fuzzy comprehensive evaluation, which
represents a more accurate assessment and classification of
U = {u1, u2, u3, ...}. A schematic representation of the proposed
method is presented in Figure 2.

Signal Quality Indexes (SQIs)
Matching Degree of R Peak Detection qSQI
We next describe an evaluation index for ECG signal recognition
ability. For a complete ECG signal, the R wave has the maximum
amplitude andmost obvious characteristic, so the existence of the
ECG signal is often identified by R-wave detection. Therefore,
using different algorithms to perform R-wave detection on
the same ECG signal, the result is compared and analyzed
to estimate the quality of the signal. In this paper, Hilbert
and dynamic adaptive threshold based on R-wave detection
(algorithm flow shown in Figure 3 and denoted as Algorithm
1), wavelet transform (This process is denoted as Algorithm 2)
are used to compare the same ECG signal detection results. As
for wavelet transform, the input ECG signal was decomposed
by discrete wavelet transform (DWT) with four layers, and the
wavelet coefficients for each layer were obtained. The R point
is the singularity of the ECG waveform. The extraction of the R

FIGURE 1 | Schematic of 10-fold cross-validation method repeated 10 times.

FIGURE 2 | The flowchart of the proposed method, which includes two modules.
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point is completed by the correspondence between the singularity
of the signal and the positive and negative modulus maximum of
the wavelet coefficients to the zero point (Zhen et al., 2008).

Any R-wave detection algorithm has certain shortcomings,
which may lead to false positives. Accordingly, the ECG signal
quality is evaluated by the same R-wave matching degree of the

FIGURE 3 | R Wave Detection Flow Chart Based on Hilbert and Dynamic

Adaptive Threshold.

two algorithms mentioned above. The following equation is used
to obtain the QRS wave R peak detection matching degree:

qSQI =
2N

Na + Nb
(1)

where N indicates the correct number of R waves detected by the
two algorithms and Na and Nb denote the numbers of R waves

measured by Algorithms 1 and 2, respectively. The identification
criteria of qSQI are given as follows:

ECG






optimal, qSQI > 90%;

suspicious, qSQI ∈ [60%, 90%] ;
unqualified, qSQI < 60%

(2)

Power Spectrum Distribution of QRS Wave pSQI
Wenext describe an evaluation index of QRSwave quality (Li and
Clifford, 2006). A heartbeat cycle is mainly composed of a P wave,
QRS complex wave, T wave, and other important eigenvectors,
of which the QRS wave accumulates ∼99% of the energy of the
ECG signal and is the most stable. The energy of the QRS wave is
concentrated in a frequency band centered at 10Hz and is 10Hz
in width. Therefore, pSQI is mathematically defined as follows:

pSQI =

∫ f=15Hz

f=5Hz
P

(
f
)
df

∫ f=40Hz

f=5Hz
P

(
f
)
df

(3)

Spectrum analysis is performed, and the energy of the two bands
is calculated. The numerator represents the energy of the QRS
wave, and the denominator represents the overall energy of the
ECG signal.

If EMG interference exists, the high-frequency component
increases, and pSQI decreases. The identification criteria of pSQI
are given as follows:

ECG






optimal pSQI ∈ [l1, l2];
suspicious, pSQI ∈ [l3, l1];
unqualified pSQI > l2, or pSQI < l3;

(4)

FIGURE 4 | Skewness-kurtosis distribution for different quality ECG signals.
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l1 and l2, which represent the lower and upper limits, respectively,
vary slightly with the heart rate. Based on the experimental
training set, we adjusted l1 and l2 as follows:

Heart rate

{
∈ [60bmp, 130bmp], l1 = 0.5, l2 = 0.8; l3 = 0.4;
∈ [130bmp, 160bmp], l1 = 0.4, l2 = 0.7; l3 = 0.3;

(5)

Variability in the R-R Interval cSQI
We next describe an evaluation index of normal and stable
heart rhythm. The ECG signal is a periodic signal, and the
interval of R-R interval is periodic. The calculation of cardiac
cycle (single-cycle ECG length) is related to the heart rate,
which differs depending on the exercise state. The measurement
is very sensitive to motion artifacts in the human body; the
ECG signal is collected in the active state. We need to ensure
that the heart rhythm has a normal ECG signal to avoid
affecting the clinical diagnosis. In addition, the presence of noise
artifacts leads to reduced QRS detector performance. When an
artifact is present, the QRS detector underperforms by either
missing R-peaks or erroneously identifying noisy peaks as R-
peaks. The above two problems will lead to a high degree of
variability in the distribution of R-R intervals; therefore, the
coefficient of the variation of R-R interval proposed by Hayn
(Hayn et al., 2012) was used to calculate the variability of R-R
intervals:

cSQI =
σ̂RR

µ̂RR
(6)

where µ̂RR and σ̂RR are the empirical estimates of the mean and
standard deviation of the distribution of the R-R intervals within

a segment of ECG. The identification criteria of cSQI are given as
Equation (7), where the threshold was determined empirically.

ECG






optimal cSQI < 0.45;
suspicious qSQI ∈ [0.45, 0.64] ;
unqualified, qSQI > 0.64

(7)

Skewness sSQI and Kurtosis kSQI
We next describe an evaluation index of the de-noising effect of
three disturbing noises, which is defined as follows:

sSQI = ν3 =
E

{
(x− µx)

3
}

σ 3
(8)

kSQI = ν4 =
E

{
(x− µx)

4
}

σ 4
(9)

The third and fourth standardized moments of a signal are
measures of signal symmetry and Gaussianity, respectively.
The central limit theorem indicates that random uncorrelated
processes tend to have Gaussian distributions, such as thermal
noise. Conversely, correlated signals tend to exhibit non-
Gaussian distributions. The fourth standardized moment of a
distribution, kurtosis, measures the relative peakedness of a
distribution with respect to a Gaussian distribution. However,
outliers will cause the asymmetric distribution of the signal, and
the skewness is high. In this equation,µx and σ are the mean and
standard deviation of the signal, respectively.

Figure 4 shows different quality ECG signals and their
kurtosis and skewness values. Comparing Example 1 with the
other three sets of signals, the noisy ECG signal has a smaller
kurtosis value but a different skewness distribution. Example 2
contains a large amount of high-frequency noise. The kurtosis
value is very low. However, given the nature of the noise, the

FIGURE 5 | ECG quality comparison chart with or without baseline shift.
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distribution is approximately symmetric, yielding a low skewness
value. Therefore, skewness is less robust to noise than kurtosis,
and we only use kurtosis in the ensuing noise detection. The kSQI
in each case is described as follows:

1. For a standard, noise-free and normal sinus ECG, the value is
>5 (He et al., 2006);

2. If power frequency interference, baseline drift or Gaussian
distribution of random noise is noted, the values is <5
(Clifford et al., 2006);

3. If EMG interference is present, the value is∼5 (He et al., 2006);

The identification criteria of kSQI is given as follows:

ECG

{
optimal kSQI > 5;
unqualified, kSQI ≤ 5;

(10)

The Relative Power in the Baseline basSQI
We next describe an evaluation index of the de-noising effect
of baseline drift (Zhihua, 2016). basSQI is difficult to filter,

TABLE 1 | Single-lead classification using individual SQIs.

qSQI pSQI cSQI kSQI basSQI

Database D1 Acc 80.33 80.00 76.00 79.67 78.67

Se 95.33 95.00 63.67 84.33 80.67

Sp 88.33 80.33 56.33 83.00 72.33

Database D2 Acc 86.33 77.00 74.33 82.33 83.00

Se 93.67 84.33 66.33 85.00 86.00

Sp 80.67 69.67 47.67 80.67 79.67

The best performing SQI indicator is shown in bold and underlined.

TABLE 2 | Single-lead classification using combination of SQIs.

SQI entered Acc Training

performance (%)

Acc Test

performance (%)

qSQI, pSQI 81.67 77.33

qSQI, pSQI, kSQI 83.33 81.00

qSQI, pSQI, kSQI, basSQI 85.67 84.33

qSQI, pSQI, kSQI, basSQI, cSQI 88.67 87.00

The results is performed on Database D1. The best result of SQIs combinations (Database

D1) is shown in bold and underlined.

TABLE 3 | Single-lead classification using combination of SQIs.

SQI entered Acc Training

performance (%)

Acc Test

performance (%)

qSQI, pSQI 87.33 83.67

qSQI, pSQI, kSQI 88.67 87.00

qSQI, pSQI, kSQI, basSQI 92.00 91.33

qSQI, pSQI, kSQI, basSQI, cSQI 91.67 89.67

The results is performed on Database D2. The best result of SQIs combinations

(Database D2) is shown in bold and underlined.

but its presence greatly impacts late pathological judgment and
identification, as shown in Figure 5, which gives an example of
baseline for a high-quality ECG sample (upper plot, basSQI =

0.966) and low-quality ECG sample (lower plot, basSQI = 0.5)
obtained from Set-a of the PhysioNet/CinC 2011 database (Silva
et al., 2011). Therefore, it is necessary to evaluate its de-noising
effect, as defined below:

basSQI =
1−

∫ f = 1Hz

f = 0Hz
P

(
f
)
df

∫ f = 40Hz

f = 0Hz
P

(
f
)
df

(11)

If no baseline drift interference is noted, the basSQI value is
close to 1. A low basSQI means that the power within the band

[0, 1Hz] is abnormally high with respect to the power in the

[0, 40Hz] interval, which is likely to be caused by an abnormal
shift in the baseline. The identification criteria of basSQI are
given as follows:

ECG






optimal, basSQI ∈ [0.95, 1];
suspicious, basSQI ∈ [0.9, 0.95];
unqualified, basSQI < 0.9;

(12)

FIGURE 6 | Single-factor evaluation flow chart.
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Data Fusion Approaches
Simple Heuristic Fusion of the SQIs
After the analysis in the previous section, five SQIs are reserved.
The simple logic classifier model was built on database D, and
the performance of the individual SQIs was evaluated. Then,
we studied the contribution of each SQI to the classification
performance and removed SQIs with an accuracy (Acc) <75%.
Then, we evaluated of all other possible combinations of SQIs
(pairs, triplets, etc.). Ten-fold cross-validation was performed on
database D to assess the performance of the predictive model.
Possible fusion equations were constructed in an ad hoc manner
as follows:

(SQI1, SQI2) :ECG is




Excellent(E), ′optimal′ = 2;

Barely acceptable(B), ′suspicious′ = 2 or
′optimal′ = 1,′ suspicious′ = 1;

Unacceptable(U), others;

(13)

(SQI1, SQI2, SQI3) :ECG is




Excellent(E), ′optimal′ ≥ 2, ′unqualified′ = 0;

Barely acceptable(B), others;

Unacceptable(U), ′unqualified′ ≥ 2 or
′suspicious′ = 2, ′unqualified′ = 1;

(14)

(SQI1, SQI2, SQI3, SQI4) :ECG is




Excellent(E), ′optimal′ ≥ 3,′ unqualified′ = 0;

Barely acceptable(B), others;

Unacceptable(U), ′unqualified′ ≥ 3 or
′unqualified′ = 2,′ suspicious′ ≥ 1 or
′unqualified′ = 1,′ suspicious′ = 3;

(15)

(SQI1, SQI2, SQI3, SQI4, SQI5) :ECG is




Excellent(E), ′optimal′ ≥ 4,′ unqualified′ = 0;

Barely acceptable(B), others;

Unacceptable(U), ′unqualified′ ≥ 4 or
′unqualified′ = 3,′ suspicious′ ≥ 1 or
′unqualified′ = 2,′ suspicious′ ≥ 2 or
′unqualified′ = 1,′ suspicious′ = 4;

(16)

Where the ECG quality corresponding to the number
distribution of “optimal,” “suspicious,” and “unqualified”
is arbitrary and set empirically through trial and error.
Although these coefficients could be optimized, it is unlikely
that the logic is optimal. Thus, an exhaustive search of
possible logical combinations and thresholds was not
performed.

Multiple SQI metrics quantify different characteristics, and
the simple fusion of the SQIs classifies the signal quality of
each ECG into three levels: excellent (E), barely acceptable (B),
and unacceptable (U). We obtained the best combination of
quality assessment parameters U = {u1, u2, u3, ...} by comparing
the accuracy(Acc), sensitivity (Se) and specificity (Sp) of the
different logical combinations. The three indicators are defined as
follows:

Se = TP/ (TP + FN) (17)

Sp = TN/ (TN + FP) (18)

Acc = (TN + TP) / (TP + TN + FN + FP) (19)

TP (true case) indicates the number of acceptable ECG signals
correctly counted. TN (true negative example) indicates the

number of unacceptable ECG signals correctly counted. FP
(false positives) indicates the number of acceptable ECGs under
error statistics. FN (false positives) indicates the number of
unacceptable ECGs that were counted as errors.

Table 1 shows the performance of five SQIs in ECG quality
assessment. The table clearly shoes that qSQI and pSQI best
distinguish between records of good and bad quality (the results
obtained from the 300 sets in database D1 and D2). Then, the
system is trained with all possible combinations of SQIs, using
10-fold cross-validation method repeated 10 times to train
database D1 and D2, and merged with the upper (13)–(16).
The results for the best pair, triplet, etc. of SQIs combinations
are summarized in Table 2 and Table 3. Analysis of the table
clearly reveals that as SQIs increase, the accuracy rate exhibited
a slowly increasing trend. As for database D1, the best accuracy
was obtained when considering all SQIs ((Acc)D1 = 87.00%).
However, compared with 4 SQIs (with higher sensitivity,

(Se4)D1 = 94.67% is superior to (Se5)D1 = 87.33%), the accuracy
difference is negligible. As for database D2, it shows the best
precision when only considering qSQI, pSQI, kSQI and basSQI.
Accordingly, U = {u1, u2, u3, u4} =

{
qSQI, pSQI, kSQI, basSQI

}

is the best combination for evaluation factor
aggregation in the fuzzy comprehensive evaluation
mechanism.

SQI Quality Evaluation Mechanism Based on Fuzzy

Comprehensive Evaluation
We selected the best SQIs combination in simple heuristic
fusion, and the SQI quality evaluation mechanism based
on fuzzy comprehensive evaluation was established. Fuzzy
comprehensive evaluation is based on fuzzy mathematics
by applying the principle of fuzzy relational synthesis,
quantifying some undefined and unquantifiable factors,
and using a number of factors to evaluate the affair level of a
comprehensive evaluation of a method (Fengbiao, 2000).The
fuzzy data fusion technology has mature applications in
speech analysis (Song et al., 2016), image analysis (Wenqing
and Yongjun, 2016), traffic network, and power grid risk
assessment (Deng et al., 2017). The specific steps are as
follows:
First, determine the evaluation factor aggregation U

For the evaluated object, select the main factors that reflect
the evaluation object, measure with corresponding index, and
form the evaluation factor aggregation U. The ECG signal’s
evaluation factor aggregation is U = {u1, u2, u3, u4} ={
qSQI, pSQI, kSQI, basSQI

}
.

Second, determine the rating hierarchy V

For each evaluation factor, determine a number of levels. In
this paper, the quality of ECG signal is divided into excellent
(E), barely acceptable (B), and unacceptable (U). The evaluation
rating set is V = {v1, v2, v3}.
Then, establish the evaluation matrix R

Analyze the membership function rij of each factor ui to the
rating level vj, and obtain the single factor evaluation result of
the ith factor: ri = (ri1, ri2, ri3). After the multiple single factor
evaluation, a fuzzy matrix R is formed. In this paper, fuzzy matrix
R, which has 4 factors and 3 evaluation levels, is described as
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follows:

R =





r11 r12 r13
r21 r22 r23
r31 r32 r33
r41 r42 r43





Next, determine the weight vectorW

According to the various factors for the evaluation of the
importance of the object, give the appropriate weight, which is
marked as W = (w1,w2,w3,w4),

∑
wi = 1. The W in this

paper is based on 100 sets of experimental training to adjust the
experimental training set.
Then, assess fuzzy synthesis S

S = W◦R, S = (s1, s2, s3). Different operator symbols ◦

correspond to different fuzzy comprehensive evaluation models
(Zimmermann, 2011).
Finally, make a decision

According to the assessment needs of the appraisers to process
S, obtain the results.

The single factor evaluation process for each factor ui is shown
in Figure 6 below.

Therefore, with a rating hierarchy V, the key step of single
factor evaluation is to calculate the membership function rij and

determine the fuzzy operator symbols ◦ . After determining the
single factor evaluation, the key step in multifactorial evaluation
is the choice of weight vectorW and decision-making methods.

Determine the membership function of each single factor

evaluation
Single factor evaluation of qSQI. Assuming that q is the value of
matching degree of R peak detection, q ∈ [0, 100], we construct
the membership function of its quality level (E, B, and U) as
UqH

(
q
)
, UqI

(
q
)
, and UqJ

(
q
)
, respectively. Due to the matching

degree of R peak detection’s performance level and because its
corresponding evaluation object values approximate a Cauchy
distribution, we choose the Cauchy distribution function to serve
as the membership function of qSQI.

(a).UqH

(
q
)

Based on the understanding of formula (1), the greater the
value of q is, the greater the membership of H is. Therefore, we
select the increasing half of the Cauchy distribution.

UqH

(
q
)
=

{
0, q ≤ a

1{
1+[α(q−a)]−β

} , q > a (20)

Specifically, α,β > 0. In practice, we often utilize β = 2.

FIGURE 7 | Accuracy comparison chart of different weight coefficient.
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Analysis Equation (20), take a = 80. If q is not >80, the
membership function to H is zero. If q is > 80, there is a non-
zero membership for H. The greater the q value is, the greater
the membership for H is. When q = 100, UqH

(
q
)
= 1, thus

improving Equation (20):

UqH

(
q
)
=






0, 0 ≤ q ≤ 80
1{

1+[α(q−80)]−β
} , 80 < q < 90

x
100 , 90 ≤ q ≤ 100

(21)

In addition, to ensure the continuity of UqH

(
q
)
to calculation

a, lim
x→90−

1{
1+[α(q−80)]−2

} = 0.9, yielding α = 0.3. Therefore,

UqH

(
q
)
is as follows:

UqH

(
q
)
=






0, 0 ≤ q ≤ 80
1{

1+[0.3(q−80)]−2
} , 80 < q < 90

x
100 , 90 ≤ q ≤ 100

(22)

(b).UqJ

(
q
)

Considering the decreasing half of the Cauchy distribution

UqJ

(
q
)
=

{
1, q ≤ a

1{
1+[α(q−a)]β

} , q > a (23)

FIGURE 8 | ECG quality assessment flow chart.

Specifically, α,β > 0. If a = 55,β = 2, then UqJ (60) = 0.5,
yielding α = 0.2.

UqJ

(
q
)
=






1, q ≤ 55
1{

1+
(
q−55
5

)2} , 55 ≤ q ≤ 100 (24)

(c).UqI

(
q
)

Considering the Cauchy distribution directly, a = 75,α =

1/7.5 . The membership function is calculated as follows:

UqI(q)= 1{
1+

(
q−75
7.5

)2} (25)

When assessing the matching degree of R peak detection, we
calculate the value of qSQI according to Equations (22), (24),
and (25). We can obtain qSQI single factor evaluation results:
r1 = (r11, r12, r13).

Single factor evaluation of pSQI. This evaluation is similar to the
structure of qSQI. According to the power spectrum distribution
of pSQI’s identification criteria (4), its performance level and
its corresponding evaluation object value exhibit a trapezoidal
distribution. Therefore, the trapezoidal distribution function is
adopted as the membership function of pSQI. Assuming that p
is the value of the power spectrum distribution, p ∈ [0, 1], we
obtain the membership function of pSQI quality level UpH

(
p
)
,

UpI

(
p
)
, and UpJ

(
p
)
:

UpH

(
p
)
=






0, x ≤ 0.25
0.1 (x− 0.25) , 0.25 < x < 0.35
1, x ≥ 0.35

(26)

UpJ

(
p
)
=






1, x < 0.15
0.1 (0.25− x) , 0.15 ≤ x ≤ 0.25
0, x > 0.25

(27)

UpI

(
p
)
=






0, x < 0.18
25 (x− 0.18) , 0.18 ≤ x < 0.22
1, 0.22 ≤ x < 0.28
25 (0.32− x) , 0.28 ≤ x < 0.32
0, x ≥ 0.32

(28)

We calculate the value of pSQI according to Equations (26)–
(28), and pSQI’s single factor evaluation results can be obtained:
r2 = (r21, r22, r23).

Single factor evaluation of kSQI. According to the identification
criteria (10) of Kurtosis kSQI, its performance level and its
corresponding evaluation object value exhibits a rectangular
distribution. Accordingly, we choose the rectangular distribution
function to be the membership function of kSQI. We calculate
the value of kSQI, and the result of single factor evaluation r3 =

(r31, r32, r33) is obtained as follows:
{
if kSQI > 5, r3 = (1, 0, 0)
if kSQI ≤ 5, r3 = (0, 0, 1)

(29)
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Single factor evaluation of basSQI. This evaluation is the same
as that reported for qSQI. For the analysis of Equation (12), the
baseline relative powers performance level and corresponding
evaluation object value approximate a Cauchy distribution. We
select the Cauchy distribution function to construct UbH

(
b
)
,

UbI

(
b
)
, and UbJ

(
b
)
. We calculate the value of basSQI according

to Equations (30)–(32), and basSQI’s single factor evaluation
results can be obtained: r4 = (r41, r42, r43).

UbH

(
b
)
=






0, 0 ≤ b ≤ 90
1{

1+[0.8718(b−90)]−2
} , 90 < q < 95

x
100 , 95 ≤ q ≤ 100

(30)

UbJ

(
b
)
=






1, q ≤ 85
1{

1+
(
b−85
5

)2} , 85 < q ≤ 100 (31)

UbI

(
b
)
=

1{
1+

(
b−92
2.5

)2} (32)

After repeating the single factor evaluation four times, we obtain
the fuzzy matrix R = [r1 r2 r3 r4]

T .

Determine the weight vector W
Different evaluation factors have different effects on the quality
of ECG signals. Therefore, the selection of weight coefficients
will have a great influence on the final quality assessment results.
In this paper, different sets of weight vectors are selected to
compare the four factors, which are verified according to 10
replicates of the 10-fold cross-validation test in the Database D1
and D2. The statistic is presented in Figure 7. Under different

weight values of different SQI decision values, the accuracy
of the quality of the assessment of ECG also differs. When
the ratios of the four were set as follows (0.4, 0.4, 0.1, 0.1),
whether the database D1 or D2, the accuracy of the ECG quality
assessment under different test set was relatively high, with
minimal fluctuation.

Determine the fuzzy operator
The principle of fuzzy comprehensive evaluation is fuzzy
transformation. Numerous types of operation modes of fuzzy
transformation are available. The commonly used fuzzy synthesis
operators are classified as the following types:

1. M(∧,∨) operator: Main factor determinant
2. M(· ,∨) operator: Main factor protruding
3. M (∧,⊕) operator: Unbalance mean
4. M (·,⊕) operator: Weighted mean

Considering the role of reflection, the first step is more
appropriate for a multiplicative operation. In contrast, from
a comprehensive point of view, it is appropriate to use the
“boundedness and” operation to ensure the full use of all aspects
of the information provided by the fuzzy vector R. In this paper,
we need to synthesize the four SQIs’ indicators to evaluate the
effect of ECG quality, so we use the operator M (·,⊕), which is
also known as a bounded operator.

Determine the decision-making methods
After fuzzy synthesis, the vector S = (s1, s2, s3) of the fuzzy
comprehensive evaluation is obtained, which provides abundant
information. In this paper, we need to weigh the four single-factor
evaluations for each tester to obtain the numerical result of rating
class V. Therefore, further processing is needed. Commonly used
methods include the principle of maximum membership degree,
the principle of weighted membership degree, and the fuzzy
vector single-value method. We choose the principle of weighted

TABLE 4 | Performances of simple heuristic fusion of the SQIs and fuzzy comprehensive evaluation.

Method SQI entered Training performance (%) Test performance (%)

Acc Se Sp Acc Se Sp

Simple heuristic fusion 4 85.67 94.67 88.67 84.33 88.67 81.33

Simple heuristic fusion 5 88.67 87.33 85.33 87.00 88.67 87.33

Fuzzy comprehensive evaluation 4 89.33 93.67 74.33 92.67 97.33 88.67

The best performing algorithm (on the independent Database D1) is indicated in bold.

TABLE 5 | Performances of simple heuristic fusion of the SQIs and fuzzy comprehensive evaluation.

Method SQI entered Training performance (%) Test performance (%)

Acc Se Sp Acc Se Sp

Simple heuristic fusion 4 92.00 94.67 92.00 91.33 93.67 92.67

Simple heuristic fusion 5 91.67 92.33 89.67 89.67 91.00 88.33

Fuzzy comprehensive evaluation 4 97.67 96.33 98.33 94.67 90.33 93.00

The best performing algorithm (on the independent database D2) is indicated in bold.
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average decision-making, which is expressed as follows:

V =

3∑
j = 1

sj
2 · j

3∑
j = 1

sj2
(33)

After the above four-step parameter setting, we establish the SQI
quality evaluation mechanism based on fuzzy comprehensive
evaluation and obtain the final evaluation rating set V as follows:

ECG




‘

Excellent (E), v ≤ 1.50;
Barely acceptable (B), 1.50 < v < 2.40;
Unacceptable (U), v ≥ 2.40.

(34)

Then, for any ECG signal to be evaluated, the SQI quality
evaluation mechanism based on fuzzy comprehensive evaluation
can be used to obtain the ECG quality assessment results (shown
in Figure 8) according to the above formula (33).

After the ECG quality assessment, the results were analyzed:

1. If E, the ECG signal quality is good. The signal can be directly
entered into the identification, security monitoring or other
applications.

2. If U, analyze the 4 SQIs: If kSQI or basSQI are unqualified,
noise artifacts are present. Perform de-noising first, and then

reevaluate the ECG quality. If pSQI or qSQI are unqualified,
recollect the tester’s ECG.

3. If B, ECG quality assessment should be performed again. If the
result is E, the signal is treated as in method one. Otherwise,
treated as in method two.

RESULTS AND DISCUSSION

The results of the comparison of Fuzzy comprehensive evaluation
with the simple heuristic fusion of the SQIs with Database D test
are shown in Tables 4, 5 below:

For simple heuristic fusion of the SQIs, when the number
of SQIs increases from 4 to 5, the accuracy of the database
D1 and D2 is not well optimized, even in its sensitivity (Se)
and specificity (Sp). These values are not increasing but are
decreasing. These findings indicate that the new evaluation
parameter cSQI contains information that is complementary
to the original (qSQI, pSQI, kSQI, basSQI), which affects the
evaluation of ECG quality. Therefore, the selection (qSQI,
pSQI, kSQI, basSQI) is more reasonable. Compared with simple
heuristic fusion of the SQIs, although the same number of
SQI indicators is used to quantify the different characteristics
of ECG signals, the accuracy of database D1 and D2 is
improved after it is synthesized by fuzzy comprehensive
evaluation.

FIGURE 9 | ROC curve derived by varying v across the database D2. The circle indicates the position of maximum accuracy (91.67% with vth1, 94.67% with vth1 and

vth2).

TABLE 6 | Contrast tabulation of experimental results for different quality evaluation algorithms.

Authors Methods Performance of Database D2(%)

Acc Se Sp

G D Clifford (Clifford et al., 2012)1,2 SVM+SQIs 97.80 96.30 99.30

FJ Martínez-Tabares (Martínez-Tabares et al., 2012)4 Diversity systems 96.00 86.00 91.00

Yalda Shahriari (Shahriari et al., 2017)5 SSIM 93.10 96.30 90.00

Lars Johannesen (Johannesen, 2011)1,3 SQIs 88.00

Fuzzy Comprehensive Evaluation + SQIs 94.67 90.33 93.00

Best results are highlighted. The results of this article are underlined.
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Simultaneously, the above Tables 4, 5 shows that the database
D2 shows a better accuracy than D1. Using the database D2, we
varied the value of v above for which data were considered to
be excellent (E) or barely acceptable (B) quality and calculated
the receiver operating characteristic (ROC) curve (Figure 9). The
value v that yielded the best classification accuracy was vth1 =

1.50, vth2 = 2.40 (in the ROC curve, they were normalized to
vth1 = 0.15, vth2 = 0.24), which resulted in an accuracy of 91.67%
(275 correctly classified out of 300) on the database D2, using the
threshold vth1. Then adding the threshold vth2, the accuracy on
the test set was found to be 94.67% (284 correctly classified out of
300).

To perform a more extensive and accurate comparative
performance evaluation, the base performance of the proposed
system is compared with the four existing algorithms,
(Johannesen, 2011; Clifford et al., 2012; Martínez-Tabares
et al., 2012; Shahriari et al., 2017), all of which adopted the
Database D2, used single-lead ECG signal, made the comparison
more persuasive. The experimental results are presented in
Table 6.

1. Based on SQI indexes.
2. Four SQI indexes were extracted and fused by support vector

machine (SVM) and multi-layer perceptron (MLP), which
achieved high accuracy. However, the calculation of the index
bSQI (the percentage of beats detected by wqrs that were also
detected by eplimited) is pretty complicated.

3. The author adopted five SQI indexes, then considered each
index in turn, at each step in the algorithm ECGs are grouped
into two groups depending on a set of ECG features (SQI), but
the accuracy rate is poor.

Compared with these two studies, we propose the SQI
Quality Evaluation Mechanism Based on Fuzzy Comprehensive
Evaluation, with only 4 SQI indexes, all of which are simply
calculated, and obtain a good accuracy.

4. A Correlation and Diversity-based Approaches is proposed.
5. Adopt a Structural Similarity Measure (SSIM) to compare

images of two ECG records that are obtained from displaying
ECGs in a standard scale.

Compared with these two algorithms, we use the SQI index to
quantify the quality of ECG which increased the readability of
this algorithm, made it easy to be understood, and obtains an
ideal accuracy. Therefore, the algorithm proposed in this paper
has some advantages compared with other algorithms reported
in the literature.

