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Editorial on the Research Topic

Systems Biology and Bioinformatics in Gastroenterology and Hepatology

HOW SYSTEMS MEDICINE IMPROVES OUR UNDERSTANDING

OF COMPLEX GASTROENTEROLOGICAL DISEASES

Traditional medical research gained tremendous improvements in detection and treatment of
acute and chronic metabolic and inflammatory diseases as well as cancer. Especially the field
of hepatology and gastroenterology has significantly benefitted from these advances. Indeed, the
discovery of basic molecular and cellular disease mechanisms in the last 60 years led to the
development of reliable diagnostic tests and effective therapies. For instance, the discovery of the
hepatitis B and C viruses (HBV, HCV) led to powerful diagnostic tools, antiviral drugs, and an HBV
vaccine (Szmuness et al., 1980, 1981; André, 1990; Lau andWright, 1993). Indeed, mass vaccination
in Taiwan led to a significant reduction of HBV prevalence and hepatocellular carcinoma incidence
(Chang et al., 1997, 2016). Furthermore, the development of direct-acting antiviral drugs allows
the eradication of HCV (Das and Pandya, 2018). These achievements occurred in a relatively
short period of time. For example, HCV was discovered in 1989 and the first effective antiviral
therapy for one genotype was developed only 20 years later (Boettler et al., 2019; Viganò et al.,
2019; Zajac et al., 2019). Equally, for many monogenetic liver diseases reliable diagnostic tests exist
(Lammert, 2016; Weber and Lammert, 2017). Although effective pharmacotherapy for some of
these diseases exists (Wilson’s disease), comparable treatments are not available for others (e.g.,
progressive familial intrahepatic cholestasis, PFIC). In this context, translation of gene knock-out
mouse models emerged as powerful tool to understand the underlying disease processes (Liu, 2013)
and may eventually lead to successful gene therapy.

In contrast to mono-factorial diseases caused by viruses or individual gene alterations, the
situation is quite different in more complex multi-factorial diseases. For example non-alcoholic
fatty liver disease (NAFLD) was first described by the pathologist Jurgen Ludwig in 1980 (Ludwig
et al., 1980) but no effective therapy is currently available, 40 years later (Altinbas et al., 2015;
Gottlieb et al., 2019). Despite all recent success in the development of treatments of HBV and HCV,
targeting multi-factorial metabolic liver disease like NAFLD or the more serious non-alcoholic
steatohepatitis (NASH) is still difficult. It remains unclear if targeting liver disease alone will pave
the way to success or if broader approaches will ultimately lead to a decrease in patient’s mortality
and morbidity. Importantly, a plethora of reasons significantly complicates the systematic analysis
of complex diseases:
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1) Not single genes, but the identification of gene
signatures would probably improve our understanding
of NAFLD/NASH development and progression. This
complex molecular behavior is usually affected by cellular
processes, as well as paracellular communication networks
(Gottlieb et al., 2019).

2) The dynamic and/or spatial organization of molecular and
biochemical processes is controlled by overarching superior
mechanisms (e.g., circadian rhythm) or by gender differences
(Hashimoto and Tokushige, 2011; Pan and Fallon, 2014).

3) Cellular signaling pathways form dense interacting
networks and it is difficult to predict how changes in
one parameter/pathway affect other parameters/pathways
under distinct conditions (Teufel et al., 2016; Bessone et al.,
2019; Pierantonelli and Svegliati-Baroni, 2019).

4) Complex diseases such as NAFLD/NASH are multi-organ
diseases affected by the brain, gut, the gut micro-flora,
pancreas, subcutaneous, and abdominal fat (Konturek et al.,
2011; Borrelli et al., 2018; Kolodziejczyk et al., 2019; Milosevic
et al., 2019).

The multi-scale and multi-stage complexity of NAFLD and
NASH, and the necessity to perform one or more liver biopsies
to stage and monitor the disease, form a considerable obstacle in

the development and application of targeted precision medicine.
For instance, the anti-oxidant vitamin E is a recommended
therapy in non-diabetic patients with biopsy-proven NASH
(Sanyal et al., 2010; Chalasani et al., 2018). In real life
only a minority of patients receives this drug (Ratziu et al.,

2012). The FXR-agonist obeticholic acid also showed positive
results in biopsy-proven non-cirrhotic patients with NASH
(Neuschwander-Tetri et al., 2015). The mechanism of action
of this drug in NAFLD is unclear and long-term effects and
safety need to be assessed. Treatment of cirrhotic patients with
this drug cannot be recommended. For successful wide-scale
pharmacotherapy programs, non-invasive disease biomarkers are
clearly needed.

NAFLD represents a multi-scale disease, in which the entire
metabolic program of liver hepatocytes (incl. structures at the
molecular level and subcellular organelles), non-parenchymal
cells (incl. cholangiocytes, endothelial cells, Kupffer cells, and

hepatic stellate cells), and the blood stream (incl. the presence of
immune cells and sub-cellular blood components) are critically
involved in disease development and progression. In addition,
there is dysfunctional temporal communication between

organs such as liver, gut, brain, pancreas and fatty tissues.

Indeed, NAFLD develops in 20–30 years, starting from “simple”
steatosis and progresses to pronounced liver cirrhosis. These

dynamic spatial and temporal changes significantly increase
the level of complexity and further complicate biomarker
and drug development. For instance, pharmacotherapy
targeting steatosis may be more effective in early disease
stages while drugs that act on inflammation and fibrosis are more

suitable at later stages. Once advanced cirrhosis with profound

architectural changes of the liver and portal hypertension
is established, effective pharmacotherapy becomes even

more difficult.

Are computational approaches and systems medicine the
solution for complex diseases? Dynamic processes can be
described mathematically with a set of differential equations.
With a number of these equations, scientists can generate
computational models, which can describe the time-resolved
behavior of molecular reactions and cellular processes (Schliess
et al., 2014; Meyer et al., 2017; Berndt et al., 2018; Hoehme et al.,
2018; Lucarelli et al., 2018; Poloznikov et al., 2018; Kockerling
et al., 2019). In this process, experimentalists provide quantitative
and semi-quantitative data derived from in vitro and in vivo
models to feed thesemathematical constructs. Once a reliable and
robust computational model is established, themodel can be used
for in silico research, an approach that has the potential to save
laboratory animals and to protect people and patients before a
drug is used or tested in a clinical setup.

This model-based gain of knowledge leads to a process of
iteration and re-iteration between theoretical and experimental
scientists until the mathematical model is a reliable proxy of
the in vivo situation. Sometimes predictions cannot perfectly
reflect the processes observed in living cells or organisms;
however, these complications can also lead to new scientific
knowledge. One example within one of the biggest systems
biology consortia (LiSyM, see below) was the finding that
ammonia detoxification was less affected by damaging the centri-
zonal glutamine synthase-containing hepatocytes than predicted.
These unexpected findings led to the discovery of a novel
ammonia detoxification pathway (Schliess et al., 2014).

Since 15 years the German Ministry of Education and
Research (BMBF) fosters systems biology and systems
medicine by supporting the collaboration of multidisciplinary
research groups, including biologists, clinical researchers,
and mathematicians, working on liver physiology and liver
diseases, including NAFLD. The research network HepatoSys
was launched in 2004 to study the processes in liver cells with a
systems biology approach. It was Europe’s first funding measure
in this field. The follow-up project the “Virtual Liver Network
(VLN)” took the systems biology liver research to the next
biological level. Drawing on the findings at cellular level, the
network examined the processes for the whole organ. The
initiative was the first systems biology network that focused
on an entire organ. The current funding activity “Research
Network Systems Medicine of the Liver—LiSyM” builds again
on the results produced by HepatoSys and VLN. LiSyM aims
to transfer the computational models into clinical application
for use as diagnostic tools to assist doctors in choosing the most
appropriate therapy. LiSyM and the proceeding initiatives have
been successful over the years in developing computational
models that help theoreticians and experimentalists to discover
new aspects of signaling pathways and mechanisms to test the
therapeutic potential of new molecules or biological agents in
vivo as in silico (www.lisym.org).

However, opportunities to discuss the diverse facets of systems
biology from data generation, utilization of mathematical
models, and data integration among experts in the field remain
rare. In this regard, we were happy that Frontiers in Physiology
provided a platform for such urgently needed discussions
and visibility beyond the German networks. The collection of
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articles in this special issue of Frontiers in Physiology provides
examples of the current status of research in gastrointestinal
diseases, including NAFLD, alcoholic hepatitis, viral hepatitis,
liver fibrosis, and liver cancer, applying systems biology at
the level of cells, zones, tissues, networks, and with regard to
systemic consequences.

The issue comprises 20 articles from more than 170
authors. From June 2017, where the first article was accepted,
until July 30 2019, the manuscripts of the issue have
nearly 46,000 views. In more detail, 1 review and 19
original articles are included with nearly half of it (9 in
total) from participants of the BMBF-funded networks VLN
and LiSyM.

Twelve contributions are related to liver, 3 to colon and
gastrointestinal tract and 1 to pancreas, again highlighting

the predominant role of the German network in this new

scientific field. Experimental data of the contributions include
gene expression arrays (4), metabolomics data (6), proteomics
data (3), imaging (2), and signal transduction pathways (6).
The modeling type of the manuscripts include high throughput
data and bioinformatics in 10 cases and mathematical modeling
in 9 contributions. We believe that this initiative successfully
provided a platform for researchers and clinicians who are
interested in systems medicine with focus on gastroenterology
and hepatology.
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Pancreatic cancer is one the most lethal malignancies. Only a small proportion of patients

with this disease benefit from surgery. Chemotherapy provides only a transient benefit.

Though much effort has gone into finding new ways for early diagnosis and treatment,

average patient survival has only been improved in the order of months. Circulating tumor

cells (CTCs) are shed from primary tumors, including pre-malignant phases. These cells

possess information about the genomic characteristics of their tumor source in situ, and

their detection and characterization holds potential in early cancer diagnosis, prognosis,

and treatment. Liquid Biopsies present an alternative to tumor biopsy that are hard to

sample. Below we summarize current methods of CTC detection, the current literature

on CTCs in pancreatic cancer, and future perspectives.

Keywords: circulating tumor cells, pancreatic cancer, pancreatic adenocarcinoma, metastasis, epithelial to

mesenchymal transition, mesenchymal to epithelial transitions

INTRODUCTION

Virtually all cancers have the potential to metastasize, and metastatic disease comes about from a
series of events involving the interplay between primary tumor cells and their microenvironment.
The end result is the dissemination and growth of tumor cells in new tissue environments. First
described in the literature in the nineteenth century by British surgeon James Paget, metastatic
disease largely remains an unsolved worldwide public health concern today—metastasis accounts
for more than 90% of cancer-related deaths (Ashworth, 1869; Spano et al., 2012).

We now know that metastasis is an “extremely complex” multistep process. Tumor cells must
advance through an invasion-metastasis cascade. In order to produce clinically detectable lesions,
primary tumor cells need to progressively intravasate through the basal membrane into the systemic
or lymphatic circulation, survive in the circulatory environment, adhere to vessel walls, extravasate
into a foreign tissue site, and adapt, survive, and proliferate in their newmicroenvironment (Fidler,
2003).

The potential for mobilization and invasion are critical to the process of intravasation. Cells
should be able to degrade the extracellular matrix (ECM) and secrete proteolytic enzymes to
facilitate migration and intravasation into the circulatory system. These epithelium-derived cancer
cells are thought to undergo a morphological change of epithelial-to-mesenchymal transition
(EMT; Leber and Efferth, 2009; Dhamija and Diederichs, 2016). At metastatic sites, neoplastic
cells should also infiltrate the endothelium in order to colonize new tissues and be able to
induce neo-angiogenesis to ensure sufficient blood supply to the newly formed tumor in order to
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maintain metabolic needs (Leber and Efferth, 2009; Figure 1).
The preferred growth and survival of cancer cells at certain
metastatic sites is less understood, although a reverse behavioral
change, mesenchymal-to-epithelium transition (MET), is
hypothesized to take place for this to occur (Dhamija and
Diederichs, 2016).

Metastasis itself is a highly inefficient process, as each step
in the metastasis cascade may play a limiting role in disease
progression, that is—if one fails then all fails. Only few cancer
cells are able to go on to form malignant secondary tumors.
Animal studies on the kinetics of each step have shown that post-
extravasation steps create the largest barrier to metastasis. An
early report, for example, found that 80% of injected cancer cells
survive in circulation and extravasate into distant tissues, but only
1 in 40 cells formedmicrometastasis and 1 in 100micrometastasis
actually progressed to macroscopic tumors (Luzzi et al., 1998).
Further, studies found similar results, showing the high efficiency
of extravasation and survival in the circulation to be independent
of cell’s malignant potential (Koop et al., 1995, 1996; Cameron
et al., 2000). These findings suggest that the growth of circulating
tumor cells (CTCs) in a new microenvironment is a key step in
metastatic tumor formation.

Materials shed from tumors are being investigated for their
potential use in diagnosis, prognosis, and management of cancer.
CTCs, cell-free circulating tumor DNA (ctDNA), and tumor
cell produced exosomes (oncosomes) all hold promise in the
current cancer research for future clinical use in diagnosis and
management. Oncosomes, nanovesicles actively shed from most
types of cancers in large numbers, like CTCs, are a dynamic
source of information regarding the genomic characteristics from
the parent tumor of which they are release (Deneve et al., 2013;
Pantel and Alix-Panabieres, 2013; Speicher and Pantel, 2014).
Though each has their own technical challenges, these materials
are now being isolated and detected in peripheral blood of
patients with many types metastatic cancers and are leading the
way toward use of “liquid biopsies.”

CTCS IN MODERN CANCER RESEARCH

While, it is estimated that only 0.01% of CTCs have metastatic
potential, the clinical importance of CTCs in “modern cancer
research” over the past two decades has become increasingly
apparent (Zhe et al., 2011). Although the presence of CTCs
in blood could not exclusively indicate clinically significant
macro-metastases, partly due to metastatic inefficiency, it
surely indicates the presence of malignant tumors in situ.
More and more data suggests that solid tumor shedding
occurs early in disease. A recent study detected disseminated
tumor cells (DTCs) in bone marrow of a mouse breast
cancer model during pre-malignant stages, reinforcing the
idea of early spread of tumor cells to distant organs. Fast,
specific, and sensitive detection of CTCs may have potential
to enhance diagnosis, treatment, and cancer monitoring.
CTCs may additionally be exploited for genotypic and
phenotypic abnormalities representative of the tumor
in situ.

CTC detection in peripheral blood has been reported in a
number of cancer types, such as lung (Zhang et al., 2014),
metastatic breast (Riethdorf et al., 2007), prostate (Hu et al.,
2013), colorectal cancer (Kuboki et al., 2013), and gastrointestinal
and biliary cancers (Al Ustwani et al., 2012; Tsujiura et al., 2014).
Many of these cancers are diagnosed at late stages, resulting
in high rates of mortality. Advancements in CTC collection,
enrichment, and characterization have led to increased interest
in the clinical use of CTCs. Studies in various organ systems have
consistently shown that CTCs rarely exist in the blood of healthy
subjects, consolidating their utility in the clinical laboratory
(Sastre et al., 2008; Hou et al., 2013; Tsai et al., 2016), while
supporting the premise of CTCs with the potential of a powerful
biomarker.

Various available CTC detection technologies have expanded
their use from simply diagnostic markers to tools to evaluate
overall survival, risk of metastasis, and response to therapy.
Recently, using the Veridex Cell Search System, the only
FDA approved method for CTC enumeration in whole blood,
Weissenstein et al., found a strong correlation between median
overall survival in metastatic breast cancer patients with <5
CTC/7.5 ml vs. those with ≥5 CTC (p = 0.00006; Weissenstein
et al., 2012). In a review of multicenter study of 1,358 individuals,
Miller et al. found a highly significant median overall survival in
favorable CTC counts vs. patients with unfavorable CTC counts
with metastatic breast cancer, metastatic colorectal cancer, and
prostate cancer (p < 0.0001). Additionally, patients enrolled in
therapies that decreased CTC counts displayed improvements
in overall survival, pointing to the utility that CTC analysis
in the response to anti-cancer treatments holds (Miller et al.,
2010). Studies have also taken advantage of the current available
methods to correlate tumor dissemination and stage to CTC
count. Hiraiwa et al. showed that CTC counts were higher in
metastatic patients than in non-metastatic esophageal, gastric,
and colorectal cancers and were significantly correlated to
advanced tumor stages. High CTC count, defined as 2 or
more CTCs per 7.5 ml in this study, was linked to pleural
and peritoneal dissemination (Hiraiwa et al., 2008). Further,
validation in clinical settings will establish CTC detection
as a marker for sensitive and non-invasive cancer diagnosis,
treatment evaluation and prognosis.

CTC ENRICHMENT AND DETECTION

CTCs are rare cells, detected in numbers ranging from 1 to
10 s per ml whole blood, among billions of red blood cells and
millions of leukocytes. CTC detection and isolation remain being
technologically challenging (Joosse and Pantel, 2013). In the
infancy of this rapidly growing field, current CTC detection and
analysis rely mainly on various methods of enrichment.

CTC enrichment approaches exploit the unique biological
and/or physical properties of this specified tumor cell type among
vast numbers of peripheral blood cells, in order to increase
CTC recovery by many orders of magnitude. Immunoaffinity
platforms select for CTCs based on the expression of specific
surface antigens, through either positive or negative selection.
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FIGURE 1 | The Sequential Process of Cancer Metastasis. Metastasis is a complex multi-step process. Tumor cells undergo remarkable morphological and

phenotypical changes enabling migration and infiltration of adjacent sites as single cells or small clusters. An initial epithelial-to-mesenchymal transition (EMT) allows

cells to acquire mesenchymal properties essential for motility and migration. Upon infiltrating local stroma, cancer cells intravasate into the vascular or lymphatic

system and circulate throughout the body as circulating tumor cells (CTCs). In the circulation, disseminated CTCs must overcome barriers such as sheer-stress and

the immune system. CTCs that survive the circulation extravasate and invade distant tissues by reestablishing characteristics of their corresponding primary tumor.

CTC plasticity allows them to undergo the mesenchymal-to-epithelial transition (MET) to achieve this. Each step in this metastasis cascade is rate-limiting. Cells that

successfully adapt to their microenvironment and resume proliferation successfully form overt secondary tumors. Alternately, cells that do not survive undergo cell

death.

Since most carcinomas express epithelial markers, epithelial
cell adhesion molecule (EpCAM) is most commonly used in
antibody-based positive selection with commercial technologies.
Negative selection depletes other mononucleated cells through
anti-CD45 antibody use. Established collection methods have
employed these proteins to attract and adhere CTCs to columns,
microposts, or magnetic apparatus (Alix-Panabières and Pantel,
2014).

Two early platforms, magnetic-activate cell sorting system
(MACS), and Dynabeads use magnetic fields for attract CTCs
to anti-EpCAM antibody coated magnetic microbeads (Nagrath
et al., 2016). Similarly, CellSearch (Janssen Diagnostics)
uses anti-EpCAM conjugated ferrofluid nano-particles to
immunomagnetically capture CTCs, which may then be
differentiated from contaminating leukocytes based on positive
cytokeratin or EpCAM staining and negative CD45 staining
(Hayes et al., 2006). Despite much progress in platform
development, CellSearch remains the only FDA approved
method of whole blood CTC enrichment and enumeration.
Another platform, MagSweeper (Stanford University), uses
magnetic rods, stirred through diluted blood samples, to
attract CTCs pre-labeled with EpCAM-magnetic beads (Talasaz
et al., 2009). This platform was one of the first to enrich
CTCs with a notably higher purity than its predecessors.
Importantly, it has the ability to isolate live CTCs without
perturbing gene expression throughout the enrichment

process, providing viable CTCs for analysis (Krebs et al.,
2014).

Microfluidic devices, which allow separation of CTCs,
from small fluid volumes under laminar flow, are promising
technologies. Nearly 10 years ago, Nagrath et al. was able
to selectively and efficiently isolate CTCs from whole blood
of 115/116 (99%) cancer patients using anti-EpCAM-coated
posts with this “CTC-Chip” platform, eliminating the need for
pre-labeling or sample processing (Nagrath et al., 2007). New
microfluidic approaches have appeared since then, including
methods taking advantage of physical properties as well, making
the platform applicable to isolation of CTCs that lack or have
down regulated EpCAM expression (Stott et al., 2010; Ozkumur
et al., 2013).

Positive and negative CTC enrichment is also tested based on
physical properties alone. Tumor cells and CTCs are generally
thought to be larger (>8µm) than hematologic cells (Vona et al.,
2000, 2004; Hosokawa et al., 2013). Size-based filtration methods,
such as isolation by size of epithelial tumor cells (ISET) through
membrane filters with size exclusive pores, have been previously
used to isolate individual CTCs and achieved higher sensitivity
than CellSearch (Hofman et al., 2011; Hou et al., 2011).

As CTCs extravasate and intravastate the circulation, they
undergo massive deformations in their structure due to
mechanical forces which they endure. Cancer cells are known to
be more deformable than normal cells, a quality that is correlated
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to their metastatic potential and is exploited by some enrichment
platforms (Byun et al., 2013; Park et al., 2016). Additionally,
platforms utilizing tumor cell property differences in electrical
charge and density have been reported (Müller et al., 2005; Fabbri
et al., 2013; Yoo et al., 2016).

While many of the platforms available have been able to detect
CTCs in blood samples, these small peripheral blood collections,
of several milliliters, may not be representative of the of the entire
patient blood volume. Recently, an antibody coated medical wire
(CellCollector; Gilupi GmbH) capable of detecting EpCAM and
cytokeratin positive CTCs in vivo was introduced. In a recent
study, a 30 min incubation period, in which the wire was exposed
to circulating blood in the arm vein of lung cancer patients,
showed over a 2-fold increase in CTC detection in comparison
to CellSearch (Gorges et al., 2016b). Further, efforts to enhance
the biocompatibility of these wire coatings, have been employed
to maximize functionality for downstream processes such as
sequencing analyses of captured cells (Scherag et al., 2017).

Once enriched, CTCs are detected/confirmed through various
techniques. Immunocytological and molecular approaches are
the most commonly employed. Immunocytochemistry (ICC)
may differentiate CTCs from contaminating cells through
biomarker detection. Such biomarkers can be specific for nuclear
content, epithelial proteins (i.e., cytokeratins), and hematopoietic
markers (i.e., CD45). A common immunocytological CTC
definition, currently used by CellSearch and other platforms,
is a Nucleus+/CK+/CD45− cell. However, it should be noted
that CTC designation depending primarily on epithelial marker
expression may lead to false negatives by failing to detect
CTCs that have undergone EMT (Lustberg et al., 2012). As cell
phenotypes can vary in different malignancies, the heterogeneity
of CTCs pose barriers to efficient and thorough detection by
liquid biopsies.

Reliance on epithelial markers, which most epithelial
carcinomas express, for enrichment and identification, fails to
capture subpopulations of CTCs, such as mesenchymal cells,
that may harbor clinically important information. Currently,
cancer studies in breast and prostate have already demonstrated
that mesenchymal marker expression by CTCs is associated
with poorer survival (Aktas et al., 2009; Yokobori et al., 2013).
Recently, negative depletion strategies that enrich CTCs in
phenotype-independent ways have been introduced in an effort
to solve this problem and enhance detection. Immunostaining of
CD45 and cell sorting with flow cytometry was used to enrich
the breast cancer CTC population (Lara et al., 2004). Multi-
marker Immunomagnetic Negative Depletion Enrichment of
CTCs (MINDEC), relies on depletion of non-CTCs as opposed
to targeting specific properties of CTCs (Lapin et al., 2016).
This technique is based on a multi-marker antibody cocktail
(CD45, CD16, CD19, CD163, and CD235a/GYPA) to target
various contaminating blood classes. This technique has shown
high enrichment efficiency of both epithelial and mesenchymal
CTCs, with better hematopoietic depletion than CD45 alone.
Additional, novel cell surface marker-independent techniques
have been shown to effectively detect CTCs in epithelial and
non-epithelial malignancies in the absence of cell surface tumor
markers. For example, a novel method introduced by Zhang

et al., selectively labeled CTCs through GFP expression in human
samples and cancer cell lines transfected with tumor selective
replicating HSV-1 with a high detection efficiency (Zhang et al.,
2016).

Table 1 shows various CTC isolation methods used in the last
few years.

Newer methods have employed combinations of epithelial,
mesenchymal, tumor-specific, and tissue-specific marker
expression (Pantel and Alix-Panabieres, 2013).

Additionally, nucleic acid-based technologies have provided
an alternate avenue (Yu et al., 2011), as improvements in non-
fixating enrichment procedures have allowed for the use of RT-
PCR and qRT-PCR to amplify single or multiple gene transcripts
for CTC detection.

Most recently, emerging single-cell sequencing techniques
have shifted the field toward individual CTC analysis of
genetic alterations associated with tumor mechanisms, clinical
outcomes, therapy response, and drug targets and resistance.
The usefulness of genomic analyses, however, is limited by
heterogeneity between cancer subtypes, presenting barriers
toward finding universal markers. Similarly, all the current
enrichment, detection, and analysis techniques available harbor
their own technical challenges and limitations. Most of these are
outside the scope of this discussion.

CTCS IN PANCREATIC CANCER

DIAGNOSIS

Pancreatic cancer is one of the deadliest malignancies. Pancreatic
ductal carcinoma (PDAC) makes up the majority of pancreatic
cancers. While advancements in the treatment of other cancer
typesmay have led to significant improvement in patient survival,
advancements in pancreatic cancer research have not been met
with the same success. PDAC incidence has remained stable over
the last 30 years and the lack of fruitful therapies and new/useful
diagnostic methods have yet to be changed in pancreatic cancer
(Ryan et al., 2014). With current therapies improving survival
outcomes by only a few months, pancreatic cancer patients
face a 5 year survival rate of only 7%. Gemcitabine, the
first-line of PDAC therapy, only modestly improves survival
in advanced pancreatic cancer, while the clinical benefit of
combinational-targeted therapies (Erlotinib+Gemcitabine) has
proven to have only slight benefit, increasing overall survival
by less than a month (Burris et al., 1997; Moore et al., 2007).
Recent work in combinational chemotherapeutics has led to
a promising approach, FOLFIRINOX (Oxaliplatin, Irinotecan,
Leucovorin, and 5-fluorouracil), which has almost doubled
survival inmetastatic pancreatic adenocarcinoma patients to 11.1
months compared to 6.8 months with single-agent gemcitabine
(Conroy et al., 2011). In another promising approach, albumin
bound paclitaxel (Abraxane) plus standard gemcitabine therapy
increased overall survival to 8.5 months compared to standard
gemcitabine therapy with an overall survival of 6.7 months
(Von Hoff et al., 2013). The toxicity associated with these
regimens is unfavorable and should be used in patients with good
performance status. Unfortunately, 5 year survival rates remain
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TABLE 1 | CTC isolation techniques.

CTC isolation method Disease Comment References

Size-based filtration method: Use of membrane filters with

size exclusive pores

Multiple carcinomas Isolation of CTCs based on cell

size to isolate them from

leukocytes

Vona et al., 2000, 2004;

Hosokawa et al., 2013

Veridex cell search system: Anti-EpCAM antibody coated

microbeads

Multiple carcinomas The only FDA approved Allard et al., 2004

Magnetic-activated cell sorting system (MACS) Breast cancer Enrichment of the CTC

population

Lara et al., 2004

Use of electrical charges and density properties of cancer

cells

Primary breast cancer CTCs detected in 8.3% of

patients before surgery. After

Chemotherapy, CTCs detected

in 44% of previously negative

patients

Müller et al., 2005

Cell Search System Gastro-intestinal

cancers

High CTC number corrected with

metastasis and with low survival

Hiraiwa et al., 2008

MagSweeper: Magnetic rods Metastatic breast

cancer

Higher purity than the Cell search

system

Talasaz et al., 2009

Microfluidic devices: Microfluid approaches taking advantage

of physical properties

Metastatic prostate

cancer

Isolate CTC with down regulated

EpCAM

Stott et al., 2010; Ozkumur

et al., 2013

Combination of epithelial and mesenchymal markers: Use

combination of antibodies to select CTC with epithelial and

mesenchymal properties

Localized and

metastatic colorectal

cancer

Avoid CTC phenotype problem Deneve et al., 2013

MINDEC: Multi-Marker Immuno-magnetic Negative

Depletion Enrichment

Metastatic pancreatic

cancer

Enhanced negative depletion

strategy—MINDEC-based on

multi-marker (CD45, CD16,

CD19, CD163, and

CD235a/GYPA) depletion of

blood cells

Lapin et al., 2016

GILUPI cell collector: cell Collector-Wire coating: EpCAM

and Cytokeratin antibody coated medical wire

Lung cancer Isolation of CTCs from peripheral

blood to overcome the blood

volume limitations

Gorges et al., 2016b

Wire coating enhanced: Enhanced wire coting to maximize

functionality

Breast cancer cells Improvement of the wire

technology

Scherag et al., 2017

relatively unchanged. It is estimated that by 2030 pancreatic
cancer will be the second leading cause of cancer-related deaths
(Rahib et al., 2014; Dawson and Fernandez-Zapico, 2016).

The idea of a liquid biopsy, which could reveal diagnostic and
prognostic information about a patient’s state, has been gaining
much traction in the past 10 years. In one of the earliest studies,
with 12 types of metastatic carcinomas in 964 patients, CTCs
were successfully detected in patients with pancreatic cancer
using CellSearch, albeit in lower numbers than the other cancers
(Allard et al., 2004). Below, we summarize the studies of CTCs
in the diagnosis, staging, and prognosis for pancreatic cancer
patients.

Pancreatic cancer is a fast progressive disease and its early
diagnosis is challenging. Initial pancreatic cancer diagnosis
depends largely upon symptoms, which would only appear
late when tumor have fully progressed and are not specific
to be recognized at early stages. Due to the pathobiology and
aggressiveness of PDAC, by the time anorexia, early satiety, pain,
and weight loss start present, the disease has already progressed,
leaving little room for a favorable prognosis. Additionally, of the
15% of patients seeking medical care 6 months prior to diagnosis,
25% have symptoms resembling upper abdominal disease that

may lead tomisdiagnosis (DiMagno, 1999). Affirmative diagnosis
is made by tissue biopsies obtained by surgery, image guided CT
biopsy, or fine needle aspiration through endoscopic ultrasound
(EUS-FNA). Despite its widespread use, EUS-FNA does have
diagnostic drawbacks, specifically a sensitivity range from 75
to 94% and a specificity of 78 to 95%, with low but lethal
complications such as pancreatitis and bowel perforation (Court
et al., 2015; Bournet et al., 2016). For CTC detection to be
adopted to pancreatic cancer diagnosis, it must be useful for
early diagnosis and/or monitoring treatment responses. A key
performance milestone necessary for the implementation of CTC
technologies is an understanding of disease stage at which CTCs
can be detected. At the same time, it should be kept in mind
that CTC research in pancreatic cancer is at nascent stage, while
CTC detection methods and criteria vary largely between studies.
It is important to critically analyze the markers available and to
characterize CTCs at different stages of cancer progression.

CTC detection has been explored in early diagnosis of various
cancers and CTCs have been detected prior to tumor detection
by traditional methods. A recent study, for instance, found that
CTCs could be detected 1–4 years before lung cancer became
detectable through CT-scan screening in the same patients (Ilie
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et al., 2014). For breast cancer, the American Society of Clinical
Oncology (ASCO) has already approved the use of CTCs as a
tumor marker, creating new directions for early breast cancer
diagnosis (Harris et al., 2007).

Similar results have been obtained in pancreatic cancer. In a
mousemodel of PDAC, Rhim et al. found that inflicted pancreatic
cells underwent EMT early during cancer development. These
cells with EMT were predicted to represent early cancer cells, as
the extent of EMT correlated well to invasive properties in tumor
cells, facilitated their intravasation to circulating the blood and
hepatic seeding, prior to the manifestation of primary tumors
(Rhim et al., 2012). Additionally, blood samples from patients
with pancreatic cystic lesions were detected to contain pancreas
epithelial cells, at a time prior to cancer diagnosis. These findings
suggested that pancreatic cell appearance in circulating blood
precedes in situ tumor formation, and detection of CTCs could
be an early biomarker for PDAC early diagnosis.

CTC-specific gene expression has been explored as surrogate
markers for early cancer detection. Such studies mostly detect
CTCs via detecting their expression of epithelial proteins.
Reverse transcription-coupled polymerase chain reaction (RT-
PCR) could be used to examine potential epithelial markers
in CTCs derived from tumors of the epithelia. Soeth et al.,
evaluated cytokeratin 20 (CK20) detection, through RT-PCR
detection from themarrow and venous blood in pancreatic ductal
carcinoma patients. CK-20 positivity was detected in cells of
52 of 154 patients in venous blood, where higher CK20 level
was correlated to UICC-tumor stage (Soeth et al., 2005). In
a study of 34 pancreatic cancer patients prior to treatments,
de Albuquerque et al used immunomagnetic enrichment for
CTCs in peripheral blood based on mucin-1 and EpCAM
expression. Subsequently, multi-marker RT-PCR analysis was
used to detect tumor-associated transcripts, including KRT19,
MUC1, EpCAM, CEACAM5, and BIRC5. CTCs with at least
one marker in peripheral blood were detected in 47.1% patients
prior to undergoing treatment (de Albuquerque et al., 2012).
Detection efficacy was increased with the use of multiple markers
as opposed to single marker use, indicating differential gene
expression among CTCs from the same cancer patient.

Zhang et al., used an alternative strategy by enriching and
identifying CTCs through a combination of CD45 and CK with
a FISH-CEP8 probe in 22 pancreatic cancer patients. CTCs
were detected from 15 of the patients, with CTCs ranging
from 0 to 60 cells/3.75 ml of blood. In comparison, healthy
controls, and patients with benign pancreatic tumors were
negative for detection of CTCs, and sensitivity and specificity
of CTC detection in pancreatic diagnosis were determined to
be 68.18 and 94.87%, respectively, when using 2 cells/3.75 ml
as cutoff. CTC-positive patients exhibited metastasis and poorer
survival rates upon a 1.5 year follow-up. CTC positivity did
not correlate significantly to CA19-9 levels of the in situ tumor.
It is well-known that, though CA19-9 has a high sensitivity
and specificity in advanced pancreatic cancers, its diagnostic
usefulness is questionable to diseases at early asymptomatic
stages. The combination of CA19-9 and CTC positivity in the
study above increased detection rates from 68.18 to 77.3% (Zhang
et al., 2015). The results from this study suggest CTCs as

biomarkers for the diagnosis of early stage pancreatic cancers, in
asymptomatic patients, and from patients with normal CA19-9
plasma levels. A later study by Xu et al., used a similar approach
in 40 patients and dramatically high detection rates in PC patients
(90%). Diagnostic rates increased to 97% when combining CTC
≥ 2 and CA19-9 > 37 µmol/L as a cutoff. Identification of
chromosomal instability in CTCs, characterized as chromosome
8 triploids, showed a significantly statistic prognostic correlation.
Patients with triploid CTCs < 3 displayed both higher 1 year and
overall survival compared to those with ≥ 3 (Xu et al., 2017).

Doublecortin-like kinase 1 (DCLK1) may be another marker
for CTC detection in early PDAC stages. Prior work suggests
that Dclk1 marks stem cells, being able to differentiate cancer
from normal stem cells. Interestingly, this marker protein is
overexpressed in pancreatic and colorectal cancers (Nakanishi
et al., 2012; Bailey et al., 2014). Qu et al., found elevated serum
DCLK1 levels in stage I and II PDAC patients relative to controls
and a decline in stage III and IV patients to levels similar to those
seen in control patients. Diagnostic utility analysis showed both
DLCK1 sensitivity and specificity to be significant in stage I and
II patients. Furthermore, the investigators evaluated DCLK1 in
the KPC mouse model, finding the serum DCLK1 levels to be
significantly elevated as early as 5 weeks in KPC mice, compared
to control mice. Over 50% of CTCs isolated from KPC mice
whole blood were DLCK1+, suggesting a possible biomarker to
be used in conjunction with CTCs for detection of early stage
pancreatic cancer (Qu et al., 2015).

Kulemann et al., investigated the usefulness of CTC detection
in pancreatic cancers from both localized and advanced stages.
Peripheral blood from PDAC patients was used to capture
CTCs for cytological and KRAS mutational analysis using the
ScreenCell isolation method (Kulemann et al., 2015). High
CTC detection efficiency as low as 2 cells/ml was calibrated
by spiking experiments with healthy donor blood. CTC KRAS
mutations were identified in 8 of 11 PDAC patients (73%).
This is in sharp contrast to conventional biopsy-based diagnosis
for the same patients, by which 2 of 11 samples (18%) were
cytologically categorized as negative/non-diagnostic, while the
rest exhibited abnormal morphology (18%) or were categorized
as suspicious (64%). Moreover, the authors found no difference
in the detection rate between early and advanced diseases,
suggesting that CTCs are disseminated from primary tumors
early in disease development and can be used to diagnose
pancreatic cancer at initial stages where curative surgery may be
available. It should be pointed out that this finding is contrary
to those shown by Soeth et al. (2005), in which significant stage
dependent differences were observed in CTC detection. Further
studies are needed to clarify whether the difference is due to the
differences in CTC detection strategies.

CTCS IN METASTASIS AND EARLY

CANCER

Early local invasion and metastasis are prominent factors in the
poor prognosis of pancreatic cancer, as most patients are found
withmetastatic disease at diagnosis (DiMagno et al., 1999; Pandol
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et al., 2009). The impact of CTCs on pancreatic cancer metastasis,
recurrence, and prognosis has been investigated.

A recent 9-cohort meta-analysis of separate studies using
CellSearch and RT-PCR detection methods, involving 623
pancreatic cancer patients altogether, revealed associations
between CTC detection and poor prognosis. Out of 623 patients,
268 (43%) were classified as CTC positive and displayed poor
progression-free survival and worse overall survival than those
in the non-CTC group (Han et al., 2014).

Using the CellSearch enrichment method, Kurihara et al.,
investigated the utility of CTCs in peripheral blood as a marker
of clinical outcomes in 26 patients with pancreatic cancer. CTC
positivity was found in 11 of 26 pancreatic cancer patients (42%).
The authors demonstrated a significant difference in median
survival times between CTC positive and negative patients, for
110.5 and 375.8 days, respectively (P < 0.001; Kurihara et al.,
2008). Given that the detection method was shown to have 100%
specificity, with no CTCs detected in the non-cancer groups,
CellSearch detection strategy may not be sensitive enough, as
no CTCs were detected from the other 58% pancreatic cancer
patients. These results suggest the need of developing more
sensitive methods to detect positive CTCs in all pancreatic cancer
cases.

Similarly, de Albuquerque et al found a correlation between
CTC positivity (47% of patients) and median progression-
free survival (PFS). Patients with at least one tumor-associated
transcript found in their CTCs, enriched from peripheral
blood using immunomagnetic EpCAM and mucin 1 detection,
had a PFS of 66.0 vs. 138.0 days in those who did not.
Intriguingly, CTC enumeration was found to have no correlation
to clinicopathological features of the disease, includingmetastasis
status and tumor stages (de Albuquerque et al., 2012).

Bidard et al. studied CTC detection rates in a subset of 79
patients with locally advanced pancreatic carcinoma enrolled
in the LAP 07 trial. The primary study (LAP 07) assessed
the effect of subsequent chemotherapy vs. chemo-radiotherapy
continuation on overall survival in patients whose disease was
controlled after 4 months of chemotherapy alone. The patient
subgroup was screened for CTCs using CellSearch technology
prior to chemotherapy administration and 2 months after
treatment. While the investigators found that CTC positivity
was not prognostic of PFS, they found it to be an independent
prognostic factor associated with poor tumor differentiation and
shorter overall survival (Bidard et al., 2013).

Bissolati et al., used the same CellSearch technique with
systemic and portal vein blood of 20 patients undergoing
pancreatic resection. No significant differences in both overall
survival and disease-free survival between CTC-positive and
-negative groups. The authors did, however, find a higher
incidence of liver metastasis upon a 2 and 3 year follow up in
the CTC-positive portal vein group (Bissolati et al., 2015).

Similarly, an early study investigated CTC positivity in 67
intraoperative patients with biliary-cancer. Molecular detection
of CEA mRNA-positive CTCs from peripheral, central, and
portal veins via RT-PCR was associated with a significant
incidence of hematogenous metastases compared to CTC-
negative patients (37.5 vs. 11.4%; Uchikura et al., 2002).

Nonetheless, whether surgical resection of the pancreas itself
may contribute to tumor cell shedding remains to be addressed.
Pancreaticoduodenectomy (PD), involving the pancreatic head,
and distal pancreatosplenectomy (DPS), involving the pancreatic
body and tail, are standard surgical procedures. Both require
necessary mobilization of the pancreas, and may lead to CTC
dissemination via the portal vein to increase the risk of liver
metastasis (Kuroki and Eguchi, 2017).

Table 2 represents data showing association between CTC
presence and pancreatic cancer stage and outcome.

Chausovsky et al., used RT-PCR to examine the usefulness
of CK20 expression in CTCs in the diagnosis of metastatic
lung, stomach, colon, and pancreatic cancers (Chausovsky et al.,
1999), since CK20 has been shown to not be transcribed
in cells of hematopoietic lineage (Burchill et al., 1995).
Chausovsky concluded that CK20 is a potential biomarker for
detecting metastasis, with a sensitivity of 22/28 (78.6%) in
patients with metastatic pancreatic cancer. Cytokeratins are used
conventionally to characterize cancer cells of epithelial origin
(Cooper et al., 1985; Lane and Alexander, 1990). Combination
of cytokeratin and additional gene expression may improve the
efficacy of CTC detection.

Poruk et al., assessed the potential of CTCs as biomarkers
in 50 patients prior to surgical resection, based on EMT-related
epithelial and mesenchymal marker expression. CTCs were
acquired from blood samples through the method of ISET. CTCs
were further identified by immunofluorescence staining with
antibodies against pan-cytokeratins and the mesenchymal cell
protein, vimentin. This analysis found that 78% of patients had
CTCs expressing cytokeratin and 67% co-expressed vimentin,
while no CTCs were found to express vimentin only. The
authors found a significant association between cytokeratin only
positive CTCs and worse survival. Interestingly, co-expression
of vimentin was predictive of recurrence (p = 0.01). Of the
patients diagnosed with metastatic cancer at the time of surgery,
all the CTCs were positive for dual staining (Poruk et al., 2016).
These findings indicate the involvement of EMT mechanism in
metastatic progression. EMT would render CTCs heterogeneous
andmulti-marker analysis would have to be employed in order to
ensure a comprehensive detection of all CTCs in a patient blood
sample.

A recent study enumerated CTCs independently of surface
marker status using a GFP expressed tumor selective Herpes
Simplex Virus replicated based on telomerase activity.
Transfected cells of 290 samples of patients with different
solid tumors were examined and CTCs were detected in patients
with epithelial and non-epithelial tumors from as little as 4 ml
of blood. PC patients had a positive CTC detection rate of 88.2%
across various stages and had the highest average number of
cells identified per samples (43.1). Additionally, CTC detection
rates increased to 100% in PC patients with regional lymph node
metastasis but no distant metastasis (N+M0), further supporting
the use of CTCs as a biomarker in disease progression (Zhang
et al., 2016). Other recent phenotypic-independent enrichment
platforms have shown some success in CTC enumeration
regardless of epithelial or mesenchymal surface proteins.
Negative selection of hematopoietic cells in blood samples of
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TABLE 2 | Association between CTC presence and disease stage and outcome.

References Finding Number of patients CTC Detection method in pancreatic cancer patients

Allard et al., 2004 First detection of CTC in pancreatic cancer

biopsies

16 Cell search

Soeth et al., 2005 Higher CK20 in the blood correlated with tumor

stage

154 CK20 RT-PCR

Kurihara et al., 2008 Association between presence of CTC and

survival

26 Cell Search

de Albuquerque et al.,

2012

Association between presence of CTC and

decreased PF survival. No association between

presence of CTC and disease stage

34 Multi marker RT-PCR

Bidard et al., 2013 No PF survival association but association with

poorer overall survival

79 Cell Search

Han et al., 2014 Association between CTC detection and poor

prognosis

623 Cell Search and RT-PCR (9-cohort meta-analysis study)

Zhang et al., 2015 CT-positive patients exhibited metastasis and

poorer survival

22 CD45 and CK with FISH-CEP8 probe

Xu et al., 2017 Diagnostic rate increased to 97% when

combining CTC>2 and CA19-9>37

40 NE-iFISH

Kulemann et al., 2015 No correlation between CTC and stage. CTC

could be used as early marker

11 Screen Cell Isolation Method

Bissolati et al., 2015 No PF or overall survival association. But higher

liver metastasis incidence

20 Cell Search

PC patients using MINDEC showed a CTC detection rate of
71%. Further, characterization of the enriched cells showed the
presence of both epithelial and mesenchymal CTC populations.
While the high rate of positivity in this proof-of-principle study,
in comparison to previous phenotype specific platforms, could
be due to the authors use of patients with metastatic disease
only, its ability to detect both epithelial and mesenchymal cells,
in addition to CTC clusters, marks a progressive trend toward
comprehensive detection of both epithelial and mesenchymal
CTCs with one technique (Lapin et al., 2016). More importantly,
both CTC surface marker-independent enrichment techniques
allow for the viability of collected cells to be subsequently used
for downstream genetic analysis without compromise from high
background leukocyte levels.

Recent works characterizing EMT found CTCs positive for
both epithelial and mesenchymal markers in peripheral blood
of breast cancer patients (Yu et al., 2013). Studies in mouse
models have provided insight into the composition of CTCs
in pancreatic cancer. Single-cell RNA sequencing revealed the
expression of both epithelial and mesenchymal markers in KPC
LSL-KrasG12D, Trp53flox/flox or +, Pdx1-Cre (KPC) mouse
pancreatic tumors. Moreover, the authors observed substantial
loss of the classical E-cadherin expression, suggesting that
some CTCs of epithelial lineage could indeed adopt a partial
mesenchymal stromal phenotype through EMT, while retaining
other epithelial features such as cytokeratin expression (Ting
et al., 2014).

Different from epithelial cells, most mesenchymal stromal
cells harbor certain stem cell properties, being able to be induced
to differentiate into more mature cells (Zhau et al., 2011). The
EMT phenotype is usually associated with expression of cancer
stemness markers (Kong et al., 2011). Compared to other cancers,

however, very little is known about stemness in pancreatic cancer
CTCs.

In breast cancer, expression of cancer stem cell markers in
CTCs is a sign of increased the metastatic ability (Papadaki et al.,
2014). The expression of cancer stemness marker ALDH1 on
CTCs was found to correlate to the stage of the disease and
to the expression of EMT markers vimentin and fibronectin in
prostate cancer patients (Raimondi et al., 2011). A study by
Barrière et al. (2012) aimed at the detection of CTCs endowed
with mesenchymal and/or stem cell characteristics, at the time of
initial diagnosis with breast cancer, found that EMT and cancer
stemness occur in the primary tumors and are associated with an
enhanced ability for tumor cells to intravasate in the early phase
of cancer development.

Multiplex transcriptome profiling of single CTCs revealed
presence of sub-populations of CTCs expressing multiple pro-
cancer transcripts including cancer stem cell markers such as
CD44 and CD24 (Gorges et al., 2016a). So far multiple markers
have been used to detect CTC stem cell properties in CTCs,
including CD44, CD133, CXCR4, ABCG2, and ALDH1. Other
markers used uniquely for pancreatic cancer CTCs include CD24
and c-Met (Yang et al., 2015). Whether CTCs with mesenchymal
or stem cell characteristics may be used as a marker for
aggressiveness of the disease remains to be evaluated in future
studies.

CHALLENGES

There has beenmuch progresses over the last decade to overcome
the initial barriers of CTC research in the laboratory and clinic.
Significant technological development has been made for CTC
detection, enrichment, and molecular characterization. On the
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other hand, CTC research in gastrointestinal cancers had a late
start relative to other human malignancies (Allard et al., 2004).
Due to gastrointestinal biology, pancreatic cancer detection via
CTCs has its own set of challenges. It is widely proposed
that the liver sequesters CTCs as they pass into the systemic
circulation via the portal vein (Jiao et al., 2009). The predominant
dissemination of pancreatic cancers to the liver have supported
this notion. A recent report detected CTCs in 100% (14/14) of
portal vein samples of patients with pancreaticobiliary cancers as
opposed to under 25% (3/14) when peripheral samples were used
for detection (Catenacci et al., 2015), a result consistent with the
notion that higher CTC numbers are detected in portal vein as
opposed to peripheral blood (Waxman et al., 2014). Furthermore,
there was a significant increase in CTC detection in portal blood
vs. peripheral blood, with a mean of 125.64 CTCs/7.5 ml as
opposed to 0.8 CTCs/7.5 ml (p = 0.01; Catenacci et al., 2015).
This study further emphasizes the importance that the collection
site plays in CTC detection.

