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Can command-and-control
policy drive low-carbon transition
in energy-intensive enterprises?
-a study based on evolutionary
game theory

Chunxi Zhou, Yang Han* and Ruiqi Zhang

School of Finance, Anhui University of Finance and Economics, Bengbu, China

There are two views on whether command-and-control policy can promote
carbon emission reduction: the “compliance cost” theory and the “innovation
compensation” theory. In this paper, we construct an evolutionary game model
among energy-intensive enterprises, verification agencies, and local governments
from the game theory perspective to explore the impact of command-and-
control policy on the low-carbon transition of energy-intensive enterprises.
The interaction mechanism of the three actors and the main factors affecting
the low-carbon transition of the enterprises are further analyzed with the help of
the MATLAB simulation method. The study results show that command-and-
control policies can promote the low-carbon transition of enterprises and have a
suppressive effect on bribery behavior. In the actual game process, enterprises will
compare the cost of low-carbon transition with that of no low-carbon transition.
The cost of low-carbon transition is higher when the government’s incentives and
penalties are small, so there is a “compliance cost” effect, and the government
cannot promote low-carbon transition by increasing the intensity of regulation.
On the contrary, when the government’s incentives and penalties are strong
enough, enterprises will make a low-carbon transition spontaneously in the face
of continuously increasing environmental regulation intensity, which supports the
theory of “innovation compensation.” In addition, increasing the profitability of
product sales and increasing the cost of bribes are also effective ways to promote
low-carbon transition. Finally, relevant policy recommendations were proposed
based on the main conclusions. This work opens up a new perspective for
environmental regulation theory and provides a theoretical reference and
practical basis for developing low-carbon transition.

KEYWORDS

command-and-control policy, low-carbon transformation, carbon verification,
environmental regulation, tripartite evolutionary game

1 Introduction

In recent years, the frequency of air quality problems, such as rising greenhouse gas
emissions, has shown the urgency of implementing effective energy efficiency and emission
reduction measures (Tong et al., 2018). In the process of achieving carbon peak and carbon
neutrality goals, China is facing arduous carbon emission reduction tasks. Measures must be
taken to limit the consumption of petrochemical energy, reduce economic dependence on
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the energy industry, and encourage more energy enterprises to
undergo clean transformation to reduce carbon emissions
throughout the industry (Jiang et al., 2023). In various industries
of the national economy, the carbon emissions of energy-intensive
industries are enormous, becoming a key goal of national carbon
emission reduction work (Liu et al., 2022). Energy-intensive
enterprises (hereinafter referred to as “enterprises”), as one of the
social agents with the largest CO2 emissions, their active
implementation of carbon reduction strategies is inevitably
required for China to successfully reach its carbon peak and
carbon-neutral targets (Li and Wang, 2023).

However, due to the public nature of environmental goods, the
negative externalities of environmental problems, and the scarcity of
energy, it is difficult to achieve environmental friendliness by market
regulation alone, so environmental regulation is needed to
compensate for market failures. Without the full function of
market-based instruments such as the carbon trading market, the
means to promote carbon emission reduction in China is still
dominated by government-led command-and-control policies
(Blackman et al., 2018; Jiang et al., 2022). Since the 21st century,
many researchers have been investigating the relationship between
environmental regulation and carbon emissions reduction.
Although there are various opinions on the nature of this effect,
researchers agree that environmental regulation reduces carbon
emissions (Mandal, 2010; Bi et al., 2014; Dirckinck-Holmfeld,
2015; Murray and Rivers, 2015; Hancevic, 2016; Galeotti et al.,
2020). In the 1990s, Porter challenged the traditional economics
view that “environmental protection and economic growth are
mutually suppressive” and pioneered the “Porter hypothesis,”
which states that appropriate environmental regulation not only
does not increase costs but also stimulates innovation, generates net
benefits, and improves the competitive advantage of firms, thereby
improving environmental quality (Porter, 1996). Currently,
“compliance cost” and “innovation compensation” theories have
been further developed.

The “compliance cost” theory suggests that environmental
regulation will make it more difficult for enterprises to manage and
increase environmental inputs such as sewage charges, resulting in less
profitable investment in production, lower capital gains, and thus less
investment in technological innovation, which is detrimental to
environmental protection. The choice of environmental regulatory
instruments significantly affects the process of low-carbon transition.
Command-and-control (CAC) policies are fast-acting because of their
coercive nature, but they are prone to market distortions and even
adverse emission reduction effects (Tombe and Winter 2015; Chen
et al., 2018), while market-based instruments (MBIs) can promote the
green transition of enterprises through incentive guidance, but their
effects may fade quickly after the policy is withdrawn. Unlike market-
incentive instruments, command-and-control policies are less
conducive to stimulating enterprises to conduct green technology
R&D and innovation and promote low-carbon transition. Excessive
environmental regulation or command-and-control policies may slow
technological innovation or cause a rebound in energy demand. This
could be more conducive to improving energy efficiency and reducing
environmental pollution. In addition, command-and-control policies
hurt technological innovation and indirectly hurt energy efficiency (Hu
et al., 2020; Miao et al., 2021). At the same time, for some enterprises,
the increase in investment in emission reduction and pollution control

tends to neglect the expenditure on factors of production. It has a
greater demand for energy than before, which will keep the increase in
its earnings stable by increasing carbon emissions (Hu et al., 2021).

The “innovation compensation” theory is based on the Porter
hypothesis, which believes that appropriate environmental
regulations can promote technological progress and improve
production efficiency, thus compensating for or exceeding the
“compliance costs.” This will generate innovation spillovers and
reduce environmental pollution. Relevant studies have shown that
environmental regulation promotes innovation in firm development
(Wang et al., 2020; Zhang et al., 2020; Du et al., 2021). Rather than
passively paying fines, firms face CAC policies and take the initiative to
adjust their decisions, improve their technological innovation, and
reduce the additional costs associated with CAC policies through the
long-term benefits brought by technological innovation (Porter and
Linde, 1995; Chen et al., 2020). As the government and society paymore
attention to the environment, the increased intensity of environmental
regulationsmay cause firms to face continuously high costs of following
environmental regulations. Faced with the continuously increasing
intensity of environmental regulations, rational firms will adopt
technological innovation to increase the scale of technological
innovation investment on the one hand and improve the efficiency
of technological innovation, on the other hand, to cope with the
challenges brought by environmental regulations for the long-term
development of firms (Lanoie et al., 2011; Rubashkina et al., 2015). At
the same time, while usingCACpolicies, the government often supports
enterprise innovation financially or industrially to alleviate the problems
of difficult and risky financing for enterprise technological innovation,
to solve the worries of enterprise innovation reform, and to actively
guide enterprise innovation (Cheng et al., 2017; Pan et al., 2019; Yin
et al., 2019). CAC policies will directly influence enterprise innovation
and indirectly promote enterprise low-carbon transformation through
factors such as attracting foreign direct investment (Song et al., 2019).

The existing research on low-carbon transformation mainly
focuses on exploring development models (Wu et al., 2020),
constructing indicator systems (Lou et al., 2019), and evaluating
the process of low-carbon transformation (Li et al., 2018; Shari et al.,
2020). In terms of studying the influencing factors of low-carbon
transformation, scholars have explored the different impacts of
energy intensity (Zhang C. et al., 2019), industry scale (Du et al.,
2018), economic development (Shen et al., 2018), technological
innovation (Yin and Li, 2018; Wang et al., 2021), energy
structure (Cui et al., 2020; Quan et al., 2020), and investment (Li
and Li, 2020; Zhang et al., 2021). However, there is very little
literature on the impact of command-and-control policies on
low-carbon transformation of enterprises, this article
compensates for the shortcomings of existing literature in this
regard.

In terms of evolutionary game models, in recent years, the
perfect rationality and complete information conditions based on
traditional game players have been challenging, and the evolutionary
game’s bounded rationality hypothesis is more realistic. More and
more scholars have used evolutionary game theory to explore the
low-carbon emission reduction of enterprises. For example, Zhang
S. et al. (2019) and Chen et al. (2022) built an evolutionary game
model between the government and manufacturers. Their results
show that the cost of carbon emission reduction of enterprises, the
government’s punishment for excess emissions, and the Carbon
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emission trading price will simultaneously affect the government’s
choice of carbon policy and the implementation of enterprise
production and emission reduction. Tong et al. (2019) and Kang
et al. (2019) constructed a two-party evolutionary game between
retailers and manufacturers in the same supply chain. The results
show that Carbon emission trading prices, carbon quotas, and
consumers’ low-carbon preferences are the key factors affecting
the decision-making behavior of the subject. Previous literature
mainly studied from the perspective of how the evolutionary
game between the government and related enterprises affects the
low-carbon transformation of enterprises, without considering the
positive role played by verification agencies as carbon emission
supervisors in the low-carbon transformation of enterprises.

In summary, there is no consensus on whether the effect of CAC
policies on carbon emissions is a “compliance cost” effect or an
“innovation compensation” effect. In this regard, most of the
previous literature is based on data obtained from the practical
experience of environmental regulation in various countries using
data modeling. However, data modeling is often limited by the
sample, which may lead to different results. For example, there are
differences in the selection of samples between developed and
developing countries, periods, regional sizes, and industries. In
addition, it is also a question of what kind of environmental
regulation is appropriate in the Porter hypothesis, what level of
government incentives and penalties, and the profitability of firms.
This work provides supportive insights into the interaction process
between stakeholders, including enterprises, verification agencies, and
local governments. In particular, it is based on evolutionary game
theory, which can exclude the influence of regional differences and
differences in sample characteristics, and the results are more general.
By constructing a three-way evolutionary game model consisting of
local governments, enterprises, and verification agencies, we explore the
impact of various parameter changes on players’ strategic choices and
enterprises’ low-carbon transition and analysis the “innovation
compensation” and “compliance cost” effects that exist in the low-
carbon transformation process of enterprises. In addition, some
management strategies and practical insights into the low-carbon
transition process for energy-intensive enterprises are presented.
This work opens up a new perspective for environmental regulation
theory and provides a theoretical reference and practical basis for the
development of the low-carbon transition of enterprises.

This paper is structured as follows. Section 2 presents the model
assumptions and model construction. Section 3 performs the system
stability analysis. Section 4 conducts numerical simulation analysis.
Finally, in Section 5, conclusions are drawn, and policy
recommendations are given.

2 Underlying assumptions and model
construction

2.1 Basic assumptions

Under the carbon trading mechanism, Enterprises must adhere
to the specified carbon quota standards and regulate their carbon
emissions strictly, or they may face substantial fines from the
government (Li W. et al., 2023). In this process, enterprises often
replace traditional energy sources and optimize their production

processes to promote a low-carbon transition (Pan and Dong, 2023;
Yu et al., 2023). The ability of the verification agency to accurately
verify a company’s carbon emissions and report them truthfully to
relevant authorities determines the success of low-carbon
transformation efforts (Li Y. et al., 2023). Enterprises and
verification agencies might conspire to pursue their benefits,
resulting in obstacles to low-carbon transformation initiatives
(Chen et al., 2023). Additionally, government oversight may be
lacking, which can directly contribute to a decrease in intrinsic
motivation for transitioning to low-carbon practices (Zhang et al.,
2023). Given the presence of interaction mechanisms among
governments, verification agencies, and enterprises, a game
theory emerges as an optimal approach for examining the
behavior and strategies of these three stakeholders in the low-
carbon transition process.

We can construct a logical relationship diagram between energy-
intensive enterprises, verification agency, and local government, as
shown in Figure 1.

To construct a game model, analyze the stability of various
strategies and equilibrium points, as well as the impact relationships
of various factors, the following assumptions are made.

Hypothesis 1. Enterprises, verification agencies and local
governments are all finite rational participants. During decision-
making, participants need access to all information and thus cannot
develop strategies to maximize their interests. However, they can
learn, imitate, and adjust their strategies to achieve optimal results.
As a result, their strategy choices evolve and become stable.

Hypothesis 2. The probability of enterprises choosing low-carbon
transition is x, “x = 0” means no participation in the low-carbon
transition, and “x = 1”means participation in the low-carbon
transition; the probability of verification agencies choosing
verification is y, when y = 0 and y = 1, which means no
verification and verification respectively; the probability that the
local government chooses to regulate is z. When z = 0, the
government adopts lax regulation; when z = 1, the government
adopts strict regulation, where x, y, z ∈ [0,1].

Hypothesis 3. Energy-intensive enterprises are a type of enterprise
that relies heavily on energy and consumes a lot in the production
process, which products mainly include non-ferrous metals, fossil
fuels, glass, etc (Lo et al., 2015; Posch et al., 2015). The profit from
product sales of the enterprises is RP, the production cost of
enterprises engaged in the low carbon transition is CL, and the
production costs for enterprises not participating in the low carbon
transition is CH, CL > CH. When an enterprise participates in the
low-carbon transition, it can meet the carbon emission standard set
by the government and pass the verification agency’s verification;
when an enterprise does not participate in the low-carbon transition,
its carbon emission often exceeds the standard, then the enterprise
bribes the verification agency to pass the verification. The bribery
amount of the enterprise is BT, BT<(CL-CH), and the enterprise also
has falsifying behaviors such as falsifying production records and
false propaganda (Liang et al., 2023), and the cost is CP.

Hypothesis 4. The benefit of the verification agency providing
services to local government is VT. When enterprises do not
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participate in the low carbon transition, the enterprises’ carbon
emission exceedance is discovered if the verification agency rejects
the bribe from enterprises. If the verification agency accepts the
bribe, it colludes with enterprises. If the verification agency accepts
the bribe, its speculative cost is CT, which mainly includes falsifying
verification records, issuing false reports, and enhancing
information security.

Hypothesis 5. When local governments strictly regulate,
violations by enterprises and verification agencies will be
discovered. Enterprises not participating in low-carbon

transformation and exceeding carbon emissions will be
fined FP. If the verification agency accepts bribes, it will be
fined FT. If the enterprise engages in low-carbon
transformation, it will receive a subsidy of MP from the
local government, and the local government will reward MT

to the verification agency that fulfills its supervisory
responsibilities. When the local government is lax, the
enterprises’ and monitoring agencies’ information is
unavailable, and the government regulators will not give
rewards and punishments. Let the cost of strict regulation
by local governments be CG.

FIGURE 1
Illustration of the game relationships among game players.

TABLE 1 Parameters symbol descriptions.

Parameters Descriptions

RP The profit from product sales of the enterprises

CL Production costs of enterprises engaged in the low-carbon transition

CH Production costs for enterprises not participating in the low-carbon transition

BT The bribery amount of the enterprise

CP The cost of falsifying behaviors for enterprises

VT Profits from services provided by verification agencies

CT The speculative cost of bribes accepted by verification agencies

CG The cost of strict government regulation

FP Penalties for enterprises exceeding carbon emission limits

FT The penalty amount of the verification agencies

MP The subsidy for enterprises from the local government

MT Rewards for verification agencies that fulfill their supervisory responsibilities

AG The social benefits of enterprises engaged in the low-carbon transition

DG The cost of cleaning up the environment for the local government

TG Administrative penalties imposed by the central government on local governments for inadequate supervision
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Hypothesis 6. The participation of enterprises in low-carbon
transition benefits public health, economic development and
social stability and brings social benefits to local governments AG.
When enterprises do not participate in the low-carbon transition
and collude with verification agencies, they pollute and damage the
environment, increase environmental cleanup costs, affect public
health and economic development, and cost the local government
DG to maintain social stability and regulate the carbon trading
market. The central government has an essential responsibility for
the exercise of the authority of local governments, which needs to
monitor the entrusted affairs executed by localities to prevent the
execution of affairs from deviating from the central government’s
intended “double carbon” goals(Hong, 2017; Sun et al., 2021). When
the local government adopts a loose regulatory strategy, resulting in
a lack of regulation and excessive carbon emissions by enterprises,
the central government will hold the local government accountable
with an administrative penalty amount of TG, TG>CG.

2.2 Payoff matrix and dynamic replication
equation

Parameters and definitions related to the tripartite evolutionary
gamemodel for the low-carbon transition of enterprises are outlined
in Table 1.

Table 2 below displays the payoff matrix for the tripartite
evolutionary game of enterprises’ low carbon transition, using the
parameters and definitions listed in Table 1.

According to the payment matrix of the tripartite low-carbon
transition of enterprises in Table 2, the expected benefits of
enterprises choosing participation or non-participation in the
low-carbon transition and the average expected benefits are as
follows:

E11 � yz RP − CL +MP[ ] + y 1 − z( ) RP − CL[ ]
+ 1 − y( )z RP − CL +MP[ ] + 1 − y( ) 1 − z( ) RP − CL[ ]

E12 � z 1 − y( ) RP − BT( ) − CH − CP − FP[ ]
+ 1 − z( ) 1 − y( ) RP − BT( ) − CH − CP[ ]

E1 � xE11 + 1 − x( )E12

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(1)

The dynamic replication equation for enterprises choosing to
participate in the low-carbon transition strategy is as follows:

F x( ) � dx
dt

� x E11 − E1( )
� x x − 1( ) CL − CH − CP − BT − y RP − BT( ) − z FP +MP( )[ ]

(2)
The expected benefits of the verification organization selecting a

verification or non-verification approach and the average expected
benefits are expressed as:

E21 � x z VT +MT( ) + 1 − z( )VT[ ] + 1 − x( ) z VT +MT( ) + 1 − z( )VT[ ]
E22 � x z VT − CT − FT( ) + 1 − z( ) VT − CT( )[ ] + 1 − x( ) VT − CT + BT − zFT[ ]
E2 � yE21 + 1 − y( )E22

⎧⎪⎨⎪⎩
(3)

The dynamic replication equation for the verification agencies’
choice of verification strategy can be obtained as follows:

F y( ) � dy
dt

� y E21 − E2( )
� y y − 1( ) 1 − x( ) BT −MT( ) − z FT+MT( ) − CT[ ] (4)

The expected benefits of local governments choosing strict or lax
regulation and the average expected benefits are as follows:

E31 � −CG + xAG − xMP − yMT + 1 − x( )FP + 1 − y( )FT − 1 − x( ) 1 − y( )DG

E32 � xAG − 1 − x( ) 0 + 1 − y( ) DG − TG( )[ ]
E3 � zE31 + 1 − z( )E32

⎧⎪⎨⎪⎩
(5)

The dynamic replication equation for the local governments’
choice of strict regulatory strategy is expressed as follows:

F z( ) � dz
dt

� z E31 − E3( )
� z z − 1( ) CG − FP − FT − TG[ +x MP + FP + TG( )
+ y MT+FT + TG( ) − xyTG] (6)

The dynamic replication equation provides a framework for
studying strategy choice and changes in evolutionary games. It can
help us better understand the changes in individual agents’ behavior,
which can help us design more effective strategies to solve the
problem. In conclusion, Eqs 2, 4, and 6 constitute a set of dynamic
replication equations for the low-carbon transition system of
enterprises.

TABLE 2 Payoff matrix among each game player.

Game players Enterprises

Participation x Non-participation 1-x

Verification agencies Verification agencies

Refusal of
bribes y

Acceptance of bribes 1-y Refusal of bribes y Acceptance of bribes 1-y

Local
government

Strict
regulation z

RP-CL + MP’ VT’ -CG

+ AG

RP-CL + MP’ VT-CT-FT’ -CG-MP +
FT + AG

-CH-CP-FP’VT + MT’ -CG +
FP-MT

RP-CH-CP-BT-FP’ VT-CT + BT-FT’ -CG +
FP + FT-DG

Lax regulation
1-z

RP-CL’ VT’ AG RP-CL’ VT-CT’ AG -CH-CP’ VT’ 0 RP-CH-CP-BT’ VT-CT + BT’ -DG-TG
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3 System stability analysis

The dynamics of enterprises, verification agencies and local
government strategies evolve as the game progresses. According
to the principle of stability in differential equations, when the
replicated dynamic equations for the three parties in the game
converge to zero, the system approaches a stable state.

From F(x) = 0,F(y) = 0,F(z) = 0, we can get eight system local
equilibrium points: E1 (0,0,0), E2 (1,0,0), E3 (0,1,0), E4 (0,0,1), E5
(1,1,0), E6 (1,0,1), E7 (0,1,1), E8 (1,1,1). The partial derivatives of
F(x), F(y), and F(z) concerning x, y, and z are solved separately to
obtain the Jacobi matrix:

J �
J1 J2 Js

Jt J5 J6

Jl Js Js

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

∂F x( )/∂x ∂F x( )/∂y ∂F x( )/∂z
∂F y( )/∂x ∂F y( )/∂y ∂F y( )/∂z
∂F z( )/∂x ∂F z( )/∂y ∂F z( )/∂z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

2x − 1( ) CL − CH − CP − BT − y RP − BT( ) − z FP +MP( )[ ]
x x − 1( ) BT − RP( )x x − 1( ) −FP−MP( )

y y − 1( ) −BT +MT( ) 2y − 1( ) 1 − x( )(BT[ −MT) − z FT +MT( ) − CT]
y y − 1( ) −FT−MT( )

z z − 1( ) MP + FP + TG − yTG( )z z − 1( ) MT + FT + TG − xTG( )
2z − 1( ) CG − FP − FT − TG + x MP + FP + TG( )

+y MT + FT + TG( ) − xyTG
[ ]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7)

According to the Lyapunov stability theorem for ordinary
differential equations, an equilibrium point that meets the
condition of having all negative eigenvalues in the Jacobian
matrix is considered an evolutionarily stable strategy (ESS) for
the dynamic replicator system. By inserting each of the eight
equilibrium points into the Jacobian matrix, the associated
eigenvalues for each point can be determined, as displayed in
Table 3. The analysis of the evolutionary stability strategy of the
equilibrium points is shown in Table 4.

From Table 4, only points E4 (0, 0, 1) and E5 (1, 1, 0) satisfy the
condition that all eigenvalues are negative under certain conditions,
so the rest of the equilibrium points are unstable. When CH - CL + CP

+ BT + FP + MP < 0 and MT + FT + CT - BT < 0, the replicated
dynamic system has a stable point E4 (0, 0, 1). From CL > CH + BT +
BT + CP + FP, we know that the explicit cost of bribing the
verification agency is (CH + BT + CP) and the implicit cost is (FP
+ MP) for the firm. FP can be seen as the penalty that the enterprise

will receive for making the bribe, and MP can be seen as the reward
that the enterprise will not receive for choosing to bribe. The cost of
making the low carbon transition CL is greater than the total cost of
bribing the verification agencies, so enterprises will choose to bribe
the verification agency to conceal the carbon emission overrun from
the government. From BT - MT > CT + FT, we know that for the
verification agency, the amount of bribe BT is so large that even after
subtracting the reward MT for performing regulatory duties, it is still
greater than the sum of the cost of counterfeiting CT and the
government fine FT and the verification agency will often accept the
bribe from the enterprise so as not to conduct carbon verification for the
enterprise. It indicates that when the cost of low carbon transition is
high, the local government’s penalty and reward are small, and the
benefit of bribing the verification agency is high, the evolutionary game
stabilization strategy is (no participation, no verification, strict
regulation). It means that when the amount of penalties and
rewards set by the local government is not enough to restrain the
behavior of enterprises and verification agencies effectively, the strategy
of enterprises and verification agencies tilted in the direction of non-
participation in low carbon transformation and non-verification, and
the lack of effectiveness of local government regulation. In this case,
enterprises perceive that the cost of low-carbon transition is higher than
that of no low-carbon transition, and the strict regulation by local
governments cannot promote the low-carbon transition of enterprises,
and even increase the transition cost of enterprises, which also a
reflection of the “Compliance cost ” effect.

When FP + MP > CL—CH—CP—BT > 0 and MT + FT >
BT—CT > 0, both government incentives (MP and MT) and
penalties (FP and FT) for firms and verification agencies are
high, and the system has only one stability point E5 (1, 1, 0).
It shows that when the local government gives considerable
incentives to enterprises and verification agencies, and the
penalties are also substantial, the three-party game system will
not be a lousy strategy combination of (non-participation, non-
verification, and strict regulation), but will become the ideal state
of (participation, verification, lax regulation). With the
continuous increase of government penalties, rational
enterprises will adopt technological innovation and carry out
low-carbon transformation to reduce carbon emissions, which
embodies the “innovation compensation” effect. Moreover, the
changes in the sales revenue of enterprises, the cost of strict
regulation by local governments, and the number of administrative

TABLE 3 The eigenvalues of the Jacobi matrix for each equilibrium point.

Balancing point λ1 λ2 λ3

E1(0,0,0) CH-CL + CP + BT -BT + CT FP + TG + FT-CG

E2(1,0,0) CL-CH-CP-BT CT FT-CG-MP

E3(0,1,0) CH-CL + CP + RP BT-CT FP-MT-CG

E4(0,0,1) CH-CL + CP + BT + FP + MP MT + FT + CT-BT CG-FP-FT-TG

E5(1,1,0) CL-CH-CP-RP -CT -CG-MP-MT

E6(1,0,1) CL-CH-CP-BT-FP-MP FT + MT + CT CG + MP-FT

E7(0,1,1) CH-CL + CP + RP + FP + MP BT-MT-FT-CT CG + MT-FP

E8(1,1,1) CL-CH-CP-RP-FP-MP -FT-MT-CT CG + MT + MP
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penalties for poor regulation by local governments still need to change
the evolutionary stability. Therefore, the government should consider
the interests of all parties when setting the reward and punishment
mechanism to ensure that the cost of collusion between enterprises and
verification agencies is higher to avoid the emergence of redundant
equilibrium points so that the combination of strategies for the ideal
state (participation, verification, lax regulation). In the ideal state,
enterprises spontaneously make the low-carbon transition,
verification agencies refuse to bribe for verification, and the
government’s regulatory pressure is effectively relieved. A reasonably
designed reward and punishment mechanism by the government can
guarantee the orderly implementation of the low-carbon transition of
enterprises.

4 Numerical simulation analysis

To explore the optimization path of the low-carbon
transition efforts of enterprises, we present numerical
simulations of the evolutionary paths of enterprises,
verification agencies, and local governments under setting
different parameter variations. The values of the parameters

in this paper are determined by analyzing the behavior of parties
involved in the low-carbon transition process using relevant
parameter settings from carbon emission reduction-related
research (Meng et al., 2022; Qin and Wang, 2022; Wei et al.,
2022).

Suppose that the profit from product sales of the enterprises RP =
150, the production costs of enterprises participating and not
participating in the low carbon transition CL = 185 and CH =
100, the bribery amount of the enterprise BT = 40, the cost of
falsifying behaviors for enterprises CP = 10, the penalties for
companies exceeding carbon emission limits FP = 40, the subsidy
for enterprises from the local government MP = 20, the speculative
cost of bribes accepted by verification agencies CT = 10, the penalty
amount of testing agency FT = 20, the rewards for verification
agencies that fulfill their supervisory responsibilities MT = 15, the
cost of strict government regulation CG = 15, and the administrative
penalties imposed by the central government on local governments
for inadequate supervision TG = 40. Let the array 1 be: RP = 150, CL-
CH = 85, CP = 10, BT = 40, FP = 40,MP = 20, CT = 10, FT = 20,MT =
15, CG = 15, TG = 40. Based on array 1, analyze the influence of RP,
BT, MT, MP, FT, and TG on the process and outcome of the
evolutionary game.

TABLE 4 Analysis of the evolutionary stabilization strategy (ESS) at equilibrium points.

Balancing point Jacobi matrix eigen -value real part sign Stability Judgment conditions

E
1
(0,0,0) (±,±,+) Unstable —

E
2
(1,0,0) (+,+,±) Unstable —

E
3
(0,1,0) (+,±,±) Unstable —

E
4
(0,0,1) (-,-,-) ESS CH-CL + CP + BT + FP + MP < 0, MT + FT + CT-BT<0

E
5
(1,1,0) (-,-,-) ESS —

E
6
(1,0,1) (±,+,+) Unstable —

E
7
(0,1,1) (+,±,+) Unstable —

E
8
(1,1,1) (-,-,+) Unstable —

FIGURE 2
The impact of profit from product sales of the enterprises.

FIGURE 3
The impact of the bribery amount of the enterprise.
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First, to assess the impact of RP variation on the evolutionary
game’s progress and outcomes, RP values of 100, 150, and 200 were
assigned. Figure 2 displays the simulation outcomes after replicating
the dynamic equation system for 50 iterations. Figure 3 displays the
simulation results obtained by assigning BT values of 20, 40, and
60 to analyze its influence on the evolutionary game process and
outcome.

As seen from Figure 2, during the evolution of the system to the
stabilization point, the increase in corporate profits can accelerate
the evolution of corporate stabilization in participating in low-
carbon transition strategies. As RP increases, the probability of
corporate participation in low-carbon transition rises. The
probability of strict regulation by local governments decreases.
Therefore, for enterprises with large carbon emissions from
backward production technology, preferential policies can be
used to increase their income to promote low-carbon transition.
Figure 3 shows that in the evolutionary process, as BT increases, the
probability of enterprises participating in low-carbon transition
increases, and the probability of verification agencies rejecting
bribes for verification decreases. The government can increase
the cost of bribery by increasing the power of media disclosure,
expanding the influence of corporate reputation, fostering public
awareness of environmental protection, and other market measures
to enhance the willingness of companies to make a low-carbon
transition.

Next, the simulation results are shown in Figure 4 for FT = 0, 20,
40 and Figure 5 for MT = 0, 15, 30. Figure 4 shows that before the
probability evolution of enterprises’ participation in low-carbon
transition stabilizes at 1, the probability of strict regulation by
local government increases when FT increases. After the
probability evolution of enterprises’ participation in low-carbon
transition stabilizes at 1, the probability of strict government
regulation gradually decreases and stabilizes at 0. The increase of
FT increases the probability of verification agencies’ refusal to bribe
for verification. Figure 5 shows that, in the evolutionary process, an
increase in MT decreases the probability of strict regulation by local
governments. Therefore, local governments should reasonably

develop reward and punishment mechanisms to replace fixed
payments for services in the form of bonus dividends so that
verification agencies can share the responsibility with the
government to ensure the stable advancement of enterprises’ low-
carbon transition efforts.

Further, the simulation results of replicating the dynamic
equation system with 50 times of time evolution by assigning
MP = 0, 20, 40, respectively, are shown in Figure 6; the
simulation results of assigning TG = 0, 20, 40, respectively, are
shown in Figure 7. Figure 6 shows that in the evolutionary
stabilization process, the probability of strict regulation by local
governments decreases as MP increases, and the probability of
verification by verification agencies increases. Figure 7 shows that
after the probability of enterprises’ participation in the low-carbon
transition stabilizes at 1, an increase in TG leads to an increase in the
probability of strict government regulation. Although the incentive

FIGURE 4
The impact of penalty amount of verification agencies.

FIGURE 5
The impact of rewards for verification agencies that fulfill their
supervisory responsibilities.

FIGURE 6
The impact of subsidy for enterprises from the local government.
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mechanism of local government for enterprises can promote their
participation in the low-carbon transition, it could be more
conducive to the performance of regulators themselves. Severe
administrative penalties imposed by the central government can
maintain a higher probability rate of strict regulation by local
governments, which further increases the willingness of
enterprises to make a low-carbon transition.

Assign array 2: RP = 150, CL-CH = 105, CP = 10, BT = 50, FP =
25, MP = 15, CT = 10, FT = 18, MT = 12, CG = 15, TG = 40,
satisfying the conditions for the existence of stable point E4 (0,
0, 1). The two sets of values evolved 50 times over time from
different initial strategy combinations, and the results are
shown in Figures 8, 9.

As shown in Figure 8, the system has only one stabilization
point (1, 1, 0) when only one combination of evolutionary

stabilization strategies (participation, verification, and lax
regulation) exists, consistent with the findings in the previous
paper. Figure 9 shows that the system has two evolutionary
stability points (0, 0, 1) and (1, 1, 0), i.e., the strategy
combinations of firms, verification agencies, and local
governments (non-participation, non-verification, strict
regulation) and (participation, verification, lax regulation) are
two evolutionary stability strategy combinations. Therefore, the
local government should strengthen the information
construction and examine the interests of enterprises and
verification agencies in many aspects to ensure that
enterprises choose to carry out low-carbon strategies need
lower costs and avoid the situation that irregularities such as
bribery hinder the low-carbon transition work of enterprises. As
can be seen, the simulation analysis is consistent with the
conclusions of the previous stability analysis. Its validity is a
practical guide for the low-carbon transition work of energy-
intensive enterprises.

In summary, RP, BT, MT, MP, FT, and TG are all factors that
influence enterprises to make a low-carbon transition during the
implementation of command-and-control type policies. Enterprises
compare the total cost of participating and not participating in the
low-carbon transition and make decisions that determine whether
command-and-control environmental regulations are effective.
Previous studies have used samples from different industries in
different countries, such as China, the United Kingdom, and
Denmark (Bi et al., 2014; Dirckinck-Holmfeld, 2015; Murray and
Rivers, 2015), the cement industry versus the coal-fired power
generation industry, and so on (Mandal, 2010; Hancevic, 2016).
Therefore, these samples differ in corporate profitability, the extent
of policy implementation, and the severity of regulatory penalties. In
addition, it has been noted that CAC policies can produce significant
environmental benefits in developing countries (Blackman et al.,
2018). These may all lead to a debate on whether “compliance cost”
or “innovation compensation.”

FIGURE 7
The impact of administrative penalties on local governments.

FIGURE 8
Array 1 evolves 50 times.

FIGURE 9
Array 2 evolves 50 times.
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5 Conclusion and policy
recommendations

5.1 Conclusion

In implementing imperative environmental regulation tools,
they are achieving low-carbon transformation of enterprises
resulting from game interaction among three stakeholders. In
the context of “double carbon” objectives, this paper analyzes the
system’s stability conditions and evolutionary paths under each
strategy based on the tripartite evolutionary game among local
governments, enterprises, and verification agencies under
environmental regulation. It uses MATLAB numerical
simulation to explore the optimization paths of local
governments to promote the low-carbon transition of energy-
intensive enterprises. Compared with the previous literature that
used data modeling for research, this study is based on
evolutionary game theory, which can eliminate the impact of
regional differences and sample characteristics differences, and
the results are more general. The main conclusions are
summarized as follows.

(1) Command-and-control policies can promote the low-carbon
transformation of energy-intensive enterprises while inhibiting
bribery between enterprises and verification agencies. Strict
regulation and law enforcement make bribery more difficult
and risky, reducing enterprises’ motivation to evade
environmental regulations through bribery.

(2) In the actual process of the game, enterprises weigh the costs of
low-carbon transition and those of not, and the costs of low-
carbon transition are higher when the government rewards and
punishments are small. On the contrary, when the government’s
incentives and penalties are strong enough, enterprises will
make a low-carbon transition spontaneously in the face of
continuously increasing environmental regulation intensity,
which supports the theory of “innovation compensation.”

(3) Improving product sales profitability can increase enterprises’
motivation to engage in low-carbon transformation. If low-
carbon products can obtain higher market demand and prices,
enterprises will have greater motivation to invest in low-carbon
technology and innovation.

(4) Increasing the cost of bribery can reduce the incentive effect of
bribery. If bribery costs are high, companies are more inclined to
improve product competitiveness and profitability through legal
means rather than relying on bribery to evade environmental
regulations.

5.2 Policy recommendations

Based on the above findings, policy recommendations are
obtained as follows:

In terms of command-and-control policies: 1) Strengthen
environmental regulation and law enforcement efforts to ensure
adequate supervision of the low-carbon transformation of energy-
intensive enterprises. Increase the resources and capabilities of
verification agencies to reduce the occurrence of bribery; 2)
Develop strict regulations and systems, clearly define the low-

carbon transformation requirements that energy-intensive
enterprises should comply with. Moreover, clarify punishment
measures. These will increase the risk and cost of companies
evading environmental regulations through bribery, thereby
reducing their motivation; 3) Strengthen information sharing and
cooperation among industries to more effectively monitor and
prevent bribery. Establish a reporting mechanism and reward
system to encourage employees and the public to expose
behaviors involving bribery.

In terms of reward and punishment mechanisms: 1) Establish
low-carbon transformation incentive measures, such as tax
exemptions, subsidies, rewards, etc., to reduce the cost of low-
carbon transformation for enterprises. The government can
provide technical support and consulting services to assist
enterprises in implementing low-carbon technology and
innovation; 2) Increase the penalties for enterprises that do not
meet the requirements of low-carbon transformation, such as fines
and revocation of licenses, to increase the motivation for enterprises
to follow low-carbon transformation.

In terms of corporate profitability: 1) Promote market demand
and price recognition of low-carbon products, and improve
consumers’ awareness and preference for low-carbon products
through publicity and education activities; 2) Establish a low-
carbon product certification and standard system so that
consumers can clearly distinguish and choose low-carbon
products, thus encouraging enterprises to invest in low-carbon
technology and innovation; 3) Encourage enterprises to carry out
green finance and sustainable development investment, and provide
loans and financial support to enterprises committed to low-carbon
transformation.

In terms of regulating enterprise behavior: 1) Strengthen the
formulation and implementation of anti bribery laws and
regulations, and improve the legal risk and punishment of
bribery; 2) Increase the protection of bribery reporting
mechanism, protect the rights and interests of informants, and
reward effective reporting; 3) Strengthen the internal compliance
mechanism and moral education of the enterprise, cultivate
employees’ integrity awareness, and reduce the occurrence of
bribery.

5.3 Research limitations of this paper

Under the strict supervision of the government, due to the
problems of administrative ability and professional quality, the
government cannot fully guarantee to find the problem of fraud
in carbon emission reporting. In addition, although MATLAB
numerical simulation can intuitively provide valuable
information about system behavior and is more cost-effective,
it is still the result of approximate calculation. The model used is
usually based on assumptions and simplification, which may not
capture the complexity and nonlinear behavior of the system
entirely and accurately. Finally, based on evolutionary game
theory, this paper only discusses the relationship between
energy-intensive enterprises, verification agencies, and the
government. The feedback mechanism between other
stakeholders, such as the public and other subjects, needs
further study.
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Green hydrogen generation driven by solar-wind hybrid power is a key strategy for
obtaining the low-carbon energy, while by considering the fluctuation natures of
solar-wind energy resource, the system capacity configuration of power generation,
hydrogen production and essential storage devices need to be comprehensively
optimized. In this work, a solar-wind hybrid green hydrogen production system is
developed by combining the hydrogen storage equipment with the power grid, the
coordinated operation strategy of solar-wind hybrid hydrogen production is
proposed, furthermore, the NSGA-III algorithm is used to optimize the system
capacity configuration with the comprehensive performance criteria of economy,
environment and energy efficiency. Through the implemented case study with the
hydrogen production capacity of 20,000 tons/year, the abandoned energy power
rate will be reduced to 3.32% with the electrolytic cell average load factor of 64.77%,
and the system achieves the remarkable carbon emission reduction. In addition, with
the advantage of connect to the power grid, the generated surplus solar/wind power
can be readily transmitted with addition income, when the sale price of produced
hydrogen is suggested to 27.80 CNY/kgH2, the internal rate of return of the system
reaches to 8% which present the reasonable economic potential. The research
provides technical and methodological suggestions and guidance for the
development of solar-wind hybrid hydrogen production schemes with favorable
comprehensive performance.

KEYWORDS

solar-wind hybrid power, hydrogen production, capacity optimization, comprehensive
performance, NSGA-III

1 Introduction

With the increasing energy demand and fossil fuel consumption, serve issues of energy
shortage and environmental pollution are in urgent need to be addressed (Hussain et al.,
2023). The development and utilization of renewable energy can effectively promote the
transformation of clean and efficient energy structures and enhance the overall efficiency
(Jaber et al., 2008; Kumar and Majid, 2020).
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Wind and solar power have been extensively adopted in various
sectors, including industrial production (Roesch et al., 2019),
residential areas (Graça Gomes et al., 2023) and agriculture
(Acosta-Silva et al., 2019), owing to their environmental-friendly
attributes and associated advantages. However, the intermittent and
unstable natures of wind speed and solar irradiation result in
significant randomness and fluctuations of power output, which
posing a substantial challenge to the reliable and stable functioning
of the power grid (Wahbah et al., 2022; Teferra et al., 2023). In order
to mitigate these fluctuations and enhance the grid stable operation,
several approaches have been proposed, including wind and solar
forecast (Kamani and Ardehali, 2023), energy storage (Wu and
Zhang, 2021; Deymi-Dashtebayaz et al., 2022), and electrochemical
conversion (Han et al., 2023; Liu et al., 2023).

The energy storage methods consist of battery energy storage,
hydrogen energy storage, and flywheel energy storage. These three
methods enable the flexible utilization of wind and solar resources
(Amry et al., 2023; Fosso Tajouo et al., 2023; Liu et al., 2023).
Nevertheless, as wind and solar resources continue to progress,
greater demands emerge for enhancing the economic viability of
batteries and technological advancements (Hutchinson and
Gladwin, 2023). Meanwhile, hydrogen storage presents a more
straightforward scaling approach, rendering it applicable in
numerous scenarios, including the chemical industry and energy
sectors, thereby resulting in heightened economic advantages (Tang
et al., 2022; Kakavand et al., 2023).

Water electrolysis hydrogen production stands out as an
electrochemical conversion method that strikes a balance between
safety and economic feasibility, utilizing the wind and solar
resources effectively and reducing the wind and solar energy
curtailment by converting low-grade and fluctuating electrical
energy into high-grade hydrogen energy (Shiva Kumar and Lim,
2022; Shin et al., 2023).

Currently, hydrogen production technology mainly includes
Alkaline Electrolysis (AE), Proton Exchange Membrane
Electrolysis (PEME), Anion Exchange Membrane Electrolysis
(AEME), Solid Oxide Electrolysis Cell (SOEC). Among them, AE
and PEME technologies have been commercialized, while AEMWE
and SOEC have demonstrated improvements in hydrogen
production efficiency and stability, but they are still under the
experimental stage due to challenges of durability and cost
considerations (Lim and Kim, 2022; Wappler et al., 2022). Thus,
the solar-wind hybrid hydrogen production system is constructed by
the integration of wind turbines, photovoltaic panels and water
electrolysis cells, which enhances the competitiveness of solar-wind
power in the energy market and advances the goal of carbon
neutrality (Shen et al., 2021; Wang et al., 2021). developed a
multi-energy system composed of alkaline electrolyzer, wind
turbine, which can achieve stable power output and energy
storage capabilities, and effectively address the power supply
problem in remote areas (Temiz and Dincer, 2022; Zhang F.
et al., 2023). proposed the solar-wind-hydrogen multi-energy
system to meet residents energy demands (Song et al., 2022).
concluded that the optimal cost-effective solution for carbon
neutrality in the context of solar-wind energy-based power
supply is the integration of complementary solar-wind hybrid
hydrogen production system, which could further reduce the
carbon emissions in industrial and transportation parts.

However, with the enlarged scale of solar-wind power plant and
the trend towards large-scale hydrogen production, the issue of
investment and maintenance costs for the hydrogen production and
storage system needs to be considered, and thus the optimization of
system capacity configuration becomes crucial (Prestat, 2023). To
address these challenges (Kiehbadroudinezhad et al., 2022),
developed a capacity configuration optimization model for the
solar-wind combined seawater hydrogen production system, and
proved the environmental benefits of the optimized system. It has
contributed to alleviating the environmental limitations of wind and
solar power generation hydrogen production applications (Al-
Buraiki and Al-Sharafi, 2022). optimized the capacity configuration
of a solar-wind hybrid hydrogen production system in a certain area,
achieving a hydrogen production cost of up to 36.32 $/kg under
reasonable conditions of loss of hydrogen supply probability (LHSP),
it provides a framework for achieving a more stable and economical
production of green hydrogen. Yang et al. (Zhang P. et al., 2023)
optimized the capacity configuration of the solar-wind hybrid
hydrogen production system based on government subsidies and
environmental benefits, resulting in a 38.9% increase in annual profit
for the optimized hybrid system, optimizing the system based on local
policies to attain economic benefits demonstrates that policy support is a
crucial factor influencing the cost of hydrogen production (Izadi et al.,
2022). optimized the solar-wind hybrid hydrogen production system in
buildings based on installation cost, CO2 production and loss of power
supply probability, showing that the optimized hybrid system can meet
70%–80% of urban building electricity, it provides an important scheme
for the high proportion utilization of renewable energy in the future
(Nasrabadi and Korpeh, 2023). optimized the capacity configuration of
the hydrogen production system based on minimizing the system cost,
leading to an increased exergy efficiency of 20.7% and hydrogen
production rate of 1% with the total cost rate value reduction of 2%.
Additionally (Al-Ghussain et al., 2023), took the supply-demand
relationship and energy cost as the capacity configuration
optimization objectives of the solar-wind hybrid hydrogen production
system. The optimized system required a higher storage capacity by
75.77%, but the hydrogen production cost is more competitive (Lv et al.,
2023). optimized the capacity configuration of solar-wind hybrid
hydrogen production system based on the fluctuation of green
electricity transaction price and hydrogen demand. The optimized
system hydrogen demand increased by 40%, which effectively
improved the ability to resist the uncertainty of hydrogen demand,
considering the demand of power grid and the price of power transaction
to adjust the system and formulate the scheduling strategy can improve
the flexibility of wind and solar resource scheduling and contribute to
improving themarket competitiveness of green hydrogen Lu et al. (2023).
optimized the solar-wind complementary hydrogen production system
in green buildings with the goal of minimizing system cost and
maximizing reliability, the optimized improvement of the system’s
energy supply stability helps to promote the high proportion of
renewable energy in life. The optimal configuration of the system
occurs when the reliability of the system is 12% and 15%. Based on
LevelizedCost ofHydrogen (Superchi et al., 2023), optimized the capacity
configuration of solar-wind hybrid hydrogen production system. The
results show that the optimized system can still achieve competitive
hydrogen production cost under the current technical conditions
(Behzadi and Sadrizadeh, 2023). optimized the solar-wind hybrid
hydrogen production system with the optimal operating state, the
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optimized system carbon emissions and the cost are reduced by 8% and
38%, respectively, taking the economy of hydrogen production and
carbon emissions as the measurement indicators, the further
optimization research on green electricity hydrogen production can
enhance the market competitiveness of green hydrogen, promote low-
carbon environmental protection, and further promote the clean
transformation of energy structure.

Along with being a crucial component in large-scale hydrogen
production, the size of wind and solar power generation, the capacity
configuration of electrolytic cells, energy storage, and other equipment all
have a significant impact on the system’s overall performance. Therefore,
considerations like economy, environment, and energy consumption
aspects will be taken into account and transformed into multi-objective
optimization problems in order to better measure system performance
from different viewpoints. To further improve the system, a redesigned
system capacity configuration optimization method using the NSGA-III
algorithm is proposed, in order to optimize the solar-wind hybrid
hydrogen production system. In addition, the comprehensive
performance and dynamic operation of the optimized system are
thoroughly evaluated. The main contribution can be outlined as follows:

(1) The system capacity configuration optimization approach based
on the NSGA-III algorithm is suggested for large-scale hydrogen
production scenarios, with the aim of thoroughly optimizing the
grid-connected solar-wind complementing hydrogen
production system.

(2) A comprehensive performance evaluation of the optimized
capacity design is thoroughly assessed in terms of economy,
environment and utilization efficiency, and the monthly and
daily conditions are further examined.

(3) Based on the proposed control strategy of solar-wind hydrogen
production, the complementary characteristics of solar-wind
power generation and the dynamic operation of the system
under typical monthly cycles are analyzed.

The rest is organized as follows: the process of conceptual and
mathematical modeling is descripted in Section 2. Section 3
introduces evaluation indicators and optimization objectives. The
results and analysis are discussed in Section 4. In Section 5, the main
conclusions are summarized.

2 Solar-wind hybrid hydrogen
production system and performance
evaluation method

The combination of water electrolysis hydrogen production
technology and solar-wind power generation has multiple
advantages, providing an effective approach to convert the
renewable energy, and also provides an effective and feasible way
for large-scale production of green hydrogen.

2.1 Solar-wind hybrid hydrogen production
system

In this work, a green hydrogen generation system driven by
solar-wind hybrid power with the water electrolysis technology is

developed. The system will stabilize the output of hydrogen as the
main goal, but also to meet the requirements of large-scale green
hydrogen production throughout the year. It consists of wind turbines,
photovoltaic arrays, alkaline electrolyzers, energy storage batteries and
hydrogen tanks, as shown in Figure 1. The wind turbine and
photovoltaic systems are employed as the primary power generation
equipment to supply eco-friendly energy for electrolyzing hydrogen
production. Concurrently, to mitigate the impact of fluctuations on
hydrogen production, battery and hydrogen storage tanks are utilized as
coordination equipment for power and hydrogen transmission,
effectively enhancing system stability. Furthermore, the
incorporation of the power grid enables the absorption of surplus
wind and solar power, thereby optimizing the utilization of these
renewable sources while also furnishing additional power to the
electrolytic cell, further bolstering the system’s stability.

Due to the instability of the wind speed and solar radiation
throughout the year, in order to further realize the demand of
generating stable hydrogen load, the basic operation strategy of grid-
connected solar-wind hybrid hydrogen production system is developed.
Firstly, the hydrogen output load is predetermined, and the systemutilizes
this load as a stable output, with wind and solar power generation serving
as the primary power supply sources. Based on the hydrogen load and
available wind power, two modes of operation can be identified:

(1) Wind-solar power exceeds the power required for hydrogen output
load: In this scenario, the hydrogen production rate of the
electrolytic cell surpasses the hydrogen output load, leading to
an excess of hydrogen, which is then stored in the hydrogen storage
tank. Any surplus power generated is directed towards charging the
battery. If the battery capacity reaches its upper limit, the surplus
power can be transmitted to the grid for external use;

(2) Wind-solar power is less than the power required for hydrogen
output load: In such cases, the hydrogen production rate of the
electrolytic cell is unable to meet the required hydrogen output
load. Consequently, the hydrogen from the hydrogen storage
tank is simultaneously utilized to meet the demand. If there’s
not enough hydrogen in the tank, power from the battery will be
utilized to enhance the hydrogen production rate of the
electrolytic cell. If both reserves prove insufficient, the system
resorts to purchasing electricity from the grid to augment the
hydrogen production rate.

Compared with the off-grid type system, by considering the power
grid connection scenario, the grid-connected hydrogen production
system allows for the maintenance of a minimum operating interval
for the electrolyzer, thus minimizing start-stop cycles, and also
enhancing the hydrogen production capacity and the operational
lifespan of the electrolyzer. This operational strategy ensures the
fulfillment of stable hydrogen load requirements while guaranteeing
the safe and stable operation of each equipment component.

2.2 Solar-wind hybrid hydrogen system
modeling

2.2.1 Solar and wind power output modeling
The energy source of the whole system comes from the wind

turbine and photovoltaic array, and the wind turbine output power
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PWT is mainly dependent on the wind speed v, so the wind power has
the significant and irregular fluctuation characteristics. The output
power by the wind turbine can be calculated as follows (Chaichan
et al., 2022; Kiehbadroudinezhad et al., 2022):

PWT �

0, 0≤ v≤ vin

NWT
PWT_rv

3

v3r − v3in
− PWT_rv3in

v3r − v3in
( ), vin ≤ v≤ vr

NWTPWT_r, vr ≤ v≤ vout

0, v≥ vout

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(1)

where vin, vout are the cut-in and cut-out wind speed, respectively. vr
is the rated wind turbine speed. NWT means the number of
installations. PWT_r is the rated wind turbine power and can be
calculated as follows:

PWT_r � 1
2
τρSWTv

3 (2)

where ρ means the air density. SWT means the swept area of the rotor,
and τ represents the coefficient of performance of the wind turbines.

Photovoltaic array converts the solar radiation into electrical
energy through photoelectric effect, and the photovoltaic output
power PPV can be calculated as follows (Praveenkumar et al., 2022).

PPV � IphNbUPV − IrsNbUPV − Irse
βUPV

NcαKTPVNbUPV (3)
where Nb and Nc are the number of photovoltaic cells in parallel and
photovoltaic cells in series, respectively. Iph and Irs mean photo-
generated current and the reverse saturation current of the diode,
respectively. UPV is the output voltage of photovoltaic cells. TPV is
the output temperature of photovoltaic cells. α and β represent the
diode quality factor and electron charge, respectively. K is the
Boltzmann constant.

2.2.2 AE electrolyzer modeling
The AE is adopted as one of the critical equipment in this

hydrogen production system. Its operating power is mainly affected
by its own polarization characteristics. According to its polarization

characteristics, the power PAE of the electrolyzer can be calculated as
follows (Fang and Liang, 2019).

PAE � IAE U0 + w1 + w2TAE

SAE
IAE + s log

w3 + w4
TAE

+ w5
T2
AE

SAE
IAE + 1⎛⎝ ⎞⎠⎛⎝ ⎞⎠

(4)
where IAE is the AE input current. TAE and AAE mean the cell
temperature and the electrolytic cell effective area, respectively. w1,
w2, w3, w4 and w5 are empirical coefficients. U0 is reversible voltage
and s is the electrode overvoltage coefficient.

And then the molar rate of hydrogen production nH2 is obtained
as follows:

nH2 � ηF
NAEIAE
2F

(5)

whereNAE represent the number of electrolytic cells. F is the Faraday
constant of 96487 C/mol.

2.2.3 Battery and hydrogen storage modeling
In order to further improve the utilization rate of wind and solar

energy, the lithium iron phosphate battery is employed as an energy
storage device, which enables the storage of the excess wind and
solar energy power after the hydrogen production and to
supplement when the power is insufficient. The capacity EBA(t)
at time t can be expressed as follows:

EBA t( ) �
EBA t − 1( ) 1 − σ( ) + ηBA_in

PBAΔt
EBA_max

, PBA t( )> 0

EBA t − 1( ) 1 − σ( ) + PBAΔt
EBA_maxηBA_out

, PBA t( )< 0

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(6)

where σmeans the self-discharge rate of the battery. ηBA_in and ηBA_
out represent charging efficiency and discharging efficiency
respectively. EBA_max and PBA(t) are the max total capacity
and power of the battery. In addition, when PBA(t) > 0 the
battery will be charged, and when PBA(t) < 0, the battery will
be discharged.

FIGURE 1
To further study the system capacity configuration optimization from green hydrogen generation system driven by solar-wind hybrid power, a brief
and complete system is developed, which mainly consists of wind turbines, photovoltaic arrays, alkaline reactors (AE). Energy storage batteries and
hydrogen tanks.
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Moreover, considering the volatility inherent in solar-wind
hydrogen production, the inclusion of hydrogen storage
equipment is crucial to enhance the stability of hydrogen
transportation. Within this solar-wind hybrid hydrogen
production system, gaseous high-pressure hydrogen storage
technology is primarily employed for short-term storage of
hydrogen, ensuring efficient and reliable operation. According to
the Clapeyron equation, the state of the tank can be obtained by
Eq. 7.

QHT t0 + Δt( ) � ∫
t0+Δt

t0

nHT t( )dt + QHT t0( )

JHT t( )QHT � RTHTnHT t( ) × 10−6

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (7)

where QHT is the volume of the hydrogen storage tank. JHT(t) and
nHT(t) are the volume of the hydrogen storage tank and the
hydrogen production rate at time t, respectively. THT is the
thermodynamic temperature of hydrogen storage, and R
represents the ideal gas constant.

3 Solar-wind hybrid hydrogen
production system comprehensive
evaluation method

3.1 System comprehensive evaluation
method

The implementing the operation strategy of solar-wind hybrid
hydrogen production system contributes to effectively achieving the
goal of stable hydrogen production, meanwhile, in order to make full
use of the renewable energy, a grid-connected solar-wind hybrid
hydrogen production system is established. The operational
dynamics and capacity configuration of this system significantly
influence the comprehensive benefits throughout the life cycle,
subsequently impacting the expansion and investment in solar-
wind hydrogen production. As a result, it plays a vital role in the
development of related investments and requires comprehensive
performance evaluation methods for assessing its overall benefits, as
depicted in Figure 2.

While the evaluation encompasses economic performance
evaluation, quantifying the economic benefits throughout the
system’s life cycle; environmental performance evaluation,
assessing the environmental friendliness during the system’s life
cycle; and energy efficiency evaluation, measuring the energy
utilization during system operation.

Initially, the key indicators corresponding to each evaluation
criterion are defined as the foundation for optimizing the capacity
configuration. Specifically, a multi-objective optimization approach
is employed to optimize the capacity configuration of wind turbines,
photovoltaic arrays, alkaline electrolyzers, energy storage batteries,
hydrogen storage tanks, and other components in the solar-wind
hybrid hydrogen production system. The NSGA-III algorithm is
applied to achieve an optimal configuration that maximizes the
overall performance. Subsequently, the optimized scheme is
thoroughly analyzed using comprehensive performance
indicators, resulting in the development of a comprehensive

evaluation methodology for solar-wind hybrid hydrogen
production system.

3.2 Comprehensive performance evaluation
modeling

The performance evaluation model comprises three categories
of performance indicators, establishing a comprehensive framework
for evaluating the solar-wind hybrid hydrogen production system.
This model is utilized to simulate and assess the system’s
performance by evaluating its economic performance,
environmental performance, and energy efficiency.

3.2.1 Economic evaluation
The primary objective of the solar-wind hybrid hydrogen

production system is to utilize water electrolysis for hydrogen
generation, and the produced excess electricity will be
transmitted and sold by the connected power grid. In this regard,
the economic analysis of hydrogen production, specifically LCOH,
serves as a vital metric for assessing the economic viability of the
solar-wind hybrid hydrogen production system, as expressed by Eq.
8 (Almutairi et al., 2021):

LCOH �
IIC − RS

1+i( )L + ∑L
y�1

OM
1+f( )y/ 1+i( )y

∑L
y�1

MH2

(8)

FIGURE 2
To comprehensively assess the overall benefits of the solar-wind
hybrid hydrogen production system, including economic
performance, environmental performance, and energy efficiency, a
set of rigorous performance evaluation methods is employed.
These methods facilitate a holistic analysis of the system’s
effectiveness. The accompanying optimization flow chart visually
outlines the process.
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where IIC and OM means the initial investment cost and operation
and maintenance costs, respectively. RS is the residual value of fixed
assets. y is the lifetime from the project. f is the inflation rate and i is
the interest rate of 8%. L and MH2 are the lifetime and the mass of
hydrogen production.

The internal rate of return (IRR) is used to measure the
investment efficiency and also reflect the project profitability,
which can be represented by Eq. 9 (Emrani et al., 2022).

∑L
y�1

CI − CO( )y 1 + IRR( )−y � 0 (9)

where CI and CO are cash inflows and cash flow.
Payback Period (PP) is introduced to evaluate the project

financial investment recovery ability, and the dynamic investment
of pay-back period can be calculated by Eq. 10

PP � θ − 1 + ∑θ−1
y�1 CI − CO( )y

∣∣∣∣∣ ∣∣∣∣∣
CI − CO( )θ (10)

where θ is the number of years in which the cumulative net cash flow
of each year is positive or zero for the first time.

The total investment profit rate (ROI) indicates the profitability
of the total investment of the project, which can be calculated by
Eq. 11

ROI � EPIT

TI
× 100% (11)

where EPIT is annual earnings before interest and tax, and TImeans
the total investment of the project.

3.2.2 Environmental evaluation
The utilization of renewable energy sources, such as wind or

hydrogen, in lieu of fossil fuels for electricity and hydrogen supply,
leads to a reduction in fossil fuel consumption and the consequent
pollutant emissions, particularly carbon dioxide. In this study, the
emission coefficient is employed to evaluate CO2 emission
reduction.

The solar-wind hybrid power generation systems are grid-
connected, operating within the permissible limits set by the
grid. The electricity generated through these systems
contributes to a decrease in CO2 emissions. In order to
investigate the carbon emission of this system, the carbon
emission reduction CERWT_PV is defined as Eq. 12 (Pan
et al., 2021; Wang et al., 2023).

CERWT_PV � EFele · DWT_grid +DPV_grid −Dgrid_AE( ) (12)

where EFele is the carbon emission factor of grid. DWT_grid and DPV_

grid means the on-grid electricity of wind and solar power generation
during the operation period andDgrid_AE is the down-grid electricity
to AE.

The hydrogen produced by the solar-wind hybrid hydrogen
production system is characterized by its absence of CO2 emissions
upon combustion. The output of per cubic meter hydrogen needs to
consume 4.5–5.5 kWh of electricity, and the carbon reduction
benefit of hydrogen production will be quantified by comparing
the equivalent electricity consumption of the power grid for the
same amount of hydrogen. (Rezaei et al., 2018). Therefore, the

carbon emission reduction of the hydrogen produced CERH2 can be
calculated by Eq 13.

CERH2 � WH2
MH2

ρH2

EFele (13)

where WH2 is electricity consumed for the unit of hydrogen
production, and ρH2 is the density of hydrogen.

Green hydrogen ratio (GHR) measures the proportion of green
hydrogen in the system, indicating the amount of renewable energy
in the system, which can be expressed as Eq. 14

GHR � 1 − Dgrid_AE

DAE
( ) × 100% (14)

3.2.3 Evaluation of energy efficiency
The utilization of renewable energy during the operation of the

electrolytic cell can be measured by abandoned energy power rate
(AEPR), with the expression of:

AEPR � 1 − DAE +DWT_grid +DPV_grid

DWT +DPV
( ) × 100% (15)

During the real-time operation of the electrolytic cell, the
dynamic performance of the cell is assessed based on the
electrolytic cell load rate. The electrolytic cell load rate is
calculated as Eq. 16:

ηAE �
nH2 ×ΔG

PAE
× 100% (16)

where ΔG is the Gibbs free energy of the electrochemical reaction.

4 Capacity optimization configuration
model based on NSGA-III

To meet the hydrogen production requirements and ensure the
efficient solar-wind hybrid hydrogen generation, an operation
strategy that satisfies the load operation is essential. In addition,
the NSGA-III multi-objective optimization algorithm is used to
optimize the capacity configuration.

4.1 Optimization of objects

With the target annual hydrogen output capacity of 20,000 tons,
the solar-wind hybrid hydrogen production system defines the
optimization objective based on the comprehensive performance
evaluation criteria. The following contents are taken as the
optimization objectives: (1) minimizing the levelized cost of
hydrogen (LCOH) to improve the economy of the system; (2)
maximizing the carbon emission reduction (CER) to reduce
environmental impact and increase hydrogen production; (3)
minimizing the abandoned energy power rate (AEPR) of wind
and solar energy to improve the utilization of renewable energy.
These objectives are formulated as the objective functions for
optimization, while various constraints are employed to ensure
system stability. The optimization algorithm, specifically the
NSGA-III algorithm, is employed to solve the comprehensive
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optimization of the system. Additionally, to comply with the
requirements of the NSGA-III algorithm, the maximization of
CER is transformed into the minimization of the reciprocal of
CER. Therefore, the optimization goal is expressed by Eq. 17

minfun1 � LCOH
maxfun2 � CERWT_PV + CERH2

minfun3 � AEPR

⎧⎪⎨⎪⎩ →
minfun1 � LCOH
minfun2 � 1/ CERWT_PV + CERH2( )
minfun3 � AEPR

⎧⎪⎨⎪⎩
(17)

4.2 Decision variables and constraints

According to the objective function, the rated capacity of wind
turbines, photovoltaic arrays, electrolyzers, batteries, and hydrogen
storage tanks are selected as decision optimization variables, and
expressed by Eq. 18

X � EWT, EPV, EAE, EBA, QHT_sc[ ] (18)
where EWT, EPV and EAE are the construction scale capacity of wind
turbine, photovoltaic array and alkaline electrolyzer cell,
respectively.

In order to improve the system reliability, the following
constraints should be satisfied. During operation, it is imperative
for the system to uphold law of conservation of energy, ensuring that
power input and output adhere to the following balance constraints:

PWT t( ) + PPV t( ) + PBA t( ) � PAE t( ) + Pgrid t( ) + Paban t( ) (19)
where Paban is the abandoned power of solar-wind power generation.

Energy storage state constraints: ensuring that the pressure in the
hydrogen storage tank remains within operational requirements.
Battery charge and discharge constraints: maintaining the state of
charge within the desired range. These constraints are expressed as
Eq. 20

JHT_min ≤ JHT t( )≤ JHT_max

SOCess_min ≤ SOCess t( )≤ SOCess_max
{ (20)

where JHT_min and JHT_max mean the upper and lower pressure
constraint values of hydrogen storage tank. SOCess_min and SOCess_

max are the upper and lower limits of the battery state of charge.
Power operation constraints: during the system operation, it

is necessary to ensure the service life of the electrolyzer and the
safe transmission of the power grid. Therefore, the power
operation constraints of the electrolyzer and the transmission
power constraints of the power grid line can be expressed as
Eq. 21

PAE_min ≤PAE t( )≤PAE_max

Pgrid_min ≤Pgrid t( )≤Pgrid_max
{ (21)

where PAE_min and PAE_max are the upper and lower constraint values of
the power of the electrolytic cell, respectively. Pgrid_min, Pgrid_max are the
transmission power limits of power down and power up.

4.3 NSGA-III algorithm

The capacity configuration optimization of solar-wind
hybrid hydrogen production system is a multi-objective and

multi-constrained optimization problem. Therefore, the Non-
dominated Sorting Genetic Algorithm (NSGA) III algorithm is
adopted. Compared with the NSGA-II algorithm, NSGA-III uses
widely distributed reference points to maintain the diversity of
decision variables, which reduces the time complexity of the
algorithm and improves the effect on high-dimensional
problems (Sharma et al., 2023). The specific algorithm
optimization process is shown in Figure 3.

(1) Initialize the scale of wind turbines, photovoltaic arrays, alkaline
electrolyzers, batteries, hydrogen storage tanks and other
equipment to form a population of N, form initial variables
and select reference points on the hyperplane;

(2) According to the operation strategy of the grid-connected solar-
wind hydrogen production system, and initialize the population;

(3) The optimal individual is selected by the tournament method,
and the progeny individual is generated through crossover and
variation, and different non-dominated layers are obtained by
further non-dominated sorting;

(4) Normalize the population operation and the individuals in the
critical layer are associated with the reference line according to
the reference point;

(5) According to the number of individuals associated with the
reference line, the population individuals are selected from the

FIGURE 3
To accurately configure the optimal capacity of the system, the
NSGA-III algorithm is employed with AEPR, LCOH, and CDER serving
as the optimization objectives. The decision variables in this
optimization process are the capacity configuration of each
equipment within the system.
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critical dominant layer to enter the new generation of parents,
and the number of iterations is added by 1;

(6) Repeat operation (2)–(5) until the number of iterations reaches
the maximum number of iterations.

The economic parameters of the solar-wind green hybrid
hydrogen production system in this study including the
construction costs, operation costs, and other relevant
economic factors associated with the main equipment, are
presented in Table 1. In addition, in order to ensure the
rationality of the system simulation and capacity
configuration optimization process, the technical and
operational parameters of each individual device are kept
within the design range, as shown in Table 2. Among them,
the maximum pressure of one hydrogen tank volume is 5 MPa,
and the maximum SOC of one battery is 0.9.

5 Results and discussion

The solar-wind hybrid hydrogen production system enhances
the competitiveness of solar and wind energy. In order to improve
the thermodynamics and economics potential, the capacity of the
solar-wind hybrid hydrogen production system and its dynamic
operation characteristics need to be optimized and investigated.

5.1 Analysis of multi-objective optimal
capacity optimization results

The meteorological data from a specific region in Taonan, Jilin
Province of China is utilized as input for the configuration
optimization. The wind speed and solar irradiation data for the
area are sampled at hourly intervals over the course of 1 year. Wind
speed and solar irradiation are crucial parameters for assessing wind
power and solar power potential. The variation trends of these
parameters are depicted in Figure 4. It reveals that there is a certain
complementarity between wind and insolation, which is better
between summer and autumn of resources. Further calculation
and analysis of cases are performed based on this weather data.

Aiming at the grid-connected solar-wind hybrid hydrogen
production system, the NSGA-III algorithm is employed to
address the capacity optimization configuration problem. The
optimization objectives include the levelized cost of hydrogen,
the reciprocal of carbon dioxide emission reduction, and the rate
of wind and solar curtailment. Considering the diversity and
operation of the solution set, the population size is set to 500,
and the number of iterations is 100 generations. The resulting
optimal solution set is illustrated in Figure 5, the Pareto surface
exhibits clear patterns, and the distribution of the target solutions
appears wide and uniform, indicating that the distribution of the
solution set has diversity.

Based on the diversity scheme resulting from the capacity
configuration optimization, a final optimization scheme can be
selected through analysis. As for the side-view projection of
optimization results, it is a curve depicting the reciprocal of
carbon emission reduction and the rate of wind and solar
curtailment, showing a clear negative correlation trend.
Specifically, there is a positive correlation between carbon

TABLE 1 Investment costs of equipment and economic data of a hydrogen production system.

Item Acquisition cost Annual operation cost Other value unit

Wind turbine 2000 40 - CNY/kW

Photovoltaic panel 3,500 35 - CNY/kW

Alkaline electrolyzer 4,000 160 - CNY/kW

Battery 2,700 124 - CNY/kWh

Hydrogen tank 2000 20 - CNY/m3

Lifetime - - 20 years

Power down-grid price - - 0.5716 CNY/kWh

Power on-grid price - - 0.3719 CNY/kWh

TABLE 2 Technical and operating data of the WT&PV-hydrogen system.

Component Parameter Value unit

Wind turbine Single rated power 2000 kW

Inflow wind speed 3 m/s

Rated wind speed 12.5 m/s

Outflow wind speed 25 m/s

Photovoltaic panel Single rated power 340 kW

Local latitude 45.31 °N

Local longitude 122.79 °E

Alkaline electrolyzer Single rated power 5,000 kW

Single rated hydrogen capacity 1,000 Nm3/h

Power operating range 15–100 %EAE

Battery The range of SOC 0.2–0.9 -

Charge and discharge efficiency 98 %

Hydrogen tank Storage temperature 25 °C

Storage pressure range 0.2–5 MPa
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FIGURE 4
To quantitatively assess solar andwind resources in Taonan area of China Jilin Province, the hourly wind speed and solar irradiance data for a specific
year were collected and analyzed, to further understand the complementary utilization of wind and solar resources, the monthly variations in wind and
solar resources were statistically compared.

FIGURE 5
The optimization results of the capacity configuration were obtained using the NSGA-III algorithm, with a population size of 500 and
100 generations of iterations. To determine the optimal capacity configuration under multi-objective optimization, it is necessary to comprehensively
consider the system in the AEPR, CDER and LCOH, the performance of AEPR, CDER and LCOH in the multi-objective capacity configuration are
evaluated.
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emission reduction and the rate of wind and solar curtailment. As
the rate of wind and solar curtailment decreases, the carbon
emission reduction also decreases. This trend indicates that
although reducing the rate of solar and wind curtailment allows
for increased utilization of renewable energy, it results in a decrease
in the overall carbon emission reduction, reflecting a reduction in
the overall level of comprehensive accessibility and carbon emission
reduction.

Based on the face projection of optimization results and the top
view projection of optimization results, it can be seen that among the
schemes with lower LCOH, there are variations in the wind and solar
curtailment rate and carbon emissions, but the three optimization
objectives exhibit a non-linear relationship with each other.
Consequently, a single scheme cannot simultaneously achieve the
optimal solution for all three objectives. Therefore, a weighting
method is employed to select the scheme. Firstly, the scheme is
preliminarily selected based on the requirement of the solar-wind
hybrid hydrogen production system, that is, f ≤ [25, 1.0 × 10−6, 5].
Then, the solution of the Pareto solution sets are normalized. Finally,
the weighted method is used to get the final scheme. Given the
significance of economy in the design process, a weight ω = [0.6, 0.2,
0.2] is applied to sort and select normalized schemes. By calculating
the fitness of the solution in the Pareto solution set, the scheme with
the minimum fitness is selected as the design scheme. Finally, the

corresponding objective function values are f = [16.69, 9.76 × 10−7,
3.32], and the configuration of each device is shown in Table 3.
Through the NSGA-III algorithm, the capacity configuration
scheme for the solar-wind hybrid hydrogen production system is
determined based on these three categories of indicators.

5.2 Performance analysis of solar-wind
hybrid hydrogen production system

Through the application of the multi-objective optimization
algorithm, an optimized scheme for solar-wind hybrid hydrogen
production has been obtained. Based on the capacity optimization
configuration results, a comprehensive analysis of the scheme is
conducted using various performance indicators. The calculation
results are presented in Table 4. Notably, the LCOH is determined to
be 16.69 CNY/kgH2, and Initial cost is 5.60×109 CNY. To ensure
economic viability, a recommended sales price of 27.80 CNY/kgH2 is
proposed, along with a payback period of 12.18 years and a total
investment profit rate of 10.60%.

Otherwise, under this specific capacity configuration scale, the
system demonstrates notable environmental performance
indicators, with a CER of 1.02×106 tCO2. A predominant
contribution of renewable energy sources and the grid primarily
serves the role of load regulation, resulting in a high proportion of
98.51% for green hydrogen ratio, further enhancing its
environmental friendliness. Concerning energy utilization
parameters, the wind and solar energy curtailment rate is
recorded at 3.32%, indicating satisfactory utilization of scenic
power resources. Moreover, the average load factor of the
electrolyzer stands at 64.77%, falling within the conventional
range for electrolyzers. Thus, it is evident that the proposed
capacity configuration method yields a comprehensive and well-

TABLE 3 Configuration optimization solutions.

Component Rated capacity unit

Wind turbine 296 MW

Photovoltaic panel 494 MW

Alkaline electrolyzer 265 MW

Battery 473.34 MWh

Hydrogen tank 7,678 m3

TABLE 4 Scheme comprehensive index calculation results.

Parameter Value unit

Economic performances

LCOH 16.69 CNY/kgH2

Initial cost 5.60×109 CNY

Suggested price (IRR = 8%) 27.80 CNY/kgH2

PP 12.18 year

ROI 10.60 %

Environmental performances

CER 1.02×106 tons CO2

GHR 98.51 %

Energy utilization performances

Raban 3.32 %

ηAE 64.77 %

FIGURE 6
To assess the initial investment of the solar-wind hybrid
hydrogen production system, the initial investment combinedwith the
capacity configuration optimization results. of each major equipment
and the distribution of the hydrogen consumption electricity
sources were calculated.

Frontiers in Energy Research frontiersin.org10

Su et al. 10.3389/fenrg.2023.1256463

26

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1256463


performing solution for a solar-wind hybrid hydrogen production
system, meanwhile to further enhance the economic benefits, as the
cost of related equipment decreases. Therefore, it is crucial to
emphasize the carbon reduction advantages of green hydrogen
production and integrate them into the overall economic
evaluation of the project through measures like carbon taxation
and carbon trading. This would ultimately contribute to the
reduction of green hydrogen production costs.

In the solar-wind hybrid hydrogen production design scheme,
the initial investment cost plays a significant role, as depicted in
Figure 6. To ensure the stability of hydrogen production in the

electrolytic cell and mitigate the fluctuations of wind and solar
energy, an ample amount of energy storage equipment is employed.
Among these, the battery construction cost constitutes 27.34% of the
total cost, while the hydrogen storage equipment exhibits high
capacity, the unit equipment cost is low, accounting for only
0.33% of the total construction cost. The construction cost
distribution reveals that the photovoltaic, wind turbine, and
electrolyzer components contribute 36.99%, 12.66% and 22.68%,
respectively. The electricity utilized for hydrogen production is
predominantly sourced from wind power, photovoltaic, and the
grid. Specifically, wind power and photovoltaic sources contribute
23.66% and 73.02%, while the grid occupies a marginal portion of
3.32%. This distribution underscores the substantial reliance on
solar and wind energy sources in providing energy for the system
solution, resulting in predominantly green hydrogen production.

Due to the variations of solar-wind resources throughout the
year, the monthly solar-wind power generation and hydrogen
production levels differ. Therefore, Figure 7 illustrates the
calculated monthly solar-wind power generation and the
hydrogen production load of the electrolytic cell. Compared with
the two electricity generation, solar-wind power is the main power
supply of the system. Concurrently, the power generation of
photovoltaic and wind power is the highest in April, which is
1.17 × 105 MWh and 5.76 × 104 MWh respectively, while the
power generation is the lowest in November and December. In
contrast, the monthly load of the electrolytic cell remained basically
stable in the range of 9.06×104–1.03×105 MWh. In order to maintain
the hydrogen production and solar-wind utilization rate of the
electrolytic cell, as for the transmission power, when the power
generation is sufficient, the excess power is connected to the grid,
and the maximum power on the grid in April is 6.35×104 MWh.

FIGURE 7
Due to the difference of wind and solar resources in each month, the wind and solar power generation and the corresponding electrolytic tank load
power in different months are analyzed, and the power grid is used as the power regulation method of the system. Further analysis of the monthly power
grid up and down.

FIGURE 8
In order to analyze the hydrogen production under different
solar-wind resources in different months, the changes of hydrogen
production in different months were compared.
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Concurrently, it supplies power to the electrolytic cell when it is
insufficient, and the maximum power supply in December is
8.65×103 MWh.

Further comparing the hydrogen production for each month, as
shown in Figure 8, the hydrogen production is consistent with the
trend of the load power of the electrolytic cell. The highest hydrogen
production in March is 1,713 tons, and the lowest hydrogen
production in February is 1,536 tons.

Moreover, the annual economic cost recovery relies primarily on
the output of electrolytic hydrogen production and grid-connected
solar-wind hybrid power generation. Thus, a detailed analysis of
daily electrolytic hydrogen production and solar-wind hybrid power
generation throughout the year is conducted, as illustrated in
Figure 9. The average daily hydrogen production is 54.76 tons of
H2, the amount of hydrogen produced per day exhibits lower
fluctuations around the average. Simultaneously, as the solar-
wind hybrid power generation is capable of fulfilling the
hydrogen production capacity, the surplus power is integrated
into the grid. According to the power integration, the average
daily online power is 1,007 MWh, accounting for 8.92% of the
total solar and wind hybrid power generation, thereby further
enhancing the utilization rate of solar and wind power. However,
seasonal variations have an impact, the daily grid-connected power
generation fluctuates significantly.

5.3 Dynamic operation analysis of solar-
wind hybrid hydrogen production system

For the solar-wind hybrid hydrogen production system with the
selected capacity configuration scheme, dynamic operation analysis is
performed on typical weeks representing each month by the seasons.

The power generation profiles of wind power and photovoltaic
systems during these weeks, highlighting their complementary

characteristics. The dynamic operation analysis of the system is
carried out for the typical weeks of the specific months of season.
The dynamic behaviors observed during three typical weeks in
spring, and three typical weeks in summer, as shown in
Figure 10, exhibit similar patterns. Notably, there is a favorable
complementarity between PV and wind power generation. SOC of
the energy storage device remains relatively stable, while SOH
experiences significant fluctuations. This is attributed to the
ample availability of solar and wind power generation, causing
the battery to reach its upper limit of energy storage.
Consequently, the primary objective of ensuring a stable
hydrogen supply is primarily achieved through the utilization of
hydrogen storage equipment. This operational strategy prioritizes
the adjustment of the hydrogen output rate and the smoothing of
hydrogen production fluctuations through hydrogen storage
equipment. Additionally, the charging and discharging of the
battery are employed to regulate the electrolytic hydrogen
production rate, further enhancing the stability of the solar and
wind complementary hydrogen production system.

In the autumn typical weeks and the winter typical weeks shown in
Figure 10, bothwind and PVpower generation are comparatively lower,
with less noticeable complementarity between the two. The generation
capacity of wind and solar power is significantly lower during the winter
typical weeks. In contrast to typical weeks in spring and summer,
batteries and hydrogen storage devices are now adjusted more
frequently. Additionally, there are instances where the steady
hydrogen output criteria cannot be met by energy storage and wind
and solar power generation. In these situations, the electrolyzer receives
power from the power grid tomeet the standard. In this system, the grid
can effectively control the load power of the electrolyzer, ensure a
consistent output of hydrogen, and absorb solar power generation,
increasing the rate at which solar power is utilized.

However, due to the region’s superior photovoltaic resources
compared to wind resources, the former generates more electricity

FIGURE 9
The annual economic cost recovery is a crucial factor in evaluating the performance of the system. It can be divided into twomain components. The
first component is the annual benefit derived from hydrogen production. To analyze this, the daily hydrogen production capacity of the system was
assessed. The second component involves analyzing the daily electricity sales of the system. This can be examined by assessing the annual grid
connection volume of the electrolytic cell hydrogen production and solar-wind hybrid power generation.
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than the latter. The calculations reveal that during typical weeks in
spring and summer, the average power generation of photovoltaic is
24,208MWh and 26,589MWh, respectively, which is much higher
than the average power generation of photovoltaic typical weeks in
autumn and summer (17,135 MWh and 17,022MWh), while during
the typical weeks in summer, the average power generation of wind
power is 10,425 MWh, which is much higher than the average power
generation of typical weeks in other seasons (3,451MWh in spring,
4,298MWh in autumn and 4,575 MWh in winter). Despite notable
variability in the power generation capacity of power throughout
different seasons, the electrolytic hydrogen production system can

ensure basic operation through the regulation of energy storage
devices and grid infrastructure. Its typical weekly load power
remains stable, reaching 22,766MWh, 24,208MWh, 23,171 MWh
and 22,123MWh across all seasons, thereby guaranteeing the
consistent hydrogen production.

As mentioned above, in order to achieve stable hydrogen output,
according to the dynamic operation strategy, the smoothing ability
of low-cost hydrogen storage equipment in wind and solar output
scenarios is first fully utilized. This reduces the use of the battery and
the frequency of charge and discharge, thereby improving its
operating life. At the same time, combined with the power grid

FIGURE 10
The fluctuations of the solar-wind will affect the stable operation of the energy storage device, so the key to formulating a scheduling strategy that
matches the volatility is to accurately evaluate the year-round complementarity of the solar-wind, the solar-wind complementarity of typical weeks in
four seasons of spring, summer, autumn, winter is evaluated.
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to adjust, it also ensures the system power balance and meets the
load demand of electrolytic water hydrogen production.
Consequently, this solar-wind hybrid hydrogen production
strategy is well-suited to leverage its advantages in large-scale
hydrogen production scenarios.

6 Conclusion

This study focuses on optimizing the capacity configuration of a
solar-wind green hybrid hydrogen production system using the
NSGA-III algorithm with the goal of achieving a comprehensive
index. The main conclusions are summarized as follows:

(1) The capacity configuration optimization of a solar-wind hybrid
hydrogen production system can be achieved by employing the
NSGA-III algorithm and the optimization method of
comprehensive performance objective function. The resulting
solution set offers a diverse distribution, enabling the selection of
a design scheme that meets the design requirements in a
comprehensive manner.

(2) This study determined the multi-index optimal scheme using a
specific method. With the addition income of surplus solar/
wind power by transmitting to the grid, the internal rate of
return of the system reaches to 8% when the hydrogen sale price
is suggested to 27.80 CNY/kgH2. Additionally, this system
achieves the carbon emission reduction of 1.02×106 tCO2,
and the abandoned energy power rate reduced to 3.32%.

(3) Through the cooperative hydrogen production strategy
proposed in this paper, the demand for hydrogen production
of 20,000 tons per year can be met. At the same time, the
adjustment ability of hydrogen storage equipment and battery is
fully utilized. Finally, the stability of hydrogen output is
improved, and the hydrogen production load of electrolytic
water in the typical cycle of four seasons is within the range of
22,123 MWh-24,208 MWh.

This study reveals that the capacity configuration method of
solar-wind hybrid hydrogen production based on comprehensive
performance index can meet the demand of large-scale hydrogen
production throughout the year, and provide technical and
methodological suggestions and guidance for the formulation
of solar-wind hydrogen production scheme with favorable
comprehensive performance.
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Nomenclature

D Accumulated power

E Scale capacity

F Faraday constant

I Current

J Pressure

L Lifetime

M Mass

N Number of installations

P Power

Q Volume

R Ideal gas constant

S Area

T Temperature

U Voltage

W Specific energy consumption of hydrogen

f Inflation rate

i Interest rate

n Molar amount of hydrogen

v Wind speed

w Empirical coefficients

t Time

y The number of years

Greek

α Diode quality factor

β Electron charge

σ Self-discharge rate of the battery

θ Year of positive accumulative net cash flow

ρ The air density

η Efficiency

ΔG Gibbs free energy of the reaction

τ Coefficient performance of the wind turbines

Subscript

AE Alkaline electrolyzer

BA Battery

HT Hydrogen storage tank

PV Photovoltaic

WT Wind turbine

r Rated power

rs Reverse saturation

sc Construction scale capacity

Abbreviations

AEPR Abandoned energy power rate

CER Carbon emissions reduction

CI Cash inflows

CO Cash flow

EPIT Earnings before interest and tax

EF Average emission factor

IIC Initial investment cost

IRR Internal rate of return

GHR Green hydrogen ratio

LCOH Levelized cost of hydrogen

OM Operation and maintenance costs

PP Payback period

ROI Total investment profit rate

RS Residual value of fixed assets

SOC Battery state of charge

SOH State of hydrogen tank

TI Total investment
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Economic dispatch of generation
load aggregators based on
two-stage robust optimization
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Nannan Zhang1

1School of Information and Power, Shenyang Agricultural University, Shenyang, Liaoning, China, 2College
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Introduction: In recent years, with the rapid development of renewable energy
generation, the stability of the power grid has been greatly reduced. In response to
this problem, integrating the user side transferable load into the power market has
become the key to the development of future power grid. At present, large
transferable loads have entered the electricity market in some pilot areas of
China, but the relevant research on small and medium-sized transferable users
entering the electricity market is still few.

Methods: This paper proposes the concept of generation load aggregators. A
two-stage generation load aggregator robust optimization model is developed to
obtain the scheduling scheme with the lowest operating cost under the worst
scenario. The model consists of distributed renewable power, transferable load,
self-provided power, energy storage, etc. Uncertainties of renewable energy and
load are introduced in the model. By using the column constraint generation
algorithm and strong pairwise theory, the original problem is decomposed into the
main problem and sub-problems to be solved alternately, so as to obtain the
scheduling scheme with the lowest operating cost in the worst scenario under
different conservatism.

Results: The solved results are compared with those without the generation load
aggregator, illustrating the role of the generation load aggregator in relieving peak
and valley pressure on the grid from the load side, reducing the cost of electricity
for loads, and promoting the consumption of renewable energy. The comparison
with the deterministic optimization algorithm shows a significant decrease in the
total cost and validates the performance of the selected solution algorithm. The
boundary conditions for the use of energy storage by generation load aggregators
for peak and valley reduction under the time-sharing tariff mechanism are also
derived.

Discussion: This study can provide reference for the investors of generation load
aggregators when planning whether to install energy storage or the scale of
energy storage, and also help the power market management department to
design a reasonable incentive mechanism.

KEYWORDS

generation load aggregator, two-stage robust optimization, uncertainty optimization,
economic dispatch, column constraint generation algorithm
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1 Introduction

In recent years, with the rapid development of wind power,
photovoltaic, and other renewable energy generation, the
intermittent volatility of renewable energy generation has posed
an increasing challenge to the power grid, and the problem of
curtailed wind and PV caused by the balance of supply and
demand power has become increasingly prominent. In addition,
the gradual increase in the peak-to-valley load difference and the
continuous growth of peak loads have reduced the stability of the
safe operation of the power market (Li and Wang, 2021; Wu et al.,
2022b; Sambodo et al., 2022). In response to the aforementioned
problems, incorporating customer-side transferable loads into the
power system has become the key to future grid development.
Transferable loads are loads that actively respond to price signals
and incentives to change the behavior of the original electricity
consumption pattern (Chen et al., 2021). At this stage, large
transferable loads have entered the power market in some pilot
areas in China and are dispatched by the grid company. Research
related to the access of small- and medium-sized transferable users
to the power market remains scarce. To solve this problem, the
concept of generation load aggregators is proposed in this paper.
Small- and medium-sized transferable users sign agency contracts
with generation load aggregators, and users participate in the
electricity market through generation load aggregators. The
generation load aggregator is mainly a load aggregator, which
also aggregates distributed energy, energy storage, electric
vehicles, self-provided generator on the load side, etc. Load
aggregators are able to consolidate dispersed adjustable potential
to form the scalable user-adjustable capacity that the market needs
and respond to the grid’s price signals for profit (Li et al., 2022).
When power consumption peaks or other periods of high electricity
prices, power sources, and energy storage in generation load
aggregators choose to operate at high power, at the same time,
the transferable loads therein operate at as low a power as possible.
When the power supply runs at a low power or even shuts down
during low hours or other periods of lower electricity prices, the
energy storage will charge and the transferable load will use
electricity at a higher power at this time. The generation load
aggregator participates in the market bidding for load regulation
behavior as a demand response product, and the winning load
resource is compensated with the corresponding market clearing
price. The difference between generation load aggregators and
electric power companies is that they do not make money in the
same way. Electric power companies primarily make money by
buying low and selling high. Generation load aggregators earn
grid regulation fees primarily by regulating electricity use. The
difference between generation load aggregators and microgrids is
in the integrity of the system. Microgrids are smaller,
decentralized, stand-alone systems that can be operated
individually for extended periods. The generation load
aggregators rely mainly on purchasing power in the electricity
market, where the captive power supply is not sufficient to
support the load for a long period. The difference between
generation load aggregators and virtual power plants is their
different roles in the electricity market. The virtual power plant
belongs to the generation side, and the generation load
aggregator is effectively an adjustable electricity consumer.

Economic scheduling of aggregators is a hot issue in research
related to aggregators, generally intending to minimize operating
costs. Smaller operating costs with constant revenues imply higher
profits (Iria et al., 2020; Kim et al., 2022). Zhang et al. developed a
two-stage optimization model for industrial load aggregators
considering the uncertainty of load response and the satisfaction
of users (Zhang et al., 2018). Xu et al. established an optimal
scheduling model for an electric vehicle charging aggregator to
solve the profit maximization of the aggregator by genetic
algorithm (Xu et al., 2020). With the development of distributed
energy sources, energy storage, etc., aggregators contain not only
industrial and residential loads but also distributed power output
from photovoltaic, wind power, etc., and the stochastic nature of
load power consumption brings challenges to the operation of
aggregators (Sheikhahmadi et al., 2018). How to effectively cope
with the uncertainties within the aggregator and achieve reliable and
economical operation has become the key to the study of the
economic scheduling problem of aggregators (Xu et al., 2020).
For such problems, stochastic programming is often used to
model uncertain variables and simulate the impact of uncertainty
on the operation of aggregators’ stochastic programming which uses
random variables to describe uncertain information and optimizes
to obtain the scheduling solution with the minimum expected cost
(Kim et al., 2021). The key to stochastic programming is to model
uncertain variable properties with a limited number of scenarios
(Wang and Nie, 2022). Vahid-Ghavidel proposed a hybrid
stochastic optimization model to deal with electricity market
price and consumer participation rate uncertainty (Vahid-
Ghavidel et al., 2021). Vatandoust described the joint
optimization of electric vehicles and energy storage aggregators
in the day-ahead electricity market to improve the profitability of
the aggregators with a stochastic mixed integer linear programming
model considering the uncertainty of energy and frequency
regulation prices (Vatandoust et al., 2019). Since stochastic
programming methods seek the solution set with the maximum/
minimum expected value of the objective function, the risk of
irrational decision making exists for a certain scenario. Nguyen
combined stochastic programming and conditional value-at-risk
constraint methods so that the expected return in the
corresponding scenario is not lower than the given confidence
level, thus reducing the system risk (Nguyen and Le, 2015).
However, both stochastic programming and scenario analysis
methods require deterministic probability curves to generate
scenarios, which may lead to models that are not accurate
enough to reflect the actual situation (Wang et al., 2015a).

Compared with the aforementioned methods, robust
optimization replaces the exact probability distribution of
random variables with an uncertainty set and obtains the
scheduling solution of the system under the “worst-case”
scenario through optimization, which is more suitable for
practical engineering needs (Alvim et al., 2021). Lu
considered the uncertainty of charging and discharging of EV
aggregators, built a two-stage robust optimization model, used
distributed robust optimization to improve the average
economic performance of the model, and applied Farkas’
Lemma and robust optimization to ensure the safety of the
distribution system operation (Lu et al., 2021). Najafi
proposed a hybrid decentralized robust optimization-
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stochastic programming (DRO-SP) model based on the
multiplicative alternating direction method to coordinate the
optimization of load aggregators, using a stochastic
programming approach to model the uncertainty of the
electric vehicle model and a robust optimization approach to
model the uncertainty of the location marginal price (Najafi
et al., 2021). Wang proposed a distribution uncertainty model
where the probability distribution of load power can vary around
a given reference distribution (Wang et al., 2015b). However, the
robust models in the aforementioned literature do not allow for
flexible adjustment of the conservativeness of the scheduling
scheme.

The main contributions of this research can be summarized as
follows.

1. To solve the problem that small- and medium-sized adjustable
users on the load side are difficult to enter the electricity market,
this paper proposes the concept of generation load aggregators
for the first time. The basic framework of the generation load
aggregator is built, and a robust optimization model of a two-
stage generation load aggregator with a min–max–min structure
is established.

2. The model considers the coordinated control of PV power
sources, load uncertainty, energy storage, two types of
industrial transferable loads, and distributed power sources
within the generating load aggregator. Using a column-
constrained generation algorithm and strong pairwise theory
obtains an economic dispatch scheme for the worst-case

scenario under different conservatisms. Uncertainty
adjustment parameters have been added to the scheme to
provide flexibility in choosing the degree of conservatism in
the scheduling scheme.

3. The solved results are compared with other sets of results to
determine that the generation load aggregator model has the
effect of relieving the peak and valley pressure on the grid,
reducing the cost of electricity for loads, and promoting the
consumption of renewable energy. The dispatch program
obtained can withstand the risk of real-time market price
fluctuations in electricity. We derive the boundary conditions
for the analytical model to use energy storage for peak shaving
and valley filling under the time-of-day tariff mechanism, which
will provide a theoretical basis for the future construction
planning of generation load aggregators as well as the entry of
small- and medium-sized adjustable users into the electricity
market.

The main study of this paper is as follows. The first part, as the
introductory part of the article, briefly introduces the background of
the study as well as the research progress on the issues related to
generation load aggregators in recent years. The second part builds
the framework of the generation load aggregator system. The third
part is to develop a two-stage robust optimization model for
generation load aggregators. The fourth part is the numerical
simulation and the related discussion and analysis of the results.
The fifth part is the summary of the paper and the prospect of future
research.

FIGURE 1
Structure of generation load aggregators.
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2 Materials and methods

2.1 Generation load aggregator system
framework

Figure 1 shows the basic framework of a generation load
aggregator, which consists of a collection of distributed PV, self-
provided generator, energy storage, transferable load, and other
components. The transferable load can be divided into the start/
stop time delay-type transferable load and power sizing-type
transferable load due to the actual needs of the industry.
Generation load aggregators provide an opportunity for small-
and medium-sized customers to participate in the regulation of
the electricity market. Small- and medium-sized customers do
not reach the minimum level of load elasticity to participate in
demand response and cannot find a way to participate in power
trading. As an intermediary, a generation load aggregator can
integrate customer demand response resources and bring them
into the market for trading, making idle load resources useful
while relieving the pressure on the power system from the load
side during special times such as peak and valley. On the other
hand, power generation load aggregators fully explore the
potential of load demand response, under the help and
guidance of power generation load aggregators, and form a
scientific and economic way of electricity consumption, to
reduce the cost of electricity for users. The generation load
aggregator needs to summarize the electricity consumption
curve of the load on D-1, the generation curve of each power
source, and the curve of the need to buy or sell electricity from the
external grid before day D. If the reported curve is different from
the actual curve, it needs to buy or sell electricity from the
external grid.

2.1.1 Self-provided generator
The self-provided generator of the generation load aggregators

are mainly micro-gas turbines, and the cost of micro-gas turbine
generation Ct

G can be expressed as a linear function (Wang et al.,
2015b).

Ct
G � aPt

G + b[ ]Δt, (1)
where a and b are cost coefficients; Pt

G is the output power of the
micro-gas turbine in time slot t; and Δt is the scheduling step, which
takes the value of 1 h. The power response time of the micro-gas
turbine is negligible compared to the hourly scheduling step, so the
ramping constraint of the micro-gas turbine is not considered and
only the output power constraint is considered.

PG
min ≤Pt

G ≤PG
max, (2)

where PG
max and PG

min denote the maximum/minimum output
power of the micro-gas turbine, and the maximum/minimum
output power is limited by its rated power and minimum load
factor, respectively.

2.1.2 Energy storage
The cost of energy storage Ct

S is mainly composed of the
investment cost, operation cost, and maintenance cost of energy

storage (Xu et al., 2010), and the average charging and discharging
cost at time t during the payback period can be expressed as

Ct
S � KS

Pt,dis
S

η
+ Pt,ch

S η[ ]Δt, (3)

where KS is the unit charge/discharge cost of energy storage after
considering investment cost, operation cost, and maintenance cost;
Pt,ch
S and Pt,dis

S denote the charge/discharge power of energy storage
in time t; and η is the charge/discharge efficiency of energy storage,
respectively. The constraints to be satisfied during the operation of
energy storage include

0≤Pt,dis
S ≤ αt

SPS
max, (4)

0≤Pt,ch
S ≤ 1 − αtS[ ]PS

max, (5)

η∑N
t�1

Pt,ch
S Δt[ ] − 1

η
∑N
t�1

Pt,dis
S Δt[ ] � 0, (6)

ES
min ≤E0

S + η∑N
t�1

Pt,ch
S Δt[ ] − 1

η
∑N
t�1

Pt,dis
S Δt[ ]≤ES

max. (7)

Equation 4 and Equation 5 are the charging/discharging
power constraints of energy storage, which are the maximum
charging/discharging power of energy storage, mainly limited
by the capacity of the grid-connected inverter, respectively. αtS
indicates the charging/discharging state of energy storage, αtS �
1 indicates that energy storage is discharged in time t and αtS � 0
indicates that energy storage is charged in time t. Equation 6 is
the constraint to ensure that the power stored in energy storage
at the beginning and end of the dispatch cycle is equal, which is
conducive to the cyclic scheduling of energy storage, and N is
the scheduling cycle and takes the value of 24. Equation 7
indicates the power constraint of energy storage in each time,
E0
S is the power of energy storage at the initial moment of

scheduling, and ES
max and ES

min are the maximum/minimum
power allowed for energy storage during the scheduling process,
respectively, and the main purpose of this constraint is to
prevent energy storage from overcharging or over
discharging to prolong its service life.

2.1.3 Transferable load
Industrial loads have some differences in control and

scheduling methods due to different factors such as industry,
production shift system, and operation of power-using
equipment. Most industrial transferable loads can be divided
into two categories: start–stop time delay and power size
regulation (Kumar et al., 2022).

2.1.4 Start–stop time delay transferable load
The start–stop time delay of transferable load is a more

common type of transferable load. Except for the start–stop
periods, the start–stop time delay class of transferable loads
consumes relatively flat power for most of the work cycle.
And with thermal inertia, starting after a short delay does not
affect production. However, the load curve must shift in time as a
whole, as shown in Figure 2A.

The power consumed by the start–stop time delay type of
transferable loads is shown as follows:
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Pt
QT �

0 t≤ ton
Pt
e

Δtup
t − ton( ) ton ≤ t≤ ton + Δtup

1 + δ t( )( )Pt
e ton + Δtup ≤ t≤ toff − Δtdown,

Pt
e

Δtdown
toff − t( ) toff − Δtdown ≤ t≤ toff

0 t≥ toff

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

where Pt
QT is the actual dispatch power of the generation load

aggregator for the transferable load at time t; ton is the power-on
time of transferable load; and Δtup is the time it takes from power-on
to stability. Δtdown is the time required to shut down the equipment
until the power is 0; toff is the moment when the power is 0; Pt

e is the
rated power of transferable load; and δ(t) is the fluctuating power
coefficient when the transferable load reaches the steady-state
operation, usually 5%–20%.

Considering the case where the generation load aggregator
contains a start–stop time delay type of transferable load, its
electricity consumption characteristics in providing load
regulation services can be expressed by the following constraint:

∑N
t�1
Pt
QTΔt � DQT, (9)

Dt,min
QT ≤Pt

QTΔt≤Dt,max
QT , (10)

where DQT is the total electricity demand of the transferable load
during the dispatch cycle and Dt,max

QT and Dt,min
QT are the maximum/

minimum electricity demand of the transferable load at time t,
related to the customer’s requirements for its efficiency, respectively.

Since the daily load of the start–stop time delay transferable load
is relatively stable, the starting and interruption time of each
start–stop time delay transferable load is relatively fixed. The
power plan of the transferable load can be adjusted, and the
regulation of the transferable industrial load can be achieved by
appropriately advancing or delaying the start/stop time. However,
the change in the schedule will affect the industrial customers’
habitual use of electricity. Therefore, the generation load

aggregator needs to be compensated appropriately, and the
dispatch cost Ct

QT can be expressed as

Ct
QT � KQT Pt

QT − P′,tQT
∣∣∣∣∣ ∣∣∣∣∣Δt, (11)

where KQT is the unit dispatch cost of the start–stop time delay
transferable load and P′,tQT is the expected power of the start–stop
time delay transferable load at time t. The absolute value term in Eq. 11
represents the deviation between the actual power and the desired
power, which can be reduced to the linear form shown in Eq. 12 by
introducing auxiliary variables Pt

QT1 and P
t
QT2 and constraints (13–14).

Ct
QT � KQT Pt

QT1 + Pt
QT2[ ]Δt, (12)

Pt
QT1 − P′,tQT1 + Pt

QT2 − P′,tQT2 � 0, (13)
Pt
QT1 ≥ 0, Pt

QT2 ≥ 0. (14)

2.1.5 Power sizing transferable load
Power sizing transferable load is another common type of

regulated industrial load. This type of load reduces the peak-to-
valley load difference and reduces operating costs by transferring the
power size during peak hours to other load hours, as shown in
Figure 2B.

The power of the transferable load of the power sizing type can
be expressed by the following equation:

Pt
TJ � P′

e + αtPe max
′, (15)

where Pt
TJ is the actual power dispatched by the generation load

aggregator to the transferable load in time t and P′
e is the average

power consumption of power size regulation transferable load.
Pe max
′ is the maximum regulation power. αt is the participation

adjustment factor, when αt > 0, power increases and when αt < 0,
power reduces. To ensure that the efficiency of work does not
change, the power size adjustment type can transfer the load to
increase and reduce the total amount of power used equally.

Considering the case of a generation load aggregator that
contains a transferable load of the power sizing regulation type,
its electricity consumption characteristics during the provision of

FIGURE 2
(A) Schematic diagram of start–stop time delay transferable load and (B) schematic diagram of power sizing transferable load.
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load regulation services can be expressed by the following
constraint:

∑N
t�1
Pt
TJΔt � DTJ, (16)

Dt,min
TJ ≤Pt

TJΔt≤Dt,max
TJ , (17)

where DTJ is the total demand of the transferable load in a dispatch
cycle andDt,max

TJ andDt,min
TJ are the maximum/minimum demand of

the transferable load in time t, respectively.
The power sizing transferable load can also flexibly adjust the

demand response load schedule, but the generation load aggregator
also needs to compensate the transferable load enterprise, and the
dispatch cost Ct

TJ required for time t can be expressed as

Ct
TJ � KTJ P

t
TJ − P′,tTJ

∣∣∣∣ ∣∣∣∣Δt, (18)

whereKTJ is the unit dispatch cost of the power sizing load and P′,tTJ is
the expected power consumption of the power sizing load at time t. The
absolute value term in Eq. 18 is used to represent the deviation between
the actual dispatched power and the desired power consumption, which
can be reduced to the linear form shown in Eq. 19 by introducing
auxiliary variables Pt

TJ1 and Pt
TJ2 and constraints (20–21).