CONCLUSION

We have described an effective system (with an accuracy of
92.67% on database D1 and 94.67% on database D2) that
could be deployed as a stand-alone signal quality assessment
algorithm to vet the clinical utility of ECG signals. Applications
range from determining the quality of ECG signal collected
to false alarm suppression. Moreover, the algorithm presented
here is quite general and could be retrained and applied
to any periodic or quasi-periodic signal, such as contraction
signals.

Future work should focus on methods for expanding the
feature space and on the further optimization of feature fusion.
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Péter Makra*, Ákos Menyhárt, Ferenc Bari and Eszter Farkas

Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary

Cortical spreading depolarisation (CSD) is a transient disruption of ion balance that

propagates along the cortex. It has been identified as an important factor in the

progression of cerebral damage associated with stroke or traumatic brain injury. We

analysed local field potential signals during CSD in old and young rats to look for

age-related differences. We compared CSDs elicited under physiological conditions

(baseline), during ischaemia and during reperfusion. We applied short-time Fourier

transform and a windowed implementation of multifractal detrended fluctuation analysis

to follow the electrophysiological signature of CSD. Both in the time-dependent spectral

profiles and in the multifractal spectrum width, CSDs appeared as transient dips, which

we described on the basis of their duration, depression and recovery slope and degree

of drop and rise. The most significant age-related difference we found was in the

depression slope, which was significantly more negative in the beta band and less

negative in the delta band of old animals. In several parameters, we observed an

attenuation-regeneration pattern in reaction to ischaemia and reperfusion, which was

absent in the old age group. The age-related deviation from the pattern took two

forms: the rise parameter did not show any attenuation in ischaemic conditions for

old animals, whilst the depression slope in most frequency bands remained attenuated

during reperfusion and did not regenerate in this age group. Though the multifractal

spectrum width proved to be a reliable indicator of events like CSDs or ischaemia onset,

we failed to find any case where it would add extra detail to the information provided by

the Fourier description.

Keywords: cortical spreading depolarisation, short-time Fourier transform, multifractal, detrended fluctuation

analysis, local field potential

1. INTRODUCTION

Cortical spreading depolarisation or depression (CSD) is a self-propagating wave of depolarisation
along the cortex (Leão, 1944; Somjen, 2001). In recent years, it has gained significance as it has
been recognised as a key factor in the progression of secondary tissue damage after subarachnoid
haemorrhage, stroke, or traumatic brain injury (Hartings et al., 2016). CSDs have also been put
forward in neurocritical care as indicators of the degree of metabolic failure in the nervous tissue
(Dreier et al., 2016). The influences that regulate the occurrence and propagation of CSDs have not
yet been fully explored, which justifies further research.

A decisive factor that is under extensive study is aging. Age brings multiple changes to the
biochemistry and cellular make-up of the cortex, and, in accordance with this, several age-related
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differences in CSD dynamics have come to light: for example,
the speed of propagation is slower (Guedes et al., 1996) or the
duration of CSDs is shorter in aged rats (Farkas et al., 2011). Also,
the three subsequent elements of the CSD-related cerebral blood
flow (CBF) response, namely an initial, transient drop in CBF, the
subsequent marked hyperaemia, and the ensuing, long-lasting
oligaemia were all found to be attenuated with aging as shown in
rats (Farkas et al., 2011; Menyhárt et al., 2015). This observation
is especially significant taken that an age-specific haemodynamic
response to CSD has been proposed to play an important role in
injury progression in the aged brain (Farkas and Bari, 2014).

One of the most direct and spectacular electrophysiological
indicators of the onset of CSDs is the direct current (DC)
potential, which is essentially the component of the local field
potential (LFP) that remains after low-pass filtering. Most
studies use the transient deflection in the DC potential as the
electrophysiological signature of CSD and use its morphological
parameters to characterise CSD evolution. Yet CSDs also cause
the full-band LFP amplitude to drop, reflecting a period of highly
attenuated function and a loss of excitability in the neural tissue,
and making the full-band LFP as feasible a target in offline
investigations as the DC potential.

Exploring the spectral fine structure of cortical
electrophysiological signals in the established frequency bands
(delta to gamma) may also contribute to our understanding of
CSD dynamics. The alpha-to-delta ratio (ADR), for example, has
proved to be a predictor of worse recovery from ischaemia in
humans (Claassen et al., 2004). Following the time dependence
of the spectral powers in the standard frequency ranges can
yield some additional information on the evolution and age
dependence of CSDs (Menyhárt et al., 2015; Hertelendy et al.,
2016).

An emergent tool in the study of complex system dynamics
is multifractal analysis. Heralded as a promising method to
disentangle multi-scale interactions and phase transitions in
complex systems, it has recently gained ground in several areas
of biomedical research and psychology from the segmentation
of medical images (Lopes and Betrouni, 2009) through
neuroscience (Zheng et al., 2005; Ihlen and Vereijken, 2010;
Zorick and Mandelkern, 2013) to even long-range correlations
in narrative texts (Drożdż et al., 2016).

In this paper, we set out to explore how aging impacts the
evolution of the spectral power of LFP during CSDs in distinct
frequency bands (delta, theta, alpha and beta). Furthermore, we
seek to incorporate multifractal analysis into the investigation of
CSD dynamics to see if it reveals anything beyond the insights
provided by the Fourier technique.

2. MATERIALS AND METHODS

2.1. Experimental Protocol
The data we analyse in this paper originate from an earlier
study reported, and all surgical and experimental procedures
are, therefore, identical to those previously published (Menyhárt
et al., 2017b). Briefly, the specimens were young adult (2
month-old, n = 20) and old (18–20 month-old, n =

18) male Sprague-Dawley rats. Our experimental procedures

conformed to the guidelines of the Scientific Committee
of Animal Experimentation of the Hungarian Academy of
Sciences (updated Law and Regulations on Animal Protection:
40/2013. [II. 14.] Govt of Hungary), following the EU Directive
2010/63/EU on the protection of animals used for scientific
purposes and were approved by the National Food Chain Safety
and Animal Health Directorate of Csongrád County, Hungary.

The animals were anaesthetised with isoflurane. After a
baseline period lasting 50min, we induced global forebrain
ischaemia with the bilateral occlusion of the common carotid
arteries (two-vessel occlusion, 2VO). An hour later, we released
the carotid arteries to allow the reperfusion of the forebrain.
Reperfusion also lasted for an hour. In all experimental stages
(i.e., baseline, ischaemia, and reperfusion), we elicited three CSDs
with the topical application of 1MKCl at even intervals of 15min
(see Figure 1). Experiments were terminated by an overdose of
isoflurane.

In the rat, the bilateral occlusion of the common carotid
arteries is a widely accepted procedure to induce incomplete
global forebrain ischaemia (Farkas et al., 2007). The time window
for ischaemia (i.e., 1 h) in our experiments was chosen for a
number of reasons, including: (i) Ischaemia is themost consistent
during the first few hours after the occlusion of the carotid
arteries; (ii) Ischaemia during this period of time is similar to
the penumbra typically evolving in focal ischaemic stroke, a
region highly relevant for medical intervention; (iii) One hour of
ischaemia offers a long enough period to trigger 3 CSD events,
15–20min apart—this number of CSD events is necessary to
confirm reproducibility and reliability; the inter-CSD interval is
necessary for the tissue to recover from each CSD before the next
event is provoked; (iv) The duration of the surgical procedures
and the experimental protocol (together reaching 10 h) does not
allowmuch longer period of ischaemiamonitoring, taken that the
animals are terminated at the end of the experimental protocol
for ethical and other practical reasons. The experimental protocol
to induce ischaemia was published repeatedly in our previous
papers, which justifies its validity (Hertelendy et al., 2016; Varga
et al., 2016; Menyhárt et al., 2017a,b).

We monitored the local field potential (LFP) in the cortex
with a glass capillary electrode through a cranial window, relative
to an Ag/AgCl reference electrode implanted under the skin of
the neck of the animal. The LFP signal was amplified, filtered,
conditioned and finally digitised at a sampling frequency of 1 kHz
by a setup identical to that described in Hertelendy et al. (2016)
and Menyhárt et al. (2017b).

2.2. Spectral Analysis
We carried out all signal analysis tasks (spectral and multifractal)
in a self-developed .NET environment written in C#. Fast Fourier
transforms were calculated using a .NET wrapper around FFTW
(the Fastest Fourier Transform in the West, http://www.fftw.org/).
We also leveraged the Task Parallel Library (TPL) included in
.NET to speed up calculations.

2.2.1. Artefact Filtering
Before all further analysis, we filtered the local field potential
(LFP), removing excessive spikes that had likely resulted
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FIGURE 1 | The experimental protocol. 2VO indicates two-vessel occlusion.

from measurement artefacts, in order to prevent them from
contaminating the spectrum. To avoid subjectivity in deciding
what constitutes an artefact, we calculated the Bollinger bands
(moving average ± moving standard deviation) in a window
of 10,000 points, and marked segments where the magnitude of
the signal exceeded a threshold of the local mean plus 4.2 times
the local standard deviation as potential artefacts. We reviewed
each automatic detection and only considered a segment as
artefact if its slope was uncharacteristically steep. We removed
confirmed artefacts and replaced them with a slope-corrected
copy of the preceding interval of equal length. We applied cubic
spline interpolation in a 5-point radius of the junctions between
the original signal and the correction to ensure that the signal
stays smooth. We found nomore than 10 artefacts on average per
CSD event, which altogether lasted <1 s, about 0.1–0.15% of the
duration of a CSD event. The process is illustrated in Figure 2.

2.2.2. Short-Time Fourier Transform (STFT)
The basis of the spectral investigations is the short-time Fourier
transform (STFT) of the relevant LFP sequence {xk}

N−1
k=0

.
Advancing a Gaussian windowwk of widthW1t = 60 s (wherein
1t = 0.001 s denotes the sampling interval) along the LFP
sequence in steps of 1τ = 1 s, one can obtain the STFT value
at time tm = m1τ and frequency fn = n1f = n

W1t as

X
(
tm, fn

)
= Xm,n =

W−1∑

k=0

wkxm+ke
−i 2πN kn. (1)

From the STFT, a time-dependent power spectral density
S
(
tm, fn

)
can be calculated as follows:

S
(
tm, fn

)
= Sm,n =

∣∣Xm,n

∣∣2 1t

W
. (2)

2.2.3. Spectral Power
The integrated spectral power P (tm) = Pm of a given frequency
range between fmin = nmin1f and fmax = nmax1f is the integral
of the power spectral density between these limits, which, in
discrete representation can be calculated as

P (tm) = Pm =

nmax−1∑

n=nmin

Sm,n1f =

nmax−1∑

n=nmin

∣∣Xm,n

∣∣2 1t

W
·

1

W1t

=

nmax−1∑

n=nmin

∣∣Xm,n

∣∣2

W2
. (3)

The four frequency ranges of brain electrical activity defined in
Table 1 were analysed.

2.3. Multifractal Detrended Fluctuation
Analysis (MFDFA)
In addition to the Fourier spectrum, we also applied multifractal
detrended fluctuation analysis (MFDFA) to our LFP sequences.
We followed the procedure laid out in Kantelhardt et al. (2002)
and Ihlen (2012). For a given interval {xk}

N−1
k=0

of the LFP, we first
constructed a cumulative sum Y of the data series:

Yi =

i∑

k=0

xk − 〈x〉 (0 ≤ i < N), (4)

wherein 〈x〉 denotes the mean of the interval. Then we
partitioned the cumulative sum sequence Y into disjunct
segments of equal length s. Since the length N of the interval is
usually not an integer multiple of the segment size s, we repeated
the partitioning process from the opposite end, thus obtaining
2Ns segments altogether, where Ns =

⌊
N
s

⌋
is the number of

segments in a single direction (⌊. . . ⌋ denotes rounding down).
Detrending meant the subtraction of a local polynomial trend yν ,
after which we calculated the local variance as

F2
ν
(s) =

1

s

s−1∑

i=0

{
Yνs+i − yν,i

}2
(5)

in the forward direction (0 ≤ ν < Ns), and as

F2
ν
(s) =

1

s

s−1∑

i=0

{
YN−(ν−Ns+1)s+i − yν,i

}2
(6)

in the reverse direction (Ns ≤ ν < 2Ns), where yν is the local
trend for the νth segment, obtained using m-order polynomial
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A B

∆

∆

FIGURE 2 | (A) A typical artefact. (B) The process of artefact correction: the segment classified as artefact is replaced by a transform of the preceding segment of

equal length, where the slope of the line between the endpoints is changed whilst the distance between this line and other individual points of the data segment

(labelled 1 in the figure) stays invariant in the process of transformation.

least squares fitting. The central quantity of MFDFA is the qth-
order fluctuation function defined as

F(s, q) =

{
1

2Ns

2Ns−1∑

ν=0

[
F2

ν
(s)

]q/2
}1/q

(q 6= 0), (7)

F(s, 0) = exp

{
1

4Ns

2Ns−1∑

ν=0

ln
[
F2

ν
(s)

]
}

(q = 0). (8)

The fractal properties of our time series x are reflected in how this
fluctuation function depends on the scale s, whilst themultifractal
order q serves to level the contributions made by components of
small effective value and by those of large effective value: negative
values of q amplify processes of small fluctuations and positive
values enhance large fluctuations. The value q = 2 corresponds
to standard monofractal analysis, wherein the effective value of
the local variance is calculated as a function of the segment size
s. We obtained the generalised Hurst exponent h(q) from the
slope of the ln

[
F(s, q)

]
vs. ln(s) graph using linear least-squares

regression. As described in Ihlen (2012), Eke et al. (2002), and Eke
et al. (2000), this slope yields the Hurst exponent h(q) directly for
a class of signals called fractional Gaussian noise (fGn), whereas
for another class, fractional Brownian motion (fBm), the slope
equals 1 + h(q). Our preliminary classification showed that our
LFP signals fall into the latter category (as most physiological
signals do), so we subtracted one from the slope. Finally, we
calculated the singularity strength as

α = h(q)+ q
dh

dq
, (9)

and the singularity dimension as

f (α) = q
[
α − h(q)

]
+ 1. (10)

What we called themultifractal spectrumwas the f (α) function as
a parametric curve that depends on the multifractal order q. We

TABLE 1 | The frequency ranges used in the analysis.

Frequency range Minimum frequency [Hz] Maximum frequency [Hz]

Alpha 8 13

Beta 13 30

Delta 1 3

Theta 3 8

focused on the multifractal spectrum width 1α (see Figure 3A),
defined as

1α = αmax − αmin. (11)

In a similar way to STFT, we applied a windowed implementation
of MFDFA: we calculated the multifractal properties in a 60-s
window, then advanced the window by a step of 1 s and repeated
the process, obtaining time-dependent functions comparable to
the spectral powers discussed above.

In our investigations, the segment size varied from 16 to 512 as
powers of 2. The maximum segment size was constrained by the
requirement of scale invariance discussed in Ihlen (2012), and we
decided upon a detrending order m = 1 as this choice yielded
the widest range of approximate scale invariance. We varied the
multifractal order q between −5 and 5 in 100 even steps. We
tested the reliability of our calculations on white noise sequences
and on the binomial multifractal series described in Kantelhardt
et al. (2002).

2.4. Depression Profiles
Cortical spreading depolarisation events appeared as periods of
transient drop in all spectral powers and in the multifractal
spectrum width. To quantify the properties of these intervals, we
searched for the best 4th-order polynomial fit for the depression
in the signal. The initial candidates for the beginning and the end
of such depression intervals we selected manually, but then an
automatic algorithm could override these if it found a better fit
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with an endpoint within 10 s of the initial estimate. Polynomials
which showed non-monotonicity in the neighbourhood of the
endpoints were rejected. We designated five characteristic points
to describe depression profiles (see Figure 3B):

• Baseline point, whose y value is the mean of the respective
signal in a 60-s interval before the onset of the depression and
whose time coordinate is the time instant at which the best
polynomial fit intersects this constant level;

• Depression point, which is simply the minimum of the
polynomial in the depression profile;

• Mid-depression point, where the polynomial takes on a value
equal to the arithmetic mean of the baseline value and the
depression value;

• Recovery point, whose y value is the mean of the respective
signal in a 60-s interval after the end of the depression and
whose time coordinate is the time instant at which the best
polynomial fit intersects this constant level; and

• Mid-recovery point, where the polynomial assumes a value
equal to the arithmetic mean of the depression value and the
recovery value.

We standardised each depression profile by subtracting the mean
and dividing by the standard deviation, where the mean and
the standard deviation were calculated for a signal segment that
lasted from the end of the previous CSD to the beginning of the
next. We evaluated the following quantifiers for a standardised
depression profile (see Figure 3B):

• Depression duration—the time that passes from mid-
depression to mid-recovery;

• Depression slope—the derivative of the polynomial fit at the
mid-depression point (divided by the standard deviation as
discussed above);

• Drop—the difference between the standardised baseline value
and the standardised depression value;

• Recovery slope—the derivative of the polynomial fit at the
mid-recovery point (divided by the standard deviation as
discussed above); and

• Rise—the difference between the standardised recovery value
and the standardised depression value.

2.5. Statistics
We used R for all our statistical calculations. Except where
otherwise noted, we divided our data into six subgroups
according to age (young or old) and experimental stage (baseline,
ischaemia, and reperfusion). We did not include the first CSD
in the baseline group as it represents a markedly different
physiological state to all subsequent CSDs, even those in the
baseline group. In each experimental group, we applied a Grubbs
test to decide whether extreme values are outliers. Proven
outliers were removed. Then we used two-way ANOVA with age
and experimental stage as factors, followed by Tukey’s honest
significant differences (HSD) as a post-hoc test to obtain pairwise
comparisons. In the figures and the text, data are given as
mean± standard error of the mean.

3. RESULTS

Changes in the physiological state of the specimens were reflected
unambiguously in the spectral power in all bands and also
in multifractal spectrum width. CSDs and ischaemia induction
(2VO) caused both spectral powers and multifractal spectrum
width to drop (see Figure 4).

3.1. Duration of Depression
Ischaemia lengthened the LFP depression in all frequency bands
(see Figure 5). This effect was most significant in the theta band
(e.g., 323.47 ± 35.32 s for young–ischaemic v 165 ± 52.19 s
for young–baseline, p = 0.0058). The multifractal spectrum
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FIGURE 4 | Signs of a CSD and of ischaemia induction (2VO) in the alpha power (A) and in the multifractal spectrum width (B).

width did not show such a discernible pattern: for old animals,
the depression tended to be longer during ischaemia, but for
young ones, the relation was the opposite (see Figure 6B). These
apparent differences in the multifractal spectrum width did not
prove significant, however.

Though the duration of depression was clearly shorter in old
animals throughout all experimental stages (most visibly in the
baseline stage), this categorisation did not show any statistically
significant difference according to age. To reveal potential aging
effects, we run another two-way ANOVA restricted to the
baseline stage, this time with age and frequency band as its
factors (see Figure 6A). This test indicated a significant difference
according to age overall (192.14 ± 10.68 s for old v 246.63 ±

12.31 s for young, p = 0.00089) but Tukey’s HSD did not find
any significant difference in the pairwise comparisons between
individual groups.

3.2. Depression Slope
Of all the parameters we investigated, the slope of depression
showed the effects of aging the most clearly (see Figure 7). In the
beta, alpha and theta bands, old age resulted in a steeper decrease
of the spectral power in the baseline stage. This was markedly
significant for the beta band (−0.065 ± 0.005 s−1 for old–
baseline v−0.034 ± 0.004 s−1 for young–baseline, p = 0.00026).
In all spectral bands, ischaemia reduced the absolute value of
the depression slope, most significantly again in the beta band
(−0.037 ± 0.005 s−1 for old–ischaemia v −0.065 ± 0.005 s−1

for old–baseline, p = 0.00045). For young animals, reperfusion
restored the slope of depression or made it even steeper in
the lower frequency bands theta and delta (in the theta band:
−0.072 ± 0.011 s−1 for young–reperfusion v−0.035 ± 0.007 s−1

for young–baseline, p = 0.049). This regeneration of slope also
occurred in old animals in the middle frequency bands alpha and
theta (in the alpha band:−0.060± 0.009 s−1 for old–reperfusion v
−0.042 ± 0.006 s−1 for old–ischaemia, p = 0.51), but was clearly

absent from the beta and delta bands. Again, the multifractal
spectrumwidth did not show any significant difference according
to age or experimental stage.

3.3. Drop
The drop in the spectral power did not show any significant
difference between experimental groups. When we focused on
the frequency bands in the baseline stage, however, we could
discern some frequency dependence (see Figure 8). The drop was
less at low frequencies, especially in the old age group (1.65± 0.22
for old–delta v 2.86 ± 0.21 for old–beta, p = 2.4 · 10−5). In
the multifractal spectrum width, one could observe a smaller
drop during ischaemia than in the baseline state, which was
significant for young animals (1.67 ± 0.07 for young–ischaemia
v 2.36 ± 0.12 for young–baseline, p = 0.048, see Figure 9A).
This was the only case where the multifractal spectrum width
proved significantly different to that in any other experimental
group.

3.4. Recovery Slope
The recovery slope followed the same attenuation-regeneration
pattern as the depression slope in young animals, though
this effect proved significant only in the theta (0.019 ±

0.004 s−1 for young–ischaemia v 0.065 ± 0.019 s−1 for young–
baseline, p = 0.0080, see Figure 10) and delta bands. For
this parameter, however, the regeneration brought about by
reperfusion persisted in the old age group in all spectral bands
except the alpha. One can also observe that the recovery slope
is markedly higher in the lower bands theta and delta than in
the higher bands beta and alpha (e.g., 0.068 ± 0.017 s−1 for
delta–young–reperfusion v 0.012 ± 0.002 s−1 for beta–young–
reperfusion, p = 0.0002). As Figure 9B shows, the attenuation-
regeneration pattern was absent from the multifractal spectrum
width.
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3.5. Rise
A similar attenuation-regeneration dynamics also seemed to
manifest itself in the rise after the CSD-induced transient
depression for young animals (e.g., in the alpha band: 1.93 ±

0.22 for young–reperfusion v 1.08 ± 0.14 for young–ischaemia,
p = 0.046; see Figure 11). This was clearly absent from the old
age group as the rise remained at about the same level during
ischaemia and reperfusion (e.g., in the beta band: 2.02 ± 0.26
for old–reperfusion and 1.92 ± 0.24 for old–ischaemia, the latter
v 1.07 ± 0.15 for young–ischaemia, p = 0.029). We could
observe no difference whatsoever in the multifractal spectrum
width between experimental groups.

4. DISCUSSION

Intraoperative electrocorticogram (ECoG) monitoring is an
invasive approach to aid tumour resection or surgery for

the alleviation of epilepsy (Yang et al., 2014; Alcaraz and
Manninen, 2017), and it has lately been used for the post-
operative monitoring of acute brain injury patients to follow
the evolution of CSD events (Dreier et al., 2016). Although
under most circumstances, full-band ECoG is sufficient to
provide feedback to the neuro-surgeon or neuro-intensive care
specialist, several studies have underpinned the clinical relevance
of the analysis of brain electrophysiological signals by frequency
band: in addition to alpha-to-delta ratio (Claassen et al., 2004),
focal reduction in the alpha band of the electroencephalogram
(EEG) can be associated with the occurrence of delayed
cerebral infarction in subarachnoid haemorrhage (Gollwitzer
et al., 2015); the slope of the EEG delta power correlates with
stroke severity (Finnigan et al., 2004; Hartings et al., 2005);
low beta power in the ECoG indicates a higher probability
of CSD occurrence in patients with traumatic brain injury
(Hertle et al., 2016) or the slope of theta power decline in EEG
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is a good predictor of postinjury epilepsy (Milikovsky et al.,
2017).

Though age-associated changes have been revealed in the
spectral composition of ECoG in rats—whilst aging causes high-
frequency power to decrease, it also enhances delta power
(Bagetta et al., 1989),—and on the other hand, the traces of CSD
in scalp EEG frequency bands have been analysed (Hartings et al.,
2014), the spectral implications of CSD have been mapped out
in the EEG of conscious rabbits (Roshchina et al., 2014) and of
conscious and anaesthetised rats (Koroleva et al., 2016), we have
had no information on the influences of aging on the spectral

representation of LFP during CSDs in different frequency bands.
Since the pattern of CSD is considerably influenced by age (i.e.,
lower frequency of occurrence in the intact and ischaemic cortex,
longer duration, and more frequent association with inverse CBF
response in focal ischaemia) (Farkas et al., 2011; Clark et al., 2014;
Menyhárt et al., 2015), here we set out to explore whether the
analysis of LFP by frequency band or multifractal analysis might
deliver any potential LFP signature specific for age. We presented
LFP spectral analysis of CSD in a preliminary form earlier, but
the age range covered in our previous report spanned young
adulthood (7–30 weeks of age in rats), and did not go beyond
to include old age as well (Hertelendy et al., 2016).

What we have found extends on the power spectrum-related
conclusions in our earlier report (Hertelendy et al., 2016). There
we observed a shorter duration of CSD-associated depression
in the lower frequency bands delta and theta in 30-week-
old animals and argued that owing to a low-pass filtering
effect present in the brain tissue (Buzsáki et al., 2012), the
distance from which lower-frequency components can reach
the electrode is greater than that for higher frequencies, so
a reduced duration in the lower frequency bands of older
animals might indicate that at more distant sites, regeneration
has already taken place, that is, the CSD-related depression
wave is narrower in space for the 30-week-old group. Here, for
72–80-week-old animals, the duration of depression is shorter
even in the high frequency bands alpha and beta, which,
using the same logic, can mean that as age advances further,
the CSD-related depression wave shrinks in space even more,
to the point where its spatial extension does not exceed the
range within which the electrode can detect high-frequency
signals.

The most significant difference we found between young and
old animals appeared in the depression slope of spectral powers
after the onset of CSD. Under physiological conditions, CSD-
induced decline in the beta power was much steeper in the old
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age group, whilst during reperfusion, the rate at which delta
power decreased in reaction to CSDs was less in absolute value
in old animals. The latter might be in accord with earlier findings
where less negative or even positive delta slope (termed aDCI,
acute delta change index) predicted worse outcomes in ischaemic
stroke patients (Finnigan et al., 2004).

4.1. Attenuation-Regeneration Pattern
Several parameters investigated here followed a pattern where
values decreased during ischaemia as compared to baseline then
were restored during reperfusion. This behaviour was most
consistent in the recovery slope. These data are consistent with
the profound differences in the pattern of CSDs that occur
in the intact and ischaemic cerebral cortex. As such, CSD
as indicated by the negative deflection of the DC potential

lasts significantly longer under ischaemia as compared with
the intact condition (Menyhárt et al., 2015), and the coupled
hyperaemia is of substantially smaller amplitude but longer
duration (Menyhárt et al., 2017b). The slower LFP recovery
from CSD under ischaemia, found here especially in the
low frequency bands, faithfully reflects the lack of metabolic
resources to re-establish resting electrical activity of the nervous
tissue.

Most age-related effects we found represented a deviation
from this pattern. The attenuation of the depression slope
of beta and delta spectral powers proved permanent in old
animals and was not followed by regeneration. Another
type of age-related deviation could be observed in the
rise after CSD-induced depressions in the spectral powers:
here the attenuation step was absent from the spectrum
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of old animals and the rise values remained about the
same throughout all experimental stages. Finally, we
noted an isolated departure from attenuation-regeneration
dynamics in the recovery slope of the alpha power of
old animals, where again no attenuation occurred during
ischaemia.

4.2. Multifractal Spectrum to Complement
the Fourier Spectrum
One argument for the application of fractal analysis instead
of or in addition to traditional linear investigation methods
such as Fourier transform is the perceived inability of the
latter to quantify the scale-dependent properties of complex
biological systems that stem from the interplay of many levels
of substructure (Chakraborty et al., 2016). In human EEG,
the Fourier transform failed to show a response to olfactory
stimuli, whilst the Hausdorff–Besicovitch fractal dimension
proved sensitive to them (Murali and Vladimir, 2007). The
fractal dimension increases after brain injury in rats (Spasic
et al., 2005). The fractal dimension and the Hurst exponent
differ before and after CSD (Santos et al., 2014) and monofractal
detrended fluctuation analysis detected slight variations in the
Hurst exponent before, during and after CSD (do Nascimento
et al., 2010).

In addition to the monofractal studies above, several
multifractal analyses have targeted the brain. The multifractal
spectrum width calculated for the EEG database of epilepsy
patients has been shown to be less in ictal periods than in
interictal ones (Zhang et al., 2015), which was in agreement with
the comparison of normal and epileptic rat EEG (Dutta, 2010).

To our knowledge, this paper is the first to extend earlier
monofractal studies (do Nascimento et al., 2010; Santos et al.,
2014) towards multifractality in the investigation of CSD.
We demonstrated that CSDs cause a transient narrowing
in the multifractal spectrum, signalling a temporary loss of
multifractality and thus a suppression of the interplay between
different scales in the LFP. This is in agreement with previous

MFDFA-based findings: just like epilepsy (Dutta, 2010; Zhang
et al., 2015), CSD is reflected in the multifractal spectrum as a
reduction in width.

One goal of ours was to find out whether multifractal analysis
yields any additional information on the dynamics of the local
field potential during CSDs as compared to the Fourier spectrum.
The MFDFA parameter we chose to follow in this study, the
multifractal spectrum width, has failed to reveal anything more
than our STFT-based profiles—in fact, it has proved largely
insensitive to age or experimental stage. The only exception to
this was the drop in the profile as a reaction to CSD, which, in
young animals, was significantly less during ischaemia than the
baseline, but it did not fit into any discernible pattern.
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Biological neuronal networks are highly adaptive and plastic. For instance,

spike-timing-dependent plasticity (STDP) is a core mechanism which adapts the

synaptic strengths based on the relative timing of pre- and postsynaptic spikes.