While preliminary studies in various cancers are
demonstrating the potential of CTCs in early cancer detection,
the continuous data coming out using different platforms
(exploiting size, density, charge, surface antigens, etc.) make it
challenging to reach a consensus for clinical application. The
diversity of methods for CTC enumeration and characterization
can confuse the research and the clinical communities. There
is a lack of large studies comparing enrichment and detection
between CTC detection platforms. A pilot comparative study of
54 pancreatic cancer patients investigated differences between
CellSearch and amarker-independent ISETCTC isolation (Khoja
et al., 2012). The authors detected significantly more CTCs using
ISET in comparison to CellSearch (93 vs. 40%). Similar studies
in other cancers have pointed out the discrepancies between
platforms (Farace et al., 2011; Hofman et al., 2011).

Discrepancies can partially be attributed to different types
of carcinomas and their expression of surface markers.
Furthermore, the differences in specificity and sensitivity may
lead investigators to adapt different platforms for their specific
study. This raises many concerns in regards to the identities
of CTCs. As EMT facilitates CTCs with increased capacity for
detachment and invasion, the loss of epithelial lineage marker
expression makes the identification particularly difficult. We
must further explore the limitations that certain platforms create
in capture efficiency. For example, EpCAM expression, which
CellSearch exploits, is heterogeneous and cleavage has been
reported (Maetzel et al., 2009). Limitations of other epithelial cell
markers have also been reported, such as the down regulation of
CK20 in tumors leading to false-negatives (Vlems et al., 2002;
Krebs et al., 2014). It would be ideal for platforms to detect
bothmesenchymal and epithelial characteristics of CTCs, and the
platforms must be carefully validated.

Additionally, not only do detection rates vary by platforms,
but also between cancers. There is currently no consensus on the
cutoff value for CTC positivity, even within a single platform.
Stringent parameters should be set for CTC use not only in
detection, but also as a prognostic marker of clinical outcomes
in pancreatic cancer. Although it may be difficult due to the
differences in enrichment and detection between platforms,

standardization across single or multiple platforms is paramount
for future incorporation into the field.

Due to the complex nature of the metastatic process,
disseminated cells may be clinically silent for long durations. In
breast cancer, cytological assessment suggests that CTCs actively
undergoing mitosis are most common in late-stage disease and
have prognostic value (Adams et al., 2016). One study found
that aberrant VCAM1 expression, a common complication of
breast cancer, was crucial for the transition from dormancy to
overt metastasis (Lu et al., 2011). We must continue to explore
ways to stratify CTCs in ways that will allow us to distinguish
indolentmicrometastasis from aggressive CTCs prior to clinically
significant metastasis in pancreatic cancer patients.

CONCLUSION AND FUTURE DIRECTIONS

Literature evaluating the diagnostic and prognostic role of
CTCs in cancer is continuously being reported. Many studies
in different malignancies have shown clear associations of
CTCs with clinical cancer progression. Much of the current
research is now shifting to CTC characterization in order to
select appropriate therapies for individuals based on the gene
signatures of the CTCs and to measure response to therapies.
For example, CTC count now outperforms traditional response
evaluation methods in patients with metastatic castration-
resistant prostate cancer (Onstenk et al., 2016). With reports
estimating the half-life of CTCs to be on the order of hours, their
detection can provide a current representation of the malignancy
(Meng et al., 2004; Stott et al., 2010).

Future investigations should thoroughly explore CTC
response to pancreatic cancer treatments. Furthermore, ex vivo
CTC culture and expansion experiments can improve our
understanding of the mechanisms of dissemination and escape
from dormancy. Single-cell sequencing with next-generation
sequencing platforms is paving the way toward understanding
the genetic makeup of CTCs and the clinical significance of their
genomic alterations (Alix-Panabières and Pantel, 2014). A recent
study in a pancreatic cancer mouse model used single-molecule
RNA sequencing of CTCs to identify Wnt2 as an up-regulated
gene in pancreatic cancer CTCs, which is implicated in cell-
death suppression and cancer dissemination. In addition, the
authors observed the same Wnt2 signaling aberrations in CTCs
of 5/11 patients with metastatic pancreatic cancer (Yu et al.,
2013). Such studies have the potential to improve our current
clinical management, especially ones exploring new drug targets
involved in cancer spread. CTC use as a biomarker is currently
being investigated in over 360 open clinical trials registered on
ClinicalTrials.gov (Alix-Panabières and Pantel, 2014).

Considering that methods have been developed that have
the possibility of being used in the diagnosis, stratification of
patients and monitoring of therapy, next efforts require a focus
on validation of leading methods for aiding clinical care. For the
methods chosen, the validation of the method for certification in
clinical use followed by well-designed studies to show utility of
the method in the clinical setting are necessary for approval of
test for clinical application.
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There are challenges in the pancreatic cancer field for
development of a test that has utility in early diagnosis or choice
of chemotherapy. For example, in the area of early diagnosis,
a population at increased risk is needed to show performance
of the method in detecting pancreatic cancer at an earlier
stage than that achieved with current approaches. Currently, the
Consortium on Chronic Pancreatitis, Diabetes, and Pancreatic
Cancer (CPDPC) in the United States is developing a protocol
for this purpose choosing patients with diabetes after age 50
as the best high risk group to use to identify early diagnostic
biomarkers (http://cpdpc.mdanderson.org). Because about 1% of
these patients will be found to have pancreatic cancer over 3
years after the diagnosis of diabetes, the CPDPC has determined
that the study will require enrollment of 10,000 subjects. At
present, the inclusion of measurement of CTCs is not being
considered because of the technical difficulties involve with CTC
measurements. On the other hand, once a proteomic, ctDNA
and/or RNA technique is developed to identify patients with early
pancreatic cancer, measurements of CTCs can be applied to this
group for further characterization including choice of therapy.

Similarly, it is difficult to apply CTC technology to the
choice of chemotherapy as the current therapies do not have
a significant effect on long term survival. One the other hand,
surgery does have significant effects on long term survival
in a substantial percentage of patients. Thus, it seems that
currently the best situation to develop a validated test for CTC
measurements uses patients who are candidates for curative
surgery. Hypotheses to be tested should focus on the role of
CTCmeasurements in predicting the outcome of curative surgery

and early demonstration of disease recurrence. Certainly, studies
that show performance of CTC measurements in determining
and monitoring outcome in surgical patients will have important
impacts in disease management and are much more feasible than
studies designed for early diagnosis.

Another area of significant importance in the field is the
determination of the biology of CTCs. As these cells represent
the metastatic process which is the key determinant of poor
outcome in pancreatic cancer patients, a better understanding
of the biology of these cells will be central to advancing our
treatments. Are there unique mechanisms in pancreatic cancer
that account for its high rate ofmetastasis? Are there properties of
pancreatic cancer CTCs that account for its resistance to therapy?
Exploring these questions will require advancing the methods
of isolation and propagating these cells so that the biologic
experiments including observing their behavior in cell culture
and animal models can be performed.
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The genotype and external phenotype of organisms are linked by so-called internal

phenotypes which are influenced by environmental conditions. In this study, we used five

existing -omics datasets representing five different layers of internal phenotypes, which

were simultaneously measured in dietarily perturbed mice. We performed 10 pair-wise

correlation analyses verified with a null model built from randomized data. Subsequently,

the inferred networks were merged and literature mined for co-occurrences of identified

linked nodes. Densely connected internal phenotypes emerged. Forty-five nodes have

links with all other data-types and we denote them “connectivity hubs.” In literature,

we found proof of 6% of the 577 connections, suggesting a biological meaning

for the observed correlations. The observed connectivities between metabolite and

cytokines hubs showed higher numbers of literature hits as compared to the number of

literature hits on the connectivities between the microbiota and gene expression internal

phenotypes. We conclude that multi-level integrated networks may help to generate

hypotheses and to design experiments aiming to further close the gap between genotype

and phenotype. We describe and/or hypothesize on the biological relevance of four

identified multi-level connectivity hubs.

Keywords: data integration, internal phenotype, transcriptomics, proteomics, metabolomics, microbiota,

gastrointestinal tract, systems biology

INTRODUCTION

The information encoded in the genome (genotype) and the external quantitative traits or
characteristics (phenotype) of an organism are linked to each other by several layers of so-called,
intermediate (Leuchter et al., 2014; Fontanesi, 2016) or internal (Houle et al., 2010) phenotypes.
Several of these internal phenotypic layers are shown in Figure 1 that visualizes the conceptual
relationship between the external phenotype (P), the genotype (G), the environment (E), and
the G&E interactions. The epigenome is tightly associated with the genome and represents
the programming of gene expression which is not dependent on the DNA code itself. The
transcriptome layer represents direct effects of the environment on the gene expression of the
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FIGURE 1 | Relationship between the external phenotype (P), the genotype (G), the environment (E), and the G&E interactions. The internal phenotypic layers and the

environmental factor with a darker outline are included in the present study.

(epi-)genome. Translation of the transcriptome into proteins
represents the next internal phenotype. The subsequent layer
is represented by complex metabolite profiles. The organism-
associatedmicrobiota, especially those in the gut, can be regarded
as a separate internal phenotypic layer, because it is not only
dependent on the host genome but also heavily influenced
by its environment, particularly by nutrition (Schwartz et al.,
2012; Montiel-Castro et al., 2013). Although, for several traits
the quantitative effects of the environment on the external
phenotypes are known (Gentry et al., 2004; Cani et al., 2008;
de Wit et al., 2011), the specific effects of the environment
on the internal phenotypes are largely unknown. Furthermore,
it is obvious to assume that the various layers of internal
phenotypes are connected to each other and that their joint
profiles ultimately determine the external phenotype (Leuchter
et al., 2014; Fontanesi, 2016). Unfortunately, most of these
assumptions are not based on solid evidence and at best represent
oversimplifications of the dynamic nature of processes involved
in determining external phenotypes. It, furthermore, partly
explains the knowledge gap that exists between the genotype and
the external phenotype.

Therefore, the objective of this study was to develop
methodologies to identify components in the internal phenotypic
layers that are connected to components in other internal
phenotypic layers. To this end, we integrated multi-scale
quantitative (–omics) data using a regression approach. The
used data sets were derived from a single experiment with
inbred mice which were exposed to five different dietary
interventions as a means to perturb the different internal
phenotypes.With a data-driven approach we were able to identify
a large number of potential connections between the various
intermediate phenotypes and for several we found proof of causal
relationships in literature. We have used networks to represent
the identified connections. The molecular components of each
internal phenotype (such as genes, metabolites, cytokines, or
bacterial groups) are represented as nodes in the network and
the identified connections between each data type are represented
as links or edges. The results of this study provide a basis to
understand how various internal phenotypic layers are connected
to each other. The identified connections may be crucial for the
identification of causal relationships (Civelek and Lusis, 2014)
between various biological scales and to uncover mechanisms
involved in determining external phenotypes.

MATERIALS AND METHODS

Origin of Data
We used data from an experiment with 6-week old inbred mice
that were fed for 4 weeks with six different semi-synthetic diets
(Kar et al., submitted). In brief: thirty-six 21-day-old C57BL/6J
mice (Harlan Laboratories, Horst, the Netherlands) were divided
into 6 groups and housed in pairs with ad libitum access to
diet and water. After adaptation for 1 week to a standard diet,
the mice were fed semi-synthetic diets containing 300 g/kg (as
fed basis) of one of the alternative protein sources for 28 days:
soybean meal; casein; partially delactosed whey powder; spray
dried plasma protein; wheat gluten meal and yellow meal worm.
At the end of the experiment, mice were sacrificed to collect
ileal tissue to acquire gene expression data, ileal digesta to study
changes in microbiota, blood serum to profile cytokines and
chemokines and blood and urine to profile amine metabolites.
All procedures were approved by the Animal Experimentation
Board at Wageningen University & Research Center (accession
number 2012062.c) and carried out according to the guidelines
of the European Council Directive 86/609/EEC dated November,
1986. Multi-omics data were obtained with regards to: whole
genome gene expression profiles of ileal tissue as measured
with Affymetrix GeneChip mouse gene 1.1 ST microarrays
(Affymetrix, Santa Clara, CA, USA); community scale
microbiota composition of ileal digesta by targeted-amplicon
DNA sequencing of the bacterial 16S rDNA V3 region on an
Illumina Mi-Seq sequencer; 23 serum cytokine and chemokine
concentrations (pg/ml) using a Bio-Rad Mouse 23-plex kit
(Bio-Rad, Hercules, CA, USA); and amine metabolic profiles
of serum and urine using an ACQUITY UPLC system coupled
online with a Xevo Tandem quadrupole mass spectrometer
(Waters) operated using QuanLynx data acquisition software
(version 4.1; Waters; Kar et al., in preparation). The data from
the ileum reflects the local effects of the dietary interventions,
the other three data assess the systemic effects.

Pre-processing and Selection of Data
An overview of the five types of data and their specifics are
given in Table 1. Supplementary Figure 1 has an overview of all
the analytical methods used in this study. Each dataset was pre-
processed in a similar way using the R package limma (Smyth,
2005) to find the differentially significant data-points. The data
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TABLE 1 | Pre-processing and specificities of each data-type.

Properties Transcriptomics Microbiota Cytokine Metabolomics serum Metabolomics urine

Sampling Ileum Ileum Serum Serum Urine

Before pre-processing 16,410 * 33 148 * 33 23 * 36 41 * 36 16 * 28

After pre-processing 52 * 33 22 * 33 13 * 36 26 * 36 16 * 28

Details of the site of sampling and data dimensions before and after pre-processing are indicated. The first number indicates the number of variables in the data and the second number

denotes the number of samples.

is first log transformed and then this data is fitted to a linear
model using the function lmFit (Phipson et al., 2016) which will
give back information on the differences between the data-points
in different samples and subsequently different comparisons of

control vs. treatment. Then we used the function eBayes (Phipson
et al., 2016) which applies an empirical Bayes method to compute
p-values for a t-statistic under the assumption that only 1%
of the data-points are differentially regulated among all the
data-points in the samples. This p-value is then subjected to a
Benjamini–Hochberg (Benjamini and Hochberg, 1995) multiple
testing correction, also known as a False Discovery Rate (FDR).

This analysis was done by comparing the data of each dietary
group against the data of the dietary group that received soy
bean meal as protein source, which is the most common source
of protein in animal diets. The FDR value of the data, is used
to gauge significance and data-points that were significant in at
least one of the five comparisons of the diets were included in the
integration analysis. Except for the Cytokine and Metabolomics
Serum (using the amine measurement), all the data-types had
some samples thrown out due to quality control. Two types of
metabolomics measurements were done on the sampled urine;
Amine and Acyl-carnitine, the amine dataset did not have
sufficient statistically significant data-points so was discarded.
We only work with the Acyl-carnitine measurement in urine.

Data Integration, Network Generation, and
Network Assessment
All significantly different data-points were used in the integration
which was initially performed with two datasets at a time, so
that from the 5 datasets 10 integrated networks were generated.
The integration was performed using the function sPLS (sparse
Partial Least Squares) in regression mode with ncomp = 5, from
the R package mixOmics (Lê Cao et al., 2009; Dejean et al.,
2011; González et al., 2012). The regression mode is used to
model causal relationship between variables in both datasets
by identifying combinations of variables between both datasets.
Weight vectors used in the regression modeling are termed
loading vectors. sPLS is used to perform simultaneous variable
selection in the two datasets to be integrated and employs LASSO
(Least Absolute Shrinkage and Selection Operator) penalization
(Tibshirani, 2011) on the loading vectors. This approach requires
one data set, X with nx elements, to be designated the predictor

and the other, Y with ny elements, the response. As an output,
the approach produces a matrix Ma(X,Y) of size nx × ny
representing the relevant correlations between both datasets, so
that:

maij =

{

0, if Yj independent of Xi

cor
(

Xi, Yj

)

, if Yj dependent on Xi
, with i ∈ {1, . . . , nx} and j ∈ {1, . . . , ny} (1)

Where cor
(

Xi, Yj

)

is Pearson’s correlation between elements i
and j from datasets X and Y , respectively. The correlation is
computed across all available samples (here corresponding to
dietary exposures).

Since it is not trivial to determine the predictor and response
with biological data, we swapped the two types of data to compute
Mb(Y,X), a matrix of size ny × nx where the roles of X and Y have
been interchanged. Both matrices, Ma and Mb where combined
into a final matrixM(X,Y) size nx × ny using

M(X,Y) = Ma(X,Y) + t(Mb(Y,X)) (2)

where t represents matrix transposition. Thus, non-null elements
of the matrix M(X,Y) represent correlations between data types
that have been deemed associated. This matrix can be seen as
a weighted adjacency matrix representing a network where two
nodes Xi and Yj are connected via an edge if a non-null weight
can be assigned to the edge. This weight is represented by the
matrix valuemij.

To further prune the network of (possibly) spurious
interaction two additional thresholds (thl < 0; and thh > 0) were
imposed to obtain an unweighted adjacencymatrixA(X,Y)of size
nx × ny

Aij =

{

1 if mij ≥ thh or mij ≤ thl
0 if

∣

∣mij

∣

∣

<

∣

∣thl
∣

∣ and mij < thh
(3)

were |x| represents the absolute value. thl and thh where selected
for each network so that only top 5% of the highest (positive) and
lowest (negative) weights were kept for building the networks.

Networks represented by these adjacency matrix were
transformed into the edge-list format, a two column table of the
connected nodes in a network were each row represents an edge
and visualized in Cytoscape (Shannon et al., 2003; Ono et al.,
2015).

For each pair of integrated datasets a null model of the
association networks was constructed using a strategy based
on random permutations of measured values (Saccenti et al.,
2015). Measured data-points were randomly permuted over
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samples before data integration to obtain randomized datasets
that still retained the same value distribution for each variable.
The randomized datasets were then used for data integration
following the afore mentioned approach thereby generating
randomized associations networks. The process was iterated Nit

= 1,000 times for each pair of datasets; For each iteration,
k, the values of the dynamic cut-offs (thlk and thhk) (5% of
the highest and lowest correlation) were recorded. For the 10
pairwise combinations of datasets, the values obtained for thl and
thh obtained using the unpermuted dataset, were compared with
the distribution of values of thlk and thhk with k = {1,...,Nit} to
get networks from the random data to compare to the networks
from the biological data.

Network Merging and Topological Analysis
The 10 networks arising from pair-wise data integration of the
5 data sets were merged in a combined network including all
the nodes and edges of the 10 networks. This network is then
restricted by only including nodes present in at least two of
the separate networks. We used the igraph R package (Csardi
and Nepusz, 2006) to further analyze the network, which was
treated as non-directed, since no particular directionality was
assigned to the edges. We obtained values for the following
topological properties of the merged network (Barabasi and
Oltvai, 2004; Csardi and Nepusz, 2006; Zhu et al., 2007): Degree:
number of neighbors of a given node, that is the number of
nodes connected to it. Clustering coefficient of a node is the
ratio of the number of connections between the neighbors of
a node and the total number of possible connections between
said neighbors. Characteristic path length: median of the average
distance between a node and all the rest. Network density:
ratio between the total number of existing edges and the total
number of possible edges (given the number of nodes in
the network). Connected components maximal subgraphs in a
network such that each node is connected to all the rest by
means of network paths. For node level metrics, such as degree
or clustering coefficient average values were computed over all
nodes. Cytoscape was used for network visualization.

Literature Mining
To investigate the co-occurrence of the names of the connected
nodes in the association network, we used the R package
rentrez (Winter, 2016). This package searches for selected
keywords in PubMed abstracts while making use of the MeSH
(Medical Subject Headings) thesaurus to maximize results via
the API from NCBI. The search was not restricted to a specific
tissue type or organism. These results were examined, although
not exhaustively, to find literature evidence of established
relationships between nodes connected through identified edges;
these were then considered as true positive search results.

The script used to generate all these results will be made
available on request. All the above mentioned operations
were performed using existing functions from R packages.
The different steps involved are represented in Supplementary
Figure 1.

RESULTS

Analysis of the Individual Datasets
A dietary intervention was performed on mice where the protein
content was changed and multi-omics data were obtained with
regard to: whole genome gene expression profiles of ileal tissue
(Transcriptomics), community scale microbiota composition of
ileal digesta (Microbiota), 24 different cytokine levels in blood
serum (Cytokine), and protein-associated metabolic profiles of
serum (Metabolomics Serum) and urine (Metabolomics Urine).
These data were pre-processed and analyzed separately by fitting
a linear model on the data-points and looking for differentially
expressed readouts in each treatment vs. the control. Each dataset
had its own p-value (corrected for multiple testing with the
Benjamini–Hochberg method) threshold, ranging from 0.001 to
0.1 for difference between the tested and reference diets. The
highest number of statistically significant entities was found
in Transcriptomics. Furthermore, all the measured variables in
Metabolomics Urine were found to be significantly different in at
least one comparison.

Pairwise Data Association and Network
Generation
We performed the integration by linking two data-types at a
time and in such a way that after the pairwise analysis all
the observed association data could be combined to build a
multi-level interaction network. Therefore, each data-type was
integrated with the other four types of data, resulting in 10
association networks. The topological characteristics of all these
10 networks are given in Table 2 and Figure 2, and the network
graphs are available in Supplementary Figure 2 as an image.
Data Sheet 1 has the networks in a format that can be uploaded
into Cytoscape in order to further explore the connectivities of
these networks by simply clicking on these nodes. Table 2 shows
the positive and negative thresholds that were used separately
for the association network. Connections between pairs of data
points with correlation values between the threshold values,
i.e., Low Threshold (negative threshold) and High Threshold
(positive threshold) as indicated in Table 2, were discarded
and the corresponding edges removed from the final network.
There were two disconnected sub-graphs in five of the networks
while the other five have only a single, fully connected graph.
Supplementary Figure 3 shows the pattern of changes induced
by the diet in three components of the network Microbiota &
Transcriptomics.

The largest network, in terms of nodes, is the Microbiota &
Transcriptomics network. This seems logical as it represents the
most comprehensive datasets and spacial interactions between
the two data-types are known to occur. Overall, networks
involving Transcriptomics data had higher number of nodes than
other networks. The smallest network with 18 nodes and 22 edges
was the Metabolomics Urine & Cytokine network.

Technical Validation of Pairwise Integration
Networks by Random Permutation
We performed the same method of integration on the five
different data-types after randomly permuting the measured
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TABLE 2 | The 10 individual correlation networks.

Network names (data A & data B) Low threshold High threshold No. of nodes (A) No. of nodes (B) Connected components

Metabolomics Serum & Metabolomics Urine −0.51 0.6 14 12 2

Metabolomics Serum & Microbiota −0.38 0.3 21 14 1

Metabolomics Serum & Transcriptomics −0.31 0.35 26 33 2

Metabolomics Serum & Cytokine −0.33 0.5 18 13 2

Metabolomics Urine & Microbiota −0.28 0.42 16 12 1

Metabolomics Urine & Transcriptomics −0.55 0.54 14 29 1

Metabolomics Urine & Cytokine −0.32 0.55 10 8 2

Microbiota & Transcriptomics −0.28 0.27 19 48 1

Microbiota & Cytokine −0.38 0.35 11 11 1

Transcriptomics & Cytokine −0.27 0.34 31 13 2

Each row represents one of the 10 correlation networks. Low Threshold and High Threshold represent the thresholds used for the correlation values. The 3rd and 4th columns have the

number of nodes in the network that belong to the first and second data, respectively. The last column displays the number of connected graphs in the network.

FIGURE 2 | Multilevel integration. This schematic image shows the number of

connections between each internal phenotypic level with the other levels in a

merged network. The colors of the parallelograms denote the internal

phenotypic level to which the data-types belong. Green is Metabolomics (light

green—Metabolite from Serum and dark green—Metabolite from Urine), blue

is Cytokines, red is Transcriptomics, and pink is Microbiota. Each line

connects two levels and the vertical number above the line indicates the

number of edges in the correlation network between those two phenotypic

levels. The number of connected nodes in each level is given in circles above

and below the connecting lines.

data, this process was iterated a 1,000 times. In this way, the
networks obtained from random permutations are considered a
null model with no biological information, and used to assess
the significance of the results obtained with the non-permuted
data. Figure 3 shows the spread of correlation values for the
integration of Metabolomics Serum and Transcriptomics. The
thresholds for network reconstruction were selected so that only
the 5% highest and lowest correlations were kept. The separation
between the values obtained for the integrated data and the
randomly permutated datasets indicates the high significance of

FIGURE 3 | Distribution of network correlations and random network cut-offs

of the Metabolomics Urine and Transcriptomics networks. The x-axis depicts

the range of correlation values and the y- axis shows its frequency. The gray

bars denote the distribution of the thresholds of the 1,000 random correlation

networks with frequency on the left y-axis. The red bars are distributions of the

correlation values of the inferred network with frequency on the right y-axis.

the edges in the integration networks. In this way, selection of
the 5% highest and lowest correlations and significant limits the
number of spurious correlations that could be due to chance
alone while retaining maximum information in the networks.

Similar results were obtained for most of the integration
networks (Supplementary Figure 3). In three of the networks,
there is an overlap between the correlation values from the
inferred network and the values arising from the randomly
generated networks. The overlaps are in the networks
Metabolomics Urine & Microbiota, Metabolomics Urine &
Cytokine, and Transcriptomics & Cytokine network. The highest
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overlap appears in the first two and mostly affects edges with
negative correlations.

Merged Network
All the 10 integration networks (Data Sheet 1) were merged
and only nodes linked with nodes of at least two other data-
types were kept (see Table 3). The gene expression data has
the highest number of nodes in the merged network. However,
nodes with the highest degree (number of connecting edges)
arise from the microbiota data, with S24-7 having 57 neighbors
and Bifidobacterium having 47 neighbors. The merged network
encompasses 45 nodes that are connected to all the other types
of data. For that reason we denote them “Connectivity hubs” and
they are included in Table 3 and Supplementary Table 1.

Functional Validation of Merged Network
by Text Mining
A PubMed literature search for co-occurrence of linked nodes
gave results for 6% of the links corresponding to 37 edges.
We further investigated reported causality effects between the
nodes in question. Most of the retrieved results are related to
metabolites and cytokines measurements whereas a few results
confirming causal relationships were found involving gene nodes.
We were able to find literature confirmation pertaining to
associations for six out of the 10 pair-wise connections between
phenotypes, as summarized in Table 4. Supplementary Table 2
contains all the PubMed identifiers from the literature mining
and Supplementary Table 3 has phrases from a maximum of
three PubMed abstracts from the results. Among the nodes
with literature results, four are from Microbiota, two from
Transcriptomics, 15 from Metabolomics Serum, three from
Metabolomics Urine, and six from Cytokines. The node with the
highest number of hits in literature is Tnfa which co-occurs 8,563
times with nine metabolites from the Metabolomics Serum data
and one bacterial group (Bifidobacterium).

TABLE 3 | Characteristics of the merged network.

Network statistics

Total number of nodes 112 (45)

Total number of edges 577

Number of Metabolomics Urine nodes 15 (8)

Number of Metabolomics Serum nodes 24 (11)

Number of Cytokine nodes 13 (7)

Number of Transcriptomics nodes 43 (12)

Number of Microbiota nodes 17 (7)

Degree range 2–57

Average number of neighbors 10.35

Clustering coefficient 0.20

Characteristic path length 2.31

Network density 0.09

Connected components 1

Characteristics of the merged correlation network. The number of nodes from each data-

type are given in rows three to seven. Between brackets the number of connectivity hubs

is indicated.

Of the 30 data-points from all the types of data that have
literature results, 15 are connectivity hubs. One such connectivity
hub is Glutathione (GSH) which has 21 direct neighbors from
four data-types as shown in Figure 4. This hub is especially
interesting because six of the connected nodes (Carnitine,
Tnfa, Il-1b, Il17c, Bifidobacterium, and Dapk2) have textual co-
occurrences found by the text mining algorithm. The terms GSH
and Tnfa were found 2,231 times in the abstracts of Pubmed
indexed articles. Full text inspection shows that some of the
connections are causal relationships as one of the connected
nodes activates or inhibits the other.

DISCUSSION

In this study we developed and used a set of computational
methods to identify components in internal phenotypic layers
that are connected to components in other internal phenotypic
layers of an organism. We successfully integrated multi-scale
quantitative (-omics) data, derived from a single experiment with
inbred mice and which were exposed to five different diets. Here
the mice had been exposed to the dietary intervention for 4
weeks. Four weeks is a significant amount of time in the life
of mice and previous studies comparing the development of
mice and humans (specifically the immune system in Holladay
and Smialowicz, 2000) indicate that the development of different
systems is much faster in mice than in humans. Hence it is
reasonable to assume that the mice have adapted to the new
diet in 4 weeks. Since the data originated from an animal
experiment that was not designed for the detection of genetically
and/or dietarily induced differences in external phenotypes,
we only focused on the connectivity between 5 intermediate
phenotypic levels. Some studies have reported pairwise data
integration of two (Lu et al., 2014; Rajasundaram et al., 2014;
Benis et al., 2015) or three data sets (Adourian et al., 2008).
But this is, to the best of our knowledge, the first time
that an integration of such heterogeneous data-types from
different tissues, arising from a single experiment, has been
reported. The approach as described here could, in principle,
be applied on any number and type of datasets, as long as
they are from the same experiment, from samples at the same
time-point and have comparable dimensions of differentially
regulated data.

TABLE 4 | Overview of text mining results.

Data connections PubMed Ids Distinct edges

Cytokines & Metabolomics Serum 9,554 16

Metabolomics Serum & Metabolomics Urine 906 6

Microbiota & Metabolomics Serum 254 7

Microbiota & Cytokines 250 5

Transcriptomics & Microbiota 83 3

Metabolomics Serum & Transcriptomics 59 2

The first column shows the types of data that are connected by the edges that were found

in the PubMed literature search.

Frontiers in Physiology | www.frontiersin.org 6 June 2017 | Volume 8 | Article 38827

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Benis et al. Multi-Level Integration of Internal Phenotypes

FIGURE 4 | Glutathione sub-network. This figure shows the 21 connections of

the node Glutathione in the merged network. The different colors of nodes

indicate the data-type of internal phenotypic level of that node, pink is

Microbiota, red is Transcriptomics, blue is Cytokines, and green is Metabolites

(light green—Metabolites from Serum and dark green—Metabolites from

Urine). Oval nodes are connectivity hubs. Dotted lines show un-validated

edges and continuous, thicker edges show connections also present in the

results retrieved from scientific literature. Edge color, yellow and purple,

indicates positive and negative correlations, respectively.

Internal Phenotypic Data and Pairwise
Data Integration
Each used data-type represents a different internal phenotype and
a different layer of the system that (co-) drives the manifestation
of external phenotypes.We subjected each data-type to a separate
analysis in order to correlate only those changes induced by the
dietary intervention. Nodes with significantly different values
could easily be identified in each of the sampled tissues and
fluids (ileum, blood, and urine) thereby representing the local and
systemic effects of the interventions and the need of a multi-scale
approach.

In order to investigate connections between the five data-
types we used sPLS, an integration method that can be applied to
several types of data, two at a time. This method can also handle
the dimensionality problem of biological datasets where the
number of variables is usually higher than the number of samples.
sPLS has been previously used for integration of microbiota
with gene expression data (Benis et al., 2015; Steegenga et al.,
2016), and measurements on cell wall polysaccharides of fibers
with phenotypic characterizations of fibers in cotton balls
(Rajasundaram et al., 2014).

We performed pairwise integration of the datasets, resulting in
10 networks with varying spreads of correlation values. Deciding
on a threshold to distinguish genuine from spurious correlations
is a major bottleneck for the definition of association networks.
While a 0.8 threshold (absolute value) has been suggested
for gene expression data (Schäfer and Strimmer, 2005), other
authors suggested smaller values (0.6) in metabolomics data sets
(Camacho et al., 2005). The correlation values greatly depend on
the biological dataset under study and its dimensionality. There
are several methods to choose a threshold based on the data: use
assigned p-values as threshold; use network characteristics of the
correlations; or use a percentage of the correlation distribution.

When evaluated by Borate et al. (2009) they concluded that
threshold selection methods based on network properties such
as the clustering coefficient are best for gene co-expression
networks. This would not work here because the generated
networks always induce connections between data points of
different type and as a result they have a zero clustering coefficient
for every node. While integrating two types of metabolomics
datasets with gene expression of the tissues in which they
were measured Adourian et al. (2008) assigned p-values to the
correlation values and then set a threshold. Selecting a threshold
is further complicated by the possible appearance of spurious
correlations due to a common response variable influencing the
connecting nodes (A is correlated to B, A is correlated to C,
therefore, B and C appear correlated). Regarding gene expression
data, multiple methods (reviewed for example in Marbach et al.,
2012) have been developed to minimize the number of falsely
predicted associations. In this study, we used the top 5% of the
correlation values because this dynamic threshold (separate for
the positive and negative values) eliminates bias toward the size
of the datasets. To further evaluate the impact of the correlation
scores we have inspected the correlations between some linked
nodes. Supplementary Figure 3 shows an extreme case in which
transcript abundance of two genes negatively correlated with the
abundance of a bacterial group. This might induce a spurious
association between the genes. Spurious associations due to a
common response variable influencing the connecting nodes
are more likely to appear when both nodes are of the same
type. Therefore, to further minimize the number of spurious
associations we have focused on associations between different
internal phenotypes.

We further validated the observed correlations by comparing
them with a null model obtained by randomly permuting the
data along the samples (Eguíluz et al., 2005; Saccenti et al.,
2015). In the randomly permuted samples we expect all inferred
associations to be spurious, as the permutation process destroys
any possible correlation between the variables. In that case,
even the correlations corresponding to the highest and lowest
5% of the population would be spurious. The values of the
correlations deemed significant in the experimental data sets
are found to be higher than these false positives. In two of the
networks, Metabolomics Urine & Microbiota and Metabolomics
Urine & Cytokine (the smallest network), the significance of
the negative correlation values could not be established as we
observed a considerable overlap between the negative correlation
values of this network and the negative thresholds of the
random networks. This calls for caution when biologically
interpreting these networks. For five of the networks we observed
a very clear separation of the random thresholds and the
start of the correlation values in the network (Supplementary
Figure 4). The other networks showed slight overlaps between
the random threshold distribution and the network correlation
distribution. This extra validation step reassured us that the
observed correlations are rooted in biological phenomena. To
our knowledge this technical validation step is not common in
current studies of this type.

The edges of the inferred networks, indicate significant
computationally-determined correlations between values of
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connected nodes. Our approach does not require a mechanistic
model on how the associations are established and in each
network these associations may be caused through entirely
different mechanisms. In some cases the associations would be
due to causal relationships between the connected nodes, such as
increased expression levels of a cytokine gene linked to increased
cytokine levels. However, in many cases, the associations could
be indirect, mediated by elements that have not been measured
in the experimental set up. In a formal mathematical model,
they are considered hidden variables. Such would be the case
of, for example, the changes in the metabolite levels of urine.
These changes might have been caused by the colonic microbiota,
in turn affected by the ileal microbiota. Since we only used
the ileal microbiota data, we observe correlations between the
ileal microbial populations and the urine metabolite levels which
could be in reality, indirect relationships mediated by the colonic
microbiota.

Network of Connected Internal Phenotypes
The pair-wise integration method allowed us to merge the 10
individual networks into a single network. Correlations within
a dataset were deliberately excluded from this study because we
only wanted to focus on connections between different internal
phenotypes, where little work has been done. Thus, in the 10
networks, all detected connections are between two different data
types and every node has a zero clustering coefficient. However,
in the merged network, a non-zero clustering coefficient emerges
as a result of nodes connecting to multiple data types (Table 3).
This emphasizes the biological relevance of this method because
the 10 networks were built without any information on cross-
linking. Thus, we identified individual nodes that directly or
indirectly participate in processes of the other four individual
networks. Because they seem to connect different internal
phenotypes, we denoted them “Connectivity Hubs.” Starting the
procedure as developed and applied here with networks with
non-zero clustering coefficients (correlating within a dataset)
would, however, not alter the connections between internal
phenotypes.

Functional Validations of Phenotype
Connections
Results of the text-mining were used to validate some of the
identified links. This revealed insights into the mechanistic
relationships between the variables predicted to be linked to
each other. Thirty-seven of the 577 (6%) computational inferred
links have already been described in literature as detected by
our text-mining approach, which was not exhaustive because
it focused only on text in journal abstracts. This indicates that
our method identifies currently known biological interactions.
The rest of the predicted links have not been discovered and
investigated yet, have not been mentioned in abstracts, or do
not exist in the biological system. Furthermore, by inspecting
some of the retrieved abstracts and corresponding articles, we
were even able to find causal relationships between some of
the computational identified nodes where one of the nodes was
used as an experimental perturbation and the other node was
measured as a response parameter. Some examples are shown

in Supplementary Table 3. Several indirect associations were also
validated through reports on experiments where nodes, found to
be connected in this study, were measured in response to another
perturbation. During text-mining, in order to retrieve as many
results as possible, search terms were matched against the MeSH
thesaurus, irrespective of the organism, and all the synonyms
were included in the search. The downside to this approach is the
inclusion of several false textual associations. The most striking
case is that of the identified association between Glutathione and
Il17c. In the literature results, the reported association is between
Glutathione and Il17a and not Il17c. Through the thesaurus, Il17c
was mapped to Il17 and subsequently to Il17a thereby giving rise
to that falsely identified association in literature.

In order to increase the precision and recall of text mining
searches, and overcome problems associated to the use of a
thesaurus, one needs to move from mining text, to mining the
knowledge embedded in the text and the use of data hidden in
public databases. Such an approach requires the use of knowledge
management tools and representations that can be automatically
accessed (Antezana et al., 2009). Semantic web technologies
represent a new class of tools that include natural language
processing, ontologies, machine learning algorithms and much
more to facilitate integration knowledge from heterogeneous
sources. The expansion of the use of semantic technologies in
the life sciences domain will allow associating concepts such that
inferences on causality, regulation, organism, or tissue can be
made using high-throughput methods and automated reasoning.

Among the interactions retrieved from the automated
literature search, a high prevalence of associations involving
cytokines and/or metabolites was observed. In fact, such type of
interactions represent 97% of the retrieved results. This probably
highlights the extraordinary amount of work that has been done
in these types of data in the past. On the opposite extreme, only
8% of the retrieved interactions involved associations between the
expression of genes, reflecting the fact that most of the available
gene expression data originates from genome-wide techniques.
In such type of experiments, papers, especially abstracts, usually
report on systems behaviors and pathways and less frequently on
the individual behavior or role of individual genes and connected
response nodes.

Validated Connectivity Hubs
Even though we only performed integrations of two datasets at
a time, we find data-points (metabolites, cytokines, genes, or
microbial groups) that correlate with different types of data. We
identified 45 connectivity hubs in the merged network that seem
to have associations with all four types of data. More than 30%
of them are involved in links that were retrieved in literature.
To further support the biological relevance of identified multi-
level connectivities we discuss the implications of two of the 15
biologically validated connectivity hubs as examples. The two
connectivity hubs were chosen because of the large amount of
literature results for these hubs. The first hub, Tnfa has the
highest number of literature results among all the nodes in the
network and the other hub, Glutathione, has literature validations
to the most number of data-types.
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Tnfa is a connectivity hub in the merged network, with links
to several neighbors belonging to the four other types of data.
The position of this cytokine in our merged network shows that
it plays a role in processes of the other internal phenotypes. The
literature validated links are between Tnfa and two other types of
data (Metabolomics Serum, Microbiota). Many of the validated
links represent causal relationships. With regards to immune
responses and as a drug target, Tnfa has been studied in great
detail (Cicha and Urschel, 2015). The un-validated edges show
that Tnfa could be a regulator of other internal phenotypes as
well, than currently known.

Themetabolite Glutathione (GSH)wasmeasured in the serum
and in the merged network is a connectivity hub proving that
it is vital part of the system that connects several internal
phenotypes. Among the 15 connectivity hubs with functionally
validated links, GSH is the only one that has validated links
to all other data-types based on our literature mining. These
results support our claim of GSH being a connectivity hub, a
biological component influencing several internal phenotypes.
Several PubMed results for GSH are from in-vivo studies where
GSH was administered to alleviate symptoms of a disease. Our
literature results show that GSH has been studied in relation
to all different types of data. Of the six validated links in our
merged network, five represent proven causal relationships (see
Figure 4 and discussion of the functional validation). These
neighboring nodes in the merged network are mostly related
to immune and homeostatic mechanisms. GSH is a tripeptide,
ubiquitously distributed in living cells and plays an important
role in the intracellular defense mechanism against oxidative
stress (Diaz-Vivancos et al., 2015; Couto et al., 2016). It is known
that GSH metabolism is very important for the antioxidant
and detoxifying action of the intestine. It is also essential for
the maintenance of the luminal thiol-disulfide ratio involved
in regulation mechanisms of the protein activity of epithelial
cells (Iantomasi et al., 1997) which could be important since the
intervention is changes in protein. Our results also demonstrate
the manifold and central role of GSH when it comes to proteins,
peptides and amino acids in nutrition. These observations
indicate that the presented merged network represents, at least
in part, associations of biological phenomena.

Potential Relevance of Selected
Connectivity Hubs
There are 30 connectivity hubs in the merged network that
do not co-occur with their connected nodes in our literature
search. However, the prominence of these nodes in our merged
network indicates that they could represent potential relevant
interactions with components of the other internal phenotypes.
In order to demonstrate how the results of this study may be
used to hypothesize on functional relationships between different
molecular components, we here describe the potential biological
relevance of two highly linked connectivity hubs, Tmem72 and
S24-7. Both hubs are not yet described in literature abstracts in
conjunction with other data-types.

The high number of connectivity hubs in the Transcriptomics
layer suggest that the expression of several intestinal genes is

involved in many more interactions than currently known. None
of the observed Transcriptomics connectivity hubs popped-up
in our literature mining results. The most highly connected
Transcriptomics node, Tmem72 (Transmembrane Protein 72),
has only been studied in the kidney so far (Habuka et al., 2014)
and not much information is available on it. But in the merged
network this node has 27 links to other data-types (can be
visualized in Data Sheet 1), mostly to metabolites from both
the metabolomics datasets. Based on this, we hypothesize that
Tmem72 is not specific to the kidney and that it has some sort
of communication function in intestinal mucosa as well. The fact
that Tmem72 is a transmembrane protein is supportive for this.
Given its observed links with different microbiota, metabolites,
and cytokines, it might be involved in diverse interactions with
other internal phenotypes. Based on such an hypothesis, targeted
experimental designs may be developed in order to investigate
the hypothesized “communication” function of Tmem72 in
intestinal mucosal tissue.

The most highly linked node of the merged network is the
bacterial family classification, S24-7, suggesting an important
role for this species in gut functionality. In some of the inferred
individual association networks we already found it to be linked
to a high number of nodes. Unfortunately, this node is not
represented in literature abstracts together with the here observed
neighbors. However, there is compelling literature that shows
this microbial classification to be a significant part of the gut
microbial community structure (Harris et al., 2014; Jakobsson
et al., 2015). This family classification does not have a good
functional definition, yet several studies show that it could be an
important player in the functionality of the gut (Evans et al., 2014;
Harris et al., 2014; Rooks et al., 2014). The latter claims are in line
with the high number of neighbors that S24-7 has in our merged
network. The current technical inability to cultivate S24-7 is most
certainly due to the absence of knowledge on S24-7 interactions.
However, a recent in-silico study (Ormerod et al., 2016) shows
that S24-7 species have the ability to survive on different types of
carbohydrate sources, similar to the genus Bifidobacteria. In the
merged network, the connectivity hubs S24-7 and Bifidobacteria,
share the highest number of neighbors (directly linked nodes).
Among them are 16 genes, and neither S24-7 nor Bifidobacteria
have literature results with any of these genes. An enrichment
analysis on these shared network gene neighbors shows that
they are involved in functions related to linoleic and linolenic
acid metabolism (data not shown). It is known that these fatty
acids are produced by Bifidobacteria (Teran et al., 2015) and that
they are involved in the maintenance of the epidermal barrier
function (Muñoz-Garcia et al., 2014). The observation that in our
network these genes are shared between S24-7 and Bifidobacteria
underscores the here hypothesized importance of S24-7 and
indicates that these two bacterial groups are indeed closely related
in function as hypothesized before (Ormerod et al., 2016).

From the results described in this paper, we conclude that
we successfully developed methodologies to identify components
in internal phenotypic layers that are connected to components
in other internal phenotypic layers. By integrating multi-scale
quantitative (-omics) data using a regression approach, we were
able to provide provisional insight into potential ways internal
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phenotypic layers are connected to each other, including those
between local and systemic layers. By a technical and functional
validations, we underscored the relevance of our findings.
Based on data generated by this type of integrated approaches,
hypothesis driven and targeted research may be developed to
identify causal relationships between various biological scales
in order to diminish our knowledge gap between genotype
and external phenotype. In addition, by expanding comparable
approaches by incorporating data on genetic diversity and/or
variation in external phenotypes, this knowledge gapmay be even
further closed down. The analysis pipeline that we developed is
very general. Here we demonstrated this pipeline with datasets
that address only one of the multiple environmental factors that
might affect the internal phenotypes, namely the diet. However,
the approach is very general and can be adapted to any type or
number of data sets describing the impact of other perturbations.
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Cellular homeostasis is a continuous phenomenon that if compromised can lead to

several disorders including cancer. There is a need to understand the dynamics of

cellular proliferation to get deeper insights into the prevalence of cancer. Mechanistic

Target of Rapamycin (mTOR) is implicated as the central regulator of the metabolic

pathway involved in growth whereas its two distinct complexes mTORC1 and mTORC2

perform particular functions in cellular propagation. To date, mTORC1 is a well defined

therapeutic target to inhibit uncontrolled cell division, while the role of mTORC2 is not

well characterized. Therefore, the current study is designed to understand the signaling

dynamics of mTOR and its partner proteins such as PI3K, PTEN, mTORC2, PKB

(Akt), mTORC1, and FOXO. For this purpose, a qualitative model of mTOR-associated

Biological Regulatory Network (BRN) is constructed to predict its regulatory behaviors

which may not be predictable otherwise. The depleted expression of PTEN and FOXO

along with the overexpression of PI3K, mTORC2, mTORC1 and Akt is predicted as a

stable steady state which is in accordance with their observed expression levels in the

progression of various cancers. The qualitative model also predicts the homeostasis of

all the entities in the form of qualitative cycles. The significant qualitative (discrete) cycle

is identified by analyzing betweenness centralities of the qualitative (discrete) states.

This cycle is further refined as a linear hybrid automaton model with the production

(activation) and degradation (inhibition) time delays in order to analyze the real-time

constraints for its existence. The analysis of the hybrid model provides a formal proof

that during homeostasis the inhibition time delay of Akt is less than the inhibition time

delay of mTORC2. In conclusion, our observations characterize that in homeostasis Akt is

degraded with a faster rate than mTORC2 which suggests that the inhibition of Akt along

with the activation of mTORC2 may be a better therapeutic strategy for the treatment of

cancer.

Keywords: mTOR signaling pathway, SMBioNet, Biological regulatory networks (BRNs), René Thomas, Qualitative

modeling, Model checking, Cancer
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INTRODUCTION

Cells need continuous supply of resources that maintain
intracellular energy and require nutrient levels contributing
to macromolecular biosynthesis and serving as an upstream
regulator of cell size and growth rate (Schmelzle and Hall,
2000; Wullschleger et al., 2006; Avruch et al., 2006; Sonntag
et al., 2012). Compromised growth homeostasis can lead to
several diseases including metabolic disorders, aging and cancer
(Zoncu et al., 2011). A serine/threonine protein kinase mTOR,
a member of the phosphatidylinositol kinase related kinases
(PIKKs) family (Schmelzle and Hall, 2000), acts as a central
regulator of homeostasis during growth and starvation (Zoncu
et al., 2011). Recent studies have shown that dysregulation in
mTOR signaling could lead to cancer and other pathologies
(Menon and Manning, 2008). In these studies, abnormally
elevated levels of mTOR have been linked with several human
cancers including prostate, pancreas, liver, breast, colorectal,
urinary tract, and female reproductive organs. On the other hand,
due to excess nutrients supply, hyperactivation of mTOR has also
been implicated to cause diabetes (Zoncu et al., 2011). Moreover,
being the central regulator of growth, mTOR also monitors
the process of aging (Zoncu et al., 2011). mTOR functions in
the form of two distinct complexes namely mTOR Complex
1 (mTORC1) and 2 (mTORC2) (Wullschleger et al., 2006;
Guertin and Sabatini, 2007). These complexes are distinguished
by their unique accessory proteins, i.e., raptor and PRAS40
in case of mTORC1 and rictor, Protor and mSin1 in case of
mTORC2 (Hara et al., 2002; Kim et al., 2002; Sarbassov et al.,
2004). The function of these accessory proteins is to specify
their binding with different substrates and regulators (Hara
et al., 2002; Kim et al., 2002; Nojima et al., 2003; Schalm
et al., 2003; Wullschleger et al., 2005; Sancak et al., 2007;
Pearce et al., 2007). Both mTORC1 and mTORC2 share also
some components including mLST8 and Deptor that act as
positive and negative regulators, respectively (Loewith et al.,
2002).

Signaling of mTOR
The mTOR signaling pathway (Figure 1) is initiated by
insulin, insulin-like growth factor 1 (IGF1) and Ras (Laplante
and Sabatini, 2012) along with others. The binding of
insulin with insulin/IGF1 signaling (IIS) receptors causes its
autophosphorylation with subsequent recruitment of insulin
receptor substrate (IRS) with its cytosolic domain. Activated IRS
then activates several downstream effector proteins including
PI3K.