Ct
TJ � KTJ Pt

TJ1 + Pt
TJ2[ ]Δt, (19)

Pt
TJ1 − P′,tTJ1 + Pt

TJ2 − P′,tTJ2 � 0, (20)
Pt
TJ1 ≥ 0, Pt

TJ2 ≥ 0. (21)

2.1.6 External grid-interactive power
When the self-provided generator, renewable energy, and energy

storage within the generation load aggregator cannot meet the load
demand, it needs to purchase power from the external grid;
conversely, the generation load aggregator can sell the surplus
power to the external grid to obtain revenue (Jiang et al., 2021).
The interactive power between the generation load aggregator and
the external grid is subject to the following balancing constraints:

Pt,buy
M − Pt,sell

M � Pt,ch
S + Pt

QT + Pt
TJ + Pt

L − Pt
G − Pt,dis

S − Pt
PV, (22)

where Pt,buy
M and Pt,sell

M are the power of the generation load
aggregator to buy or sell electricity to the external grid in time t,
respectively. Wind power is rarely located in industrial areas due to
large land areas and other factors. Therefore, in this paper, only
renewable power sources are considered for photovoltaic power
generation. Pt

PV is the PV output power of the generation load
aggregator in time t. Pt

L is the conventional load power in time t.
The interactive power between the generation load aggregator

and the external grid needs to satisfy

0≤Pt,buy
M ≤ αtMPM

max, (23)
0≤Pt,sell

M ≤ 1 − αt
M[ ]PM

max, (24)
where PM

max is the maximum value of the power exchanged between
the load aggregator and the external grid, which is determined by
considering the capacity of the transformer at the connection
between the external grid and the load aggregator and the
specific policies. αtM is the purchase and sale status of the load
aggregator to the external grid, αtM � 1 is the purchase of power by

the load aggregator to the external grid, and αtM � 0 is the sale of
power by the load aggregator to the external grid. In time t,
interaction cost Ct

M between the load aggregator and the external
grid can be expressed as

Ct
M � λt Pt,sell

M − Pt,buy
M[ ]Δt, (25)

where λt is the day-ahead traded tariff of the external grid.

2.2 Two-stage robust optimization model

The generation load aggregator model has the minimum daily
operating cost as the optimization objective, as shown in Eq. 22, and
the model constraints include Eq. 2, Eq. 4–Eq. 7, Eq. 9–Eq. 14, Eq.
16–Eq. 21, and Eq. 23–Eq. 24.

minC � ∑N
t�1

Ct
G + Ct

S + Ct
QT + Ct

GL + Ct
M[ ]. (26)

When the uncertainties of PV and load are not considered, the
deterministic optimization model for the aforementioned
generation load aggregator economic dispatch problem can be
formulated in a compact form as

min
x,y

cTy

s.t.Ay ≥ d
Ky � 0
Gx + Ey ≥ h
Iuy � u

�
,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(27)

where x and y are optimization variables, and the specific
expressions are

x � Ut
S, U

t
M[ ]T

y � Pt
G, P

t,ch
S , Pt,dis

S , Pt
QT, P

t
TJ, P

t,buy
M , Pt,sell

M , Pt
PV, P

t
L[ ]T, t � 1, 2/N( ),

⎧⎨⎩ (28)

where c is the objective function (26) column vector coefficients; A, K ,
G, E, and Iu are the coefficient matrices of the variables under the
corresponding constraints; and d and h are constant column vectors. In
Eq. 27, the first row of the constraints represents the inequality
constraints in the generation load aggregator model, including Eq. 2,
7, Eq. 10, Eq. 14, Eq. 17, and Eq. 21. The second row is the equality
constraint, including Eqs. 6 and 9, Eq. 12, Eq. 13, Eq. 17, Eq. 19, and Eq.
20. The third row corresponds to Eq. 4 and Eq. 5 and Eq. 23 and Eq. 24.
Line 4 indicates that in the deterministic optimization model, the PV
and load take the corresponding predicted values in time t, where

u� � u
�t

PV, u
�t

L[ ]Tt � 1, 2/N( ), (29)

where u
�t
PV and u

�t
L denote the predicted values of PV output and load

power in time t, respectively.
The aforementioned model is a mixed-integer linear

programming problem, which can be solved by deterministic
optimization methods, and the optimal solution depends on the
accuracy of the predicted values. However, generation load
aggregators are affected by many stochastic factors, which
makes it difficult to guarantee prediction accuracy. In
summary, deterministic optimization schemes often appear to
be too “risky."
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Therefore, in practice, the impact of uncertainty on the model
needs to be accounted for. The box uncertainty set U considers the
fluctuation range of PV output and load power.

U �
u � ut

PV, u
t
L[ ]T ∈ R N( )×2, t � 1, 2/N

ut
PV ∈[u�t

PV − Δut,max
PV , u

�t

PV + Δut,max
PV

ut
L ∈ u

�t

L − Δut,max
L , u

�t

L + Δut,max
L[ ],

⎧⎪⎪⎨⎪⎪⎩ (30)

where utPV and utL are uncertain variables introduced into PV as well
as load after adding uncertainty and Δut,max

PV and Δut,max
L are the

maximum fluctuation deviation allowed for PV output and load
power, respectively, both of which are positive.

The objective of the two-stage robust optimization model for
generation load aggregators constructed in this paper is to find the
economically optimal scheduling solution for the worst-case scenario of
uncertain variablesuwithin anuncertain setU , having the following form:

min
x

max
u∈U

min
y∈Ω x,u( )

cTy{ }
s.t. x � x1, x2,/, x2 × N( )T
xi ∈ 0, 1{ },∀i ∈ 1, 2,/2 × N( ),

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (31)

where the outer layer is minimized to the first stage master problem
with the optimization variable x and the maximum minimization of
the inner layer is the second stage subproblem with optimization
variables u and y. The second stage minimization problem is
equivalent to the objective function of Eq. 26, which represents
the minimum operating cost. The expressions for x and y are shown
in Eq. 28. Ω(x, u) denotes the feasible domain of the optimization
variables (x, u) given a set of y. The specific expressions are as
follows:

Ω x, y( ) �
y
∣∣∣∣

Ay ≥ d → γ
Ky � 0 → λ

Gx + Ey ≥ h → ]
Iuy � u

� → π

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
, (32)

where γ, λ, ], π denote the pairwise variables corresponding to each
constraint in the minimization problem of the second stage.

For each set of uncertain variables u, a deterministic
optimization model shown by Eq. 26 can be obtained, and the
purpose of the max-structure in the robust optimization model is to
find the worst-case scenario.

2.3 Column constraint generation algorithm

For the aforementioned two-stage robust optimizationmodel of the
generation load aggregator, the column constraint generation algorithm
(C and CG) is chosen to solve the model (Fanzeres et al., 2020). The C
and CG algorithm is similar to the Benders decomposition algorithm in
that the problem is first decomposed into a master problem and a
subproblem and solved alternatively to obtain the optimal solution to
the original problem (Alvarez et al., 2020). The difference between the
two algorithms is that the C and CG algorithm continuously introduces
variables and constraints related to the subproblems in the process of
solving the master problem to obtain more compact lower bounds on
the objective function values, thus reducing the number of iterations
(Shi et al., 2020).

The decomposition of Equation 31 yields a master problem of
the form

min
x

β

s.t. β≥ cTyl
Ayl ≥ d
Kyl � 0
Gx + Eyl ≥ h
Iuyl � u*

l

∀l≤ k,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(33)

where k is the current number of iterations; yl is the solution of the
subproblem after the lth iteration; and u*l is the value of the
uncertain variable u under the worst-case scenario obtained after
the lth iteration.

The decomposed subproblem takes the form

max
u∈U

min
y∈Ω x,u( )

cTy. (34)

From the aforementioned analysis, the inner minimization of
Eq. 34 is a linear problem for a given set of (x, y). According to the
strong dual theory and the correspondence of Eq. 32, the problem
can be transformed into the max problem and combined with the
outer max problem to obtain the dual problem as shown in the
following equation:

max
u∈U,γ,λ,],π

dTγ + h − Gx( )T] + uTπ

s.t.ATγ + KTλ + ET] + ITuπ ≤ c
γ≥ 0, ]≥ 0, Iu ≥ 0,

⎧⎪⎪⎨⎪⎪⎩ (35)

where there exists a bilinear term uTπ. According to the conclusions
of the literature (Bertsimas et al., 2013), u* corresponding to the
optimal solution of this pairwise problem is a pole of the uncertainty
set U ; that is, Eq. 35 takes its maximum value when uncertain
variable u should be taken to be the boundary of the fluctuation
interval described by Eq. 30. In the generation load aggregator, the
operating cost of the generation load aggregator is the largest when
the PV output is the minimum value and the load power is
maximum, which is more consistent with the definition of the
“worst-case” scenario. Therefore, Eq. 30 is rewritten in the
following form:

U �

u � ut
PV, u

t
L[ ]T ∈ R N( )×2, t � 1, 2/NT

ut
PV � u

�t

PV − Bt
PVΔut,max

PV

∑N
t�1
Bt
PV ≤ ΓPV

ut
L ∈ u

�t

L − Δut,max
L , u

�t

L + Δut,max
L[ ]

∑N
t�1
Bt
L ≤ ΓL,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(36)

where B � [Bt
PV, B

t
L]T is a binary variable, and a value of 1 indicates

that the uncertain variable is the boundary of the interval at the
ecoupled into main time t. ΓPV and ΓL are the “uncertainty
regulation parameters” for PV and load, respectively (Wang
et al., 2016), which are integers in the range of 0–N and
represent the total number of periods in which PV and load take
the boundary values of the fluctuation interval in a scheduling cycle.
After substituting the expression for the uncertain variables in Eq. 36
into Eq. 35, it will appear in the form of a product of binary and
continuous variables, which is linearized by introducing auxiliary
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variables and associated constraints (Pistikopoulos, 1998) to obtain
the following equation:

max
u∈U,γ,λ,],π

dTγ + h − Gx( )T] + u
�T
π + ΔuTB′

s.t. ATγ + KTλ + ET] + ITuπ ≤ c
0≤B′≤ �πB
π − �π 1 − B( )≤B′≤ π

∑N
t�1
Bt
PV ≤ ΓPV

∑N
t�1
Bt
L ≤ ΓL,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(37)

where Δu � [Δut,max
PV ,Δut,max

L ]T and B′ � [B′,tPV, B′,tL]T are
continuous auxiliary variables and �π is the upper bound of the
pairwise variables and is a sufficiently large positive real number.

After the aforementioned derivation and transformation, the
two-stage robust optimization model for the generation load
aggregator is decoupled into the main problem and subproblem
with a mixed integer linear form, and the model is solved by the C
and CG algorithm, shown in Figure 3.

1) The uncertain variable u is set as the initial worst-case scenario,
the lower bound LB � −∞, the upper bound UB � +∞, and the
number of iterations k � 1.

2) The first stage of a two-stage robust optimization: The master
problem in Eq. 33 for the optimal solution (x*k, β*k, y1*,/, yk*) is
solved according to the worst-case scenario u1*, with the value of the
master problem objective function as the new lower bound LB � β*k.

3) The second stage of a two-stage robust optimization: The
solution x*k of the master problem is substituted into the

FIGURE 3
Flow chart of the two-stage robust optimization model.
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subproblem in Eq. 37 to obtain the objective function value
f *k(x*k) of the subproblem and the uncertain variables u � uk+1*

and the upper bound UB � min UB, f *k(x*k){ } are updated.
4) The convergence threshold is set to ε. IfUB − LB≤ ε, the iteration

is stopped and the optimal solutions x*k and y*k are returned.
Otherwise, the variable yk+1 and the following constraint are
added:

β≥ cTyk+1
Ayk+1 ≥ d
Kyk+1 � 0
Gx + Eyk+1 ≥ h
Iuyl � uk+1* .

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(38)

Let k � k + 1, and we skip to 2) until the algorithm converges.

3 Results and discussion

The generation load aggregator shown in Figure 1 is used as an
example for this study. The simulation analysis includes three
aspects: economic scheduling of generation load aggregator,
comparison among optimization models, and boundary
conditions of energy storage scheduling.

3.1 Economic dispatch scheme for
generation load aggregators

In the economic scheduling scheme of the generation load
aggregator, the uncertainty regulation parameter of the load
power is set to 12, which means that the load power will reach
the maximum value of the forecast interval for at most 12 periods
during the scheduling optimization process (Liu et al., 2018). The
uncertainty regulation parameter of the PV output is set to 6, which

means that the minimum value of the forecast interval will be
reached for at most six periods during the optimization process
and the rest of the periods will be equal to the forecast value. The
operating parameters of the generation load aggregator during the
simulation are shown in Table 1(Li, 2020).

In practice, the maximum allowed fluctuation deviation of load
power and PV output within the generation load aggregator can be
set based on the historical forecast deviation in the past. This article
takes as an example a typical weekday on a sunny spring day in
Yongqiang Industrial Park in Shenyang, Liaoning Province, China.
The predicted curves and actual curves of its load power and
photovoltaic output are shown in Figures 4A,B, respectively.
Also, the shaded parts are the uncertainty sets considered in this
paper with values of 10% and 15% of the predicted values of load
power and PV output (China, National Education Association,
2013). The residential electricity step tariff of a city in China is
used as the day-ahead trading tariff for power exchange between the
external grid and the generation load aggregator, as shown in
Figure 4C.

The two-stage robust generation load aggregator scheduling
optimization process used in this example is shown in Figure 5A,
and it stabilized in the 2nd iteration.

The scheduling results are shown in Figures 5A-E. Figure 5B
shows the overall results of the two-stage robust generation load
aggregator optimized scheduling. Figure 5C shows the micro-gas
turbine output power and the power purchased and sold by the
generating load aggregator to the external grid, taking negative
values when the generating load aggregator purchases power
from the external grid. Figure 5D shows the energy storage
charging and discharging power, negative when charging and
positive when discharging. Figure 5E shows the start–stop time
delay transferable load actual and desired power usage schedule.
Figure 5F shows the power sizing transferable load actual and
desired power usage schedule.

As shown in Figure 5B, in 1–7 h and 19–24 h, the PV output is
0, and the load of the generation load aggregator relies entirely on
the micro-gas turbine, energy storage, and external grid supply.
At this time, when the day-ahead traded tariff of the external grid
is lower than the unit power generation cost of the micro-gas
turbine, the micro-gas turbine operates at the minimum output
power, as shown in Figure 5C for 1–7 h and 24 h. During the rest
of the period, the micro-gas turbine outputs maximum power,
reducing the purchased power to the external grid (e.g., 8 h,
12–22 h, and 24 h) and selling power to the external grid during
peak tariff hours (e.g., 9–11 h and 23 h), thus reducing operating
costs.

As can be seen in Figure 5D, under the time-sharing tariff
mechanism and the periodic conditions of PV output, the
charging of energy storage units during lower tariff hours or
PV output hours, such as 5–6 h, 16–18 h, and 24 h, and
discharging during peak tariff hours, such as 9–11 h and
21–23 h, can achieve not only peak shaving and valley filling
but also lower operating costs. As shown in Figure 5E, the
expected electricity consumption plan for the start–stop time
delay type of transferable load is not much different from the
peak and valley values of the load compared to the conventional
load due to the three shifts. However, the system reformulates the
production plan without affecting the conditions of production,

TABLE 1 Operating parameters of generation load aggregators.

Unit Parameter Value

Micro-gas turbine PG
max/kW 1,000

PG
min/kW 100

a/b(yuan/kW.h) 0.72/0

Energy storage Ps
max/kW 1,200

Es
max/kW.h 4,500

Es
min/kW.h 800

Es(0)/kW.h 2,500

Ks/(yuan/kW.h) 0.62

η 0.95

Transferable load Start/stop time delay type KQT/(yuan/kW.h) 0.55

DQT/kW.h 6,480

Power size adjustment type KGL/(yuan/kW.h) 0.58

DGL/kW.h 2,140

External grid interactive power PM
max/kW 6,000
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advance, or stagger part of the load. The system will arrange as
many loads with large power as possible during the period of low
electricity prices, such as transferring part of the electricity power
from 11–13 h to 6–8 h and transferring part of the electricity
power from 18–23 h to 24–5 h. Because the system works 24 h a
day, the operational space for load shifting is not very large. This
observation was also made by Chen (2020). As shown in
Figure 5F, the desired electricity consumption schedule for the
power sizing type of transfer loads is similar to that of
conventional loads, with electricity consumption mainly
concentrated in peak tariff hours. Under the premise of
satisfying the total electricity demand and the electricity
consumption constraint of each period, the power
consumption in the 11–24 h period is reduced and the power
consumption in the 1–10 h period is increased, thus reducing the
power that the generation load aggregator needs to purchase in
the peak tariff period.

3.2 Comparison of the system with and
without generation load aggregators

In the absence of a generation load aggregator, small- and
medium-sized transferable loads can only be purchased from the
external grid as non-regulated loads, without subsidies for peak
and valley shifting, because their electricity consumption and
regulation do not meet the requirements for participation in the
electricity market. Power generation and energy storage cannot
participate in power market trading due to the small installed
capacity, and the electricity generated will not be sold to the
external grid and can only be used as a self-provided generator for
the load (Khan et al., 2021; Wu et al., 2022a). Its daily operating
cost is shown in Eq. 39, with constraints as in Eq. 2, Eq. 4–Eq. 7,
and Eq. 23.

minC′ � ∑N
t�1

Ct
G + Ct

S + Ct
L + Ct

M[ ], (39)

FIGURE 4
(A) Forecast/actual load power curve of a typical working day at Yongqiang Industrial Park in Shenyang, (B) forecast/actual PV output curve for a
typical working day at Yongqiang Industrial Park in Shenyang, and (C) external grid day trading tariff.

Frontiers in Energy Research frontiersin.org10

Zhang et al. 10.3389/fenrg.2023.1258689

42

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1258689


FIGURE 5
(A) Two-stage robust generation load aggregator scheduling optimization process, (B) power of each component within the generation load
aggregator after two-stage robust optimization, (C)micro-gas turbine output power and generation load aggregation commercial power purchase and
sale, (D) energy storage charging and discharging power, (E) start/stop time delay type transferable load actual/desired power consumption plan, and (F)
power sizing-type transferable load actual/desired electricity usage plan.

TABLE 2 Comparison of operating costs of systems optimized with and without generation load aggregators.

With generation load aggregator Without generation load aggregator

Day-ahead operating cost/$ 5,124 5,249
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where Ct
L is the cost of electricity for the load. The operating costs of

the optimized system with and without generation load aggregators
are shown in Table 2, which shows that the operating costs of the
system with generation load aggregators are significantly lower than
those without generation load aggregators because generation load
aggregators sell electricity when prices are high and buy it when
prices are low through price differentials. The comparison of load
purchases from the grid in the case of generation load aggregators
and the traditional dispatch mode is shown in Figure 6. If no
generation load aggregator exists, although each load has its own
distributed PV, which can reduce the load during the noon hour, the
electricity consumption period of 19–22 h is still a peak. If a
generation load aggregator exists, the internal transferable load
can participate in the power market through the generation load
aggregator to shift the peak and fill the valley in exchange for
subsidies and reduce the cost of electricity. The generation and
storage facilities can participate in the power market through the
generation load aggregator as a power source to supply electricity to
the external grid to gain profit. In addition, in the presence of a
generation load aggregator, the load gets a certain degree of rise
during the trough period of electricity consumption in the external
grid, and in some areas where renewable energy is more
concentrated, the generation load aggregator can promote the
consumption of renewable energy. In contrast, during the peak
periods of the external grid, the demand of the generation load
aggregator to purchase power from the outside is low, and it can
even serve as a temporary power source to supply the external grid.
Also, during peak periods on the external grid, as can be seen in the
9–13 time period, although the system’s electricity consumption is at
its peak, the generating load aggregator has a very low need to

purchase power from the outside world and is even able to act as a
temporary source of power to the external grid when the price of
electricity is high. Generation load aggregators have a peak shifting
effect, shifting the high point of the evening peak of the required
purchased power from the 20–22 time period to the 16–17 time
period. Electricity prices are low during the 6–17 time period
because it is not the peak of electricity consumption on the
external grid. Reducing the cost of electricity consumption also
contributes to mitigating peak-to-valley differences in the external
grid. So, power prices are low, reducing the cost of electricity while
also contributing to the external grid to mitigate peak-to-valley
differences. In summary, generation load aggregators can relieve
peak and valley pressure on the external grid from the load side.

Table 3 shows the comparison of the cost of electricity
consumption for each type of load with and without
generation load aggregators. The costs of electricity
consumption for the start/stop time delay-type transferable
load, power sizing-type transferable load, and the non-
regulated load are $696, $229, and $3,796, respectively, in the
absence of a generation load aggregator. With load aggregators,
the cost of electricity drops to $563, $84, and $3,786, respectively.
Power sizing-type transferable load has the largest percentage
reduction in electricity costs due to its deeper involvement in
peak shaving and valley filling. The non-regulated load does not
participate in peak and valley reduction, but the cost of electricity
consumption is reduced due to the presence of generation and
storage components. In summary, the rationale for the
participation of each type of load in the generation load
aggregator and the function of the generation load aggregator
to reduce the cost of electricity for the load can be demonstrated.

FIGURE 6
Comparison of power purchased from the grid by loads with and without generation load aggregator.
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3.3 Comparison of optimization models

The two-stage robust generation load aggregator optimization
model proposed in this paper and the deterministic optimization
model (Hansen et al., 2015) are compared in two dimensions: the
effectiveness of determining the worst-case scenario and the
performance of the chosen method.

The two-stage robust generation load aggregator optimization
model is based on the uncertainty regulation parameters ΓL � 12
and ΓPV � 6. The worst-case scenario is that the load power takes the
maximum value of the prediction interval 12 times from 7 to 13 h
and 18–22 h, and the PV output takes the minimum value of the
interval six times from 10 to 14 h and 16 h. The deterministic
optimization model for the control group is shown in Equation
23 and is solved using a mixed integer linear programming
approach. To verify that the scenarios taken from the robust
optimization model scheduling scheme selected in the paper are
the worst-case scenarios. Several times were randomly selected as the
boundary of the prediction interval in the model. It is shown in
Table 4 for the following three comparative scenarios.

The two-stage robust generation load aggregator
optimization model and three deterministic optimization
models were used to solve the day-ahead operating costs of
the generation load aggregators, and the results are shown in
Table 4. In Scenario 1, the load power is taken to all peak hour
tariff periods as the maximum period of the forecast interval. In

Scenario 2, the PV output minimum period of the deterministic
optimization model increases the peak tariff period by 9 h
compared to the robust model. However, the day-ahead
operating costs of both scenarios are lower than the results of
Scenario 3. The time selected for Scenario 3 is the same as that for
the deterministic optimization model, and the day-ahead
operating cost is also the same.

To verify the flexibility of the two-stage robust generation load
aggregator optimization model to adjust the conservativeness of the
scheduling scheme, five sets of uncertainty regulation parameters, as
well as a set of deterministic optimization models, are selected to
compare the results. The parameter settings, corresponding day-
ahead operating costs, purchased power, and sold power are shown
in Table 5.

As can be seen from Table 6, the results of the uncertainty
robust optimization model are the same as those of the
deterministic optimization model with a day-ahead operating
cost of $4,575 for the uncertainty adjustment parameter. As the
uncertainty in the regulation parameters increases, the operating
cost of the generation load aggregator increases as well,
amounting to $5,346 for groups ΓL � 24 and ΓPV � 12. In other
words, the more the generation load aggregator considers the
uncertainty of the load power and PV output when developing
the day-ahead dispatch planning scheme, the more conservative
the scheme obtained and the higher the operating cost. The
change in operating costs is mainly due to the change in
power purchased and sold by the generation load aggregator
to the external grid. The larger the value of the uncertainty
parameter Γ, the greater the number of periods in which the
load power is taken to the maximum value of the forecast interval
and the PV output is taken to the minimum value of the forecast
interval. Therefore, the higher the surplus power of the load
aggregator, the higher the total purchased power.

The operating cost of the generation load aggregator using
the deterministic optimization model in Table 6 is smaller than
that of the robust optimization model, but this does not mean
that the deterministic optimization model is “better” than the
robust model. The generation load aggregator needs the
corresponding generation and consumption plan submitted in
the day-ahead market, and the inequality between the planned
generation and the actual volume on day 2 caused by the forecast
error needs to be purchased in the real-time market
(Lankeshwara et al., 2022). Electricity purchase prices in the
real-time market are generally higher than those in the day-ahead
market, and electricity sales prices are generally lower than those
in the day-ahead market (Agrawal, 2022), so forecast errors can
lead to higher final transaction costs. In summary, the scheduling

TABLE 3 Comparison of electricity costs for various types of loads with and without generation load aggregators.

Mode Cost of electricity consumption/$

Start/stop time delay-type transferable
load

Power sizing-type transferable
load

Non-regulated
load

Without generation load
aggregator

696 229 3,796

With generation load aggregator 563 84 3,786

TABLE 4 Parameterization of deterministic optimization models in three
scenarios.

Scenario Load power Photovoltaic power output

1 9–12,16–23h 10–14h,16h

2 7–13h,18–22h 9–14h

3 7–13h,18–22h 10–14h,16h

TABLE 5 Comparison of operation cost between the robust optimizationmodel
and deterministic optimization model.

Optimization method Previous operating cost/$

Robust optimization 5,124

Scenario 1 5,086

Scenario 2 5,034

Scenario 3 5,124
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scheme obtained from the robust optimization model has
stronger robustness and the ability to resist the risk of real-
time market price fluctuations. To verify the aforementioned
conclusions, the performance of the two-stage robust
optimization method and the deterministic optimization
method proposed in this paper is compared with ΓL � 12 and
ΓPV � 6 as examples. The electricity purchase price in the real-
time market is assumed to be 1.5 times the price of the
corresponding period in the previous day’s market, and the

electricity sale price is assumed to be 0.5 times the price of the
previous day’s market. The final operating costs for the robust
optimization method and the deterministic optimization method
are shown in Table 7, using the actual and predicted values of
load and PV shown in Figures 5A,B as references. The balancing
operating comparison is shown in Figure 7, with positive values
indicating the additional power that the generation load
aggregator needs to purchase in the real-time market and
negative values indicating the additional power sold by the

TABLE 6 Day-ahead operating costs and purchased/sold power for generation load aggregators with different uncertainty regulation parameters.

Uncertainty parameter Previous operating cost/$ Purchased power/kWh Sold power/kWh

Deterministic optimization 4,575 27,958 1,392

ΓL � 0, ΓPV � 0 4,575 27,958 1,392

ΓL � 6, ΓPV � 3 4,903 28,489 1,368

ΓL � 12, ΓPV � 6 5,124 28,983 1,174

ΓL � 18, ΓPV � 9 5,178 29,432 1,082

ΓL � 24, ΓPV � 12 5,346 30,803 908.2

TABLE 7 Comparison of the final operating costs of the system after optimization by robust and deterministic optimization methods.

Robust optimization Deterministic optimization

Day-ahead operating cost/$ Equilibrium cost/$/$ Total cost/$ Day-ahead operating cost/$ Equilibrium cost/$ Total cost/$

5,124 287 5,411 4,575 1,285 5,860

FIGURE 7
Imbalance power generated by real-time power markets.
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generation load aggregator. The power purchased in the real-time
market by the day-ahead scheduling scheme using robust
optimization is much less than that of the deterministic
optimization method. This results in an equilibrium cost of
$287, which is much lower than the equilibrium cost of
$5,411 for the deterministic optimization method, thus
reducing the final operating cost from $5,860 to $5,411.

3.4 Energy storage scheduling boundary
conditions

The time-sharing tariff mechanism between the generation
load aggregator and the external grid shown in Figure 7 allows the
generation load aggregator to use energy storage to utilize the
power purchased in the valley hours in the peak hours under the
condition that the energy storage portion of the generation load
aggregator needs to meet the constraint (Agrawal, 2022). Based
on this premise, the boundary conditions for the use of energy
storage for peak shaving by generation load aggregators can be
further deduced; in other words, generation load aggregators will
use energy storage only under the condition that energy storage
can reduce the operating cost of the system. The dispatch cost of
energy storage is less than or equal to the difference between the
revenue from power sales during peak hours and the cost of
power purchases during valley hours (Yang et al., 2020).

η∑N
t�1
Pt,ch
S Δt + 1

η
∑N
t�1
Pt,dis
S Δt⎡⎣ ⎤⎦KS ≤ σ2∑N

t�1
Pt,dis
S Δt − σ1∑N

t�1
Pt,ch
S Δt, (40)

where σ1 and σ2 are the traded tariffs for the valley and peak
hours, respectively. According to Eq. 6, Eq. 41 can be further
simplified as

KS ≤
ησ2 − σ1/η

2
. (41)

Equation 41 is the boundary condition for the use of energy
storage for peak and valley reduction by generation load
aggregators, and its value depends on the relationship between

the unit charge and discharge cost of energy storage and the peak
and valley tariffs (Talluri et al., 2021). Using the parameters in
Table 1 as an example, the generation load aggregator dispatches
energy storage boundary conditions as shown in Figure 8A.
When the value of KS is below the plane shown in Figure 16,
the generation load aggregator schedules energy storage to reduce
the total operating cost; conversely, the generation load
aggregator will not schedule the charging and discharging of
energy storage.

In the time-sharing tariff mechanism shown in Figure 6, the
peak hour tariff is $0.194/(kW·h) and the valley hour tariff is
$0.069/(kW·h), and the boundary condition for energy storage
dispatched by the generation load aggregator can be obtained
from Eq. 41 asKS is not greater than $0.057/(kW·h). To verify the
validity of the aforementioned conclusions, the ratio of the total
amount of electricity charged or discharged by the generation
load aggregator to the rated capacity of the energy storage during
a dispatch cycle is defined as lth (Karimi and Kwon, 2021).

θ � η∑N
t�1
Pt,ch
S Δt⎡⎣ ⎤⎦/CS, (42)

whereCS is the rated capacity of the energy storage. AsKS varies, the
variation curve of energy storage usage by generation load
aggregators is shown in Figure 8A.

As can be seen in Figure 8B, when the unit charge/discharge cost of
energy storage is greater than $0.057/(kW·h), the generation load
aggregator will no longer charge/discharge energy storage. In other
words, in practical application, if the unit charging and discharging cost
of energy storage is higher than the boundary condition of energy storage
dispatch under the corresponding time-sharing tariffmechanism, energy
storage can be installed without other incentive mechanisms.

4 Conclusion

In this paper, the concept of generation load aggregator is proposed
to address the problem that small- and medium-sized regulating
customers have fewer ways to participate in the electricity market. A

FIGURE 8
(A) Generation load aggregator scheduling energy storage boundary conditions and (B) energy storage utilization.
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generation load aggregator framework is established that can internally
include self-provided generator, energy storage, renewable distributed
power, two types of transferable loads, and non-regulated loads.
Considering the uncertainty of renewable power sources and loads
within the generation load aggregator, this paper establishes a two-stage
robust generation load aggregator model to optimize its economic
dispatch. To relieve the pressure on the power system from the load side
during special hours such as peak and valley and to provide a theoretical
basis for future investment and construction planning by generation
load aggregator investors and for small- and medium-sized adjustable
users to enter the electricity market, the results are analyzed as follows:

(1) The proposed model of generation load aggregator considering
uncertainty can be solved by column constraint generation
algorithm to obtain the most economical scheduling scheme
under the “worst-case” scenario. In this scheme, the generation
load aggregator can make full use of self-provided generator,
energy storage, and transferable load to reduce the power cost of
the system.

(2) A comparison of the results with and without generation load
aggregators illustrates the rationality of the generation load
aggregator framework by relieving peak and valley pressure on
the external grid from the load side, reducing the cost of electricity
for loads, and promoting the consumption of renewable energy.

(3) The optimization method used in this paper reduces the operating
cost from $5,860 to $5,411 compared to the deterministic
optimization method, and the resulting day-ahead scheduling
scheme is more robust and resilient to the risk of real-time
market price fluctuations. Also, the optimization algorithm used
in this paper can adjust the conservativeness of the generation load
aggregator optimization scheme by varying the uncertainty
regulation parameters to accommodate the use of generation
load aggregator operators with different mental risk-taking
capabilities. The power generation load aggregators with weak
psychological risk-taking ability choose the scheme with high
conservative type and the uncertainty regulation parameters are
larger.

(4) The scheduling plan for energy storage by the generation load
aggregator depends on the relationship between the peak tariff, the
valley tariff, and the unit charge/discharge cost of energy storage
under the time-sharing tariff mechanism. By analyzing the
utilization rate curve of energy storage, the energy storage will
no longer be meaningful for generation load aggregators when the
unit charge/discharge cost of energy storage is greater than $0.057/
(kW·h) under the existing tariff conditions. The findings can
provide a reference for generation load aggregator investors
when planning whether to install energy storage or the scale of

energy storage installation and also help the power market
management to design reasonable incentive mechanisms.
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Research on multi-timescale
operation optimization of a
distributed electro-hydrogen
coupling system considering grid
interaction

Shun Ma1*, Shiyan Mei1 and Liwei Yu2

1Guangdong Power Grid Co., Ltd., Guangzhou, China, 2Dongguan Power Supply Bureau of Guangdong
Power Grid Co., Ltd., Dongguan, China

Against the backdrop of increasingly prominent environmental issues, new energy
consumption issues, and energy supply and demand balance issues, the
optimization of multi time scale operation of distributed electro hydrogen
coupling systems has become a research focus. Based on this, this article
optimizes the multi time scale operation of a distributed electric hydrogen
coupling system that takes into account grid interaction. By designing a system
framework for distributed electro hydrogen coupling systems, operational
strategies for each system were proposed. Analyzed the uncertainty and
response characteristics of wind and solar power generation units and load
demand, and constructed a multiple uncertainty model for distributed electric
hydrogen coupling system. At the same time, a three stage, multi time scale
operation optimization model of the electric hydrogen coupling system was
constructed based on the response characteristics of the distributed electric
hydrogen coupling system. The construction of these models reduced
scheduling costs by 12.55% and increased clean energy consumption rate by
13.50%.

KEYWORDS

multiple uncertainties, electro-hydrogen coupling, multi-timescale, operational
optimization, grid interaction

1 Introduction

Under the “dual carbon” goal, environmental issues and energy supply and demand
balance are becoming increasingly prominent (Ren et al., 2022). In this context, the
production of clean wind and solar new energy has developed on a large scale, but
problems such as uncertainty, volatility, and inability to fully absorb remain unresolved
(Li et al., 2022). Utilizing uncontrollable wind and solar new energy to generate
hydrogen and locally supply regional hydrogen load demand can reduce
transportation costs. At the same time, hydrogen energy, as a secondary energy
source, has advantages such as flexible conversion and long-term energy storage
(Gorre et al., 2020; Zhang et al., 2022). Therefore, coupling the electric energy
network with the hydrogen energy network into an electric hydrogen system has
significant economic value (Zhang et al., 2022). Optimizing the operation of the
coupling system lays the foundation for the development of distributed electric
hydrogen coupling systems. However, at different timescales, the accuracy of wind,
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photovoltaic, and load prediction in the electric hydrogen
coupling system is inconsistent (Li et al., 2022). It is necessary
to conduct research on the multi-timescale operation of the
electric hydrogen system.

Regarding research on multiple timescales, most of the
existing research focuses on integrated energy systems. Based
on the differences in energy characteristics in integrated energy
systems, Li et al. (2020) optimized the scheduling time
resolution of cooling, heating, and electricity and constructed
a mixed day-to-day timescale scheduling optimization model
for integrated energy systems. Xu et al. (2019) designed a
comprehensive response architecture that considers multiple
timescales to achieve orderly scheduling of user demand
responses, which can reduce overall operating costs. Wang
et al. (2022) proposed a two-stage scheduling optimization
plan with the objective function of minimizing operating
costs, taking the combined cooling, heating, and power
system as the research object. Jin et al. (2019) focused on
microgrid systems and also proposed a two-stage scheduling
optimization plan. On the basis of the two-stage rolling
optimization of “day-ahead–day-in,” Yuan et al. (2019) (Bao
et al., 2016) proposed a multi-timescale scheduling
optimization method that considers “day-ahead–day-in–real-
time,” where day-ahead takes 1 h as the scheduling response
time, the day-in response time is 15 min, and the real-time
response time is 5 min. Furthermore, based on the optimization
of “day-ahead–day-in–real-time,” Zhao et al. (2020) proposed a
long-term optimization model with an annual cycle, with the
objective function of minimizing annual investment cost, to
optimize the capacity allocation and investment decision-
making of the comprehensive energy system. From the
existing multi-timescale optimization research, on the one
hand, there is a lack of operational optimization research
focusing on distributed electro-hydrogen coupling systems in
the research object. On the other hand, in terms of multi-
timescale research, the growth of scheduling response time is
mostly 1 h in the day-ahead, 15 min in the day-in, and 5 min in
the real-time, without in-depth consideration of equipment and
energy characteristics.

In the operation process of distributed electric hydrogen
coupling systems, due to the existence of multiple
uncertainties in wind power, photovoltaic, and load, the study
of uncertainty is also crucial for distributed electric hydrogen
coupling systems. Pan et al. (2022) used robust coefficients to
characterize the uncertainty of renewable energy sources and
other sources. Hou et al. (2021) described the uncertainty of wind
and solar output based on the typical scenario method. Lu et al.
(2022) used the interval method to describe the uncertainty of
user-end load. In addition to considering the unilateral
uncertainty of the source and load ends, Cui et al. (2022)
(Zhai et al., 2020) also considered the uncertainty of new
energy generation and comprehensive demand response and
verified through examples that considering multiple
uncertainties can improve the risk resistance ability of the
comprehensive energy system. The existing research on
uncertainty can consider the uncertainty of source-side output
and load-side demand response. However, in distributed electro-
hydrogen coupling systems, demand response is an important

resource for its invocation, and the accuracy of resource
invocation will also affect the uncertainty of the system.
Existing research has little consideration for the uncertainty of
load-side demand response.

Based on the aforementioned research, this paper conducts a
multi-timescale operation optimization study of a distributed
electric hydrogen coupling system that takes into account grid
interaction. Compared with the existing research, this work
incorporated the following innovations:

(1) In terms of uncertainty analysis, not only the uncertainty of the
source and load ends is considered, but also the uncertainty of
the load demand response in the coupled system is innovatively
considered.

(2) In terms of operational optimization, based on the response
characteristics of the equipment, a three-stage multi-timescale
operational optimization model of “day-ahead–day-in–real-
time” is proposed. Considering the adjustment and response
level of equipment in the day-in and real-time stages, a “day-
in–real-time” two-stage adjustment plan is developed, which
differs from traditional overall adjustment.

(3) In terms of scheduling time, the traditional response scheduling
time of 1 h in the day-ahead, 15 min in the day-in, and 5 min in
the real-time is optimized based on system equipment and
various energy characteristics.

The remainder of this paper is arranged as follows: in Section
2, the framework of the electric hydrogen coupling system is
designed, and the operation strategy of the coupling system unit
is proposed. In Section 3, based on the system unit modeling, the
uncertainty and response characteristics of the coupled system
are analyzed. In Section 4, a coupled system operation
optimization model with three timescales of day before day,
day within day, and real time is constructed. In Section 5,
taking a coupled system as an example for empirical analysis,
the effectiveness of the model was verified.

2 Design of the electric hydrogen
coupling system

2.1 System framework

The electric hydrogen coupling system includes three
networks: electric energy network, hydrogen network, and
thermal network. The distributed power supply network
consists of wind turbines, photovoltaic panels, external
networks, and electrical loads. The hydrogen network consists
of an electrolytic cell, hydrogen fuel cell, hydrogen storage tank,
and hydrogen load. The thermal energy network is composed of
electric to heat equipment, electrolytic cell, and cooling water
circulating device inside the hydrogen fuel cell. Distributed
power supply, hydrogen network, and thermal network are
coupled together and coordinated and dispatched by the
control center of the electric hydrogen coupling system. When
there is a shortage demand in the coupling system, energy is
purchased from external networks. If the system exceeds supply,
energy is sold to external networks (Figure 1).
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2.2 System unit operation strategy

2.2.1 Electric energy network
In order to reduce wind and solar power abandonment rates and

achieve the consumption of wind and photovoltaic power
generation, the control center of the electric hydrogen coupling
system conducts full scheduling of wind and photovoltaic power
generation. On the one hand, when wind power and photovoltaic
power cannot meet the electricity load demand, electricity is
purchased from the external grid to meet the electricity load
demand shortage. On the other hand, the hydrogen is released
from the hydrogen storage tank and generated by the hydrogen fuel
cell. When wind and photovoltaic power generation exceeds the
electricity load demand, the electrolysis cells use the excess electricity
to produce hydrogen, and the generated hydrogen is stored in
hydrogen storage tanks to supply the local hydrogen load demand.

2.2.2 Hydrogen energy network
When wind and photovoltaic power generation exceeds the

electricity load demand, the electrolytic cell uses excess electricity to
produce hydrogen, and combined with the electricity price situation, the
generated hydrogen is stored in the hydrogen storage tank. If the power
load of the system is insufficient and the electricity price is high, the
hydrogen in the storage tank will be supplied to the hydrogen fuel cell to
generate electric energy and heat energy to obtain benefits. If the system’s
electricity load is insufficient, the electricity price is low, and the
purchased electricity meets the system’s electricity load demand with
higher efficiency, the generated hydrogen will be stored in hydrogen
storage tanks to supply the regional hydrogen load demand.

2.2.3 Thermal network
The heat load demand of the thermal energy network is met by the

electric-to-heat equipment, hydrogen fuel cell, and electrolytic cell.
Among them, the heating efficiency of hydrogen fuel cells is higher
than the power supply efficiency. In hydrogen fuel cells, we first consider
the heat load demand to control the hydrogen consumption of hydrogen

fuel cells and then consider the power load demand. Therefore, hydrogen
fuel cells and electrolytic cells are first used to meet the heat load demand
in the heat energy network. If hydrogen fuel cells and electrolytic cells
cannotmeet the heat load demand, then the power is purchased from the
external network or the excess power from wind and solar power
generation is used to supply heat through the electric-to-heat equipment.

3 Unit modeling and uncertainty
analysis of the electro-hydrogen
coupling system

3.1 System unit modeling

This section considers the characteristics of each unit equipment
and constructs corresponding models.

3.1.1 Wind turbines
The output of wind power at each moment is the product of the

installed capacity and output coefficient of the wind power plant, as
shown in Eq. 1:

Pwind,t � ηwind,t · Pe
wind, (1)

where Pwind,t is the output of the wind power plant at time t;
ηwind,t is the output coefficient of the wind power plant at time t; and
Pe
wind is the rated power of the wind power plant.

3.1.2 Photovoltaic unit
Photovoltaic power generation is influenced by regional light

intensity, and the beta distribution is used to fit the radiation pattern
of light. The output of photovoltaic power generation is shown in Eq. 2:

Ppv,t � mpv · fpv,t · λpv · λtran · 1 − λloss( ), (2)

where Ppv,t is the photovoltaic power generation output at time
t;mpv is the area of the photovoltaic panel; fpv,t is the light intensity

FIGURE 1
Framework diagram of the electric hydrogen coupling system.
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at time t; λpv is the efficiency of the photovoltaic panel in absorbing
light intensity; λtran is the solar-cell efficiency; and λloss is the loss
coefficient of the photovoltaic panel.

3.1.3 Electric tank
Electrolytic cells include an alkaline electrolyzer, a high-

temperature steam electrolyzer, and a proton-exchange
membrane electrolyzer. Due to their advantages of easy
maintenance and wide application (Liu et al., 2022), alkaline
electrolyzers are suitable for the electric hydrogen coupling
system constructed in this paper for park scenarios. Based on
this, an alkaline electrolytic cell is used in this section. The real-
time balance between the electrical energy consumed and the energy
generated during the operation of an alkaline electrolytic cell is
shown in Eq. 3:

Pin
el,t � mout

el,t +Hxs
el,t +Hloss

el,t ,
mout

dj,t � λel,tPin
el,tζel,

{ (3)

where Pin
el,t is the electrical power consumed by the electrolytic

cell; mout
dj,t and λel,t are the quality and efficiency of hydrogen gas

produced by the electrolytic cell, respectively;Hxs
el,t andH

loss
el,t refer to

the thermal energy generated during the operation of the electrolytic
cell and the heat dissipation loss, respectively; and ζel is the
conversion coefficient of the electrolytic cell.

Under constant temperature and pressure conditions, the
hydrogen production efficiency of the electrolytic cell is related to
the current efficiency and voltage efficiency, as shown in Eq. 4:

λel,t � λIel,tλ
U
el,t,

λIel,t � 96.5e
−74.6

It
el

( )
,

λUel,t �
Uzx

el

Udj
el

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(4)

where λIel,t and λUel,t represent the current efficiency and voltage
efficiency of the electrolytic cell, respectively; Itel is the operating
current of the electrolytic cell;Uzx

el is the thermal neutral voltage; and
Udj

el is the voltage of electrolysis of water.
Under certain temperature and pressure conditions, the

electrolysis of water voltage of the electrolytic cell depends on the
current density, as shown in Eq. 5:

Udj
el � Urev

el T, P( ) + Uohm
el j, T( ) + Uh2

el j, T( ) + Uo2
el j, T( ),

Urev
el T, P( ) � 1.5184 − 1.5421 × 10−3T + 9.523 × 10−5T2e + 9.84 × 10−8T2,

Uohm
el � IelRel,

Uh2
el � ET

ϑ1n1Y
In

j

j1
,

Uo2
el �

ET

ϑ2n2Y
In

j

j2
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(5)

where Urev
el , U

ohm
el , Uh2

el , and Uo2
el refer to reversible voltage,

resistance voltage drop, hydrogen overpotential, and oxygen
overpotential, respectively; T, P, and j represent temperature,
pressure, and current density, respectively; Rel is the resistance of
the electrolyte; E and Y are universal gas and Faraday constant,
respectively; ϑ1, n1, and j1 are the charge transfer coefficient,
electron transfer number, and current density of the cathode,

respectively; ϑ2, n2, and j2 are the charge transfer coefficient,
electron transfer number, and current density of the anode.

Referring to the relevant parameters of the electrolytic cell in Liu
et al. (2022), the non-linear relationship between the input power of
the electrolytic cell and the hydrogen production efficiency of the
electrolytic cell is shown in Figure 2. The electrolysis cell has the
highest hydrogen production efficiency when the input power
accounts for approximately 20% of the rated power; however, the
hydrogen production amount is small. The optimal operating range
is (50%, 100%) of the rated power.

3.1.4 Hydrogen storage tank
Based on different pressure requirements, hydrogen storage

tanks mainly involve three types of hydrogen storage methods:
solid, liquid, and gaseous. Among them, high-pressure hydrogen
storage in the gaseous state has been the most widely used, mature,
and low-cost method, with a pressure of up to 20 MPa. When the
pressure is less than 10 MPa, the ideal equation of state can be used
to build the relationship between the mass and pressure of the
hydrogen storage tank. However, due to the small relative
molecular weight of hydrogen, when the pressure exceeds
10 MPa, it is easy to lead to explosion. At this time, the ideal
equation of state does not accurately describe the relationship
between mass and pressure. Fan’s equation can characterize the
mass and pressure of hydrogen storage tanks by considering the
repulsive and gravitational forces between molecules, as shown in
Eq. 6:

pEHS,t + c1
nEHS,t

VEHS,t
( )2( ) VEHS,t − c2nEHS,t( ) � nEHS,t · a · TH,

mEHS,t � MH · nEHS,t,

⎧⎪⎪⎨⎪⎪⎩ (6)

where pEHS,t is the pressure of the hydrogen storage tank at
time t; c1 and c2 are Fan’s coefficients; nEHS,t is the amount of
hydrogen in the hydrogen storage tank; VEHS,t is the volume of
the hydrogen storage tank; a is a constant; TH is the temperature
of hydrogen gas; and MH is the relative molecular weight of
hydrogen gas.

FIGURE 2
Relationship between the input power of the electrolytic cell and
hydrogen production efficiency of the electrolytic cell.
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According to Eq. 5, the relationship between the pressure and
mass of the hydrogen storage tank is shown in Eq. 7:

pEHS,t � mEHS,t · a · TH

MHVEHS,t − c2mEHS,t
− c1

mEHS,t

MHVEHS,t
( )2

. (7)

The capacity of the hydrogen storage tank is shown in Eq. 8:

mEHS,t+1 � mEHS,t +min
EHS,t −mout

EHS,t, (8)

where mEHS,t+1 is the hydrogen mass of the hydrogen storage
tank at time t+1; min

EHS,t is the hydrogen mass of the hydrogen
storage tank at time t; and mout

EHS,t is the hydrogen release amount of
the hydrogen storage tank at time t.

3.1.5 Hydrogen fuel cell
The hydrogen fuel cell can be regarded as the reverse reaction of

electrolyzed water, and its energy model is shown in Eq. 9:

mhf,t � Phf,t +Hcr
hf,t +Hloss

hf,t,

Phf,t � λhf,tmhf,tςhf,

λhf,t � 2Vhf

ΔHh2

,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(9)

wheremhf,t is the hydrogen consumed by the hydrogen fuel cell;
Phf,t andHcr

hf,t are the electric energy and thermal energy generated
by the hydrogen fuel cell, respectively;Hloss

hf,t is the heat energy lost by
the hydrogen fuel cell; λhf,t is the electrical efficiency of the hydrogen
fuel cell; Vhf is the operating voltage of the hydrogen fuel cell; ΔHh2

is the enthalpy value of hydrogen gas; and ςhf is the conversion
coefficient of the hydrogen fuel cell. The relationship between fuel
cell power generation and voltage is shown in Figure 3.

3.1.6 Electric heat transfer equipment
Electric heat transfer equipment converts electrical energy into

thermal energy through consumption, and its conversion model is
specifically shown in Eq. 10:

HEH,t � λEH,tPEH,t, (10)
whereHEH,t is the thermal energy generated by the electric heat

transfer equipment at time t; λEH,t is the conversion efficiency of the
electric heat transfer equipment; and PEH,t is the electrical energy
consumed by the electric heat transfer equipment.

3.2 Analysis of system uncertainty and
response characteristics

This section analyzes the uncertainties faced by distributed
hydrogen systems and the response characteristics of various
pieces of equipment in the system, laying the foundation for
constructing a multi-timescale operation optimization model in
Section 4.

3.2.1 Wind and photovoltaic power generation
units

In terms of response characteristics, wind and photovoltaic
power generation units can quickly abandon wind and light
when they exceed the maximum output value, and their
adjustability is strong. The response time of the distributed
electric hydrogen coupling system for wind and solar power
generation units is short, and the response timescale is set to τ1.
In terms of uncertainty, wind and solar power have high output
uncertainty due to the influence of geographical location,
environmental temperature, light intensity, and wind speed.
Based on this, Bai et al. (2021) used a combination of clustering
and particle swarm optimization algorithms to determine n typical
wind and solar output scene sets and weighted and stacked n output
scenes and further used the uncertainty set of wind and solar output
to represent the uncertainty of wind and solar output, as shown in
Eqs 11, 12:

GPwind,t
� ~P

D

wind,t � ~P
D

wind,1, ~P
D

wind,2,/, ~P
D

wind,T( ),∀t � 1, 2,/, T{ },
PD,min
wind,t ≤ ~P

D

wind,t ≤P
D,max
wind,t ,

∑T
t�1

2~P
D

wind,t − PD,min
wind,t + PD,max

wind,t( )∣∣∣∣∣ ∣∣∣∣∣
PD,min
wind,t + PD,max

wind,t

≤ ηwind,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(11)

GPpv,t � ~P
D

pv,t � ~P
D

pv,1, ~P
D

pv,2,/, ~P
D

pv,T( ),∀t � 1, 2,/, T{ },
PD,min
pv,t ≤ ~P

D

pv,t ≤PD,max
pv,t ,

∑T
t�1

2~P
D

pv,t − PD,min
pv,t + PD,max

pv,t( )∣∣∣∣∣ ∣∣∣∣∣
PD,min
pv,t + PD,max

pv,t

≤ ηpv,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(12)

where GPwind,t is the uncertainty set of wind power generation;
~P
D
wind,t is the actual output of wind power generation at time t; PD,min

wind,t

and PD,max
wind,t are the upper and lower limits of wind power generation,

respectively; ηwind is the robustness factor for the uncertainty set of
wind power generation; GPpv,t is the uncertainty set of photovoltaic
power generation; ~P

D
pv,t is the actual output of photovoltaic power

generation at time t; PD,min
pv,t and PD,max

pv,t are the upper and lower
limits of photovoltaic power generation, respectively; and ηpv is the
robustness factor for the uncertainty set of photovoltaic power
generation.

3.2.2 Wind and photovoltaic power generation
units

The coupling unit mainly includes electrolytic cell, hydrogen
fuel cell, electric heat transfer equipment, and hydrogen storage
tank equipment. In terms of response characteristics, the
response time of coupling equipment such as electrolytic cells

FIGURE 3
Relationship between fuel cell power generation and voltage.
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and electric heat-transfer equipment is longer than that of wind
and solar power generation units. The alkaline electrolytic cell
has a fast start and stop speed, with a dynamic response time of
approximately 10 min, which is slower than that of wind and
solar power generation units. The dynamic response timescale is
set to τ2. The response speed of electric heat-transfer equipment
is equivalent to that of electrolytic cells, and its dynamic response
timescale is τ2. The dynamic response time of the hydrogen fuel
cell is equivalent to that of the alkaline electrolyzer, and the
dynamic response timescale is τ2. The hydrogen storage tank has
the advantage of fast adjustment, and its dynamic response
timescale is between the wind and solar power generation unit
and the electrolytic cell, with a dynamic response timescale of τ3.
For the uncertainty analysis of coupled units, due to the control
feedback system inside the coupled units, the overall conversion
output is relatively stable, so its uncertainty is not considered
temporarily.

3.2.3 Wind and photovoltaic power generation
units

The distributed electric hydrogen coupling system
constructed in this article mainly includes three types:
electrical load, thermal load, and hydrogen load. In terms of
response characteristics, it is mainly scheduled through demand
response. It is divided into three categories based on the length of
the response timescale: the first type is a long-term demand
response, including food processing industry and long-term
electric heating, which is not flexible enough and requires
scheduling and planning 1 day in advance. The dynamic
response timescale is set to τ4. The second type is demand
response with a short timescale, including short-term electric
heating, which is consistent with the response timescale of
alkaline electrolytic cells as τ2. The third type is demand
response at an ultrashort timescale, including electric
irrigation, which is consistent with the response timescale of
τ1 in the wind and solar power generation unit.

The uncertainty analysis of load demand is mainly
influenced by user subjectivity and energy prices, and its
uncertainty is characterized by the load deviation rate, as
shown in Eqs 13–15:

Lele,t[ ]± � �Lele,t 1 − εele( ), �Lele,t 1 + εele( )[ ], (13)
Lheat,t[ ]± � �Lheat,t 1 − εheat( ), �Lheat,t 1 + εheat( )[ ], (14)

Lhy,t[ ]± � �Lhy,t 1 − εhy( ), �Lhy,t 1 + εhy( )[ ], (15)

where [Lele,t]±, [Lheat,t]±, and [Lhy,t]± are the demand
intervals for electrical load, thermal load, and hydrogen load
at time t, respectively; �Lele,t, �Lheat,t, and �Lhy,t are the expected
electrical load, thermal load, and hydrogen load at time t,
respectively; and εele, εheat, and εhy are the expected deviation
rates between electrical load, thermal load, and hydrogen load,
respectively.

The response timescales of different call outputs and loads are
summarized in Eq. 16:

Long timescale: L1
PDR,τ4

,
Short timescale: L1

PDR,τ2
, mout

dj,τ2
, Phf,τ2, HEH,τ2, mEHS,τ3,

Ultra short timescale: L1
PDR,τ1

, Pwind,τ1, Ppv,τ1, Phf,τ1.

⎧⎪⎨⎪⎩ (16)

4 Optimization model for multi-
timescale operation of the electric
hydrogen coupling system

4.1 Operational optimization ideas

Based on the analysis results of response characteristics of
different pieces of equipment in Section 3.2 of the system, it can
be seen that due to the coupling of distributed power supply,
hydrogen network, and thermal network, the output
characteristics of each type of energy unit are different, resulting
in different scheduling response times for each part. Therefore, this
paper depends on day-ahead–day-in–real-time rolling optimization
for optimization design. In the day-ahead stage, determine the start
and stop operation plans for each unit, and in the day-in stage,
determine the adjustment plans for each unit based on the errors
between the wind and solar output and load demand in the day
ahead and day in stages. In the real-time stage, the adjustment plan
for each unit is determined based on the error between the daily and
real-time stages of wind and solar output and load demand. The
optimization design concept is shown in Figure 4:

Plan development should be carried out 1 day in advance,
i.e., 24 h in advance, with a scheduling timescale of τ4. In the
day-ahead phase, based on the forecast results of wind and solar
power and various loads, the startup and shutdown plans and output
plans of electrolyzer, hydrogen storage tank, hydrogen fuel cell, and
electric-to-heat equipment in the system are determined with the
minimum initial operating cost of the system, and the first type of a
long-term demand response scheduling plan is formulated.

In the day-in rolling optimization stage, the scheduling period is
4 h. In order to coordinate the response timescale between the hydrogen
storage tank and other coupling equipment, the scheduling timescale is
selected as the least common multiples of τ2 and τ3 and set to ξ. At the
same time, according to the deviation between the wind power and load
forecast and the day-ahead forecast results in the rolling optimization,
taking into account the flexibility of response, the demand response
scheduling of the second type of timescale is mainly used, supplemented
by the deviation adjustment of the hydrogen storage tank electrolyzer
and hydrogen fuel cell. The rolling optimization goal at this stage is to
minimize the cost of deviation adjustment.

In the real-time rolling optimization stage, the scheduling cycle
is 15 min, and the scheduling timescale is τ1. This stage is based on
the deviation between the predicted results of real-time rolling
optimization for wind and solar power, load forecasting, and
intraday rolling optimization. The adjustment is mainly based on
the third type of demand response. If it is insufficient, it is adjusted
by interacting with the external network to purchase or sell
electricity. At this stage, the rolling optimization goal is also to
minimize the deviation adjustment cost.

4.2 Day-ahead optimization model

4.2.1 Objective function
In the current optimization stage, the distributed electric hydrogen

coupling system aims to minimize the total operating cost of the
coupling system as the objective function. The operating costs of the
previous stage include the start-up and shutdown costs of the unit, the

Frontiers in Energy Research frontiersin.org06

Ma et al. 10.3389/fenrg.2023.1251231

55

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1251231


operating costs of the unit, the demand response call costs, the external
network interaction costs, and the uncertainty costs caused by multiple
uncertainties in the system, as shown in Eq. 17:

Crq
total � Crp qt

total + Crq yx
total + Crq dr

total + Crq jh
total + Crq un

total ,

Crp qt
total � ∑ uiθi i ∈ pv, wind, dj, EHS, hf, EH{ },

Crq yx
total � ∑

t�1

24
τ4 Prq

wind,tpwind + Prq
pv,tppv +mrq out

dj,t pdj + Prq
hf,tphf+

mrq in
EHS,t +mrq out

EHS,t( )pEHS +Hrq
EH, tpEH

⎛⎜⎝ ⎞⎟⎠,

Crq dr
total � ∑

t�1

24
τ4

L1
PDR,tp

1
PDR,

Crq jh
total � ∑

t�1

24
τ4

Prq jh
buy,t pbuy − Prq jh

sale,t psale( ),

Crq un
total � ∑

t�1

24
τ4

vpun
Prq
wind,t

ηwind+Prq
pv,tηpv+mrq out

dj,t
εel+Prq

hf,t
εhf

+Hrq
EH, tεEH

( ),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(17)

where Crq
total is the total operating cost of the distributed electric

hydrogen coupling system in the day-ahead stage; Crp qt
total , C

rq yx
total ,

Crq dr
total , Crq jh

total , and Crq un
total refer to the operating costs of the

distributed electric hydrogen coupling system in the early stage,
including the start-up and shutdown costs of the unit, the operating
costs of the unit, the demand response call costs, the external
network interaction costs, and the uncertainty costs caused by
multiple uncertainties in the system, respectively; ui is the start-
up and shutdown costs of unit I; θi is a Boolean variable, θi � 1
represents the start of the unit, otherwise the unit will not start;
Prq
wind,t, P

rq
pv,t, m

rq out
dj,t , Prq

hf,t, and Hrq
EH, t are the output plan of wind

turbine generator set, photovoltaic generator set, electrolytic cell,
hydrogen fuel cell, and electricity-to-heat equipment at time t in the
day-ahead stage, respectively; mrq in

EHS,t and mrq out
EHS,t are the hydrogen

storage and release capacities of the hydrogen storage tank at time t,
respectively; pwind, ppv, pdj, phf, pEHS, and pEH are the unit
operating costs of wind turbine generator set, photovoltaic
generator set, electrolytic cell, hydrogen fuel cell, hydrogen
storage tank, and electric heat-transfer equipment, respectively;
p1
PDR is the first type of demand response unit scheduling cost;

Prq jh
buy,t and Prq jh

sale,t represent the purchased and sold electricity of the
distributed electric hydrogen coupling system when interacting with
the external network at time t, respectively; pbuy and psale are the
unit electricity purchase and unit electricity sale costs when the
distributed electric hydrogen coupling system interacts with the
external network, respectively; and vpun is the unit uncertainty cost.

4.2.2 Constraint condition
The constraints of the distributed electric hydrogen coupling

system in the early stage include power balance constraints and
equipment operation constraints. The power balance constraints
mainly include electrical energy balance, thermal energy balance,
and hydrogen energy balance, as shown in Eq. 18:

Prq
wind,t + Prq

pv,t + Prq jh
buy + Prq

hf,t + L1
PDR,t � Lrq

ele,t + Prq in
el,t + Prq jh

sale ,
Hrq

EH, t +Hrq cr
hf,t +Hrq cr

dj,t � Lrq
heat,t,

mrq out
EHS,t +mrq out

dj,t � mrq
hf,t + Lhy,t +mrq in

EHS,t.

⎧⎪⎪⎨⎪⎪⎩
(18)

Equipment operation constraints mainly include wind and solar
power unit operation constraints, coupled unit operation
constraints, and demand response constraints, as shown in Eq. 19:

Pi
min ≤Prq

i,t ≤Pi
max, i � hf,

ΔPi
min ≤Prq

i,t+1 − Prq
i,t ≤ΔPi

max, i � hf,
{
HEH

min ≤Hrq
EH, t≤HEH

max,
ΔHEH

min ≤Hrq
EH, t + 1 −Hrq

EH, t≤ΔHEH
max,

{
mEHS

min ≤mEHS,t ≤mEHS
max,

mdj
min ≤mrq out

dj,t ≤mdj
max,

Δmdj
min ≤mrq out

dj,t+1 −mrq out
dj,t ≤Δmdj

max,

⎧⎨⎩
Lmin ,1
PDR,t ≤L1

PDR,t ≤ Lmax ,1
PDR,t ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

where Pi
min and Pi

max are the minimum and maximum output of
unit i; ΔPi

min and ΔPi
max are the minimum and maximum values for

unit i to climb the slope; HEH
min and HEH

max are the minimum and
maximum output of the electric heat-transfer equipment; ΔHEH

min

andΔHEH
max are theminimum andmaximum values for the climbing

of the electric heat transfer equipment; mEHS
min and mEHS

max are the
minimum and maximum hydrogen storage capacities of the hydrogen
storage tank; mdj

min and mdj
max are the minimum and maximum

output of the electrolytic cell; Δmdj
min and Δmdj

max are the minimum
and maximum values for climbing the electrolytic cell slope; and Lmin ,1

PDR,t

and Lmax ,1
PDR,t are the minimum andmaximum scheduling amount for the

first type of demand response, respectively.

4.3 Day-in rolling optimization model

4.3.1 Objective function
In the day-in rolling optimization stage, based on the day-ahead

scheduling plan, the scheduling of the second type of demand
response and the output adjustment of coupled units are carried
out. The optimization goal of the day-in rolling stage is to minimize
the adjustment cost, as shown in Eq. 20:

minCrn
total � min

Crn dr
total

+ΔCrn dj
total

θtzdj+ΔCrn hf
total

θtzhf

+ΔCrn EH
total θtzEH + ΔCrq EHS

total θtzEHS

( ),

ΔCrn dr
total � ∑

t�1

24
τ4 ∑

s�1

4
ξ

L2
PDR,tsp

2
PDR,

ΔCrn dj
total � ∑

t�1

24
τ4 ∑

s�1

4
ξ

Δmrn
dj,tsu

rn tz
dj ,

ΔCrn hf
total � ∑

t�1

24
τ4 ∑

s�1

4
ξ

ΔPrn
hf,tsu

rn tz
hf ,

ΔCrn EH
total � ∑

t�1

24
τ4 ∑

s�1

4
ξ

ΔHrn
EH, tsu

rn tz
EH ,

ΔCrq EHS
total � ∑

t�1

24
τ4 ∑

s�1

4
ξ

Δmrn out
EHS,tsu

rn tz
EHS + Δmrn in

EHS,tsu
rn tz
EHS( ),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

where Crn dr
total is the scheduling cost for the second type of demand

response in the day-in stage; ΔCrn i
total is the adjustment cost for the ith

unit during the day-in stage, i ∈ dj, hf,EH,EHS{ }; θtzi is a Boolean
variable, θtzi � 1, indicating that unit i participates in the intraday
adjustment, otherwise it will not participate; L2PDR,ts and p2

PDR are the
scheduling quantity and unit scheduling cost for the second type of
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demand response, respectively; Δmrn
dj,ts, ΔPrn

hf,ts, and ΔHrn
EH, ts are the

adjustment amounts of electrolytic cell, hydrogen fuel cell, and electric
heat-transfer equipment in the day-in stage, respectively; urn tz

dj , urn tz
hf ,

and urn tz
EH are the unit adjustment costs of electrolytic cell, hydrogen

fuel cell, and electric-to-heat equipment in the day stage, respectively;
Δmrn out

EHS,ts andΔmrn in
EHS,ts are the hydrogen release and storage adjustment

amount of the hydrogen storage tank, respectively; and urn tz
EHS represents

the unit adjusted cost of the hydrogen storage tank.

4.3.2 Constraint condition
The constraints in the day-in stage also include power balance

constraints and equipment operation constraints. The power
balance constraints are shown in Eq. 21, and the equipment
operation constraints are in the same form as Eq. 19.

∑
s�1

4
ξ

Prn
wind,ts + Prn

pv,ts + Prn
hf,ts + L1

PDR,ts + L2
PDR,ts( ) + Prq jh

buy,t

� ∑
s�1

4
ξ

ΔPrn in
el,ts + Lrn

ele,ts( ) + Prq in
el,t + Prq jh

sale,t ,

Hrq
EH, t +∑

s�1

4
ξ

ΔHrn
EH, ts +Hrq cr

hf,ts + ΔHrn cr
hf,ts +Hrq cr

dj,ts + ΔHrn cr
dj,ts( )

� ∑
s�1

4
ξ

Lrn
heat,ts( ),

mrq out
EHS,t +mrq out

dj,t +∑
s�1

4
ξ

Δmrn out
EHS,ts + Δmrn out

dj,ts( )
� ∑

s�1

4
ξ

Δmrn
hf,ts + Lrn

hy,ts + Δmrn in
EHS,ts( ) +mrq

hf,t +mrq in
EHS,t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(21)

4.4 Real-time optimization model

4.4.1 Objective function
In the real-time optimization stage, based on the daily rolling

optimization plan, the third type of demand response and hydrogen
fuel cell output adjustment are carried out. The optimization goal of
the real-time rolling stage is to minimize the adjustment cost ΔCss

total,
as shown in Eq. 22:

min△Css
total � min ΔCss dr

total + ΔCss hf
total θ

ss tz
hf + ΔCss jh

total θ
ss tz
jh( ),

ΔCss dr
total � ∑

t�1

24
τ4 ∑

s�1

4
ξ ∑
y�1

15
τ1

L3
PDR,tsyp

3
PDR,

ΔCss hf
total � ∑

t�1

24
τ4 ∑

s�1

4
ξ ∑
y�1

15
τ1

ΔPss
hf,tsyu

ss tz
hf ,

ΔCss jh
total � ∑

t�1

24
τ4 ∑

s�1

4
ξ ∑
y�1

15
τ1

ΔPss jh
buy,tsypbuy − ΔPss jh

sale,tsypsale( ),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(22)

where ΔCss dr
total is the scheduling cost for the third type of demand

response in the real-time phase; ΔCss hf
total is the adjustment cost of the

hydrogen fuel cell in the real-time phase; ΔCss jh
total is the cost of

interaction between the real-time distributed electric hydrogen

coupling system and the external network; θss tz
hf is a Boolean

variable, and θss tz
hf � 1 is the output of the hydrogen fuel cell

adjusted in the real-time phase, otherwise it will not be adjusted;
θss tz
jh is also a Boolean variable, where θss tz

jh � 1 indicates correction
and adjustment through external network interaction, otherwise the
opposite is true; L3PDR,tsy and p

3
PDR are the scheduling quantity and unit

scheduling cost for the third type of demand response, respectively;
ΔPss

hf,tsy and u
ss tz
hf are the adjustment amount and unit adjustment cost

of the hydrogen fuel cell in the real-time phase, respectively; ΔPss jh
buy,tsy

andΔPss jh
sale,tsy refer to the purchase and sale of electricity during the real-

time phase and external network adjustment, respectively.

4.4.2 Constraint condition
The system balance constraints in the real-time phase are the same

as Eq. 18, and the equipment operation constraints are shown in Eq. 23:

∑
s�1

4
ξ

Prn
wind,ts + Prn

pv,ts + L1
PDR,ts + L2

PDR,ts( ) + Prq jh
buy,t

+∑
s�1

4
ξ ∑
y�1

15
τ1

ΔPss jh
buy,tsy + Prn

hf,ts( ) � ∑
s�1

4
ξ

ΔPrn in
el,ts( )

+∑
s�1

4
ξ ∑
y�1

15
τ1

Lss
ele,tsy + ΔPss jh

sale,tsy( ) + Prq in
el,t + Prq jh

sale,t ,

Hrq
EH, t +∑

s�1

4
ξ

ΔHrn
EH, ts +Hrq cr

hf,ts + ΔHrn cr
hf,ts +Hrq cr

dj,ts + ΔHrn cr
dj,ts( )

+∑
s�1

4
ξ ∑
y�1

15
τ1

ΔHrn cr
hf,tsy( ) � ∑

s�1

4
ξ ∑
y�1

15
τ1

Lrn
heat,tsy( ),

mrq out
EHS,t +mrq out

dj,t +∑
s�1

4
ξ

Δmrn out
EHS,ts + Δmrn out

dj,ts( )
� ∑

s�1

4
ξ

Δmrn
hf,ts + Lss

hy,ts + Δmrn in
EHS,ts( ) +mrq

hf,t +mrq in
EHS,t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(23)

4.5 Model solution

The multi-timescale optimization model of the distributed electro-
hydrogen coupling system is a complex uncertain mixed integer non-
linear programming problem, and the methods for solving uncertainty
mainly include approximation and decomposition methods. The
decomposition method includes the Benders decomposition
algorithm and column-and-constraint-generation algorithm (C&CG).
Due to the fact that the C&CG algorithm considers the constraints and
variables of the subproblem compared to the Benders decomposition
algorithm, which can accelerate convergence, this section adopts the
C&CG algorithm for solution. The C&CG algorithm iteratively
converges the main problem and subproblems to solve. The main
problem is the optimal solution that satisfies the conditions under a
known finite distribution, providing a lower bound (LB) value for the
robust optimization model. The subproblem is to seek the worst-case
distribution and provide an upper bound (UB) value for the robust
optimizationmodel under the given conditions of the decision variables
in the first stage. The specific model of the C&CG algorithm is
referenced in Song et al. (2023), and Cplex is further used for solution.
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5 Example analysis

5.1 Basic data

Multiple demonstration projects for electric hydrogen
coupling have been put into operation in a certain province of
China, with rich experience in electric hydrogen coupling systems.
Therefore, in order to verify the effectiveness of the model, a
distributed electric hydrogen coupling system for parks in this
province was selected as an example for simulation analysis. The
deviation rates for wind power generation, photovoltaic power
generation, and demand response in the day-ahead, day-in, and
real-time stages are set to 5%, 3%, and 1%, respectively. The unit
scheduling costs for the first type of load demand response, the
second type of load demand response, and the third type of load

demand response are 0.6, 0.85, and 1.00 yuan/kWh, respectively.
According to the characteristics of each device, the response time
for daily, intraday, and real-time scheduling is determined to be 30,
10, and 5 min, respectively. A distributed electric hydrogen
coupling system was set up to connect to the external network
at 10 kV and interact with the external network using the peak-to-
valley electricity prices of general industrial and commercial
industries from 1 to 10 kV in the province. At the same time,
the specific purchase and sale electricity prices are shown in
Table 1 (Tan et al., 2021; Han et al., 2022):

The operating parameters of various units are shown in Table 2
(Jiang et al., 2022):

The day-ahead, day-in, and real-time predicted values for wind
and photovoltaic power generation are shown in Figures 5, 6 (Tan
et al., 2021):

FIGURE 4
Design ideas for multi-timescale optimization of coupled systems.
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5.2 Example results

5.2.1 Scheduling optimization results for multiple
timescales

Based on the predicted values of wind power generation, photovoltaic
power generation, and various loads in real-time, in order tominimize the
system operating cost, the scheduling optimization results at different
timescales are obtained and analyzed. The optimization results of day-
ahead, day-in, and real-time scheduling for each unit are shown in
Figures 7–9, respectively. Due to the large amount of data under the 5-
min scheduling time, the readability of the graph is poor. This paper
selects one data at every 12 scheduling points to display day-ahead, day-
in, and real-time stages in the graph.

FromFigures 7–9, it can be seen that the scheduling time for the first,
second, and third types of demand response in the day-ahead, day-in, and
real-time stages is approximately 19:00–22:00, overlapping with the peak
load period. In order to maintain the balance between supply and
demand in the recent stage, there are many challenges with the
external network. Among them, the electricity purchase is carried out
at 22:00–8:00 during the low-price period, and the low-price electricity is
converted into hydrogen and stored in the hydrogen storage tank through
the electrolytic cell equipment. During the peak power period, the
hydrogen fuel cell consumes the hydrogen in the hydrogen storage
tank to generate electricity. In the day-in stage, deviation adjustment is
mainly carried out by adjusting the hydrogen storage tank and the second
type of demand response. The adjustment amount of electric heat-

TABLE 1 Electricity prices during peak and valley periods.

Period of time Electricity price (yuan/kWh)

Peak hour 19:00–21:00 1.1636

Rush hour 8:00–11:00, 13:00–19:00, and 21:00–22:00 0.8656

Valley period 11:00–13:00 and 22:00–8:00 0.3536

TABLE 2 Operating parameters of various units.

Installed
capacity

Upper power limit Lower power limit Upper climbing limit Lower climbing limit

Wind turbines 400 KW 400 KW 0 KW — —

Photovoltaic panels 4 MW 4 MW 0 MW — —

Hydrogen fuel cell 240 KW 240 KW 48 KW 100%/min —

Electric tank 400 KW 400 KW 80 KW 100%/min —

Hydrogen storage tank 400 KG — — — —

Electric heat-transfer
equipment

300 KW 300 KW 0 KW 52%/15 min 65%/15 min

FIGURE 5
Wind power output at different time periods.

FIGURE 6
Photovoltaic power output at different time periods.

Frontiers in Energy Research frontiersin.org10

Ma et al. 10.3389/fenrg.2023.1251231

59

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1251231


transfer equipment and electrolytic cells is relatively small, and only
minor adjustments aremade. In the real-time stage, compared to the day-
ahead stage, the amount of interaction with the external network is
significantly reduced. This is because the deviation in the real-time stage is
reduced after adjustment in the day-in stage, and most of the deviation
adjustment needs can bemet through the third type of demand response.

5.2.2 Effectiveness analysis of uncertainty
In order to analyze and consider the effectiveness of system

uncertainty, this paper sets up the following four scenarios for analysis:
Scenario 1: Set the wind and solar power output and load

demand of the distributed electric hydrogen coupling system to
be determined in three stages: day ahead, day in, and real time;

Scenario 2: Set the wind and solar output of the distributed
electric hydrogen coupling system to be determined in three stages:
day ahead, day in, and real time, taking into account the uncertainty
of load demand in these three stages;

Scenario 3: Set the load demand of the distributed electric hydrogen
coupling system to be determined in three stages: day ahead, day in, and
real time, taking into account the uncertainty of wind and solar output
in these three stages;

Scenario 4: Considering the wind power output and load
demand of the distributed electric hydrogen coupling system
simultaneously, uncertainty is determined in the three stages of
day ahead, day in, and real time.

The scheduling costs of the distributed electric hydrogen coupling
system in three stages under four scenarios are shown in Table 3.

FromTable 3, it can be seen that among the four scenarios, scenario
1 under the deterministic scenario has the highest scheduling cost in the
three stages of day ahead, day in, and real time, with a total scheduling
cost of 40,289.79 yuan. Scenario 4, which simultaneously considers
multiple uncertainties, has the lowest scheduling cost among the three
stages, with a total scheduling cost of 35,231.9 yuan. Compared with
Scenario 1, the total scheduling cost of Scenario 4 decreases by 12.55%.
This is because uncertainty costs are not considered in deterministic
scenarios. When there is a significant deviation between wind and solar
power output and load demand, it will cause significant adjustments to
the output of each unit in the day-in and real-time stages and even
significantly increase the interaction cost with the external network,
resulting in an increase in the overall adjustment cost. Although
Scenario 2 considers the uncertainty of load, it does not consider
the deviation of wind and solar output. On the one hand, when
there is a significant deviation in wind and solar output, the
accuracy of the unit output plan developed in the day-ahead stage is
low. On the other hand, in the day-in and real-time stages, in addition to
affecting the supply of electricity load, wind and solar power, as the
supply end of electrolytic cells and electricity to heat transfer, will have
an impact on the heat load and hydrogen load, increasing scheduling
costs. Scenario 3 shows that the accuracy of load forecasting affects the
scheduling of demand response. In the real-time stage, the third type of
load demand invocation is mainly used. When the load deviation is
large, the cost of daily adjustment increases. This indicates the necessity
of considering the deviation between wind and solar output and load
demand in distributed electric hydrogen coupling systems.

Furthermore, in order to explore the impact of wind and solar
output deviation and load demand deviation on wind and solar
consumption rate, taking the day-ahead stage as an example, the

FIGURE 7
Scheduling results in the day-ahead stage.

FIGURE 8
Scheduling results in the day-in stage.

FIGURE 9
Scheduling results in the real-time stage.
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wind and solar output deviation and load demand deviation rates were
set to vary in the range (−5%, 5%). The wind and solar consumption
rate under different deviation rates is shown in Figure 10.

As shown in Figure 10, when the negative deviation ofwind and solar
output increases in the opposite direction, the absorption rate of wind and
solar energy increases. This is because when the load demand is constant
and the reverse deviation rate of wind and solar energy increases, the
systemwill fully absorb thewind and solar output, resulting in an increase
in the absorption rate of wind and solar energy.When the load deviation
rate increases positively, due to the increase in load demand, in order to
ensure the balance of supply and demand and reduce other unit
adjustments, the wind and solar output increases, resulting in an
increase in the wind and solar consumption rate.

5.2.3 Effectiveness analysis of multi-timescale
scheduling strategies

In order to evaluate the effectiveness of the multi-timescale
optimization model proposed in this paper, effectiveness analysis
that involves planning in the day-ahead stage and adjusting based
on device priority in the day-in and real-time stages is demonstrated.
On the one hand, it is compared with the key technologies proposed in
Jin et al. (2019) in the two stages of “day-before-day–within-day”. On
the other hand, it is compared with Liao et al. (2022), in which the
model operates on a three-stage multi-timescale of “day-ahead–day-
in–real-time” but does not consider the priority of device adjustment
and the response characteristics of the device. The key technologies in
Jin et al. (2019) and Liao et al. (2022) were applied to the distributed
electro-hydrogen coupling system constructed in this paper. The cost
and overall clean energy consumption rate of the system at different
stages are shown in Table 4:

It can be seen from Table 4 that although there is no real-time stage
cost in Jin et al. (2019), its day-ahead scheduling cost and day-in
scheduling cost are far higher than Liao et al. (2022) and the
proposed method. This is because in the current stage, Jin et al.
(2019) did not make further adjustments and error correction in the
real-time stage, whichwill lead to an increase in uncertainty and deviation
costs. At the same time, the clean energy consumption rate of Jin et al.
(2019) is lower than that of Liao et al. (2022) and themethod proposed in
this article. This is because from Figure 10, it can be seen that when the
wind and solar deviation reaches 5% in the positive direction, the wind
and solar consumption rate decreases, and there is no real-time
adjustment, which cannot fully carry out new energy consumption,
resulting in a decrease in the clean energy consumption rate.
From this, it can be seen that it is necessary to conduct a three-
stage scheduling of “day-ahead–day-in–real time.” Compared
with the method proposed in this paper, the cost difference in
the day-to-day stage is not significant, but the cost in the day-in
stage and the real-time stage is higher than that of the method
proposed in this paper. This is because Liao et al. (2022) did not

TABLE 3 Scheduling cost of the distributed electric hydrogen coupling system.

Day-ahead scheduling cost
(yuan)

Day-in adjustment cost
(yuan)

Real-time adjustment cost
(yuan)

Total scheduling cost
(yuan)

Scenario 1 34846.44 3756.32 1687.03 40289.79

Scenario 2 32411.99 3206.53 1470.81 37089.33

Scenario 3 32849.23 3360.18 1449.24 37658.65

Scenario 4 31318.66 2801.39 1111.85 35231.9

FIGURE 10
Wind power and photovoltaic absorption rates under different
deviation rates.

TABLE 4 Cost and overall clean energy consumption rate of the system at different stages.

Day-ahead
scheduling cost

(yuan)

Day-in adjustment
cost (yuan)

Real-time adjustment
cost (yuan)

Total scheduling
cost (yuan)

Clean energy
consumption rate

(yuan) (%)

Jin et al.
(2019)

35,079.52 6,336.05 — 41,415.57 76.46

Liao et al.
(2022)

33,150.80 4,420.43 2,518.58 40,089.81 84.13

This paper 32,849.23 3,360.18 1,449.24 37,658.65 89.96
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consider the level of equipment adjustment and response
characteristics, which cannot achieve efficient coordination
and optimization among various devices and resource
allocation, resulting in an increase in cost.

5.2.4 Effectiveness analysis of scheduling timescale
optimization

In order to analyze the effectiveness of scheduling timescale
optimization proposed in this paper, the evaluation indicators in Li
et al. (2023)were comparedwith those in Yuan et al. (2019) and Bao et al.
(2016). The comparison indicators are the supply and demand imbalance
rateωsh, the number of real-time adjustments within the dayNtz, and the
proportion of adjustments ψtz, as shown in Eqs 24–26, respectively:

ωsh �
∑
s�1

4
ξ ∑

y�1

15
τ1 Ptotal

sup ,sy−Ltotaldem,sy

∣∣∣∣∣ ∣∣∣∣∣
Ltotal
dem,sy

ndem
, (24)

Ntz � ∑ ntzi , (25)

ψtz �
∑ntzi
nsbtotal

, (26)

where Ptotal
sup ,sy and Ltotaldem,sy are the total aggregate supply and

demand of energy, respectively; ndem is the total number of load data;
ntzi is the number of adjustments made by device i during the day-in
and real-time phases, i ∈ dj, hf, EH, EHS{ }; and nsbtotal represents
the total number of devices.

The supply and demand imbalance rate a, daily real-time adjustment
frequency b, and adjustment proportion c of Yuan et al. (2019), Bao et al.
(2016), and this paper are shown in Table 5.

From Table 5, it can be seen that compared with Bao et al.
(2016), using the method proposed in this paper for scheduling
time optimization can reduce the supply–demand imbalance rate
and ensure the stability of energy supply in the distributed
electric hydrogen coupling system. On the other hand,
compared with Jin et al. (2019) and Yuan et al. (2019), the
method proposed in this paper has lower frequency and
proportion of adjustments in these two indicators. This is
because this article considers the response characteristics of
heterogeneous energy sources such as electricity and heat
loads and coupled equipment, which can coordinate the slow
response time of heat loads and coupled equipment, as well as the
fast response characteristics of wind, electricity loads, and
hydrogen storage tanks. Therefore, the scheduling duration
optimization method proposed in this article can
simultaneously balance the dual optimization strategy of
adjusting costs and energy supply stability.

6 Conclusion

This paper conducts a study on the optimization of multi-
timescale operation of distributed electro-hydrogen coupling
systems considering multiple uncertainties. Through case
analysis, the following conclusions are drawn:

(1) It is necessary to consider the deviation between wind and solar
output and load demand in a distributed electric hydrogen
coupling system, and it can reduce the total scheduling cost by
12.55% compared to deterministic scenarios.

(2) The three-stage scheduling optimization strategy proposed in
this article, which considers the level of equipment adjustment
and response characteristics, can achieve efficient coordination
and optimization among various devices, optimize resource
allocation, and improve the consumption rate of clean energy.

(3) The scheduling duration optimization method proposed in this
article is a dual optimization strategy that simultaneously
considers adjustment costs and energy supply stability.
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Nomenclature

Parameters

ηwind,t output coefficient of the wind power plant at time t

mpv area of the photovoltaic panel

λpv efficiency of the photovoltaic panel in absorbing light intensity

λloss loss coefficient of the photovoltaic panel

λIel,t λ
U
el,t

current efficiency and voltage efficiency of the electrolytic cell

Urev
el Uohm

el Uh2
el U

o2
el

reversible voltage, resistance voltage drop, hydrogen overpotential, and oxygen overpotential, respectively

Rel resistance of the electrolyte

ϑ1n1j1 charge transfer coefficient, electron transfer number, and current density of the cathode, respectively

c1c2 Fan’s coefficient

VEHS,t volume of the hydrogen storage tank

MH relative molecular weight of hydrogen gas

min
EHS,t hydrogen mass of the hydrogen storage tank at time t

mhf ,t hydrogen consumed by the hydrogen fuel cell

Hloss
hf ,t

heat energy lost by the hydrogen fuel cell

Vhf operating voltage of the hydrogen fuel cell

λEH,t conversion efficiency of the electric heat-transfer equipment

PD,min
wind,t P

D,max
wind,t

upper and lower limits of wind power generation, respectively

GPpv,t uncertainty set of photovoltaic power generation

ηpv Robustness factor for the uncertainty set of photovoltaic power generation

�Lele,t �Lheat,t �Lhy,t expected electrical load, thermal load, and hydrogen load at time t, respectively

mrq in
EHS,tm

rq out
EHS,t

hydrogen storage and release capacity of the hydrogen storage tank at time t; kg, respectively

p1PDR first type of demand response unit scheduling cost; yuan/kWh

Pi
minPi

max minimum and maximum output of unit i; kWh, respectively

HEH
minHEH

max minimum and maximum output of the electric heat-transfer equipment, respectively

mEHS
minmEHS

max minimum and maximum hydrogen storage capacity of the hydrogen storage tank, respectively

Δmdj
minΔmdj

max minimum and maximum values for climbing the electrolytic cell slope, respectively

p2PDR scheduling unit scheduling cost for the second type of demand response; yuan/kWh

urn tz
EHS unit-adjusted cost of the hydrogen storage tank; yuan/kg

uss tz
hf unit adjustment cost of the hydrogen fuel cell in the real-time phase; yuan/kWh

Pe
wind rated power of the wind power plant; kWh

f pv,t light intensity at time t

λtran solar-cell efficiency

mout
dj,tλel,t quality and efficiency of hydrogen gas produced by the electrolytic cell

Itel operating current of the electrolytic cell

TPj temperature, pressure, and current density

EY universal gas and Faraday constant
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ϑ2n2j2 charge transfer coefficient, electron transfer number, and current density of the anode

nEHS,t amount of hydrogen in the hydrogen storage tank

TH temperature of hydrogen gas

mEHS,t+1 hydrogen mass of the hydrogen storage tank at time t+1

mout
EHS,t hydrogen-release amount of the hydrogen storage tank at time t

Phf ,tHcr
hf ,t electric energy and thermal energy generated by the hydrogen fuel cell

λhf ,t Electrical efficiency of the hydrogen fuel cell

ΔHh2 enthalpy value of hydrogen gas

GPwind,t uncertainty set of wind power generation

ηwind robustness factor for the uncertainty set of wind power generation

PD,min
pv,t PD,max

pv,t upper and lower limits of photovoltaic power generation, respectively

pbuypsale unit electricity purchase cost and unit electricity sales cost when the distributed electric hydrogen coupling system interacts with the external
network; yuan/kWh, respectively

εeleεheatεhy expected deviation rate between electrical load, thermal load, and hydrogen load

pwindppvpdjphf pEHSpEH Unit operating cost of the wind turbine generator set, photovoltaic generator set, electrolytic cell, hydrogen fuel cell, hydrogen storage tank,
and electric heat-transfer equipment; yuan/kWh, respectively

vpun unit uncertainty cost; yuan

ΔPi
minΔPi

max minimum and maximum values for unit i to climb the slope, respectively

ΔHEH
minΔHEH

max minimum and maximum values for the climbing of the electric heat-transfer equipment, respectively

mdj
minmdj

max minimum and maximum output of the electrolytic cell, respectively

Lmin ,1
PDR,tL

max ,1
PDR,t

minimum and maximum scheduling amount for the first type of demand response, respectively

urn tz
dj urn tz

hf urn tz
EH Unit adjustment cost of electrolytic cell, hydrogen fuel cell, and electric-to-heat equipment in the day stage; yuan/kWh, respectively

p3PDR Scheduling unit scheduling cost for the third type of demand response; yuan/kWh
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Research on the decision
framework of an energy storage
traction system plan for rail transit
from the low-carbon
perspective—based on the
interval-value Pythagorean
intuitionistic fuzzy environment

Lijun Lin1*, Wenjie Xu1, Bo Liu1, Wenxuan Wang2, Yulin Zhao2 and
Min Tao3

1School of Science, Shandong Jianzhu University, Jinan, Shandong, China, 2School of Management
Engineering, Shandong Jianzhu University, Jinan, Shandong, China, 3Kunming Rail Transit Group Co., Ltd.,
Kunming, Yunnan, China

Low carbonization of the traction system is the key to low-carbon rail transit
operation, and its preliminary plan decision plays a decisive role in whether low
carbon can be achieved in later stages. Therefore, how to achieve scientific
decisions of energy storage traction systems in a low-carbon background is a
problem that needs to be solved. The innovation of this paper is as follows: first,
aiming at the reality of the rail transit energy storage traction system, a decision
index system of the energy storage traction system which contains seven
attributes and 18 criteria is constructed; second, aiming at the uncertainty of
decision information and the decision makers’ aversion to risk, the decision model
adapted to the energy storage traction system decision is constructed based on
the interval Pythagorean intuitionistic fuzzy number and VIKOR model principle.
The decision index system and decision model together constitute the decision
framework. The case study results show that the decision index system can
provide scientific guidance for the decision of the energy storage traction
system, and the decision model can provide risk aversion type decision results
with good robustness.

KEYWORDS

rail transit, energy storage traction system, plan decision, interval Pythagorean, VIKOR

1 Introduction

On 22 September 2020, at the 75th United Nations General Assembly, President Xi
Jinping proposed that China’s carbon dioxide emissions should strive to reach the peak by
2030 and strive to achieve the dual carbon goals of carbon peaking and carbon neutrality by
2060. Therefore, all fields are facing an important transformation of low-carbon
development. From a global perspective, compared to other fields, such as construction
and industry, low-carbon transportation development has always been a global challenge due
to factors such as high resource utilization and unreasonable energy consumption.
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Meanwhile, due to the rapid development of urbanization in China,
the rapid development of the transportation industry has brought
about a sharp increase in pressure on energy conservation and
emission reduction.

In the transportation industry, rail transit has been favored by
government departments due to its advantages, such as large
volume, fast speed, dense schedules, safety and comfort, high
punctuality rate, all-weather operation, and low freight costs. Its
proportion in the transportation industry is increasing day by day.
The main energy consumed by rail transit is the use of electricity
generated by burning coal, and its rapid growth will greatly increase
carbon emissions, which is not conducive to achieving the dual
carbon target of China.

The main energy consumption of rail transit comes from the
traction system in the electrical system. Therefore, in the context of
dual carbon targets, to achieve the low-carbon development of rail
transit, the low-carbon development of the traction system is crucial,
and an energy storage traction system (ESTS) is one of the important
directions for the low-carbon development of the traction system.

In the decision stage of newly built rail transit projects, the
design unit will provide multiple sets of ESTS plans. However, how
to scientifically select suitable plans based on the characteristics of
specific rail transit lines is an urgent problem that needs to be solved
in the current low-carbon development process of rail transit.

1.1 Literature review on the decision index
system of an energy storage traction system
plan for rail transit

The energy storage devices in the ESTS can be divided into
capacitor-based energy storage devices and flywheel energy storage
devices (Dan et al., 2020), and capacitor-based energy storage
devices are widely used. Decision-making research on the ESTS
mainly focuses on the following aspects: when it is a renovation
project, that is, the traction system has been determined, the main
research focus is on the selection of energy storage batteries, for
example, Hou Pengqi’s research on the plan of energy storage
systems based on supercapacitors through ESTS simulation
(Pengqi et al., 2022); when it is a new project and the energy
storage system and traction system are not determined, the
optimization research of the system is mainly based on
simulation, for example, Dong Wenzhe’s research on the
optimization operation of integrated hybrid energy storage and
the RPC traction power supply system (Wenzhe et al., 2023); Li
Ling studied an energy storage train with supercapacitors as the sole
power source and verified the feasibility of traction system operation
through simulation (Ling et al., 2018).

The aforementioned research studies are mainly based on
simulation technology and scenario analysis methods to study the
impact of new energy storage batteries and new ESTS techniques on
rail transit operation and to select energy storage equipment or
optimize system design based on the obtained characteristics of
energy storage batteries and system operation.

The aforementioned research provides a good foundation for
this study, but the plan of the ESTS should not only consider the
characteristics of the equipment but also consider the cost of the
system, as well as reliability, availability, maintainability, and safety,

abbreviated as RAMS, to ensure the sustainability of rail transit
projects.

Therefore, the development of ESTS plans needs to be
considered from seven aspects: energy storage battery
characteristics, system operation characteristics, system cost,
reliability, availability, maintainability, and safety. Currently,
there is a lack of relevant decision index systems to guide the
plan and decision of ESTS plans.

1.2 Review of relevant literature on decision
models for the ESTS in rail transit

To achieve scientific decision of ESTS plans, in addition to a
scientific decision index system, it is more important to develop a
scientific decision model, and the most important aspect of the
scientific nature of the decision model is its suitability for the
specific decision environment. The characteristics of ESTS
decisions are the uncertainty of decision information and risk
aversion decision.

The uncertainty of decision information mainly comes from the
qualitative evaluation of the system. Due to the need for qualitative
evaluation to be scored by experts, who are limited by their
knowledge level and background limitations, hesitation is
inevitable when facing newly developed systems, such as the
ESTS. Therefore, the qualitative evaluation values provided by
experts are inevitably uncertain.

Fuzzy mathematics is often used to deal with the uncertainty of
decision information, such as intuitionistic fuzzy numbers (IFNs)
(Kumar and Chen, 2022), interval-valued intuitionistic fuzzy
numbers (IVIFNs) (Percin, 2022), interval-valued Pythagorean
intuitionistic fuzzy numbers (IVPIFNs) (Peng and Yang, 2016),
or directly using linguistic terms, such as the probability linguistic
term set (Malik et al., 2018)[6].

Due to the large amount of engineering data involved in the
ESTS plan, the evaluation value of the plan is mainly based on
quantitative data, so it is best to use fuzzy mathematics. According to
the data expression ways of the IFN, IVIFN, and IVPIFN, as shown
in Table A1, the sum of the satisfaction degree and non-satisfaction
degree of the IVPIFN can be greater than 1, and this feature enables
it to better handle uncertainty. Therefore, the IVPIFN will be used in
this article.

In addition, the decision of the ESTS plan belongs to the risk
aversion decision because rail transit involves people’s life and
property safety, so the ESTS does not have to have the best
performance, but must not have accidents.

The commonly used decision models in the field of rail transit
are the AHP (Dong et al., 2022), ANP (Peng et al., 2022), and
TOPSIS methods (Yin et al., 2022), which pursue the maximization
of utility value (refer to Table 2 for details). Therefore, there is an
implicit assumption that criteria can compensate each other, and the
mutual compensation between criteria will lead to risk preference
decision results. For example, the evaluation values of ESTS plans X
and Y on the energy storage battery characteristic criterion (marked
A) and reliability criterion (marked B) are ( XA = 8, XB � 1) and
( YA = 4, YB � 4). If the weights of criteria A and B are both 0.5, then
the scores of plans X and Y are 4.5 and 4, respectively. However, the
alternative plan X is significantly weaker in reliability criterion than
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the alternative plan Y. Choosing option X will result in lower system
reliability.

In the field of decision science, the VIKOR method is different
from other methods. It is a risk aversion decision-making method,
which is the judgment standard for the optimal plan to determine
whether the degree of regret is the minimum or not. Therefore, it is
more suitable for the ESTS plan decision (Kim and Ahn, 2020).

1.3 Contributions and originality

This article will construct a decision index system for the rail
transit ESTS from seven aspects, energy storage battery
characteristics, system operation characteristics, system cost,
reliability, availability, maintainability, and safety, to make
scientific decisions. On this basis, the IVPIFN is used to deal
with the uncertainty of the decision information of the rail
transit ESTS, and the VIKOR model is used to deal with the risk
aversion problem. Based on the decision index system and decision
model, a decision framework for the ESTS of rail transit is jointly
constructed to achieve scientific decisions. The specific innovation
points are as follows:

• The decision index system for the ESTS in rail transit is
established, providing direction for scientific decision.

• The IVPIFN is used to handle uncertainty in decision
information and improve the robustness of decision results.

• A decision model of the rail transit ESTS based on the VIKOR
model is constructed to realize risk aversion decisions and
conform to the decision habits of decision makers.

2 Research on the decision index
system of an ESTS plan of rail transit

In the introduction, the ESTS needs to be considered from seven
aspects: energy storage battery characteristics, system operation
characteristics, system cost, reliability, availability, maintainability,
and safety. However, availability is reflected through relevant data
on reliability and maintainability during post-project evaluation
because availability cannot be reflected during the decision stage.
Therefore, this factor is not considered when constructing a decision
index system. In this article, the decision index system for ESTS
plans is mainly examined from energy storage battery
characteristics, system operation characteristics, system cost,
reliability, maintainability, and safety attributes. The specific
decision criteria, criteria characteristics, and sources under each
attribute are shown in Table 1. The data of alternatives on each
criterion in the decision index system can be obtained through
expert scoring, experimentation, or examining projects of the
same type.

The energy storage traction system can be transformed from the
determined traction system to the energy storage traction system.
Since the traction system has been determined at this time, the

TABLE 1 Decision criterion system for the ESTS plan from the perspective of low-carbon development.

No. Attribute No. Index Characteristic Source

A1 Energy storage battery
characteristics

C11 Energy density Positive Khodaparastan et al. (2019)

C12 Cycle life Positive

C13 Battery capacity Positive

A2 System operation characteristics C21 Control the status of train operation Positive Alshammari et al. (2011)

C22 Total traction energy consumption Positive

C23 Energy feedback percentage of regenerative braking Positive

A3 System cost C31 Construction cost Negative Shaojie (2015)

C32 Operating cost Negative

A4 System reliability C41 Mean time between failures (months) Positive Ding, 2019; Lu et al. (2022)

C42 Trip fault time interval of traction power supply system
(months)

Positive

C43 Fault frequency (times/month) Negative

C44 Steady-state unavailability Negative

A5 System maintainability C51 The convenience of system fault detection Positive Ding, 2019; Alencar (2023)

C52 Convenience in identifying and locating system faults Positive

C53 The degree of modularity of the system Positive

A6 System safety C61 Probability of safety accidents occurring Negative Ding, 2019; Fang et al. (2022)

C62 Maintainability of safety-related components Positive

C63 System operation safety Positive

Positive criteria indicate that a larger value is better, while negative criteria indicate that a smaller value is better.

Frontiers in Energy Research frontiersin.org03

Lin et al. 10.3389/fenrg.2023.1248605

68

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1248605


problem of studying the energy storage battery is to consider the
characteristics of the energy storage battery as an attribute when
making the decision and meet the low-carbon, economical,
efficiency, and sustainability requirements. To make planning
decisions for energy storage traction systems from a low-carbon
perspective, it is necessary to evaluate the system economy. To meet
the dual carbon goals, high-performance batteries must be selected to
meet the economic requirements of low-carbon development in energy
storage traction systems. Otherwise, the battery life is short and the
economy is poor. Therefore, the cycle life of energy storage batteries
should be considered as an indicator. When the battery energy density
and capacity are high, the power supply and storage efficiency of the
system are higher, so energy density and battery capacity should be used
as indicators. At the same time, when it belongs to a new project, the
energy storage system and traction system are still uncertain, and
optimization research based on simulation is needed for the system.
Therefore, the operational characteristics of the system should be taken
as the attribute. Because the main energy consumption of the project
during system operation comes from the traction system, the total
energy consumption of the system traction should be considered. In
addition, the stable state of the system should be considered during
operation, while the energy storage traction system should be applied in
rail transit, so the control state of train operation should be considered.

To meet the requirements of low-carbon environmental
protection and economy, the energy feedback percentage of
regenerative braking should also be considered.

The energy storage traction system is an important heart that
provides power for the normal operation of rail transit and is a core

component of the entire high-speed railway system. The operation
of high-speed railways is risky and accidents might occur due to the
influence of the environment and operating conditions. Moreover,
due to the nature of the high-speed railway system’s work and
operation, which involves people’s livelihoods, the consequences
and subsequent impacts of accidents are very serious and severe.
According to statistics, the proportion of accidents causing rail
operation interruption due to traction system failures is quite
large in all types of rail transit accidents. Therefore, to avoid rail
transit accidents, the reliability, maintainability, and safety of the
system should be considered in the planning and decision making of
the rail transit energy storage traction system.

Under the reliability attribute, its characteristic quantity is
generally a quantitative indicator that reflects the overall
reliability of the system. Therefore, the average number of faults
in the system and the number of tripping faults in the traction power
supply system should be counted. Based on this, the interval time
and fault frequency should be calculated, and the reliability of the
system in terms of sustainability should be represented by the
interval time and fault frequency between system faults. Since the
energy storage traction system provides energy for the rail transit
system and the unavailability represents the ratio of the system
failure time to the sum of the failure time and the normal power
supply time, the unavailability of the system in the stable state is also
an important indicator to measure the system reliability.

Under the maintainability attribute, it is very important to
quickly check the cause of system faults when a system
malfunctions. Therefore, the convenience of system fault

TABLE 2 Decision values of the ESTS.