In various fields of physiology, time delays cause a plethora of biologically relevant

dynamical phenomena. However, time delays increase the complexity of model systems

together with the computational and theoretical analysis burden. Accordingly, in

computational neuronal network studies propagation delays were often neglected. As

a downside, a classic STDP rule in oscillatory neurons without propagation delays is

unable to give rise to bidirectional synaptic couplings, i.e., loops or uncoupled states.

This is at variance with basic experimental results. In this mini review, we focus on

recent theoretical studies focusing on how things change in the presence of propagation

delays. Realistic propagation delays may lead to the emergence of neuronal activity

and synaptic connectivity patterns, which cannot be captured by classic STDP models.

In fact, propagation delays determine the inventory of attractor states and shape

their basins of attractions. The results reviewed here enable to overcome fundamental

discrepancies between theory and experiments. Furthermore, these findings are relevant

for the development of therapeutic brain stimulation techniques aiming at shifting the

diseased brain to more favorable attractor states.

Keywords: propagation delays, spike-timing-dependent plasticity, synchronization, mathematical modeling, living

systems

1. INTRODUCTION

Time delays play an important role in various fields of physiology (Glass et al., 1988; Batzel
and Kappel, 2011). Neurophysiological time delays crucially affect generation, transmission,
and processing of information among different components of a living system, and more
specifically, between interconnected neurons in the nervous system. The time required for
neuronal communication can be significantly prolonged due to the physical distance between
sending and receiving units (Knoblauch and Sommer, 2003, 2004), finite velocity of signal
transmission (Desmedt and Cheron, 1980), morphology of dendrites and axons (Manor et al.,
1991; Boudkkazi et al., 2007) and information processing time of the cell (Wang et al., 2009).
The physiological range of such time delays may vary from a few milliseconds in dendritic
trees (Agmon-Snir and Segev, 1993; Schierwagen and Claus, 2001) to tens of milliseconds in axonal
components of cortico-thalamic circuits (Swadlow and Weyand, 1987).
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The presence of such experimentally observed propagation
delays can have significant impacts on the performance,
structure, and function of the nervous system (Sirota et al., 2005;
Joris and Yin, 2007; Chomiak et al., 2008; Spencer et al., 2012,
2018; Squire et al., 2012; Walters et al., 2013; Esfahani et al.,
2016; Stoelzel et al., 2017). In fact, the diversity of dendritic
and axonal propagation delays in the nervous system can
underlie different response properties of the relevant neuronal
populations (Sirota et al., 2005; Stoelzel et al., 2017). For instance,
axonal propagation delays in visual and motor cortico-thalamic
circuits correspond to different response functions associated
with sensory, movement-related, or spontaneous activity of
neurons (Sirota et al., 2005; Stoelzel et al., 2017). The auditory
system employs compensatory delay mechanisms to modulate
the asynchrony in inputs, in this way reducing the sensitivity of
brainstem neurons to interaural time delays (Spencer et al., 2012,
2018). Propagation delays also can affect the communication
between connected neurons by modulating the spatio-temporal
properties of pre- and postsynaptic activity patterns (Chomiak
et al., 2008). One major role of axonal propagation delays
might be their involvement in the generation of nearly
synchronous responses in postsynaptic neurons by regulating
the outgoing impulses in axons with several postsynaptic target
neurons (Chomiak et al., 2008).

Despite their inevitable physiological significance in
living systems, propagation delays are usually overlooked in
mathematical models, presumably to avoid further complexity.
Although this assumption simplifies the theoretical calculations
and reduces the computational cost of multiscale computer
simulations, it renders mathematical models unable to provide
insight into relevant physiological mechanisms. However, a
number of theoretical and computational studies have shown
that propagation delays modify weight and neuronal dynamics
by affecting the co-evolution of synaptic strengths and neuronal
activity, and therefore, shaping the emergent functional and
structural properties of plastic neuronal networks (Lubenov and
Siapas, 2008; Aoki and Aoyagi, 2009; Kozloski and Cecchi, 2010;
Rubinov et al., 2011; Knoblauch et al., 2012; Babadi and Abbott,
2013; Kerr et al., 2013; Madadi Asl et al., 2017, 2018a), where
the synaptic strengths are regulated by spike-timing-dependent
plasticity (STDP) (Gerstner et al., 1996; Markram et al., 1997;
Bi and Poo, 1998; Song et al., 2000). Hence, incorporation of
time delays in mathematical models can significantly modify the
dynamical properties of neuronal systems, such as the emergence
of different connectivity patterns (Madadi Asl et al., 2017, 2018a),
affecting the dynamics of fixed points and synchronization
properties between interconnected neurons (D’Huys et al., 2008;
Popovych et al., 2011), and the emergence of different multistable
dynamical attractors (Song et al., 2009; Madadi Asl et al., 2018a).

Neglecting realistic time delays in mathematical models
has led to discrepancies between theoretical and experimental
findings over the past few years. In this manuscript, we review
recent physiological and computational studies that have shown
that a simple classic STDP rule enhanced by realistic dendritic
and axonal propagation delays is able to explain some of the
corresponding experimental results. We highlight the pivotal
role of dendritic and axonal propagation delays in regulating

the emergent activity and connectivity patterns in plastic
neuronal networks under the influence of classic pair-based
STDP which significantly affects the information transmission in
neuronal populations. Ultimately, we point out the importance
of propagation delays in the computation-based development
of therapeutic brain stimulation techniques that are used for
modulating plastic neuronal networks in diseased brains.

2. PROPAGATION DELAYS:
PHYSIOLOGICAL ASPECTS

From a physiological standpoint, the measurement of
propagation delays in dendrites or axons of neuronal populations
requires complex experimental setups, stimulation protocols,
or modern clinical instruments. Several experimental studies
investigated dendritic and axonal propagation delays in neuronal
populations of various species (Swadlow and Weyand, 1987;
Swadlow, 1990; Agmon-Snir and Segev, 1993; Schierwagen
and Claus, 2001; Ferraina et al., 2002; Briggs and Usrey, 2009;
Stoelzel et al., 2017). The physiological range of dendritic
and axonal propagation delays may attain a range of different
values, based on different experimental model systems in
which they were measured. For instance, the value of dendritic
propagation delays may vary from sub-milliseconds to a few
milliseconds (Agmon-Snir and Segev, 1993; Schierwagen
and Claus, 2001). Axonal propagation delays, however,
may take a wider range from a few milliseconds in cortico-
tectal connections (Swadlow and Weyand, 1987) to tens of
milliseconds in cortico-cortical (Swadlow, 1990) and cortico-
thalamic circuits (Swadlow and Weyand, 1987). Axonal delays
are typically greater than dendritic delays in a neuron, however,
values of dendritic delays greater than the axonal delays were
experimentally measured in distal dendrites of neocortical
pyramidal neurons (Stuart and Spruston, 1998; Sjöström and
Häusser, 2006).

In the auditory system, dendritic and axonal propagation
delays modify the mechanisms of interaural time sensitivity by
regulating coincident or lagged inputs from the two sides, and
therefore, play a constructive/destructive role in binaural sound
localization depending on the location of the sound source and
the leading ear (Joris and Yin, 2007; Squire et al., 2012). Dendritic
propagation delays are hypothesized to play a compensatory
role for the input asynchrony in the auditory brainstem of
mammals using plastic synaptic weights (Spencer et al., 2012,
2018). In the motor system, propagation delays can impose
functional limitations on the efficiency of feedback control
in situations where time-critical performance of the sensory
feedback is vital for the biological system (Squire et al., 2012). The
functional significance of diverse range of axonal propagation
delays in cortico-thalamic circuits are shown to be strongly
related to multiple visual response properties (Stoelzel et al.,
2017). Axonal delays act as a timing mechanism in the neuronal
networks responsible for path integration of head direction and
were computationally shown to promote the accuracy of path
integration in the absence of visual input (Walters et al., 2013).
Experimentally delayed visual feedback was used as a tool to
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manipulate and disentangle different motor control regulatory
brain mechanisms (Tass et al., 1996; Rougier, 2003; van den
Heuvel et al., 2009).

The role of dendritic or axonal propagation delays has been
implicated in a number of nervous system disorders such as
Parkinson’s disease (PD) (Hauptmann and Tass, 2007; Ebert
et al., 2014; Shouno et al., 2017), epilepsy (Wendling et al.,
2010), andmultiple sclerosis (MS) (Waxman, 2006). Subthalamic
nucleus (STN) parkinsonian oscillations are shown to be sensitive
to feedback oscillatory inputs of cortical circuits in a delay-
dependent manner (Shouno et al., 2017). Neurophysiological
latencies are hypothetically involved in the complex propagation
mechanisms of epileptic activity in the brain (Wendling et al.,
2010). In MS patients a demyelination of axonal components
may lead to significant transmission delays along the axon of
the cell (Waxman, 2006). This process reduces the conduction
velocity of signals along the axon and can ultimately result in a
blockage of information transmission and conduction failure of
the axon (Waxman, 2006). Furthermore, propagation delays can
have significant impact on methods used to record or modulate
brain activity. For instance, time delays can affect procedures
that estimate the degree of association and phase relationships
between electroencephalogram (EEG) signals (Lopes da Silva F
et al., 1989), or adjust the performance of therapeutic brain
stimulation techniques (see below).

3. PROPAGATION DELAYS:
COMPUTATIONAL ASPECTS

From a computational standpoint, one of the most important
roles of propagation delays might be their potential to
address the challenging inconsistencies between theoretical and
computational studies regarding the functional, structural, and
dynamical properties of plastic neuronal networks driven by
the pair-based STDP (Abbott and Nelson, 2000; Song and
Abbott, 2001; Pfister and Gerstner, 2006; Masuda and Kori,
2007; Lubenov and Siapas, 2008; Clopath et al., 2010; Kozloski
and Cecchi, 2010; Knoblauch et al., 2012) on the one hand
and relevant experimental observations (Bi and Poo, 1998;
Van Rossum et al., 2000; Sjöström et al., 2001; Song et al., 2005;
Wang et al., 2005; Lea-Carnall et al., 2017) on the other hand,
e.g., the prevalence of strong bidirectional loops between pairs
of neurons in cortical circuits (Song et al., 2005; Morishima
and Kawaguchi, 2006) and the dependence of emergent synaptic
structures on the firing rate of neurons (Sjöström et al., 2001;
Wang et al., 2005; Lea-Carnall et al., 2017).

In fact, the classic pair-based STDP model (Gerstner et al.,
1996; Markram et al., 1997; Bi and Poo, 1998; Song et al.,
2000), through which the change of the synaptic strengths is
induced by pairwise temporal interactions between pre- and
postsynaptic spikes, has shown to be unable to account for
the emergence of strong bidirectional connections and neuronal
loops (Abbott andNelson, 2000; Song and Abbott, 2001; Lubenov
and Siapas, 2008; Kozloski and Cecchi, 2010; Knoblauch et al.,
2012; Babadi and Abbott, 2013). Furthermore, it fails to address
the experimentally measured dependency of weight dynamics

on the frequency of oscillations (Sjöström et al., 2001; Wang
et al., 2005; Lea-Carnall et al., 2017). Several attempts were made
in order to overcome the limitations of the pair-based STDP
model over the past few years via the introduction of variations
or improvements of the STDP model, such as the triplet-
based STDP (Pfister and Gerstner, 2006), STDP with shifted
learning window (Babadi and Abbott, 2013), or application of
independent noise (Popovych et al., 2013; Lücken et al., 2016).
Furthermore, there are several biophysical models that attempt
to identify variables with specific biophysical quantities and
include them in biophysics-based models of STDP (Castellani
et al., 2001; Shouval et al., 2002a,b, 2010; Abarbanel et al., 2003;
Rachmuth et al., 2011). For instance, Shouval et al. developed
a model of long-term potentiation/depression that includes the
back propagating potential in the STDP model (Castellani et al.,
2001; Shouval et al., 2002a,b). For a review of the shortcomings
of pair-based STDP and its variations see (Morrison et al., 2008;
Madadi Asl et al., 2018b).

A number of studies, however, have focused on the role of
propagation delays to resolve the aforementioned discrepancies.
Short axonal propagation delays were shown to decouple
synchronous neurons in the presence of STDP (Knoblauch
and Sommer, 2003, 2004), whereas long axonal propagation
delays promote inter-areal synchronized activity and result in a
potentiation of the synaptic strengths (Knoblauch and Sommer,
2004). Taking into account only dendritic propagation delays
in the modeling can result in the emergence of strong two-
neuron loops (Morrison et al., 2007). Also, it was shown that a
combination of dendritic and axonal propagation delays along
with an unbalanced STDP profile can lead to the emergence of
self-organized states in recurrent neuronal networks (Lubenov
and Siapas, 2008). The role of dendritic and axonal propagation
delays on the dynamics of recurrent neuronal networks has also
been pointed out by considering the effect of time delays in
terms of a shift in the STDP temporal window (Babadi and
Abbott, 2013). Pairwise interactions of STDP-driven recurrent
neuronal populations with such shifts can explain mechanisms
underlying loop formation and elimination in bidirectional
synapses (Kozloski and Cecchi, 2010; Babadi and Abbott, 2013).

Recently, by presenting a theoretical framework comprising
regular spiking neurons we showed that by taking into account
dendritic and axonal propagation delays in the modeling of a
STDP-driven two-neuron motif different patterns of synaptic
connectivity may emerge (Madadi Asl et al., 2017). The synaptic
strengths are modified according to the following pair-based
STDP rule (Bi and Poo, 1998):

1gij = A± sgn(1t′) exp(−|1t′|/τ±), (1)

where A+(A−) and τ+(τ−) are the learning rate and the effective
time window of synaptic potentiation (depression), respectively,
and sgn(1t′) is the sign function. 1t′ = 1t + ξ is the effective
delayed time lag between pre- and postsynaptic spikes at the
synaptic site (Madadi Asl et al., 2017, 2018a). 1t = tpost − tpre
is the original time lag between pre- and postsynaptic spike pairs,
and ξ = τd − τa is the difference between dendritic and axonal
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propagation delays. The synaptic strengths are updated by an
additive rule at each step gij → gij+1gij, and they are confined in
the range (gmin, gmax) ∈ [0, 1] by using a hard bound saturation
constraint.

When propagation delays are ignored or, equivalently, when
dendritic and axonal delays are identical for both directions of
the reciprocal synapses, ξ = τd − τa = 0, the original and the
effective delayed time lags are equal, 1t′ = 1t. Therefore, the
type of synaptic modification is simply determined by the sign
of the original time lag, i.e., 1t ≥ 0 leads to a potentiation of
the synapse whereas 1t < 0 results in a depression. Hence,
in the absence of propagation delays, the potentiation of one
synapse is accompanied by the depression of the other synapse,
leading to a unidirectional connection when the potentiation and
depression amplitude of the STDP profile is balanced. However,
in the presence of dendritic and axonal propagation delays and
assuming that the spiking neurons are relatively phase-locked
with a small time lag with respect to the propagation delays,
|ξ | > |1t|, the effective delayed time lag 1t′ perceived at the
synaptic site may be different from the time lag of the spikes at
the cell bodies. Hence, as shown in Figure 1A, when the dendritic
delay is greater than the axonal τd > τa, reciprocal synapses
are both potentiated, which lead to the emergence of a strong
bidirectional loop. On the contrary, greater axonal delays τd < τa

result in a depression of both reciprocal synapses, in this way
generating a loosely connected motif (see Figure 1B).

By assuming that the neurons remain phase-locked, it was
illustrated that the two-neuron results can be extended to
recurrent networks of spiking neurons (Madadi Asl et al.,
2017, 2018a). Different combinations of dendritic and axonal
propagation delays can lead to the emergence of symmetric
connections, i.e., either two-neuron bidirectional loops, in the
case that dendritic propagation delays are greater than the
axonal delays (Figure 2A), or loosely connected motifs when
axonal propagation delays are greater than the dendritic delays
(Figure 2C) (Madadi Asl et al., 2017). As shown in Figure 2C,
the disconnected network is highly unstable and ultimately leads
to the emergence of unidirectional connections. However, we
showed that the loosely connected motif can be stabilized by
assigning a finite value to the lower bound of the synaptic
strengths gmin (Madadi Asl et al., 2018a). In this framework,
unidirectional connections can also arise when dendritic and
axonal propagation delays are identical in both directions of the
reciprocal synapses (Figure 2B).

Furthermore, we studied the emergence of delay-induced
multistable dynamics in recurrent networks of spiking neurons
attributed to the distribution of the initial synaptic strengths
modified by STDP (Madadi Asl et al., 2018a). Such a
multistability of the network evolution can be theoretically
addressed by the emergence of different attractor states
representing the two-dimensional space of the initial synaptic
strengths in a two-neuron motif (Madadi Asl et al., 2018a).
Moreover, it was shown that the basin of attraction of each
dynamical state depends on the firing rate of the neurons in a way
that higher firing frequencies favor the emergence of symmetric
connections in expense of eliminating the unidirectional
connections (Madadi Asl et al., 2018a). Intriguingly, the

aforementioned nontrivial dynamics are only present when the
dendritic and axonal propagation delays are considered in the
neuronal networks models. In the simplest setting, characterized
by ignoring dendritic and axonal propagation delays as well as
the absence of independent noise, any initial preparation leads
to the emergence of unidirectional connections regardless of the
neuronal firing pattern and the initial synaptic strengths.

4. CONCLUDING REMARKS

Propagation delays are inevitable in living systems, and in
particular, in the nervous system. The presence of propagation
delays has significant impact on the performance, structure, and
function of the nervous system. However, from a physiological
as well as theoretical standpoint, systems with time delays are
considerably more complex, and therefore, delays have typically
not been taken into account in relevant studies to simplify
the experimental setups in physiological measurements or the
mathematical approach in theoretical studies. Incorporating
time delays can impose significant levels of complexity and
computational cost to the problem. Time delay differential
equations are more complicated to deal with from an analytical
standpoint. For this reason, in a first approximation, theoretical
and computational studies typically ignored the effects of time
delays in the modeling. This has led to some discrepancies
between theoretical and computational studies with physiological
measurements over the past few years (Bi and Poo, 1998; Abbott
and Nelson, 2000; Van Rossum et al., 2000; Sjöström et al., 2001;
Song and Abbott, 2001; Song et al., 2005; Wang et al., 2005;
Pfister and Gerstner, 2006; Masuda and Kori, 2007; Lubenov and
Siapas, 2008; Clopath et al., 2010; Kozloski and Cecchi, 2010;
Lea-Carnall et al., 2017). However, in an attempt to overcome
unphysiological simplifications, we recently demonstrated that
incorporating dendritic and axonal propagation delays in
STDP-driven networks of spiking model neurons can lead
to the emergence of different synaptic connectivity patterns
characterized by different dynamical attractors (Madadi Asl et al.,
2017, 2018a).

The shortcomings of the pair-based STDP model can be
resolved by several improvements proposed during the past
decade: The experimentally demonstrated dependency of the
weight dynamics on the frequency of the neuronal oscillations
can be addressed by considering triplets of spikes (Pfister
and Gerstner, 2006) or postsynaptic voltage (Clopath et al.,
2010) in the plasticity model. In fact, the triplet-based STDP
model is proposed to comply with the experimentally observed
dependence of the weight changes on the firing frequency of the
oscillations (Sjöström et al., 2001; Wang et al., 2005; Lea-Carnall
et al., 2017), showing that bidirectional connections can be
promoted at high firing rates (Pfister and Gerstner, 2006). Strong
bidirectional loops can be retained by employing an unbalanced
STDPmodel with a shifted learning window (Babadi and Abbott,
2013) or the application of independent noise (Popovych et al.,
2013; Lücken et al., 2016). A pair-based STDP model with
a rightward shifted learning window was shown to preserve
bidirectional connections, provided that potentiation dominates
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FIGURE 1 | Delay-induced connectivity patterns in a two-neuron motif. Spiking neurons are connected to each other via initially symmetric synapses with strengths

g21 (g12) of the synapse 1 −→ 2 (2 −→ 1) with a small time lag 1t = tpost − tpre. 1t′ = 1t+ ξ is the effective delayed time lag perceived at the synapse which STDP

employs to modify the synapse, where ξ = τd − τa and |ξ | > |1t|. Green and red dotted (solid) markers indicate the original, t1 and t2 (delayed) forward and

backpropagated spike time of pre- and postsynaptic neurons at the synapse, respectively. (A) Emergence of a strong bidirectional loop: both synapses are

reciprocally potentiated when τd > τa. (B) A loosely connected motif: both reciprocal synapses are depressed when τd < τa. Figure partly adopted from Madadi Asl

et al. (2018b) with authors’ permission.

over depression (Babadi and Abbott, 2013). Furthermore, STDP-
driven neuronal populations subjected to independent noise
counteract the desynchronizing effect of noise by reorganizing
their synaptic connectivity (Popovych et al., 2013; Lücken et al.,
2016). This ultimately leads to a self-organized noise resistance
and promotes bidirectional connections between neurons.

The findings reviewed in this paper highlight the key role of
the presence and the range of dendritic and axonal propagation
delays in modifying the arising dynamics of synaptic connectivity
patterns in recurrent networks of spiking neurons. In fact, short-
range propagation delays may favor strong two-neuron loops,
whereas connections with long propagation delays may result
in the stabilization of a loosely connected network. Hence, the
difference of dendritic and axonal propagation delays play a
crucial role in determining the final stable coupling regime
selected by the network dynamics (Madadi Asl et al., 2017,
2018a). In this way, delay-induced dynamics can overcome the
shortcomings of the pair-based STDP model: Strong two-neuron
loops can be preserved even with a balanced STDP profile
in the absence of independent noise, provided dendritic and
axonal propagation delays are considered in the model, and
furthermore, the experimentally observed dependency of the
weight dynamics on the frequency of the oscillations can be

addressed in this setting (Madadi Asl et al., 2017, 2018a).
Abnormal neuronal synchronization is a hallmark of

several brain disorders (Lenz et al., 1994; Nini et al., 1995;
Hammond et al., 2007). Coordinated reset (CR) stimulation
is a computationally developed patterned multichannel
stimulation (Tass, 2003) which aims at specifically counteracting
abnormal synchrony by desynchronization (Tass, 2003), thereby
causing a decrease of neuronal coincidences and, hence, a
down-regulation of synaptic weights, ultimately shifting the
affected neuronal networks from pathological attractor states

(with strong synchrony and strong synaptic connectivity) to
more physiological attractor states (with loose coupling and
desynchronized activity) (Tass and Majtanik, 2006). The very
goal of this approach is to induce long-lasting desynchronization
which persists after cessation of stimulation (Tass and Majtanik,
2006). Computationally predicted desynchronizing effects (Tass,
2003), cumulative effects (Hauptmann and Tass, 2009) and long-
lasting effects (Tass and Majtanik, 2006) were experimentally
validated in the field of deep brain stimulation for the treatment
of Parkinson’s disease in pre-clinical studies in Parkinsonian
monkeys (Tass et al., 2012b;Wang et al., 2016) as well as in a proof
of concept study in patients with Parkinson’s disease (Adamchic
et al., 2014a). As computationally predicted (Popovych and
Tass, 2012; Tass and Popovych, 2012), CR stimulation can
also be realized by sensory stimulation modalities. Acoustic
CR stimulation caused a significant relief of symptoms in
patients with chronic subjective tinnitus (Tass et al., 2012a),
combined with a significant reduction of abnormal neuronal
synchrony (Tass et al., 2012a; Adamchic et al., 2014b) and
abnormal effective connectivity (Silchenko et al., 2013), as shown
in a proof of concept study employing clinical scores and EEG
recordings. By the same token, vibrotactile CR stimulation (Tass,
2017) caused long-lasting treatment effects, as observed in a

first in man study in Parkinson’s patients (Syrkin-Nikolau et al.,
2018).

The findings reviewed above are relevant for the development
of desynchronizing brain stimulation techniques. From a
model perspective, long-lasting treatment effects are caused
by shifting networks from pathological, strongly synchronized
model attractor states to physiological, desynchronized attractor
states (Tass and Majtanik, 2006). One the one hand, propagation
delays determine which attractors actually emerge. On the
other hand, propagation delays additionally shape the basins
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FIGURE 2 | Emergence of different connectivity patterns in a recurrent network of spiking neurons mediated by STDP. (Left panels) Simulated order parameter and

time course of three different mean couplings of weight distributions. (Middle panels) Initial Gaussian distribution around different mean values and final distribution of

the synaptic strengths. (Right panels) Time course of the normalized number of closed loops of length 2 measuring the number of two-neuron loops in the

network (Madadi Asl et al., 2017). (A) The synaptic strengths are potentiated and bidirectional connections are significantly enhanced in the inphase firing when

τd = 0.5ms > τa = 0.3ms. (B) STDP breaks strong two-neuron loops and results in unidirectional connections in nearly inphase firing when τd = τa = 0.5ms. (C) A

loosely connected network is achieved where bidirectional loops are eliminated in the nearly antiphase firing when τd = 0.5ms < τa = 1.0ms. STDP parameters are

A+ = A− = 0.005, and τ+ = τ− = 10ms. Figure partly adopted from Madadi Asl et al. (2017) with authors’ permission.

of attraction and, hence, determine to which extent attractors
get accessible by appropriate stimulus protocols. Finally,
propagation delays may favorably or unfavorably impact on
multichannel stimulation protocols with dedicated stimulus
sequences, since delays may counteract proper stimulus
timing.
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Natalia V. Voronova1, Tatiana A. Astrakhanova1, Olesya M. Shirokova2,
Innokentiy A. Kastalskiy1 and Maria V. Vedunova1*
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Discovering the mechanisms underlying homeostatic regulation in brain neural network
formation and stability processes is one of the most urgent tasks in modern
neuroscience. Brain-derived neurotrophic factor (BDNF) and the tropomyosin-related
kinase B (TrkB) receptor system have long been considered the main regulators of
neuronal survival and differentiation. The elucidation of methods for studying neural
network activity makes investigating the complex mechanisms underlying neural
network structure reorganization during development and detecting new mechanisms
for neuronal activity remodeling possible. In this in vitro study, we investigated the
effects of chronic BDNF (the main TrkB stimulator) and ANA-12 (a TrkB receptor
system blocker) administration on the formation of neural-glial networks. The formation
of spontaneous bioelectrical activity and functional neural structure depend on TrkB
receptors, and blocking TrkB receptors inhibits full bioelectrical activity development.
Cross-correlation analysis demonstrated the decisive role of TrkB in the formation and
“strengths” of activity centers. Even though an appropriate ANA-12 concentration is
non-toxic to nerve cells, numerous cells in culture medium containing this reagent do
not exhibit metabolic activity and are not functionally involved in signal transmission
processes. Electron microscopy studies revealed that chronically influencing the TrkB
receptor system significantly alters synaptic and mitochondrial apparatus capture in
cells, and functional analysis of mitochondrial activity confirmed these findings. Because
knowledge of interactions between TrkB-mediated regulation and the mitochondrial
state under normal conditions is rather limited, data on these relationships are
particularly interesting and require further investigation. Thus, we assume that the
molecular cascades mediated by TrkB actively participate in the formation of functionally
complete brain neural networks.

Keywords: TrkB receptor, brain-derived neurotrophic factor (BDNF), primary hippocampal cell cultures, neural
networks, multielectrode arrays, calcium imaging, mitochondrial functional activity
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INTRODUCTION

Neural networks are currently considered the minimal functional
unit of the central nervous system (CNS), and formation
of the brain neural networks responsible for processing and
transmitting information is a complex process characterized
by a number of critical stages (Shirokova et al., 2013; Yuste,
2015). Each stage has its own peculiarities, and issues in any
of these stages lead to the development of a functionally
inferior structure. Even though the brain structure is formed
before birth, its full development is mainly determined by the
nature of postpartum stimuli from the environment. External
stimuli modulate functional brain maturation and neurogenesis
in adulthood (Lledo et al., 2006; de Almeida et al., 2013; Sailor
et al., 2017). Notably, the formation of synaptic contacts between
neurons continues throughout life. Organization of a stable
neural network structure in the brain and reconsolidation of
synaptic contacts under stress conditions are associated with
the activation of numerous intracellular signaling cascades (de
Almeida et al., 2013; Yu and Yu, 2017). Searching for endogenous
compounds involved in the formation of complex spatial and
functional neural networks is one of the most urgent tasks in
modern neuroscience.

Brain-derived neurotrophic factor (BDNF) is a promising
signaling molecule that may have a generalized effect on the
formation and reconsolidation of neural networks. BDNF
is involved in the regulation of neurogenesis, neuronal
development and survival (Martin and Finsterwald, 2011;
Park and Poo, 2013; Skaper, 2018); it also plays a crucial role
in early neuronal differentiation, synaptic development, neural
outgrowth, mature neuron survival, and synaptic plasticity
(Douglas-Escobar et al., 2012; Leal et al., 2015; Kowiański et al.,
2018; von Bohlen Und Halbach and von Bohlen Und Halbach,
2018).

The main functions of BDNF are mediated by its interaction
with the tropomyosin-related kinase B (TrkB) receptor
(Patapoutian and Reichardt, 2001; Skaper, 2018) and the
possibility of intracellular signaling cascade activation, which
can indirectly affect synaptic transmission and synaptic contact
formation, thus determining the neural network structure
(Ohira and Hayashi, 2009; Guo et al., 2014; Mitre et al., 2017).
TrkB receptors are normally localized within vesicles inside
the cell and translocate to the plasma membrane through
neuronal activity (Meyer-Franke et al., 1998; Du et al., 2000).
These data are consistent with a central role of neurotrophins
as mediators of activity-dependent plasticity (Poo, 2001; Lu
et al., 2014). BDNF plays a key role in mediating activity-
induced long-term potentiation (LTP) (Leal et al., 2014).
The early effects of BDNF result from the modification (e.g.,
protein phosphorylation) of components already present
at the synapse, while the long-term effects arise from the
modification of translational activity at the synapse and
changes in transcription. High-frequency stimulation that
induces LTP increases BDNF production (Castrén et al., 1993).
Furthermore, BDNF increases neurotransmitter release and
promotes synaptic transmission and LTP (Panja and Bramham,
2014; Kuipers et al., 2016). Thus, it is reasonable to assume that

the effects exerted by BDNF on synaptic plasticity are TrkB
mediated.