The role of PI3K pathway in metabolism and growth is
well-established and its dysregulation could result in certain
metabolic disorders and cancers (Carracedo and Pandolfi,
2008). In addition to the activation of JNK pathway (Vivanco
et al., 2007) that down-regulates PTEN transcription and
promotes cellular proliferation by hindering apoptosis, it is
also involved in the activation of Akt (Carracedo and Pandolfi,
2008). PI3K phosphorylates and converts phosphatidylinositol
(4,5)-bisphosphate (PIP2) to phosphatidylinositol (3,4,5)-
trisphosphate to (PIP3) (Engelman et al., 2006; Manning and

FIGURE 1 | mTOR Signaling Pathway. Collectively growth factors and amino

acids (via Rags mediated binding of mTORC1 to Rheb) activate mTORC1.

Insulin binds to its IRS1 that activates PI3K and recruits PDPK1 from cell

membrane via to PIP3 conversion. PI3K and mTORC2 phoshorylate Akt at

Thr308 and Ser473, respectively. Through inhibition of TSC1-TSC2 and FOXO,

Akt stimulates mTORC1 to promote mRNA translation and inhibits apoptosis

by phosphorylating S6K1 and 4E-BP1. Negative feedback inhibition of IRS1 is

initiated by S6K1 to downregulate glucose metabolism. PTEN regulates

mutagenic stimulation of PI3K (via PIP3 to PIP2 reconversion) to keep cellular

propagation within controlled levels while FOXO is responsible to control

hyperactivation of mTORC1.

Cantley, 2007). This event is important for the activation of
phosphatidylinositol dependent protein kinase 1 (PDPK1)
that eventually stimulates Akt. The activation of Akt is
achieved through phosphorylation at two sites i.e., Thr308
and Ser473. Activated PDPK1 phosphorylates Akt at position
Thr308 whereas another protein mTORC2 phosphorylates it at
Ser473 (Alessi et al., 1997; Sarbassov et al., 2005). Both these
phosphorylation events are essential for the complete activation
of Akt. Thobe et. al. examined the influence of PI3K pathway
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kinases on mTORC2 and found PI3K mediated regulation
essential for mTORC2 recruitment and further activation Thobe
et al. (2017).

Akt regulates several downstream proteins such as Tuberous
Sclerosis proteins 1 and 2 (TSC1/TSC2) and FOXO. The
heterodimer of TSC1 (hamartin) and TSC2 (tuberin) primarily
inhibits the activity of mTORC1 via conversion of active Ras
homolog enriched in brain (Rheb)-GAP into inactive Guanosine
diphosphate (GDP)-bound Rheb (Inoki et al., 2003; Tee et al.,
2003). Akt phoshorylates and inhibits TSC1/TSC2 in order to
activate mTORC1 (Inoki et al., 2002; Manning et al., 2002; Potter
et al., 2002; Roux et al., 2004; Ma et al., 2005). Akt also elevates
the expression of mTORC1 indirectly through the inhibition of
FOXO (Guertin et al., 2006; Chen et al., 2010; Zoncu et al., 2011).
FOXO acts a homeostatic regulator of cellular energy production
and consumption processes under energy stress conditions.
Another role of FOXO is to increase the activation of Rictor (a
major component of mTORC2) and subsequently mTORC1.

PI3K signaling is mainly buffered through PTEN (Carracedo
et al., 2008). PTEN serves as a tumor suppressor and mostly
found mutated in its phosphatase domain (Eng, 2003) in several
cancers (Li and Sun, 1997; Steck et al., 1997) causing overactive
PI3K signaling. PTEN hydrolyzes phosphatidylinositol (3,4,5)-
trisphosphate (PIP3) to phosphatidylinositol (4,5)-bisphosphate
(PIP2) (Figure 1) . In this way, PTEN inhibits PIP3 dependent
downstream signaling events like membrane recruitment and
activation of AKT to prevent cell growth and proliferation.
Hence, PTEN holds critical position in maintaining homeostasis
through the inhibition of oncogenic transformation (Carracedo
and Pandolfi, 2008).

Finally, the activated mTORC1 activates several downstream
effectors mainly eukaryotic translation initiation factor 4E
(eIF4E)-binding protein 1 (4E-BP1) and S6 kinase 1 (S6K1),
that represses autophagy and promotes protein synthesis. S6K1
phosphorylates rictor causing mTORC2 disassembly (Dibble
et al., 2009; Julien et al., 2010; Treins et al., 2010) and also
degrades IRS proteins (Harrington et al., 2004; Shah et al., 2004)
which dampens the PI3K mediated signaling cascade.

Mutations in the genes encoding for the proteins of mTOR
associated BRN can lead to different types of cancers including
sporadic cancers, hamartoma syndromes or phakomatoses,
cowden syndrome (PTEN), neurofibromatosis (NF1, NF2) and
peutz–Jeghers syndrome (LKB1) (Menon and Manning, 2008).
Deregulation of entities in mTOR associated BRN result in
certain other complications like insulin resistance and type 2
diabetes. Moreover, mTOR pathway can also be hyper-stimulated
(e.g., in adipose tissues) under situation of excessive nutrients
that can ultimately lead to the same complications (Um et al.,
2004; Khamzina et al., 2005; Tremblay et al., 2007).

Computational Modeling
Gene expression is a complex process and its regulation
determines the overall cellular dynamics (De Jong, 2002).
Computational techniques in systems biology facilitate to
explore the role of genes, proteins and overall dynamics of
the system (Glass and Kauffman, 1973). Qualitative modeling
framework is one of the established methods to analyze gene

expression dynamics (Thomas, 1978; Thomas and d’Ari, 1990;
De Jong et al., 2004) in the form of biological regulatory
networks (BRNs) (Lewin, 2000). A BRN is modeled by a
directed graph where vertices represent biological entities e.g.,
DNA, RNA, proteins and other biological molecules whereas
edges correspond to regulatory interactions (i.e., activation and
inhibition) (Bernot et al., 2007). The design of the study is
illustrated in Figure 2.

Contributions
The main objective of this study is to build a refined
computational model of mTOR regulation that could predict
therapeutic targets to inhibit the progression of cancer. A BRN
of mTOR and its interacting proteins (PI3K, PTEN, mTORC2,
Akt, mTORC1 and FOXO) has been abstracted from the pathway
(Figure 1) in order to explore the dynamics based on the logical
formalism of René Thomas (Peres and Jean-Paul, 2003; Bernot
et al., 2004, 2007). The unknown parameters in the logical model
are inferred based on biological observations formally encoded
as CTL (Computational Tree Logic) formulas in SMBioNet
(Selection of Models of Biological Networks) tool (Mcadams

FIGURE 2 | Workflow Design of the study of the therapeutic strategy for

cancer.
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and Shapiro, 1995). The qualitative model (State Graph) of the
BRN infers the dynamics such as homeostasis in the form of
qualitative cycles and stable behavior in the form of stable state
(SS). The most significant qualitative cycle is selected based on
the centrality values of the qualitative states in the model. A
linear hybrid automaton of the selected cycle is constructed
using Hytech model checker (Henzinger et al., 1997) with new
parameters for production and degradation time delays. Hytech
inferred the values of these parameters in the form of linear
constraints. These constraints are further analyzed to infer the
pairwise relations between any possible pair of delays of genes.
These relations show only one significant relation between AKT
and mTORC2 in terms of delays. The analysis of the hybrid
model provides a formal proof that during homeostasis the
inhibition time delay of Akt is less than the inhibition time
delay of mTORC2. This enforces that in homeostasis Akt is
degraded with a faster rate than mTORC2 which suggests that
the inhibition of Akt along with the activation of mTORC2
may be a better therapeutic strategy for the treatment of
cancer.

METHODS

Reduction of Signaling Pathway
The signaling pathway shown in Figure 1 is further reduced to a
BRN shown in Figure 3 by the reduction rules described in (Naldi
et al., 2009; Saadatpour et al., 2013). These rules have already been
applied to reduce the TLR4 and JAK/STAT signaling pathways
to a BRN with all possible regulatory feedback circuits (Paracha
et al., 2014). The abstracted mTOR-associated BRN is composed
of six proteins which are PI3K, PTEN, mTORC2, Akt, mTORC1,
and FOXO.

FIGURE 3 | The mTOR-associated BRN: abstraction of mTOR signaling

pathway (Figure 1) in BRN. Positive (activation) and negative (inhibition)

regulations are represented by “+” and “−” signs respectively.

Qualitative Modeling
Biological regulations (production and degradation) are
subjected to expression levels of entities in BRN. An entity p1
activates or inhibits another entity p2, at a specific threshold.
A qualitative threshold can be described as a discrete level
(first, second, third etc.). René Thomas proposed a modeling
framework which assumes qualitative thresholds and parameters
to derive the dynamics of a BRN. Several methods are in
use to model the behavior of biological systems (Peres and
Jean-Paul, 2003; Bernot et al., 2004, 2007). Continuous
modeling frameworks based on ordinary and partial differential
equations are widely used. These frameworks rely on precise
quantitative values, which in many cases are not known. This
limitation led to the development of qualitative modeling
framework. Kauffman et al., introduced a logical formalism
based on Boolean logic where each entity was considered
as “ON” (1) or “OFF” (0) to represent its activation or
inhibition, respectively (Kauffman, 1969, 1993; Somogyi
et al., 1997). This approach was further extended to kinetic
logic formalism by Thomas to incorporate multi-valued
(0,1,2,3,...) expression levels of entities. Formal methods such
as model-checking approach can help to infer the parameters
of complex systems (Bernot et al., 2007). BRNs are complex
systems and their parameters can be inferred with such
approaches.

This study is based on the kinetic logical formalism developed
by René Thomas (Thieffry and Thomas, 1995) to model
the biological regulatory network (BRN) of mTOR using
GENOTECH tool Ahmad (2009) (available at https://github.
com/DrJamilAhmad/GENOTECH/blob/master/GenoTechE.
jar). An important feature of kinetic modeling is positive or
negative feedback circuits. An entity favors the activation of
another entity in the BRN through positive feedback and is
necessary to generate multi-stationarity (stable states), whereas
an entity favoring the inhibition of another entity through
negative feedback is a necessary condition to generate oscillatory
behavior (homeostasis) (Thomas, 1981). Number of studies
performed on genetic networks that incorporated analysis of
positive and negative feedbacks with formal methods can be
found in Kauffman (1993), Somogyi and Sniegoski (1996), and
Szallasi and Liang (1998). Formal definitions provided in Aslam
et al. (2014) and Paracha et al. (2014) can be obtained for detailed
description.

Parameters Inference using Model
Checking
Qualitative dynamics of Thomas networks depend on the values
of logical parameters which are unknown a priori. These
parameters are used to render system dynamics as a directed
state graph (discrete or qualitative model), which incorporates
important behaviors such as cycles or stable states. The inference
of biologically coherent parameters is an important aspect of
qualitative modeling. In this direction, Bernot et al., introduced
an approach to infer these logical parameters using a formal
method approach called model checking. This approach is
implemented in SMBioNet (Selection of Models of Biological
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Networks) tool. It performs an exhaustive enumeration ofmodels
and selects those set of parameters which are consistent with
experimental observations expressed as temporal logic formulas.
Similar parameter estimation approach (by using SMBioNet
tool) has been employed to study qualitative behavior of several
biological systems including immunity control mechanism
in lambda phage network (Mcadams and Shapiro, 1995),
pathogenesis and clearance mechanism of dengue virus (Aslam
et al., 2014), MAL-Associated network of Cerebral Malaria
(Ahmad et al., 2012) and the role of OGT in Cancer progression
(Saeed et al., 2016).

Network Analysis
Graph-theoretic approaches have been successfully applied on
large protein networks (Barabasi and Oltvai, 2004; Stelniec-
Klotz et al., 2012). The state graph can be further analyzed
using network analysis techniques in terms of graph connectivity
(Junker and Schreiber, 2011) by sorting it on the basis of
maximum betweenness centrality (Freeman, 1977). The states
with higher betweenness centralities represent higher chances of
their occurrences. This may in terms of biological phenomenon
represent the entities with frequent expressions. The qualitative
states in the model with high betweenness centralities are
compared to the rest of the state space in order to identify most
favorable cycle (Tareen et al., 2015; Saeed et al., 2016).

Hybrid Modeling
René Thomas’ framework provides useful insights into the
discrete qualitative behavior of a biological system. However,
naturally, the expression levels of proteins evolve in a continuous
manner. Hybrid modeling combines discrete changes of a system
with continuous changes (differential equation) in a single
formalism Bio-Linear Hybrid Automaton (Bio-LHA) has been
proposed for the hybrid modeling of qualitative BRNs (Ahmad
et al., 2007). Bio-LHA uses time delays along with continuous
variables (clocks) to compute production and degradation time
of gene expressions. Production (δ+) or degradation (δ−) delay
is the time required for a gene expression to reach from a lower
level to a higher level or vice versa (Figure 4). In this approach, a
clock variable (h) is associated with each entity which is initially
set to zero and it evolves with rate 1 when the expression evolves.
A clock is reset when it measures a production or degradation
delay as shown in Figure 5. Hybrid model checking tool such as
HyTech (Henzinger et al., 1997) can be used to infer the values
of delays in the form of linear delay constraints for behaviors
(paths toward stable states and cycles) observed in the qualitative
model. Invariance kernel (Ahmad et al., 2007; Ahmad and Roux,
2010) represents cycles in the hybrid models which can also
be characterized with delay constraints. These delay constraints
are further converted into the relation matrix in order to find
constraints between any two types of delays (production or
degradation) of all entities. This modeling approach has been
successfully applied to model a variety of BRNs (Ahmad et al.,
2007, 2008, 2012; Ahmad, 2009; Aslam et al., 2014; Bibi et al.,
2016).

FIGURE 4 | Time delays in expression evolution Ahmad et al. (2012). The

evolution of qualitative states is characterized by time delays: δ+ represents

production delay or time required to pass from low level to next high level

whereas δ− is the time delay required for a gene to pass from high level to low

level (degradation delay).

FIGURE 5 | The production and degradation time delays δ+/− associated with

an entity p. The clock hp measures the production or degradation time delays.

RESULTS

Parameters Inference
To construct qualitative model of the mTOR associated BRN,
SMBioNet tool has been employed to correctly estimate logical
parameters according to biologicalobservations in literature
(Chen et al., 2010; Zoncu et al., 2011; Laplante and Sabatini,
2012). This tool takes Computation Tree Logic (CTL) formulas
representing biological observations and BRN as inputs and
selects those sets of parameters which verify these formulas.
In BRN modeling these parameters are used to incorporate
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behaviors in the form of paths, cycles and stable states (SS) as
specified in the CTL formulas (Table 1). Formula 1 in Table 1

represents that in a particular homeostatic behavior (represented
by CTL operator E) all entities with 0 expression levels after
next qualitative state (represented by CTL operator X) finally
reach the same expression levels in future (represented by CTL
operator F). Formula 2 represents the biological observation
that the overexpression of PTEN, FOXO, PI3K, mTORC1, and
inactivation of Akt gradually leads to (represented by CTL
operator ⇒) a steady carcinogenic state (represented by CTL
operators F and G) with the overexpression of Akt, mTORC1,
mTORC2, PI3K, and inactivation of PTEN and FOXO. The
effect of PTEN inhibition on Akt/mTORC1 pathway eventually
leads to a SS where FOXO and PTEN are not expressed. This
behavior is encoded by Formula 3. On the basis of CTL formulas,
SMBiogenerated eight sets of logical parameters for mTOR
associated BRN (see Supplementary Files 1, 2).

Selection of a Qualitative Model
The eight qualitative models of these sets were further analyzed
for cycle(s) and SS(s) using GENOTECH tool. Almost all the
parameter sets provide comparable results, revealing similar
cycles and SS(s). First four models were selected on the basis of
biological plausible SS (1, 0, 1, 1, 1, 0) representing the activation
and inactivation states of entities in order of PI3K, PTEN,
mTORC2, Akt, mTORC1 and FOXO, respectively. This SS
represents the activation of PI3K, mTORC2, Akt and mTORC1
along with the inactivation of PTEN and FOXO. Subsequently,
these 4 models were further compared for the logical parameter
values which are coherent with biological observations. The set of
logical parameters for this model (Supplementary File 3) is given
in the last column of Table 2. The selected model (Figure 3) also
shows eight cycles along with one SS (1, 0, 1, 1, 1, 0).

Several states lead the BRN directly into SS which represent
critical divergence toward disease. All such states that eventually
progress toward deadlock state do not possess functional

TABLE 1 | CTL formulas.

No. CTL Formulas References

1 (PI3K = 0 ∧ FOXO = 0 ∧ mTORC2 = 0,∧Akt =

0 ∧ mTORC1 = 0 ∧ PTEN = 0) →, (EX (EF (PI3K =

0 ∧ FOXO = 0 ∧ mTORC2 = 0 ∧ Akt =

0 ∧ mTORC1 = 0)))

Zoncu et al., 2011

2 (PTEN = 1 ∧ FOXO = 1 ∧ Akt = 0 ∧ PI3K =

1 ∧ mTORC1 = 1 ∧ mTORC2 = 1) →

(EF (AG(Akt = 1 ∧ PTEN = 0 ∧ FOXO =

0 ∧ mTORC1 = 1 ∧ mTORC2 = 1 ∧ PI3K = 1)))

Carracedo and

Pandolfi, 2008;

Chen et al., 2010;

Zoncu et al., 2011;

Laplante and

Sabatini, 2012

3 (PI3K = 1 ∧ FOXO = 0 ∧ Akt = 1 ∧ mTORC1 =

1) → (EF (AG(Akt = 1 ∧ FOXO = 0 ∧ PTEN = 0))) Carracedo and

Pandolfi, 2008;

Zoncu et al., 2011

These CTL formulas are used in SMBioNet tool to infer the set of logical parameters.

Formula 1 is designed to observe homeostasis while the other two formulas are used for

observing stable steady state(s).

PTEN or FOXO while having cellular proliferatory elements
fully activated, e.g., (1,1,1,1,1,0), (1,0,1,1,1,1) as represented in
(Figure 6). Thus, the down regulation of these tumor suppressor
genes (PTEN and FOXO) bring this deadlock (SS) where
no regulator is present to perform its function. The states
(1,0,1,1,0,0), (0,0,1,1,1,0), (1,0,0,1,1,0), and (1,0,1,0,1,0) with
temporary inhibition of PI3K, mTORC2, Akt, or mTORC1
are restrained in proceeding states resulting in their full and
uncontrollable activation. This impact of tumor suppressor gene
can be observed in cyclic state (1,1,1,1,1,0) that progresses into
(0,1,1,1,1,0) (Figure 6) where PI3K is down-regulated through
the inhibitory effect of PTEN to slow down further increase
in cell mass and number. So the pre-occupation of PTEN is
desired to recover the system into homeostatic state (0,1,1,1,1,0)
that otherwise could divert into SS (1,0,1,1,1,0). The selected
cyclic trajectory along with its respective constraints is given in
Figure 8, specifies the stay conditions for each cyclic state and
its violation would activate counter mechanism of autophagic
inhibition by mTORC1 leading to cancer.

Validation of Qualitative Model with ASP
We applied exhaustive model-checking to validate the qualitative
model of this study as proposed in Ben Abdallah et al. (2015).
In this approach, the authors present a logical approach (using

TABLE 2 | Selection of logical parameters.

Parameter Resource(s) Range of Values Selected

Parameters

KPI3K {} 0 0

KPI3K {mTORC1} 0,1 1

KPI3K {PTEN} 0,1 1

KPI3K {mTORC1,PTEN} 0,1 1

KPTEN {} 0 0

KPTEN {PI3K} 1 1

KmTORC2 {} 0 0

KmTORC2 {FOXO} 0,1 1

KmTORC2 {mTORC1} 1 1

KmTORC2 {PI3K} 0,1 1

KmTORC2 {FOXO,mTORC1} 1 1

KmTORC2 {FOXO,PI3K} 0,1 1

KmTORC2 {mTORC1,PI3K} 1 1

KmTORC2 {FOXO,mTORC1,PI3K} 1 1

KAkt {} 0 0

KAkt {mTORC2} 0 0

KAkt {PI3K} 0 0

KAkt {mTORC2,PI3K} 1 1

KmTORC1 {} 0 0

KmTORC1 {Akt} 0,1 0

KmTORC1 {FOXO} 1 1

KmTORC1 {Akt, FOXO} 1 1

KFOXO {} 0 0

KFOXO {Akt} 1 1

KFOXO {mTORC1} 0 0

KFOXO {Akt,mTORC1} 1 1

This table describes the ranges of logical parameter values. Some parameters are fixed

to single values 0 or 1 based on biological observations. The last column lists one of the

eight selected parameter sets generated by SMBioNet.
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FIGURE 6 | State graph of the mTOR-associated BRN. Nodes of the state graph represent the states of the BRN and edges between states represent the evolution

of states. A state in this graph shows the expressions of the entities PI3K, PTEN, mTORC2, Akt, mTORC1, and FOXO respectively. The stable steady state

(1,0,1,1,1,0) represents high expression levels of all entities except tumor suppressors. Cycle having maximum betweenness centrality is represented in green color

with bold arrows, also showing bifurcation toward stable state (1,0,1,1,1,0).

the Answer Set Programming language (ASP) Baral, 2003) to
simulate and exhaustively analyze the dynamics of multivalued
biological regulatory networks. The ASP method searches the
attractor basins (stable states) which the region from which it is
not possible to exit. By translating the model of Figure 3 to an
automata network (Supplementary Files 6–9) and giving it as an
input to the method of Ben Abdallah et al. (2015), we found that
the set of all the attractor basins is reduced to a single stable state:
(PI3K = 1,AKT = 1, PTEN = 0,MTORC2 = 1, FOXO =

0,MTORC1 = 1). This result is effectively coherent with the
qualitative model given in Figure 6.

Selection of Cycle
Since the model shows eight cycles therefore it is important
to identify the most probable biological cycle. Thus, on the

basis of betweenness centrality a cycle was computed by using
Cytoscape tool (Shannon et al., 2003) that sorts all the states on
the basis of their betweenness centralities (Freeman, 1977; Tareen
et al., 2015), as presented in Figure 7 (Supplementary File 4).
The nodes with larger diameter represent states with higher
betweenness centrality. The cycle with maximum betweenness
centrality: (1, 1, 1, 0, 0, 1) → (1, 1, 1, 1, 0, 1) → (1, 1, 1, 1, 0, 0) →
(1, 1, 1, 1, 1, 0) → (0, 1, 1, 1, 1, 0) → (0, 1, 1, 0, 1, 0) →

(0, 1, 0, 0, 1, 0) → (0, 1, 0, 0, 1, 1) → (0, 1, 0, 0, 0, 1) →

(0, 1, 1, 0, 0, 1) → (1, 1, 1, 0, 0, 1) shows oscilation of all entities
except PTEN. The cycle reveals that the constant activation of
PTEN is required for homoeostasis. Any diversion from this
cycle would either lead toward carcinogenic SS (1,0,1,1,1,0). All
the cyclic trajectories represented in Figure 6 show expression of
PTEN that positively regulates PI3K and enforces the model to
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FIGURE 7 | State graph of mTOR associated BRN: size and color of nodes are scaled on the basis of betweenness centrality, larger nodes represent higher

centralities with variable shades of green color (darker the color, higher is the centrality). The graph comprises of 64 states and 192 edges. Cycle with maximum

betweenness centrality is extracted out at top layer. Red and green arrows represent degradation and production of entities, respectively.

remain in homeostasis. On the contrary, uncontrolled expression
of PI3K and subsequent stimulation of cellular proliferative
machinery mainly Akt and mTORC1 would either cause diabetic
disorders or more severe circumstances like oncogenesis.

Hybrid Model
The cycle in Figure 7 shows homeostatic biological regulation
of entities in the form of the switching of their low and high
expression levels. In the cycle, the stable high expression of PTEN
gene is revealed as a mandatory condition in all the states to
maintain homeostasis (represented by 1 expression level in all
cyclic states) while the expression of other entities oscillate in
relation to each other. The Bio-LHA model in Figure 8 of this
cycle was implemented in HyTech tool (Supplementary File 5)
in order to predict its underlying causality relations of delays
by analyzing the invariance kernel (Ahmad et al., 2008). The

invariance kernel represents a set of viable cyclic trajectories in
the state space of the Bio-LHA. Delay constraints characterizing
the invariance kernel of the selected cycle were computed by
HyTech tool (Table 3). In Table 3, the notation π is used to
represent the sum of production and degradation delays as
period (Ahmad, 2009). Conjunctions of all these constraints
(1–9) constitute a necessary and sufficient condition for the
existence of the invariance kernel and hence the qualitative cycle.
Violation of any constraint would result in a null invariance
kernel and eventually the qualitative cycle will no more exist. It is
therefore sufficient that all the constraints should be valid (true)
for the existence of the invariance kernel or qualitative cycle. For
example, in Table 3, constraint 1 (δ+FOXO ≤ |δ−mTORC1| + |δ−

Akt
|

) shows that the production (activation) of FOXO is required
before the degradation of Akt andmTORC1 and hence constitute
a necessary condition for cycle (homeostasis). Again constraint
2 establishes another necessary condition for the existence of
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FIGURE 8 | (A) Discrete representation of cycle selected on the basis of centrality, larger circles represent higher centrality states. (B) Bio Linear Hybrid Automata of

selected cycle: Each square symbol represents a hybrid location by capturing the discrete expression dynamics (top) and the continuous evolution of all clocks. Clock

value h resets to 0 after each transition. P1 = PI3K, P2 = PTEN, P3 = mTORC2, P4 = Akt, P5 = mTORC1, P6 = FOXO.
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TABLE 3 | Delay constraints.

Number Delay Constraints

1 δ+
FOXO

≤ |δ−
mTORC1

| + |δ−
Akt

|

2 |δ−
FOXO

| ≤ δ+
Akt

+ δ+
mTORC1

3 |δ−
PI3K | ≤ δ+

mTORC1
+ |δ−

Akt
|

4 π (FOXO)+ |δ−
PI3K | ≤,π (Akt)+ π (mTORC1)

5 π (FOXO)+ π (PI3K) ≤ π (Akt)+ π (mTORC1)+ δ+
mTORC2

6 δ+
FOXO

+ |δ−
PI3K | ≤ π (mTORC1)+ |δ−

Akt
|

7 π (FOXO)+ π (PI3K) ≤ π (mTORC2)+ δ+
Akt

+ δ+
mTORC1

8 δ+
PI3K + δ+

FOXO
≤ δ+

Akt
+ π (mTORC2)

9 π (PI3K)+ δ+
FOXO

≤ δ+
Akt

+ π (mTORC2)+ δ+
mTORC1

Delay Constraints of the selected cycle characterizing its invariance kernel. δ+ represents

production (activation) delay while δ− represents degradation (inhibition) delay. Notation

π (e) refers to the sum of production and degradation delays of the entity e.

the cycle that explains that the degradation of FOXO should
occur earlier than the production of mTORC1 and Akt. Similarly,
other remaining constraints imposes necessary conditions for the
existence of the cycle.

From the delay constraints in Table 3, a relation matrix is
derived in Table 4 containing pairwise relations of delays of
the entities FOXO, PI3K, mTORC1, mTORC2, and Akt. A
relation between a pair of delays with both ≤ and ≥ reveals
that the cycle is desensitized to the violation of such constraints.
The table contains only one pairwise constraint between the
degradation delays of Akt and mTORC2. It is important to note
that these relationships are enforcing homeostasis represented by
the qualitative cycle. From the results, it can be implicated that if
cellular systems tends to escape homeostasis it may lead toward
pathogenesis.

The only pairwise relation between δ−
Akt

and δ−mTORC2 (Table 4)
reveals a significant property of the selected homeostatic cycle
where the degradation delay of Akt is less than or equal to the
degradation delay of mTORC2. In other words, the degradatin
of AKT occurs at faster rate than the degrdation of mTORC2.
Interestingly, this is the only observed property of the cycle
that enforces its existence dramatically. Thus, this constraint
provides a governing rule that if violated may bifurcate the
trajectory toward stable steady state (1,0,1,1,1,0) (represented by
red colored state in Figure 6).

DISCUSSION

The pathological roles of PTEN, mTOR, and Akt have been well
established in different diseases including diabetes and different
types of cancer (Altomare and Testa, 2005; Zoncu et al., 2011;
Hopkins et al., 2014). The risk for the development of cancer
in diabetic patients is increased with hyperinsulinemia and
oxidative stress (Vigneri et al., 2009). With nutrient uptake, levels
of growth factors and hormones rise in the blood stream that
triggers certain biochemical processes. Feeding promotes insulin
levels in the bloodstream that binds to its particular receptors
causing stimulation of PI3K downstream signaling. Deregulation
of PI3k/Akt mediated mTOR signaling pathway contributes to
insulin resistance and associated conditions (Harrington et al.,

2004; Shah et al., 2004). PI3K tends to stimulate mTORC2 and
both of these proteins initiate activation of Akt (Alessi et al.,
1997; Sarbassov et al., 2005). Subsequently, Akt favors mTORC1
activation by phosphorylating TSC1/TSC2 complex (Zoncu et al.,
2011). mTORC1 is able to impair insulin signaling via its
substrates S6K1 which then phosphorylates serine residues of
IRS1 causing downregulation of PI3K/Akt pathway (Harrington
et al., 2004; Shah et al., 2004). In this way, mTORC1 activity
can contribute to insulin resistance. Therefore, it is important
to identify therapeutically favorable regulatory event in mTOR-
associated BRN that plays a major role in triggering pathological
signaling cascade (Vigneri et al., 2009).

Formal methods are widely applicable for the correctness
of ICT Systems due to their computational ability of rigorous
testing. For the last few decades, formal methods have been
successfully used for the modeling and verification of complex
biological systems (Kitano, 2002). Kinetic Logic formalism is a
well-known approach for the qualitative modeling of a BRN that
deciphers its qualitative dynamics in the form of a directed graph,
where a node represents a qualitative state and an edge represents
an evolution from one state to its successor state (Thomas,
1979; Thomas and d’Ari, 1990; Thomas et al., 1995). Since the
qualitative model ignores the time in the evolution of expression
levels, a hybrid model is built in order to ensure that evolutions
due to activation or inhibition are taking place after production
and degradation delays (Ahmad et al., 2007, 2008; Ahmad,
2009). Of course, these delays are un-known and are treated as
unvalued parameters in the hybrid model. Consequently, any
behavior captured in the qualitative model (cycle or path) can
be temporally verified against the production and degradation
time delay parameters by using the hybridmodel checkerHyTech
(Henzinger et al., 1997) that automatically synthesizes the values
of parameters (delays) in the form linear parametric constraints.
Moreover, this approach has been successfully applied on a
variety of BRNs for the temporal analysis of their behaviors
(Ahmad et al., 2012; Aslam et al., 2014; Saeed et al., 2016).

The qualitative model (state graph) of the mTOR-associated
BRN predicted cycles and a stable state. The most biologically
probable cycle was selected that shows the oscillation of PI3K,
mTORC2, Akt, mTORC1, and FOXO while PTEN is constantly
expressed (level 1). On the other side, simultaneous deactivation
of PTEN and FOXO along with the activation of Akt, PI3K,
mTORC1 and mTORC2 tends to maintain the system in a
stable state (1, 0, 1, 1, 1, 0). The same pattern of activation and
deactivation of entities has also been observed in diabetes and
different types of cancers (Altomare and Testa, 2005; Hopkins
et al., 2014).

Genes’ expression goes through various levels (low and high)
under regulatory mechanism to maintain homeostasis. The
regulation of the expressions of PI3K is under the regulatory
mechanism of PTEN and mTORC1 that has been found
perturbed in almost all cancer types (Hopkins et al., 2014).
Downregulated PTEN has deleterious impacts on cell cycle
regulation, growth and survival. In the stable state of the
qualitative model PTEN is downregulated while PI3K is found
overexpressed. In recent studies, PTEN has been demonstrated to
downregulate the activity of mTORC1 through various pathways
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TABLE 4 | Relation matrix.

δ
+
FOXO

|δ−
FOXO

| δ
+
PI3K

|δ−
PI3K

| δ
+
mTORC1

δ
−
mTORC1

δ
+
mTORC2

|δ−
mTORC2

| δ
+
Akt

|δ−
Akt

|

δ+
FOXO

=

|δ−
FOXO

| ≤,≥ =

|δ−
PI3K | ≤,≥ ≤,≥ =

δ+
PI3K ≤,≥ ≤,≥ ≤,≥ =

δ+
mTORC1

≤,≥ ≤,≥ ≤,≥ ≤,≥ ≤,≥ =

|δ−
mTORC1

| ≤,≥ ≤,≥ ≤,≥ ≤,≥ ≤,≥ =

δ+
mTORC2

≤,≥ ≤,≥ ≤,≥ ≤,≥ ≤,≥ ≤,≥ =

|δ−
mTORC2

| ≤,≥ ≤,≥ ≤,≥ ≤,≥ ≤,≥ ≤,≥ ≤,≥ =

δ+
Akt

≤,≥ ≤,≥ ≤,≥ ≤,≥ ≤,≥ ≤,≥ ≤,≥ ≤,≥ =

|δ−
Akt

| ≤,≥ ≤,≥ ≤,≥ ≤,≥ ≤,≥ ≤,≥ ≤,≥ ≤ ≤,≥ =

Relation matrix of the selected cycle that shows the pairwise relationships of delays of the entities FOXO, PI3K, mTORC1, mTORC2 and Akt.

(Sonntag et al., 2012) which is also evident in the qualitative cycle.
However, in the stable state of the qualitative model, PTEN is
constantly downregulated and mTORC1 is thus overexpressed.
These findings opens up various aspects of future exploration for
the role of PTEN in hyperinsulinimia.

The hybrid model of the selected cycle predicted the time
delays of the entities to maintain homeostasis. The pairwise
relationships of delays suggest one unique pattern of faster
Akt degradation than mTORC2 degradation for maintaining
homoeostasis. It also suggests that therapeutics must be designed
based on the fact that Akt must be cleared out of the system
as soon as it performs its function along with keeping a slower
degradation rate for mTORC2. This also eliminates the risk
of prolong Akt activation that may hyper-activate downstream
signaling cascade. Another important fact that is perceived
through this constraint relationship is that mTORC1 has to
be suppressed (under cancerous circumstances) to reduce its
inhibitory effect upon mTORC2 which would prevent early
degradation of mTORC2 as compared to Akt. This trend would
keep an equilibrium between cellular proliferative elements PI3K,
Akt, mTORC1, and that of apoptotic factors (e.g., FOXO). Based
on these observations, further wet-lab exploration for the roles
of PTEN, mTORC1, mTORC2, and Akt is required in the
perspective of targeting cancer cell proliferation.

CONCLUSION

In last few decades, understanding of the glucose metabolism in
both proliferating cancer and normal cells is studied extensively.
PI3K, Akt and mTOR play significant roles in metabolism and
their deregulation can lead to different cancers. In this context,
the regulatory network of these entities has been modeled
and analyzed to explore its dynamics. Discrete and hybrid
models have been constructed to predict the qualitative and
timed dependent behaviors. In the qualitative model, cycles
representing homeostasis and a stable state representing the
disease state have been predicted. The most biologically probable
cycle represents that the expression levels of the entities except
PTEN should oscillate to maintain homeostasis. Moreover, the
cycle states show the constant expression (level 1) of PTEN.

On the other hand in the stable state, PI3K, mTORC2, Akt,
and mTORC1 are always overexpressed while PTEN and FOXO
are constantly down regulated which can ultimately lead to
cancer. The hybrid model revealed the time delay constraints
of the most biologically probable cycle. Further analysis of
the constraints predicted the pairwise relations between the
production and degradation time delays of all the entities.
One relation highlighted that during homeostasis, the inhibition
time delay of Akt is less than the inhibition time delay of
mTORC2. In conclusion, our observations characterize that
during homeostasis, Akt is degraded with a faster rate than
mTORC2 which further suggests that this inhibition of Akt along
with the activation of mTORC2 may be exploited for a better
therapeutic strategy against cancer.
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In the liver tumor necrosis factor (TNF)-induced signaling critically regulates the

immune response of non-parenchymal cells as well as proliferation and apoptosis of

hepatocytes via activation of the NF-κB and JNK pathways. Especially, the induction

of negative feedback regulators, such as IκBα and A20 is responsible for the dynamic

and time-restricted response of these important pathways. However, the precise

mechanisms responsible for different TNF-induced phenotypes under physiological

stimulation conditions are not completely understood so far. In addition, it is not

known if varying TNF concentrations may differentially affect the desensitization

properties of both pathways. By using computational modeling, we first showed that

TNF-induced activation and downstream signaling is qualitatively comparable between

primary mouse hepatocytes and immortalized hepatocellular carcinoma (HCC) cells.

In order to define physiologically relevant TNF levels, which allow for an adjustable

and dynamic NF-κB/JNK pathway response in parenchymal liver cells, a range of

cytokine concentrations was defined that led to gradual pathway responses in HCC

cells (1–5 ng/ml). Repeated stimulations with low (1 ng/ml), medium (2.5 ng/ml) and

high (5 ng/ml) TNF amounts demonstrated that JNK signaling was still active at

cytokine concentrations, which led to dampened NF-κB signaling illustrating differential

pathway responsiveness depending on TNF input dynamics. SiRNA-mediated inhibition

of the negative feedback regulator A20 (syn. TNFAIP3) or its overexpression did not

significantly affect the NF-κB response. In contrast, A20 silencing increased the JNK

response, while its overexpression dampened JNK phosphorylation. In addition, the

A20 knockdown sensitized hepatocellular cells to TNF-induced cleavage and activity of

the effector caspase-3. In conclusion, a mathematical model-based approach shows

that the TNF-induced pathway responses are qualitatively comparable in primary

and immortalized mouse hepatocytes. The cytokine amount defines the pathway

responsiveness under repeated treatment conditions with NF-κB signaling being

dampened ‘earlier’ than JNK. A20 appears to be the molecular switch discriminating

between NF-κB and JNK signaling when stimulating with varying physiological cytokine

concentrations.
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INTRODUCTION

The role of the cytokine tumor necrosis factor (TNF) in the liver
has been investigated intensively. Biological functions of TNF
and subsequent activation of the NF-κB signaling pathway are
associated with inflammatory processes, hepatocyte proliferation
in response to acute or chronic liver damage, as well as
tumorigenesis (DiDonato et al., 2012).

The hepatocellular response upon TNF stimulation is based
on a sequence of post-translational modifications occurring
downstream of the TNF receptor (TNFRI) with several proteins
organized in the signalosome (Ruland, 2011). Binding of TNF
to TNFRI sequentially activates the mitogen-activated protein
kinase kinase kinase 7 (MAP3K7/MEKK7, syn: TAK1) followed
by the recruitment of receptor-interacting serine/threonine-
protein kinase 1 (RIPK1) and additional scaffold proteins (e.g.,
TAB, TRAF) to the signalosome. Transiently activated TAK1
is then mediating the phosphorylation of both IKKß and
MKK4/7 leading to the activation of NF-κB and p38/JNK
signaling, respectively (Wullaert et al., 2006). Importantly, direct
transcriptional NF-κB targets, such as TNF α-induced protein
3 (TNFAIP3, synonym: A20) or nuclear factor of kappa light
polypeptide gene enhancer in B-cells inhibitor, α (IκBα) are
essential for the fast and efficient shut-down of this pathway in
terms of a negative feedback regulation (Ruland, 2011).

IκBα and A20 interfere with the TNF-induced response at
different levels. While IκBα binds and inactivates the NF-κB
dimers containing the subunit p65, A20 terminates the pathway
response upstream of the IKK complex and therefore affects
both the NF-κB and JNK response (Ruland, 2011). Remarkably,
A20 contains both a deubiquitinase domain catalyzing K63
ubiquitin cleavage from RIPK1 and an E3 ubiquitin ligase
domain facilitating K48 ubiquitin binding, which is associated
with RIPK1 degradation (Ma and Malynn, 2012). Depending on
the cell type these feedback mechanisms efficiently desensitize
the TNF-induced NF-κB axis for 60–100 min after stimulation
with TNF (refractory range) (Ashall et al., 2009). Notably,
recent data demonstrated that the refractory time is not static.
Instead this phase represents an adjustable system, which is
regulated in an A20-dependent manner with direct impact on the
secretome of cells and the authors hypothesized that this dynamic
system is part of an inherent mechanism controlling the cellular
inflammatory response (Adamson et al., 2016). However, it is
unclear if and how existing feedback mechanisms differentially
affect the downstream effector pathways induced by TNF in order
to induce adjustable NF-κB and JNK responses.

NF-κB signaling exerts anti-apoptotic and cyto-protective
properties, which is illustrated by many genetic in vivo models,
in which deficiency of central pathway constituents, such as
TAK1, IKKß, and IKKγ induced massive hepatocellular cell
death (Luedde and Schwabe, 2011). This apoptosis in the

Abbreviations:ASK1, Apoptosis Signal-regulating Kinase 1; HCC, Hepatocellular

Carcinoma; IκBα, nuclear factor of Kappa Light polypeptide gene enhancer

in B-cells inhibitor alpha; IL, Interleukin; MAP3K/MEKK7, Mitogen-Activated

Protein Kinase Kinase Kinase 7; LSEC, Liver Sinusoidal Endothelial Cells; ODE,

Ordinary Differential Equation; RIPK1, Receptor Interacting serine/threonine-

Protein Kinase; ROS, Reactive Oxygene Species; TNF, Tumor-Necrosis Factor;

TNFRI, TNF Receptor; TNFAIP3, TNF-Induced Protein 3.

absence of NF-κB depends on the persistent activation of
the JNK axis followed by the production of reactive oxygen
species (ROS) (Chen et al., 2003). Interestingly, previous
experiments demonstrated that TNF activated NF-κB and JNK
signaling with different dynamics (Iqbal and Zaidi, 2008),
suggesting the existence of intra-cellular decision making
processes discriminating between cyto-protection viaNF-κB and
programmed cell death via JNK. However, the functional duality
of this system is a matter of debate and precise mechanisms
regulating hepatocellular cell fate are not well understood.

The interpretation of the TNF input by the
receptor/signalosome complex is central to understand this
type of decision-making process. For example, a previous
study showed that apoptosis signal-regulating kinase 1 (ASK1)
is involved in the TNF-mediated induction of persistent JNK
activity and induction of apoptosis (Tobiume et al., 2001).
These data suggest that the type of cytokine input (single vs.
repeated stimulation) may affect TNF-downstream effectors and
subsequently cell biology. How the mode of pathway activation
modulates the cellular behavior in terms of a decision making
process has not been analyzed, yet.

In this study we want to answer how variable and multiple
TNF stimulations may adjust the NF-κB and JNK pathway
response in hepatocellular cells. For this, we first combine
experimental data and mathematical modeling to compare
the dynamic NF-κB and JNK pathway response in primary
hepatocytes and liver cancer cells. Second, the differential NF-
κB and JNK pathway responses upon single and multiple TNF
activation were analyzed. Lastly, the impact of the negative
feedback regulator A20 as molecular switch on pathway activity
and cell functionality was determined.

MATERIALS AND METHODS

Cell Culture and TNF Time Courses
All experiments were performed in accordance with the
institutional regulations. Murine hepatoma cell lines Hepa1-6
and Hep56 (CLS, Eppelheim, Germany) were seeded at a density
of 4.0× 105 cells per 6 cm2 dish (TPP, Trasadingen, Switzerland)
and cultivated at 37◦C in DMEM-medium +10% FCS and +1%
penicillin/streptomycin (Sigma Aldrich, Taufkirchen, Germany)
for 24 h. Three hours prior to TNF stimulation, medium was
removed, cells were washed with DMEM-medium and further
cultivated inmediumwithout FCS. For single stimulation of cells,
10 ng/ml recombinant murine TNF (R&D Systems, Minneapolis,
USA) was used. For triple stimulations, 1 ng, 2.5 ng, and 5 ng/ml
(time points 0, 60, and 120 min) were added to the medium.
Medium was removed after 5, 10, 20, 40, 60, 120, 180, 240, 300,
360, 420, and 480 min and cells were washed with 1 × PBS (Life
Technologies, Darmstadt, Germany) before protein and mRNA
lysates were isolated. The MTT viability assay was performed as
previously described (Malz et al., 2014).

RNA-Interference and Expression Vector
Transfection
Hepa1-6 cells were seeded at 1.5× 105 on 6 cm2 dishes 24 h prior
to transfection. RNA-interference experiments were performed
using the cationic carrier Oligofectamin (Life Technologies)
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according to the manufacturer’s protocol. Each experiment
included gene specific siRNA for A20 (GGG UAG GUU UGA
AGA CUU A-dTdT) and Scramble siRNA (UGG UUU ACA
UGU CGA CUA A-dTdT, Thermo Fisher Scientific, Ulm,
Germany; final concentration: 100 nM). Fourty-eight hours
after siRNA-transfection, cells were used for TNF time course
experiments.

For vector transfection, Hepa1-6 cells were seeded at 1.5 ×

105 on 6 cm2 dishes 24 h before transfection. Attractene was
used according the manufacturers’ protocol (Qiagen, Hilden,
Germany). For transfection experiments, A20 was cloned into the
pCMV6-Entry vector creating a A20-myc-ddk fusion transcript
(mTNM_001166402; Origene, Frankfurt, Germany). Fourty-
eight hours after vector transfection, cells were used for TNF
time course experiments. The pCMV6-A20 vector was validated
by sequencing. For transfection efficiency estimation, cells were
transfected with pMaxvector according to the manufacturer’s
instructions (Lonza, Walkersville, USA). Forty-eight hours
after transfection GFP-positive cells were determined by FACS
analysis.

Preparation of Total mRNA and Real-Time
PCR
Total mRNA was isolated using the NucleoSpin RNA kit
according to the manufacturers‘ protocol (Macherey-Nagel,
Dühren, Germany). One microgram total mRNA was used for
cDNA-synthesis using RevertAid HMinus Reverse Transcriptase
and random primers (LifeTechnologies). For semiquantitative
evaluation of mRNA the real-time PCR ABsolute qPCR SYBR
Green ROX Mix was used (Thermo Fisher Scientific). The
following cycling program was applied: 95◦C denaturation for 15
min followed by 40 cycles 95◦C/15 s and 60◦C/1 min. Successful
PCR reaction was tested by a melting curve analysis: 95◦C/15 s,
60◦C/30 s, and 95◦C/15 s. The following primers were used in
our study: mA20-forward: 5′-TTC CAC TTG TTA ACA GAG
AC-3′, mA20-reverse: 5′-TAC TCC TTT AGA AGC TTT TC-
3′, mIκBa forward: 5′-CCT GGC CAT CGT GGA GCA CT-
3′, mp65-forward: 5′CCG GAC TCC TCC GTA CGC CG-3′,
mp65- reverse: 5′CTT GAA GGT CTC ATA GGT CC-3′, mIκBa
reverse: 5′-AGT AGC CTT GGT AGG TTA CC-3′, mtubulin
forward: 5′-TCA CTG TGC CTG AAC TTA CC-3′; mtubulin
reverse: 5′-GGA ACA TAG CCG TAA ACT GC-3′ (Thermo
Fisher Scientific).

Protein Isolation and Western
Immunoblotting
Proteins were collected after TNF stimulation using the Cell
Lysis buffer (Cell Signaling Technology, Frankfurt, Germany)
supplemented with PhosStop (Roche, Mannheim, Germany) as
well as Protease Inhibitor Cocktail Mix G (Serva, Heidelberg,
Germany) and stored in liquid nitrogen. After thawing, samples
were sonicated (3 times for 30 s) and pelleted by centrifugation
(10 min, 16,100 g at 4◦C). Protein amounts were measured
with the Nanodrop spectrophotometer (Thermo Scientific). One
hundred-fifty microgram of total protein per lane were loaded
on a 8% PAA/SDS gel. Proteins were blotted on Nitrocellulose

membrane (Protran B, GE Healthcare Lifesciences, Freiburg,
Germany) and blots were incubated in a 5% milk powder/TBS-T
solution containing the respective primary antibody overnight
at 4◦C. After washing with TBS-T, membranes were incubated
with the secondary antibody (5% milk powder/TBS-T) at room
temperature for 1 h.

The following antibodies were used in this study. Primary
antibodies: anti-actin (dilution: 1:10,000, MP Biomedical,
Eschwege, Germany), anti-A20 (dilution: 1:200, Santa Cruz
Biotechnology, Heidelberg, Germany), anti-caspase-3 (1:500,
Cell Signaling Technology), anti-IκBα (dilution: 1:500, Cell
Signaling Technology), anti-phospho-IκBα (Ser32, dilution:
1:500, Cell Signaling Technology), anti-SAPK/JNK (1:500, Cell
Signaling Technology), anti-phospho-SAPK/JNK (1:500, Cell
Signaling Technology), anti-p65 (dilution 1:200, Santa Cruz
Biotechnology), anti-phospho-p65 (Ser536, 1:500, Cell Signaling
Technology), TNFR1 (dilution 1:200, clone: H-271, Santa Cruz),
ASK1 (clone: D11C9, Cell Signaling Technology).

Secondary antibodies: donkey anti-rabbit (IRDye coupled,
800 CW, dilution: 1:1,000), donkey anti-mouse (IRDye coupled,
800 CW, dilution: 1:1,000) and donkey anti-mouse (IRDye
coupled, 680 LT, dilution: 1:20 000, all antibodies from LI-COR
Biosciences).