S1 S2 S3

C11 21.84 24 22.8

C12 4.7 4.95 5

C13 12,000 10,000 11,000

C21 [(0.77, 0.78), (0.14, 0.25)] [(0.70, 0.71), (0.23, 0.28)] [(0.73, 0.74), (0.22, 0.32)]

C22 4.97 4.57 4.72

C23 53.00 45.05 46.11

C31 1 0.95 0.98

C32 0.96 0.94 1

C41 15.432 16.942 14.547

C42 0.0665 0.0645 0.0647

C43 0.0709 0.0768 0.065

C44 3.95 3.79 4.07

C51 [(0.64, 0.65), (0.35, 0.39)] [(0.48, 0.50), (0.22, 0.24)] [(0.53, 0.54), (0.32, 0.37)]

C52 [(0.60, 0.63), (0.23, 0.26)] [(0.41, 0.42), (0.35, 0.37)] [(0.42, 0.44), (0.31, 0.34)]

C53 [(0.77, 0.78), (0.14, 0.25)] [(0.63, 0.71), (0.23, 0.28)] [(0.62, 0.74), (0.22, 0.32)]

C61 0.0304 0.0293 0.0309

C62 [(0.94, 0.96), (0.06, 0.07)] [(0.86, 0.86), (0.09, 0.24)] [(0.95, 0.98), (0.05, 0.07)]

C63 [(0.85, 0.86), (0.09, 0.24)] [(0.88, 0.89], (0.12, 0.15)] [(0.96, 0.97), (0.06, 0.07)]

Due to confidentiality, the cost is presented in proportion here.
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detection, identification, and location of system faults should be
considered. The modularization level of the system can make it
easier to check the system’s partition. Therefore, to facilitate
inspection and maintenance, it should also become a key
indicator in decision making and planning.

Under the safety attribute, the probability of safety accidents
occurring can directly reflect the safety level of the system, and the
maintainability of safety-related components and the safety level of
the system operation can indirectly reflect the safety of the system.

When evaluating a system solution, cost is an essential attribute.
It can be divided into construction cost and operating cost, of which
construction cost is inevitable but can be compressed through
improved project plans and construction cost is a factor that
must be considered before project implementation. The operating
cost is directly related to the profitability and survival and
development of the project, which can directly reflect the
competitiveness and sustainable development ability of the
project, and is conducive to resource allocation. Therefore,
operating cost is also a necessary indicator to consider.

3 Research on the decision model of
the ESTS plan from the perspective of
low-carbon development

After determining the decision index system for the ESTS plan, it is
necessary to determine the decision model based on the decision

characteristics of the ESTS plan. In this paper, the IVPIFN will be
used as the data expression of decision values to reduce the impact of
uncertainty, and risk aversion decisions will be realized through the
basic principles of the VIKOR model. In this section, the relevant
theories of the IVPIFN are introduced first, and based on this, a decision
model for ESTS plans will be constructed based on the basic principles
of the VIKOR model and the decision characteristics of the ESTS plan.

3.1 Relevant theory of the IVPIFN

Definition 1. (Peng and Yang, 2016). Let X be a finite nonempty set,
and the IVPIFN can be defined as follows:

P � 〈x, ~μ x( ), ~v x( )〉, x ∈ X{ }, (1)
where ~μ(x) � [μL(x), μU(x)] indicates the degree of satisfaction, μL(x)
indicates the lower limit of satisfaction, μU(x) indicates the upper limit of
satisfaction, ~v(x) � [vL(x), vU(x)] denotes the non-satisfaction degree,
vL(x) indicates the lower limit of non-satisfaction, vU(x) indicates the
upper limit of non-satisfaction, and satisfaction and non-satisfaction
satisfy the following relationship: (μU(x))2 + (vU(x))2 ≤ 1. In
addition, the IVPIFN also has interval hesitation, which is

~π(x) � [πL(x), πU(x)], πU(x) �
����������������
1 − μL(x)2 − vL(x)2

√
, and

πL(x) �
�����������������
1 − μU(x)2 − vU(x)2

√
. xi is the i-th element in the X set.

The IVPIFN can be expressed as ([μLP(xi), μUP(xi)], [υLP(xi), υUP(xi)]);
for convenience of expression, ai is used to represent μLP(xi), bi is used

TABLE 3 Weights of decision criteria for the ESTS.

No. Subjective
importance

Subjective
weight

No. Subjective
importance

Subjective
weight

Objective
weight

Comprehensive
weight

Criterion weights
considering
attribute

A1 7 0.17 C11 8 0.44 0.33 0.39 0.07

C12 4 0.22 0.34 0.28 0.05

C13 6 0.33 0.33 0.33 0.06

A2 7 0.17 C21 7 0.33 0.25 0.29 0.05

C22 8 0.38 0.35 0.37 0.06

C23 6 0.29 0.40 0.35 0.06

A3 4 0.10 C31 5 0.38 0.50 0.44 0.04

C32 8 0.62 0.50 0.56 0.06

A4 8 0.20 C41 8 0.31 0.24 0.28 0.05

C42 8 0.31 0.27 0.29 0.06

C43 5 0.19 0.24 0.22 0.04

C44 5 0.19 0.26 0.23 0.04

A5 7 0.17 C51 6 0.33 0.25 0.29 0.05

C52 6 0.33 0.22 0.28 0.05

C53 6 0.33 0.53 0.43 0.07

A6 8 0.20 C61 6 0.33 0.31 0.32 0.06

C62 6 0.33 0.35 0.34 0.07

C63 6 0.33 0.33 0.33 0.07
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to represent μUP(xi), ci is used to represent υLP(xi), and di is used to
represent υUP(xi). Therefore, ([μLP(xi), μUP(xi)], [υLP(xi), υUP(xi)]) can
be expressed as ([ai, bi], [ci, di]) in this article.

Definition 2. (Peng and Yang, 2016). We assume
p � ([a, b], [c, d]), p1 � ([a1, b1], [c1, d1]), and p2 �
([a2, b2], [c2, d2]) for three IVPIFNs, and λ> 0。. Then, the
operation is defined as follows:

p1 ⊕ p2 �
������������
a21 + a22 − a21a

2
2

√
,

�����������
b21 + b22 − b21b

2
2

√[ ], c1c2, d1d2[ ]( ), (2)

p1 ⊗ p2 � a1a2, b1b2[ ],
�����������
c21 + c22 − c21c

2
2

√
,

������������
d2
1 + d2

2 − d2
1d

2
2

√[ ]( ), (3)

pλ � aλ, bλ[ ], ����������
1 − 1 − c2( )λ

√
,

�����������
1 − 1 − d2( )λ

√[ ]( ), (4)

λp �
�����������
1 − 1 − a2( )λ

√
,

�����������
1 − 1 − b2( )λ

√[ ], cλ, dλ[ ]( ), (5)
pc � c, d[ ], a, b[ ]( ). (6)

Definition 3. (Peng and Li, 2019). According to the Shannon
entropy, the IVPIFN entropy Ej(j � 1, 2, ..., n) on the j-th criterion
can be calculated by using the following equation:

Ej � 1 −
����������������������������
1
2n

∑n

j�1 a2ij − c2ij( )2 + b2ij − d2
ij( )2( )

√
. (7)

Definition 4. (Peng and Yang, 2016). Assuming p1 �
([a1, b1], [c1, d1]) and p2 � ([a2, b2], [c2, d2]) are two IVPIFNs,
the distance between p1 andp2 is defined as follows:

d p1, p2( )
� 1
4

a21 − a22
∣∣∣∣ ∣∣∣∣ + b21 − b22

∣∣∣∣ ∣∣∣∣ + c21 − c22
∣∣∣∣ ∣∣∣∣ + d2

1 − d2
2

∣∣∣∣ ∣∣∣∣ + τ21 − τ22
∣∣∣∣ ∣∣∣∣ + σ21 − σ2

2

∣∣∣∣ ∣∣∣∣( ),
(8)

where [τ1, σ1] � [
���������
1 − a21 − c21

√
,

���������
1 − b21 − d21

√
] or [τ2, σ2] �

[
���������
1 − a22 − c22

√
,

���������
1 − b22 − d22

√
].

Definition 5. (Peng and Yang, 2016) For any IVPIFN p � ([a, b],
[c, d]),M(p) and Δ(p) are the score function and accuracy function of
the IVPIFN p. Their calculation equations are as follows:

M p( ) � a2 + b2 − c2 − d2

2
,M p( ) ∈ −1, 1[ ]

Δ p( ) � a2 + b2 + c2 + d2

2
,Δ p( ) ∈ 0, 1[ ]

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
. (9)

If M(p1)<M(p2), then p1 <p2; if M(p1) � M(p2), there are
two situations:

• When Δ(p1)<Δ(p2), then p1 <p2.
• When Δ(p1) � Δ(p2), then p1 � p2.

3.2 Decision model for the ESTS plan based
on the IVPIFN

For the sake of expression, assuming that there are m alternative
ESTS plans Ai(i � 1, 2, ..., m), n criteria Cj(j � 1, 2, ..., n), the
flowchart of the decision model is shown in Figure 1.

3.2.1 Phase 1: establishing a decision matrix for
ESTS plans based on the IVPIFN

Step 1:Converting the quantitative decision values of the ESTS plan
into the IVPIFN. The quantitative decision value of the ESTS plan
can be converted into the IVPIFN decision value by the following
equation:

μLij � μUij �

α ×
EVij

EVi
max

i ∈ Ωb( )

α ×
EVi

min

EVij
i ∈ Ωc, EVi

min ≠ 0( )
α × 1 − EVij

EVi
max

( ) i ∈ Ωc, EVi
min � 0( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
and υLij � υUij

�

1 − α ×
EVij

EVi
max

i ∈ Ωb( )

1 − α ×
EVi

min

EVij
i ∈ Ωc, EVi

min ≠ 0( )
1 − α × 1 − EVij

EVi
max

( ) i ∈ Ωc, EVi
min � 0( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
, (10)

where EVi
max and EVi

min are the maximum and minimum
decision values on the i-th decision criterion, EVij refers to the
decision value of the j-th ESTS plan on the i-th decision criterion,Ωb

is a set of positive decision criteria, Ωc is a set of negative decision
criteria, and μUij , μ

L
ij, υ

L
ij, and υ

U
ij are the upper and lower limits of the

IVPIFN decision value.

Step 2: Obtaining IVPIFN decision values for ESTS plans based on
qualitative decision criteria. Experts evaluate ESTS plans based on
qualitative decision criteria. First, the interval value of the
satisfaction degree and the interval value of the non-satisfaction
degree are determined between [0,1], respectively. The satisfaction
and non-satisfaction degrees together form the IVPIFN decision
value of ESTS plans on the qualitative decision criterion. When the
qualitative decision criterion is negative, it should be converted into
complementary values through Eq. 6.

Step 3: Building a decision matrix for the ESTS plan. We sort the
IVPIFN decision values on qualitative and quantitative decision
criteria in the order of decision criteria and alternative ESTS plans. A
decision matrix for ESTS plans is constructed by the following
equation:

P �
p11 . . . p1m

..

.
1 ..

.

pn1 . . . pnm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (11)

3.2.2 Phase 2: determining the weight of decision
criteria for ESTS plans

Step 1: Determining the weight of subjective decision criteria.
Experts determine the importance of decision criteria between
[1,10], with larger values indicating greater importance. The
importance of the i-th decision criterion is marked as IDi. The
calculation equation for the subjective weight of the decision
criterion is shown in the following equation:
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ws
i �

IDi∑n
i�1IDi

, (12)

where ∑n
i�1ws

i � 1.

Step 2: Determining the weight of objective decision criteria. The
objective weight of the decision criteria for the ESTS plan is
calculated by using the entropy weight method, where the
IVPIFN entropy on each criterion can be calculated using Eq. 7,
while the objective weight calculation equation is

wo
i �

1 − Ei

n − ∑n
i�1Ei

. (13)

Step 3: Determining the comprehensiveweight of decision criteria. The
comprehensive weight can be obtained through the following equation:

wc
i � a × wo

i + 1 − a( ) × ws
i , i � 1, 2, ..., n( ), (14)

where wo
i is the objective weight of the i-th decision criterion, ws

i is
the subjective weight of the i-th decision criterion, and a is the
comprehensive parameter that determines the proportion of
subjective weight and objective weight.

3.2.3 Phase 3: obtaining the optimal plan through
the IVPIFN–VIKOR model

Step 1: Determining the positive and negative ideal solutions
according to Definition 4, PISi and NISi are the positive and
negative ideal solutions, which can be found by Eqs 15, 16,
respectively.

PISi � max
j

{pij}, (15)
NISi � min

j
{pij}. (16)

Step 2: The group utility measure Sj, individual regret measure Rj,
and compromise measure Qj of the alternative ESTS plan Aj are
determined based on the positive and negative ideal solutions and
the following equations:

Sj � ∑n

i�1
wid pij, PISi( )
d PISi,NISi( ), (17)

Rj � max
wid pij, PISi( )
d PISi,NISi( ), (18)

FIGURE 1
Flowchart of the decision model for the ESTS plan based on the IVPIFN.
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Qj � η
Sj − S−

S+ − S−
+ 1 − η( ) Rj − R−

R+ − R−, (19)

where S+ � max
j

Sj{ }, S− � min
j

Sj{ }, R+ � max
j

Rj{ },
R− � min

j
Rj{ }, and η is the weight of the group utility maximization

strategy; generally speaking, η � 0.5.

Step 3: Assuming that the optimal ESTS plan is determined based on
the size of the compromise measure Q, and the minimum compromise
measure value is optimal, A(1) is the optimal solution sorted based on
the compromise measure, and two conditions need to be met:

C1: The alternative ESTS plan (A(1)) has an acceptable advantage,
which is Q(A(2)) − Q(A(1))≥DQ, where DQ � 1/(m − 1).

C2: The alternative ESTS plan (A(1)) has acceptable stability,
which means that the optimal alternative is also the optimal solution
when ranked based on the group utility measure Sj or individual
regret measure Rj.

If one of the conditions is not met, a set of compromise solutions
can be submitted, but the following conditions must be met:

• If only condition C1 is satisfied, then there is a compromise
solution set {A(1), A(2)}

• If only condition C2 is satisfied, then the inequality can be
satisfied as Q(A(m)) − Q(A(1))<DQ; in this case, the
maximum value m is taken to obtain a compromise
solution set of {A(1), A(2),. . ., A(m)}.

4 Case study

4.1 Data sources

The data, in this case, come from the feasibility study report,
preliminary design plan, and meeting minutes of the previous
plan argumentation of Kunming Metro Line 5. The IVPIFN
decision value, importance score of decision attributes, and
importance score of decision criteria for the alternative ESTS
plans are derived from the statistical analysis of expert scoring in
plan argumentation.

4.2 Case analysis

Kunming Metro Line 5 starts from Expo Park Station in the
north and ends at Baofeng Village Station in the south. It runs
through Panlong District, Wuhua District, Xishan District, Resort,
and Guandu District, connecting tourist attractions, such as Expo
Park, Yuantong Park, Cuihu Lake, and the International Convention
and Exhibition Center. The total length of the line is about 26.45 km,
and it is laid underground with a total of 22 stations. The
construction of this rail transit project needs to reflect the
concept of “ecological livability in Kunming—harmonious
coexistence between humans and nature.” Therefore, from this
perspective, the decision of ESTS plans is made, and the most
important thing is to reflect the low-carbon nature of the
traction system. Therefore, in the preliminary design stage, three
ESTS design plans are proposed, labeled S1, S2, and S3 in this case.

TABLE 5 Sensitivity analysis.

No. η S1 S2 S3

1 0.000 1.00 0.00 0.34

2 0.100 1.00 0.02 0.30

3 0.200 1.00 0.05 0.27

4 0.300 1.00 0.07 0.24

5 0.400 1.00 0.09 0.20

6 0.500 1.00 0.11 0.17

7 0.600 1.00 0.14 0.14

8 0.700 1.00 0.16 0.10

9 0.800 1.00 0.18 0.07

10 0.900 1.00 0.20 0.03

11 1.000 1.00 0.23 0.00

TABLE 4 Optimization results of plans based on VIKOR.

Alternative options Si Ri Qi Priority

S R Q

S1 0.595 0.073 1.000 3 3 3

S2 0.445 0.066 0.114 2 1 1

S3 0.401 0.068 0.169 1 2 2

TABLE 6 Cross comparison.

Interval Pythagorean
fuzzy numbers

VIKOR
model

Practice Sort

S1 S2 S3

Scenario 1 Replace with real numbers Retain

The average satisfaction degree in interval S 0.598 0.407 0.397

R 0.073 0.066 0.068

Pythagorean fuzzy numbers is taken
as the evaluation value

Q 1.000 0.024 0.169

Sort 2 1 1

Scenario 2 Retain Replace with the TOPSIS method TOPSIS model Score 0.37 0.67 0.57
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Experts have demonstrated these three alternative ESTS plans
and simulated the operation of the ESTS on rail transit. Based on the
organization of the aforestated data, the decision data of these three
alternatives are shown in Table 2. At the same time, experts rate the
importance degree of decision attributes and criteria, and the
attribute weights, criterion weights, and criterion weights
considering attribute could be calculated using Eqs 12–14, the
weights can been seen in Table 3. From the weight of decision
attributes, it can be seen that experts have less consideration for cost,
and the importance of system reliability, maintainability, and safety
is slightly higher than that of energy storage battery performance
and system operating characteristics. This means that under the
influence of policies, it is necessary to strike a balance between
system reliability, maintainability, and safety and energy storage
battery performance and system operating characteristics, and cost
has instead become a non-important criterion.

On this basis, the group utility measure, individual regret
measure, and compromise measure of these three ESTS plans are
calculated based on the IVPIFN–VIKOR model, as shown in
Table 4. According to the VIKOR optimal solution judgment
rules, from the compromise measure Q, S2 is optimal, but the
difference between the Q value of S3 and the Q value of S2 in the
second place is not greater than 0.5. Therefore, according to the
judgment condition: if only condition C2 is met, then the inequality
can be satisfied: Q(A(m)) − Q(A(1))<DQ; in this case, the
maximum value m is taken to obtain a compromise solution set
of {A(1), A(2), . . ., A(m)}. Therefore, the optimal solution is two
S2 and S3.

5 Discussion

The sensitivity analysis is conducted to test the robustness of
the decision results. The specific steps are to adjust the parameter
η in the calculation process of the compromise measure. The
value range of η is [0,1]. The sensitivity analysis starts from 0 and
takes values every 0.1 intervals, so there are 11 sensitivity analysis
results, which are shown in Table 5. According to the calculation
results, it was found that the results are still S2 and S3, so the
results have sufficient robustness. Experts choose S3 as the best
plan based on maximizing group utility.

To prove the progressiveness of the model, this paper uses real
numbers instead of IVPIFNs as comparison scenario 1 and the
TOPSIS method instead of the VIKOR model as comparison
scenario 2 for the comparison experiments. The comparison
experimental results are shown in Table 6. According to
comparison scenario 1, after using real numbers, the
compromise measure of S2 decreases due to the influence of
uncertainty, but S1 and S3 do not change. This effect, which
causes the difference between values to change, will lead to
changes in the decision results in the VIKOR model. That is,
when the two values are exactly at the boundary of C1 conditions,
the change in the difference between values will lead to changes in
the decision results. According to comparison scenario 2, after the
TOPSIS model is adopted, S2 is the optimal solution, but this
solution does not take into account the biggest weakness of
alternatives, which cannot meet the needs of risk aversion

decision makers. Therefore, the model proposed in this article
can better solve the problem of ESTS plan decisions.

6 Conclusion

The main energy consumption of rail transit projects comes
from the electrical system, and the main power consumption system
is the traction system. Therefore, in the context of the dual carbon
targets, if the low-carbon development of rail transit is to be
achieved, the low-carbon development of the traction system is
crucial. To achieve low-carbon traction systems, the ESTS is an
important development direction. For new projects, the following
problems must be faced when scientifically selecting an ESTS: ①
lack of a scientific decision index system for ESTS plans; ② the
adverse impact of uncertainty in decision information on the
scientific nature of decision; and ③ the decision of the ESTS
belongs to risk aversion decision.

Therefore, based on the ESTS characteristics, this article
constructs a decision index system for ESTS plans. The
criterion system includes six decision attributes and
18 decision criteria, among which the decision attributes are
energy storage battery characteristics, system operation
characteristics, system cost, reliability, maintainability, and
safety. According to the characteristics of the plan decision of
the ESTS, this paper uses the IVPIFN as the expression form of
the decision data to reduce the adverse impact of uncertainty on
the scientificity of the decision and realizes risk aversion
decisions through the VIKOR model.

In this case, experts have given less consideration to cost, and the
importance of system reliability, maintainability, and safety is
slightly higher than that of energy storage battery performance
and system operating characteristics. This means that under the
influence of policies, it is necessary to strike a balance between
system reliability, maintainability, safety, and energy storage battery
performance and system operating characteristics, and cost becomes
a non-important criterion.

The issues that need further research in this article are as
follows: the correlation between decision criteria was not
considered in this study, and the correlation between criteria
also has a significant impact on the scientific nature of the
decision. Therefore, how to scientifically measure the correlation
between the ESTS decision criteria is a problem that needs to be
solved.
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Appendix

TABLE A1 Summary of fuzzy mathematics.

Data type Expression form References

Intuitionistic fuzzy number 〈μ, υ〉, where μ is the member level and υ is the non-member level, 0≤ μ + υ≤ 1, such as 〈0.7, 0.2〉 Kumar and Chen
(2022)

Interval-valued intuitionistic fuzzy number 〈(μL, μU), (vL, vU)〉, where μL and μU are the higher and lower member levels and vLand vU are the
higher and lower non-member levels, 0≤ μU + vU ≤ 1, such as 〈(0.65, 0.70), (0.15, 0.25)〉

Percin (2022)

Interval-valued Pythagorean intuitionistic
fuzzy number

〈(μL, μU), (vL, vU)〉, where μL and μU are the higher and lower member levels and vLand vU are the
higher and lower non-member levels, (μU(x))2 + (vU(x))2 ≤ 1, such as 〈(0.7, 0.9), (0.1, 0.2)〉

Percin (2022)
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Research on multi-market
strategies for virtual power plants
with hydrogen energy storage

Wenyu Zhang1, Yu Shen1, Xuanyuan Wang2, Ming Li1, Weixi Ren1,
Xiaochuan Xu1 and Yuyuan Zhang3*
1State Grid Jibei Zhangjiakou Wind and Solar Energy Storage and Transportation New Energy Co., Ltd.,
Zhangjiakou, China, 2State Grid Jibei Electric Power Co., Hebei, China, 3School of Economics and
Management, North China Electric Power University, Beijing, China

As the main body of resource aggregation, Virtual Power Plant (VPP) not only
needs to participate in the external energy market but also needs to optimize the
management of internal resources. Different fromother energy storage, hydrogen
energy storage systems can participate in the hydrogen market in addition to
assuming the backup supplementary function of electric energy. For the Virtual
Power Plant Operator (VPPO), it needs to optimize the scheduling of internal
resources and formulate bidding strategies for the electric-hydrogen market
based on external market information. In this study, a two-stage model is
constructed considering the internal and external interaction mechanism. The
first stage model optimizes the operation of renewable energy, flexible load,
extraction storage, and hydrogen energy storage system based on the
complementary characteristics of internal resources; the second stage model
optimizes the bidding strategy to maximize the total revenue of the electricity
energy market, auxiliary service market and hydrogen market. Finally, a typical
scenario is constructed and the rationality and effectiveness of the strategy are
verified. The results show that the hybrid VPP with hydrogen storage has better
economic benefits, resource benefits and reliability.

KEYWORDS

virtual power plant, electricity market, hydrogen market, hydrogen storage system,
bidding strategy

1 Introduction

1.1 Background and motivation

With the implementation of China’s “double carbon” strategy, new energy sources such
as wind power and photovoltaic will see more rapid development, and the penetration rate of
new energy sources will continue to increase, which will increase the impact of new energy
power fluctuations on the safety and stability of microgrid and its access system and the
difficulty of operation and scheduling (Ashish et al., 2021). On the one hand, the uncertainty
of renewable energy power generation puts higher demands on the grid’s regulation capacity,
and smoothing the volatility and indirectness of renewable energy power generation is an
urgent problem to be solved. On the other hand, with the increasing installed capacity of
renewable energy, the phenomenon of abandoning wind, light and water is getting more and
more serious, and the full consumption of renewable energy and the improvement of energy
utilization efficiency is also one of the challenges being faced (Huang et al., 2021; Liu et al.,
2021). As a smart energy system, VPP has the characteristics of bidirectional trend, which
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can be used as a controllable power source to strengthen the power
supply capacity to the grid and carry out peak regulation, and as a
controllable load to increase the power consumption with the system
to achieve the valley filling, smooth the system output and demand,
and provide a guarantee for the stability of the power system
(Nosratabadi et al., 2017; Saleh Sadeghi et al., 2022; Chen et al.,
2023). In addition to providing security for the operation of the
power system to obtain compensation revenue, VPPs can also
participate in the power market at all levels as a flexible resource
for capacity, power, and ancillary services to obtain economic
benefits through market transactions (Dai et al., 2022). Energy
storage can make up for the inherent defects of new energy in
terms of random volatility and fundamentally solve the problem of a
high percentage of new energy consumption. The charging and
discharging characteristics of energy storage can smooth out the
system power fluctuations, improve the new energy consumption
capacity, reduce the frequency of power fluctuation impact of a
microgrid on its access system, and realize the friendly grid
connection of microgrid (Li et al., 2021). Hydrogen storage
enables the smooth operation of power systems through the
conversion of hydrogen energy to electrical energy. When
electricity is sufficient, the technology of hydrogen production by
electrolysis of water is used to make full use of electricity by storing
hydrogen; when electricity output is insufficient, the stored
hydrogen energy can be used by hydrogen fuel cells or hydrogen
combustion turbines to re-generate electricity and return to the
system. As a clean and efficient energy source, hydrogen energy
storage can play an important role in VPPs (Furat et al., 2022; Qiu
et al., 2022).

1.2 Literature review

The research on energy storage in VPPs mainly includes market
participation strategy, capacity allocation, optimal scheduling, and
benefit allocation. This study focuses on the research from the
perspective of market strategy for VPP.

Many scholars have researched the strategy of VPPs
participating in the power market. VPPs as flexible resource-rich
subjects can play an important role in the electricity market
(Shafiekhani et al., 2019). In addition, with the development of
integrated energy systems, multi-energy complementarity has
gradually become a trend for resource optimization within VPPs,
which can also participate in multi-energy markets as independent
subjects (Naughton et al., 2020; Ju et al., 2022). The current research
on the participation of VPPs in the electricity market mainly
includes the design of market mechanisms (Ahmad, 2022;
Morteza et al., 2022) and the study of trading strategies (Tang
and Yang, 2019; Dai et al., 2022; Zheng et al., 2022). For example,
Rahimi Mahdi et al. constructed a VPP with wind turbines, PV,
conventional generators, energy storage systems, and controllable
loads and proposed a strategy for VPP participation in day-ahead
and real-time electricity markets considering demand response
(Mahdi et al., 2022). Bo Li et al. proposed a market participation
strategy and compared the benefits of VPPs with and without energy
storage to participate in electricity energy markets and ancillary
services markets (Li and Ghiasi, 2021). Alahyari, Arman, et al.
constructed a VPP consisting of wind power, energy storage, and

flexible load, and proposed an optimization strategy considering the
stochasticity of renewable energy output and the uncertainty of
electricity market price uncertainty (Alahyari et al., 2020). Henao,
MM et al. proposed a bidding strategy for VPP participation in the
market while determining the optimal size of the energy storage
system (Henao Michelle and Oviedo Jairo José, 2022). Appino,
Riccardo R et al. considered the uncertainty of renewable energy
output and the volatility of energy prices to optimize the strategy of
VPPs with hydrogen energy storage participating in the real-time
electricity market (Han et al., 2021). The above studies take VPP
bidding as the research object and put forward a two-tier strategy of
internal resource optimization and energy management considering
uncertainty. Specifically, these studies only consider VPPS ‘strategies
for participating in the electricity market, ignoring the multiple
energy attributes of VPPS.

Some scholars have also considered how a multi-energy coupled
VPP can participate in a multi-energy market. For example, Zhang,
Tao et al. introduced a VPP consisting of a natural gas network,
power-to-gas equipment, flexible loads, and energy storage, and
studied an optimization model considering dual energy markets by
developing different scenarios (Zhang and Hu, 2022). Ju Liwei et al.
constructed a VPP including cogeneration units, wind turbines,
power and thermal storage systems, and controllable loads, and
considered the impact of different energy market price fluctuations
on the profit risk of VPP (Ju et al., 2022). Liu Xiaoou constructed a
VPP operation model including wind turbines, electric vehicles, gas
turbines, and controllable loads, and constructed an optimal carbon-
electricity integration bidding strategy for VPPs by further analyzing
the carbon-electricity integration market characteristics (Liu, 2022).

Although many studies have considered the strategy of VPP
participation in multi-energy markets, the role of electric energy
storage in a single electricity market is still only considered for
energy storage resources in VPP (mainly electric energy storage
resources, excluding thermal and gas storage devices). Unlike
electrochemical energy storage, hydrogen energy storage can
participate not only in the electric market but also in the
hydrogen market. However, few studies have been conducted to
evaluate the participation of hydrogen energy storage systems in
VPPs. Unlike other energy storage systems, HSSs can not only fully
consume the abandoned wind, light, and water resources as energy
storage to ensure power supply, but also serve as a source of
hydrogen feedstock to enhance the added value within the
system and improve the ability of VPPs to participate in external
markets (Zheng et al., 2020; Liu, 2022).

1.3 Contribution and research structure

Most of the above studies have considered how VPPs without
hydrogen energy storage participate in the power market or multi-
energy market, and few studies have explored the role of hydrogen
energy storage systems in VPPs and how VPPs with hydrogen
energy storage participate in the multi-energy market. In this study,
the resource complementary characteristics of renewable energy,
flexible load, pumped storage, and hydrogen storage are considered,
a two-layer optimization model is constructed, and an external
multi-energy market bidding and internal resource optimization
strategy are proposed. The structure of the VPP is shown in Figure 1.
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The VPP consists of renewable energy generating units, pumped
storage plants, flexible loads, and HSSs. The VPP operator collects
market information and gives operating instructions to the VPP.
The VPP optimizes its internal resources through the instructions
given by the VPP operator.

Traditionally, the VPP participates in the power market mainly
through peak-hour sales on the power side, peak-to-valley arbitrage
on the energy storage side, and demand response on the load side to
provide ancillary services.

In this study, the VPP participates in the day-ahead energy
market and the peaking auxiliary service market and participates in
the day-ahead power market as a price receiver. After obtaining the
market information (purchase and sale prices, peak and valley hours,
etc.) of the energy market and the peaking market (peak hours and
peak compensation prices for peak filling and peak shaving) released
by the power dispatching agency, the VPP coordinates its internal
resources according to the bidding strategy. After coordinating
internal bidding resources according to the bidding strategy, the
company further adjusts the bidding plan in the energy market and
the peaking market through optimization and reports the
information on the electricity bidding in the energy market and
the peaking market to the power dispatching agency. Both HSSs and
pumped storage plants can participate in the peaking auxiliary
service market, but for HSSs, the total amount of resources for
their participation in either the electric auxiliary service market or
the hydrogen market is fixed, so decisions need to be made based on
prices.

The possible innovations and contributions of this study are as
follows.

(1) The application of hydrogen energy storage systems in VPPs is
explored.

(2) The participation of VPPs in external markets and the
optimization of internal resources are both considered.

(3) The role of a combined clean energy storage strategy for
participation in multiple markets is considered for VPP.

(4) The impact of energy market price changes on the market
participation strategy of VPPs is evaluated.

The rest of this paper is structured as follows: Section 2
constructs a two-layer model of VPP participation in the
electricity-hydrogen market. Case studies are performed and
analyzed in Section 3. Section 4 highlights the conclusions.

2 A model for VPP participation in
multiple markets

2.1 Bidding strategy for the upper layer of
the VPP

2.1.1 Objective function
The goal for the VPP operator is to maximize total system

revenue, which includes revenue from the sale of electricity in the
energy market, revenue from the provision of ancillary services, and
revenue from the sale of hydrogen in the hydrogen market.

IVPP � ∑24
t�1
Pa
t × Qa

t + Pe
t × Qe

t + Ph
t × Qh

t (1)

Where Pa
t and Pe

t are the time-of-day price information obtained by
the VPP operator in the ancillary services market and the electricity
market, respectively. Ph

t is the market price of hydrogen, which is a
fixed price. Qa

t , Q
e
t and Qh

t are the quoted quantities of the VPP

FIGURE 1
Schematic diagram of VPP structure.

Frontiers in Energy Research frontiersin.org03

Zhang et al. 10.3389/fenrg.2023.1260251

79

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1260251


operator for the ancillary services market, the electricity market, and
the hydrogen market, respectively.

Among them, regulating peak auxiliary services are further
divided into peak-shaving auxiliary services and valley-filling
auxiliary services, and the service prices of peak-shaving auxiliary
services and valley-filling auxiliary services are different, therefore,
the revenue that VPP operators can obtain by providing auxiliary
services can be refined into the following model.

Pa
t × Qa

t � pvf,t × qvfb,t + ppf,t × qpfb,t (2)
pvf,t and ppf,t are the valley-filling price and peak-shaving price
respectively, qvfb,t is the valley-filling capacity of the VPP operator,
and qpfb,t is the peak-shaving capacity of the VPP operator.

qvfb,t � qp,vf,t + qfl,vf,t (3)
qpfb,t � qp,pf,t + qfl,pf,t (4)

qp,vf,t and qfl,vf,t are the charging power of the pumped storage
plant and HSS involved in valley filling and the load increase of the
flexible load involved in valley filling, respectively; qp,pf,t and qfl,pf,t
are the discharging power of the pumped storage plant and HSS
involved in peak shaving and the load reduction of the flexible load
involved in valley filling, respectively.

2.1.2 Constraints
VPPO’s bids in the energy and ancillary services markets affect

each other, and the limited and fixed flexibility resources available to
VPPs require VPP operators to choose the allocation of resources
between the energy and ancillary services markets.

FVPP,t � Qa
t + Qe

t (5)
where FVPP,t denotes the system flexibility of the VPP at moment t,
provided by the lower layer.

2.2 Optimization model for the lower layer
of the VPP

2.2.1 Objective function
For the lower-layer model of the VPP, the objective is to

minimize the total system operating cost. Its system operating
costs CVPP include the penalty cost of wind and light
abandonment CP

a,t, the penalty cost of load loss CP
l,t, the cost of

power purchase CE
p,t, the cost of equipment start-up and shutdown

Cs−s
d,t , and the cost of equipment operation CO

d,t.

CVPP � ∑24
t�1
CP

a,t + CP
ll,t + CE

p,t + Cs−s
d,t + CO

d,t (6)

CP
a,t � p̂P

a,t × PP
a,t (7)

CP
ll,t � p̂P

ll,t × PP
ll,t (8)

CE
p,t � p̂b,t × Pb,t (9)

p̂P
a,t, p̂

P
ll,t and p̂b,t are the abandonment penalty tariff, the loss of load

penalty tariff, and the purchase tariff, respectively, and PP
a,t, P

P
ll,t and

Pb,t are the abandoned power, the lost power, and the purchasing
power, respectively.

Cs−s
d,t � cstartd,t αd,t 1 − αd,t−1( ) + cstopd,t αd,t−1 1 − αd,t( ) (10)

cstartd,t and cstopd,t are the positive and negative standby cost coefficients
of the system equipment, and αd,t is the start-stop status of the
equipment in the period of t. A factor of 0 indicates a shutdown
status, and a factor of 1 indicates a start-up status.

CO
d,t � p̂O

d,t × PO
d,t (11)

p̂O
d,t indicates the unit operating cost of the equipment and PO

d,t

indicates the output of the equipment.

2.2.2 Constraints
2.2.2.1 Power balance constraint

Pw,t + Ppv,t + Pg
p,t + Pf,t + Pb,t + PP

ll,t � Pl,t + Pe,t + Pc
p,t + Ps,t + PP

a,t

(12)
Among them, Pw,t, Ppv,t, P

g
p,t, Pf,t and Pb,t indicate wind

power, photovoltaic power, pumped storage power, fuel cell
power, and purchasing power, respectively. Pl,t, Pe,t, Pc

p,t, Ps,t

and PP
a,t indicate the adjusted flexible load, electrolyzer power,

pumped storage power, sold power, and abandoned power,
respectively.

2.2.2.2 Standby capacity constraint
To realize the full consumption of wind power and PV, VPP

keeps the corresponding positive and negative standby to cope with
the deviation of wind power and PV output through a pumped
storage power station and flexible load.

Rp,down,t + Rfl,down,t ≥ΔPw+,t + ΔPpv+,t (13)
Rp,up,t + Rfl,up,t ≥ΔPw−,t + ΔPpv−,t (14)

Where ΔPw+,t and ΔPpv+,t are the positive deviations of wind power
and PV output. ΔPw−,t and ΔPpv−,t are the negative deviations
between wind power and PV output. Rp,up,t and Rp,down,t are the
positive and negative standby of pumped storage plants, Rfl,up,t and
Rfl,down,t are the positive and negative standby of flexible loads.

2.2.2.3 Equipment output constraints
The wind power output constraints are as follows.

Pw,t �
0 0≤ vt ≤ vin, vt ≥ vout
vt − vin
vra − vin

pra
w vin < vt ≤ vra

pra
w vra < vt ≤ vout

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(15)

pra
w is the rated output power of wind power, vin, vra, vout and vt, are

the access wind speed, rated wind speed and cut-off wind speed and
actual wind speed of the system, respectively.

The photovoltaic output constraint is as follows.

Ppv,t � I × Pra
pv × λ (16)

I is the amount of solar radiation per unit area, Pra
pv is the rated

installed capacity of PV, and λ is the overall system efficiency,
generally taken as 0.8.

The power output constraint of the pumped storage power plant
is as follows.

Pgmin
p,t ≤Pg

p,t ≤Pgmax
p,t (17)
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Pgmin
p,t and Pgmax

p,t are the minimum and maximum technical output
of the pumped storage plant under power generation conditions,
respectively.

Pc
p,t � ηp,tP

ra
p,t (18)

ηp,t is the operating state variable of the pumped storage plant at t
time of pumping conditions, and Pra

p,t is the rated pumping power of
the pumped storage plant.

Pg
p,t × Pc

p,t � 0 (19)

Among them, pumped storage power plants are not pumped
storage and discharge at the same time.

The hydrogen energy storage system output constraints are as
follows.

Hm,t � αηp−hPe,t (20)
Pf,t � βηh−pHc,t (21)

Hm,t is the amount of hydrogen produced, α is the coefficient of
hydrogen conversion, and ηp−h is the efficiency of hydrogen
conversion. β is the coefficient of hydrogen to electricity, ηh−p is
the efficiency of hydrogen to electricity, and Hc,t is the amount of
hydrogen consumed.

Hsell,t � Hm,t −Hs,t (22)
Hsell,t is the amount of hydrogen sold per hour, and Hs,t is the
amount of hydrogen stored in real-time.

The cumulative hydrogen storage capacity of the hydrogen
storage facility satisfies the following constraints.

Hs,t � Hm,t −Hsell,t t � 1
Hs,t−1 +Hm,t −Hsell,t −Hc,t t≥ 2

{ (23)

0≤Pe,t ≤Pe,t
max (24)

0≤Pf,t ≤Pf,t
max (25)

0≤Hs,t ≤Hs,t
max (26)

Pe,t
max, Pf,t

max and Hs,t
max are the rated power of the electrolyzer, the

maximum discharge power of the fuel cell, and the maximum
hydrogen storage capacity of the hydrogen storage tank,
respectively.

Pe,t × Pf,t � 0 (27)

The electrolysis tank and the fuel cell do not work
simultaneously.

2.2.2.4 Equipment start/stop constraint
For pumped storage plants and HSSs, frequent start-ups and

shutdowns not only increase the cost but also affect the normal use
of the equipment and increase the wear and tear of the equipment.
Therefore, the number of starts and stops of energy storage systems
in a typical operating day needs to be kept within a reasonable
range.

0≤ ns−s ≤ ns−smax (28)
ns−s indicates the number of equipment starts and stops, and ns−smax

indicates the maximum number of equipment starts and stops in a
typical day.

2.2.2.5 Peak shaving constraints
For flexible loads, the following peaking constraints are satisfied.

−ΔPl,t
max ≤ΔPl,t ≤ΔPl,t

max (29)
ΔPl,t is the adjustable amount of flexible load, ΔPl,t

max is the
maximum adjustable amount of flexible load. The flexible load
needs to participate in the peaking market according to the
period of the peaking auxiliary service market for load
adjustment, and the amount of peaking at other time is 0.

0≤ΔPl,vf,t ≤ uvfΔPl,t
max (30)

0≤ΔPl,pf,t ≤ upfΔPl,t
max (31)

ΔPl,vf,t and ΔPl,pf,t are the flexible load filling and peak shaving
power respectively, and uvf and upf are the filling and peak shaving
flags respectively, which are 0–1 variables and are not 1 at the
same time.

2.2.2.6 Loss of load constraint

0≤PP
ll,t ≤ �Pl,t (32)

�Pl,t indicates the predicted value of the flexibility load at t time.

2.3 Method

In this study, a combination of particle swarm optimization
(PSO) algorithm and Cplex solver is used to solve the problem as
shown in Figure 2, which is implemented in the MATLAB 2019a

FIGURE 2
Method flow chart.
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platform. The particle swarm algorithm has been widely used as one
of the heuristic algorithms for solving optimization problems.
Compared with other heuristics such as genetic algorithm (GA)
and ant colony optimization (ACO), the PSO algorithm enhances
global and local exploration capabilities through a flexible and
balanced mechanism. The specific process is as follows.

(1) Initialize the particles, given the initialized velocity and position
for each particle in the upper model for the decision variables of
the electric energy market bid volume, the auxiliary service
market bid volume, and the hydrogen market bid volume.

(2) The lower layer Cplex solver optimizes the internal resources of
the VPP according to the lower layer objective function to
obtain the optimal power purchase and sale strategy and
updates the number of flexibility resources within the VPP to
feedback to the upper layer.

(3) The upper-layer particle swarm algorithm updates the bid
quantity based on the flexibility resource quantity fed back
from the lower layer and calculates the total revenue to evaluate
the change in total revenue.

(4) If the model has reached the termination condition, the
optimization search process ends and the algorithm
terminates; otherwise, the velocity and position of the
particles are updated and return to step (2).

3 Case study

3.1 Parameters and scenario design

Since it is difficult for VPPs to influence market prices in both
the electricity and hydrogen markets, this paper sets VPPs as
recipients of market prices and makes decisions on quoted
quantities based on price information. In this paper, the VPP
operator rationalizes the allocation of flexibility resources within
the VPP by aggregating them according to the demand of the power
dispatching agency and the price information obtained from the
power market and the hydrogen market to achieve the maximum
total system revenue. Renewable energy generation, flexible loads,
pumped storage plants, and HSSs can all participate in the peaking

demand of the power market, and HSSs can also participate in the
hydrogen market. The peaking periods and the prices of power
purchase and sale and auxiliary services are shown in Figure 2. VPPs
can participate in the electricity energy market in all 24 time periods.

The price of the electricity market is shown in Figure 3.
According to the output characteristics of wind power and PV
and load demand characteristics, four typical days in spring,
summer, autumn, and winter are selected in this study, as shown
in Figure 4.

In this paper, the maximum adjustment of the flexible load is set
to 20% of the load in that period. The access condition of the
auxiliary service market is that the single-day bidding power is not
less than 5,000 kW. During the peak-shaving period, the maximum
power purchase of the VPP is 250 kWh. The other parameters of this
paper are set as shown in Table 1.

Based on the participation of subjects within the VPP and the
combination strategy of clean energy storage, four typical scenarios
are constructed in this study, as shown in Table 2 below.

3.2 Results

3.2.1 Method validity verification
In order to quantitatively analyze the effectiveness and

applicability of the PSO algorithm to solve the model built in
this paper, the GA and ACO algorithms are selected as a
comparison, and their running time, iteration times, and result
efficiency are compared. Since there are many scenarios involved in
this paper, Case 4 (spring) is taken to verify the effectiveness of the
proposed solution algorithm as shown in Figure 5.

3.2.2 Analysis of VPP bid results
3.2.2.1 Electric energy market bidding results

Figure 6 shows the bidding results of the electric energy market.
The bidding results of scenario 1 and scenario 2 in the electricity
energy market in different seasons are consistent. There are two
reasons for this: First, pumped storage does not directly participate
in the upper grid electric energy market, but provides ancillary
services by prioritizing the optimization of resources within the
VPP and reducing the flexible load, because the price of purchasing

FIGURE 3
Price parameters.
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power is higher than the price of sold power. Reducing power
purchases is the strategy that achieves the greatest total net
benefits. Second, in both Scenario 1 and Scenario 2 renewable
energy generation provides electric energy services during normal
and peak periods. For pumped storage, the price difference
between peak and flat hours does not make it profitable, so
renewable energy generation participates in the electricity
energy market during normal hours. The bidding results for
Scenario 3 and Scenario 4 are the same and lower than
Scenario 1 and Scenario 2 in different seasons. After
aggregating hydrogen storage, the total revenue obtained from
hydrogen production through wind power and PV in the ordinary
period is higher than the revenue from electricity sales by
participating in the electricity energy market. Therefore, for
scenarios 3 and 4, renewable energy generation in the normal
period does not participate in the electricity market.

3.2.2.2 Ancillary services market bidding results
The bidding results of typical days in different seasons under

different scenarios are shown in Figure 7. It can be seen that in
scenario 1, with only renewable energy generation and flexible load
participating in the ancillary services, the benchmark conditions for
the ancillary services market can barely be met only in summer. In
the other three seasons, VPP cannot participate in the ancillary
services market, but only in the electric energy market and the
hydrogen market. In the case of aggregated single hydrogen storage
(scenario 3), VPP can participate in the ancillary services market
only in summer and autumn and barely meets the benchmark
conditions in autumn. In spring, it comes close to meeting the
auxiliary service benchmark conditions. In contrast, for scenarios
2 and 4, VPP can participate in the ancillary services market in all
four seasons, mainly because of the larger capacity of the aggregated
pumped storage plant compared to just the aggregated HSS. The

FIGURE 4
Typical daily output and load.
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regulation capacity is stronger when both pumped storage power
plants and hydrogen storage participate in the auxiliary service
market.

Figure 8 shows the auxiliary service market bidding by specific
periods. The positive value indicates participation in peak-shaving
auxiliary services, and the negative value indicates participation in
valley-filling auxiliary services. In Scenario 1, since the energy storage

system is not aggregated, the valley filling capacity is only realized
through flexible load demand response, so the auxiliary service
capacity is low. The peak-shaving auxiliary service is mainly
satisfied by wind power and photovoltaic power output. Since VPP
in Scenario 1 only reaches the peak-shaving benchmark in summer, it
can only participate in the auxiliary service bidding in summer. Unlike
Scenario 1, VPP can participate in auxiliary services in all seasons in
Scenario 2. In addition, it can be seen that both the valley filling

TABLE 1 Parameter table.

Type Parameters Value

Cost parameters Hydrogen plant construction costs 2,010 CNY/k W

Hydrogen production equipment operation and maintenance costs 80.4 CNY/k W

Fuel cell construction costs 4550 CNY/kw

Fuel cell operation and maintenance costs 182 CNY/kw

Hydrogen storage equipment costs 65 CNY/kg

Equipment operating parameters P-H efficiency 65%

P-H-P efficiency 44%

Price Hydrogen price 4.5 CNY/Nm3

Equipment capacity parameters Pumped storage plant capacity 300 kW

Electrolytic water hydrogen production plant capacity 100 kW

Hydrogen storage plant capacity 250 m3

Fuel cell capacity 45 kW

TABLE 2 Scenarios design.

Wind and PV Flexible load Pumped storage HSSs

Scenario 1 ✓ ✓

Scenario 2 ✓ ✓ ✓

Scenario 3 ✓ ✓ ✓

Scenario 4 ✓ ✓ ✓ ✓

FIGURE 5
Comparison results of different algorithms.

FIGURE 6
Electric energy market bidding results.
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capacity and peak shaving capacity of Scenario 2 are better than that of
Scenario 1. This is because by aggregating pumped storage plants in
Scenario 2, VPP can provide valley filling service through pumped
storage to purchase electricity from the distribution network in the
valley filling auxiliary service phase and reduce the demand for the
flexible load to the upper grid through pumped storage in the peak
shaving auxiliary service phase. In addition, pumped storage can
achieve peak-to-valley arbitrage through peak-to-valley price
difference. Compared to Scenario 2, the auxiliary service capability
of the VPP alone aggregated HSS in Scenario 3 is inferior. This is
because the capacity of the pumped storage plant and the HSS
aggregated by the VPP are different, and the capacity of the HSS
is only one-third of the pumped storage. However, it can be seen that
compared to Scenario 1, after aggregating the HSS, the VPP can
participate in the auxiliary service market in both summer and
autumn, and its peak-shaving and valley-filling capacity is slightly
improved. In scenario 4 where VPP aggregates HSS and pumped
storage power plant at the same time, the auxiliary service capacity is
significantly increased.

FIGURE 7
Ancillary services market bidding results.

FIGURE 8
Ancillary services market bidding results by period.

FIGURE 9
Hydrogen market bidding results.
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3.2.2.3 Hydrogen market bidding results
The results of the hydrogen market bidding are shown in

Figure 9. It can be seen that VPP does not participate in the
hydrogen market bidding in scenario 3 in both summer and fall,
which is because the VPP reaches the threshold for bidding in the
ancillary services market after aggregating hydrogen storage
resources. Since the overall benefits of energy storage
participation in the electricity energy market and ancillary
services market are higher than those in the hydrogen market, all
of the hydrogen storage in this scenario is used to participate in the
electricity market by aggregating resources within the VPP. Unlike
summer and fall, it is difficult for VPPs with only aggregated HSSs in
spring and winter to meet the entry threshold for the ancillary
services market. When it is impossible to participate in the auxiliary
service market, the benefit of just participating in the electric energy
market is lower than the benefit of participating in the hydrogen
market, so all the hydrogen is used to participate in the hydrogen
market.

Compared to scenario 3, in scenario 4 when VPP aggregates
both pumped storage and HSSs, the threshold for ancillary services
can be reached in all four seasons. The pumped storage system is
prioritized to meet the electricity demand, and the HSS can be used
to trade in the hydrogen market after meeting the output of the
auxiliary service threshold. Therefore the hydrogen market bidding
volume for Scenario 4 is higher than that of Scenario 3.

3.2.3 VPP internal resource optimization results
3.2.3.1 Scenario 1

Figure 10 shows the demand response of the flexible load. The
higher demand response during peak hours in summer and winter is
attributed to the maximum purchasable power designed in this

paper. If the flexible load is still larger than the maximum
purchasable power after the demand response, the loss of load
phenomenon will occur and the energy storage output is needed
to compensate.

3.2.3.2 Scenario 2
Figure 11 shows the charging and discharging of the pumped

storage power plant on a typical day. The pumped storage power
plant gives priority to consuming abandoned electricity from
renewable energy sources, and if the capacity limit of the
pumped storage power plant has not yet been reached, it can buy
electricity in the distribution network to achieve peak-valley
arbitrage. It can be seen that pumped storage power plants store
energy in the valley hours and discharge it in the peak hours. Since
pumped storage power plants operate consistently in all seasons, the
summer season is used as an example.

3.2.3.3 Scenario 3
As shown in Figure 12, the operation of the HSS is consistent in

spring and winter, and summer and fall. In spring and winter, since
the VPP cannot participate in the ancillary services market, the fuel
cells of the HSS do not work and all the hydrogen produced is used
for storage and traded in the hydrogen market on the second day. In
summer and fall, VPP can participate in the ancillary services
market, and the hydrogen produced by the HSS is first used by
the fuel cell, and the excess hydrogen is sold in the market.

According to Figure 13, it can be seen that the HSS does not
generate electricity in spring and winter. In the summer and autumn
peak hours, electricity is generated in the valley, and during flat
hours electricity is consumed to produce hydrogen. In addition, the
HSS purchases electricity to produce hydrogen during the flat hours

FIGURE 10
Demand response results for flexible loads.
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in both autumn and winter because the maximum capacity limit of
the hydrogen production unit has not yet been reached after
consuming the abandoned electricity.

3.2.3.4 Scenario 4
According to Figure 14, during the valley hours, the abandoned

electricity from renewable energy sources is used for hydrogen
production in priority, and the excess abandoned electricity is
used for pumped storage power plants. Due to the capacity of
the pumped storage plant, it gives priority to consuming the
abandoned power, and the part that has not yet reached the

capacity limit can be satisfied by purchasing power in the grid.
The renewable energy output in flat hours is used for the HSS and
pumped storage power station because the sum of the reduced
power purchase cost and auxiliary service revenue is higher than the
revenue from power sales in the electricity energy market. During
peak hours, the VPP prioritizes the consumption of pumped storage
energy, and when the pumped storage energy does not meet the
demand, the fuel cell starts to make up for the shortfall. This is
because pumped storage power plants can only gain revenue
through the electricity market, while HSSs can gain revenue from
both auxiliary services and the hydrogen market. The revenue of

FIGURE 11
Charging and discharging of the pumped storage power station.

FIGURE 12
Hydrogen production, storage, and utilization.
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HSS participating in the electric energy market and auxiliary service
market is lower than its participation in the hydrogen market, but
the sum of the reduction of the power purchase cost and the increase
of auxiliary service revenue due to the generation of HSS in peak
hours is higher than the revenue in the hydrogen market, so the HSS
chooses to participate in the hydrogen market based on meeting the
load demand in peak hours.

As shown in Figure 15, the situation tends to be consistent in
spring and autumn, with hydrogen consumption for fuel cell
generation in the second peak hour, due to the priority use of
pumped storage generation and fuel cell start-up to make up for
the shortfall when pumped storage cannot meet the load demand.
It can be seen that in summer, the fuel cell does not work because
the pumped storage power plant output is sufficient to match the
flexible load during peak hours. In winter, the fuel cell starts
working in the first peak hour because the pumped storage
power plant output is difficult to meet the load demand.
Compared to the other three seasons, the amount of hydrogen
stored in winter is close to zero at the end of a typical day. This is
due to the high load demand in winter when hydrogen production
is almost entirely used for fuel cells and no excess hydrogen is
traded in the hydrogen market.

3.3 Discussion

3.3.1 Benefits analysis
3.3.1.1 Economic benefits

Table 3 shows the total revenue of the VPP for a typical day in
spring. 1) In terms of revenue in the electricity market, scenario
3 has the lowest revenue because both scenario 1 and scenario 3 do
not reach the peaking benchmark of the ancillary services market
and cannot participate in the ancillary services market but only in
the electricity energy market. For scenario 3, the revenue of
renewable energy generation for hydrogen production in flat
hours is higher than the revenue from participating in the
electricity energy market, so the revenue of the electricity energy
market for scenario 3 is lower than that of scenario 1. 2) The
hydrogen revenue of scenario 3 is greater than that of scenario 4. In
scenario 3, VPP has not reached the threshold of the electricity
auxiliary service market, and the hydrogen revenue from HSS is
greater than the revenue from electricity sales of fuel cells based on
meeting the load demand. As for scenario 4, because VPP has
reached the auxiliary service benchmark condition, the revenue
from auxiliary service is greater than the revenue from hydrogen

FIGURE 13
Charging and discharging of hydrogen energy storage system. FIGURE 14

Charging and discharging of combined energy storage.
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sales, so the excess hydrogen fromHSS is only used for trading in the
hydrogen market on the premise of maximizing the demand for
auxiliary service that can be participated. 3) The power purchase cost
of scenario 3 is higher than that of scenario 2 because the capacity of
HSS is lower than that of pumped storage. 4) Compared to Scenario
2 and Scenario 4, Scenario 3 still has the abandonment penalty due
to the capacity of the HSS. 5) After aggregating the energy storage
system, there is no load loss in the VPP. The revenue for a typical
winter day is shown in Table 4 and is similar to that of spring.

According to Tables 5, 6, the situation is similar in summer and
autumn. 1) In the summer of Scenario 1, VPP can participate in the

auxiliary service market so its revenue in the electricity market is
higher than that in the autumn; 2) Compared with the spring, in the
summer and autumn of Scenario 3, VPP can participate in the
auxiliary service market so its revenue is higher than that in Scenario
1, but its revenue is lower than that in Scenario 2 due to the capacity
of the HSS; 3) There is no revenue in the hydrogen market in both
the summer and fall, which is because the sum of the power purchase
cost to compensate for the reduction of flexible load demand and the
revenue from ancillary services is higher than the income in the
hydrogen market, so all the hydrogen is used for fuel cells.

3.3.1.2 Resource benefits
Restricted by the electricity market, wind power, and PV can

only provide auxiliary services during peak-shaving service hours.
During valley hours and flat hours, there will be power
abandonment because the superior grid has a strong supply
capacity itself and does not need additional power output.
According to Figure 16, there is no power abandonment in
Scenario 2 and Scenario 4, because compared with Scenario 1,
VPP aggregates energy storage resources and can fully utilize the
resources of wind and PV. In scenario 3, the VPP still has the
abandonment phenomenon, which is limited by the capacity of the
aggregated hydrogen storage, but the abandonment phenomenon is
significantly alleviated compared to scenario 1.

3.3.1.3 Reliability benefits
As shown in Figure 17, the VPP will have a loss of load only in

Scenario 1. Due to the limitation of the power available to be
purchased from the grid, there will be load loss during peak
hours because the VPP load demand is higher than the power
available to be purchased. In other scenarios, there is no load loss
because the VPP aggregates energy storage resources and can cover
its power shortfall.

3.3.2 Sensitivity analysis
Figure 18 shows the sensitivity analysis of the changes in

electricity and hydrogen prices. The market participation
strategy of the VPP changes as a result of price changes in the
electricity and ancillary services markets and the hydrogen
market. In Scenario 1 and Scenario 2, a single change in
electricity market price causes a linear change in total revenue
because no hydrogen market is involved. In scenarios 3 and 4,
total revenue does not show a linear change due to changes in the
electricity market price as well as the hydrogen market price. The
VPP chooses the optimal strategy that maximizes the total
revenue due to the changes in hydrogen and electricity prices,
which implies a change in the proportion of hydrogen resources

FIGURE 15
Hydrogen production, storage, and utilization.

TABLE 3 Total bidding revenue for a typical spring day/CNY.

Electricity market
revenue

Hydrogen market
revenue

Power purchase
cost

Abandonment
penalty

Loss of load
penalty

Scenario 1 2,291.00 - 4,203.36 227.57 90.85

Scenario 2 5,017.65 - 2,303.97 0 0

Scenario 3 2028.35 834.20 3,467.58 67.62 0

Scenario 4 5,479.00 657.75 2082.45 0 0
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participating in the electricity and hydrogen markets based on
the existing prices. In addition, as the prices in the electricity and
hydrogen markets increase simultaneously, the total revenue
does not always increase, but peaks at a certain price. This is
because the amount of hydrogen resources allocated in the
electricity market and the hydrogen market does not change

when the electricity price and the hydrogen price increase in the
same proportion. But when the price changes in the electricity
market and the hydrogen market in different proportions,
hydrogen resources do not necessarily prioritize the demand
for ancillary services, but rather tilt more resources to the
higher-priced hydrogen market.

TABLE 4 Total bidding revenue for a typical winter day/CNY.

Electricity market
revenue

Hydrogen market
revenue

Power purchase
cost

Abandonment
penalty

Loss of load
penalty

Scenario 1 2,113.84 - 6,204.31 160.85 480.68

Scenario 2 4,765.59 - 2,716.25 0 0

Scenario 3 1861.18 194.54 3,743.61 20.63 0

Scenario 4 5,275.20 39.84 2,436.50 0 0

TABLE 5 Total bidding revenue for a typical summer day/CNY.

Electricity market
revenue

Hydrogen market
revenue

Power purchase
cost

Abandonment
penalty

Loss of load
penalty

Scenario 1 3,455.54 - 6,129.52 236.29 377.62

Scenario 2 5,489.15 - 2,413.66 0 0

Scenario 3 4,210.09 0 3,642.17 75.40 0

Scenario 4 5,996.65 953.97 2,181.61 0 0

TABLE 6 Total bidding revenue for a typical autumn day/CNY.

Electricity market
revenue

Hydrogen market
revenue

Power purchase
cost

Abandonment
penalty

Loss of load
penalty

Scenario 1 2,363.97 - 5,345.60 227.57 56.83

Scenario 2 5,081.84 - 4,683.79 0 0

Scenario 3 3,741.48 0 3,467.58 67.62 0

Scenario 4 5,549.17 641.40 2082.44 0 0

FIGURE 16
Abandoned power.

FIGURE 17
Loss of load.
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4 Conclusion

This paper investigates the bidding strategy for a VPP in the
electricity and hydrogen markets and constructs a two-layer model
that considers the bidding strategy and internal resource operation
optimization strategy based on the complementary characteristics of
renewable power, flexible load, pumped storage, and hydrogen
storage resources. The internal resources are optimally dispatched
and the optimized flexibility capability is fed back to the VPP
operator to adjust the bidding strategy until the optimal bidding
strategy is achieved, taking into account the objectives of
maximizing the total revenue of the VPP to participate in the
external market and minimizing the internal abandonment
penalty and load loss penalty. In this paper, the particle swarm
algorithm combined with the Cplex solver is used for solving the
problem, and the results show that.

(1) The inside-outside two-layer optimization model constructed in
this paper can guarantee that the VPP makes optimal bidding
decisions based on information from the external power and
hydrogen markets and optimally adjusts internal resources
based on the bidding situation to achieve the goal of
maximizing total net benefits.

(2) In the current market environment, pumped storage power
plants can achieve peak-to-valley arbitrage by interacting
with the grid. However, for HSSs, it is uneconomical to
compensate for peak hour load demand by purchasing
power in the valley hours. However, in the case of the
hydrogen market, HSS can earn hydrogen sales by
purchasing power from the grid to produce hydrogen in
the valley and the flat hours.

(3) In the absence of a benchmark threshold for ancillary
services, the benefits of HSSs to reduce the cost of power
purchase by reducing the demand for flexible loads are
smaller than the benefits of participating in the hydrogen
market but larger than the benefits of participating in the
electricity market. However, due to the threshold of
auxiliary services, HSS will sacrifice part of the benefits
of direct participation in the hydrogen market and give
priority to participating in the electricity auxiliary services
market.

(4) For a VPP with multiple complementary energy storage, it is
more profitable to fully consider the electricity-hydrogen
market and the multi-functional properties of hydrogen
storage than to merely equate the HSS with other energy
storage as a backup power source. (Emmanouil et al., 2022).

FIGURE 18
Sensitivity analysis of the prices.
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Coordinating economic growth
and carbon emission reduction in
China: evidence from the optimal
levels of energy price distortions

Ru Sha1,2*
1School of Economics and Management, Xinjiang University, Urumqi, Xinjiang, China, 2Institute for
Macroeconomy High-Quality Development of Xinjiang, Xinjiang University, Urumqi, Xinjiang, China

Distorted energy prices cause resource mismatch and hinder the coordinated
development of economic growth and carbon emission reduction (CDEC) in
China. Therefore, it is essential to determine the optimal levels of energy price
distortions. This paper first measures the price distortions of fossil and renewable
energy sources and applies a panel smooth transition regression model to assess
the optimal threshold values for the degree of energy price distortions. The results
show that 1) Fossil energy price distortions are negative, and the price distortion for
renewable energy is positive. 2) Energy price distortions inhibit CDEC, and this
effect is regionally heterogeneous. 3) The panel smooth transformation model
results indicate that distorted energy prices have a nonlinear impact on CDEC.
CDEC is significantly hampered in the low regime by distorted fossil energy prices
and facilitated in the high regime. In contrast, the distorted renewable energy price
shows positive in the low regime and negative in the high regime. We also obtain
the optimal intervals for the degree of energy price distortions that promote
CDEC. With the target of “growth” and “carbon reduction,” this study provides a
reference for improving the energy pricingmechanism and exploring the effective
ways of CDEC.

KEYWORDS

energy price distortions, coordinated development, PSTR model, economic growth,
carbon emission reduction

1 Introduction

China’s economy has grown unprecedentedly due to reform and opening up. However,
energy market reform has progressed relatively slowly and has “asymmetric” characteristics.
As an essential input for national economic development (Cleveland et al., 1984; Stern,
1993), energy affects a country’s core competitiveness. For the sake of economic stability as
well as strategic needs, energy prices in China have long been government-dominated,
resulting in deviations from their equilibrium levels andmore severe distortions (Lin andDu,
2013). The distorted energy prices do not reflect the actual energy cost, resource scarcity, and
environmental externalities. As a result, energy supply and demand imbalances are
exacerbated, resulting in excessive fossil fuel consumption while weakening resource
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allocation efficiency. Thus, it becomes a bottleneck restricting the
coordinated development of economic growth and carbon emission
reduction (CDEC) in China.

The emergence of distortions in energy prices in China has its
unique historical background and realistic circumstances. Before the
Reform and Opening-up, the “catching-up strategy” of prioritizing
heavy industries and leveraging the country’s resource
agglomeration advantage and mobilization capacity to manage
factor allocation resulted in several institutional arrangements
that skewed energy pricing (Lin, 1994). After that, the
government was exceedingly cautious in reforming energy pricing
for economic stability and growth, as the low energy price policy
adopted not only maintained Chinese enterprises’ and products’
international competitiveness but also prevented price hikes and
inflation. Moreover, under the pressure of GDP growth as the
assessment performance, local governments will tighten the
control of energy prices to achieve rapid economic growth. As a
result, under the government-led pricing mechanism, energy prices
are not fully created by supply and demand, resulting in price
distortions. Compared to the more comprehensive market-based
energy pricing mechanisms in industrialized nations, China’s
market-based energy prices need further improvement.

China’s economy increased at a 6.6% annual pace from 2013 to
2021, faster than the world’s average annual growth rate of 2.6%
during the same period, and its GDP contributed more than 30% to
global economic growth, making it a significant powerhouse of
global economic development. China’s economy has long run at a
breakneck pace, relying on massive amounts of energy, capital, and
labor factors, particularly excessive use of low-cost energy, resulting
in a host of problems such as energy scarcity, carbon emissions, and
environmental damage (Ouyang et al., 2018; Wang et al., 2019). The
previous crude development paradigm of high input, high pollution,
and low yield has highlighted the conflict between economic
development and environmental optimization (Ge et al.,
2023). As a crucial link between economic growth and carbon
emission reduction, optimizing resource allocation by
enhancing the energy pricing mechanism has become an
efficient means of exploring CDEC (Song and Cui, 2016;
Zhang and Adom, 2018).

Considering that distorted energy prices affect economic growth
and reduction of carbon emissions via resource allocation (Restuccia
and Rogerson, 2008; Bartelsman et al., 2013), which in turn
threatens CDEC. Therefore, this paper proposes the following
questions: Will energy price distortions inhibit CDEC? Whether
correcting energy price distortions would promote CDEC, and
whether there is an optimal level of distortions to achieve CDEC
is a valuable research topic. China aspires to realize CDEC.
Accordingly, the feasibility of achieving CDEC through energy
pricing marketization policies has become a hot topic. As the
world’s largest energy consumer and carbon emitter, China’s
contradiction between economic development and environmental
protection is relatively prominent (Wang and Feng, 2021).
Unfortunately, existing research has concentrated on a single
dimension of the economy or environment affected by energy
price distortions. Existing studies rarely discuss the relationship
between distorted energy prices and CDEC and rarely explore the
possibility of the optimal level of distortion. With China’s energy
price reform deepening, policymakers are exploring ways to keep

energy price distortions at an optimal level to coordinate growth and
emission reductions.

The contributions lie in the following aspects. First, this paper
extends the measure of energy price distortions to the renewable
energy sector, which systematically illustrates the evolutionary
characteristics of distortions in energy prices and enriches the
studies on the measurement of distortions. Second, this study
estimates the effects of energy price distortions on CDEC and
regional heterogeneity, which effectively expands the research on
the relationship between energy price distortions and CDEC and
provides a reference for exploring effective ways to achieve CDEC.
Third, this paper extends the analysis of the nonlinear relationship
between distorted energy prices and CDEC and estimates the
optimal intervals in which energy price distortions promote
CDEC, providing a basis for the degree of distortion correction
and the selection of an appropriate correction strategy.

The rest of the paper is arranged as follows. Section 2 conducts a
review of the relevant literature. Section 3 shows the research
methodology and discusses the construction of the panel smooth
transformation model. Section 4 provides the empirical results. The
conclusions and policy implications are listed in Section 5.

2 Literature review

When actual energy prices deviate from their equilibrium level
under distortions, energy cannot achieve Pareto optimal resource
allocation (Lin and Wang, 2009; Wang et al., 2009; Li et al., 2020).
Most studies often regard energy as a factor to examine the degree of
price distortions (Atkinson and Cornwell, 1998; Tao et al., 2009). Lin
and Du (2015) used a marketization index to measure the degree of
factor price distortions, including energy. Skoorka (2000) employs a
production frontier analysis that measures factor price distortions
using the gap between actual and potentially optimal production
points. Subsequently, several studies have used the shadow price
approach to measure factor price distortions (Atkinson and
Halvorsen, 1984; Ouyang and Sun, 2015). Based on a shadow
price model, Tao et al. (2009) found that energy prices were
severely distorted in China’s industrial sector, second only to
labor price distortion. The production function approach is the
most commonly used method to calculate factor price distortions.
Ouyang et al. (2018), Tan et al. (2019), and Guan and Xing (2022)
measure energy price distortions using the Cobb-Douglas
production function. Moreover, using other methods, some
scholars measured the price distortions of different energy
products such as coal, electricity, and natural gas (Chai et al.,
2009; Brown et al., 2017; Cui and Wei, 2017; Shi and Sun, 2017).

Two opposing opinions exist on distorted energy prices affecting
economic growth: the “inhibition view” and the “promotion view.”
The “inhibition view” argues that distorted energy prices hinder
economic growth by impeding the efficient allocation of energy
sources (Brandt et al., 2013; Shi and Sun, 2017). Lin and Wang
(2009) pointed out that energy prices are mainly government-led
and have been low for a long time in China. Regulations enacted in
2008 preventing refined oil and natural gas from adjusting prices
have led to distorted energy prices that harm the economy. Ju et al.
(2017) suggested that distorted energy prices significantly impeded
China’s economy. According to the “promotion view,” energy price
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distortions promote economic growth. Distortions transmit the
wrong price signals, leading to an underestimation of energy
prices (Lin and Jiang, 2011; Ouyang and Sun, 2015) and thus a
significant reduction in production costs. The high consumption of
low-cost energy stimulates economic growth in the short term.
Ouyang et al. (2018) found that firms obtained production
factors at lower costs when energy prices are distorted, thereby
promoting economic growth. Sun and Lin (2013) suggested that
government regulations on energy prices have contributed to
economic development by reducing excessive increases in energy
prices.

Studies have concluded that price distortions promote carbon
emissions. Distorted energy prices have reduced costs significantly,
but they have also led to excessive consumption of high-emission,
high-polluting sources, increasing carbon emissions. The IMF
(2013) report suggested that price distortions undermined the
allocation of resources by stimulating the overconsumption of
energy, and therefore exacerbating carbon emissions. Wang et al.
(2019) suggested that distorted oil prices promote CO2 emissions in
China’s transportation sector. Li et al. (2019) analyzed the effects of
energy prices and population on environmental pollution in China
by constructing a time-varying coefficient panel data model, and
concluded that energy price distortions exacerbated environmental
pollution.

CDEC refers to reducing carbon emissions while ensuring
economic development goals (Pata and Aydin, 2020). Previous
studies rarely explored how distorted energy prices affect CDEC,
and scholars mainly focused on the influence of price distortions on
energy resource allocation efficiency. Distorted energy prices reduce
the efficiency of energy resource allocation (Ouyang et al., 2018; Lin
and Chen, 2019). As China’s economy enters a new growth model
emphasizing efficiency, accelerating market-oriented reforms in
energy pricing becomes urgent (Dai and Cheng, 2016). Tan et al.
(2019) found that relative price distortions between capital and
energy, labor and energy, inhibit the improvement of total factor
energy efficiency in China’s secondary industry. Sha et al. (2021)
showed the inhibiting effect of fossil energy price distortions on
green economic efficiency in China. According to Gao and Yuan
(2022), energy price distortions significantly hindered industrial
green productivity in China. The optimal allocation of energy
resources has become a significant determinant in the
achievement of CDEC. Considering that price distortions lead to
misallocating energy resources, which hinders CDEC. To achieve
CDEC, exploring the characteristics of energy price distortions and
their impact on CDEC is necessary.

By sorting out the above literature, this paper concludes: First,
energy is typically considered a factor in previous studies to measure
the distortion of prices, ignoring different energy products’ price
distortion characteristics. Some studies have measured and analyzed
the distortions in fossil energy prices, but none have analyzed the
renewable energy price distortion. Second, most studies generally
concentrated on the effects of distorted energy prices on a single
dimension of the economy or the environment without examining
both aspects simultaneously. The achievement of CDEC is an
essential prerequisite for China’s high-quality economic
development and an important manifestation of the country’s
independent emissions reduction. The theoretical basis of this
paper is mainly based on the literature on energy price

distortions and resource misallocation, which inspires this study
to adopt a new perspective that energy price distortions affect CDEC
by influencing energy resource allocation. As distortions negatively
affect the economy and carbon reduction, it is necessary to explore
further ways of encouraging CDEC under the constraints of
distortions. Third, the existing literature seldom discusses the
nonlinear effects of energy price distortions and the potential for
correcting distortions. Owing to the historic reform of energy prices
and the complex structure and size of the energy industry, the
relationship between distorted energy prices and CDEC is more
complex than linear. Therefore, exploring the nonlinear effects of
energy price distortions and analyzing the optimal levels for
moderate correction of energy price distortions is necessary.

3 Methodology

3.1 Panel smooth transformation model
(PSTR)

This paper introduces a frontier method that deals with
nonlinear relationships between variables, namely, the panel
smooth transformation model (PSTR). It can handle nonlinear
relationships with sharp or smooth switches between variables
without existing information about structural changes in
transition variables (Ulucak et al., 2020). Based on the panel
threshold model proposed by Hansen (2000), the PSTR model
not only inherits its advantages but also avoids the drawback that
the indicator function of interval division can only take 0 or 1. The
PSTR model has two advantages: First, it allows parameter variation
across individuals and over time (Tiba, 2019; Pan et al., 2021).
Second, the model has strong applicability in the case of endogeneity
and nonlinear effects. The model is depicted below.

CDECit � αi + β0DType,it +∑n
j�1
βjXj,it

+ β0
′DType,it +∑n

j�1
β′jXj,it

⎛⎝ ⎞⎠hz qit; γ, c( ) + εit (1)

hz qit; γ, c( ) � 1 + exp −γ∏m
z�1

qit − cz⎛⎝ ⎞⎠⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦−1 γ> 0, c1 < c2...≤ cm

(2)
In Eq. 2,DType,it represents energy price distortions, referring to

Dcoal, Doil, Dgas, and Dre, respectively. β0 is the coefficient of the
linear part. β′hz(qit; γ, c) is the coefficient of the nonlinear part.
hz(qit; γ, c) indicates the conversion function, which value is
between 0 and 1. εit denotes the random disturbance term. In
Eq. 3, c is the position parameter, that is, the threshold value. γ
represents the smoothing parameter (i.e., slope coefficient), which
measures the transformation’s smoothness and the conversion
speed between different systems. m is the number of position
parameters of the transformation variables, generally taken as m �
1 or m � 2. hz(qit; γ, c) � 0 indicates that the model is in the low
regime; hz(qit; γ, c) � 1 denotes the model is in the high regime.
Equation 2 performs a continuous nonlinear smoothing
transformation between the low and high regimes since
hz(qit; γ, c) transforms continuously between 0 and 1.
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Before performing PSTR model estimation, testing whether the
model has nonlinearity features is necessary. According to the study
of Gonzlez et al. (2005), the following auxiliary regression function
needs to be constructed at the first-order Taylor expansion
of hz(.) � 0.

CDECit � μit β0 + λ0β0′( )DType,it +∑n
j�1

βj + λ0βj′( )Xj,it+

qit β0
′*DType,it +∑n

j�1
βj

′*Xj,it
⎛⎝ ⎞⎠ + εit

(3)

where β′* is the coefficient of γ. λ0 � hz(qit; γ � 0, c) � 1/2;
μit � εit + R(yit, γ, c). To test the parameters in the auxiliary
regression equation, an asymptotically equivalent LM value
(subject to the χ2 distribution), LMF value (subject to the F
statistic), and LRT statistic need to be constructed.

If the null hypothesis H0: r � 0 is accepted, it means that there is
no nonlinear effect in the model; if the null hypothesis H0 is rejected,
it demonstrates the presence of a non-linear effect and the analysis
should be continued using the PSTR model. Additionally, it is
necessary to test whether the model has a unique transformation
function or at least two. In other words, a test for residual
nonlinearity. When H0: r � r* is no longer rejected, r* is the
number of transition functions of the model.

3.2 Measurement of distortions in energy
prices

This paper applies the marginal opportunity cost pricing
approach to the measurement of the theoretical price of fossil
energy.

P � MPC +MUC +MEC (4)
MPC (Marginal Production Cost) is associated with energy

extraction; MUC (Marginal User Cost) corresponds to the
expense spent for immediate use (Serafy, 1981). MEC (Marginal
External Cost) indicates the degree of environmental damage caused
by exploiting energy resources (Chen et al., 2005; Lei, 1996).

Based on the measures of Ju et al. (2019) and Sha et al. (2022),
this paper calculates the degrees of price distortions for the four
energy sources, and the data sources are similar to that literature.
The degree of fossil energy price distortions is calculated using
the deviation between the actual and theoretical energy prices, as
follows.

Dcoal � Pc − Pt1( )/Pt1 (5)
Doil � Po − Pt2( )/Pt2 (6)
Dgas � Pg − Pt3( )/Pt3 (7)

TABLE 1 Evaluation indicator system for economic growth and carbon emission reduction.

System layers Sub-system layers Indicator layers Attribute

Economic growth The scale of economic growth GDP per capita +

Disposable income per capita +

Total fixed asset investment +

GDP growth rate +

Innovation of economic growth Resource allocation efficiency +

Structure of economic growth Contribution of primary industry to GDP −

Contribution of secondary production to GDP −

Contribution of tertiary production to GDP +

Urbanization rate +

Social Development Employment rate +

Carbon emission reduction Energy and Environment Carbon emissions per capita −

Carbon intensity −

Carbon emissions efficiency +

Energy Scale Coal consumption −

Clean Energy Consumption +

Energy mix High-carbon energy consumption ratio −

Low-carbon energy consumption ratio −

Clean energy consumption ratio +

Resource Environment Forest coverage +

Pollution control (industrial pollution treatment investment/GDP) +

Note: +, indicates a positive indicator; −, indicates a negative indicator.
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where Dcoal, Doil, and Dgas are coal, oil, and natural gas price
distortions, respectively. Pc, Po, and Pg implies the actual prices. Pt1,
Pt2, and Pt3 are theoretical prices.

The distortion in renewable energy price (Dre) is measured as
follows.

Dre � Pr − Pt4( )/Pt4 (8)
where Pr denotes the actual price and Pt4 is its theoretical price.

3.3 Measurement of CDEC

Based on coupling theory and coordination theory, this paper
builds a coupled coordination degree model for measuring the
degree of CDEC, which is expressed in the following way.

C � Ya × Yb

Ya × Yb( )/2[ ]2{ }k

(9)

Where Ya and Yb represent the combined score of the economic
growth system and carbon emission reduction system, respectively.
C denotes the coupling degree of economic growth and carbon
emission reduction. k is the adjustment factor, usually taken as 2.

T � λYa + μYb (10)
D � ����

C*T
√

(11)
T indicates the comprehensive evaluation index of CDEC. λ and μ

stand for the weights of economic growth and carbon emission
reduction systems, respectively. This paper considers economic
growth and carbon reduction systems equally important, so the
weight is taken as λ � μ � 1/2.D represents the coupled coordinated
degree. Moreover, to reduce the bias caused by the subjective
evaluation of indicators, this paper adopts the entropy weight
method and TOPSIS method (Li et al., 2021) to assess the
comprehensive evaluation index of the economic growth system
and carbon emission reduction system.

3.4 Variables description

The degree of CDEC is used as the dependent variable. Based on
the basic principles of science, feasibility, and hierarchy (Li and Yi,
2020; Wu, 2021), this paper constructs the evaluation indicator
system for economic growth and carbon emission reduction as
follows (Table 1):

The degree of openness (Open) and the total exports and
imports to GDP, ratio is used to represent this variable. Industrial
structure (Indus) is measured by the share of value added of
secondary industry in the GDP, of each province. The provincial
population at the end of the year serves as a proxy for population
(Pop). Urbanization (Urban) is measured as the proportion of the
population that lives in urban areas.

This paper adopts the panel data of 30 provinces in Mainland
China (except Tibet) from 2006 to 2020. Data related to the
calculation of energy price distortions and other data mentioned
above are from the CEIC, database, Price Statistical Yearbook,
Annual BP, statistical yearbook, Annual Reports of China
Shenhua Energy Company Limited, National Bureau of Statistics,

Annual Reports of China National Petroleum Corporation, Wind
database, National Energy Administration, China Energy Statistical
Yearbook, China Environmental Statistical Yearbook, China
Statistical Yearbook, provincial statistical yearbooks, and
Almanac of China Guodian Corporation.

4 Empirical results

4.1 Analysis of distortions in energy prices

Table 2 shows that the prices of all four energy products are
distorted. Fossil energy prices are negatively distorted, with coal
(−0.171) being the highest, with oil (−0.090) and natural gas
(−0.058) following closely behind; renewable energy price
distortion is positive, at 0.541. The negative distorted fossil energy
prices indicate that the current energy pricing policy implemented by
the government keeps fossil energy prices low for a long time to
reduce production costs, stimulate rapid economic development, and
maintain the international competitiveness of Chinese products.

Several reasons contribute to the highest degree of coal price
distortion. First, coal still dominates the energy consumption mix in
China, with coal consumption accounting for 56.9%1 of total energy
consumption in 2020. Although coal plays an imperative role in
industrial development, its high environmental cost causes the price
difference between its actual price and theoretical benchmark to
grow. Second, the competitive function of the coal pricing
mechanism has not been fully released. Coal trading market
transactions are still far from getting to the requirements of a
national unified market. Third, after nearly 5 years of downward
price movement, the supply-side capacity clearing overlaid with the
capacity removal policy, China’s coal prices have been upward since
2016. To stabilize coal prices, the National Development and Reform
Commission (NDRC) adopted a “benchmark price + floating price”
pricing method for LCCs (Zuo, 2018). Therefore, the coal price is
still under control, with a gap with the expected market-based price
mechanism.

Negative distortions in oil and gas prices indicate that the prices
are not fully marketized (Rioux et al., 2019; Lin and Kuang, 2020). As
the Chinese government has been reforming oil prices since 1998,
the pace of marketization was slow. However, the oil price distortion
decreased by 46.8% in 2009, indicating that reforming refined oil
prices in 2009 was crucial to alleviating distortions (Lin and Ouyang,
2014; Zhu and Chen, 2019). Natural gas has a lower MEC and is less
distorted than other fossil fuels. Natural gas price distortion declined
significantly in 2010, down 65.6% from the previous year, primarily
owing to the 2010 natural gas resource tax reform. However, the
reform of the market-based mechanism of natural gas pricing is still
lagging, so its price distortion still exists.

The positive distorted renewable energy price implies that its
actual price is larger than the theoretical benchmark, which the
following reasons may cause. First, renewable energy is most
commonly converted into electricity (Jiang et al., 2020; Lin and
Xu, 2021). Electricity market price reform needs to be faster, which

1 Data source: National Bureau of Statistics. http://www.stats.gov.cn/tjsj/.
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restricts the formation of the market-oriented pricing mechanism
of renewable energy, causing apparent distortions. Second, due to
technology, scale, and market, the investment in R&D of renewable
energy is high, leading to a high power generation cost (Ge et al.,
2022). Compared with coal-fired power generation, renewable energy
electricity prices lack a competitive advantage (Zhao et al., 2011;
Trujillo-Baute et al., 2018). Third, renewable energy generation
accounts for a small percentage of total energy production.
Because renewable energy is intermittent and discontinuous, its
quality is inferior to conventional energy. It is still necessary to
subsidize renewable energy development. While subsidies can help
cover high costs, the gap between the subsidized funds and the cost of
renewable energy continues to widen (Zhang et al., 2020), further
reducing the competitiveness of renewable energy.

The data used to calculate energy price distortions in this paper
are from Sha et al. (2022), but unlike that, the time span is updated to
2020. There are several reasons for updating the time period: 1) To
accurately measure the degrees of distortions and present more
current information on energy price distortions in China. The
results show that the degree of energy price distortions is coal
(−0.171), oil (−0.090), natural gas (−0.058), and renewable energy
(0.541), lower than coal (0.177), oil (−0.105), natural gas (0.084) and
renewable energy (0.585) in the previous study. This result confirms
that China’s energy price distortions gradually improve as the
market-based energy pricing reform deepens. 2) After updating
the time period, it is shown that price distortions for coal, oil, and
renewable energy, have continued to decrease. However, natural gas
price distortion has been increasing. The result indicates that

reforming the market-based mechanism of natural gas pricing
among fossil energy sources is lagging. Compared to the previous
article, the updated time period reveals the significance of this result.
3) Updating the time span not only enriches the information
conveyed by the data but also shows the impact of the energy
price reform policies implemented by the Chinese government on
the degrees of energy price distortions, which helps this paper to
analyze the current situation of energy price distortions in China.

The average values of distortions across regions show that fossil
energy price distortions are higher in the C-W areas than in the E
area. However, the opposite result is observed for renewable energy
price distortion. The results prove that China’s energy market is
regional, coinciding with the study by Ma and Oxley (2011).

4.2 Description of CDEC

(1) National level

The national average value of CDEC is 0.436, which means
China’s CDEC belongs to the transitional phase of the grinding
process. As shown in Figure 1, the mean value of the national CDEC
is increasing, rising from 0.387 in 2006 to 0.478 in 2020, an increase
of 23.42%. This result indicates that the interaction between our
economic growth and carbon reduction system is strengthened.
The government’s awareness of the importance of coordinating
economic growth with carbon emission reduction is a significant
reason. With the introduction of the concept of green development
in the 11th Five-Year Plan, the government has begun to formulate
and implement measures to reduce carbon emissions and balance
economic growth and reduction efforts.

(2) Regional level

Figure 2 presents apparent differences in CDEC degree among
regions in China, showing high levels in the E area and low levels in
the C-W areas, which aligns with the study of Weng et al. (2022).

TABLE 2 Average price distortions of four energy products over the period
2006–2020.

Dcoal Doil Dgas Dre

2006 −0.064 −0.244 −0.171 1.012

2007 −0.217 −0.231 −0.211 1.001

2008 −0.253 −0.231 −0.266 0.489

2009 −0.186 −0.122 −0.186 0.519

2010 −0.237 −0.103 −0.064 0.630

2011 −0.248 −0.143 −0.107 0.476

2012 −0.227 −0.120 −0.093 0.517

2013 −0.190 −0.099 −0.067 0.486

2014 −0.171 −0.087 −0.075 0.551

2015 −0.129 −0.036 −0.019 0.575

2016 −0.080 0.026 0.039 0.601

2017 −0.146 0.018 0.056 0.428

2018 −0.157 0.008 0.079 0.312

2019 −0.126 0.006 0.106 0.277

2020 −0.134 0.005 0.114 0.244

E area (Eastern area) −0.140 −0.077 0.054 0.642

C-W areas (Central-Western areas) −0.189 −0.098 −0.122 0.483

Average −0.171 −0.090 −0.058 0.541

FIGURE 1
Trends in CDEC at the national level during 2006–2020.
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The mean value of CDEC in the E area is 0.448, which is higher than
the national average and the C-W areas (0.429). The main reason for
the difference is the higher economic agglomeration in the E area
and the high investment in emissions reduction technology and
environmental protection. High-energy-consuming enterprises are
clustered in the C-W areas. Thus, the industrial structure of the C-W
areas is unreasonable, economic development relies on resource
development, and environmental protection needs to be more
protected, resulting in low CDEC. A trend of increasing CDEC
has been observed in the C-W areas between 2016 and 2019,
probably attributed to the significant effect of removing
production capacity in coal and steel industries during the 13th

Five-Year Plan period. CDEC of the E area rose again after 2019,
undoubtedly related to the region’s good economic base, energy
technology innovation, and other factors.

4.3 Basic regression results

Table 3 indicates that the coefficients ofDcoal,Doil,Dgas andDre

are all negative and are significant at 5%, suggesting that distorted
energy prices inhibit CDEC. Similar findings were also found in the
studies of Lin and Chen (2018); Du et al. (2021). When each
percentage of price distortions increases, the degree of CDEC
decreases by 6.8%, 3.4%, 3.0%, and 2.2%, respectively, suggesting
differences in the influence of price distortions for various energy
sources on CDEC.

Specifically, coal price distortion has the most significant
inhibiting effect on CDEC. Distorted energy prices fail to reflect
the scarcity of energy resources, the actual supply and demand, and
environmental externalities, which weakens the resource allocation
efficiency and results in a loss of economic output while exacerbating
the high-carbon energy consumption, thereby inhibiting CDEC.
Coal price distortion has the most significant negative impact on
CDEC, which can be explained by the fact that coal remains China’s
dominant energy source. Due to the long-term reliance on coal
resources, the industry forms a monopoly with a single economic
structure. With an imperfect market trading mechanism, coal price
distortion hinders CDEC. Furthermore, most control variable
results align with this paper’s expectations.

In Table 4, all distorted energy prices in the E and C-W areas
significantly negatively impact CDEC, indicating that energy price
distortions hinder regional CDEC. Distorted oil, gas, and renewable
energy prices impede CDEC of the E area. Due to the “cumulative
cycle effect,” both the pace and scale of economic development in the

FIGURE 2
Trends in CDEC at the regional level during 2006–2020.

TABLE 3 The effects of energy price distortions on the national CDEC.

Variables (1) (2) (3) (4)

Dcoal −0.068** (0.031)

Doil −0.034*** (0.006)

Dgas −0.030** (0.015)<

Dre −0.022*** (0.008)

lnOpen 0.016*** (0.006) 0.002** (0.001) 0.015*** (0.005) −0.001 (0.005)

lnIndus 0.005 (0.024) 0.002 (0.002) 0.005 (0.019) 0.106*** (0.031)

lnPop 0.004 (0.005) 0.001* (0.001) 0.036*** (0.011) 0.026** (0.011)

lnUrban 0.020 (0.027) −0.010*** (0.003) 0.113*** (0.026) 0.254*** (0.019)

Constant 0.402*** (0.059) 0.791*** (0.007) 0.203** (0.089) 0.579*** (0.104)

Wald test 878.69 [0.000] 878.62 [0.000] 891.70 [0.000] 409.94 [0.000]

Log likelihood 944.04 944.05 946.02 850.07

LR test 605.73 [0.000] 604.55 [0.000] 609.95 [0.000] 488.07 [0.000]

N 450 450 450 450

Note: ***P< 0.01.
**P< 0.05.

*P< 0.1, respectively. Robust standard errors are in parentheses and p-values are in brackets.
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TABLE 4 The impact of energy price distortions on the regional CDEC.

Variables E area C-W areas

(1) (2) (3) (4) (5) (6) (7) (8)

Dcoal −0.016* (0.009) −0.037*** (0.011)

Doil −0.264*** (0.099) −0.021*** (0.007)

Dgas −0.013** (0.006) −0.011* (0.006)

Dre −0.014* (0.008) −0.006* (0.004)

lnOpen 0.115*** (0.013) 0.050*** (0.017) 0.003 (0.003) 0.004 (0.004) 0.009** (0.004) 0.004*** (0.001) 0.008*** (0.002) 0.004*** (0.001)

lnIndus 0.057*** (0.016) 0.030 (0.038) −0.004 (0.009) −0.004 (0.007) −0.015 (0.019) 0.019*** (0.004) −0.010 (0.019) 0.022*** (0.040)

lnPop −0.036*** (0.008) −0.031 (0.021) 0.002 (0.002) 0.009*** (0.003) 0.064*** (0.012) −0.001 (0.001) 0.057*** (0.011) −0.001 (0.001)

lnUrban −0.246*** (0.049) −0.036 (0.054) −0.019 (0.012) −0.068 (0.054) 0.144*** (0.032) −0.011*** (0.004) 0.088*** (0.032) −0.008** (0.004)

Constant 0.672*** (0.065) 0.638*** (0.174) 0.396 (0.370) 0.725*** (0.029) −0.011 (0.089) 0.094 (0.066) −0.012 (0.086) 0.873*** (0.009)

Wald test 158.24 [0.000] 158.37 [0.000] 144.08 [0.000] 152.30 [0.000] 764.17 [0.000] 837.87 [0.000] 740.99 [0.000] 740.81 [0.000]

Log likelihood 349.09 349.16 345.74 347.91 600.74 611.08 597.82 597.77

LR test 115.24 [0.000] 144.79 [0.000] 151.59 [0.000] 153.52 [0.000] 458.25 [0.000] 411.63 [0.000] 459.92 [0.000] 385.35 [0.000]

N 165 165 165 165 285 285 285 285

Note:***P< 0.01.

**P< 0.05.

*P< 0.1, respectively. Robust standard errors are in parentheses and p-values are in brackets.
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E area have increased, boosting the demand for oil, gas, and
renewable energy. Thus, the hindering effects of these three
energy price distortions are more significant. There is a more
significant inhibiting impact of coal price distortion on CDEC in
the C-W areas, mainly because its industrial mix is dominated by
coal, and the distorted coal price contributed significantly to its
economic development, thereby increasing dependence on coal. The
inertia of the crude development model has slowed the restructuring
of the industrial structure in the C-W areas, and backward
production cannot generate substantial economic benefits.
Additionally, the C-W areas lack sufficient investments in the
R&D of clean energy technologies, which hinders emissions
reduction efforts.

4.4 Robustness test

The replacement of core variables, sub-sample regression, and
the generalized method of moments for robustness tests are applied
to test the robustness of the basic regressions. First, use green total
factor productivity to replace the dependent variable (CDEC).
Second, according to each province’s marketization degree and

market mechanism, the total sample is divided into the
developed and post-developed provinces. Third, because of the
possible bias in estimation due to endogeneity issues, this paper
employs the differential GMM method (DIF-GMM) and system
GMM method (SYS-GMM) for robustness tests. Overall, the three
robustness estimations demonstrate that energy price distortions
inhibit CDEC, indicating that the model estimates are robust.

4.5 Nonlinear effect analysis

Table 5 presents the results of linear and nonlinear residual tests.
The results of linearity tests show that the LM, LMF, and LRT tests of
the four energy price distortions reject the null hypothesisH0: r � 0
at the 1% significance level, suggesting that distorted energy prices
exert a nonlinear impact on CDEC. The nonlinear residual test
shows that the p-values of the LM, LMF, and LRT for the four
models of energy price distortions are greater than 0.05, which
indicates that the null hypothesis H0: r � 1 cannot be rejected. The
result suggests that all four PSTR models of energy price distortions
contain only one nonlinear transition function, that is, r � 1 is the
optimal number of transformation variable functions. Moreover, the

TABLE 5 Results of linear and nonlinear tests of the PSTR model.

Dcoal Doil Dgas Dre

Linear test LM 36.128 (0.000) 15.307 (0.002) 25.481 (0.005) 25.931 (0.001)

(H0:r = 0;H1:r = 1) LMF 6.023 (0.000) 4.895 (0.002) 2.461 (0.007) 3.149 (0.002)

LRT 37.661 (0.000) 15.573 (0.001) 26.231 (0.003) 26.708 (0.001)

Nonlinear test LM 3.603 (0.730) 2.719 (0.437) 4.725 (0.450) 5.784 (0.216)

(H0:r = 1;H1:r = 2) LMF 0.549 (0.771) 0.833 (0.476) 0.860 (0.508) 1.328 (0.259)

LRT 3.618 (0.728) 2.728 (0.436) 4.750 (0.447) 5.821 (0.213)

m = 1 AIC −5.921 −6.029 −6.019 −5.957

BIC −5.802 −5.956 −5.910 −5.866

m = 2 AIC −5.940 −6.025 −6.001 −5.954

BIC −5.858 −5.943 −5.883 −5.853

Note: ***P< 0.01.
**P< 0.05.

*P< 0.1, respectively. Robust standard errors are in parentheses.

TABLE 6 Estimation results of the PSTR model.

Variables Dcoal Doil Dgas Dre

Low regime (β0) −0.170*** −0.514*** (0.075) −0.143*** (0.055) 0.241**

(0.024) (0.113)

High regime (β1) 0.192*** 0.237*** (0.081) 0.169*** (0.044) −0.198**

(0.025) (0.105)

Smoothing parameter (γ) 24.260 20.290 19.429 10.330

Location parameter (C) −0.193 −0.061 −0.262 0.118

Note: ***P< 0.01.
**P< 0.05.

*P< 0.1, respectively. Robust standard errors are in parentheses.
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number of location parameters is determined by the AIC and BIC
criteria.m � 2 in whichDcoal is located corresponds to AIC and BIC
values less than m � 1 for the transition variable, and its optimal
location parameter ism � 2. The AIC and BIC values corresponding
to transition variables at m � 1 in the models of Doil, Dgas , and Dre

are less than m � 2, and the number of position parameters is
determined as m � 1.

From the PSTR results in Table 6, the location parameters of the
models in which Dcoal, Doil, Dgas, and Dre are located
are −0.193, −0.061, −0.262, and 0.118, respectively. The effects of
distortions on both sides of the location parameters are significantly
different, indicating that the effects of distorted energy prices on
CDEC are nonlinear and have prominent threshold characteristics.
The coefficients ofDcoal,Doil, andDgas are negative at the 1% level in
the low regime and significantly positive at the 1% level in the high
regime. The coefficient of Dre has a positive value in the low regime
and a negative one in the high regime. They are significant at the 5%
level.

Specifically, whenDcoal,Doil, andDgas are below −0.193, −0.061,
and −0.262, respectively, the distortions result in a low price of fossil
energy, which increases fossil energy consumption, thereby
hindering CDEC. However, when the degrees of fossil energy
price distortions are greater than the respective location
parameters, the distortions facilitate CDEC. In other words, as
market-based energy pricing reforms continue to deepen, fossil
energy prices have increased, and distortions have decreased,

thus reducing the inhibiting effect of distortions on CDEC. If Dre

is less than 0.118, the renewable energy price distortion is reduced
and its price decreases, which promotes renewable energy
consumption and contributes to CDEC. In contrast, when Dre

exceeds 0.118, renewable energy becomes more expensive and
has no price advantage compared with fossil energy, thus
increasing the potential for fossil energy substitution. Therefore,
it has an inhibiting effect on CDEC.

Based on different smoothing parameters and location
parameters, the transformation functions of energy price
distortions are shown in Figure 3. The transformation functions
of distortions for all energy products’ prices exhibit a gradual
change, which indicates that the choice of the PSTR model is
reasonable.

The PSTR results indicate that the impact of the four energy
price distortions on CDEC is not monotonically facilitated or
inhibited. The higher the fossil energy price distortions, the more
pronounced the inhibiting effect on CDEC. The degree of CDEC is
higher when the distorted renewable energy price is lower. This
result is similar to the study of Du et al. (2021). According to Du
et al. (2021), the nonlinear effect of energy price distortions on
CDEC may be attributed to the reduced marginal contribution of
energy price distortions to the constraint effect of CDEC.
Furthermore, the effective intervals in which price distortions for
different energy types contribute to CDEC are coal price distortion
[−0.193,+∞), oil price distortion [−0.061,+∞); natural gas price

FIGURE 3
Transformation functions of energy price distortions.
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distortion [−0.262,+∞), and renewable energy price distortion
(−∞, 0.118], respectively.

5 Conclusion and policy implications

This paper estimates the impact of price distortions of four
energy products on CDEC in China and further analyzes the
nonlinear effects of distortions.

Following are themain conclusions. 1) The prices of all four types of
energy are distorted. Fossil energy price distortions are negative, with
coal (−0.171) being the highest, with oil (−0.090) and natural gas
(−0.058) following closely behind. Renewable energy price distortion is
positive at 0.541. 2) The national CDEC of economic growth and
reduction of carbon emissions has an average value of 0.436 during the
study period, which belongs to the teething process of the transition
phase. CDEC is uneven across regions in China, showing high in the E
area and low in the C-W areas. 3) Distorted energy prices inhibit CDEC
in China, and there are differences in the effects of price distortions of
different energy products. Distorted coal price has the most significant
inhibitory impact on CDEC. Additionally, the impact of distortions on
CDEC is regionally heterogeneous. Distorted oil, natural gas, and
renewable energy prices impede eastern China’s CDEC. In contrast,
distorted coal price has a more substantial impeding effect on the C-W
areas’ CDEC. 4) Distorted energy prices exert a nonlinear impact on
CDEC. The results of the PSTR model show that with the continuous
correction of energy price distortions, the role of the promotional
impact on CDEC gradually increases. Furthermore, the optimal
intervals of distortions to promote CDEC are coal price distortion
[−0.193,+∞), oil price distortion [−0.061,+∞); natural gas price
distortion [−0.262,+∞), and renewable energy price distortion
(−∞, 0.118], respectively.

Based on the empirical results, this paper proposes the following
policy recommendations.

First, improving the market mechanism of energy prices and
building a national unified price system. Coordinate the pace of
pricing market reform of different energy products and rationalize
the price ratios between various types of energy, such as fossil and
renewable energy. According to the national unified large market
construction guidance, accelerate the construction of a multi-energy
systematized pricing mechanism and establish a unified system of
energy prices to enhance the effective transmission of prices between
the different types of energy. With the establishment of an energy
pricing mechanism that reflects environmental externalities,
resource scarcity, and supply and demand, energy price
distortions can be corrected to obtain an optimal allocation of
energy resources and ultimately achieve CDEC.

Second, formulating differentiated regional policies of energy prices.
For eastern China, it should allow themarket to play a fully effective role
in energy pricing, reduce inefficient or even ineffective policy measures,
guide enterprises to accelerate the renewal of energy-efficient capital and
maximize the benefits of energy input. For the central-western areas, the
dominance of energy pricing should gradually shift from the
government to the market, making energy prices reflect the actual
supply and demand and the scarcity of energy resources. Use ofmarket-
based instruments to regulate energy prices, unblock the impact of
energy prices on demand, and provide more support for investment
policies to increase access to financing and channels for energy

companies to renew their capital. Moreover, it should break up the
energy market’s division, encourage the energy factor’s free movement
across regions, ensure that energy resources are allocated effectively, and
promote CDEC.

Third, strategies to correct energy price distortions should be
optimized. The estimation indicates that energy price distortions
nonlinearly impact CDEC. Therefore, the government should clarify
the policy measures and implementation efforts for adjusting energy
prices in light of energy price distortions.With the changes in energy
prices domestically and internationally, it is prudent to grasp the
level of price deregulation and release of market-driven intensity. In
this regard, the government should determine what level of price
distortions to correct for different energy products and how to adjust
them according to the economic development and emission
reduction realities at the national, regional, and provincial levels.
Taking the results of the optimal levels of energy price distortions in
this paper as a reference, the government should actively promote
the energy market-based pricing mechanism, adhere to the resource
tax reform, and optimize energy price subsidies. In addition, efforts
should be made to develop the digital economy, improve the
construction of the carbon market, promote technological
innovation, and alleviate distortions in energy prices so that the
market-based mechanism can play a leading role in CDEC.