Investigating neural network formation at different levels of
neuron-glial system organization under chronic influence of
the TrkB receptor system during development is of particular
interest. Application of mathematical methods for biological data
analysis may help reveal the features of neural network internal
structure formation and the influence of TrkB signaling on the
nerve impulse transmission process as well as predict the effects
of endogenous BDNF dynamics on neural networks.

Our present study is devoted to investigating the features of
neural network formation and functions in primary hippocampal
cultures in the context of chronic BDNF application and TrkB
receptor blockage.

MATERIALS AND METHODS

Ethics Statement
All experimental protocols utilized in this study were approved
by the Bioethics Committee of Lobachevsky University and
carried out in accordance to Act708n (23 08 2010) of the
Russian Federation National Ministry of Public Health, which
states the rules of laboratory practice for the care and use of
laboratory animals, and the Council Directive 2010/63 EU of the
European Parliament (September 22, 2010) on the protection of
animals used for scientific purposes. C57BL/6J mice were killed
by cervical vertebra dislocation, and their embryos were then
surgically removed and sacrificed by decapitation.

Experimental Scheme
Recombinant BDNF (1 ng/mL, Merck, GF301, Germany),
ANA-12 (a selective TrkB receptor blocker, 1 µM, Sigma-Aldrich,
SML0209, Germany) or BDNF (1 ng/mL) and ANA-12 (1 µM) in
combination were added to the culture medium daily beginning
on the third day of culture development in vitro (DIV) (Figure 1).

Analyses of spontaneous bioelectrical and calcium activities,
which included defining the internal neural network structure,

FIGURE 1 | Scheme of the experiment.
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morphological studies, and evaluation of the dynamics of
functional characteristics of the mitochondrial respiratory chain
in neural cells, were performed on DIV 7, 10, and 14.

Cell Culture
Hippocampal cells were obtained from mouse embryos (day
18 of gestation) and cultivated on multielectrode arrays
(MEAs) (Multichannel Systems, Germany) or coverslips
pretreated with polyethyleneimine solution (1 mg/mL)
(Sigma-Aldrich, P3143) according to a previously developed
protocol (Vedunova et al., 2013). Hippocampi were dissected in
Ca2+- and Mg2+-free phosphate buffered saline (PBS-minus)
followed by 20 min of enzymatic treatment with 0.25%
trypsin-ethylenediaminetetraacetic acid (EDTA, Invitrogen,
25200-056, United States). Next, the cells were carefully
suspended and centrifuged at 1,000 rotations per min (rpm) for
3 min. The cell pellet was immediately resuspended in neurobasal
medium (Invitrogen, 21103-049) supplemented with 2% B27
(Invitrogen, 17504-044), 0.5 mM L-glutamine (Invitrogen,
25030-024), and 5% fetal bovine serum (PanEco, K055, Russia).
Dissociated cells were plated on MEAs and coverslips at an
approximate initial density of 9,000 cells/mm2. After 24 h, 50%
of the culture medium was replaced with neurobasal medium
containing a lower concentration of fetal bovine serum (0.4%).
Fifty percent of the medium was changed every third day, and cell
viability was maintained under constant conditions of 35.5◦C,
5% CO2 and a humidified atmosphere in a cell culture incubator.

Cell Viability Detection
To determine the viability of dissociated hippocampal cells
upon application of different concentrations of ANA-12, we
estimated the ratio of the number of dead cells stained with
propidium iodide (Sigma-Aldrich, P4170) to the total number of
cells stained with bisbenzimide (Invitrogen, H3570). Propidium
iodide and bisbenzimide at concentrations of 5 µg/mL and 1
µg/mL, respectively, were added to the culture medium 30 min
before the viability was measured (Vedunova et al., 2015). Cells
were observed under a Leica DMIL HC inverted fluorescence
microscope (Leica, Germany) with a 10×/0.2Ph1 objective.

Electrophysiological Methods
Extracellular potentials were collected using 59 planar
TiN electrodes integrated into the USB-MEA-120 system
(Multichannel system, Germany). The MEAs had 59 electrodes
(8 × 8 grid) with a diameter of 30 µm and were spaced
200 µm apart. Data were recorded simultaneously from 59
channels at a sampling rate of 20 kHz/channel. All signaling and
statistical analyses were performed using custom-made software
(MATLAB R©6.0, Natick, MA, United States).

Small network bursts were detected by calculating the total
spiking rate (TSR), which considered the total number of spikes
from all electrodes within 50-ms time bins. The criterion for a
small network burst was the rapid appearance of a large number
of spikes over four electrodes within a small (50 ms) time bin
(Pimashkin et al., 2011; Vedunova et al., 2013; Gladkov et al.,
2018).

Spike Detection
The recorded extracellular action potentials were detected by
threshold calculations using the signal median as follows:

T=Nsσ, σ=median
(
|x|

0.6745

)
(1)

where x is the bandpass-filtered (0.3–8 kHz) data signal, σ is an
estimate of the standard deviation of the signal without spikes,
and Ns is the spike detection coefficient that determines the
detection threshold. Threshold estimations based on the median
of the signal in the form of Eq. (1) are less dependent on
the frequency of the spikes than threshold estimates based on
the standard deviation during signal processing. The coefficient
0.6745 in Eq. (1) was used to normalize the median of the absolute
signal to the standard deviation. Ns = 4 was used for all data,
which allowed the reliable detection of spikes with amplitudes
greater than 20 µV. The minimal interspike interval was set
to 1 ms. Detected spikes were plotted using raster diagrams
(Quiroga et al., 2004; Pimashkin et al., 2011).

Small Burst Detection
We recorded spontaneous burst activity to analyze the effects
of chronic BDNF and ANA-12 application on the functional
characteristics of neural networks in primary hippocampal
cultures. The TSR was determined by counting the total number
of spikes from all electrodes within 50-ms time bins for small
network burst detection. The rapid emergence of a large number
of spikes over multiple electrodes within a small (50 ms) time bin
was used as the criterion for a small network burst. Spontaneous
activity in the cultures corresponded to the basal stochastic
activity, which was observed in fractions of cells together with
short burst episodes. The spike trains (approximately 1 spike
per 10–100 ms) were considered to represent basal activity.
To reveal bursts, we used a threshold detection based on the
statistical characteristics of the spontaneous activity TSR(t). The
burst threshold was set to TBurst = 0.1 × σ TSR, where σ

TSR was the standard deviation of TSR(t). The burst detection
threshold coefficient was empirically set to 0.1, yielding the best
estimate for the burst initiation and end points according to
the raster diagram. Simulations of bursts with frequencies up
to 5 Hz revealed that the estimated burst durations were within
10% of the actual values. Statistical analysis of the bursting
activity characteristics was performed using analysis of variance
(ANOVA, p < 0.05) (Pimashkin et al., 2011; Vedunova et al.,
2013).

Cross-Correlation Method and Graphs
The dataset, obtained from spontaneous bioelectrical network
activity recordings, was represented as a raster plot. The existence
of functional connections between neuronal groups was not
obvious based on visual analysis. The network graph method was
then used to detect the neuronal groups.

First, to assess the degree of synchronization between all
pairs of cells, considering axonal delays, we calculated the
proportion of transmitted spikes. This measure is an analog of
the cross-correlation coefficient of continuous signals. According
to this method, the number of “delayed synchronous” spikes was
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calculated. These spikes had to be recorded from both channels
within a tolerance interval of δ for which the time delay τ between
the centers of the spikes was proportional to the distance between
the electrodes. The number of delayed synchronous spikes was
normalized by the number of spikes received by the postsynaptic
neuron nj. Thus, the cross-correlation matrix was calculated
using the following formula:

Cij=
nsynchr,ij

nj
(2)

we then selected the largest 5% of Cij coefficients and defined
a set of indices, i.e., hubs of cells with a maximum number of
functionally active connections. In addition, for each hub “i,”
we calculated the number of connections to index i within the
array Cij.

Next, the graph was constructed. The vertex size was
proportional to the number of significant connections, and the
edge of the graph corresponded to the functional connections of
spikes transferred from one neuron to another at individual time
points for each pair of axonal delays, i.e., τ± δ/2 (Shishkina et al.,
2018).

The cross-correlation method and graphs allow the detection
of hubs, i.e., elements with the maximum number of functionally
active connections, and show the dynamic changes occurring in
the network in short- and long-term periods. The hub coefficient
was calculated as the ratio of the number of connections of
an electrode to its total number in the graph; therefore, it
characterized the importance of a group of neurons located at
one electrode to network activity. The hub coefficient allows an
estimation of changes in the significance of each electrode in an
MEA.

Ca2+ Imaging
To conduct functional calcium imaging, we dissolved Oregon
Green 488 BAPTA-1 AM (OGB-1) (0.4 µM, Invitrogen, O-6807)
in dimethylsulfoxide (DMSO) (Sigma-Aldrich, D8418) with 4%
pluronic F-127 (Invitrogen, P-3000 MP) and then added it
to the culture medium for 40 min. After incubation to allow
full absorption of OGB-1 molecules by the cells, the cells
were washed with dye-free medium for 15 min. A confocal
laser-scanning microscope (Zeiss LSM 510, Germany) with a
W Plan-Apochromat 20×/1.0 objective was used to visualize
spontaneous calcium activity in the dissociated cultures.

Cytosolic Ca2+ was visualized via OGB-1 excitation with
an Argon laser at 488 nm and emission detection with a
500–530 nm filter. Time series of 256 × 256 pixel images
capturing 420 µm × 420 µm fields of view were recorded at
4 Hz. A confocal pinhole of 1 airy unit was used to obtain an axial
optical slice resolution of 1.6 µm.

Quantitative evaluation of Ca2+ transients was performed
off-line using custom-made software in C++ Builder. Cell
regions from fluorescent images were manually selected. The
Ca2+ fluorescence of each cell in each frame was calculated
as the average fluorescence intensity (F, relative units from 0
to 255) of the pixels within the defined cell region. Single
Ca2+ signals were identified using the following algorithm. First,
each trace from all of the cells was filtered by averaging two

neighboring points in the sample set. Next, we calculated a simple
derivative of the signal by determining the difference between
each pair of consequent points. The pulses were identified from
the derivative of the trace using a threshold detection algorithm.
The threshold was estimated as the detection accuracy coefficient
multiplied by the standard deviation of the derivative of the
trace. Suprathreshold points on the derivative of the trace were
taken as the beginnings and ends of the pulses (Zakharov et al.,
2013).

Electron Microscopy
Primary hippocampal cultures were fixed in 2.5% glutaraldehyde
(Acros Organics, AC119980010, United States) on DIV 10 and
DIV 14. The cultures were then washed three times with PBS and
treated with 1% osmium tetroxide (Sigma-Aldrich, 20816-12-0)
for 60 min. After additional washing steps, the dissociated
hippocampal cells were dehydrated in a series of ethanol solutions
of increasing concentration (30–100%) followed by 100% acetone
and then embedded in a mixture of acetone/EPON resin (50:50).
The culture was ultimately embedded in EPON resin (Fluka,
United States).

For electron microscopy, the resin blocks were cut using
a Leica EM UC7 ULTRA ultramicrotome (Leica, Germany).
Ultrathin sections were contrasted with 4% uranyl acetate
(SPI-chem, 02624-AB, United States), lead citrate and trihydrate
(SPI-chem, 512-26-5). The ultrathin sections were examined
with a Morgagni 268D transmission electron microscope (FEI
Company, United States).

Registration of Mitochondrial Functional
Activity
Mitochondrial functional activity was analyzed on DIV 10
and DIV 14. Mitochondria were isolated using the standard
differential centrifugation method (Pallotti and Lenaz, 2001;
Schmitt et al., 2015), and the dissociated hippocampal cells
were enzymatically [versine-trypsin (3:1) solution] removed from
the cultivation substrate. The subsequent manipulations were
performed on ice, and the equipment and isolation media were
also cooled. The cells were placed into a precooled porcelain
mortar; washed with an ice-cold isolation medium comprising
70 mM saccharose, 210 mM mannitol, 30 mM HEPES, and
0.1 mM EDTA (pH 7.4); and then subjected to homogenization
in a glass homogenizer. An electrically driven Teflon pestle had
a clearance excluding mitochondrial destruction. The obtained
homogenate was centrifuged at 4,000 rpm (temperature ranging
from −3 to 0◦C) for 10 min. The precipitate was resuspended
in medium containing 210 mM mannitol, 70 mM saccharose,
0.1 mM EGTA, and 10 mM HEPES (pH 7.4). The obtained
mitochondrial suspension was stored on ice to avoid freezing.
The Bradford method was used to quantitate the protein in the
isolated mitochondria.

Oxygen consumption by the isolated mitochondria was
registered polarographically using the high-resolution
respirometer OROBOROS Oxygraph-2k (OROBOROS
Instruments, Austria) in 2 mL incubation medium (210 mM
mannitol, 70 mM saccharose, 0.1 mM EGTA, 10 mM HEPES, pH
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7.4) with constant stirring. The oxygen consumption rate was
expressed in picomol/s/1 mg mitochondrial protein.

The oxygen consumption in the chamber was fixed using
DatLab5 software (OROBOROS Instruments, Austria).

The state of the mitochondrial respiratory chain was evaluated
according to the following parameters: the rate of oxygen
consumption by mitochondria with a high substrate content,
5 mM glutamate and 5 mM malate (substrates of complex I),
in the incubation medium; the oxidative phosphorylation rate
of the respiratory chain in the presence of 5 mM adenosine
diphosphate (ADP); the inhibition of complex I activity with 0.5
µM rotenone, and the work intensity of the respiratory chain
after the stimulation of complex II with 10 mM sodium succinate.

Statistical Analysis
All quantified data are presented as the mean ± standard error
of the mean (SEM). Statistical analyses were performed using
two-way ANOVA implemented in Sigma Plot 11.0 software
(Systat Software, Inc.). The Student–Newman–Keuls (SNK) test
was used as a post hoc test following ANOVA. Differences
between groups were considered significant if the corresponding
p-value was less than 0.05.

RESULTS

First, we selected an appropriate concentration for the selective
TrkB receptor blocker ANA-12. ANA-12 is low-molecular-weight
heterocyclic compound that affects the formation of a functional
complex between BDNF and TrkB (Cazorla et al., 2011). ANA-12
binds the extracellular fifth subdomain of TrkB (TrkB-d5).
Given the size of BDNF relative to ANA-12, although the
N-terminal arm of the neurotrophin competes with ANA-12
for the TrkB-d5-binding pocket, it can be assumed that the
small compound can easily bind to the active center of
TrkB.

A single application of ANA-12 at a concentration of 24
µM exerted a pronounced toxic effect on primary hippocampal
cultures. The number of viable cells treated with 24 µM ANA-12
was significantly decreased by 1.3-fold compared to that in the
“sham” group (day 7 after the addition; sham: 91.32 ± 2.17;
ANA-12: 70.24 ± 3.42). Moreover, even though single ANA-12
applications at concentrations of 12 µM, 10 µM, and 5 µM
did not affect cell viability, this daily application caused high
primary hippocampal cell mortality by DIV 7. Therefore, the
concentration of ANA-12 was reduced to 1 µM. According
to previous studies, the use of ANA-12 at this concentration
completely negates the neuroprotective effect of BDNF (Cazorla
et al., 2011; Longo and Massa, 2013; Saba et al., 2018). These
findings indicate that such concentrations of ANA-12 are
sufficient to block the majority of TrkB receptors. Application
of BDNF, ANA-12 and BDNF and ANA-12 in combination was
carried out according to the scheme presented in the “Materials
and Methods” section.

To identify the role of TrkB receptors in the formation of
neural network activity and the adaptive potential of brain cells
in the context of chronic test substance usage, we performed

analyses of spontaneous bioelectrical and calcium activities,
morphological studies, and evaluations of the dynamics of
mitochondrial respiratory chain functional characteristics in
neural cells on DIV 7, 10, and 14.

Features of the Spontaneous
Bioelectrical Activity of Neural Networks
in Primary Hippocampal Cultures in the
Context of Chronic TrkB Receptor
System Influence
Electrophysiological data analysis revealed that daily application
of the tested substances to the culture medium modulated
spontaneous bioelectrical activity in primary hippocampal
cultures.

According to the classical concept, a network burst is
considered an event comprising no fewer than four spikes
simultaneously recorded from different electrodes in a 50 ms
interval (Wagenaar et al., 2006; Pimashkin et al., 2011; Vedunova
et al., 2013). As the main purpose of this study was to investigate
the neural network complex structure, we focused on the events
that simultaneously captured the prevailing portion of the
functionally active cells. In this regard, all neural network bursts
were conditionally divided into small (from 4 to 100 spikes in
50 ms) and large (101 or more spikes in 50 ms) groups (Figure 2
and Supplementary Table 1). The detection of large network
bursts allows the identification of the network structure by the
cross-correlation method and graphs and the presentation of the
neural network activation pattern.

The development of neural network activity is associated with
the gradual formation of new contacts between neurons and
synapse maturation.

The first network bursts were registered in the “sham”
group on DIV 7. Although small network bursts prevailed
(approximately 82.3± 10.76% of all network bursts), large neural
network events were also observed. However, the number of
spikes in a burst remained relatively small (number of large
bursts/5 min: 34.49 ± 7.32; number of spikes in a large burst:
123.82 ± 18.97). On DIV 10, the number of large network bursts
was decreased (number of large bursts/5 min: 21.04 ± 3.21),
whereas the number of spikes in a large burst was significantly
increased (number of spikes in a large burst: 226.78 ± 41.51).
On DIV 14 on the maturing synaptic contact background,
an insignificant increase in the number of large bursts and
stabilization of bioelectrical parameters were observed (number
of large bursts/5 min: 27.87 ± 5.21; number of spikes in a large
burst: 506.54± 67.11).

Chronically blocking TrkB receptors leads to the modulation
of neural network activity. On DIV 14, the number of large bursts
was significantly decreased to 12.65 ± 4.65 after TrkB receptors
were chronically blocked, and the number of spikes in a large
burst was also decreased compared to that in the sham group and
amounted to 218.54± 65.12.

Notably, the largest number of large network bursts was
registered in cultures to which BDNF was applied chronically
(number of large bursts/5 min on DIV 14: 49.56 ± 5.67), and
the number of spikes in a burst was comparable to that in the
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FIGURE 2 | Main parameters of spontaneous bioelectrical activity in primary hippocampal cell cultures on DIV 14. (A) Number of large network bursts/5 min;
(B) number of spikes per burst. ∗p < 0.05, ANOVA, N = 9.

sham group (number of spikes in a large burst on DIV 14:
409.65± 78.32).

The combined application of BDNF and ANA-12 activated
neural network activity, which is specifically related to the
period of bioelectrical process reformatting and replacement
of the main paths of information transmission from electrical
to chemical synapses (DIV 10). In this period, the number
of large bursts/5 min was 42.34 ± 8.45, and the number
of spikes in a large burst was 320.78 ± 59.89. By DIV
14, despite the high number of large bursts (39.08 ± 8.76),
no significant increase in the number of spikes in a large
burst was observed; this parameter remained the same as
that observed on DIV 10 (Figure 3 and Supplementary
Figure 1).

The characteristic neural network activation profile showed
an increase in the activation time during culture development,
which can be attributed to signal transmission through chemical
synapses occurring on a time delay and creating complicated
neural network structures during developmental processes. The
use of BDNF exerts a more pronounced effect on increasing the
transmission time of the first signal, which is probably associated
with a change in the proportion of different synapses under
chronic neurotrophin application. In another experimental
group, changes in the pattern activation profile were not observed
(see Supplementary Figure 2).

A cross-correlation analysis showed the complicated neural
network structure and the appearance of hubs during the in vitro
culture development (Figure 4). The gradual formation of a
sustainable neural network without the redistribution of activity
centers was observed in the “sham” group, and 77.56 ± 17.23%
of the connections remained stable from DIV 10 to DIV 14
(Table 1).

Chronically influencing the TrkB receptor system leads to
changes in the parameters of spontaneous bioelectrical activity
and significantly affects neural network stability. During neural
network formation, an active redistribution of the network
structure was observed in all experimental groups (percentages
of overlap between DIV 10 and DIV 14: BDNF: 57.37 ± 19.56%;

ANA-12: 5.75 ± 2.82%; BDNF + ANA-12: 26.46 ± 9.8%)
(Table 1).

In addition, an increased number of hubs were observed
during the development of primary cultures in vitro. This
change was apparently related to the complexity of the network
structure. The gradual formation of the hub structure and
increased significance of individual electrodes are shown for
the “sham” and “BDNF” groups. Blocking TrkB receptors
decreased the number of hubs in all observation periods
(Table 2).

The same tendency was observed for the parameter involving
the number of connections in a hub. During a period of
active neural structure formation, increases in the number of
connections in a hub were observed in the “sham” and “BDNF”
groups (Table 3).

Features of Spontaneous Calcium
Activity in Neural Networks of Primary
Hippocampal Cultures in the Context of
Chronic TrkB Receptor System Influence
Next, we investigated the features of functional calcium activity in
primary hippocampal cell cultures under chronic TrkB receptor
system influence.

Registration of calcium dynamics in neural cells using the
Ca2+ imaging technique is considered the most informative
method for studying metabolic neural network activity (Braet
et al., 2004; Jercog et al., 2016; Carrillo-Reid et al., 2017). Ca2+

is a key regulator of various metabolic processes, and registration
of its concentration dynamics in the cytoplasm allows for fine
analyses of both neuronal and glial activity.

On DIV 7, spontaneous calcium activity was observed in
the “sham” culture, and the percentage of cells that exhibited
Ca2+ activity was 52.65 ± 3.69% (Supplementary Table 2A). In
all experimental groups, this parameter was comparable to the
intact values (percentages of cells that exhibited Ca2+ activity
on DIV 7: BDNF: 51.14 ± 3.05%, ANA-12: 47.98 ± 2.95%,
BDNF+ ANA-12: 42.97± 5.23%).
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FIGURE 3 | Number of spikes/50 ms and raster diagrams of spontaneous
bioelectrical activity in primary hippocampal cultures during development
in vitro: (A) sham, (B) BDNF, (C) ANA-12, (D) BDNF + ANA-12.

Beginning on DIV 10, the percentage of cells that exhibited
Ca2+ activity was significantly lower in the “ANA-12” group
than in the “sham” group (percentages of cells that exhibited
Ca2+ activity on DIV 10: sham: 57.30 ± 3.88%; ANA-12:
35.37± 2.39%). The number of active cells in the “BDNF+ANA-
12” group was comparable to that in the “BDNF” group
(percentage of cells that exhibited Ca2+ activity on DIV 10:
BDNF: 65.92± 3.94%; BDNF+ ANA-12: 71.50± 3.70%).

FIGURE 4 | Internal functional structure of neural networks in the primary
hippocampal cultures during development in vitro (“sham” group): graphical
representation of the correlated connections among neurons in the network.
The electrode number is presented as “Cell X.” The number of connections on
the electrode is indicated in square brackets. The vertex size is proportional to
the number of significant connections. (A) DIV 7, (B) DIV 14.

On DIV 14, the percentage of cells exhibiting Ca2+ activity
in the “BDNF” group was 79.39 ± 2.52%, which significantly
exceeded the values in the “sham” (62.77 ± 3.84%), “ANA-12”
(36.38 ± 6.06%) and “BDNF + ANA-12” (50.1 ± 5.67%) groups
(Figures 5, 6).

During the early stage of culture development (DIV 7), the
frequencies of Ca2+ oscillations in the “BDNF” and “ANA-12”
groups did not differ from the intact values [frequencies of Ca2+

oscillations (ocs/min): sham: 0.74 ± 0.09; BDNF: 0.85 ± 0.10;
ANA-12: 0.76 ± 0.06]. In the “BDNF + ANA-12” group,
this parameter exceeded the intact values by 1.87-fold and
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TABLE 1 | Functional rearrangement alterations in neural networks during primary
hippocampal culture development in vitro.

Group Percentages of
overlap between DIV

10 and DIV 14

Sham 77.56 ± 17.23%

BDNF 57.37 ± 19.56%

ANA-12 5.75 ± 2.82%

BDNF + ANA-12 26.46 ± 9.8%

TABLE 2 | Number of hubs in the primary hippocampal neural network on
different days of development in vitro.

Group DIV 7 DIV 10 DIV 14

Sham 2.08 ± 0.2878 3.4 ± 0.4 6.2778 ± 0.5227

BDNF 2.5 ± 0.4534 3.7273 ± 0.6338 6.0769 ± 0.3294

ANA-12 0.87 ± 0.34∗ 1.2 ± 0.43∗ 2.3 ± 0.88∗

BDNF + ANA-12 0.76 ± 0.12∗ 0.67 ± 0.33∗ 0.45 ± 0.12∗

∗ versus “Sham” p < 0.05, ANOVA, N = 9.

TABLE 3 | Average number of connections in a hub in the primary hippocampal
neural network on different days of development in vitro.

Group DIV 7 DIV 10 DIV 14

Sham 10.66 ± 0.97 11.13 ± 0.96 12.6667 ± 0.9718

BDNF 10.6667 ± 0.6667 11.03 ± 1.11 13.6250 ± 0.6529

ANA-12 10.11 ± 0.12∗ 10.23 ± 0.12∗ 10.57 ± 0.29∗

BDNF + ANA-12 10.09 ± 0.23∗ 10.52 ± 0.57∗ 10.34 ± 0.54∗

∗ versus “Sham” p < 0.05, ANOVA, N = 9.

amounted to 1.39 ± 0.12 ocs/min (Supplementary Table 2B).
A similar change dynamic was observed on DIV 10; however,
this parameter was significantly decreased relative to that in
the “sham” group on DIV 14 [frequencies of Ca2+ oscillations
(ocs/min): sham: 1.55 ± 0.08; BDNF + ANA-12: 0.82 ± 0.07].
At this stage of culture development, a decreased frequency
of Ca2+ events in the “ANA-12” group was also observed
(0.81 ± 0.05 ocs/min). In the “BDNF” group, the frequency of
Ca2+ oscillations was increased on DIV 10. This parameter was
normalized to the intact values by day DIV 14 (1.41 ± 0.31
ocs/min) (Figures 5, 6).

The duration of Ca2+ oscillations in all experimental
groups did not significantly differ from the intact values
on DIV 7 (Supplementary Table 2C). From DIV 10, a
decrease in this parameter was observed in the “ANA-12” and
“BDNF + ANA-12” groups [durations of Ca2+ oscillations (s):
sham: 9.67 ± 0.69; ANA-12: 7.21 ± 0.47; BDNF + ANA-12:
6.48 ± 0.30]. Chronic BDNF application did not affect the
duration of Ca2+ oscillations throughout the entire observation
period (BDNF on DIV 7: 10.5 ± 0.28; BDNF on DIV 10:
8.46± 0.43; BDNF on DIV 14: 10.73± 0.71) (Figures 5, 6).

Thus, activation of the TrkB receptor system during
development promotes the stimulation of neural network
functional calcium activity, which was manifested in the
increased number of cells exhibiting calcium activity and the

frequency of network calcium events. Blocking TrkB receptors
leads to the irreversible suppression of spontaneous calcium
activity in primary hippocampal cultures beginning on DIV 10.

Ultrastructural Features of Neural
Networks in Primary Hippocampal
Cultures in the Context of Chronic TrkB
Receptor System Influence
Qualitative and quantitative ultrastructural analyses of primary
hippocampal cell cultures performed on DIV 10 and DIV 14
allowed the identification of culture organization features in the
context of chronic TrkB receptor system influence (Figures 7, 8).

Many axonal buds containing equal-sized synaptic vesicles
and dendritic spines without contacts were observed in the
“sham” group on DIV 10. At this stage of culture development,
a few mature symmetric and asymmetric contacts were
observed. Furthermore, glycogen granules were visualized in
glial outgrowths, and many cones of growth were observed
(Figures 7a–e).

Previous studies have shown that a single BDNF application
affects the functional and ultrastructural characteristics of
neural and glial brain mitochondria (Markham et al., 2012).
The current study did not reveal significant changes in
the mitochondrial apparatuses (occupied area or amount or
ultrastructural organization) of primary hippocampal cells
chronically administered BDNF, ANA-12 or BDNF and ANA-12
in combination. The mitochondrial structure typically exhibits
smooth cristae and an osmiophilic matrix, and the organelle
shape is oval. However, in the “BDNF” group, insignificant
changes in these parameters were found. In addition, numerous
glycogen granules in glial outgrowths as well as numerous
ribosomes in the granular endoplasmic reticulum and free
ribosomes were visualized (Figures 7f–j).

Significant changes in the mitochondrial apparatus structure
were observed in the “ANA-12” group. Mitochondria with
impaired internal organization were visualized in the view field.
However, no quantitative changes in the occupied area or the
number of mitochondria per µm2 of neuronal soma were
detected (Figure 9). Mitochondria with modified shapes and
intermitochondrial contacts in the outgrowth were also observed.
In this group of cultures, axonal cytoskeleton violations were
visualized, and “empty” axons containing only synaptic vesicles
were identified in the observation field. Delayed synaptogenesis
was also observed.

Mature synapses had weak postsynaptic density (PSD)
osmiophility, and “contacts” between the axonal bud and a
dendrite or dendritic spine in the absence of PSD were often
observed. A distinctive feature of the ultrastructural organization
under a chronic TrkB receptor blockade was the cistern
expansion in the smooth endoplasmic reticuli of glial and neural
outgrowths. Reconstruction of the Golgi apparatus lamellar
complex and its cistern overgrowth were observed in the cell body
(Figures 7k–o).

In contrast to the “sham” group, the “BDNF + ANA-12”
group exhibited disrupted mitochondria and mitochondria
with impaired or vacuolated cristae. Nevertheless, numerous
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FIGURE 5 | Representative profiles of spontaneous calcium network activity in primary hippocampal cultures on DIV 14. (A) Sham, (B) BDNF, (C) ANA-12,
(D) BDNF + ANA-12.

synaptic contacts and a well-defined PSD were observed in
“BDNF + ANA-12” cultures compared to those in “ANA12”
cultures (Figures 7p–t).