Co-Immunoprecipitation
Cells (Hepa1-6) were grown to 80% confluence and stimulated
with TNF (10 ng/ml) for 10, 20, 60, and 120 min. Proteins were
isolated using NP40 buffer (50 mM Tris-HCl, 150 mM NaCl,
1% NP40). Total cell lysate was pre-cleared with 15 µl/sample
GammaBindTM G SepharoseTM (GE Healthcare, Germany). Five
milligrams of total proteins were incubated with 6 µg of primary
antibody recognizing ASK1 for 2 h under continuous rotation at
4◦C. Thirty-five microliters of beads (Protein A-Agarose, Santa
Cruz Biotechnology) were added to each sample and incubated
overnight. Beads were washed with NP40 buffer two times,
diluted in sample buffer, and used for Western immunoblotting.

Luciferase Reporter Gene Assay
Luciferase gene reporter assays were performed as previously
described (Weiler et al., 2017). Cells were transfected with
plasmids containing NF-κB promoter elements fused to Firefly
luciferase (pNF-κB-luc, Agilent, Waldbronn, Germany) and with
Renilla Luciferase (pRL-CMV, Promega, Mannheim, Germany)
at a ratio of 2:1 using Fugene HD transfection reagent (Promega)
according to the manufacturer’s instructions. Luciferase activity
was measured 48 h after transfection using the Dual-Luciferase
Reporter Assay System (Promega). Firefly luciferase activity was
normalized to Renilla Luciferase activity. As positive control
a plasmid containing NF-κB-activator MEKK was used (pFC-
MEKK, Agilent, Waldbronn, Germany).

Caspase-3 and Apoptosis Assay
Protein lysates were harvested using the Caspase Lysis buffer
(20 mM Tris pH 7.4, 137 mM NaCl, 2 mM EDTA, 10%
glycerol, 1% Triton X-100), pelleted (10 min, 16,100 g, 4◦C) and
protein concentration was quantified using Bradford Assay. Fifty
microgram of protein extracts were incubated with a tetrapeptide
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fluorogenic substrate specific for Caspase-3 (50 µM Ac-DEVD-
AFC, Enzo Life Science, Lausen, Switzerland) diluted in Caspase
Assay buffer (50 mM HEPES, 50 mM NaCl, 10 mM EDTA 10
mM 1,4-dithio-DL-threitol, 0,1% CHAPS buffer, 5% glycerol)
for 1 h. Caspase-3 activity was immediately measured using a
fluorescent microplate reader (excitation 405 nm/emission 530
nm, FLUOstar Omega, BMG Labtech, Ortenberg, Germany).

For the measurement of early apoptosis, the Guava Nexin
Reagent was used according to the manufacturer’s protocol
24 h after transfection (Millipore/Merck KGaA, Darmstadt,
Germany). As positive controls cells treated with 1 µM
Doxorubicin for 24 h were used. The Guava easyCyte HT was
used for all measurements (Millipore/Merck KGaA).

Data Analysis and Statistics
Western immunoblotting and qPCR experiments were
performed in 2–3 technical replicates. For each data point
derived from Western immunoblotting, the relative protein
amounts were quantitatively measured using the Image Studio
software (LI-COR Biosciences). Values obtained from each
measured protein sample were normalized to the respective
actin value. Data are presented as mean ± standard errors.
Statistical comparisons between two groups were done using the
non-parametric t-test (IBM, SPSS software, Armonk, NY, USA).

Mathematical Pathway Modeling
In order to substantiate our assumption of equivalence between
primary hepatocytes and immortalized hepatocellular carcinoma
(HCC) cells we decided to perform a quantitative modeling
approach to test whether an established model for primary
hepatocytes can be adapted to fit the data from Hepa1-6 and
Hep56 cells (Beuke et al., 2017). The methodological assumption
was that the model represented and integrated quantitative
information from previous experiments. The ODE-based model
was originally created to describe data from primary mouse
hepatocytes after TNF stimulation (Pinna et al., 2012) and
was extended and tested to qualitatively describe time-resolved,
dynamic response of NF-κB signaling to various doses of TNF
(Beuke et al., 2017). To confirm equivalence of processes in
the different cell types it was required that the mathematical
model could be adjusted to the observations in Hepa1-6 cells
without changes in the model structure or to parameters
describing biochemical properties of the molecules, such as Km
values. Justifiable model adjustments were changes in expression
levels or turnover rates of signaling compounds or changes
in transcription or translation rates. Since the original model
comprehensively described the known relevant processes in the
canonical NF-κB pathway it was relatively large (28 variables,
49 reactions) and consequently its parameter values were not
completely identifiable. Therefore, we worked with ensembles
of model parameterizations that each describe the experimental
data well and that allow the generation of predictions even
without complete parameter identifiabilty (Beuke et al., 2017).
The model simulations and parameter estimations were carried
out in COPASI (Mendes et al., 2009).

RESULTS

Hepatocellular Response of NF-κB and
JNK Pathway Activation upon TNF
Stimulation
We recently developed a computational ordinary differential
equation (ODE) model for TNF-induced NF-κB activation based
on quantitative and time-resolved experimental data derived
from primary murine hepatocytes (Pinna et al., 2012). However,
functional analysis and genetic manipulation of primary
hepatocytes are technically challenging; primary hepatocytes are
difficult to transfect and even minor contamination with other
liver cell types (e.g., Kupffer cells) may compromise data quality
and interpretation. To test if immortalized murine HCC cells
(Hepa1-6) can be used as functional model for non-malignantly
transformed hepatocytes, we utilized a computational approach
to compare the TNF-induced NF-κB and JNK pathway
activation.

Analyzing the expression of selected NF-κB pathway
constituents revealed that both tested HCC (Hepa1-6 and
Hep56) cell lines expressed higher p65 and IκBα protein
amounts than primary hepatocytes (Figure 1A). In contrast,
the total concentration of the TNFR1 was reduced in both
HCC cells compared to non-malignantly transformed cells
(median change: 2.5x). We then stimulated Hepa1-6 cells with
TNF (10 ng/ml) and the total protein extracts were analyzed
by quantitative Western immunoblotting for up to 480 min
(12 time points; Figures 1B–D). As read-out, the activation
of TNF downstream effectors, such as NF-κB (total p65,
phospho-p65) and JNK (total JNK/phospho-JNK) was analyzed.
In addition, the expression of the known negative feedback
regulators IκBα (mRNA, protein, phosphorylation) and A20
(mRNA and total protein) was evaluated. For p65 and JNK an
activation/phosphorylation with peaks around 5–10 min was
detected in Hepa1-6 cells (Figures 1B,C). Total levels of IκBα

showed an immediate decrease due to fast phosphorylation
and concomitant proteasomal degradation followed by quick
recovery to initial and higher concentrations (Figures 1B,C).
A20 protein levels steadily increased 40–60 min after TNF
stimulation until the end of the experiment (Figures 1C,D). In
addition, real-time PCR results illustrated that the transcription
of both feedback regulators was induced around 40 min after
TNF administration, while the mRNA expression of other
pathway constituents, such as p65 and IKKs was not affected
(Figure 1E and data not shown). A similar dynamic pathway
response was detected for another HCC cell line (Hep56,
Supplementary Figure S1).

A first visual comparison of data derived from primary
hepatocyte data and Hepa1-6 cells already illustrated a high
degree of qualitative similarities between both cell types
(Figure 1; Pinna et al., 2012). In addition, previously established
mathematical models derived from primary hepatocytes were
used for quantitative testing of HCC cell line kinetics (Pinna et al.,
2012; Beuke et al., 2017) Model predictions were compared to
measurements of IκBα, phospho-IκBα, phospho-p65, and IκBα

mRNA after TNF stimulation in Hepa1-6 cells. Adjusting the
IκBα transcription rate was necessary to obtain satisfying model

Frontiers in Physiology | www.frontiersin.org 4 August 2017 | Volume 8 | Article 61050

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Pinna et al. A20 Defines TNF Signaling in Hepatocytes

FIGURE 1 | Dynamic activation of TNF-induced NF-κB and JNK pathways in mouse liver cancer cells. (A) Comparison of p65/phospho-p65, IκB-α/phospho-IκB-α,

TNFR1, and A20 protein amounts in primary murine hepatocytes (pmH) and 2 mouse HCC cell lines (Hepa1-6, Hep56). The mean TNFR1 difference between both

HCC cell lines and hepatocytes was calculated based on three independent experiments followed by signal quantification. (B) Exemplary Western immunoblots of

protein extract isolated from Hepa1-6 cells after administration of TNF (10 ng/ml) for the indicated time-points (untreated and 5–480 min after stimulation). Signals for

p65/phospho-p65, IκBα/phospho-IκBα, JNK/phospho-JNK, and the negative feedback regulator A20 were quantified and normalized to the respective loading

control (actin). (C) Relative protein amounts of NF-κB and JNK pathways constituents in Hepa1-6 cells after single TNF administration (10 ng/ml). (D) Relative protein

amounts of A20 in Hepa1-6 cells after single TNF administration (10 ng/ml). (E) Relative mRNA levels of A20 and IκBα after single TNF stimulation. Graphs in (C–E)

summarize the results from three independent experiments. Bars in panel (C–E) represent standard errors.

fits with comparable quality as observed for primary cells (Beuke
et al., 2017; Figure 2, black lines).

Interestingly, simulations after the reduction of total TNFR1
levels as indicated by our initial comparison of HCC cells and
hepatocytes (Figure 1A, factor: 2.5) revealed a clear pathway
dampening with regard to IκBα, phospho-p65, and IκBα

mRNA amplitudes (Figure 2, yellow lines). Because no obvious

differences between tumor cells and primary cells were detected
in our experimental data sets, we hypothesized that adjustments
of other pathway constituents can compensate the attenuated
responsiveness upon TNFR1 reduction. The previously satisfying
fit could be restored by applying simple parameter changes in the
model either for the receptor dynamics (e.g., the internalization
rate of the activated receptor complex; Figure 2, green lines)
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FIGURE 2 | TNF-induced NF-κB response in Hepa1-6 cells and model simulations. Measured time courses of IκBα, phospho-p65, and IκBα-mRNA after

administration of 10 ng/ml TNF (symbols connected by dashed lines indicate replicates from independent experiments). Corresponding simulations (black lines) were

obtained from a model that was originally created and calibrated for murine primary hepatocytes and only slightly readjusted to fit the Hepa1-6 data (Beuke et al.,

2017). Yellow lines: simulations after reduction of TNFR1 by a factor of 2.5. Blue lines: simulations after adjustment of IKK expression. Green lines: simulations after

adjustment of TNF/TNFR1 internalization.

or at the level of IKK (e.g., IKK expression levels and IKK
activation rate constants, data not shown). Other adjustments led
to partial rescue of the dynamic pathway response (e.g., exclusive
adjustment of IKK expression levels; Figure 2, blue lines).
These results strongly suggested that hepatocellular (tumor)
cells potentially harbor a number of adjustable setscrews, which
may compensate for receptor variations. In addition, we drew
the conclusion that most involved processes were qualitatively
similar between hepatocytes and HCC cells.

In sum, the dynamic activation of all analyzed signaling
pathway and feedback constituents in HCC cells corresponded
qualitatively between primary hepatocytes and immortalized
HCC cells. Therefore, HCC cells represent a suitable in vitro
model for the study of TNF-induced activation of NF-κB and
JNK signaling as well as for the dynamic pathway activation after
genetic manipulation.

Defining the Responsive Range of
Hepatocellular Cells to TNF
In most studies analyzing TNF-induced signaling, cells were
stimulated with high cytokine concentrations (10–50 ng/ml)
(Werner et al., 2008; Ashall et al., 2009; Turner et al., 2010; Wang
et al., 2011). In the liver these TNF concentrations may only be
detectable under specific patho-physiological conditions, such as
non-alcoholic steatohepatitis (Krawczyk et al., 2009). Depending
on the disease and used detection method, TNF amounts around
30 ng/ml or even higher concentrations could be measured
(Krawczyk et al., 2009). However, it is unknown if lower TNF
concentrations are able to induce an adjustable cellular response
in hepatocytes.

In order to define the dynamic range of NF-κB and JNK
responsiveness in HCC cells with regard to different TNF
concentrations, dose response experiments were performed with
low-level but physiologically relevant TNF concentrations. For
this Hepa1-6 cells were treated with 1, 2.5, and 5 ng/ml
TNF and analyzed for the expression of p65 (total p65 and
phopsho-p65), IκBα (total IκBα and phospho-IκBα), and JNK

(total JNK and phospho-JNK) for up to 240 min. All cytokine
concentrations induced specific phospho-p65 and phospho-
JNK pathway responses, however, with concentration-dependent
amplitudes (Figure 3). Even lowest TNF concentrations led to
a sufficient expression of both negative feedback regulators
IκBα and A20. Higher TNF concentrations (>5 ng/ml) did not
further increase the NF-κB or JNK responses indicating pathway
saturation (Beuke et al., 2017).

These results illustrate that 1–5 ng/ml TNF cover a cytokine
range in which the hepatocellular cells can respond differentially
to varying input information.

TNF-Induced Negative Feedback
Differentially Blocks NF-κB and JNK
Signaling
Treatment of very high TNF amounts (10–50 ng/ml) led
to an efficient desensitization of cells due to activation of
negative feedback regulators (Ashall et al., 2009). In order to
analyze the impact of TNF concentrations in the dynamic range
between 1 and 5 ng/ml on this desensitization, a time-course
experiment was designed, by which we combined multiple-
pulse treatments with different doses of TNF (1 × 1 ng/ml;
3 × 1 ng/ml, 1 × 1 ng/ml followed by 2 × 2.5 ng/ml; 1
× 1 ng/ml followed by 2 × 5 ng/ml) (Figure 4). Cells were
repeatedly stimulated with TNF after 60 and 120 min based on
published data illustrating a restoration of pathway sensitivity
after this time period (Ashall et al., 2009). As expected, a
single TNF pulse induced a temporary activation of NF-κB
and JNK signaling with comparable amplitude (Figure 4A).
This first stimulation was sufficient to completely block p65
but not JNK phosphorylation after adding additional low doses
of TNF (2 × 1 ng/ml; Figure 4B, arrows and arrowheads).
Higher TNF concentrations (2 × 2.5 ng/ml) were able to partly
overcome the refractory behavior and efficiently stimulated the
phosphorylation of p65; however, the JNK response was always
stronger after the second and third cytokine administration
(Figure 4C, arrows and arrowheads). Lastly, repeated treatment
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FIGURE 3 | Dose-dependent activation of NF-κB and JNK signaling after TNF stimulation in HCC cells. Graphs summarizing the results of Western immunoblots

analysis after treatment of Hepa1-6 cells with TNF (1, 2.5, and 5 ng/ml) for the indicated time-points (untreated and 5–240 min after stimulation). Signals for

phospho-p65, phospho-JNK, IκBα, and A20 were quantified and normalized to the respective loading control (actin). Graphs summarize the results from three

independent analyses. Bars represent standard errors.

with highest additional TNF concentrations (2 × 5 ng/ml) did
not block the second phosphorylation of p65 but drastically
dampened the third peak; however, a clear third induction of
JNK was still detectable (Figure 4D, arrows and arrowheads).
Importantly, identical results were obtained using another HCC
cell line (Hep56, Supplementary Figure S2).

These data illustrate that under conditions of non-saturated
stimulation, TNF differentially affected NF-κB and JNK signaling
in hepatocellular cells. TNF-induced temporal desensitization
supported JNK signaling when NF-κB signaling was still
efficiently dampened.

A20 Discriminates between NF-κB and JNK
Pathway Activation
A20 is a known inhibitor of NF-κB and JNK signaling; however,
its point of interference differs from IκBα since it blocks
TNF-responses at the signalosome level (Lee et al., 2000;
Ruland, 2011). We therefore hypothesized that the NF-κB-
induced expression of A20 (Figure 1D) could act as a rheostat
for the differential inhibition of NF-κB and JNK signaling in
hepatocellular cells.

Because our previous data illustrated that TNF induced A20
protein expression after 40–60 min (Figure 1C), we decided
to analyze the first 60 min after TNF administration to
define the effects of basal A20 levels (without p65-induced

A20 levels after 60 min). To test the impact of A20, we
compared the activation of p65 and JNK after genetically
changing the basal A20 levels in hepatocellular cells. Because
the stable overexpression of A20 did not result in viable clones
(Supplementary Figure S3A), we optimized the transfection
protocol to achieve high transient transfection efficiencies of at
least 80% (Supplementary Figures S3B,C). First, we transiently
overexpressed murine A20 in Hepa1-6 cells and performed TNF
stimulation experiments for up to 60 min (10 ng/ml; Figure 5A).
While no significant effects on the phosphorylation of p65
were detectable, a reproducible reduction of JNK activation was
observed (Figure 5B). Vice versa, the siRNA-mediated, specific
inhibition of A20 again did not significantly affect the activation
of p65. In contrast, JNK phosphorylation significantly increased
in cells with transient silencing of A20. The fact that A20 did
not affect p65 activity was confirmed in independent experiments
including target gene expression and luciferase reporter assays
(Supplementary Figures S4A,B). In order to further characterize
the possible molecular basis for the differential impact of A20
on NF-κB and JNK, interaction studies were performed. Since
ASK1 may sustain JNK activity and because A20 can interact
with ASK1, we initiated co-immunoprecipitation experiments
after TNF treatment (Tobiume et al., 2001; Won et al., 2010).
Western immunoblotting revealed peculiar oscillatory dynamics
between ASK1 and A20 with a maximum peak between 10
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FIGURE 4 | Comparison of NF-κB and JNK pathway activity after single and multiple TNF stimulation. (A) Single TNF treatment of Hepa1-6 cells (1 × 1 ng/ml).

(B) Triple TNF treatment Hepa1-6 cells with 3 × 1 ng/ml. (C) Triple TNF treatment Hepa1-6 cells with 1 × 1 ng/ml followed by 2 × 2.5 ng/ml. (D) Triple TNF treatment

Hepa1-6 cells with 1 × 1 ng/ml followed by 2 × 5 ng/ml. For all graphs signals for p65/phospho-p65, and JNK/phospho-JNK were quantified and normalized to the

respective loading control (actin). For (B–D) additional treatments and respective TNF concentrations are indicated. Arrowheads indicate p-p65 responses while

arrows indicate p-JNK responses. Graphs summarize the results from three independent analyses. Bars represent standard errors.
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FIGURE 5 | A20 negatively regulated JNK signaling in hepatocellular cells. (A) The overexpression of A20 is confirmed by western immunoblotting. Endogenous A20

and exogenous A20 were detected. Kinetics illustrate that NF-κB signaling is not affected after increasing A20 levels, while the phosphorylation of JNK is reduced after

TNF administration (10 ng/ml). (B) The siRNA-mediated knockdown of A20 is confirmed by western immunoblotting. Kinetics after TNF administration (10 ng/ml)

showed that JNK phosphorylation increased compared to controls. p65/phospho-p65 and JNK/phospho-JNK were quantified and normalized to the respective

loading control (actin). All graphs summarize the results from three independent analyses. Bars represent standard errors. (C) Co-immunoprecipitation experiment

detecting the physical interaction between A20 and ASK1 after TNF stimulation at indicated time points. The detection of ASK1 illustrates that the protein is not

differentially expressed after TNF administration. IP: immunoprecipitation; WB: Western immunoblotting.

and 20 min after TNF stimulation (Figure 5C). Together with
the published results, our data strongly suggested that the
interaction between A20 and ASK1 is dynamically regulated by
TNF and therefore might represent one possible mechanism
how A20 controls JNK activity in the cell types analyzed
here.

These data suggest that basal A20 concentrations differentially
inhibited NF-κB and JNK signaling and therefore are likely to

be involved in a modulation of the JNK response in phases of
TNF-induced desensitization.

A20 Protects from a TNF-Induced
Caspase3-Cleavage
A20 is overexpressed in human HCCs illustrating that elevated
A20 level may support tumorigenic properties of HCC cells
(Chen et al., 2015; Catrysse et al., 2016; Wang et al., 2016).
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Because basal A20 abundance negatively regulated JNK pro-
apoptotic phosphorylation (Figure 5), we hypothesized that
decreased A20 levels can support hepatocellular programmed cell
death.

Inhibition of A20 by siRNA alone did not affect HCC
cell viability indicating that TNF stimulation and subsequent
activation of the downstream pathways was necessary to
uncover the biological effects of A20 (Figure 6A). In contrast,
inhibition of A20 for 48 h and subsequent treatment with TNF
induced cleavage of the effector caspase-3 around 120 min after
cytokine administration as detected byWestern immunoblotting
(Figure 6B). Notably, this perturbation approach diminished
both basal A20 levels and TNF-induced A20 levels (starting after
40–60 min). To confirm the negative effects of A20 on caspase-3,
additional activity assays were performed after A20 perturbation
for 48 h followed by TNF stimulation. As already indicated by
caspase-3 cleavage experiments, caspase activity was significantly
increased after reduction of A20 expression about 60 min after
TNF treatment (Figure 6C). In contrast, no significant induction
of apoptosis was detectable by FACS using an identical protocol
(Supplementary Figure S5). This led us to the conclusion that
the loss of A20 followed by TNF stimulation (and stabilization
of the JNK pathway) is not sufficient to induce a full-blown
apoptotic response, however, first steps toward apoptosis, such as
activation of an effector caspase-3 may represent the molecular
requirement for this process. These underlying mechanisms are
currently under further investigation.

In summary, these results show that elevated A20 amounts
reduced the activity of central effector caspases in hepatocellular
cells after TNF stimulation.

DISCUSSION

The liver represents a frontline organ critically involved in
the regulation of metabolic processes, hormone production,
detoxification, and immunological responses. For this, a precise
and temporary paracrine cross talk between non-parenchymal
(Kupffer cells, liver sinusoidal endothelial cells, and hepatic
stellate cells) and parenchymal liver cells (hepatocytes) is of
central importance to fine tune and adjust the cellular and
biological responses in these cell types. In this context, TNF-
induced signaling is a key constituent of the innate immune
response. For this, TNF is immediately produced by non-
parenchymal cells in the liver e.g., in response to circulating
pathogens, such as bacterial toxins (Seki et al., 2001; Wu
et al., 2010). Next to its immune-modulatory properties, TNF
regulates proliferation and apoptosis in hepatocytes. However,
it is unclear how varying individual and continuous TNF
administration affect molecular decision-making process and
hepatocyte biology.

Induction of the NF-κB and/or JNK pathways by TNF has
been intensively analyzed in different cancer cell types and
immortalized fibroblasts under various culture conditions. In
addition, computational modeling focused on the subcellular
localization of NF-κB (Turner et al., 2010), the role of feedback
mechanisms relevant for pathway termination (Werner et al.,

FIGURE 6 | Reduction of A20 sensitizes hepatocellular cells to TNF-induced

apoptosis. (A) MTT viability assay illustrated that inhibition of A20 by siRNA did

not affect the viability of Hepa1-6 cells after 24 and 48 h. (B) Measurement of

caspase-3 fragments after A20 inhibition and TNF stimulation by Western

immunoblotting. Exemplary results after densitometric quantification are

shown. An independent repetition led to similar results. (C) Measurement of

caspase-3 activity after A20 silencing followed by TNF stimulation. Exemplary

results after fluorometric measurement are shown. An independent repetition

led to similar results.

2008), and how cytokine concentrations affect the oscillatory
pathway behavior (Wang et al., 2011). Recently, computational
modeling demonstrated that TNF, which is secreted by Kupffer
cells and liver sinusoidal endothelial cells (LSECs) in response
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to lipopolysaccharide (LPS), induced an adjustable molecular
response in primary isolated hepatocytes (Beuke et al., 2017).
This mathematical model was robust for many model parameters
indicating that changes of pathway constituents, such as IκBα

did not significantly change the NF-κB pathway properties.
This is supported by data presented in our study illustrating
that this model with only slight modifications sufficiently
explain the dynamic NF-κB behavior in primary hepatocytes
and HCC cells, although initial amounts of p65 and IκBα are
different (Figure 1A). To our knowledge, this is the first study
demonstrating that TNF-induced NF-κB pathway dynamics
is qualitatively comparable in normal cells and malignantly
transformed cells.

Our results demonstrate that TNF in a range between
1 and 5 ng/ml differentially desensitize NF-κB and JNK
signaling in hepatocyte-derived cells. We hypothesized that
A20 represents a molecular switch discriminating between the
two pathways in a physiological concentration range. Our
experimental data revealed that A20 negatively regulates pro-
apoptotic JNK signaling and therefore favors the pro-survival
NF-κB axis. Interestingly, increased A20 levels are detectable
in human HCC tissue compared to surrounding livers, and
recent publications confirm the oncogenic properties of elevated
A20 levels (Chen et al., 2015; Catrysse et al., 2016; Wang
et al., 2016). In addition, A20 inhibition followed by TNF
stimulation supports caspase-3 cleavage and its enzymatic
activity suggesting a phenotype prone to apoptosis. These results
were confirmed by previous publications showing that increased
A20 protects hepatocytes from TRAIL-induced apoptosis or
supports hepatocyte proliferation after partial hepatectomy
(Longo et al., 2005; Dong et al., 2012).

Importantly, in our experimental setup we used TNF
concentrations that can be detected in different areas of the
liver vasculature network (3–10 ng/ml) under physiological and
pathological conditions (Porowski et al., 2015). However, under
some conditions, such as non-alcoholic steatohepatitis (NASH)
or after liver transplantation much higher TNF levels may be
measurable (34.2 and 43 ng/ml, respectively). This suggests
that under pathological conditions differential desensitization
of NF-κB and JNK signaling upon TNF stimulation is not
effective anymore (Krawczyk et al., 2009; Fernandez-Yunquera
et al., 2014), since high TNF concentrations abolished any fine-
tune regulation of both pathways (Figure 4). The biological
relevance of precise cytokine concentrations has been confirmed
in studies showing that different TNF amounts can cause distinct
responses with regard to target gene expression (Ashall et al.,
2009). Moreover, our recent computational multi-scale model
illustrated that LPS-induced TNF levels between 0.1 and 5
ng/ml cause an adjustable NF-κB pathway response, while higher
cytokine amounts show maximal pathway amplitudes (Beuke
et al., 2017).

In addition, our results might be of clinical relevance for
patients with continuous inflammatory responses (e.g., during
hepatitis). The data suggest that repeated induction of low TNF
amounts (between 1 and 2.5 ng/ml) can already lead to stronger
pro-apoptotic JNK activation but less-pronounced pro-survival
NF-κB signaling. Thus, it is tempting to speculate that inhibition

of the JNK pathway in earliest phases of liver damage might
prevent recurrent cycles of cell death followed by regenerative
proliferation, which is one characteristic of e.g., chronic hepatitis
C virus infection (Karidis et al., 2015). However, additional in
vivo experiments would be necessary to definitely draw this
conclusion. These could include CCL4-stimulation approaches in
a liver-specific A20 knockout background (Lee et al., 2000; Liu
et al., 2013).

A couple of molecular mechanisms may explain the A20-
mediated differential desensitization phenotype observed in our
study. For example, A20 suppresses apoptotic JNK signaling in a
TNF-dependent and independent manner via induction of ASK1
degradation (Won et al., 2010). Since A20 is efficiently induced
by TNF administration it is tempting to speculate that the loss of
ASK1 might shift the cellular response from apoptosis to survival
and proliferation. Our data include an additional mechanistic
level to this observation. ASK1 can phosphorylate JNK and
the physical interaction between A20 and ASK1 has been
demonstrated (Tobiume et al., 2001; Won et al., 2010). We here
showed that TNF affects the interaction between A20 and ASK1,
which could explain the ASK1-dependent phosphorylation of
JNK at specific periods after TNF administration. The underlying
molecular mechanism for this precise and dynamic fine-tune
regulation is not understood, however, the natural oscillations
observed in the activation dynamics of both JNK and NF-κB
could be partly explained in terms of synchrony / asynchrony
ASK1:A20 dynamics as observed in this study (Ashall et al., 2009).

Alternatively, A20 has been demonstrated to mediate
RIPK1 ubiquitination and differential activation of the effector
caspase-8. Here the ubiquitination activity of A20 protects from
apoptosis after TRAIL treatment due to the reduced transfer of
pro-caspase-8 to biologically active caspase-8 (Dong et al., 2012).
However, it is not clear if these mechanisms are involved in the
differential desensitization phenotype in hepatocellular cells after
administration of low cytokine amounts.

In addition, our results indicate that the mode of TNF
stimulation (single vs. repeated treatment) affects the cellular
outcome. While single cytokine administration leads to
temporary activation of p65 and JNK phosphorylation, the
repeated stimulation with suboptimal (and physiological) TNF
levels partly overcomes negative feedback regulation of JNK,
while an effective inhibition of the NF-κB system is possible
(Figure 4). These results reinforce the concept that different
stimuli in space and time define cause different effects under
physiological and/or pathophysiological conditions (Ashall
et al., 2009). Our data suggest that A20 might represent one
molecular switch how cells may discriminate between NF-κB
and JNK signaling. This dynamic physical ASK1:A20 interaction
might explain the oscillatory or sustained JNK activity and as
a physiological consequence the switch between survival and
apoptosis.

Together, our study suggests an A20-dependent mechanism,
which may explain how hepatocytes differentially activate
downstream effector pathways upon repeated stimulation with
physiological TNF concentrations. Continuous availability of
high TNF concentrations under pathophysiological conditions
may uncouple this fine-tune regulation and therefore participate
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in the development of liver diseases. Future work might include
the role of scaffold proteins (e.g., IQGAP2 and SQSTM1)
and how their the subcellular localization might affect NF-κB
and JNK pathway activity dependent on the cellular context
(inflammation, loss of cell polarity). Knowledge on the spatio-
/temporal regulation will help to define the specific responses of
signaling pathways in healthy and diseased cells.
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Supplementary Figure S1 | TNF-induced dynamics in Hep56 cells. (A) Western

immunoblots of protein extract isolated from Hep56 cells after administration of

TNF (10 ng/ml) for the indicated time-points. (B) Relative protein amounts of

NF-κB and JNK pathways constituents in Hep56 cells after single TNF

administration (10 ng/ml). (C) Relative mRNA levels of IκBα and A20 after single

TNF stimulation. Bars in panel (C,D) represent standard errors.

Supplementary Figure S2 | Comparison of NF-κB and JNK pathway activity

in Hep56 cells after single and multiple TNF stimulation. This experiment was

performed as described for Hepa1-6 cells (Figure 4). For this analysis, only

time points were chosen, which showed differential signal amplitude between

NF-κB and JNK in Hepa1-6 cells (untreated, 10, 70, and 130 min after TNF

administration). (A) Single TNF treatment of Hep56 cells (1 × 1 ng/ml).

(B) Triple TNF treatment Hep56 cells with 1 × 1 ng/ml followed by 2 × 2.5

ng/ml. (C) Triple TNF treatment Hep56 cells with 1 × 1 ng/ml followed by 2 ×

5 ng/ml. For all graphs signals for p65/phospho-p65, and JNK/phospho-JNK

were quantified and normalized to the respective loading control (actin). Bars

represent standard errors.

Supplementary Figure S3 | Confirmation of transfection efficiency of pCMV6

vectors. (A) Six technical replicates of Hepa1-6 clones transfected with

pCMV6-A20 were tested for the overexpression of pMax-GFP. Test was repeated

after establishment of individual clones (six clones are shown). (B) Brightfield and

immunofluorescence pictures of Hepa1-6 cells after transient transfection of the

pMax-GFP vector. Note that the majority of cells show moderate to strong

positivity for GFP. (C) FACS analysis confirms that about 80% of all cells are

positive for GFP.

Supplementary Figure S4 | Changes in A20 expression do not affect p65

activity. (A) A20 overexpression does not affect p65 or its target gene IκBα.

Transcript levels of A20, IκBα, and p65 were measured by real-time PCR.

(B) Luciferase assay illustrates that A20 overexpression does not change the

activity of p65. Bars represent standard errors.

Supplementary Figure S5 | Analysis of HCC apoptosis after A20 inhibition and

TNF stimulation. A20 was inhibited in Hep56 cells by gene-specific siRNA

transfection. Twenty-four hours later cells were treated with TNF (10 ng/ml) and

apoptosis was measured after indicated time points.
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IL-6 is a central mediator of the immediate induction of hepatic acute phase proteins

(APP) in the liver during infection and after injury, but increased IL-6 activity has

been associated with multiple pathological conditions. In hepatocytes, IL-6 activates

JAK1-STAT3 signaling that induces the negative feedback regulator SOCS3 and

expression of APPs. While different inhibitors of IL-6-induced JAK1-STAT3-signaling

have been developed, understanding their precise impact on signaling dynamics

requires a systems biology approach. Here we present a mathematical model

of IL-6-induced JAK1-STAT3 signaling that quantitatively links physiological IL-6

concentrations to the dynamics of IL-6-induced signal transduction and expression

of target genes in hepatocytes. The mathematical model consists of coupled

ordinary differential equations (ODE) and the model parameters were estimated

by a maximum likelihood approach, whereas identifiability of the dynamic model

parameters was ensured by the Profile Likelihood. Using model simulations coupled

with experimental validation we could optimize the long-term impact of the JAK-inhibitor

Ruxolitinib, a therapeutic compound that is quickly metabolized. Model-predicted

doses and timing of treatments helps to improve the reduction of inflammatory

APP gene expression in primary mouse hepatocytes close to levels observed

during regenerative conditions. The concept of improved efficacy of the inhibitor

through multiple treatments at optimized time intervals was confirmed in primary
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human hepatocytes. Thus, combining quantitative data generation with mathematical

modeling suggests that repetitive treatment with Ruxolitinib is required to effectively

target excessive inflammatory responses without exceeding doses recommended by

the clinical guidelines.

Keywords: IL-6, mathematical modeling, acute phase response, ruxolitinib, primary hepatocytes

INTRODUCTION

Increased activity of interleukin (IL)-6 has been associated with
chronic inflammatory diseases including rheumatoid arthritis
(Hirano et al., 1988), multiple sclerosis (Frei et al., 1991;
Navikas et al., 1996), and Crohn’s disease (Ito, 2003). High
IL-6 levels are also frequently found and correlate with poor
outcome in patients with sepsis, an acute systemic inflammatory
response (Waage et al., 1989; Calandra et al., 1991; Damas et al.,
1992; Norrby-Teglund et al., 1995). Accordingly, abrogation of
glycoprotein 130 (gp130)-dependent signaling in hepatocytes
was shown to prolong survival and to reduce liver damage
in an in vivo sepsis model (Klein et al., 2007). Persistent
inflammation can initiate or promote (Grivennikov and Karin,
2011) malignant progression and a pro-tumorigenic role of IL-6,
which is elevated in many types of cancer, has been suggested
(Heikkila et al., 2008). Thus, increased IL-6 levels can have
detrimental effects. On the other hand, a certain amount of
IL-6 is required for efficient immune defense (Kopf et al., 1994)
and liver regeneration (Cressman et al., 1996; Sakamoto et al.,
1999; Zimmers et al., 2003). Central target cells of IL-6 are
hepatocytes, where IL-6 regulates the production of acute phase
proteins (APPs) by first activating the IL-6 receptor complex
with the signal-transducing subunit gp130. Signals are further
transduced via janus kinase 1 (JAK1) and signal transducer
and activator of transcription 3 (STAT3; Bode and Heinrich,
2001).

However, other cytokines such as Oncostatin-M (OSM), IL-
11, IL-10, and IL-22, also induce STAT3 phosphorylation (see
Nakamura et al., 2004; Sabat et al., 2010; Nishina et al., 2012;
Rao et al., 2014) and therefore could contribute to the complex
regenerative and inflammatory signaling in the liver. OSM is
also able to induce IL-6 expression and therefore additionally
feeds into JAK1/STAT3 signaling. However, OSM is primarily
involved in developmental processes (Nakamura et al., 2004) and
presumably only contributes to a lesser extent to the immediate
activation of the acute phase response upon liver damage. IL-
11 was shown to be mainly involved in hepatocellular responses
upon oxidative stress and hepatotoxic drugs (Nishina et al.,
2012). The anti-inflammatory cytokine IL-10 is an essential
factor controlling inflammation (Murray, 2006). After partial
hepatectomy Yin et al. observed after 1 h an increase in Il10
mRNA expression, but the concentration of IL-10 protein was not
examined (Yin et al., 2011). Distinct from IL-6, IL-10 apparently
does not induce the expression of suppressor of cytokine
signaling 3 (SOCS3), (Ichikawa et al., 2002) and in mice lacking a
functional Socs3 gene in macrophages or neutrophils no obvious
alteration in IL-10 signal transduction is observed (Yasukawa
et al., 2003). For IL-22 Rao et al. observed in hepatectomizedmice

in comparison to sham operated mice an increase of Il22 mRNA
after 1 h and a further increase after 3 h, whereas Il6 mRNA was
already maximally induced after 1 h (Rao et al., 2014). On the
other hand Ren et al. did not detect a statistically significant
increase of Il22 mRNA in mice in response to hepatectomy, but
rather reported a statistically significant increase of IL-22 protein
in the serum starting at 6 h post hepatectomy with a peak at
12 h (Ren et al., 2010). Further, in response to LPS injection a
very low level of induction of Il22 mRNA was observed in the
liver with a peak at 4 h post injection, whereas a much stronger
activation of Il22 mRNA with comparable kinetics was observed
in the spleen (Wegenka et al., 2007). Likewise, Dumoutier et al.
reported that IL-22 is primarily produced by innate spleen cells
in mice. These studies showed a peak of Il22 mRNA in the
serum after 2–3 h post LPS injection and elevated serum levels
of IL-22 at 4 h post treatment (Dumoutier et al., 2011). Analysis
of IL-22 knockout mice revealed that in the absence of IL-22
hepatocellular proliferation at 48 h post hepatectomy is reduced
(Kudira et al., 2016). Further, 6 h post LPS injection a very
heterogeneous decrease in STAT3 phosphorylation is observed
in IL-22 knockout mice compared to wild type mice (Wallace
and Subramaniam, 2015) and the authors concluded that the IL-
22 knockout mice display appropriate inflammatory responses
to LPS in the liver. Together these studies suggest that IL-
22 is a mediator of the cross-talk between immune cells and
hepatocytes and contributes to efficient liver regeneration but
potentially distinct from IL-6 primarily contributes to long-term
recovery.

IL-6/STAT3-dependent target genes encode the APPs
fibrinogen-γ (Fgg), serum amyloid P (Apcs), haptoglobin
(Hp), hemopexin (Hpx; Alonzi et al., 2001), hepcidin (Hamp;
Wrighting and Andrews, 2006; Pietrangelo et al., 2007), as
well as Socs3, the negative feedback regulator of IL-6 signaling
(Starr et al., 1997; Croker et al., 2003). Although, APPs fulfill
beneficial roles in host defense and tissue repair (Bode et al.,
2012), several adverse effects have been reported for different
APPs. Hepcidin, for instance, a crucial regulator of iron
homeostasis (Sakamori et al., 2010; Ganz and Nemeth, 2012),
contributes to the development of anemia under inflammatory
conditions (Weinstein et al., 2002; Kemna et al., 2005).
Elevated expression of fibrinogen was related to formation
and progression of atherosclerotic plaques (Levenson et al.,
1995) and serum amyloid P, the major APP in mice, was
suggested to contribute to the persistence of amyloid deposits
(Tennent et al., 1995). Dysregulated APP production may thus
foster pathologic changes during uncontrolled inflammatory
responses.

Triggered by its involvement in several pathologies,
therapeutic targeting of IL-6 signaling is a focus of ongoing
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basic and clinical investigations. The JAK1/2 inhibitor
Ruxolitinib/INCB018424 (Jakavi/Jakafi, Incyte Pharmaceuticals,
Novartis; Lin et al., 2009; Quintas-Cardama et al., 2010) has
been internationally approved for the therapy of myelofibrosis
(Mesa et al., 2012; Verstovsek et al., 2012) and polycythemia
vera (Vannucchi et al., 2015), which are frequently caused
by the V617F gain-of-function mutation within JAK2
(Kralovics et al., 2005). According to the guidelines, the
recommendation for Jakavi is a repetitive, constant dose of
10 mg twice daily (q12h) for polycythemia vera or 20 mg
twice daily (q12h) for myelofibrosis (Rote, 2016). Ruxolitinib
affects the hematological status of patients and therefore
the platelet count should be assessed before the start of a
therapy. Since low neutrophil counts have been observed in
66% of healthy volunteers treated with 100 mg Ruxolitinib
daily (q24h; Shi et al., 2011), it is of great importance not
to exceed the recommended daily doses. Ruxolitinib is also
tested for the treatment of other malignancies as well as
chronic inflammatory diseases such as rheumatoid arthritis
(Williams et al., 2008; Quintas-Cardama et al., 2011).

The STAT3 inhibitor Stattic, which is not approved for
clinical applications, targets the STAT3 SH2 domain, thus
blocking receptor association and dimerization. Stattic
treatment inhibited IL-6-induced STAT3 phosphorylation
and nuclear translocation in hepatocytes (Schust et al.,
2006). Moreover, increased apoptosis was observed in
STAT3-dependent cancer cell lines upon Stattic treatment
(Schust et al., 2006). Although the molecular mechanisms of
Ruxolitinib and Stattic are well-established, their impact on
the dynamics of signal transduction, expression of target genes,
and cellular response is, due to the non-linear reactions, not
intuitive.

Mathematical models based on ordinary differential equations
(ODEs) are well-suited to study the dynamics of signal
transduction and have enabled the identification of therapeutic
targets within signaling networks (Schoeberl et al., 2009; Raia
et al., 2011). ODEs describe concentration changes of species over
time. The law of mass-action kinetics defines a reaction rate to
be proportional to the concentrations of reacting biomolecules
thus facilitating the translation of a pathway map into a set
of ODEs. In the model, species concentrations are the state
variables, while rate constants, initial conditions, or other
proportionality factors are termed parameters. Although, some
parameter values such as initial protein concentrations may
be accessible by measurements, most parameter values remain
unknown and have to be estimated based on experimental
data (Aldridge et al., 2006; Chen et al., 2010). This process
is called model calibration and requires highly quantitative
and reproducible experimental data, as well as a sufficient
number of data points and measured species (Bachmann et al.,
2012).

Formulating biological hypotheses in terms of mathematical
models allows to quantitatively test such hypotheses by
challenging model predictions with additional experimental
data. For example Swameye et al. established a dynamic

pathway model for the JAK2-STAT5 signaling pathway and
tested conflicting hypothesis on signal transduction from
the cell surface receptor to the nucleus (Swameye et al.,
2003). The mathematical model revealed that STAT5 acts
as a remote sensor for receptor activation and that repeated
nucleocytoplasmic cycling of STAT5 is required for effective
target gene activation in the nucleus. Furthermore, by a
mathematical modeling approach Sasagawa et al. showed that
the transient activation of ERK depends on rapid increases
in the amount of epidermal growth factor and nerve growth
factor (NGF), while sustained ERK activation depends on
the final NGF concentration (Sasagawa et al., 2005). Nelson
et al. revealed that oscillations observed in TNFalpha induced
activation of NF-kB control the dynamics of gene expression.
The mathematical modeling approach revealed that two
molecular species were strongly coupled to the oscillation
dynamics (Nelson et al., 2004). By iteratively combining
mathematical modeling with model-guided experiments,
these and other studies (Alon et al., 1999; Sick et al., 2006;
Borisov et al., 2009; Becker et al., 2010; Bachmann et al.,
2011) demonstrated that it is possible to capture biological
behavior, reject hypotheses which fail to describe data and
make non-trivial predictions for validation experiments.
Moreover, uncertainty analysis can give insight into how
well a model is constrained and what kind of predictive
power one can expect when predicting similar experiments
(Kreutz et al., 2012; Vanlier et al., 2013). Additionally,
validation experiments guided by well-constrained predictions
can be performed to improve the confidence in the model
(Steiert et al., 2012).

Although several ODE-based mathematical models of IL-
6 signaling have been reported to date (Singh et al., 2006;
Moya et al., 2011; Dittrich et al., 2012), only with a recently
described mathematical model (Xu et al., 2015) potential effects
of targeting selected pathway components on APP expression
were tested in silico. These studies predicted that IL-6 signaling
could be best targeted at the receptor level, and that reduced
inhibitor dose may be achievable by applying possible inhibitor
combinations (Xu et al., 2015). However, the model-based
predictions reported by Xu et al. were not experimentally
validated, thus limiting applicability to targeting IL-6 signaling
in human disease.

Here we present an ODE model of IL-6-induced JAK1-STAT3
signaling in primary mouse hepatocytes. Based on extensive
experimental data, the mathematical model describes pathway
activation and key target gene induction during regenerative
and inflammatory conditions, as well as the impact of the
pathway inhibitors Ruxolitinib and Stattic. We combined model
predictions with experimental validation to optimize the long-
term Ruxolitinib-mediated reduction of APP gene expression,
while maintaining gene expression levels that are present during
regenerative conditions without employing excessive inhibitor
concentrations. The presented approach represents a starting
point for systematic clinical intervention in inflammatory or
malignant diseases.
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RESULTS

Physiological IL-6 Concentrations during
Liver Regeneration and Inflammation
A broad range of circulating IL-6 concentrations has been
reported during liver regeneration (Slotwinski et al., 2002;
Nechemia-Arbely et al., 2011; Yin et al., 2011) and inflammation
(Waage et al., 1989; Damas et al., 1992; Piao et al., 2013),
but a direct comparison of regenerative and inflammatory
conditions has not been performed yet. To provide a basis
for our ex vivo experiments and to enable model predictions
of physiological relevance, we determined physiological IL-6
concentrations in mice following partial hepatectomy (PHx;
Mitchell and Willenbring, 2008) and lipopolysaccharide (LPS)
injection (Fattori et al., 1994; Copeland et al., 2005), which trigger
liver regeneration and acute inflammation, respectively. Serum
IL-6 levels were measured using a bead-based immunoassay.
We observed rapid but transient induction of serum IL-6 in
response to PHx and LPS treatment (Figure 1A). Peak IL-
6 levels were detected 2 h post PHx with 1.4 ng/mL (±0.3
ng/mL SD; n = 3). Similarly, IL-6 amounts in response to
LPS injection peaked at 2 h, but reached considerably higher
concentrations of 201.8 ng/mL (±77.8 ng/mL SD; n = 5).
Following the peak, IL-6 levels dropped quickly and returned
to baseline levels at 8–24 h. For comparison, sham surgery
and NaCl injection as control treatments for PHx and LPS,
respectively, caused serum IL-6 levels to increase only slightly.
Less than 0.4 ng/mL IL-6 after sham surgery and <0.1 ng/mL
IL-6 after NaCl injection were measured. The background IL-
6 concentration in untreated mice was <10 pg/mL, which
corresponds to previously reported values (Huang et al.,
2003). To conclude, IL-6 levels in response to PHx and LPS
treatment increased in a fast but transient manner. Similar
dynamics were observed for PHx and LPS treatment. However,
LPS caused 100-fold higher peak IL-6 levels, compared to
PHx.

In addition to serum IL-6 levels, we developed a strategy to
determine the IL-6 concentrations present in the hepatocytes’
microenvironment. We analyzed STAT3 activation (Tyr-705
phosphorylation) as read-out in livers from PHx and LPS-treated
mice. Phospho-STAT3 levels were measured using multiplexed
bead-based arrays (Figure 1B), revealing rapid and transient
induction of STAT3 activation after PHx and LPS treatment.
Peak levels were reached at 2 h following PHx and even earlier,
after 1 h following LPS injection. Thus, the conversion of IL-
6 signal to STAT3 activation is very efficient. The amplitude of
STAT3 activation after LPS treatment was more than twice as
high as in the case of PHx. After peaking, the phospho-STAT3
signal decreased likewise in PHx and LPS treated livers, and
returned to levels close to baseline at 24 h. STAT3 activation was
also detectable in animals treated with sham surgery, which has
been reported previously (Cressman et al., 1996; Heim et al.,
1997), and which is likely due to stress caused by the surgical
procedure.

To compare the contribution of IL-6 and of the other
STAT3 activating cytokines IL-22, OSM, or IL-11, on STAT3
phosphorylation in the liver, we performed additional

time-resolved qRT-PCR measurements of liver lysates from
LPS or PHx treated mice. In comparison to the induction of
IL-6 protein expression (Figure 1A) and Il6 gene expression
(Appendix Figure S14) no major induction of OSM, IL-22, or
IL-11 was elicited by partial hepatectomy or by LPS (Appendix
Figure S14).

In parallel, phospho-STAT3 levels were determined in primary
mouse hepatocytes stimulated with 0.1–500 ng/mL recombinant
human IL-6 (hIL-6) for 20min to capture the maximal phospho-
STAT3 signal (Figure 1C). When the work of the presented study
was initiated, recombinant murine IL-6 was not yet commercially
available. Therefore, human IL-6, produced as described in
Vandam et al. (1993), was utilized and was kept for the entire
study to ensure consistency.