Although this study provides a valuable exploration of the
relationship between energy price distortions and CDEC, due to the
availability of data, the subject of this paper does not deeply explore the
issue of relative energy price distortions. The relative distortions
between energy product prices may affect the consumption
proportionality of energy sources, thereby influencing CDEC.
Therefore, it is necessary to analyze the relative energy price
distortions further to understand the interactions between the prices
of different energy products, which could provide a more detailed
characterization of energy price distortions in China. Furthermore, it
will be significant for policymakers if the study scope is expanded from
China to emerging economies in future research.
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Energy trading model for
multi-microgrid energy storage
alliance based on Nash
negotiation

HuitingQiao*, LiangzhengWu, ShangyongWen and Jigang Zhang

Energy Development Research Institute China Southern Power Grid, Guangzhou, China

With the continuous development of the electricity market and the gradual
expansion of the number and scale of participation in market transactions, the
traditional energy trading model has limited the formation of a competitive
pattern of multi-agents. In this paper, a new multi-microgrid energy storage
alliance energy trading model based on Nash negotiation is proposed. This
model takes energy storage, multi-microgrid, and superior power grid
enterprises as the main participants and establishes an energy market
trading model with “buy–sell” cooperation and competition coexisting
within the alliance based on Nash negotiation theory. Through the
interaction of electricity between different entities, energy conversion and
complementary utilization are increased, achieving reasonable allocation of
resources, enhancing the overall flexibility of the alliance, and promoting the
local consumption of a high proportion of new energy. The simulation results
of the example show that the energy trading model based on Nash negotiation
can fully leverage the initiative of demand-side participation in scheduling and
improve the utilization rate of energy storage systems while ensuring the
payment benefits of all participating entities, which can provide technical
support for energy complementarity among multiple entities and provide
new technological paths for the sustainable development of energy sharing
mechanisms.

KEYWORDS

Nash negotiation, cooperative and competitive, multi-buyer and seller, multi-energy
complementary, energy trading

1 Introduction

Under the policy of liberalizing electricity generation and consumption plans,
diversified market entities such as energy storage, electric vehicles, and microgrids
gradually participate in electricity trading. These participants form an alliance to
meet their own load needs while transmitting energy to each other, achieving energy
mutual assistance trading among multi-market entities within the alliance (Pan et al.,
2023), gradually forming a multi-buyer and seller electricity market pattern. This
market trading mechanism can achieve reasonable allocation of resources, enhance
the overall flexibility of the alliance, and promote the local consumption of a high
proportion of new energy (Fang et al., 2022), which can also accelerate carbon
peaking, achieve carbon neutrality, and accelerate structural reforms on the energy
supply side.
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The sharing pattern of energy exchange among multi-market
entities can enable users to use resources without ownership. Users
can negotiate to form a shared market price, achieving the goal of
supply and demand balance and maximizing the use of resources
(Sivasankari and Narayanan, 2022). Vernay et al. (2023) provided a
detailed explanation of the business model and transaction process
of the aforementioned shared governance energy trading
mechanism. Ko et al. (2022) pointed out that the shared market
can significantly improve economy and resource utilization. Taking
shared energy storage as an example, it saves 2.53%–13.82% in
electricity costs compared to single user energy storage and increases
utilization efficiency by 3.71%–38.98%. In addition, relevant
explorations have been made on the pricing mechanisms of
shared markets in the trading process, such as methods based on
fixed prices (Yin and Yang, 2023), peak valley prices (Shen and
Chen, 2022), profit or cost allocation (Siqin et al., 2022), and auction
prices (Gabrielli and Willington, 2023), which have been widely
studied and applied.

However, as a new business model, the energy exchange within
the multi-market entity alliance also faces new difficulties in the
comprehensive promotion process, such as the issue of fair
transactions between multi-market entities. The interests of
different market participants are showing a trend of
diversification, and each market entity needs to consider its own
and other market participants’ impact on itself when making
decisions and how to handle conflicts of interest between
different market entities. Nash negotiation (Montazeri et al.,
2020) can balance the conflicts of interest between different
participating parties and is used to solve the problem of profit
distribution between multi-participating parties in the buy and sell
process. At present, its most applications in the power system are
concentrated in the operation between wind power and multi-
hydrogen production stations (Zhao et al., 2023), wind solar
hydrogen energy systems (Liu et al., 2023), and so on. There are
many participants and types involved in energy trading within a
multi-market entity alliance, and different participants have the
right to choose and make decisions. In energy trading within the

alliance, they will simultaneously act as buyers or sellers. Nash
negotiation is one of the best technical means for scientifically
analyzing and allocating the complex interest relationships
mentioned previously.

Based on the aforementioned analysis, in order to accelerate
the development of new energy and promote the local
consumption of new energy, a multi-microgrid energy storage
alliance energy trading model based on Nash negotiation is
constructed. This model takes energy storage, multi-microgrid,
and superior power grid enterprises within the multi-microgrid
energy storage alliance as the participating entities and
constructs a “buy–sell” cooperation and competition
coexisting electricity market trading model based on the
cooperation and competition relationship between each entity.
Then, we establish an optimization decision making model to
maximize the payment benefits of each participating entity
within the alliance and utilize the improved moth to fire
algorithm to solve the optimization decision model. Finally,
the effectiveness and feasibility of the energy trading strategy
of the multi-microgrid energy storage alliance based on Nash
negotiation were demonstrated through simulation. The benefits
of the non-cooperative mode (NCM) and cooperative mode
(CM) based on Nash negotiation were compared, the initiative
of demand-side participation in scheduling in the multi-
microgrid was analyzed, and the utilization situation of shared
energy storage under different trading modes was explored.

This article’s major innovation points are as follows:

1) An energy trading strategy for multi-microgrid energy storage
alliance was proposed based on Nash negotiation

2) Based on the characteristics of the optimization model in this
article, the moth to fire algorithm is improved to solve the
problem

3) The profitability, demand-side participation and scheduling
initiative, and shared energy storage utilization of multi-
microgrid energy storage were compared under the NCM and
CM based on Nash negotiation

FIGURE 1
Energy trading mechanisms of multi-microgrid energy storage alliance under the cooperative mode.
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2 Multi-microgrid energy storage
alliance energy trading architecture

2.1 Non-cooperative mode

There is a lack of market response and self-regulation ability in
China’s existing energy trading. Market entities such as microgrids,
new energy stations, energy storage, and controllable loads do not
have decision-making and discourse power and still follow the
pricing mechanism of power grid enterprise buying, selling, and
monopolizing. New energy power generation has been connected to
the grid as planned, resulting in large-scale wind and solar
abandonment and ineffective utilization of resources. In this
energy trading mode, the microgrid is only provided with
electricity and natural gas by the superior energy grid and is
forced to accept the transaction pricing of the superior power
grid. Energy storage belongs to the superior power grid and is
used to meet the inertia support and frequency regulation needs of
the superior power grid. At the same time, only the superior power
grid charges the energy storage to meet the operational needs of the
energy storage during the scheduling cycle. Renewable energy
sources such as wind power and photovoltaic are managed by
power grid enterprises through government electricity prices and
tax subsidies, which are planned for grid access. Each participating
entity has no other choice except to conduct electricity trading with
the superior power grid, resulting in prominent issues such as
information asymmetry and opacity and the dominance of power
grid enterprises, which is not conducive to the sustainable
development of the power economy.

2.2 Cooperative mode based on Nash
negotiation

The transaction mode of the multi-microgrid energy storage
alliance under the cooperation mode is as follows.

Different from the energy trading under NCM, in Figure 1, all
participating entities participate in market-oriented cooperation and
competition through reasonable price incentives, promoting the

sustainable development of electricity economy. Microgrid, power
grid enterprises, and energy storage system form an alliance. The
information among participants in the alliance is completely open
and transparent, and all participating entities have equal status in the
power trading process. Under the premise of ensuring the balance of
power supply and demand and safe and stable operation of all
participating entities, a true “buy–sell” cooperative and competitive
power market trading model was achieved. This model is based on
Nash negotiation theory and determines the trading volume and
price between each participating entity and other entities through
negotiation. Its multi-party governance and sharing electricity
trading model can promote healthy competition among
participating entities within the alliance and attract more
participating entities to join. The specific energy exchange and
trading methods are as follows:

1) When the electricity supply of microgrid i is less than the
demand, the transaction price can be determined by the
superior power grid, energy storage, or other microgrids
competing with each other based on the demand of microgrid i.

2) When there is a surplus of electricity in microgrid i, it can be used
to compensate for the electricity demand of other microgrids,
sold to superior power grids to meet frequency regulation needs,
or sold to energy storage to meet operational needs during the
scheduling cycle. The price of electricity sold by microgrid i is
determined through competition with other participating
entities in the alliance.

3) Energy storage is used not only to meet the inertia support and
frequency regulation needs of the superior power grid but also to
compensate for the electricity demand of the microgrid. The
price for selling energy storage is determined through
competition with other participating entities in the alliance.

4) When the energy storage needs to be charged to maintain normal
operation during the scheduling cycle, the superior power grid
and microgrid group can cooperate and compete to determine
the transaction price and quantity of electricity charged to the
energy storage based on the required charging quantity.

5) For superior power grid enterprises, their inertia support and
frequency regulation needs can be met by energy storage or

FIGURE 2
Optimization process of energy mutual assistance among participating entities in Nash negotiations.
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microgrid groups. Based on the electricity required for
auxiliary services, energy storage or microgrid groups
compete to determine the trading partner, electricity
quantity, and price.

3 Energy tradingmechanisms for multi-
microgrid energy storage alliance
based on Nash negotiation

3.1 Energy trading mode

Nash negotiation, also known as the bargaining model, is one of
the earliest studied problems in game theory and an important
theoretical basis for cooperative games (Churkin et al., 2021). The
purpose of bargaining is to hope for greater benefits for oneself, but
due to conflicts of interest among the participating parties, the
degree of benefits is limited, and beyond the boundaries, the

negotiation will break down. For the participating entities in the
shared alliance in this article, applying Nash negotiation theory can
yield

max ∏
i

CNCM
i − CCM

i( )
s.t. CNCM

i − CCM
i P0,

⎧⎪⎨⎪⎩ (1)

where CNCM
i − CCM

i is the payment benefits obtained by each
participant i through the cooperative relationship and CNCM

i and
CCM
i represent the optimal benefits of each participating entity in the

NCM and CM based on Nash negotiation, respectively. The optimal
benefit CNCM

i of each participating entity in the NCM is based on the
Nash negotiation breakdown point. To ensure the effectiveness of all
participating parties in the CM based on Nash negotiation, there are
CNCM
i − CCM

i P0. By solving the Pareto–Nash equilibrium, the
optimal energy trading strategy for the superior power grid,
energy storage, and microgrid is obtained, achieving energy
interactive trading among multi-participating entities in the CM.

FIGURE 3
Energy trading process of multi-microgrid energy storage alliance.
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This article is based on the Nash negotiation cooperation model,
establishing an alliance consisting of four participating entities:
superior power grid enterprises, microgrid A, microgrid B, and
energy storage. To maintain generality, this article selects general
comprehensive energy system architecture, including equipment
such as electricity, heat, cooling, natural gas, and energy storage,
as the structural framework of the microgrid. The specific structure
is shown in the work of Li et al. (2021), including a gas turbine (GT),
waste heat recovery (WHR), gas boiler (GB), and electric cooler
(EC). The controllable equipment is the elastic load, which is divided
into the reducible electrical load (RLe) and transferable cold/heat
load (TLc/TLh) according to the type of electricity used. The
optimization process of negotiating the electricity trading volume
and corresponding trading prices between each participating entity
and other entities is shown in Figure 2.

Under the CM based on Nash negotiation, each participating
entity negotiates the electricity trading volume and corresponding
trading price with other entities. Driven by the electricity trading
volume and trading price with other entities, the participating
entities have the following optimization process:

1) Superior power grid enterprises optimize internal thermal power
units

2) Microgrids optimize the scheduling plan for controllable
resources

3) The energy storage system optimizes the hourly charging and
discharging capacities

The transaction prices decided by each entity will affect the
electricity trading volume between other entities and that entity. The
electricity trading volume will further affect the scheduling plan of
controllable resources within each participating entity and also the
entity’s decision making on trading prices.

In this “buy–sell” cooperative and competitive electricity market
trading model, energy conversion and complementary utilization
can be increased through the interaction of electricity between
different entities, thereby improving the overall revenue of the
shared energy storage alliance. When the overall revenue of the
alliance increases, the revenue of each participating entity also
increases accordingly. During the optimization process, the
information of each participating entity is transmitted to each
other, ultimately achieving the Pareto–Nash equilibrium.

3.2 Energy trading process

The energy trading strategy of the multi-microgrid energy
storage alliance based on Nash negotiation mainly aimed at the
day-ahead scale electricity trading in the spot market. To ensure
complete transparency of information among participants in the
alliance and equal status of all participants in the electricity trading
process, the trading process is shown in Figure 3. Taking a day-
ahead scale scheduling process as an example, it is described as
follows:

1) Data packets are generated from the capacity of thermal power
units in the superior power grid, rated capacity and power of
energy storage, and various load demands in the microgrid and

broadcasted to the participating entities of the multi-microgrid
energy storage alliance.

2) After receiving the demand for natural gas, the superior gas
network formulates the unit natural gas price and forms a data
packet again, which is broadcasted to the multi-microgrid energy
storage alliance.

3) After receiving two broadcasts of information, the participating
entities in the multi-microgrid energy storage alliance obtain the
optimal transaction plan based on the Nash negotiation model of
each participating entity.

4) Transaction prices and quantities are negotiated into data
packets broadcasted to the entire network to reach consensus.

5) Permits are issued for transactions that have already reached a
consensus for confirmation. The transaction is declared invalid
without reaching a consensus, and all participating entities
synchronously update their status and requirements before
proceeding to step one again.

4 Energy trading model for multi-
participants based on Nash negotiation

4.1 Superior power grid enterprises

4.1.1 Economic benefits
The benefits of the superior power grid when the energy trading

mode is the NCM and CM are expressed as follows:

CNCM/CM
SPG � ∑24

t�1
ξSPGMGA,tP

SPG
MGA,t + ξSPGMGB,tP

SPG
MGB,t + ξSPGES,t P

SPG
ES,t( ) − CSPG

G

− CSPG
PFR , (2)

where CSPG
G and CSPG

PFR represent the power generation and frequency
regulation costs of thermal power units in superior power grid
enterprises. To clearly describe the interactive behavior of power
grid enterprises in multi-microgrid energy storage alliances, only the
energy supply and frequency regulation needs within the alliance are
considered. The specific calculations are shown in Eqs 3, 4. ξSPGMGA,t,
ξSPGMGB,t, and ξ

SPG
ES,t represent the price at which the superior power grid

enterprise sells electricity to microgrid A, B, and energy storage;
PSPG
MGA,t, P

SPG
MGB,t, and PSPG

ES,t represent the corresponding transaction
volume.

CSPG
G � ∑24

t�1
∑NG

t�1
aGi PG

i,t( )2 + bGi P
G
i,t[ ], (3)

where aGi and bGi represent the operating cost coefficients of thermal
power unit i in the superior power grid enterprise,NG represents the
number of thermal power units participating in power generation by
the superior power grid enterprise to meet the power supply demand
within the alliance, and PG

i,t represents the output of thermal power
unit i in the superior power grid enterprise.

CSPG
PFR � ∑24

t�1
ξG−PFRPG−PFR

t +∑
n

ξn−PFRPn−PFR
t

⎛⎝ ⎞⎠, n ∈ MGA,MGB,ES{ },

(4)
where ξG−PFR represents the cost coefficient of thermal power units
participating in frequency regulation. ξn−PFR represents the cost
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coefficient of other market entities participating in frequency
modulation, and n represents the set of market entities
participating in frequency modulation, including microgrid A,
microgrid B, and energy storage, respectively, represented by the
letters MGA, MGB, and ES. PG−PFR

t represents the power of thermal
power units participating in frequency regulation, and Pn−PFR

t

represents the power of other market entities participating in
frequency regulation.

In the NCM, the superior power grid only has its own thermal
power units and energy storage coordinated to meet the frequency
regulation needs. Therefore, Eq. 4 can be rewritten as

CSPG
PFR � ∑24

t�1
ξG−PFRPG−PFR

t + ξES−PFRPES−PFR
t( ). (5)

4.1.2 Constraint condition
The superior power grid enterprise also has the following

constraints.

1) Power balance constraint:

PG
t � PSPG

MGA,t + PSPG
MGB,t + PSPG

ES,t . (6)

The superior power grid enterprise sells electricity to the
microgrid and energy storage to ensure the balance of power
supply and demand in the microgrid and the demand for energy
storage operation.

2) Frequency modulation capacity demand constraint:

PPFR
Req,t � ∑ PW

t + PPV
t + PLe

t( )ΔPN

∑NG

i�1
PG−PFR
i,t +∑

n

Pn−PFR
t PPPFR

Req,t, n ∈ MGA,MGB{ },
⎧⎪⎪⎨⎪⎪⎩ (7)

where PPFR
Req,t represents the frequency regulation demand of the

superior power grid. This chapter simplifies the calculation by
using the product of the uncertain power generation and
consumption within the alliance and the disturbance ratio
ΔPN as the boundary constraint of the frequency regulation
demand. The general value of ΔPN is 5% of the load, and the
additional demand capacity after the addition of renewable
energy is 10%–20% of the renewable energy generation output,
which is set as 20% in this article. The sum of the frequency
modulation power of market entities participating in frequency
modulation should not be less than the frequency modulation
demand of the superior power grid.

3) Thermal power unit operational constraints:

The thermal power unit operational constraints including
output constraint and climbing constraint are shown in Eqs 8, 9,
respectively.

PG
i,min#PG

i,t#PG
i,max, (8)

where PG
i,min and PG

i,max represent the minimum and maximum
output boundaries of thermal power unit i.

RG
D,i#PG

i,t − PG
i,t−1#RG

U,i , (9)

where RG
D,i andR

G
U,i, respectively, represent the maximum downward

and upward climbing values of thermal power unit i.

4.2 Energy storage

4.2.1 Economic benefits
The benefits of energy storage when the energy trading mode is

the NCM and CM are expressed as follows:

CNCM/CM
ES � ∑24

t�1
∑
n

ξES−Sen,t PES−Se
n,t + ξES−PFRt PES−PFR

t −∑
i

ξES−chi,t PES−ch
i,t

⎛⎝ ⎞⎠
n ∈ MGA,MGB{ }, i ∈ MGA,MGB, SPG{ }

,

(10)
Equation 10 shows that the income from the energy storage is

the income from selling electricity to other market entities minus the
cost of purchasing electricity from other market entities to charge
energy storage while maintaining normal operation of energy
storage. According to the analysis in Section 2.1, in the NCM,
energy storage’s energy is only sold to the superior power grid
enterprise to meet the frequency regulation needs of the power grid
and can only accept power supply from the superior power grid. In
this case, n ∈∅, i ∈ SPG{ }. According to the analysis in Section 2.2,
in the CM, energy storage’s energy can be sold to any participant
within the multi-microgrid energy storage alliance and can also
receive power from any participant. In Eq. 10, ξES−Sen,t and PES−Se

n,t ,
respectively, represent the transaction price and quantity of
electricity sold to participant n, while ξES−PFRt and PES−PFR

t ,
respectively, represent the transaction price and quantity of
electricity when energy storage participates in the frequency
regulation of the superior power grid, in order to meet the power
supply and demand balance of each microgrid and the safety and
stability of the superior power grid. ξES−chi,t and PES−ch

i,t represent the
transaction price and transaction quantity of energy storage charged
by participant i in order to maintain the balance of energy storage
charging and discharging and ensure the normal operation of energy
storage.

Based on the energy storage economic benefits shown in Eq. 10,
it can be inferred that the total power of energy storage charging at
time t is∑

i

PES−ch
i,t , and the total power of energy storage discharging

at time t is expressed as ∑
n

PES−Se
n,t + PES−PFR

t .

4.2.2 Constraint condition
The energy storage also needs to meet the following constraints

during operation.

1) Energy storage charging/discharging power constraint:

0#∑
i

PES−ch
i,t #μESchP

ES−ch
max

0#∑
n

PES−Se
n,t + PES−PFR

t #μESdisP
ES−dis
max

⎧⎪⎪⎨⎪⎪⎩ , (11)

where PES−ch
max and PES−dis

max , respectively, represent the maximum
charging and discharging powers of energy storage. μESch and μESdis
represent the charging and discharging status of energy storage,
which is a Boolean variable.

2) Energy storage charging/discharging state constraint:
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In order to avoid simultaneous charging and discharging of
energy storage at the same time period, there is the following
constraint:

μESch + μESdis ≤ 1. (12)

3) Energy storage charging/discharging power constraint during
the total scheduling cycle:

At the same time, in order to ensure the sustainable development
and healthy operation of the energy storage, the sum of the charging
and discharging powers of the energy storage during the total
scheduling cycle is set to 0.

∑24
t�1

∑
i

PES−ch
i,t −∑

n

PES−Se
n,t − PESS−PFR

t
⎛⎝ ⎞⎠ � 0. (13)

4) Energy storage capacity constraint:

To avoid deep charging and discharging of energy storage, in
order to delay the usage time of energy storage, the use of energy
storage is generally forcibly stopped when the energy storage
capacity is low or high. In this case, there is a capacity constraint
for energy storage, as shown in Eq. 14. The capacity of energy storage
at current time t is related to the charging and discharging powers at
that time and the capacity at the previous time. The specific
calculations are shown in Eqs 15, 16.

SOCminE
ES
R #EES

t #SOCmaxE
ES
R , (14)

where EES
t represents the capacity of energy storage at time t, EES

R

represents the rated capacity of energy storage, and SOCmin and
SOCmax represent the minimum and maximum numbers of charges
to ensure the normal operation of energy storage.

EES
t � 1 − ρ( )EES

t−1 − ΔEES
t , (15)

where ρ represents the self discharge rate of energy storage.

ΔEES
t �

∑
i

PES−ch
i,t ηch, μ

ESS
ch � 1

∑
n

PES−Se
n,t + PESS−PFR

t
⎛⎝ ⎞⎠/ηdiss, μ

ESS
dis � 1,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(16)

where ηch and ηdis are the charging and discharging rates of energy
storage.

4.3 Microgrid

4.3.1 Economic benefits
The benefits of the microgrid in the energy trading mode of the

NCM and CM are expressed as follows:

CNCM/CM
MG � CMG

CCHP + CMG
B NCM( )/ CM( ) + CMG

EL , (17)

where CMG
CCHP and CMG

EL , respectively, represent the operating cost of
CCHP units and the call cost of controllable loads in the microgrid;
the specific calculation formulas are shown in Eqs 18, 19.
CMG
B(NCM)/(CM) represents the energy purchase cost of the

microgrid in the NCM of Section 2.1 and the CM of Section 2.2,
and the specific calculation formulas are shown in Eqs 20, 21.

CMG
CCHP � ∑24

t�1
∑
i

ξCCHP
i Pi

t, i ∈ GT,WHR,GB,EC{ }, (18)

where ξCCHP
i and Pi

t represent the conversion power cost coefficient
and conversion power of CCHP units in the microgrid during
operation. i belongs to the collection of CCHP units, including
the gas turbine, waste heat recovery, gas boiler, and electric cooler,
represented by letters {GT, WHR, GB, and EC}.

CMG
EL � ∑24

t�1
ξRLet PRLe

t + ξTLct PTLc
t

∣∣∣∣ ∣∣∣∣ + ξTLht PTLh
t

∣∣∣∣ ∣∣∣∣( ), (19)

where ξRLet , ξTLct , and ξTLht represent the call cost coefficients of
reducible electrical loads and transferable cold and hot loads,
respectively, while PRLe

t , PTLe
t , and PTLh

t represent the
corresponding call powers.

In the NCM, microgrids only purchase energy from superior
power grids and gas grids, and the cost of energy purchase is
expressed as follows:

CMG
B NCM( ) � ∑24

t�1
ξB−SPGet PB−SPGe

t + ξB−SPGgt VB−SPGg
t( ), (20)

where ξB−SPGet and PB−SPGe
t , respectively, represent the cost

coefficient and quantity of electricity purchased from the superior
power grid, while ξB−SPGgt and VB−SPGg

t , respectively, represent the
cost coefficient and quantity of gas purchased from the superior
gas grid.

In the CM, microgrids can accept energy supply from any other
participating entity within the alliance; at the same time, when there
is an energy surplus within the microgrid, energy can also be
mutually beneficial to meet the needs of other market entities.
Based on the aforementioned analysis, the energy purchase cost
is expressed as follows:

CMG
B CM( ) � ∑24

t�1
∑
i

ξB−iet PB−ie
t + ξB−SPGgt VB−SPGg

t −∑
i

ξS−iet PS−ie
t

⎛⎝ ⎞⎠, (21)

where i is the collection of market entities that have energy
interactions with the analyzed microgrid, including other
microgrids, superior power grids, and energy storage. ξB−iet and
PB−ie
t represent the price and quantity of electricity purchased from

market entity i. ξS−iet and PS−ie
t represent the price and quantity of

electricity sold to market entity i.
The CCHP units in the microgrid have the following conversion

relationships:

PGT
t � LGTηGTVGT

t

QGB
t � LGBηGBVGB

t

VB−SPGg
t � VGT

t + VGB
t

QWHR
t � θηWHRQGT

t

QGT
t � PGT

t

ηWHR 1 − ηWHR − ηGTloss( )
QEC

t � ηECPEC
t ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)
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where PGT
t is the electricity converted by the gas turbine, LGT is the

thermal low value of the gas turbine, ηGT is the conversion efficiency of
the gas turbine, and VGT

t is the volume of natural gas consumed by the
gas turbine. QGB

t is the heating capacity of the gas boiler, LGB is the low
calorific value of the gas boiler, ηGB is the conversion efficiency of the gas
boiler, andVGB

t is the volume of natural gas consumed by the gas boiler.
The amount of gas purchased from the superior gas network, VB−SPGg

t ,
is the total amount of natural gas consumed by the gas turbine and gas
boiler. QWHR

t represents the heating capacity of the waste heat recovery
device, which is related to the heating ratio θ, heating efficiency ηWHR,
and the waste heatQGT

t generated by gas turbine power generation. The
waste heat QGT

t generated by gas turbine power generation is related to
the output power of the gas turbine, the heating efficiency of the waste
heat recovery device, and the heat dissipation loss rate ηGTloss. Q

EC
t is the

cooling capacity of the electric cooler, ηEC is its cooling efficiency, and
PEC
t is the electricity consumption of the electric cooler.

4.3.2 Constraint condition
The microgrid also needs to meet the following constraints

during operation.

1) Energy balance constraint:

The real-time power balance including electrical energy is shown
in Eq. 23. For cold and hot energy, due to its large inertia and storage

capacity, only the cooling and heating needs can be guaranteed, as
shown in Eq. 24.

∑
i

PS−ie
t � ∑

i

PB−ie
t + PGT

t + PREG
t − PEC

t − PLe
t − PRLe

t( ), i ∈ MG, SPG, ES{ }
PREG
t � PW

t + PPV
t ,

⎧⎪⎨⎪⎩
(23)

where PREG
t represents the renewable energy generation,

which is the sum of the generation of photovoltaic PPV
t and

wind turbine PW
t . PLe

t represents the total amount of the electrical
load.

QLh
t − QTLh

t #QGB
t + QWHR

t

QLc
t − QTLc

t #QEC
t ,

{ (24)

where QLh
t and QLc

t represent the total amount of heating and
cooling loads. QTLh

t and QTLc
t represent the dispatch power of

transferable loads, and >0 represents transfer, resulting in a
decrease in the total load; <0 indicates an increase in the total
load transferred in.

2) CCHP unit operation constraints:

The operational constraints of CCHP units in the microgrid are
simplified as upper and lower bound constraints for energy
conversion:

FIGURE 4
Improved moth–flame optimization algorithm process.
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0#PGT
t #P GT

max

0#QGB
t #Q GB

max

0#QWHR
t #QWHR

max

0#QEC
t #Q EC

max

⎧⎪⎪⎪⎨⎪⎪⎪⎩ , (25)

where P GT
max , Q

GB
max , Q

WHR
max , and Q EC

max , respectively, represent the
maximum conversion power of the gas turbine, gas boiler, waste
heat recovery, and electric cooler.

3) Controllable load call constraints:

The call of the controllable load should be within its maximum
load loss ratio, as shown in Eq. 26. The transferable cold and hot
loads should ensure that the total amount of transferred power
remains unchanged during the total scheduling cycle and should
also include upper and lower limit constraints on the transferred
power and total transfer amount constraint. Transferable hot load is
taken as an example to illustrate:

0#PRLe
t #ϱRLePLe

t , (26)
where ϱRLe is the proportion of the maximum power loss load.

∑24
t�1
QTLh

t � 0

−Q TLh
max#QTLh

t #Q TLh
max

0.5∑24
t�1

QTLh
t

∣∣∣∣ ∣∣∣∣#QTLh−max

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
, (27)

where Q TLh
max represents the maximum thermal power limit that can

be transferred each time the heat load is transferred and QTLh−max

represents the maximum power limit that can be transferred during
the total scheduling cycle.

5 Solution of the energy trading model

The energy trading model of the multi-microgrid energy storage
alliance has the characteristics of non-linearity and complex
constraints. To solve the aforementioned model, a novel swarm
intelligence algorithm, the improved moth–flame optimization
(IMFO) algorithm, is proposed. The solution flowchart is shown
in Figure 4. The improvement strategies are as follows:

1) Average entropy initialization is introduced to ensure global
diversity.

2) Levy flight is introduced to avoid “precocity” in the algorithm.
3) Variable scale chaotic strategy is adopted to increase local search

performance.
4) The scaling factor concept is integrated in differential thinking

into the MFO algorithm to enhance the algorithm’s ability to
solve large-scale problems.

The specific strategy collaboration can be found in the work of
Wu et al. (2023).

In order to overcome the randomness of the metaheuristic
algorithm during the solving process, the results of the examples
in this paper are all the optimal values of the improved moth to
flame algorithm after running independently for 30 times. For

complex constraints such as energy storage, elastic load operation
constraints, and power balance equation constraints, dynamic
relaxation constraint processing (He et al., 2021) is used to
ensure the feasibility of the solution.

6 Example analyses

6.1 Situation description

Based on the alliance structure in Figure 1, the participating
individuals of the multi-microgrid energy storage alliance in the
calculation example are determined including superior power grid
enterprise, energy storage, microgrid A, and microgrid B. The
efficiency values of CCHP units in the microgrid mainly refer to
the work of Roy and Das (2023), and some units such as waste heat
recovery devices have been modified according to the actual
situation. The call cost coefficients of each CCHP unit refer to
the work of Ma et al. (2023), and the specific settings are shown in
Table 1. Based on the actual situation and the work of Gough et al.
(2023), the virtual power plant is extended to a virtual energy plant,
and the schedulable loads and parameters of various virtual energy
plants contained within two microgrids are shown in Table 1.

The maximum proportion of the load that can be reducible
during the operation is the proportion of the total load that can
be reducible in the microgrid. The daily forecast of various loads
and renewable energy output in each microgrid is shown in
Figure 5.

6.2 Analysis of energy trading results in the
non-cooperative mode

In the NCM, both electricity and gas prices are set by the
superior power grid and gas grid, as shown in Figure 6, and

TABLE 1 Parameter settings related to intelligent microgrids.

Device Parameter Value Parameter Value

GT LGT 9.78 ηGT 0.45

ηGTloss 0.05 ξCCHP
GT

0.047

P GT
max (MGA) 100 P GT

max (MGB) 180

P GT
min (MGA) 20 P GT

min (MGB) 20

GB LGB 9.78 ηGB 0.9

ξCCHP
GB

0.0102 P GB
max (MGA) 150

P GB
min (MGA and MGB) 30 P GB

max (MGB) 120

WHR θ 0.8 ηWHR 0.6

ξCCHP
WHR

0.023 — —

EC ηEC 3.08 ξCCHP
EC

0.023

RLe MGA proportion 0.3p.u MGB proportion 0.3p.u

TLh MGA proportion 0.4p.u MGB proportion 0.4p.u

TLc MGA proportion 0.45p.u MGB proportion 0.3p.u
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other participating entities are forced to accept them. The
operating cost coefficients are aG = 0.217 and bG = 0.2189 for
the generator set. The frequency regulation quotation of the
generator set and energy storage is approximate to the

marginal cost of each system. The call cost coefficients for
each elastic load are shown in Figure 6.

The scheduling plans for each CCHP unit in microgrids A and B
are shown in Figures 7A, B; the controllable load scheduling plan is

FIGURE 5
Prediction of various loads and renewable energy outputs of each microgrid. (A) Prediction of various loads and renewable energy output of
microgrid A, and (B) Prediction of various loads and renewable energy output of microgrid B.

FIGURE 6
Hourly electricity/gas price and elastic load call cost coefficient.
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shown in Figures 7C, D, and the scheduling plans for the superior
power grid and energy storage are shown in Figure 7E.

Figures 7A, C show that microgrids A and B can achieve energy
supply and demand balance within their respective regions by
dispatching CCHP units. In order to reduce the cost of
purchasing electricity from microgrids, the main power supply
equipment, the gas turbine, reaches its rated power at multiple
times, and the power curve is driven by real-time electricity prices.
Figures 7B, D show that in the NCM, except for the participation of
the RLe-type load in scheduling during certain periods, TLh/c did
not effectively participate in scheduling, and the initiative of the
demand side was not fully utilized. Figure 7E shows that the

frequency regulation demand of the superior power grid is
mainly led by the thermal power unit, and the energy storage
cooperates to complete the total frequency regulation demand.
From the scheduling curve of the energy storage, it can be seen
that energy storage is not effectively utilized in the NCM.

6.3 Analysis of energy trading results in the
cooperative mode

In the CM, all participating entities in the alliance determine the
transaction price and electricity consumption through negotiation.
The trading price is set with different fluctuation ranges according to
the peak/valley of electricity consumption (Mei et al., 2023), as
shown in Table 2.

Starting from the transaction methods and scheduling plans
of participating entities in the alliance in the NCM and CM, this
section compares the revenue situation of the two modes,
analyzes the initiative of demand side participation, and
explores the utilization of energy storage under different
transaction modes.

FIGURE 7
Microgrid, superior power grid, and energy storage scheduling plan in the non-cooperative mode. (A)Microgrid A CCHP units scheduling plan, (B)
Microgrid A controllable load scheduling plan, (C) Microgrid B CCHP units scheduling plan, (D) Microgrid B controllable load scheduling plan, and (E)
Superior power grid and energy storage scheduling plan.

TABLE 2 Division of electricity price for different time periods.

Peak Flat Valley

Time interval 09:00 ~ 13:00 07:00 ~ 09:00 23:00 ~ 00:00

19:00 ~ 23:00 13:00 ~ 19:00 00:00 ~ 07:00

Electricity price [1.1, 1.2] [0.95, 1.1] [0.85, 0.95]
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6.3.1 Comparison of revenue
The comparison of the costs and benefits of the microgrid,

superior power grid, and energy storage between the NCM and CM
is shown in Table 3.

Table 3 shows that in the CM, the cost of the microgrid group is
reduced by 31.06% compared to the NCM and the cost of the
superior power grid is reduced by 10.11%. This is because in the
NCM, the microgrid only receives power from the superior power
grid and has no other options except for electricity trading with the
superior power grid. This makes it difficult for microgrids to
effectively consume surplus electricity while meeting their own
energy needs, resulting in resource waste. The abandoned
electricity of microgrids in the NCM is shown in Figure 8. The
CM grants participants the right to choose and make decisions, and

the microgrid sells surplus electricity to any other entity, thereby
reducing costs.

Figure 9 shows the average transaction price of electricity sold by
entities within the alliance under the CM. The transaction prices during
each period are controlled by the alliance and are within the pre-set
peak/valley fluctuation range, which is energy storage > microgrid B >
superior grid > microgrid A. This is because microgrid A contains a
large amount of wind and solar power generation, and renewable
energy is not included in the power generation cost in the text, greatly
reducing the purchase cost of microgrid A and making the transaction
price of electricity sold through microgrid A the lowest. The energy
storage does not contain energy generation devices and can only
maintain its own charging and discharging balance by purchasing
electricity, resulting in the highest transaction price for selling
electricity through energy storage. Microgrid B and the superior grid

TABLE 3 Comparison of costs or benefits among participating entities under
two trading modes.

Cost¥ Profit¥

MGA MGB SPG ES

Non-cooperative mode 3,314.73 3,501.10 37,504 0

Cooperative mode 2,216.08 2,482.27 33,710 61.70

FIGURE 8
Abandoned power of microgrids in the non-cooperative mode.

FIGURE 9
Average transaction price of electricity sold by each participating
entity.

FIGURE 10
Microgird controllable load scheduling plan in the cooperative
mode. (A) Microgrid A controllable loads scheduling plan, and (B)
Microgrid B controllable loads scheduling plan.

FIGURE 11
Energy storage charging and discharging plans under the
cooperative mode.
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each contain a small number of photovoltaic and thermal power units
with intermittent characteristics, and the power generation cost of
thermal power units is lower than the cost of purchasing electricity from
other entities. Therefore, the transaction price of electricity sold through
microgrid B and the superior grid is between shared energy storage and
microgrid A.

6.3.2 Comparison of demand-side response levels
Under the CM, the scheduling plan for controllable loads in

microgrids A and B is shown in Figure 10.
Comparing Figure 10 with Figures 7B, D, it can be seen that under

the influence of the “buy–sell” competitive market trading model, the
CM can promote the demand side to fully leverage its initiative. Driven
by transaction prices, the demand side in the microgrid participates in
scheduling as much as possible during peak electricity consumption
periods. The microgrid sells surplus electricity to other participating
entities in the alliance to obtain more profits, which is consistent with
the analysis of the results shown in Table 3.

6.3.3 Comparison of energy storage utilization
Under the CM, the charging/discharging plan for shared energy

storage within the alliance is shown in Figure 11. Comparing Figure 11
with Figure 7E, it can be seen that energy storage belongs to the superior
power grid under the NCM, and there is only electricity exchange with
the superior power grid, which makes the energy storage system not
effectively utilized. In the CM, energy storage transactions are
conducted among multiple parties, motivated by price incentives, to
purchase electricity from market entities with lower transaction prices
while meeting the electricity demand of other participating entities, in
order to maintain their own charging and discharging balance. Under
this trading mode, the utilization rate of the energy storage system has
increased, and the profits have also correspondingly increased, which is
consistent with the results of the increased benefits of shared energy
storage in Table 3.

7 Conclusion

Against the backdrop of accelerating the transformation of
energy supply side structure in China, a multi-microgrid energy
storage alliance energy trading strategy based on Nash negotiation is
proposed for the electricity market mechanism and trading mode of
multi-market entities in the micro grid with a high proportion of
renewable energy access, with a “buy–sell” electricity market pattern.
Through simulation, the following conclusions can be drawn:

1) A “buy–sell” cooperative and competitive electricity market
trading model was constructed based on Nash negotiations,
promoting healthy competition among participating entities
within the alliance, attracting more participants to join, and
promoting sustainable development of the electricity economy

2) The cooperation model based on Nash negotiation can
significantly reduce/improve the costs/benefits of participating
entities in energy trading

3) The cooperation model based on Nash negotiation can fully
leverage the initiative of demand-side participation in
scheduling, improve the utilization rate of energy storage
systems, and promote the sustainable development of effective
energy utilization and sharing mechanisms

In subsequent research, the regulatory needs of various market
entities at different time scales will be considered, and further
research will be conducted on the configuration and operation
strategies of shared energy storage systems under stable support
needs at multi-time scales.
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In order to further improve the efficiency of energy utilization, Integrated Energy
Systems (IES) connect various energy systems closer, which has become an
important energy utilization mode in the process of energy transition. Because
the complex and variable multiple load is an important part of the new power
system, the load forecasting is of great significance for the planning, operation,
control, and dispatching of the new power system. In order to timely track the
latest research progress of the load forecasting method and grasp the current
research hotspot and the direction of load forecasting, this paper reviews the
relevant research content of the forecasting methods. Firstly, a brief overview of
Integrated Energy Systems and load forecasting is provided. Secondly, traditional
forecasting methods based on statistical analysis and intelligent forecasting
methods based on machine learning are discussed in two directions to analyze
the advantages, disadvantages, and applicability of different methods. Then, the
results of Integrated Energy Systemssmultiple load forecasting for the past 5 years
are compiled and analyzed. Finally, the Integrated Energy Systems load forecasting
is summarized and looked forward.

KEYWORDS

integrated energy system, load forecasting, statistical analysis, machine learning,
multiple load

1 Introduction

1.1 Motivation and background

Energy is the basis for human survival and development and the lifeblood of the national
economy. How to ensure the sustainable supply of energy for human society while reducing
environmental pollution in the process of energy use is a common concern in the world today. The
further consumption of non-renewable energy leads to serious energy crisis and environmental
pollution, which forces us to break the original mode of separate planning, separate design,
separate construction and independent operation of each energy source and ultimately to achieve
the construction and development of IES. In otherwords, the development and construction of IES
is an inevitable choice to solve the energy crisis, improve environmental pollution, achieve optimal
energy efficiency, and promote the use of renewable energy on a large scale.

The IES takes the electric power system as the core and realizes cooperative management
and complementary mutual assistance among various energy systems through its many types
of energy conversion equipment and energy storage equipment (Li et al., 2021; Zhu et al.,
2021). The synergistic operation of multiple energy systems results in a strong coupling of

OPEN ACCESS

EDITED BY

Jianli Zhou,
Xinjiang University, China

REVIEWED BY

Yunna Wu,
North China Electric Power University,
China
Yiming Ke,
Jinan University, China
Shuai Geng,
Shandong Jianzhu University, China

*CORRESPONDENCE

Ruiqi Wang,
19121737871@163.com

RECEIVED 19 September 2023
ACCEPTED 02 November 2023
PUBLISHED 16 November 2023

CITATION

Liu Y, Li Y, Li G, Lin Y, Wang R and Fan Y
(2023), Review of multiple load
forecasting method for integrated
energy system.
Front. Energy Res. 11:1296800.
doi: 10.3389/fenrg.2023.1296800

COPYRIGHT

© 2023 Liu, Li, Li, Lin, Wang and Fan. This
is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Energy Research frontiersin.org01

TYPE Review
PUBLISHED 16 November 2023
DOI 10.3389/fenrg.2023.1296800

120

https://www.frontiersin.org/articles/10.3389/fenrg.2023.1296800/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1296800/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1296800/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2023.1296800&domain=pdf&date_stamp=2023-11-16
mailto:19121737871@163.com
mailto:19121737871@163.com
https://doi.org/10.3389/fenrg.2023.1296800
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2023.1296800


multiple loads, which makes multiple load forecasting more
complex and allows a greater amount of internal information to
be mined than traditional single load forecasting. Therefore, it is of
great practical significance to explore the load forecasting under the
coupling conditions of multiple loads of integrated energy systems.
In this context, it is crucial to keep track of the latest research
progress of load forecasting methods and grasp the current research
hotspots and directions of load forecasting for the development and
construction of integrated energy systems.

1.2 Research methodology

The methodology of this paper takes four important steps: step
1, choosing electronic databases; step 2, setting the query
formulations and search scope; step 3, conducting preliminary
search; step 4, performing manual filter.

In Step 1, it was decided to use four publicly available databases -
Springer Link, Elsevier, IEEE Xplore, and MDPI. These databases
cover a large number and variety of journals, and more influential
factors are considered in the citation index, making these databases
include a wider range of disciplines, more comprehensive and
objective content, and higher authority in relevant research fields.
Therefore, it would be more authoritative to screen the literature
from these databases for research that fits the topic of study.

In Step 2, the query formulations and search scope are set in
these databases. The query formulations consist of key words, logical
operators, and search instructions. The keywords were set to load
forecasting in the field of integrated energy systems, multi-energy
systems, energy internet or multi-energy co-generation systems. The
following query formulations were entered to search for relevant
literature matching the research topic in the time frame from
January 2019 to March 2023:

l) (“Integrated energy system” OR “multi-energy system” OR
“energy internet” OR “energy coupling system”) AND (“load

forecasting” OR “multiple load forecasting”) AND (“machine
learning” OR “deep learning” OR “intelligent learning algorithm”).

2) (“integrated energy system” OR “multi-energy system” OR
“energy internet” OR “energy coupling system”) AND (“load
forecasting” OR “multiple load forecasting”) AND (“statistical
analysis” OR “regression analysis” OR “time series”).

In step 3, the preliminary search result data obtained after step
2 is shown in Figure 1. Figure 1 presents the number of published
papers concerning multiple load forecasting for IES from January
2019 to March 2023. Among them, there are 1827 compliant papers
in Springer Link database, 2637 compliant papers in Elsevier
database, 1788 compliant papers in IEEE Xplore database, and
2257 compliant papers in MDPI database. Despite the fact that
2023 is not over yet (the research was conducted until 31 March
2023), it is easy to see a growing trend in the number of papers
published in the years 2019–2022. This confirms that the topic of
multiple load forecasting for IES is current. The increasing trend in
the annual publications indicates that multiple load forecasting for
IES is a developing field of study and has received a lot of attention
from scholars.

In Step 4, the papers from the initial search are manually filtered.
Considering the lack of artificial intelligence when searching the
literature using these databases, the mismatched papers need to be
removed. The search results were carefully screened, analyzed and
filtered to ensure that the core contents of the literature were
consistent with the topic of integrated energy system load
forecasting. The preliminary filtered literature was browsed in full
to ensure that the papers focused on load forecasting. A total of
61 papers were finally selected. A generalized analysis of these
61 selected articles shows that load forecasting methods can be
divided into two categories: traditional forecasting methods and
intelligent forecasting methods. Among them, there are 15 papers
related to traditional forecasting methods and 46 papers related to
intelligent forecasting methods. The specific screening process is
shown in Figure 2.

FIGURE 1
Graphic representation of preliminary search results in four electronic databases.
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1.3 Paper structure

The rest of the paper is structured as follows. Section
2 provides a brief overview of integrated energy systems and
load forecasting. Section 3 discusses the commonly used
forecasting methods in two directions: traditional forecasting

methods based on statistical analysis and intelligent forecasting
methods based on machine learning, and analyzes the
advantages, disadvantages, and applicability of different
methods. Section 4 summarizes and analyzes the results of
IES multivariate load forecasting in the past 5 years. Finally,
Section 5 concludes the paper with a summary and outlook on

FIGURE 2
Manual filtering process and results.

FIGURE 3
Diagram of paper structure.
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IES load forecasting. The structure of this paper is shown in
Figure 3.

2 Integrated energy system load
forecasting

2.1 Structure and types of IES

2.1.1 Coupling structure of IES
IES is based on energy input, conversion, storage and output

to achieve the coupling and complementarity of different energy
sources, promote the full consumption of renewable energy and
flexible conversion between supply and demand of multiple
energy sources, so as to meet the demand of multiple loads
and improve the efficiency of energy utilization. The IES is a
multi stream integrated system, which breaks the traditional
compartmentalized state of multiple energy streams such as
cold, heat, electricity, and gas. Figure 4 shows the structure of
the IES, in which the multi energy coupling characteristics are
shown visually.

Multiple energy flows in the system operate in concert through
energy conversion devices. These include electricity to gas, electricity
to heat, electricity to cold, and combined cooling heating and power
(CCHP). A CCHP system typically include Waste Heat Boiler,
Absorption Refrigerator and Gas Turbine. The gas uses the gas
grid to supply natural gas combustion to generate electricity to the
power grid, while the combustion produces flue gas to provide heat
to the system through a waste heat boiler and cold energy to the
system through an absorption refrigerator.

2.1.2 Different types of IES
Multiple types of I applications, i.e., classification of integrated

energy systems. This chapter discusses the categorization for
different application scenarios and application subjects,
subdividing the integrated energy system into industrial park
integrated energy system, agricultural integrated energy system
and urban integrated energy system. These categorized integrated
energy system multi-energy coupling structures are designed to
combine specific application subjects on the basic structure.
Integrated energy systems containing renewable energy
generation and hydrogen storage are also mentioned in the
classification discussion.

Integrated energy systems for industrial parks are the most
common type of application. Industrial parks are dominated by
industrial loads, and the forms of terminal energy use are mainly
electricity, heat, gas and cold, etc. The characteristics of energy loads
are complex, the requirements for reliability and stability of energy
supply are harsh, the operation and scheduling of transmission and
distribution systems are complicated, and there is a strong demand
for clean, highly efficient, reliable, and economical integrated energy
supply services.

The agricultural integrated energy system focuses on gas supply
and synergizes renewable energy sources such as solar, wind and
geothermal energy to meet the energy needs of the three farmers
(farmers, rural areas and agriculture). Farmers’ energy use includes
residents’ daily life and travel, rural energy use includes medical care,
catering and commerce, and agricultural energy use includes
cultivation and harvesting. Comprehensive energy systems for
agriculture can realize local energy use and local utilization and
alleviate the crisis of industrial and urban energy use.

FIGURE 4
Schematic diagram of integrated energy system structure.
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Unlike the integrated energy system for industrial parks, the
urban integrated energy system is closer to the lives of residents with
limited energy resources, and focuses more on energy saving and
environmental protection (Ke et al., 2022a). The system takes solar
energy, distributed wind power, natural gas, and external grid as
energy sources, and utilizes internal coupling elements, such as gas
turbines, gas boilers, heat pumps, etc., to connect cold, hot, and
electrical multi-energy streams as a whole to ensure the load demand
of urban residents in their daily lives. The load demand of the
residents is usually the cold load for air conditioning, the heat load
for heating, the gas load for kitchen and other electrical loads to
maintain the normal life of the residents.

At this stage, integrated energy systems that include renewable
energy generation (Ke et al., 2022b; Xu et al., 2020a) and hydrogen
storage (Xu et al., 2020b) are widely used. For example, the wind-
photovoltaic-hydrogen storage integrated energy system (Ke et al.,
2023) consists of five parts: an electric power subsystem, a hydrogen
storage subsystem, a thermal energy subsystem, a cryogenic
subsystem and a natural gas subsystem, where large-scale wind
and solar power generation is incorporated into the electric power
subsystem, and unabated power is converted into hydrogen energy
for storage by using electrolysis cells. The stored hydrogen can be
rationalized and used whenever needed regardless of time, location
and grid capacity.

2.2 Multiple load forecasting of IES

As the basis for optimal design, operation scheduling and energy
management of IES, multiple load forecasting plays an important
role. Adopting accurate forecasting methods can make the operation
of IES more stable and reliable (Talaat et al., 2020). Short-term
multiple load forecasting follows roughly the same steps as short-
term load forecasting for power systems. In general, the input and
output vectors are first determined based on the characteristic
analysis and the actual demand, and then a suitable forecasting
model is established for multiple load forecasting. The general steps
are shown in Figure 5. In recent years, the traditional statistical

analysis-based forecasting method has a more mature theoretical
system, mainly using regression analysis (Wu et al., 2022; Feng et al.,
2022; Nano et al., 2019) and time series (Ervural et al., 2016; Yu et al.,
2019; Wu et al., 2020; Guefano et al., 2020). Their models are simple
to calculate and easy to implement, but in the face of complex
nonlinear load data, the forecasting effect is unstable and the
forecasting accuracy cannot meet the research demand.

2.3 Performance evaluation metrics of the
load forecasting results

In order to cope with complex nonlinear load data and coupling
relationships, intelligent prediction methods based on machine
learning are widely used in integrated energy system load
forecasting. Due to the wide variety of equipment involved in the
system, diverse energy coupling relationships, and complex internal
structure, feature selection for multivariate load forecasting is
crucial, and it is also a research difficulty in the field of
multivariate load forecasting at this stage. Some researchers
consider the comprehensiveness of the influencing factors and try
to exploit all the factors as input features as much as possible, but
this will lead to some irrelevant factors being input into the
prediction model, which will affect the accuracy of the
prediction; some researchers analyze the correlation of the
influencing factors in order to select the most relevant factors as
the input features, e.g., the correlation analysis is used to select the
input features, but the actual relationship between the multiple loads
and the influencing factors is not completely linear. However, the
actual multivariate load and the influencing factors are not
completely linear, and the application of correlation coefficient
has strict condition constraints, and the correlation degree
between the factors and the load obtained by correlation analysis
may be biased, which affects the final prediction accuracy.

Highly accurate load forecasting is of great importance to the
planning and operation of IES. However, there must also be errors
between the forecast results and the actual values that cannot be
completely eliminated. We can analyze the errors in depth through a

FIGURE 5
IES multiple load forecasting steps.
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series of scientific methods, which can help us have a clearer
perception of the forecast results and model performance. The
most used metrics and their calculation formulas are discussed in
Table 1. In these formulas, y is the actual value, ŷ is the forecasting
value, �y is the mean value of all of the data and n is the number of
forecasting samples. Usually, the performance evaluation metrics of
forecasting (Rafi et al., 2021) contains Mean Square Error (MSE),
Root Mean Squared Error (RMSE), Mean Absolute Error (MAE),
Mean Absolute Percentage Error (MAPE) and R-squared (R2). The
smaller the value of MAE, RMSE and MAPE, the smaller the error,
the more accurate the forecasting result and the better the
performance. R2 takes a range between 0 and 1, and the closer
the value is to 1, the better the fitting effect, and the closer the
forecast result is to the true value.

MSE and RMSE are squared operations on the difference value,
so the larger error value will have a greater impact on the fit, which
helps to capture the prediction error of the model more sensitive.
Because the squared difference of outliers will be magnified, these
two performance evaluation indicators are greatly affected by the
outliers. When using them for model evaluation, it is necessary to
pay attention to the treatment of outliers and the robustness of the
model.

MAE and MAPE have little influence on outliers and are not
affected by the positive or negative direction, but do not consider the
square of the difference, so it does not magnify the square of the
difference value. These two performance evaluation indicators
reflect the absolute size of the prediction error rather than the
square size of the error relative to MSE and RMSE.

Higher R2 values indicate that the model can fit the data well and
its predictive value can explain the variability of the dependent
variable. However, R2 can only measure the goodness of fit of the
model to the dependent variable, and cannot judge whether the
model is overfit or suitable for application in other data sets.
Therefore, when using R2 values, other indicators and domain
knowledge should be combined for comprehensive evaluation.

3 Load forecasting method

Current load forecasting methods can be divided into traditional
forecasting methods based on statistical analysis and intelligent
forecasting methods based on machine learning. This chapter
briefly introduces the forecasting methods such as Regression
Analysis, Artificial Neural Network (ANN), Support Vector
Machine (SVM), Convolutional Neural Network (CNN), and

Recurrent Neural Network (RNN). It also summarizes and
outlines the advantages, disadvantages and applicability of each
forecasting method in order to provide reference for future load
forecasting.

3.1 Traditional forecasting method based on
the statistical analysis

3.1.1 Regression analysis
The regression analysis method builds a regression equation to

predict the future trend of the dependent variable based on the
analysis of the dependent and independent variables. The model is
simple to construct and faster to predict. However, regression
analysis requires high historical data, its structural form is too
simple, and for more complex problems, it tends to ignore the
intrinsic regularity of load changes and has low forecasting accuracy.
To solve the problems of slow forecasting speed and low forecasting
accuracy of regression analysis model (Wu et al., 2022), proposed an
improved regression model based on small batch stochastic gradient
descent. Experimental results show that the improved algorithm has
significantly improved the forecasting speed than the traditional
algorithm. In order to better load forecasting with the help of
massive data (Feng et al., 2022), proposed a load forecasting
method based on a combination of clustering and iterative
logistic regression by taking data analysis as the entry point and
choosing logistic regression method as the basic model (Nano et al.,
2019). used “calendar” as an important influencing factor as an entry
point and used multiple linear regression for load forecasting on
different dates to test the feasibility and applicability of load
forecasting on Indian calendar with two data sets.

In short, the regression analysis model has a simple principle
and structural form and cannot describe the relationship between
multiple influences on the fac-tors and load forecasts in detail.
Therefore, it is a suitable basis model for addressing short- and
medium-term load forecasting problems with large historical
data sets.

3.1.2 Time series
3.1.2.1 Univariate time series forecasting

A univariate time series is a series with a single time-dependent
variable. The commonly used analytical methods are autoregressive
(AR) (Ren et al., 2022), Moving Average (MA) (Hu et al., 2013),
Autoregressive Moving Average ARMA (Ervural et al., 2016) and
Autoregressive Integrated Moving Average (ARIMA) (Yu et al.,
2019; Wu et al., 2020). The advantages, disadvantages and
applicability of the four analytical methods are shown in Table 2.
Among them, the ARMA model constructed by combining the
structural advantages of AR andMA is more accurate and flexible in
fitting the data in univariate time series forecasting scenarios
(Ervural et al., 2016). constructed a combined forecasting model
to improve the accuracy of natural gas load with the help of ARMA
model in combination with genetic algorithm (GA). Validated
against actual data from a residential and commercial area, the
combined GA-ARMA model forecasting results deviated less from
the actual data and provided more accurate and effective forecasting.

The three methods, AR, MA and ARMA, are suitable for
forecasting smooth time series. And ARIMA model has good

TABLE 1 Model performance evaluation metrics.

Metric Formula

Mean Square Error (MSE) 1
n∑ (y − ŷ)2

Root Mean Squared Error (RMSE)
�
1
n

√ ∑ (y − ŷ)2

Mean Absolute Error (MAE) 1
n∑ |y − ŷ|

Mean Absolute Percentage Error (MAPE) 1
n∑ |y−ŷy |

R-squared (R2) 1 − ∑(y−ŷ)2∑(y−�y)2
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ability to handle smooth series or unsteady series and has become a
widely used time series forecasting model for most of the scenario
forecasting. The ARIMA model attempts to extract the time series
patterns hidden behind the data by means of autocorrelation and
differencing of the data, which are then used to predict future data
(Yu et al., 2019). Integrated ARIMA model and ANN model to deal
with the strong dynamic of electricity load data by integrating
seasonal and cyclical characteristics of power load data (Nano
et al., 2019). optimized the parameters of ARIMA model with the
help of Cuckoo Search (CS) algorithm cuckoo search algorithm to
forecast based on the actual electricity load data and proved that
ARIMA model showed relatively high accuracy and effectiveness in
forecasting short-term electricity load.

3.1.2.2 Multivariate time series forecasting
Multivariate time series have two or more variables that change

over time. Each variable is affected not only by its own historical data
but also by other variables. Commonly used analytical methods are
Vector Autoregressive (VAR) (Jeong et al., 2021) and Vector
Autoregressive Moving Average (VARMA) (Razghandi et al.,
2021). The VAR model is a generalization of the univariate
autoregressive model to a vector autoregressive model consisting
of multivariate time series variables. It is used to predict time series
vectors or multiple parallel time series (Guefano et al., 2020).
combined Grey Model and VAR to construct GM-VAR
forecasting model. The MAPE value of the GM-VAR forecasting
model was 1.628%, which was validated by the real data set, and
achieved a good forecasting result. The higher-order model of the
vector autoregressive model, VARMA, incorporates the moving
average, which makes the model have stronger time series
modeling ability and can also smooth out the noise in the time
series data.

The time series method establishes a mathematical model
describing the change of load over time based on historical load
data, then builds a load forecast expression based on the model, and
finally forecasts the future load. This method only considers the time
variable, requires less data, and has a fast prediction speed, but the
model theory is complex, the smoothing degree of the original data is
required to be taught, and other uncertainty influencing factors are
not considered, which makes the final prediction accuracy error is
larger.

The advantages and disadvantages and the scope of application
of traditional prediction methods based on statistical analysis are
shown in Table 3. The theoretical system is relatively mature and has

the advantages of simple calculation and easy implementation.
However, when dealing with large-scale data of diversity,
complexity and nonlinearity, the prediction effect is unstable, and
the prediction accuracy cannot meet the research needs. Therefore,
scholars have shifted their research direction to intelligent
prediction methods based on machine learning.

3.2 Intelligent forecastingmethods based on
machine learning

In recent years, the amount of multivariate load has increased
significantly, and the number of factors affecting multivariate load is
increasing, and the difficulty of load forecasting has also increased.
This makes the limitations of traditional load forecasting methods
based on statistical analysis significant. In order to consider
multivariate loads and multiple influencing factors in forecasting,
machine learning-based load forecasting methods have shown better
forecasting performance in the field of load forecasting and are
therefore widely used.

Machine learning is divided into three main categories:
supervised learning, unsupervised learning, and reinforcement
learning. In supervised learning, we can have an accurate
knowledge of the class of the object of study and the model can
predict the output based on prior experience. It mainly addresses
two types of problems, regression and classification, and commonly
used methods include Linear Regression (Dhaval and Dhshpande,
2020), Logistic Regression (Alquthami et al., 2022), SVM
(Emhamed and Jyoti, 2021), and ANN (Xu and Wang, 2022). In
unsupervised learning, we can analyze the commonalities and
differences between the studied objects. It mainly addresses two
types of problems, clustering and association, and commonly used
methods include K-means (Xiao et al., 2022) and Principal
Component Analysis (Veeramsetty et al., 2022). And
reinforcement learning (Park et al., 2020) is different from the
first two. It does not require any data to be given in advance, but
obtains learning information and updates model parameters by
receiving feedback from the environment on the actions. It is used
to describe and solve the problem of learning strategies by an
intelligent body during its interaction with the environment in
order to reach reward maximization or achieve a specific goal. In
this paper, it is important to introduce SVM, ANN, CNN, RNN and
Ensemble Learning (EL) related models. The algorithms are
summarized in Table 4.

TABLE 2 Summary of univariate time series load forecasting methods.

Classification Advantages Disadvantages Applicability

AR less information required; fast calculation
speed

high requirement for the smoothness of
the original time series

Short and medium-term load forecasting with large amounts of
historical data; broadly smoothed data; autocorrelated; highly

influenced by own historical factors

MA eliminate the effects of cyclical and
random fluctuations in the time series

large amount of historical data required can be uncorrelated; short-term and ultra-short-term load
forecasting with large amounts of historical data

ARMA solve the problem of random noise
variations

cannot deal with non-stationary time
series

for non-stationary time series, especially those with both short-
term and long-term correlation

ARIMA simple modeling cannot handle non-linear relationships processing of smooth and non-white noise time series for load
forecasting
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3.2.1 Support Vector Machine
SVM was first used mainly for data classification and has been

widely used to deal with load forecasting problems due to its good
nonlinear data handling capabilities. Emhamed et al. [21] used SVM
to predict the electric load. With the help of real data the MAPE of
SVM is minimum compared to other forecasting models. It is
proved that SVM has become a reliable and useful forecasting
model. SVM converges fast and does not have the problem of
number of network layers and local optimal solutions, but the
difficulty in determining hyperparameters leads to its poor
forecasting results. Therefore, optimization of SVM
hyperparameters with optimization algorithms is a key research
direction (Dai et al., 2022). proposed a hybrid model incorporating
feature selection and parameter optimization to improve SVM (Li
et al., 2022). designed an improved sparrow search algorithm to
solve the hyperparameter selection problem of SVM models
(Zulfiqar et al., 2022). carefully tuned the three parameters of
SVM using Multivariate Empirical Modal Decomposition
(MEMD) and Adaptive Differential Evolution (ADE) algorithms
(Zhao et al., 2022). optimized the combination of SVM
hyperparameters by maximizing the fitness function based on
particle swarm optimization algorithm. The optimized and
improved SVM model outperformed other comparative methods
with the lowest MAE, RMSE, MAPE and the highest R2, improving
the accuracy and stability of forecasting, as verified by the respective
test sets.

The SVM can be extended from classification problems to
regression problems to obtain Support Vector Regression (SVR).
The SVR model solves forecasting and regression problems by
seeking the optimal hyperplane, which can be well suited for
high-dimensional computations and reduces generalization
errors (Tan et al., 2020; Liu et al., 2022) combined
Multivariate Phase Space Reconstruction (MPSR) and SVR.
The two complement each other and the predicted values of
hot and cold electrical loads derived from this model have
minimal errors with the true values, which strongly
demonstrates the effectiveness of the SVR forecasting model
(Valente and Maldonado, 2020). proposed a kernel penalized
SVR algorithm for automatic lag selection and nonlinear
regression. The improved SVR algorithm has significant
advantages over time series methods and state-of-the-art
automated model selection methods in terms of forecasting
performance and correct identification of relevant lags and
seasonal patterns.

3.2.2 Artificial Neural Network
ANN is a mathematical model based on the basic principles of

neural networks in biology, which simulates the processing

mechanism of the nervous system of the human brain for
complex information. It has good nonlinear feature learning
ability and generalization ability (Yu et al., 2019). The model has
the function of associative memory, high accuracy of classification,
strong distributed parallel processing capability, and strong
robustness and fault tolerance for data sets containing a large
amount of noisy data. However, ANN also has many drawbacks,
such as the large number of parameters required for neural
networks, the difficulty of tuning parameters, and the need for
extensive data pre-processing work for non-numerical data (Chen
and Wang, 2022). applied a multi-objective grasshopper
optimization algorithm to optimize the parameter settings of
ANN (Xu and Wang, 2022). built a dynamic ANN model based
on a simple ANN by applying meta-learning and continuous
adaptive ideas. The simulation results show that the optimized
ANN model has high accuracy and robustness. However, the
deviation of the predicted value from the actual value is also an
important indicator to judge the effectiveness of the model.
Therefore, to address the deviation forecasting problem (Khwaja
et al., 2020),combined integrated learning with ANNs to construct
bagged-boosted ANNs models, and (Oreshkin et al., 2021) used the
pinball-mape loss function to control the forecasting deviation and
achieve a model with lower forecasting error lower and smaller
variance and bias.

3.2.3 Deep learning
Under the background of continuous upgrading of

computational tools and large-scale increase in the amount of
training data, the application of deep learning methods in the
field of load forecasting has been widely emphasized. Deep
learning models show strong performance in load forecasting by
extending the implicit layers or superimposing some specific
structures to improve the nonlinear fitting ability. The widely
used algorithms are CNN and RNN.

3.2.3.1 Convolutional Neural Network
CNN are used to extract features from things with certain

models, and later classify, identify, predict or decide on that
thing based on the features, etc. Its structure is highly scalable,
and the deep model using multiple layers has a stronger expressive
power and can handle more complex classification problems (Aouad
et al., 2021; Huang et al., 2022a). However, manual adjustment of
parameters is required, model training requires a large sample size,
and its physical meaning is unclear. Therefore, research scholars
have adopted the “CNN+" approach and combined it with other
algorithms to build a combinatorial forecasting model to solve the
problems of CNN (Aouad et al., 2021). proposed a CNN-Seq2Seq
model with an attention mechanism (Walser and Sauer, 2021).

TABLE 3 Summary of univariate time series load forecasting methods.

Classification Advantages Disadvantages Applicability

VAR rich structure to capture more
data features

large number of model parameters;
large sample size

capturing linear relationships between multiple variables in a time series;
load forecasting by analyzing the influence relationship between different

variables

VARMA strong modeling capabilities complex structure Multivariate time series suitable for removing trend and seasonal
components

rich parameterization process large number of operations
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TABLE 4 Summary of intelligent forecasting methods based on machine learning.

Classification Advantages Disadvantages Applicability

SVM overcome dimensional catastrophe and nonlinear
differentiability

difficult to implement for large-scale training samples; unsatisfactory for solving
multi-category inter problems

short-term load forecasting for small samples

ANN high parallel distribution processing capability; high fault
tolerance for noise

the need for a large number of initial parameters; long training time load forecasting by analyzing large amounts of data and multiple influencing
factors

CNN automatic feature extraction; stress-free for high-
dimensional data processing

nomemory function; need to manually adjust parameters; need a large number of
samples

extract coupled interaction features from large amounts of data for load
forecasting

RNN BiRNN access to historical and future information at a point in the
sequence

unable to process while receiving sequences handle the problem that the preceding sequence elements cannot sense the
output of the following sequence

LSTM solve the long-term dependency problem and gradient
disappearance problem

complex model structure; time-consuming training; difficult parameter selection short and long term load forecasting by processing and predicting interval and
delayed events in time series

GRU effective suppression of gradient disappearance or
explosion

Non-parallel computation flexible and versatile load forecasting; ability to memorize for a long period of
time

DL Good feature extraction ability; can effectively avoid
discrete spatialization

many hyperparameters; difficult to adjust the parameters; complex model
structure; long training time

Solve load forecasting for complex energy systems

EL good learning ability complex training process solve load forecasting with complex impact factors

high forecasting

accuracy
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proposed a combinatorial model by combining the advantages of
two basic models, decision trees and CNN (Wu et al., 2022). used a
K-shape clustering method to divide users with the same electricity
consumption habits and characteristics, which provided a better
choice of user clusters for forecasting, and then applied CNN to
capture the features, making CNN has better performance in load
forecasting. It is experimentally demonstrated that the new
combined model has significantly reduced the values of several
performance evaluation indexes such as MAE, RMSE and MAPE
compared to the related forecasting models, which improves the
overall quality of forecasting.

3.2.3.2 Recurrent Neural Network
RNN is an extension of traditional feedforward neural network.

It can handle variable length sequences and effectively solve the
gradient vanishing and explosion problems. RNN are roughly
divided into two broad categories: derived RNN and
combined RNN.

The first class is derived RNN, which modifies the internal
structure of RNN. For example, Gate Recurrent Unit (GRU) to solve
the long-term dependency relationship problem, Long Short-Term
Memory Neural Network (LSTM) to solve the gradient
disappearance or gradient explosion problem, and Bi-directional
Recurrent Neural Network (BiRNN) to solve the bi-directional
information acquisition problem.

1) Long Short-Term Memory Neural Network

(Ouyang et al., 2023) used LSTM forecasting algorithm for
electric cooling load forecasting (Wu et al., 2023). developed a
load forecasting model based on LSTM neural network for
industrial enterprises. It was proved by example that LSTM
performs well in load forecasting. However, the LSTM itself has a
complex structure and has a significant drawback that it has more
parameters and is not easy to adjust the parameters than a normal
neural network. To address this problem (Hu et al., 2022), applied
the Complete Ensemble Empirical Mode Decomposition with
Adaptive Noise (CEEMDAN) and the Improved Grasshopper
Optimization Algorithm (IGOA) were applied to the parameter
optimization of LSTM to obtain a load forecasting model with
optimal parameters. With the help of test set validation, the
optimized LSTM ranks highest in forecasting performance and
has higher forecasting accuracy when performing load forecasting
compared to related models (He et al., 2019). used variational mode
decomposition (VMD) method to optimize LSTM based on
Bayesian optimization algorithm (BOA). The proposed
forecasting method is applicable to time series data of various
types of loads. Using data from four-quarters of a certain year in
Hubei Province, China for simulation, the results show that the
forecasting model can better fit the actual load curve and has high
forecasting accuracy.

The problem of “long-term dependence” is common in RNN
training, resulting in gradient disappearance or gradient explosion,
which is effectively solved by LSTM (Sun et al., 2022). used LSTM
model for load forecasting and optimized the model with parameter
values. After the test set validation, the load forecasting curve
derived with the help of LSTM model is more consistent with
the actual load curve and has good forecasting performance.

Although the LSTM can solve the long-term dependence
problem, there is still the problem of not capturing the short-
term interdependence when the time series is too long. To solve
this problem (Ren et al., 2022), used an autoregressive algorithm that
combines LSTM and CNN to extract spatio-temporal features in
multiple time dimensions. The combined CNN-LSTM model was
compared with ARIMA and LSTM forecasting models, and the
forecasting accuracy was improved by 2.169% and 17.887%,
respectively, proving that the model has higher forecasting
accuracy in the short-term load forecasting performance of
electricity, heat and cooling.

In recent years, to further load the forecasting accuracy, research
scholars have proposed many variants of LSTM to obtain shorter
training time and better forecasting results. For example (Pei et al.,
2020), changed the characteristics of the original gates of the LSTM
and the transmission method of the units to perform multi-step
forecasting (Zheng et al., 2021). improved the LSTM infrastructure
in order to solve the nonlinear relationship between multiple loads
and the influencing factors in IES, and proposed the Deep
Bidirectional Long and Short-Term Memory (DBiLSTM). This
model learns historical load data simultaneously in both forward
and backward directions to mine more useful information
(Deepanraj et al., 2022). construct an Attention-based
Bidirectional Long and Short-Term Memory (ABiLSTM) (Wang
et al., 2021). construct a multitask learning model based on ResNet-
LSTMand attention mechanism. With the help of MAE, MAPE,
RMSE, R2 and other indicators to evaluate the electric cooling and
heating gas load forecasting results, it can be concluded that the
variant model has better forecasting performance and higher
forecasting accuracy than the base model, and will still play an
important role in the field of load forecasting in the future.

2) Gate Recurrent Unit

RNN is difficult to capture dependencies with large time step
distances in time series in practice. The GRU is proposed to capture
this layer of dependencies better. Compared with the LSTM, the
GRU has fewer parameters and is faster to train and run. However,
GRU cannot consider the state at future time, so the forecasting
accuracy cannot be further improved. To solve this problem, (Xuan
et al., 2021). Improved the traditional one-way GRU into a
Bidirectional Gated Recurrent Unit (BiGRU) to capture valid
information from the past and the future. Compared with a
single CNN and GRU forecasting model, the hybrid CNN-
BiGRU model has smaller values for two evaluation metrics,
MAPE and RMSE, which respond to the degree of deviation of
the predicted value from the true one. To make GRU play a greater
role in load forecasting (Wang et al., 2021), incorporated quantum-
weighted neurons into the GRU to construct a Quantum-Weighted
GRU (QWGRU) with stronger information processing and
optimization capabilities and higher forecasting accuracy than the
traditional GRU.

The second category is combinatorial RNN. It combines simple
RNN with other algorithms or forecasting models. The combined
models have complementary advantages, which results in better
model results and is a very effective means.

(Li et al., 2022) proposed a combined CNN-GRU forecasting
model based on IES small sample data by combining the advantages
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of coupled feature extraction of CNN and time series processing of
GRU. The combined model extracts coupling and correlation
features from the input data better than other models, further
optimizing the model performance. Using this model, the
forecasting accuracy of hot and cold electrical loads is improved.
In terms of the performance metric MAPE, the CNN-GRU model
improved the forecasting accuracy by at least 1% compared to the
single model and other combined models. Du et al. (Du et al., 2020)
combined three-dimensional CNN (3D CNN) and GRU to extract
valuable data from three dimensions, depth, width, and height, to
capture the temporal attributes with features. The features are then
mapped to future predictive loadings using nonlinear regression
with memory. Finally, the forecasting error evaluation index values
of MAE and RMSE are 2.14% and 2.76%, respectively, as verified by
the test set, and the combined forecasting scheme achieves good
accuracy and stability.

3.2.3.3 Deep learning combination model
Deep learning models can mine the features of load datasets at a

deeper level and improve the forecasting accuracy. However,
problems such as complex model framework and difficult
parameter selection need to be solved. Selecting models with
complementary strengths for combination is a very effective
solution.

It is known from the above introduction that LSTM can
accurately capture the pattern information of time series, and
CNN can extract valuable features from time series. Therefore,
research scholars integrate the advantages of both the long time
series processing potential of LSTM and the feature extraction
capability of CNN to construct forecasting models as a way to
improve the speed and accuracy of load forecasting. Ren et al. (Ren
et al., 2021) proposed a hybrid CNN-LSTM. The convolutional layer
of CNN is used to capture the features of power load data and LSTM
unique cellular structures are used for power load forecasting. Zhang
et al. (Zhang, 2022) extracted data features by CNN to construct
feature vectors, and then input the feature vectors into the Simulated
Annealing Particle Swarm Optimization (SAPSO) modified LSTM
by simulated annealing particle swarm optimization algorithm for
training. Shang et al. (Shang et al., 2021) proposed amultivariate and
multistep hybrid model based on CNN and LSTM by considering
historical load data and influencing factors such as weather, date and
economy, namely, MMCNN-LSTM. After experimental
demonstration and comparative analysis, the combined model
containing CNN-LSTM has the best performance in error
performance index, with high accuracy and good practicality and
stability.

3.2.4 Ensemble Learning
Ensemble Learning (EL) belongs to the algorithmic model of

machine learning. It is different from the principle of combinatorial
model building. Instead of combining individual sub-models
complementarily, it accomplishes the task by building multiple
learners. Firstly, it generates a set of base learners and then
combines these base learners according to certain rules to
improve the generalization ability of the model, which has good
results and is widely used in various fields (Xu andWang, 2022; Yao
et al., 2022). The commonly used EL algorithms are Bagging,
Boosting, Stacking and Blending.

Bagging is one of the first EL algorithms. It is simple in structure
but superior in performance. Bagging takes several weak machine
learning models and aggregates their forecasting to produce the best
forecasting. Bagging greatly reduces errors due to random volatility
of training data, thus avoiding overfitting and improving forecasting
accuracy and stability (Cai et al., 2022; Qiu et al., 2017) used the
Bagging algorithm to sampling to construct a sample set, and used
historical load data and influencing factors such as weather
conditions as input data to construct a combined kernel function
vector machine forecasting model for short-term load forecasting,
which effectively reduced the forecasting error and improved the
forecasting accuracy.

Boosting is similar to Bagging. It also obtains multiple base
learners by repeated sampling, and then finally a strong learner is
obtained. However, unlike the Bagging, Boosting is weight-based
learner integration where the sample weights are continuously
updated (Khwaja et al., 2020). combined bagging and boosting to
train ANN to construct a combined bagged-boosted ANN
forecasting model. This combined model contains several ANN
models trained in parallel and the forecasting load results from these
models are averaged to obtain the final forecasting load, which
effectively reduces the forecasting error and improves the
forecasting accuracy.

Stacking integrates multiple primary learners. It combines the
advantages of different learners to make the forecasting model with
strong generalization capability. Further, meta-learner is used to
optimize the output results of primary learners to improve the
overall forecasting accuracy (Gao et al., 2022; Chen andWang, 2021)
developed an IES electric load forecasting model considering load
synergy based on Stacking Ensemble Learning, combining Back
Propagation network, SVR, Random Forest and Gradient
Augmented Decision Tree. It was experimentally verified that the
synergistic forecasting model has lower MAE and MAPE metrics
and higher forecasting accuracy (Shi et al., 2023). proposed a load
forecasting method based on multiple differentiated models under
Ensemble Learning architecture. The validity of the model was
verified by using Swiss load data to calculate multiple model
forecasting error metric values.

The Blending fusion algorithm consists of two forecasting
parts, the base learner and the meta-learner. The data is divided
into two parts: training data and test data. The training data is
subdivided, and after the division, part of the training data is
used to train the base model and part is used as a new feature to
train the meta-model after model forecasting. The test data is
similarly predicted by the base model to form the new test data.
The Blending model can take advantage of the differences in the
forecasting principles of each model to achieve the
complementary advantages of each model (Xu and Wang,
2022). selected weak machine learning models such as KNN,
GRU, SVR, etc. to embed the EL model of Bagging as the base
learner of the Blending fusion model to enhance the stability of
the model. Finally, the model is validated with New England
electricity load data. The proposed model has the lowest
forecasting error and the best stability and generalization
ability of the forecasting model compared with other related
models.

To summarize, machine learning-based forecasting models have
been widely used for short-term load forecasting. However, some
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models ignore the importance of feature mining, parameter fine-
tuning, and forecast stability. Therefore, intelligent forecasting
methods based on machine learning are still in the process of
optimization and upgrading.

4 Current status of multiple load
forecasting research

Through the literature collation and analysis in the past 5 years,
the difficulties of load forecasting in IES are mainly reflected in two
aspects: complex influencing factors and difficulties in solving the
forecasting model. Since IES comprehensively covers energy forms
such as electricity, gas, heat and cold, it will be influenced by
numerous factors, such as time, weather and economy. Ignoring
these influencing factors will greatly reduce the accuracy of
forecasting. The complexity and diversity of the influencing
factors also lead to a significant increase in the difficulty of
solving IES load forecasting models.

Some researchers consider the comprehensiveness of the
influencing factors and try to exploit all the factors as input
features as much as possible, but this will lead to some irrelevant
factors being input into the prediction model, which will affect the
accuracy of the prediction; some researchers analyze the correlation
of the influencing factors in order to select the most relevant factors
as the input features, e.g., the correlation analysis is used to select the
input features, but the actual relationship between the multiple loads
and the influencing factors is not completely linear. However, the
actual multivariate load and the influencing factors are not
completely linear, and the application of correlation coefficient
has strict condition constraints, and the correlation degree
between the factors and the load obtained by correlation analysis
may be biased, which affects the final prediction accuracy.

4.1 Multiple load forecasting of the
influencing factors

Therefore, research scholars explore the coupling relationship
between loads and loads and loads and influencing factors in the
integrated energy system, and construct a combined forecasting
model with multi-model fusion to improve the efficiency and
accuracy of multivariate load forecasting.

In contrast to a single energy system, the different types of
energy in IES are coupled to each other through energy conversion
equipment. Therefore, different types of loads are coupled with each
other. It is necessary to consider the coupling relationship between
different types of loads when making integrated energy load
forecasting.

Ren et al. (Ren et al., 2022) analyzed the nonlinear relationships
among cold, heat, and electricity loads and the relationships between
loads and influencing factors such as temperature and holidays
based on Copula theory, and screened the input factors for load
forecasting based on the degree of influence (Li et al., 2022). used
Pearson correlation coefficients to quantify the coupling
relationships among loads and the temperature and humidity,
wind speed, and solar intensity, etc. and the correlation
information between historical loads. The most correlated

influences were selected as input variables for the model,
reducing the redundancy of influences (Niu et al., 2022). used
Pearson correlation coefficients to analyze the correlation
between cold, heat, and electrical loads and external factors (e.g.,
new energy power, temperature, and humidity) (Liu et al., 2022).
qualitatively analyzed the coupling characteristics between IES cold,
heat, and electrical loads and used Pearson correlation coefficients
the coupling characteristics. And Pearson correlation coefficient is
used to quantitatively describe the correlation between multiple
loads (Zhang, 2022). introduced a multi-task learning method to
extract the coupling relationship between IES temperature,
humidity, wind speed and multiple energy sources (Wang et al.,
2020). constructed a coupling feature matrix to represent the multi-
energy coupling characteristics. It breaks the independence between
different forms of energy, effectively reflects the cross-influence
between cooling, heating and electrical loads, and achieves a
comprehensive multi-energy analysis of IES. Huang et al. (Huang
et al., 2022) used feature clustering to analyze the influence of
different environmental factors on the electric cooling, heating
and air load forecasting results, and then used the K-means
clustering algorithm to establish feature clustering models of
various energy loads to obtain IES load forecasting results. In the
subsequent experimental validation, it is known that the load
forecasting error of the model considering the coupling
relationship between loads is the smallest, which confirms the
necessity of coupling analysis.

In summary, there are four categories of possible input variables
for the IES multivariate load forecasting model.

1) weather factors: temperature, humidity, wind speed, and
barometric pressure.

2) Temporal factors: weekdays, holidays.
3) Economic factors: GDP per capita, electricity price, electricity,

new energy, carbon trading price, hydrogen price.
4) Technical conditions: historical load data such as cold, heat,

electricity, gas, and hydrogen (Ke et al., 2023).

Analyzing the load historical data and influencing factors,
considering the coupling relationship between load and other
factors in the system, makes the multivariate load forecasting
with high forecasting efficiency and accuracy. It can better guide
the optimal design and energy management of IES, thus ensuring
that IES can operate economically, safely and reliably.

4.2 Combined forecasting methods for
multiple load

The complexity and diversity of influencing factors lead to a
significant increase in the difficulty of solving IES load forecasting
models. The selection of models with complementary strengths for
combination construction is a hot topic in current load forecasting
research.

Different multivariate load prediction models differ greatly in
terms of sample processing, feature selection, model parameter
optimization, etc., which makes it difficult to have a complete
prediction model that can be applied to all data analysis
domains, i.e., each model has its own advantages and applicable
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scenarios. Meanwhile, real data often contain many uncertainties,
such as noise, random interference, distortion, missing values, etc.,
which all have a great impact on the performance of prediction
models. At this time, different types of models can be combined to
play their respective advantages, avoiding the shortcomings of each
model to achieve the purpose of improving the prediction
performance. The common form of the combined prediction
model is the weighted average of the individual prediction
models, so the focus of the combined prediction model is on the
determination of the weighting coefficients. If the weighting
coefficients of the individual prediction models are assigned
reasonably, the prediction accuracy of the whole combined
prediction model will be improved accordingly.

From the literature review results, it can be found that CNN
combined with LSTM for correlated multivariate load forecasting is
widely used (Qi et al., 2020). constructed a CNN-LSTM combined
model to extract the coupling features between electric, cooling and
thermal loads using CNN and input the coupling features into
LSTM for load forecasting. The experimental results show that the
combined CNN- LSTM model has higher forecasting accuracy than
the wavelet neural network model, CNN model and LSTM model
(Ren et al., 2022). effectively combined the linear statistical
capability of AR with the ability of CNN and LSTM to extract
features to build a multidimensional feature fusion AR-CNN-LSTM
multi-load forecasting model. This model can extract coupled and
periodic features implied in IES load data from multiple time
dimensions (Wang et al., 2020). proposed a CNN-BiLSTM-based
load forecasting method to fully exploit the temporal and spatial
correlation of data and improve the forecasting accuracy (Yao et al.,
2022). constructed Attention-CNN based on the attention
mechanism -DBILSTM for short-term load forecasting method.
With the help of real IES data for forecasting, the proposed
model reduces the average forecasting error by about 2%, which
effectively improves the forecasting accuracy.

In addition, multi-task learning (Guo et al., 2022) has also
received much attention in model design because it can
effectively extract features (Zhang, 2022). constructed a CNN-
Seq2Seq model with the help of a multi-task learning approach
to extract the complex coupling relationships between different
energies of IES, taking into account the coupling relationships of
temperature, humidity, wind speed and multiple energy sources.
The training set validation yielded that the cold, heat and
electricity load forecasting results were closer to the real
values (Huan et al., 2020). proposed a load forecasting
method based on deep learning and multi-task learning. The
forecasting curves of electricity, hot and gas loads were validated
by the actual data set loads, and the MAPE values of the
proposed model for electricity, hot and gas were lower than
those of the comparison model. It proved that the proposed
forecasting model has excellent performance in terms of
computational efficiency and forecasting accuracy (Wang
et al., 2022). used a multi-task model to establish a joint
electric-heat-cool load forecasting model considering the
strong and complex coupling characteristics among multi-
energy loads. The average variation value of MAPE obtained
from the experiment was 0.0356%, and the forecasting error was
extremely small (Zhang et al., 2020). proposed a deep multitask
learning method for electricity, hot and gas loads forecasting

based on deep belief networks and multitask regression layers,
with the help of which the model can effectively analyze the
complex coupling relationships between several input
information types, resulting in an improvement in the
forecasting accuracy of all three loads by The forecasting
accuracy is significantly improved by about 2%.

5 Conclusion and future research
trends

5.1 Review summary

Nowadays, demand is changing dramatically and the total
demand for energy continues to grow. IES has achieved rapid
development and widespread application in the field of energy to
meet the different energy needs, while ensuring as much efficiency
and efficiency as possible in energy supply. Complex and
interdependent loads require accurate and effective load forecasts
to provide data support for subsequent system planning. In this
context, the paper examines many references to track the latest
research progress of load forecasting methods and to understand
current research points and load forecasting directions. The results
of the IES multi-load forecast research over the past 5 years have
been compiled and screened, and detailed comparisons and analyses
are carried out to provide intuitive and practical references for
subsequent multi-variable load forecast research.

1) Introduction of integrated energy systems’ coupling structures
and energy conversion equipment, analysis of the coupling
relations between energy conversion pathways, transmission
characteristics, and multiple energy sources such as heat and
cold, and studies of the intrinsic connections between multiple
loads and related factors such as climate (such as temperature
and humidity, solar radiation intensity, wind speed, rainfall),
economy (such as GDP, energy prices), and date. The intrinsic
link has shown that IES can successfully achieve optimal
planning and synergistic use between different energy systems
and maximize the benefits of IES while increasing the proportion
of renewable energy.

2) Traditional statistically-based forecasting methods (such as
regression analysis, one-variable time series, and multivariable
time series) are introduced, and three aspects are studied in
comparison to commonly used forecasting methods: advantages,
disadvantages, and applicability. Today, integrated energy
systems collect large amounts of data with decentralization,
diversity, complexity and real-time characteristics. Therefore,
traditional statistical analysis prediction methods require a high
requirement for sample sizes, dimensions, depths and data
quality, and in future research, input data sets must be
improved to obtain more accurate forecast results.

3) Intelligent forecasting methods based on machine learning, such
as SVM, ANN, DL, EL and combinatorial prediction, are
introduced, and relevant derivative models, such as GRU,
LSTM and DbiLSTM, are further explored on the basis of
simple models. By studying the intelligent forecasting
methods, it can be concluded that, firstly, the forecasting
effect of the combined model is significantly better than that
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brought by a single model in the case of large amount of data and
many influencing factors. Second, with the powerful feature
learning ability and fault tolerance of deep learning, applying
it to traditional machine learning algorithms, such as SVM and
genetic algorithm, can effectively handle the massive data and
complex calculations in load prediction and improve the
precision of multivariate load prediction. However, the
training process is more complex and time consuming, and
hyperparameter optimization is difficult, which requires in-
depth research in related fields in the future. Third, deep
learning algorithms based on an integrated learning
framework can effectively extract the advantages of each base
model, discard the shortcomings of deep learning algorithms in
model training, weight setting, hyperparameter optimization,
etc., and then use metamodels for classification and achieve
excellent forecasting results.

5.2 Future research trends

At present, IES multiple load forecasting is still a relatively
cutting-edge topic, and the related theoretical system is not yet
perfect. It is believed that in the near future, a more complete system
and more accurate forecasting methods will appear. In this paper,
only some of the IES multiple load forecasting methods are
summarized, and the methods not covered still need to be
studied in depth. Regarding the future research directions, based
on the literature study in this paper, the following points are
proposed:

First, there are many factors affecting IES multiple load, and only
some current mainstream and highly relevant influencing factors are
selected for discussion in this paper. However, the influencing factors
always increase with the development of IES, such as geographic
conditions like topography and landscape, demand response, user
characteristics, and major social events also affect the accuracy of
multiple load forecasting to some extent, which should continue to
be explored in depth in the subsequent research.

Second, as the structure of new power systems becomes more and
more complex, data-driven methods that are more adapted to the
development of IES should be applied, and the future development
trend is more focused on deep learning, integrated learning,
reinforcement learning, migration learning, and new machine learning
such asmeta-learning and fuzzy reasoning. Among them, Deep Learning
algorithms are the most widely used among many data-driven methods,
and the three areas of hyperparameter optimization, parameter training
tuning and performance evaluation of its prediction models are the focus
of future scholars’ research. Processing with heuristic algorithms, such as
particle swarm optimization algorithm, ant colony optimization and
simulated annealing method, canmake the load forecasting based on DL
algorithms more effective.

Third, the goal of combinatorial predictive modeling is to take
advantage of the strengths of themodels involved, integrate the strengths
of different models through an effective combination approach, and
overcome the shortcomings of each of the models, so that the
combinatorial predictive model can better mine the useful
information present in the data. At the present stage, the combined
prediction model is based on the weight assignment method, which
assigns different weights according to the performance of individual

models. The method is easy to be realistic and has strong adaptability to
the data, and the prediction performance is relatively stable, but the
weights of individual models are often assigned based on experience or
simple calculations, which is not very scientific. In the future, more
attention should be paid to the combination method based on model
structure and parameter selection. Because the hyperparameters
determine the solution rate and accuracy of the model, this
combination method is to optimize the prediction model to improve
the performance of the model, and it is also one of the key research
directions in the field of multivariate load forecasting in the future.

Fourth, after the new energy sources, such as wind power and
photovoltaic, and the new loads, such as energy storage, electric
vehicles and virtual power plants, are connected to the grid on a large
scale, the integrated energy system presents highly complex volatility
and uncertainty, and the large amount of multiple heterogeneous
data increases the difficulty of data analysis. In this context, with the
help of the deterministic forecasting methods discussed in this
paper, the forecasting results are subject to ineradicable errors,
and the multiple loads are difficult to be accurately forecasted.
Therefore, the future research direction may be more inclined to
probabilistic forecasting. Probabilistic forecasting differs from
deterministic forecasting methods in that the output result is not
a definite value, but the probability distribution, quantile, and
forecasting interval of the forecasting object as the output form.
Meanwhile, machine learning algorithms such as neural networks
and deep learning have powerful nonlinear mapping capabilities,
which can significantly improve the reliability of probabilistic
forecasting when combined with probabilistic forecasting
methods, and should be widely applied in subsequent research.
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Transition to a zero-carbon
energy system in the Ningxia area:
integrated CO2 reduction
measures from the multi-level
perspective
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and Zhilei Hua2*
1Economic and Technological Research Institute, State Grid Ningxia Electric Power Co., Ltd., Yinchuan,
China, 2Suzhou Institute of North China Electric Power University, Suzhou, Jiangsu Province, China

China’s commitment to decarbonization has become a foundational principle
guiding policymaking at national, provincial, and local levels across diverse
sectors. This commitment is especially evident in the active promotion of low-
carbon energy transitions by all provinces, aligning with the national goal of carbon
neutrality. This paper focuses on Ningxia Province and constructs five scenarios for
low-carbon energy transition, adopting themulti-level perspective. These scenarios
include the business-as-usual scenario (BAU), high electrification scenario (HES),
high outward electricity scenario (HOS), low carbon scenario (LCS), and energy
saving scenario (ESS). Utilizing the LEAP-Ningxia model, we simulate energy
demand across various sectors until 2060. The quantitative analysis covers
primary energy production, secondary energy conversion, final energy
consumption, and CO2 emissions. Notably, under scenarios incorporating
carbon capture and storage (CCS) and carbon credits, the total CO2 emissions
in Ningxia are projected to decrease to 17~23Mt CO2 until 2060 under BAU, HES,
and HOS. In LCS and ESS, a remarkable achievement is forecasted with 6~93Mt
CO2 of negative emissions from the energy sector in Ningxia until 2060. The
findings underscore the importance of diverse CO2 reduction measures and their
impacts on achieving a zero-carbon energy transition inNingxia. The implications of
scenarios with CCS and carbon credits showcase significant reductions in CO2

emissions, aligning with China’s broader decarbonization goals. The results provide
valuable scientific support and insights for policymakers and stakeholders involved
in steering Ningxia towards a sustainable and low-carbon future.

KEYWORDS

energy transition, decarbonization, multi-level perspective, carbon neutrality, CO2

reduction measures

1 Highlights

1) Achieving a zero-carbon energy transition in Ningxia requires coupling and balancing
multiple sectors and energy sources.

2) The zero-carbon energy transition in Ningxia Province requires the integration and
cooperation of a series of factors, including technology, economy, policies and social
regime.
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3) If carbon capture and storage and carbon credits are ignored,
Ningxia can realize carbon peaking by 2030, but cannot realize
the carbon neutrality goal by 2060.

2 Introduction

In September 2020, Chinese President Xi Jinping declared China’s
commitment to achieve carbon neutrality before 2060 in the United
Nations General Assembly (Zhao, 2022). He then further announced
China’s intention to submit its updated Intended Nationally
Determined Contributions (NDC) soon. In October 2021, the
leadership group of CPC Central Committee launched the “1 + N”
climate policy system for carbon peak and carbon neutrality. This
initiative began with one top-level guideline document and several
additional core documents, each outlining detailed measures for
achieving sector-specific decarbonization (Wu, 2023). The Central
Government has proposed that regions, sectors and enterprises
equipped with the conditions should proactively lead efforts. Both
sectors and local governments are encouraged to formulate plans for
carbon peak and carbon reduction (Qi et al., 2023).

Global efforts to address climate change have undergone
significant transformations. China’s commitment to carbon
neutrality goal signifies a long-term economic vision centered
around decarbonization. In the post-COVID era, numerous
countries have turned to the green stimulus packages. The global
green recovery initiative has prioritized the development of
renewable energy, clean transportation, green buildings, low-
carbon technologies, etc., aiming to stimulate economy recovery
and CO2 emission reduction simultaneously. China has developed
policies such as “dual-carbon” goals, the national 14th Five-Year
Plan and the provincial carbon peaking action plan, signaling the
acceleration of the inclusive low-carbon transition in Ningxia.

Ningxia, as China’s first national-level comprehensive new
energy demonstration zone, enjoys the unique advantage of
abundant wind and solar resources within a small land area,
coupled with reliable power grid and stable transmission
infrastructure. Moreover, Ningxia’s energy consumption used to
rely on coal resources heavily, posing a challenge to sustainable
practices and the low-carbon energy transition (Gan et al., 2021).
In 2021, coal resources constituted over 85% of Ningxia’s energy
consumption (compared to the national level of 57%), and the
GDP per unit of energy consumption was four times higher than
the national average. To achieve the “dual-carbon” goal, Ningxia
Province must expedite the development of a new energy-
dominated system which is clean, low-carbon, safe and efficient.
This involves not only controlling total energy consumption but
also decoupling energy CO2 emissions from economic growth,
ensuring a continuous decline in both GDP per unit of energy
consumption and carbon emissions. Shifting towards cleaner and
renewable energy sources is instrumental in securing the
sustainability of Ningxia’s economy. This transition not only
bolsters local energy security but also has the potential to
attract additional investments, fostering job creation.
Conversely, an excessive dependence on conventional energy
sources may result in environmental pollution and resource
exhaustion. Energy transition plays a pivotal role in
ameliorating Ningxia’s environmental quality and mitigating

adverse impacts on the ecosystem. Through the modeling of the
zero-carbon energy system transition path and the mechanism
design of CO2 reduction measures, practical guidance can be
provided to promote the development of green energy systems
towards sustainable growth in Ningxia Province.

The paper is organized as follows. Section 2 reviews the
perspectives and models of the energy transition in the literature.
Section 3 describes the methodology we use to analyze the low-
carbon energy transition in Ningxia Province. Section 4 describes
the data and scenario setting. Section 5 presents the results, and
Section 6 concludes.

3 Literature review

To achieve the goal of carbon neutrality, in recent years, the
process of the low-carbon energy transition has been accelerated
both in China and abroad (Tian et al., 2022). Globally, numerous
countries are advocating for a transition from fossil fuel-dominated
energy system to those dominated by non-fossil fuels. Various
measures have been adopted to incentivize a gradual shift from
coal, oil, natural gas to renewable sources such as wind, solar and
hydro. (Wang et al., 2016). Achieving a feasible and economically
viable energy transition characterized by a high proportion of
renewables involves shifting primary energy consumption to an
energy system dominated by renewable energy. This requires
coordinated efforts across various energy sectors, including
electricity, heating, transportation and industrial sectors (Hansen
et al., 2019). Consequently, various countries and regions have
implemented pertinent energy transition strategies. The European
Commission has put forward a series of policy initiatives in the
European Green Deal, aiming to achieve climate neutrality in
Europe by 2050 (Kougias et al., 2021). Germany has stated it
would shift from fossil fuels and older technologies to the new
fuels and technologies, and would gradually phase out nuclear and
coal power stations (Bartholdsen et al., 2019). The United Kingdom
has passed legislation with the aim of reducing greenhouse gas
emissions to net zero by 2050 (Yang et al., 2022). Meanwhile, various
local governments are practicing local low-carbon energy initiatives
by regulation adjustment and policy innovation, in alignment with
the efforts to combat climate change and to avoid carbon lock-in
(Warbroek and Hoppe, 2017).

Based on the imperative tomitigate the impact of climate change and
the heightened significance of energy security and independence under
geopolitical warfare (Sovacool et al., 2023), the world’s major economies
are aware of the necessity of a rapid transition to a low- or zero-carbon
energy system. China’s proposal of a “dual-carbon” goal is not only a
national commitment, but also an urgent requirement for the
transformation of its domestic economy. It has demonstrated the
development concept of “lucid waters and lush mountains are
invaluable assets”, indicating that China’s future economic and energy
development must be restructured (Xu and Liu, 2019). Towards
achieving the “dual-carbon” goal, China has to address long-term
issues, including encouraging energy users to adopt renewable energy,
establishing a new energy-dominated power system, and reducing
emissions while guaranteeing the safe energy supply (Abbasi et al., 2022).

Low-carbon energy transition is a multifaceted and intricate
process, encompassing various dimensions such as technology,
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market, policy, and environment (Geels et al., 2016). In terms of
technology, recent years have witnessed the emergence of renewable
energy, energy storage and electric vehicles as pivotal technologies
(King and Van Den Bergh, 2018). Technological innovations have
spurred investment in renewable energy. The continuous progress in
renewable energy technologies (Kobo et al., 2016) has witnessed
significant decreases of cost, as well as exponential growth in
renewable energy power capacity (De La Peña et al., 2022).
Market mechanism plays a crucial role in facilitating low-carbon
energy transition. The design of electricity, carbon and green finance
markets all contribute to shaping the trajectory of low-carbon energy
transition. The electricity market and carbon market have
accelerated the phase-out of fossil fuels and provided business-
friendly conditions for renewable energy (Wainstein and
Bumpus, 2016; Mo et al., 2021). Policy interventions are pivotal,
and it is essential to provide financial support and opportunities for
emerging low-carbon technologies (Tu et al., 2018). Green financial
support and private capital are particularly influential in driving
renewable energy deployment, especially in developing countries
(Rogge and Johnstone, 2017; Anbumozhi et al.,. 2018).
Environmental considerations are integral to the discourse on
low-carbon energy transition. Attention has been directed
towards developing CO2 emissions accounting tools and
implementing measures for CO2 emissions reduction
(Pichancourt et al., 2018).

The energy system is complicated, featuring in a huge number of
branches, multiple energy categories and sectors, interaction among
branches, and high correlation among society, economy and
environment (Zou et al., 2023). Existing modeling techniques for
energy system complexity include top-down energy model, bottom-
up energy model and mixed-energy model from hierarchical
perspective (Feng et al., 2023). Top-down models are usually based
on economic models, with energy prices and economic elasticity as the
main economic indicators (Ismail et al., 2023). Focusing on the energy
consumption and energy production, top-down models are used for
macroeconomic analysis and energy policy design. Examples include
CGE, ARE, etc., but such models usually neglect the potential of
technological advances (Rhodes et al., 2022). Bottom-up models are
usually based on engineering models, which explain and simulate the
technologies used in the process of energy consumption and energy
production (Chatterjee et al., 2022), but require a large amount of data.
Examples include LEAP,WEM, etc.Mixed energy models include both
top-down models that consider macroeconomics and bottom-up
models that consider energy supply and demand (Liu, 2023).
Examples include GCAM, TIMES, etc. Given the model difficulty
and data complexity, the mixed energy model is less compatible
(Wilson and Swisher, 1993).

Most existing studies have modelled energy transition pathways
from a techno-economic perspective, and then analyzed the
potential CO2 emission reduction of key sectors (Wang et al.,
2007; Lin and Xie, 2014; Zhou et al., 2018; Wu et al., 2020),
pointing out that power and transportation are vital for CO2

emission reduction in the future (Huang et al., 2022). However,
there is a lack of analysis regarding the contribution of feasible CO2

emissions reduction measures in microregions from the multi-level
perspective. This paper provides an empirical analysis of the energy
transition in Ningxia from the multi-level perspective, which is
crucial for the region to determine effective strategies for the

application of CO2 emission reduction measures. In this study,
we introduce economic, environmental, and energy factors into
the LEAP-Ningxia model, setting up five scenarios for the different
feasible measures through the multi-level perspective. Subsequently,
we simulate the zero-carbon energy transition pathways in Ningxia
based on the scenarios, and analyze the contribution of CO2

emissions reduction drivers.

4 Methodology

4.1 The multi-level perspective for energy
transition

The multi-level perspective (MLP) is an important analytical
framework in the theory of socio-technical system transformation
(Geels, 2011). Schot and Kanger, (2018) explored the concept of “deep
transitions” and how it extends MLP to understand transformative
changes in societal systems. It is argued that the transformation is not
a simple cause-and-effect relationship caused by a single factor or
driving force (Markard and Truffer, 2008), but rather an evolutionary
process formed by the interaction of three aspects: the policy
landscape at the macro-level, the socio-technical paradigm at the
meso-level, and the niche technology at the micro-level. It is an
evolutionary process formed by the interaction of these three aspects.
A framework for analyzing the regional energy transition from a
multilevel perspective is given in terms of the synergistic effects of
policy, socio-technical and techno-economic, as shown in Figure 1.