No significant differences in the number of mature synaptic
contacts were observed on DIV 14 in any experimental groups
(Figure 8). Thus, delayed synaptogenesis in the “ANA12” group
was overcome on DIV 14. This delay was presumably associated
with the cell synthetic apparatus because weak PSD was detected
on DIV 10, although PSD is normally formed first during cell
culture ontogenesis (Meyer et al., 2014).

Analysis of PSD features in postsynaptic asymmetric
contacts under chronic administration of the tested substances
was performed on DIV 14 (Figure 10). We did not find
significant changes in the area or extent of the PSD.
However, the extent of the PSD in the “BDNF + ANA-
12” group had a tendency to decrease (sham: 0.511 ± 0.31,
BDNF + ANA-12: 0.32 ± 0.13). These findings could be
explained by the high variability of synaptogenesis at this
stage of development. Because the synaptogenic processes
had not been completed by DIV 14, we observed synapses
with various sizes and characteristics. Synapses in the
“BDNF + ANA-12” group were short (Figures 8p–t),
and changes in the presynaptic terminal were also
observed.

An analysis of PSD osmiophility in asymmetric synapses
revealed that the percentage of high osmiophilic PSD in the
“BDNF” group was increased by 38.69% compared to that in the
“sham” group, which is potentially indicative of more efficient

signal transmission between neurons (Figure 11). By contrast,
a delay in synaptogenesis was observed in the “ANA-12” group,
and 16.16% fewer synaptic contacts were observed compared to
intact cultures. Despite the reduced PSD length, the osmiophility
in the “BDNF + ANA-12” group was comparable to that in the
“sham” group.

The number of mitochondria in the neuronal soma in the
“ANA-12” group was significantly decreased compared to that
in the “sham” group and amounted to 43.73 ± 5.66 per 100
µm2 (Figure 9A). These changes are associated with organelle
destruction. In parallel, increased individual mitochondria areas
were observed in the “ANA-12” group (Figure 9B).

Thus, TrkB receptor blockade led to significant ultrastructural
changes in primary hippocampal cell cultures, which was
primarily associated with alterations in the structure of the
mitochondrial cell apparatus. The absence of PSD in the
synaptic contact structure was also observed during the early
stages of culture development. The number of mature synaptic
contacts during synaptogenesis was normalized in later stages of
cultivation.

Mitochondrial Functional Activity in
Primary Hippocampal Cell Cultures in
the Context of Chronic TrkB Receptor
System Influence
Changes in the number of mitochondria and their structure upon
influencing the TrkB receptor system are of particular interest.
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FIGURE 6 | Main parameters of spontaneous calcium activity in primary hippocampal cell cultures during development in vitro on DIV 14. (A) Proportion of cells
exhibiting calcium activity; (B) number of Ca2+ oscillations per min; (C) duration of Ca2+ oscillations. ∗p < 0.05, ANOVA, N = 9.

In this regard, the final stage of our study was devoted to the
assessment of dynamic changes in the functional characteristics
of the mitochondrial respiratory chain in primary hippocampal
cells in response to chronic BDNF and ANA12 administration to
the culture medium.

Daily BDNF application increased the mitochondrial
oxygen consumption rate (Figure 12A). The basal oxygen
consumption rate in the “BDNF” group significantly
exceeded that in the “sham” and “ANA-12” groups and
amounted to 272.2 ± 11.5 pmol/(s∗mL) on DIV 10 and
217.1 ± 20.5 pmol/(s∗mL) on DIV 14. The basal oxygen
consumption rate in the “ANA-12” group did not differ from
that in the sham group throughout the entire observation
period.

In addition, neural-glial network development is associated
with increased mitochondrial respiratory chain complex
I activity (Figure 12B). On DIV 14, the mitochondrial
respiratory chain activity in the “sham” group was
383 ± 17.1 pmol/(s∗mL), which was increased by 2.4-fold
compared to that on DIV 10 [159.1 ± 3.9 pmol/(s∗mL)].

Similar tendencies were observed in the “BDNF” and
“ANA-12” groups. However, on DIV 14, the mitochondrial
respiratory chain complex I activities in these experimental
groups were significantly lower than the intact values.
Thus, blocking TrkB receptors leads to a marked
decrease in mitochondrial respiratory chain activity. The
oxygen consumption rate in the “ANA-12” group was
273.9 ± 23.8 pmol/(s∗mL), which was significantly lower
than that in the “BDNF” [347.3 ± 4.0 pmol/(s∗mL)] and “sham”
[383± 17.1 pmol/(s∗mL)] groups.

Alternatively, the intensity of mitochondrial respiratory chain
complex II activity was decreased during culture development. In
contrast, chronic BDNF administration increased the respiratory
complex II activity (Figure 12C). The oxygen consumption
rates in the “BDNF” group on DIV 10 and DIV 14 were
104.9 ± 5.1 pmol/(s∗mL) and 49.5 ± 7.5 pmol/(s∗mL),
respectively. This parameter in the “ANA-12” group did not differ
from the intact values.

Thus, BDNF application stimulates mitochondrial functional
activity in primary hippocampal cell cultures and manifested as
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FIGURE 7 | Representative electron microscopy images of dissociated hippocampal cells on DIV 10. (a–e) Sham, (f–j) BDNF, (k–o) ANA-12, (p–t) BDNF + ANA-12.
(a) Axo-spiny synapse; the cristae of mitochondria in a dendrite are smooth. (b) Neuronal soma; the cytoplasm shows well-visualized mitochondria, Golgi apparatus,
granular endoplasmic reticulum, and numerous free ribosomes. (c) Mitochondria in a glial cell; cristae are smooth, and the glia-glial gap junction is well visualized.
(d) Cisterns of the endoplasmic reticulum in a dendrite are expanded, and the cristae in a mitochondrion are smooth. (e) Growth cone. (f) Mitochondrion in a
neuronal axon. (g) Mitochondria in a neuronal soma, some are without cristae and have an enlightened matrix, a vacuole, and numerous free ribosomes. (h) Glial
outgrowth, a few glycogen pellets and uneven cristae in a mitochondrion are visible. (i) Axo-spiny contact; mitochondria in a dendrite have swollen cristae.
(j) Dendritic spine. (k) Axo-spiny synapse, short postsynaptic density (PSD), few synaptic vesicles near the active zone, and large osmiophilic bubbles in an axon.
(l) Part of the cell body; a destroyed Golgi apparatus is visualized, mitochondria have normal structures, and an extremely low number of ribosomes are present on
the endoplasmic reticulum. (m) Mitochondria in a glial cell, axonal outgrowth, and an enlightened axoplasm. (n) Mitochondria in a dendrite are densely packaged,
have an irregular shape and exhibit cristae with small extensions. (o) Axo-dendritic synapse, destroyed mitochondria in a dendrite. (p) Mature axo-spiny synapse, a
vacuole in an axon. (q) Increased Golgi apparatus area, a vacuole and destroyed mitochondria in the cytoplasm. (r) Mitochondria with impaired internal structures in
a glial outgrowth, with a large number of osmiophilic bubbles. (s) Mitochondria in a large dendrite. (t) Mitochondria in a glial outgrowth have impaired internal
structures. Scale bar – 0.5 µm.

increased mitochondrial respiratory chain complexes I and II
activity and mitochondrial oxygen consumption rates. Blocking
TrkB receptors leads to marked decreases in mitochondrial
respiratory chain complex I activity during late stages of culture
development.

DISCUSSION

Brain activity is associated with complex signal transmission
mechanisms and modulation in the neuron-glial network. This
complex activation pattern and inhibitory signals summarized
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FIGURE 8 | Representative electron microscopy images of dissociated hippocampal cells on DIV 14. (a–e) Sham, (f–j) BDNF, (k–o) ANA-12, (p–t) BDNF + ANA-12.
(a) Axo-spiny synapse; the cristae of mitochondria in a dendrite are smooth. (b) Cytoplasm of a neuron; mitochondria, Golgi apparatus, granular endoplasmic
reticulum, numerous ribosomes and part of the nucleus are well visualized. (c) Mitochondria in a glial cell; cristae are smooth, and intermitochondrial contacts are
visible. (d) Axo-dendritic and axo-spiny asymmetric synapse. (e) Immature axo-spiny synapse; no postsynaptic density is observed. (f) Mitochondrion in the
neuronal dendrite. (g) Mitochondria in a neuronal soma; some are without cristae and have an enlightened matrix and short cristae. (h) Glial outgrowth with few
glycogen pellets and irregular cristae. (i) Axo-spiny synapse; osmiophilic synaptic bubbles in an axon. (j) Axo-dendritic and axo-spiny asymmetric synapses,
osmiophilic mitochondrion in an axon; mitochondria in the axonal outgrowth are destroyed. (k) Axo-spiny asymmetric synapse, short postsynaptic density. (l) Part of
a neuronal soma, destroyed Golgi apparatus, few ribosomes on the endoplasmic reticulum, and normal mitochondrial structure. (m) Mitochondria with disrupted
cristae in a glial cell. (n) Axo-spiny asymmetric synapse, osmiophilic bubbles among synaptic vesicles, mitochondrion with an irregular shape and high osmiophility.
(o) Part of a neuronal soma, Golgi apparatus, and mitochondria with impaired structures. (p) Mitochondrial cluster in a dendrite. (q) Golgi apparatus with an
increased area, a vacuole and destroyed mitochondria in the cytoplasm. (r) Axo-dendritic synapse and vacuolated mitochondria in a glial outgrowth. (s) Glial cell with
a smooth endoplasmic reticulum, synaptic vesicles of different sizes in the axon, and mitochondrion with a reduced area. (t) Mitochondrial clusters in the neuronal
cytoplasm; many of these clusters have extended cristae; mitochondria without cristae were also visualized. Scale bar – 0.5 µm.

in the transmission of information through the neuron-glial
network makes it possible to implement complex cognitive and
behavioral responses. Understanding the fundamental laws of
brain function is currently the main task in modern science and
will contribute to solutions for a number of clinical and scientific
issues.

In our study, we modeled chronic activation and inhibition of
the TrkB receptor system, which is one of the most important
systems for neurons. This approach can potentially be used to
uncover the basic mechanisms underlying emergent information
functions. The application of MEAs and the complexity of
functional and ultrastructural studies allowed us to detect
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FIGURE 9 | Number of mitochondria (A) and their areas in the neuronal soma (B) on day 14 of culture development in vitro. ∗p < 0.05, ANOVA, N = 3.

FIGURE 10 | The extent (A) and area (B) of the PSD in postsynaptic asymmetric contacts on day 14 of culture development in vitro.

FIGURE 11 | Percentages of the numbers of postsynaptic densities with differing osmiophilities in asymmetric synapses on day 14 of culture development in vitro.
Red – weak osmiophility, blue – strong osmiophility.

changes in the neural network structure under the influence on
the TrkB receptor system and to suggest the main intracellular
targets for these implemented changes.

The TrkB receptor system is responsible for a number
of functions associated with development and brain cell
adaptation to unfavorable factors (Patapoutian and Reichardt,

2001; Skaper, 2018). In this case, identifying whether metabolic
changes are possible at the neural network activity level is
difficult. MEAs are considered the most adequate method for
estimating the neural network structure both in vivo and
in vitro (Martinoia et al., 2005; Obien et al., 2014). The
application of this technology in combination with mathematical
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FIGURE 12 | Mitochondrial functional activity in primary hippocampal cell cultures on DIV 10 and DIV 14. (A) Basal oxygen consumption rates by mitochondria in
primary hippocampal cell cultures. (B) Mitochondrial oxygen consumption rates during mitochondrial respiratory chain complex I work. (C) Mitochondrial oxygen
consumption rates during mitochondrial respiratory chain complex II work. ∗p < 0.05, ANOVA, N = 3.

methods of biological data analysis allowed us to identify the
features of signal transmission throughout the network and
reveal possible mechanisms underlying the systemic effect of
chronic BDNF administration and a TrkB receptor system
blockade.

Electrical synapses with a small number of immature chemical
axo-dendritic and axo-spiny synapses are predominant in the
early stages of primary hippocampal cell culture development
(Shirokova et al., 2013). During excitation transmission through
electrical synapses, signal modulation is limited and does not
strongly depend on chemical stimuli (Hormuzdi et al., 2004).
However, the influence on the TrkB receptor system can
significantly impact chemical contact maturation and eventually
affect neural network activity.

A sufficiently high level of spontaneous bioelectrical activity
in primary hippocampal cultures in which chronic TrkB receptor
blockade is implemented on DIV 14 is possibly associated
with long-term adaptation effects related to changes in TrkB
receptor expression under chronic influence (Proenca et al.,

2016). ANA-12 is low-molecular-weight heterocyclic compound
that affects the formation of a functional complex between
BDNF and TrkB (Cazorla et al., 2011). The result of ANA-12
binding to the extracellular domain of TrkB is the prevention
of BDNF-induced TrkB activation and negation of the biological
effects of BDNF on TrkB-expressing cells. The N-terminal region
of BDNF, which is critical for selectively binding and activating
cognate Trk receptors, interacts with the “specificity patch” of
the receptor, a binding pocket located in the fifth subdomain of
TrkB (TrkB-d5) that may drive the selectivity of the interaction
with BDNF. ANA-12 specifically binds to TrkB-d5 in a dose-
dependent manner. Based on previous binding experiments,
even high concentrations of ANA-12 cannot overcome its
displacement from TrkB by BDNF, suggesting a non-competitive
mechanism (Banfield et al., 2001; Pattarawarapan and Burgess,
2003; Cazorla et al., 2011). Thus, the stereometric features of
ANA-12 allow the rapid and reliable binding of this molecule to
the active center of TrkB, which prevents the biological effect of
BDNF.
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However, the cross-correlation method and graphs revealed
the nearly complete absence of hubs in the network structure
under chronic blockade of TrkB receptors. This result is especially
noteworthy in the context of high absolute values of spontaneous
bioelectrical activity.

Analysis of functional calcium activity showed that changes
in the percentages of working cells in the different groups
were proportional to changes in the number of spikes in
a large burst. The highest percentage of cells exhibiting
Ca2+ activity was found in cultures chronically administered
BDNF. In this experimental group, the highest number
of spikes in a large burst was detected on DIV 14. In
addition, functional Ca2+ imaging confirmed that the marked
effects on the TrkB receptor system were manifested in
the developmental period associated with chemical synapse
predominance.

Ultrastructural changes demonstrated that blocking TrkB
receptors affected the structures of synapses (empty axons in
neurons, absence of PSD in a synapse) and the mitochondrial
apparatus. For a long period, mitochondria were not considered
capable of participating in synaptic signal modulation.
Mitochondria are considered responsible for only energy
metabolism in cells, and their effects are limited by the
amount of adenosine triphosphate (ATP) produced. Whether
BDNF influences mitochondria remains unclear. According
to the present study, TrkB-mediated signaling can affect
both the ultrastructural and functional parameters of brain
mitochondria, even in normal oxygen and nutrient supply
conditions. Chronic TrkB receptor blockade leads to destructive
ultrastructural changes in mitochondria wherein the functional
activity of organelles is not significantly decreased. Long-term
application of BDNF increases the enzymatic activity of the
mitochondrial apparatus, but this alteration is not associated
with changes in the ultrastructure of organelles. Our findings
likely indicate that TrkB-mediated mitochondrial regulation is
related to functional modifications of the enzymatic systems
in the respiratory chain but not to structural rearrangements
of organelles. In this regard, the fundamental question for
further research is whether the TrkB-mediated pathway
for influencing mitochondria is generalized (that is, carried
out through nuclear genes) or directed toward an isolated
organelle.

Notably, chronic BDNF application increased the basal
oxygen consumption rate via activating respiratory chain
complex II. However, according to classical ideas, this pathway

is typical utilized in hypoxic states (Kristián, 2004). Under
oxygen stress conditions, BDNF increases the adaptive potential
by impacting the functional parameters of the mitochondrial
apparatus. In the current study, the percentage of osmiophilic
PSDs in asymmetrical synapses in the “BDNF” group was
significantly higher than that in the “sham” group, which
potentially indicates more efficient signal transmission between
neurons.

A genetically determined high level of BDNF can provide
significant adaptive potential to the nervous system, and its
neuroprotective effects are induced via the TrkB receptor system
(Yu et al., 2013; Katsu-Jiménez et al., 2016). The current
study showed that BDNF-mediated TrkB system activation is
responsible for the formation of more complex functionally
active neural networks with a high level of synaptic transmission
efficiency. Thus, the TrkB signaling system can play a key role in
inducing higher cognitive functions.
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Primary immunodeficiency diseases (PID) is a heterogeneous group of disorders caused
by genetic defects of the immune system, which manifests clinically as recurrent
infections, autoimmune diseases, or malignancies. Early detection of other PID remains
a challenge, particularly in older children due to milder and less specific symptoms,
a low level of clinician PID awareness and poor provision of hospital laboratories
with appropriate devices. T-cell recombination excision circles (TREC) and kappa-
deleting element recombination circle (KREC) in a dried blood spot and in peripheral
blood using real-time polymerase chain reaction (PCR) are used as a tool for severe
combined immune deficiency but not in PID. They represent an attractive and cheap
target for a more extensive use in clinical practice. This study aimed to assess
TREC/KREC correspondence with lymphocyte subpopulations, measured by flow
cytometry and evaluate correlations between TREC/KREC, lymphocyte subpopulations
and immunoglobulins. We carried out analysis of data from children assessed by clinical
immunologists at Speransky Children’s Hospital, Moscow, Russia with suspected
immunodeficiencies between May 2013 and August 2016. Peripheral blood samples
were sent for TREC/KREC, flow cytometry (CD3, CD4, CD8, and CD19), IgA, IgM, and
IgG analysis. A total of 839 samples were analyzed for using TREC assay and flow
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cytometry and 931 KREC/flow cytometry. TREC demonstrated an AUC of 0.73 (95% CI
0.70–0.76) for CD3, 0.74 (95% CI 0.71–0.77) for CD4 and 0.67 (95% CI 0.63–0.70) for
CD8, respectively, while KREC demonstrated an AUC of 0.72 (95% CI 0.69–0.76) for
CD19. Moderate correlation was found between the levels of TREC and CD4 (r = 0.55,
p < 0.01) and KREC with CD19 (r = 0.56, p < 0.01). In this study, promising prediction
models were tested. We found that TREC and KREC are able to moderately detect
abnormal levels of individual lymphocyte subpopulations. Future research should assess
associations between TREC/KREC and other lymphocyte subpopulations and approach
TREC/KREC use in PID diagnosis.

Keywords: TREC, KREC, primary immune deficiency, PID, flow cytometry, lymphocyte subpopulations,
immunoglobulins

INTRODUCTION

Primary immunodeficiency diseases (PID) is a heterogeneous
group of disorders caused by genetic defects of the immune
system, which manifests clinically as recurrent infections,
autoimmune diseases or malignancies. Severe forms of PID –
Severe Combined Immune Deficiency (SCID) – are associated
with inherited lack of cellular and humoral immunity caused by
mutations in various genes (Chan and Puck, 2005) and associated
with a significant mortality rates in the first 2 years of life (Dvorak
et al., 2013; Yao et al., 2013).

Severe combined immune deficiency can be detected by
T-cell receptor excision circles (TRECs) measurement in a dried
blood spot using real-time polymerase chain reaction (PCR)
(Chan and Puck, 2005). TREC measurement became a part
of neonatal screening in the United States and some other
countries (Verbsky et al., 2012; Kwan et al., 2013). Despite great
predictive value TREC can detect T-cells production defects,
but not isolated B-cell defects. Some experts suggested that
kappa-deleting element recombination circle (KREC) may add
value in PID diagnosis (Nakagawa et al., 2011) and multiplex
techniques for simultaneous quantitation of TREC/KREC were
piloted (Borte et al., 2012).

Outside of neonatal screening, TREC/KREC measurement
is not commonly used in routine clinical practice, with flow
cytometry being a traditional, but more expensive diagnostic
technique for PID detection, when compared with the PCR (Puck
and SCID Newborn Screening Working Group, 2007). It requires
a significant amount of training and not readily available in many
developing countries. TREC and KREC assessment both in PID
diagnosis and in therapy monitoring represent great potential
(Serana et al., 2013).

TREC and KREC predictive ability in SCID has been
extensively studied, but not much research was done in
relation to physiological aspects of relationships between
TREC/KREC and lymphocyte subpopulations. In this pilot
study we assessed correlations between TREC/KREC levels,
lymphocyte subpopulations and immunoglobulins and evaluated
TREC/KREC ability to predict reduced levels of lymphocyte
subpopulations.

MATERIALS AND METHODS

Study Setting, Eligibility Criteria, and
Ethics
We carried out a retrospective analysis of data from all children
assessed by clinical immunologists at Speransky Children’s
Hospital, Moscow, Russia with suspected immunodeficiencies
between May 2013 and August 2016. The diagnosis of different
types of PID was based on IUIS Phenotypic Classification
for Primary Immunodeficiencies (Bousfiha et al., 2015). The
investigations and sample collection have been conducted
following ethical approval by the Speransky Children’s Hospital
Ethics Committee. Parental written consent was obtained for
all participants as a part of routine procedure at Speransky
Children’s Hospital. Parents/guardians were informed of the
procedures in lay terms.

Sample Analysis
Peripheral blood samples were taken by venipuncture during
morning hours, aliquoted and sent for CBC, flow cytometry,
immunoglobulins (IgA, IgM, and IgG) and TREC/KREC
analysis. All blood samples were EDTA-anticoagulated and
analyzed on the same day of the collection in order to avoid
cellular death.

Immunophenotyping
Three-Four color flow cytometric immunophenotyping with
directly labeled monoclonal antibodies was used to determine the
following immune cell subsets: CD3, CD4, CD8, CD19 following
manufacturer’s protocol. In brief, 50 µl aliquots of blood were
incubated for 15 min in the dark at room temperature with
combinations of optimally titrated fluorochrome-conjugated
monoclonal antibodies. After surface staining, erythrocytes were
lysed using 1 ml of BD FACSLysing Solution, diluted according to
manufacturer’s instructions. Remaining cells were washed twice
and suspected in CELL WASH buffer for further analysis for
a FACS Canto II flow cytometer using FACSDiva v7.0 software
(Becton Dickinson). Cell suspension for staining of naïve and
memory B-lymphocytes were prepared as described by Ferry et al.
(2005). Briefly, 300 µl blood aliquots were washed three times
using CELL WASH buffer (Becton Dickinson) supplemented

Frontiers in Physiology | www.frontiersin.org 2 January 2019 | Volume 9 | Article 1877159

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01877 January 17, 2019 Time: 18:38 # 3

Korsunskiy et al. TREC/KREC and Lymphocyte Subpopulations

with 2% bovine serum albumin to eliminate any cell-bound
antibodies non-specifically inhibiting the staining effect.

Acquisition was run until 10000–50000 events were detected.
First the viable part of the sample was selected by physical
gating based on forward scatter (FS) and side scatter (SS); the
lymphocyte population was identified by the low forward and
side scatter and checked for purity by the positivity for CD45.
Then the different lymphocyte subpopulations were identified
by immunophenotype markers. At least 5000 events from
B-lymphocyte gate set based on CD19 expression and side scatter
characteristics were acquired.

The total leucocytes count and differential was measured with
Advia 2120i hematology analyzer (Siemens). The absolute size
of each lymphocyte subpopulation was calculated by multiplying
the relative size of the lymphocyte subpopulation and the absolute
lymphocyte count.

Immunoglobulins Assay
Immunoglobulin levels were assessed by immunoturbidimetry
method using biochemical analyzer Architect C8000 (Abbott,
United States, Abbott kits) in accordance with manufacturers’
protocol.

TREC and KREC Assay
TREC and KREC assay was performed using real-time PCR with
fluorescent hybridization probes with reagents for TREC/KREC
assay T&B PCR kit (ABV-test, Russia) (Deripapa et al., 2017) in
whole blood and dry blood stain DNAs.

The TREC/KREC levels were assayed in whole blood samples
as described previously (Sottini et al., 2010; Deripapa et al., 2017).
In brief, DNA was extracted from 100 µl EDTA anticoagulated
whole blood by using RIBO-prep nucleic acid extraction kit
(Amplisense R©, Russia). The Real-time qPCR was performed by
using CFX 96 Real-Time PCR System (Bio Rad, United States).

Statistical Analysis
Shapiro-Wilk test has been used to assess the normality of
the distribution of variables analyzed in this paper. Since the
null hypothesis about the normality was rejected, Spearmen
correlation coefficient was used to assess the strength of the
correlation between the variables. Sensitivity, specificity and their
95% confidence intervals were computed with stratified bootstrap
replicates (Carpenter and Bithell, 2000). Area under Receiver
Operating Characteristic (ROC) -curve (AUC) calculation was
followed by 95% confidence interval as suggested by DeLong
(DeLong et al., 1988). To account for non-linear trend, level of
TREC, KREC, and lymphocyte subpopulations were substituted
by the ratio of their concentrations to corresponding reference
values for a given patient age.

Results were considered statistically significant if p-value was
smaller than 0.05. All calculations were done using R package
version 3.4.1.

TREC/KREC and Lymphocyte Subpopulations
Primary analysis consisted of two stages.

At stage 1 we assessed 4 paired relationships between the levels
of TREC with CD3, CD4, CD8, and KREC with CD19. These

TABLE 1 | Characteristics of study participants.

PID type ICD-10 (number of patients) Age Gender

Male Female

Type I D81 (17) 0–12 months 9 5

Immunodeficiencies affecting cellular and humoral immunity 1–6 years 2 0

6–12 years 1 0

12–18 years 0 0

Type II D82 (13) 0–12 months 7 9

CID with associated or syndromic features D82.1 (39) 1–6 years 26 17

D82.4 (5) 6–12 years 10 6

D84.8 (15) 12–18 years 4 3

G11.3 (8)

Type III D80.0 (4) 0–12 months 6 2

Predominantly antibody deficiencies D80.1 (47) 1–6 years 21 17

D80.2 (34) 6–12 years 28 21

D80.3 (24) 12–18 years 38 13

D80.4 (1)

D80.5 (4)

D83 (34)

Healthy children 0–12 months 9 5

1–6 years 41 48

6–12 years 36 33

12–18 years 25 29

Provided codes are in accordance with International Classification of Diseases, 10th revision (ICD-10).
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FIGURE 1 | Receiver operating characteristic (ROC) curves for TREC and KREC for the ability to predict abnormal values of lymphocyte subpopulations (CD3, CD4,
CD8, and CD19), (n = 931).

were presented as a proportion of patients with normal levels of
one of the paired variable among patients with normal levels of
another immunological marker.

We also assessed correlations between TREC/KREC and
lymphocyte subpopulations.

At stage 2 we assessed ability of TREC and KREC to predict
abnormality in lymphocyte subpopulation levels. Using ROC-
analysis the predictivity of TREC, KREC and their combination
was tested providing: (a) the sensitivity (proportion detected of
those with lower lymphocyte subpopulation levels) at a fixed
specificity (proportion of controls correctly detected not to have
reduced lymphocyte subpopulation levels) and (b) AUC.

RESULTS

Study Population
The data was extracted from the clinical notes and laboratory
database of Speransky Children’s Hospital. Out of all 3055
patients requiring flow cytometry within the given period of
time, due to financial restrictions, a total of 839 samples were

analyzed using flow cytometry and TREC assay and 931 samples
were analyzed using flow cytometry and KREC assay and were
included into the statistical analysis. Data on TREC/KREC levels
of 2050 children were unavailable and were not evaluated further.

TABLE 2 | Model performance for different cutoff points of the predicted
probabilities for TREC with regards to CD3.

Cutoff

(probability) PPV NPV Sensitivity Specificity Youden

(probability) (%) (%) (%) (%) index

0.5 69 76 97 17 13.7

0.55 76 58 81 50 31.3

0.6 79 51 67 67 32.9

0.65 81 46 52 78 29.2

0.7 85 44 41 86 27.1

0.75 86 41 31 90 21

0.8 88 39 23 94 17.4

Optimum cut-off point based on maximum value of the J index is presented in bold.
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TABLE 3 | Model performance for different cutoff points of the predicted
probabilities for TREC with regards to CD4.

Cutoff

(probability) PPV NPV Sensitivity Specificity Youden

(probability) (%) (%) (%) (%) index

0.5 72 76 94 34 27.9

0.55 76 59 77 58 35.1

0.6 79 51 61 71 32

0.65 81 47 48 80 27.9

0.7 83 44 36 87 23.6

0.75 87 42 28 93 20.7

Optimum cut-off point based on maximum value of the J index is presented in bold.

TABLE 4 | Model performance for different cutoff points of the predicted
probabilities for TREC with regards to CD8.

Cutoff

(probability) PPV NPV Sensitivity Specificity Youden

(probability) (%) (%) (%) (%) index

0.5 65 64 80 44 24.6

0.55 69 52 48 73 21

0.6 72 48 28 86 14.1

0.65 70 46 18 90 8.4

0.7 72 45 11 95 5.3

Optimum cut-off point based on maximum value of the J index is presented in bold.

TABLE 5 | Model performance for different cutoff points of the predicted
probabilities for KREC with regards to CD19.

Cutoff

(probability) PPV NPV Sensitivity Specificity Youden

(probability) (%) (%) (%) (%) index

0.5 71 58 79 48 26.9

0.55 75 54 67 64 30.4

0.6 77 50 55 74 28.2

0.65 80 47 45 82 26.6

0.7 82 46 38 86 23.9

0.75 87 45 33 92 24.5

0.8 91 44 26 96 21.8

Optimum cut-off point based on maximum value of the J index is presented in bold.

Data on clinical diagnosis was available in 471 participant and
presented in Table 1.

Comparison of Flow Cytometry
Parameters With TREC and KREC
At first stage ability of TREC/KREC test to predict CD19, CD3,
CD4 and CD8 flow cytometry results was assessed. We found
that 667 out of 863 (77.3%) patients with normal KREC levels
[as reported earlier (Gordukova et al., 2015)] had normal CD19,
while 667 out of 682 (97.8%) individuals with normal CD19 had
normal KREC.