Samples from mouse livers (Figure 1B) and from primary
mouse hepatocytes (Figure 1C) were analyzed simultaneously
in a 96-well plate format using equal lysis conditions for direct
comparability of the measured phospho-STAT3 signal. Dose-
dependent STAT3 activation in primary mouse hepatocytes
followed a sigmoidal behavior in response to IL-6. It was
detectable from 2.5 ng/mL hIL-6 on, then steeply increased
and quickly reached saturation at 25–50 ng/mL (Figure 1C).
Approximation of the IL-6/phospho-STAT3 dose-response curve
from primary mouse hepatocytes by a 4-parameter Hill
regression function enabled to correlate phospho-STAT3 signal
intensities in livers from PHx or LPS-treated mice to IL-6
concentrations that elicited the observed STAT3 response. The
peak phospho-STAT3 signal (average ± SEM of 2 and 3 h
time points) after PHx approximately corresponded to an IL-
6 concentration equivalent to 6.8–7.9 ng/mL hIL-6. In the case
of LPS, the peak phospho-STAT3 signal (average ± SEM of 1
and 2 h time points) approximately corresponded to a signal
obtained with 28.1–500 ng/mL hIL-6. The STAT3 signal detected
after NaCl injection was out of range of our reference curve and
corresponded to <0.1 ng/mL hIL-6 (Figure 1C).

To convert the responses elicited by hIL-6 to the
concentrations relevant in the mouse, we performed dose
response experiments comparing the potency of increasing
doses of human and murine IL-6 in stimulating STAT3
phosphorylation in primary mouse hepatocytes. As shown in
Figure 1D, this revealed that murine IL-6 is more potent to elicit
STAT3 phosphorylation in murine hepatocytes compared to
hIL-6 with an overall shift of the dose-response curve to lower
IL-6 concentrations. Collectively, STAT3 was activated rapidly,
efficiently and transiently in mouse livers after PHx and LPS
treatment. In line with IL-6 serum concentrations (Figure 1A),
peak phospho-STAT3 signals corresponded to human IL-6
concentration ranges for PHx (6.8–7.9 ng/mL; average: 7.4
ng/mL) and LPS (28.1–500 ng/mL; average: 264.1 ng/mL). This
corresponds to a mouse IL-6 concentration of 1.8 and 50 ng/mL,
respectively (Figure 1D).

Time-Resolved Characterization of Key
IL-6 Target Genes
To investigate the APP gene signature induced by hIL-6 in
primary mouse hepatocytes, and to establish the time-dependent
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FIGURE 1 | Physiological IL-6 concentrations during liver regeneration and inflammation. Mice were subjected to control (Sham) surgery or partial hepatectomy (PHx),

and control (NaCl) or lipopolysaccharide (LPS, 1 µg/g body weight) treatment. Serum and livers were collected at indicated time points. (A) Absolute serum IL-6 levels

were measured by a bead-based immunoassay. Filled circles represent data from individual mice, solid lines connect average values of biological replicates. Sham,

PHx, and LPS-treatment: n = 3–6 per time point; NaCl: n = 1 per time point. (B) STAT3 phosphorylation at Tyr-705 was quantified by multiplexed bead-based arrays

in lysates of frozen mouse liver samples. Per time point or IL-6 dose, 3–6 biological replicates were measured and scaled by normalizing to their average signal. Filled

circles represent average ±standard error of the mean (SEM) of biological replicates; solid lines are shown for visual guidance in the mouse liver data set. (C) Primary

mouse hepatocytes were stimulated with 0.1–500 ng/mL of recombinant human IL-6, and lysed after 20min. The 4-parameter Hill regression function (C) was

generated using SigmaPlot software, and served to convert phospho-STAT3 signals to IL-6 concentrations. Dashed lines represent average phospho-STAT3 signals

of the 1 and 2 h time points (NaCl, LPS), or 2 and 3 h time points (PHx), and corresponding derived IL-6 concentrations. Shaded areas represent standard error of the

mean. (D) Primary mouse hepatocytes were stimulated with mouse IL-6 or human IL-6 to derive the doses of human IL-6 mimicking regenerative and inflammatory

conditions, indicating that 1.8 ng of mouse IL-6 is equally potent to 7.5 ng of human IL-6 on mouse hepatocytes. FI, fluorescence intensity; a.u., arbitrary units.

regulation of respective genes, we performed microarray analysis
of primary mouse hepatocytes stimulated with hIL-6 (40 ng/mL)
for up to 32 h. Global analysis of the genome-wide transcriptome
profiling was performed using principal component (PC) analysis
(PCA). In the two most relevant PCs the samples were
separated by time and by condition (control vs. hIL-6) and
biological duplicates were clustered (Figure 2A) indicating high
reproducibility. The individual contributions of genes to the
two PCs are shown in the respective rotation space for PC1/2
(Figure 2B). We found well-established IL-6 targets, such as
Socs3 and the APP genes Apcs, Fgg, and Hamp to be major
contributors to both, stimulus-specific and time-dependent,
regulation (Figure 2B).

Differential gene expression analysis of the microarray
data set was performed using a linear regression model
with gene-wise Bayesian variance estimation (Ritchie et al.,
2015). We classified the IL-6-regulated genes as early (0.5–
2 h), intermediate (4–16 h), and late (24–32 h) response genes

to establish optimized time frames for the measurements
(Figure 2C). In total 1,728 genes were significantly regulated
upon hIL-6 stimulation (Appendix Figure S1A), while 723,
779, and 694 genes were IL-6-regulated at early, intermediate,
and late time points, respectively. Intermediate and late IL-6-
response genes showed more than 40% overlap. Enrichment
analysis of respective gene lists showed that the late IL-6
response was enriched for genes relevant in the acute phase
response (Appendix Figure S1B). Significantly regulated genes
included Socs3, which was induced at early, intermediate, and
late time points. Another early-induced gene was Cxcl10. We
found the APP genes Fgg, Hamp, and Il33 to be induced
at intermediate and late time points, whereas compared with
control Apcs was increased only at late time points. Interestingly,
the gene encoding the C reactive protein (CRP), displayed
a similar expression pattern as Apcs. Hierarchical clustering
of significantly regulated genes and further APP genes of
interest (Heinrich et al., 1990) revealed that especially late APP
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FIGURE 2 | Genome-wide analysis of IL-6-induced transcriptional responses. (A) Primary mouse hepatocytes were stimulated with 40 ng/mL hIL-6 or left untreated

(Control), and RNA was isolated at indicated time points. Transcriptome profiling was performed using GeneChip Mouse Genome 430 2.0 Arrays (Affymetrix). Samples

were projected onto the first two principal components (PC) of the data set, and values in PC1/2 are plotted. Arrows connect subsequent time points for Control and

IL-6 condition, and are shown for visual guidance. (B) Contributions of individual genes to the respective PCs are shown. Genes of interest are labeled and highlighted

in blue (APP), or dark red (Socs3). (C) Hierarchical clustering of expression patterns of APP genes of interest. Expression values are centered to mean expression of t

= 0 Control samples. Sidebar color-codes whether genes were significantly regulated at early, intermediate, or late time points. APPs that are most relevant in the

murine context are highlighted in yellow. CRP, an important APP in the human context, is highlighted in orange.

genes clustered and were mostly induced upon hIL-6 treatment
(Figure 2C).

Taken together, we present a comprehensive list of IL-6 target

genes that are expressed in response to hIL-6 stimulation in

primary mouse hepatocytes. Of these we obtained detailed time-
resolved expression profiles of previously known (Apcs, Fgg,

Hamp, Hp, Hpx, Socs3) and less well-established (Cxcl10, Il33)
IL-6 target genes. These selected genes served as read-out for
the IL-6-induced hepatic acute phase response in the following
experiments, and the recorded temporal dynamics enabled the
choice of optimal time points for dose-dependent analysis.

Dynamic Mathematical Model of IL-6
Signaling Capturing Inhibitor Effects
To link the observed physiological IL-6 concentrations to
activation of signal transduction and induction of target genes
and to quantitatively predict the impact of the pathway inhibitors
Ruxolitinib and Stattic, we generated amathematical model of IL-
6-induced JAK1-STAT3 signaling in primary mouse hepatocytes
(Figure 3A). Assuming the law of mass-action kinetics, we
translated the previously established molecular interactions
(Heinrich et al., 2003) in response to IL-6 into a set of ODEs. Two
compartments were modeled to describe the shuttling of STAT3
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FIGURE 3 | Mathematical model of IL-6-induced JAK1-STAT3 signaling and model calibration with time-resolved signaling data. (A) The ODE-based model is

represented as process diagram (Kitano et al., 2005). Individual reactions of species (arrows) can be induced (circle-headed lines) or inhibited (bar-headed lines).

Dashed line borders highlight active species. AppRNA is representative for the different intermediate/late APP mRNAs Fgg, Hamp, Il33, Apcs, Hp, and Hpx. The

production of cytoplasmic Socs3 and APP mRNAs was modeled using a delay (τ ), corresponding to five additional processing steps of intermediate nuclear RNA

species. Inhibitors are shown in red color. ActD, actinomycin D; Prefix p, phosphorylated species; Prefix n, nuclear species. (B) Primary mouse hepatocytes were

treated with 40 ng/mL of hIL-6 and lysed for protein or RNA isolation at indicated time points. Phosphorylated JAK1, gp130, and STAT3 were measured using

quantitative immunoblotting preceded by immunoprecipitation to enrich for the target proteins. Recombinant calibrator proteins were used for normalization. (C)

Primary mouse hepatocytes were treated with 40 ng/mL of hIL-6 for 18min, lysed and subject to immunoprecipitation. Enriched proteins were separated by

SDS-PAGE, in-gel digested, and analyzed by mass spectrometry to determine the degree of Tyr-705 phosphorylation of STAT3. (D) Example widefield fluorescent

microscopic images of primary hepatocytes from mKate2-STAT3 mice unstimulated (left panel) or stimulated with 500 ng/mL hIL-6 for 25min (right panel). White

arrows indicate positions of nuclei. The ratio of nuclear to cytoplasmic mKate2-STAT3 was determined by live-cell imaging in 20 hepatocytes isolated from

mKate2-STAT3 heterozygous mice 10min prior to and 25min after stimulation with hIL-6 (500 ng/mL). (E) Primary mouse hepatocytes were treated with 40 ng/mL of

hIL-6 and lysed for RNA isolation at indicated time points. Socs3 mRNA was quantified by qRT-PCR (n = 3). Filled circles: experimental data; solid lines: model

trajectories. Dashed lines indicate the measurement noise as estimated by the error model. a.u., arbitrary units. For additional experimental data used for model

calibration see Appendix Figures S26–S81. In total, the model was calibrated with 3090 data points.

between cytoplasm and nucleus, as well as the nuclear export
of newly synthesized mRNAs. The model contained four input
variables: IL-6, Ruxolitinib, Stattic, and actinomycin D (ActD).

Based on immunoassays of human IL-6 in mouse hepatocyte
supernatants (Appendix Figure S2), constant IL-6 concentrations
and complete removal of ligand after stimulation pulses were
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assumed. Because Ruxolitinib was reported to have a plasma half-
life of ∼3 h in humans (Shi et al., 2011), Ruxolitinib degradation
was included in the model. Considering that inhibition by Stattic
is irreversible, its concentrations were modeled as constant.
The temporal evolution of the dynamic variables was described
by 25 ODEs, the detailed steps were as follows (Figure 3A):
gp130 and JAK1 were described to be pre-associated (Behrmann
et al., 2004) and were modeled as one complex JAK1_gp130
with different activation states, as described previously for
the interaction of JAK2 with the erythropoietin receptor
(Bachmann et al., 2011). The alpha receptor subunit IL-6R
was not considered in the model, because it is not directly
involved in the dynamic phosphorylation events that initiate
IL-6 signaling (Taga et al., 1989). IL-6 promotes activation and
phosphorylation of JAK1, causing generation of the species
pJAK1_gp130. Additionally, there is also a low level of basal
activation. Subsequently, also gp130 is phosphorylated by JAK1
to create the fully activated receptor complex pJAK1_pgp130.
Stimulus-independent negative regulatory mechanisms at the
receptor level, as reported for JAK1 (Simoncic et al., 2002;
Lehmann et al., 2003), were taken into account by including
two deactivating steps. Both partly active pJAK1_gp130 and
fully active pJAK1_pgp130 are directly converted to inactive
JAK1_gp130. This simplification is based on the assumption
that dephosphorylation of gp130 and JAK1 is coupled. STAT3 is
activated by JAK1 only after docking to phosphorylated gp130
(Lutticken et al., 1994; Stahl et al., 1995; Yamanaka et al., 1996).
Thus, double-phosphorylated pJAK1_pgp130 mediates STAT3
activation. The species pSTAT3 represents phosphorylated,
active, and dimeric STAT3. A separate dimerization step was
neglected, because the oligomerization state of STAT3 was not
assessed by experiments. Active, dimeric pSTAT3 subsequently
translocates to the nuclear compartment, and npSTAT3 promotes
transcription of Socs3 and APP genes. The generation of
cytoplasmic RNA was modeled including a delay (τ ; MacDonald,
1976; Bachmann et al., 2011) for both Socs3 and APP genes to
account for processing and nuclear export of these early-induced
transcripts. Based on repeated profile likelihood analysis, we
concluded that Socs3, Cxcl10, Fgg, Il33, Hp, and Hpx required
an explicit delay in the model to describe the available data,
while Apcs and Hamp did not. Socs3 was expressed earlier
than any of the APP genes. For the APP genes, Cxcl10
had the shortest delay, followed by Fgg. The other APP
genes exhibited slower dynamics (see Appendix Figure S24).
Cytoplasmic Socs3RNA promotes synthesis of SOCS3. SOCS3
inhibits the signaling pathway by increasing degradation of
the receptor complex as well as inhibiting phosphorylation of
STAT3 by the fully activated receptor complex (Starr et al.,
1997; Babon et al., 2012; Kershaw et al., 2013). Therefore,
SOCS3 enhances degradation of all receptor states and inhibits
the STAT3-activating reaction converting STAT3 to pSTAT3.
Production of APP proteins was not assessed experimentally
and was thus not considered in the model. The target RNA
and protein species Socs3RNA, SOCS3, and Cxcl10/AppRNA are
furthermore subject to degradation.

Deactivation of nuclear STAT3 was suggested to be mediated
by phosphatases (Yamamoto et al., 2002). A combined

dephosphorylation and dissociation step was therefore modeled
in the nuclear compartment, converting dimeric, active
npSTAT3 to monomeric, inactive nSTAT3. Based on model
identifiability analysis, it was concluded that dephosphorylation
and dissociation of STAT3 in the nucleus is very fast. Therefore,
npSTAT3 was not considered as a state variable, but modeled
proportional to the cytoplasmic concentration of pSTAT3
(see Appendix for more information). STAT3 was shown
to continuously shuttle between cytoplasm and nucleus
independent of its activation state (Liu et al., 2005; Reich and Liu,
2006). Accordingly, we allowed nuclear import for both, inactive
STAT3 and active pSTAT3, while only inactive nSTAT3 can be
exported back to the cytoplasm. The previously determined
(Mueller et al., 2015) ratio of cytoplasmic to nuclear volume
of primary mouse hepatocytes (12.67/0.5 pL, for frequently
binucleated hepatocytes) facilitated modeling of concentration
changes due to inter-compartmental transport processes.

The pathway inhibitors Ruxolitinib and Stattic were
incorporated into the model according to their published
molecular modes of action. The JAK inhibitor Ruxolitinib
(Lin et al., 2009; Quintas-Cardama et al., 2010) negatively
influences JAK1-dependent reactions in the model, specifically
the generation of pJAK1_gp130 and pJAK1_pgp130. Stattic
blocks activation and dimerization of STAT3 (Schust et al., 2006)
and therefore in our model inhibits the respective conversion of
STAT3 to pSTAT3. All transcriptional processes are furthermore
blocked by ActD.

The protein abundances of the pathway components gp130,
JAK1, STAT3, and SOCS3 were determined by quantitative
immunoblotting (Schilling et al., 2005a) according to standard
curves of recombinant calibrator proteins. The determined
number of molecules per cell (Appendix Figure S3) provided
the absolute scale for model predictions of those specific states.
Remaining unknown model parameters were estimated based on
time- and dose-dependent experimental data, as described in the
following sections.

Model Calibration with Time-Resolved
Signaling and Gene Expression Data
The mathematical model depicted in Figure 3A was calibrated
with quantitative experimental data describing the time-resolved
dynamics of IL-6-induced JAK1-STAT3 signaling in primary
mouse hepatocytes. Cells were treated with hIL-6 for up to
120min in a continuous or pulsed manner. The levels of
phosphorylated and total protein species were measured by
quantitative immunoblotting (Schilling et al., 2005a), including
randomized sample loading and normalization to suitable
housekeeping proteins or, in case proteins were enriched by
immunoprecipitation, to recombinant calibrator proteins. hIL-
6-induced phosphorylation of gp130, JAK1, and STAT3 was
transient displaying a peak at around 20min. Phospho-gp130,
-JAK1, and -STAT3 subsequently declined, but did not reach
basal levels within the observed time frame (Figure 3B). Further,
SOCS3 protein expression was determined upon treatment with
different concentrations of IL-6 (Appendix Figures S43–S45)
and we observed a transient protein expression dynamic that
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resembles the mRNA expression profiles. Using quantitative
mass spectrometry (Hahn et al., 2011), we determined the site-
specific degree of Tyr-705 phosphorylation of STAT3 at the
time point of maximal activation (54.4% at 18min, 40 ng/mL
hIL-6; Figure 3C). We also quantified the nuclear translocation
of STAT3 by live-cell imaging of hepatocytes isolated from
heterozygous mKate2-STAT3 knock-in mice (Figure 3D and
Appendix Figure S11). In mKate2-STAT3 mice, the wild type
STAT3 locus is replaced by an mKate2-STAT3 knock-in reporter
gene. The expression and phosphorylation of the fusion protein
was validated by immunoblotting in primary mouse hepatocytes
that were isolated from the knock-in reporter mice and wild-
type animals (Appendix Figure S13). Cells were treated with
hIL-6 and the phosphorylation of endogenous and tagged-
STAT3 was compared. These studies showed that mKate2-STAT3
is expressed at a slightly lower level than the endogenous
protein but the phosphorylation dynamics correlated with the
phosphorylation dynamics of the endogenous STAT3. The
mKate2-STAT3 reporter mice so far have only been obtained
as heterozygous mice. For the generation of the mKate2-STAT3
reporter mice we identified seven positive ES clones and out
of these two generated germline transmission. The crossing of
the heterozygous animals resulted in 66.8% WT and 33.2%
heterozygous animals (n = 232) and these heterozygous mice
showed no phenotype, also concerning viability in comparison
to WT animals. Due to the strong autofluorescence in the
cytoplasmic compartment of primary mouse hepatocytes (see
dot-like structures in Appendix Figure S13C), we focused on
the quantification of the IL-6-induced translocation of mKate2-
STAT3 to the nucleus. In unstimulated cells, mKate2-STAT3
was equally distributed between cytoplasm and nucleus (STAT3
nuc/cyt ratio of 1), in accordance with the previously reported
continuous shuttling of STAT3 independent of its activation state
(Liu et al., 2005; Reich and Liu, 2006). We tested continuous
shuttling of STAT3 between nucleus and cytoplasm, independent
of its activation state in our initial mathematical model. However,
based on identifiability analysis (see Appendix Figure S15), we
found that export of phosphorylated STAT3 could be made
arbitrarily small and was therefore omitted from the final
model. Following hIL-6 stimulation, mKate2-STAT3 quickly
accumulated in the nucleus. At 25min (500 ng/mL hIL-6),
the nuclear mKate2-STAT3 concentration exceeded cytoplasmic
mKate2-STAT3 by a factor of 3 (STAT3 nuc/cyt ratio of ≈3;
Figure 3D). Socs3 mRNA was measured by qRT-PCR, revealing
rapid induction after IL-6 stimulation with a peak time of 40min.
Afterwards, Socs3 mRNA levels declined, but stayed elevated
throughout the observed time frame. Background Socs3 mRNA
expression in unstimulated hepatocytes did not change over time,
indicating a specific response (Figure 3E). The trajectories of the
calibrated model accurately represented the experimental data
describing multiple levels of IL-6-induced signaling (solid lines
in Figures 3B–E and Appendix Figure S9).

To validate the microarray analysis and to obtain detailed
time-resolved expression profiles, we analyzed selected
significantly regulated genes by quantitative real-time
quantitative PCR (qRT-PCR) in a time-resolved manner. In
agreement with the microarray analysis, we found Cxcl10

and Socs3 to be early-response genes. Cxcl10 was transiently
induced by hIL-6. After an initial peak at 1 h Cxcl10 expression
levels decreased below those observed in untreated cells. Socs3
expression showed a sharp peak with high amplitude at 1 h of
hIL-6 treatment. Subsequently, its levels declined but stayed
elevated up to 24 h. This is consistent with our microarray
analysis, which identified Socs3 to critically contribute to overall
regulation (Figure 2B) and to be significantly IL-6-induced at
all time points (Figure 2C). The genes Fgg, Hamp, and Il33
were induced by IL-6 and were clearly detectable from 3 to
6 h on, as shown by qRT-PCR analysis. All three genes showed
sustained activation with high expression levels up to 24 h of
IL-6 treatment, thus validating our microarray analysis which
identified Fgg, Hamp, and Il33 to be significantly regulated
at intermediate and late time points. Apcs was found to be a
late-regulated gene. qPCR-based validation revealed a steady
decrease of Apcs expression in untreated cells. IL-6 treatment
rescued this decrease and caused elevated Apcs expression at 24 h
relative to untreated cells (Figure 4 and Appendix Figure S10).
The APP genes Hp and Hpx were not significantly regulated
in our microarray analysis (Figure 2C), but have previously
been reported to be IL-6 responsive and STAT3-dependent
(Alonzi et al., 2001). qPCR analysis identified Hp and Hpx to be
late-response genes with increased expression at 24 and 48 h of
IL-6 treatment (Figure 4 and Appendix Figure S10).

Model Calibration with Dose-Dependent
Target Gene Expression Data from Normal
and Perturbed Conditions
In addition to time-resolved data, we calibrated the mathematical
model with dose-dependent expression data for the IL-6
target genes shown in Figure 5 and Appendix Figures S4,
S5. Primary mouse hepatocytes were treated with a wide
range of hIL-6 concentrations covering basal, regenerative, and
inflammatory physiological levels (Figure 1) for 1, 6, or 24 h
to capture strong expression of early, intermediate, and late
responsive genes, respectively. Based on the experimental data,
we identified the nuclear dephosphorylation rate to be high. Since
nuclear STAT3 dephosphorylation is so rapid that the level of
nuclear phosphorylated STAT3 exactly follows the cytoplasmic
concentration of phospho-STAT3, the model was reduced by one
equation.

We further identified Socs3 mRNA to respond to IL-6
treatment in a highly sensitive manner (Figure 5A). The other
early-induced gene Cxcl10 responded at 25–50 ng/mL hIL-6,
and did not reach saturation within the observed hIL-6 range.
Compared with Socs3, it thus showed lower sensitivity toward
hIL-6 (Figure 5A). In contrast, the sensitivities of intermediate
and late APP genes were similar to that of Socs3—Fgg,Hamp, Il33,
Apcs,Hp, andHpxmRNAswere induced from 1 to 10 ng/mL hIL-
6. All showed sigmoidal dose response curves and saturation at
high IL-6 concentrations (100–500 ng/mL). The dose-dependent
behavior of all target genes was accurately described by the model
(Figures 5A–C and Appendix Figure S4).

We also calibrated our model with experimental data
describing the impact of the two pathway inhibitors Ruxolitinib
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FIGURE 4 | Detailed time-resolved analysis of selected IL-6 target genes. Primary mouse hepatocytes were stimulated with hIL-6 or left untreated and RNA was

isolated at indicated time points. Target mRNA expression was analyzed by qRT-PCR (qPCR) (A Cxcl10; B Fgg, Hamp, Il33, Apcs, Hp, and Hpx). Data were

normalized to the geometric mean (Vandesompele et al., 2002) of Hprt and Tbp expression. Filled circles represent individual replicates (n = 2); solid lines are model

fits; dashed lines indicate errors estimated from the model. The expression level in the control is modeled using a monotonic spline. Additional replicate is displayed in

Appendix Figure S10.

and Stattic on dose/time-dependent Socs3 mRNA induction and
STAT3 phosphorylation dynamics in primary mouse hepatocytes
(Figure 5D). The inhibitor Stattic shows toxic effects and is
not used in the clinic. In our experiments we applied Stattic
for a maximum of 2 h to primary mouse hepatocytes to avoid
general toxicity. Though Stattic was used to calibrate the model,
experimental results with this inhibitor are only shown in the
Appendix (Appendix Figures S9, S46, S52–S53, S62–S69, S83–
S84, S89).

Inhibitor pre-treatment for 1 h caused a reduced basal level
of Socs3 mRNA and a reduced sensitivity and peak magnitude
of the dose-dependent Socs3 response upon IL-6 stimulation
(Figure 5). Socs3 expression at 1, 6, and 24 h was detectable
from 1 ng/mL hIL-6, steadily increased, and reached saturation
at 50 ng/mL hIL-6. In line with the previous observation in a
clinical trial (Shi et al., 2011), the efficacy of Ruxolitinib decreased
with increasing incubation time. The experimental data of Socs3
expression in response to hIL-6 alone or hIL-6 and Ruxolitinib
was described by the model trajectories (Figure 5D).

To summarize, the model was calibrated in two stages.
First the upstream model of IL-6 signaling was developed
and calibrated. The upstream model also termed “core model”

consists of the receptor level, the STAT3 pools and SOCS3
and is calibrated on both wild type as well as inhibitor data.
The downstream model, which consists of the APP genes, was
included in a second step. Since none of the APP genes feed
back into the system, these were parameterized separately to keep
the analyses computationally tractable. The downstream model
was parameterized while keeping the upstreammodel parameters
fixed. Parameter profile likelihood curves for all APP genes are
presented in the supplement (Appendix Figures S15–S22).

Designing Improved Ruxolitinib Treatment
Schedules
Following calibration with quantitative experimental data, our
mathematical model was able to describe IL-6-induced signaling
responses at multiple levels, including the impact of pathway
inhibitors on STAT3 (Appendix Figure S9A) and Socs3 activation
(Figure 5). We next employed the model to predict the inhibitor
impact on hIL-6 dose-dependent APP gene expression in murine
hepatocytes. In analogy to the inhibition of Socs3 mRNA
induction (Figure 5D), the model predicted that Ruxolitinb
treatment reduces sensitivity of the response for most APP
genes (Figure 6). Importantly, subsequent experimental analysis
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FIGURE 5 | Model calibration with dose-dependent target gene expression data from normal and perturbed conditions. Primary mouse hepatocytes were pre-treated

with Ruxolitinib or DMSO control for 1 h prior to hIL-6 stimulation, or left untreated. Dose-dependent analysis of target gene expression was performed by applying

0.1–500 ng/mL hIL-6. At indicated time points (1, 6, and 24 h), target mRNAs were quantified by qPCR (A Socs3 and Cxcl10; B Fgg, Hamp, and Il33; C Fgg, Hamp,

Il33, Apcs, Hp, and Hpx; D Socs3). Filled circles: log-transformed experimental data; solid lines: model trajectories. Dashed lines indicate the measurement noise as

estimated by the error model. a.u., arbitrary units. For additional replicates used for model calibration see Appendix Figure S4.

validated the model-predicted effects of Ruxolitinib treatment
on all analyzed APP genes (Figure 6 and Appendix Figure S5).
As observed previously in the case of Socs3 mRNA expression
at 1, 6, and 24 h (Figure 5D), the long-term efficacy of
Ruxolitinb in primary mouse hepatocytes was reduced in the
case of intermediate/late APP genes (Figures 6B,C and Appendix
Figures S5B,C).

To assess the suitability of different targets in reducing
the APP response, we performed a sensitivity analysis. If one
considers the APPs to be very stable, then the protein levels will
approximately be proportional to the integral of the expression
of the APP genes. We performed a Local Parameter Sensitivity
Analysis with respect to the model parameters, which is shown in

Figure 7A. Here we can observe that inhibiting production and
activation of the receptor, inhibiting the activation of STAT3 and
reducing the degradation of Socs3 (mRNA) are all predicted to
lead to additional attenuation of the APP response. To further
inhibit STAT3 activation, we decided to apply additional doses of
Ruxolitinib.

Continuous suppression of elevated IL-6-induced APP gene
expression would be required to counteract inappropriate
inflammatory responses, but Ruxolitinib-mediated reduction of
hIL-6 target gene expression in murine hepatocytes was less
effective at advanced time points (Figures 5, 6). The model
predicted that higher single doses of Ruxolitinib would lead to
larger suppression of the APP genes. However, since higher doses
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FIGURE 6 | Model prediction and experimental validation of the inhibitor impact on dose-dependent APP gene expression. Solid lines represent model predictions for

dose-dependent APP gene expression with or without Ruxolitinib pre-treatment. For experimental validation (filled circles), primary mouse hepatocytes were

pre-treated with Ruxolitinib or DMSO control for 1 h prior to hIL-6 (0.1–500 ng/mL) stimulation. APP mRNA expression was quantified at indicated time points by

qPCR (A Cxcl10; B Fgg, Hamp, and Il33; C Fgg, Hamp, Il33, Apcs, Hp, and Hpx). Dashed lines indicate the measurement noise as estimated by the error model. a.u,

arbitrary units. For additional replicates see Appendix Figure S5. For additional experimental data used for model validation see Appendix Figures S82–S88.

of the inhibitor could have detrimental side-effects, we employed
our mathematical model to design treatment schedules for
Ruxolitinib where the concentration of Ruxolitinib in the system
does not exceed a maximal dose. The aim was to continuously
suppress elevated IL-6-induced APP gene expression, while not
exceeding amaximal level of 500 ng/mLRuxolitinib. As objective,
the integral up to 24 h of the APP mRNA levels in response to

100 ng/mL hIL-6 was used as a proxy for APP expression during
inflammation. In this way, inappropriate inflammatory responses
could be counteracted without completely abrogating APP gene
expression. Ideally, continuous administration of Ruxolitinib
would be preferred. However, due to practical considerations,
we restricted the search to a maximum of three injections. The
model predicted which three Ruxolitinib doses in even time
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FIGURE 7 | Optimized inhibition of STAT3 nuclear translocation. (A) Averaged Local Parameter Sensitivity Analysis for the integrated APP response. Bars indicate

model sensitivities to a 50% perturbation in model parameter. Error bars indicate maximum and minimum sensitivity along parameter likelihood profiles. Large

perturbations were performed since we are interested in parameters that would have a substantial impact on dynamics. (B) Model predictions for Ruxolitinib

concentrations over time after single treatment with 500 nM at t = –1 h (Single), or using the optimized triple treatment scenario, including Ruxolitinib treatments at t =

0 h (500 nM), 8 h (191 nM), and 16 h (191 nM) (Triple). Arrow indicates the time window of nuclear STAT3 profiling. (C) Example widefield fluorescent microscopic

images of primary hepatocytes from mKate2-STAT3 mice during the long-term quantification of IL-6-induced mKate2-STAT3 translocation in presence or absence of

Ruxolitinib. Cells were stimulated with 100 ng/ml hIL-6 for 24 h, either treated with solvent control (DMSO), pre-treated for 1 h with 500 nM Ruxolitinib (Single

Ruxolitinib) or co-treated with 500 nM Ruxolitinib and re-treated with 191 nM at 8 and 16 h (Triple Ruxolitinib). Inhibitor treatment was performed as suggested by the

model (B). Image quantification of nuclear mKate2-STAT3 was conducted from 20 to 24 h after hIL-6 stimulation. White arrows indicate positions of nuclei.

H2B-mCerulean was used to indicate the positions of nuclei. Scale bar: 20µm. (D) Squares represent model predictions for nuclear STAT3 after treatment with the

indicated hIL-6 concentrations in combination with DMSO control, single or triple Ruxolitinib treatment. For experimental validation, primary mouse hepatocytes from

mKate2-STAT3 mice were treated accordingly with DMSO or Ruxolitinib and hIL-6. Circles represent average nuclear STAT3 measured with time-lapse microscopy

20–24 h after hIL-6 stimulation. Error bars indicate the measurement noise as estimated by the error model. a.u., arbitrary units. Data presented corresponds to the

average of at least 45 imaging fields per condition. For additional replicates see Appendix Figure S6. For additional experimental data used for model validation see

Appendix Figures S93–S98.

intervals would effectively counteract loss of the inhibitor due to
degradation (Figures 7B, 8A).

Therefore, in the presented study, the objective was to
minimize the integral of APP mRNA levels. However, we did
not use an optimization procedure as a means of determining
the treatment schedule, because it is not clear how to prioritize
the different APP genes. Instead we made response curves for
each of the APP genes and determined the ideal point via
visual inspection. Depending on which APP gene is considered
therapeutically most important, deviations from this design may
be more optimal (see section 3.7 of the Appendix). Predictions
for the integrated target gene expression at time point 24 h
furthermore revealed that applying the first treatment at t =

0 h, simultaneously with the start of IL-6 treatment, would be
superior to the previously applied pre-treatment with Ruxolitinib
at 1 h before IL-6 stimulation (Appendix Figure S8). Thus, an
optimized Ruxolitinib treatment would include three subsequent
treatments at t = 0, 8, and 16 h. Given that 500 nM Ruxolitinib
would be applied as first bolus at t = 0 h, the model predicted

that 191 nM Ruxolitinib would be required to replenish the
full inhibitor potential at each, 8 h, and 16 h. The initial dose
of 500 nM Ruxolitinib was selected based on dose response
experiments (Appendix Figures S70, S71) in primary mouse
hepatocytes and closely relates to the determined IC50.

Using two experimental readouts, namely nuclear
translocation of STAT3 as an indicator of activated STAT3,
and IL-6 target gene expression, we validated the predicted
advantage of Ruxolitinib triple treatment over the previously
applied single pre-treatment (Figures 7, 8). Compared to the
single treatment (q24h), the triple treatment (q8h) induced
a more sustained inhibitory effect, utilizing considerably
lower doses for the repetitive treatment after the initial bolus.
Primary mouse hepatocytes were either treated with a single
dose (500 nM) of Ruxolitinib at t = –1 h (Single), or with
three doses at time points t = 0 h (500 nM), 8 h (191 nM),
and 16 h (191 nM; Triple). Cells were stimulated with hIL-6
concentrations resembling basal (0 ng/mL), regenerative (7.5
ng/mL) or inflammatory (100 ng/mL) physiological levels
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FIGURE 8 | Optimized inhibition of APP gene expression in primary mouse hepatocytes. (A) Model predictions for Ruxolitinib concentrations over time after single

treatment with 500 nM at t = –1 h (Single), or using the optimized triple treatment scenario, including Ruxolitinib treatments at t = 0 h (500 nM), 8 h (191 nM), and 16 h

(191 nM) (Triple). Arrow indicates the time point of gene expression analysis. (B,C) Expression of Socs3 (B) and APP genes (C) at 24 h after inhibitor treatments as

described in (A). Squares represent model predictions and circles represents experimental data, while error bars indicate the measurement noise estimated by the

error model. a.u., arbitrary units. Dashed lines indicate the level of gene expression after triple inhibitor dosing of the cells treated with inflammatory dose of hIL-6 (100

ng/mL). Displayed are results of one biological replicate, while two more replicates are shown in Appendix Figure S7. For additional experimental data used for model

validation see Appendix Figures S89–S91.

(Figure 1). In hepatocytes derived from mKate2-STAT3 mice,
we analyzed the nuclear mKate2-STAT3 concentration within
the time frame 20–24 h (after start of IL-6 treatment) by
live-cell imaging (Figure 7C). Comparing model predictions
and experimental data for the different Ruxolitinib treatment
regimens and IL-6 concentrations revealed good agreement
between model and experiment (Figure 7D and Appendix
Figure S6): Ruxolitinib-mediated suppression of mKate2-STAT3
nuclear translocation was improved when the triple treatment
regime was applied, compared with single treatment. In wild type
hepatocytes we measured APP gene expression at 24 h. Triple
Ruxolitinib treatment lead to improved suppression of most
genes, compared with single Ruxolitinib treatment (Figure 8
and Appendix Figure S7). The effect was most obvious for Socs3,
and also recognizable for all other genes, although error bars
were partly overlapping for single and triple treatment.
Importantly, triple Ruxolitinib treatment reduced gene
expression observed at inflammatory IL-6 concentrations (100

ng/mL) to levels more closely resembling regenerative conditions
(7.5 ng/mL, DMSO control) for all genes (Figure 8 and
Appendix Figure S7). To conclude, our mathematical model and
experimental validation suggested that a triple treatment with
Ruxolitinib and not a single dose is required, when an effective
attenuation of IL-6-dependent responses in hepatocytes is
desired.

To provide a proof-of-concept that these insights, obtained
with our model based approach for primary mouse hepatocytes,
are applicable to the human system, we employed primary
human hepatocytes to compare a single bolus treatment with
the model-suggested triple dosing strategy. To mimic the
regenerative and inflammatory situation in the human system,
1.8 and 50 ng/mL hIL-6 were chosen to stimulate human
hepatocytes, assuming that the potency of human IL-6 on human
hepatocytes is comparable to that of mouse IL-6 on primary
mouse hepatocytes and by utilizing the dose response curves
shown in Figure 1D.
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The maximal tolerable dose of Ruxolitinib in healthy
volunteers was described to be 100 mg once daily, already
inducing severe side effects as neutropenia (Shi et al., 2011).
This amount corresponds to a concentration of 65 nM assuming
an average blood volume of 5 L per human body. The dose-
dependent effect of Ruxolitinib on STAT3 phosphorylation in
primary human hepatocytes revealed that 50 nM of the inhibitor
is in the range of the IC50 determined in cells co-treated with
hIL-6 (1 or 10 ng/mL) and increasing doses of Ruxolitinib
(up to 5,000 nM; Appendix Figure 12). Hence, primary human
hepatocytes show an increased sensitivity toward the treatment
with Ruxolitinib in comparison to primary mouse hepatocytes.
Therefore, we reduced the initial dose of Ruxolitinib from 500
nM as applied in primary mouse hepatocytes to 50 nM for
primary human hepatocytes (Figure 9A) and the subsequent
second and third dosing of 191 nM Ruxolitinib was reduced to
19 nM accordingly.

We measured the expression of the four previously analyzed
genes SOCS3 (Figure 9B), HAMP, HP, and FGG (Figure 9C),
which are established as IL-6 responsive genes both in mouse
and human. Additionally the IL-6 induced expression of CRP
(Figure 9C) was examined in primary human hepatocytes
due to its routine clinical determination as an indicator of
inflammatory responses. For several of the genes of interest
almost maximal expression was already achieved with the lower
hIL-6 concentration applied suggesting that their expression
saturated at lower IL-6 doses in human hepatocytes compared
to murine hepatocytes. In line with the model-based insights, the
triple Ruxolitinib treatment at equivalent time intervals was again
more effective compared to the single treatment to suppress IL-
6 induced SOCS3 and APP gene expression in primary human
hepatocytes, confirming our concept.

DISCUSSION

While IL-6 has repeatedly been suggested to contribute to
inflammatory or malignant diseases, targeting this central
mediator needs to be carefully evaluated to maintain its beneficial
regenerative functions (Hunter and Jones, 2015). Here we
developed a mathematical model of IL-6-induced JAK1-STAT3
signaling in primary mouse hepatocytes, which adequately
predicted how inflammatory gene expression could be reduced
to regenerative levels by optimized Ruxolitinib treatment.

Determination of in vivo circulating and the IL-6
concentrations during liver regeneration and inflammation
enabled to study IL-6 signaling pathway activation within
relevant IL-6 concentration ranges. Determined serum levels
agree with previously reported values after PHx (1–2 ng/mL;
Nechemia-Arbely et al., 2011; Yin et al., 2011) and LPS
treatment (175 ng/mL; Piao et al., 2013) of mice. Importantly,
simultaneous analysis of samples from PHx- and LPS-treated
mice, as performed here, enabled direct comparison of the
regenerative and inflammatory scenarios. Thus, we established
distinct IL-6 concentration ranges during liver regeneration and
inflammation. By quantifying the hepatic IL-6 concentrations,
we provide evidence that IL-6 accumulates in the hepatocyte

microenvironment after PHx (serum: 1.4 ng/mL, local: 6.8–7.9
ng/mL). This is likely a result of an increased IL-6 secretion
by Kupffer cells (Aldeguer et al., 2002) to promote an efficient
regenerative response. In contrast, IL-6 levels were similar in
serum and hepatocyte microenvironment after LPS injection
(serum: 201.8 ng/mL, local: 28.1–500 ng/mL). Local hepatic
IL-6 levels following PHx in liver tissues at mRNA and protein
level were reported previously (Yin et al., 2011). However, the
published IL-6 levels represent both, extra- and intracellular
IL-6, and are thus not directly equivalent to IL-6 levels that
actively stimulate hepatocytes. Here we inferred the IL-6
concentrations from STAT3 phosphorylation levels in whole
liver lysates. Because IL-6 appears to be the main inducer of
STAT3 activation in hepatocytes (Cressman et al., 1996), the
major hepatic cell type, this approach provides a good estimate
of IL-6 concentrations in the hepatocytes’ microenvironment.

To exclude the contribution of other cytokines to the
activation of STAT3, we performed a qPCR analysis of Il11, Osm,
and Il22mRNA expression in liver lysates from LPS or PHx mice
(Appendix Figure S14). In these experiments we did not observe
an elevation of the mRNAs encoding these cytokines within
the time frame of maximal STAT3 phosphorylation detected in
the liver lysates from the corresponding mice, at 1 h in LPS
treated mice and at 2 h in hepatectomized mice, respectively
(Figure 1B). On the contrary a very rapid induction of Il6mRNA
was detected particularly in response to LPS injection that was
already maximal after 1 h of LPS injection (Appendix Figure S14)
and coincided with maximal STAT3 phosphorylation observed
at 1 h post treatment (Figure 1B). These results are in line with
the studies of Ren et al. reporting that there is no statistically
significant increase of Il22 mRNA in response to hepatectomy,
but rather an increase of IL-22 protein is observed in the serum
at late time points post hepatectomy starting at 6 h post treatment
with a peak at 12 h (Ren et al., 2010). Others observed a peak
of Il22 mRNA induction in the liver at ∼3 h post hepatectomy
(Rao et al., 2014) or 4 h after LPS injection (Wegenka et al., 2007)
and thus much later than the rapid maximal phosphorylation of
STAT3 we observed in our study in the liver of hepatectomized or
LPS treated mice. Furthermore, 4 h post LPS injection peak levels
of IL-22 were detected by ELISA measurements corresponding
to ∼600 pg/mL (Dumoutier et al., 2011) whereas, in agreement
with the study by Wegenka et al., we observed already at 2 h
post LPS injection a peak concentration of IL-6 in the serum of
201.8 ng/mL suggesting that the induction of IL-6 in response
to LPS is more rapid and more than two orders of magnitude
higher compared to IL-22. Further, a major contribution of IL-
10 to the early activation of STAT3 and the induction of the
acute phase response in hepatocytes appears unlikely. Although
it has been observed that the expression of Il10 mRNA can be
induced by PHx (Yin et al., 2011), the ability of IL-10 to induce
signaling via JAK1/STAT3 appears primarily restricted to cells of
the immune system, such as macrophages and dendritic cells, due
to the expression of the IL-10 receptor that is most prominent in
these cell types (Murray, 2006; Sabat et al., 2010). In light of these
observations we propose that IL-6 is the mediator of immediate
early responses in hepatocytes involving STAT3 phosphorylation
during liver regeneration whereas other cytokines such as IL-22
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FIGURE 9 | Optimized inhibition of APP gene expression in primary human hepatocytes. (A) Model predictions for Ruxolitinib concentrations over time after single

treatment with 50 nM at t = –1 h (Single), or using the optimized triple treatment scenario, including Ruxolitinib treatments at t = 0 h (50 nM), 8 h (19 nM), and 16 h (19

nM) (Triple). Arrow indicates the time point of gene expression analysis. (B,C) Expression of SOCS3 (B) and APP genes (C) at 24 h after inhibitor treatments as

described in (A). Data from primary human hepatocytes of three different donors are shown as mean ± SEM.

or IL-10 may contribute to STAT3 phosphorylation at later time
points or in other cell types than hepatocytes.

Because the hepatic acute phase response is largely regulated
at the transcriptional level (Andus et al., 1988; Heinrich et al.,
1990), we studied IL-6-induced mRNA expression changes in
primary mouse hepatocytes. We established the time-dependent
regulation of previously known IL-6 targets including Socs3
(Starr et al., 1997), Hamp (Wrighting and Andrews, 2006;
Pietrangelo et al., 2007), Fgg, Apcs, Hp, Hpx (Alonzi et al., 2001)
as well as of two less well-established targets, Cxcl10 and Il33.
IL-6-induced genes were grouped into early, intermediate, and
late responsive genes, according to their expression levels at 1, 6,
and 24 h after IL-6 stimulation. CXCL10was described previously
to be secreted by macrophages in an IL-6/STAT3-dependent
manner (Xu et al., 2012, 2015). In the context of hepatitis C
virus infection, CXCL10 was suggested to contribute to persistent
liver inflammation and fibrosis (Zeremski et al., 2008, 2009;

Brownell and Polyak, 2013). Here, we provide evidence that IL-
6 stimulated hepatocytes might be a crucial source for CXCL10.
In line with the reports by Zeremski et al. (2008, 2009) and
Brownell and Polyak (2013), linking CXCL10 and inflammation,
Cxcl10 mRNA was selectively induced by inflammatory IL-6
concentrations, while all other analyzed target genes responded
to both, regenerative and inflammatory IL-6 stimuli (Figure 5).
In addition to Cxcl10, we identified Il33 to be expressed in
response to IL-6 in primary mouse hepatocytes. This IL-1-like
cytokine (Schmitz et al., 2005) was described to be induced in
fibrotic livers, and hepatic stellate cells were suggested as major
IL-33 producer in this context (Marvie et al., 2010). Our results
indicate that also hepatocytes might produce IL-33. We observed
strong and sustained induction of Il33 mRNA (Figure 4), which
together with its suggested role of IL-33 as a general alarm
signal (Miller, 2011), highlight this gene as an interesting IL-
6 target and APP gene in hepatocytes. Both, CXCL10 and
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IL-33 secretion by hepatocytes should be investigated in the
future to better understand the potential link between IL-6 and
chronic inflammation. By acting on T-cells and innate immune
cells (Miller, 2011; Brownell and Polyak, 2013), CXCL10 and
IL-33 might contribute to the amplification of inflammatory
responses.

Signal processing in hepatocytes translates extracellular IL-6
levels to JAK1-STAT3 signaling dynamics and to changes in gene
expression. We could quantitatively link these different levels by
implementing a mathematical model, which not only described
experimentally observed signaling dynamics, but also the impact
of the pathway inhibitors Ruxolitinib and Stattic on STAT3 and
its target gene activation. While previous mathematical models
of IL-6 signaling incorporated IL-6-induced JAK-STAT as well
as mitogen-activated protein kinase (MAPK) cascades (Singh
et al., 2006; Moya et al., 2011; Xu et al., 2015), we focused
our model scope on the JAK-STAT pathway, which according
to Dierssen et al. is relevant for IL-6-induced APP expression
whereas MAPK activation is dispensable (Dierssen et al., 2008).
To obtain a predictive mathematical model, the relation of
considered species and experimentally measured components as
well as the amount of experimental data needs to be appropriate
(Aldridge et al., 2006; Bachmann et al., 2012). Compared to the
earlier approaches (Singh et al., 2006; Moya et al., 2011; Xu et al.,
2015) that partly relied on literature derived parameter values
obtained from different cell types and stimulating agents, the
amount of experimental data used for calibration and validation
of the model presented here is more extensive. As an example,
we assessed the protein concentration of key players of the
signal transduction pathway in primary mouse hepatocytes. The
obtained value for STAT3 is in good agreement with recently
published data from a mass spectrometry approach to determine
molecules per cell in primary human hepatocytes (Wisniewski
et al., 2016). For the presented study an extensive amount of
experimental data was generated using different technologies
ranging from quantitative immunoblotting, multiplexed bead-
based arrays and quantitative mass spectrometry to qRT- PCR
and microarray analysis in order to assess the dynamics of signal
transduction and target gene expression. Whereas quantitative
immunoblotting, multiplexed bead-based arrays, and qRT-PCR
permit very detailed time-resolved analysis, omics technologies
will be increasingly employed for quantitative analysis and to
facilitate the link to primary patient material (Iwamoto et al.,
2016; Adlung et al., 2017).

The nuclear translocation of STAT3 is a crucial aspect of
signal transduction in response to IL-6 stimulation. Therefore the
determination of the spatial dynamics of STAT3 and inclusion
in the mathematical model are of importance. To quantitatively
assess this behavior in the context of primary hepatocytes
expressing endogenous amounts of fluorescently labeled STAT3,
we generated the mKate2-STAT3 reporter mouse line. Since
the fluorescently labeled STAT3 was created as knock-in into
the endogenous STAT3 locus, its expression should mirror the
expression of STAT3 in different organs. Therefore, the reporter
mouse model offers a wide range of possible applications to study
STAT3 in multiple organs and could especially be useful to track
the dynamics of STAT3 at the single cell level.

We established a mathematical representation of the
signaling network and could confirm its high predictive power
by experimentally validating previously untested scenarios.
Specifically, a model-predicted treatment with a high initial
bolus and two following lower doses is necessary for a long-
term effect of the clinically applied inhibitor Ruxolitinib, thus
counteracting its rapidmetabolism (Shilling et al., 2010) resulting
in its short half-life (Shi et al., 2011).