(1) Policy perspective refers to issues and policies related to energy,
such as achieving national modernization, bolstering energy
independence, or alleviating energy poverty (Cherp et al., 2018).
In terms of policy, a facet of energy transition involves measures

FIGURE 1
Three perspectives related to energy transition.
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undertaken by the government to pursue the national interest.
These measures aim to maintain internal order by achieving the
supply-demand balance of energy, ensuring a reliable power
supply, securing the independence on the external energy by
minimizing energy imports or maximizing exports, and
guaranteeing industrial competitiveness. Additionally, they
contribute to increasing employment and achieving economic
growth through energy development. Secondly, policymakers
establish rules and institutional mechanisms that both support
and constrain energy development. These mechanisms aim to
aggregate the actions of market participants, facilitate the
efficient allocation of energy resources, enhance international
influence, and achieve carbon neutrality goal.

(2) Socio-technical perspective refers to information flows such as
knowledge and practices related to energy extraction,
conversion and utilization. A primary focus lies in the
emergence and diffusion of new technologies, which usually
first appear in the core countries, and then diffuse to other
countries. Technology development follows an “S-curve”,
delineating a cycle encompassing infancy, growth, maturity
and decline (Grodal et al., 2023). Another focus is on
assessing the established energy innovation system. For
example, the expansion of newly introduced elements within
the existing system may either foster innovation or clash with
prevailing interests, hindering innovation, and leading to
technology lock-in. However, typically, new elements have
the potential to overcome technology lock-in, propelling new
technologies toward maturity and competitiveness. This entails
the development of energy systems with more flexible
participants, rules and practices.

(3) Techno-economic perspective refers to the energy flows
associated with the processes of energy exploitation,
conversion, production, and consumption, primarily
coordinated by the energy market. On the one hand, it
focuses on the energy supply side, involving the exploitation
of resources such as wind, solar, hydro, oil and natural gas. On
the other hand, the focus is on the energy demand side, such as
the electrification of transportation and building (Zhou et al.,
2019). The techno-economic perspective necessitates achieving
a balance between supply and demand through the intelligent
information system. This means that any alteration in the
supply or utilization of one particular type of resources must
be counterbalanced by other types of resource with a matching
amount of energy. For example, the expansion of renewable
energy generation creates an increase in energy supply,
necessitating a corresponding increase in electricity
consumption demand, a gradual phase-out of fossil fuels, or
an elevation in the outward electricity transmission to sustain
the balance (Ma et al., 2023).

The new energy development landscape proposed by the
government is giving pressure to the existing energy system.
However, it also presents an opportunity for new technologies,
propelling the transformation of the socio-technical system.
Breakthrough innovations stemming from micro-technologies,
coupled with continuous learning and efficiency improvements
will garner growing intrinsic motivations and exert an impact on
the existing socio-technical system. The system is undergoing gradual

change, with resource development shifting towards decentralized
and distributed. Customers are increasingly opting for more
economical and environmental friendly energy choices, while
energy technology and infrastructure are becoming more flexible
and low-carbon. As shown in Figure 2, driven by the integration of
policy, socio-technical and techno-economic factors, a new socio-
technical regime is expected to be gradually established. This will
facilitate the transition to the new energy-dominated system and
contribute to the realization of national development goals.

4.2 Introduction of LEAP-Ningxia model

The LEAP (Low Emissions Analysis Platform) energy model is a
system designed for mid- and long-term planning, encompassing
energy, economy, and environmental considerations. It serves as a
valuable tool for long-term energy alternatives planning, policy
analysis and climate change mitigation assessment. It is a
comprehensive “bottom-up” energy environment accounting tool
based on scenario analysis, as shown in Figure 3. This method
predicts the energy demand, supply and environmental impact of
various sectors through mathematical models. Furthermore, the
LEAP model offers comparative cost-benefit analyses under
different scenarios, enhancing its utility in informed decision-making.

In this paper, the LEAP-Ningxia model is based on the
characteristics of energy supply and consumption in Ningxia
Province. There are four core modules: socio-economic
development, final energy demand, primary energy production
and environmental emissions.

(1) Socio economic development module

The socio-economic development module captures the socio-
economic factors influencing energy dynamics in Ningxia Province,
including the industrialization and urbanization. It forecasts the
population, economic value added and other major macro-
economic indicators, mainly including population growth rate
and the economic value added by sectors, which are the basic
data for the next-step prediction.

Gi
t � Gi

t−1 × 1 + αi
t( ) (1)

Where, Gi
t is the economic value added of the sector (i) in the

year (t), t represents the year, i represents the sector. i refers to
agriculture, industry, construction, transportation, commerce and
other sectors respectively. αit is the growth rate of economic value
added of the sector (i) in the year (t).

Gsum
t � ∑5

i�1
Gi

t (2)

Where, Gsum
t is the sum of economic value added of all the

sectors in the year (t).

Pt � Pt−1 × 1 + βt( ) (3)
Where Pt is the population in the year (t). βt is the population

growth rate in the year (t).

(2) Final energy demand module
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The final energy demand module takes account of economic and
social development, energy and technological progress, energy policies
and other factors. It forecasts final energy demand by sectors and
types of energy in the future. First, it predicts the final energy use
intensity of per-GDP economic value added of different sectors and

per capita household energy use intensity. Secondly, based on the
results of economic value added of different sectors and Pt

(population) from the first module, multiplying Gi
t (economic

value added of sector i) and εit (final energy use intensity of per-
GDP economic value added of sector i) together will give Fi

t (sum of

FIGURE 2
Analytical framework of energy transition from the multi-level perspective.

FIGURE 3
The LEAP-Ningxia model under the multi-level perspective.
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final energy consumption of sector i).MultiplyingPt (population) and
λit (per capita household energy use intensity) together will give Fi

t

(sum of household final energy consumption). Adding up the values
will have Fsum

t (sum of final energy consumption).

Fi
t � Gi

t × εit i� 1, 2, 3, 4, 5 (4)
Where, Fi

t is the final energy consumption of the sector (i) in the
year (t), from 1 to 5, i refers to agriculture, industry, construction,
transportation, commerce and other sectors respectively. When i =
1,2,3,4,5, εit is the per-GDP final energy use intensity of the sector (i)
in the year (t).

Fi
t � Pt × λit i� 6 (5)

Where, Pt is the total population of the year (t). When i = 6, λit is
the per capita household energy use intensity in the year (t).

Fsum
t � ∑6

i�1
Fi
t (6)

Where, Fsum
t is the sum of final energy consumption in the

year (t).
Considering the potential, utilization technology and economic

benefits of different types of energy, this module predicts the
proportion of energy consumption by sectors and by types of
energy. Based on the final energy demand of different sectors,
the module projects the final energy consumption of different
sectors and different types of energy.

Fj
t � ∑6

i�1
∑6
j�1

Fi
t × θjt,i( ) (7)

Where, Fj
t is the final energy consumption of the energy type (j)

in the year (t), j represents the energy type. From 1 to 6, j refers to
coal, oil, gas, electricity, heat and hydrogen respectively. θjt,i is the
proportion of the energy (j) in sector (i) of the year (t).

(3) Primary energy production module

The primary energy production module takes account of the
balance between energy supply and demand, processing and
conversion efficiency, factor endowments, etc., to forecast the sum of
primary energy production by sectors and types of energy in the future.

The gradual shift of an energy system dominated by fossil fuels
to one dominated by new energy means that the power sector will be
the core of pursuing the carbon neutrality goal. Therefore, the
energy balance focuses on plans and policies related to power
and energy. The power supply structure is predicted through the
balance of electricity and power, which is bas.ed on Eq. 8. Equations
9, 10, representing the constraints of electricity balance and power
balance, respectively. Then, the power generated by each energy type
is converted to the standard unit of energy according to the power
conversion factor, thus calculating the primary energy consumption
required for power generation.

Eall
t � Elocal

t + Eoutside
t (8)

Where, Eall
t is the electricity generation of Ningxia Province in

the year (t), Elocal
t is the local electricity consumption of the whole

province in the year (t), considering a 15% reserve margin and a 15%

new energy uncertainty margin. Eoutside
t is the outward electricity

transmission in the year (t). When Eoutside
t < 0, it represents inward

electricity, Eoutside
t > 0, it represents outward electricity, Eoutside

t � 0, it
represents the balance of inward and outward electricity in Ningxia.

Eall
t ≤∑N

g�1
Eg
t (9)

Where, Eg
t is the power generation of supply type (g) in the year

(t), g represents the power supply type, and N is the amount of
power supply types, including coal, oil, gas, coal with BECCS, hydro,
nuclear, wind, solar, etc.

Plocal
t ≤∑N

g�1
Pg
t (10)

Where, Plocal
t is the peak load of Ningxia in the year (t). Pg

t is the
outward generation of supply type (g) in the year (t).

Sgt � Eg
t × ωg (11)

Where, Sgt represents the amount of coal equivalent converted to
primary energy consumption by the power supply type (g) in the year
(t), ωg represents the equivalent conversion coefficient of electricity.

Soutsidet � Eoutside
t × ηt × ωg (12)

Where, Soutsidet represents the amount of coal equivalent
converted to outward electricity by the power supply type (g) in
the year (t). ηt represents the proportion of power generated from
coal in the outward electricity.

Next, the paper calculates the total primary energy consumption
including the primary energy consumption of power generation,
intermediate conversion and final fossil fuel.

(4) Environmental emission module

LEAP-Ningxia model includes a tool with emission factors
corresponding to various energy types to calculate the emissions of
greenhouse gases and air pollutants. This paper uses IPCC reference
value to calculate carbon dioxide emissions. Carbon dioxide emitted in
the whole society is counted by the scope of energy activities, including
direct carbon dioxide emissions from fossil fuel consumption in
Ningxia Province and indirect emissions from power transmission.

Ct � ∑3
a�1

Oa
t

a (13)

Where Ct is the amount of CO2 emission in the year (t). O1
t , O

2
t ,

O3
t represents the consumption of coal, oil and gas in the year (t),

respectively, and 1, 2, 3 represents the CO2 emission factor of
coal, oil and gas, respectively (refer to Supplementary Table S1).

5 Data and scenario setting

5.1 Prospect of economic and social
development

The population growth in Ningxia Province is decelerating and
is projected to turn negative after 2030. Furthermore, the economic
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growth engine will shift from demographic dividend to talent
dividend. Referring to the data from the seventh census and the
historical population growth rate, China’s overall population growth
has notably decelerated, and forecasts indicate a peak around 2030
(NDRC, 2017). The implementation of the new birth policies and
other supportive measures related to education and taxation may
alleviate the downward population trend in the future. Since 2021,
the average annual population growth rate every 5 years of Ningxia
will reach 0.3%, 0.1%, −0.1%, −0.1%, −0.2%, −0.3%, −0.3%, −0.3%.
The total population in 2060 will fall back to the level of 2016 (refer
to Figure 4), reaching 6.94 million. In 2020, population with tertiary
education accounted for 20%–30% in Ningxia. With the spread and
improvement of education, the quality of the population is expected
to enhance further. Additionally, the working-age population will
play a crucial role in providing support for innovation and human
resources for industrial upgrading and economic development. As a
result, it is anticipated to bring a counterbalance or potential surpass
of the negative impact on economic development resulting from
negative population growth.

The economic development of Ningxia has embraced two tasks:
stock adjustment and growth optimization. Achieving this
necessitates a shift in the driving force, aiming to restructure the
modern industrial system and establish the economic growth as its
foundation. As the quality of population improves in Ningxia, the
momentum of economic growth in the future will shift from being
resource-driven to being innovation-driven. Leveraging its
advantages in energy resources and geography, Ningxia will
efficiently develop and utilize clean energy. Additionally, there
will be a strong emphasis on promoting industries with local
features, such as tourism and organic food (Ningxia and NX,
2021; Ningxia and NX, 2022). The target is to double Ningxia’s
GDP (gross domestic product) in 2035 and quadruple in
2060 compared to 2020. Since 2020, the projected average annual
growth rate of GDP every 5 years will be 6.0%, 5.5%, 5%, 4.5%, 3.9%,
3.3%, 3.0% and 2.7%. Consequently, the GDP is expected to reach
2 trillion CNY by 2060.

The industrial structure plays a pivotal role in influencing
environmental quality and CO2 emissions. With the development
of economy and society, the industrial structure of Ningxia is expected
to undergo further optimization. Examining the primary industry
(agriculture, forestry, animal husbandry and fishery, below referred to
as agriculture), since agriculture is the fundamental guarantee of food
security, it is anticipated to maintain a share of around 5% by 2060.
Considering the secondary industry (industry and buildings), the scale
of the industrial sector generally correlates directly with CO2

emissions. The correlation between CO2 emissions and per capita
GDP resembles an inverted U shape, which is similar to that between
industrial sector and per capita GDP. Currently, the proportion of
value added from industrial output in most developed countries
ranges between 15% and 25%. Consequently, the proportion of
Ningxia’s value added from industrial output is projected to reach
21% by 2060. The value added from building output of Ningxia is
anticipated to be 5.5% by 2060. This projection is based on factors
such as the declining total population, the deceleration of urbanization
rates, and an aging population, all contributing to a reduced the
demand for building sector. In terms of the tertiary industry, with the
continuous growth of income, the demand for service-oriented
products will rise, which will also increase the value added from
the tertiary industry. The proportion of value added from commerce
in Ningxia is targeted to be 61% by 2060. The proportion of value
added from different sectors and the outlook of Ningxia are shown in
Supplementary Table S2 and Figure 5.

5.2 Prospect of energy and power demand

5.2.1 Prospect of final energy consumption
Considering the socio-economic indicators such as economic

development objectives, industrial restructuring, population growth
changes, and urbanization progress in Ningxia, this study sets two
scenarios of final energy consumption (FEC), namely, the baseline
scenario and energy saving scenario.

FIGURE 4
The population outlook in Ningxia.
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(1) In the baseline scenario, with reference to historical energy use
intensity and taking account of utilization efficiency
improvements, the proportion of the FEC by sectors at key
time points is set in this paper. Since 2020, the average annual
growth rate of total FEC every 5 years will be 4.5%, 2%, 0.5%,
0.2%, −1%, −2%, −3% and −3%, reaching a peak of 81.08Mtce by
2040, and declining to 51.4Mtce by 2060, reverting to the
2019 level, as shown in Supplementary Table S3.

(2) In the energy saving scenario, with the development of the
socio-technical system, the terminal infrastructure will reduce
energy use intensity through adopting energy-saving
technologies. The energy conversion process will further
improve the efficiency of energy conversion and utilization.
Since 2020, the average annual growth rate of total FEC every
5 years will be 3.5%, 1.8%, 0.5%, −0.3%, −1.0%, −2.0%, −3.0%
and −3.5%, peaking at 75.76Mtce in 2035, and 46.1Mtce in 2060,
dropping back to the level in 2018, as detailed in Supplementary
Table S4.

5.2.2 Prospect of public electricity demand
As urbanization and electrification accelerate and people’s living

standards improve, the potential for substantial growth in per capita
electricity consumption in Ningxia Province persists. Based on
Ningxia’s economic development and benchmarked against
electricity consumption in developed countries, the electricity
demand in Ningxia is predicted, delineating two scenarios,
namely, the general scenario and the electrification scenario.

(1) In the general scenario, with Ningxia persistently promoting
electricity substitution and adapting conventional energy-using
technologies on the demand side, the energy efficiency is
anticipated to gradually plateau. Electrification across various
energy-using sector is expected to increase steadily. The gas-
fired power supply will increase, the development of coal-fired
power will slow down, but the increase of new energy power
generation will accelerate. It is estimated that public electricity
consumption will reach 250 TWh, with the peak load reaching
40 GW in 2060, as detailed in Supplementary Table S5.

(2) In the electrification scenario, with improved people’s living
standards in Ningxia, electricity substitution on the demand
side sees a substantial increase. The widespread use of electrical

equipment, such as electric heating, electric vehicles and smart
home devices, contributes to a significant enhancement of
societal electrification. On the supply side, power generation
from conventional energy faces limited energy-efficiency
improvement, while new energy substitution is expected to
accelerate. The cost of new technologies is projected to
decrease with more experience. The full potential of
distributed energy will be harnessed, and the interconnection
of electricity will be further enhanced. It is estimated that the
public electricity consumption will reach 260 TWh, with the
peak load reaching 42 GW in 2060, as detailed in
Supplementary Table S6.

5.2.3 Prospect of outward electricity
The main outward electricity transmission lines in Ningxia

Province encompass Yindong DC (银东直流), Lingshao DC (灵
绍直流), Zhaoyi DC (昭沂直流), and Ningxiang DC (宁湘直流).
Ningxiang DC is expected to become operational around 2025
(BJX.Peoples Republic Of China, 2023).

Before 2025, the scale of outward electricity transmission from
Ningxia will basically remain unchanged, at about 9.5 TWh. After
2025, with the completion of the Ningxiang DC (also named
Tiandushan DC) project, the outward electricity transmission
will be divided into the low scenario and high scenario, the
annual outward electricity transmission will amount to 12 TWh
under the low scenario, and 13 TWh under the high scenario, as
detailed in Supplementary Tables S7, S8. The distribution of the
outward electricity transmission line is set as follows: before 2030,
the proportion of direct current transmission from thermal power
in operation is 80%, and the proportion of transmission from
newly constructed lines is 50%. After 2030, the proportion of all
direct current transmission from thermal power will gradually
decline.

5.3 Scenario setting of zero-carbon energy
transition

Based on the multi-level perspective analysis framework, the
transition to a zero-carbon energy system in Ningxia Province
necessitates the integration of key elements, including technology,
economics, policy and social system, as shown in Figure 6. From
the perspective of policy, Ningxia Province needs to continuously
ensure energy safety and reliable supply, continue to implement the
national “West-East Power Transmission (WEPT)” project, and
promote energy development to enhance industrial competitiveness,
increase jobs and economic growth, and achieve carbon neutrality goal.
From the socio-technical perspective, Ningxia needs to stimulate the
diffusion of new energy technologies, shift the coal-based energy system
to a new energy-based one, and get rid of “carbon lock-in”. From the
techno-economic perspective, Ningxia needs to increase efficient
infrastructure with clean energy on the supply side, encourage
electricity substitution and accelerate electrification of final energy
consumption on the demand side. Thus, through the interaction of
the three perspectives of micro-level niche technology, meso-level
socio-technical paradigm and macro-level policy landscape, Ningxia
Province will become independent of coal consumption, realize the
transition to a system dominated by new energy.

FIGURE 5
The GDP outlook in Ningxia.
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According to the differences of public electricity demand, outward
electricity demand, energy, power capacity supply and final energy
consumption, this paper sets up five scenarios (see Table 1) and
describes the specific scenarios according to their characteristics.

Scenario 1- Business-as-usual scenario (BAU): Considering the
impact from the policy perspective, the zero-carbon energy
transition is required to meet the balance of supply and demand
for energy safety and reliable supply. According to relevant policies
and plans in Ningxia Province, BAU, scenario is set with reference to
the historical level and policy intensity. The sectoral primary energy
consumption data are obtained from China Energy Statistical
Yearbooks (2009–2021). The proportion of electricity and
hydrogen in final energy consumption in 2060 will be 55% and

7%, respectively, and the proportion of renewable energy in heat and
hydrogen supply will be 10% and 80%, respectively.

Scenario 2- High electrification scenario (HES): Based on
scenario 1, considering the impacts on the demand side from the
techno-economic perspective, HES reflects an additional electricity
consumption from the whole society, an improvement of terminal
electrification, and an increasing proportion of electricity and
hydrogen in the energy conversion process. The proportion of
electricity and hydrogen in final energy consumption in 2060 will
be 60% and 8%, respectively, and the proportion of renewable energy
in the heat and hydrogen supply will be 20% and 90%, respectively.

Scenario 3- High outward electricity scenario (HOS): Based on
scenario 2, considering the impacts on the demand side from the

FIGURE 6
Scenario setting of energy transition in Ningxia from the multi-level perspective.

TABLE 1 Scenario setting.

Electricity demand Outward electricity
demand

Power capacity supply Final energy consumption

General Electrification Low High Routine Low carbon Baseline Energy saving

S1-BAU ☑ ☑ ☑ ☑

S2-HES ☑ ☑ ☑ ☑

S3-HOS ☑ ☑ ☑ ☑

S4-LCS ☑ ☑ ☑ ☑

S5-ESS ☑ ☑ ☑ ☑
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techno-economic perspective, transmission of outward electricity is
increased in HOS, in which the proportion of final energy
consumption is increased. The proportion of electricity in the
final energy consumption will be 65% in 2060.

Scenario 4- Low carbon scenario (LCS): Based on scenario 3,
considering the impacts on the supply side from the techno-
economic perspective, the proportion of power, heat and
hydrogen supply from green energy is increased in LCS. The
installed capacity of new energy power generation such as wind
power and photovoltaic power will increase, and the rate of
electrification will be 70%. Heat and hydrogen supply from
renewable energy will be 20% and 90% in 2060, respectively.

Scenario 5- Energy saving scenario (ESS): Based on scenario 4,
considering the impact on the development of energy-saving
technologies from the socio-technical perspective, through the
application of enhanced energy-saving technologies, in ESS, the
intensity of final energy consumption will be further reduced, the
efficiency of energy conversion and utilization will be improved, and
the total amount of final energy consumption will be reduced.

According to different scenario settings, the total amount of final
energy consumption and the proportion of different types of energy
are set (see Figure 7). The total amount of final energy consumption
remains consistent from S1 to S4, while in S5, the Energy saving
scenario, the total final energy consumption is relatively lower. But
the proportions of different types of energy in S4 and S5 remain
consistent.

6 Results

The design of BAU is crafted upon the existing energy reform
and development policies in Ningxia Province, meticulously
benchmarked against international advanced standards. It takes
into account various critical factors, including China’s national
requirements on carbon peaking and carbon neutrality, the
ongoing accelerated electrification process in Ningxia Province,
the large amount of outward electricity, the rapid development of
clean energy alternatives and non-fossil energy, as well as the
anticipation of vigorous promotion of user-end energy-saving
measures. In this paper, based on data availability and the
effective time period of related plans, 2021 is identified as the
base period and 2022-2060 as the forecast period. The LEAP-
Ningxia model is applied to generate the results of PEP, SEC,
FEC, and CO2 emissions for scenarios including BAU, HES,
HOS, LCS and ESS.

PEP in Ningxia Province by sectors under different scenarios
until 2060 is shown in Figure 8. PEP is mainly derived from the
industrial sector, reaching the maximum in HOS. This is due to the
increasing demand for primary energy triggered by the increase of
both local electricity demand and the outward transmission. As
more power supply comes from new energy and the user-end
energy-saving technologies are being applied, PEP will experience
a relatively large decline. Compared with HOS, the total PEP in LCS
and ESS will drop by 1.8% and 8.9% respectively.

FIGURE 7
Proportion of final energy consumption by energy types.
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SEC in Ningxia Province by energy types under different
scenarios until 2060 is shown in Figure 9. From the aspect of
power supply, with a 15% of reserve margin and another 15% of
margin for uncertainty in new energy output, the available power
supply in Ningxia will rise from about 215 to 225 TWh/a in
2022 to about 360–400 TWh/a in 2060. From the aspect of the
power supply structure, the power supply from wind and solar
will grow significantly in the future, reaching 222–236 TWh/a by
2060, accounting for 57%–62% of the total power supply. The
power supply from coal will increase from about 142 to 159 TWh/
a in 2022 to about 187–200 TWh/a in 2030, then gradually
decrease to about 69–128 TWh/a in 2060. For power supply
from coal applying BECCS to reduce CO2 emissions, 76% will
be achieved in HOS, 83% in HES, and over 90% in LCS and ESS.
From the aspect of heat supply, after reaching its peak, the
population will gradually decrease, and the total heat supply
will increase from about 215 to 221 million GJ/a in 2022 to about
311–332 million GJ/a in 2037, then gradually decrease to about
125–139 million GJ/a in 2060. From the aspect of hydrogen
supply, the production will gradually increase from 2023 to
2060, with the total production reaching about 130–
145 million GJ/a in 2060, of which the green hydrogen will
account for 88%–97%.

FEC in Ningxia Province by energy types under different
scenarios until 2060 is shown in Figure 10. The total FEC
remains consistent in S1 to S4, only each energy type making up
different proportions. In S5, namely, the Energy Saving Scenario, a
lower total FEC is projected compared with other scenarios.

The total CO2 emissions without CCS and carbon credits under
different scenarios, as illustrated in Figure 11, are calculated based
on primary energy production, the CO2 emission intensity of
different types of energy in power sector (refer to Figure 12), and
the CO2 emission factor of coal, oil and gas. It is evident from the
analysis that under the five scenarios, disregarding CCS and carbon
credits, Ningxia will achieve carbon peaking in 2030, but it seems
unattainable to meet the carbon neutrality goal in 2060. The total
CO2 emissions of the province in 2060 will reach about 74–101 Mt,
signifying a considerable gap from attaining the zero-carbon energy
system. Despite the progress towards carbon peaking, substantial
efforts and additional measures are imperative to bridge this
significant distance.

By implementing biomass and coal co-firing with carbon
capture devices and utilizing BECCS in power sector, significant
reductions in CO2 emission intensity and the attainment of negative
emissions are achievable, as depicted in Figure 13. Generally, the
energy contained within 1 tonne of biomass equals 0.5 tonnes of coal
equivalent, and 1 tonne of biomass fully combusted emits about
1.33 tonnes of CO2. Therefore, the total biomass available in Ningxia
corresponds to a carbon sink of 14.1 MtCO2, as detailed in
Supplementary Table S9 (Wei et al., 2021). According to the total
CO2 emissions with CCS and carbon credits under different
scenarios in Figure 13, it can be found that the total CO2

emissions in Ningxia can be decreased gradually since carbon
capture and storage (CCS) and carbon credits are contributing to
the reduction of CO2 concentration in the atmosphere. In scenarios
such as BAU, HES and HOS, the total CO2 emissions in Ningxia are

FIGURE 8
PEP by sectors under different scenarios.
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projected to decrease to a range of 17–23 MtCO2 until 2060. In
scenarios LCS and ESS, the energy sector in Ningxia could achieve
6–9 Mt of negative CO2 emissions until 2060.

Further analysis is conducted on the contribution of various
CO2 emission reduction measures from different aspects, as
illustrated in Figure 14. From the policy perspective, main
measures are from outward electricity and carbon credit, and the
reduction contribution will decrease from 29% in 2025 to 21% in
2060. In the mid- and long-term, Ningxia Province will continue to
play a vital role in guaranteeing China’s West-East Power
Transmission Project. Over the period from 2023 to 2060, an
additional 655 TWh outward electricity will be produced
compared with BAU, generating about another 314 MtCO2. But
as the proportion of outward electricity from thermal power

gradually decreases, the corresponding CO2 emissions are also
gradually decreasing. Ningxia Province continues to strengthen
the protection of biomass diversity. Through measures such as
afforestation and vegetation restoration, as well as processes,
activities or mechanisms that can reduce the concentration of
greenhouse gases in the atmosphere, about 14.1 MtCO2 of
carbon credits can be generated per year based on the existing
amount of biomass in Ningxia.

From the socio-technical perspective, measures are mainly from
new energy and CCS technologies, with a reduction contribution
increasing from 28% in 2025 to 76% in 2060. Through accelerating
the progress to harness renewable energy and gradually making it a
main source of electricity and hydrogen, 703 MtCO2 can be reduced
compared with BAU. Embedding CCS equipment in electricity

FIGURE 9
SEC by energy types under different scenarios.
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infrastructure is the most effective measure in reducing CO2

emissions. The reduction of 1,304 MtCO2 from 2023 to 2060 is
the key to achieve zero or even negative carbon emissions in Ningxia
by 2060.

From the techno-economic perspective, main measures are from
electrification and energy saving, with a reduction contribution
decreasing from 42% in 2025 to 12% in 2060. Despite the
increase in the demand for electricity, the total CO2 emissions
will decrease to some extent, by about 400 MtCO2 compared
with BAU. Meanwhile, through the energy efficient technologies
equipped in the infrastructure, about 189Mtce of energy

consumption and about 422 MtCO2 can be reduced from
2023 to 2060 compared with BAU.

7 Discussion

Achieving carbon peaking and neutrality necessitates a unified
effort spanning various sectors and energy sources. It is crucial to
succinctly outline the evolution and patterns of the zero-carbon
energy transition, starting from the multi-level perspectives to
balance the triangle paradox of “safety and reliability, cleaning
and low carbon, as well as energy justice”. The formulation of a
scientifically grounded path for CO2 emissions reduction holds
paramount significance. This study, rooted in Ningxia’s present
energy landscape, projects low-carbon transition scenarios by
considering future trends in population, economy, and industrial
structure adjustments from 2023 to 2060. Leveraging the LEAP-
Ningxia model and employing multi-level perspectives, the analysis
encompasses PEP, SEC, FEC, and CO2 emissions simulations.

The imperative for a successful zero-carbon energy transition in
Ningxia Province lies in the intricate integration and collaboration
of various factors, encompassing technology, economy, policies, and
societal structures. A nuanced examination under five low-carbon
energy transition scenarios reveals crucial dynamics, firstly, without
considering Carbon Capture and Storage (CCS) and carbon credits,
Ningxia is poised to achieve carbon peaking by 2030. However, the
ambitious goal of carbon neutrality by 2060 remains unattainable.
Secondly, under scenarios with CCS and carbon credits, in BAU,
HES and HOS, the total CO2 emissions in Ningxia will drop to
17–23 MtCO2 until 2060. In LCS and ESS, 6–9 MtCO2 of negative
emissions from the energy sector in Ningxia can be achieved until
2060. Overall, high outward electricity will increase local CO2

FIGURE 10
FEC by energy types under different scenarios.

FIGURE 11
CO2 emissions under different scenarios (without CCS and
carbon credits).
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emissions in Ningxia, while measures such as adopting terminal
energy-saving technologies, raising electrification rate, increasing
the supply of new energy, installing CCS equipment and conserving
biomass resources can reduce CO2 emissions.

From the techno-economic perspective, the energy transition in
Ningxia encounters challenges related to economic growth, carbon
budgets and technologies advancements. The current financial
support for CO2 reduction is deemed insufficient, necessitating a
delicate equilibrium between stable economic growth, cost reduction

and fostering innovation. From the socio-technical perspective,
Ningxia’s energy development used to depend on coals, as well
as the entire coal industry chain, i.e., the existing energy suppliers,
deeply ingrained in the coal sector, play a pivotal role in Ningxia’s
industrial development. To realize Ningxia’s energy transition
requires dismantling the monopoly held by local traditional
industries. Market mechanisms, such as the carbon market, stand
out as vital tools to incentivize and facilitate the green and low-
carbon transition. From the policy perspective, as an important

FIGURE 12
CO2 emission intensity of different types of energy in power sector.

FIGURE 13
CO2 emissions under different scenarios (with CCS and carbon credits).
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province in the West-East Power Transmission project, Ningxia
bears the responsibility of ensuring secure energy supply while
balance regional development. Policymakers must navigate the
dual objectives to foster a sustainable and equitable energy
transition in the region.

Towards the zero-carbon energy transition, Ningxia Province
should delineate clear milestones for distinct periods, fostering
coordinated interactions across the multi-level perspective. In the
short term (2023–2025), the focus lies on transforming and
optimizing the existing status through the implementation of
terminal energy-saving technologies, coupled with increased
investment to spur technological innovation. Moving into the
medium term (2025–2035), the emphasis shifts to technological
substitution, systematically upgrading existing mechanisms with the
integration of new energy sources, while also recognizing the impact
on the social landscape and systems. Looking ahead to the long term
(2035–2060), the strategic focus turns to reconfiguration, involving
gradual adjustments and restructuring to seamlessly integrate
emerging innovations into the existing system. This includes
introducing novel technologies, such as combining biomass and
coal co-firing with Carbon Capture and Storage (CCS) equipment
and green hydrogen initiatives, as supplements or replacements.
This triphasic strategy ensures a progressive, adaptive, and holistic
zero-carbon energy transition for Ningxia Province.

The rapid evolution in energy sector has significant
implications for the ongoing research. Currently, the studies
may not have kept pace with the latest technological
advancements and innovations, which, in turn, can hinder our
ability to accurately predict potential changes in the future.
Furthermore, it is important to note that our present research
is based on a specific moment in time, focusing on the prevailing
policies. However, it is crucial to recognize that policy adjustments
in the future may impact the effectiveness of energy transition
efforts profoundly. This underscores the need for a more
comprehensive consideration of these factors in the upcoming
research endeavors. Accordingly, additional research is
indispensable. This research aims to assess the effectiveness of

various policy instruments and practices from Ningxia
government to support the zero-carbon energy transition. A
specific area of focus is to evaluate the subsidies and their
impact on the energy transition. While the LEAP-Ningxia
modeling tool has proven valuable in assisting the region in its
pursuit of climate mitigation goals, it is essential to acknowledge
there are limitations in terms of technology options and underlying
assumptions of the tool. For the success of Ningxia’s zero-carbon
energy transition initiatives, it is imperative to further enhance and
refine both policy measures and modeling capabilities. This will
ensure that the region is better equipped to navigate the evolving
energy landscape and achieve its sustainable development.
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Nomenclature

CPC the Communist Party of China

CCS Carbon Capture and Storage

DC Direct Current

Dual-carbon Achieving a carbon peak before 2030 and carbon neutrality before
2060

FEC Final Energy Consumption

GDP Gross Domestic Product

LEAP Low Emissions Analysis Platform

MLP Multi-Level Perspective

NDC Nationally Determined Contributions

PEP Primary Energy Production

SEC Secondary Energy Conversion

WEPT West-East Power Transmission

TWh Terawatt-hours
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regional energy systems under
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Center of Northwest Energy Carbon Neutrality (ERCNECN), Ministry of Education, Urumqi, China,
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Decision-making Research Center of Xinjiang Energy Carbon Neutrality (Xinjiang University), Urumqi,
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Carbon trading mechanisms and the development of integrated energy systems
are important ways to realize the “carbon peaking and carbon neutrality” goal, and
the problem of benefit distribution is of paramount importance to achieving the
goal. The article innovatively takes the supply side of the provincial integrated
energy system as the entry point, considers the economic value of carbon, and
focuses on the rational allocation of each subject obtained by comparing different
methods. The paper mainly uses the Shapley value of the cooperative game and
the kernel method to establish the initial allocation to the main actors, and
subsequently, it considers the introduction of the risk level, resource input,
environmental pollution, technological innovation, and profit of the main
actors to modify the result of the benefit allocation. This paper takes the
power generation data of the Xinjiang region as an example, and the results
show that 1) thermal power still has the most weight among all power generation
modes and obtains 522.83, 503.48, and 406.30 billion yuan under the initial,
nucleolus, and modified allocation methods, respectively, and receives the most
revenue. 2) Considering that the multi-factor allocation method pays more
attention to the allocation of fairness, compared with the initial allocation,
thermal power gains decreased by 22.29%, while wind and solar power gains
were improved by 17.87% and 60.90%, respectively. The result could be a stronger
push for the development and transformation of power energy. 3) The feasibility of
this game as a convex game should be verified, the improvement method should
be demonstrated through examples, and the results should be compared with
reality. Finally, policy recommendations are proposed, which will be useful for
realizing the “carbon peaking and carbon neutrality” goal and the synergistic
development of integrated energy systems.

KEYWORDS

integrated energy system, modified Shapley value method, cooperative games, multi-
dimensional index system, nucleolus method
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1 Introduction

In recent decades, due to the needs of human production and life
leading to large-scale emissions of greenhouse gases, thus creating a
serious climate situation, the development of a low-carbon environment
has currently become the priority of world countries that are in search of
a new development model out of necessity. In the context of the
transition to low-carbon economy (AK-BHD M., 2021), developed
countries and relevant international organizations, mainly the
United States and Japan, have proposed to strive to achieve net-zero
carbon dioxide emissions by 2050 and have formulated relevant
strategic measures. In September 2020, China also proposed the goal
of achieving carbon neutrality by 2060 (Mallapaty S., 2020). On
21 October 2022, China proposed that due to its own advantages in
energy resources, it will gradually promote the realization of the “carbon
peaking and carbon neutrality” goal and adhere to the planned and
step-by-step goal of achieving carbon peaking. In promoting the
transformation of the energy structure, it will adhere to the principle
of building up before breaking down and strive not to affect people’s
livelihoods and the economy.

In this context, the “14th Five-Year Plan” for energy
development emphasizes the need to continue to promote the
positive and orderly development of international energy services
and to promote the “intelligent and green enhancement of energy
utilization scenarios.” The integrated energy system (IES) is an
integrated system of energy production, supply, and distribution
formed by the integrated optimization of the “production,
distribution, use, and storage” of all types of energy in planning,
operation, and trading. It was first studied in Europe as an
emergency measure in the 1950s (Xie and Wang, 1984; Capuder
andMancarella, 2014; Liu B et al., 2021). The further development of
regional integrated energy systems means that the overall energy
utilization efficiency and operational economy of the system can be
effectively improved through the complementary coupling between
multiple energy sources (Peng et al., 2017). Theoretically, the essence
of integrated energy systems is not a completely new concept, and
the essence of promoting the development of integrated energy
systems is the coupling of cleaner energy with traditional gas,
kerosene, and other energy power sources. The share of non-

fossil energy consumption is approximately 15% in recent years,
and the share of end-use electricity will account for only 25%, of
which the share of non-fossil energy in the last 10 years is shown in
Figure 1. Although the international community and organizations
have made significant progress in clean energy in recent years, the
realization of the goal of carbon neutrality requires the accelerated
integration of the entire economic and social system to transform
and upgrade to low-carbon development, which will lead to a
profound change in the energy system. In this regard, China,
being the largest carbon-emitting country, faces enormous
challenges and implementation difficulties.

The western region is China’s traditional energy base, with
approximately 70% of China’s coal, oil, and natural gas reserves
in the northwestern region. The study of energy development in the
west is an important strategy for China’s development. Xinjiang is a
vast area, accounting for approximately one-sixth of China’s land
area, and is extremely rich in fossil and renewable energy resources,
with the potential to take the lead in achieving carbon neutrality. The
total amount of coal in Xinjiang is expected to reach 2.19 trillion
tons, accounting for approximately 40 percent of China’s total
amount of coal and ranking first in the country. Xinjiang is also
rich in renewable energy resources. The theoretical wind energy
reserves (10-m-high layer) amount to 872 million kilowatts,
accounting for approximately 20.8% of China’s total wind energy
reserves and ranking second in China. The annual solar irradiance of
Xinjiang is 5.5–6.6 million kilojoules per square meter, and the
annual sunshine hours are 2,550–3,500 h, ranking second in China
in terms of total resources. However, due to the low level of
economic development, the distribution ratio of clean energy to
traditional fossil energy is not balanced. The total energy
consumption in Xinjiang has been on the rise since the “13th
Five-Year Plan.” In the power industry, the installed thermal
power capacity of Xinjiang in 2020 increased to 63.37 million
kilowatts, with an annual thermal power generation capacity of
325.76 billion kW hours, accounting for 58.9% of the installed
capacity and 80.8% of the power generation capacity in Xinjiang,
respectively (data source Xinjiang Statistical Yearbook 2021).
Thermal power is the absolute main source of power in Xinjiang,
both in terms of installed capacity and power generation, which will

FIGURE 1
Percentage of non-fossil energy consumption in China in the last 10 years.
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also lead to excessive energy consumption and pollution in the
Xinjiang region (as shown in Table 1, energy consumption in
Xinjiang’s Electricity Industry, data source Xinjiang Statistical
Yearbook 2001, 2012, 2020, 2021), thus not conducive to
achieving the “carbon peaking and carbon neutrality” goal for the
entire Xinjiang region.

Since the energy consumption of the power industry plays an
important role in industrial and regional development, the
development of the current integrated energy systems in the region
cannot be separated from the coupling of traditional energy
generation and clean new energy power. Therefore, the
distribution of benefits between thermal, wind, and photovoltaic
power generation in the region studied in this paper has become a
crucial issue in the current environment. Therefore, it is necessary to
analyze the distribution of benefits among the three power generation
subjects within the framework of regional integrated energy systems
and identify ways to optimize the path of benefit distribution to
accelerate progress in clean and low-carbon power energy in Xinjiang.

Based on the aforementioned ideas, Section 1 mainly describes
the research background, purpose, and significance of this paper,
pointing out that this paper focuses on the problem to be solved.
Section 2 compares, analyzes, and summarizes the related literature
at home and abroad, understands their research ideas and methods,
summarizes insights gained from them, and points out the
differences between this paper and the previous research. Section
3 constructs the theoretical model, establishes the revenue
calculation system and benefit distribution mechanism, and
clarifies the revenue sources of different subjects. Section
4 analyzes specific examples using the Shapley value, kernel
method, and improved Shapley value for calculation, and the
results are compared and verified. Section 5 provides the main
conclusions and recommendations and summarizes the findings of
the whole study. It also outlines the need for the development of
more detailed regional and cross-regional integrated energy systems
to enhance the planning program and build a more perfect
distribution mechanism, providing crucial insights for decision-
making.

2 Literature review

2.1 Distribution of benefits from cooperative
game in integrated energy systems

Any product is the result of multiple factors of production, and
each factor of production involved in the production of a good

product makes its own contribution to the outcome and therefore
deserves a share of the outcome (Raad E et al., 1999). In the case of
energy activities, this means that the benefits generated are
distributed and that the interests of the various actors in the
cooperation are reasonably distributed in order to stimulate more
people to build IES through cooperation.

2.1.1 Subjects of benefit distribution
An IES is a system formed by the combination of several

independent individuals, and each subject in the system has a
different mode of operation and generates mutual cooperation
within the system in order to obtain revenue. In determining the
subjects of IES, each scholar studies a different number of subjects.
Some scholars have discussed the optimal operation of a regional
integrated energy system (RIES) from the perspective of game
theory, with users as followers and energy sales companies as
leaders, and analyzed the mutual relationship between the two
(Luo F et al., 2017). Analyzing the demand-side response strategy
from the user’s side, the supply and demand sides are considered the
two main actors involved in setting prices in the energy market
(Paudel A et al., 2018). The aforementioned scholars and other
research subjects are two-sided; the analysis is mainly based on game
theory in the cooperative game to analyze the relationship between
users and the supply side. The focus of the study on the two-party
subjects is characterized by a clear relationship, but the limited
number of subjects may lead to an analysis that lacks depth.

Among these, using game theory to allocate the capacity of the
IES, in which wind power, photovoltaic, and energy storage devices
are different subjects, allows for the optimization of the interests of
these different subjects while guaranteeing the operation of the
system (Liu X et al., 2018). Synergistic optimization is achieved
via a multi-layer, multi-zone optimization approach that
simultaneously optimizes the energy interactions between the
three main bodies of the industrial park, residential area, and
commercial area (Guo L et al., 2013). Through the use of the
cooperative revenue approach, the benefits of six areas, namely,
combined cooling, heating, and power (CCHP) cogeneration units,
ground-source heat pumps (HPs), electric refrigeration (ER) units,
electrochemical energy storage (EES) devices, wind turbines (WTs),
and photovoltaics (PVs), are rationally distributed based on
optimizing operating costs and carbon emissions (WANG et al.,
2022a). At present, most scholars researching the distribution of the
main body of the study focus on cases involving three or more
parties, with most studies centered on the system of a machine or
energy-using party. In contrast, research on the power generation
side of energy supply is relatively limited. The article selects thermal,

TABLE 1 Energy consumption in Xinjiang’s power industry (unit: ten thousand tons of standard coal).

Indicator 2000 2010 2015 2019 2020

Total energy consumption in the region 3,316.03 7,915.18 15,651.2 18,489.82 18,987.81

Total industrial energy consumption in the region 1,860.26 5,903 11,772.25 13,722.78 14,212.44

Production and supply of electricity and heat 135.49 679.7 1,157.14 1,338.61 1,693.13

Share of total industrial energy consumption in the region 7.28% 11.51% 9.83% 9.75% 11.91%

Share of total energy consumption in the region 4.09% 8.59% 7.39% 7.24% 8.92%
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wind, and solar power as the research subjects for benefit allocation
in the provincial power generation mode, establishes a reasonable
benefit-sharing mechanism, and realizes the win–win development
of multiple subjects.

2.1.2 Methods of benefit distribution and
improvement

Game theory is a classical theory of balancing the interests
between different subjects, which mainly studies the decision-
making behavior of multiple subjects with mutual influence and
interaction. In the traditional monopoly power market, the power
generation company usually holds sole pricing authority and lacks
an effective competitive mechanism (Diao et al., 2001). Currently,
there have been domestic and foreign scholars who have introduced
the game theory method into the study of the distribution of benefits
of the system in order to coordinate the distribution of competitive
cooperation between energy supply, capacity, and energy use in the
regional integrated energy system. Scholars use different allocation
methods according to the relationship between different research
subjects. Based on the Stackelberg game to determine the Nash
equilibrium, a game model for grid construction considering the
demand response is developed to optimize the overall economic
efficiency of the system (Tang R et al., 2019). In exploring the
distribution of benefits, a methodology for sharing the benefits of
electricity substitution is proposed by utilizing a combination of
kernel and Shapley values. Chen X. et al. (2019)analyzed and
quantified the value of electricity substitution in reducing
production costs, operation costs, and pollution emissions. The
dominant-subordinate game in game theory is mainly applicable
when the allocating agents have upward and downward
relationships, and it is not applicable for this paper.

The Shapley value approach is the most popular of all
cooperative game approaches, with the advantage of highlighting
marginal contributions and maintaining the stability of the overall
coalition. However, these factors alone are not sufficient, and a small
number of scholars have used it more convincingly in conjunction
with the kernel approach. A methodology for profit distribution is
proposed and validated using an improved non-dominated sorting
genetic algorithm based on the improved Shapley value method
combined with the kernel method (Wang et al., 2022b). In terms of
cooperation and gaming, a methodology for shared alternative
electrical energy gains is proposed using kernel and Shapley
values. The value of electrical energy substitution in reducing
production costs, operation costs, and pollution emissions was
analyzed and quantified (Chen F. et al., 2019).

Furthermore, several scholars have used a modified Shapley
method based on the initial allocation to make the outcome more
equitable; however, the method of improvement varies slightly from
scholar to scholar. A cooperative revenue model is proposed that
considers the stochastic nature of PV output and incorporates risk
control; it analyzes cooperative transactions between existing
consumers and community IES (Ma L et al., 2018). A different
regional alliance and a way of gaming and optimization are
discussed through a benefit distribution approach with different
RIESs as the gaming subjects (Cong et al., 2019). In the improved
Shapley model species, the physical cloud center of gravity method is
utilized for redistribution, and relevant indicators such as service
quality, total input, and risk are proposed so as to ensure the fairness

and impartiality of the charging pile benefit distribution (Wang D.
et al., 2023). In order to achieve the goal of IES reliability
enhancement, a theoretical framework system is proposed using
the indicator of risk reduction, with fairness as the basic criterion,
and it involves the incorporation of the probability of failure events
as the weight factors, which are then multiplied by the result (Cao M
et al., 2022). In the cooperative operation involving hydropower
plants at different levels, the principles of compensation and fairness
should be consistently applied to ensure the distribution of benefits
of hydropower plants at all levels. The coefficient of variation
method is applied to the Shapley value model under multiple
subjects using different weights of individuals as the index system
(Wang L et al., 2021). Amidst the free energy market, a methodology
is proposed to guide consumers by calculating the extent of the
losses in the distributed generation distribution system (DS). The
weighting factors presented contain the average of the marginal
contributions of the different subjects (Singh V et al., 2023).

2.1.3 IES benefit analysis
Scholars at home and abroad have established IES efficiency

evaluation models from different perspectives and at different
levels to verify the effectiveness and good distribution of the
system operation so as to correctly evaluate the overall efficiency
of the IES operation. These include analytic hierarchy process (AHP)
methods, entropy weighting methods, gray correlation methods,
multi-attribute decision-making methods, intelligent algorithms,
and various combinations of methods. For example, a study has
taken the electric-thermal coupledmulti-coupled energy system as the
research object, selected the benefit evaluation indexes from the
perspective of technical and economic evaluation, elaborated the
meaning, calculation formula, application scenarios, and limitations
of each evaluation index, and established a basically complete system
of benefit evaluation indexes (Biezma and San Cristobal, 2006). Based
on a detailed combination of existing research results, the evaluation
index information of the multi-energy system is analyzed from
multiple perspectives. A corresponding comprehensive evaluation
method is then used to reflect the level of benefits provided by the
multi-energy system compared to the traditional energy system, and
appropriate measures are put forward (Mancarella, 2014). In the
construction of evaluation indicators, a combination of subjective and
objective weights was utilized, employing analytic hierarchy process
(AHP) and technique for order preference by similarity to ideal
solution (TOPSIS), and finally, an assessment and ranking of the
impact factors of IES were conducted to evaluate barriers and
strategies for building resilient energy systems (Xu K et al., 2022).
The further development of IES was analyzed and evaluated from a
holistic perspective, and five indicators and evaluation criteria related
to economic, environmental, and energy use efficiency were
established and modeled (Zhou J et al., 2019). When exploring the
indicators of the evaluation method, we start by considering the
relevant impact indicators of technology, economy, environment, and
society. Through the use of correlation analysis, the subjective and
objective weights affecting the effectiveness of the model were derived,
and the relevant weight coefficients were obtained by combining the
maximum entropy principle with the minimum weighted total
distance to the ideal solution. Finally, the optimal solution was
determined based on the gray correlation method (Yang, K et al.,
2018).
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2.2 Relationship between carbon trading
mechanisms and RIES synergies

The emissions trading method based on Coase’s property rights
theorem is an effective means of environmental regulation, while the
carbon trading mechanism originates from emissions trading, which
is a system that regulates the international carbon trading market.
Scholars have studied the optimal use of different loads in the micro-
integrated energy system while introducing the carbon trading
mechanism, which not only brings economic benefits but also
promotes the further optimization of the environment, allowing
for their synergistic development.

In RIES, a new low-carbon optimization and regulation model is
proposed by introducing small nuclear power units and carbon trading
mechanisms into it, and a validation analysis is conducted based on the
structural data of North China, which concludes that it has good
economic and low-carbon environmental effects (Li Y et al., 2022). A
model for CCHP and carbon capture devices is discussed, and its
optimal dispatchability is improved by applying aspects such as the
demand-side response. The results indicate that the invocation of
carbon trading and demand response is essential to reduce the
amount of load used and carbon emissions, which is important for
ecological and regional development (Yang P et al., 2023). In achieving
the reduction of carbon emissions, due to the uncertainty of the scale of
wind power usage and the stochastic nature of carbon emissions, this
paper proposes a new economic dispatch method that addresses the
reduction of economic uncertainty while increasing revenue generation
(Jin J et al., 2019). In terms of improving the solution efficiency, an
optimization model based on Anderson’s acceleration with alternating
direction method of multipliers (AA-ADMM) is proposed (Wang Y.
et al., 2023). In the context of trading carbon emissions and renewable
energymix in China, a cost optimizationmodel is proposed and applied
to an integrated wind-power–photovoltaic cogeneration power
dispatch system in Xinjiang, and finally, real-life cases in the
northern and southern regions of China are compared. The analysis
of the results shows that carbon emissions trading in the application of
renewable energy installations can effectively increase the proportion of
renewable energy installations and achieve the goal of reducing carbon
emissions (Tan Q et al., 2021).

In summary, current research by both domestic and foreign
scholars focuses on the operation and dispatch optimization of IES,
and with the establishment of carbon neutral objectives, the
combination of research with IES optimization under the “carbon
peaking and carbon neutrality” framework is deepening. However,
there are still many research points that have not been covered yet,
and this paper contributes in the following ways:

1) This paper considers the main body of IES benefit distribution
from the macro-level, and the target of distribution is not the micro-
machine or the energy user but the thermal power, wind power, and
photoelectricity of energy supply. 2) Through carbon trading, the value
of the environment is quantified so that carbon trading and IES are
synergistically linked and then allocated to the main actors. The
combination of these two mechanisms can theoretically provide us
with the maximum realization of a low-carbon economy. 3) Game
theory is increasingly being used in IES, with different authors using
different game methods for different subjects. The article innovatively
uses the Shapley value, kernel method, and improved Shapley value to
allocate the subjects, comparing the allocation results to arrive at a fairer,

more reasonable, and more reliable benefit allocation result. The
obtained results are verified using the calculation cases’ results. The
shortcoming of the article is that it only considers the game between the
three parties. Currently, in some areas, nuclear power has become the
main component of power generation, and therefore, the three-party
game is incomplete and requires a deeper four-party or five-party game
in order to get a fairer and more reasonable distribution.

3 Integrated energy system benefit
calculation and distribution model

3.1 Calculation model for the integrated
regional energy system

IES is a multi-level, complex coupled system of multiple energy
inputs, conversions, and outputs, which includes a variety of energy
coupling devices. At present, the vast majority of terminals are still in a
single way for the use of equipment, unable to achieve multi-energy
coupling, but also not conducive to economic efficiency and emission
reduction efforts. With the promotion of IES in parks, so that multiple
operating entities share information with each other and form a
cooperative alliance, energy can be staggered and graded within a
park, the efficiency of equipment is significantly enhanced, and the
economic and environmental effects are immediate. The benefits of
cooperative power supply. The internal energy flow diagram of a
regional IES is shown in Figure 2. The external power conduction
diagram of the integrated regional energy system is shown in Figure 3.

This paper deals with three modes of power generation: thermal,
wind, and solar, with the total return calculated as follows:

πs � πs1 + πs2 + πs3 + Qs2*αs2 + Qs3*αs3 + Qs2 + Qs3( )*σ*β − C1 − C2

−C3, (1)
where πs represents the total revenue obtained, πs1, πs2, and πs3

represent the fees charged for thermal, wind, and photovoltaic
power, respectively, Qsi represents the amount of electricity

FIGURE 2
Energy flows within an integrated regional energy system.
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generated by a certain power, αsi represents the cost of subsidies for a
certain power, σ represents the carbon emission factor for electricity
in the region in that year, β represents the carbon price, and Ci

represents the cost of a certain power. In this paper, we consider the
revenue distribution of different power generation modes from the
macro-supply side of the integrated energy system, without
involving the work performed by specific machines, and the
revenue generated under different power generation modes is
calculated as the difference between the sum of the fees charged
for electricity consumption, the government subsidies given to new
energy power generation, and the carbon price for the consideration
of environmental factors and the actual cost of power generation.

3.2 Distribution model of the integrated
regional energy system

3.2.1 Improved Shapley value method
Cooperative games, the symmetry of non-cooperative games, are

a type of game. Cooperative games emphasize collective rationality,
efficiency, fairness, and equity. Maximizing the collective interest is
called “collective rationality.” The Shapley value method is used to
solve the problem of distributing members’ benefits in cooperative
games, which distributes benefits to each member based on the
average of the marginal benefits created by that member for
participation in the coalition. This method satisfies four
properties: symmetry, validity, redundancy, and additivity. The
Shapley value method of benefit allocation is calculated as

φi v( ) � ∑
S∈N

S| | − 1( )! n − S| |!( )[ ]
n!

p v S( ) − v S\ i{ }( )[ ], (2)

Where member i has (|S|-1)! kind of ordering, when
participating in an S-coalition. |S| denotes the number of
members contained in the union S, while the remaining n-|S|
members are ordered with n-|S|! kinds. The different
combinations of rankings in which all members i participate
divided by the random combination of rankings of n members is

the weight of the benefit to be shared bymember i for the coalition as
a whole, denoted as [(|S|-1)!(n-|S|!)]/ n!. The marginal contribution
created bymember i participation in different coalitions S for its own
participation in the coalition is denoted as [v(S)-v(S i{ })].(S i{ })
denotes the set after removing element i from the set S.

The aforementioned Shapley value method only considers the
single marginal benefit contribution of each subject to the
cooperative alliance, completely ignoring the other contributions
made by the subjects during the entire operation of the alliance. So, a
single influencing factor is far from sufficient. According to the
development trend of China’s policy and in alignment with the
scholars’ efforts to improve the Shapley value and other research
analyses, five aspects of multidimensional considerations should be
incorporated: the level of risk, resource inputs, environmental
pollution, technological innovation, and the profit factor. The
level of risk includes both external and internal risks, and risk
factors cannot be ignored in any indicator system, as different
risks have a significant impact on the results, as shown in
Table 2. Resource inputs include both tangible and intangible
resources, which are explicit or invisible costs to the subject
before they generate benefits and should be taken into account
when allocating them. Environmental factors have become
indispensable indicators, and we should consider other pollution
alongside that causes carbon emissions. Technology innovation is
also an important indicator, in the case of electricity, in terms of the
controllability and stability of power generation and the technical
treatment of surplus power. Themarginal contribution is considered
in the improved methodology, but it is important to consider not
only the profit side of the equation but also the degree of
contribution and growth rate.

The specific calculation steps are as follows: first, five experts and
scholars in the field of energy and electricity were invited to score the
primary and secondary indicators that affect different subjects
related to each other in the regional energy system, and the
primary indicator fuzzy matrix and secondary indicator fuzzy
matrix were derived by two-by-two comparison, and the ratio of
the degree of influence of element Bi and element Bj on target A was

FIGURE 3
External power transmission of the integrated regional energy system.
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expressed by aij, which was scored according to Table 3 on a
1–9 scale so as to derive the importance level of each indicator,
and then the consistency test was performed to determine whether it
passes or not.

Next, the weights were calculated and checked for consistency.
First, the approximate value of the eigenvectors of the judgment

matrix is found based on the root method.

Vi �
∏n

j�1aij( ) 1
n

∑n
i�1 ∏n

j�1aij( ) 1
n

, (3)

V � V1, V2, . . . , Vn( )T. (4)
Finally, a logical consistency test of expert preferences is

required for scoring the results of different experts. If the
consistency test is not met, it means that there is a conflict in the
experts’ judgment on the relative importance of the indicators.

The entropy weighting method is an objective determination
method that utilizes the amount of information entropy contained
in an indicator to determine the weight of the indicator. As the name
suggests, the information entropy can be used to estimate the degree
of discretization of the indicator; the lower the entropy value, the
higher the degree of discretization of the indicator, and the greater
the influence of the indicator on the overall assessment. The specific
calculation steps are as follows:

First, the factors are normalized according to the number of each
option.

Positive indicators:

xij
′ � Xij −min X1j, X2j, . . . , Xnj( )

max X1j, X2j, . . . , Xnj( ) −min X1j, X2j, . . . , Xnj( ). (5)

Negative indicators:

xij
′ � max X1j, X2j, . . . , Xnj( ) −Xjy

max X1j, X2j, . . . , Xnj( ) −min X1j, X2j, . . . , Xnj( ). (6)

Next, the entropy value of the jth term is calculated:

ej � −k∑n

i�1pij ln pij( ), j � 1, 2, . . . , m. (7)

Then, the weights of each indicator are calculated:

Vj � dj∑m
j�1dj

, j � 1, 2, . . . , m. (8)

The final weights of each indicator are obtained and can be
ranked according to their magnitude to determine their level of
importance in the decision.

For real-life problems, the use of only subjective or objective
weighting methods can result in a certain lack of information,
which can affect the final assessment results. The AHP method
relies on the evaluator’s experience, is generally not affected by
the values of the attributes, and is more stable; however, due to
its strong subjectivity, it may overlook some laws within the
data. The entropy weighting method can directly reflect the data
of the sample as well as the distribution pattern, ensuring the
absolute objectivity of the weights, but it does not include the
connection of each indicator in the sample and is less stable,
which may lead to the situation that the weighting results are
contrary to the actual situation and cannot directly reflect the
importance of the indicators. In this study, the two methods are
combined for the weighting assignment. The formula is as
follows:

ΔV* � a1V1 + a2V2, (9)

TABLE 2 Evaluation system indicators.

Primary indicator Secondary indicator Type

Risk level A External risk A1 Definitive

Internal risk A2 Definitive

Resource input B Tangible resource B1 Quantitative

Intangible resources B2 Definitive

Environmental pollution C Carbon emission C1 Quantitative

Other contamination C2 Quantitative

Technological innovation D Power generation controllability D1 Definitive

Residual power treatment D2 Definitive

Profit factor E Profit contribution E1 Quantitative

Profit growth rate E2 Quantitative

TABLE 3 Scale of 1–9.

Scale Implication

1 Both elements are equally important

3 The former element is slightly more important than the latter

5 The former element is significantly more important than the latter

7 The former element is much more important than the latter

9 The former element is of extreme importance over the latter element

2, 4, 6, 8 The front and back elements are between the calibrated standards

1
aij

Inverse comparison of two elements before and after
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where ΔV* denotes the modified factor weights and V1 and V2

denote the weights of subjective and objective evaluation indicators,
respectively, which can be calculated according to the aforementioned
steps. The subjective and objective scores denote the scores of different
evaluation indicators, which can be weighted according to their
relative weights to obtain the final evaluation results.

3.2.2 Nucleolus distribution
The nucleolus method is known as the “solution” to the game,

and for a cooperative game (N, v), any allocation scheme x �
(x1, . . . , xn) ∈ E(v) is chosen. For a coalition S, in order to assess
the satisfaction of S with x, a beyond indicator is defined as follows:

e S, x( ) � v S( ) −∑
i∈S
xi. (10)

The magnitude of e(S, x) reflects the satisfaction of S with x. The
larger the e(S, x) is, the less satisfied the S is with the distribution since
the sum of the distributions of its participants falls far short of the
surplus value v(S) it creates. When e(S, x) is negative, all participants
in S have allocated not only the cooperative surplus v(S) that they have
created but also the value created by other coalitions. Let V(S) be the
gains generated between the participants running coalition S. Then,

V S( ) � v S( ) −∑
i∈S
v i( ), (11)

where v(i) is the return generated by the participant i alone. This is
then solved using linear programming:

min ε,
s.t. V S( ) � ∑i∈S1xi,
V S( ) −∑i∈S2xi ≤ ε,

⎧⎪⎨⎪⎩ (12)

where ε represents an arbitrarily small real number, in this case, a
proxy for e(S, x), S1 represents the set of all participants in the
coalition, and S2 is the set of all different modes of operation.

In this paper, the participants refer to the distribution of benefits
received by thermal, wind, and photovoltaic power; the distribution
of benefits received in the kernel method shall be the proceeds of the
other collaborations of the union plus the proceeds generated when
operating separately, as in the following equation:

πi � x i( ) + v i( ) i � 1, 2, 3. (13)

4 Calculation analysis

Xinjiang is a traditional energy base and a new energy-rich
region in China, and it is one of the best regions for the realization of
an integrated regional energy system. In this paper, the three types of
electricity generation in Xinjiang in 2020 are used as a case study and
the benefits of the synergistic generation are analyzed. The Xinjiang
region’s electricity generation in 2020 is taken from the Statistical
Yearbook. Data source Xinjiang Statistical Yearbook 2013, 2015,
2021. The share of hydroelectric power generation in the Xinjiang
region from 2015 to 2020 is shown in Figure 4. As the share of
hydroelectric power generation is not high and does not match the
characteristics of Xinjiang’s resource development and as it can be
seen from the figure that the total amount of hydroelectric power has
not changed significantly in recent years, the allocation of

hydroelectric power generation is not considered in this study.
The share of hydroelectric power generation in the Xinjiang
region from 2010 to 2020 is shown in Figure 4. As the
proportion of hydropower generation is not high and does not
meet the characteristics of the development of resources in Xinjiang.
Therefore, this study does not consider the allocation of hydropower
generation. The data used in this paper are the most recently
available data in the public domain, and the 2020 data are highly
representative and not affected by other factors such as epidemics.

The subsidy for wind power is approximately RMB 0.03/kWh,
and for photovoltaic power, it is approximately RMB 0.05/kWh. The
national price for carbon trading rights in 2020 is taken as an average
of approximately RMB 45/ton, and the carbon emission factor for
electricity is approximately 565 g CO2 per kWh. The data are shown
in Table 4 (Costs and subsidies vary by region, data from Xinjiang
Statistical Yearbook, Notice of the National Development and
Reform Commission on Matters Relating to the Policy on Feed-
in Tariffs for Photovoltaic Power Generation in 2020, IRENA, 2023).

4.1 Initial Shapley value allocation

It is first necessary to calculate the revenue generated by each
generation method when working in isolation (all the following
calculations are in 100 million of Chinese Yuan: thermal power,
wind power and solar power are numbered 1, 2 and 3 respectively.
c(1) = 358.90, c(2) = 59.99, c(3) = 11.85. When both approaches
form an alliance operation, c(1,2) = 541.63, c(1,3) = 422.25, c(2,3) =
100.88. When all generation methods cooperate, c(1,2,3) = 864.47.
Based on the aforementioned information, the Shapley value method
was used to calculate the distribution of benefits that each
generation method would receive for the operation of the entire
union as follows: Φi(c) � ∑S∈N

[(|S|−1)!(n−|S|!)]
n! p[c(S) − c(S\ i{ })], and

then Φi(1) � 358.9
3p1 + (541.63−59.99)+(422.25−11.653)

2p3 + 864.47−100.88
1p3 � 522.83.

Similarly the data can be substituted into 2 and 3 to obtain the
distribution of the benefits obtained by the other two in the overall
union, Φi(2) � 212.70 and Φi(3) � 128.94. We then substitute the
results for the properties and conditions required by the Shapley
value, and the results are all satisfied, with the benefits of each
generation method being greater than the benefits of working alone.
In addition, the benefits of cooperation between two or three
methods also satisfy superadditivity, ensuring that the results of
the three allocations add up to exactly the same as the total benefits
obtained by the whole alliance.

4.2 Modified Shapley value method
assignment

According to the comprehensive subjective and objective
assignment method described previously, five experts were
invited to score the five primary indicators, risk level, resource
input, environmental pollution, technological innovation, and profit
factor, and 10 secondary indicators, such as external risk and
physical resources, the degree of mutual influence, and fuzzy
evaluation, to establish 1,065 sub-nodes based on the scoring
results, after arithmetic averaging, according to the
aforementioned formulas (3) and (4). The average summation
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was divided, and the results of each indicator are denoted as CR =
CI/RI = 0.0 ≤ 0.1, indicating that the results scored by the experts
passed the one-time test. The relevant indicators and the weights of
each factor are shown in Table 5, and the standardized risk
assessment matrix is shown in Table 6.

Calculation of the objective weighting factor using the entropy
weightingmethod according to equations 5 and 8 resulted inV2 = (0.18,
0.21, 0.31, 0.21, and 0.09). The data were normalized, where the
subjective factor may have a large effect; so a1 was set to 0.425 and
a2 to 0.575 to obtain the corrected factor results:
V* � (0.19, 0.21, 0.30, 0.21, and 0.09). After the evaluation of the
risk indicators and the correction, according to formula (9), the final
benefit distribution correction weights for thermal, wind, and solar
power are ΔV* = (0.21, 0.37, and 0.42), respectively. The original ratios
of thermal, wind, and solar power were V � (0.60, 0.25, and 0.15),
respectively. The final weights areV + ΔV* − 1

n � (0.47, 0.29, and 0.24),
respectively. That is, the gains shared by thermal, wind, and solar power
under the modified Shapley value method are 406.3, 250.7, and 207.47,
respectively.

4.3 Nucleolus method allocation

Based on the analysis of the underlying data in Section 4.1, it is
clear that the payoff is maximized when the three-party electric field
is cooperatively allied and that it is not only much greater than the
payoff generated when operating alone but also greater than the sum
of the individual payoffs of the two-party alliance and the other
party. The aforementioned characteristics are typical of a three-party

cooperative game problem, and we can use the nucleolus method for
allocation. The additional gains arising from coalition cooperation
can be calculated using Equation 11, which yields Eq. 14.

V 1{ }( ) � v 1{ }( ) − v 1{ }( ) � 0,
V 2{ }( ) � v 2{ }( ) − v 2{ }( ) � 0,
V 3{ }( ) � v 3{ }( ) − v 3{ }( ) � 0,
V 1, 2{ }( ) � v 1, 2{ }( ) − v 1{ }( ) − v 2{ }( ) � 122.74,
V 1, 3{ }( ) � v 1, 3{ }( ) − v 1{ }( ) − v 3{ }( ) � 51.50,
V 2, 3{ }( ) � v 2, 3{ }( ) − v 2{ }( ) − v 3{ }( ) � 29.03,
V 1, 2, 3{ }( ) � v 1, 2, 3{ }( ) − v 1{ }( ) − v 2{ }( ) − v 3{ }( ) � 433.73,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(14)

whereV( 1, 2, 3{ }) represents the three cooperative alliances, thermal
power, wind power and solar power are numbered 1, 2 and 3
respectively. v( S{ }) represents the additional benefits generated
by mutual cooperation in alliance S, and v( S{ }) represents the
actual benefits generated under the different cooperative alliances.
A linear programming approach is then used to calculate the
corresponding portion x(i) of the additional benefits accruing to
each party from the cooperative alliance using Equation 12, which
yields Equation 15.

s.t.

min ε,
x1 + x2 + x3 � 433.73,
ε≥ − x1,
ε≥ − x2,
ε≥ − x3,
ε≥ 122.74 − x1 − x2,
ε≥ 51.50 − x1 − x3,
ε≥ 29.03 − x2 − x3.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(15)

FIGURE 4
Percentage of hydropower in the Xinjiang region during 2010–2020.

TABLE 4 Xinjiang 2020 power generation table.

Power generation method Electricity (100 million kWh) Unit subsidy (¥/kWh) Unit cost (¥/kWh)

Thermal power 3,262.86 0.00 0.25

Wind power 433.65 0.03 0.278

Solar power 157.15 0.05 0.36
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The optimal solution was obtained using the optimization
solution toolbox CVX in MATLAB solution software:
x1 � x2 � x3 � 144.5769 ≈ 144.58. Finally, Equation 16 is used to
calculate the benefits accruing to each subject of the alliance:
π1 � x(1) + v(1) � 503.47, π2 � x(2) + v(2) � 204.57, and
π3 � x(3) + v(3) � 156.43. That is, thermal, wind, and solar
power received 503.48, 204.57, and 156.43, respectively, under
the nucleolus allocation method.

4.4 Analysis of allocation results

The values obtained using the initial Shapley value, nucleolus,
and modified Shapley value methods of allocation are compared, as
shown in Figure 5 and Table 7.

We find that the initial Shapley value method and nucleolus
allocation both provided similar results, and in the following
paragraph, we will verify whether this benefit allocation is a
convex game problem using the data from the nucleolus
allocation as an example.

V 1{ }( ) + V 2{ }( ) � 0<V 1, 2{ }( ) � 122.74, (16)
V 1{ }( ) + V 3{ }( ) � 0<V 1, 3{ }( ) � 51.50, (17)
V 2{ }( ) + V 3{ }( ) � 0<V 2, 3{ }( ) � 29.03, (18)

V 1{ }( ) + V 2, 3{ }( ) � 29.03<V 1, 2, 3{ }( ) � 433.73, (19)
V 2{ }( ) + V 1, 3{ }( ) � 51.50<V 1, 2, 3{ }( ) � 433.73, (20)

V 3{ }( ) + V 1, 2{ }( ) � 122.74<V 1, 2, 3{ }( ) � 433.73, (21)
V 1, 2{ }( ) + V 1, 3{ }( ) � 174.54<V 1, 2, 3{ }( ) + V 1{ }( ) � 433.73,

(22)

V 1, 2{ }( ) + V 2, 3{ }( ) � 151.77<V 1, 2, 3{ }( ) + V 2{ }( ) � 433.73,

(23)
V 1, 3{ }( ) + V 2, 3{ }( ) � 80.53<V 1, 2, 3{ }( ) + V 3{ }( ) � 433.73.

(24)
Based on the aforementioned equations, it can be verified that

the benefit allocation problem solved in this paper is a convex
cooperative game problem, and it is for this reason that the initial
Shapley values are similar to the nucleolus allocation results. All
three of these allocations satisfy the overall distributional rationality.

TABLE 5 Impact weights for each factor.

Primary indicator Weight Secondary indicator Weight

Risk level A 0.19 External risk A1 056

Internal risk A2 0.44

Resource input B 0.21 Tangible resource B1 0.53

Intangible resources B2 0.47

Environmental pollution C 0.28 Carbon emission C1 0.57

Other contamination C2 0.43

Technological innovation D 0.20 Power generation controllability D1 0.55

Residual power treatment D2 0.45

Profit factor E 0.12 Profit contribution E1 0.51

Profit growth rate E2 0.49

TABLE 6 Elements of the standardized risk assessment matrix.

Power generation method Risk level Resource input Environmental pollution Technological innovation Profit factor

Thermal power 0.28 0.24 0.21 0.29 0.45

Wind power 0.35 0.38 0.38 0.36 0.26

Solar power 0.37 0.38 0.41 0.35 0.29

FIGURE 5
Comparison of the results of the three benefit allocations.
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In other words, the total benefits are the same as the total revenue,
which satisfies the individual benefit rationality and the cooperative
alliance benefit rationality, proving that the alliance cooperation is
effective and relatively stable.

Figure 6, Figure 7, and Figure 8 represent the share of revenue of
each power generation subject under the initial, improved, and
kernel allocation methods, respectively. As can be seen from the
figure, no matter which allocation method is used, thermal power
obtains the largest proportion of revenue, and the proportion in the
initial allocation even reaches 60%. This is because the Xinjiang
region is actively promoting the share of new energy generation, but
the current dominance of thermal power generation has not
changed. The major advantage of thermal power, compared to
the other two new energy generation sources, is its stable power
supply, which can be used at any time. This is why in our efforts to
promote power reform, thermal power is not completely abandoned.
Instead, we focus on technological innovation and transformation
based on the maturity of thermal power technology. This approach
aims to improve the efficiency of thermal power generation and
minimize environmental pollution. The biggest change in the
improved Shapley value is solar power generation, with a 10%
increase in revenue share. Due to the geography of Xinjiang,
most of the area has sufficient light hours, which meets the basic
requirements of solar power generation and results in less pollution
in the environment. However, at the same time, there are some
shortcomings to solar power, including the high capital

requirements for construction and uncertainty and weather-
related risks associated with its power generation. On the one
hand, we should actively build the solar power industry and
make full use of the geographical advantages of Xinjiang. On the
other hand, we should also acknowledge the problem of its

TABLE 7 Results of the three benefit allocations (100 million CNY).

Power generation
method

Individual energy
supply revenue

Initial Shapley value
allocation

Modified Shapley
value allocation

Improved
growth

Nucleolus
distribution

Thermal power 358.9 522.83 406.30 −22.29% 503.48

Wind power 59.99 212.70 250.70 17.87% 204.57

Solar power 11.85 128.94 207.47 60.90% 156.43

FIGURE 6
Initial Shapley value distribution.

FIGURE 7
Modified Shapley value distribution.

FIGURE 8
Nucleolus distribution.
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instability. Wind power has increased its share of revenue after
improved methods, and the advantages and disadvantages of wind
power and photovoltaic power are similar.

5 Conclusion and recommendations

In this paper, we have used the “carbon peaking and carbon
neutrality” goal to allocate the electricity revenue in the Xinjiang
region in three different ways. Using the improved Shapley value
method is more to provide a fairer and more reasonable solution for
our allocation and contribute to the synergistic development of the
integrated regional energy system under the “carbon peaking and
carbon neutrality” goal. The findings of this paper are as follows:

(1) At this stage, the importance of thermal power generation in the
Xinjiang region remains unchanged. Among the three different
allocation results, thermal power receives the highest benefit,
which is also related to the proportion of total power generation
accounted for by thermal power generation. At present, the
thermal power generation technology in Xinjiang is relatively
mature; therefore, this paper argues that the next development
direction is to maximize the efficiency of power generation and
the secondary use of surplus power.

(2) In particular, adding environmental and risk factors and
considering environmental factors are in line with the
requirements of China’s sustainable development. Electricity
is closely related to people’s lives, and the stability of power
generation is a problem we need to consider, which is also one of
the reasons why new energy power generation technology
cannot completely replace thermal power generation for the
time being.

(3) The significant increase in gain in the improved Shapley value is
solar power generation. So when we promote the development
of the new energy generation industry in the future, we should
pay more attention to the development according to local
conditions so that we can better utilize our own advantages
and improve the efficiency of resource use.

In order to better promote the development of a regional or even
cross-integrated regional energy system and achieve the “carbon
peaking and carbon neutrality” goal of Xinjiang’s power-related
industries, the following policy recommendations are further
proposed:

(1) The Xinjiang region should vigorously develop high-
efficiency power generation and energy-saving and
consumption-reducing technologies for coal power units.
This includes increasing the introduction, promotion, and
large-scale commercial application of advanced ultra-
supercritical power generation technologies and
supercritical circulating fluidized bed technologies.
Additionally, there should be focus on the development of
deep peaking and flexible power generation technologies for
coal power units, leading to the transformation and
upgrading of coal power units in the Xinjiang region. At
the same time, the proportion of renewable energy
generation will be increased to achieve energy structure

transformation, accelerate the technological innovation of
energy saving and consumption reduction of coal power
units, deeply explore the peaking potential of coal power
units, comprehensively improve the operational flexibility of
coal power units, and support the transformation to an
energy system based on renewable energy. Combining
coal-fired power generation with solar energy can save
energy, reduce pollution, achieve joint development of
coal-fired units and renewable energy generation, and
vigorously develop coupled coal-fired power generation
technology with biomass and solid waste. Partial
replacement of fuel can reduce carbon emissions from
coal-fired power units, and comprehensive use of biomass,
solid waste, and other resources can improve the flexibility of
power generation from coupled units. The Xinjiang region
should develop and utilize energy resources efficiently,
cleanly prioritize the development of renewable energy,
reasonably develop fossil energy resources and distributed
energy resources according to local conditions, accelerate the
pace of energy transformation, optimize the transformation
of the energy structure, and vigorously develop CCUS
technology to support the clean and low-carbon
development of electricity.

(2) We should promote research, development, and breakthroughs
in key technologies for China’s IES and accelerate the
development of provincial-level action roadmaps for the
power sector geared toward achieving the “carbon peaking
and carbon neutrality” goal. We should promote the
establishment of China’s IES in cross-regional, intra-regional,
and key energy-using industries to facilitate sustainable and
synergistic regional development and low-carbon and green
industrial transformation. This will contribute to the
construction of a clean and low-carbon, secure, and efficient
energy security system and facilitate the transformation of
energy supply and demand structures in China. At the same
time, the development of relevant policies according to local
conditions is needed not only to encourage the relatively high
level of economic development of the provinces for industrial
transformation and green upgrading but also to strongly
support the level of economic development in not-so-high
but resource-rich provinces, make full use of their own
advantages, and accelerate the promotion of clean electricity
reform.

(3) We should actively promote the development of the carbon
trading mechanism and leverage the economic incentives of
the carbon trading mechanism. As an important policy tool
for achieving carbon neutrality in China, the carbon trading
mechanism still has problems such as insufficient
connection with the overall climate policy objectives and
inactive market players. We need to strengthen the
disclosure of climate information to the public and
consider prioritizing the inclusion of renewable energy
and industries not covered by the carbon market in the
carbon trading system so that the carbon price level in
China can increase steadily.

(4) We need to promote synergistic mechanisms for IES driven by
carbon neutrality targets. In light of the rapid changes in the
energy system, economy, and society driven by the carbon

Frontiers in Energy Research frontiersin.org12

Wang et al. 10.3389/fenrg.2023.1265924

165

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1265924


neutrality target, the status, role, and form of IES in national
sustainable development will be re-conceptualized. By
integrating carbon neutrality targets, regional and sectoral
synergistic development, and IES construction, the carbon
neutrality target dimension is added to the existing
conceptual understanding, theoretical approaches, and
optimization models, and a satisfactory combination of
planning and layout, engineering, and governance and
management measures is sought. At the same time, from the
perspective of the carbon neutrality target, we will re-examine
the multi-energy complementarity in the processes of clean
production and circular economy and reconstruct the
corresponding low-carbon industrial system.
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Wind and solar energy are the important renewable energy sources, while their
inherent natures of random and intermittent also exert negative effect on the
electrical grid connection. As one of multiple energy complementary route by
adopting the electrolysis technology, the wind-solar-hydrogen hybrid system
contributes to improving green power utilization and reducing its fluctuation.
Therefore, the moving average method and the hybrid energy storage module are
proposed, which can smooth the wind-solar power generation and enhance the
system energy management. Moreover, the optimization of system capacity
configuration and the sensitive analysis are implemented by the MATLAB
program platform. The results indicate that the 10-min grid-connected
volatility is reduced by 38.7% based on the smoothing strategy, and the
internal investment return rate can reach 13.67% when the electricity price is
0.04 $/kWh. In addition, the annual coordinated power and cycle proportion of
the hybrid energy storagemodule are 80.5% and 90%, respectively. The developed
hybrid energy storage module can well meet the annual coordination
requirements, and has lower levelized cost of electricity. This method provides
reasonable reference for designing and optimizing the wind-solar-hydrogen
complementary system.

KEYWORDS

wind-solar-hydrogen hybrid system, water electrolysis, fuel cell, fluctuation smoothing,
capacity configuration

1 Introduction

The use of fossil fuels has produced a large amount of greenhouse gases, exacerbating
global warming and climate change (Temiz and Dincer, 2023). Renewable energy can
mitigate the drawbacks of fossil fuels by meeting energy demand requirements, ensuring
long-term sustainable production and reducing the negative environmental impacts. Among
them, wind and solar are the two most widely used renewable energy power generation
technologies. They hold promise as clean and efficient sources of renewable energy,
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contributing to achieving net-zero emissions and reducing
dependence on fossil fuels (Eltayeb et al., 2023; Ma et al., 2023).

Therefore, the development of wind and solar power generation
is crucial for promoting the transformation of energy structure.
Nevertheless, the uncertainty and volatility of wind and solar power
generation pose significant challenges to the secure operation of
power systems (Han et al., 2023; Zhou et al., 2024), and how to
alleviate this situation has become a necessary research topic. In this
case, storage units become essential, albeit at a higher cost, and
more sophisticated wind-solar grid-connected strategies need to be
further developed to reduce energy abandonment rates (Das et al.,
2022). To address this issue, the researchers proposed an
intermediate buffer system to coordinate the supply side and the
user side from solar-wind hybrid generation. In order to alleviate
the impact of intermittent wind and solar power generation on
residential electricity consumption, Tajouo et al. (2023) and Zarate-
Perez et al. (2023) proposed a multi-energy complementary system
comprising PV/Wind/Battery. Through the real-time load
comparison with power generation and energy storage, the
integration of an energy storage system extends the full load
operation time of the electrolytic cell and reduces the cost of
hydrogen production. The flywheel energy storage system is also
adopted as an energy storage solution (Erdemir and Dincer, 2020;
Amry et al., 2023; Hutchinson and Gladwin, 2023). The
implementation of flywheel energy storage holds significant
potential in enhancing the Net Present Value, reducing the load
capacity, and optimizing the economic benefits. This allows for
flexible resource scheduling without compromising the system’s
economic viability. Liu et al. (2023b) and Nejadian et al. (2023)
utilized a wind-solar hybrid hydrogen production system to
mitigate fluctuations, enhance resource utilization, and
contribute to the standardization strategy of wind-solar hybrid
hydrogen production systems. Compared to the other energy
storage methods, hydrogen energy storage offers the advantage
of versatility across various fields, such as the chemical industry and
energy sector, resulting in higher economic benefits (Tang et al.,
2022; Kakavand et al., 2023). By combining water electrolytic with
wind and solar power generation, the fluctuating power from wind
and solar sources is converted into high-quality, high-calorific value
green hydrogen. This transformation helps to alleviate the problem
of abandoning wind and solar in power generation (Ruhnau, 2022;
Prestat, 2023). Moreover, it provides multiple advantages, such as
mitigating power fluctuations, ensuring power system stability, and
improving market value (Temiz and Dincer, 2022; Superchi et al.,
2023).

With the increasing scale of wind and solar power generation,
the system complexity, equipment capacity, and initial investment
also increase. To achieve the stable operation and enhance the
economic efficiency, it is essential to coordinate the capacity
configuration optimization and control strategy of the multi-
energy complementary system (Zhang and Maleki, 2022; Bai
et al., 2023). Liu et al. (2023a) proposed a wind-solar-hydrogen
multi-energy supply system integrated with the power grid to
distribute the power load, and evaluate the optimization potential
for each component of the optimized subsystem using exergy
destruction efficiency as an indicator, providing a foundation for
subsequent optimization. To optimize the hydrogen load demand
and investment costs according to the user requirements, Huang

et al. (2023) put forward a day-ahead optimal scheduling strategy
based on the principle of aligning energy demand values with the
system supply. Compared to the traditional scheduling strategy, the
daily profit increased by 12.5%. Liu et al. (2022) introduced a multi-
level control method suitable for a wind-solar-storage multi-energy
complementary system, enhancing both the stability of the power
grid and energy consumption capacity. Through economic analysis
of the same optimization target using different control methods, it
was found that the new control method significantly reduces the
investment cost. Zhang et al. (2023) proposed a system regulation
model considering thermal inertia and user comfort, which has a
positive impact on the high proportion utilization of renewable
energy. Wang et al. (2022) proposed an economic optimal
scheduling method with the objective of maximizing system
profit, which proves to be highly effective in adapting to the
market demand and achieving higher economic benefits. Ibáñez-
Rioja et al. (2023) optimized the control method and system capacity
based on the minimization of the Levelized Cost of Hydrogen,
leading to an increased running time of the electrolytic cell at full
load. Balancing economic considerations with enhancements and
meeting various scenario requirements, Li et al. (2022) conducted a
multi-objective optimization on the capacity configuration and
control method of a wind-solar-pumped hybrid storage system to
minimize investment costs and maximize system economic benefits.
Behzadi and Sadrizadeh (2023) proposed a multi-energy
complementary system of wind-solar-hydrogen to optimize the
system capacity configuration, reduce the peak capacity and
energy cost. The two-way connection with the heating network
and power grid enables the system to adequately satisfy the energy
demand in the building. Pan et al. (2023) optimized the control
method with the goal of minimizing the operating cost of the wind-
solar hybrid power generation system. As a result, the integration of
a wind-solar power grid system with hydrogen energy storage
enhances the utilization efficiency of wind and solar resources,
leading to improved economic benefits. It provides a more
effective and flexible allocation control scheme, especially when
integrating numerous new energy power generation systems, by
connecting renewable energy to the grid.

To satisfy the requirements of wind-solar power grid
connection, and then enhance the system’s stability and
economic efficiency, the capacity configuration method of the
multi-energy complementary system has been optimized, and
thus improved the system control strategy. These enhancements
will significantly improve the power supply stability and economic
feasibility of the system. Additionally, the fluctuating outputs of
solar and wind power impact the frequent start and stop of the
electrolyzer in energy storage devices, reducing their lifespan and
hydrogen production efficiency. To address these issues and ensure
the system’s stable operation, this work focuses on constructing a
hybrid energy storage module integrating batteries, electrolyzers,
and fuel cells. A wind-solar-hydrogen multi-energy complementary
grid-connected system has been developed. Furthermore, the
influencing factors of alkaline electrolyzers are analyzed, and a
grid connection strategy and capacity configuration optimization
method are proposed in conjunction with the hybrid energy storage
unit. The economic benefits and dynamic performance of the
optimized system are further analyzed. The main contributions
of this research can be outlined as follows:
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(1) The wind-solar-hydrogen multi-energy complementary system
is constructed. A smoothing strategy of power generation grid
connection based on sliding average method is proposed, which
mitigates the influence of wind-solar power rapid fluctuation.
The dynamic process of the system under this strategy is further
analyzed.

(2) The alkaline electrolyzer, battery, hydrogen tank and fuel cell
equipment are combined to form a hybrid energy storage
module. The energy management strategy is further
developed, and the module is used to coordinate the grid
connection of wind and solar power generation. In addition,
the system performance and dynamic operation characteristics
are evaluated.

(3) In order to improve the economic benefits of the wind-solar-
hydrogen complementary multi-energy complementary system,
the capacity configuration optimization model of the system is
established. And the differential evolution algorithm is used to
optimize the capacity configuration. The system investment
construction cost is further analyzed.

The rest of this paper is organized as follows: The process of
conceptual and mathematical modeling is introduced in Section 2.
The hydrogen production characteristics of alkaline electrolysis cell
and the capacity configuration model of wind-solar-hydrogen
coupled multi-energy complementary system is established in
Section 3. The main results and analysis are presented in Section
4 and the main conclusions are summarized in Section 5.

2 Wind-solar-hydrogen hybrid multi-
energy complementary system and
model

2.1 Wind-solar-hydrogen hybrid multi-
energy complementary system

In order to address the issue of fluctuations caused by the
large-scale integration of wind and solar energy into the grid,

this study proposes a multi-energy complementary system of
wind-solar-hydrogen hybrid by combining wind-solar hybrid
power generation, electrolytic water hydrogen production, and
fuel cell system. The system’s operational process is illustrated in
Figure 1. The key equipment of this system includes wind
turbines, photovoltaic generators, alkaline electrolyzers,
pressure hydrogen storage equipment, battery equipment, and
fuel cells.

In the integrated system, wind power generation and
photovoltaic power generation serve as the primary power
sources. The smoothed power generated is directly fed into the
grid for utilization. Excess clean green electricity is stored through
battery technology or utilized to drive the alkaline electrolyzer for
high-quality hydrogen production, which facilitates chemical energy
storage. Moreover, the hydrogen storage equipment and fuel cell are
employed as supplementary components for power generation,
thereby enhancing the overall stability of the system’s operation.

The whole wind-solar-hydrogen hybrid multi-energy
complementary grid-connected constitutes an “electricity-gas-
electricity” closed-loop structure. The wind and photovoltaic
output power are adjusted by the control system to reduce the
fluctuation of on-grid power and configure the hydrogen
production. The alkaline electrolyzer, hydrogen storage
equipment, battery and fuel cell together constitute a hybrid
energy storage module. When the proportion of wind and solar
power generation in the system exceeds the on-grid power, the
module adopts the measures of battery and alkaline electrolytic
water hydrogen production to absorb excess wind and solar power
generation energy. When the wind and solar power generation
power in the system is insufficient, the battery is used to
supplement the shortage of wind and solar power generation.
When the hydrogen energy storage is sufficient, the fuel cell is
used to supplement the shortage to further smooth the system‘s on-
grid power, as shown in Figure 2. In order to achieve the goal of
economic operation of the system, it is necessary to optimize the
capacity of equipment such as hydrogen production and fuel cell
with levelized cost of electricity(LCOE) as the target (Ang et al.,
2022).

FIGURE 1
Wind-solar hydrogen coupling multi-energy complementary system.
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2.2 Wind-solar hybrid hydrogen system
modeling

2.2.1 Wind and solar power output modeling
Wind turbine and photovoltaic array serve as the energy supply

components of the multi-energy complementary system. The wind
turbine’s output power, denoted as PWT, is contingent on the wind
speed v, thus wind power exhibits characteristics of fluctuation and
intermittency. The wind turbine’s output power is calculated as Eq. 1
(Chaichan et al., 2022; Nasrabadi and Korpeh, 2023):

PWT � 1
2
ρAWTv

3Cp (1)

where ρ is the air density,AWT is the swept area by the rotor andCp is
the coefficient of performance of the wind turbine, respectively.

Photovoltaic array converts the solar radiation into electrical
energy based on photoelectric effect, and the photovoltaic output
power PPV can be calculated as Eq. 2 (Praveenkumar et al., 2022):

PPV � NPV
D

D0
maxPPV + μ TPV − Ta( )[ ] (2)

where D and D0 are actual the solar irradiance and reference solar
irradiance, respectively. Tpv and Ta are the temperature of PV and
ambient temperature, NPV is the number of PV cell units, μ is the
temperature coefficient of module efficiency.

2.2.2 Alkaline electrolyzer modeling
As for the electrolyzers, the load power is adapted by adjusting

its current, and the temperature-dependent electrode kinetics of the
alkaline electrolytic cell stack can be modeled as Eq. 3 (Fang and
Liang, 2019):

VAE � Vrev + r

AAE
IAE + s log

TAE

AAE
IAE + 1( ) (3)

where VAE and Vrev are the voltage and reversible voltage,
respectively. TAE is the temperature of the electrolyzers, r is the
ohmic resistance parameter of the electrolyte, AAE is the effective
area of the electrolyzers, and s is the electrode overvoltage
coefficients.

The molar rate of hydrogen production nH2 is obtained by Eq. 4
(Fang and Liang, 2019):

nH2 � ηF
NAEIAE
2F

(4)

where NAE and IAE represents the number of electrolyzer and
electrolyzer current, respectively. F is the Faraday constant of
96487 C/mol.

The electrolysis efficiency ηAE is formulated as Eq. 5 (Fang and
Liang, 2019):

ηAE �
nH2ΔG
PAE

(5)

where ΔG is the Gibbs free energy of the electrochemical reaction.

2.2.3 PEMFC modeling
The fuel cell converts the stored hydrogen into electricity to

supplement the grid shortage. The output power of fuel cell is mainly
affected by its own polarization characteristics, and its output power
PFC can be expressed by Eqs. 6–10 (Jia et al., 2009; Li et al., 2021):

PFC � NFCIFC Vnernst − Vact − Vohmic − Vcon( ) (6)
where IFC represents output current of fuel cell and Vnernst, Vact,
Vonmic and Vcon present thermodynamic potential, activation losses,
ohmic losses and concentration losses, respectively. NFC is the
number of fuel cells.

Vnernst � ΔG
2F

+ TFCΔSFC
2F

+ RTFC

2F
ln

pH2
���
pO2

√
pH2O

( ) (7)

Vohm � IFCRohm (8)
Vact � ξ1 + ξ2TFC + ξ3TFC lnB0 + ξ4TFC ln IFC (9)

Vcon � RTFC

2F
ln

max jFC
max jFC − jFC

( ) (10)

where TFC is the temperature of fuel cell, R represents the ideal gas
constant, pH2, pO2 and pH2O are the pressures at the reaction
interface. Rohm is the resistance to H+

flow in the exchange
membrane. ξ1, ξ2, ξ3 and ξ4 are empirical parameters, B0
represents the oxygen concentration at the cathode gas level, jFC
is the current density.

2.2.4 Battery and hydrogen storage modeling
To further enhance the utilization of wind and solar energy, a

lithium iron phosphate battery is used as energy storage device. This
enables the storage of the excess wind and solar energy power after
the hydrogen production, supplementing power during the period of
insufficiencies. The capacity of battery Ebat(t) at time t can be
expressed as Eqs. 11, 12 (Tajouo et al., 2023):

Ebat t( ) � 1 − σ( )Ebat t − 1( ) − ΔEbat t( ) (11)
ΔEbat t( ) � Pbatηbat outΔt Pbat < 0

PbatΔt/ηbat in Pbat > 0{ (12)

where σmeans the self-discharge rate of the battery. ηbat_in and ηbat_
out represents charging efficiency and discharging efficiency,
respectively. Pbat(t) is the power of the battery. When Pbat(t) >
0 the battery will be charged. Conversely, the then battery will be
discharged when Pbat(t) < 0.

Moreover, the inclusion of hydrogen storage equipment is
crucial to enhance the stability of hydrogen transportation.
Gaseous high-pressure hydrogen storage technology is primarily

FIGURE 2
Smooth grid connection and shortage supplement schematic
diagram.
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employed for short-term storage of hydrogen, ensuring efficient and
reliable operation. According to the Clapeyron equation, the state of
the tank can be obtained by Eq. 13.

QHT t0 + Δt( ) � ∫
t0+Δt

t0

nHT t( )dt + QHT t0( )

pHTQHT � RTHTnHT × 10−6

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (13)

where pHT and QHT are the pressure and volume of the hydrogen
storage tank, respectively. nHT is the hydrogen molar amount. THT is
the thermodynamic temperature of hydrogen storage, and R
represents the ideal gas constant.

In the wind-solar hybrid hydrogen production system, the key
parameters of the main equipment are presented in Table 1 (Su et al.,
2023).

3 Capacity configuration method of
wind-solar hybrid multi-energy
complementary system

In the multi-energy complementary system of wind-solar-
hydrogen hybrid, the alkaline electrolyzer plays a crucial role in
the hybrid energy storage module. Its operational characteristics and
dynamic behavior directly impact the stabilization characteristics of
the entire multi-energy complementary system. Additionally, the
scheduling strategy and capacity configuration method employed in

the system also have significant effects on the operation cost of the
entire system.

3.1 Operating characteristics of alkaline
electrolyzer for hydrogen production

The alkaline electrolyzer, battery, hydrogen storage tank and
PEMFC constitute the energy storage and consumption link of the
multi-energy complementary system of wind-solar-hydrogen
coupling. The battery is used as an electrochemical energy
storage device, which has the characteristics of fast cycle speed
and low cycle life, while the corresponding speed of PEMFC is
milliseconds to seconds, both of them can adapt to the rapid
fluctuation of power. In contrast, the alkaline electrolyzer has a
slower response speed and a certain lag, and its operating state will
greatly affect the operating state of the hybrid energy storage
module. This work will mainly analyze the operation
characteristics of alkaline electrolyzer in wind and solar power
generation. The analysis holds great significance in formulating a
coordinated grid-connected operation strategy for the system and
enhancing its overall stability.

In the wind-solar power generation hydrogen production
system, the wind-solar power as the power input source, which
will affect the hydrogen production process of electrolytic water.
External environmental conditions, such as wind speed, radiation
intensity and other factors affecting wind and solar power
generation power, indirectly affect the rate of hydrogen
production from electrolytic water. In addition to the indirect
factors, the hydrogen production rate of alkaline electrolyzer is
also affected by the working current, working temperature and
operating characteristics. The operating characteristics of alkaline
electrolyzer in the actual operation process are as follows:

(1) Working fluctuation characteristics: Electrolyzers can operate
efficiently within a range of 15%–100% of their nominal
capacity (Lüke and Zschocke, 2020). Within this range, the
electrolyzer offers fine-grained power regulation capabilities.
Operating the electrolyzer below 15% of its rated power for an
extended period can lead to the risk of explosion in the
electrolytic cell. Conversely, operating the electrolyzer at a
current density higher than the rated current density can
cause damage to the stack material. Consequently, the
minimum rated power of 15% is a critical specification
adhered to by most manufacturers.

(2) Start-stop characteristics: At this time, the alkaline electrolyzer
is in a long-term non-working state, consuming no power and
ceasing hydrogen production. Upon restarting, power
consumption is initially directed towards raising the
temperature of the alkaline electrolyzer since it may not be
sufficiently high to initiate hydrogen production (Ulleberg et al.,
2010).

(3) Thermal insulation characteristics: During the shutdown of the
alkaline electrolyzer, an environmental control device is
employed to maintain the cell’s temperature within a specific
range, ensuring that hydrogen production requirements can still
be met. Under this state, provided that the fluctuating power
supply is replenished promptly, the alkaline electrolyzer can

TABLE 1 Key parameters used for the modeling of the hydrogen system.

Component Parameter Value

Wind turbine Single rated power 2000 kW

Inflow wind speed 3 m/s

Rated wind speed 12.5 m/s

Outflow wind speed 25 m/s

Mounting height 80 m

Photovoltaic panel Single rated power 350 W

Peak voltage 34.2 V

Peak current 9.96 A

Open-circuit voltage 41.7 V

Short-circuit current 10.55 A

Alkaline electrolyzer Single rated power 2000 kW

Single rated hydrogen capacity 400 Nm3/h

Hydrogen power operating range 15%–100% Capacity

PEMFC Single rated power 1,000 kW

Numbers of cells in series 48

Battery The range of SOC 0.15–0.9

Charge and discharge efficiency 98%

Hydrogen storage Storage pressure range 0.2–5 MPa

Storage temperature 25°C
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resume operation within a certain period after being shut down
(Shen et al., 2018).

Hence, based on the operating characteristics of the alkaline
electrolyzer, a sensitivity analysis of the working current and
working temperature will be conducted to simulate and analyze
the dynamic operation of hydrogen production through electrolytic
water under fluctuating power conditions. Additionally, during
practical operation, utmost emphasis will be placed on ensuring
the safety and stability of the electrolyzer, enabling it to operate
efficiently even under varying loads.

3.2 Control strategy of wind-solar-hydrogen
coupling multi-energy complementary
system

3.2.1Wind-solar power generation grid-connected
smoothing strategy

In this paper, the sliding average method is used to smooth the
output power of wind and solar power and improve the utilization
rate of these renewable energy resources. Through the
meteorological prediction parameters of wind speed and
radiation, the wind and solar power generation model is used
to calculate the wind and solar power generation power, and the
grid-connected power is further smoothed by the sliding average
method. The basic principle is to smooth the data by calculating
the average value of the data in a certain window. The expression is
expressed as Eq. 14

Pgird t( ) � 1
l

∑t+N/2

t1�t− N/2−1( )
PWT t1( ) + PPV t1( )( ) (14)

where Pgrid is the grid-connected power, and l is the window scale,
which is the important parameter of the moving average method.
The larger the value is, the smoother the grid-connected power is. If
the window scale is too large, a higher energy storage system needs to
be configured. If the window scale is too small, it cannot meet the
grid-connected requirements.

By employing the maximum fluctuation rate as a measure of the
peak-valley difference in power fluctuations, one can systematically
determine an appropriate window scale. Additionally, to
comprehensively capture the overall dynamics of power
fluctuations, output standard deviation (Eq. 15) and maximum
fluctuation rate (Eq. 16) will be utilized as indicators to evaluate
the effectiveness of power fluctuation (Ren et al., 2023).

d � 1
Pmax

������������
1
N

∑N
t�1

Pt − �P( )2
√√

(15)

where d is the standard deviation of output, the smaller the standard
deviation, the smaller the fluctuation of wind power. Pmax presents
the maximum operating power.

kmax � Pt − Pt−1| |
Pmax

× 100% (16)

where kmax is the maximum fluctuation rate, which reflect the
maximum fluctuation of wind and solar power.

As a result, by setting the grid-connected power fluctuation within a
10-min time interval as a constraint, the minimum window scale that
adheres to the specified fluctuation limit will be identified. Subsequently,
the grid-connected power of wind-solar power generation will be
calculated using this minimum window scale. Any disparities
between the grid-connected power and the actual power generated
by wind-solar sources will be managed and balanced through the
utilization of a hybrid energy storage module. This approach ensures
efficient coordination and management of the power fluctuations,
contributing to a stable and reliable grid-connected power system.

3.2.2 Energy management strategy of hybrid
energy storage mode

In this hybrid energy storage module, both the battery and PEMFC
are capable of achieving rapid power regulation, while the alkaline
electrolyzer can perform large-scale power regulation at a minute level.
However, the electrolyzer should not be operated at low power levels for
extended durations. With the objective of ensuring the operational

FIGURE 3
Diagram of energy management strategy for hybrid energy
storage module.
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range of each device, this strategy utilizes the state of charge (SOC) of
the battery reserve as a crucial benchmark for power regulation. At the
same time, due to the different power between the wind-solar and the
grid-connected at each moment, the charging and discharging state of
the hybrid energy storage module can be reflected. The difference
charging state(Pad) is combined with the SOC of battery to form the
following operating mode, as shown in Figure 3.

Mode 1: When the hybrid energy storage is in the charging state
(Pad > 0), the excess power after grid-connected is stored by the
battery and the electrolytic cell:

(1) When the module meets the following conditions, as expressed
by Eq. 17:

Pad > 0
SOC< SOCmax

{ (17)

There is an excess margin of the battery, which will be stored
through the battery.