In patients with normal TREC levels, 462 out of 548 (84.3%)
had normal CD3, 440 out of 548 (80.3%) normal CD4, and

FIGURE 2 | Receiver operating characteristic (ROC) curves for TREC for the
ability to predict abnormal values of lymphocyte subpopulations (CD3, CD4,
and CD8), (n = 839).

FIGURE 3 | Receiver operating characteristic (ROC) curves for combination of
TREC and KREC for the ability to predict abnormal values of lymphocyte
subpopulations (CD3, CD4, CD8, and CD19), (n = 931).

473 out of 548 (86.3%) normal CD8 counts. Individuals having
normal levels of CD3, CD4, and CD8 had normal levels of
TREC in 462/548 (84.3%), 440/548 (80.3%), and 473/548 (86.3%),
respectively.

Values of TREC, KREC and lymphocyte subpopulations which
were considered abnormally low for the purpose of this study are
reported in Supplementary Table S1.
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TABLE 6 | Model performance for different cutoff points of the predicted
probabilities for TREC with regards to CD3,4, and 8.

Cutoff

(probability) PPV NPV Sensitivity Specificity Youden

(probability) (%) (%) (%) (%) index

0.4 55 68 59 65 23

0.45 55 61 28 83 10.7

0.5 56 59 17 90 6.7

Optimum cut-off point based on maximum value of the J index is presented in bold.

TABLE 7 | Model performance for different cutoff points of the predicted
probabilities for combined TREC and KREC with regards o all lymphocyte
subpopulations measured.

Cutoff

(probability) PPV NPV Sensitivity Specificity Youden

(probability) (%) (%) (%) (%) index

0.3 43 85 93 24 17.3

0.35 48 71 61 59 20.2

0.4 52 68 43 75 18.2

0.45 54 66 28 86 13

0.55 65 64 13 96 8.5

Optimum cut-off point based on maximum value of the J index is presented in bold.

TREC/KREC Ability to Predict Abnormal
Levels in Lymphocyte Subpopulations
We assessed TREC/KREC ability to predict each lymphocyte
subpopulation individually, using area under the curve (AUC),
which are shown in Figure 1. TREC demonstrated an AUC of
0.73 (95% CI 0.70–0.76) for CD3, 0.74 (95% CI 0.71–0.77) for
CD4 and 0.67 (95% CI 0.63–0.70) for CD8, respectively, while
KREC demonstrated an AUC of 0.72 (95% CI 0.69–0.76) for
CD19.

The following cutoff points of a probability showed the best
prognostic accuracy with regards to sensitivity and specificity for
TREC: 0.6 (67% for both, sensitivity, and specificity; Table 2),
Youden’s index (J) = 32.9 in CD3; 0.55 (77 and 58%; Table 3),
J = 35.1 in CD4; 0.5 (80 and 44%; Table 4), J = 24.6 in CD8,
respectively. A cutoff point of a probability of 0.55 showed the
best diagnostic accuracy with regards to sensitivity and specificity
for KREC (67% and 64%; Table 5), J = 30.4 in predicting
abnormal levels of CD19.

We also assessed AUC for TREC ability to predict the reduced
levels of CD3, CD4 and CD8 (Figure 2), and a combination
of TREC and KREC (Figure 3) to predict the reduced levels
of all lymphocyte subpopulations analyzed. TREC demonstrated

an AUC of 0.66 (95% CI 0.63–0.70) while a combination of
TREC and KREC resulted in an AUC of 0.65 (95% CI 0.62–0.69).
A cutoff point of a probability of 0.4 showed the best diagnostic
accuracy with regards to sensitivity and specificity for TREC (59%
and 65%; Table 6), J = 23 and 0.35 for a combination of TREC and
KREC (61 and 59%, respectively; Table 7), J = 20.2.

Correlation Between TREC/KREC and
Lymphocyte Subpopulations
We observed a moderate correlation (Table 8) between the levels
of TREC and CD4 (r = 0.55, p < 0.01) and KREC with CD19
(r = 0.56, p < 0.01). Moderate to low correlation was found
between TREC with CD19, CD3 and lymphocytes (r between
0.28 and 0.46, p < 0.01) and KREC with CD4 and lymphocytes
(r = 0.33, p < 0.01). Neither TRECs nor KRECs levels correlated
with the concentration of immunoglobulins (IgA, IgG).

DISCUSSION

In this study, we assessed associations between TREC/KREC and
lymphocyte subpopulations. TREC and KREC models showed
good ability to predict abnormal levels of certain lymphocyte
subpopulations and modest correlations between TREC and
CD4, KREC and CD19 were found.

PID is a large group of disorders encompassing a few hundred
various conditions affecting development and/or functioning of
the immune system (Picard et al., 2015). Flow cytometry is
a sensitive and important tool in immune system functioning
evaluation and PID diagnosis (Kanegane et al., 2018), however,
it is expensive, not easily available and complexity of the
method requires appropriate training. TREC and KREC may
represent a cheaper alternative and/or add value to PID diagnosis
and screening. Low cost methodology can be used in small
laboratories and rural settings, where complex and expensive
tools are unavailable, to provide access to primary PID evaluation.
TREC/KREC evaluation may also serve as a prerequisite to flow
cytometry.

We found significant correlations between the levels of TREC
and lymphocyte subpopulations with the strongest correlations
were observed for TREC/CD3, TREC/CD4. This finding is
consistent with previous reports (Mensen et al., 2013; Gul et al.,
2015), suggesting that low TREC levels correlate with low values
of CD3+ and CD4+. The observed positive correlation could
be attributed to TRECs being a direct marker for thymic output
(Ravkov et al., 2017). We also observed a statistically significant
moderate KREC levels correlation with CD19 levels and we
are not aware of other studies reporting this finding, however

TABLE 8 | Heatmap of correlation between TRECs/KRECs level with immunoglobulins, CDs and blood cells.

ley lym IgG IgA IgM CD4 CD8 CD3 CD19

TREC 0.09∗∗ 0.41∗∗ −0.08∗ −0.11∗∗ 0.002NS 0.55∗∗ 0.28∗∗ 0.46∗∗ 0.34∗∗

KREC 0.11∗∗ 0.33∗∗ −0.17∗∗ −0.15∗∗ −0.10∗∗ 0.33∗∗ 0.12∗∗ 0.25∗∗ 0.56∗∗

More intense green color means stronger positive correlations, while more intense red color means stronger negative correlation. ∗p < 0.05; ∗∗p < 0.01; NS, statistically
not significant result.
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correlation is plausible as both KREC and CD19 are linked with
B-lymphocytes.

When proportion of patients with both normal TREC/KREC
and lymphocyte subpopulations was assessed, we found that
almost every individual with CD19 within the reference range
had normal KREC levels. Most of individuals (80–85%) with
CD3, CD4 and CD8 within the reference range had normal TREC
levels. Given moderate correlations between TREC/KREC and
lymphocyte subpopulations and promising proportion results,
we expected a decent ability of TREC and KREC predictive
models with regards to lymphocyte subpopulations abnormal
levels. Positive predictive values for TREC ability to predict
abnormal levels of CD3 and CD4, and KREC abnormal levels
of CD19 varied between 75 and 79%, when optimum cut-off
point was selected based on maximum value of the J index.
TREC ability to predict abnormal level of CD8, in contrast, was
much lower and reached a PPV of 65% only. This result was not
surprising as negligible correlation between TREC and CD8 levels
was detected.

Neither TREC, nor a combination of TREC and KREC
reached impressive AUC values when predictivity of cumulative
lymphocyte subpopulations was modeled. A cut-off points of a
probability of 0.4 for TREC and 0.35 for a combination of TREC
and KREC showed the best diagnostic accuracy according to
Youden’s index but positive predictive value of the models was
very low. We may speculate that lack of individual and multiple
correlations between TREC and CD8; KREC and CD3, CD8,
may explain lack of consistency in the model performance, when
predictivity in relation to cumulative lymphocyte subpopulations
was tested.

Models showed promising ability of TREC to predict
abnormal levels of CD3 and CD4, and KREC abnormal levels
of CD19. Although combined use of TREC and KREC did
not result in good predictivity when cumulative lymphocyte

subpopulations were assessed, further research may improve
predictive ability, adding other subpopulations, such as naïve
B-lymphocytes CD19+CD27-IgD+, recent thymic emigrants
(RTE) and CD31+CD45RA+ T-lymphocytes. PID is a very
heterogenous group of diseases, and TREC/KREC predictive
abilities should be further tested in individuals with separate PID
conditions. Future research should also target investigation of
TREC/KREC diagnostic abilities in PID patients, which is an
existing unmet need.
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White spot syndrome virus (WSSV) is one of the major threats to shrimp aquaculture.
It has been found that the signal transducer and activator of transcription (STAT)
protein plays an important role in the antiviral immunity of shrimp with a WSSV
infection. However, the mechanism that underlies the STAT-mediated antiviral responses
in shrimp, against WSSV infection, remains unclear. In this work, based on the gene
expression profiles of shrimp with an injection of WSSV and STAT double strand RNA
(dsRNA), we constructed a gene co-expression network for shrimp and identified the
gene modules that are possibly responsible for STAT-mediated antiviral responses.
These gene modules are found enriched in the regulation of the viral process, JAK-
STAT cascade and the regulation of immune effector process pathways. The gene
modules identified here provide insights into the molecular mechanism that underlies
the STAT-mediated antiviral response of shrimp, against WSSV.

Keywords: antivirus response, co-expression network, gene module, STAT dsRNA, white spot syndrome
virus, shrimp

INTRODUCTION

White spot syndrome virus (WSSV) is a highly lethal and contagious virus in penaeid shrimp, with
huge economic consequences in commercial fishery and farming of the Pacific white shrimp, tiger
prawn, Atlantic white shrimp, and so on. Once an outbreak of WSSV occurs, it wipes out entire
populations in many shrimp farms within a few days and leads to enormous economic losses (Flegel
et al., 2008). Due to the serious impact of WSSV on shrimp aquaculture, it is urgent to understand
the molecular mechanisms that underlie WSSV pathogenesis in shrimp.

It has been reported that there are some genes that have revealed WSSV pathogenesis based on
the transcriptome of shrimp with WSSV infection. For example, García et al. (2009) employed PCR
technology to compare the transcriptomes in hemocytes of WSSV-infected shrimp with uninfected
ones. They found that penaeidin-3 isoforms and crustin were over-expressed in hemocytes of
WSSV-infected pre-challenged Penaeus vannamei (García et al., 2009). Shekhar et al. (2015) utilized
DNA microarray technology to explore the genes of host immune responses to WSSV pathogenesis.

Frontiers in Physiology | www.frontiersin.org 1 March 2019 | Volume 10 | Article 212166

https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2019.00212
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fphys.2019.00212
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2019.00212&domain=pdf&date_stamp=2019-03-11
https://www.frontiersin.org/articles/10.3389/fphys.2019.00212/full
http://loop.frontiersin.org/people/608059/overview
http://loop.frontiersin.org/people/467162/overview
http://loop.frontiersin.org/people/490660/overview
http://loop.frontiersin.org/people/434151/overview
https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-10-00212 March 7, 2019 Time: 16:58 # 2

Zhu et al. Anti-WSSV Gene Modules of Shrimp

They found some up- or down-regulated genes during WSSV
infection in shrimp (Shekhar et al., 2015). Yu et al. (2017) found
that a combination of single nucleotide polymorphisms in three
genes (TRAF6, Cu/Zn SOD, and nLvALF2) were significantly
associated with resistance to WSSV infection. The SNP loci in
TRAF6, Cu/Zn SOD, and nLvALF2 were found to exhibit a
significant effect on the resistance of shrimp to WSSV, while
the expression of the three immune-related genes were affected
by those SNPs (Yu et al., 2017). Li et al. (2013) used RNA-
Seq technology to investigate the transcriptome of the shrimp
between latent infection stage and acute infection stage. The
genes that played an important role in host defense against
WSSV and the genes that were possibly responsible for the rapid
proliferation of WSSV, were identified (Li et al., 2013). Recently,
the Toll, IMD, and JAK-STAT pathways were reported as the
main pathways in the antiviral immunity against WSSV (Li and
Xiang, 2013). It was found that the regulation of Toll and IMD
pathways improved the anti-WSSV response in shrimp, while the
silencing of the signal transducer and activator of transcription
(STAT) gene, an important part of the JAK-STAT pathway, was
proved effective both in reducing the WSSV-DNA copy number
and the mortality of shrimp (Liu et al., 2007; Chen et al., 2008;
Wen et al., 2014).

The above studies have provided a preliminary description
of host responses against WSSV infection at the transcriptional
level in shrimp, where the differentially expressed genes (DEGs)
between WSSV-infected shrimp with and without the treatment
of STAT. However, few of those DEGs are related to the
antiviral response and the antiviral response genes may not be
differentially expressed. This makes it difficult to understand
the antiviral process mediated by the STAT gene. Biological
networks can provide valuable information to better understand
the mechanism of antiviral responses in a comprehensive and
systematic way (Behura et al., 2011; Doering et al., 2012; Gupta
et al., 2014; Li et al., 2014; Dai et al., 2017). In this work, based
on the gene expression profiles of shrimp with an injection of
WSSV and STAT double strand RNA (dsRNA), the gene co-
expression network was constructed, where the network provided
the functional relationships between genes. The gene modules,
representing components consisting of densely connected genes
in a co-expression network, were found to be suitable units
to describe the metabolic disorders associated with WSSV
infections. In the modules enriched with genes associated with
STAT-mediated antiviral response against WSSV, infections were
found related to biological processes such as the regulation of
the viral process, modulation by host of symbiont transcription,
JAK-STAT cascade, and the regulation of the immune effector
process pathways. Furthermore, the network topology of these
modules associated with the STAT-mediated antiviral response,
provided clues to identify important genes and pathways in the
antiviral response.

RESULTS AND DISCUSSION

The schematic for the analysis pipeline is shown in Figure 1.
The gene co-expression network was constructed based on

gene expression profiles across 14 shrimp samples injected with
STAT dsRNA and WSSV (Table 1). The densely connected
components, i.e., gene modules, of the network were further
detected as functional units in the antiviral process. These
modules were found enriched with metabolic functions,
previously reported as dysfunctional in WSSV-infected shrimps.
Furthermore, the information of network topology of those
modules affected by STAT during WSSV infection, was utilized
to identify important genes and pathways in the antiviral
response affected by STAT against WSSV infection.

Identification of Gene Modules Affected
by WSSV Infection and STAT dsRNA
To identify the gene modules affected by STAT during WSSV
response, the gene co-expression network was constructed based
on the gene expression across 14 samples injected with STAT
dsRNA and WSSV. Only genes with top a 30% variance of
the gene expression were used to construct the network. 0.01
was chosen as the p-value threshold for the Pearson correlation
coefficient (PCC) between two genes, to further screen out
the edges of the network. The co-expression network consisted
of 15,167 genes and 2,288,537 edges, representing significant
correlations between these genes. In total, 1873 modules with
default parameters were detected by the ClusterOne algorithm
(Nepusz et al., 2012). To investigate the role of these modules
in the antiviral process, the functional enrichment analysis
was performed to identify the biological processes that were
significantly enriched in every module. In particular, the two-
tailed Fisher’s exact test with a p-value threshold of 0.05
was used to identify processes that were significantly enriched
in each module. Referring to the report from a previous
study on the metabolic changes in WSSV-infected shrimp,
the metabolic system of WSSV-infected shrimp was mainly
changed in glucose consumption, plasma lactate concentration,
activity of glucose-6-phosphate dehydrogenase, ADP/ATP ratio,
oxidative stress, triglyceride concentration, the cell death process,
mitochondrial membrane permeabilization, energy production,
and upregulation of the voltage-dependent anion channel (Chen
et al., 2011). The identified modules were significantly enriched
within biological processes relevant to almost all of these
reported abnormalities. The number of modules enriched with
the processes relevant to these reported disorders is shown in
Figure 2. Additionally, there were 12 modules enriched with the
biological processes of regulation of the JAK-STAT cascade and
13 modules enriched with modulation by the host of symbiont
transcription. Considering the above, these modules can be used
as a signature to characterize the influence of WSSV infection and
STAT dsRNA interference on the metabolism system.

Identification of Genes Affected by STAT
During WSSV Infection
To find network modules affected by STAT during WSSV
infection, the DEGs were identified based on gene expression
profiles across the 14 samples. Three sets of DEGs were obtained
by comparing three groups of samples. The WSSV-infected
samples (EW_48 and EW72) were compared with controls (EP48
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FIGURE 1 | Pipeline to identify the gene modules and important genes that play an important role in the STAT-affected antiviral response during the infection of
WSSV.

and EP72) to identify DEGs affected by WSSV infection. The
samples injected with STAT dsRNA (SP48 and SP72) were
compared with the controls (EP48 and EP72) to identify DEGs
affected by STAT. The samples injected with both WSSV and
STAT dsRNA (SW48 and SW72) were compared with the
controls (EP48 and EP72) to identify DEGs affected by both
WSSV and STAT dsRNA. A functional enrichment analysis was
performed on each set of DEGs, to evaluate whether these gene

TABLE 1 | The 14 samples used to generate gene expression profiles.

Sample ID Time after injection and the injected material

E0 48 h after injection of EGFP dsRNA

S0 48 h after injection of STAT dsRNA

EP24 72 h after injection of EGFP dsRNA, 24 h after injection of PBS

EP48 96 h after injection of EGFP dsRNA, 48 h after injection of PBS

EP72 120 h after injection of EGFP dsRNA, 72 h after injection of PBS

EW24 72 h after injection of EGFP dsRNA, 24 h after injection of WSSV

EW48 96 h after injection of EGFP dsRNA, 48 h after injection of WSSV

EW72 120 h after injection of EGFP dsRNA, 72 h after injection of WSSV

SW24 72 h after injection of STAT dsRNA, 24 h after injection of WSSV

SW48 96 h after injection of STAT dsRNA, 48 h after injection of WSSV

SW72 120 h after injection of STAT dsRNA, 72 h after injection of WSSV

SP24 72 h after injection of STAT dsRNA, 24 h after injection of PBS

SP48 96 h after injection of STAT dsRNA, 48 h after injection of PBS

SP72 120 h after injection of STAT dsRNA, 72 h after injection of PBS

sets were associated with the regulation of STAT and infection of
WSSV. As shown in Table 2, the 3144 genes affected by WSSV
infection were significantly enriched with biological processes
such as the positive regulation of JUN kinase activity, natural
killer cell activation, B cell activation, T cell activation, and the
regulation of an adaptive immune response. Other than the
four processes associated with activity of immunocytes, JUN
kinase activity has been reported to promote viral replication
and plays a role in WSSV infection in shrimp (Shi et al., 2012;
Wang et al., 2017). The 2685 genes affected by STAT dsRNA
were significantly enriched with processes such as hemocyte
differentiation, embryonic hindlimb morphogenesis, positive
regulation of an inflammatory response, and the viral process.
These processes have been reported to be associated with STAT,
indicating that the STAT dsRNA interference indeed affected the
cascades of STAT signaling in the STAT dsRNA-injected samples
(Luo and Dearolf, 2001; Grebien et al., 2008; Kiu and Nicholson,
2012). The 2785 genes affected by both WSSV and STAT dsRNA
were significantly enriched with processes such as the negative
regulation of JAK-STAT cascade, cell death, the viral process, and
the oxidation-reduction process. There were accidental factors in
the identified genes affected by both WSSV and STAT dsRNA,
such as technical noise and genes that were affected only by either
WSSV or STAT dsRNA. To further exclude accidental factors, the
genes specially affected by STAT during WSSV infection were
obtained as the remaining part of the genes affected by both
WSSV and STAT dsRNA, after removing the genes in the gene set
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FIGURE 2 | Number of all the modules in the co-expression network, modules affected by STAT during WSSV infection, modules affected by WSSV infection, and
modules affected by WSSV and STAT dsRNA, significantly enriched with the processes relevant to the metabolic disorders previously reported in WSSV-infected
shrimp.

associated with WSSV infection and the gene set affected by STAT
interference (Supplementary File S1). As shown in the infection,
1723 genes particularly affected by STAT during WSSV infection
were significantly enriched with the negative regulation of the
JAK-STAT cascade, lymphocyte differentiation, and positive
regulation of immune effector process. It suggested that the
part of the genes annotated with lymphocyte differentiation
and immune effector process were particularly regulated by the
mutual effect of STAT dsRNA interference and WSSV infection,
rather than individually regulated by the WSSV or STAT dsRNA
alone. The genes particularly affected by STAT during WSSV
infection were also significantly enriched with the regulation
of an adaptive immune response. While shrimp are generally
assumed to have no adaptive immune response, recent studies
have shown that shrimp can obtain immune responses to specific
pathogens including bacterium and viruses (Yang et al., 2012;
Lin et al., 2013).

Identification of Modules Specially
Affected by STAT During WSSV Infection
The 381 modules significantly enriched with genes particularly
affected by STAT during WSSV infection, were identified as
the candidate modules particularly affected by STAT during
WSSV infection (CMASWs) (Supplementary File S2). These
CMASWs were enriched with all the biological processes relevant
to the metabolic changes in WSSV-infected shrimp (Figure 2).
To obtain a comprehensive view of the metabolic disorders

affected by WSSV and STAT dsRNA, the number of CMASWs
significantly enriched with every relevant biological process was
compared with that of candidate modules affected by WSSV
and the modules affected by both WSSV and STAT. The 531
modules enriched with genes affected by WSSV and 574 modules
enriched with genes affected by both WSSV and STAT were
identified as candidate modules affected by WSSV and affected
by both WSSV and STAT, respectively (Supplementary Files
S3, S4). The number of CMASWs enriched with every process
relevant to glucose consumption was more than that of candidate
modules affected by WSSV, suggesting that glucose consumption
was the potential aspect of the metabolic system affected by STAT
dsRNA interference in WSSV-infected shrimps. The number
of CMASWs significantly enriched with every process related
with ATP synthesis, triglyceride concentration, and the cell
death process was less than that of candidate modules affected
by WSSV. In particular, the number of candidate modules
affected by both WSSV and STAT, enriched with every process
related with ATP synthesis and cell death, was also less than
that of candidate modules affected by WSSV, indicating that
these two aspects of the metabolic disorder were alleviated
by STAT dsRNA interference. Additionally, there were nine
CMASWs significantly enriched with the regulation of the JAK-
STAT cascade biological process, 13 CMASWs enriched with the
regulation of the viral process, and 24 CMASWs enriched with
the regulation of the immune response, suggesting that these
CMASWs were indeed associated with the antiviral response
affected by STAT against WSSV. Considering that the densely
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TABLE 2 | The biological processes significantly enriched in the genes affected by
WSSV infection, genes affected by STAT, genes affected by both WSSV and STAT
dsRNA, and genes specially affected by STAT during WSSV infection.

The genes
affected by
WSSV infection

The genes
affected by STAT

The genes
affected by both
WSSV and STAT
dsRNA

The genes
specially affected
by STAT during
WSSV infection

Positive regulation
of JUN kinase
activity (0.00495)

Embryonic hindlimb
morphogenesis
(0.000952)

Negative regulation
of JAK-STAT
cascade (0.00627)

Regulation of
adaptive immune
response based on
somatic
recombination of
immune receptors
built from
immunoglobulin
superfamily
domains (0.0229)

Natural killer cell
activation (0.0126)

Hemocyte
differentiation
(0.0354)

Viral process
(0.011)

Negative regulation
of JAK-STAT
cascade (0.0246)

Positive regulation
of B cell activation
(0.0361)

Interspecies
interaction between
organisms
(0.00255)

Cell death (0.0174) Regulation of
adaptive immune
response (0.027)

Immunoglobulin
V(D)J
recombination
(0.0379)

Positive regulation
of inflammatory
response (0.0343)

Somatic
diversification of
immune receptors
(0.0451)

Lymphocyte
differentiation
(0.046)

T cell activation
involved in immune
response (0.041)

Viral process
(0.00354)

Oxidation-reduction
process (0.00144)

Positive regulation
of immune effector
process (0.0463)

The p-values obtained through two-tail Fisher’s exact test were represented
in the brackets.

connected genes in a CMASW tended to achieve functions
together, the topology of a CMASW provided clues to identify
important genes in the STAT-affected antiviral response against
WSSV. As shown in the Figure 3A, the gene Unigene11346
in the CMASW module_233 was not differentially expressed
between shrimp injected with both STAT dsRNA and WSSV
(samples SW48 and SW72) and the control (samples EP48 and
EP72), but the gene Unigene11346 was associated with three
genes, CL88.Contig9, Unigene39525, and CL4771.Contig2, that
were particularly affected by STAT during WSSV infection in
the module. Despite this, Unigene11346 was not differentially
expressed during the STAT-mediated antiviral response. Its
relevant functions, such as the regulation of the immune
effector process, regulation of the defense response to a virus
by the host, and the positive regulation of the immune system
process, were potentially regulated by the three associated
DEGs. The CL2191.Contig3 (STAT) was a hub gene connected
with 13 (44.8%) out of 29 genes in the module, suggesting
that STAT had significant influence on this module. While
STAT was annotated with the immune effector process, positive
regulation of the immune system process, regulation of the
immunoglobulin mediated immune response, natural killer cell
activation, and the response to interleukins, other genes in
the modules were potentially involved in these processes. The
other gene CL4749.Contig3 was associated with 23 (79.3%)

genes including all three genes particularly affected by STAT
during WSSV infection and the other two important genes,
Unigene11346 and CL2191.Contig3, suggesting the important
role of CL4749.Contig3 in the STAT-mediated antiviral response.
As shown in Figure 3B, the module_1253 was associated
with a modification by the host of symbiont morphology or
physiology, modulation by host of viral transcription, regulation
of viral transcription, and interspecies interaction between
organisms. Both the genes Unigene3981 and CL3235.Contig2
were annotated with these biological processes. While these two
genes were not identified as DEGs, the three associated genes,
CL1462.Contig1, CL3940.Contig2, and Unigene31272, that were
identified as genes particularly affected by STAT during WSSV
infection, tended to participate in these processes. Among these
three genes particularly affected by STAT during WSSV infection,
Unigene31272 was a hub gene connecting 17 (70.8%) genes out
of 24 in the module, indicating they played an important role in
the antiviral process. Unigene3981 was also annotated with the
regulation of the glucose metabolic process, glucose homeostasis,
and the regulation of the glucose metabolic process, which are
relevant to the disordered aspects in the metabolic system in
WSSV-infected shrimp.

CONCLUSION

Aiming to better understand the antiviral responses affected
by STAT against WSSV in shrimp, the gene modules relevant
to the antiviral responses mediated by STAT were identified
from the gene co-expression network. These modules were
found to be associated with the biological processes that
underlie the metabolic changes during WSSV infection.
The important genes and antiviral responses were further
identified based on the network topology of these modules.
For example, Unigene11346, CL4749.Contig3, Unigene3981,
and CL3235.Contig2 were identified as important genes in the
antiviral response. Functional enrichment analysis suggests
that these genes are enriched with biological processes that
potentially underlie antiviral responses, e.g., the immune effector
process, regulation of the defense response to a virus by the host,
regulation of the immune system process, modification by the
host of symbiont morphology or physiology, modulation by the
host of viral transcription, regulation of the viral transcription,
and the interspecies interaction between organisms. These
findings provide insights into the molecular mechanisms that
underlie shrimp antiviral responses.

MATERIALS AND METHODS

Shrimp Maintenance and Virus
Preparation
Healthy shrimp Litopenaeus vannamei, with a body weight
of 4.4 ± 1.0 g were acquired from an aquaculture farm
and reared in the lab. They were maintained in natural,
aerated seawater at 25 ± 1◦C and fed with commercial
feed twice a day. WSSV virions were purified from the

Frontiers in Physiology | www.frontiersin.org 5 March 2019 | Volume 10 | Article 212170

https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-10-00212 March 7, 2019 Time: 16:58 # 6

Zhu et al. Anti-WSSV Gene Modules of Shrimp

FIGURE 3 | The gene co-expression network in two modules, module_233 (A) and module_1253 (B), particularly affected by STAT during WSSV infection. The
edges connecting important genes to STAT-WSSV-jointly affected genes were marked as red thick lines.

tissues of infected shrimp, following the method reported by
Sun et al. (2013) and the stock solution was 3.5 × 104

copies/µL in PBS.

Preparation of Samples
Synthesis and optimization of the dose of the dsRNA of
the target gene LvSTAT (dsLvSTAT) for gene silencing,
fully followed the methods reported by Wen et al.
(2014). Ten micrograms dsLvSTAT was injected into
each shrimp for gene silencing. At the same time, a
fragment of enhanced green fluorescent protein (EGFP)
gene from the pEGFP-N1 plasmid was used for synthesis
of control dsRNA (dsEGFP) following the same method
(Wen et al., 2014).

Four groups including SP, EP, SW, and EW were set
in the following experiments. Each group contained 20
shrimps. In SP and EP, each shrimp was injected with
10 µg dsLvSTAT and 10 µg dsEGFP, respectively, and
then each shrimp was injected with 10 µL PBS 48 h
later. In SW and EW, each shrimp was injected with
10 µg dsLvSTAT and 10 µg dsEGFP, respectively, and
then each shrimp was injected with 10 µL WSSV solution
containing 8.0 × 103 copies, 48 h later. The time of PBS
or WSSV injection was recorded as 0 h. Before PBS or
WSSV injection, 48-h post dsLvSTAT or dsEGFP injection,
cephalothorax samples of three shrimp from each group
were collected separately for RNA extraction. They were
named as S0 and E0. At 24, 48, and 72-h post WSSV
or PBS injection, cephalothorax samples of three shrimp
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from each group were collected separately for RNA
extraction. These samples were named EP24, SP24, EW24,
SW24, EP48, SP48, EW48, SW48, EP72, SP72, EW72, and
SW72, respectively.