Multiple-dose Ruxolitinib treatment with equal doses was
shown earlier to have a more sustained effect on STAT3 signaling,
compared with single treatment (Shi et al., 2011). Importantly,
Shi et al. found negligible accumulation of Ruxolitinib after
multiple doses, thus minimizing the risk of potential side effects.
A twice-daily dosing regimen was furthermore successfully
applied in the treatment of myelofibrosis patients (Verstovsek
et al., 2012). Notably, previous treatment planning was based
on preclinical data and empirical results from clinical trials
(Quintas-Cardama et al., 2010; Shi et al., 2011).

While the single treatment with Ruxolitinib did reduce
the APP response after treatment with IL-6, more sustained
inhibition may still be of importance, but an increase in dose
is not desirable due to harmful side-effects such as neutropenia
(Shi et al., 2011). If we consider the parameter sensitivity analysis
(see Figure 7A), we can observe that additional alternatives
exist to further suppress the APP response. One option would
be to selectively reduce the Socs3 mRNA degradation rate to
benefit from synergistic effects between the pathway’s natural
inhibitor SOCS3 and the drug Ruxolitinib. However, since
selective inhibition of mRNA degradation for one specific mRNA
species may not be feasible, a more practical option could be to
reduce receptor accessibility. This may be achieved by additional
application of a therapeutic antibody against the IL-6 receptor.

In silico analyses, based on mathematical models represent
promising approaches to optimally exploit an inhibitor’s
potential and pre-assess drug safety, prior to testing the drug
in patients or healthy individuals. Our established mathematical
model represents a starting point for further adaptation to the
human system, and could facilitate in silico drug treatment
planning in the future.

MATERIALS AND METHODS

Chemicals
Chemicals were purchased from Sigma-Aldrich, if not specified
otherwise.

Partial Hepatectomy (PHx) and LPS
Treatments of Mice
C57BL/6J mice (Janvier) were housed in the animal facility of
the Heinrich-Heine-University of Düsseldorf under a constant
light/dark cycle, maintained on a standard mouse diet, and
allowed ad libitum access to food and water. Male, 8–12
week old mice were used for PHx and LPS experiments.
Procedures were approved by the North Rhine-Westphalia State
Agency for Nature, Environment and Consumer Protection
(reference number 87-51.04.2010.A279 for PHx experiments;
reference number 84-02.04.2011.A096 for LPS injections). PHx
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was performed based on the standardized procedure described by
Mitchell and Willenbring (2008). Mice were anesthetized using
isoflurane (Abott) and received 5 mg/kg body weight carprofen
(Pfizer) subcutaneously for analgesia during surgery and the
three following days. During the operation, mice were placed on
a warming pad. The abdominal cavity was opened applying a 3
cm incision. The left lateral liver lobe was removed by applying
a ligature (time point 0 h) close to the base of the lobe followed
by cutting the tied lobe just above the suture. A second ligature
was placed around the median lobe above the gall bladder but
with at least 2mm distance to the suprahepatic vena cava. The
tied median lobe including gall bladder was then resected by
cutting just above the suture. Ringer’s lactate solution (B.Braun)
was applied to detect possible abdominal bleeding which, if
present, was stopped before closing peritoneum and skin by
over-and-over sutures. The weight of the resected left lateral and
median liver lobes was determined. Mice were monitored during
awakening and the following days including daily determination
of body weight. Sham surgeries were performed analogous to
PHx, but without placing ligatures and liver lobe removal. Liver
lobes were moved as during PHx operations (time point 0 h).

For LPS-injections, LPS (Escherichia coli 0111:B4) was
dissolved in 0.9% NaCl (Baxter) and injected intraperitoneally at
a concentration of 1 µg/g body weight. At indicated time points
after Sham/PHx surgery or LPS-injection mice were anesthetized
as outlined above and blood was collected from the vena cava.
After clotting, blood serum was obtained by two centrifugation
steps at 10,000 × g for 10min. Livers were perfused in an
antegrade direction with cold PBS (Biochrom) supplemented
with 0.1mM Na3VO4 until perfusate was clear. Livers were
extracted from mice, flash frozen in liquid nitrogen, and stored
at –80◦C.

Isolation of Primary Mouse Hepatocytes
Primary mouse hepatocyte isolation was performed in a
standardized way according to Klingmuller et al. (2006)
or according to the refined protocol described by Huard
et al. (2012). C57BL/6N mice (Charles River) were housed
at the DKFZ animal facility under a constant light/dark
cycle, maintained on a standard mouse diet, and allowed ad
libitum access to food and water. Hepatocyte isolation from
mice was approved by the governmental review committee
on animal care of the state Baden-Württemberg, Germany
(reference number A24/10). For standard time course and
dose response experiments, 2 × 106 cells were seeded in 6
cm collagen I-coated tissue culture plates (BD Biosciences)
in 2mL of adhesion medium [phenol red-free Williams E
medium (Biochrom) containing 10% (v/v) fetal bovine serum
(Life Technologies), 0.1µM dexamethasone, 10µg/mL insulin,
2mM L-glutamine and 1% (v/v) penicillin/streptomycin 100
× (both Life Technologies)]. Cells were maintained at 37◦C,
5% CO2, and 95% relative humidity. After 4 h of adhesion,
unattached hepatocytes were removed by washing 3×withDPBS
(PAN Biotech) followed by over-night cultivation (14–16 h) in
pre-starvation medium [phenol red-free Williams E medium
containing 0.1µM dexamethasone, 2mM L-glutamine, and 1%
(v/v) penicillin/streptomycin 100 ×]. The next day cells were

washed 3×with DPBS and cultured for 5 h in starvationmedium
[phenol red-free Williams E medium supplemented with 2mM
L-glutamine, 1% (v/v) penicillin/streptomycin 100× and 25mM
HEPES] prior to inhibitor/IL-6 treatment. Hepatocytes were
always isolated as described and cultivated on collagen I-coated
tissue culture plates (BD Biosciences). Differing cell numbers and
plate formats or extended pre-starvation periods are indicated in
respective methods sections.

Isolation of Primary Human Hepatocytes
The isolation of primary human hepatocytes was performed
as described in Iwamoto et al. (2016). For the isolation of
the primary human hepatocytes macroscopically healthy tissue
was used that originated from resected tumor-free tissue from
human livers of three patients (Donor 1: age 65, gender male,
disease hepatocellular carcinoma with cirrhosis and diabetes;
Donor 2: age 68, gender male, disease hepatocellular carcinoma
with nutritive-toxic liver cirrhosis, diabetes, arterial hypertonia;
Donor 3: age 78, gender female, disease Klatskin tumor
with Steatosis hepatis grade 2, diabetes, arterial hypertonia).
Informed consent of the patients was obtained according to
the ethical guidelines of the Medical Faculty of the University
of Leipzig. Primary human hepatocytes were shipped as cell
suspension in ChillProtec Plus (Biochrom) on ice overnight
to DKFZ Heidelberg. Primary human hepatocytes were serum-
and dexamethasone-depleted and cultivated using the protocol
described above for primary mouse hepatocytes, with an
adhesion time of 6 h.

Inhibitor and IL-6 Treatments
The STAT3 inhibitor Stattic (Merck Millipore) and the JAK
inhibitor Ruxolitinib (Cayman Chemical) were reconstituted in
DMSO and primary mouse hepatocytes were pre-treated with
the indicated concentrations of inhibitors or DMSO control for
1 h prior to IL-6 stimulation. Actinomycin D was dissolved in
DMSO and cells were pre-treated with 1µg/mL actinomycin D
or DMSO control for 10min prior to addition of IL-6. Human
recombinant hIL-6 was manufactured as described in Vandam
et al. (1993). Mouse IL-6 was purchased from R & D (406-ML-
005). IL-6 stock solutions were diluted in starvation medium and
cells were stimulated with the indicated IL-6 concentrations and
time spans. Pulsed stimulation was achieved by carefully washing
the cells 3 × with starvation medium to remove unbound IL-6
ligand at indicated time points. For treatment durations of up
to 2 h, cells were kept at 37◦C in a bench-top incubator after
inhibitor and/or IL-6 stimulation. During long-term experiments
cells were incubated at 37◦C, 5%CO2, and 95% relative humidity.

Immunoassays for the Quantification of
IL-6 Levels in Serum and Hepatocyte
Supernatants
IL-6 concentrations in mouse serum were quantified using the
MILLIPLEX mouse cytokine/chemokine magnetic bead panel
(EMD Millipore) according to the manufacturer’s instructions.
Samples were incubated with antibody-coupled beads overnight.
Washing procedures were performed using the ELx405 wash
station (BioTek) and fluorescence intensity was detected by a
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Luminex 200 System in combination with xPONENT Software
version 3.1 (Millipore). IL-6 concentrations in hepatocyte
supernatants were measured using the Bio-Plex Pro human IL-
6 assay in combination with the Bio-Plex Pro reagent kit (both
Bio-Rad) according to themanufacturer’s instructions. A dilution
series of the recombinant human IL-6 used for stimulation
was used as standard curve. Washing was performed using
the Bio-Plex Pro II wash station (Bio-Rad) and fluorescence
intensity was acquired using the Bio-Plex 200 system and Bio-
Plex Manager software version 6.1 (both Bio-Rad). Alternatively,
IL-6 concentrations in hepatocyte supernatants were determined
using the QuantikineHuman IL-6 Immunoassay (R&D Systems).
Stabilization of ligand in medium samples was achieved by
supplementing 450 µL conditioned medium with 50 µL of
40mMHCl and 10 mg/mL BSA.

Quantitative Immunoblotting
At precise time points cells were lysed in 1% Nonidet P-40 lysis
buffer [1% (v/v) Nonidet P-40 (Roche Applied Sciences), 150mM
NaCl, 20mMTris pH 7.4, 10mMNaF, 1mMEDTA (Applichem)
pH 8.0, 1mM ZnCl2 pH 4.0, 1mM MgCl2, 1mM Na3VO4,
10% glycerol; freshly supplemented with 2µg/mL aprotinin and
200µg/mL 4-(2-aminoethyl)benzenesulfonylfluorid] and cleared
lysates were either directly subjected to SDS-PAGE or used
for immunoprecipitations. For cellular fractionation, cytosolic
extracts were prepared as described above using Nonidet P-40
lysis buffer. Pelleted nuclei were washed once with Nonidet P-40
lysis buffer and then resuspended in nuclear lysis buffer [420mM
NaCl, 20mM HEPES pH 7.9, 10mM KCl, 1mM EDTA pH 8.0,
1mM Na3VO4, 10% (v/v) glycerol) supplemented with 2µg/mL
aprotinin, 200µg/mL 4-(2-aminoethyl)benzenesulfonylfluorid
and 1mM DTT]. Nuclei were lysed by pulsed sonication and
cleared nuclear lysates were subjected to SDS-PAGE or used for
immunoprecipitations. Quality of fractionation was checked by
correct subcellular localization of marker proteins Sp1 (nuclear;
Santa Cruz Biotechnology, #sc-59) and Eps15 (cytosolic; Santa
Cruz Biotechnology, #sc-534).

Protein concentrations of lysates were quantified by BCA
assay (Pierce, Thermo Scientific). To immunoprecipitate target
proteins, lysates were incubated with anti-gp130 (C20, Santa
Cruz Biotechnology, #sc-655), anti-JAK1 serum (Upstate/Merck
Millipore, #06-272), anti-STAT3 (Cell Signaling Technology,
#9132) or anti-SOCS3 (clone 1B2, Invitrogen, #37-7200)
antibodies, protein-A sepharose (GE Healthcare), and
recombinant calibrator proteins. For immunoprecipitation
experiments the following recombinant proteins were
added as calibrator proteins directly to the cell lysates to
enable normalization of immunoblot data: Glutathione S-
transferase (GST)-tagged gp1301N (cytoplasmic domain);
GST-STAT3 (full length protein) and Streptavidin binding
protein (SBP)-tagged SOCS3 (full length protein). Precipitated
proteins and cytoplasmic or nuclear lysates (40–50 µg) were
resolved by 10% SDS-polyacrylamide gel electrophoresis and
transferred to nitrocellulose membranes according to previously
described recommendations for quantitative immunoblotting
(Schilling et al., 2005a). Membranes were incubated with anti-
phosphotyrosine antibody (4G10, Upstate/Merck Millipore, #05

321) to detect the phosphorylated forms of gp130 and JAK1,
anti-gp130 (C20, Santa Cruz Biotechnology, #sc-655), anti-JAK1
(Cell Signaling Technologies, #3332), anti-phospho-STAT3, anti-
STAT3 (both Cell Signaling Technologies, 3E2 #9138, #9132) and
anti-SOCS3 (Abcam, #ab16030) antibodies. For normalization in
cell lysate samples, anti-calnexin and anti-Hsc70 (both Stressgen,
#ADI-SPA-860, #SPA-816) antibodies were applied. Nuclear
marker proteins were detected by anti-Sp1 and anti-Eps15
antibodies (both Santa Cruz, #sc-59, #sc-534). Horseradish
peroxidase coupled secondary antibodies (anti-mouse, anti-
rabbit, protein A) were derived from GE Healthcare. Antibodies
were removed by β-mercaptoethanol/SDS-treatment prior
to re-probing for a different protein. Phosphorylated species
were detected first, followed by total proteins and normalizers.
Proteins were visualized using enhanced chemiluminescence
substrate (GE Healthcare) and signals were detected using a
CCD camera (LumiImager F1, Roche; or ImagequantLAS4000,
GE Healthcare). For band quantification, LumiAnalyst 3.1
(Roche) or ImagequantTL (GE Healthcare) software was used.
Quantitative immunoblotting data were either processed using
GELINSPECTOR software (Schilling et al., 2005b) or directly used
for mathematical modeling.

Bead-Based Immunoassays for the
Analysis of STAT3 Activation
IL-6 concentrations in the liver were determined by measuring
STAT3 activation as read-out. Livers from Sham/PHx or
NaCl/LPS-treated mice as well as primary mouse hepatocytes
were lysed in total cell lysis buffer [136mM NaCl, 20mM Tris-
HCl, 10% glycerol, 2mM EDTA, 50mM β-glycerophosphate,
20mM sodium pyrophosphate, 1mM Na3VO4, 1% Triton X-
100, 0.2% SDS, 1 tablet/10mL completeMini EDTA-free protease
inhibitors (Roche), pH 7.4]. For other experiments, hepatocytes
were lysed using Nonidet P-40 lysis buffer as described above.
Livers were homogenized using a microcentrifuge tube-pestle
followed by passing through QIAshredder (Qiagen) columns.
Cleared liver and hepatocyte lysates were subjected to BCA assay
(Pierce, Thermo Scientific) to determine protein concentrations.
Relative phospho-STAT3 levels were quantified using the bead-
based Bio-Plex phospho-STAT3 (Tyr-705) assay in combination
with the Bio-Plex phosphoprotein detection reagent kit, or using
themagnetic bead-based Bio-Plex Pro phospho-STAT3 (Tyr-705)
set (all Bio-Rad) according to the manufacturer’s instructions.
Equal amounts of protein (16.67 µg/well or 10 µg/well in a 96-
well plate format) were incubated with antibody-coupled beads
overnight. For washing steps, the Bio-Plex Pro II wash station
(Bio-Rad) was used. The fluorescence intensity corresponding
to relative phospho-STAT3 levels was acquired using the Bio-
Plex 200 system and Bio-Plex Manager software version 6.1 (both
Bio-Rad).

Quantification of Target Gene Expression
by Quantitative Real-Time PCR (qRT-PCR)
Cells were collected in RLT Plus lysis buffer and lysates
were homogenized using QIAshredder spin columns (both
Qiagen). Homogenized lysates were immediately placed on
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dry-ice and stored at –80◦C until RNA isolation. RNA was
extracted using the RNeasy Plus Mini Kit (Qiagen) according
to the manufacturer’s instructions. Reverse transcription was
performed using either the High Capacity cDNA Reverse
Transcription Kit (Applied Biosystems) or the QuantiTect
Reverse Transcription Kit (Qiagen). Diluted cDNA was analyzed
applying the Universal ProbeLibrary System on a LightCycler 480
(both Roche), cycling conditions can be found in Appendix Table
S2. Relative mRNA concentrations were calculated according to
a cDNA dilution series with the Absolute Quantification Second
Derivative Maximum method of the LightCycler 480 Basic
Software (Roche). Target mRNA concentrations were normalized
to the geometric mean of Hprt/Tbp concentrations or to Hprt
concentrations. Primer/probe combinations were designed using
the Universal ProbeLibrary Assay Design Center (Roche) and are
listed in Appendix Table S3.

Microarray Experiment
Primary mouse hepatocytes (2 × 106 cells per 10 cm dish)
were cultivated in pre-starvation medium for 24 h before ligand
treatment. hIL-6 was added directly to cells in pre-starvation
medium at 40 ng/mL and untreated or IL-6-treated samples
were collected at time points 0 (4 replicates), 0.5, 2, 4, 8, 16,
24, 32 h (2 replicates each). Results are shown in duplicates,
for time point 0 the first two replicates were utilized. RNA
was isolated as described above (RNeasy, Qiagen) and gene
expression was analyzed on GeneChip R© Mouse Genome 430
2.0 Arrays (Affymetrix). The microarray data is accessible
via the following URL: https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE69939.

Microarray Analysis
Principal component analysis was performed on the global
transcriptional profiles. The first two principal components
explained most of the variance in the data set (PC1: 58.4%, PC2:
9.7%, 68.1% in total).

To analyze significant gene regulation, we applied a linear
regression model with the Limma package (Ritchie et al., 2015).
Gene expression values yi were modeled to be explained by
time frames t (early, intermediate and late) and condition c
(IL-6 and control). The significance threshold of Benjamini–
Hochberg adjusted p < 0.01 was implemented. For example
“early IL-6 response” was extracted from the global linear model
by performing contrast analysis of early IL-6 vs. respective
(unpaired) early control samples.

All analyses were performed in R Statistical software (www.r-
project.org).

Ontology analysis of the three response lists was performed
using amodel-based ontology analysis (http://nar.oxfordjournals.
org/content/early/2010/02/19/nar.gkq045.full) using Wiki
Pathways and implementing an enrichment threshold using
pathways with a probability of being regulated > 0.5.

Mass Spectrometric Analysis
Primary mouse hepatocytes (5 × 106 cells per 10 cm dish)
were cultivated for 40 h in serum-depleted medium. Cells were
then serum- and dexamethasone-depleted for 5 h in starvation

medium, stimulated with 40 ng/mL hIL-6 for 18min, and
lysed in Nonidet P-40 lysis buffer. STAT3 immunoprecipitations
were subjected to 10% SDS-PAGE and proteins were stained
with SimplyBlue SafeStain (Life Technologies). STAT3-α bands
were excised, cut into small pieces (∼1 mm3) and destained
with 0.07M NH4HCO3 buffer/30% acetonitrile. Gel pieces
were dehydrated in 0.1% trifluoroacetic acid/50% acetonitrile,
followed by protein in-gel reduction with 10mM dithiothreitol
(45min at 56◦C) and alkylation with 55mM iodoacetamide for
30min in the dark. Digestions were performed with AspN +

LysC in 0.05M NH4HCO3 buffer at 37◦C overnight. Following
incubation, internal peptide-/phospho-peptide one-source ratio
standards for quantification of STAT3 Tyr-705 phosphorylation
were added. The standard consists of the isotope labeled
[13C5,

15N] peptides DPGSAAP-pY-[L+6Da]-K and DPGSAAP-
Y-[L+6Da]-K at an exact molar ratio of 1:1. Following standard
addition to the gel pieces and 15min of shaking the supernatant
of each sample was collected. Peptide extraction was finished
by sequentially adding appropriate volumes of eluents to the gel
pieces, shaking them and combining all the supernatants for each
sample. The eluents were (i) acetonitrile, (ii) 5% formic acid, and
(iii) acetonitrile. The collected sample volumes were reduced by
speedvac and purified by applying the ZipTip method (Millipore)
according to the manufacturer’s recommendations. Final sample
volumes of 5 µl were injected into an ultra-performance liquid
chromatography (nanoUPLC, nanoAcquity, Waters) online
coupled to a Q Exactive Plus-Orbitrap mass spectrometer
(Thermo). For details about preparation and application of
peptide-/phosphopeptide one-source ratio standards see Hahn
et al. (2011) and Boehm et al. (2014).

Generation of mKate2-STAT3 Knock-In
Mouse
To generate the mKate2-STAT3 reporter gene, we based the
fusion construct on earlier studies (see Herrmann et al., 2007;
Samsonov et al., 2013) and inserted the mKate2-coding sequence
in front of the first exon of STAT3 by BAC recombineering.
An insert harboring mKate2 and part of STAT3 as well as
the Neomycin selection cassette flanked by homologous arms
was retrieved into PL253 vector (NCI Frederick; Liu et al.,
2003) to obtain the gene targeting construct. Gene targeting
was performed in the mouse embryonic stem (ES) cell line
JM8A3 (Pettitt et al., 2009) by electroporation of the linearized
gene targeting construct followed by selection with G418 (Life
Technologies) and Ganciclovir. Correctly targeted ES cell clones
were identified by long-range PCR and confirmed with southern
blot. Chimera were generated by blastocyst injection of correctly
targeted ES clones. Male chimera were bred with female
wild type C57BL/6N mice to promote germline transmission
of the reporter gene. Germline transmission was identified
by genotyping PCR. The selection cassette was removed by
subsequently crossing heterozygous mice with Cre expressing
mice (Schwenk et al., 1995). Only heterozygous mice were
used for the experiments, because it was so far not possible to
obtain homozygous mKate2-STAT3 reporter mouse offsprings.

Frontiers in Physiology | www.frontiersin.org 20 October 2017 | Volume 8 | Article 77579

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE69939
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE69939
www.r-project.org
www.r-project.org
http://nar.oxfordjournals.org/content/early/2010/02/19/nar.gkq045.full
http://nar.oxfordjournals.org/content/early/2010/02/19/nar.gkq045.full
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Sobotta et al. Targeting IL-6 Signaling in the Liver

See Appendix for more information about gene targeting and
genotyping.

Live-Cell Imaging
Primary hepatocytes (15,000 cells per well, 96-well plate
format) derived from mKate2-STAT3 heterozygous knock-in
mice (Appendix Supplementary Experimental Procedures and
Table S1) were infected with adeno-associated viruses encoding
mCerulean-labeled histone-2B during adhesion. Cells were
cultivated as described above, stimulated with inhibitor/ligand,
and imaged using a Nikon Eclipse Ti Fluorescence microscope
in combination with NIS-Elements software. Temperature
(37◦C), CO2 (5%), and humidity were held constant through
an incubation chamber enclosing the microscope. Three
channels were acquired for each position: bright-field channel,
STAT3 channel (mKate2), and nuclear channel (CFP). Image
analysis was performed using Fiji software (Schindelin et al.,
2012), and data were processed using R software (The R
Foundation). The ratio of nuclear to cytoplasmic (nuc/cyt)
mKate2-STAT3 was determined in 20 cells, facilitated by
manual segmentation of nuclei (histone-2B-mCerulean
signal) and whole cells (bright-field channel). The mean
concentration of cytoplasmic STAT3 was derived assuming
constant overall mKate2-STAT3. mKate2 background was
determined in wild-type nuclei and cytoplasm and subtracted
accordingly.

Mathematical Modeling
A mathematical multi-compartment model describing IL-
6 signaling in primary mouse hepatocytes was developed.
The model is described by a set of coupled non-linear
differential equations implemented using the Data2Dynamics
software package (Raue et al., 2015) In each simulated
experiment, the model is equilibrated to steady state prior to
treatment with inhibitors or stimulation. Considering the size
and complexity of the model and experimental data, model
calibration was performed in two separate stages. The core model
describes receptor production, degradation and phosphorylation
as well as activation and translocation of STAT3, negative
feedback by SOCS3 and the effect of inhibitors, while the
downstream model describes the transcription of the various
APP genes. Parameters for the upstream and downstream
model were estimated separately. All model parameters were
estimated directly from the experimental data using Maximum
Likelihood Estimation. Several experiments required the use of
scaling, offset and error model parameters that were estimated
simultaneously with the dynamic parameters. For the core
model, 270 parameters (of which 22 dynamic parameters) were
estimated on a total of 2220 data points. For the downstream
components, we estimated 471 additional parameters (of
which 29 dynamic parameters) on a total of 2,288 data
points.

To evaluate that parameters are identifiable (Maiwald
et al., 2016), profile likelihood calculation followed by
either model reduction or additional data acquisition were
iteratively applied. For a full mathematical description
of the model, including a detailed description of the

iterative model building and reduction steps see Appendix
section 3.5.

Local Parameter Sensitivity Analysis (LPSA) was performed
with respect to model parameters. The local parameter sensitivity
for a single APP gene / parameter pair is defined as:

Sapp =

(

y− yref
)

/yref
(

p− pref
)

/pref
(1)

Here y refers to the model output at the perturbed parameter,
while yref indicates the reference output. As model output, we
selected the integral of the mRNA levels. Analogously, p and pref
refer to the parameter value in the perturbed and reference state.
These sensitivities are then computed for each of the APP genes
and averaged. To assess how much uncertainty there is in these
sensitivities, we computed an LPSA for each parameter set in our
parameter profile likelihoods and reported the maximum and
minimum value encountered within the confidence intervals of
all parameters.

The mathematical model is available to the community at the
biomodels database as well as on www.data2dynamics.org.
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Polyploidy, the existence of cells containing more than one pair of chromosomes, is a

well-known feature of mammalian hepatocytes. Polyploid hepatocytes are found either

as cells with a single polyploid nucleus or as multinucleated cells with diploid or even

polyploid nuclei. In this study, we evaluate the degree of polyploidy in the murine liver

by accounting both DNA content and number of nuclei per cell. We demonstrate that

mouse hepatocytes with diploid nuclei have distinct metabolic characteristics compared

to cells with polyploid nuclei. In addition to strong differential gene expression, comprising

metabolic as well as signaling compounds, we found a strongly decreased insulin binding

of nuclear polyploid cells. Our observations were associated with nuclear ploidy but

not with total ploidy within a cell. We therefore suggest ploidy of the nuclei as an

new diversity factor of hepatocytes and hypothesize that hepatocytes with polyploid

nuclei may have distinct biological functions than mono-nuclear ones. This diversity is

independent from the well-known heterogeneity related to the cells’ position along the

porto-central liver-axis.

Keywords: hepatocytes, insulin, signaling, metabolism, polyploidy, liver

INTRODUCTION

Somatic eukaryotic cells are usually diploid, i.e., have a pair (2n) for each set of n chromosomes.
Cells may also possess greater than two sets of chromosomes, a condition which has been termed
polyploidy. Such polyploid cells can either be mononuclear or binuclear. Polyploid cells with 4n in
a single nucleus occur if karyokinesis has failed for a diploid cell, whereas two diploid nuclei (2∗2n)
emerge in the case of failure of cytokinesis. Since both events may occur repeatedly and can succeed
each other, further combinations like 8n, or multinucleated cells with polyploidy nuclei, e.g., 2∗4n,
can occur.

Polyploidy was first identified more than a century ago and represents a universal biological
phenomenon (Comai, 2005; Otto et al., 2012). By modulating gene expression in plants, polyploidy
has been considered as an evolutionary adaptation to environmental changes (Masterson, 2011).
Polyploidy of all somatic cells is uncommon in contemporary mammals (Svartman et al., 2005),
presumably due to genomic incompatibility (Mable, 2004). However, genome duplication is
considered a driving force in the early evolution of vertebrates (Panopoulou and Poustka, 2005),
including primates (Bailey et al., 2002).
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Adult mammals retain their capacity to generate polyploid
cells under stress conditions such as wound healing (Ermis
et al., 1998), hypertension (Vliegen et al., 1995), or after partial
hepatectomy (Tamura et al., 1992). The aberrant polyploidy of
cells arising during pathological conditions is considered to be
a potential contributor to carcinogenesis. In fact, polyploid cells
are found early in tumorigenesis and precede the development
of aneuploid cells, i.e., cells with an intermediate level of DNA
content (Storchova and Pellman, 2004; Ganem et al., 2007).

Only some mammalian tissues show a certain degree of
polyploidy even under healthy conditions, e.g., the heart,
skeletal muscle, and the liver (Carriere, 1967; Guidotti et al.,
2003; Engel et al., 2006). Hepatocytes are usually diploid at
birth and characteristically undergo dramatic changes during
postnatal growth: diploid hepatocytes (2n) can either follow a
normal cell cycle, or an adaptive cell cycle with incomplete
cytokinesis, giving rise to binucleated diploid cells (2∗2n)
which seems to be triggered predominantly by TGFbeta1 (De
Santis Puzzonia et al., 2016). Binucleated hepatocytes in turn
can develop into polyploid mononucleated cells (4n) through
failure of karyokinesis with fusion of the two separate spindles
of both nuclei to form a single metaphase plate (Guidotti
et al., 2003). The ploidy level of hepatocytes approaches a
plateau several months postnatally and remains constant for
life (Margall-Ducos et al., 2007). Any further changes of the
total ploidy levels in the liver which emerge after this point
will return to the original state within a few generations by
polyploidization or polyploidy reversal (Duncan et al., 2010),
thus suggesting that the maintenance of polyploidy status
plays an important role in liver functionality. New multi-scale
reconstruction techniques revealed unexpected zonation patterns
of hepatocytes with different nucleation and DNA content in
the liver tissue (Morales-Navarrete et al., 2015). It has also
been shown that ploidy is increased during regeneration after
partial hepatectomy although in this setting binuclear cells
preferably build two mononuclear daughter cells (Miyaoka et al.,
2012).

The degree and type of polyploidization (2∗2n, 2∗4n, 4n . . . )
in the liver varies greatly betweenmammalian species (Anatskaya
et al., 1994). For example, in the rat 80–90% of adult hepatocytes
are polyploid (Styles, 1993), compared to 30–40% in humans.
The percentage of polyploid hepatocytes seems to be regulated
by hormones, with thyroid hormones playing a key role
(Torres et al., 1999). In addition, insulin is known to trigger
polyploidization shortly after birth by a program induced during
the suckling-to-weaning transition phase (Celton-Morizur et al.,
2009).

Polyploidization is not an obligatory characteristic for normal
liver function in mammals. For example guinea pigs have very
few binuclear hepatocytes (Styles et al., 1988) and in healthy
woodchucks no polyploid hepatocytes have been found (Cullen
et al., 1994). While the existence of polyploidy and binucleation
in the liver are extensively described, their biological advantages
are not yet defined or understood. While the polyploidy level
of hepatocytes in many species is well-known, a detailed insight
into the functional consequences of polyploidy with regard to
binucleation is still lacking.

We have developed approaches to experimentally distinguish
between cellular and nuclear ploidy in freshly isolated
hepatocytes at the single cell level, and for separating cells
according to their nuclear ploidy independent of the total
cell ploidy. We found that the enzymatic activity, basal gene
expression and the ability to bind insulin differ according to
nuclear ploidy, but is almost independent from the total cell
ploidy of the hepatocytes. More than 30 percent of genes were
differentially expressed in hepatocytes when comparing cells
with low and high affinity to insulin, indicating strong expression
differences due to altered nuclear ploidy. We thereby provide the
first evidence for a complex relationship between nuclear ploidy
status of hepatocytes and heterogeneity of biological functions,
which seems to be independent of their total ploidy and their
position along the liver-sinusoid.

MATERIALS AND METHODS

Animals and Common Materials
Male C57BL6 mice of 8–16 weeks of age were obtained
from the Charles River Laboratory (Sulzfeld, Germany). The
institutional Animal Care and Use Committee at Freiburg
University approved all of the procedures. Williams medium
and FBS were obtained from Biochrom (Merck-Millipore, Berlin,
Germany); dexamethasone was taken from Sigma (Sigma-
Aldrich, Taufkirchen, Germany). For the presented results, a total
of 54 experiments with each 2–3 mice (depending on the number
of required cells for a specific assay) were performed. Details are
provided in the Supplementary Table 5.

Isolation and Cultivation of Hepatocytes
Two to three mice were used for the isolation of hepatocytes from
the liver and pooled together for each experiment in order to have
a good trade-off between reducing heterogeneity of hepatocytes
from different mice and saving individuals. Hepatocytes were
isolated and cultivated according to a standard operating
procedure developed for studying a range of signaling pathways
in hepatocytes under comparable conditions (Klingmüller et al.,
2006). Briefly, after their isolation from the liver by treatment
with collagenase, 3∗107–4∗107 hepatocytes per treated liver
hepatocytes were seeded at a density of 105/cm2 in rat collagen
(BD, Germany) coated cell culture dishes and incubated with
adhesion medium (Williams medium plus 10% FBS and 100 nM
dexamethasone) for 4 h to ensure adherence to the dish. The
exact number of cells used per dish was dependent of the surface
and is summarized in the Supplementary Table 5. Cells were
then thoroughly washed to eliminate dead cells with PBS and
incubated with serum free medium containing dexamethasone
for 20 h. Five hours prior to the experiments, the cells were
washed again and incubated with serum free medium without
dexamethasone

Propidium Iodide (PI) Labeling
DNA content is assessed by labeling the DNA with Propidium
Iodide (PI). Hepatocytes were fixed in 2% paraformaldehyde
(Sigma-Aldrich), washed with PBS and incubated with 90%
methanol (Sigma-Aldrich) on ice and analyzed 30min
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after incubation with PI-solution (Sigma-Aldrich) by FC
(FACSCalibur, BD Biosciences, Heidelberg, Germany).

High-Content Screening (HCS)
Hepatocytes were cultured onto eight-well chambered µ slides
(Ibidi, Martinsried, Germany) overnight. Overnight cultivation
enables polarization of the cells, which is disturbed by collagenase
treatment during isolation. For insulin-binding experiments,
polarization is crucial since the receptor is only expressed on
the sinusoidal side of the hepatocyte. Cell membranes were
stained with AlexaFluor 546 labeled anti-ß-catenin antibodies
(Cell Signaling, Frankfurt, Germany). One slide with eight
independent chambers was used for any condition tested in each
experiment. DNA-labeling was performed with 4′, 6-Diamidin-
2-Phenylindol (DAPI, Sigma-Aldrich). Images were acquired
at room temperature with an Olympus ScanR high content
screening station (Olympus Europe, Hamburg, Germany),
using a 20 x LUCPLFLN, N.A. 0.45 objective and ScanR
acquisiton software (v.2.2.09). Fluorescence emission for DAPI
was measured between 437 and 475 nm, green fluorescence
(FITC and GFP) between 510 and 550 nm and AlexaFluor
546 between 573 and 613 nm. A total of 60–80 pictures
were taken per chamber with a robot covering the whole
slide.

Quantitative Analysis of HCS data
Analysis of fluorescence microscopy images was done using
the Olympus ScanR analysis software (v.1.2.06). Hepatocytes
were stained with DAPI and this staining was used for
analysis. The main object mask was defined using an intensity
threshold without use of a watershed algorithm, in order
to keep nuclei from bi-nucleated cells within the same
main object. Objects were divided into cells with double
and single nuclei by gating on nuclear area vs. nuclear
circularity. These gates were then combined with maximum
DAPI Intensity vs. total DAPI intensity to form cell cycle
profiles for both types of cells. Levels of viral expression
after adenovirus infection and insulin bound to cells were
both detected using subobject masks covering the entire cell,
nucleus and cytoplasm, and based on the original main object
mask using a DAPI threshold. All pictures obtained within
an experiment were analyzed together independently on the
treatment performed.

Adenoviral Infection
The magnitude of GFP expression after adenoviral infection
(Soboleski et al., 2005) was used as as reporter for gene
expression of the cells 24 h after infection which was augmented
by functional analyses of differential gene expression. For this
purpose, hepatocytes were infected 3 h after their isolation with
an adenovirus encoding for green fluorescence protein (GFP,
Adeno-easy technology, Qbiogene, MP Biomedicals Europe,
Illkirch Cedex, France). The virus amount used is indicated in
the results. On average, more than 95% of the cells were infected
by the adenovirus.

Carboxyfluorescein Succinimidyl Ester
(CFSE) Labeling
Hepatocytes were incubated directly after isolation for 10min
at 37◦C with 10µM Carboxyfluorescein Diacetate Succinimidyl
Ester (CFDA-SE, Molecular Probes, Life Technologies,
Darmstadt, Germany) and immediately fixed.

Insulin Incubation
Hepatocytes were incubated 24 h after isolation with human
recombinant insulin covalently bound to fluorescein
isothiocyanate (insulin-FITC, Sigma-Aldrich) in serum free
medium for the times specified in the figures.

Automatic, Quantitative Analysis of Flow
Cytometry Data
As described in more detail below, an automated processing
of the raw experimental data obtained by flow cytometry has
been established for this project in order to analyse hundreds
of experiments/∗.fcs data sets in a standardized and unbiased
manner. This procedure comprises a so-called 2D-analysis
preprocessing step where a bivariate Gaussian mixture model
was applied to automatically select viable hepatocytes based on
forward- and side-scatter data. Then, a one-dimensional mixture
model of two Gaussian distributions was used for the FITC
channel to analyse the bimodal distribution of insulin binding
(1D-analysis).

Dynamics of Insulin Binding
A mathematical model based on ordinary differential equations
was used to estimate rate constants for insulin binding,
dissociation, and number of binding sites, as well as differences
between cells with diploid and polyploid nuclei. Details are
provided as Supplementary Material.

Separation of Hepatocytes with High and
Low Insulin Binding
Cells were washed and detached from the culture plate with
trypsin after incubation with insulin-FITC. The single cell
suspension was sorted according to the cells’ insulin-FITC levels
using a Beckman Coulter MoFlo legacy cell sorter with a 100µm
nozzle (Beckman Coulter, Krefeld, Germany).

RNA Extraction
Cells were lysed immediately after sorting using the AllPrep
DNA/RNA/Protein Mini (Qiagen, Hilden, Germany). RNA was
eluted from the RNA-binding membrane in nuclease-free water.
RNA quality was examined using a RNA 2100 Bioanalyzer
(Agilent Technologies, Böblingen, Germany).

Affymetrix Microarrays
Gene expression profiling was performed using the Affymetrix
GeneChip Mouse Gene 2.0 ST Array (Affymetrix Europe,
Wooburn Green, UK). All procedures, including in vitro
transcription, labeling, hybridization, and detection were carried
out as described in the Affymetrix GeneChip protocols (Gene-
Chip expression analysis technical manual, 2012).
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Data obtained by Affymetrix microarrays were pre-processed
using the RMA Robust Multi-Array Analysis. Then, a linear
model and the t-statistic was used to test for significantly
regulated genes between the groups of hepatocytes, as well as
for estimation of the fold-change and adjusting for differences
between different preparations. Supplementary Figure 1 shows
the distribution of the p-values assessing the significance of
expression differences between the two cell entities with low and
high amounts of insulin binding. Since we could show that the
magnitude of insulin binding is strongly related to nuclear ploidy,
we used insulin binding as a surrogate for nuclear ploidy. The
gene-set regulation index (GSRI) (Bartholomé et al., 2009) was
applied to estimate the percentage of regulated genes between
both cell entities within functionally related groups of genes. For
investigating up- and downregulation of gene ontology (GO)
categories, the genes were first (independently of significance)
subdivided into two subsets with positive or negative sign of the
observed gene expression differences. Then, the GSRI was used to
investigate significance by estimating the fraction of significantly
regulated genes in each GO-category.

The MIAME-compliant microarray data can be found
under the following link: http://seek.virtual-liver.de/data_
files/3228?code=wK65y0lN4T5SRESZcfVYNCj374GPob
%2FDXHPRIuEN.

Statistics
Data are presented as mean ± SEM. Statistical significance
of two-group comparisons were tested using Student’s t-test.
Differences were considered to be significant if p < 0.01. The
statistical procedure for establishing a mathematical model for
the dynamics of insulin binding, as well as for estimation of
the parameters and confidence intervals, is summarized in the
Supplementary Material.

RESULTS

More than 75% of Hepatocytes Are
Polyploid Containing Diploid and Polyploid
Nuclei with over 55% Binuclear Cells
The DNA content of mouse hepatocytes directly after isolation
has been assessed using Propidium Iodide (PI) labeling and flow
cytometry. The subsets of cells with 2n, 4n, and 8n DNA contents
are shown for one preparation in Figure 1A. In this example,
mononuclear diploid hepatocytes (2n) make up around 25% of
the cells, while the majority of cells (75%) are polyploid with
at least 4n DNA content (55%, distributed in a single polyploid
nucleus or two diploid nuclei), or hepatocytes with a higher
DNA content (8n), representing binuclear 4n cells (20%). A
quantitative analysis of 10 different cell preparations yielded
27.33 ± 1.45% cells with 2n, 50.09 ± 0.76% cells with 4n, and
20.72± 1.55% cells with 8n.

In order to differentiate between binuclear diploid and
mononuclear 4n polyploid hepatocytes, cells were fixed after
overnight culture to allow cell adherence and repolarization
and stained with DAPI at saturating concentration to visualize
the nuclei and ß-catenin was labeled with AlexaFluor 546 for

visualizing the membrane by High-Content Screening (HCS,
Figure 1B). For photodocumentation and quantitative analysis,
60 to 80 pictures per well were taken in each experiment.
Compared to flow cytometry analysis performed directly after
cell isolation, the percentage of viable hepatocytes in the 2n and
4n populations significantly diminish during overnight culture,
whereas the 8n population only marginally change, as indicated
by the boxplots in Figure 1C. The red line in the figure indicates
the median, the blue box denotes the interquartile range and the
black lines show the range of all measurements. The red cross
indicates an outlier as commonly defined for boxplots.

HCS allows the additional identification and quantitation of
mono- and binuclear hepatocytes, based on nuclear area and
circularity, and in fact over 55% of the hepatocytes were binuclear
(Figure 1D, representing the analysis of 320 serial images from
eight culture dishes). By separating the cells based on total
and mean DAPI intensity and additionally using the standard
deviation of the DAPI staining, both the number of nuclei per
cell and the amount of DNA per nucleus can be determined
simultaneously (one nucleus blue, two magenta; Figure 1E).
Apoptotic hepatocytes arising during overnight incubation (20%)
were identified based on low DAPI intensity (Figure 1E, lower
left corner) and correspond to the decrease in the number of cells
in the 2n and 4n population after overnight cultivation as shown
in Figure 1C. Taken together, hepatocyte cultures contained
(average ± SD) 15.69 ± 0.86% mononuclear diploid cells (“2n”),
23.78 ± 3.30% binuclear diploid cells (“2∗2n”), 14.30 ± 1.61%
mononuclear polyploid cells (“4n”) and 19.75± 4.58% binuclear
polyploid cells (“2∗4n”) as shown in Figure 1F.

Basal Gene Expression and Enzymatic
Activity of Hepatocytes Depend on Nuclear
Ploidy and Not on Total Cell-Ploidy
GFP-Expression under the CMV promotor is a widely used
tool to quantitatively visualize gene expression in individual
eukaryotic cells. Since the intensity of GFP fluorescence is directly
proportional to the mRNA abundance in the cells, the basal gene
expression contributing to the total metabolic flux of the cells was
assayed by quantifying the expression of GFP. Two hepatocyte
populations (R1 and R2), with around than 100-fold different
levels of GFP expression could be identified by flow cytometry
24 h after infection (Figure 2A). Although the number of viruses
per cell also contribute to cell-cell variability, additional analyses
shown in Figure 2B using PI for labeling DNA reveal that
hepatocytes showing high levels of GFP (R2) are found in subsets
of cells with intermediate to high levels of DNA (4n and 8n),
whereas hepatocytes containing low levels of GFP are found in
cells containing low to intermediate levels of DNA (2n to 4n cells,
R1, Figure 2B). Figure 2C indicates a correlation of DNA levels
and GFP expression. Detailed analysis of infected hepatocytes
by HCS in order to separate the 4n population in mononuclear
and binuclear cells showed that only hepatocytes with polyploid
nuclei (4n or 2∗4n) are able to express high levels of GFP,
whereas polyploid hepatocytes containing two diploid nuclei
express similarly low GFP-levels as do diploid mononuclear
hepatocytes (Figure 2D). These results indicate that polyploid
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FIGURE 1 | Diploid and polyploid nuclei are equally distributed in hepatocytes with binuclear cells representing the major population. (A) Separation of freshly isolated

hepatocytes according to their DNA content by flow cytometry using PI. (B) Representative microscopy image used for the analysis of number of nuclei and amount of

DNA per cell by High Content Screening (HCS) in hepatocytes after overnight culture and then staining with anti-ß-catenin and DAPI to determine the amount of DNA

relative to the number of nuclei per cell. (C) Comparison of 2n, 4n, and 8n cells analyzed immediately after isolation or after overnight cultivation. There is a significant

decrease (t-test) in the 2n and 4n populations after overnight incubation (HCS) compared to freshly isolated cells (FC). (D) Binuclear hepatocytes are the major

population (56%) existing in the liver parenchyma as shown by HCS. (E) Quantification of hepatocytes under correlation with their nuclei number by HCS (those with

one nucleus are displayed in blue and those with two nuclei in magenta). Apoptotic cells with very low DAPI intensity (lower left corner, in green highlighted by a black

circle) have been excluded from the analysis. (F) Percentage of diploid (2n) and polyploid (4n) hepatocytes in the mono- and binuclear hepatocytes subset after

quantitative analysis by HCS. Error bars represent SEM. The dead cells indicated in (E) by the black circle are excluded in (F).

nuclei containing hepatocytes exhibit higher basal expression of
the CMV promoter which might indicate an increased metabolic
turnover compared to diploid cells, independent of the total cell
ploidy.

As a further indicator we quantified the levels of substrate-
induced enzymatic activity by measuring esterase activity, which
is a general indicator of substrate-induced cellular metabolism.
For the measurement of intracellular esterase activity, the highly
membrane permeant Carboxyfluorescein diacetate succinimidyl
ester (CFDA-SE) was used. CFDA-SE possesses a rapid flux across
the plasma membrane. Once in the cell esterases cleave the
acetates from CFDA, the levels of fluorescent CFSE increase,
which is much less permeable and binds to intracellular proteins,
staining the cell. The amount of CFSE between cells primarily
depends on the esterase activity within the cell. Directly after
isolation from the liver, we measured the amount of CFSE
which had accumulated in the hepatocyte 10min after addition
of 10µM CFDA-SE. Flow cytometry shows two populations of

hepatocytes, R1 and R2, which differ by their substrate-induced
enzymatic activity, with R2 showing levels of CFSE 10 times
higher than that of R1 (Figure 3A).

Comparison of esterase activity with DNA amounts by
flow cytometry showed that the 2n hepatocytes exhibited
high esterase activity, the 4n cells were split into two
populations with either high or low activity, presumably
corresponding to the 2∗2n and 4n cells, respectively, and that
the majority of the 8n cells exhibit low levels of esterase
activity (Figure 3B). Although we could not directly analyse
the number of nuclei present per cell, when considering the
previously presented results on the frequency and behavior
of mono- and binuclear hepatocytes, the two large clouds in
Figure 3B seem to correspond to mono- and binuclear cells.
Figure 3C shows the CFDA-SE intensity distribution of 2n,
4n, and 8n hepatocytes normalized to an area equal to one,
demonstrating the existence of two CFDA-SE entities of 4n
hepatocytes.
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FIGURE 2 | Hepatocytes containing polyploid nuclei have higher basal metabolism as indicated by Adenoviral protein expression. (A) Two cell populations could be

detected based on differing levels of expression of GFP under the CMV promoter 24 h after adenoviral infection by flow cytometry. (B) Correlation between DNA

amount and protein expression in low (R1) and high (R2) GFP expressing hepatocytes as seen by flow cytometry. (C) Representative microscopy image of GFP

expressing hepatocytes after adenoviral infection after staining with DAPI. (D) The majority of the high GFP producing hepatocytes have polyploid nuclei, independent

of the number of nuclei per cell. Percentage of diploid (2n) and polyploid (4n) nuclei containing cells in high GFP expressing hepatocytes in two independent cell

preparations as analyzed by HCS.

Hepatocytes with Diploid and Polyploid
Nuclei Differ in Their Affinity to Insulin
Insulin is a primary hormone affecting many metabolic

functions in the liver. Insulin binding was analyzed by flow
cytometry 15min after its addition (10µM) to hepatocytes
which had been cultured overnight, again demonstrating the
existence of two hepatocyte subpopulations with an ∼10-

fold difference in their capacity to bind insulin. There is
no obvious correlation between binding and cell size as
shown in Figure 4A. Consistent with the levels of esterase

activity (Figure 3), high insulin binding was associated with
low to intermediate DNA content (2n and 4n cells, R2
in Figure 4B), while hepatocytes with a low affinity for
insulin have an intermediate to high DNA content (4n
and 8n cells, R1 in Figure 4B). Among the 4n cells we

again discover two entities characterized by different insulin
affinities, which were further analyzed by HCS. As shown in
Figure 4C, low insulin binding was associated with polyploid

nuclei, while high insulin binding was associated with mono-
and binuclear diploid hepatocytes. So again the two entities
exhibiting different insulin affinities coincide with ploidy of the
nuclei.