(2) When the module meets the following conditions, as expressed
by Eq. 18 the electrolytic cell is mainly used for hydrogen
production to convert electrical energy into chemical energy:

Pad > 0
SOC≥ SOCmax

{ (18)

The battery has no excess energy storage, so the electrolyter works.
When Pad does not meet the minimum hydrogen production power,
the battery will be supplemented to meet its minimum operation and
less outage time. When Pad is in the power range of the electrolyzer will
be used for normal hydrogen production, and the hydrogen will be
stored in the hydrogen storage tank, and the excess hydrogen can be
transported as a product. In addition, the power exceeding the working
range of the electrolyzer will be discarded.

Due to the operating characteristics of the alkaline electrolyzer, it
requires a certain time for restarting up. To enhance its operation
duration, the SOCAE is established within the SOC operating
interval. When the alkaline electrolyzer is in operation and the
SOC is more than the SOCAE, because of the battery storing
sufficient power, the Pad and battery supply power to ensure the
lowest power operation. However, when the SOC is less than SOCAE,
the alkaline electrolyzer ceases operation to prevent rapid shutdown.

Mode 2: When the hybrid energy storage is in the discharge state
(Pad < 0), the battery and PEMFC in the hybrid energy storage
module are needed to supplement:

(1) When the module meets the following conditions, as expressed
by Eq. 19:

Pad < 0
SOC> SOCmin

{ (19)

Under this condition, the battery has enough power to
supplement the shortage, and thus, the shortfall is directly
supplemented through battery discharge.

(2) When the module meets the following conditions, as provided
in Eq. 20 the PEMFC is mainly used to consume hydrogen to
generate electricity to supplement the shortage:

Pad < 0
SOC≤ SOCmin

{ (20)

In this situation, the battery no longer supplements the shortage,
and the PEMFC starts consuming the hydrogen from the hydrogen
storage tank for discharge. If the hydrogen level of the tank falls
below the minimum value, the PEMFC will shut down without
consuming hydrogen any more, and alternative flexible resources
will be scheduled for compensation. However, when the quantity of
hydrogen in the tank is sufficient, the PEMFC will operate at rated
power and prioritize the power supply to grid. If the power supply is
insufficient, other resources will be utilized to compensate.
Conversely, if the power supply is sufficient, the excess power
will be directed to charge the battery.

By implementing the above energy management strategy,
effective coordination among the battery, alkaline electrolyzer,
hydrogen storage tank, and PEMFC will be achieved, enabling a
seamless grid connection of wind and solar power generation. And
setting the state condition of SOCAE, it provides a buffer for the
running of the electrolyzer and improves coordination. In addition,
compared with conventional energy storage, the adopted hybrid
energy storage is also conducive to reducing the total scale of energy
storage capacity.

3.3 Capacity configuration optimization
model of wind-solar-hydrogen coupling
multi-energy complementary system

Based on the grid-connected smoothing strategy of wind-solar
power generation and the energy management strategy of hybrid
energy storage module, the capacity configuration optimization
model of multi-energy complementary system with wind-solar-
hydrogen coupling is further established to improve the economy
of the system.

3.3.1 Objective function and decision variables
The LCOE of the multi-energy complementary system is used as

the optimization objective function, and the alkaline electrolyzer,
battery, fuel cell and hydrogen storage are used as decision variables
to optimize the capacity configuration of the equipment by
minimizing the LCOE. The objective function is expressed as Eq. 21
(Sultan et al., 2023):

LCOE �
Cinv − RS

1+i( )L + ∑L
y�1

CO&M+Ccomp−cH2MH2

1+f( )y/ 1+i( )y( )
∑L
y�1

PgridΔt( ) (21)

where RS is the scrap value of fixed assets, L is the lifetime, f is the
inflation rate, and i is the interest rate 8%. MH2 is the mass of
hydrogen production, cH2 is the unit hydrogen price. Cinv is the total
investment cost of each equipment. CO&M is the total operating cost
of each equipment, and Ccomp is the additional power supplement
cost. The equipment investment cost and operation and
maintenance cost corresponding to each equipment are shown in
Table 2 (Buttler and Spliethoff, 2018; Dowling et al., 2020; Zhao
et al., 2022; Al-Ghussain et al., 2023; Han et al., 2023).
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(1) The investment cost includes the initial investment in wind
power generation equipment, photovoltaic arrays, alkaline
electrolyzers, batteries and fuel cells, which can be calculated
by Eq. 22:

Cinv � cinv WTEWT + cinv PVEPV + cinv AEEAE + cinv batEbat

+ cinv FCEFC + cinv HTEHT (22)
where cinv is the unit equipment purchase cost of each equipment,
and E is the total capacity of each equipment.

(2) The operation and maintenance is the sum of the operation and
maintenance cost of each equipment in the system life cycle,
which can be calculated as Eq. 23:

CO&M � cO&M WTEWT + cO&M PVEPV + cO&M AEEAE + cO&M batEbat

+ cO&M FCEFC + cO&M HTEHT

(23)
where cO&M is the unit operation and maintenance cost of each
equipment, and E is the total capacity of each equipment.

(3) The additional power compensation cost can be calculated as
Eq. 24:

Ccomp � ccompPcomp (24)

In addition, IRR is used to evaluate the economic characteristics
of the system, with the expression of as Eq. 25 (Meng et al., 2023):

∑L
y�1

Cin − Ccost( )y 1 + IRR( )−y � 0 (25)

where Cin and Ccost are the revenue and expenditure of the system in
year y, respectively.

3.3.2 Constraint condition
During system operation, the wind-solar-hydrogen coupling

multi-energy complementary system must prioritize safe and
stable operation, which necessitates the implementation of certain
constraints.

(1) Power balance constraint. The dynamic operation of the system
satisfies the energy conservation constraint, that is, the difference
between the wind-solar complementary output power generation
and the grid-connected power is adjusted by the hybrid energy
storage module, which can be expressed as Eq. 26:

PWT + PPV − Pgrid � PAE + Pbat + PFC + Pcomp (26)

(2) Equipment operation constraints. Alkaline electrolyzer and fuel
cell operating power should be within the allowable range, with
the power constraints being expressed as Eq. 27:

minPAE ≤PAE ≤ maxPAE

minPFC ≤PFC ≤ maxPFC
{ (27)

(3) Energy storage and hydrogen storage constraints. The battery
and hydrogen storage tank, serving as energy storage and
hydrogen storage equipment, need to be constrained within a
certain reserve range due to safety limitations. The
formulation is Eqs. 28, 29:

min SOC≤ SOC≤ max SOC (28)
min SOH≤ SOC≤ max SOH (29)

where SOC is the battery state of charge, SOH is the state of
hydrogen tank.

(4) The on-grid power of wind-solar power generation should be
guaranteed within a safe range. The formulation is Eq. 30:

ΔPgrid 10 ≤ 10, EWT + EPV( )< 30
ΔPgrid 10 ≤ EWT + EPV( )/3, 30≤ EWT + EPV( )≤ 150
ΔPgrid 10 ≤ 50, EWT + EPV( )> 150

⎧⎪⎨⎪⎩ (30)

where ΔPgrid_10 is the difference of on-grid power at a 10-min
interval. (EWT+EPV) is the installed scale of wind-solar power
generation, with the unit of megawatt.

4 Results and discussion

This section conducts an in-depth analysis of the capacity
configuration and dynamic operation of the wind-solar-hydrogen
coupling multi-energy complementary system, incorporating the
operation strategy and capacity configuration optimization method.
Specific application cases are examined to analyze the influencing
factors of hydrogen production in alkaline electrolyzers. This
analysis will lead to further optimization of the capacity
configuration for each device, followed by a comprehensive
investigation into the dynamic operation characteristics of the
system.

4.1 Operating characteristics analysis of
alkaline electrolyzer

In the wind-solar-hydrogen coupling multi-energy
complementary system, the process of hydrogen production
through water electrolysis with the alkaline electrolyzer is subject
to various influencing factors, including equipment parameters,
power fluctuations, and environmental conditions. The influence
of equipment parameters on its operating state is first examined.
Figure 4 illustrates the relationship between the working voltage,
working power, and input current of a single alkaline electrolyzer. As
the temperature of electrolyzer increases, the working voltage of the

TABLE 2 Cost of the main components for wind-solar power and electrolysis.

Equipment Capital cost Operation cost Lifetime

Group PV 540 $/kW 6 $/kW/y 30

Wind turbine 825 $/kW 15.73 $/kW/y 20

Alkaline electrolyzer 657 $/kW 2% Capital cost 20

Battery 261 $/kWh 0.004 $/kWh/h 10

Fuel cell 2400 $/kW 2% Capital cost 20

Hydrogen tank 575 $/m3 2% Capital cost 20
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electrolyzer gradually decreases due to the activation of the
electrolysis catalyst. Meanwhile, with the increase in current
density, the voltage gradually increases, indicating that the
electrolyzer is non-linear resistive. Moreover, the power of the
electrolyzer also decreases with the increasing temperature. It can
be seen that an appropriate increase in temperature is conducive to
alkaline electrolysis water hydrogen production.

Figure 5 depicts the relationship between electrolysis efficiency
and current in different temperatures. It shows that there is a clear
correlation between the state of the alkaline electrolytic cell and the
input current. The electrolytic cell efficiency initially increases with
rising current. When the current reaches 70 A, the efficiency
decreases after reaching the peak, furthermore, both of the
maximum efficiency of the electrolytic cell and the
corresponding current rise with the increasing working
temperature. At lower current density, the working temperature
exerts minimal influence on the electrolysis efficiency, while the
efficiency increases with increasing temperature at the work load
conditions.

During the stable operation period, the continuous operation
of the electrolytic cell at a predetermined temperature and rated
power level can be ensured by accurately adjusting the input
current. However, when the current input to the electrolyzer
fluctuates, the electrolyzer cannot be guaranteed to operate
continuously within the optimal operating rang, which will
directly affect the hydrogen production efficiency and stability
of the system. As depicted in Figure 6, the input fluctuation power
supply is used to simulate different states of the electrolytic cell,
including start-up, normal fluctuation states and large volatility
fluctuation states. After an initial 10-min shutdown, the
electrolyzer experiences a start-up lag of more than 30 min
before commencing hydrogen production. When the electrolytic
cell reaches the rated working state, the load power further
increased resulting in an increase in temperature and a decrease
in electrolysis efficiency. Subsequently, the load power remains
stable at the rated operating condition, resulting in an energy loss
of 82.6% throughout this process. At the 50 min, the input power
enters in a fluctuating state. During the periods of decreased input
power, the load power of the electrolyzer also decreases, affecting

FIGURE 4
The relationship between current and voltage and current at different temperatures.

FIGURE 5
Relationship between electrolysis efficiency and current in
different temperatures.

FIGURE 6
The operating state diagram of the electrolytic cell under
simulated fluctuating power.
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the reaction speed. During this period, the load power of the
electrolyzer performs similar to the input power. While at the
increasing periods of the input power, the load power exists a slight
lag affected by reaction speed. At the 70 min, the input power
reaches 0, causing the cell to shut down and electrolytic efficiency
decrease to 0. About 5 min later, the input power returns to the
rated power while the load power gradually increases according to
the limits of the power regulation speed without experiencing
another start-up time. The energy loss of the process is reduced to
20.7%, indicating that the short-term shutdown of the electrolytic
cell is beneficial for the recovery of working power due to its
thermal insulation characteristics.

In the practical operational scenario, the power fluctuations
of wind and photovoltaic power generation are more complex
compared to the simulated fluctuating power in the previous
case. A two-day dataset with a time resolution of 10 min was
further simulated for a specific area in Jilin Province, China. The
installed capacity of both wind and photovoltaic power systems
is set as 2 MW, and the installed capacity of alkaline electrolyzer
is 2 MW as well. The simulation results are presented in Figure 7.
In the investigated situation, the photovoltaic system operates
solely during the daytime, while the wind turbine operates
throughout the day, and its power generation at night is
higher. Additionally, the volatility of wind power generation
is more pronounced compared to photovoltaic power
generation. Photovoltaic hydrogen production experiences
only a slight lag during the start of photovoltaic power
generation. However, wind power exhibits frequent
fluctuations, with the maximum volatility reaching as high as
47.2%. Consequently, the lag of the electrolytic cell in response
to wind fluctuations is more significant. Overall, the simulation
results indicate that wind power has a more substantial impact
on the hydrogen production of the electrolytic cell when
compared to photovoltaic power generation. The frequent
and larger fluctuations in wind power pose greater challenges
for maintaining stable hydrogen production in the
electrolytic cell.

4.2 Capacity configuration optimization of
multi-energy complementary system

The large-scale application scenarios of the capacity
configuration method of wind-solar-hydrogen coupling multi-
energy complementary system are studied. The analysis will
cover a total time scale of 1 year, and the case will involve an
installed capacity of 150 MW for both wind and photovoltaic power
systems. Considering the standard of grid-connected power, a
maximum fluctuation rate limit of 16.7% for a 10-min interval is
imposed. To satisfy this limit, the approach involves increasing the
window scale for calculating fluctuations. Through this method, it is
observed that when the window scale is set to 4, the maximum
fluctuation rate for a 10-min time interval reduces to 12.6% (after
smoothing) from 51.3% (before smoothing), resulting in a
substantial reduction of 38.7%. This improvement of the
maximum fluctuation rates after smoothing is shown in Figure 8.
Due to the application of the smoothing technique, the grid-
connected power fluctuations can achieve the required standards,
effectively achieving control over grid-connected power fluctuations
using the sliding average method.

Further the particle swarm optimization algorithm is used to
optimize the minimization of LCOE. It’s configured with a particle
swarm size of 100 and a total of 80 iterations. the capacity
configuration optimization results and system costs of each
device can be obtained, as presented in Table 3. The final
optimization results show that the LCOE is 0.0324 $/kWh, and
the total investment cost is 233.3 million dollars. Additionally, there
is an extra power compensation cost of 1.167 million dollars due to
the limitation of the hybrid energy storage module in stabilizing the
entire power output.

Under this capacity configuration scale, hybrid energy storage
equipment accounts for 8.3% of the scale of wind and solar
construction. In addition, the proportion of initial investment on
wind power generation, photovoltaic power generation, electrolytic
cell, battery, PEMFC, hydrogen storage tank and other equipment is
shown in Figure 9. Among them, wind turbines and photovoltaic

FIGURE 7
Two consecutive days of wind-solar power generation and
electrolytic cell load power in Jilin Province, China.

FIGURE 8
The maximum fluctuation rate of 10 min before and after wind
and solar power smoothing.
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generators are the main power generation equipment, and their
purchase costs account for the highest proportion, which is 54.6%
and 35.8% respectively. After wind and solar power generation, most
of the power is used for grid-connected utilization, so their
investment accounts for the largest proportion. For the hybrid
energy storage module, the single-machine construction cost of
FC is high, so the initial investment cost is the highest.
Compared with it, the cost of the battery is lower, but its service
life is also shorter (10 years). In the middle of the life of the multi-
energy complementary system, a batch of battery equipment needs
to be replaced, and its total investment is higher.

Wind-solar power integration serves as the primary means to
reap the benefits of the system. The system achieves an annual grid-
connected amount of 867.5 million kWh. The monthly grid-
connected power generation volumes are illustrated in Figure 10,
with the highest grid-connected power occurring in April at
104 million kWh, and the lowest in November at 53 million
kWh. This data indicates that the grid-connected volume is lower
during winter months, while it is higher in spring and summer. On
average, the monthly grid-connected power for the year amounts to
72 million kWh. Considering the current LCOE of 0.0324 $/kWh,
setting the electricity price at 0.04 $/kWh allows for an economic
analysis. The internal rate of return (IRR) is calculated to be 13.67%,

demonstrating the system’s favorable economic performance. This
positive IRR reflects the economic feasibility of the multi-energy
complementary system.

4.3 Operation analysis of wind-solar-
hydrogen coupling multi-energy
complementary system

Through the above capacity configuration of the multi-energy
complementary system of wind-solar-hydrogen coupling, the scale
of hybrid energy storage equipment under the total installed
capacity of 300 MW is obtained. This section further analyzes the
system operation process. This strategy first divides the wind and
solar power generation power into two parts by the moving average
method, namely, the wind and solar grid-connected power and the
hybrid energy storage coordinated power, as shown in Figure 11.
The annual real-time wind-solar grid-connected power is relatively
smooth, and the standard deviation is reduced to 22.63%. The
fluctuation rate of the hybrid energy storage regulation power is
significantly low, with the maximum value of 60.0%. It is difficult for
the battery, alkaline electrolytic cell, fuel cell and other equipment in
the hybrid energy storage module to coordinate excessive power
fluctuations, for the module mainly coordinates the power in the
range of [-16,16] MW. Moreover, the proportion of data points
distributed in this range is 90.3%. Therefore, the module can meet
the power smoothing situation in most cases, and the annual
coordinated power accounts for 80.5% of the total volume. The
additional missing power can be supplemented by other flexible
power sources, ensuring good coordination of the system.

As shown in Figure 12, two consecutive days are selected to
analyze the operation of each device of the multi-energy
complementary system. From the actual operating power of each
device, the energy storage device plays a crucial role as the main
adjustment mechanism. However, the power fluctuation requiring
adjustment exceeds the limit of the hybrid energy storage’s
capabilities. When the compensating power is negative, power

TABLE 3 System capacity configuration optimization results.

Type Parameter Value

Capacity configuration Wind turbine 150 MW

Photovoltaic 150 MW

Alkaline electrolyzer 6080 kW

Fuel cell 5866 kW

Battery 13174 kWh

Hydrogen tank 320 m3

Economic cost capitalized cost 226.4 million $

operation and maintenance cost 4.0 million $

power compensation cost 1.2 million $

total cost 231.6 million $

LCOE 0.0324 $/kWh

FIGURE 9
The proportion of initial investment cost of each equipment.

FIGURE 10
The grid-connected amount of wind and solar power generation
in each month of the year.
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needs to be supplied to the grid. Batteries and fuel cells can guarantee
most of the power supply, while coordinated power adjustments are
necessary to regulate the remaining fluctuations. This ensures the
safety of electricity consumption and meets the requirements for
adjusting grid-connected power. On the other hand, when the
compensating power is positive, the battery remains the primary
regulating device, with the alkaline electrolyzer coordinating.
However, when the power generation exceeds the system storage,
the excess part will be wasted.

In contrast, the electrolyzer and fuel cell regulate electricity
through the generation and utilization of hydrogen, serving as
auxiliary devices. During their operation, they exhibit lower
volatility and there are instances of equipment standby. And
hydrogen energy serves as a form of energy storage, it enables
prolonged energy storage. Moreover, during power
supplementation, the fuel cell facilitates rapid replenishment. Due
to the relatively slow response of the alkaline electrolyzer, it exhibits
lower operational volatility compared to the fuel cell, and there is a

lag in hydrogen production. However, by integrating energy storage
devices such as the electrolyzer, fuel cell, and battery, the fluctuation
in wind and solar power output can be effectively reduced, and the
total energy storage capacity is also lower.

In order to ensure the stable operation of the system, it is
necessary to understand the working environment of the battery.
Therefore, real-time charge and discharge power and the energy
storage SOC of the battery are further analyzed and summarized in
Figure 12. From the data, it is evident that the battery meets the
adjustment requirements within its operating range and undergoes
frequent charging and discharging cycles. Additionally, the SOC of
the battery is maintained between 0.2 and 0.8, effectively avoiding
overcharging and overdischarging, which can be detrimental to the
battery’s lifespan. In summary, although the hybrid energy storage
module cannot fully coordinate all the power fluctuations, it
satisfactorily meets the coordination requirements for most of the
electricity throughout the year. The battery’s operation ensures good
regulation within its designed operating range. Furthermore, the use

FIGURE 11
Real-time grid-connected power and hybrid energy storage adjustment power throughout the year.

FIGURE 12
Operation of each equipment of multi-energy complementary system.
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of power compensation facilitates stable and safe electricity
consumption, contributing to the overall efficient operation of
the multi-energy complementary system.

5 Conclusion

The study primarily focuses on power grid smoothing, operation
strategy and capacity configuration optimization of hybrid energy
storage modules for large-scale wind and solar power grid-
connected scenarios. The main conclusions can be summarized
as follows:

(1) The operating state and hydrogen production efficiency of the
alkaline electrolyzer are influenced by the current density and
operation temperature. Fluctuating power supplies have a
significant impact on the electrolytic cell, leading to energy
losses during start-up to the rated state (82.6%) because of the
power adjustment speed limits (20.7%). In the practical
operation, frequent wind fluctuations exacerbate the lag of
the electrolytic cell.

(2) The study employs the sliding average method to reduce the
grid-connected power fluctuations of wind and solar power
generation. Through capacity configuration optimization, with
an LCOE of 0.0324 $/kWh, the hybrid energy storage module
accounts for 8.3% of the wind-solar system’s total capacity, with
a total cost of 233.2 million dollars. The annual grid-connected
capacity reaches 8.7 million kWh.

(3) By employing the wind-solar-hydrogen hybrid multi-energy
complementary system and the control strategy, real-time
annual wind-solar power can smoothly connect to the grid
with the standard deviation reduction of 22.63%. The hybrid
energy storage module can achieve majority coordination
requirements, with annual coordinated power accounting for
80.5% of the total and covering 90.3% of the time period.

This study proposed a grid-connected smoothing strategy and
capacity configuration optimization method of the wind-light-
hydrogen coupled multi-energy complementary system. It offers
technical and methodological suggestions and reference for the
formulation of wind-solar hydrogen production scheme with
excellent overall performance.
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Nomenclature

A area

a ambient

C cost

c unit cost

D solar irradiance

d output standard deviation

E capacity scale

F faraday constant

f inflation rate

I current

i interest rate

j current density

k fluctuation ratio

L lifetime

l window scale

M mass

N number

n molar amount of hydrogen

P power

p pressure

Q volume

s electrode overvoltage coefficient

T temperature

t time

V voltage

v wind speed

y the number of years

Greek

α diode quality factor

η efficiency

ξ the empirical parameters

ρ the air density

σ the self-discharge rate of the battery

τ the performance coefficient of the wind turbines

Subscript

AE alkaline electrolyzer

ad adjusted power

bat battery

comp compensation

FC fuel cell

grid on-grid

HT hydrogen tank

inv investment cost

O&M operation & maintenance

PV photovoltaic

WT wind turbine

Abbreviations

PEMFC proton exchange membrane fuel cell

IRR internal rate of return

LCOE levelized cost of electricity

RS residual value of fixed assets

SOC battery state of charge

SOH state of hydrogen tank
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Comprehensive evaluation
research of hybrid energy systems
driven by renewable energy based
on fuzzy multi-criteria
decision-making

Xiangyu Chen1, Chunsheng Chen1, Guang Tian1, Yang Yang2 and
Yunhao Zhao3*
1State Grid Hebei Electric Power Co., Ltd., Shijiazhuang, Hebei, China, 2State Grid Hebei Economics
Research Institute, Shijiazhuang, Hebei, China, 3North China Electric Power University National Institute of
Energy Development Strategy, Beijing, China

Theworsening of climate conditions is closely related to the large amount of carbon
dioxide produced by human use of fossil fuels. Under the guidance of the goal of
“carbon peaking and carbon neutrality goals”, with the deepening of the structural
reform of the energy supply side, the hybrid energy system coupled with renewable
energy has become an important means to solve the energy problem. This paper
focuses on the comprehensive evaluation of hybrid energy systems. A complete
decision support system is constructed in this study. The systemprimarily consists of
four components: 1) Twelve evaluation criteria from economic, environmental,
technological, and socio-political perspectives; 2) A decision information collecting
and processing method in uncertain environment combining triangular fuzzy
numbers and hesitation fuzzy language term sets; 3) A comprehensive weighting
method based on Lagrange optimization theory; 4) Solution ranking based on the
fuzzy VIKOR method that considers the risk preferences of decision-makers.
Through a case study, it was found that the four most important criteria are
investment cost, comprehensive energy efficiency, dynamic payback period and
energy supply reliability with weights of 7.21%, 7.17%, 7.17%, and 7.15% respectively.
A1 is the scheme with the best comprehensive benefit. The selection of solutions
may vary depending on the decision-maker’s risk preference. Through the
aforementioned research, the decision framework enables the evaluation of the
overall performance of the system and provides decision-making references for
decision-makers in selecting solutions.

KEYWORDS

hybrid energy system, comprehensive evaluation, comprehensive weights method,
VIKOR method, hesitant fuzzy linguistic term set

1 Introduction

1.1 Background and motivation

Energy is the cornerstone of human survival and development. Faced with multiple
challenges such as resource shortage, environmental damage and climate change,
traditional energy production and supply modes cannot meet the needs of social
development (Zhang et al., 2023). As the world’s largest carbon emitter, China’s main
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source of carbon dioxide emissions is the burning of fossil fuels,
accounting for 88% (Zeng et al., 2023). Therefore, it is urgent to
carry out clean and efficient reform of China’s energy supply
system and consumption structure.

New energy sources such as wind and solar power, due to their
abundant resources and zero emissions, will play a supporting role
in the entire transition process (Niu et al., 2022). However, the
mismatch between the output characteristics and the load of
renewable energy, resulting in low actual utilization, still hinders
its large-scale distribution (Liu et al., 2019; Liu et al., 2022a; Yong
et al., 2022). With the continuous development of energy
management, energy monitoring, energy storage (ES), and
distributed generation technologies, the hybrid energy system
(HES) that incorporates renewable energy generation is regarded
as a crucial solution to address future energy challenges (Ke et al.,
2022). HES achieves an organic coordination and optimization of
energy production, transmission, distribution, conversion, storage,
and consumption across multiple time scales, enabling an integrated
supply of energy production and consumption (Liu et al., 2022b), as
shown in Figure 1.

However, the layout and promotion of HES are still in the
early stage, with limited demonstration projects. As an energy
project, the lack of a comprehensive evaluation system during the
investment decision-making stage is a significant obstacle to the
development of HES. Decision-makers (DMs) need a
comprehensive understanding of the project to be motivated
to invest in its construction. Therefore, in order to address
this issue and promote the sustainable development of HES,
this study establishes a comprehensive evaluation framework
for HES.

1.2 Literature review

HES, consisting of renewable and fossil energy sources, is an
important approach to addressing energy supply issues (Li et al.,
2018). As a result, researchers have conducted extensive studies on
HES. Devrim and Bilir, (2016) investigated a system that integrates
wind turbines, photovoltaic panels, and fuel cells to meet the
electricity demand of residential buildings. Zhou et al. (2019)
studied the performance of the entire system after incorporating
wind and solar power generation into the integrated energy system.
Sezer et al. (2019) proposed a multi-output system that stores and
converts concentrated solar, wind, and hydrogen energy. Ruiming
(2019) optimized a hydrogen-integrated energy system, including
wind turbines, photovoltaics, electrolyzers, and fuel cells. Eriksson
and Gray, (2017) provided a detailed review of energy systems that
couple renewable energy generation, hydrogen storage, and fuel
cells, conducting a comprehensive comparative analysis and outlook
while maintaining a positive outlook on the industry’s development.
Building on this foundation, Zhang et al. (2022a) proposed that the
capacity configuration optimization of a HES is the basis for system
development, with the goal of increasing system economics. Liu et al.
(2022a) studied the optimal size of HES considering economic,
environmental, and thermal comfort benefits and solved the model
using NSGA-II. The aforementioned studies primarily focus on the
structural characteristics and capacity configuration optimization of
HES, revealing that HES with integrated renewable energy sources
has a solid theoretical and practical foundation and provides
significant environmental and social benefits.

Conducting a comprehensive evaluation of HES is important
both for assessing the overall performance of the system and

FIGURE 1
Structure map of hybrid energy system.
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providing decision-making guidance for selecting appropriate
solutions. Current research on the comprehensive evaluation of
HES mainly includes the establishment of evaluation indicator
systems, determination of indicator weights, and ranking of
alternative solutions. Zhou et al. (2020) constructed performance
analysis indicators from five aspects: energy utilization, economy,
environment, technology, and society, to optimize decision-making
for integrated energy systems coupling renewable energy generation.
Yang et al. (2018) considered economic, technical, social, and
environmental analysis indicators to comprehensively evaluate
planning schemes for distributed energy systems. Ke et al. (2022)
conducted a comprehensive evaluation of HES using nine indicators
in four aspects: economic, energy utilization, environmental impact,
and social acceptance. Building on this, Zhang et al. (2021)
considered the comprehensive grid loss rate to analyze the
overall benefits of HES driven by wind and solar energy, and
conducted case studies. It is evident that the comprehensive
evaluation of HES needs to consider multiple aspects,
constituting a multi-criteria decision-making (MCDM) problem.
The determination of indicator weights is an important step in
solving MCDM and can be approached through subjective weight
methods, objective weight methods, and integrated weight methods
(Wu et al., 2016; Wu et al., 2018; Qian et al., 2021; Zhang et al., 2021;
Yong et al., 2022). Subjective weight methods reflect the subjective
preferences of decision-makers (Wu et al., 2023a), while objective
weight methods focus on the intrinsic relationships among data.
Integrated weight methods combine the two through certain
mathematical methods to achieve a balance between subjectivity
and objectivity (Zhang et al., 2022b). Yong et al. (2022) employed a
combination of Step-wise Weight Assessment Ratio Analysis
(SWARA) and entropy method using Lagrange optimization,
achieving effective weight optimization solutions that might
provide insights for this paper. As for the ranking of alternative
solutions, commonly used methods include Analytic Hierarchy
Process (AHP), Analytic Network Process (ANP), Technique for
Order Preference by Similarity to an Ideal Solution (TOPSIS),
among others. However, many of these methods do not
adequately account for DMs` bounded rationality. The VIse
Kriterijumski Optimizacioni Racun (VIKOR) method is capable
of effectively addressing the aforementioned issues. Kamali Saraji
et al. (2023) utilized the VIKOR method to rank eight challenges
related to the adoption of renewable energy in rural areas. Abdul
et al. (2022) employed the VIKOR method to prioritize the selection
of solar energy, wind energy, hydropower, and biomass energy in
developing countries. These studies demonstrate the mature
application of the VIKOR method in the energy sector.
Moreover, due to its ability to reflect decision-makers’ subjective
preferences, this paper intends to use the VIKOR method to rank
alternative scenarios for HES. However, the traditional VIKOR
method may not fully meet the practical decision-making
requirements, prompting further improvements in this study.

Through the summary and analysis of related literature, the
critical findings are as follows:

(1) Existing comprehensive evaluation studies mostly focus on HES
that provide combined heat, power, and cooling, and there is a
lack of research that incorporate renewable energy for hydrogen
production.

(2) The existing comprehensive evaluation indicators for HES
commonly suffer from deficiencies such as the lack of rational
selection of indicators and difficulties in quantifying them.

(3) Current comprehensive evaluation research on HES lacks
considerations for collecting complete decision-making
information and addressing information loss during processing.

1.3 Objectives and contributions

The above literatures provide significant inspiration for this
study, but it also highlights certain deficiencies in current research.
Therefore, the main objectives of this paper are to address the
existing gaps in research and construct a rational and
comprehensive framework for the comprehensive evaluation of
HES, providing DMs with solid theoretical and methodological
support. The main contributions of this paper are as follows:

(1) This paper addresses the comprehensive evaluation of HES that
incorporate renewable energy for hydrogen production,
expanding the research in this field.

(2) This paper establishes a complete and operational decision
support system for decision-makers. The HES comprehensive
evaluation decision support system consists of three parts:
evaluation indicators, indicator weight determination, and
alternative solution ranking. DMs can directly apply this
model to conduct comprehensive evaluations of various HES.
Additionally, each part of the decision support system takes into
account the subjective preferences of DMs.

(3) This paper thoroughly considers and resolves the issues of
fuzziness and randomness in the decision-making
environment. Extended fuzzy logic is employed for collecting
and processing decision-making information in order to
maximize information gathering and minimize losses.

The remainder of this paper is organized as follows: Section 2
establishes a comprehensive evaluation index system of HES;
Section 3 utilizes a series of methods to construct the HES
comprehensive evaluation model; Section 4 uses a park in Gansu
Province to carry out empirical analysis; Section 5 analyzes and
discusses the calculation results, including sensitivity analysis and
comparative analysis; Section 6 gives the conclusion and outlook.

2 Evaluation criteria system for HES

The indicator system serves as an important foundation for
conducting comprehensive evaluations of HES. A good indicator
system should encompass comprehensiveness, rationality, and
innovation. Therefore, this paper will first review the indicator
systems used in relevant studies to explore the common indicators
for HES comprehensive evaluation, as shown in Table 1. Secondly,
since the experts are distributed in different regions, Delphi
technology is used to collect the decision-making information of
the experts. The information in Table 1 and the architecture of HES
were sent to a number of experts. Experts analyze and select the
comprehensive evaluation indicators. We aggregated the reports of
each expert to form a preliminary indicator system, which is then
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distributed to the experts for analysis. So repeated, and eventually
formed a generally recognized indicator system. Finally, based on this,
innovative indicators applicable to HES systems including hydrogen
production processes will be proposed.

Based on the above analysis, this paper constructs a
comprehensive benefit evaluation indicator system for HES from
four aspects: economy, environment, technology, and socio-policy.

2.1 Economic criteria

The economic indicators of evaluation index system are as
follows:

Investment cost (C11): Investment cost refers to all expenses
incurred in the initial stage of HES construction. It determines to a
certain extent the difficulty of system construction and economic
benefits. Since labor costs can be neglected compared to equipment
procurement costs, the initial investment can be simplified as the
cost of equipment procurement during the construction period.
C11 is a cost criterion.

IC � ∑k
i�1
cinv,iQi (1)

where IC refers to investment cost; cinv,i is unit investment cost of
the device i; Qi indicates the capacity of the device i.

Dynamic payback period (C12): The dynamic payback period
refers to the time required for a project’s net returns to offset the
total investment, taking into account the time value of money. This
metric examines the ability of the project to recover its investment
and is related to investment risk (Li et al., 2022a). C12 is a cost
criterion.

Operation and maintenance cost (C13): The operation and
maintenance costs of HES consist of two parts. Firstly, there are the
costs incurred from purchasing energy from external sources,
which mainly include the gas consumption of the CCHP unit
and the purchased electricity from the external grid when
renewable energy generation is insufficient. The second part
includes the management expenses and labor costs associated
with operating the equipment (Ke et al., 2022). C13 is a cost
criterion.

Coper � ∑Y
y�1

Ry ∑8760
t�1

celectricityt,y Pelectricity
t,y + cgast,y P

gas
t,y( ) +∑k

i�1
Ci,y

⎡⎣ ⎤⎦ (2)

where Coper refers to operation and maintenance cost; celectricityt,y and
cgast,y indicate electricity purchases and gas purchases respectively;

TABLE 1 Index aggregation in relevant literature.

Factors 1 2 3 4 5 6 7 8 9 10 11

Investment cost ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Internal rate of return ✓ ✓ ✓

Operation and maintenance cost ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Dynamic payback period ✓ ✓ ✓ ✓ ✓

Annual Nox emission reduction ✓ ✓ ✓ ✓

Carbon dioxide emissions ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Air pollutant discharge ✓ ✓ ✓

Land occupation ✓ ✓ ✓ ✓ ✓

Noise ✓ ✓ ✓ ✓

Renewable energy penetration ✓ ✓ ✓ ✓

Comprehensive energy efficiency ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Energy supply reliability ✓ ✓ ✓ ✓ ✓

Comprehensive network loss rate ✓ ✓

Device utilization rate ✓ ✓ ✓ ✓

Exergic efficiency ✓ ✓

Level of advancement ✓

Social welfare ✓ ✓ ✓

Public satisfaction ✓ ✓ ✓ ✓ ✓

Industrial benefit ✓ ✓

Job creation ✓ ✓ ✓

Compatibility with policies ✓ ✓

References: 1= (Song et al., 2022); 2= (Liang andWang, 2023); 3= (Li et al., 2022b); 4= (Zheng andWang, 2020); 5= (Shen et al., 2022); 6= (Zhao et al., 2022); 7= (Ke et al., 2022); 8= (Zhang et al.,

2021); 9= (Qin et al., 2021); 10= (Wen et al., 2021); 11= (Qian et al., 2021).
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Pelectricity
t,y and Pgas

t,y are the price of electricity and gas; Ci,y is the
maintenance cost of device i; Y is the planned operating cycle
of HES.

Hydrogen yield rate (C14): The ratio between the economic
benefits obtained from the hydrogen production process and the
input costs. This ratio can be used to evaluate the economic
feasibility and profitability of the electrolytic hydrogen
production equipment (Liang and Wang, 2023). C14 is a
beneficial criterion.

HYR � PH2cH2 − celectricityEHP Pelectricity − coper,EHP

ICinv,EHP
(3)

whereHYR refers to hydrogen yield rate; PH2 and cH2 indicate the
price and the yield of hydrogen; celectricityEHP and coper,EHP are the
electricity consumed and operation and maintenance cost
of EHP.

2.2 Environmental criteria

The environmental indicators of evaluation index system are as
follows:

Carbon dioxide emissions (C21): This indicator refers to the
annual total carbon dioxide emissions from HES (Qin et al., 2021).
C21 is a cost criterion.

QCO2 � celectricityy δgrid + cgasy δgas (4)

where QCO2 refers to carbon dioxide emissions; δgrid indicates grid
emission factor; δgas is the amount of carbon dioxide released by per
cubic meter natural gas combustion.

Air pollutant emissions (C22): This indicator refers to the
annual total emissions of SO2, NOx, and particulate matter
generated by HES each year. C22 is a cost criterion.

Qpollution � φS + φN + φP( )cgasy (5)

where φS, φN and φP are SO2, NOx and particulate matter emissions
per cubic meter natural gas combustion.

Land occupation (C23): The construction of HES will require
land, which will have a certain impact on natural scenery and urban
planning (Wen et al., 2021). C23 is a cost criterion.

Noise (C24): Due to the presence of various energy supply
equipment in HES, there will be some noise generated during
operation. The noise can cause disruptions to the normal lives of
workers and nearby residents and, in the long run, can have
significant health impacts on the human body (Qian et al., 2021).
C24 is a cost criterion.

2.3 Technical criteria

The technical indicators of evaluation index system are as
follows:

Comprehensive energy efficiency (C31): The comprehensive energy
utilization rate reflects the degree of coupling and complementary
utilization of multiple energy flows at different time scales, and can
be used to measure the level of comprehensive energy utilization in a
system (Zheng and Wang, 2020). C31 is a beneficial criterion.

CEE � celectricitycons,y + cgascons,y

celectricityy + acgasy + PRE
y

(6)

where CEE refers to comprehensive energy efficiency; celectricitycons,y and
cgascons,y represent the annual electric energy and heat energy
consumed in the park respectively. PRE

y is the total amount of
clean energy entered into the system by new energy equipment;
a is the low calorific value of natural gas.

Energy supply reliability (C32): The ES in the park and their
connection to the external power grid significantly reduce the
impact of the intermittency of renewable energy and power
equipment failures on the system’s reliability. Therefore, this
study considers reflecting the system’s reliability by evaluating
the energy supply-demand imbalance within the park when the
system is operating in island mode (Ke et al., 2022). C32 is a
beneficial criterion.

ρ� 1−ΔLE+ΔLH+ΔLC

LE + LH + LC
(7)

where ρ refers to energy supply reliability; LE, LH and LC indicate the
electricity, heat and cooling consumption of users, respectively; ΔLE,
ΔLH and ΔLC are the deviation of the electricity, heat and cooling
consumption.

Device utilization rate (C33): The equipment utilization rate
represents the ratio of the actual output power of the energy
generation devices installed in the park to their rated power,
reflecting the efficiency of the equipment’s production. C33 is a
beneficial criterion.

DUE �
∑k
i�1
Pout,i

∑k
i�1
Prated,i

(8)

whereDUE refers to device utilization rate; Pout,i and Prated,i indicate
the output power and rated power of device i respectively.

ES equivalent utilization coefficient (C34):The ES equivalent
utilization coefficient represents the utilization rate of the ES in HES,
reflecting the significance of ES and the rationality of capacity
allocation. C34 is a beneficial criterion.

EAF � EC
ES,y + ED

ES,y

8760PES
(9)

where EAF refers to ES equivalent utilization coefficient; EC
ES,y and

ED
ES,y indicate annual total charging capacity and annual discharging

capacity of ES respectively; PES is the rated capacity.

2.4 Social-political criteria

The social-political criteria indicators of evaluation index system
are as follows:

Level of advancement (C41): The level of advancement refers to
the level of advancement of the HES compared to similar projects
domestically and internationally. It influences the extent of policy
and financial support that the project can receive after construction
and implementation. This indicator is related to the technological
advancement, innovative mode, and scalability of the project. C41 is
a beneficial criterion.
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Public satisfaction (C42): Public satisfaction is mainly related to two
aspects: firstly, the public’s acceptance of the project’s construction,
which is related to the engineering implementation plan and operational
mechanisms; secondly, the users’ intuitive experience with theHES. This
indicator has a significant impact on the promotion and later operation
of the project. C42 is a beneficial criterion.

Job creation (C43): The construction and operation of HES will
stimulate local employment and the development of the service industry.
The research and development, as well as the manufacturing of related
equipment, will promote the employment of engineering and technical
personnel (Qian et al., 2021). C43 is a beneficial criterion.

Compatibility with policies (C44): As a new type of energy
utilization model, most HES are still in the planning and initial
construction phase. Therefore, adopting system solutions that are
more compatible with national policies is more conducive to
obtaining financial support from the government. This aspect
plays a significant role in determining whether the project can
obtain feasibility approvals. C44 is a beneficial criterion.

3 Materials and methods

3.1 Methods of collecting decision-making
information

The collection and processing of decision information are
among the most crucial issues in the field of MCDM. In the
investment decision-making process for the HES, there will be a
significant amount of uncertainty due to its novelty and cutting-edge
nature. Uncertainty can introduce ambiguity and randomness into
the decision environment, making it challenging for DMs to assess
the HES. Therefore, it is essential to address the significant issue of
how to gather decision information that reflects the most authentic
thoughts of DMs. Additionally, the process of handling decision
information should minimize information loss as much as possible
to ensure the rationality of evaluation results.

3.1.1 Hesitant fuzzy linguistic term set
In a fuzzy environment, the decision-making process often

brings significant hesitation to DMs. Especially when evaluating
qualitative indicators, DMs does not necessarily have an in-depth
study of all aspects of HES. They may hesitate between adjacent
measurement levels, unable to provide precise and singular decision
information. Hesitant fuzzy linguistic term set (HFLTS) can obtain
expert subjective evaluation information more flexibly, thereby
maximizing the integrity of decision information (Yong et al., 2023).

The definitions related to HFLTS are as follows:

Definition 1: A linguistic term set S � si, si+1, si+2,/,sn{ } is a finite
ordered collection of linguistic variables with an odd number of
terms. The language term set used in this article consists of seven
linguistic variables, which are set as follows:

S � s−3, s−2, s−1, s0, s1, s2, s3{ }

� VeryLow VL( ), Low L( ), RelativeLow RL( ),Medium M( ),
High H( ), RelativeHigh RH( ), VeryHigh VH( ){ }

(10)

Definition 2:HFLTS allowsDMs to evaluate theHES by selecting one
ormultiple linguistic variables si and assigning corresponding degrees of
belief C(si) to each linguistic variable. A set of ordered linguistic terms
HS obtained based on this provision can be represented as follows:

HS � si, C si( )( ) si ∈ S|{ } (11)

Definition 3: The conversion relationship between the evaluation
information provided by DMs based on the linguistic term set and
HFLTS is as follows:

(1) EH(si) � si | si ∈ S{ } � si{ };
(2) EH(between si and sj) � sk | sk ∈ S, si ≤ sk ≤ sj{ } � si, si+1, . . . ,sj{ };
(3) EH(lower than si) � sk | sk ∈ S, sk ≤ si{ } � sk, sk+1, . . . ,si{ };
(4) EH(higher than si) � sk | sk ∈ S, sk ≥ si{ } � si, si+1, . . . ,sk{ }.

Based on the above definition, experts can give evaluation terms
that look like the following expression:

HS � 0.1
L
,
0.7
RL

,
0.2
M

{ } (12)

3.1.2 Triangular fuzzy number
The expert evaluation information can be collected more

comprehensively using HFLTS. However, this information is
currently in qualitative form and cannot be directly analyzed
and computed quantitatively. Triangular fuzzy numbers (TFNs)
are widely used to transform qualitative information into
quantitative information due to their ability to preserve fuzzy
information and their advantages of simplicity and ease of
operation. The main definitions and formulas involved in TFNs
are as follows:

Definition 4: When an information set x � [xl, xm, xu] satisfies
x | 0< xl ≤xm ≤xu, x ∈ R{ }, it is called a TFN.When all the elements
have values distributed between 0 and 1, the TFN is referred to as a
standard TFN, and its membership function μx(x) is defined as
follows:

μ~x x( ) �

0, if x< xlorx> xu

x − xl( )
xm − xl( ) , if xl ≤ x≤ xm

xu − x( )
xu − xm( ) , if xm ≤x≤xu

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(13)

By performing the defuzzification operation on TFNs, their crisp
values can be obtained:

R ~x( ) � xl+4xm + xu

6
(14)

The specific representation of TFNs in this paper is the
quantitative characterization of linguistic terms in set S.
Therefore, the correspondence between triangular fuzzy numbers
and the linguistic term set S is shown in Table 2.

Based on the theoretical analysis above, further processing can
be performed on the decision information represented by HS.
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HS � 0.1
L
,
0.7
RL

,
0.2
M

{ } � 0.1s−2, 0.7s−1, 0.2s0{ }
� 0.1* 0, 0.167, 0.333( ), 0.7* 0.167, 0.333, 0.5( ),{

0.2* 0.333, 0.5, 0.667( )}
� 0.1835, 0.3498, 0.5167( ) (15)

Definition 5: In the optimization of the HES, it involves comparing
different evaluation values. Therefore, the distance formula between
two TFNs a � [al, am, au] and ~b � [bl, bm, bu] is defined below:

D a, ~b( ) �
�����������������������������
al − bl( )2 + am − bm( )2 + au − bu( )2

3

√
(16)

3.2 Methods of calculating criteria weights

The evaluation results of the HES are determined by a
combination of multiple indicators. However, the contributions
of different indicators may vary, which is reflected in the weights
assigned to the indicators. Therefore, this section will discuss the
methods for determining the indicator weights. Additionally, to
account for both the subjectivity of the DM and the objectivity of the
indicator values, this paper adopts a comprehensive weighting
method that combines subjective and objective aspects to
calculate the relative importance of each indicator.

3.2.1 SWARA method–Subjective weights
HES is a novel mode of energy production and utilization; Thus,

the proper subjectivity of DMs is important to ensure the rationality
of the evaluation results. The SWARA method, which effectively
reflects the DMs’ viewpoints and balances operability and scientific
rigor, has been widely used for determining the subjective weights of
indicators (Ghenai et al., 2020).

The main steps of SWARA are shown as below:

Step 1: According to the DM’s preferences, the indicators are
ranked in descending order of importance. Additionally, the
relative importance between the top-ranked indicator and the
remaining indicators is evaluated. The evaluation language and
the corresponding quantitative values are presented in Table 2.

Step 2: (Akhanova et al., 2020): Starting with the second attribute,
calculate the relative importance between the criterion (marked j)

and the previous criterion (marked j−1). This ratio represents the
comparative importance of sj value.

Step 3: The coefficient value cj of all criteria is calculated as follows:

cj � 1, i� 1
sj+1, i> 1{ (17)

Step 4: Calculate the correction weight value s′j.

s′j �
sj−1′

cj
(18)

Step 5: Compute the subjective weights swj.

swj �
s′j∑n
j�1s

′
j

(19)

3.2.2 Entropy weights method–Objective weights
The evaluation indicator system for the HES includes a large

number of quantitative indicators. When determining the weights of
these indicators, ignoring the influence of numerical values can result in
a lack of objectivity in the decision-making process. Therefore, this
paper adopts the entropy method to determine the objective weights of
the indicators. Themain steps of the entropymethod are as follows (Wu
et al., 2023a):

Definition 6: To eliminate the influence of different properties of
the indicators on the data dimensions and scale, it is necessary to
perform a standardization operation on the TFNs. The
standardization formula for x � [xl, xm, xu] to n � [nl, nm, nu] is
shown below (Yong et al., 2022):

nl, nm, nu[ ] �
xl

xmax j
,

xm

xmax j
,

xu

xmax j
( ), xj ∈ BC

xmin j

xu ,
xmin j

xm ,
xmin j

xl( ), xj ∈ CC

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(20)

where BC and CC are beneficial indicator and cost indicator
respectively. xmax j � max xij | i� 1, 2, . . . ,m{ } and xmin j �
min xij | i� 1, 2, . . . ,m{ }.
Step 1: Construct the initial decision matrix as shown below:

Iij �
x11 x12 / x1n

x21 x22 / x2n

..

. ..
.

1 ..
.

xm1 xm2 / xmn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (21)

where xij indicates the evaluation value of alternative i under
criterion j. And i� 1, 2, . . . ..m, j� 1, 2, . . . ,n.

Step 2: Standardize the initial decision matrix through Definition 6.
And calculate the mean value of criterion j:

�fj �
1
m
∑m
i�1
nlij,

1
m
∑m
i�1
nmij ,

1
m
∑m
i�1
nuij⎛⎝ ⎞⎠ (22)

Step 3: The entropy measure ej can be obtained as follows:

TABLE 2 The fuzzy scale.

Linguistic scale Response scale

Equally important (VH) (1,1,1)

Slightly less important (H) (0.833,1,1)

Moderately less important (RH) (0.667,0.833,1)

Less important (M) (0.5,0.667,0.833)

Very less important (RL) (0.333,0.5,0.667)

Much less important (L) (0.167,0.333,0.5)

Totally less important (VL) (0,0,0.167)
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F � d nij, �fj( )
∑m
i�1
d nij, �fj( ) (23)

ej� − 1
ln m( )∑

m

i�1
F[ ln F( )] (24)

Step 4: Calculate the objective weight of the jth criteria:

owj � 1 − ej

∑n
j�1

1 − ej( ), j� 1, 2, ...,n (25)

3.2.3 Lagrange optimization–Comprehensive
weights

According to the principle of minimum discriminant
information, the comprehensive weight should reflect the
subjective and objective characteristic information as much as
possible. Thus, Lagrange optimization is used to obtain the
comprehensive weights (Huang et al., 2021).

minF � ∑n
j�1
cwj ln

cwj

swj
[ ] +∑n

i�j
cwj ln

cwj

owj
[ ] (26)

where cwj, swj and owj mean the combined, the subjective and
objective weights respectively. In addition, the above formula should
satisfy the following constraints:

(1) s.t.∑n
j�1

cwj� 1
(2) cw

j
> 0

Then

cwj �
���������
swj ⊗ owj

√
∑n

j�1
���������
swj ⊗ owj

√ (27)

3.3 Method of sorting the alternatives

After obtaining the weight information of the indicators,
integrating it effectively with expert evaluation language
becomes a crucial step in the selection of the optimal solution
for the HES. The VIKOR method is a compromise-based MCDM
method that ranks alternative solutions by comparing their
proximity to the positive and negative ideal solutions (Meniz
and Ozkan, 2023). The VIKOR method can fully consider the
DMs’ subjective preferences for the HES and balance the trade-offs
between the benefits and harms of each solution. However, the
effectiveness of the VIKOR method can be greatly influenced by
uncertain environments. Therefore, this paper improves the
VIKOR method using TFNs to enhance its applicability in such
environments. The main steps of the fuzzy VIKOR method are as
follows.

Step 1: Based on the normalized initial evaluation matrix obtained
from the fuzzy entropy method, determine the best ~I

*
j and the worst

~I
−
j among all the standard evaluation values.

~I
*

j � max
i

nij � max
i

nlij,max
i

nmij ,max
i

nuij( ) (28)
~I
−
j � min

i
nij � min

i
nlij,min

i
nmij ,min

i
nuij( ) (29)

Step 2: Compute the social utility value Si and individual regret
value Gi.

Si � ∑n
j�1
cwj ·

d ~I
*

j, nij( )
d ~I

*

j, ~I
−
j( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (30)

Gi � max
j

cwj ·
d ~I

*

j, nij( )
d ~I

*

j, ~I
−
j( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎧⎪⎪⎨⎪⎪⎩

⎫⎪⎪⎬⎪⎪⎭ (31)

Step 3: Compute the collective benefit coefficient Qi.

Qi � β
Si −min

j
Si

max
j

Si −min
j

Si
+ 1 − β( ) Gi −min

j
Gi

max
j

Gi −min
j

Gi
(32)

where β ∈ [0, 1] is the compromise coefficient, which represents the
proportion of the collective utility and regret utility in the decision-
making process.

Step 4: Sort the solutions in ascending order based on their values
of S, G, and Q. A smaller value indicates a better solution.

Step 5: To determine the compromise solution, the alternative
solutionA1 with the lowestQ value is chosen as the optimal solution,
provided that it satisfies the following two conditions:

Condition 1: Q(A2) − Q(A1)≥ 1
m−1. Q(A1) and Q(A2) are the

benefit coefficient values of the top-ranked and second-ranked
solutions respectively. m represents the total number of solutions.

Condition 2: Acceptable Stability: If, based on the ranking
according to S and G, A1 remains in the first position.

If either of the two conditions mentioned above is not satisfied, a
set of compromise solutions is obtained:

(1) If only Condition 2 is not satisfied, both A1 and A2 are
compromise solutions.

(2) If Condition 1 is not satisfied, the maximum value of X is
obtained from the relationship Q(AX) − Q(A1)< 1

m−1, and
A1, A2,/,AX is close to the ideal solution.

3.4 Decision-making framework

The decision framework of this paper is shown in Figure 2.

4 Case study

4.1 Case background

Gansu Province is an important base for new energy in China,
ranking among the top in wind power generation and photovoltaic
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power generation. Therefore, this article selects an industrial park
in Lanzhou, Gansu Province as the service object of HES for a case
study. The industrial park is located in the northwest of Lanzhou
City and has abundant wind and solar resources, making it suitable
for the development of renewable energy generation. The area of
the park available for solar energy is 17,500 square meters, with a
solar irradiation intensity of 1,300 (kW·h)/m2. The average wind
speed is 5.5 m/s. The electricity load in the park is 3.75 MW, with
separate loads for heating (2.1 MW) and cooling (2.8 MW), and a
gas load of 3.8 MW. The wind and solar resource data are obtained
from the NASA, and the load data is provided by the local power
company.

4.2 Comprehensive evaluation of the
alternatives for HES

4.2.1 Data and decision information collection
Based on the network architecture of the HES shown in Figure 1,

this paper has formulated six different schemes in Table 3 to meet
the energy demands of the industrial park. Among them, A1, A2,
and A3 compare the advantages and disadvantages of investing in
photovoltaic and wind power in the park. A4 and A5 compare the
advantages and disadvantages of electric boilers and gas boilers.
A6 primarily utilizes CCHP units as the main heat source, coupled
with small-scale gas boilers.

To maximize daily profits using the aforementioned six
schemes, a four-season typical daily scheduling is conducted.
Based on the scheduling results and the calculation methods of
the three-level indicators in this paper, the quantitative data for the

six alternative schemes in the comprehensive evaluation index
system of HES are shown in Table 4.

The qualitative data for the six alternatives is sourced from an
expert committee. The committee is composed of four experts who
have long been engaged in research on integrated energy systems.
The experts used HFLTS to evaluate the qualitative indicators of the
alternative schemes. The evaluation results for the six alternative
schemes are presented in Table 4.

4.2.2 Criteria weights calculation
4.2.2.1 Subjective weight calculation

In this paper, the TFNs-SWARA method is used to calculate
the subjective weights of the indicators. The four experts evaluate
the priority order of the various indicators based on their own
expertise. The initial evaluation matrix by the experts is shown in
Table 4.

FIGURE 2
The framework of this study.

TABLE 3 Six different HES capacity configuration schemes.

Device name: A1 A2 A3 A4 A5 A6

Wind Power 2700 0 1400 2700 2700 2700

PV 0 2700 1400 0 0 0

Gas Boiler 2800 2800 2800 6000 0 2000

Electric Boiler 2800 2800 2800 0 6000 0

CCHP 4100 4100 4100 3900 4300 8000

Energy Storage 650 650 650 650 650 650

Electrolyzer 1800 1800 1800 1800 1800 1800
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Based on Table 5, the defuzzification operation is performed
using Eq. 14. Afterwards, the subjective weights of the HES
composite evaluation indicators can be obtained through Eqs 17–19.

4.2.2.2 Objective weights calculation
In this paper, the entropy method based on TFNs is used to

calculate the objective weights of the indicators. Firstly, the information
from Table 4 is integrated to form an initial decision matrix. Then, the
qualitative decision information in the initial decision matrix is
quantified using Eq. 15. Finally, the objective weights of the
indicators can be obtained using Eqs 20–25, as shown in Table 6.

4.2.2.3 Comprehensive weights calculation
In order to incorporate both the subjective judgments of the

experts and the inherent patterns of objective data, this paper
integrates the results of two types of weights. In this process, it is
important to minimize the loss of information. Therefore, the
Lagrange optimization method is chosen in this paper. The
integrated weights can be seen in Table 6.

It can be seen from the calculation result that economic index
and technical index are the twomost important first-level indexes. In
the secondary index, C11 (Investment cost), C12 (Dynamic payback
period), C31 (Comprehensive energy efficiency) and C32 (Energy
supply reliability) are the most important criteria, which the DMs
need to prioritize when making decisions.

4.2.3 Alternatives sorting
Once the weight calculation for the indicators is completed,

this paper will conduct a comprehensive evaluation of the six

alternative scenarios for the HES. Firstly, the normalized initial
decision matrix obtained during the objective weight calculation
process is used as the basis for the comprehensive evaluation.
Secondly, the real values of the indicators are transformed by
inversely utilizing the defuzzification formula to expand them
into TFNs. For example, (0.75, 0.75, 0.75) = 0.75. Then, the best
and worst indicator values are selected among all the standards,
and the group utility value and individual regret value are
calculated using Eqs 30, 31, as shown in Table 6. Finally, the
group benefit coefficient is calculated using Eq. 32, as shown in
Table 7. It is worth noting that the compromise coefficient β� 0.5
is chosen in this paper to simultaneously pursue maximizing
group utility and minimizing individual regret for decision-
making.

According to the compromise solution determination rules of
the VIKOR, A1 is the optimal solution in Qi, Si and Gi. And
Q(A3) − Q(A1)≥ 1

m−1� 0.2. Thus, A1 is the optimal option in the
six alternatives.

5 Discussion and analysis

In the previous chapter, this paper obtained the comprehensive
evaluation results of HES, including index weight results and
scheme ranking results. Therefore, the above results will be
analyzed in this chapter. In addition, sensitivity analysis and
comparative analysis will be employed to discuss the model.
These two types of methods will respectively verify the
robustness and rationality of the model.

TABLE 4 Quantitative and qualitative data for the six alternatives.

Quantitative data A1 A2 A3 A4 A5 A6

C11 7558 10015 8867 7513.2 7708.8 11070.6

C12 5.9 6.8 6.3 5.5 7.3 7.7

C13 643.26 657.09 650.87 621.11 670.19 994.36

C14 138.1 140.7 135.4 158.9 108.3 127.6

C21 1.76 1.9 1.85 1.99 1.94 2.44

C22 2.83 2.95 2.9 3.01 2.99 3.12

C23 10.7 8.4 9.5 10.4 11.3 12.1

C31 88.31 86.58 87.48 86.98 89.74 84.83

C32 40.37 35.62 61.33 30.77 48.55 25.85

C33 68.29 67.43 69.27 71.39 72.98 61.3

C34 380.71 386.83 368.05 401.49 388.21 410.9

Qualitative data A1 A2 A3 A4 A5 A6

C24 0.8
RH,

0.2
H{ } 0.9

L ,
0.1
RL{ } 0.8

RH,
0.2
H{ } 0.7

H , 0.3
VH{ } 0.2

M, 0.8RH{ } 0.3
H , 0.7RH{ }

C41 0.8
RH,

0.2
H{ } 0.3

M, 0.6RH,
0.1
H{ } 0.5

RH,
0.5
H{ } 0.6

M, 0.4RH{ } 0.7
RH,

0.3
H{ } 0.2

RH,
0.7
H , 0.1

VH{ }
C42 0.8

M, 0.2RH{ } 0.2
RH,

0.8
H{ } 0.3

M, 0.5RH,
0.2
H{ } 0.3

L ,
0.7
RL{ } 0.3

M, 0.7RH{ } 0.9
RL,

0.1
M{ }

C43 0.2
RH,

0.8
H{ } 0.9

M, 0.1RH{ } 0.4
M, 0.6RH{ } 0.2

RH,
0.8
H{ } 0.2

RH,
0.8
H{ } 0.3

RH,
0.7
H{ }

C44 0.3
RH,

0.7
H{ } 0.1

M, 0.9RH{ } 0.3
RH,

0.5
H , 0.2

VH{ } 0.8
M, 0.2RH{ } 0.3

RH,
0.7
H{ } 0.9

L ,
0.1
RL{ }
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5.1 Results analysis

5.1.1 Analysis of criteria weights results
The weight reweighting of HES comprehensive evaluation

indicators is shown in Table 6. From the subjective weight of

indicators, C11 (Investment cost), C31 (Comprehensive energy
efficiency), C12 (Dynamic payback period) and C32 (Energy
supply) reliability) has a high weight of 8.34%, 8.34%, 8.28%, and
7.95%, respectively. Among them, C11 and C12 are economic
indicators, which mainly reflect the economic feasibility and

TABLE 5 Subjective weight evaluation matrix of indicators and algorithm steps of SWARA.

Criteria E1 E2 E3 E4 E1 E2 E3 E4

C11 (1,1,1) (1,1,1) (0.833,1,1) (1,1,1) 1.00 1.00 0.97 1.00

C12 (1,1,1) (0.833,1,1) (0.833,1,1) (1,1,1) 1.00 0.97 0.97 1.00

C13 (0.5,0.667,0.833) (0.5,0.667,0.833) (0.667,0.833,1) (0.5,0.667,0.833) 0.67 0.67 0.83 0.67

C14 (0.333,0.5,0.667) (0.333,0.5,0.667) (0.5,0.667,0.833) (0.5,0.667,0.833) 0.50 0.50 0.67 0.67

C21 (0.5,0.667,0.833) (0.667,0.833,1) (0.667,0.833,1) (0.833,1,1) 0.67 0.83 0.83 0.97

C22 (0.5,0.667,0.833) (0.5,0.667,0.833) (0.667,0.833,1) (0.833,1,1) 0.67 0.67 0.83 0.97

C23 (0,0,0.167) (0.5,0.667,0.833) (0,0,0.167) (0.5,0.667,0.833) 0.03 0.67 0.03 0.67

C24 (0,0,0.167) (0.333,0.5,0.667) (0,0,0.167) (0.333,0.5,0.667) 0.03 0.50 0.03 0.50

C31 (0.833,1,1) (1,1,1) (1,1,1) (1,1,1) 0.97 1.00 1.00 1.00

C32 (0.833,1,1) (0.833,1,1) (1,1,1) (0.667,0.833,1) 0.97 0.97 1.00 0.83

C33 (0.667,0.833,1) (0.5,0.667,0.833) (0.5,0.667,0.833) (0.667,0.833,1) 0.83 0.67 0.67 0.83

C34 (0.333,0.5,0.667) (0.333,0.5,0.667) (0.5,0.667,0.833) (0.333,0.5,0.667) 0.50 0.50 0.67 0.50

C41 (0.333,0.5,0.667) (0.167,0.333,0.5) (0.333,0.5,0.667) (0.167,0.333,0.5) 0.50 0.33 0.50 0.33

C42 (0.167,0.333,0.5) (0.5,0.667,0.833) (0.167,0.333,0.5) (0.333,0.5,0.667) 0.33 0.67 0.33 0.50

C43 (0.167,0.333,0.5) (0.667,0.833,1) (0.333,0.5,0.667) (0,0,0.167) 0.33 0.83 0.50 0.03

C44 (0.5,0.667,0.833) (0.667,0.833,1) (0.333,0.5,0.667) (0.5,0.667,0.833) 0.67 0.83 0.50 0.67

Algorithm steps of SWARA

Criteria sj cj s′j swj

C11 0.99 1.00 1.00 8.34%

C31 0.99 0.00 1.00 1.00 8.34%

C12 0.99 0.01 1.01 0.99 8.28%

C32 0.94 0.04 1.04 0.95 7.95%

C21 0.83 0.12 1.12 0.85 7.11%

C22 0.78 0.04 1.04 0.82 6.83%

C33 0.75 0.03 1.03 0.79 6.60%

C13 0.71 0.04 1.04 0.76 6.33%

C44 0.67 0.04 1.04 0.73 6.08%

C14 0.58 0.08 1.08 0.67 5.61%

C34 0.54 0.04 1.04 0.65 5.39%

C42 0.46 0.08 1.08 0.60 4.97%

C43 0.42 0.03 1.03 0.58 4.81%

C41 0.42 0.01 1.01 0.57 4.77%

C23 0.35 0.07 1.07 0.54 4.46%

C24 0.26 0.08 1.08 0.49 4.12%
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investment risk of the program. C31 and C32 are technical indicators,
which are the embodiment of system efficiency and supply assurance
ability. From the objective weight of indicators, the weight of C24
(Noise) has a significant advantage over other indicators, which is
7.46%. The weights of the remaining indicators are between 6% and
6.5%. It indicates that there are some differences in technical scheme
and comprehensive performance among the alternatives, but they are
not very obvious. The obvious difference in the noise of each scheme is

due to the greater noise of wind turbines. As a result, a scenario with
more wind turbines would have a poorer C24 performance. From the
comprehensive weight of indicators, the highest weights are C11, C31,
C12 and C32, which are 7.21%, 7.17%, 7.17%, and 7.15% respectively.
It is consistent with the trend of subjective weight, but the weights are
reduced, which indicates that the comprehensive weight method can
better reflect the subjective decision of experts and objective data
information in the final weight.

TABLE 6 Algorithm steps of objective indicators and comprehensive weights.

A1 A2 A3 A4 A5 A6 ej owj swj cwj

C11 −0.32 −0.28 −0.29 −0.32 −0.31 −0.26 0.64 6.13% 8.34% 7.21%

C12 −0.31 −0.29 −0.30 −0.32 −0.28 −0.28 0.64 6.11% 8.28% 7.17%

C13 −0.31 −0.30 −0.31 −0.31 −0.30 −0.25 0.64 6.14% 6.33% 6.28%

C14 −0.30 −0.30 −0.30 −0.32 −0.27 −0.29 0.64 6.11% 5.61% 5.90%

C21 −0.31 −0.30 −0.31 −0.30 −0.30 −0.27 0.64 6.10% 7.11% 6.64%

C22 −0.30 −0.30 −0.30 −0.30 −0.30 −0.29 0.65 6.07% 6.83% 6.49%

C23 −0.29 −0.32 −0.31 −0.30 −0.29 −0.28 0.64 6.11% 4.46% 5.27%

C24 −0.25 −0.36 −0.25 −0.22 −0.27 −0.22 0.57 7.46% 4.12% 5.59%

C31 −0.30 −0.30 −0.30 −0.30 −0.30 −0.29 0.65 6.07% 8.34% 7.17%

C32 −0.30 −0.28 −0.35 −0.26 −0.32 −0.24 0.63 6.32% 7.95% 7.15%

C33 −0.30 −0.30 −0.30 −0.30 −0.31 −0.28 0.65 6.08% 6.60% 6.38%

C34 −0.30 −0.30 −0.29 −0.30 −0.30 −0.31 0.65 6.07% 5.39% 5.77%

C41 −0.30 −0.29 −0.31 −0.27 −0.30 −0.32 0.64 6.11% 4.77% 5.44%

C42 −0.30 −0.35 −0.32 −0.21 −0.32 −0.24 0.63 6.42% 4.97% 5.70%

C43 −0.31 −0.25 −0.27 −0.31 −0.31 −0.31 0.64 6.15% 4.81% 5.48%

C44 −0.33 −0.30 −0.33 −0.28 −0.33 −0.15 0.62 6.54% 6.08% 6.36%

FIGURE 3
Sensitivity analysis results of economic indicators.
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5.1.2 Analysis of alternatives sorting
The fuzzy VIKOR method was used to rank HES alternatives,

and the results are shown in Table 7. The final sorting result of the
determined scheme is A1>A3>A2>A5>A4>A6. This result
shows the relative advantages of each scheme considering
group interests and individual regrets. However, when only
the group benefits of each scheme are considered, the ranking
results are A1>A3>A5>A4>A2>A6. This is because in the
comprehensive evaluation, although the program may perform
very poorly in one aspect, it will eventually be smoothed out by
other aspects, resulting in large shortcomings in the
implementation process of the project. VIKOR method takes

this factor into account and reduces the impact of extreme results
on comprehensive evaluation by introducing individual regret
value. In all scenarios, A1 has the best performance in terms of
group benefits and individual regrets. Therefore, A1 is the
optimal solution.

5.2 Sensitivity analysis

5.2.1 Sensitivity analysis of criteria weights
The calculation of indicator weights is a crucial step in the

comprehensive evaluation of HES, as it affects the final ranking

FIGURE 4
Sensitivity analysis results of environmental indicators.

FIGURE 5
Sensitivity analysis results of technical indicators.
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results of alternatives. Therefore, this section will observe the trend
of changes in the final evaluation results by altering the weights of
indicators. Based on the calculated comprehensive weights obtained
earlier, the weights of each indicator will be adjusted by ±10%
and ±20% respectively. It should be noted that the sum of weights for
all indicators remains unchanged.

The sensitivity analysis results of the four sub-indicators in the
economy are shown in Figure 3. It can be observed that regardless of
how the weights of the indicators change, A1 consistently remains
the best-ranked option while A6 remains the worst.With an increase
in the weight of C11, the ranking of A2 drops from third to fifth,
indicating that A2 is sensitive to changes in the weight of C11. By
examining the original indicator values for each scheme, it is evident
that A2 has a significant disadvantage in C11 compared to other
schemes. Conversely, DMs can prioritize A2 by lowering the weight
of C11. Similarly, A5 is sensitive to changes in C12 and C14.
Furthermore, the ranking results of the schemes do not undergo

significant changes with variations in the weights of economic
indicators.

The sensitivity analysis results of the environmental indicators are
shown in Figure 4. A6 consistently remains the worst alternatives.
A1 only drops to the second priority when the weight of C24 increases
to 20%. When the weights of C12, C22, and C23 change, there is no
change in the ranking results of all the schemes. By observing the
sensitivity analysis results of C24 (Noise), it can be seen that as the
weight of the indicator gradually increases, the ranking of A2 increases
from third to first. This is due to the significant noise pollution
generated by wind power compared to solar power, giving A2 a clear
advantage over the other schemes in this indicator.

The sensitivity analysis results of the technical indicators are
shown in Figure 5. The ranking results of A1 and A6 do not
change with the variation of technical indicator weights. By
observing the sensitivity analysis results of C32 and C34, it
can be concluded that A2, A4, and A5 are sensitive to C32,
while A3 is sensitive to C34. This indicates that these schemes
have noticeable advantages or disadvantages compared to other
schemes in these two indicators. Furthermore, the ranking results
of all alternatives do not undergo significant changes with
variations in the weights of the indicators.

The sensitivity analysis results of the social-political indicators
are shown in Figure 6. The best and worst schemes among the six
alternatives remain A1 and A6, respectively. By observing the
sensitivity analysis results of all the indicators, it can be seen that
A4 is sensitive to C41 and C42. A2 is sensitive to C43. Additionally,
only a few schemes experience minor changes in their priority
ranking.

By employing the sensitivity analysis method on the variation of
indicator weights, it can be observed that the priority ranking of
A1 and A6 remains largely unchanged. Additionally, the ranking
results of all alternatives do not undergo significant changes with
variations in the weights of individual indicators.

FIGURE 6
Sensitivity analysis results of social-political indicators.

FIGURE 7
Sensitivity analysis results of compromise coefficients β.
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5.2.2 Sensitivity analysis of decision support
coefficient

The advantage of VIKOR method over other MCDM methods
primarily lies in its ability to reflect the DMs’ subjectivity, allowing
them to make more aggressive or conservative decisions. This

advantage is manifested in the specific calculation method through
the choice of the compromise coefficient. A higher compromise
coefficient indicates a greater emphasis on maximizing the overall
group utility and less consideration for the personal regrets of the
dissenting individuals, which reflects a risk-seeking DM. Conversely, a
lower compromise coefficient represents a decision mechanism that
aims to minimize individual regrets and belongs to the risk-averse
category. β� 0.5 represents different trade-off approaches that
consider the majority group’s interests and the minority’s
dissenting opinions, thereby representing risk-neutral DMs.
Therefore, in this paper, by observing changes in the ranking
results of the alternatives through variations in the compromise
coefficient, the robustness of the model is validated.

From Figure 7, it can be observed that regardless of how the
DMs’ strategy changes, A1 and A6 consistently remain the best and
worst options, respectively. As the compromise coefficient gradually
increases, the priority of the A2 option decreases, indicating that
A2 has a significant advantage in a certain criterion. Conversely, the
priority of the A3 option increases, suggesting a more balanced
performance across multiple indicators. Furthermore, the ranking of
the alternative schemes does not undergo significant changes with
variations in the compromise coefficient.

5.3 Comparatives analysis

To validate the rationality of comprehensive evaluation model,
this paper compares it with several commonly used MCDM
methods in the field, as shown in Figure 8. In addition to the
VIKOR method, TOPSIS (Technique for Order Preference by
Similarity to an Ideal Solution), TODIM, and FCE (Fuzzy
Comprehensive Evaluation) have been widely used by many
scholars in the field of comprehensive evaluation. By observing
Figure 8, it can be noted that A1 and A3 are consistently ranked
among the top two options across all methods. Furthermore, except
in the case of FCE, A1 is the optimal solution in all methods, as FCE
does not consider the specificity of the solutions and the DMs’
preferences. Additionally, the ranking of the alternatives remains
relatively stable across all methods. Therefore, the model
constructed in this paper demonstrates rationality.

TABLE 7 Calculation results of group utility value, individual regret value, and
collective benefit coefficient.

A1 A2 A3 A4 A5 A6

C11 0.00 0.06 0.03 0.00 0.01 0.07

C12 0.02 0.05 0.03 0.00 0.06 0.07

C13 0.01 0.01 0.01 0.00 0.01 0.06

C14 0.02 0.02 0.03 0.00 0.06 0.04

C21 0.00 0.02 0.01 0.03 0.02 0.07

C22 0.00 0.03 0.02 0.04 0.04 0.06

C23 0.04 0.00 0.02 0.03 0.04 0.05

C24 0.05 0.00 0.05 0.06 0.05 0.06

C31 0.02 0.05 0.03 0.04 0.00 0.07

C32 0.04 0.05 0.00 0.06 0.03 0.07

C33 0.03 0.03 0.02 0.01 0.00 0.06

C34 0.04 0.03 0.06 0.01 0.03 0.00

C41 0.03 0.04 0.01 0.05 0.02 0.00

C42 0.03 0.00 0.02 0.06 0.02 0.05

C43 0.00 0.05 0.04 0.00 0.00 0.00

C44 0.00 0.02 0.00 0.03 0.00 0.06

Si 0.32 0.45 0.38 0.42 0.39 0.81

Rank 1 5 2 4 3 6

Gi 0.05 0.06 0.06 0.06 0.06 0.07

Rank 1 2 3 4 5 6

Qi 0.00 0.25 0.21 0.35 0.33 1.00

Rank 1 3 2 5 4 6

FIGURE 8
The results of comparative analysis.
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6 Conclusion and outlook

Sustainable development is a consensus and goal of the entire
human society. With the continuous maturation of new energy
generation technologies and storage technologies such as hydrogen
energy, HES represents the inevitable trend towards integrating
energy sources and loads in future energy systems. However, the
lack of a comprehensive evaluation system hinders the development
and layout of HES. Therefore, this paper constructs a comprehensive
evaluation framework for HES from three aspects: system
architecture, evaluation indicators, and evaluation models. Firstly,
the energy flow of HES, including electricity, heating, and cooling, is
clearly decomposed and presented. Secondly, 12 indicators related to
the comprehensive evaluation of HES are identified from four
dimensions: economic, environmental, technological, and social-
policy. Specific quantitative methods are provided for the
quantitative indicators. Then, a comprehensive evaluation model
based on fuzzy theory andMCDM theory is constructed. Finally, the
robustness and rationality of the proposed method are verified
through sensitivity analysis and comparative analysis. The main
conclusions derived from this study are as follows:

(1) C11(Investment cost), C31 (Comprehensive energy efficiency),
C12 (Dynamic payback period) and C32 (Energy supply
reliability) are the four most important criteria, with weights
of 7.21%, 7.17%, 7.17% and 7.15% respectively. C11 and
C12 reflect the economic characteristics of HES as an energy
project. C31 and C32, on the other hand, represent the energy
supply characteristics of HES.

(2) A1 is the optimal alternative for the layout of the HES in a
certain industrial park in Gansu. However, A1 has shortcomings
in land occupation, noise, and ES equivalent utilization
coefficient. DMs can optimize this scheme in these three
aspects to maximize the benefits of the HES.

(3) When collecting and processing expert information, the
reasonable use of fuzzy theory can maximize the acquisition
and retention of original decision information, and it can fully
reflect the psychological factors of DMs.

(4) In the application process of the fuzzy VIKOR method, DMs
can change the compromise coefficient to reflect the changes in
decision psychology and influence the final determination of the
scheme.

The comprehensive evaluation framework of the HES
constructed in this article is universal and can serve as a
reference for the layout of HES in places with abundant wind
and solar resources. However, There are still some shortcomings
in this paper:① Since this decision support model has not been used
in real HES, the true performance of the optimal scheme selected
based on this model is still open to question. ② In the VIKOR
method, the combination coefficient of group benefit value and
individual loss value is 0.5, which is the value used in most literature.

Therefore, how to improve the value of coefficient is also an
important direction of optimization model; ③ Comprehensive
evaluation index system of HES is established in the current
development background. When the future socio-economic
situation changes or disruptive technologies emerge, the
indicators should also be adjusted accordingly. Therefore, we will
continue to optimize the model and solve the problems in the above
three aspects in the follow-up research work.
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A multi-objective dispatching
model for a novel virtual power
plant considering combined heat
and power units, carbon recycling
utilization, and flexible
load response

Hailin Yang1*, Xu Tian1, Fei Liu1, Liantao Liu1, Lixin Li2 and
Qian Wang2

1Economic and Technological Research Institute of State Grid Qinghai Electric Power Company, Xining,
Qinghai, China, 2China Electric Power Research Institute, Beijing, China

To optimize the energy supply potential and complementary advantages of
distributed energy, this paper focuses on the dispatching optimization of
cogeneration virtual power plant considering uncertainty. First of all, wind
power, photovoltaic, combined heat and power (CHP) units, electric boilers,
and controllable loads are integrated into a CHP virtual power plant. Then,
carbon capture and electric-to-gas devices are introduced to realize carbon
recycling. Furthermore, quantify the risk of real-time dispatching of virtual
power plants through uncertainty scenario generation and conditional value at
risk (CVaR) theory, and the multi-objective stochastic dispatching optimization
model of virtual power plants is built with the aim atminimizing the operation cost,
carbon emissions, and operation risk as the objectives, and the CRITIC weighting
method is adopted to solve it. Finally, the calculation results show that: 1) the
electric boiler can use wind and photovoltaic power to supply heat for the system,
reduce the dependence of the virtual power plant (VPP) on the CHP unit, andmake
the electric output of the unit more flexible. 2) The risk quantification method
proposed can fully measure the risk situation in real-time dispatching, arrange the
wind and photovoltaic power generation plan and backup plan more reasonably,
and enable the VPP to get more benefits while avoiding the risks in real-time
dispatching.

KEYWORDS

virtual power plant, distributed new energy, conditional value at risk, combined heat and
power, carbon capture

1 Introduction

Distributed energy is energy efficient, less polluting, more flexible, and larger in scale,
and is the key to alleviating the energy shortage in China (Bin et al., 2021). But distributed
energy has characteristics of small capacity, large quantity, and uneven distribution, which
makes it hard to involve in power grid dispatching directly (Yingxuan et al., 2021). Virtual
power plants (VPPs) use advanced communication technology to realize the aggregation of
different distributed energy sources, effectively play the complementary ability of various
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resources in time and space, and fully excavate the energy supply
potential of distributed energy sources (Yafei et al., 2023).

Moreover, every winter heating period, combined heat and
power (CHP) units in Northeast China often operate in the
mode of “power determined by heat”, which causes the waste of
wind power and photoelectric resources (Jun et al., 2023). If CHP
units and various distributed energy sources are aggregated into a
CHP-VPP, the complementary advantages between resources can be
used to achieve “thermoelectric coupling” and promote the
consumption of renewable energy. Many scholars have now
studied the optimal dispatching of CHP-VPP (Shitong et al.,
2022; Hamzeh and Sadegh, 2023; Kumar et al., 2023). In Ref.
(Fang et al., 2020), electric storage devices (ESDs), wind power
plants (WPPs), photovoltaic power plants (PV), and controllable
loads are aggregated into a CHP-VPP, and a VPP dispatching
optimization model with the goal of maximizing economic
benefits is established. In Ref. (Wang et al., 2023), the CHP-VPP
is equipped with electric boilers to absorb wind power, and the
scheduling optimization model of CHP-VPP is established with the
objective of minimum economic costs. The above documents only
focus on the economic benefits of VPPs. However, in the
background of “carbon peaking and carbon neutrality”, carbon
emission will be a key indicator for optimizing VPP dispatch
(Guo et al., 2022).

In recent years, the maturity of carbon capture and power to gas
(P2G) technology has provided an effective way for the low-carbon
development of VPPs (Caixia et al., 2021; Xiaojie et al., 2023). In
Michael et al. (2022); Liu et al. (2023), the thermal power units and
carbon capture equipment are combined into carbon capture units,
which promotes the utilization of wind power and makes carbon
emission reduction more significant. In Yungao et al. (2022);
ZhangHu (2022), P2G is used to utilize excess wind power
generation and convert CO2 into CH4, effectively reducing VPP
carbon emission. The above literature provides a theoretical basis for
the incorporation of carbon capture and electricity to gas into VPPs,
but does not consider the combined use of the two to achieve carbon
cycle. In Qingyou et al. (2021), although carbon cycle is realized
through a gas power plant carbon capture (GPPCC) device and P2G,
the influence of the coupling operation mode of GPPCC and P2G on
the degree of carbon cycle is not considered. To solve the problem,
carbon storage device is introduced to decouple CO2 capture and
treatment process, and a hydrogen storage device is introduced to
realize time shift of renewable energy power (Liwei et al., 2022;
Shuaishuai et al., 2022). Therefore, if the carbon storage and
hydrogen storage devices are used together with GPPCC and
P2G, it will effectively decouple the carbon capture and electricity
to gas processes, and maximize the carbon emission
reduction potential.

To solve the problems in the aforementioned analysis, this paper
proposes an optimal scheduling method for CHP-VPP considering
carbon capture and P2G. First of all, GPPCC and P2G are
introduced in the CHP-VPP for carbon recycling, and carbon
storage and hydrogen storage units are added to decouple carbon
capture from the power generation and gas production process.
Then, the risk of VPP real-time dispatching is quantified through the
generation of uncertainty scenarios and CVaR theory. With the
operation cost, carbon emission, and operation risk as the objectives,
a multi-objective stochastic dispatching optimization method of

CHP-VPP is propounded, and the CRITIC weighting method is
used to address it. Finally, a simulation is designed to validate the
conclusiveness and applicability of the proposed method.

2 VPP structure and modeling

2.1 Structure description

The CHP-VPP in this paper mainly includes distributed power/
heat output module and carbon cycle module. The distributed
power/heat output module includes distributed wind power and
photovoltaic, electric boiler, controllable load, and the power storage
device. Carbon cycle module mainly includes the gas CHP unit,
GPPCC, P2G, and gas storage device. The VPP realizes the recycling
of CO2 through GPPCC and P2G. GPPCC captures CO2 generated
by the CHP unit, and P2G converts CO2 into CH4. The carbon
storage and hydrogen storage devices can be used to store excess
CO2 and H2 at a certain time, so as to decouple carbon capture and
electric conversion process. The electric boiler can use the surplus
renewable energy to generate electricity to supply heat for the
system, reduces the dependence of VPP on the heat output of
CHP unit, and increases the flexibility of CHP unit operation.
The controllable load and power storage device can cut peak and
fill valley, and provide spare output for VPP. Figure 1 shows the
energy flow diagram of CHP-VPP.

VPP coordination control center conducts information
interaction with each unit in the VPP through communication
technology, so that it can sense the operation status of each
device and issue dispatching instructions to each unit. On this
basis, the VPP forecasts the WPP and PV output of the next day,
and then consider the operating status of each unit, the demand for
VPP internal electrical load and thermal load, and formulate the
next day’s operation plan of each unit and form the next day’s
electricity purchase and sale strategy in the public grid.

2.2 Operation modeling

2.2.1 Distributed power/thermal output
module modeling

The distributed power/thermal output module is mainly
responsible for meeting the electric heating load of the system by
calling various distributed energy sources. Among them, the electric
boiler is an auxiliary heating equipment for “thermoelectric
decoupling”. Controllable loads and power storage devices can be
used as flexible resources to follow the change of WPP and PV
output. In addition, the power storage device can be charged during
low price hours and discharged during peak price hours to promote
the use of renewable energy.

(1) Distributed WPP and PV modeling

In this study, the distributed WPP is modeled as a whole, and
the VPP predicts the wind power output of the next day.
Therefore, in the process of day ahead dispatching, the
declared output of distributed wind turbines should meet the
following relationships:
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0≤gWPP,t ≤gf
WPP,t, (1)

where gWPP,t and gf
WPP,t, respectively, represent the declared

output and predicted output of the WPP at time t. However, wind
power forecasting often has certain errors, and its actual output can
be obtained by adding the predicted output and the predicted output
error, as follows:

gre
WPP,t � gf

WPP,t + Δgf
WPP,t. (2)

In Eq. 2, g re
WPP,t represents the actual output of the wind turbine

at time t; Δg f
WPP,t represents the predicted output error of the wind

turbine. When the scale of wind turbines is large and the geographical
distribution is wide, it can be considered that the prediction error
follows the normal distribution of (0, σWt ). σWt is calculated as follows:

σWt � 1
5
gf
WPP,t + 1

50
WWPP, (3)

where WWPP is the whole installed capacity of wind turbine.
The principle of distributed photovoltaic modeling is the same

as that of the distributed wind power, refer to Eqs 1, 2. The
probability distribution function of photovoltaic prediction error
will not be repeated in this paper.

(2) Electric boiler

As an auxiliary heating equipment in VPPs, the electric boiler
can use wind power generation to meet the thermal load of the
system, reduce the dependence of the system on the thermal output

of CHP unit, so as to achieve “thermoelectric decoupling”, and
increase flexibility in the operation of CHP units. The relationship
between the heat generating power heb,t of the electric boiler and the
electric power geb,t consumed is as follows:

heb,t � webgeb,t, (4)

where web represents the electric heat transfer efficiency of the
electric boiler.

(3) Controllable load

Demand response methods include price-based demand
response (PBDR) and incentive-based demand response (IBDR).
Incentive-based demand response on user side controllable load is
primarily considered. Users can sign a contract with the VPP to
reduce power consumption during peak hours or increase power
consumption during valley hours, and obtain certain benefits. At the
same time, users can also provide backup services for the VPP to
smoothing the fluctuation of wind power output (Ju et al., 2016).

ΔLI,t � ∑NI

k�1
μuk,tΔLu

k,t + μdk,tΔLd
k,t( ), (5)

where ΔLI,t is the controllable load response at time t; NI is the
number of users; ΔLuk,t and ΔLdk,t are the positive/negative response
output provided for the user k at time t, respectively; and μuk,t and μ

d
k,t

represent the status of positive/negative response output, which is
0–1 variable, respectively.

FIGURE 1
Energy flow diagram of the VPP.
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(4) ESD

ESD can realize energy transfer across time periods and
coordinate the imbalance between source and load. Among them,
the electric energy storage can realize peak load cutting and valley
filling through “peak time discharge and valley time charging”, thus
the ability of the grid to absorb renewable energy can be improved
and the operating cost of VPP can be reduced. The relationship
between the storage capacity of the ESD and the charging and
discharging shall be in accordance with the following relationship:

Ees,t � 1 − δes( )Ees,t−1 + ηches g
ch
es,tΔt −

gdis
es,t

ηdises

Δt, (6)

where Ees,t represents the ESD energy storage capacity at time t;
gch
es,t and gdis

es,t represent the ESD charging/discharging power at time
t, respectively; ηches and η

dis
es represent charging/discharging efficiency

of the ESD, respectively; and δes represents the ESD electric
energy loss rate.

2.2.2 Carbon cycle module
The carbon cycle module mainly uses the surplus wind power

generation for carbon recycling, reducing carbon emissions while
cogenerating. Among them, GPPCC will capture CO2 generated by
the CHP unit, and P2G will convert CO2 into CH4, which will be
supplied to the CHP unit as fuel. The module also includes the
carbon storage and hydrogen storage devices, which are used to
decouple the generation and processing of CO2. The hydrogen
storage devices can realize the time shift of electric energy by
storing H2.

(1) CHP unit

The extraction type CHP unit is used to extract some steam from
the two stages of the turbine as the heat source for external heating.
When the thermal power is fixed, the extraction type unit can adjust
the electric power within a certain range, with higher flexibility.
However, when the thermal power gradually increases, the
adjustable range of electric power will be reduced.

gG,i,t � gGe,i,t + ηeh,ihG,i,t, (7)

where gG,i,t, gGe,i,t, and hG,i,t are the generating power, net
generating power, and heating power of the unit i under the pure
condensing condition at time t, respectively, and ηeh,i represents the
electrothermal conversion coefficient.

The CO2 produced and natural gas consumed can be calculated
by Eq. 8:

QG,c,t � eGgG,t

VCH4,t �
3.6gG,t

ηGHCH4

,

⎧⎪⎪⎨⎪⎪⎩ (8)

whereQG,c,t andVCH4 ,t represent the mass of CO2 generated and
the volume of natural gas consumed, respectively; eG represents the
carbon emission intensity; ηG represents the generating efficiency of
the unit; andHCH4 ,t represents the low calorific value of natural gas,
and 3.6 is the standard unit conversion coefficient.

(2) GPPCC

GPPCC energy consumption is directly met by unit output. In
order to better control the operation of GPPCC, this paper defines
the following operation indicators:

The flue gas λc,t split ratio represents the ratio of the flue gas flow
into the GPPCC to the total flue gas flow of the CHP unit and has a
value of 0–1.

GPPCC operation energy consumption gOP,t refers to the
variable energy consumption of GPPCC operation, mainly
including regenerative heat energy and compressed electric
energy, indicating the operation level of GPPCC.

The flow direction of CO2 in GPPCC is as follows:

Qc,t � λc,tQG,c,t

Qc
c,t � ηcQc,t

Qs
c,t � QG,c,t − Qc

c,t

⎧⎪⎨⎪⎩ , (9)

where Qc,t、 Qc
c,t and Qs

c,t represent the CO2 being processed,
successfully captured and discharged into the atmosphere by
GPPCC, respectively. ηc represents the CO2 capture rate of GPPCC.

The energy consumption of GPPCC can be calculated by Eq. 10

gGPPCC,t � gA + gOP,t � gA + ωceQc,t, (10)
where gA represents the fixed energy consumption of carbon

capture, which can be regarded as a constant value because of its
small proportion and wce represents the power consumption
per unit CO2.

In addition, GPPCC can store excess CO2 into the carbon
storage unit. For the convenience of calculation, the volume Qc

c,t

under standard condition will be replaced by Vc
c,t

Vc
c,t � Qc

c,t/ρc, (11)

where ρc represents the density of carbon dioxide at standard
conditions. Therefore, the CO2 captured by GPPCC and consumed
by P2G can be expressed by Eq. 12

Vc
c,t � Vin

c,t + Vc−m
c,t

Vm
c,t � Vout

c,t + Vc−m
c,t

, (12)

where Vin
c,t、 Vout

c,t and Vc−m
c,t represent CO2 entering the carbon

storage unit from GPPCC, P2G from the carbon storage unit, and
P2G directly from GPPCC, respectively, andVm

c,t represents the total
amount of CO2 consumed by P2G at time t.

(3) P2G

P2G mainly includes two processes: electrolytic water and
methanation, and energy conversion efficiencies of about 75%–

85% for electrolysis of water and 75%–80% for methanization,
for a total efficiency of about 45%–60%. In this paper, electrolytic
water and methanation are modeled separately, and the specific
expression is as follows:

VH2 ,t � 3.6ηH2
gH2 ,t/HH2

Vm
H2 ,t

� gm
CH4 ,t

/ωm
CH4

, (13)

where VH2 ,t and Vm
H2 ,t

represent H2 consumed by electrolytic
water generation and methanation, respectively; ηH2

represents the
efficiency of electric hydrogen conversion; HH2 represents the
calorific value of hydrogen; ωm

CH4
represents the methanation
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consumes electricity per unit H2; and gH2 ,t and gm
CH4 ,t

represent the
power consumption of electrolytic water and methanation,
respectively. The total operating power of P2G is

gP2G,t � gH2 ,t + gm
CH4 ,t

. (14)

P2G stores surplus H2 in the hydrogen storage unit. Therefore,
H2 produced by electrolytic water and consumed by methanation
can be expressed by Eq. 15

VH2 ,t � Vin
H2 ,t

+ Ve−m
H2 ,t

Vm
H2 ,t

� Vout
H2 ,t

+ Ve−m
H2 ,t

, (15)

whereVin
H2 ,t

,Vout
H2 ,t

, andVe−m
H2 ,t

represent H2 entering the hydrogen
storage unit from the electrolytic cell, methane reactor from the
hydrogen storage unit, and methane reactor directly from the
electrolytic cell, respectively.

Taking Vm
CH4 ,t

to indicate CH4 generated by P2G. According to
the chemical reaction equation of methanation, the ratio of Vm

c,t,
Vm

H2 ,t
, and Vm

CH4 ,t
is 1: 4: 1.

(4) Gas storage device

In this paper, carbon storage and hydrogen storage devices are
added to GPPCC and P2G, respectively, which can be used together
to flexibly control the two raw materials required for methanation,
achieve maximum absorption of wind power generation, and
improve the degree of carbon recycling. The modeling of
hydrogen and carbon storage devices can refer to the power
storage devices, as shown below:

Et � Et + ηinV
in
t − Vout

t

ηout
, (16)

where Et refers to the gas stored at time t;Vin
t and Vout

t represent
the gas stored and withdrawn at time t, respectively; and ηin and ηout
are charge/discharge efficiency, respectively.

3 Multi-objective stochastic
dispatching optimization model

3.1 Generation of uncertainty scenarios

Wind and photovoltaic power generation often have strong
uncertainty, which will bring risks to the real-time operation of
VPPs. Since the uncertainty of new energy output mainly comes
from the prediction error, this paper constructs the joint probability
distribution function according to the correlation of wind power and
photoelectric output error. Then, the inverse transformationmethod
is adopted to generate typical scenarios of wind-photoelectric
output, and the random model is transformed into a
deterministic model through the generation of uncertainty
scenarios while retaining the wind-photoelectric output
correlation. In order to take into account the randomness and
correlation of the scene output at each moment, the scene output
scene is generated.

(1) Constructing the covariance matrix σ24×24 of the full cycle wind
and solar forecast error, as follows:

σ ij � exp − i − j
∣∣∣∣ ∣∣∣∣
ε

( ), (17)

where σ ij represents the covariance period i and period j of time t
and ε is the covariance key parameter, which is used to control the
correlation strength.

(2) The multivariate normal distribution Z1×24 ~ N(0, σ24×24) of
the prediction error of full cycle scenery is constructed, and each
random variable follows the standard normal distribution.
Then, the mvnrnd function is called in MATLAB to
randomly generate N samples.

(3) According to the probability distribution function in Section
1.2.1, inverting the sample values of each period to obtain the
full cycle wind power and photovoltaic forecast error, and the N
wind and solar output scenarios are obtained from Eq. 2.
Figure 2 is a schematic diagram of the inverse transform.

Then, in order to reduce the amount of computation, k-means
clustering is used to reduce scenesN to typical scenes n. The specific
steps are as follows:

(1) Initial cluster centersD0
i (i � 1, 2,/, n) are randomly generated

within the value range of the n above N scenarios.
(2) Each scene and the nearest cluster center are divided into one

category, and the center of each category is used as the new
cluster center.

(3) If any i or both are satisfied |Dj
i −Dj−1

i |< 0.001 or satisfied
j≥ 1000, Dj

i will be used as the reduced scene. Otherwise, steps
(1) and (2) are repeated until conditions are met.

(4) Repeating steps (1), (2), and (3) for 100 times, and selecting the
best clustering result as the final n scenery typical output scene.

Finally, the typical output scenarios for wind and PV are
combined to obtain the final typical output scenario n for wind
and PV. The flow chart of n2 uncertainty scenario generation in this
paper is shown in Figure 3.

3.2 Multi-objective dispatching
optimization model

To improve the economy, promote the low-carbon development
of VPP, and respond to the national call for “double carbon”,
operating costs and carbon emissions are used as the
optimization objectives of the VPP in this paper.

(1) Operating cost

The operation cost of the VPP includes the generation costCG of
CHP units, the operation and maintenance cost CM of various
equipment, the cost CDR of controllable load, and the revenue IUG
from the electricity trading on the public grid.

minF1 � CG + CM + CDR − IUG. (18)

The generation cost of the CHP unit includes fuel cost and
startup and shutdown cost, which are calculated as follows:
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FIGURE 2
Diagram of inverse transform.

FIGURE 3
Flow chart of uncertainty scenario generation.
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CG � ∑T
t�1

cCH4 VCH4,t − Vm
CH4,t t

( )[ ] + CDT, (19)

where cCH4 represents the price of natural gas and CDT

represents the start-up/shut-down costs.
The operation and maintenance costs include operation costs of

wind power, photovoltaic, GPPCC, P2G, electric boilers, and power
storage devices, which are calculated as follows:

CM � ∑T
t�1

c1gWPP,t + c2gPV,t + c3gGPPCC,t + c4gP2G,t + c5geh,t(
+ c6 gdis

es,t + gch
es,t( )),

(20)

where c1、 c2、 c3、 c4、 c5 and c6 represent the operating cost
coefficients of wind power, photovoltaic, GPPCC, P2G, electric
boiler, and power storage device, respectively.

The controllable load cost includes the response output cost and
the standby output cost. The specific calculation is as follows:

CDR � ∑24
t�1

∑NI

k�1
cuI,kΔLu

k,t + cdI,kΔLd
k,t + cuR,kR

u
k,t + cdR,kR

d
k,t, (21)

where cuI,k and cdI,k denote the cost coefficient of providing
positive/negative response output for the user k, respectively; Ru

k,t

and Rd
k,t are the positive/negative spare capacity that can be provided

by the user k, respectively; and cuR,k and c
d
R,k denote the cost coefficient

of providing positive/negative standby output for user k, respectively.
The revenue from electricity purchase and sale of public grid is

calculated as follows:

IUG � ∑T
t

cUG,tgUG,t, (22)

where cUG,t denotes the electricity price of public power grid and
gUG,t indicates electricity sold (purchased) to the public grid
for VPP.

(2) Carbon emissions

Considering that China is still dominated by thermal power
generation, the equivalent carbon emissions of purchased public
grid electricity are also reckoned in the carbon emissions of CHP-
VPP. The expression is written in the following form:

minF2 � ∑T
t�1

Qs
c,t − ηUG min gUG,t, 0( )( ), (23)

where ηUG represents the carbon emission coefficient per unit of
electricity.

The constraints of VPP conventional dispatching model mainly
include electric/thermal power balance constraints, CHP unit output
constraints, controllable load constraints, equipment operation
constraints, and gas storage device constraints.

(1) Electric/thermal power balance constraints

The VPP proposed in this paper includes two kinds of energy
flows, electric and thermal, and needs to meet both power/thermal
balance constraints.

gWPP,t + gPV,t + gGe,t + gdis
es,t + ΔLI,t � Le,t + gch

es,t + gGPPCC,t

+gP2G,t + geb,t + gUG,t

hG,t + heb,t � Lh,t

⎧⎪⎨⎪⎩ , (24)

(2) CHP unit output constraints

The CHP unit output constraints primarily include the upper
and lower limit constraints of the unit thermal output, electrical
output, and total output:

0≤ hG,i,t ≤ hG,i,max

sG,i,t max gG,i,min − ηeh,ihG,i,t, αihG,i,t + βi( )≤
gGe,i,t ≤ sG,i,t gG,i,max − ηeh,ihG,i,t( )
sG,i,tgG,i,min ≤gG,i,t ≤ sG,i,tgG,i,max

⎧⎪⎪⎪⎨⎪⎪⎪⎩ , (25)

where hG,i,max represents the maximum value of thermal
output; gG,i,max and gG,i,min are the max/min total output,
respectively; αi represents the elastic coefficient of electric
power and thermal power and can be considered as a constant;
and βi represents a constant.

(3) Controllable load constraints

Controllable load constraints mainly include upper limit
constraints

uu
k,tL

u
k,t − ud

k,tΔLd
k,t + Ru

k,t ≤ΔLk,max

uu
k,tL

u
k,t − ud

k,tΔLd
k,t − Ru

k,t ≥ΔLk,min,
(26)

where ΔLk,max and ΔLk,min represent the maximum positive/
negative response output that can be provided by user k,
respectively.

(4) Equipment operation constraints

The equipment operating constraints consist primarily of upper
and lower limit constraints and climb constraints for the GPPCC,
P2G, and electric boilers.

gk,min ≤gk,t ≤gk,max

−Δgk,d ≤gk,t − gk,t−1 ≤Δgk,u
{ , (27)

where gk,min and gk,max are the min/max operating power of
type equipment, respectively. Δgk,u and Δgk,d represent uphill/
downhill climbing ability, respectively.

(5) Energy storage/gas device constraints

Constraints on energy or gas storage devices mainly include
energy storage/gas capacity constraints, upper limit of charging and
discharging rate constraints, charging and discharging state
constraints, and equal energy storage/gas capacity limitations at
the beginning and end of the cycle. Taking the gas storage devices as
an example:

0≤Et ≤Emax

0≤Vin
t ≤ sint Vmax in

0≤Vout
t ≤ soutt Vmax out

0≤ sint + soutt ≤ 1
E0 � E24

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(28)
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where Emax represents the maximum storage capacity of the gas
storage unit; sint and soutt represent the storage and venting states,
respectively, and are 0–1 variables; and V in

max and V out
max represent

the maximum rates of gas storage and venting, respectively.

(6) System backup constraints

Because of the uncertainty of variable renewable energy, the
conventional dispatching model of the VPP also requires
consideration of system reserve constraints. This paper
emphasizes the effect of load loss on the system when the actual
generation power of wind power and PV is lower than the predicted
power. The upper rotation reserve constraint is considered.

Ru
t ≥ rWPPgWPP,t + rPVgPV,t

Ru
t � Ru

k,t + Ru
es,t

{ , (29)

where rWPP and rPV represent upper rotational reserve
coefficients of WPP and PV, respectively, and Ru

t is an upper
rotation backup available for VPP. The reserve capacity Ru

es,t

provided for the power storage device. The operation mode of
controllable load and power storage device is flexible, which can
provide a certain reserve capacity for the VPP. However, the CHP
unit has poor flexibility, so this paper does not consider it as a
standby power supply.