Illumina Sequencing
Paired-end RNA sequencing was performed to generate the
transcriptome for each sample. In brief, the total RNA of
each sample was extracted with a RNAisol reagent (Takara,
Japan) and treated with DNase I. The RNA amounts were
estimated spectrophotometrically by a NanoDrop 2000
spectrophotometer (Thermo Fisher Scientific, United States).
Polyadenylated (polyA+) RNA was purified from the
total RNA using Sera-mag oligo(dT) beads, fragmented
to a length of 100–500 bases, reverse transcribed using
random hexamers, and end repaired and adaptor-ligated
according to the manufacturer’s protocol (Illumina). Ligated
products of 300–500 bp were excised from agarose and
PCR-amplified (15 cycles). Products were cleaned using a
MinElute column (Qiagen) and single-end sequenced on a
Genome Analyzer II (Illumina), according to manufacturer’s
instructions. The raw sequencing data has been deposited
in the Sequence Read Archive (SRA) database (SRA
accession: SRP159438).

Preprocessing of RNA-Seq Data
The reference assembly from a previous work was used as
the reference transcriptome (Wei et al., 2014). More detailed
information about the sequencing data can be found in
Supplementary File S5. The reads from each sample were
mapped to the reference assembly with RSEM software
(Li and Dewey, 2011). The percentage of total mapped
reads ranged from 78.34 to 85.40% across the 14 samples
(Supplementary File S6). The expression of each gene
was calculated as the RPKM with HTSeq software (Anders
et al., 2015). After the gene expression values were log2-
transformed and normalized with the quantile function from
the Limma R package, the gene expression were further
normalized with the median subtracted within each sample
(Gentleman et al., 2004).

Identification of Differentially Expressed
Genes
The genes that were differentially expressed between distinctive
conditions were identified as those genes whose expression had
changed more than fourfold. Specifically, only samples affected
by WSSV infection and STAT dsRNA interference at both
48 and 72 h post-infection (hpi) were considered here, since
the copy number of WSSV was reported with no difference
between shrimps injected with STAT dsRNA at 12 hpi and
the control (Wen et al., 2014). For each time point, a set of
DEGs were identified between two different conditions, and
the intersection of the two sets of DEGs obtained at two time
points were used for further analysis. In detail, the samples
obtained after injection of WSSV (EW_48 and EW72) were
compared with the controls (EP48 and EP72) to identify the

genes affected by WSSV infection, and the same for samples
injected with STAT dsRNA (SP48 and SP72) and samples
injected with both WSSV and STAT dsRNA (SW48 and SW72)
(Supplementary Files S7, S8).

Construction of Gene Co-expression
Network
For the gene co-expression network, the PCC was calculated to
quantify the association between each pair of genes. Only genes
with the top 30% variance of gene expression across samples
were included for further analysis. To keep only significant
correlations between genes, and to further reduce the noise in
the network, each association was required to have a p-value no
larger than 0.01. As a result, the degree distribution of the gene
co-expression network followed a power-law distribution with
the parameter alpha equal to 2.12, consistent with a previous
conclusion that biological networks were scale-free networks
(Albert, 2005; Clauset et al., 2009).

Identification of Modules From Gene
Co-expression Network
The modules in the gene co-expression network were detected
by ClusterOne, which is a popular tool widely used in the
bioinformatics field, where the default parameter was employed
for ClusterOne (Nepusz et al., 2012; Giovannetti et al., 2014;
Fuchsberger et al., 2016; Wojtuszkiewicz et al., 2016; Yang
et al., 2016). The gene components of each module can be
found in Supplementary File S9. The modules significantly
enriched with DEGs were detected with a two-tail Fisher’s exact
test with a p-value smaller than 0.05, and the same for the
detection of biological processes enriched in each module. The
functional annotation of shrimp genes was obtained with the
functional annotation transferred from their homologous genes.
The shrimp gene sequences were queried against the NCBI
non-redundant protein sequence database, the NCBI nucleotide
sequence database and the EggNOG database with BLAST, where
a gene was regarded as a homologous gene with an E-value
smaller than 1e-5 (Huerta-Cepas et al., 2015). Consequently,
665,531 biological processes were annotated to 12,505 shrimp
genes (available in Supplementary File S10).
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The brain is the most complicated organ in the human body with more than ten
thousand genes expressed in each region. The molecular activity of the brain is divergent
in various brain regions, both spatially and temporally. The function of each brain region
lies in the fact that each region has different gene expression profiles, the possibility
of differential RNA splicing, as well as various post-transcriptional and translational
modification processes. Understanding the overall activity of the brain at the molecular
level is essential for a comprehensive understanding of how the brain works. Fortunately,
the development of next generation sequencing technology has made it possible to
measure the molecular activity of a specific tissue as a daily routine approach of
research. Therefore, at the molecular level, the application of sequencing technology
to investigate the molecular organization of the brain has become a novel field, and
significant progress has been made recently in this field. In this paper, we reviewed the
major computational methods used in the analysis of brain transcriptome, including the
application of these methods to the research of human and non-human mammal brains.
Finally, we discussed the utilization of transcriptome methods in neurological diseases.

Keywords: brain transcriptome, WGCNA, neurodevelopmental disorders, differentially expressed genes,
cerebral cortex

INTRODUCTION

Humans and other mammalian species are very different in the aspect of several advanced
behaviors, such as language, cognition and sleep. How to explain the differences of these
behaviors at the molecular level remains a mystery. The most straightforward idea is that these
behavioral differences are the result of many behavior related genes in the human genome,
that are not found in other primates, or that the genes responsible for some human specific
behaviors and other mammalian animals are quite different in structure. Those differences,
at the gene level, lead to different functions responsible for the regulation of behavior.
This idea was rejected after obtaining some DNA and protein sequences from humans and
humanoid primates such as chimpanzees. For example, by comparing the cytochromes c protein
sequence of a human with that of a chimpanzee, most sequences were found to be identical.
This finding leads to a conjecture that the difference between humans and other species is
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not due to differences in their genomic sequences, but mainly
because of differences in their regulation and expression
(King and Wilson, 1975).

Although there are roughly 20,000 genes in the mouse
and human genome (Salzberg, 2018), and about 80% of these
genes have significant transcription signatures in the brain
(Lein et al., 2007). In the past decade, several important
studies have explored the spatio-temporal regulation of gene
expression during the brain development of mammals such
as mice (Thompson et al., 2014), humans (Colantuoni et al.,
2011; Kang et al., 2011; Hawrylycz et al., 2012; Miller et al.,
2014) and non-human primates (Bakken et al., 2016; Table 1),
using multiple dimensions of brain transcriptomes. Several brain
gene expression datasets have been released by different labs
or organizations (Lein et al., 2007; Johnson et al., 2009; Kang
et al., 2011; Shimogori et al., 2010; Hawrylycz et al., 2012; Bakken
et al., 2016). Brain transcriptome atlases have offered great
resources to understand the gene expression patterns among
different brain regions or during different development stages of a
mammalian brain (Mahfouz et al., 2017). With the accumulation
of microarray and next-generation sequencing (NGS) data, it
is time to explore how the brain is organized at the molecular
level. Furthermore, analyses of the transcriptional dynamics of
the human brain will afford valuable information to illuminate
the molecular activities of gene related brain disorders such as
autism (Wu et al., 2016).

Here, we reviewed the computational methods employed
to investigate the patterns of gene expression and functional
organization of the mammalian brain. We focus our discussion
on the analysis of spatio-temporal brain transcriptomes, and
we first describe different computational methods such as
differential expression (DE) analysis and network analysis.
We then describe normal gene networks identified in the
brains of mice, non-human primates and humans. Finally,
we discuss their potential application to better understand
brain diseases. These latest advances have provided a
deeper understanding of molecular activities in the brain.
Due space constraints, the discussion of this article does
not include the single-cell transcriptome, which is a very
important emerging field for brain transcriptome analysis.
Note that in this review we refer to “transcriptome” as
the expression profile of all sets of RNA molecules in
one cell or a population of cells and “gene expression
analysis” as the investigation of expression profiles using
computational approaches.

METHODS OF TRANSCRIPTOME
ANALYSIS OF THE BRAIN

Most methods of brain transcriptome analysis involve identifying
differentially expressed genes, either among normal tissues
of various brain regions, or between normal tissues and
disease tissues such as autism or schizophrenia. The next
step is to study the functions of these differentially expressed
genes, as well as network properties, such as their features
in the co-expression network. The characterization of these

properties lay the foundations to understanding the role of these
molecules in the brain.

Differential Gene Expression Analysis
The aim of differential gene expression analysis is to detect
changes of expression levels under different conditions using
statistical methods. For microarray data, there are well-
established methods such as limma (Ritchie et al., 2015), which
uses linear models to detect DE of transcriptomic data, as well as
to correct batch effects. For RNA-seq data, two models based on
the Poisson distribution and the Negative Binomial distribution
are frequently used (Soneson and Delorenzi, 2013). The detailed
comparisons of different methods, including the well-designed
R package “DESeq” (Anders and Huber, 2010) and “edgeR”
(Robinson et al., 2010), was discussed in a previous review
(Soneson and Delorenzi, 2013).

The rapid development of high-throughput techniques, such
as microarrays and NGS, makes it possible to assess the status
of a cell’s transcriptome at any given time (Barabási and Oltvai,
2004). Several methods are applied to analyze the transcriptome
data. Traditional methods involve comparisons of knockout with
wildtype samples, or of diseases with control groups. Several pilot
studies have provided a first glimpse of the brain transcriptome,
mainly with the DE gene methods, to compare knockout with
wildtype mice (Geschwind and Konopka, 2009). In the first step,
an analysis of DE is performed, and DE genes are identified.
Next, functional annotation of these DE genes can be assessed
by gene ontology (GO) enrichment or KEGG pathway analysis,
and enrichment of disease candidate genes can also be performed.
However, as the brain is a complex network system composing
of multiple cell types, it is claimed that DE analysis may not be
sufficient to obtain the underlying structure of gene expression
data from the central nervous system (Miller et al., 2008; Oldham
et al., 2008; Winden et al., 2009; Konopka, 2011).

Network Analysis
Network-based methods are proven to be more powerful than
absolute magnitudes of expression levels, in revealing gene
expression patterns (Oldham et al., 2006; Miller et al., 2014;
Hawrylycz et al., 2015, 2012), and have been found useful in
analyzing the inner workings of a cell (Wang and Huang, 2014).
Using network analysis, we can study higher order properties of
brain transcriptome.

Gene expression profiling data can be modeled as a network,
in which each gene corresponds to a node and gene pairs
are connected by an edge if their expression values are highly
correlated (Parikshak et al., 2015). In a network, degree is an
elementary characteristic of a node, and the degree distribution
indicates the probability that a selected node has exactly N
links. The nodes’ degrees in random networks follow a Poisson
distribution, while most biological networks approximate a scale-
free topology, which means that fewer nodes are highly connected
and most nodes have low connectivity. Biological networks
exhibit a high clustering feature and consist of a set of modules,
where several nodes form a densely connected community
have sparser connections with the rest of the network. Within
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TABLE 1 | Typical researches on the brain transcriptome of mammals.

Author Species Sample size Neuronal disorders related Data source link

Lein et al., 2007 Adult mouse A male, 56-day-old C57BL/6J mice http://mouse.brain-map.org/

Thompson et al., 2014 Developing
mouse

2,100 genes over seven stages of mouse
brain development

Bakken et al., 2016 Developing
macaque

(2 males, 2 females) at each of six prenatal
developmental stages (E40, E50, E70, E80,
E90, and E120)

ASD http://www.blueprintnhpatlas.org

Three male specimens at each of four
postnatal developmental stages
representing the neonate (0 months), infant
(3 months), juvenile (12 months) and
post-pubertal adult (48 months) were
profiled

Oldham et al., 2006 Human and
chimpanzee

Three adult humans and three adult
chimpanzees across six matched brain
regions

Konopka et al., 2012 Human,
chimpanzee
and rhesus
macaque

Frontal pole, caudate nucleus and
hippocampus of 9 human, 8 chimpanzee
and 4 macaque specimens.

Miller et al., 2014 Prenatal human Four prenatal human specimens (15pcw,
M; 16pcw, F; 21pcw1, F; 21pcw2, F)

http://www.brainspan.org/

Wu et al., 2016 Postnatal
human

42 controls and 55 ASD from age 2 to 81. ASD

Kang et al., 2011 Developing
human

57 human brains spanning from embryonic
period to late adulthood

http://hbatlas.org/

Colantuoni et al., 2011 Developing
human

269 samples of human prefrontal cortex

Li et al., 2018 Developing
human

1230 samples from 48 brains http://development.psychencode.org/

Miller et al., 2008 Adult human 31 individuals, comprising nine controls,
and 22 AD (data 1) 30 individuals, died of
natural causes (data 2)

AD

Hawrylycz et al., 2012 Adult human A 24-year-old African American male (Brain
1) A 39-year-old African American male
(Brain 2) A 57-year old Caucasian male
(Brain 3)

http://human.brain-map.org/

Hawrylycz et al., 2015 Adult human 6 adult humans http://human.brain-map.org/

Wang et al., 2018 Adult human 1866 individuals Major psychiatric disorders
including ASD, schizophrenia,
and bipolar disorder

http://resource.psychencode.org/

functional modules, cellular functions are executed by clustered
molecules (Barabási and Oltvai, 2004).

Co-expression of genes is defined as genes with similar
expression patterns. Common measures of gene co-expression
include Pearson correlation, Spearman correlation, Euclidean
distance, and the angle between a pair of observed vectors
(D’haeseleer et al., 2000; Horvath and Dong, 2008). In a gene co-
expression network, modules refer to sets of highly co-regulated
genes (Barabási and Oltvai, 2004). To identify gene modules,
several clustering methods have been employed, including
hierarchical clustering, model-based clustering, k-means, etc.
(Figure 1). Genes within a module work together to achieve a
distinct function.

One major goal of co-expression network analysis is to
identify gene modules (Barabási and Oltvai, 2004). Gene co-
expression patterns of the brain are mainly evaluated by

correlation-based measurements (Mahfouz et al., 2017). By
detecting similar gene expression patterns to disease genes,
in silico prediction can be made with the gene co-expression
approach. To discover clusters of co-expressed genes within
a set of samples, a commonly used unsupervised method is
hierarchical clustering (Mahfouz et al., 2017). One method
used to identify co-expression modules is Pearson correlation,
the most popular co-expression measure (Wang and Huang,
2014), as the distance measurement for hierarchical clustering.
Hard thresholding is then applied to produce a network
(Li et al., 2016).

One widely used method for co-expression network
construction is weighted correlation network analysis
(WGCNA), which was first introduced by Zhang and
Horvath (2005). It is an informative method for detecting
biologically relevant patterns using high-dimensional data sets,
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FIGURE 1 | Identification of network modules. (A) Illustration of different clustering methods. (B) Modules identified by clustering of genes.

and it allows for the assessment of the relation of modules
to experimental traits (Zhang and Horvath, 2005). Genes
with strongly covarying patterns are grouped into modules
across the sample set. Identified modules are characterized
by module eigengenes, and hub genes refer to genes that
are highly correlated with the eigengenes. WGCNA is a
systems biology method used to construct modules of gene
co-expression with an unsupervised clustering approach
and has been broadly applied to transcriptome analysis
of the mammalian brain (Oldham et al., 2006; Hawrylycz
et al., 2012; Thompson et al., 2014; Bakken et al., 2016).
WGCNA searches for gene modules of co-expression
with high topological overlap (Zhang and Horvath, 2005).
First, a soft thresholding power is chosen to calculate
adjacency, which is further transformed into a topological
overlap matrix. Then, the dendrogram of genes can be
produced through hierarchical clustering. Finally, modules
are identified using a dynamic tree cut method for branch cutting
(Langfelder and Horvath, 2008).

Besides the popular WGCNA, there are also a number
of different methods that have been developed for cluster
analysis and further detecting network modularity analysis
(Figure 1). The K-mean clustering method sets the number
of clusters (K) before clustering, and then, based on the
calculation of distance (typically Euclidean distance), all different
modules are detected (Jain, 2010). However, different cluster
initialization may lead to different final clustering. Another
plausible approach is based on probability models, the network
nodes of which are calculated based on the probability
distribution of the genes (Yeung et al., 2001). The model-based

method can capture correlation and dependence between
attributes, and is implemented in the R package “mclust”
(Yeung et al., 2001).

ANALYSIS OF NORMAL MAMMALIAN
BRAINS

Mouse Brain
For decades, mice have been used as a model organism to
study human biology and diseases (Breschi et al., 2017). It
is claimed that transcriptional patterns between orthologous
organs of different species are more similar than those
between different organs from the same species (Brawand
et al., 2011; Barbosa-Morais et al., 2012; Merkin et al., 2012;
Breschi et al., 2017). Therefore, mouse brain transcriptome
data are very useful to complement the study of the human
brain and neuronal disorders, as a series of processes of
primate brain development are conserved across mammals
(Bakken et al., 2016).

Using voxel expression data, Thompson et al. (2014)
explored the temporal co-expression patterns of the mouse
brain in the diencephalon over three time periods: “embryonic,”
“postnatal” and “all.” They analyzed the “all” period and found
that genes in two modules showed strong upregulation in
the diencephalon at P14 and P28. They further examined
the postnatal cluster and found that a set of well-known
oligodendrocyte genes were not widely distributed until P14. An
especially interesting temporal expression pattern was that P14
exhibited strong thalamus-specific expression of predominantly
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TF genes. The authors inferred that this may coincide with
eye opening and the initial reception of visual stimulation
by the thalamus.

Non-human Primate Brain
Despite the fact that humans and mice share many core biological
processes and genetic elements, many human brain features are
poorly modeled in rodents (Bakken et al., 2016) due to the
extended periods of primate brain development. Compared with
rodents, humans and monkeys are more similar on expression
trajectories of brain development (Bakken et al., 2016). In
addition, the comparison of co-expression patterns between
human and chimpanzee brains, showed that many hub genes
in the human brain are conserved in the chimpanzee brain
(Oldham et al., 2006).

Bakken et al. (2015) explored the spatio and temporal
expression patterns of a postnatal brain of a rhesus monkey.
Five brain regions were considered for the genome-wide
gene expression at birth, infancy, childhood and young
adulthood. They identified 27 modules in total. Correlating
each module eigengene with age and brain region, they
found several age-related modules, with a gradual shift of
gene expression postnatally. They also identified cortical
area-specific expression modules such as the primary visual
cortex enriched module (M6). They explored the expression
of M6 genes, and confirmed the previous finding that, in
rhesus monkey and adult human brains, the gene expression
pattern in the primary visual cortex is distinct from that of
other brain regions.

However, in the cerebral cortex, there are prominent
differences between humans and chimpanzees, consistent with
the expansion of the cortex in the human lineage (Oldham
et al., 2006). Moreover, Zhu et al. (2018) compared the
development of the nervous system between humans and
macaques, and detected a cup-shaped pattern of transcriptomic
differences between the two species. In addition, they also
identified human-distinct gene co-expression modules,
indicating the difference of molecular mechanisms for
species divergence, which could play a role in mental
disorders. Therefore, to reveal human-specific features
of the brain at the molecular level, it is necessary to use
human brain transcriptome instead of a non-human primate
brain transcriptome.

Human Brain
Human brain development is a complex process and
depends on the precise regulation of gene expression
(Rakic, 2009; Rubenstein, 2011). Using transcriptome data
of highly differential stability genes, Hawrylycz et al. (2015)
constructed a consensus gene co-expression network and
found several modules with the most neuronal function-related
annotations. Allocating genes to each of the identified modules
according to the gene’s correlation to the corresponding
module eigengene, they detected a number of modules
which were remarkably selective for certain brain regions.
Interestingly, when assessing the module preservation

between humans and mice, they found that some neuron-
related modules were well preserved, whereas many of
the most non-neuronal modules were poorly preserved.
Nevertheless, several genes differ in their expression patterning
across species even in highly preserved modules. Modules
associated with neurons were better conserved than modules
associated with glia.

Using data from 16 regions comprised of six brain structures
across pre- and postnatal development periods, Kang et al.
(2011) created a gene co-expression network and identified
29 modules related to different spatio-temporal profiles. They
found that 90% of the expressed genes were differentially
regulated at the whole-transcript or exon level across brain
regions or brain development periods. Among these modules,
M8 showed the highest expression levels in the early fetal
neocortex and hippocampus, and then a progressive drop
in expression levels until infancy. The hub genes of M8
are involved in the development of the neocortex and the
hippocampus projection neurons. In addition, they identified
two temporally regulated modules, with opposite developmental
trajectories: M20 showed decreased expression while M2
showed increased expression, with the shift just before birth,
which indicates that environmental influences are probably
associated with the transcriptional changes at this period of
brain development.

Furthermore, using gene expression data of 11 neocortex
areas in human and macaque brains, Pletikos et al. (2014)
analyzed the spatial expression patterns among areas across
development periods. They first applied the ANOVA approach to
identify differentially expressed genes among neocortex regions,
at each development period and proposed an hourglass model
of interareal transcriptional divergence over time, indicating
that the spatial pattern of interareal divergence is primarily
driven by a number of functional areas. In addition, to gain
insight into the organization of the neocortex transcriptomes,
they further performed WGCNA with samples from two periods
(fetal development period and from adolescent period onward)
of increased interareal differences and identified 122 modules
and 207 modules, respectively. Most of the fetal modules showed
temporally specified areal patterns and lost their prominent
areal differences postnatally. In contrast, adolescent and adult
modules were more stable over time, and showed less complex
spatial patterns.

Moreover, Li et al. (2018) integrated transcriptome, DNA
methylation, and histone modifications data from 16 brain
regions, and revealed a cup-shaped pattern of regional divergence
during prenatal and postnatal development. Specifically, they
identified a group of gene co-expression modules associated
with dynamic spatiotemporal trajectories and uncovered that
many modules are enriched with specific cell types or disease-
associated genes.

Using organoids from human pluripotent cells, Amiri et al.
(2018) modeled the cerebral cortical development between 5
and 16 weeks post-conception. They identified the networks of
genes and enhancer modules and found that some enhancer
modules converged with gene modules, indicating the regulation
of co-expressed genes by enhancers across time.
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MENTAL DISORDERS

Integrating co-expression network analysis to traditional
differential gene expression analysis uncovered features of
normal mammalian brains and expanded our knowledge of the
spatio-temporal event in mammalian brain development
over the last decade. Moreover, in order to reveal the
molecular mechanisms of neuronal disorders, such as
Autism spectrum disorder (ASD), Alzheimer’s disease (AD),
Schizophrenia, etc., co-expression networks are applied to
compare healthy and diseased brains, which would also
reveal important biological pathways in these disorders and
provide potential biomarkers or therapeutic targets (Keo
et al., 2017; Seyfried et al., 2017; Mostafavi et al., 2018;
Rajarajan et al., 2018).

Utilizing gene expression analysis to decode the mechanism
of mental disorders is a powerful tool as it is large-
scale, high-throughput and cost-efficient. ASD is a group of
neurodevelopmental disorders characterized by deficits in social
functioning and repetitive, restricted behaviors or interests
(Bourgeron, 2015). Previous findings show that ASD genes
are enriched only in pathways during early fetal development
(Parikshak et al., 2013). In the networks of a postnatal rhesus
brain, Bakken et al. (2015) found that ASD gene enriched
modules show significant enrichment in the neocortex. Gene
expression in one of these modules was high in the neonatal
cortex and striatum but low during infant and juvenile
development periods. Combining dense temporal sampling
of prenatal and postnatal periods, Bakken et al. (2016)
demonstrated a high-resolution transcriptional atlas of macaque
(Macaca mulatta) brain development with fine anatomical
division of cortical and subcortical regions associated with
human neuronal disease. They found that many ASD genes
exhibited a coordinated expression in postmitotic neurons both
prenatally and postnatally. They also found that in neuronal
progenitor-enriched modules, MCPH genes were enriched in
early- to mid-fetal ages. No enrichment of intellectual-disability-
associated genes was observed in any modules. Using 109
cortex miRNA samples, Wu et al. (2016) applied WGCNA
and identified 11 modules. By examining the relationship
between module eigengene and ASD traits, they detected three
modules significantly correlated with ASD, and successfully
predicted and validated two transcription factors which regulate
neuronal genes in ASD.

Alzheimer’s disease is the most common cause of
neurodegenerative dementia (Verheijen and Sleegers, 2018).
Using 19 cortical regions, Wang et al. (2016) constructed
region-specific co-expression networks, and rank-ordered
co-expression modules and brain regions based on their
association with AD pathological traits. They found that
temporal lobe gyri exhibited the largest and earliest gene
expression abnormalities. Mostafavi et al. (2018) applied a
network-based method and identified specific genes that were
associated with AD-related traits. By integrating clinical,
neuropathology and gene expression data, they detected a
co-expression module which is related to both cognitive decline
and β-amyloid burden. Furthermore, they identified two

genes in the module, INPPL1 and PLXNB1, as potential AD
therapeutic targets.

Gandal et al. (2018a) analyzed the transcriptome of five
major psychiatric disorders, including ASD and schizophrenia,
and identified a number of shared and disorder-specific co-
expression modules. They found an up-regulated module, which
is associated with astrocyte, and several down-regulated modules,
which are annotated as neuronal or mitochondrial, across ASD,
schizophrenia, and bipolar disorder, suggesting pathways of
molecular convergence of major neuropsychiatric illness.

Nevertheless, the PsychENCODE consortium integrated
multiomics data and provides a comprehensive resource for
the functional genomics of the human brain (Wang et al.,
2018). For example, Gandal et al. (2018b) integrated RNA-seq
and genotypes in brain samples with ASD, schizophrenia,
and bipolar disorder, and detected gene co-expression
modules related to each disorder. They found that one
module, associated with the microglial cell marker, is up-
regulated in ASD, and down-regulated in schizophrenia
and bipolar disorder, suggesting a previously unrevealed
neural-immune mechanism.

Integration of co-expression data with clinical traits enables
the identification of novel disease related modules and hub
genes, which provide potential therapeutic targets for related
neuronal disorders.

CONCLUSION AND FURTHER
DIRECTION

Transcriptomic data of the mammalian brain provides eminent
opportunities to illuminate how the brain works in the molecular
level. The current status of this field has provided us with
great insight on the molecular developmental patterns of the
brain, and we expect more primate brains to be included in
future research. Additionally, other molecular activities such
as microRNA and non-coding RNAs should be profiled at
the brain-wide scale as well. In this article, we summarized
the progress made by various researchers in the analysis of
brain transcriptome in recent years. In addition to traditional
DE analysis, network-based methods offer an unsupervised
perspective to analyze large scale data from mouse to human
brains, as well as data of different developmental stages
of each species. Moreover, systems-level analysis assembles
correlates single genes and enables the discovery of key
pathways. As the rapid development of NGS in the past
decade has accelerated the research on transcriptomics of the
brain, the knowledge obtained from this field can facilitate
deciphering the complexity of the brain and help us gain
valuable insight into the organization of the brain’s functions.
Nevertheless, the use of network-based methods integrated
with clinical traits and experimental validation (Mostafavi
et al., 2018) demonstrates a blueprint for investigating complex
neuronal diseases.

One major limitation of bulk sample transcriptome analysis
is that it can’t provide insight into the behavior of different
cell types, which is a critical aspect of brain research. Similarly,
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the analysis methodologies developed for bulk samples may not
be suitable for analyzing single-cell data with algorithms of a
network. In this mini-review, the recent emerging single-cell
sequencing data is not covered due to the space constraints.
The analysis of differentially expressed genes between different
cell types or of the marker between different cell types would
be an important topic in the future. Research in this area
is progressing rapidly (Zeisel et al., 2015; Tasic et al., 2016,
2018; Fan et al., 2018; Kelley et al., 2018; Zhong et al., 2018),
and we look forward to some critical improvements for the
identification of cell types related to differentially expressed
genes in the future.
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The functional role of astrocyte calcium signaling in brain information processing was

intensely debated in recent decades. This interest was motivated by high resolution

imaging techniques showing highly developed structure of distal astrocyte processes.

Another point was the evidence of bi-directional astrocytic regulation of neuronal activity.

To analyze the effects of interplay of calcium signals in processes and in soma mediating

correlations between local signals and the cell-level response of the astrocyte we

proposed spatially extended model of the astrocyte calcium dynamics. Specifically, we

investigated how spatiotemporal properties of Ca2+ dynamics in spatially extended

astrocyte model can coordinate (e.g., synchronize) networks of neurons and synapses.

Keywords: astrocyte, synaptic transmission, neuron–astrocyte interaction, neuron–astrocyte network, calcium

INTRODUCTION

The functional role of astrocyte calcium signaling remains intensely debated. One of the principal
reasons for such a debate is that the astrocytic Ca2+ dynamics possesses high complexity which
was confirmed by new experimental approaches to study the signaling of astrocytes at qualitatively
new spatial-temporal resolutions (Volterra et al., 2014; Bindocci et al., 2017; Wu et al., 2018).
Another reason was the evidence of bi-directional astrocytic regulation of neuronal activity referred
as gliotransmission [Ca2+-dependent release of neurotransmitters (glutamate, D-serine, ATP)
by astrocytes] (Araque et al., 2014; Bazargani and Attwell, 2016; Fiacco and McCarthy, 2018;
Savtchouk and Volterra, 2018).

Astrocytes respond to synaptic activity by intracellular Ca2+ elevations (Verkhratsky et al.,
2012). Synaptically-released neurotransmitters (e.g., glutamate) can activate G-coupled receptors
[e.g., the metabotropic glutamate receptors (mGluRs)] (Porter and McCarthy, 1996; Pasti et al.,
1997; Perea and Araque, 2005), which, upon activation, promote inositol 1,4,5-triphosphate (IP3)
production by phosphoinositide-specific phospholipase C β (PLCβ) (Zur Nieden and Deitmer,
2006). In turn, the elevation of cytosolic concentration of the second messenger IP3 promotes
the Ca2+-induced Ca2+ release (CICR) from the astrocyte’s endoplasmic reticulum (ER) stores.
Clustering of astrocytic receptors, targeted by synaptically released neurotransmitters at points of
contact of synapses with astrocytic processes (Di Castro et al., 2011; Panatier et al., 2011; Arizono
et al., 2012) provides spatially confined sites of IP3 production, whose differential activation could
result in rich spatiotemporal IP3 and Ca2+ dynamics (Volterra et al., 2014).