Comprehensive, Application-Specific
Pre-processing for Robust, Automatic, and
Statistically Valid Analysis of Flow
Cytometry
An automatic data processing strategy was established for
quantitatively evaluating the time- and dose dependency of
insulin binding based on flow cytometry. As a first step, the cell
population of interest, i.e., viable hepatocytes, has been selected
based on signals in forward (FSC) and side scatter (SSC) in an
initial pre-processing step, which is termed 2D-analysis in the
following experiment. Figure 5 illustrates that this selection step
has an impact on the outcome in the insulin-FITC channel. For
illustration purposes, 9 groups with equal numbers of events/cells
were defined according to their distance from the origin (FSC =

0, SSC= 0) as shown in Figure 5A. The impact of the selection on
the intensity distribution in the insulin-FITC channel is shown
in Figure 5B. The colors of the histogram correspond to the
group definition in Figure 5A. Although all viable hepatocytes
show qualitatively the same, i.e., a bimodal, distribution, the
quantitative outcome in terms of shape and location depends
on the selection which was based on forward- and side
scatter.
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FIGURE 3 | Higher substrate-induced metabolism in hepatocytes with diploid

nuclei. (A) Two types of hepatocytes differing in their levels of CFDA-SE

metabolism directly after isolation, as detected by flow cytometry. (B) 2n cells

convert more CFDA-SE than 8n. Two different populations could be observed

in cells containing intermediate amounts of DNA (4n). (C) Normalized

CFDA-SE intensities in 2n, 4n, and 8n populations shown separately. The 4n

cells could be separated into two different populations, probably dependent

on the number of nuclei per cell (2*2n or 1*4n).

To ensure that the results in the fluorescence channel are
robust against the implementation and settings chosen in the
2D-analysis, the outcomes were evaluated for several reasonable
processing strategies: Three different transformations of the
intensities were applied, namely the log-, asinh-, and boxcox
transformations (Box and Cox, 1964). In addition, two different
thresholds (a = 0.8 and a = 0.95) were evaluated with regard
to the posterior probabilities for the class labels. Two further
thresholds (b = 0.2 and b = 0.2) were used for posterior density.
Figure 6 demonstrates the 2D-analysis which utilized a bivariate

Gaussian mixture model for the selection of viable hepatocytes.
Forward- and side scatter intensities obtained by flow cytometry
were plotted as a scatterplot in Figure 6A and as a histogram in
Figure 6B. Figure 6C shows the Gaussian mixture model fitted
from the experimental data. The broad peak represents dead cells
and other cell types, whereas the viable hepatocytes are located
within the second, narrower peak. Based on such fitted mixture
densities, the cells are further selected for analysis of the FITC
channel by the two above introduced thresholds, a and b. An
example of the cells which were finally selected is highlighted in
Figure 6D in red. Figure 6E shows a bimodal distribution of the
FITC fluorescence obtained for the viable hepatocytes selected.

Each FC data set was analyzed using all thresholds and
transformations. The identified FITC channel of the identified
viable cells was then further analyzed using a univariate, i.e.,
one-dimensional mixture-model of twoGaussian distributions to
estimate the mean and standard deviation of both peaks in the
bimodal distribution, as well as the proportion of cells belonging
to each subtype as indicated in Figure 6E. The results were
averaged over all 2D setups by a statistical model (Kreutz, 2011).

Diploid and Polyploid Nuclei Containing
Hepatocytes Have Similar Kinetic Shapes,
Albeit with Different Magnitudes
The comprehensive data analysis strategy described in the
previous section was utilized for reliable estimation of the time
and dose-dependency of insulin binding in both entities. The
mean, i.e., the average amount of bound insulin, and the variance,
i.e., cell-to-cell variability within both entities were determined
for 196 flow cytometry datasets. The bimodal distribution
of FITC-labeled insulin binding was seen throughout. Three
representative data sets for three insulin concentrations evaluated
15min after stimulation are shown in Figure 7A.

The dynamics of insulin binding were analyzed for three
different insulin concentrations at six time points between 0
and 30min. The average insulin binding intensity in each entity
(mean of insulin binding within both cell populations) is depicted
in Figure 7B. Both entities with low and high insulin binding
can be clearly identified immediately after addition of insulin at
all concentrations tested. Both hepatocyte subtypes exhibit rising
dynamics up to dose-dependent steady state levels. The shape of
the dynamics is similar for both cell entities, but the magnitude
is increased for hepatocytes with diploid nuclei. Both cell-cell
variability of insulin binding within each entity and the fraction
of cells belonging to both hepatocyte subtypes was independent
of the level of insulin exposure.

Next, we analyzed which mechanism of insulin binding could
generate the observed difference between the two cell entities.
For this purpose, a mathematical model describing the insulin
binding kinetics using a mass actionmodel was utilized to predict
whether the difference originates from a difference in the number
of binding sites, or rather from distinct complex formation- or
dissociation rates. In the model there are two rate constants
for the association of insulin to the receptors, for insulin
dissociation, and for the number of binding sites per hepatocyte
(Supplementary Text). Statistical analysis of the data indicated
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FIGURE 4 | Diploid nuclei containing hepatocytes exhibit higher affinity for insulin. (A) Two types of hepatocytes observed according to their magnitude of

insulin-binding exhibit similar cell-size in flow cytometry. (B) Flow cytometry analysis using insulin-FITC show higher insulin binding affinity in 2n cells compared to 8n

cells. Again, two types of cells are visible in the 4n DNA containing cells. (C) Low affinity for insulin could mainly be observed in polyploid nuclei. Left: representative

microscopy image shows cells with two nuclei in both the high binding and low binding subsets. Right: percentage of 2n and 4n nuclei in insulin low-binding cells as

analyzed by HCS. Low binding cells contain polyploidy nuclei, independent of the number of nuclei per cell.

different parameters for the number of binding sites in both
entities but no significantly different association/dissociation
rates in the low and high insulin binding liver cells.

In order to corroborate the outcome of the mathematical
model, insulin receptor (IR) expression was analyzed in
hepatocytes by flow cytometry 5min after insulin incubation.
Surprisingly, IR expression was similar between low and high
insulin binding hepatocytes (Figure 8A). In addition, there was
no difference in the expression of IR splicing variants between
hepatocyte subtypes (Figure 8B). Using the fact that variant B
of the receptor expresses an additional exon, the expression of
insulin receptor variants in primary cells was determined by
RT-PCR.

To validate the quantification of splice-variants of the insulin
receptor, we analyzed cells derived from the spleen since IR-A is
known to be expressed in the spleen. Indeed, expression of the IR-
A splice variant could only be found in the spleen (S) but not in
the murine liver (L). No changes in the variant expression could
be shown in the freshly isolated hepatocytes (iPMH) or after
overnight incubation (cPMH). Therefore, the observed low and
high amounts of insulin binding are neither related to expression
of the IR-A splice variant, nor to the expression of hybrid
receptors consisting of IR-A/IR-B heterodimers. These results

could not sustain the different number of binding sites predicted
by the kinetic model. Therefore, a difference between message
level and receptor abundance in the cells and/or at the surface
has to be responsible and the insulin receptors have to be blocked
or enhanced by alternative mechanisms like receptor clustering,
translocation into membrane microdomains or intracellular
compartments generating the differences observed between both
entities.

Diploid and Polyploid Nuclei Containing
Hepatocytes Exhibit Different Gene
Expression Profiles
The data presented here indicate basic differences between
hepatocytes containing diploid and polyploid nuclei. Based on
the finding that insulin binding inversely correlates with nuclear
ploidy, the separation of hepatocytes was performed 15min
after incubation with 10µM insulin by FC, thereby allowing
the separation of hepatocytes with diploid and polyploid nuclei,
respectively, without exposure to PI. Gene expression of diploid
and polyploid nuclei containing hepatocytes was assessed by
microarray analyses with non-sorted cells from the same mouse
as control.
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FIGURE 5 | Relationship between selections of cells based on forward- and

side-scatter intensities and the respective fluorescence intensity for

insulin-FITC. (A) Dead cells, primarily originate from collagenase tissue

digestion, and other cell types cannot be clearly separated from hepatocytes

automatically. For illustration purpose, 9 different groups were defined

containing the same number of cells but at different distances from the origin

(FSC = 0, SSC = 0). We applied rather stringent thresholds for selection of

viable hepatocytes and analyzed on average around 30.8% of cells. (B) The

fluorescence intensity in the insulin-FITC channel is dependent on the selected

forward- (FSC) and side-scatter (SSC) signals, which demand a statistically

valid analysis which is robust against the definition of thresholds. The color of

the histograms indicates the group defined in (A). All viable hepatocytes

(green, blue, black, and gray) show a bimodal distribution with regard to

fluorescence (FITC).

Based on the Gene-set Regulation Index (Bartholomé et al.,
2009), around 32% of the genes are differentially expressed
in diploid and polyploid nuclei containing hepatocytes (see
Supplementary Figure 2), indicating pronounced differences
between both entities at the transcriptional level. Among them,
252 genes show a more than 2-fold change, and 1,661 genes
an at least 1.5-fold change. The largest positive regulation
in diploid hepatocytes (isolated as high insulin binding cells)
was found for Rabggtb (up-regulated by a factor of 14.9). In
polyploid hepatocytes (isolated as low insulin binding cells),
Hamp was up-regulated by a factor of 13.6. The complete
list of significantly differentially expressed genes is provided in
Supplementary Table 3, including fold-change estimates and p-
values. Figure 9A shows the subset of genes, with p < 0.01 and
fold-change larger than a factor of 2 between strictly diploid and
polyploid hepatocytes. According to these thresholds, 48 genes

were upregulated (red) in diploid hepatocytes, and 45 genes were
downregulated (green) in these cells.

Functional analysis of the differentially expressed genes
based on gene ontology showed a complex picture suggesting
an intricate functional difference between both entities.
Supplementary Table 3 shows the gene set regulation index as
an estimate of the fraction of differentially expressed genes for
all gene ontology categories with more than 10 genes and with
more than 50% of genes upregulated in cells with polyploid
nuclei. Supplementary Table 4 shows the respective outcomes for
categories with more than 50% of genes upregulated in cells with
diploid nuclei.

Altered expression could be observed in numerous gene
ontology categories related to the metabolism of hepatocytes
(shown in Figure 9B). In hepatocytes with polyploid nuclei,
most genes associated with RNA-, phosphatidylinositol-, and
gluthathione metabolism, with protein- and RNA transport as
well as genes involved in biosynthesis of purine nucleotides,
ribosomes, amino acids, and fatty acids showed up-regulation. In
diploid nuclei containing cells on the other hand, the majority
of genes were up-regulated which are involved in glycogen
metabolism and gluconeogenesis, in cholesterol- and fatty acid
transport, as well as constituents of VLDL, LDL, and HDL
lipoproteins.

Genes of signaling categories in the GO annotation also
exhibit an intricate regulation between both entities as depicted
in Supplementary Figures 4, 5. In cells with polyploid nuclei
which were selected due to less insulin binding, more than 50% of
genes assigned to NFκB-, RAS-, TNF-, and JAK-STAT signaling
are upregulated. Upregulation of these pathways might render
hepatocytes with polyploidy nuclei as better survivors compared
to hepatocytes with diploid nuclei. In line with this, hepatocytes
with diploid nuclei exhibiting enhanced expression of genes
“inducing apoptosis by extracellular signals (GO:0008624),”
but also enhanced insulin binding and the majority of genes
related to JNK-, insulin/IGF1-, IL1-, and WNT signaling as
well as negative regulators of MAPK- and BMP signaling are
upregulated. However, because gene expression levels provide
only an incomplete picture about the abundance of the respective
proteins and since the quantitative impact of regulation of
pathway compounds on the strength of signaling pathways is
unknown, it is difficult to reliably draw concrete conclusion
without further experimental investigation. Nevertheless, our
observations indicate that both cell entities are characterized
by different regulation of pathway constituents and therefore
unequal sensitivity for the respective signaling pathways.

DISCUSSION AND SUMMARY

Polyploidy of hepatocytes is a known biological phenomenon
in most mammals and develops postnatally during liver growth
(Styles, 1993). Since a separation of diploid binuclear and pure
polyploid cells, respectively, is difficult (Severin et al., 1984),
insights into their functional characteristics are still limited.

By combining flow cytometry and HCS we were able
to identify, quantitate and characterize different entities of
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FIGURE 6 | Demonstration of the data processing based on mixture models. Panel (A) shows the measurements as a scatterplot of forward vs. side-scatter signals.

Panel (B) shows the same as a 2D histogram. The fitted Gaussian mixture model is plotted in (C). Based on this fit, the cells are selected based on thresholds. One

outcome, i.e., the selected cells are shown in (D) in red color. To obtain robust results, the outcomes are averaged over alternative reasonable data processing

strategies using other data transformations (asinh and log) and thresholds. Panel (E) illustrates the obtained five numbers estimated for each data set from the

histogram of the FITC channel: (a) two estimates of the average amount of insulin binding for the two groups of cells (dashed lines); (b) two variances for the two

observed cell groups (horizonal arrows); (c) the proportion of cells in the two groups of cells, which can be calculated from the areas in both groups.

hepatocytes in the liver of mice based on the number of
nuclei per cell and their respective ploidy status. The results
obtained by flow cytometry directly after hepatocyte isolation
were comparable with those obtained by HCS after overnight
culture, despite the loss of some hepatocytes due to apoptosis.
Apoptotic cells were observed for 2n, 4n or >4n after overnight
incubation but significant differences to freshly isolated cells
could only be shown for the 2n and 4n populations (Figure 1C).
Despite this difference, the fact that all three populations could be
found after overnight cultivation and the possibility of separating
and quantifying mono and binuclear cells in addition to their
polyploidy renders HSC suitable for functional analyses of
hepatocytes with different ploidy. Using HSC we found that over
55% of the hepatocytes were binucleated. Around 15% of the
cells were mononuclear diploid cells and 26% were binuclear
diploid cells. In addition, 15% of the cells were mononuclear with
polyploid nuclei, and 24% were binuclear cells with polyploid
nuclei (Figure 1F).

Interspecies studies of the ploidy status of liver cells indicate
a correlation between high postnatal growth rate associated
with increased DNA content, and the species-specific polyploidy
level which presumably increases in response to metabolic
requirements (Vinogradov et al., 2001). Other studies suggest

that liver cell polyploidy closely correlates with postnatal liver
growth, while the rate of basal metabolism only correlates with
the frequency of binucleated hepatocytes (Anatskaya et al., 1994).
Our quantitative analysis of GFP expression after adenoviral
infection as an indicator for basal transcriptional turnover
in hepatocytes revealed that liver cells with polyploid nuclei
express 10–100 times more GFP than diploid cells (Figure 2).
These results suggest that in the adult liver, nuclear polyploidy
has a strong impact on transcriptional turnover, e.g., on the
basal overall gene expression level of hepatocytes (Figure 9 and
Supplementary Data). This indicates that nuclear polyploidy may
have a stronger impact than the number of nuclei per cell,
although we could not directly compare both effects.

The cytochrome P-450 system is central to the metabolism
of xenobiotics in the liver. Furthermore, the conversion of
fluorescein from non-fluorescent to fluorescent substrates within
hepatocytes has been shown to correlate closely with cytochrome
activity and albumin production in the cell (Miller, 1983;
Nyberg et al., 1993). We utilized the non-fluorescent agent
CFDA-SE, which is retained intracellularly once it has been
enzymatically converted to fluorescein, as a marker for substrate
induced enzymatic activity in the hepatocyte, and correlated
this metabolic activity to DNA content of mouse hepatocytes.
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FIGURE 7 | Insulin binding differs in hepatocytes with diploid and polyploid nuclei despite comparable time kinetics. (A) The low and high insulin binding hepatocytes

could be found by flow cytometry at any insulin concentration tested. A mixture of two Gaussian densities is fitted to each data set to estimate the dose dependency

in detail (Supplementary Information and Figures 5, 6). (B) The two entities arise immediately after the addition of insulin at all of the tested concentrations and have

comparable saturating kinetics. The average shown as dashed lines represents insulin binding as it would be observed if the two types of hepatocytes could not be

distinguished. For t = 0 as well as for the first three time points at the lower dose (left), the individual averages of both entities could not be calculated without a bias.

Therefore, only the average over both entities is plotted and used for fitting of the kinetic model.

Flow cytometry performed 10min after CFDA-SE incubation
could clearly distinguish between 2n hepatocytes with high
enzymatic activity and 8n cells with lower activity, while
binuclear diploid and mononuclear polyploid hepatocytes (4n)
could not be distinguished by this method. The bimodally
distributed amounts of fluorescein observed in the 4n cells
suggest, however, that binuclear and mononuclear diploid liver
cells had similar fluorescein conversion activity (Figure 3).
Contrary to the data obtained after adenoviral infection, diploid
hepatocytes converted much more substrate than polyploid
liver cells, suggesting major differences between these cells with
respect to basal and substrate-induced metabolism is in line with
our functional analysis of the gene expression data.

Maintenance of metabolic homeostasis and metabolic
adaptation to nutritional changes are critical for survival. In this
context, the liver is of central importance for the maintenance of
glucose homeostasis (Moore et al., 2012). Insulin is the primary
hormone controlling glucose uptake and release by the liver
(Postic et al., 2004). At the hepatocellular level this is mediated
by activation of the insulin signaling pathway, initiated by
binding of insulin to the membrane-associated IR and followed
by the activities of a complex signaling network mediating their
metabolic actions (Taniguchi et al., 2006). Interestingly, our
analyses again identified two liver cell subtypes with different

insulin binding characteristics (Figure 4): mono- and binuclear
hepatocytes with diploid nuclei (2n and 2∗2n) showed increased
amounts of insulin binding, whereas mono- and binuclear liver
cells with polyploid nuclei (4n and 2∗4n) exhibited low levels of
insulin binding.

Since apoptotic hepatocytes and other cells types are only able
to bind insulin to a much lower extent, FITC intensity strongly
depends on the selection of cells in the forward vs. side scatter
bivariate plot. We established an application-specific automatic
separation procedure for discriminating viable hepatocytes from
dead hepatocytes and from other cell types present in liver
tissues, such as hepatic stellate cells or Kupffer cells as presented
in Figure 5. A mixture model accounting for the bimodality
was applied to estimate time and dose-dependency of insulin
binding (Figure 6). In this way it was possible to accomplish
both, a robust analysis which is insensitive to the choice of
thresholds, and combining of hundreds of data sets obtained in
different cell preparations. Cells with diploid nuclei showed an
increased magnitude of insulin binding by a factor of around 16
compared to cells with polyploid nuclei. The kinetic pattern of
dose-dependency for insulin was similar (Figure 7).

Since insulin receptor (IR) localization, expression, and
sensitivity for insulin stimulation are intricately regulated,
there are several possible mechanistic interpretations for the
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FIGURE 8 | Similar receptor expression found in hepatocytes with low and high insulin binding as seen by flow cytometry. (A) Upper panel: separation of insulin-low

binding and insulin-high binding hepatocytes by different doses of insulin 5min after insulin incubation. Lower panel: similar IR expression in low and high

insulin-binding hepatocytes after their separation according to their insulin affinity. (B) Expression of insulin receptor variants in primary cells as determined by RT-PCR

using the fact that the variant B expresses an additional exon. GeneRuler Low Range DNA Ladder (Fermentas, Thermo Fisher Scientific, Darmstadt, Germany) was

used as Marker (M). Controls were the following: PCR using water for the cDNA synthesis instead of RNA (cDNA); PCR using RNA as template instead the synthesed

cDNA (cRNA); PCR using water in the PCR reaction instead cDNA (cPCR). iPMH, fresh isolated hepatocytes; cPMH, hepatocytes after overnight cultivation; S,

spleen; L, murine liver.

observation. Our model, which is based on ordinary differential
equations for the observed kinetics, predicts different numbers
of available insulin binding sites between diploid and polyploid
hepatocytes (Supplementary Figure 1, Supplementary Table 1),
even though experimentally we could not identify a difference in
IR expression (Figure 8A) or localization. In addition, differences
in the expression of IR splice variants A and B (Mosthaf
et al., 1990) could also be excluded (Figure 8B). Therefore, we
hypothesize that other mechanisms like differential localization
in cellular compartments or different levels of receptor clustering
could be a key to explaining the differences between low and high
insulin binding liver cells.

The evolutionary benefits raised by the heterogeneity induced
by nuclear ploidy are unknown. We can only speculate that the
two entities render the liver more robust in stressed situations
like detoxification. Moreover, since the liver is a major regulator
of insulin degradation and because after insulin release by the
pancreas, the blood first passes the liver before systemically
circulating through the body, the existence of two entities of
hepatocytes with differential responsiveness for insulin might
indicate a more robust and/or more efficient modulation capacity

for insulin. Since insulin-dependent transporter GLUT4 is not
expressed in the liver, and glucose uptake occurs instead via
the insulin-independent GLUT2, there seems to be no direct
implication for glucose regulation.

A major consequence of polyploidy is an increase in cell
volume (Cavalier-Smith, 1978). Therefore, changes in ploidy
status result in a change of the ratio of cell surface to cell volume.
This in turn may affect metabolic activities, especially those
involving signaling pathways and membrane-associated receptor
phosphorylation (Weiss et al., 1975). However, since there is
no significant difference in the volume of binuclear diploid
and mononuclear polyploid hepatocytes (Martin et al., 2002)
(Figure 4A), discrepancies observed in insulin binding according
to nuclear polyploidy cannot be explained by a difference in cell
volume.

Another aspect is that polyploidy of hepatocytes not
only correlates with cell size but may also depend on the
localization within the hepatic lobule, with periportal hepatocytes
being preferentially diploid and pericentral hepatocytes being
polyploid (Gandillet et al., 2003; Asahina et al., 2006). The
known periportal-pericentral gradient of oxygen, hormones
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FIGURE 9 | Microarray analysis reveals major differences at the transcriptional level between hepatocytes having diploid or polyploid nuclei. (A) Heatmap for

differentially regulated genes (p < 0.01 and fold-change >2) in insulin high-binding (diploid nuclei) and low-binding (polyploid nuclei) hepatocytes. Supplementary

Table 2 provides the list of all differentially expressed genes. (B) Functional analysis of the expression differences based on gene ontology categories performed by the

Gene Set Regulation Index (Supplementary Material). The figure shows metabolic functions where at least 50% of genes are upregulated in polyploid (upper panel)

and diploid (lower panel) hepatocytes. All the GO categories can be found in Supplementary Tables 3, 4. The corresponding figure for the signaling categories are

provided as Supplementary Figures 4, 5.

and metabolites as well as the established zonation of
metabolic functions (Gebhardt, 1992; Jungermann, 1995), e.g.,
gluconeogenesis and urea synthesis occurring primarily in the
periportal zone and glycolysis and glutamine synthesis being
exclusively catalyzed pericentrally, suggest a zonation of the
ploidy of liver cells, i.e., the predominant localization of diploid
cells in portal areas and polyploid cells in central areas,
respectively. We applied insulin ex vivo directly into the liver
thought the vena porta but could not see a gradient in insulin
binding along the periportal-pericentral axis (Supplementary
Figure 3). There was no indication that nuclear polyploidy
differ along this axis which is in agreement with an earlier
study (James et al., 1986) arguing that the metabolic zonation
and the ploidy of liver cells are independent biological
features.

Given the inverse ploidy patterns in liver and heart, changes
in gene expression were mainly associated with a shift from
oxidative to anaerobic pathways in polyploid tissues such
as the liver (Anatskaya and Vinogradov, 2007). Polyploidy
protects among other things against stress-related apoptosis,
DNA damage, hypoxia and reactive oxygen species, and
increases the metabolic plasticity of cells, thereby promoting
the maintenance of their tissue-specific functions and overall
survival (Anatskaya and Vinogradov, 2010). In fact, our results
obtained after overnight cultivation could corroborate a greater
sensitivity for apoptosis in the diploid hepatocytes as compared
to the polyploid ones (Figure 1C). Gene expression profiles in
microarray analyses of hepatocytes isolated according to their
ploidy status but not according to the number of nuclei per
cell found no major changes (Lu et al., 2007). By contrast, our

Frontiers in Physiology | www.frontiersin.org 13 October 2017 | Volume 8 | Article 86297

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Kreutz et al. Diversity of Hepatocytes from Nuclear Ploidy

microarray analyses were performed with hepatocytes which
differed not only in their total ploidy status but also in
the number of nuclei per cell, thus separating mononuclear
polyploid and binuclear diploid hepatocytes, revealing around
32% differentially expressed genes with expression differences up
to 15-fold (Figure 9 and Supplementary Figure 2).

The functional analysis of these genes shows a complex
picture. Genes involved in several signaling pathways and
metabolic functions have been found to be up-regulated in
hepatocytes with polyploid nuclei (Figure 9 and Supplementary
Figures 4, 5), while genes involved in other signaling pathways or
metabolic functions like fatty acid and glycogen metabolism, ion
transport or calcium ion binding were up-regulated in cells with
diploid nuclei. This result is in agreement with a higher substrate-
inducedmetabolism in hepatocytes with diploid nuclei compared
to cells with polyploid nuclei, which are characterized by a higher
basal level of metabolism (Supplementary Tables 3, 4).

Taken together, our analyses show that hepatocytes with
diploid and polyploid nuclei have different biological properties.
While nuclear polyploidy increases basal protein synthesis and
protection against apoptosis, nuclear diploidy correlates with
enhanced substrate-induced enzymatic liver cell functions and
the capacity to bind insulin. This finding emphasizes the
relevance of the cellular diversity found in the liver and suggests
major differences in biological functions of the liver which are
regulated by insulin: glucose uptake, storage and release, as well
as gluconeogenesis.

Due to the existence of polyploid hepatocytes in both
periportal and pericentral areas, we suggest the ploidy status
of individual hepatocytes to be a further level of biological
heterogeneity of liver cells. Although the mechanism leading to
the genesis of polyploidy in the hepatocyte is still not understood
in detail, the total ploidy status of individual hepatocytes, as
well as their nuclear ploidy, adds further levels of biological
heterogeneity of liver cells beyond the well-known metabolic

zonation, and seems to be critical for the function of the liver
parenchyma. Further research should address whether changes
in the pattern of polyploidy along the sinusoid could have
consequences for the function of the liver parenchyma and may
influence liver diseases.
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The need for extended liver resection is increasing due to the growing incidence of liver

tumors in aging societies. Individualized surgical planning is the key for identifying the

optimal resection strategy and to minimize the risk of postoperative liver failure and

tumor recurrence. Current computational tools provide virtual planning of liver resection

by taking into account the spatial relationship between the tumor and the hepatic vascular

trees, as well as the size of the future liver remnant. However, size and function of the

liver are not necessarily equivalent. Hence, determining the future liver volume might

misestimate the future liver function, especially in cases of hepatic comorbidities such as

hepatic steatosis. A systems medicine approach could be applied, including biological,

medical, and surgical aspects, by integrating all available anatomical and functional

information of the individual patient. Such an approach holds promise for better prediction

of postoperative liver function and hence improved risk assessment. This review provides

an overview of mathematical models related to the liver and its function and explores

their potential relevance for computational liver surgery. We first summarize key facts of

hepatic anatomy, physiology, and pathology relevant for hepatic surgery, followed by a

description of the computational tools currently used in liver surgical planning. Then we

present selected state-of-the-art computational liver models potentially useful to support

liver surgery. Finally, we discuss the main challenges that will need to be addressed when

developing advanced computational planning tools in the context of liver surgery.

Keywords: Liver resection, risk assessment, systems medicine, multi-scale modeling, function prediction, liver

regeneration, liver metabolism, liver surgical planning

FROM SYSTEMS BIOLOGY VIA SYSTEMS MEDICINE TO

SYSTEMS SURGERY OF THE LIVER

Systems biology is characterized by the application of computational models and methods to a
biological question, focusing on entire biological systems and the complex interactions therein. In
systems biology, an iterative cycle of model building and validation based on experimental data
generation and analysis is pursued. The key purpose of computational models is the integration of
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biological knowledge into a mathematical representation of
the underlying processes allowing in silico testing of new
hypotheses. Systems biology applied to human diseases is an
interdisciplinary approach broadening our understanding of
mechanisms involved in disease development and progression.
Thus, mathematical models of human diseases can enable us to
discover new therapy strategies and targets.

Using the systems biology approach in a clinical setting
is termed systems medicine (Wolkenhauer et al., 2013).
In systems medicine, computational models are applied for
disease diagnosis, prediction of disease progression, and
for guidance to select suitable therapeutic strategies. In
addition, computational models provide the opportunity for
individualization. Patients differ in their individual anatomy,
physiology, genetic background, and personal history, all of
which influence the severity and course of the disease and
determine the specific response of the patient. Therefore, in
medicine and especially in surgery, a modeling approach is
needed, which permits a patient-specific perspective on disease
development and progression, taking preexisting patient-specific
conditions into consideration.

Computational surgery refers to the use of computational
support in the context of surgery (Garbey et al., 2012; Bass
and Garbey, 2014). Computational models can guide surgery
to optimize intervention and improve outcome. Such models
are applied in surgery for (a) preoperative risk assessment
of a patient to guide surgical planning, (b) adjustments of
the procedure during a surgical intervention, e.g., by using
image-based technologies, and (c) prediction of the surgical
outcome accompanied by decision guiding for postoperative
therapy. Computational approaches have been developed to
guide surgeries for, e.g., heart failures (Kayvanpour et al., 2015;
Meoli et al., 2015), brain tumors (Rockne et al., 2010; Baldock
et al., 2013), and liver resections (Soler et al., 2014).

Surgical planning, especially for liver resection, benefits from
computational support. The preoperative planning needs to be
accurate and predictive, but also fast and easy to cope with
the growing number of patients. More individualized surgical
planning will be required to push the limits in liver surgery
toward operating more patients with more advanced malignant
tumors, higher age, and preexisting liver damage.With increasing
severity of disease, the risk of postoperative liver failure rises.
Here, computational support in the future will enable better
risk assessment and highly individualized surgical planning for
the patients requiring liver surgery, allowing to perform more
successful procedures in higher-risk patients with improved
outcome.

Current computational support in hepatic surgery focuses
on anatomical assessment. To do so, the patient’s individual
hepatic anatomy is taken into account to enable preoperative
surgical planning. This ensures an optimal compromise between
an oncologically radical resection and a remnant liver of
sufficient size, see Figure 1. A radical resection involves surgically
removing the tumor including a large safety margin andmitigates
the risk of recurrence at the cost of an increased risk of failure.
In contrast, a small safety margin maximizes the size of the liver
remnant and thus reduces the risk of failure, but involves a higher

risk of recurrence. Computational support of today utilizes
sophisticated preoperative imaging in combination with surgical
planning tools. This approach allows to assess the patient-specific
anatomical condition, but does not consider the functional state
of the liver. Neglecting the functional state, however, represents a
serious limitation, because the success of liver surgery strongly
depends on the functional quality of the remnant liver after
operation, i.e., the metabolic and proliferative capacity, as well
as on the adequate stress response to the surgical injury.

Future computational support must include such functional
aspects. Surgical planning could be optimized by prediction of
the hepatic stress response, postoperative recovery of metabolic
functions, and regeneration of the future remnant liver. Both
anatomical and functional assessments are needed to better
predict the impact of surgical interventions. Computational
support combining anatomical assessment with a risk assessment
of liver (dys-)function could provide many benefits for
patients undergoing liver surgery, including faster recovery, less
infections, and reducedmortality, altogether leading to improved
patient outcome.

Employing models from systems biology in the context
of surgery, thus aiming at considering all relevant biological
processes by the means of predictive computational models, is an
approach that could be termed as “Systems Surgery.” Numerous
computational models simulating selected hepatic functions have
been developed in the field of systems biology. Thesemodels were
primarily developed to improve the understanding of hepatic
physiology, but their integration into current surgical planning
tools is lacking so far. Extending these tools by integrating
computational models involving the hepatic stress response,
metabolic function, and liver regeneration would allow better
prediction of the surgical risk and the postoperative course and
outcome.

In this review, we provide an overview of mathematical
liver modeling and its prospective application to computational
liver surgery. Following a comprehensive summary of the
biological and medical background relevant for liver surgery,
we present an overview of state-of-the-art computational
approaches supporting current liver surgical planning. Next, we
provide an outline of selected liver-specific models from the field
of systems biology with a special focus on their relevance for liver
surgery. Finally, we identify the main challenges associated with
the application of computational models in liver surgery.

UNIQUE CHALLENGES OF LIVER

RESECTION

The liver is a highly complex organ. It is characterized by (a)
its multi-scale architecture, (b) its special perfusion system with
two parallel inflows (hepatic artery and portal vein) and one
outflow (hepatic vein), (c) its multitude of functions including
metabolic homeostasis, synthesis of essential compounds,
detoxification, and excretion of toxic substances, and (d) its
high regenerative capacity after injury. Despite the seemingly
regular microstructure of the liver, perfusion, functional, and
regenerative capacity are distributed heterogeneously in the
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FIGURE 1 | Risk assessment and decision making in hepatic resection. Planning for a safe resection of a liver tumor with a large future liver remnant (FLR) reduces the

risk for postoperative liver failure but increases the risk of recurrence. In contrast, planning for an oncologic radical surgery requires a safety margin. Extending the

safety margin (e.g., 10 vs. 1mm) in case of a centrally located tumor leads to a substantially extended resection leaving a rather small future liver remnant behind,

which increases the risk of postoperative liver failure. Preexisting liver disease such as steatosis increases the risk for postoperative liver failure and might therefore call

for a smaller safety margin compared to livers without preexisting diseases.

organ at different spatial scales, see Figure 2. Liver diseases
can impair the hepatic structure, microcirculation, metabolic
function, and the regenerative capacity, all potentially increasing
the risk of postoperative liver failure.

Anatomy and Physiology
Multi-scale Architecture and Hepatic Perfusion
The multi-scale structure of the liver consists of cells, lobules,
segments, and lobes (Boyer et al., 2011). Organization of the liver
in lobes and segments is based on portal supply via the two main
(right and left portal vein) and eight segmental branches of the
portal vein. In contrast, hepatic drainage is ensured via the three
main hepatic veins (right, median, and left hepatic vein).

Hepatocytes, the main cell type of the liver, are organized
in cords along the hepatic sinusoids, the capillary-like small
blood vessels in the liver. This alignment of hepatocytes supports
efficient functioning by (a) separating opposing pathways in
spatially separated zones, (b) preventing substrate competition
between different metabolic pathways, and (c) connecting
consecutive pathways.

Sinusoids draining into the same central vein form the
liver lobule, the functional unit of the liver on the tissue
level. Perfusion of the liver lobules, also called hepatic

microcirculation, is unique since the sinusoidal network receives
both oxygenated blood from the hepatic artery (∼20%) and
(partially) deoxygenated blood from the portal vein (∼80%).
Alterations in the sinusoidal morphology (Figures 2C,D) lead to
changes and heterogeneity in the microcirculation.

Liver lobules in the region supplied by the same segmental
branch of the portal vein form one of eight segments of the
liver, the so-called Couinaud segments (Couinaud, 1957), cf.
Figure 2A. In contrast, each of the three main branches of the
hepatic vein drains two adjacent segments (and each segment
has multiple draining hepatic veins). The interplay of vascular
anatomy and flow resistances at the microcirculatory (sinusoidal)
level leads to heterogeneous liver perfusion (Figure 2B). This
complex and highly individual anatomy makes surgical planning
difficult.

Metabolism
The liver is crucial for maintaining metabolic homeostasis.
This is achieved via synthesis, degradation, and storage of
metabolites (e.g., glucose, glycogen, fatty acids, or amino
acids) (Boyer et al., 2011). For instance, constant glucose
levels are maintained via gluconeogenesis and glycogenolysis to
continuously supply the brain and other tissues between meals
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FIGURE 2 | Spatial heterogeneity in liver physiology. Visualization of human individual hepatic vascular and parenchymal anatomy (A, the labels indicate the different

Couinaud segments) is the basis of current surgical planning (I). Planning currently does not take any functional heterogeneity into account. However, heterogeneity

exists on the macro- and microscale in terms of hepatic perfusion (B, clinical perfusion CT*) and microcirculation [C,D, orthogonal polarization spectroscopy image

from (C) normal rat liver and (D) rat liver after 90%PHx]. Heterogeneity also occurs in terms of regional distribution of functional activity (E, Mebrofenin scan of human

liver**) and of metabolic zonation in mouse liver (F, periportal expression of E-cadherin and perivenous expression of CYP2E1). Furthermore, inhomogeneous

distribution also occurs in case of morphologic changes due to global liver disease, here shown regional heterogeneity of fat distribution (G, MRT of steatotic mouse

liver) as well as zonated distribution of fat accumulation in periportal hepatocytes in a mouse liver (H). Current planning focuses on visualizing tumor location (I).

Monitoring of liver regeneration is mostly restricted to experimental or clinical studies and revealed inhomogeneous growth of the remnant lobes in mice (J–L). H,

human; M, mouse; R, rat. *Reprinted from Cieslak et al. (2016), with permission from Elsevier. **Reprinted from Wang et al. (2013), with permission from Elsevier.

(König et al., 2012). Other crucial tasks are the synthesis and
excretion of bile acids, the synthesis of plasma proteins (e.g.,
enzymes, coagulation factors, and complement proteins), and the
metabolization and detoxification of xenobiotic compounds (e.g.,

most drugs and toxins are cleared by the liver) (Boyer et al.,
2011).

The function of individual hepatocytes depends on their
position in the liver lobule, a phenomenon called metabolic
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zonation. Hepatocytes close to the portal field (periportal) receive
oxygen-rich blood from the hepatic artery and nutrient-rich
blood from the portal vein and are specialized in oxidative
metabolism comprising gluconeogenesis, β-oxidation of fatty
acids, and cholesterol synthesis. In contrast, hepatocytes close to
the central vein (pericentral) receive lower oxygen and nutrient
levels and perform glycolysis, lipogenesis, bile acid synthesis,
and drug detoxification by cytochrome P450 (CYP) enzymes
(Kietzmann, 2017). This zonation is mainly a consequence
of differential protein expression along the sinusoid, e.g., the
restricted periportal expression of E-cadherin and perivenous
expression of CYP2E1 depicted in Figure 2F.

Metabolic zonation is the reason for predominantly zonal
damage in response to specific challenges. For example,
systemic metabolic diseases like Type 2 Diabetes mainly
impact the regional specialization of periportal hepatocytes,
e.g., periportal hepatocytes expressing the key gluconeogenic
enzyme phosphoenolpyruvate carboxykinase (Yang et al.,
2009). Similarly, initiation and progression of fibrosis during
pathogenesis of liver cirrhosis affects primarily the periportal
areas, since deposition of extracellular matrix originates from
mesenchymal cells resident or recruited to the portal area
of the liver lobule (Bataller and Brenner, 2005). In contrast,
intoxication, e.g., with acetaminophen, mainly affects pericentral
hepatocytes, which express the cytochrome P450 enzymes
needed for metabolization of the drug (Woolbright and Jaeschke,
2017).

The metabolic functions of the liver are the result of a
complex interplay between metabolism on the cellular scale,
tissue structure, and perfusion of the tissue/organ. As a result
of multiple heterogeneous phenomena, functional hepatocellular
activity is distributed heterogeneously in the liver (Figure 2F).
Consequently, important questions before liver resection are:
How does a surgical intervention impact the metabolic functions
of the liver? i.e., what is the remaining functional capacity of
the liver for metabolic tasks after resection? Is this sufficient to
support volume regeneration and functional recovery?

Surgery and Recovery
Resection
The incidence of liver tumors is increasing with the age of the
patients. The demographic change with a constantly increasing
elderly population leads to a growing number of patients in need
of liver surgery (Liu et al., 2017).

Liver resection is the most common liver surgery and consists
of removal of liver tissue due to focal lesions, most often
malignant tumors (Abdeldayem, 2013). Malignant tumors, like
hepato- or cholangiocellular carcinoma, or liver metastases,
but also living liver donation, often require extended partial
liver resections of more than two thirds of the liver. The
extent of resection is determined by the size and location
of the focal lesion and the estimated function of the future
liver remnant. The function of the liver remnant depends on
several factors including its volume, the size of in- or outflow
compromised territories, the impairment of hepatic micro- and
macro-circulation induced by resection (Nilsson et al., 2014),

and the severity of any preexisting damage aggravating the
microcirculatory impairment (Hossain et al., 2006).

Reduction of hepatic liver mass results in portal hypertension
and portal hyperperfusion. After resection, all blood from
the intestine has to pass through the reduced vascular bed
resulting in an increased perfusion pressure and flow rate.
Portal hyperperfusion leads to decreased arterial perfusion due
to the hepatic arterial buffer response (Lautt et al., 1984). The
impaired microcirculation challenges the liver remnant with a
high metabolic and regenerative demand, thereby increasing the
risk of liver failure.

Transecting hepatic parenchyma requires transecting
branches of both the portal and the hepatic vein. Due to the
anatomical disparity of two portal veins supplying, but three
hepatic veins draining the liver, a certain focal in- or outflow
obstruction is inevitable. The impairment of hepatic perfusion
and microcirculation may cause hepatocyte dysfunction and
pericentral confluent necrosis, further reducing the functional
liver mass (Lee et al., 2001).

Prior to liver resection, surgeons have to assess the patient’s
individual risk for postoperative liver dysfunction. In case of
malignant tumors, surgeons have to identify the surgical strategy
best suited to allow radical oncological removal without putting
the patient at risk of postoperative liver failure due to excessive
removal of liver mass (Figure 1) (see also, van Dam et al., 2014;
Kang and Ahn, 2017). Depending on the size, etiology, and
location of the tumor, the surgeon has to define the best strategy
in terms of the resection surface, but also in terms of the surgical
technique such as the use of vascular occlusion tominimize blood
loss. Both together determine the total parenchymal loss and the
extent of damage to the remnant liver (Figure 2I). Deciding on
the resection surface determines the safety margin around the
tumor and the vessels which have to be transected. Therefore, a
key challenge in planning liver resection is to ensure adequate
vascular supply and venous drainage, both of which are essential
for normal liver function. Small changes in placing the resection
surface can have large effects on the size of the compromised
portal/arterial inflow and venous outflow territories. In addition
to the loss of liver mass by resection, compromised territories
further reduce the remaining functional liver tissue, increasing
the risk of the procedure.

Stress Response
Resection causes tissue damage and induces a stress response in
hepatic cells. An adequate stress response to the injury, consisting
ofmodulation of gene expression and various signaling pathways,
is imperative for the patient’s survival and recovery. Particularly,
the impairment of hepatic microcirculation after resection, which
is accompanied by an altered substrate delivery via blood to
the hepatocytes (Siu et al., 2014; Dold et al., 2015), makes an
adaptation of the metabolic activity necessary. Here, a sufficient
supply with oxygen for oxidative processes is required, but local
hypoxia caused by the impaired perfusion leads to an increased
production of reactive oxygen species (ROS) upon reperfusion
(Bhogal et al., 2010). Physiologically, ROS are signalingmolecules
involved in mediating an adequate stress response to tissue injury
by modulating metabolic adaptations and activating the innate
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immune system. Pathophysiologically, however, excess ROS may
cause cell damage. Particularly, if vascular exclusion is used
during liver resection tominimize blood loss (Garcea et al., 2006),
the level of ROS production raises, ultimately resulting in vast cell
damage, decreased metabolic function, and ischemia/reperfusion
injury (Zhang et al., 2007). This hampers the function of the
remnant liver, again contributing to the risk for postoperative
liver failure. Subsequently, the surgeon is faced with a critical
trade-off between the advantage of reduced blood loss and the
risk of ischemia/reperfusion injury (van Riel et al., 2016).

The hepatic stress response also triggers, besides metabolic
adaptations, an activation of the regenerative process
(Michalopoulos, 2017) and a local inflammatory response
(Alazawi et al., 2016). The latter is not only important for removal
of damaged and necrotic cells and triggering regeneration, but
also to prevent infections. After surgery, patients are faced with
increased risk for complications, such as focal infections, the
systemic inflammatory response syndrome, or sepsis (Alazawi
et al., 2016). This risk increases with postoperative hepatic
dysfunction, which is ultimately determined by the remnant
liver volume (Schindl et al., 2005). The levels of inflammatory
cytokines, such as IL-6, IL-8, and MCP-1 (monocyte chemotactic
protein-1) correlate with the degree of tissue damage and reflect
the early response to surgical injury (Badia et al., 1998; Strey
et al., 2011; Friedman et al., 2012).

Regeneration
The liver possesses a high regenerative capacity (Fausto
et al., 2012). This unique capability ensures restoration of
size and function after surgical, physical, or chemical injury
(Figures 2J,K,L). In principle, two different types of damage
require restoration of the liver mass: (a) cell death due to systemic
injury of the liver, predominantly occurring in a zonated manner,
and (b) tissue loss due to removal of liver segments or lobes via
resection.

Original liver mass after resection is restored by mature
hepatocytes in the residual liver undergoing oscillating cell
divisions (Miyaoka and Miyajima, 2013). The first wave of
division encompasses about 60% of the hepatocytes, followed by
waves of considerably less proliferation (Zou et al., 2012;Miyaoka
and Miyajima, 2013). The immediate regenerative response after
resection is mediated by HGF and IL-6, the so-called priming
factors of liver regeneration allowing hepatocytes to re-enter the
cell cycle (Fausto and Campbell, 2003). As part of the stress
response of liver cells to tissue injury, the process of liver growth
is highly controlled by a variety of signaling molecules involving,
among others, cytokines, growth factors (Böhm et al., 2010), and
hormones (Marino et al., 1992).

Substantial recovery of the liver mass occurs within 10 days,
and 80 to 90% of the original liver mass is reached within 6–
12 months following 70% resection (Nadalin et al., 2004; Kele
et al., 2012). In contrast, reports about the recovery of liver
function are highly variable, as this depends on the specific
aspect under investigation. For instance, liver biochemical
parameters [bilirubin, international normalized ratio (indicator
of blood coagulation)] return to normal within 10 days, whereas

cholinesterase, albumin, and galactose elimination capacity
recover within 90 days (Nadalin et al., 2004).

The liver accumulates lipids during regeneration
(Michalopoulos, 2007; Zou et al., 2012; Miyaoka and Miyajima,
2013). These lipids derive from an increased adipose tissue
lipolysis and provide energy substrates for the proliferation of
hepatocytes in the liver (Farrell, 2004; Fausto, 2004; Walldorf
et al., 2010). While this “physiological” post-resection steatosis
is beneficial, excess lipid accumulation in hepatocytes causes
hepatocyte death and impaired liver regeneration. This is of
special interest after extended liver resections, because a small
liver remnant has lower lipid storage capacity, and thus a higher
risk of lipid overload and organ dysfunction, than a larger
remnant. Since obviously the liver is unable to regulate the
amount of lipid uptake in relation to its size after resection,
extended resections lead to a pathophysiological shift from
utilization during regeneration to excess storage (Shteyer et al.,
2004; Hamano et al., 2014; Tautenhahn et al., 2016).

Ultimately, the course of liver regeneration depends on
the functional capacity of hepatocytes in the liver remnant.
The loss of liver tissue puts an additional stress on the
residual parenchyma to take over the metabolic tasks previously
accomplished by the whole liver prior to resection. This is critical
in situations where hepatocyte function is already impaired by
preexisting damage, like, e.g., hepatic steatosis as discussed below.

Preexisting Diseases
Preexisting global liver diseases can increase the risk of liver
surgery. Liver diseases affecting the whole organ comprise
metabolic, inflammatory and autoimmune, or infectious
diseases. Such diseases compromise architecture, function, and
regeneration of the liver and are often associated with or may
lead to steatosis, cholestasis, and fibrosis. In the following, we
focus on hepatic steatosis to delineate how one exemplary liver
disease may aggravate liver surgery.

Hepatic steatosis is defined as an excessive accumulation
of fat in the hepatocytes. Steatosis starts with development of
small droplets (microvesicular steatosis) progressing to large
droplet formation (macrovesicular steatosis). Depending on the
etiology, fat accumulation often starts in one specific zone, e.g.,
in the pericentral zone in case of ethanol-induced toxic etiology.
Besides zonal accentuation (Figure 2H), fat distribution can
also be subject to regional variations, resulting in substantial
heterogeneity in the regional fat content (Figure 2G; Capitan
et al., 2012; Idilman et al., 2016; Schwen et al., 2016).

Patients with steatosis have a higher surgical risk than patients
without steatosis (Kooby et al., 2003; Clavien et al., 2007;
McCormack et al., 2007). Several reasons contribute to the
risk: (a) Steatosis causes an alteration of hepatic architecture
leading to an inhomogeneous impairment of perfusion and to
an increase in portal pressure (Seifalian et al., 1998). Impaired
perfusion is at least partially caused by swollen fatty hepatocytes
and sinusoidal “capillarization” (Brock and Dorman, 2007) and
reduces oxygen and nutrient supply, contributing to the impaired
regenerative response (Yarbrough et al., 1991). (b) Steatosis
induces metabolic impairment, which aggravates post-resection
lipid overload. Preexisting steatosis is the result of the pathologic
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shift of lipid metabolism from utilization to storage due to
regulatory impairment. This impairment is not resolved after
PHx. Therefore, fat further accumulates instead of is being
utilized for regeneration. This extends lipotoxic exposure for
each single hepatocyte, thus augmenting cell death by, e.g., ROS
as described below. Hence, preexisting steatosis exacerbates the
reduction of the functional capacity of the liver after resection.
(c) Steatosis aggravates hepatic ischemia/reperfusion injury. The
increased metabolic supply and the impaired microcirculation in
the fatty liver “disrupt hepatic oxygen homeostasis,” ultimately
leading to local tissue hypoxia (Suzuki et al., 2014). This
preoperative condition makes fat-loaded hepatocytes particularly
vulnerable to ischemia/reperfusion due to an increased level of
oxidative stress. Thus, aberrant lipid accumulation in hepatocytes
sensitizes them against ischemia/reperfusion injury, which
occurs during the surgical procedure of partial liver resection and
transplantations (El-Badry et al., 2011; Kimura et al., 2016).