Ru
es,t � min ges,max − ges,t,

Ees,t − ges,tΔt
Δt( ), (30)

where ges,max represents the maximum input or output power of
the power storage device and ges,t represents the operating power of
the ESD, which is equal to gdis

es,t when it is positive and equal to gch
es,t

when it is negative.

3.3 Multi-objective stochastic dispatching
optimization model

Based on value at risk (VaR), CVaR takes into account the
distribution of risk outside the confidence level, and can reflect the
maximum possible loss in the full probability interval of the
portfolio under a given level of confidence. Therefore, in this
paper, the CVaR theory is utilized to quantify the risk of load
loss in real-time dispatching of VPPs and is used as an optimization
objective reflecting the operational risk of VPPs to cope with the
uncertainty of variable renewable energy. The approximate formula
of CVaR is as follows:

Fβ x, α( ) � α + 1
1 − β

∫ f x, y( ) − α[ ]+ρ y( )dy, (31)

where x and y represent portfolio vectors and random vectors,
respectively; f(x, y) represents the loss function; β represents the
confidence; α represents the VaR value; ρ(y) is the joint probability
density function of the random vector y; and [f(x, y) − α]+
represents max f(x, y) − α, 0{ }.

When the analytic formula ρ(y) is difficult to obtain, the integral
term of Eq. 31 can be estimated by historical data or sample data
obtained by Monte Carlo simulation. In this paper, the scenarios

generated in Section 2.1 are used as samples, which are expressed
as follows:

F̂β x, α( ) � α + 1
N 1 − β( )∑

N

n�1
f x, yn( ) − α[ ]+, (32)

where y1, y1,/, yn representN samples of y. The loss function
values fn of each sample is arranged from large to small, and the βN
first is the value of α.

Risk metrics are often related to the amount and duration of load
loss, so by taking the penalty cost of VPP load loss as a loss function,
and the specific calculation is as follows:

Cens � ∑T
t�1
cens,t ΔgWPP,t + ΔgPV,t − Ru

t( ), (33)

where ΔgWPP,t and ΔgPV,t indicate deviations from actual wind
and PV generation, respectively, and cens,t represents the penalty cost
coefficient of load loss.

A multi-objective random dispatching optimization model for
the VPP is as follows:

minF1 � CG + CM + CDR − IUG

minF2 � ∑T
t�1

Qs
c,t − ηUG min gUG,t, 0( )( )

minF3,β � α + 1
N 1 − β( )∑

N

k�1
Crisk G, gk( ) − α[ ]+.

s.t.Equation 22( ) − 26( )

(34)

4 Multi-objective model solving

The VPP dispatching optimization model has three objectives:
operation cost, carbon emissions, and operation risk. The multi-
objective model needs to be transformed into the single-objective
model, and then the CRITIC weighting method is used to solve the
VPP multi-objective optimization model. It is also necessary to
linearize the model and dimension the objective function
before solving.

4.1 Model linearization

It can be seen from Eq. 9 that the calculation process of Qc,t

needs to be linearized by multiplying λc,t and QG,c,t. First, λc,t will be
discretized into 100 linear combinations of 0–1 variables. Since the
value of λc,t is between 0 and 1, this operation is equivalent to
limiting the precision of λc,t to 0.01. The details are as follows:

λc,t � 0.01∑100
i�1
λi,t, (35)

where λi,t represents the 0–1 variable. The results showed that

Qc,t � 0.01∑100
i�1
λi,tQG,c,t. (36)
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Then, by making Qi,t � λi,tQG,c,t, and adding the appropriate
constraints, the goal of linearizing Qc,t calculation process is
achieved. The details are as follows:

Qc,t � 0.01∑100
i�1
Qi,t

0≤Qi,t ≤QG,c,t

Qi,t ≤Mλi,t
Qi,t ≥QG,c,t −M 1 − λi,t( )

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
, (37)

where M represents a large enough number. Similarly, the
formula for multiplying other binary variable and continuous
variable can be linearized.

4.2 Dimensioning of objective function

Since the three objective functions in this paper have different
orders of magnitude, the method based on fuzzy satisfaction is used
for dimensioning the objective function (Gong et al., 2011). The
fuzzy satisfaction theory can reflect the satisfaction degree of the
objective function compared with the single-objective optimization,
and its principle is to use the membership function of the fuzzy
theory to quantify the solution of the objective function. First, each
objective function is taken as the optimization object, the single-
objective model is solved, and the values of other objective functions
are calculated. See Table 1 for details. * denotes that the objective
function is used as the optimization object.

The optimal values of each objective function can be obtained
from Table 1, namely, F1

min
, F2

min, and F3
min

. Then, the maximum
value F1

max
, F2

max
, and F3

max
, is determined and can be scaled

appropriately according to the preferences of the decision maker
and the situation on the ground.

F1
min ≤F1

max ≤ F 2( )
1 , F 3( )

1{ }
F2
min ≤F2

max ≤ F 1( )
2 , F 3( )

2{ }.
F3
min ≤F3

max ≤ F 1( )
3 , F 2( )

3{ }
⎧⎪⎪⎪⎨⎪⎪⎪⎩ (38)

Finally, the objective functions are all optimized in the direction
of minimization, and each objective function uses ascending semi-
linear membership functions as membership functions. The details
are as follows:

πi Fi( ) �

0, Fi ≤Fi
min

Fi − Fi
min

Fi
max − Fi

min
, Fi

min <Fi <Fi
max,

1, Fi ≥Fi
max

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(39)

where π(Fi) represents the membership function of objective
function Fi.

4.3 CRITIC weighting method

The entropy weight method is the most widely used method for
solving VPPmulti-objective problems. However, the entropy weight
method mainly empowers through the degree of dispersion of each
objective, ignoring the horizontal influence generated by the
correlation between the objectives. CRITIC is an objective
weighting method that considers the impact of index correlation.
The principle is to determine the weight according to the contrast
strength of the evaluation index and the correlation between the
indexes, which can reduce the influence of the correlation between
the indexes on the final weight and make the results more objective
and reasonable. The general process of the CRITIC method is
as follows:

(1) First, suppose there are m plans and n goals, respectively.
Taking the solutions of F1, F2, and F3 as objectives are taken as three
CRITIC weighted schemes, and the following evaluation matrix
is obtained.

X �
x11 x12 / x1m

x21 x22 / x2m

..

. ..
. ..

.

xn1 xn2 / xnm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (40)

where xij denotes the dimensioned value of the first j target of
the first i scheme.

(2) Then, the standard deviation and correlation coefficient were
calculated for each target, as follows:

σ i �
!!!!!!!!!!!!!
1
m

∑m
j�1

xij − xi( )2
√√

ρik � cov Xi, Xk( )/ σ iσk( )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
, (41)

where σ i is the standard deviation of the target i; ρik indicates the
correlation coefficient between target i and target k; and cov(Xi,Xk)
is the covariance of lines i and k.

(3) Calculating the amount of information contained in each
goal and acquiring the weight of each goal, as follows:

Gi � σ i∑n
k�1

1 − ρik( )
ui � Gi

∑n
k�1

Gk

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
, (42)

where Gi represents the information amount of the target and

∑n
k�1

(1 − ρik) represents the quantitative indicator of the conflict

between the first goal i and other goals.
Finally, the combined objective function is as follows:

F � ∑3
i�1
uiπi Fi( ). (43)

TABLE 1 Input–output of objective function.

Optimization object/objective function F1 F2 F3

F1
*

F1
min F(1)

2 F(1)
3

F2
* F(2)

1 F2
min F(2)

3

F3
* F(3)

1 F(3)
2 F3

min
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5 Example analysis

For the sake of verifying the validity and applicability of the
model designed in this study, a simulation is established on
MATLAB R2020a and the model is solved using CPLEX solver.

5.1 Example data

For the purpose of this study, an industrial park in Lankao
County, Henan Province is selected as the research object. The VPP

of the park has two 0.8 MW CHP units, the total capacity of wind
and PV is 1.2 MW and 0.4 MW, and the energy storage capacity is
0.1 MW. The maximum response outputs for the electric boiler
capacity and controllable loads are 0.15 MW and 0.03 MW,
respectively. The maximum operating power of carbon capture
device is 0.1 MW, and the maximum operating power of
electrolytic cell and methane reactor is 0.3 MW and 0.15 MW,
respectively. In the conventional dispatching model, the spinning
reserve coefficients of WPP, PV, and load are 0.25, 0.15, and 0.1,
respectively. In the uncertain dispatching model, the penalty cost
coefficient of load loss is 800 yuan/MW, and the confidence level of

FIGURE 4
WPP and PV output and electric heating load predicted by the VPP dispatching center in the day ahead.

FIGURE 5
Actual output scenarios of wind charge and typical scenarios after reduction.
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the CVaR value is 0.8. Figure 4 shows the wind power, photovoltaic
output and electrothermal load predicted by the VPP dispatching
center in day ahead. Figures 5, 6 show the actual output scenarios
and the reduced typical scenarios of wind charge photovoltaic
generated in this paper, respectively. In a typical output scenario
for wind and photovoltaic power generation, there is a certain
correlation between the output values, while the output values at
each time also retain a certain degree of randomness, which is more
in line with the actual output of wind power and photovoltaic.

5.2 Scenario setting

This paper proposes a carbon recycling module considering the
carbon capture device and power-to-gas device, and creatively
decouples the generation and utilization process of CO2 through
carbon storage and hydrogen storage devices, while realizing the
time shift of surplus renewable energy power. In addition, a risk
quantification method based on CVaR theory is proposed. For the
sake of verifying, the conclusiveness of the method propounded in
this study, the following four scenarios are set up for simulation
and analysis.

Scenario 1: Basic scenario. This scenario does not include carbon
recycling module and the risk quantification method, but the
conventional system backup constraint is applied to deal with the
uncertainty of new energy.

Scenario 2: Carbon recycling scenario. This scenario introduces
the carbon recycling module and does not adopt the risk
quantification method in this paper.

Scenario 3: Risk quantification scenario. This scenario adopts
the risk quantification method in this paper, without introducing the
carbon recycling module.

Scenario 4: Comprehensive scenario. This scenario introduces
the carbon recycling module and adopts the risk
quantification method.

5.3 Example results

According to the multi-objective weighting method in Section 3,
the weights of the objective functions of minimum operation cost,
minimum carbon emissions, and minimum operation risk in
Scenario 3 and Scenario 4 are 0.26, 0.3, and 0.44, respectively.
Since Scenario 1 and Scenario 2 do not use the risk
quantification method, and only include the minimum operating
cost and the minimum carbon emissions, using the entropy weight
method to calculate the weight, which are 0.59 and 0.44, respectively.
Table 2 shows the optimization results of each scenario.

According to Table 2, the operation cost, carbon emissions, and
operation risk of Scenario 1 are 10,606.46¥, 8,594.14 kg, and 7.6¥,
respectively. Compared with Scenario 1, Scenario 2 utilize the
surplus wind power generation to achieve the recycling of CO2

owing to the introduction of carbon recycling module, reduce the
fuel cost of CHP units, and reduce the operating cost and carbon
emissions by 23.95¥ and 280.6 kg, respectively. Scenario 3 measures
the risk level in the real-time operation of the VPP by adopting the
risk quantification method, and develops a dispatching scheme with
risk and economy, which reduces the operation cost and carbon
emissions by 456.38¥ and 153.75 kg, respectively, while the
operation risk only increases by 81.02¥. Based on Scenario 2 and
Scenario 3, the operating cost and carbon emissions of Scenario 4 are
further reduced by 689.95¥, 257.52¥, 245.47 kg, and 372.32 kg.
Figure 7 shows the operating power of each unit in the VPP
under each scenario.

According to Figure 7, the CHP unit is limited by the
thermoelectric ratio and the minimum output, and maintain high
output level all the time. The electric boiler uses wind power to
supply heat for the system in periods 1–8 and 22–24, and conducts
thermoelectric decoupling. The controllable load and power storage
device mainly maintain the power balance of the VPP, providing
access space for wind power and photovoltaic, and reserve capacity
for the VPP. During periods 1–8, 11–16, and 23–24, the output of

FIGURE 6
Photovoltaic actual output scenarios and typical scenarios after reduction.
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WPP and PV is high, and VPP sells surplus renewable energy power
on the main network. On this basis, this section will further analyze
the carbon emission reduction capability of the proposed carbon
recycling module and the uncertainty response capability of the risk
quantification method. Compared with Scenario 1, the operating
power of the CHP unit in Scenario 2 increases slightly, the operating
power of electric boilers is higher, and more electric energy is sold in
the electricity market. Scenario 2 introduces the carbon recycling
module, which requires more power consumption. The
consumption of wind power and photovoltaic is greatly
increased, increasing of downlink calls of controllable load, to
improve the uplink spare space.

Compared with Scenario 1, the operating power of the CHP unit
in Scenario 3 is slightly lower, and more electric energy is sold in the
power market because Scenario 3 adopts the risk quantification
method, and chooses to absorb more scenic calls to improve the
economy of VPP, while taking certain risks. Therefore, the number
of calls of controllable loads in Scenario 3 is less, to save the backup
cost of VPP.

5.3.1 Analysis of GPPCC and P2G carbon
recycling capacity

Scenario 2 and Scenario 4 utilize the surplus wind power
generation in the VPP through GPPCC and P2G to recycle some
CO2 generated by CHP units, reducing the carbon emissions of VPP,
and saving the fuel cost of CHP units. The example results show that
293.57 and 360.26 kg of CO2 are recycled in Scenario 2 and Scenario
4, respectively, which fully demonstrates the carbon recycling
capacity of GPPCC and P2G. In addition, in order to improve
the carbon recycling degree of the VPP, carbon storage and
hydrogen storage devices are also considered in the process of
carbon recycling to decouple the generation and utilization of H2

and CO2, realizing the time shift of renewable energy power. Figures
8, 9 show the storage of CO2 and H2 and the production of CH4 in
Scenario 2 and Scenario 4, respectively.

On the basis of Figure 8, to achieve full utilization of renewable
energy for power generation, electrolytic water, and methanation are
mainly conducted in periods 1–7, 12–16, and 24–25. In addition, the
operating power of the equipment in Scenario 4 is slightly higher
than that in Scenario 2 due to the risk quantification method. For
both scenarios, the operation of electrolytic water, methanation, and
carbon capture is relatively independent, and the operation plan can
be flexibly arranged according to the WPP output and CHP unit
output information in the VPP, to effectively improve the
operational efficiency of the carbon recovery module. To reduce
the frequent use of carbon capture equipment, the VPP will choose
to centrally capture a certain amount of CO2 in periods
1–4 according to the carbon recycling capacity of GPPCC and
P2G. However, most of the H2 generated by electrolytic water is
produced and used immediately. When there is more renewable

TABLE 2 Optimal results in different cases.

Scenario Operating
cost (¥)

Carbon
emission (kg)

Operational
risk (¥)

Scenario 1 10,606.46 8,594.14 7.60

Scenario 2 10,582.51 8,313.54 26.17

Scenario 3 10,150.08 8,440.39 88.62

Scenario 4 9,892.56 8,068.07 97.17

FIGURE 7
Operating power of different units in the four cases.
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energy surplus electricity, storing excess H2 in the hydrogen storage
unit, hence the time shift of renewable energy power is achieved. In
addition, the periods of CH4 generation and CO2 storage under the
two scenarios are roughly the same. However, H2 is mainly stored
before time 14 in Scenario 2 and after time 15 in Scenario 4. After
fully measuring the risk of VPP real-time operation, so as to take
advantage of the renewable energy power available in Scenario 4 for
periods 15–16 and 23–24, it is decided to increase the power of
electrolytic hydrogen production in periods 15–16, and store the
surplus H2 in the hydrogen storage device, during the period 23–24,
and H2 is intensively consumed at a high operating power for

methanation to produce CH4. Table 3 shows the dispatch results
before and after adding the gas storage device for Scenario 4.
Figure 10 shows the operating power of each equipment in
Scenario 4 without the carbon storage and hydrogen storage units.

According to Figure 10, the three processes of carbon capture,
electrolytic hydrogen production and methanation are coupled, and
the operation flexibility is poor. On the basis of Table 3, although the
operation cost has only decreased by 8.59 after the addition of the
carbon storage and hydrogen storage units, the amount of carbon
recycling has increased by 33.48 kg, and the degree of carbon
recycling has increased by 10.25%. Description of the above

FIGURE 8
Devices’ operating power and gas volume in case 2.

FIGURE 9
Devices’ operating power and gas volume in case 4.
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analysis shows that the carbon recycling method can realize the
recycling of CO2, and the carbon storage and hydrogen storage
devices can flexibly control the generation and consumption of CO2

and H2, so as to improving the degree of carbon recycling.

5.3.2 Effectiveness analysis of risk
quantification methods

Scenario 3 and Scenario 4 use the risk quantification method to
measure the risk of VPP operation, thus, the decision maker can
formulate a dispatching scheme with both risk and economy. Figure 11
shows the wind power generation plan and upstream backup plan of
the VPP under each scenario. It can be seen that Scenario 1 and
Scenario 2 adopt the conventional system reserve constraint, and
arrange the reserve capacity according to the fixed proportion of the
wind power plan output, so that part of the wind power generation
cannot be consumed, resulting in a large opportunity cost. Scenario
3 and Scenario 4 adopt the risk quantification method in this paper,
which can fully consider the real-time risk situation. Compared with
Scenario 1, Scenario 3 arranges more planned output for wind power at
the time of 18 and 21, and takes certain risks to obtain greater benefits.
Compared with Scenario 2, Scenario 4 arranges more planned output
for wind power in time periods 2, 5–7, 18, and 24, and takes certain
risks to obtain greater benefits. However, the planned output of wind
power will be reduced in time periods 3–4, 8, and 20, and some
potential benefits will be given up to avoid the risk of load loss. In
addition, compared with Scenario 1–2, Scenario 3–4 can arrange the
standby plan according to the risk situation, and the standby output of
controllable load is generally low, saving the standby cost for the VPP.
The above analysis shows that the risk quantification method in this
paper can fully measure the risk situation in real-time dispatching, and
more reasonably arrange the wind and solar power generation plan and
backup plan, so that the VPP can avoid the risk in real-time dispatching
while obtaining more benefits. Figure 12 shows the target values under
different confidence levels β in Scenario 4.

According to Figure 12, with the increase of confidence, the
attitude of decision makers becomes conservative, which makes the
operation cost and carbon emissions gradually increase, and the

TABLE 3 Optimal results in different cases.

No carbon storage
device and hydrogen

storage device

Add carbon storage
unit and hydrogen

storage unit

Carbon
circulation
amount (kg)

326.78 360.26

Operating
cost (¥)

9,934.19 9,925.60

FIGURE 10
Devices’ operating power without HS and CS in case 4.

FIGURE 11
Up reserve plan and the plan of wind and photovoltaic power generation in different cases.
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operation risk gradually decreases. While 0.6≤ β≤ 0.7, the operation
cost and operation risk changed rapidly, and the model was highly
sensitive to risks. When β≤ 0.6 or 0.7≤ β≤ 0.8, the change of
operation cost and operation risk is relatively gentle, and the
model is less sensitive to risk. While β≥ 0.8, the operation risk
quickly converged to zero, which may be because the risk attitude
was very conservative, resulting in the over matching of the
dispatching plan and wind power output scenario.

6 Conclusion

In this paper, GPPCC and P2G are introduced into CHP-VPP, and
also the carbon storage and hydrogen storage units are added. Then,
based on the uncertainty scenario generation and CVaR theory, the
load loss risk of VPP is quantified in real time, and the VPP multi-
objective stochastic scheduling optimization model is constructed with
the objectives of min operating cost, min carbon emission, and min
operating risk. Finally, the credibility and relevance of the model are
verified by designing an example, and the conclusions are as follows.

(1) The electric boiler can use wind power generation to supply heat
for the system, reduce the dependence of VPP on the heat
output of CHP, which makes the power output more flexible,
and effectively realize “thermoelectric decoupling”.

(2) The risk quantificationmethod in this paper can fullymeasure the
risk status in real-time dispatching, and more reasonably arrange
the wind and solar power generation plan and backup plan, so
that the VPP can get more benefits while avoiding the risk in real-
time dispatching. The example analysis shows that when the
confidence level is (0.6, 0.8), the operating cost and operating risk
of the system are in a more appropriate range.

(3) GPPCC and P2G can effectively realize the recycling of CO2, and
carbon storage devices and hydrogen storage devices can flexibly

control the generation and consumption of CO2 and H2, which can
effectively separate carbon capture, electrolytic hydrogen production,
and methanation processes to enhance carbon recycling.

(4) The carbon storage and hydrogen storage devices can flexibly
control the generation and consumption of CO2 and H2, and
their combined use can effectively decouple the carbon capture
and electricity to gas processes, while achieving the time shift
of renewable energy power, so as to improve the degree of
carbon recycling. The example analysis shows that the degree
of carbon recycling increased by 10.25% by adding two devices
at the same time.

(5) In the future, the influence of new power sources such as
concentrating solar power plants on CHP-VPP will be considered.
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Research on a price prediction
model for a multi-layer spot
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With the continuous promotion of the unified electricity spot market in the southern
region, the formation mechanism of spot market price and its forecast will become
one of the core elements for the healthy development of the market. Effective spot
market price prediction, on one hand, can respond to the spot power market supply
and demand relationship; on the other hand, market players can develop reasonable
trading strategies based on the results of the power market price prediction. The
methods adopted in this paper include: Analyzing theprinciple andmechanismof spot
market price formation. Identifying relevant factors for electricity priceprediction in the
spotmarket. Utilizing a clusteringmodel and Spearman’s correlation to classify diverse
information on electricity prices and extracting data that aligns with the demand for
electricity price prediction. Leveraging complementary ensemble empirical mode
decomposition with adaptive noise (CEEMDAN) to disassemble the electricity price
curve, forming a multilevel electricity price sequence. Using an XGT model to match
information across different levels of the electricity price sequence. Employing the
ocean trapping algorithm-optimized Bidirectional Long Short-Term Memory (MPA-
CNN-BiLSTM) to forecast spot market electricity prices. Through a comparative
analysis of different models, this study validates the effectiveness of the proposed
MPA-CNN-BiLSTM model. The model provides valuable insights for market players,
aiding in the formulation of reasonable strategies based on the market's supply and
demand dynamics. The findings underscore the importance of accurate spot market
price prediction in navigating the complexities of the electricity market. This research
contributes to the discourse on intelligent forecasting models in electricity markets,
supporting the sustainable development of the unified spot market in the
southern region.

KEYWORDS

similar-day filtering, deep learning algorithms, electricity price decomposition,
electricity markets, electricity price forecasting

1 Introduction

China’s electricitymarket is growing andmaturing. In recent years, the Chinese government
has deepened the reform of the power industry and gradually realized the opening and
diversification of the power market. In the development of China’s power market, the
southern regional power market has shown great vitality. China’s power market is
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developing rapidly, and the southern regional power market has
become a signaling source, leading the industry’s development. By
the end of 2022, more than 130,000 market players were registered in
the southern region, a 48% year-on-year increase. A total of 738.9 billion
kWh of electricity was traded in the five southern provinces in the
medium- and long-term in 2022, a year-on-year increase of 27%,
accounting for more than 50% of the total.

In terms of the electricity spot market, the southern regional
electricity spot market was the first spot market in the country to
launch a simulated trial run and a settlement trial run. Since 2021, the
market has gone through multiple tests and has gradually become a
benchmarkmodel for the industry. The southern region’s electricity spot
market is characterized by openness and transparency, fewer operational
constraints, and a higher freedom of optimization. Overall, the
development of China’s power market is entering a brand new stage,
and the southern regional power market has shown strong development
momentum and good operation in this stage.

The development of the power market, on one hand, helps
improve the freedom and diversification of the market, but on the
other hand, for the market players in the transaction, the risk is
further increased, so in order to cope with the risks of the market,
power market players need to effectively predict the market risk, in
which the tariff prediction is an effective response to the risks of the
power market, to improve the transaction of the decision-making
program of favorable measures (Beltrán et al., 2022).

Electricity price forecasting refers to the estimation of the price of
electricity in a certain period of time in the future. It is an important
research direction in the field of energy economics, whichmainly involves
the price formation of the electricity market, the forecast of electricity
demand and supply, and policy analysis (Boubaker, 2021). The research
significance of electricity price forecasting is to help power market
participants develop more reasonable power purchase and sales
strategies and improve the transparency and stability of the powermarket.

At present, domestic and foreign researchers have proposed a series
of electricity price prediction methods, including statistical learning,
machine learning, and deep learning. Among them, statistical learning
mainly includes linear regression, support vector regression, and plain
Bayesian classifier, which can effectively deal with time series data and
analyze the influencing factors of electricity price (Dong et al., 2022).
Machine learning methods include decision trees, random forests, and
neural networks, which can automatically extract features from data and
show better generalization performance. Deep learning, as an emerging
machine learning method, has a strong adaptive ability and robustness
and can handle high-dimensional data (Yang and Schell, 2021). There are
several current methods and techniques for electricity price forecasting:

1) Forecasting method based on time series

Time series forecasting is a method of forecasting electricity
prices based on historical data. It focuses on forecasting future prices
by analyzing historical price data and discovering trends and
patterns in them. Commonly used time series forecasting
methods include ARIMA, SARIMA, VAR, and VECM. The
advantage of this method is that it can handle high-noise data
and is highly adaptable to changes in the data (Yang et al., 2022).
However, it ignores the influence of other factors, such as policy
adjustments and weather changes, and therefore has limited
forecasting accuracy (Mohammadzadeh et al., 2022).

2) Machine learning-based forecasting method

The machine learning-based forecasting method is a data-driven
electricity price prediction method based on data (Dong et al., 2023). It
predicts future prices by automatically extracting features from data and
learning patterns from historical data. Commonly used machine
learning-based forecasting methods include decision trees, random
forests, neural networks, and support vector machines (Zhao et al.,
2020). The advantages of this method are that it can automatically
extract features, shows strong generalization performance, and is better
at handling nonlinear data. However, it requires a large amount of
labeled data and has higher requirements for data preprocessing and
greater computational complexity (Wang et al., 2022).

3) Deep learning-based forecasting method

The deep learning predictionmethod is an artificial neural network-
based electricity price prediction method (Elmore and Dowling, 2021).
It abstracts the data layer by layer by constructing a multilevel neural
network structure to predict the future price. Future research can
explore these problems in depth and propose more effective
solutions to provide more power for the development of electricity
price prediction (Jdrzejewski et al., 2021; Yakoub et al., 2023). With the
continuous development of the energy market and the continuous
innovation of data technology, we believe that future research on
electricity price prediction will achieve more significant results.

4) Hybrid method

Hybrid methods are a hot direction in the research of
electricity price prediction in the spot market of electricity in
recent years (Lago et al., 2021). This type of method mainly
improves the prediction accuracy by fusing the advantages of
different algorithms to overcome the shortcomings of a single
method. For example, Zhao et al. (2023) proposed a hybrid
prediction method by fusing a statistical learning-based linear
regression model and a neural network-based deep learning
model. Experiments show that the method has high accuracy
and robustness in electricity price prediction in the electricity
spot market. In addition (Lin et al., 2022), Shi et al. (2021)
integrated support vector regression based on time series
analysis with a neural network model and applied it to
electricity price forecasting in the UK electricity market.

From the research situation at home and abroad, we can see that
the technology of the electricity price prediction is relatively rich and
the applied technology is relatively mature, but we also see that
different technologies still have shortcomings. For example, the
time series cannot respond to the impact of factor changes on the
price of electricity; although machine learning can reflect the
characteristics of the data very well, it has high demand for data
processing, and deep learning algorithms require a large amount of
data. So, this paper, in order to circumvent these shortcomings, uses
hybrid models. The advantages and disadvantages of these three
methods refer to the time series model, machine learning
algorithm and deep learning algorithm. The specific modifications
are as follows :Based on the advantages and disadvantages of time
series, machine learning algorithm and deep learning algorithm, the
concept of hybrid model is adopted.first of all, the use of similar-day
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screening and data preprocessing improve the effectiveness of the
original data to ensure that the information with the forecast date is
more consistent, to eliminate some of the ineffective information on
the impact of the electricity price prediction, and second, the use of
decomposition models to decompose the historical price of electricity
to reduce the volatility of the original curve, but in order to relevant
factors in the role of electricity price prediction, the classification
tree is used to match the decomposition curve with the factors to
maximize the display of the role of factors, and finally, a combination
of machine learning and deep learning is used to provide the
computational ability of the prediction model to achieve the
scientific nature of electricity price prediction.

2 Based on fuzzy cluster
analysis–Spearman correlation-based
similar-day screening for the electricity
spot market

2.1 Analysis of the principles of electricity
price formation in the spot market

In the day-ahead market, market participants are required to
formulate the next day’s trading strategy on the platform of the

trading center based on the released information on the power
system, which generally includes the strategy of quoting quantity
and price (Zhao et al., 2021). The trading center will summarize the
transactions of market participants to achieve the pre-clearing price,
and the results of the current stage of the summarized transactions
will be sent to the dispatch center to do security checks if the results
of such summaries to meet the security of the power system are
passed, and sent to the trading center to form the final clearing price;
otherwise, it will be further aggregated to circulate this step until it
can be bathed in the balance of the power system (David et al., 2021).
Therefore, in the electricity price forecast modeling and forecasting,
to fully consider the supply and demand situation of the power
system, in the multi-big data market, such data will be made public
to the market player (Tschora et al., 2022).

Figure 1 shows that the spot electricity market is the result of the
joint action of various market players and trading institutions, which
is influenced by the balance of supply and demand in the power
system, the behavioral decisions of market players, and the output
characteristics of different market players (Trull et al., 2021). In the
medium- and long-term market, due to the long cycle, the supply
and demand is relatively stable and market players tend to develop
trading strategies based on past market conditions, but the spot
market has a short information effectiveness and high volatility, so
there is a need to make the most accurate judgment with limited

FIGURE 1
Spot market electricity price formation process.
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information. Therefore, there is a need to have new technology to
support the development of trading strategies. The tariff prediction
is a preview of the trend of the electricity price in the spot market,
and it can provide the market players with price. The tariff forecast is
a prediction of the trend of electricity price in the spot market, which
can provide the price for market players.

2.2 Spearman correlation-based integrated
similarity ranking of historical information

The previous section explains the formation of spot market
electricity price, which is formed by the joint action of a variety of
factors. This paper summarizes the research on the following existing
electricity price forecasting factors: historical electricity price, market
demand, thermal power output, new energy output, provincial load
adjustment, and market player strategy (JI et al., 2022).

The history of electricity price, according to the electricity
market before the result, is divided into the day-ahead spot price
and real-time spot prices. The market demand includes the market
main body, the different time scales of market demand, market
demand prediction deviation, intra-provincial transactions and
inter-provincial transactions, etc., between thermal power output
including history and actual output of thermal power, scheduling,
and modulate and participate in peak shaving, and modulate the and
so on (HAN et al., 2023).

New energy output includes the historical output of new energy,
forecast deviation of new energy output, and proportion of new
energy output inmarket demand. Provincial load adjustment mainly
includes medium- and long-term transaction power and inter-
provincial spot transaction power (Zhang et al., 2022).

Combined with the current status of domestic and foreign
electricity price forecasting research and the actual operation of
China’s spot pilot, this paper selects the provincial load, thermal
power output, new energy output, non-market power, and outgoing
power as the correlation factors of electricity price forecasting. These
correlation factors are the inputs of the electricity price forecasting
model and the basis of the screening of the similarity day. In order to
verify the validity of these factors selected in this paper, a province of
the spot pilot was selected to run the actual operation of the
electricity price forecasting model. The correlation coefficient is
calculated herein. In order to verify the validity of the factors selected
in this paper, the actual operating data on a province in the spot pilot
are chosen as the data for factor correlation analysis, and Spearman’s
correlation is used for correlation analysis. Spearman’s correlation
coefficient can also be expressed in terms of rank value. Spearman’s
correlation between two variables can be expressed as the Pearson
correlation between the rank values of two variables. Its main
formula is expressed as follows (Wu et al., 2021):

rs � 1 − 6∑d2
i

n n2 − 1( ). (1)

In the equation, di represents the rank difference between
subjects, n represents the number of observations, and rs
represents the correlation between two subjects.

Through the above equation, the correlations of unified
scheduling load, inter-provincial demand load, new energy
output, non-market output, and thermal power output are

obtained: 0.8214, 0.5790, −0.7954, 0.6254, and 0.9655,
respectively. It can be seen that thermal power space has the
strongest correlation with the spot price, followed by the unified
scheduling load, and finally, the inter-provincial demand load. In the
selection of similar days, the correlation coefficient is taken as the
relevant factor of weight.

2.3 FCM-based similar-day screening

The Fuzzy C-means (FCM) model is a multivariate analysis
method based on partitioning. FCM is a multivariate analysis
method based on division. The general steps of the algorithm can
be divided into data standardization, calibration (establishing a
fuzzy similarity matrix), and clustering (solving a dynamic cluster
diagram matrix) and clustering (dynamic clustering map) (Cheng
et al., 2022).

Data standardization: First, the dataset of correlation factors
of different factors with multiple days is U � x1, x2, . . . , xn{ }
through Spearman’s filtering, and each key correlation factor
has m values constituting. Then, the original data matrix Q is
represented as

Q �
x11 ... x1m

..

.
1 ..

.

xn1 ... xnm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

In order to unify the magnitude of the data on different
correlation factors, it is necessary to standardize the original data
parameters, and the original factor data matrix is compressed to the
interval [0,1] by using polar transform pairs.

xik
′ �

xik − min
1≤ i≤ n

xik{ }
max
1≤ i≤ n

xik{ } − min
1≤ i≤ n

xik{ } k � 1, 2, ..., m( ). (2)

Calibration (establishment of the fuzzy similarity matrix):
According to the theory of the fuzzy clustering algorithm, in
order to facilitate the analysis and comparison between statistical
indicators, the similarity degree of two elements in the domain U is
calculated as rij � R(xi, xj). The traditional cluster analysis method
of the angle cosine method of the data matrix for fuzzy processing is
used to obtain the fuzzy similarity matrix R of the relevant factors.
Then, the calibration model of the angle cosine method represented
is as follows:

rij � ∑m
k�1xik · xjk															∑m

k�1x
2
ik −∑m

k�1x
2
jk

√ . (3)

Clustering (seeking the dynamic clustering diagram): The fuzzy
similarity matrix has self-inversion and symmetry but not
necessarily transferability. In order to realize the classification of
different relevant factors, it is necessary to convert the fuzzy
similarity matrix R into the fuzzy equivalence matrix R*. The
quadratic method is used to obtain the transfer closure t(R) of
the fuzzy similarity matrix, and the transfer closure t(R) is the
required fuzzy similarity matrix R*, which is t(R) = R*. For different
confidence levels, λ is divided into large and small to obtain the
dynamic clustering diagram of different electricity price-
related factors.
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In order to ensure the accuracy of similar-day screening, this
paper adopts the Spearman–FCMmodel to screen the historical data
and select the historical data that best meet the prediction demand as
the base data for electricity price prediction. The specific steps are
shown below:

1) A collection of factors related to electricity price factors is
constructed. Then, according to the degree of influence of
different factors on the electricity price, the key factors that
best meet the demand for electricity price prediction are
screened. This paper mainly chooses Spearman’s correlation
as the factor screening model.

2) According to the first step to obtain the core key factors of
electricity price forecasting, further screening out the historical
day and forecast day market-related factors most closely match
the data. First, the different key factors are constructed to form
a multi-day factor matrix, and second, the FCM model is used
to cluster the different relevant factors on the forecast day and
the historical day, and the clustering intervals where the
different factors are located are selected.

3) According to the clustering intervals of different factors
obtained in the third step, the aggregated clustered data on
different factors are integrated, and the data with the highest
degree of similarity obtained by clustering are sorted. Then, the
data on the first 50 days are screened out as the basic data for
tariff prediction.

The similar-day screening process is shown in Figure 2.

3 Research on the multi-layer
decomposition model of the electricity
price sequence based on
CEEMDAN-XGT

3.1 CEEMDAN model analysis

Complementary ensemble empirical mode decomposition with
adaptive noise (CEEMDAN) is a signal decomposition method based
on adaptive noise control further developed on the basis of CEEMD.

FIGURE 2
Similar day screening process.
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Different from CEEMD, CEEMDAN employs an adaptive control
strategy in the construction and addition of random noise in order
to better control the size and distribution of the noise, thus improving the
accuracy and stability of the signal decomposition (Iruela et al., 2021).

The basic process of CEEMDAN is as follows:

1) Let the original signal be x(t). A normally distributed
Gaussian white noise is added to obtain k times the
preprocessing sequence xi(t) as in Formula (4):

xi t( ) � x t( ) + εδi t( ), i � 1, 2, 3, ..., k. (4)

In the formula, ε is the noise factor and δi is the noise of the ith
residual component.

2) The input sequence is decomposed using EMD to obtain the
first EMD decomposed component, the mean value is taken as
the decomposed signal component, and the residual
component is calculated, as in Formula (5)–Formula (7):

xik
′ �

xik − min
1≤ i≤ n

xik{ }
max
1≤ i≤ n

xik{ } − min
1≤ i≤ n

xik{ } k � 1, 2, ..., m( ), (5)

I1 t( ) � 1
K
∑K
i�1
Ii1 t( ), (6)

r1 t( ) � x t( ) − I1 t( ). (7)

In the formula, I1(t) is the first signal component (IMF) after
CEEMDAN decomposition; Ii1(t) is the EMD decomposed signal
component; and r1(t) is the residual fraction.

Similar to step 2, the jth residual component is added to the
corresponding Gaussian white noise. After adding the corresponding
Gaussian white noise to the jth residual component, we continue to
decompose the residual signal using EMD. The decomposed signal
components and residual components are shown in Formula (8) and
Formula (9), respectively:

Ij t( ) � 1
K
∑K
i�1
H1 rj−1 t( ) + εj−1Hj−1 δi t( )( )( ), (8)

rj t( ) � rj−1 t( ) − Ij t( ). (9)

In the formula, Ij(t) is the jth component of the
CEEMDAN decomposition; Hj−1 is the EMD decomposed
components; εj−1 is the coefficient of noise; and rj(t) is the
residual fraction.

The above steps are repeated until the extreme point is less than
2 or the artificially set number of components, and then, the
decomposition is finished. At this point, the original signal is
decomposed into K signal components and a residual component
r(t), as in Formula (10):

x t( ) � r t( ) +∑K
i�1
Ii t( ). (10)

In the formula, r(t) is the margin signal and Ii(t) is the ith
signal component.

After CEEMDAN decomposition, a set of IMF functions with
different scales can be obtained, which have good adaptive
properties and can reflect the essential characteristics of the
signal at different time scales and frequencies. Compared with

traditional methods such as wavelet decomposition and spectral
decomposition, CEEMDAN can handle nonlinear and nonsmooth
signals with better adaptability and accuracy.

3.2 XGBoost model analysis

eXtreme Gradient Boosting (XGBoost) is a machine learning
library focusing on gradient boosting algorithms, developed by
Tianqi Chen in February 2014 at the University of Washington.
In his research, he deeply appreciated the computational speed and
accuracy problems of existing libraries and built the XGBoost
project for this reason (Yin et al., 2022).

Suppose we have the following objective function:

object � ∑n
i�1
l yi, ŷ

t( )
i( ) +∑t

k�1
φ fi( ). (11)

At each step, we add a tree to the previous step, and this new tree
is added to fix the deficiencies of the previous tree. We denote the
prediction at step t by y to denote

ŷ 0( )
i � 0,

ŷ 1( )
i � f1 xi( ) � ŷ 0( )

i + f1 xi( ),
ŷ 2( )
i � f1 xi( ) + f2 xi( ) + ŷ 1( )

i + f2 xi( ),
. . .

ŷ t( )
i � ∑t

k�1
fk xi( ) � ŷ t−1( )

i + ft xi( ).
(12)

For the set M � (xi, yi){ }(i � 0, 1, ..., t) of electricity price
correlation factors after data preprocessing, where X xi �
(xi

0, x
i
1, ..., x

i
n) denotes the nth dimensional feature vector of the

ith sample, i.e., the n eigenvalues of the input electricity price
decomposition curve, and y denotes the labeled value of the ith
sample; the correlation factor M is inputted into XGBoost for
training to obtain a K-tree, which can be represented as

ŷi � ∑K
k�1

fk xi( ), fk ∈ F,

F � f x( ) � wq x( ){ },
(13)

where ŷi denotes the prediction result of the ith sample; F is the base
learner, i.e., the set of K-trees; fk denotes the kth regression tree; and
wq(x) denotes the fraction of the leaf node q. The objective function
during the training process is as follows:

O � ∑t
i�0
l yi, ŷi( ) +∑K

k�1
φ fi( ), (14)

where l is the loss function used to calculate the error between the
predicted value and the true value,φ is a function that represents the
complexity of the tree. The smaller the value, the lower the
complexity and the stronger the generalization ability. Its
expression is represented as follows:

φ fi( ) � γN + 1
2
μ w‖ ‖2, (15)

whereN denotes the number of leaf nodes andw denotes the value of
the node. Intuitively, the goal is to keep the prediction error as small
as possible, the number of leaf nodes N as small as possible, and the
value of nodes w as less extreme as possible.
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By continuously optimizing in the gradient direction, the
objective function becomes lower and lower because the
predicted value ŷi can be obtained after the Tth iteration by
adding the sum of the output values of the previous T-1
iterations and the value fT(xi) of the tree structure computed in
the Tth iteration so that the objective function O is converted into

OT � ∑t
i�0
l yi, ŷ

T−1( )
i + fT xi( )( ) + φ fT( ) + C, (16)

where C is a constant and the above equation can be optimized by a
second-order Taylor expansion:

OT � ∑t
i�0

l yi, ŷ
T−1( )
i( ) + gifT xi( )) + 1

2
hifT

2 xi( )[ ] + φ fT( ), (17)

where gi � ∂ŷ(T−1)l(yi, ŷ(T−1)i ) is the first-order derivative
of the prediction error with respect to the current model and
hi � ∂ŷ(T−1)2 l(yi, ŷ(T−1)i ) is the second-order derivative of many
prediction errors with respect to the current model.

Since the residuals of the model at T-1 are known at the Tth
iteration, the objective function is converted into the form of leaf-
node accumulation by removing the constant term l(yi, ŷ(T−1)i and
expanding the above equation as follows:

OT � ∑N
j�1

Gwj + 1
2

H + μ( )w2
j[ ] + γN, (18)

G � ∑
i∈I

gi, (19)

H � ∑
i∈I

hi, (20)

where I denotes the set of samples on each leaf node, Ij � i|q(xi) � j{ },
q(xi) is the tree structure function, wj denotes the output of each leaf
node of the tree fraction, N denotes the number of leaf nodes in the split
tree, and γ is the weight factor, which are used to control the weights of
the corresponding parts.

After creating the boosted decision tree, the feature importance
of each feature is obtained by calculating the gain. Similar to the
information gain and Gini index in decision trees, the XGBoost
algorithm adds a gain to the existing leaves at each attempt. The
XGBoost algorithm calculates the gain of selected features every time
it tries to add a partition to an existing leaf. The XGBoost algorithm
calculates the gain of the selected feature every time it tries to add
segmentation to an existing leaf.

Gain � 1
2

G2
L

HL + ∂
+ G2

R

HR + ∂
+ GL + GR( )2
HL +HR + ∂

[ ] − γ, (21)

where the subscripts L and R denote the left and right subtrees,
respectively; G2

L
HL+∂ denotes the left subtree score; G2

R
HR+∂ denotes the

right subtree score; and (GL+GR)2
HL+HR+∂ denotes the score of the current

node that is not split.
The importance of a feature is calculated in a single boosted tree

by the gain of each feature split point; the larger the gain, the larger
the weight. The more lifting trees a feature is selected from, the more
important the feature is. Finally, the results of a feature in all the
boost trees are weighted and averaged to obtain the importance
score. After sorting the features in the descending order of

importance score, m (m < n) important features affecting
electricity price are filtered out by setting different thresholds.

3.3 Construction of the CEEMDAN-XGT
tariff decomposition model

Since the spot market is a short-term market, the spot market
price shows strong volatility, and this volatility is mainly due to the
rapid change in market information. At the same time, this large
volatility will affect the accuracy of the electricity price prediction, so
this paper adopts the CEEMDAN-XGT model to decompose the
similar-day dataset to obtain the historical data that can reflect the
characteristics of the electricity price so as to provide the accuracy of
the prediction model, and the specific steps are as follows:

1) The historical electricity prices in the similar-day data are
decomposed using CEEMDAN to form multiple
decomposition curves, which represent the trend of
electricity prices;

2) The different decomposition curves obtained through step
1 can reduce the error of electricity price prediction to a
certain extent, but different decomposition curves have
different structures of influencing factor composition. So,
for different decomposition sequences, the XGT model is
used to screen to obtain the most consistent with the
requirements of each decomposition curve factor ranking as
the input for the next step of prediction.

3) Different decomposition curves of electricity price and the
corresponding factor relationships are brought into the
prediction model, which can reduce the influence of
electricity price volatility on the prediction model error and
also find the degree of influence of different factors on
different days.

The electricity price curve decomposition process is shown
in Figure 3.

4 Construction of the MPA-CNN-
BiLSTM electricity price prediction
model considering market information
volatility

4.1 Marine predators optimization algorithm

The marine predators algorithm (MPA) is a new meta-heuristic
optimization algorithm proposed by Afshin Faramarzi et al. in 2020.
MPA optimization is divided into three stages: the initialization
stage, optimization stage, and fish aggregation device (FAD) effect or
eddy current stage [28]. The specific MPA optimization process can
be described as follows:

1) Initialization phase: The algorithm parameters are set to
initialize the location of the prey within the search scope. It can
be described as

X0 � Xmin + rand Xmax −Xmin( ). (22)
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In Formula (22), Xmax and Xmin denote the search space of the
prey and rand() is a random number within [0,1].

2) Optimization stage: The optimization phase is divided into
early iteration, middle iteration, and late iteration. At
the beginning of the iteration, the current iterations are less
than 1/3 of the maximum iterations. Predators are faster than
their prey and updating prey through Brownian
random movement.

stepsicei � RB ⊗ Elitei − RB ⊗ preyi( )
preyi � preyi + P·RB ⊗ stepsicei

{
Iter< 1

3
max Iter. (23)

In Formula (23), stepsice is the step size, RB is the Brownian
random walk vector with normal distribution, preyi is the prey matrix
with the same dimension as the static matrix, Elitei is the elitist matrix
constructed by the top predator, ⊗ is a multiplicative operation item by
item, P equals 0.5, and R is a [0,1] uniform random vector. N is the
population size, and Iter and max Iter represent the current and
maximum iterations, respectively.

In the middle of an iteration, the current iteration is less than 2/
3 of the maximum. The population is divided into two parts, in
which the prey does the levy movement and is responsible for the
algorithm development in the search space. Predators perform
Brownian motion, responsible for the algorithm to explore in the
search space, and gradually develop from exploration to a
development strategy.

At the end of the iteration, the current iteration number is more
than 2/3 of the maximum iteration number. In particular, to
improve the local development, the predator is slower than the

prey, and predator roaming is based on the Levy distributed
random vector.

stepsicei � RL ⊗ RL ⊗ Elitei − preyi( )
preyi � Elitei + P · CF ⊗ stepsicei

{
Iter> 2

3
max Iter. (24)

In the above equation, RL is the Levy distributed random vector
and CF � (1 − Iter/max Iter)2Iter/max Iter is the adaptive parameter
controlling predator movement compensation.

3) FAD effect or eddy current: Fish aggregation devices (FADs)
or vortex effects often change the behavior of marine predators,
which enables the MPA to overcome the premature convergence
problem and adjust the local extremum.

preyi � preyi + CF Xmin + RL ⊗ Xmax −Xmin( )[ ] ⊗ U, r≤FADs,
preyi + FADs 1 − r( ) + r[ ] preyr1 − preyr2( ), r>FADs.

{
(25)

In Formula (25), FAD is the influence probability, which is 0.2;
U is the binary vector; r is the random number in [0,1]; and r1 and
r2 are the random indexes of the prey matrix.

4.2 Principles of convolutional neural
network modeling

A convolutional neural network (CNN) consists of five parts,
namely, the input layer, convolutional layer, pooling layer, fully
connected layer, and output layer, in which the alternation of the
convolutional layer and pooling layer can better extract the local

FIGURE 3
Electricity price curve decomposition process.
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characteristics of the data and reduce the feature dimensions; the
sharing of weights not only reduces the number of weights but also
the complexity of the model [29]. The formula of convolution is

Vl
j � δ ∑

S∈Mj

Vl−1
s ·Kl

sj + blj⎛⎝ ⎞⎠, (26)

where the prescribed input layer is layer l − 1, Vl−1
s denotes the sth

feature of the input layer, the output layer is layer l, Vl
j denotes the

jth feature of the output layer, Kl
sj denotes the elements of the

convolution kernel, blj is the bias term, and σ is the
activation function.

4.3 Principles of BiLSTM modeling

LSTM has special memory and forgetting patterns; thus, flexibly
adapting to the basic cell structure of the LSTM network includes
input gates, output gates, and forgetting gates.

The specific formula is as follows:

it � ρ Wixxt +Wihht−1 + bi( ), (27)

ft � ρ Wfxxt +Wfhht−1 + bf( ), (28)

gt � φ Wgxxt +Wghht−1 + bg( ), (29)
ot � ρ Woxxt +Wohht−1 + bo( ), (30)

Ct � gt ⊗ it + Ct−1 ⊗ ft, (31)
ht � φCt ⊗ ot, (32)

where it, ft, and ot are states of input gates, oblivion gates, and output
gates, respectively; gt, Ct, and ht are states of input nodes, state units,

and intermediate outputs, respectively; ρ is the sigmoid function; φ is
the tanh function;W is the corresponding gate weights; bi, bf, bg, and
bo are the corresponding biases of the corresponding gates; and ⊗ is the
element-by-element multiplication.

The structure of BiLSTM is shown in Figure 4, which consists
of two LSTM networks in the forward and reverse directions, and
can utilize the before-and-after change rule of the data to make a
bi-directional prediction. BiLSTM has more advantages than
LSTM for the information feature extraction of the complex
power data in the spot tariff prediction, and it has not
increased the requirements for the amount of data. Therefore,
using BiLSTM for electricity price prediction can improve the
model prediction accuracy.

4.4 Constructing an MPA–CNN–BiLSTM
electricity price prediction model for market
information volatility

The generation of electricity price in the spot electricitymarket has a
large uncertainty and contains a large amount of uncertainty
information, which leads to a lot of parameters affecting the
prediction accuracy of the prediction model. Therefore, the
prediction of electricity price for the spot electricity market cannot
rely on a single model and requires an effective data processing method
and a scientific combination of themodel, which identifies the interplay
of factors, reduces the error, and improves the prediction accuracy.

Therefore, this paper adopts a three-stage structure to construct
the electricity price prediction model for the spot electricity market
based on the consideration of the volatility of market information.
The first stage is optimizing the original data and extracting similar-
day information. The FCM–Spearman method is mainly used to

FIGURE 4
Structure of BiLSTM algorithm.
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classify and evaluate the original dataset and the relevant factor
information on the forecast day, and select the days with the highest
trend of change in the relevant information on the forecast day as the
training set of the forecast day; the second section improves the
interaction characteristics between the relevant factors and the
electricity price, and reduces the impact of the stronger volatility
of the electricity price on the prediction of the electricity price. In
this part, CEEMDAD is mainly used to decompose the original
electricity price data, and the volatility of the original electricity price
data is hierarchically divided into sequences. Then, the XGT model
is used to match the different decomposition sequences with the
relevant factors, and the factor with the closest influence of each
relevant factor is selected as the data input for the next segment. In
the third segment, the data on different segments in the second
segment are inputted into the MPA–CNN–BiLSTM model, which
can realize the complementary characteristics of the model and
achieve the effect of error reduction compared with the traditional
single model, and at the same time, optimization using the MPA
algorithm can realize the rationalized configuration of the model
parameters.

The first two breaks of this paper were elaborated in the previous
sections, and this section further analyzes the process of
MPA–CNN–BiLSTM. When the electricity price prediction is
carried out, the BiLSTM model will be trained by extracting the
local features from the CNN, which can make the two models
complement each other and obtain better prediction results. The
CNN–BiLSTMmodel is optimized by theMPA algorithm, and then,
the CNN–BiLSTM model is constructed for electricity price
prediction. The CNN model consists of two convolutional layers
and two maximum pooling layers, and the ReLU function is used as
the activation function.

The MPA–CNN–BiLSTM algorithm flow is shown below:

Step 1: The decomposition data on similar days are divided into a
training set and test set and performed dimensionless.

Step 2: The model with the number of hidden layer units, the
learning rate, and the convolution kernel in the model is initialized
as the optimization object, and the MPA is initialized.

Step 3: The fitness of the model is calculated based on the local
optimum and the dissuasion optimum of the MPA algorithm, and
the mean square error (MSE) is selected as the evaluation criterion.

Step 4: The MPA is iteratively updated using formula (23) to
calculate the latest optimized position.

Step 5: When the iteration is completed or the optimal position is
searched, then the termination condition is satisfied, and the optimal
hyperparameters are obtained. If it is not satisfied, step 3 is repeated
to iterate again.

Step 6: A CNN–BiLSTM model is constructed using the optimal
hyperparameters.

Step 7: The CNN performed feature extraction of the
electricity price.

Step 8: The processed data are input into the BiLSTM model,
and model training is performed to output the final
prediction results.

In this paper, in order to verify the effectiveness of the
model, the performance of the electricity price prediction model
using the root mean-square error (RMSE), mean absolute
percentage error (MAPE), mean absolute error (MAE), and
R2. The formula for the specific effectiveness evaluation
index is shown below:

ERMSE �
												
1
n
∑n
i�1

Pi − pi( )2
√

, (33)

EMAPE � 1
n
∑n
i�1

Pi − pi

∣∣∣∣ ∣∣∣∣
PZ

× 100%, (34)

EMAE � 1
n
∑n
i�1

Pi − pi

∣∣∣∣ ∣∣∣∣, (35)

R2 � ∑n
i�1 Pi − �pi( )2

∑n
i�1 pi − �pi( )2. (36)

The specific flow of the electricity price prediction model
proposed in this paper considering market information is shown
in Figure 5.

5 Simulation analysis

5.1 Scenario description

According to the characteristics of electricity price formation in
the spot electricity market, this paper proposes an electricity price
forecasting model considering market volatility. In order to verify
the validity of the model proposed in this paper, the operation data
on a provincial spot pilot in China are used. Compared with the
construction of a foreign electricity market, the diversity of China’s
electricity market is more representative. Therefore, the data on
China’s spot pilot can not only reflect the operation characteristics of
China’s electricity market but also meet the business needs of
different electricity market players in our country, which is of
practical significance. Some of the data are shown in Figure 6.

The above is part of the original dataset selected for this paper,
mainly the selected thermal power output, new energy output, non-
market output, outgoing power, and provincial load data. In order to
further show the relevance of these data and the market price trend,
this paper intercepts the simultaneous electricity price trend data, as
shown in Figure 6F.

In order to implement the model proposed in this paper,
MATLAB 2020B is used as the implementation tool, and the
computer uses Windows 10, running memory 16 GB, and a hard
disk capacity of 2 TB.

5.2 Electricity price prediction model
implementation

The dataset selected in this paper is the day-ahead electricity
price data on a provincial spot pilot from 1 January 2022 to 31 May
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2023. The time granularity of the electricity price is 15-min nodes,
i.e., 96 points per day. At the same time, in order to show that the
model proposed in this paper can achieve effective electricity price
forecasting and apply it to practical work, 31 May 2023 is selected as
the forecasting day for comparative analysis. According to the model
process mentioned above, the steps of similar-day screening,
electricity price sequence decomposition, and electricity price
forecasting are carried out to form a complete electricity price
forecasting validity verification. The forecast day market
information is shown in Figure 7.

Electricity price forecasting is a comprehensive technology, which
includes computer information processing technology, and information
technology emphasizes that correct input can produce correct output.
Therefore, electricity price forecasting needs to ensure the accuracy of
the data. In order to achieve this goal, it is necessary to screen out the
historical days with similar market conditions as the basic data. This is
the role of similar-day screening. This paper chooses Spearman–FCM
as the similar-day screening model.

In the previous section, the Spearman model was used to screen
out the relevant factors, which will not be repeated here. The focus is
to use the FCM model to find the most similar dates of different
related factors for the selected related factors. The specific screening
diagram is shown in Figure 8.

Figure 8A shows that the running FCM model divides the
forecast day into historical similar day scenario 1. The thermal
power output in the historical similar day scenario presents two
peaks compared with other scenarios, but compared with the sixth
scenario, the trough runs higher, indicating that the day’s new

energy is still unable to meet the needs of the market during the
period of large-scale development, and thermal power is needed to
ensure the operation of the market. At the same time, according to
the scene classification of historical similar days, there are 186 days
of data that can meet the similar scenes of the forecast day. These
data will be used as the basic data source for comprehensive
discrimination.

According to Figure 8B, the new energy output of the forecast day is
divided into historical similar scene 1. The new energy output of the
historical similar scene conforms to the general characteristics of the new
energy output. Historical similar scene 1 and historical similar scene
5 have the opposite operation trend. Scene 1 is less in the early morning
and more in the evening. Scene 5 is the opposite. This is mainly due to
seasonal differences. Historically similar scenario 3 combines the
changing trends of scenarios 1 and 5. In a historically similar
scenario 1, there are 157 historically similar days as alternatives.

According to the above Figure 8C, the non-market output shows
a lot of uncertainty. This part of the electricity is mainly caused by
the instability of the system. The division of the forecast day is
mainly concentrated in the similar day scenario 1, with a total of
213 days of similar output.

Figure 9A shows that there is some similarity in the historical
similarity scenarios 1, 2, and 3, with lower demand during the early
morning hours and higher during the midday hours. However, there
are many differences in the trends of the three scenarios in the peak
period, which leads to the inconsistency in the market’s supply and
demand. The judgment of the similarity of outgoing power needs to
be combined with the supply and demand of the outer provinces,

FIGURE 5
Spot market electricity price forecasting modelling process.
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FIGURE 6
Basic scenarios.

FIGURE 7
Forecast day market information.

Frontiers in Energy Research frontiersin.org12

Lin et al. 10.3389/fenrg.2024.1308806

227

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1308806


and outgoing power on the forecast day is classified into similarity
scenario 1, and there are a total of 151 days.

Figure 9B shows that the provincial load has a certain degree of
regularity, and the trend of fluctuation has a certain degree of

similarity. The main difference is that the local volatility is
different; the number of peaks presented and the location of the
inconsistency, which indicates that the corresponding provincial
load is stable as a whole, and the forecasting day of this paper are

FIGURE 8
The specific screening diagram.
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classified into the historical similarity day scenario 2, with a total of
82 similarity days.

Through the clustering of various factors above, the historical
similarity days of different factors are formed, and these similarity

days can only represent the degree of similarity of the respective
factors in the history, while the electricity price is the result of the
integrated effect. So, it is necessary to further sort out the historical
similarity days of various related factors to form the integrated

FIGURE 9
Similar day screening.
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historical similarity days as the data source of electricity price
prediction. The specific steps are shown as follows.

The same dates of different historical similarity days are
screened out to form a comprehensive historical similarity day
dataset; this is because only the historical information about the
same day can have a direct impact on the electricity price on that
day. The above results show that the total number of historical
similarity days of thermal power is 186, the total number of
historical similarity days of new energy is 157, the total number
of historical similarity days of non-marketed output is 213, the
total number of similar days of external transmission load is 151,
and the total number of similar days in history of provincial load
is 82.

These similar days in history are extracted from the original data
source, and the total number of days that meet the requirements is
65. Second, the integrated historical similar-day dataset of 65 days is
sorted according to the degree of deviation of different factors, and
the smaller the deviation, the higher degree of similarity, which is
mainly calculated as

Zi � 1 − ∑65
i ∑5

j yj − xj
i( ) − min∑65

i ∑5
j yj − xj

i( )
max∑65

i ∑5
j yj − xj

i( ) − min∑65
i ∑5

j yj − xj
i( ). (37)

In the above equation, Zi denotes the degree of composite
similarity of the historical day, yj denotes the correlation factor

of the jth similarity factor of the prediction day, and xj
i denotes the

jth similarity factor of the historical composite similarity day of the
ith day. The higher the degree of composite similarity, the higher the
adoption of information on that day. The specific consolidated
ranking results are shown in Table 1.

The following conclusions can be obtained through the similar-
day screening model: a) the Spearman model shows that the two
factors that have a greater impact on the price of electricity are
thermal power and new energy, which is mainly due to the fact that,
at present, the largest market subject is still thermal power, and
second, the new energy belongs to the full consumption, so it has a
greater impact on the price of electricity; b) the province’s thermal
power outlets, new energy outlets, and the provincial loads have a
certain degree of regularity, which indicates that the market is
relatively stable, and the installed capacity of new energy has no
changes, which is in line with the current status quo of the province’s
current development of the electricity market. The sorting of similar
days is shown in Figure 9C.

In this paper, 40 days of historical days with a high similarity are
screened according to the similar-day screening model, and these data
are used as inputs to the CEEMDAD–XGT–MPA–CNN–BiLSTM
model. Among them, CEEMDAD–XGT, as the second stage of
tariff prediction, decomposes the raw tariff data, and then uses XGT
to screen the different decomposition curves for their respective
correlations, which is described in detail in the next part of this paper.

TABLE 1 Similarity and ranking of similar days.

Ranking Time Similarity Ranking Time Similarity

1 2023/5/10 0.8863 21 2023/1/4 0.7735

2 2023/5/17 0.8678 22 2022/10/7 0.7717

3 2023/4/9 0.8499 23 2022/11/27 0.7635

4 2023/5/28 0.8468 24 2023/2/11 0.7541

5 2023/5/25 0.8442 25 2022/10/18 0.7533

6 2023/4/25 0.8350 26 2022/11/9 0.7423

7 2022/3/27 0.8078 27 2023/4/30 0.7375

8 2023/3/20 0.8003 28 2022/10/25 0.7356

9 2023/4/4 0.7902 29 2022/10/20 0.7336

10 2023/4/30 0.7880 30 2022/10/29 0.7284

11 2022/3/21 0.7870 31 2022/11/10 0.7256

12 2022/7/10 0.7878 32 2023/4/27 0.7154

13 2023/4/22 0.7864 33 2023/5/4 0.7062

14 2023/4/15 0.7837 34 2022/3/10 0.6983

15 2023/4/21 0.7827 35 2022/1/13 0.6945

16 2023/4/4 0.7824 36 2022/3/5 0.6746

17 2023/4/2 0.7845 37 2022/1/23 0.6734

18 2022/12/15 0.7844 38 2023/3/10 0.6559

19 2022/12/8 0.7828 39 2023/3/20 0.6468

20 2022/12/10 0.7758 40 2023/3/31 0.6323
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In this paper, there are a total of 40 days of historical electricity
price as the main sequence and five related factors as the secondary
sequence of input, but the volatility of the original electricity price is
large and will affect the impact of the learning ability of the
prediction model. So, decomposition–refactoring reduces the
impact of volatility on the prediction model but retains the trend
of changes in the original sequence, so this paper chooses the
CEEMDAD decomposition. Part of the decomposition curve is
shown in Figure 10.

Figures 10A,B show the curves of CEEMDAD and EEMD of
the same-day electricity price, respectively. The above results
show that the number of IMFs of the two kinds of decomposition
is different, indicating that the gradual decomposition of the
electricity price curve is different. Compared with the
traditional model, the IMF sequence obtained by the
CEEMDAD model selected in this paper is more and more
detailed. At the same time, the final reintegration of the data is
relative to the EEMD of the bias of the reduction of the data is
applied to ensure that the original sequence of the
characteristics of the original sequence.

Figure 10C represents the box plot of the number of internal
envelope iterations for CEEMDAD; Figure 10D represents the box
plot of the number of internal envelope iterations for EEMD. The
box plots represent the minimum, lower quartile, median, upper
quartile, and maximum values of different IMF iterations.

CEEMDAD decomposes a total of seven IMFs and one RES, and
EEMD decomposes a total of five IMFs and one RES. The box plot
distributions of the initial decomposition curves and the final
decomposition curves of the two decompositions have the same
integral, but the intermediate several decomposition curves are very
different, which is mainly caused by the different processing abilities
for noise.

The above results show that the CEEMDAD used in this paper is
more explicit than the traditional EEMD of the tariff curve. The
error of the decomposition reconstructed curve is relatively small,
and the number of iterations of each decomposition curve is
relatively stable. Since XGT mainly extracts the relevant factors
from the main sequence to match different curves, the role of the
relevant factors is similar to that of the Spearman model in the
previous section. Next, this paper predicts the different
decomposition curves to form the final electricity price
prediction results.

According to the previous description, this paper takes
40 days of similar-day data as the basic data for tariff
prediction, and decomposes these 40 days of tariff data using
the CEEMDAD model and matches different factors to
decompose the curves one by one using the XGT model to
form different combinations of model inputs, forming a multi-
input model. The third stage of the tariff prediction model
adopts the MPA–CNN–BiLSTM model. The model MPA

FIGURE 10
Comparison of results from different tariff decomposition models.
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belongs to the heuristic algorithm. In order to ensure the
reasonableness of the optimization algorithm, this paper sets
the basic parameters of the MPA model to the maximum
number of iterations, 1,000, the number of search groups is
set to 50, and the FADs are set to 0.3. In addition, in order to
verify the effectiveness of the model proposed in this paper, the
number of the EEMD–MPA–CNN–BiLSTM, CNN–BiLSTM,
BiLSTM, LSTM, and other models is increased for
comparative analysis.

Figure 11 shows that the model proposed in this paper predicts
the trend of electricity price, and the actual electricity price is
basically consistent, which, to a certain extent, is in line with the
needs of the power market players to make trading decisions. At the
same time, Figure 11 shows that the absolute error of the model

proposed in this paper is relatively low, especially in the morning
and evening hours, and the main error is distributed in the midday
hours, which is mainly due to the midday hours being subjected to
the new energy output uncertainties. This is mainly due to the
uncertainty of the new energy output in the noon time, so the model
proposed in this paper has certain applicability.

5.3 Analysis of model validity

In order to better verify the validity of the model proposed in this
paper, different models are used for comparison,
i.e., EEMD–MPA–CNN–BiLSTM, CNN–BiLSTM, BiLSTM, and
LSTM. On one hand, it is verified that the decomposition proposed

FIGURE 11
CEEMDAD-MPA-CNN-BiLSTM electricity price forecast curve.

FIGURE 12
Comparison of prediction effects of different prediction models.
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in this paper is superior to the traditional decomposition, and on the
other hand, it is verified that the prediction model proposed in this
paper is superior to the traditional model of the same series. The
prediction results of these models are shown in Figure 12.

Figure 12 shows that the model proposed in this paper is closer to
the real electricity price curve than the other models, especially in the
evening and night, followed by the EEMD–MPA–CNN–BiLSTM
model prediction results. The predicted curves are slightly worse

FIGURE 13
Prediction bias of different prediction models.
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than those of the model proposed in this paper but better than those of
the CNN–BiLSTM, BiLSTM, and LSTM models, which indicates that
the structure of the prediction model proposed in this paper is effective
and can meet the needs of the electric price forecasting. However, the
prediction results of the noon hour are slightly in error compared with
those of the other hours, which ismainly due to the increase of output of
new energy at noon, which leads to the increase of load uncertainty. In
order to further illustrate the advantages of the model proposed in this
paper, the prediction results of different models are next fitted with the
actual results to verify the validity, and the specific results are shown
in Figure 13.

The fitting results given in Figure 13 show that themodel proposed
in this paper has the highest fit, followed by
EEMD–MPA–CNN–BiLSTM, which indicates that the model
chosen in this paper, as well as the structure of the constructed
tariff prediction model, is more reasonable and can meet the needs of
tariff prediction, and at the same time, Figure 13 shows that the basic
model adopted in this paper, BiLSTM, also has a certain prediction
advantage, which indicates that the model in this paper meets the
basic needs of electricity price prediction. From this, we obtain the
order of the prediction result advantage as follows:
CEEMDAD–MPA–CNN–BiLSTM >
EEMD–MPA–CNN–BiLSTM > CNN–BiLSTM > BiLSTM > LSTM.

To better illustrate the advantages of the model proposed in this
paper, SSE, MSE, RMSE, and R2 are used to verify that the error of
the proposed prediction model is low. The errors of the prediction
model in this paper are all lower than those of the other four
prediction models. Compared with the model of EEMD
decomposition, SSE is reduced by 0.6706 and MSE is reduced by
0.007, which indicates that the prediction error of this model is lower
and can provide price reference for market players. The specific
error results are shown in Table 2.

Table 2 shows that the model errors of this paper are all the
lowest, and the results of R2 are better among the five models, which
shows that the model of this paper has a certain degree of
sophistication. At the same time, combined with the prediction
curves of different models in the previous section, the following
conclusions can be obtained: first, China’s electricity market is still in
the development stage, resulting in the existence of great volatility in
electricity prices, and the historical market scenario is more
dispersed, which leads to the fact that there is still a certain
amount of error in the prediction of electricity prices, and
second, all the current models present a high level of error at the
midday hours, which is mainly due to the fact that China still
prioritizes the consumption of new energy. The new energy output

at noon has a great impact on the electricity price, so we should focus
on the development of new energy in the future. Third, the evening
peak price of electricity is calibrated by several models, and future
market players can focus on the trend of electricity prices during
these hours.

6 Conclusion

In this paper, a similar daily screening model is proposed based
on the improved Spearman–FCM model by analyzing the relevant
factors of the spot market and further screening the raw data to
ensure the reasonableness of the forecast data. By introducing
CNN–BiLSTM and MPA models, the
Spearman–FCM–CEEMDAD–MPA–CNN–BiLSTM model is
constructed on the basis of considering the components of
CNN–BiLSTM. The model is validated by spot electricity price
proposed previously, and the prediction results of five models,
including EEMD–MPA–CNN–BiLSTM, CNN–BiLSTM, BiLSTM,
and LSTM, are compared, and the following conclusions are drawn.

Screening the raw data using the Spearman–FCM model to
obtain the number of historical days similar to the market scenario
on the prediction date can optimize the raw data structure, ensure
the accuracy of the input data on the prediction model, reduce the
generalization ability of the strengthened prediction model, and
improve the prediction accuracy of the prediction model.

Combined with the relevant data on the spot market, the five
models are predicted, and it is verified that
Spearman–FCM–CEEMDAD–MPA–CNN–BiLSTM can handle the
peak tariffs better than the other models, realizing the requirement of
the full-cycle prediction, and avoiding the prediction problem of a single
model that can only deal with the less volatility.

Both the proposed model and the validation model in this paper
have errors, and the errors are concentrated in the outliers of themarket
electricity price, which indicates that in the process of electricity price
prediction, not only should the public information released by the
market trading institutions be taken into account but also the behavioral
characteristics of the market players. The factors such as the power
system security scheduling should also be considered, which will affect
the trend of the market electricity price.

At present, China’s spot market is in the primary stage of
construction, the trend of electricity prices is not stable, and
there will be the problem of electricity price adjustment.
Therefore, in the process of electricity price forecasting,
corrections should be made according to market characteristics.

TABLE 2 Different model errors.

Model of this paper EEMD–MPA–CNN–BiLSTM CNN–BiLSTM BiLSTM LSTM

SSE 0.5828 1.2534 3.9727 4.1063 7.8186

MSE 0.0061 0.0131 0.0414 0.0428 0.0814

MAE 0.0474 0.0734 0.1378 0.1379 0.2139

RMSE 0.0779 0.1143 0.2034 0.2068 0.2854

R2 0.9466 0.885 0.6357 0.6017 0.2262

sum of squares due to error(SSE); root mean-square error (RMSE); mean absolute percentage error(MAPE); mean absolute error (MAE); R-square(R2).
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Study on the spillover effect of
digital economy development on
CO2 emissions

Jianchao Hou* and Yu Fu

School of Economics and Management, Shanghai University of Electric Power, Shanghai, China

To study the spillover effect of the digital economy development on carbon
emissions, this study innovatively constructs different spatial weight matrices,
based on 2011–2020 panel data covering 30 Chinese provinces, and it explores
the direct spillovers, conducted spillovers, and spillovers from different spillover
channels, such as human capital, service industry development, and information
development of digital economy development on carbon emissions through the
spatial Durbin model combined with a mediating effect model. The results show
that there is significant spatial heterogeneity in digital economy development; in
terms of regions, the eastern region has the highest average development level
and the central region has the highest average annual growth rate. Digital
economy development can directly suppress carbon emissions, and it can
also indirectly suppress carbon emissions by driving technological innovation
and optimizing the energy consumption structure, and there exists a spatial
spillover effect. Under human capital, service industry development and
information development matrices, the spatial spillover effect of digital
economy development on carbon emissions is significantly negative. Regions
with the same level of information development are more likely to exert a spatial
spillover effect of digital economy development on carbon emissions.

KEYWORDS

digital economy, spatial matrix, mediating effect, spatial spillover, carbon emissions

1 Introduction

All countries in the world today are confronted with a significant and pressing challenge
in the form of climate change. Reducing carbon emissions (CE) to mitigate climate change
has become an urgent task that requires concerted efforts by all countries to share this task,
more than 130 countries and regions around the world have now proposed carbon
neutrality targets. In 2015, the international community signed the Paris Agreement,
urging parties to accelerate the development of national and regional greenhouse gas
emission reduction programs tailored to local conditions and strive to achieve peak CE. The
27th Conference of the Parties to the United Nations Framework Convention on Climate
Change (COP27) on 6 November 2022, emphasized the advocacy of green actions and
expected countries to promote the realization of carbon neutrality and the building of a
community of human destiny through legislation, policies and projects. China, being the
foremost global energy consumer and a significant generator of CO2, the share of coal
consumption is 30 percentage points higher than the world average, is facing the dilemma of
fossil energy shortages and increasing pressure to reduce its CE, and it has responded
positively and taken great measures to control greenhouse gases. In 2020, China proposed
that it will strive to achieve peak CE by 2030 and carbon neutrality by 2060. China has been
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accelerating the green transformation of its economy and society to
achieve this goal, becoming the main force of global “greening”.
Based on data published by the World Bank, China’s cumulative
energy savings surpassed half of all global energy savings from
2005 to 2020. Additionally, from 2012 to 2021, China supported an
average economic growth of 6.5% accompanied by an annual energy
consumption growth rate of 3%, saving a total of approximately
1.4 billion tons of standard coal and accordingly decreasing CE by
3.7 billion tons. Not only do these outcomes mean that China has
achieved great results in CE reduction, but they also fully reflect
China’s role as a great power in addressing climate change issues.

In the current era, the digital transformation is a major trend,
and the Chinese government has issued a series of significant
strategic plans and initiatives to support digital economy
development (DIGDE). In 2021, China’s DIGDE grew to a scale
of 45.5 trillion yuan, with the digital industrialization sector alone
accounting for 8.35 trillion yuan. The rapid emergence of DIGDE
has received sustained attention from academics, and as a more
advanced economic and social form following agricultural and
industrial economies, the digital economy has been endowed
with higher green “expectations”. It is widely believed that
DIGDE can accelerate the flow of innovation factors by virtue of
its intelligent, Internet-based economy and sharing characteristics,
and through the embedded integration and application innovation
of digital technologies in key CE areas, such as buildings, energy and
transportation, new energy is injected to promote the low-carbon
transition (Qi and Xiao, 2020), which is a powerful impetus to drive
the entire society into a new type of highly efficient, intelligent, and
green low-carbon society. Recently, the Chinese government has
prioritized synchronized regional development, emphasizing the
fully utilization of DIGDE, guiding the linkage of regions and
gradually narrowing regional disparities through the efficiency
and cost advantages brought about by digitization and intelligent
technologies. The government is doing so by encouraging the
common construction and sharing of large-scale facilities
between regions to promote energy savings and consumption
reduction, leveraging the comparative advantages of each region,
magnifying the superposition effect of digital technologies on green
value and releasing the enormous potential for low-carbon
development. However, it is worth noting that digital economic
activities are also among the main sources of CE because of the
deficiency in key sectors’ innovative capacity and the incomplete
governance system in China’s DIGDE. How to form a virtuous circle
of digital green practices is still an important focus for strengthening,
optimizing and enlarging China’s DIGDE and achieving China’s CE
reduction goals.

In this context, studying the impact of China’s DIGDE on CE is
of great significance for promoting global carbon neutrality,
facilitating economic transformation and development, and
solving the synergistic problems of the global economy and the
environment.

With DIGDE and the low-carbon transformation, there is still
room for expansion in this field. Can China’s DIGDE become a new
path for reducing CE? Does DIGDE have a geographic spillover
effect on CE? Through which channels does DIGDE affect CE?
Under different conditions, what are the characteristics of the spatial
spill-over effect (SSE) of DIGDE on CE?Which conditions are more
conducive to exerting SSE of DIGDE? This study centers on the

above issues, and as a result, the marginal contributions of this study
are: 1) In light of the ongoing iterative advancements in digital
technology, the authoritative and harmonized standard does not
exist for constructing and assessing a DIGDE index system. The
present study endeavors to establish a comprehensive measurement
index system for DIGDE by synthesizing the literature and
incorporating available data resources. 2) Although some existing
studies have used spatial measures that can account for the SSE
inherent in CE, not enough attention has been paid to the SSE of the
transmission mechanism through which DIGDE affects CE. In this
study, the SDM is combined with a mediating effect model to study
the trans-mission mechanism from a spatial perspective. 3) Studies
on the SSE of DIGDE and CE are mostly based on a single matrix,
and they focus on regions with similar geographic proximity and a
similar economic level. They do not explore the possibility of
spillovers due to other factors, and there are limitations in the
choice of perspective and the discussion of the mechanism of the
spatial effects of DIGDE. Referring to the research results in the
literature, this study selects three major influencing factors, namely,
human capital, service industry development and information
development, and it constructs a spatial weight matrix
innovatively to investigate the SSE of DIGDE on CE under these
factors to provide useful policy insights to give full play to the green
value and economic value of DIGDE and promote coordinated
regional development. Providing insights and suggestions for
regions to explore synergistic development paths, build
synergistic governance mechanisms, and collaborate to realize
carbon peaks has both academic value and practical significance.

The rest of this study is structured as follows. Section 2 is the
literature review; Section 3 analyzes the impact mechanism and
formulates hypotheses; Section 4 details the research design and
data; Section 5 presents the empirical results and discusses the
results of the benchmark regression, spatial effect regression and
mediating effect regression; and Section 6 concludes the paper and
offers policy recommendations.

2 Literature review

2.1 Literature on the concept and
measurement of the digital economy

The digital economy is vigorously emerging worldwide. US
academic Tapscott first conceptualized the digital economy at the
beginning of internet development in the 20th century (Tapscott,
1996). Since then, scholars have increasingly directed their attention
toward the digital economy. Studies have been conducted to define
and measure DIGDE from different perspectives. According to
Bukht et al. (2017), DIGDE is a type of economic production
that is derived entirely from or that mostly relies upon digital
technology, where digital goods or services are the base point.

Scholars in China and elsewhere have made many useful
attempts to measure DIGDE. These attempts are typically divided
into two groups. The first consists of direct methods, which estimate
the corresponding DIGDE index to examine and compare the
DIGDE index within each region (Eurostat, 2017; ITU, 2022;
UNCTAD, 2021). The second category consists of construction
methods, in which a multidimensional evaluation index system is
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constructed based on different perspectives (Cheng et al., 2023; Lin
and Huang, 2023) and is subsequently used to measure DIGDE by
assigning weights to the indicators.

2.2 Literature on the spatial differences in CE
and the influencing factors

Research on CE has focused on carbon accounting along with
differences in the spatial distribution of CE and influencing factors.
There have been various concepts and methods of carbon
accounting. For example, in 2011, the Chinese Academy of
Sciences (CAS) started the “Climate Change: Carbon Budget and
Relevant Issues” project to build a visualization system by
integrating various utilization sector data to obtain the
consumption factors of different energy types. The China
Emissions Accounting and Datasets (CEADs) team used these
CE factors to calculate and publish the corresponding CE
inventory. Cai et al. developed a bottom-up urban greenhouse
gas (GHG) accounting approach that can systematically reduce
the uncertainty in emission variables and activity levels (Cai
et al., 2018; Liu et al., 2021).

Numerous studies have confirmed that the distribution of CE
varies significantly in space (Tong, 2020; Pan et al., 2023; Xu et al.,
2023) and is determined by factors such as government intervention
(Xiang et al., 2023), energy intensity (Chai et al., 2023), renewable
energy (Azam et al., 2022), the economic output trend (Song et al.,
2022) and industrial development (Cai et al., 2023). The research
methods are focused on quantitative analysis. For example, Wang
et al. (2023) employed structural decomposition analysis (SDA) as a
method to assess the contributing factors affecting bilateral CE in
30 Chinese provinces, and they found that the technology effect can
suppress bilateral CE, while the demand effect promotes bilateral
CE. Azam et al. (2023a) used a panel autoregressive distributed lag
(ARDL) found that negative synergy is perceived between CE and
agricultural productivity.

(ARDL) model and found a negative synergy between CO2

emissions and agricultural productivity.

2.3 Link between DIGDE and CE

Established theoretical studies have argued that the carbon
reduction impact of DIGDE is formed based on several aspects
with the addition of digital technologies. At the governance level,
digital governance theory holds that remote sensing technologies,
big data, and cloud computing applications can increase the
precision and efficacy of governmental environmental control
(Yang et al., 2021) to enhance ecological governance (Thierer
and Castillo, 2015), contributing to the realization of CE
reductions. The flow of information between policymakers and
the masses has been changed by enabling information
interoperability and sharing between the government and society
through digital media as a result of digital technology (Nulman and
Ozkula, 2016; Bai et al., 2023). Simultaneously, the distribution of
interactive information and internet environmental monitoring
enable innovative interactive contact mechanisms between society
and the government, promoting collaborative governance among all

parties in the preservation of the ecosystem (Yang et al., 2020),
which will enhance the efficiency of government governance (Chen
et al., 2023b), and jointly promote the development of a low-carbon
economy. From the perspective of energy efficiency, DIGDE can
overcome limitations of time and space, accelerate the flow of factors
and reduce energy consumption during transmission (Zhang et al.,
2022). Meanwhile, digital technology strengthens green finance,
accelerates the adoption of renewable energy, further promotes
energy transformation (Han and Li, 2022) and improves energy
use efficiency, which curbs CE. The findings of some research
support this view. For example, Xie et al. (2024) found that
DIGDE increases CE in the short term and exerts a carbon
reduction effect in the long term. Wang et al. (2022) found that
DIGDE is beneficial for reducing urban CE. Cheng et al. (2023)
found that DIGDE reduces carbon emission intensity when the
DIGDE index exceeds 0.419. Ma et al. (2022) conducted a study at
the provincial level and found that DIGDE in China reduces the level
of CE, while investments in research and development related to
digitization also have a dampening effect on CE. Niu et al. (2024)
found that DIGDE affects the transfer of CE between regions and
reshapes resource trade relations.

Many beneficial explorations of DIGDE and CE have been
conducted in the available literature, laying a rich foundation for
our study. This study is based on the typical fact that DIGDE affects
CE, and cuts in from the spatial perspective. Compared with the
existing studies, this study focuses on SSE, by combining SDM with
the mediating effect model to develop the study of the transmission
mechanism from the spatial perspective. It also innovatively
constructs a spatial weight matrix to empirically examine SSE of
DIGDE on CE under different factors, such as human capital, service
industry development and information development. To provide
empirical support and policy references to give full play to the
advantages of DIGDE, maximize support for the realization of
spillover effects, and further develop its positive role in
promoting synergistic low-carbon development in the region.

3 Theoretical hypotheses

3.1 Direct spillover mechanism of the impact
of DIGDE on CE

DIGDE has led to a series of technological innovations (TEI)
and management innovations that have been collected, integrated
and distributed through the internet to maximize the effective use of
resources. DIGDE has an impact on CE at three main levels. The first
is the emission reduction effect of optimal resource allocation.
DIGDE integrates information on production factors and
resources through digital technology, optimizing resource
allocation and the energy use structure, and thus reducing CE. At
the same time, by promoting multiparty cooperation and group
agglomeration, DIGDE has a positive externality effect on
neighboring regions and even the whole economic system, i.e., it
has an SSE. The second is the emission reduction efficacy in the low-
carbon development model. DIGDE has broken the spatial and
temporal barriers to production activities and has facilitated the
regional circulation of production factors (Li and Wang, 2022),
bringing positive externalities to overall output through local
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innovation activities (Park, 1995). The “digitalization of
environmental sustainability” is promoted using monitoring
technologies, enabling the generation of real-time CE data
(Kloppenburg et al., 2022). Third, there is the emission reduction
effect of environmental governance model innovation. Digital
technologies are widely used in environmental governance,
weakening geographic and organizational boundaries through
digital platforms, attracting various stakeholders to construct and
solve problems (Ozman and Gossart, 2017), and promoting the
formation of informal environmental regulation dominated by the
networked public (Certoma, 2022). Under the new pattern of
information opening and sharing, through the role of
competition and demonstration effects, the positive SSE of
DIGDE on regional high-quality development can be brought
into play, and the green transformation ability of surrounding
regions can be improved. Thus, the following hypotheses
is proposed.

H1. There is SSE on the impact of DIGDE on CE.

3.2 Conductive spillover mechanism of the
impact of DIGDE on CE

DIGDE promotes changes in research and development (R&D)
and innovation paradigms, provides new means and channels for
innovation information access, and enhances innovation efficiency
and quality (Lai et al., 2022). TEI on the energy supply side can
accelerate the development of clean energy and the use of low-
carbon technologies, promote the formation of new industrial and
value chains, and facilitate the sharing and dissemination of low-
carbon technologies and experiences. Thus, there are so-called
innovation spillover benefits. TEI on the energy consumption
side can improve energy efficiency. The application of low-
carbon technologies in the transportation, construction, and
chemical industries, directly contributes to CE reduction and
drives the upgrading of green technologies in neighboring regions
through cross-regional environmental collaboration.

At present, the resource endowment and scientific and
technological development are hindering regional economic
development and the realization of CE reduction targets in
China. The realization of the goal of ecological civilization
construction not only requires the guidance of TEI but also
places higher demands on the energy supply system. DIGDE
brings digital support to energy consumption structure (ECS)
adjustment, which can support the government in quickly
perceiving and making quick decisions by creating new tools
to guide the real-time flow of energy factors (Ferreira et al., 2023).
The widespread use of clean energy and new technologies can
enhance the use of renewable energy and reduce the total CE
from economic activities, ultimately forming a diversified and
low-carbon energy supply pattern. Since the industrial chains
and energy supply chains of neighboring regions are interrelated,
the industrial adjustment and transfer brought by ECS
optimization in a region can affect CE of neighboring regions
through the cross-border flow of energy and production factors.
Through the comprehensive analysis conducted above, the
following hypothesis is proposed.

H2. DIGDE can influence CE by driving TEI and
optimizing the ECS.

3.3 Differential spillover mechanism of the
impact of DIGDE on CE

3.3.1 Human capital level
DIGDE has increased the demand for laborers’ skills in digital

innovation, data processing and analysis, and digital technology
applications. As a key factor leading innovation-driven
development, human capital provides advanced knowledge and
skills to support innovation development, and it is the main
driver promoting innovation output and accelerating innovation
transformation. In the DIGDE industry, the rapid influx of
information and capital, and the corresponding labor input are
more inclined toward highly skilled and high-quality talent. Regions
with similar human capital levels have frequent knowledge exchange
and high talent flow rates, which greatly improve the value-added of
knowledge and innovation performance, and this improvement can
facilitate regional industrial structure optimization and collaborative
development. DIGDE is data-driven by nature, breaking the
restrictions of time and space on production and life activities
and making interregional cooperation and communication more
convenient. Digital interactive tools such as online communication
platforms, remote training and virtual reality technology, reduce the
CE generated by outgoing traffic. It follows that the green
development effect brought by DIGDE will inevitably spread to
areas with strong human capital ties.

3.3.2 Service industry development level
Currently, the digital services brought by the digital revolution

have become the new growth point of the service industry. DIGDE
has promoted the digital transformation of the service industry, and
thus, it not only has become the booster of Chinese-style service
industry digitalization but also has tapped the potential and space of
service consumption through the link effect, trust effect,
empowerment effect and innovation effect. An increasing
number of traditional brick-and-mortar services, such as retail,
restaurant and entertainment businesses, are providing online
services to consumers through digital platforms. Not only does
this trend reduce the demand for physical stores and the associated
energy consumption, but its digital features also reduce energy waste
in the service supply chain through accurate consumer demand
forecasting and resource management. The service industry
generates knowledge and technology SSE on external industries
when engaging in a series of exchanges, such as industry-university-
research cooperation and school-enterprise alliances. In particular,
regions with similar service industry levels are related in various
aspects, such as inputs and outputs, which in turn increases the
degree of knowledge and technology spillover, thus realizing the
sharing of technology and experience.

3.3.3 Information development level
Unlike the eras of the agricultural economy and industrial

economy, the key production factors in the DIGDE era are data
and information. With the continuous advancement of the
information process, the interactive network of producers has
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gradually improved, the traditional industrial boundaries have been
broken, and the industrial correlation between regions has become
increasingly close. With the rapid progress of big data and
information transmission technology, the cost of information
storage, transmission and processing has dropped significantly,
and thus, DIGDE can realize the dissemination at a lower cost
by virtue of its network externality, providing a broader reference
and decision-making base for other regions and industries. Regions
with similar levels of information development have similar digital
infrastructure configurations, and enterprises in these regions can be
connected through digital platforms and the internet, so that energy
management technologies and experiences can be disseminated and
absorbed more efficiently. Meanwhile, the utilization of modern
information technology can enhance energy efficiency and
effectively reduce the scale of CE.

Accordingly, combining Hypothesis 1, we propose the following
hypothesis.

H3. DIGDE affects CE through a variety of spillover channels, and
an SSE exists not only between neighboring regions, but also
between regions with similar levels of human capital, service
industry development and information development.

Combining the above analysis, the model of the framework is
shown in Figure 1.

4 Methods and data

4.1 Static panel model

The stochastic impacts by regression on population, affluence,
and technology (STIRPAT) model is a commonmodel for analyzing
the influence of economic elements on the environment. This model
can take into account the unequally proportional influence of
human factors on the environment and has good scalability. This
study extends the STIRPAT model and constructs a baseline
regression model by incorporating the theoretical analysis above
as follows:

ln CEit � α0 + β1lnDIGDEit + β2lnFDit + β3lnLYit + β4lnURit

+ β5lnDIGDEit + β6lnDIGDEit + μi + σ t + εit

(1)
Here, in Eq. 1 lnCEit and lnDIGDEit denote the level of CE and

DIGDE at year t in region i, respectively. lnGOV, lnOS, lnFD, lnUR
and lnLY denote government financial support, the degree of
marketization, the degree of openness to the outside world, the
urbanization level and the level of per capita income, respectively.
The area fixed effect is denoted by μ, the time fixed effect is denoted
by σ, and the random disturbance term is denoted by ε.

4.2 SDM

Not only are CE directly influenced by the policies and economy
of a region but they are also influenced by related factors in
surrounding areas (Chen et al., 2023a). To adequately consider
these influencing factors, this work studies the influence of
DIGDE on CE by establishing an SDM. Moran’s I can test
whether there is spatial autocorrelation in the data, and SDM can
be used to explore its specific correlation. The specific construction
of SDM requires a series of tests, the use of Hausman’s test can
determine whether the model should be selected as a random-effects
model (REM) or a fixed-effects model (FEM) (Azam et al., 2023b),
the LR test can be used to further determine the fixation of the
individual or time or both, and the combination of the WALD test
can ultimately select the most appropriate model.

ln CEit � α0 + ρ∑n
j�1
WijlnCEit + β1lnDECit +∑n

j�1
WijlnDECitγ1 + μi

+ σ t + εit

(2)
In Eq. 2 lnDEC is the explanatory variable, which includes

DIGDE and the corresponding control variables, ρ0 denotes the
spatially lagged regression coefficient. The remaining parameters are
set as in Eq. 1.

FIGURE 1
Theoretical framework diagram.
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4.3 Spatial weight matrix

Based on the previous theoretical analysis, referring to the results
of existing research on the impact factors of DIGDE on CE
(Grigorescu et al., 2021; Williams, 2021; Jiang et al., 2023; Pan et
al., 2023; Wang et al., 2023), this study considers four major factors:
geographic proximity, human capital development, service industry
development, and information development. Four spatial weight
matrices are used to process the SDM in this study. The first is the
adjacency spatial weight matrix (W1), which uses 0 and 1 tomark the
spatial adjacency between regions.Wij = 0 when region i, and region
j are neighboring and Wij = 1 when region i and region j are not
neighboring.

The second is the human capital matrix (W2), which takes the
average annual employment in each province as a measure. When
the level of human capital in two regions is similar, the greater
weight of the two regions is considered, assuming that the levels of
human capital in region i and region j are hi vs. hj.

The third is the service industry development matrix (W3),
which, as a measure, is calculated by using the proportion of output
value of the tertiary industry to GDP as the service industry
development level in the two regions, assuming that the level of
development of the service industry in the two regions is si and sj.

The fourth is the information development level matrix (W4),
which, as a measure, is calculated by using the average annual
telecommunication business revenue in each province, assuming that
the level of information development in the two regions is di and dj.

The matrix construction formula is as follows.

Wij � 1/ zi − zj( ) (3)

In Eq. 3 zi denotes different variables in spatial weight matrix
setting hi, si, and dij; zj denotes hj, sj and dj.

4.4 Mediating effect model

To verify whether TEI and the ECS act as mediating variables in
accordance with the previous theoretical hypotheses, this study
conducts a multiple mediating effect test based on the stepwise
regression method combined with the SDM.

First, the regression coefficients of CE and DIGDE are tested to
verify whether DIGDE has a direct impact on CE, as in Eq. 1.

Second, whether there are direct effects of DIGDE on the
mediating variables is examined in Eq. 4.

ln CEit � α0 + ρ∑n
j�1
WijlnCEit + β1lnDECit +∑n

j�1
WijlnDECitγ1 + μi

+ σt + εit

(4)
Finally, the indirect and total effects of DIGDE and the

mediating variables on CE are examined.

lnMit � α0 + ρ∑n
j�1
WijlnCEit + β1lnDECit +∑n

j�1
WijlnDECitγ1 + μi

+ σt + εit

(5)

Where Mit denotes the mediating variable in Eq. 5.

4.5 Variable selection

4.5.1 Explained variable (CE)
Carbon Emissions (CE). According to the “Energy Statistics

Reporting System” (2022), the consumption of various energy
sources in use is equal to the sum of process conversion input
losses, transportation, transmission and distribution losses, and final
consumption. No combustion occurs in the energy lost for
transportation and transmission and distribution, for this reason,
this part measured only the CE of thermal power generation and
heat supply input energy, ignoring the CE of other process energy
losses. To avoid double counting, the portion used for industry is
deducted from the final energy consumption.

In calculating the final CE, this study overcomes the problem of
overly simple statistics of various types of final energy consumption
leading to large calculation errors by referring to the method of Jing
et al. (2019). The relevant data based on the energy balance of each
province are used to determine the CE in the “China Energy
Statistics Yearbook” by converting the total consumption amount
of energy consumed across all forms of energy into standard
consumption and multiplying the CO2 emission coefficients of
different types of energy as follows:

Ei � Efi + Ehi + Eei − Eyi( )*Si (6)

In Eq. 6 Ei, Efi, Ehi, Eei and Eyi denote the ith energy consumption
after conversion, consumption in thermal power generation,
consumption used for heating, end consumption, and the portion
of end consumption used for industry, respectively, and Si denotes
the converted standard coal coefficient for each type of energy.

CEi � ∑n
i�1
λiEi (7)

where λi denotes the ith energy CO2 emission coefficient in Eq. 7.

4.5.2 Explanatory variable (DIGDE)
This study constructs a DIGDE evaluation index system

(Table 1) by fully considering the connotation of DIGDE and
referring to the results of existing research (Zhao et al., 2023;
OECE, 2018; Shahbaz et al., 2022). The subjective weighting
method relies on the intention of decision-makers when
assigning weights to indicators, which is not appropriately
objective. The entropy weighting method assigns weights to
indicators by comprehensively considering the information
entropy of each evaluation indicator, avoiding the influence of
subjective factors on the weights, so the results are more
objective and reliable, the entropy weight method is utilized to
estimate the amount of DIGDE in this work (Yi et al., 2022).

The results of DIGDE are shown in Figure 2. Over time, the level
in each region has risen yearly, and many regions lagging behind in
DIGDE have accelerated their development and transformed into
catching-up regions. Specifically, the overall average value of DIGDE
has increased from 0.0648 to 0.2732, with a 14.78% yearly rate of
increase on average, and the development level of provinces has also
increased significantly. In 2020, Beijing, Shanghai, Zhejiang, Jiangsu,
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and Guangdong held the top development positions, with all four
exceeding 0.4. In addition, Tianjin, Shandong and Shanxi are
developing rapidly and are in the catching-up ranks of
development. However, there is still a noticeable interprovincial
disparity; for instance, the development levels in Beijing and
Shanghai in 2020 were 3.26 times and 3.10 times those of
Guizhou, respectively. However, the growth rate of lagging areas
is high, and the catch-up trend is obvious.

From the perspective of individual regions, the eastern region
has the largest overall average level of DIGDE, the central region has
the highest average annual growth rate, indicating that the region’s
digital economy is developing rapidly and has great potential for
development. And although the growth rate of the western region is
slightly lower than that of the central region, it also has a large space
for development. From the point of view of the development level,
the eastern region has a higher level of DIGDE, and its development
is significantly better than that of other regions. Other regions have a
weaker digitalization foundation, which makes the DIGDE level
between regions have a large gap. It is still an urgent task to take
effective measures to improve the level DIGDE in relatively
underdeveloped regions, narrow the gap between regions and
prevent the further widening of the “digital divide.” This is not
only an important task at present, but also the key to the
future DIGDE.

4.5.3 Other variables
4.5.3.1 Mediating variables

TEI: This study measures the level of regional TEI by using the
proportion of science and technology expenditure in local general
public budget expenditure (Wang et al., 2020).

ECS: This study draws on Shao et al. (2019) and uses the
share of coal consumption in total energy consumption to
measure the ECS.

4.5.3.2 Control variables
FD: FD is conducive to attracting foreign enterprises that have high

energy-saving and emission-reducing technologies to enter the market
to learn from them. The proportion of a region’s total imports and
exports in GDP is used to evaluate this variable (Wang et al., 2022).

UR: UR implies a shift from an agricultural population to a
nonagricultural population, and the change in the production,
lifestyle and residence patterns of the group shifting from the
agricultural population to the nonagricultural population is a
shift in energy consumption demand, with consequent effects on
CE. UR is expressed by the proportion of the urban population to the
total population in this study (Zheng et al., 2020).

LY: LY can be used to measure people’s living standards, providing
a reference basis for formulating important policies. We use 2011 as the
benchmark period to process the GDP data in current-year prices, and
we use real GDP per capita to measure LY (Zheng et al., 2020).

OS: An increase in marketization adjusts the allocation of
resources and leads to changes in the organization of production.
This variable is measured by using the marketization index
developed by Fan et al. (2011).

GOV: Government support affects the local economy to varying
degrees. This variable is measured by fiscal spending as a share of
GDP (Zhang et al., 2022).

4.6 Data descriptions

Data are primarily taken from the China Statistical Yearbook,
the National Bureau of Statistics, and relevant regional statistical
yearbooks. The Peking University Digital Inclusive Finance Index
comes from the Institute of Digital Finance, Peking University. Due
to excessive missing data for Tibet, Taiwan, Macao and Hong Kong,
they are not discussed in this study.

TABLE 1 DIGDE level indicator system.

Description of indicators (units) Properties

Digital infrastructure Cell phone penetration rate (units per 100 people) +

Number of Internet domain names (pcs) +

Internet broadband penetration rate +

Optical cable density (km/km2) +

Digital industrialization Number of employed persons in information transmission, software and
information technology services (10,000)

+

Number of digital TV subscribers (million) +

Software product revenue scale as a proportion of GDP +

Total telecom business per capita (10,000 yuan/person) +

Digitalization of industries Peking University Digital Inclusive Finance Index +

Per capita express business volume (pieces/person) +

The proportion of enterprises with e-commerce trading activities +

Digital governance Average years of education (years) +

Number of patent applications for inventions (items) +

Technology contract turnover (billion yuan) +
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Missing data are filled in through linear interpolation. To avoid
pseudoregression and eliminate heteroskedasticity, all variables are
transformed using logarithmic scales.

Table 2 lists the descriptive statistics of each variable made in
this paper, Table 3 lists the descriptive statistics of each variable: the

maximum values of lnDIGDE and lnCE are 6.2405 and 11.7487,
respectively, and the minimum values are 2.2721 and 8.1360, which
are basically consistent with the measurements observed in the
literature. lnOF has the maximum value of 7.5183 and the
minimum value of 0.4164, which indicates that the level of
openness to the outside world is uneven among different regions,
and polarization is serious. This may be due to different geographic
locations; coastal areas have developed freight transportation, so
their level of openness to the outside world is higher. The standard
deviation of lnLY is the largest at 1.3058, and the standard deviation
of lnOS is the smallest at 0.2620, which indicates that per capita
income levels vary widely across different regions in the sample, and
the degree of marketization does not vary greatly.

5 Results and discussion

5.1 Spatial autocorrelation test

This study explores the agglomeration features of DIGDE and
CE from 2011 to 2020 based on Moran’s I (Table 4), the findings of
which demonstrate that Moran’s I is positively significant underW1.

FIGURE 2
China’s DIGDE level in 2011, 2015, 2020.

TABLE 2 Abbreviation comparison table.

Abbreviation Full name

DIGDE Digital economy development

CE Carbon emissions

TEI Technological innovations

ECS Energy consumption structure

SSE Spatial spillover effect

FD Degree of openness to the outside world

UR Urbanization level

LY Level of per-capita income

OS Degree of marketization

GOV Government financial support

TABLE 3 Variables statistics.

Variables Obs Std.D Min Mean Max

lnDIGDE 300 0.7200 2.2721 4.8779 6.2405

lnCE 300 0.7617 8.1360 10.2743 11.7487

lnTEI 300 1.1188 1.2179 2.1976 7.0637

lnECS 300 0.5900 1.9601 5.8557 6.5397

lnFD 300 1.1666 0.4164 5.2207 7.5183

lnLY 300 1.3058 1.3545 4.8657 7.6829

lnUR 300 0.1994 1.2516 1.7434 2.1928

lnOS 300 0.2620 1.2116 2.0402 2.4794

lnGOV 300 0.5865 1.9543 3.7701 5.1639
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It is inferred that the close connections among different cities and
their generated correlations can affect the spatial correlation of
DIGDE and CE.

5.2 Benchmark regression test

The baseline regression model of Eq. 1 is first estimated, and
the benchmark test results are shown as the regression findings in
Table 5. The three columns show the results of mixed OLS, fixed
effect and cluster standard errors. By comparing the model
results, it can be seen that the model’s goodness of fit,
significant levels of variables and coefficients do not change
much in the three regressions, which indicates that the
variables entered into the model are relatively stable. That is,
the inhibitory effect of DIGDE on CE is stable and reliable. In
summary, the regression results confirm Hypothesis 1 that
DIGDE can suppress CE. Further spatial studies can be
carried out on this phenomenon.