There are two main types of IP3-induced CICR observed in astrocytes (Volterra et al.,
2014; Rusakov, 2015; Bindocci et al., 2017): small, fast Ca2+ events that are confined to their
(primary) processes and caused by minimal synaptic activity; and Ca2+ elevations propagating
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along astrocytic processes that can reach the soma and trigger
whole-cell global Ca2+ signal. The latter slow calcium events were
induced by intense neuronal activity. This circumstance can be
interpreted as the ability of astrocytes to perceive the information
contained in the repetition rate of action potentials, however, this
occurs on time scales larger than the characteristic times inherent
in the synaptic activity.

The elevation of intracellular calcium concentration in
astrocyte can trigger the release of various active chemicals,
gliotransmitters, such as glutamate, GABA, ATP, and D-serine
(Bezzi and Volterra, 2001). The concept of “tripartite synapse”
(Araque et al., 1999) is based on the ability of gliotransmitters to
regulate synaptic transmission and plasticity on time scales from
seconds to minutes (see Araque et al., 2014 for a recent review).

Since effect of single gliotransmitter depends on the type of
circuit and targeted neurons (Araque et al., 2014), we focused in
our study on the excitatory transmission in hippocampus. It was
shown that hippocampal astrocyte can release ATP (Zhang et al.,
2003), D-serine–co-agonist of the NMDA receptor (NMDAR)
(Henneberger et al., 2010; Zhuang et al., 2010) and glutamate.
After conversion to adenosine, ATP can depress, or facilitate
excitatory synaptic transmission acting on either A1 or A2A
receptors, respectively (Serrano et al., 2006; Pascual et al., 2012).
At CA3-CA1 synapses astrocytic glutamate acts on presynaptic
NMDARs (Jourdain et al., 2007) or mGluRs (Navarrete and
Araque, 2010; Navarrete et al., 2012) to potentiate or decrease
release probability, respectively. In the CA1 region a long-term
potentiation (LTP) which required presynaptic mGluR activation
(Perea and Araque, 2007) can be induced by the postsynaptic
activity accompanying by glutamate release from astrocyte due
to Ca2+ elevation. Also, it was shown (Henneberger et al., 2010)
that D-serine, released from astrocyte and being a coagonist of
postsynaptic NMDARs, can trigger NMDAR-mediated LTP at
synapses nearby of the astrocyte.

Intense modeling efforts have been devoted in recent years
to understand the functional role of astrocytic modulation of
the neuronal communication (see Oschmann et al., 2018 for a
recent review, Kanakov et al., 2019). There are several biophysical
studies of astrocytic influence on post- and presynaptic neuronal
activity (De Pittà et al., 2011; Gordleeva et al., 2012; Tewari and
Majumdar, 2012a,b; Tewari and Parpura, 2013; De Pittà and
Brunel, 2016; Flanagan et al., 2018). However, these works did
not account for the impact of spatiotemporal patterns of calcium
dynamics in astrocyte, i.e., the spatial distribution of the calcium
activity was neglected. Meanwhile, under the action of high-
frequency action potentials in one synapse or coherent activity
of several synapses, the calcium signal originating in astrocyte
can spread along the processes and throughout the astrocyte
and cause the release of the gliotransmitter in remote locations,
affecting other synapses.

There are also a few recent computational works which
investigated mechanisms underlying IP3-triggered CICR-
mediated spatiotemporal dynamics in single astrocyte (Wu et al.,
2014; Gordleeva et al., 2018; Savtchenko et al., 2018).

To analyze the principles of generation of calcium
signals in processes and soma of the astrocyte and to seek
mechanisms of correlations between local signals and the global

signalization response of the astrocyte including its spatially
distributed structure, we propose a spatially extended model of
astrocyte calcium dynamics. In this paper we investigate how
spatiotemporal Ca2+ dynamics in spatially extended astrocyte
model can coordinate and synchronize network signaling.

METHODS

For our purpose we designed a neuron-astrocyte network
composed of 100 synaptically coupled Hodgkin-Huxley
excitatory neurons (Hodgkin and Huxley, 1952) and two
astrocytes connected via gap junction. Each astrocyte has
spatially distributed structure that repeated the morphology of
real astrocyte (Bindocci et al., 2017). For illustration, we assumed
that each process of the astrocyte, interacting with presynaptic
and postsynaptic neurons, forms one tripartite synapse providing
the connectivity between neuronal and astrocytic parts of the
network. The schematic architecture of the model is shown
in Figure 1. Our model of the tripartite synapse describes the
effects of the astrocytic modulation of synaptic transmission
in the CA1-CA3 area of hippocampus. We consider glutamate
as the neurotransmitter, and glutamate and D-serine as the
gliotransmitters. We describe three effects resulting from the
influence of the gliotransmitters on the synapse: (i) potentiation
of presynaptic release probability due to glutamate acting on
presynaptic NMDARs; (ii) depression of presynaptic release
probability due to glutamate acting on presynaptic mGluRs;
and (iii) increase of the postsynaptic currents due to D-serine
modulation of the postsynaptic NMDA receptors.

Neural Network
Neural network consists of 100 excitatory synaptically coupled
Hodgkin-Huxley neurons (Hodgkin and Huxley, 1952;
Esir et al., 2018). We use random coupling topology with
connection probability for each pair of neurons equal to 20%
(Braitenberg and Schüz, 1998). The dynamics of the neuronal
membrane potential is described by the following ionic current
balance equation:

C
dV(n)

dt
= I

(n)
channel

+ I
(n)
app +

∑

m

I(mn)
syn +I

(n)
P , (1)

where capacitance, C, is 1 µF/cm2, the superscript (n = 1,. . . ,
M) corresponds to a neuronal index and (m) corresponds to an
index of input connection. The Na+, K+, and leak currents are
expressed as follows:

Ichannel = −gNam
3h (V − ENa)−gKn

4
(V − EK)

− gleak (V − Eleak) , (2)

where gNa and gK are the potassium and sodium conductances
(mS/cm2), ENa, and EK are the potassium and sodium reversal
potentials (mV), gleak and Eleak are the leak conductances and leak
reversal potential, respectively.

The kinetics of the potassium channel is determined by:

dm

dt
= αm(1−m)− βmm,
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FIGURE 1 | Schematic view of the neuron-astrocyte network model.

αm =
0.1(V + 40)

1− exp(−(V + 40)/10)
,

βm = 4 exp(−(V + 65)/18), (3)

dh

dt
= αh(1− h)− βhh,

αh = 0.07 exp(−(V + 65)/20),

βh =
1

1+ exp(−(V + 35)/10)
. (4)

The kinetics of the sodium channel is determined by:

dn

dt
= αn(1− n)− βnn,

αn =
0.01(V + 55)

1− exp(−(V + 55)/10)
,

βn = 0.125 exp(−(V + 65)/80). (5)

The applied currents I
(n)
app are fixed at constant value controlling

the depolarization level and dynamical mode of the neuron

(Kazantsev and Asatryan, 2011). We use I
(n)
app = 4.5 µA/cm2

which corresponds to the neuron’s excitable mode. The synaptic
current Isyn (µA/cm2) simulating interactions between the
neurons. Each neuron is stimulated by a Poisson pulse train

mimicking external spiking inputs I
(n)
P (µA/cm2) with a certain

average rate λ. Each Poisson pulse has rectangular shape with
fixed width of 10ms and variable height, which is sampled
independently for each pulse from uniform random distribution
on interval [0, 1.5]. Sequences of Poisson pulses applied to
different neurons are independent.

Synaptic Dynamics
Each spike on presynaptic neuron results in the release
of the glutamate quant. We describe presynaptic dynamics
of the glutamate, G, using a mean field approach from
Gordleeva et al. (2012):

dG

dt
= −αG(G− kpreδ(t − tk)), (6)

where αG denotes the clearance rate of the neurotransmitter, kpre
denotes the efficacy of the presynaptic release, δ denotes the Dirac
delta function and tk is spike time.

The release of the glutamate leads to excitatory postsynaptic
current (EPSC). For description of the EPSCs dynamics we use
the approach from our previous work (Gordleeva et al., 2012):

dIEPSC

dt
= −αI (IEPSC − Aδ (t − tk)) , (7)

P(A) =
2A

b2
exp(−

A2

b2
),

∫
+∞

0
P(A)dA = Γ (1) = 1,

where αI is rate constant. According to the experimental
data (Fernández-Ruiz et al., 2012; Guzman et al., 2016) we
supposed that amplitude of the EPSCs, A, is gamma-distributed
with probability density function P(A), where b is the scaling
parameter of gamma-distribution that denotes the impact of the
synaptic input.

Integrated synaptic current of the neuron, Isyn, is described by
the following equation (Gordleeva et al., 2012):

Isyn =
IEPSC

1+ exp(−(G− θG)/kG)
, (8)

where θG denotes the midpoint and kG denotes the slope of the
neuronal activation function.

Geometry of the Astrocytic Model and

Astrocytic Ca2+ and IP3 Dynamics
To design the architecture of the spatially distributed astrocyte
model, we followed available experimental facts (Bindocci et al.,
2017) (see Figure 2A). Specifically, we consider the astrocyte
as network of inter-coupled small compartments, which have a
cylindrical shape (Gordleeva et al., 2018). Each element is a unit-
length cylinder with a finite radius r containing ER (Figure 2B).
Compartments are coupled through the diffusion of calcium and
IP3 controlling the calcium exchange between the cytoplasm and
intracellular stores of calcium (in particular, ER).

The dynamics of each compartment is described by the
following set equations (modified from Li and Rinzel, 1994;
Gordleeva et al., 2018). The balance of calcium fluxes in cytosol
for particular compartment is described by

d[Cac]i
dt

=
SERi

F · Vi
(JIP3R − JSERCA + JERleak)+ JCadiff . (9)
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FIGURE 2 | Geometry of the astrocytic model. (A) Schematic view of the spatially distributed astrocyte model. (B) Model of the astrocyte dynamics. Schematic

representation of basic IP3 and Ca2+ currents and their kinetics taken into account for each compartment.

Changing free calcium concentration in the cytosol of the
compartment i is defined by calcium exchange with the ER
involving the calcium release from the ER to the cytosolic
volume through IP3 receptors, JIP3R, the ATPase Ca2+- pump
“SERCA” by JSERCA, and by calcium leak from the ER, JERleak.
SERi = Si

√
rERi denotes the surface of the ER. The volume

and the surface of the intracellular space are defined as Vi

and Si, respectively. rER is the ratio of the volume of ER to
the volume of cytoplasm in the considered compartment of the
astrocyte. The distribution of values over compartments in the
developed model was chosen according to experimental data
(Patrushev et al., 2013; Oschmann et al., 2017) and can be found
in Supplementary Table 2.

The current JIP3R is expressed by the following equations (Li
and Rinzel, 1994) approximating the kinetics of ER IP3Rs:

JIP3R =
FVi

Si
v1m

3
∞n3∞h3([CaER]i − [Cac]i),

dhi

dt
=

h∞ − hi

τh
,

h∞ = d2
([IP3]i + d1)([IP3]i + d3)

(d2([IP3]i + d1)+ [Cac]i([IP3]i + d3))
,

n∞ =
[Cac]i

[Cac]i + d5
, m∞ =

[IP3]i
[IP3]i + d1

,

τh =
([IP3]i + d3)

a2(d2([IP3]i + d1)+ [Cac]i([IP3]i + d3))
. (10)

Here [Cac]i and [CaER]i are calcium concentrations in the cytosol
and in the ER of the compartment i, respectively. The dynamics

of the Ca2+ concentration in the ER is described by:

d[CaER]i
dt

=
SERi

F · VERi
(−JIP3R + JSERCA − JERleak)+ JCaERdiff

(11)

where SERi and VERi denote the area and the volume of the
ER, respectively.

The variable h denotes the fraction of activated IP3 receptors
and the other gating variables for IP3Rs are set to their
equilibrium values m∞ and n∞. Active ATP-dependent current
JSERCA pumping calcium back to the ER and the Ca2+ leak
current from the ER, JERleak, are given by the following equations:

JSERCA =
FVi

Si
v3

[Cac]i
2

[Cac]i
2
+ k23

,

JERleak =
FVi

Si
v2([CaER]i − [Cac]i). (12)

The change of the IP3 concentration is defined by production
and degradation that are regulated by cytosolic Ca2+. These
include Ca2+-dependent phospholipase C δ (PLCδ) mediated IP3
synthesis and Ca2+-dependent IP3 degradation by the IP3 3-
kinase (IP3-3K) and the inositol polyphosphate 5-phosphatase
(IP-5P) (De Pitta et al., 2009):

d[IP3]i
dt

= JPLCβ + JPLCδ − Jdeg 3K − Jdeg 5P + JIP3diff . (13)

The first current, JPLCβ , describes agonist dependent IP3
production by PLCβ. The activation of PLCβ by G-protein
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is controlled by the glutamate concentration, G, (Equation 6)
(De Pitta et al., 2009):

JPLCβ = vβ

G0.7

G0.7 + (KR + Kp ·
[Cac]i

[Cac]i+Kπ
)
0.7

, (14)

where vβ is the rate of IP3 production by PLCβ, KR is the
glutamate affinity of the receptor, Kp is Ca2+/PLC- dependent
inhibition constant, and Kπ is Ca2+ affinity of PLC.

The second term in Equation (13) describes cytosolic calcium
dependent PLCδ activation (De Pitta et al., 2009):

JPLCδ =
vδ

1+ [IP3]i
kδ

[Cac]i
2

[Cac]i
2 + K2

PLCδ

, (15)

where vδ described the maximal rate of IP3 production by
PLCδ, kδ– the inhibition constant, and KPLCδ– the Ca2+ affinity
of PLCδ.

The IP3 degradation by IP3-3K and IP-5P described by the
following equations (De Pitta et al., 2009):

Jdeg 3K = v3K
[Cac]i

4

[Cac]i
4 + K4

D

·
[IP3]i

[IP3]i + K3
, Jdeg 5P = r5P[IP3]i. (16)

The whole process dynamics is formed by the intracellular
diffusion of calcium and IP3 accounted by the following fluxes:

JIP3diff = dIP3(i,i+1)([IP3](i+1) − [IP3]i)

+ dIP3(i,i−1)([IP3](i−1) − [IP3]i),

JCadiff = dCa(i,i+1)([Cac](i+1) − [Cac]i)

+ dCa(i,i−1)([Cac](i−1) − [Cac]i). (17)

The diffusion flux through compartments of ER described by
the following:

JCaERdiff = dCaER([CaER](i+1) + [CaER](i−1) − 2[CaER]i). (18)

Note, that the values of the diffusion rates from compartment j (j
= i+1; j= i−1) to compartment i for IP3, dIP3ij, and for calcium,
dCaij, depend on the compartment geometry (e.g., compartment
volume) and are different the inward and outward fluxes at the
process branching sites:

dIP3ij =
DIP3Aij

Vi · xij
, dCaij =

DCaAij

Vi · xij
, (19)

where Aij is the cross-section area between compartments, Vi

is the volume of compartment i, xij is the distance between

FIGURE 3 | The dynamics of the tripartite synapse without astrocytic influence on synaptic transmission for two frequencies of spiking presynaptic neuron: (A) 5Hz

and (B) 10Hz. The G(t) is the mean field concentration of glutamate released for each spike on the presynaptic neuron (Vpre(t)). Released into synaptic cleft glutamate

induced firing of the postsynaptic neuron (Vpost(t)) and rise of Ca2+ in the cytosol of the perisynaptic process compartment (Ca2+(t)). The elevation of intracellular

concentration of Ca2+ in the astrocytic compartment trigger release gliotransmitter (Y(t)) and can propagate along the process to the soma. Time realizations of the

intracellular calcium concentrations are marked by the different color in different compartments of the process and shown the propagation of the calcium signals. Axis

designation (Ca2+) corresponds to the model variable [Cac] described by Equation (9).
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FIGURE 4 | (A) A raster plot of the calcium activity in astrocyte, where each dot represents a calcium signal (increase of Ca2+ concentration in compartment above

threshold in 0.15µM). (B) The neuronal firing rate, i.e., the number of spikes in the presynaptic neurons in the 100-ms time window. (C) The calcium firing rate in

astrocyte, the number of Ca2+ signals in the 100-ms time window. (D) The time realization of Ca2+ concentration in soma. (E) The cross correlation between

(B,C)—black line. The cross correlation between (C) and firing rate of all neuronal network—red line. λ = 9.3Hz.
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the centers of the nearest-neighbor compartments, which is
equal to the unite length of compartment. DIP3 and DCa is
the diffusion constant for IP3 and Ca2+, respectively. For
simplicity, we assume that the size of the ER is the same in all
compartments and therefore the diffusion coefficient of Ca2+ in
the ER does not depend on the geometry of the compartment
and is constant. Values of model parameters can be found in
Supplementary Table 1. Note that the time unit in the neuronal
model (1–5) is 1ms. Due to a slower time scale, in the astrocytic
model empirical constants are indicated using seconds as time
units. When integrating the joint system of differential equations,
the astrocytic model time is rescaled so that the units in both
models match up.

Dynamics of Gliotransmitters
When the [Cac] in astrocytic processes exceeds a threshold
[Cac]th concentration, gliotransmitter is released by the astrocyte
into the extra-synaptic space. For illustration, we consider that
the gliotransmitter is released only from the distal compartment
on each astrocytic process forming the tripartite synapse. We
describe the concentration of gliotransmitter by the following
equations (Gordleeva et al., 2012):

dYk

dt
= −αk(Yk −Hk([Cac])),

Hk([Cac]) =
1

1+ exp(−
[Cac]−[Cac]th

kk
)
, (20)

where index k denotes the type of gliotransmitter released from
astrocyte: k = 1 for glutamate and k = 2 for D-serine. αk

denotes the gliotransmitter clearance rate. The amount of the
gliotransmitter released from astrocyte if the Ca2+ concentration
exceeds a threshold accounted by the function Hk([Cac]).

Glutamate released from astrocyte can modulate presynaptic
release. Equation for presynaptic dynamics (6) considering the
astrocytic modulation should be modified to:

dG

dt
= −αG

(
G− k0(1+ γ1Y1)δ(t − tk)

)
, (21)

where the influence of glutamate released from astrocyte on
the amount of neurotransmitter describes by parameter γ1.
γ1 > 0 for the potentiation and γ1 < 0 for the depression of
neurotransmitter release, respectively.

Astrocytic D-serine modulates the response of the NMDARs
on the postsynaptic terminal. This modulation leads to increase
the amplitudes of postsynaptic currents. In the model it means
the increase of the scaling parameter, b, of the probability density
function P(A) (7):

b = b0(1+ γ2Y2), (22)

where γ2 is the parameter which describe impact of the astrocytic
D-serine on the amplitudes of the EPSCs.

RESULTS

First, let us consider the dynamics of single tripartite synapse
without influence of the gliotransmitters on the synaptic

strength. The dynamics of synaptic transmission obtained
in model (1–20) is shown in Figure 3. We consider quite
low frequency of presynaptic firing (Figure 3A). The model
has been tuned to follow recent experimental data on the
calcium activity of astrocyte taken in vivo on a subcellular
scale (Bindocci et al., 2017). They showed that astrocyte could
response even on the low frequency of neuronal activity.
According to experimental data the parameters values were
chosen so that even individual action potential on the presynaptic
neuron could induce small calcium event in the most distant
astrocytic compartment. In response to the glutamate release
from presynaptic terminal, the calcium concentration in the
distal compartment increases. This increase, however, is not
sufficient to trigger the gliotransmission (e.g., Y(t) is close to
zero), because the intracellular diffusion calcium concentration
consequently increases in all elements of this process. However,
the amplitude of these pulses is smaller than the amplitude
of the basic response. With increase of presynaptic firing
rate the amplitudes of the calcium signals in the distal
compartment substantially increase and exceed the threshold of
gliotransmission (Figure 3B).

Next, we consider the interaction of whole astrocyte and
neural network. All neurons of the network are stimulated by
Poisson process with fixed frequency. The model architecture
of the astrocyte model includes 14 processes, and, hence, the
astrocyte interacts with 14 synapses from neural network of 36
neurons. Figure 4A illustrates the space-time diagram of calcium
signals in the compartmental model. Note that the frequency of
calcium signals in soma is much lower than in all compartments
of the astrocyte. Calcium signals generated in the distal elements
of different processes of the astrocyte propagate to the soma
due to diffusion. An increase in the calcium concentration in
the soma of the cell induces the propagation of the Ca2+ signal
back through all processes of the model. If one compares the
astrocytic calcium activity firing rate (the number of calcium

FIGURE 5 | Average frequencies of generation of calcium signals in soma (red

dots), in all distal processes (black dots), and in all proximal processes the

nearest to soma (green dots) vs. the frequency of the presynaptic neurons.
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signals in all compartments in the 100-ms time window)
(Figure 4C) and corresponding time trace of the intracellular
calcium concentration in soma (Figure 4D), then it happens
that the calcium response in the soma occurs as the result of a
space–time integration of calcium fluctuations in the processes
of the astrocyte. To estimate the level of functional connectivity
between activity of neurons and calcium activity in astrocyte, we
calculated the cross correlation (CC) between neuronal firing rate
(Figure 4B) and astrocytic firing rate (Figure 4C). The peak of
the CC (Figure 4E) indicates the presence of cross correlation
(e.g., a synchrony) and estimates the communication delay time

τ equal about to 2 s. It is important to note that the peak
of the CC exists only for firing rate of presynaptic neurons
not all neurons in network (red line on the Figure 4E). Thus,
the model verified that activation of the astrocyte is stimulated
by synchronous in time and in space neuronal activity. This
correspond to the experimental data presented in Bindocci et al.
(2017). They found very large events in vivo, which they called
global Ca2+ events, that spread spatially to most of the astrocytic
structures. Most of global calcium events were registered during
movement of the mouse associated intense neuronal discharges.
The dependences of the average frequencies of generation of

FIGURE 6 | The dynamics of the tripartite synapse with astrocytic influence on synaptic transmission. (A) Time traces of membrane potentials of pre- (Vpre(t)) and

post-synaptic (Vpost(t)) neurons and calcium concentration (Ca2+(t)) in distal compartment of the astrocytic process without impact of astrocyte (γ1 = γ2 = 0).

(B) Astrocyte-mediated potentiation of presynaptic release. Red line corresponds to the post-synaptic activity with astrocytic influence (γ1 = 0.1). Black—without. Y(t)

is the time trace of gliotransmitter concentration. (C) Astrocyte-mediated inhibition of presynaptic release. Red line corresponds to the postsynaptic activity without

astrocytic influence (γ1 = −0.4). (D) Astrocyte-mediated increasing of PSCs amplitudes. Red line corresponds to the postsynaptic activity with astrocytic influence (γ2
= 1). λ = 9Hz.
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calcium signals in the soma and processes of the astrocyte on
the firing frequency of the presynaptic neurons are shown on
the Figure 5. Note that the frequency at the distal compartments
reaches the highest values being monotonically dependent on the
firing rate of presynaptic neurons and accordingly on the release
rate of the neurotransmitter. Calcium signals on the astrocyte
soma occur less often when exceeding a certain threshold of the
spiking frequency of the presynaptic neurons.

Let us now consider the impact of gliotransmitter on
the synaptic transmission. Figure 6 shows dynamics of single
tripartiate synapse. We stimulate the presynaptic neuron by
Poisson process and register the activities of postsynaptic neuron,
gliotransmitter, and Ca2+ concentration in perisynaptic process.
We analyze the following astrocyte-mediated modulations of
synaptic transmission: (i) astrocytic glutamate potentiates of
neurotransmitter release by acting on presynaptic NMDARs, γ1

FIGURE 7 | Heterosynaptic astrocyte-induced modulation of transmission. (A) Presynaptic neuron (synapse 1) is stimulated by the short high-frequency discharge.

That triggers elevation of calcium in compartment 1 of astrocyte which spread to the other compartments 2, 3 of the process. Presynaptic neuron (synapse 2) is

stimulated by the Poisson process. λ = 9Hz. Potentiation (B) (γ1 = 0.1) and inhibition (C) (γ1 = –0.4) of presynaptic release in synapse 2. Red color corresponds to

the membrane potential of the postsynaptic neuron (synapse 2) with astrocyte impact, black color—without.
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> 0 in (21) (Jourdain et al., 2007) (Figure 6B), (ii) astrocytic
glutamate can target presynaptic mGluRs which decrease release
probability, γ1 < 0 in (21) (Semyanov and Kullmann, 2000; Perea
and Araque, 2007; Navarrete et al., 2012) (Figure 6C); (iii) the
gliotransmitter D-serine triggers increase of the amplitudes of
post synaptic currents by acting as the coagonist of postsynaptic
NMDARs, γ2 > 0 in (22) (Henneberger et al., 2010) (Figure 6D).

Gliotransmission can co-ordinate several synapses and
networks of neurons (Serrano et al., 2006; Pascual et al.,

2012). Figure 7 illustrates the heterosynaptic astrocyte-induced
modulation of neurotransmission in our model. Ca2+ signals
evoked locally by high-frequency discharge of synapse 1
(Figure 7A) can propagate intracellularly from their initial source
toward different process and trigger gliotransmitter release at
nearby synapse (synapse 2) facilitating (Figure 7B) or depressing
(Figure 7C) synaptic transmission.

Next, we study a bidirectional regulation of the signal
transmission in neural ensemble by astrocytes. According to the

FIGURE 8 | A raster plots of the neuronal and calcium activities in astrocyte. λ = 7Hz. We consider astrocyte-mediated potentiation of presynaptic release (γ1 = 0.1).

Neuron-astrocyte network under study consists of (A) one astrocyte and 36 neurons. Neurons 0–14 are postsynaptic; (B) two connected via gap-junction astrocytes

(color of dots correspond to different cells) and 100 neurons. Neurons 0–28 are postsynaptic.
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experimental data astrocytes occupy non-overlapping territories
(Halassa et al., 2007). Thus, only one astrocyte can impact on
transmission in a determined set of thousands synapses. We
consider neuron-astrocyte network consists of two astrocytes
connected via gap junction and 100 synaptically coupled
neurons (Figure 8). Figure 8A shows communication of one
astrocyte and small neuronal network of 36 neurons the same
as on Figure 4 but with taking into consideration astrocytic
modulation of synaptic transmission. High frequency of neuronal
firing rate increases the probability of synchronous activity
in neighboring to astrocyte synapses. Such coherent synaptic
activity induces Ca2+ elevations in different astrocytic processes,
which due to spatial-temporal integration results in global, long
lasting Ca2+ events. This large calcium signal reaching the cell
soma and triggering whole-cell Ca2+ signaling can stimulate
the release of gliotransmitter to multiple synapses coordinating
activity of the neuronal circuit (Figure 8A) defined by the
morphological territory of individual astrocyte. Thus, astrocyte-
mediated potentiation of presynaptic release results in long-
term increasing of neuronal activity from domain defined by
the astrocytic morphology (Figure 8A). This kind of response
can even propagate to neighboring astrocytes, through gap
junction channels. Figure 8B shows the simulation of the calcium
signal propagation through the processes of one astrocyte
to another triggering modulation of communication in large
neuronal ensembles.

DISCUSSION

The majority of known data is extracted from Ca2+ signals
monitoring in astrocyte soma. Slow Ca2+ events in astrocyte used
to be associated with the high level of neuronal activity (Pasti
et al., 1997; Sul et al., 2004). Recent studies, indeed, revealed that
even a minimal synaptic activity is capable of small, rapid, and
localized Ca2+ response excitation in astrocyte (Volterra et al.,
2014; Bindocci et al., 2017). These data gave a ground to assume
that astrocytes generate large calcium signal by integrating the
activity of several individual synapses. Thus, the astrocyte Ca2+

signaling represents self-coordinated spatio-temporal patterns
including local fast responses as well as, respectively, slow
global responses resulting from the integration of the signals.
The integration can encapsulate the mechanism of the global
responses control via local changes in neuronal activity.

Our model accounting for spatial morphology of the
tripartite synapses revealed interesting functional features of
calcium activity in astrocyte-mediated modulation of signal
transmission. It was shown that astrocyte can act as temporal and
spatial integrator, hence, detecting the level of spatio-temporal
coherence in the activity of accompanying neuronal network.

Specifically, such time and space integration based on rapid
and local events of activation of small compartments along the
astrocytic processes results in the long-term astrocyte-mediated
changes of the synaptic functionality of the neuronal network.
Revealed by a correlation analysis of obtained numerical
simulations, a presence of the synchrony between neuronal and
astrocytic activity has verified that activation of the astrocyte is

stimulated by neuronal activity, which is synchronous in time
and in space.

In this study we show that different level of the neuronal
activity can trigger Ca2+ dynamics in astrocyte with various
spatio-temporal characteristics which can lead to different
astrocytic-induced regulatory effects on synaptic transmission.
The minimal synaptic activity causes the fast and local Ca2+

elevation in astrocytic process. This small Ca2+ signal triggers
the gliotransmission in the active synapse induces localized
regulatory astrocytic feedback of the synapse (Figure 6).
Increasing frequency of synaptic activity can produce Ca2+

signal which can spread to another astrocytic process
(Figure 7) and to the whole cell (Figure 8). Therefore, it
can result in modulation of activity in neighboring synapses
(Figure 7) and domain of synapses restricted by the territory
of astrocytic morphology (Figure 8). In other words astrocyte
can induce spatial synchronization in neuronal circuits defined
by the morphological territory of the astrocyte. It is known
that spatial synchronization in the brain is responsible for
various cognitive functions (attention, recognition, navigation,
making decisions, etc.) and for various pathologies (epileptic
discharges, etc.).
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