5.3 Spatial model test

To determine the most effective model for exploring the
relationship between DIGDE and CE, this study uses the LM,
Wald, and LR tests (Chen et al., 20233), indicating that the SDM
with time fixed effects is the best choice, the Hausman test supports
the fixed effect model (Zhao and Wang, 2022) (Table 6). The partial
differential method is applied to decompose the impact of the local
region and neighboring regions into direct effects, indirect effects
and total effects (LeSage and Pace, 2009) (Table 7).

The coefficients of the impact of DIGDE on CE and the SSE are
both significantly negative under W1. Compared with Table 6, the
impact of DIGDE on CE will be underestimated when the SSE is
ignored, which is not conducive to effective regional environmental
regulatory policies and DIGDE. The coefficient of the indirect effect
of DEIGDE on CE is −1.4450, which is 1.7397 times the direct effect.
This result indicates that DIGDE in a region can influence CE in
neighboring regions, and when the level of DIGDE in a region
increases by 1%, its inhibitory effect on CE in neighboring regions is

TABLE 4 Results of Moran’s I.

year lnDIGDE lnCE year lnDIGDE lnCE

2011 0.167** 0.207** 2016 0.166** 0.170**

(1.948) (1.983) (1.909) (1.692)

2012 0.167** 0.192** 2017 0.201** 0.157*

(1.936) (1.868) (2.255) (1.568)

2013 0133* 0.207** 2018 0.202** 0.129*

(1.604) (1.986) (2.239) (1.359)

2014 0.136** 0.190** 2019 0.196** 0.138*

(1.641) (1.843) (2.173) (1.421)

2015 0.153** 0.177** 2020 0.209** 0.216**

(1.801) (1.746) (2.279) (2.076)

Note: *, **, and *** indicate significance at the 10%, 5% and 1% levels, respectively, and Z-statistic values are in parentheses.

TABLE 5 Benchmark regression results.

Variables lnCE

Mixed OLS Fixed effect Cluster standard errors

lnDIGDE −0.3193*** (−3.45) −0.3287*** (−3.10) −0.3006*** (−3.64)

lnFD 0.0286 (0,85) 0.0362 (0.97) −0.0027 (0.08)

lnLY −0.1960** (−2.31) −0.2059** (−2.32) −31.3837*** (−5.87)

lnUR −0.3396* (−1.68) −0.3458* (−0.69) 42.8529*** (5.80)

lnOS 0.4294* (1.94) 0.4371* (1.88) −0.0590 (−0.23)

lnGOV 1.1206*** (15.80) 1.1176*** (15.28) 1.1938*** (13.10)

Constants 6.8168*** (18.69) 6.8090*** (17.53) 0.9927** (0.92)

Adjust-R2 0.5539 0.5423 0.5862

Observations 300 300 300

Note: ***, **, and * represent significance at the 1%, 5% and 10% levels, respectively, and the values in brackets are t-values; the following tables are the same as those above.
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1.7297 times higher than that in the region. This phenomenon is due
to the accelerated development of internet trading platforms, which
accelerates the cross-regional flow of production factors. Through
open sharing, the development of internet trading platforms
promotes the productivity of neighboring regions, thus
contributing to the optimization of resource allocation. It can be
assumed that if neighboring regions also accelerate DIGDE, the
overall level of CE reduction in an area will be improved, thus
forming a virtuous circle of the “snowball effect” between regions.

Under W1 the coefficient of the control variable lnLY exhibits a
positive effect on CE in surrounding areas and a negative effect on
CE in region. The scale and development of production activities in
an area are largely determined by the level of consumption of
residents. High-income groups tend to have a higher demand for
environmental standards and affordability. This higher demand has
prompted enterprises to implement green production and
sustainable development strategies and shift industries that are
not environmentally friendly to neighboring areas. lnUR increases
CE in a region, while it exhibits a lowering effect on adjacent areas.
The rise in the urbanization level implies a more pronounced
population agglomeration effect, which is accompanied by a shift
in the labor force and a change in economic activity patterns, thus
increasing transportation CE due to population migration. The lnOS

and lnGOV variables increase local CE, and because the
environmental effects have a relatively long and low return cycle,
local governments tend to be more likely to invest in fields with
faster economic return. If the direction of marketization and
government financial support is oriented toward increasing
productivity, then it will promote production scale expansion,
which is not conducive to ECS and CE reduction (Shao et al.,
2013). Furthermore, the promotion of new environmental
protection technology industries and the impact of government
regulation on the environment often have a certain time lag.
Therefore, current period market-based reforms do not
necessarily have a significant dampening effect on CE. However,
sharing infrastructure with neighboring regions can effectively avoid
duplication of investment in construction and waste of resources
and reduce the land occupation, energy consumption and material
extraction required for new projects, thus helping neighboring cities
save energy and reduce CE.

5.4 Mediating effect test

The results of the stepwise regression and the decomposition of
the mediating effects are listed in Tables 8, 9, and the results in
model (2) satisfy the prerequisites for the subsequent stepwise
regression in the theory of Judd and Kenny, (1981).

Regarding the mediating transmission mechanism of TEI, DIGDE
can significantly promote TEI, and after adding the mediating variable
TEI, CE are shown to be significantly slowed by DIGDE and have a
significant SSE. This result indicates that TEI holds as a mediating
variable. Regarding the mediating transmission mechanism of the ECS,
in model (3), the coefficient of the effect of DIGDE on the ECS is
significantly negative. DIGDE on CE is negative, and the ECS on CE is
positive in model (4). These results indicate that DIGDE can promote
CE reduction, and at the same time, the increase in the proportion of
coal consumption leads to higher CE levels, which once reaffirms that
China’s “high-carbon” ECS with an abnormally high reliance on coal is
an important reason for the hindrance in CE reduction (Shao et al.,

TABLE 6 Results of three major test.

Model test Statistic p-value

LM lag test 7.799 0.000

LM error test 35.373 0.000

Wald-SDM-SLM 62.83 0.000

Wald-SDM-SEM 104.56 0.000

LR-SDM-SLM 53.63 0.000

LR-SDM-SEM 88.77 0.000

Hausman test 67.90 0.000

TABLE 7 Results of the SDM regression in Eq. 3.

Variables W1

Coefficient W*Coefficient Direct effect Indirect effect Total effect

lnDIGDE −0.7577*** (−8.45) −0.9242*** (−4.11) −0.8306*** (−8.35) −1.4450*** (−4.28) −2.2755*** (−5.70)

lnFD −0.0212 (−0.58) 0.0820 (1.20) −0.0181 (−0.51) 0.0942 (1.06) 0.0761 (0.75)

lnLY −0.3507*** (−3.70) 1.2961*** (6.66) −0.2605*** (−3.03) 1.5606*** (6.01) 1.3001*** (5.03)

lnUR 0.2199 (1.10) −0.7667** (−2.19) 0.1629 (0.85) −0.8956** (−1.93) −0.7327 (−1.36)

lnOS 0.6480*** (2.78) 0.7157 (1.37) 0.7012*** (3.11) 1.0915 (1.530) 1.7927** (2.20)

lnGOV 1.2428*** (17.15) −0.6404*** (−3.59) 1.2257*** (15.90) −0.3823* (−1.65) 0.8432*** (2.99)

Rho 0.2641***

Sigma2_e 0.2076***

R-squared 0.2450

Obs 300
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2019). The coefficient shows that DIGDE has a strong promoting effect
on TEI, and when the intermediary variable TEI exists, DIGDE has a
more positive inhibiting effect on CE. DIGDE has driven the intelligent
transformation of traditional industries and improved the efficiency of
resource utilization, reducing the use of fossil fuels in the production
process, and achieving the effect of saving energy to reduce emissions at
the source. The SSE of the mediation effects decomposition results in
Table 8 is also consistent with the expected assumptions. That is,
DIGDE can lead regional green collaborative development through TEI
and by optimizing the ECS.

5.5 Robustness test

The CE estimation method above uses regional CE for
measurement, and there are still many studies in the literature

that use per capita CE to measure CE levels. In Table 10, when
lnPCE is used as the dependent variable, the mediating effect and
SSE are still valid, which confirms the robustness of the
results above.

In econometric regression, to obtain consistency in the effects, it
is important to address possible endogeneity. Different from
traditional ordinary least squares (OLS) regression, the SDM
makes it possible to obtain estimates that are not biased by
amplification, thus avoiding endogeneity due to omitted variables
(LeSage and Pace, 2009). Drawing on Wang and Guo (2023), this
study uses the generalized spatial two-stage least squares (GS2SLS)
model to control for the endogeneity problem of the key variables
and lags the explanatory variables by one period. The regression
results in Table 11 show that after mitigating the potential
endogeneity problem, the study’s conclusions still hold, and the
mediating effect remains.

TABLE 8 Stepwise regression results of the mediation model.

Variables (3) (4)

lnTEI lnECS lnCE lnCE

lnDIGDE 0.6911*** (3.00) −0.2466*** (−3.18) −0.4186*** (−4.45) −0.2748*** (−3.43)

lnTEI −0.0531** (−2.26)

lnECS 0.7042*** (11.98)

lnFD 0.0256 (0.31) 0.0281 (1.02) 0.0066 (0.20) −0.0119 (−0.42)

lnLY −0.1196 (−0.55) −0.9282*** (−12.62) −0.5082*** (−5.75) 0.1583* (1.69)

lnUR −0.8208* (−1.79) −0.1329 (−0.84) 0.0477 (0.25) 0.2809* (1.70)

lnOS −0.3394 (−0.63) 0.9521*** (5.32) 0.7973*** (3.70) 0.0426 (0.22)

lnGOV −0.8072*** (−4.54) 0.1013* (1.69) 1.0112*** (13.29) 0.9956*** (15.91)

Adjust-R2 0.4056 0.5154 0.4721 0.7666

Rho 0.1999** 0.0432 0.2820*** 0.2815***

Sigma2_e 1.0589*** 0.1195*** 0.1706*** 0.1234***

Observations 300 300 300 300

TABLE 9 Decomposition results of the mediation model.

W1 Variables (3) (4)

lnTEI lnECS lnCE lnCE

Direct lnDIGDE 0.7041*** (3.05) −0.2477*** (−3.05) −0.4845*** (−4.52) −0.3189*** (−3.50)

Effect lnTEI −0.0637*** (−2.66)

lnECS 0.7292*** (12.59)

Indirect lnDIGDE −0.0472 (−0.09) 0.3359 (−1.48) −1.2373*** (−3.53) −0.8478*** (−2.90)

Effect lnTEI −0.1717*** (−2.83)

lnECS 0.4968*** (2.94)

Total lnDIGDE 0.6569* (1.04) −0.5839** (−2.13) −1.7218*** (−4.09) −1.1667*** (−3.31)

Effect lnTEI −0.2355*** (−3.18)

lnECS 1.2260*** (6.45)
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5.6 SSE

In Table 12, the SSE of DIGDE on CE also exists among regions with
similar human capital, service development, and information

development and is similar to the effects under W1. Additionally, the
indirect effects are all larger than the direct effects, confirming H3. The
coefficient of the indirect effect of DIGDE on CE is the largest underW4.

In the context of digitalization and intelligence, human capital
has become an important resource for regions, and innovative and
high-tech companies have improved their innovation efficiency and
green transformation capabilities by adjusting workforce
involvement through effective talent management (Zahoor et al.,
2022). Green enterprises promote carbon reduction in regions with
higher environmental standards and more sophisticated energy-
saving technologies, and can play a positive role in leading and
regulating the development of regions with similar human capital.
Meanwhile, DIGDE involves the Internet of Things and other fields
with high intensity R&D investment, which can produce strong
SSEs. These effects change the development model of the service
industry through the intellectual capital and human capital needed
by the service industry, and they promote its digital transformation.
Through online platforms and applications, many traditional
processes can be optimized, reducing energy consumption and
CE in physical service processes. Regions with similar levels of
service industry development have similar industrial structures and
usually have closer flows of technological elements and industrial
interconnection, which can promote green synergy through
technology promotion and resource sharing. DIGDE drives the
efficient operation of material flow and technology flow with
information flow, and it promotes the optimal allocation of
resource elements between industries. The symbiotic union of
different types of industries is becoming increasingly common,
and industrial integration is deepening, prompting the gradual
adjustment of the industrial structure to be high grade, low
carbon and green. Therefore, in regions with similar human
capital and service development, DIGDE can exert an SSE that
reduces CE. In addition, regions with similar levels of information
technology development have high levels of networked synergy.
Open platforms based on information technology provide a
borderless space for information sharing, which fully reduces

TABLE 10 Results of the robustness test.

W1 Variables (2) (4)

lnPCE lnPCE lnPCE

Direct lnDIGDE −0.4937*** −0.4611*** −0.2950***

Effect (−4.94) (−4.83) (−3.86)

lnTEI −0.0493**

(−2.29)

lnECS 0.7253***

(14.64)

Indirect lnDIGDE −0.6721** −0.6341** −0.2801*

Effect (−1.88) (−2.14) (−1.13)

lnTEI −0.1523***

(−2.78)

lnECS 0.4813***

(3.14)

Total lnDIGDE −1.1658*** −1.0952*** −0.5750**

Effect (−2.72) (−3.06) (−1.92)

lnTEI −0.2016***

(−3.02)

lnECS 1.2066***

(6.86)

TABLE 11 GS2SLS results.

Variables (2) (3) (4)

lnCE lnTEI lnECS lnCE lnCE

L.lnDIGDE −0.019** 0.643* −0.137** −0.042*** −0.022***

(−4.94) (1.74) (−1.86) (−2.85) (−2.58)

lnTEI −0.019***

(−2.78)

lnECS 0.013*

(1.74)

Control Yes Yes Yes Yes Yes

Time Yes Yes Yes Yes Yes

First-F-Test 22.225*** 17.449*** 190.705*** 38.914*** 22.231***

Second-F-Test 19.408*** 2.689** 91.968*** 36.765*** 20.518***

Observations 270 270 270 270 270
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information asymmetry in the process of rapid information flow
(Asongu et al., 2017), making the transmission of green technology
ideas and environmental protection more effective. Therefore,
compared with W2 and W3, it is easier to bring into play the SSE
of DIGDE on CE under the W4 matrix.

6 Conclusion and policy implications

6.1 Conclusion

Given the typical fact that DIGDE affects CE, this study starts from
the spatial perspective, and based on the panel data of 30 provinces and
regions in China from 2011 to 2020, it innovatively constructs different
spatial weightmatrices on the basis of measuring the level of DIGDE and
combines SDM with the mediation effect model to investigate the
mechanism of the impact of DIGDE on CE and the multiple SSE
from the spatial perspective. The following conclusions were drawn from
this study. First, there is obvious spatial heterogeneity in DIGDE. The
eastern region has the highest overall average level of DIGDE, which has
reached a certain scale and height. The rapid growth of DIGDE in the
central region, with the highest average annual growth rate, showing great
potential and opportunities for development. The average annual growth
rate of the western region is slightly lower than that of the central region,
it also shows a stable development trend and broad development space.
Second, DIGDE can suppress CE and have a significant SSE. This means
that with DIGDE, not only can CE be reduced directly, but its influence

can also be transferred between regions and have a dampening effect on
CE in neighboring regions. DIGDE can indirectly reduce CE by driving
TEI and optimizing ECS. Third, the impact of DIGDE on CE is also
influenced by other factors, under the role of human capital, service
industry development and the information development matrix, DIGDE
has a negative SSE on CE. Regions with a similar level of information
development are more likely to exert SSE of DIGDE on CE. This further
emphasizes the important impact of synergies betweenDIGDE and other
elements of development on CE.

6.2 Policy implications

Mitigating climate change and reducing CE is the common
responsibility of all mankind. Based on the findings, the policy
implications of this study are as follows.

The policy insights obtained from this paper are as follows. First,
DIGDE is conducive to reducing CE, and in addressing the challenges of
climate change, we should continue to increase the level of DIGDE.
Continuously unleashing the dynamism of demand, including
investment and information consumption, in DIGDE, and give full
play to the leading role of DIGDE in green development. In response to
SSE, interregional economic ties should be strengthened, and efforts
should be made to narrow the gap in DIGDE between regions by
exploiting different regions and forming a pattern of coordinated
regional development by building a mechanism of synergistic
development and complementary advantages between regions.

TABLE 12 Spillover channel test results.

Variables W2 W3 W4

Direct lnDIGDE −0.2951*** (−2.87) −0.2295*** (−2.59) −0.2966*** (−3.22)

Effect lnFD 0.0049 (0.13) −0.0013 (−0.04) 0.0666** (2.13)

lnLY −0.1339 (−1.03) −0.3683 (−4.12) −0.3304*** (−3.46)

lnUR −0.2153 (−1.09) 0.1401*** (0.86) −0.1487 (−0.82)

lnOS 0.2206 (0.77) 0.5163*** (3.24) −1.0272*** (4.68)

lnGOV 1.0983*** (5.60) 1.1780*** (18.68) 1.1152*** (18.88)

Indirect lnDIGDE −0.4606** (−2.30) −0.6315*** (−2.61) −0.7877*** (−4.52)

Effect lnFD 0.0514 (−2.43) 0.0437 (0.46) −0.6013*** (−9.78)

lnLY 0.2961** (0.89) −4.2261*** (−7.76) 0.4645** (2.53)

lnUR −0.2799 (1.73) 3.1248*** (4.42) 0.2253 (0.66)

lnOS 1.0946*** (2.57) 1.4168** (2.40) 1.1659*** (3.09)

lnGOV −0.1299 (−0.57) 1.1678*** (4.13) 0.1623 (1.42)

Total lnDIGDE −0.7557*** (−4.57) −0.8609*** (−2.90) −1.0842*** (−6.51)

Effect lnFD 0.0563 (1.32) 0.0424 (0.39) −0.5347*** (−9.18)

lnLY 0.1622 (1.49) −4.5944*** (−7.53) 0.1341 (1.04)

lnUR −0.4952** (−2.00) 3.2649*** (4.17) 0.0767 (0.28)

lnOS 1.3152*** (4.93) 1.9331*** (3.05) 2.1931*** (6.73)

lnGOV 0.9684*** (11.51) 2.3458*** (7.24) 1.2775*** (11.63)
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Second, we should fully consider the transmission mechanism through
which DIGDE affects CE and focus on improving the level of TEI and
strive to drive the rise of low-carbon industries through the development
of digital technology. The restructuring of ECS should be accelerated, the
level of conversion and application of new energy should be improved,
and a clean, low-carbon, safe and efficient energy system should be built.
The government can strengthen the awareness of energy saving and
emission reduction of enterprises by strengthening supervision and
forcing them to optimize their own ECS. Third, considering the
strongest SSE of DIGDE on CE under the information development
level matrix, in exploring the practice of DIGDE and CE reduction, we
should focus on learning from regions with similar levels of information
development to quickly and effectively accumulate experience and give
full play to the important role of information development in driving
regional synergistic development.

The limitations of this study are as follows. First, digital technology is
constantly iteratively developing, and methods of evaluating DIGDE can
be further explored. Second, this study focuses on the impact of TEI and
the ECS. Subsequent studies can also proceed from the perspectives of
environmental regulation and economic ag-glomeration to further
explore the impact path of DIGDE on CE. Finally, from the
perspectives of service industry development, human capital and
information development, this study examines the SSE of DIGDE on
CE. Follow-up studies can also be carried out from the perspectives of
other context elements.
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A customer satisfaction-based
optimization model for the
charging and discharging path
and battery swapping stations’
site selection of electric vehicles

Yuhong Zhang, Puyu He, Wenshi Ren*, Jie Jiao, Zhuhan Long
and Yaling Jian

State Grid Sichuan Economic Research Institute, Chengdu, China

This paper studies the problem of considering customer satisfaction in the no-
battery-swap mode and in the power-swap mode. First, with the goal of
maximizing customer satisfaction, the total cost of charging and discharging
and the minimum construction cost of swapping stations, the customer time
window, and the load constraints of electric vehicles are considered. A model of
electric vehicle charging and discharging route optimization and replacement
station location without battery swapping behavior, considering customer
satisfaction, is established, and then, a two-stage improved ant
colony–genetic algorithm is designed to solve the model, and finally, the
comparative analysis considers customer satisfaction. Based on the path
optimization results and location decisions considering the cost of charging
and discharging, the following conclusions are obtained: 1) electric vehicle route
optimization and swap station location planning considering customer
satisfaction can not only effectively reduce logistics distribution costs and
replacement costs but also improve customer satisfaction levels. 2) Reducing
the number of route crossings in the process of logistics distribution routes can
save electricity costs for electric vehicles and logistics distribution costs, and help
reduce the total cost of the entire logistics distribution network. 3) The gradient
setting of the electricity price for electricity exchange will reduce the cost of
electricity exchange, improve the utilization efficiency of the battery, reduce the
cost of logistics and distribution, and improve the electricity exchange revenue of
the electricity exchange station.

KEYWORDS

electric vehicle, two-stage hybrid algorithm, path optimization, site selection of battery
swapping stations, customer satisfaction

1 Introduction

As the economy and society rapidly advance, the demand for energy consumption has
steadily risen, and energy shortage and environmental problems have become increasingly
prominent. In terms of urban transportation, carbon emissions account for about a quarter
of energy carbon emissions, of which urban road transport carbon emissions account for
about 80% of the carbon emissions of the transportation industry, which is an important
area for transportation carbon reduction (BAI et al., 2021). Electric vehicles that couple
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power and transportation have become important new energy
vehicles because of their near-zero carbon emissions, low cost,
and convenient energy-saving charging. According to China’s
“New Energy Vehicle Industry Development Plan (2021–2035)”
(The General Office, 2020), from 2021 onwards, China clearly
proposed that the key areas of new energy logistics vehicles
should not be less than 80%, and anticipated by 2035, pure
electric vehicles will emerge as the predominant choice among
newly sold vehicles, which provides a guarantee for the
development of electric logistics vehicles in the field of urban
distribution. To this end, electric vehicles show potential to
replace traditional fuel vehicles and become an important means
to solve transportation and travel. The Transportation sector is
characterized by high carbon emissions. Logistics distribution is
characterized by high demand, complex routes and road congestion,
resulting in high carbon emissions and high vehicle costs. Electric
vehicles have the characteristics of a relatively fixed driving range,
focusing on short and medium distances, convenient centralized
charging, and near-zero carbon emissions. In order to alleviate
environmental pressures, the public sector and logistics
distribution companies have begun to choose electric vehicles as
the main means of transportation. At the same time, the electric
vehicle as a means of transport makes the traditional fuel vehicle
path planning method no longer applicable, thereby resulting in the
electric vehicles to provide kinetic energy with batteries; in order to
complete the distribution task, the driving process is limited by
battery capacity and mileage in the long-distance distribution, the
need for power supply in the middle, and the current set of charging/
replacing facilities. There is a slow construction and unreasonable
planning, with the increase in the demand for electricity for electric
vehicles if the problem of electric energy supply of electric vehicles
cannot be solved. It will limit the development of electric vehicles in
the logistics industry. Considering the charging time and investment
cost, it is recommended that the logistics enterprises cooperate with
government departments to build and operate the replacement
station, therefore, this paper will consider the replacement station
as an electric energy supply facility and carry out the research on the
logistics distribution path and site selection of the electric vehicle
substation.

1.1 Literature review

The central challenge in logistics distribution lies in
optimizing vehicle paths; considering the distribution of goods
involves time scheduling problems, many scholars integrate the
concept of time windows into the optimization problem of
logistics distribution paths, forming a logistics distribution
path optimization problem with a time window. In order to
solve such problems, the current algorithm selection is very
diverse; commonly used algorithms include genetic algorithms,
particle swarm algorithms, ant colony algorithms, and taboo
search algorithms.

In terms of path planning of electric vehicles, Guo et al. (2022)
proposed a travel path planning method, considering the power supply
of electric vehicles with the optimization goals of travel distance, travel
time, travel energy consumption, and charging price. Ming et al. (2016)
considered the mutually exclusive constraints of path selection, battery

capacity, and charge and discharge status; integrated the optimal travel
time of users and charging cost into the cost function; and studied the
path selection problem of electric vehicles under the optimal two
different decision-making goals under the time-of-use electricity
price mechanism. DONG et al. (2018) considered factors such as
path selection, time, battery capacity, and cargo capacity, and
studied the optimization of logistics distribution paths and charging
strategies for electric vehicles with the goal of optimizing the cost of
driving time, battery loss, and fast charging cost of electric vehicles.
Zhang et al. (2022) studied the SAEV path optimization problem
considering the charging plan, unpredictable travel duration, and
service timing, and developed a branch-price algorithm to introduce
a customizable label-setting algorithm for identifying resilient and viable
routes with feasible charging strategies. Berk and Bülent (2022) aimed to
minimize the costs associated with battery degradation and total energy
consumption against the backdrop of the traveling merchant problem
with time windows, using commercial solvers to solve small-scale
instances to examine the impact of battery degradation on routing
decisions in different scenarios. Yang et al. (2023) proposed an optimal
EV scheduling method on the load side that combines incentive
scheduling with orderly scheduling so that the load curve tends to
be flat and used to optimize the EV path. Saeed et al. (2023) proposed a
vehicle routing optimization model based on the Al-Biruni earth radius
optimization algorithm, considering user preferences, availability of
charging infrastructure, and distance to the destination. Ren et al. (2020)
proposed a shared car path optimization model that considers the
operating costs of SEVs, the cost of user time, the cost of user car rentals,
and the rewards of user sharing. Wang et al. (2015) analyzed the
relationship between variables in the power battery distribution path
optimization problem, constructed a priority function to determine the
initial population, and suggested an enhanced genetic algorithm to
address the path optimization problem for delivery vehicles with time
windows, including simultaneous pick-up and delivery scenarios.
Appiah and Xiong (2019) aimed to minimize total transportation
costs by solving a unitary model through a particle swarm
optimization algorithm to determine the path for vehicles traveling
from the distribution center to serve a specific customer and return to
the distribution center.

In terms of the site selection of battery swapping station,
Deng et al. (2021) considered the two stages of electric vehicles
during distribution and back to the distribution center, and
studied the logistics distribution path planning and charge and
discharge management problems of electric vehicles, considering
customer satisfaction in the power exchange mode. In Zhang
et al. (2023), based on new energy vehicles’ daily driving habits
and charging methods, the Monte Carlo sampling algorithm is
adopted to establish the new energy car battery load model, the
scheduling for electric vehicle charging behavior, and related
facility construction that provides a direction. Zhou and Tan
(2018) proposed the problem of distribution path and site
selection of electric vehicles in the automobile assembly line,
developed a mathematical programming model aimed at
optimizing by minimizing the overall expenses within the
system, and proposed a two-stage dynamic programming
algorithm to obtain the optimal solution of the small-scale
problem. Li et al. (2022) constructed a mathematical model of
potential substation site selection under multi-path conditions,
and on this basis, the relationship between the cruising range of
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electric vehicles and the cost of station construction, as well as the
relationship between the number of substations and service flow,
was analyzed. An et al. (2023) proposed a location optimization
method that comprehensively considered many factors such as
EV charging and discharging cost, power grid load stability, and
user demand. Cheng et al. (2023) proposed an EV charging load
prediction method based on variational mode decomposition and
the Prophet-LSTM neural network to solve the problem of the
charging station location. Zhao and Liang (2023) proposed a new
charging scheduling and energy management approach for smart
grid electric vehicles based on genetic algorithms (GAs), gated
recurrent unit (GRU) neural networks, and reinforcement
learning (RL) algorithms. Wang et al. (2020) proposed a BSS
site selection framework based on the MCDM (multi-project
decision method), which takes into account the lack of
information in the site selection process of the replacement
station and uses triangular fuzzy numbers to deal with
uncertainty. Zu and Sun (2022), based on the site selection
planning of charging stations and substations, considering the
user’s behavioral capabilities, dynamically analyzed the
correlation between crucial parameters and outcomes using
the YALMIP/CPLEX method to solve the model. Qin and He
(2021) determined the service radius of the substation from the
aspects of driver driving preference, substation service objectives,
and the mileage of electric vehicles, and used the grid method and
position allocation model to analyze the distribution of
substations with the smallest number of stations and the
largest coverage.

In summary, although domestic and foreign scholars have
considered the charging/replacing problems of electric vehicles in
logistics distribution, they have not considered the relationship
between the logistics distribution path of electric vehicles and the
site selection results of their substations, and few literature studies
have considered the combination of time window, logistics path
optimization, and substation site selection. The main contribution of
this paper is to establish the path optimization problem of electric
vehicles without power exchange behavior and the site selection
decision model of electric vehicle power exchange facilities
distributed in urban distribution under the power exchange mode.
The model comprehensively considers the impact of user satisfaction,
the opportunity/penalty cost generated by the violation of the customer
satisfaction time window, and the power exchange cost corresponding
to the remaining battery power on the path planning and site selection
decision of the power exchange facility. Finally, a two-stage hybrid ant
colony algorithm is designed to solve the abovemodel in order to obtain
the urban distribution path optimization and site selection scheme
suitable for electric vehicles, which can provide reference for the actual
operation and management decisions of logistics enterprises.

2 Problem description and modeling

2.1 Problem description

The specific problem description is as follows: assuming that
an enterprise has a logistics distribution center point O in a
certain place and puts multiple electric vehicles with the same
loading capacity and the same battery capacity into the logistics

distribution service, the location of each customer point C and its
cargo demand are known, and the logistics distribution center
can meet its service needs. The distribution center serves as both
the starting and ending points of the logistics distribution path,
necessitating the vehicle to return to the distribution center upon
completion of its service; owing to the electric vehicle having a
power constraint, some of the longer sub-paths need to be
replenished with electricity, the electric vehicle through the
replacement station or back to the distribution center should
reach the battery full state, and each electric vehicle should leave
from the starting point and return to the end point through the
replacement station no more than once. Therefore, enterprises
need to reasonably arrange the logistics and distribution path of
electric vehicles, which minimizes logistics and distribution
costs. At the same time, it is crucial to factor in the expenses
associated with replacing electric vehicles and ensure customer
satisfaction, and select and build the replacement power station
on a reasonable distribution path. The goal of the problem is how
to reasonably design the electric logistics vehicle transportation
path of the distribution center under the condition of limited
distribution vehicles so as to meet the needs of customer points
and achieve the goal of minimizing the total cost of the urban
logistics distribution network and maximizing customer
satisfaction.

For these cases, we need to consider the time window of the
distribution route, the opportunity cost or penalty cost, the
maximum cargo capacity of the electric vehicle, and so on. 1)
The vehicle routing optimization problem with the time window
is based on the classic vehicle routing optimization problem, adding
that each customer point has a logistics distribution time limit; we
call the customer point time limit as the time window. When
enterprises use electric vehicles for services, electric vehicle
distribution may be delayed or result in early arrival, and when
in need to consider the distribution route time window problem, this
article considers the choice of the soft time window constraint and
all customers know the time window. Failure to deliver within the
required time window will incur opportunity costs or penalty costs.
2) Because the enterprise needs to replace the electric vehicle in time,
the distribution center also has the function of power exchange, and
the electric vehicle can be replenished in the distribution center after
returning to the distribution center. 3) The total customer demand
on each distribution route does not exceed the maximum cargo
capacity of electric vehicles, and the demand of each customer point
can only be completed by one electric vehicle. 4) In order to consider
making the electric vehicle power exchange work orderly and
preventing the electric vehicle from re-entering the power
exchange station to affect the power exchange of other electric
vehicles and causing resource occupation, the replacement price
will be set according to the remaining power level of the electric
vehicle; if the remaining electricity is high, the corresponding
purchased electricity price is correspondingly higher, and the
conversion price is converted according to the remaining level of
the remaining electricity. 5) The electric vehicle used in this article
does not consider the loss to the battery due to charge and discharge
during the power exchange process. 6) The power of an electric
vehicle is not affected by the driver’s driving style and the difficulty
of driving on the road. The schematic diagram of the electric vehicle
path optimization problem in this paper is shown in Figure 1.
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2.2 E-VRPTW model considering customer
satisfaction

2.2.1 Objective construction
Considering the economic factors of logistics distribution costs

and the influence of logistics distribution customer service time
window on customer waiting time, the paper formulates a multi-
objective optimization model which aims at maximizing the overall
satisfaction of the system and minimizing the delivery time and total
cost of the system.

(1) Minimizing the logistics distribution services cost

Considering the logistics integrated transportation service of
electric vehicles in logistics distribution services and the site
selection and construction of the replacement station, the
logistics distribution cost of this paper mainly includes the
total cost of electric vehicle power exchange cost, electric
vehicle fixed cost, replacement station construction cost, and
time window penalty cost. The cost of electric vehicle power
exchange is related to the electricity exchange price and power
exchange; the higher the electricity exchange price and the more
the electricity exchange, the higher the power exchange cost; for
this reason, it is necessary to optimize the power exchange of
electric vehicles into the power exchange station. The length of
the driving path of electric vehicles determines the cost of their
logistics distribution travel time, and choosing a suitable location
to build a replacement station can make the electric vehicle
exchange power in its suitable power exchange during the
driving distance while reducing the time cost; the longer the
route travel time corresponds to the higher the route travel time
cost, so the path should be reasonably selected during the route
driving process so that the electric vehicle can be replenished.
The specific mathematical expression is as follows:

minF1 � min Γ1 + Γ2 + Γ3 + Γ4( ). (1)

The cost of electric vehicle replacement is related to the
remaining electricity and power exchange price of electric
vehicles driving into the power exchange station during
distribution; taking into account the prevention of electric
vehicles from re-entering the power exchange station multiple
times and affecting the power exchange of other electric vehicles
resulting in resource occupation, the replacement price will be set
according to the remaining power level of electric vehicles; if the
remaining electricity is more, the corresponding purchased
electricity price is correspondingly higher. The expense linked
to power exchange is associated with the frequency of power
changes in electric vehicles during distribution, the remaining
power to the power exchange station, and the electricity exchange
price, and the calculation method is the sum of the purchase cost
of the new replacement battery and the cost of a single
battery rental.

Γ1 � ∑
i∈I

∑
s∈Sα

∑
k∈K

Ts + γsk,n − γsk( )λr t( )[ ] · xijk. (2)

The construction cost of the substation is related to the
construction cost of a single substation and the number of

substations under construction, as shown in the
following equation.

Γ2 � ∑
s∈S

LiBs. (3)

Electric vehicle distribution costs are divided into variable costs
and fixed costs. Variable costs are related to the length of the driving
path of electric vehicles; the farther the driving distance, the greater
the variable cost. Fixed cost is the total cost of the vehicle paid by the
enterprise to purchase an electric vehicle that is put into use.

Γ3 � ∑
k∈K

∑
j∈J

h · xojk + g ·∑
i∈I

∑
j∈J

∑
k∈K

dij · xijk. (4)

Considering the impact of the service time of delivery on
customer delivery service satisfaction, the cost caused by the
delivery time in violation of the merchant’s requirements in the
objective function also takes into account the total cost, and this
paper establishes a mathematical model based on the soft time
window constraint, describing it as follows: if the delivery vehicle ai
delivers the goods before and the unit opportunity cost is w1, if the
delivery vehicle delivers the goods afterward bj, resulting in a
decrease in satisfaction, and the unit penalty cost is w2. The cost
calculation is shown in Figure 2.

The total time cost is shown below:

S rik( ) �
w1 ai − rik( ), rik < ai,
0, ai ≤ rik ≤ bi
w2 rik − bi( ), rik > bi,

⎧⎪⎨⎪⎩ i ∈ I, k ∈ K, (5)

Γ4 � ∑
i∈I

∑
k∈K

S rik( ). (6)

(2) Minimizing the total distribution distance of the
logistics system.

Considering the reasonable planning of the site selection of the
layout of the substation and the distribution path of the logistics
enterprise, the logistics distribution distance can be reduced, and the
expression of the logistics distribution distance F2 is given as follows:

F2 � ∑
i∈I

∑
j∈J

∑
k∈K

dijxijk, i ≠ j. (7)

(3) Maximum customer satisfaction.

Customer satisfaction is used to evaluate the service level of
logistics distribution enterprises based on the logistics distribution
time window. The length of its delivery time will directly affect the
customer’s evaluation of its satisfaction. Its linear function
expression F′3 is

F3
′ �

0, rik ≤ ai. min

ai − rik
ai − ai. min

, ai. min < rik ≤ ai

1, rik ∈ ai, bj[ ]
rik − bj

bj,max − bj
, bj,max > rik ≥ bj

0, rik > bj,max.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)
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For ease of calculation, customer dissatisfaction is considered,
and customer dissatisfaction is represented by F3, and the F3
expression is expressed as follows:

F3 � 1 − F3
′. (9)

2.2.2 Constraints
The planning and replacement management of electric vehicle

logistics distribution routes should meet the following constraints: 1)
Logistics distribution constraints: the constraints of logistics
distribution mainly include path constraints, load constraints,

arrival/departure time constraints, and remaining power
constraints.

(1) Path constraints

Path constraints will restrict vehicle movement, considering the
number of vehicles entering and leaving a node.

∑
i∈I,i≠j

xijk � ∑
i∈I,i≠j

xjik,∀i ∈ I, k � 1, 2/K, (10)

∑
k∈K

xijk � 1,∀i ∈ I,∀j ∈ J, i ≠ j, (11)

∑
i∈Sα ,j∈Sα

∑
k∈K

xijk ≥ 1,∀i ∈ Sα, j ∈ Sα, k ∈ K, (12)

S � j{ ∣∣∣∣ ∑
i∈I

xijk � 1, j ∈ J, k ∈ K
⎫⎬⎭, (13)

∑
k∈K

∑
j∈J

xojk � ∑
k∈K

∑
j∈J

xjok, (14)

xijk ∈ 0, 1{ },∀i ∈ I, j ∈ J, k ∈ K, (15)
∑

i∈I,j∈J
∑
k∈K

xijk ≤M · Bs. (16)

Eq. 10 indicates that each vehicle enters a node and leaves a
node an equal number of times. Eq. 11 indicates that each
customer can receive service from at most one electric vehicle.
Eqs 12, 13 indicate that the distribution path of the electric
vehicle forms a closed loop connecting end to end. Eq. 14
indicates that each electric vehicle departs from the
distribution center and ends up in the distribution center. Eq.

FIGURE 1
Schemes following the same formatting.

FIGURE 2
Penalty function for soft time windows.
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15 defines that the value of a decision variable can only be 0 or 1.
Eq. 16 indicates that the station can be visited many times.

(2) Load constraints

0≤ ∑
i∈I,i≠j

∑
j∈C

xijkqi ≤D,∀j ∈ J, k � 1, 2/K, (17)

γ � ∑
k∈K

∑
j∈J

xojk. (18)

Formula 17 indicates that the total customer service of each
electric vehicle cannot exceed the maximum cargo capacity of
electric vehicles. Eq. (18) represents the overall count of electric
vehicle transfers.

(3) Arrival/departure time constraints

When a customer provides delivery within an acceptable
timeframe, there is zero opportunity cost and penalty cost. If the
time window is exceeded, the penalty cost will be paid according to
the length of the violation.

ai. min ≤ rik ≤ bj,max, i ∈ I,∀k ∈ K, (19)
βaoj � 0,∀j ∈ J, (20)

βbjk � βaok +
dij

vk
+ qiαik + αsk, i ∈ C, j ∈ J, k ∈ K, s ∈ S, (21)

βbjok � βaoj +
∑
i∈I

∑
j∈J

dijxijk

vk
+ ∑

i∈I,s∈Sα

αsk + αik ∑
i∈C

qi,kyik, xijk � 1, yi,k � 1.

(22)
Eq. 19 means that the electric vehicle delivery time cannot exceed

the customer’s maximum tolerable time window, Formula 20 and
Formula 21, respectively, represent the time when the electric vehicle
leaves the logistics distribution center and arrives at the customer, and
Formula 22 represents the total time of the entire logistics distribution
network electric vehicle to complete the logistics distribution use.

(4)Power constraints

0≤pa
oj ≤Q, ∀j ∈ J, (23)

Pa
0k � Q,∀s ∈ Bs,∀k ∈ K, (24)
pa
jk � pb

jk,∀i ∈ I,∀j ∈ J, (25)
Pb
sk � Q,∀s ∈ Bs,∀k ∈ K, (26)

βai+1,k ≤ βbik − e · di,i+1,r( )xi i+1( )k +∑
s∈S

Q − e · di,i+1,r( )zi i+1( )r, (27)

pa
jk ≤pb

jk − E · dijxij + Q 1 − xijk( ). (28)

Formula 23 indicates that the remaining power of the electric
vehicle cannot exceed its power limit. Eqs 24–26 represent the
electric vehicle leaving the distribution center and the customer
node and the power level of the replacement station. Formula 27
represents the relationship between the remaining power of the
electric vehicle leaving the previous customer point and the next
customer point. Formula 28 represents the relationship between the
power of two customer nodes. In summary, the multi-objective
optimization model of electric vehicle logistics distribution path

optimization and power exchange strategy considering customer
satisfaction is represented as follows:

minF � F1, F2, F3{ },
s.t. 10( ) ~ 28( ).{ (29)

3 Detailed explanation of the
algorithm process

3.1 Multi-objective model solving

Since the three objective functions in this paper have different
orders of magnitude, the method based on fuzzy satisfaction is
used to dimensioning the objective function. The entropy weight
method is the most widely used method for solving multi-
objective problems. However, the entropy weight method
mainly empowers through the degree of dispersion of each
objective, ignoring the horizontal influence generated by the
correlation between the objectives. CRITIC is an objective
weighting method that considers the impact of index
correlation. The general process of the CRITIC method is
represented as follows:

(1) First, suppose there are m plans and n goals respectively. Take
the solutions of F1, F2 and F3 as objectives are taken as three
CRITIC weighted schemes, and the following evaluation
matrix is obtained:

X �
x11 x12 / x1m

x21 x22 / x2m

..

. ..
. ..

.

xn1 xn2 / xnm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (30)

where xij denotes the dimensioned value of the first j target of
the first i scheme.

(2) Then, the standard deviation and correlation coefficient were
calculated for each target, as follows:

σ i �
�������������
1
m
∑m
j�1

xij − xi( )2,
√√

ρik � cov Xi, Xk( )/ σ iσk( ),

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(31)

where σ i is the standard deviation of the target i; ρik indicates the
correlation coefficient between the target i and the target k; and
cov(Xi,Xk) is the covariance of lines i and k.

(3) The amount of information contained in each goal is
calculated, and the weight of each goal is obtained,
as follows:

Gi � σ i∑n
k�1

1 − ρik( ),
ui � Gi

∑n
k�1

Gk

,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(32)
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where Gi represents the information amount of the target and

∑n
k�1

(1 − ρik) represents the quantitative indicator of the conflict

between the first goal i and other goals.
Finally, the combined objective function is expressed as follows:

F � ∑3
i�1
uiπi Fi( ). (33)

3.2 Two-stage hybrid algorithm design

Obviously, the problem solved by this model is an NP-hard
problem, so combined with the characteristics and actual situation
of this model, the positive feedback method — ant colony algorithm
— which is robust and does not rely on the initial route selection is
selected. In this paper, an improved two-stage hybrid algorithm solves
the path optimization model when there is no power exchange
behavior and the site selection model of the station in the power
exchange mode. First of all, when designing the distribution path
optimization model without power exchange behavior, in order to
better integrate the advantages of the A* algorithm and the ant colony
algorithm, the initial path suitable for the optimization of the logistics
distribution path of electric vehicles is searched by the A* algorithm in
the early stage, and the initial solution of the ant colony algorithm is
formed; the positive feedback of the ant colony algorithm is used in
the later stage, and the advantages of high solution accuracy are used;
the method of combining the A* algorithm and the ant colony
algorithm is used to generate the optimal path based on the
pheromone iteration, and the load and mileage constraints of the
electric vehicle are considered in the evaluation process and EV
delivery time window constraints. Second, based on the optimal
path of electric vehicle distribution, the genetic algorithm of the
second stage is designed to solve the site selection model of the
replacement station. While conducting the site selection process, the
price of power exchange and the construction cost of the power
exchange station are considered, and the cost constraint of the power
exchange is based on the residual electricity of the electric vehicle so as
to find the site selection scheme that meets the minimum cost of
power exchange and construction of the power exchange station.

3.3 Improved ant colony algorithm to solve
the path optimization model without power
exchange behavior

3.3.1 Initial pheromone settings
The A* (A-Star) algorithm is the most efficient direct search

method for solving the shortest path and is a common heuristic for
many other problems. Its heuristic function is

f n( ) � g n( ) + h n( ). (34)
The above equation f(n) when each node is searched, its

corresponding heuristic function, in this article, represents the
valuation function that reaches the customer point C; f(n)
consists of two parts, of which the first part g(n) represents the
actual cost of customer n to the distribution center current customer;

the second part h(n) is to estimate the cost of the current square to
the destination, that is, the distance between the previous customer
point and the next customer point when the electric vehicle is
delivered. Each time the algorithm scales up, it picks the node with
f(n) having the lowest value as the next node on the optimal path.

This article assumes that the distance between customer points is
the Euclidean distance dij. g(n) represents the cost of an electric
vehicle from customer point C to the logistics distribution center.
h(n) is the cost value between any customer and the next customer.
In this article, we select logistics distribution center O as the starting
point and add all customer points to the open list. At this time, the
minimum value in the opening list is taken, and only one node in the
logistics distribution center O is opened in the initial stage. So,
remove the O-points from the open list and add the O-points to the
off-list. Take the adjacent customer points of the O point and add
the customer points with the smaller valuation function to the open
list. At this point, these adjacent customer points are the parent
nodes of the adjacent points; delete these parent nodes in the open
list, and then, center on the parent node; look for the customer point
with the smallest neighbor valuation function, and cycle through the
above steps until all customer delivery needs are met. When
exploring the path, consider the load limit of the electric vehicle
and the power level of the electric vehicle, and return to the
distribution center if its load limit is exceeded. Set open list to
V1, and the closed list is V2. At this point, the vehicles are connected
from front to back in the set of nodes in the v table. The resulting
path is the optimized solution. Suppose the initial pheromone it
generates is τRij � λτc, τc is a pheromone for other paths. λ is
greater than 1.

The specific steps are as follows.

1) Build the initial function, and initialize the start list V1 and the
closed list V2, which calculates the valuation function for
adjacent customer points C1 of logistics distribution center
O. Substitute logistics distribution center O and its neighbors
into V1.

2) Determine whether the open list is empty, if not, continue the
iteration, and if it is empty, it ends because the optimal path
cannot be found. If it is not empty, substitute the logistics
distribution center O into V2, and the points in this list are not
considered.

3) Calculate the value of the point f(n), h(n), and g(n) in the
open list, at which point is set minF to substitute the customer
point C with the least estimated cost into V1.

4) Determine whether the distribution volume of the electric
vehicle distribution path exceeds the electric vehicle load
capacity D, and if it exceeds it, return to step①.

5) If a customer point C is already in V1, its estimated cost needs
to be recalculated and judged against the fact whether its
parent node needs to be updated, and if so, substitute that
customer point C into V2 and remove from V1.

6) GivenC � C + 1, determine whether the target path is reached;
if not, continue to step②, and if it is reached, it ends.

3.3.2 Construction path
After the A* algorithm is calculated, the initial optimal solution

is obtained. Ants transfer from customer point i to select the next
customer point j through certain probability selection rules. In the
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traditional ant colony algorithm, the state transition probability of
ant m from node i to node j is expressed as shown in Eq. 31:

Pm
ij �

τ ij
αηβij∑

s∈Jk i( )
ταisη

β
ij

, j ∈ allowedm,

0, otherwise.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(35)

In Eq. 31, allowedm represents all nodes that ant m can select
next, C represents a collection of customer points that can be
selected after ant m passes through customer point i, and α is a
pheromone heuristic factor and reflects the factors that affect the
path of pheromones on the ant’s selection path.β is the desired
heuristic factor, and the relative importance of visibility is expressed
in the path.

The heuristic factor nij is the expectation of the ant from the
customer point i to the customer point j, which is the key to the ant
choosing the next node. This paper studies the distribution strategy
with the lowest cost of logistics and distribution services, the smallest
logistics distribution distance, and the greatest customer satisfaction.
Combining the above factors as heuristic factors affects the optimal
distribution strategy. Therefore, this study will design the heuristic
factorial as follows:

ηij �
1

minF
. (36)

The cost of logistics distribution services, logistics distribution
distance, and customer satisfaction are used as the denominator of
the heuristic factor in order for the vehicle to select the next
customer demand point j by the customer point i, and the
expectation is that the total cost is the smallest, the logistics
distribution distance is the smallest, and the customer satisfaction
is the largest. The transfer probability of customer points that meet
the conditions of small total cost, short distance, and high
satisfaction is increased so that vehicles are prioritized for
customer points with small total distribution costs.

3.3.3 Pheromone volatile factor design
The pheromone volatility factor pertains to the rate at which

pheromones dissipate. Its value intricately influences both the
algorithm’s global search capacity and convergence speed. If set
too high, pheromones evaporate rapidly, causing the exclusion of
potentially superior paths. Conversely, a value set too low results in
excessive residual pheromones along the path, thereby impacting the
algorithm’s efficiency.

The size of the pheromone volatilization factor ρ-value in the ant
colony algorithm determines the persistence of the above
pheromone retention in the optimization path. Therefore, this
paper selects the size of ρ for segmentation and adjusts the size
of the pheromone volatilization factor as the number of
iterations increases.

ρ �
0.1, 0.25N≤ n≤ 0.5N,
0.3, 0.5N≤ n≤ 0.75N,
0.6, 0.75N≤ n≤N,

⎧⎪⎨⎪⎩ (37)

where n represents the current number of iterations and N
represents the total number of iterations of the algorithm. Start
setting ρ to a smaller value, guided by pheromones, to find the

optimal path. After 0.5 N, the pheromone accumulation on the path
is too high, and ρ is set to 0.3 to improve the pheromone
volatilization effect and avoid the risk of falling into local
optimization. When the number of iterations is more than
0.75 N, the pheromone concentration on the path reaches a large
value, resulting in the corresponding increase of the ρ-value.

3.3.4 Pheromone update strategy
To make the search process more instructive, after all ants have

formed their paths, the established paths are updated globally, and
only the path of the ants that find the globally optimal path is
updated with pheromones. The update rules are

Δτbestij � ∑M
m�1

Δτkij, (38)

Δτmij t( ) �
G

lbest
,

0

⎧⎪⎪⎨⎪⎪⎩ (39)

where G is the total amount of pheromones left by ants passing
through the optimal path and lbest is the path length corresponding
to the current total cost of the smallest. When information is
flooded, the residual information needs to be updated after each
ant traversal is completed. Thus, at the time t + n, the information
update rules on the optimal path (i, j) are as follows:

τ ij t + n( ) � 1 − ρ( )τij t( ) + Δτbestij . (40)

For edges (i, j) that are not optimal paths, the update rules are

τij t + n( ) � 1 − ρ( )τ ij t( ), (41)

where ρ represents a pheromone volatile factor.

3.4 Improved genetic algorithm to solve the
site selection model of the substation in the
swap mode

First, the first-stage ant colony algorithm solves the path
optimization model to obtain the optimal distribution path, and
the function randomly generates the initial population, that is,
different site combinations. Using the evaluation process to
consider the cost of the power exchange, the fixed cost and the
opportunity/penalty cost are minimized, and the sum of the costs of
accessing the individual replacement stations is compared. The
crossing operation is done by transposing the middle part of the
parent’s tangent location. It then goes through multiple crossovers,
variations, and iterations. Finally, the individual satisfies the
constraints and makes the adaptation optimal so as to solve the
site selection scheme that meets the minimum total cost of the
replacement station site. The solution process is as follows:

1) The function is used to generate an initial population with a
population of 100, the number of genes in the population
equals the total number of customers, and the length of the
individual is equal to the total number of demand points
in each path.
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2) The cross rate, number of evolutions, and number of
iterations are set, considering the actual situation of the
construction cost of the replacement power station. In
this paper, the crossover rate is set to 0.5, the rate of
variation is 0.05, and the number of iterations of the
algorithm is 200.

3) The constraint subfunction is set; this stage considers the
electric vehicle power level constraint, customer satisfaction
time window, and power change path constraint. Among
them, the power exchange power is negatively correlated
with the remaining power of the electric vehicle, and the
power exchange time is fixed.

4) The fitness function is set, the individual fitness degree in the
genetic algorithm is directly proportional to the adaptability,
and the goal of this paper is to minimize the total power
exchange cost, including the additional electricity cost and
opportunity penalty cost generated by visiting the
replacement station.

5) Parental cross-mutation, the cross-operator that acts on the
population, crosses by transposing, exchanges some genes
between paired chromosomes, and crosses the part to mutate.

6) When the number of iterations reaches the specified number of
iterations, the loop ends and outputs the final result.

According to the above algorithm introduction, the
main steps of the two-stage hybrid algorithm are shown
in Figure 3.

4 Study analysis

In order to verify the applicability of the site selection model in the
power exchangemode, this section uses themodel solution case to study
the optimal distribution path and the best site selection scheme and the
total cost of distribution in this context, and compares the site selection
decision and logistics distribution cost under the power exchange mode
in order to draw realistic conclusions. In this paper, the different results
of the objective function have been standardized and dimensionally
unified in the calculation process.

4.1 Experimental data

The study data selected in this paper are shown in Table 1, assuming
that a distribution center and 30 customers are distributed in a square
area with a side length of 80 km, the coordinate unit is km, the
customer’s demand for goods is generally 0–2 t; the location
coordinates of the logistics distribution center and 30 customers, and
the customer’s cargo demand and time window are shown in Table 1.
Assuming that there are a total of 10 electric logistics vehicles of the same
type in the distribution center, the maximum load capacity is 8 t, the
average driving speed is 40 km/Li, the electricity cost per kilometer in the
distribution process is 1 yuan, the unit time opportunity cost of the early
arrival of the vehicle is 10 yuan/hour, the unit penalty cost of late arrival
is 30 yuan/hour, and the fixed travel cost of the vehicle is 200 yuan/car.
According to the above conditions, it is required to meet the constraints

FIGURE 3
Two-stage hybrid algorithm design diagram.
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of the vehicle load and customer time window and make the total
distribution cost and customer satisfaction the greatest by reasonably
arranging the distribution route of the vehicle. Table 2

4.2 The result of the model solution

4.2.1 Considering the results of logistics
distribution route optimization for time windows

According to the experimental data given in Table 1, this paper
uses the method of combining the A* algorithm and the ant colony

algorithm to generate the optimal route based on the pheromone
iteration, and the optimal distribution path and optimal roadmap
are obtained, as shown in Table 3 and Figure 3.

When there is no power exchange behavior, the improved ant
colony algorithm in the first stage of this paper design is used to solve
the path planning model and obtain the optimal distribution route,
and the total cost of distribution generated under the path is
1942.85 yuan. From the path optimization results, it can be seen
that subjected to the constraints of the customer’s time window, the
first, second, and third paths require multiple electric vehicles for
joint distribution tomeet the customer’s time window needs, and the

TABLE 1 Study data table.

Customer number Coordinate (x, y)/km Demand/(ton) Upper and lower bounds of the time window/h

0 (35, 35) 0 (0, 0)

1 (65.6,62.1) 0.4 (1, 8.5)

2 (7.8, 60.2) 0.6 (6.1, 13.2)

3 (30.6, 60.8) 0.3 (5.4, 7.8)

4 (25.4, 38.1) 0.7 (8.6, 12.9)

5 (15.8, 30) 1 (3.2, 8.5)

6 (56.8, 51.1) 1.4 (4.1, 10.3)

7 (57.2, 30.6) 0.2 (0.9, 6.1)

8 (62.1, 2.8) 0.5 (5.1, 10.3)

9 (45.2, 35.5) 0.9 (2.4, 6.5)

10 (5.2, 40.6) 0.4 (4.8, 8.4)

11 (32.1, 42) 0.2 (9.2, 14.7)

12 (11.8, 35) 0.8 (3.4, 12.5)

13 (15, 40) 0.5 (2.6, 9.4)

14 (50, 14) 0.2 (5.6, 13)

15 (70, 12) 0.1 (11.7, 16.4)

16 (61.2, 35) 0.6 (2, 8.4)

17 (61, 45) 0.8 (2.5, 14)

18 (1.3, 13) 1.2 (6.1, 9.8)

19 (47, 24) 0.3 (3.9, 10.9)

20 (31.2, 26) 0.8 (5.4, 10.3)

21 (22, 16) 0.7 (3.6, 4.5)

22 (24, 6) 0.6 (2.6, 3.6)

23 (26, 14) 0.7 (4.7, 8.9)

24 (33, 51) 1.3 (3.8, 10.6)

25 (45, 67) 0.5 (4.6, 7.8)

26 (15, 21) 0.5 (2.6, 5.5)

27 (25, 46) 0.8 (3.5, 6.7)

28 (36, 2) 0.5 (3.5, 7.4)

29 (25, 26) 0.3 (2.4, 5.9)

Assuming that 10 vehicles participate in logistics distribution and electric vehicles use medium-sized truck models, the specific relevant parameters are shown.
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total number of delivery vehicles required for distribution is 5. The
resulting fixed cost of electric vehicles is 1000 yuan, the distance cost
of electric vehicles is 698.67 yuan, and the penalty cost and
opportunity cost of the time window are the smallest,
244.16 yuan. It can be seen from this that the distribution route
should be reduced as much as possible under the condition of
meeting the constraints of the customer’s time window, and the

number of vehicles used, that is, the fixed cost expenditure. The
optimal delivery route diagram in this article is shown in Figure 4.

4.2.2 The result of the site selection of the
substation in the power exchange mode

Based on the optimal path optimization map of logistics and
distribution obtained above, this paper will next solve the site
selection problem of the replacement station, considering the cost
of the electric vehicle power exchange and the construction cost of
the power exchange station. The difference between model solving
in the power-swap mode and no swapping behavior is when the car
has less power left, and it will enter the designated substation for
power exchange. The entire power exchange process takes a shorter
and fixed time than the charging time. The penalty cost and
opportunity cost of the time window in this mode will have an
impact, as well as the cost of replacing the electricity. Based on the
optimal path optimization map, the location coordinates of the
candidate points of the alternative station are obtained in this paper,
as shown in Table 4.

Since the vehicle enters the power exchange station for power
exchange will delay a certain amount of time, resulting in a change in
the time when the electric vehicle arrives at each customer point, the
corresponding time window penalty cost and opportunity cost will
also change. According to the optimization results of the logistics
distribution path obtained above considering the time window, the
relevant parameters of the electric vehicle and those of the substation
are combined. Considering the load capacity and power constraints
of electric vehicles, the second stage of the two-stage hybrid
algorithm–genetic algorithm solution is used to minimize the
cost of power exchange, the construction cost of the power
exchange station, and the total distribution cost. Thus, obtaining

TABLE 2 Electric vehicle-related parameters.

Serial number Electric vehicle parameters and serial number Numeric value

01 Maximum load capacity of a single battery Qk
max(kw · h−1) 40

02 Cost of a single rental battery Ts (¥/kw · h−1) 1.5

03 Power change time consumption ask (h) 0.1

04 Maximum load capacity D(t) 8

05 Cost of electricity per mileage θ/¥ 0.25

06 Electric car drive speed vk/kw · h−1 40

07 Swap station profit factor λ/¥ 1.2–1.6

TABLE 3 Optimal route for electric vehicle distribution.

Car number Route Driving directions

01 Path 1 0–1–22–26–29–21–28–7–16–14–30 (0)

02 Path 2 0–9–13–5–12–27–30 (0)

03 Path 3 0–3–25–6–17–19–8–15– 30 (0)

04 Path 4 0–20–23–18–10–2–11–30 (0)

05 Path 5 0–24–4–30 (0)

FIGURE 4
Optimal path for electric vehicles.

TABLE 4 Location coordinates of the candidate point of the substation.

Candidate point number Coordinate (x/km, y/km)

001 (33.2, 51.4)

002 (15.8, 30.4)

003 (26.2, 14.6)

004 (50.2, 14.1)

005 (45.2, 35.5)

Frontiers in Energy Research frontiersin.org11

Zhang et al. 10.3389/fenrg.2024.1353268

261

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1353268


the total cost of power exchange for electric vehicles to reach each
substation for power exchange, the total cost of each path is shown
in Table 5 below.

From the results in Table 6, it can be seen that in the power
exchange mode, the electric vehicle has insufficient endurance of
paths 2 and 3, the customer point 11 of path 1 has an insufficient
power problem, the reachable candidate points are 1 and 5, and the
total cost of the path to reach candidate point 1 is the smallest, so
customer 12 chooses to change power at candidate point 1. In the
same way, it can be known that customer points 5, 8, 13, and 9 are
replaced at candidate points 5, 5, 1, and 1, respectively. Vehicle 1 in
paths 1, 4, and 5 selects candidate point 1, while paths 2 and 3 select
candidate point 5, mainly because the customer point in path
1 requires a later delivery time, and the power change mode of
the electric vehicle reduces the power replenishment time. As a
result, vehicles have plenty of time to travel to distant substations,
reducing their opportunity costs. Based on the above results, the best
candidate addresses for the replacement station in the power
exchange mode are candidate points 1 and 5, and the single
power exchange cost is 1139.2 yuan, of which the electricity cost
is 338.3 yuan, and the opportunity cost and penalty cost are
445.5 yuan. In the following analysis, this article will discuss the
path optimization and site selection of different time windows and
power exchange rates.

4.3 Analysis of influencing factors

Mainly based on the following four situations for analysis and
comparison, scenario 1 is the model and method mentioned in the
text, and the compromise values in the text are selected for
comparative analysis; scenario 2 does not consider customer
satisfaction, and the goal is to solve the lowest logistics and
distribution costs; scenario 3 does not consider the cost of
distribution, and the goal is to achieve the highest customer
satisfaction; and scenario 4 targets minimal replacement costs
and maximum customer satisfaction.

4.3.1 Time window influencing factors
Based on the definition of the above scenario, the logistics

distribution path of the logistics distribution center in scenarios
1, 2, 3, and 4 is shown in Figure 5, and the corresponding logistics
distribution journey cost, upper time window opportunity cost,
lower time window penalty cost, fixed cost, power replacement
cost, and customer satisfaction results are given in Table 7.

Based on Figure 5, it can be seen that the electric vehicle logistics
distribution path in scenario 1 has fewer crossovers, scenario 2 has
less, scenario 3 has more crossover paths, and scenario 4 has the
most crossovers. According to Table 4, with the increase in the
number of path crossings, in order to meet the goal of maximum
customer satisfaction, the corresponding logistics distribution costs
and power exchange costs will increase. Based on scenario 2, it can
be seen that the total cost of logistics distribution is lower when the
goal of maximum customer satisfaction is not considered. At this
time, the total cost of logistics distribution is 1995.27, which will only
be distributed under the premise of meeting the time window with
the shortest path as the goal, although the distance distribution
cost and power replacement cost are reduced, but due to the lack
of consideration of the customer’s time window factor, the
customer’s satisfaction level decreases to 0.67. For scenario 3,
the customer satisfaction level is the largest, 0.87; compared with
scenario 2, the satisfaction level increased by 20%, and the total
cost of logistics distribution under this scenario is 2012.54,
mainly because the logistics distribution center delivers the
goods within the specified time window, and the electric
vehicle driving route needs to be adjusted in the logistics
distribution process, which brings more logistics distribution
path crossover and power exchange costs. Scenario 4 considers
the goal of the minimum power exchange cost and the maximum
customer satisfaction level of the electric vehicle; it can be seen
from Table 4 that the customer satisfaction level of scenario 4 has
increased by 15% compared with scenario 2, and the power
exchange cost is 208.11, which is 97.12 yuan lower than the
replacement cost of the electric vehicle and the loss cost of the
electric vehicle.

TABLE 5 Parameters related to the substation.

Serial number Replacement station parameters and serial number Numeric value

01 Construction cost of a single substation Bs/million yuan 200

02 Cost of leasing the replacement power station/million yuan 1.2

TABLE 6 Total cost of distribution for each route in the case of a power swap (yuan).

Route Customer point 1 2 3 4 5

01 12 443.21 - - - 467.23

02 5 - - - - 479.15

03 8 435.46 - - - 412.35

04 13 433.87 435.25 - 434.3 -

05 9 424.35 478.13 - 439.16 426.5
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FIGURE 5
Logistics distribution routes in four scenarios.

TABLE 7 Logistics distribution costs and customer satisfaction.

Scenario Logistics distribution costs and customer satisfaction

Travel
cost

Opportunity cost on
the time window

Penalties for costs
under the time

window

Fixed
cost

Replacement
costs

Customer
satisfaction

Scenario 1 793.4 201.8 0 1000 305.23 0.8

Scenario 2 786.4 175.96 17.98 1000 402.45 0.67

Scenario 3 833.25 173.38 5.91 1000 305.23 0.87

Scenario 4 698.67 244.16 0 1000 208.11 0.82
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4.3.2 Factors affecting the amount of
power exchanged

In order to prevent electric vehicles from re-entering the power
exchange station for power exchange due to more remaining
electricity, it will affect the normal power exchange order of the
power exchange station. This paper assumes that when the residual
power of the electric vehicle is less than 20%, the profit factor of the
replacement station is 1.2, and it is ascending in steps, and the profit
factor of the replacement station increases by 0.1 for every 20%
increase in the remaining electricity. This section discusses the
impact of the remaining power exchange on the site selection
decision, logistics and distribution costs, and power exchange
costs of the replacement station. The relationship between the
amount of electricity exchanged and the cost of exchanging
electricity is shown in Figure 6.

As can be seen from Figure 6, the remaining power of electric
vehicles is 0%–100%, and with the reduction of the remaining power of
electric vehicle batteries, the total cost of logistics and distribution of
electric vehicles has dropped from 2019.37 yuan to 1942.34 yuan, and
the cost of power replacement has dropped from 354 yuan to 40 yuan.
At the same time, the opportunity cost and penalty cost on the time
window are also slowly increasing, from 293.27 yuan to 300.37. From
the perspective of the degree of change in the cost of power exchange,
the main reason is that with the reduction of the remaining power of
electric vehicles, the profit factor of the replacement station is reduced,
sowhen the remaining electricity is closer to 0, the unit replacement cost
is smaller. From the perspective of the opportunity cost and penalty cost
of the time window, the more the remaining power of the electric
vehicle, the more it can ensure that the electric vehicle meets the
distribution needs of the remaining customers, and there will be no
need to replace the electricity in themiddle, which will make the electric
vehicle better meet the needs of customers, and the opportunity cost
and penalty cost of the time window will be reduced.

Therefore, in order to meet the goal of the minimum total cost and
the greatest customer satisfaction of logistics distribution, the gradient
electricity price can be set according to the remaining electricity of the
electric vehicle to reduce the unit replacement cost. On one hand, it can
motivate electric vehicles to choose a power exchange station for power

exchange, improve the income of the power exchange station, reduce
the number of times the electric vehicle re-enters the replacement
station, and effectively improve the battery utilization rate. On the other
hand, due to the fixed power change time, electric vehicles can decide
whether to change electricity according to their own remaining
electricity and the time window needs of customer orders, effectively
improving the efficiency of electric vehicle distribution.

5 Conclusion

Based on the impact of time window requirements on customer
satisfaction, combined with the implementation of the gradient
management of power exchange prices, this paper establishes a
logistics distribution path optimization and site selection model for
electric vehicles based on the maximum customer satisfaction and
the lowest total cost. Among them, the total cost includes logistics
and distribution costs, power station construction costs, power
exchange costs, and fixed costs of electric vehicles. Aiming at the
path optimization and site selection problem of electric vehicles, this
paper designs a two-stage hybrid algorithm combining the ant
colony algorithm and genetic algorithm to solve the problem,
takes a distribution center as an example to select the study data
to solve the model, performs numerical analysis, and analyzes
whether the time window is set and the impact of the amount of
power exchange on the total cost. The results of this paper show
the following:

(1) The optimization of electric vehicle paths and the site
selection planning of the replacement station considering
customer satisfaction can not only effectively reduce the
cost of logistics distribution and the cost of power
exchange but also improve the level of customer
satisfaction. When the cost of travel decreases from
793.4 to 698.67, customer satisfaction also increases
from 0.8 to 0.82.

(2) Reduction in the number of path crossings during logistics
and distribution routes saves 3.28% of the cost of electric
vehicle electricity and logistics and distribution costs, and
helps reduce the total cost of the entire logistics
distribution network.

(3) The gradient setting of the electricity exchange price will
reduce the cost of power exchange, improve the utilization
efficiency of the battery while reducing the cost of logistics
and distribution, and improve the power exchange income of
the power exchange station.
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Nomenclature

Collections

I All nodes in the system

J Customer points and changeovers in the system

O Logistics distribution center

C Customer collection

Non-decision variables and parameters

dij Distance from point i to point j

qi Amount of goods demanded for customer i

g Cost of driving a unit distance for an electric vehicle

Li Cost of establishing a substation at point i

vk Travel speed for electric vehicles

r(t) Power purchase price of the power exchange station

γsk Remaining power for the electric vehicle when it arrives at
substation S

Ts Cost of a single rental battery

αik Time at which the K vehicle performs the task at point i

ai.min , bj,max Earliest tolerable time and the latest toleration time accepted by
the customer, respectively

αsk Power change time for the vehicle k in the station changeovers

βaik Power change time for the vehicle k in the station changeovers

βbik Actual arrival time of the car k

pajk Remaining power for the car k to reach point j

Decision
variables

xijk Whether the car K goes from point i to point J

yik Whether car K serves customer i

S Candidate stations for the replacement station

Sα Virtual meeting point for the substation visited

Sv Virtual meeting point for unvisited changeovers

K Electric vehicles

D Load capacity for electric vehicles

θ Cost of electricity per mileage

h Fixed costs for each electric vehicle purchased

γ Total number of dispatches of electric vehicles

w1 Opportunity cost per unit time for early arrivals

w2 Penalties for late arrival per unit of time

γskn Power of the electric vehicle after the power exchange station

λ Swap station profit factor

[ai , bi] Expect service time windows

ai , bi Earliest and latest time to reach the demand point, respectively

rik Time when the car k arrives at point i

Q Battery capacity

e Amount of power consumed per unit of journey

pajk Remaining power for the car k leaving point j

Bs Whether to build a substation at point S

Frontiers in Energy Research frontiersin.org16

Zhang et al. 10.3389/fenrg.2024.1353268

266

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1353268


Influence of deflectors on indoor
airflow velocity distribution under
natural ventilation conditions

Chaojie Wang1, Meng Jin1 and Haifeng Cheng1,2*
1School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, Anhui, China,
2Architectural Design and Research Institute, Anhui Jianzhu University, Hefei, Anhui, China

Deflectors offer a cost-effective solution for enhancing airflow distribution. The
purpose of this paper is to investigate the effect of the deflector on the indoor
airflow velocity distribution under natural ventilation conditions. The results
obtained from numerical simulations are validated through experimental
measurements using a reduced-scale model. Subsequently, the validated
reduced-scale numerical model was extended to full-size rooms. A full-size
numerical simulation method is used to analyze the effect of no deflector,
deflectors with different opening width-to-height ratios and deflectors with
different opening shapes on the percentage of indoor velocity partitions
under natural ventilation conditions. The findings reveal that the judicious
installation of deflectors can enhance indoor airflow velocity distribution and
increase the percentage of the indoor comfort zone. Deflectors with different
opening width-to-height ratios exert distinct influences on indoor airflow
velocity distribution. When the deflector opening width-to-height ratio is set
at 7/6, the indoor comfort zone percentage reaches its maximum at 75.98%.
Furthermore, the shape of the deflector’s opening significantly affects indoor
airflow velocity distribution, and when the opening shape is a rhombus shape of
4.00 cm × 9.00 cm, the proportion of indoor velocity comfort zone is the largest,
which is 75.56%. This study provides a reference for the design and practice of
natural ventilation in buildings.

KEYWORDS

deflector, velocity distribution, natural ventilation, numerical simulation,
reduced-scale model

1 Introduction

Reducing carbon emissions in the construction sector is crucial for China’s strategic
goals of achieving carbon peaking and carbon neutrality. The substantial use of non-
renewable energy in the construction industry has emerged as a significant contributor to
global warming and environmental degradation (Alhamami et al., 2023; Nie et al., 2023).
Hence, the prevailing global trend is to develop clean energy technologies like wind energy
to mitigate greenhouse gas emissions. Natural ventilation, as a passive green building
technology measure (Wang and Malkawi, 2019), can improve the building environment by
increasing the level of indoor thermal comfort, which aids in preventing the development of
“sick building syndrome” and reducing the risk of epidemic transmission (Fantozzi et al.,
2022; Ren et al., 2022). Buildings incorporating natural ventilation often exhibit energy costs
that are 40% lower than those relying on air conditioning. In regions with comfortable
outdoor climates, natural ventilation serves as a cost-free cooling resource (Ayata and
Yıldız, 2006; Odi et al., 2022; Qin et al., 2022). Beyond delivering fresh air to interior spaces,
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promoting indoor air circulation, and eliminating indoor air
pollutants to enhance indoor air quality (Lei et al., 2017),
effective use of natural ventilation can curtail the demand for air
conditioning, reduce indoor temperatures, ameliorate indoor heat
and humidity conditions (Liping and Hien, 2007), and enhance
thermal comfort (Wong et al., 2002; Costanzo and Donn, 2017).

Understanding how natural ventilation affects the indoor
environment of a building, primarily ventilation rates and indoor
air temperatures, is crucial for evaluating the design of these low-
energy buildings. Various methods are employed to forecast and
assess ventilation performance, including full-size model
experiments, empirical formulas, scale model experiments, and
CFD numerical simulations (Chen, 2009). Field measurements of
the indoor thermal environment in full-size buildings are, however,
more challenging to conduct inmuch research. This is due to the fact
that external climatic conditions are often complicated, ever-
changing, and uncontrollable during field tests in prototype
buildings (Omrani et al., 2017a), particularly for ventilation that
is solely buoyancy-driven. Consequently, there is a growing interest
in investigating the indoor thermal environment using reduced-
scale models. In order for the reduced-scale model results to be
applicable to full-size buildings, the primary similarity criterion
should be satisfied with equal values. Many scholars have employed
reduced-scale model experiments in their research. For instance,
Guo et al. (2018) developed a reliable and effective methodology to
evaluate the performance of buoyancy-driven ventilation in large-
space buildings, using reduced-scale experimental models and
numerical simulations of full-size prototypes. Liu et al. (2009)
used scaled-down modeling tests to predict the performance of
buoyancy-driven ventilation for atrium buildings and used internal
heat loads to simulate as a heat source for building-driven buoyancy;
furthermore, it evaluated the efficiency of buoyancy-driven
ventilation under hot and humid climatic conditions. Le Roux
et al. (2012) highlighted the significance of accounting for the
effect of wind on airflow in mechanically ventilated buildings
through scaled-down model experiments. They developed a new
methodology to study steady-state and transient isothermal flows in
buildings equipped with ventilation systems.

Computational Fluid Dynamics (CFD) is another method for
examining the impact of natural ventilation on a building’s indoor
environment. The benefits of CFD include low cost, high efficiency
(Yang et al., 2015; Tian et al., 2018; Zhang and Ryu, 2021), and the
capacity to compute pertinent non-measurable parameters (Liu
et al., 2009). CFD technology has rapidly advanced alongside
computer science and technology. Through CFD analysis of the
wind environment within buildings, it becomes possible to predict
indoor airflow distribution (Zou et al., 2021), assess indoor air
quality, and evaluate comfort levels. In 1974, Nielsen of Denmark
pioneered the application of CFD technology for airflow
simulation in ventilated rooms (NIELSEN, 1974). Wang Y.
et al. (2021) systematically compared the ventilation
characteristics of different window opening configurations using
computational fluid dynamics (CFD) simulations, combining
ventilation rates and thermal comfort to provide a
comprehensive evaluation of window ventilation performance.
Yang et al. (2015) numerically simulated the transient
development of buoyancy-driven natural ventilation by
modeling. And numerical simulation was used to analyze the

airflow characteristics in three cases where the initial indoor
temperature is equal to, higher than and lower than the
outdoor temperature. Asfour and Gadi (2008) used
Computational Fluid Dynamics (CFD) to study the effect of a
vaulted roof as a wind inducing device in a building on the
performance of natural ventilation, and evaluated the
performance of the natural ventilation based on the value of the
airflow rate and the quality of the internal airflow distribution.

In contemporary urban planning and building design, natural
ventilation is often disregarded as a passive green building
technology. Typically, local seasonal wind directions are not
considered when planning and designing residential and
workplace environments. While it is relatively simple to
introduce fresh outdoor air into a building’s interior through
doors and windows to enhance indoor air quality (Prueksakorn
et al., 2015; Wen and Hiyama, 2018), this approach can lead to
excessive wind speeds in localized indoor areas and result in uneven
indoor airflow distribution. In fact, for maintaining thermally
comfortable environments, the recommended upper limit for
indoor airflow velocity is 1 m/s. When the wind speed exceeds
1 m/s, this is when the airflow begins to pick up light weight objects
(ASHRAE, 2020). Therefore, there is an urgent need to implement
effective and practical methods for directing airflow to enhance
indoor airflow distribution.

Currently, numerous scholars have conducted research on
air deflectors. The working principle of airflow deflectors relies
on utilizing the pressure differential created by their physical
structure to induce directional changes in airflow. Consequently,
the reasonable installation of deflectors can significantly
enhance indoor airflow distribution. Che et al. (2022) have
conducted an investigation into the impact of airflow
deflector designs installed in external windows on airflow
distribution performance and the risk of infection in a wind-
driven naturally ventilated classroom. Different sizes of airflow
deflectors were designed based on four external window
openings, and the performance was compared to obtain the
best deflector. Liu et al. conducted a study examining the
influence of deflector adjustments on diffusers, with
performance assessed using air diffusion performance index
values. The findings revealed that the upward blade deflector
significantly enhances the air diffusion performance index value
of the blade grille. In general, downward jets reduce the air
diffusion performance index value for each adjustable diffuser
type when operating under cooling conditions (Liu and
Novoselac, 2016). Song et al. (2021) improved the trajectory
of cold airflow from perforated bricks to the rack by
implementing deflectors in the cold aisle. This optimization
enhanced the uniformity of airflow distribution vertically and
overall thermal environment around the rack. Cheng et al.
(2023) have conducted experiments on deflection ventilation
for winter heating. The effects of different air supply speeds, air
supply temperatures and deflection angles on air distribution
were analyzed, and the thermal comfort and energy efficiency
were comprehensively evaluated.

Most of the aforementioned studies have focused on air-
conditioning air supply outlets, exploring various deflector forms
such as louvers and grille types, as well as the application of
deflectors in internal equipment like fans and ducts. However,
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there is a paucity of research regarding the implementation of
deflectors in buildings operating under natural ventilation
conditions. Therefore, the purpose of this study is to analyze the
effects of setting different opening width-to-height ratios and
different opening shapes of deflector panels on the indoor airflow
velocity distribution in a room under natural ventilation conditions.
An office in Hefei area is used as a research object for experiment
and simulation. Numerical simulations and experiments employ a
reduced-scale model, with experimental results used to validate
numerical findings. The validated reduced-scale numerical model
is extended to the full-size room, and then full-size numerical
simulation is used to analyze the effects of no deflector, deflector
with different opening width-to-height ratios, and deflector with
different opening shapes on the percentage of indoor velocity
comfort zones under natural ventilation conditions, reflecting the
indoor airflow distribution of the actual building. This study helps to
set up indoor deflectors more scientifically and rationally under
specific conditions to improve indoor airflow distribution and
increase the proportion of indoor velocity comfort zone in order
to avoid excessive indoor air velocity caused by cross ventilation.
Moreover, the findings of this study provide a reference for the
design and practice of natural ventilation in buildings.

2 Methods

2.1 Experimental methods

2.1.1 Experimental site and apparatus
This study focuses on an office space situated in the Hefei area.

The office has dimensions of 3.6 m in length, 4.0 m in width, and
3.0 m in height. It features a south-facing opening measuring
0.6 m × 1.2 m and a north-facing opening measuring 0.9 m ×
2.1 m. Notably, the north-south opening is situated directly
opposite. During the transitional season and summer in Hefei,
the prevailing natural ventilation wind direction is from the
southeast, with an average wind speed of 3.2 m/s in the
southern direction.

The apparatus used in the experiment included a 5 mm thick
acrylic plate model, an electric fan and a thermosensitive
anemometer, as shown in Figure 1. The thermosensitive
anemometer used is the SMART SENSOR AR866A model, with
a measurement accuracy of ±1% and a resolution of 0.01 m/s. The
probe diameter is 11 mm, which can be stretched to 920 mm, and
the instrument and the line are about 2.1 m long. Additionally, the
instrument featured a USB interface enabling real-time

FIGURE 1
Experimental apparatus: (A) Acrylic plate model; (B) Electric fan; (C) Thermosensitive anemometer; (D) Schematic diagram of thermosensitive
anemometer probe.
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measurement and data recording on a computer. It also had the
capacity to store data for up to 500 sets.

2.1.2 Similarity analysis
In this test, the medium used in the model and the prototype is

air, and the air flow is turbulent, non-isothermal, incompressible,

viscous three-dimensional steady flow, and the basic differential
equations of the viscous fluid are dimensionally-processed to obtain
the following functional equations.

F Pr, Re, Fr, Eu( ) � 0 (1)
Where Pr is the Prandtl number; Re is the Reynolds number; Fr is
the Froude number; Eu is the Euler number.

Since the medium used in both the model and the prototype is
air (Xie et al., 2021), i.e., Pr � 0.73, Eu is a non-qualitative
characteristic number, Eu � f(Pr , Re), thus, Eq. 1 can be
rewritten as.

F Re, Fr( ) � 0 (2)

In practical engineering and modeling tests, air flow is generally
in the drag square region, the Reynolds number Re is generally
greater than 4,000. The air flow along the drag coefficient λ is only
related to the equivalent roughness k, but not related to Re, that is,
the flow into the Reynolds self-simulating region (Walker et al.,
2011). The reduced-scale model experiments in this paper satisfy
this condition, and the Re number need not be considered in the
simulation process. Therefore Eq. 2 can be transformed into.

F Fr( ) � 0 (3)

The Froude number (Fr) in Eq. 3 is defined as:

Fr � v2

gl
(4)

Where v is the air supply velocity, m/s; g is the free fall acceleration,
m/s2; l is the characteristic length, m.

When designing using the Froude criterion, it is required that
the rooms and models have equal Froude numbers, which can be
expressed according to Eq. 4 as follows: (Xie et al., 2021).

v2

gl
� v′2

g′l′ (5)

where the mark "′" is added to indicate the corresponding parameter
of the prototype. Let the free-fall acceleration scale Cg � g/g′,
geometric scale Cl � l/l′, and velocity scale Cv � v/v′.

When the model test conditions are basically similar to the
prototype conditions, Cg � 1 can be assumed, and the velocity scale
can be derived from Eq. 5 as follows.

Cv � Cl
1
2 (6)

In the experiment of this paper, the geometric scale Cl � 1/10,
and the actual incoming wind speed is 3.2 m/s. According to Eq. 6,
the inlet wind speed can be calculated as v � v′C1/2

l . Therefore, the
southward inlet wind speed in this reduced-scale model experiment
is 1.0 m/s.

2.1.3 Experimental model
The reduced-scale model experiment employs a room model

with dimensions of 36 cm in length, 40 cm in width, and 30 cm in
height, as depicted in Figure 2. The size of the south-facing opening
of the model is 6 cm × 12 cm, the height from the bottom is 9 cm,
the size of the north-facing opening is 9 cm × 21 cm, and the size of
the indoor set deflector is 12 cm × 12 cm, the height from the

FIGURE 2
Reduced scale experimental model.

FIGURE 3
Schematic diagram of measurement point layout.

Frontiers in Energy Research frontiersin.org04

Wang et al. 10.3389/fenrg.2024.1327577

270

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1327577


bottom is 9 cm, and the distance from the south-facing opening is
14 cm, which is scaled down by 10 times. Geometric similarity
between the model and the prototype is upheld, with the model
crafted from specially treated plexiglass acrylic plate of 5 mm
thickness. The chosen acrylic plate boasts notable advantages,
including robust impact resistance, high recyclability, ample
rigidity and strength, ease of processing and molding, and
simple maintenance. Importantly, the acrylic plate remains
resilient against significant vibrations and deformations
throughout the experimental course.

The arrangement of measurement points for the experimental
model is illustrated in Figure 2. At the top of the model, a circular
hole with a diameter of 15 mm (11 mm diameter of the
thermosensitive anemometer probe) serves as the designated
measurement point. These measurement points are
symmetrically positioned along the centerline of the building

model, as depicted in Figure 3. The total count of measurement
points corresponds to 14.

2.1.4 Experimental scheme design
To investigate the impact of varying width-to-height ratios

and distinct shapes of deflector plate openings on the indoor
velocity partitioning ratio within the context of natural
ventilation, this paper introduces the subsequent experimental
plan: 1) a hole was opened in the deflector plate, and eight
deflector plates with different width to height ratio openings
were set, the opening sizes of the deflector plates were shown in
Table 1, and the schematic diagram of the openings was shown in
Figure 4; 2) A hole is opened in the deflector plate with the same
opening area, and the opening shapes are circular, 4.00 cm ×
9.00 cm rhombic, square and 9.00 cm × 4.00 cm rhombic. The
shape and size of the specific deflector opening is shown in

TABLE 1 Table of deflector opening dimensions.

Deflector
number

Deflector
W1

Deflector
W2

Deflector
W3

Deflector
W4

Deflector
W5

Deflector
W6

Deflector
W7

Deflector
W8

Opening width to
height ratio

3/6 4/6 5/6 6/6 7/6 8/6 9/6 10/6

Opening size 3.00 cm ×
6.00 cm

4.00 cm ×
6.00 cm

5.00 cm ×
6.00 cm

6.00 cm ×
6.00 cm

7.00 cm ×
6.00 cm

8.00 cm ×
6.00 cm

9.00 cm ×
6.00 cm

10.00 cm ×
6.00 cm

FIGURE 4
Schematic diagram of the different width to height ratio openings of the deflector: (A) Width to height ratio 3/6; (B) Width to height ratio 4/6; (C)
Width to height ratio 5/6; (D)Width to height ratio 6/6; (E)Width to height ratio 7/6; (F)Width to height ratio 8/6; (G)Width to height ratio 9/6; (H)Width to
height ratio 10/6.

TABLE 2 Different shape opening size table.

Deflector number Deflector S1 Deflector S2 Deflector S3 Deflector S4

Opening shape Circular Rhombus Square Rhombus

Opening size d = 4.78 cm 4.00 cm × 9.00 cm 6.00 cm × 6.00 cm 9.00 cm × 4.00 cm
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FIGURE 5
Schematic diagram of different shapes of deflector openings: (A) Circular; (B) 4.00 cm × 9.00 cm Rhombus; (C) Square; (D) 9.00 cm ×
4.00 cm Rhombus.

FIGURE 6
Experimental measurement diagram.

FIGURE 7
Schematic diagram of the room geometry model.
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Table 2, and the schematic diagram of the opening is shown
in Figure 5.

2.1.5 Experimental steps
The experimental protocol commenced by establishing the

model’s fixed position, followed by meticulous adjustments to
both the distance and height between the fan and the window
opening. Drawing from similarity theory (Han and Li, 2021), a hot-
wire anemometer was deployed to gauge the wind speed at the
entrance, thereby maintaining a constant inflow velocity of 1.0 m/s.
The experiment aims to measure the wind speed at a 15 cm height
within the model. To minimize experimental errors, it is essential to
maintain the thermal probe of the thermosensitive anemometer
perpendicular to the incoming flow direction. The experimental
measurement diagram is shown in Figure 6. Then, use the
anemometer to test the wind speed at 14 measurement points.
To ensure the accuracy of the measurement results, take
10 consecutive instantaneous velocity values for each
measurement point and calculate the average value as the final
velocity value at each measurement point.

2.2 Simulation methods

2.2.1 Geometric model and numerical methods
Airpak software is now widely used to simulate indoor and

airflow organization distribution (Zhang and Ryu, 2021; Zhang
et al., 2023). In this study, we employed the Airpak software to
construct a scaled-down numerical model of a room, measuring
36 cm in length, 40 cm in width, and 30 cm in height. During the
simulation, all doors and windows remained open. The room model
is depicted in Figure 7, with the x-axis denoting the depth direction,
the y-axis representing height, and the z-axis indicating width. The
arrangement of numerical simulation measurement points is the
same as that of the reduced-scale model experiment. The velocity
values of each measurement point were calculated directly by Airpak
software when the deflectors with different opening width to height
ratio and different opening shapes were set in the room.

In order to study the flow of indoor air in the real state, a 1:1 full-
scale modeling was conducted, and the roommodel size was 3.6 m ×
4.0 m × 3.0 m (length × width × height). The natural ventilation of
the room with all windows and doors open is simulated. The airflow
distribution in the cross-section at the height of y = 1.5 m (height of
human activity) was investigated by numerical simulation of the
room without deflector, with deflectors with different opening
width-to-height ratios and deflectors with different opening shapes.

TABLE 3 Boundary condition settings.

Full-size model Reduced-scale model

Southward inlet wind speed (m/s) 3.2 1.0

Southward opening wind pressure (pa) 6.60 0.65

Northward opening wind pressure (pa) 0 0

FIGURE 8
Grid independence analysis.

FIGURE 9
Mesh division.
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FIGURE 10
(A)Measured speed diagram of different width-to-height ratio openings; (B) Simulated speed diagram of different width-to-height ratio openings;
(C) Measured speed diagram of different shapes of openings; (D) Simulated speed diagram of different shapes of openings.

TABLE 4 Comparison of numerical simulation results with experimental measurements.

Deflector number Mean absolute error (m/s) Root mean square error (m/s)

Deflector W1 0.0486 0.0578

Deflector W2 0.0650 0.0834

Deflector W3 0.0721 0.0797

Deflector W4 0.0507 0.0663

Deflector W5 0.0614 0.0683

Deflector W6 0.0571 0.0727

Deflector W7 0.0479 0.0582

Deflector W8 0.0407 0.0482

Deflector S1 0.0464 0.0515

Deflector S2 0.0379 0.0451

Deflector S3 0.0507 0.0663

Deflector S4 0.0479 0.0582
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Indoor air flow is incompressible and low-speed turbulent.
This paper employs the indoor zero-equation model for its
extensive validation, characterized by rapid computational
speed and stable convergence when predicting various airflow
scenarios, including natural convection (Vera et al., 2010), forced
convection, mixed convection, and displacement ventilation
within a room. This model is well-suited for forecasting
indoor airflow distribution and has demonstrated its
effectiveness, particularly under mixed convection conditions
(Ling et al., 2015). In this study, the SIMPLE (semi-implicit
method for pressure dependent equations) pressure-velocity
coupling algorithm is used (Fan et al., 2022; Liu et al., 2022;
Mohamed et al., 2022).

2.2.2 Boundary conditions
The boundary conditions of the reduced-scale model

are determined based on the full-size working conditions as
well as similar scales. The boundary conditions of this
simulation are as follows: the pressure boundary is chosen,

and the southward inlet wind pressure of the room is
determined according to Δp � ρv2/2. The wind pressure at
the northward opening is negligible. The boundary
conditions of the full-size and reduced-scale models are set
as shown in Table 3.

2.2.3 Mesh generation
The simulation was conducted using the Airpak software to

mesh the computational region with a hexahedral unstructured
grid. As an example, five different grid schemes were selected for
the simulation when a circular hole was opened in the deflector of
the reduced-scale model. The number of divisions for these
schemes was 14,520, 17,664, 22,818, 34,210, and 44,404 grid
cells, respectively. To investigate the grid independence
(Strasszer and Xydis, 2020; Yuan et al., 2020; Wang Z. et al.,
2021), the measurement point was chosen at the center of the
deflector opening. Figure 8 illustrates the wind speed variations at
the measurement point for different grid numbers. When the
number of grids is less than 22,818, there is a noticeable
difference in air velocity at the measurement point. However,
when the number of grids is equal to or greater than 22,818, the
air velocity at the measurement point remains relatively stable.
The air velocities at the measurement point for grid counts of
22,818, 34,210, and 44,404 are recorded as 0.66 m/s, 0.66 m/s, and
0.67 m/s, respectively. The air velocity deviation among the three
grid schemes is within 5%. Therefore, 22,818 grid cells were
selected as the meshing scheme for this study, as shown in
Figure 9. The meshing quality is good and meets the
requirements for the simulation.

FIGURE 11
Velocity cloud at y = 1.5 m height without deflector.

TABLE 5 Distribution of each velocity partition in numerical simulation
without deflector.

Wind speed range (m/s) No deflectors (%)

0.00 < v ≤ 0.25 3.06

0.25 < v ≤ 1.00 62.11

v > 1.00 34.83
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FIGURE 12
Velocity cloud at y = 1.5 m height when the deflector is openedwith different width-to-height ratio openings: (A)Width to height ratio 3/6; (B)Width
to height ratio 4/6; (C)Width to height ratio 5/6; (D)Width to height ratio 6/6; (E)Width to height ratio 7/6; (F)Width to height ratio 8/6; (G)Width to height
ratio 9/6; (H) Width to height ratio 10/6.
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2.3 Indoor air velocity interval division

Indoor air velocity significantly influences indoor airflow
distribution and is intricately linked to human thermal comfort
(Prianto and Depecker, 2002; Omrani et al., 2017b). This study,
considering existing research findings along with regional and
indoor work characteristics, adopts a range of 0.25 m/s to
1.00 m/s as the benchmark for evaluating indoor wind speed
comfort. Below 0.25 m/s, indoor wind speeds are too low for
occupants to readily perceive, while wind speeds above 1.00 m/s
cause discomfort to the occupants. Wind speeds in the range of
0.25 m/s to 1.00 m/s provide for human comfort. Consequently, this
paper classifies indoor wind speed intervals under natural
ventilation conditions as follows: the low wind speed zone ranges
from 0.00 m/s to 0.25 m/s, the comfortable speed zone ranges from
0.25 m/s to 1.00 m/s, and wind speeds exceeding 1.00 m/s fall into
the high wind speed zone.

3 Results and discussion

3.1 Experimental results and discussion

The measured and simulated outcomes from the reduced-
scale model experiments are compared and analyzed to validate
the reasonableness and effectiveness of the simulation approach.
The following is a comparison between the measured results
and simulated results for the deflector plate with different
opening width to height ratio and different opening shape
respectively.

Velocity measurements were taken at 14 specific points
located at a cross-sectional height of y = 15 cm, while varying
the opening width-to-height ratios and shapes of holes within the
deflector’s center. The measured velocity values at each
measurement point of the reduced-scale model and numerical
simulation are shown in Figures 10A, B when the holes with

different width-to-height ratios are opened in the middle of the
deflector. The measured and numerical simulation values of
velocity at each measurement point of the reduced-scale model
are shown in Figures 10C, D when a hole of different shapes is
opened in the middle of the deflector. As can be seen from the
figure, as the width-to-height ratio of the deflector opening and
the shape of the opening change, the velocity values at each
measurement point change accordingly, but the overall trend
remains consistent. The flow of outdoor air enters through
windows, passes through the room’s deflector opening, and
exits through the opposite door, creating cross-ventilation.
Consequently, measurement points 1, 5, 11, and 14 exhibit
higher velocity values. As air velocity decreases from the
room’s entrance to the exit of the incoming flow, airflow
velocity gradually diminishes. Obstructions in airflow occur at
unopened holes of the deflector plate, generating vortices in the
area behind the deflector plate, leading to near-zero velocity
values at measurement points 4 and 6. With decreasing air
velocity, measurement points 7, 8, 9, 10, 12, and 13, situated
farther from the entry point, also exhibit lower and near-zero
velocity values.

The numerical simulation data at 14 measurement points in
this experiment were compared with the measured data of the
reduced-scale model. As shown in Figure 10, the experimental
measurements of the reduced-scale model are slightly larger than
those of the numerical simulation, but the overall trend remains
consistent. Table 4 lists the mean absolute error and root mean
square error between the experimental and simulated results for
the deflectors with different opening width to height ratio and
deflectors with different opening shapes. After analysis, it was
found that the maximum value of the mean absolute error
between the simulated and measured values of wind speed is
0.0721 m/s, and the maximum value of the root mean square
error is 0.0834 m/s, and these errors are within the acceptable
range. Therefore, the results of the numerical simulation can
better reflect the experimental results. The validated numerical
model can be used for full-size working condition expansion, and
the results can truly reflect the airflow distribution inside
the building.

3.2 Full-scale simulation results and analysis

The full-size simulation comprises three cases: under natural
ventilation conditions, the indoor airflow velocity distribution is
simulated and analyzed in scenarios with no deflectors, with
deflectors of varying opening width-to-height ratios, and with
deflectors of different shapes. The role of the deflector is to
increase the wind pressure of the environment or guide its flow
direction to change through some way and equipment construction,
the windward side of the deflector is the positive pressure area, and
the backward side of the deflector is the negative pressure area.

3.2.1 No deflector
As depicted in Figure 11, the velocity distribution at a height of

y = 1.5 m in the absence of a deflector is illustrated. Outdoor air
enters the room through the southern entrance and exits through the
northern air vent, establishing cross-ventilation. The air velocity is

FIGURE 13
The percentage of each velocity zone when the width-to-height
ratio of the deflector opening is varied.
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highest at the south side inlet, and localized areas in the middle
section have higher air velocities due to cross ventilation.

As indicated in Table 5, in the absence of a deflector within the
room, the velocity cloud diagram of the cross-section at a height of
y = 1.5 m comprises 3.06% in the low wind speed zone, 62.11% in the
comfort speed zone, and 34.83% in the high wind speed zone.

3.2.2 Deflectors with different width-to-height
ratio openings

Illustrated in Figure 12, outdoor air flows into the room through
the southern entrance, with the highest wind speed observed at this
inlet. Encountering the obstruction at the unopened place of the
deflector plate, vortex will be generated at the back of the deflector
plate, resulting in the value of the air velocity at the back of the
deflector plate in a large area close to zero. Through the openings in
the room deflector, air flows from one side of the room to the other,
creating cross ventilation and resulting in higher air velocities in

localized areas. As the width-to-height ratio of the deflector opening
increases, the percentage of the low-wind-speed zone in the velocity
cloud diagram at the cross-section of y = 1.5 m height decreases,
while the proportion of the comfortable-speed zone and high-wind-
speed zone increases.

Figure 13 illustrates the effect of variations in the width-to-
height ratio of the deflector openings on the percentage of indoor
velocity partitioning. As the width-to-height ratio increases from 3/
6 to 7/6, there is a continuous reduction in the proportion of the low
wind speed zone, decreasing from 11.79% to 3.75%, representing an
8.04% decrease. Concurrently, there is an increase in the proportion
of the speed comfort zone, rising from 72.38% to 75.98%, indicating
a 3.60% increase. Additionally, the proportion of the high wind
speed zone rises from 15.83% to 20.27%, reflecting a 4.44% increase.
Subsequently, when the width-to-height ratio of the deflector
opening increases from 7/6 to 8/6, the percentage of the low
wind speed zone experiences an increase from 3.75% to 7.33%, a

FIGURE 14
Velocity cloud at y = 1.5 m height when the deflector plate is opened with different shapes of openings: (A) Circular; (B) 4.00 cm × 9.00 cm
Rhombus; (C) Square; (D) 9.00 cm × 4.00 cm Rhombus.

Frontiers in Energy Research frontiersin.org12

Wang et al. 10.3389/fenrg.2024.1327577

278

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1327577


growth of 3.58%. Simultaneously, the percentage of the speed
comfort zone decreases from 75.98% to 71.38%, representing a
4.60% decrease. Additionally, the percentage of the high wind
speed zone increases from 20.27% to 21.29%, signifying a 1.02%
increase. Lastly, when the width-to-height ratio of the deflector
opening is increased from 8/6 to 10/6, the percentage of the low wind
speed zone decreases from 7.33% to 2.98%, indicating a 4.35%
decrease. Correspondingly, the percentage of the speed comfort
zone increases from 71.38% to 73.01%, reflecting a 1.63% increase.
Furthermore, the percentage of the high wind speed zone increases
from 21.29% to 24.01%, representing a 2.72% increase.

3.2.3 Deflectors with differently shaped openings
As shown in Figure 14, the flow state and the reason for its

formation are in general agreement with Figure 12. The different
shapes of the deflector opening have a greater influence on the
proportion of each wind speed zone in the velocity cloud map of the
cross-section at the height of y = 1.5 m.

In Figure 15, we observe changes in wind speed zones related to
different deflector opening shapes. When the deflector opening has a
9.00 cm × 4.00 cm rhombus shape, the percentage of the low wind
speed zone measures 13.78%, while with a square deflector opening,
it decreases to 6.04%. The highest percentage of the speed comfort
zone, at 75.56%, is recorded when the deflector opening takes the
form of a 4.00 cm × 9.00 cm rhombus, and the lowest percentage,
66.83%, is observed when the deflector opening is in the shape of a
9.00 cm × 4.00 cm rhombus. The percentage of the high wind speed
zone shows relatively little variation.

The effects of the above three scenarios on the indoor airflow
distribution under natural ventilation conditions are simulated
and analyzed, keeping the wind pressure at the entrances and
exits constant and the position of the deflector plate constant. In
the absence of a deflector plate in the room, the indoor speed
comfort zone occupies the smallest proportion, accounting for
62.11%. The percentage of indoor speed comfort zone increased

significantly when deflectors with different opening width-to-
height ratios and deflectors with different opening shapes were
installed indoors. The percentage of the indoor speed comfort
zone varied with changes in the opening width-to-height ratio of
the deflector plate. When the deflector plate had an opening
width-to-height ratio of 7/6, it reached its highest value at
75.98%, marking a significant increase of 13.87%. The shape of
the deflector opening had a more pronounced effect on the indoor
speed comfort zone percentage. When the deflector opening took
on a rhombus shape measuring 4.00 cm × 9.00 cm, it reached its
highest value at 75.56%, reflecting a substantial increase
of 13.45%.

4 Conclusion

In this study, a 1:10 scale experimental model and a numerical
model were established based on similarity theory. The experimental
measurements from the reduced-scale model were compared and
analyzed alongside the simulation results, confirming the rationality
and effectiveness of numerical simulations. Subsequently, the
validated reduced-scale numerical model was extended to a full-
size room. The study investigated the impact of deflectors, including
different opening width-to-height ratios and shapes, as well as the
absence of deflectors, on the percentage of indoor velocity partitions
under natural ventilation conditions using full-scale numerical
simulations. Based on the aforementioned findings, the following
conclusions can be drawn:

1) A comparative analysis of the experimental measurements
from the reduced-scale model and the simulation results
indicates that the experimental results obtained from the
reduced-scale model are slightly greater than the numerical
simulation results, while the overall speed trend remains
consistent. Consequently, the CFD numerical simulation
better mirrors the experimental results, and the validated
numerical model can be applied to extend to full-size
working conditions. The results of the full-scale numerical
simulation accurately portray the indoor airflow velocity
distribution within the building.

2) In the context of natural ventilation, the judicious installation
of indoor deflectors can effectively augment the percentage of
the indoor speed comfort zone, mitigating excessive indoor
wind speeds resulting from cross-ventilation and thereby
enhancing human comfort and improving the distribution
of indoor airflow velocity.

3) Various deflector plate opening width-to-height ratios yield
distinct impacts on both the indoor speed comfort zone
percentage and indoor airflow velocity distribution. The
maximum percentage of the indoor speed comfort zone, at
75.98%, is achieved when the width-to-height ratio of the
deflector opening stands at 7/6.

4) Different shapes of deflector openings exert a more significant
influence on the percentage of the indoor speed comfort zone
and indoor airflow velocity distribution. The largest
percentage of the indoor speed comfort zone, amounting to
75.56%, is observed when the deflector opening takes the form
of a rhombus measuring 4.00 cm × 9.00 cm.

FIGURE 15
Percentage of each velocity zone when the deflector plate is
opened with different shaped openings.
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