Taken together, flow restrictions due to excessive lipid
accumulation, hepatocyte impairment of lipid metabolism in
association with oxidative stress, and cell death impair liver
regeneration after resection in case of preexisting fatty liver
diseases. This is corroborated by clinical and experimental studies
indicating that preoperative metabolic interventions improve the
impaired regenerative response of the steatotic liver (Liu et al.,
2013). In mice fed with a high fat diet, which induced hepatic
steatosis, omega-3 polyunsaturated fatty acids given 1 h prior to
operation, ameliorated liver regeneration after both two thirds
and 86% partial liver resection by attenuating hepatic steatosis
and ischemia/reperfusion injury (Linecker et al., 2017).

In summary, preexisting liver diseases such as hepatic steatosis

increase the surgical risk for liver resection in multiple aspects.

Currently, this multi-dimensional risk is difficult to quantify

preoperatively for the individual patient. Therefore, tools are
needed to promote an integrated risk-assessment based on
different assessmentmodalities taking asmany aspects as possible
into consideration.

COMPUTATIONAL-AIDED SURGERY FOR

LIVER RESECTION

Current computational tools primarily support surgical planning
and intraoperative guidance based on images of the individual
patient anatomy, but do not include functional aspects (see
Figure 3). Surgical planning needs to address questions (Hansen
et al., 2014) related to (a) anatomic resectability, (b) safety margin
widths around lesions, and (c) resection strategy, but also to (d)
the functional capacity of the future remnant liver.

Medical Imaging Techniques for Liver

Surgery
A variety of imaging techniques is available for the detection
and differential diagnosis of liver pathologies, the assessment of
liver anatomy, and more lately also for the spatially resolved
evaluation of liver function. The armamentarium includes
ultrasonography, computed tomography (CT) and magnetic
resonance imaging (MRI) as well as nuclear medical imaging
modalities. The latter, for instance, play an important role in
detecting microvascular invasion of carcinoma preoperatively
using 18F fluorodeoxyglucose (FDG) PET-CT (Kobayashi et al.,
2016), but also allow to assess hepatic perfusion and excretory
function based on hepatobiliary sequence scintigraphy (Cieslak
et al., 2015, 2016) using different tracers, such as 99mTc
(technetium), 99mTc-galactosyl, or 99mTc-mebrofenin.

CT is a core technology for tumor staging and volumetric
evaluation of the liver. It enables precise visualization of the
tumor location with respect to the intrahepatic vascular anatomy.
In fact, the first computational planning tools considering the
individual hepatic anatomy were developed on the basis of CT
imaging (Radtke et al., 2007; Lehmann et al., 2008). Currently,
CT is the most common first-line imaging modality for staging
and monitoring of liver diseases (Pinato et al., 2017) as well
as postoperative risk prediction based on future remnant liver
volume (Vauthey et al., 2002; Truant et al., 2007). Advantages

FIGURE 3 | Preoperative surgical planning of today. Current surgical planning tools allow visualization of the individual liver volumes, hepatic vascular anatomy and the

corresponding portal venous and hepatic venous territories. Interactive tools allow to perform virtual liver resections and the (perfused) volume of the future liver

remnant can be calculated for the selected resection surface. The resection surface can be modified according to the width of the safety margin. The state of the art of

surgical planning for liver resection is based on the assumption that all liver volume is functionally equal without any heterogeneity. Such an approach does not take

functional aspects into account. The stack of CT images on the left was adapted from (Figure 1B in Chung et al., 2013), image license: CC-BY (https://

creativecommons.org/licenses/by/3.0/).
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of CT include low cost, high availability, and fast scan times.
With perfusion CT, functional assessment of the liver is made
possible by performing dynamic CT acquisitions following
intravenous administration of contrast agent to extract blood
supply characteristics into the tissue (Wang et al., 2013).

More recently, liver ultrasonography (US) and MRI have
gained ground with regard to their use in the detection,
characterization, and assessment of the response to treatment of
focal and diffuse liver diseases (van Beers et al., 2015).

Ultrasonography allows early diagnosis, treatment
management, and monitoring therapy outcome (Matos et al.,
2015). Recent developments in dynamic contrast-enhanced
US (Lencioni et al., 2007) and US-based elastography (Serai
et al., 2017; Wang et al., 2017) have facilitated dedicated and
specific liver pathology assessment. Contrast-enhanced US
promises great potential to evaluate tumor vascularization
in real time (Rübenthaler et al., 2017b) and has meanwhile
evolved to a minimally invasive imaging modality for evaluating
unclear liver lesions (Bartolotta et al., 2016; Rübenthaler et al.,
2017a). However, there are still several open issues concerning
standardization, operator dependency, 3D capabilities, and the
potential for quantitative perfusion. US-based elastography
allows predicting postoperative liver failure based on the
elasticity of the tissue (Shen et al., 2017).

MRI stands out for its superior soft tissue contrast and the
absence of ionizing radiation. MRI makes it possible to evaluate
different tissue properties, including fat content, restriction of
water diffusion, or increased T2-relaxation times, all of which
support lesion detection. Furthermore, in combination with a
liver-specific contrast agent such as gadoxetic acid (Gd-EOB-
DTPA), monitoring the perfusion dynamics and the uptake of
the agent allows functional assessment of the liver (Imbriaco
et al., 2017; Szklaruk et al., 2017; Zhou et al., 2017), thereby
improving the detection of liver carcinoma and classification
of microvascular invasion in hepatocellular carcinoma. Thus,
MRI is a versatile modality for creating detailed, anatomically
accurate models for computationally aided liver surgery (Oshiro
and Ohkohchi, 2017; Rutkowski et al., 2017). In addition,
it offers further potential in form of magnetic resonance
cholangiography or contrast enhanced magnetic resonance
angiography allowing comprehensive assessment of a patient’s
biliary and vascular status and possible complications (Boraschi
et al., 2008).

Localized magnetic resonance spectroscopy is a non-invasive
method to quantify the relative fat fractions of liver tissue,
thus providing an elegant means to assess preexisting steatosis
(Chiang et al., 2016; Di Martino et al., 2016; Krishan et al.,
2016; Kramer et al., 2017). It is often used as gold standard for
determining the proton density fat fraction with the potential
to replace liver biopsy and takes advantage of the so-called
chemical shift, which is based on magnetic field shielding by
the molecules’ electrons. The different chemical shifts between
hydrogen bound to water and lipids can also be utilized by fat-
water quantification imaging sequences (Hedderich et al., 2017;
Jhaveri et al., 2017), which offer more detailed insight into the
spatially inhomogeneous distribution of fat deposits in a steatotic
liver (Jang et al., 2017). This way, image-based MR methods

may overcome some of the limitations of magnetic resonance
spectroscopy associated with restricted spatial coverage and
subjective positioning of the volume of interest, which may
adversely affect accuracy.

As mentioned before, nuclear medicine also offers very
specific imaging methods to support liver surgery. Using the
radio-fluorinated carbohydrate (Mun, 2013) 2-[(18)F]fluoro-2-
deoxy-D-galactose and PET-CT detection to assess galactose
clearance, improved detection of hepatocellular carcinoma
has been demonstrated (Horsager et al., 2016). For patients
undergoing a major resection, risk assessment and prediction
of remnant and future liver function based on hepatobiliary
scintigraphy using 99mTc-mebrofenin has been shown to provide
better sensitivity, specificity, and positive/negative prediction
values compared to conventional remnant liver volume-based
risk assessments (de Graaf et al., 2010; Cieslak et al., 2016).
Though this method is currently used only in explorative studies
at a small number of sites, combining 99mTc scintigraphy with the
liver-specific functionalization agent mebrofenin appears fairly
promising for spatially resolved, accurate functional assessment
of the liver.

Taken together, a diversity of imaging modalities and methods
is currently available which, however, are not evenly spread
and readily available at all centers for daily routine yet. While
basic CT, US, and MRI are ubiquitously performed, particularly
the more recently developed methods in magnetic resonance
imaging and spectroscopy, contrast-enhanced US and nuclear
medicine, despite being very promising, are so far largely limited
to specialized centers.

Current Virtual Resection Tools
Presently, most computational models supporting liver resection
planning are based on individual patient anatomy (see Figure 3),
in particular the spatial relationship between tumor location and
hepatic vascular systems (e.g., Fishman et al., 1996; Marescaux
et al., 1998; Lang et al., 2005). Accurate visualization of this
spatial relationship is important for the surgical success of a liver
resection (Saito et al., 2005), and can be achieved by 3D imaging
and appropriate visualization techniques (e.g., Fishman et al.,
1996).

More advanced approaches support the planning of the
resection by virtual resection tools. HepaVision (now MeVis
LiverAnalyzer; Schenk et al., 1999) and LiverPlanner (Reitinger
et al., 2006) provide a patient-specific resection planning
proposal and highlight different safety margins sizes and affected
vascular structures as well as the remaining total and perfused
liver volume. Thus, the surgeon can adjust the desired safety
margin, which influences the resection proposal. Such planning
software is implemented in clinical routine for extended liver
resection planning.

Recent developments integrate additional biophysical
properties of the liver. Liversim (Oshiro et al., 2015) is a
novel virtual hepatectomy simulation software tool, which
additionally captures motion and deformation of the liver
caused by the intervention. A soft-tissue deformation model
including hyperelasticity, porosity, and viscosity of hepatic tissue
allows simulating realistic liver deformations and intrahepatic
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displacements in real time for surgery training (Marchesseau
et al., 2010) and planning. Modernmedical imaging coupled with
computational fluid dynamics (CFD) modeling also facilitates
predicting patient-specific alterations in hepatic hemodynamics
in response to partial hepatectomy (Rutkowski et al., 2017).

Volume-Based Risk Assessment in Clinical

Routine
Optimizing the surgical planning phase by computer-assisted risk
analysis can enhance surgery success. In case of hepatic cancer,
liver resections can be supported by a preoperative, computer-
based calculation of the remnant liver volume (Lang et al.,
2005). Hepatic volume estimation by a surgical planning software
tool revealed enhanced accuracy compared to the radiologist’s
volume estimations based on planimetry of a single CT/MR slice
(DuBray et al., 2011). The ratio of pre- and postoperative liver
tissue volumes, as a rough approximation of postoperative liver
function, has been included in virtual surgical planning systems
(e.g., Glombitza et al., 1999a,b; Simpson et al., 2014; Hallet et al.,
2015; Oshiro and Ohkohchi, 2017).

The aim of liver tumor resection is the complete removal
of the cancer. The surgical planning phase encompasses the
determination of an optimal safety margin width around the
tumor locations (Vandeweyer et al., 2009). Here, a trade-off
exists between adequate remnant liver function and sufficient
safety margin width. Some computer-based resection planning
tools that link visualization of liver structures with an additional
volume-margin function support precise operation planning
(Glombitza et al., 1999b; Preim et al., 2002; Hansen et al.,
2009), thereby enhancing the awareness of the surgical risk and
supporting the decision for a smaller resection volume compared
to surgical planning based only on conventional 2D/3D viewer
application (Hansen et al., 2014).

The Challenge of Function-Based Risk

Assessment
Current surgical planning tools focus on the estimation of liver
volume as a surrogate predictor of remnant liver function. The
underlying assumption is that all hepatocytes contribute equally
to liver function. This, however, neglects the spatial heterogeneity
of liver metabolism and perfusion, potential alterations of hepatic
function in the presence of a liver disease, or individual variations
inmetabolic function due to genetic variants, or as a consequence
of lifestyle.

Consequently, accurate assessment of the preoperative risk
requires improved evaluation of the individual functional
capacity and prediction of this capacity for the future liver
remnant. Such an improved assessment is essential for the
ultimate goal of prevention and early detection of postoperative
liver failure (Daylami et al., 2016). The measured changes in
metabolic function associated with liver surgery and disease
depends on the substance used in the function test. However, as
outlined above, the liver is a multifunctional organ, for which
a single functional assay only provides information about one
specific aspect of hepatic function.

Only few diagnostic tools are currently available formeasuring
metabolic function of the liver. Information about the metabolic
functional capacity can be obtained by means of dynamic
quantitative liver function tests, which measure the clearance of
selected substances specifically metabolized by the liver such as,
e.g., the clearance of caffeine (Fuhr et al., 1996), indocyanine
green (De Gasperi et al., 2016), or methacetin (LiMAx test, Jara
et al., 2015). The metabolic clearance of a selected compound
is hereby used to approximate global metabolic liver function
as a cumulative effect. Hence, it is necessary to understand
the underlying metabolism of the relevant substances and its
alteration due to disease and surgery.

This approach cannot provide information about spatial
heterogeneity such as, e.g., inhomogeneously distributed steatosis
throughout the organ resulting in areas with higher and
lower functional activity. Furthermore, such approaches cannot
discriminate between the influences of cellular metabolic
activity and altered perfusion or liver size after surgery.
Here, novel methods are needed to accurately reflect severity,
distribution, and composition of fat accumulation and, even
more importantly, the resulting spatially resolved functional
impairment.

A comprehensive function-based risk assessment requires
consideration of all relevant clinical information. Such an
assessment needs to integrate information about resection
volume/amount, preoperative metabolic impairment in case of
preexisting liver disease, intraoperative damage to the future liver
remnant as well as metabolic and regenerative capacity of the
future liver remnant. To achieve this, multi-scale computational
approaches are needed for integrating all relevant processes
into one comprehensive risk prediction. Currently, however,
only some of the required features are already available (see
section below on “Computational Modeling of Liver Diseases
Relevant for Surgeries”), but not within one comprehensive risk
assessment tool.

One first attempt to extend surgical planning beyond mere
visualization and volume estimation has been provided recently
by a model, which simulates postoperative liver regeneration in
a patient-specific manner (Yamamoto et al., 2016). This model
provides predictions of the duration of the postoperative recovery
period and possible complications.

COMPUTATIONAL LIVER MODELS

RELEVANT FOR LIVER SURGERIES

Regulation and maintenance of liver function involves complex
biological processes spanning multiple spatial and temporal
scales. Spatial scales range from the intracellular level up to the
level of the organism, whereas temporal scales have to reflect
time periods of seconds to years (e.g., metabolism in seconds
to days, regeneration over weeks, or disease progression over
months). Various biological processes play a role for hepatic
function in liver surgery, particularly important are the hepatic
stress response, metabolic adaptations, and regeneration.

Thus, multi-scale-oriented modeling approaches are
especially suited to provide amore comprehensive understanding
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of hepatic processes and mechanisms. Multi-scale-oriented
modeling consists of developing “simple” separate models
of certain sub-aspects or scales of the function of interest.
Subsequent model integration links input and output variables
of these separate models and leads to a more comprehensive
combined model, possibly spanning multiple scales. This so-
called hierarchical modeling approach (Cedersund and Strålfors,
2009; Nyman et al., 2011) allows adapting the model resolution
to the corresponding research question (Kirschner et al., 2014).
Current computational models can simulate a variety of selected
liver functions, see Tables 1–3 and reviews (Bogle et al., 2012;
Hetherington et al., 2012; Sumner et al., 2012; Fisher et al., 2014;
Petta et al., 2016).

The following sections present selected models/modeling
approaches for addressing liver functions, which might be
essential for future multi-scale models supporting liver resection:
(a) the hepatic stress response following physical damage, (b)
the metabolic pathways affected by surgery, as well as (c) the
regeneration of liver volume and function recovery.

TABLE 1 | Selection of existing computational models to address the stress

response with potential relevance for surgical planning, sorted according to spatial

scale (cell to organism).

Scale Modeling Approaches

Cell Intracellular signaling to adjust hepatic function to external conditions,

e.g.,

• Dietary composition—ODE (Woller et al., 2016)

• Reactive oxygen species production—ODE (Selivanov et al.,

2009, 2012; Gauthier et al., 2013; Smith and Shanley, 2013;

Markevich and Hoek, 2015)

• Hepatocyte growth factor network—ODE (D’Alessandro et al.,

2015b)

Local inflammatory reaction due to tissue damage (i.e., activation of

the immune response)

• IL-1 and IL-6 signaling network—Boolean network (Ryll et al.,

2011)

• Hepatic stellate cell activation (signaling)—PetriNet

(Kuttippurathu et al., 2014)

Lobule Inter- and intracellular interactions

• To trigger liver regeneration—ODE (Cook et al., 2015)

• Involved in signal propagation—ODE (Verma et al., 2016)

Establishment of zonation patterns

• Wnt/ß signaling—ODE (Kogan et al., 2012; Benary et al., 2013)

• Hedgehog signaling— fuzzy-logic-based (Schmidt-Heck et al.,

2015)

Organ Simulating patient’s immune response (immune cells, blood

concentrations of various signal molecules, blood pressure, tissue

damage)

• To pathogen infection—ODE (Clermont et al., 2004) (in silico

clinical trials to predict outcome of sepsis)

• To surgical trauma and hemorrhagic shock—ODE (Chow et al.,

2005; Lagoa et al., 2006)

Organism (none)

Multi-Scale

Integration

(none)

ODE, Ordinary differential equations.

Stress Response Induced by Physical

Damage
Resection induces a hepatic stress response, which involves
a modulation of signaling pathways and gene expressions.
Understanding the signaling network of the liver and how
the signaling affects metabolism, inflammatory processes, and
regeneration is important to assess the overall hepatic stress
response to resection. Signaling pathways are interconnected in
a non-linear fashion, involving complex interactions as well as
feedforward and feedback loops (D’Alessandro et al., 2015a). An
intuitive understanding of the signaling network is impossible
due to this intricate dynamic behavior. Here, mathematical
modeling can be used to disentangle the complex crosstalk
between signaling pathways. Based on this knowledge, further
mathematical models can be developed, which connect the
degree of surgical injury with liver function, inflammatory
response, and regenerative capacity. Such models enable
predictions of the hepatic response to surgical intervention and
possible postoperative complications in regard to an impaired
metabolism or regeneration based on the degree and/or location
of surgical damage. Here, understanding the relation between
remnant liver volume, hepatic metabolic function, and the local
immune response is important to optimize liver resections
planning (Schindl et al., 2005).

In the following, we provide a short overview of existing
computational models of hepatic signaling pathways to illustrate
the current state of knowledge. Then, we focus on ROS as
important signaling molecules (Dickinson and Chang, 2011;
Ray et al., 2012) and as a source of cellular damage impairing
hepatic metabolism and activating inflammatory processes after
surgical injury. Finally, we take a closer look at current models
considering the inflammatory response and the activation of the
innate immune system. A summary of selected models available
to address the hepatic stress response, which might be relevant
for surgical planning, is given in Table 1.

Models of Signaling Pathways
A variety of mathematical models of hepatic signaling processes
were developed, mostly using ordinary differential equations
(ODEs). Aspects covered by such models include, e.g., the origin
of zonation patterning (e.g., Wnt/β-catenin signaling pathway,
Kogan et al., 2012; Benary et al., 2013), the propagation of calcium
waves at the lobular scale involved in the regulation of diverse
hepatic functions (Verma et al., 2016), or the link between the
circadian clock and hepatic metabolism (Woller et al., 2016).
These models elucidate important features in the regulation and
signaling of hepatic function. One example is a fuzzy-logic based
model of the GLI-code, the set of three transcription factors
linking hedgehog signaling with regulation of metabolic zonation
as well as lipid and drug metabolism in hepatocytes (Schmidt-
Heck et al., 2015). This relation was also used to explain the link
between hedgehog signaling and steatosis (Matz-Soja et al., 2016).

Mathematical models of signaling pathways relevant for liver
surgery are necessary to predict, how the liver responds to
interventions. One promising approach is the hybrid modeling
strategy (D’Alessandro et al., 2015b), which links interaction
graph modeling of the signaling network with ODEs, thus
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TABLE 2 | Selection of existing computational models addressing metabolism with potential relevance for surgical planning, sorted according to spatial scale (cell to

organism).

Scale Modeling Approaches

Cell Metabolization of drugs

• Toxicity and timescale analysis, acetaminophen detoxification—ODE (Reddyhoff et al., 2015; Sluka et al., 2016)

Glucose metabolism

• Glucose homeostasis and hormonal regulation—ODE (König and Holzhütter, 2012; König et al., 2012)

Lipid metabolism—ODE

• Steatosis development (Schleicher et al., 2014)

• Insulin resistance & high intake diets (Ashworth W. et al., 2016)

• Beta-oxidation (van Eunen et al., 2013)

Genome scale metabolism—FBA

• Flux predictions under various conditions (Gille et al., 2010; Jerby et al., 2010; Agren et al., 2014; Naik et al., 2014)

• Gain and loss of enzymes (Pagliarini et al., 2016)

• Integration of transcriptomics & metabolic data (Hyötyläinen et al., 2016)

• Alterations of pathways in NAFLD (Mardinoglu et al., 2014)

Lobule Perfusion

• Resolved hepatic microvascular system—PDE (Rani et al., 2006)

• Anisotropic permeability—multiphase-PDE (Ricken et al., 2010, 2013)

• Role of vascular septa—PDE (Debbaut et al., 2014)

• Multilevel approach CFD—PDE (Peeters et al., 2015)

• CFD boundary conditions—PDE (Aramburu et al., 2016)

Perfusion + glucose metabolism

• Glycogen patterns & zonation—multiphase-PDE + ODE (Ricken et al., 2015)

• Zonated glucose metabolism—ODE (Chalhoub et al., 2007; Ashworth W. B. et al., 2016)

Perfusion + lipid metabolism

• Zonated lipid metabolism—ODE (Schleicher et al., 2014)

• Zonated damage & steatosis—ODE (Ashworth W. et al., 2016)

Perfusion + drug clearance

• Sinusoidal unit/representative sinusoid—PDE+ODE (Schwen et al., 2015)

Perfusion + ammonia detoxification

• CCl4 damage—AB+ODE (Schliess et al., 2014; Ghallab et al., 2016)

Organ Perfusion + Metabolization

• Well-stirred compartments for acetaminophen detoxification (Reddyhoff et al., 2015)—ODE

• Spatially resolved porous medium (Schwen et al., 2014)—PDE+ODE

Organism Pharmacokinetics

• Physiologically based whole-body PK, coupling GEMs to PK/PD—FBA+ODE (Bordbar et al., 2011; Krauss et al., 2012; Naik et al., 2014)

• Lumped compartment PK models, e.g. acetaminophen liver model in PK/PD—ODE (Geenen et al., 2013)

• With inter-individual differences (Krauss et al., 2013)—parameter adaption

Multi-Scale Integration • Cellular metabolic network model integrated in whole-body PBPK model (Krauss et al., 2012)—FBA+ODE

• Representative sinusoid: contains cells, contributes to organ, embedded in organism—PDE+ODE (Schwen et al., 2015)

• Glucose regulation (sinusoidal models & PK/PD)—ODE (Ashworth W. B. et al., 2016)

• Acetaminophen detoxification on multiple scales—ODE (Sluka et al., 2016)

AB, Agent-based; CFD, computational fluid dynamics; FBA, flux-balance analysis; NAFLD, non-alcoholic fatty liver disease; ODE, ordinary differential equations; PDE, partial differential

equations; PK/PD, pharmacokinetic/pharmacodynamic modeling.

permitting time-dependent simulations. In a first step, the
minimal model structure of a signaling network is identified by
interaction graphs. Then, subsequent analysis of ODE models
of this minimal model structure allows the identification of
the best model version. Such a modeling strategy helps to
disentangle the intracellular signaling network structure and to
predict the outcome of disturbances. The strategy was applied
to the hepatocyte growth factor-induced signaling network and
allows the prediction of the network response to interventions.
An accurate and precise prediction of the response of a

relevant signaling network to liver resection would allow better
assessment of, e.g., course of regeneration, and thus help to
optimize surgical procedures or even to decide for or against an
operation.

Models of Reactive Oxygen Species
Reactive oxygen species play a prominent role in the signaling
network being active after liver resection, and influence, for
example, the JNK pathway (Seki et al., 2012). During the first
hours after liver resection, an increased level of ROSwas observed
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TABLE 3 | Selection of existing computational models addressing regeneration

processes with potential relevance for surgical planning, sorted according to

spatial scale (cell to organism).

Scale Modeling Approaches

Cell Proliferation and its regulation

• Identification of molecular mechanisms (Zhou et al.,

2014)—correlation network

Lobule Growth and remodeling

• Continuum mechanical models of soft tissue—multiphase-

PDE (Ricken and Bluhm, 2009)

• Mixture theory—multiphase-PDE (Hum2002, BenGor2005,

AmbPetRicStyCia2016)

• Growth of biological tissues—multiphase-PDE (Ateshian and

Ricken, 2010)

• Onephasic—multiphase-PDE (Menzel and Kuhl, 2012)

• Biphasic—multiphase-PDE (Ricken et al., 2015)

• Triphasic—multiphase-PDE (Ricken et al., 2007; Ricken and

Bluhm, 2010; Waschinsky et al., 2016)

Regulation of regeneration

• After CCl4 intoxication—agent-based+ODE (Hoehme et al.,

2010)

• By perfusion or metabolic load in model sinusoid (1D

hepatocyte layer)—IPS + ODE (Hohmann et al., 2014)

Organ Tissue growth

• Continuum mechanics—PDE (Garikipati et al., 2004)

Volume recovery

• Liver size—ODE (Shestopaloff and Sbalzarini, 2014)

• Liver size taking into account extrahepatic parameters (such

as BMI)—ODE (Yamamoto et al., 2016)

Regulation of growth

• Molecular species and number/growth of liver cells—ODE

(Furchtgott et al., 2009; Periwal et al., 2014; Cook et al., 2015)

• Role of bone marrow cell migration in damaged tissue—ODE

(Pedone et al., 2017)

Organism (none)

Multi-Scale

Integration

• Cells in lobule—AB+ODE (Hoehme et al., 2010)

• Cells at sinusoid—IPS+ODE (Hohmann et al., 2014)

AB, Agent-based; IPS, interacting particle system; ODE, ordinary differential equations;

PDE, partial differential equations.

(Guerrieri et al., 1999; Lee et al., 1999). This high ROS level is
involved in the initiation of regenerative (Fausto, 2000; Tormos
et al., 2013) and inflammatory processes (Bhogal et al., 2010; Seki
et al., 2012) in response to the injury. Moreover, these oxygen-
based radicals are toxic and lead to oxidative stress, which can
result in vast cell damage and decreased metabolic function.

Therefore, computational models focusing on ROS linked to
relevant signaling pathways may be helpful in understanding
(and predicting) the hepatic surgical stress response. Based on
ODEs, several computational models have considered various
aspects of the production and degradation of ROS (e.g.,
Selivanov et al., 2009, 2012; Gauthier et al., 2013; Markevich
and Hoek, 2015). Furthermore, a mathematical model simulating
the complex regulation of insulin signaling by ROS yielded
insights into both protective and detrimental effects of ROS
(Smith and Shanley, 2013). The comprehensive overview by
Pereira et al. (2016) of the intracellular ROS crosstalk, including

the previous models, provides a systems-level examination of
the complexities of ROS as intracellular signal molecule and
toxic compound. However, mathematical models describing
ROS signaling pathways relevant for liver surgery are still
missing and no specific model of the processes leading to
ischemia/reperfusion injury in the liver exists.

Models of Inflammation and the Immune Response
The stress response of the liver involves also a local inflammatory
reaction. The signaling process starts with the release of so-called
damage-associated molecular patterns (Zhang et al., 2010) from
stressed hepatocytes. These signals activate the production of
pro-inflammatory cytokines in Kupffer cells, which initiate the
recruitment of leukocyte subsets to the injured site (van Golen
et al., 2012). Immediately after surgery, the concentration of
cytokines provides some hint of the degree of tissue damage
(Badia et al., 1998; Strey et al., 2011; Friedman et al., 2012).
Genome-wide gene expression measures were used to fit and
refine a literature-based Boolean model of interleukin 1 and
interleukin 6 signaling as a representation of hepatocellular
inflammation and proliferation (Ryll et al., 2011). Novel relations
between proliferation-associated processes were identified in
this study, which provided better understanding of the stress
response after surgery. In addition, the release of interleukin
6 and tumor necrosis factor alpha by activated Kupffer cells
triggered the cell cycle entry of hepatocytes and therefore initiates
liver regeneration (van Mierlo et al., 2016). An ODE model
to simulate the cytokine signaling and the increased metabolic
demand as triggers for regeneration has been established (Cook
et al., 2015). Depending on signaling patterns, the model showed
the existence of different modes of regeneration after resection
and emphasized the importance of Kupffer cell cytokine signaling
for the regenerative process.

Computational models can help to elucidate important
links between hepatic function and the immune response.
Postoperative hepatic dysfunction augments the probability to
acquire an infection (Schindl et al., 2005). Thus, quantifying
the relationship between liver volume, hepatic function, and
the immune response is of major importance to enhance the
safety of liver resections (Schindl et al., 2005). For example,
the Petri net approach was used to clarify the timing and
regulation of activation of hepatic stellate cells (Kuttippurathu
et al., 2014), an important cell type for the modulation of the
innate immune response. Relevant signaling pathways, such as
NF-κB and STAT3, were coupled to the regulation of microRNAs
and the model elucidated the driving regulatory factors in the
process of stellate cell activation. Another modeling framework
used a set of ODEs to simulate key inflammatory processes
(see Clermont et al., 2004; Chow et al., 2005 for model details)
initiated by surgical trauma and hemorrhagic shock to predict
global damage and dysfunction as an approximation to patient
survival (Lagoa et al., 2006).

Perspective: Stress Response Models in

Computational Liver Surgery
In conclusion, computational models coupling signaling and the
innate immune response already exist. Their usage has greatly
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improved the understanding of the immediate hepatic stress
response to physical damage. However, mathematical models
linking, for example, the postoperative metabolic impairment
with ROS-induced cellular damage are still missing. The cell
damage caused by an increased level of ROS after an operation
affects the function of the remnant liver and, therefore, is
relevant for the risk assessment of postoperative liver failure.
Future computer-based predictions of the remnant liver function
should take into account the preoperative metabolic capacity
of the liver as well as the possible postoperative impairment
caused by oxidative stress. Also, computationally supported
identification of patients at specific risks for developing sepsis
or acquiring a serious infection after the intervention is still
lacking.

The challenge for modelers in the field of hepatic signaling is
now to shift the focus to a surgical perspective. Computational
models are needed that incorporate the knowledge of signaling
networks and the hepatic stress response, thus linking the
degree of surgically caused tissue damage to impairments in
metabolism and to the activation of the inflammatory response.
This would enable a more precise computer-supported risk
assessment before resection. It is conceivable that such a tool
predicts the surgical outcome in response to the expected
surgical tissue damage and guides the decision of the surgeon
for or against a resection and for postoperative therapy
strategy.

Metabolism
Removal of functional liver tissue exceeding a critical cut-off
leads to a compromised metabolic liver function and ultimately
to liver failure. For accurate and quantitative evaluation of
the remnant functional capacity, the metabolic function of the
remaining volume must be determined. This function depends
on alterations of metabolism, perfusion, and morphology in the
acute phase after surgical intervention and during regeneration.
Computational models of hepatic metabolism can provide a
better understanding of the functional capacity of the healthy
liver (for an overview see also Cvitanović et al., 2017) and the
metabolic alterations occurring with disease, after liver resection,
and during regeneration.

In the following, we provide an overview on computational
models describing metabolic liver function with a special focus
on models incorporating multiple scales and coupling liver
morphology and perfusion to metabolism, followed by an
outlook on the application of such models to liver surgery. A
summary of selected models available to address the hepatic
metabolism, which might be relevant for surgical planning, is
given in Table 2.

Models on the Cellular Scale
A comprehensive view of the various metabolic capabilities of
the liver can be obtained via genome-scale metabolic models
(GEMs) to analyze the flow of metabolites through hepatic
metabolism based on steady state approaches. The most popular
approach is Flux Balance Analysis (Orth et al., 2010). Multiple
GEMs of the liver have been published (Gille et al., 2010;
Jerby et al., 2010; Agren et al., 2014; Naik et al., 2014)

and were applied to study central metabolic functions of
the liver like the NH+

4 detoxification (Gille et al., 2010), to
predict metabolic fluxes across different hormonal and dietary
conditions, or to simulate alterations as a consequence of gain
or loss of function of single liver enzymes (Pagliarini et al.,
2016). Such GEMs have proven useful as templates for the
integration of omics data to understand the genotype-phenotype
relationship in a mechanistic manner (Agren et al., 2014).
In recent years, GEMs have been applied to stratify HCC
patients (Björnson et al., 2015), to chart metabolic activity and
functionality in non-alcoholic fatty liver disease (NAFLD) by
integrating metabolic flux data and global transcriptomic data
from human liver biopsies (Hyötyläinen et al., 2016), or to reveal
alterations of metabolic pathways in NAFLD (Mardinoglu et al.,
2014).

To date, GEMs have not been applied in the context
of liver surgery, but coupling of omics data to analyse the
global metabolic changes following liver resection and during
regeneration could be an important next step.

An alternative approach is the use of kinetic pathway models
based on ODEs. This approach focusses on specific metabolic
functions by means of detailed mathematical description
of the involved cellular processes and molecular players.
Computational models of central liver functions have been
developed, e.g., for the hepatic glucose homeostasis (König
et al., 2012) providing insights into the switch of glucose
pathways and the role of hormonal regulation. Additional
examples are a minimal model of lipid metabolism in steatosis
development (Schleicher et al., 2014) and a computational model
of both hepatic glucose and lipid metabolism (Ashworth W. B.
et al., 2016; Ashworth W. et al., 2016) yielding insight in the
development of steatosis. Moreover, one possible mechanism
involved in hepatic lipid deficiencies was elucidated by a detailed
kinetic model of fatty acid beta-oxidation, in which an overload
of substrate slowed down lipid degradation (van Eunen et al.,
2013). Multiple pathways models for the detoxification of
individual drugs have been published, e.g., for acetaminophen
(Reddyhoff et al., 2015).

A more data-driven approach to metabolic function is to
apply genome-wide omics data for phenomenological modeling
of liver-related diseases. A large number of such studies exists,
most of them aiming to identify key molecules, biological
functions, and pathways relevant for the disease by differential
omics analysis or via correlation-based networks and subsequent
topological analysis. Omics-based models have been applied
in the context of liver-related surgery, such as, e.g., in the
analysis of pathobiochemical signatures of cholestatic liver
disease after bile duct ligation in mice (Abshagen et al., 2015).
Quantitative metabolomics was potentially useful to diagnose
early graft dysfunction in liver transplantation (Serkova et al.,
2007). Metabolomics data in orthotopic liver transplantation
by consecutive liver biopsies revealed hundreds of significant
metabolic differences between pre- and post-reperfusion grafts,
among others increased urea production and bile acid synthesis
(Hrydziuszko et al., 2010). Omics-based models will be an
essential tool in understanding the alterations in liver functional
capacity after resection and during regeneration.
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Models on the Sinusoidal and Lobular Scale
Kinetic pathway models, GEMs and omics approaches provide
important information about metabolic functions and their
alteration with disease. However, these approaches are limited,
because they neither include tissue architecture nor perfusion,
two important determinants of liver function especially in the
context of liver surgery. Hepatic metabolism involves multiple
spatial scales, ranging from metabolic pathways on the cellular
scale via lobular zonation of metabolic properties and gradients
of relevant compounds to metabolic heterogeneity on the
organ level. Various multi-scale modeling approaches have been
proposed (Diaz Ochoa et al., 2012; Kuepfer et al., 2012; Sluka
et al., 2016) to represent the metabolism of the entire liver and
especially the spatial heterogeneity of metabolic function on the
lobule and organ scales.

One common approach of coupling metabolism to perfusion
is treating the 1D porto-central axis of the sinusoid, consisting of
a sinusoid surrounded by hepatocytes, as the repeating unit of the
liver. SuchODE-based computationalmodels were used tomodel
the zonated damage and steatosis in NAFLD (AshworthW. et al.,
2016) or to analyze glucose homeostasis (Chalhoub et al., 2007;
Ashworth W. B. et al., 2016), lipid metabolism (Schleicher et al.,
2014, 2017), hepatic glucose and lipid metabolism (Chalhoub
et al., 2007), the detoxification of xenobiotics like acetaminophen
(Sluka et al., 2016), or effects of zonated damage on drug
metabolism (Schwen et al., 2015, 2016). These sinusoidal unit
models can be used as building blocks of whole-liver and whole-
body models (for details, cf. Schwen et al., 2015; Sluka et al.,
2016).

On the lobule-scale, metabolic pathway models have been
integrated with agent-based models of perfusion and ammonia
metabolism (Toepfer et al., 2007; Bartl et al., 2010, 2015; Schliess
et al., 2014; Ghallab et al., 2016), contributing to a better
understanding of how liver function depends on liver structure.
In the agent-based approach, individual hepatocytes act as agents
with intrinsic metabolism and behavior (like movement and
proliferation). Such mathematical models have been applied to
investigate the effect of liver damage on metabolic function after
CCl4-induced necrosis (Schliess et al., 2014; Ghallab et al., 2016).

Alternatively, the liver lobule is modeled using homogenized
continuum mechanical multiphase approaches, e.g., via the
theory of porous media (Ehlers, 2002; Ricken et al., 2010,
2013, 2015; De Boer, 2012). Embedding a coupled system of
ODEs in a porous medium model results in a spatio-temporal
description of perfusion andmetabolism. This approachwas used
to evaluate an anisotropic relation for the permeability of the
liver lobule, the effect of outflow obstruction on liver remodeling
and hepatic perfusion (Ricken et al., 2014), or the importance
of vascular septa for homogeneous perfusion (Debbaut et al.,
2014). Cellular glucose metabolism was coupled to the blood
flow through a porous medium leading to an ODE/PDE (partial
differential equations) model that helped to better understand
glucose homeostasis on the lobule scale (Ricken et al., 2015).

An alternative approach for modeling perfusion is to apply
Computational Fluid Dynamics (CFD) using detailed perfusion
models in vessel geometries. CFD was applied to the liver to
study blood flow in a segment of a lobule consisting of a resolved

hepatic microvascular system (Rani et al., 2006). CFD was also
used to simulate hemodynamic changes of the macro-circulation
in the cirrhotic liver, a multi-scale computational model to
simulate perfusion in the human liver on the organ and lobule
scale (Peeters et al., 2015), and in liver cancer arterial perfusion
models (Aramburu et al., 2016). A 3D multi-scale model of
biliary fluid dynamics in the mouse liver lobule predicted drug-
induced alterations of bile flow, and demonstrated that bile flow
is driven by the osmotic effects of bile secretion and bile canaliculi
contractility (Meyer et al., 2017). Until now the integration of
metabolic models with CFD and porous medium models is very
limited, and application in the context of liver surgery is missing.

Models on the Whole-Liver and Whole-Body Scale
Sinusoid and lobule-scale models allow to represent the entire
liver by applying appropriate scaling in a simplified way. Such
models are based on the assumption that the organ does not
contribute additional heterogeneity (e.g., in Sluka et al., 2016),
or use multiple instances of such models “in parallel” to capture
organ-scale heterogeneity (e.g., in Schwen et al., 2015). The organ
scale has also been addressed directly via an ODE/PDE model
of perfusion in the liver vessel tree and drug metabolization
(Schwen et al., 2014). Tissue and whole-liver models allow to
incorporate metabolic changes due to damage and resection by
suitable adaptation of model parameters. With such approaches,
effects of necrosis can be simulated on the lobule scale (Schliess
et al., 2014) or changes in drug clearance can be predicted in
steatotic livers (Schwen et al., 2014).

The liver in the context of the whole body is typically
modeled using pharmacokinetic/pharmacodynamic (PK/PD)
models (Jones and Rowland-Yeo, 2013) with a model spectrum
ranging from detailed physiologically based models (Willmann
et al., 2012) to strongly lumped models (Pilari and Huisinga,
2010). Many simplified models of various drugs being detoxified
by the liver exist, often modeled via simple one-step reactions
or a few reactions in the context of such PK/PD models
(e.g., glutathione and acetaminophen metabolism; Geenen et al.,
2013). For the liver, GEMs have been integrated into PK/PD
models (Bordbar et al., 2011; Krauss et al., 2012; Naik et al.,
2014) predicting, e.g., paracetamol clearance (Krauss et al., 2012).
Examples of the coupling of sinusoidal metabolic models to
PK/PD models are the analysis of glucose regulation (Ashworth
W. B. et al., 2016) or acetaminophen detoxification (Sluka et al.,
2016).

Perspective: Metabolic Models in Computational

Liver Surgery
Computational models of metabolic functions of the liver have
been developed, many of them based on multi-scale approaches
and integration of perfusion and tissue architecture. However, the
application of such models to liver surgery, especially on how the
metabolic function is changing after resection and subsequent
regeneration, is still in its infancy. By coupling metabolic
models to models capable of describing the effects of perfusion
and morphology on liver function, a holistic understanding of
changes after liver surgery on a local (tissue) and global (organ)
scale could be achieved.
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Surgical planning usingmodel-based predictions of functional
liver volumes could substantially improve clinical outcome.
Importantly, computational models of hepatic metabolism could
provide insights into the heterogenous distribution of metabolic
liver functions like the heterogeneity of fat in NAFLD and its
consequences for the regional functional capacity. Multi-scale
metabolic models of NAFLD/steatosis would allow to calculate
hepatic functional capacity based on given fat content, tissue
properties like stiffness and elasticity, and perfusion. Thereby,
they would provide important insights into surgical planning.
Multi-scale computational models of metabolic functions may
also improve evaluation of quantitative liver function tests, like
galactose elimination capacity or LiMAx. Integrated with surgical
planning tools, computational models of such liver function tests
could provide a more accurate prediction of metabolic function
after resection and during regeneration.

Integrating omics data with metabolic models for predicting
changes after liver surgery seems a promising future direction.
Personalizing generic models based on individual omics data,
a personalized prediction of metabolic liver function and its
alteration after resection could be achieved. This personalization
as well as the stratification of patients into subgroups has already
been demonstrated (Björnson et al., 2015; Hyötyläinen et al.,
2016). The use of omics data, however, is not yet part of clinical
routine, but could be important for the prediction of the remnant
liver function and thereby surgical planning in the future. For
individual function predictions, computational models could
be parametrized with a subset of omics data relevant for the
respective model.

Regeneration
The liver is capable of regenerating both volume and function
after physical damage induced by medical interventions. This
includes damage at the lobule scale induced by intoxication with
CCl4 (Weber et al., 2003) or damage at the organ scale due
to surgical interventions (Riehle et al., 2011), as well as spatial
and functional graft adaptation after transplantation (Taki-Eldin
et al., 2012). Once the liver is damaged, loss of hepatic mass
leads to an increase in portal blood flow per unit mass followed
by metabolic overload in the remaining tissue and an increase
in diverse signaling molecules including IL-6, TNFα, HGF, and
EGF (Michalopoulos, 2010). These signaling molecules, as well
as Hedgehog signaling (Matz-Soja, 2017), jointly orchestrate
the tightly controlled process of hepatocellular proliferation.
This process is composed of three phases: priming (initiation),
proliferation, and termination (Fausto, 2000). Mathematical
modeling of the involved biological processes in the different
phases of regeneration has the potential to aid in understanding
the underlying molecular mechanisms.

In this section, we review existing phenomenological models
of biological tissue growth, followed by mechanistic models,
which include relations and interactions between the involved
biological processes specifically during liver regeneration. A
summary of selected models available to address regenerative
processes in the liver, which might be relevant for surgical
planning, is given in Table 3.

Phenomenological Models of Liver Volume

Regeneration
Different types of models have been developed to simulate
biological growth (see, e.g., the reviews Ambrosi et al., 2011;
Jones and Chapman, 2012) and its regulation (Chara et al.,
2014), in particular continuum mechanics models of growth
(Skalak et al., 1982; Lubarda and Hoger, 2002), for soft tissues
(Rodriguez et al., 1994; Garikipati et al., 2004; Himpel et al.,
2005), or tumors (Greenspan, 1976). Such models are able to
calculate the mechanically induced volumetric growth of tissue
without explicitly resolving the underlying biological structures
and mechanisms.

A model for volumetric growth of organs including
quantitative characteristics and geometric shape of the liver
(Shestopaloff and Sbalzarini, 2014) was used to quantitatively
estimate patient-specific optimal size and shape of liver
transplants. Volume recovery computed from 3D image data,
such as shown in Haga et al. (2008), is a typical way of quantifying
regeneration and can be used to either calibrate or validate the
models and their predictions.

A model predicting postoperative liver volume regeneration
from individual quantitative clinical data was recently developed
(Yamamoto et al., 2016). This phenomenological model
predicted, whether liver size would recover or remain irreversibly
reduced, based on preoperative physiological and functional
parameters as well as parameters of the surgical procedure.

Mechanistic Models of Liver Volume Regeneration

Temporal Models
Several studies aimed to mathematically model liver regeneration
based on known interactions between regeneration-associated
biological processes and representative molecules. These models
are based on ODEs or delayed differential equations, and thus
focus on the temporal scale of the process of regeneration
without resolving spatial processes, in particular assuming spatial
homogeneity. A model reflecting the interplay of cytokines
and growth factors involved in initiating and terminating
liver regeneration (Furchtgott et al., 2009) was used to derive
different hypotheses for the improvement of liver regeneration.
This model was later transferred to modeling of human liver
regeneration in living liver transplant donors (Periwal et al.,
2014). Further extensions of the model by Furchtgott et al.
(2009) was used to emphasize the role of bone marrow cell
migration into the liver after resection in mice (Pedone et al.,
2017), and to integrate cell growth and its regulation, also in
case of model diseases (Cook et al., 2015). The aforementioned
models assume that the metabolic overload induces regeneration.
However, studies also hypothesize that the increased portal flow
per mass unit initiates the process of liver regeneration. The two
hypotheses were assessed by comparison of twomodels reflecting
liver regeneration as a consequence of hemodynamic changes or
the metabolic overload (Hohmann et al., 2014).

Spatio-Temporal Models
A number of studies also focused on including spatial properties
of liver regeneration. Already half a century ago, an ODE-based
model for cells at the sinusoidal scale was presented (Sendov
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and Tsanev, 1968), involving proteins, ribosomes, DNA, and
mechanisms predicting cellular death and division. Such models
could be used to identify hepatocyte-specific triggers when
applying general cell cycle models (see e.g., Kriete et al., 2014).
A mechanistic model at the cellular and lobular scale for liver
regeneration after CCl4-induced damage at the lobule scale in
mice was used to show that not only hepatocyte proliferation but
also coordinated cell orientation as well as cell polarity are critical
aspects ensuring restoration of the lobular micro-architecture
(Höhme et al., 2007; Hoehme et al., 2010).

One common approach for spatio-temporal continuum
models of regeneration is using mixture theory (multiphasic
approaches) embedded into a biomechanical framework. This
allows the integration of underlying biological mechanisms,
see among others (Humphrey, 2003; Amar and Goriely, 2005;
Ambrosi et al., 2017). The field of growth and remodeling
in biomechanics is covered by one-phasic (Menzel and Kuhl,
2012) as well as bi-phasic (Ricken and Bluhm, 2009) approaches.
Remodeling processes are presented in Ricken et al. (2010), where
a mechanical biphasic model was developed and the effect of
outflow obstruction on liver remodeling and hepatic perfusion
was studied. Dealing with coupled solid-fluid interaction, a
mixture framework using the finite element method was
presented (Ricken et al., 2015). This approach allows calculating
tissue growth depending on nutrient supply, e.g., diet high of free
fatty acids (Waschinsky et al., 2016).

Network Models
Furthermore, omics-based network models are commonly used
for the initial identification of genes and proteins involved
in liver regeneration and are thus used to identify key-
molecules to be considered in mechanistic models. However,
few studies have employed mathematical modeling based
on genome-wide transcriptomics data for the identification
of liver regeneration-associated molecular mechanisms and
biological pathways. A correlation-based model was inferred
from genome-wide transcriptomics data for the identification
of molecular mechanisms underlying regeneration induced
by partial hepatectomy (Zhou et al., 2014). This identified
de-regulation of several genes associated with hepatocyte
proliferation, inflammation, and DNA replication processes.

Models of Liver Function Recovery
Only few models of recovery of liver function have been
reported, most of them being phenomenological. Liver function
(in particular the lack thereof) has mostly been addressed in
terms of postoperative liver failure. Well-known risk factors
for postoperative liver failure are, e.g., preexisting disease, age,
nutrition (Hammond et al., 2011). The risk of liver failure can
be predicted partly by preoperative tests and risk-defined score
models (Clavien et al., 2007) and additionally by postoperative
parameters (Yamanaka et al., 1984).

A mechanistic model (Schliess et al., 2014; Ghallab et al.,
2016) of function recovery on the tissue scale deals with the
recovery of ammonia detoxification and amino acid metabolism
during regeneration after CCl4-induced pericentral necrosis.
This model included two selected aspects of liver function and

regeneration from damage pattern clearly different from those
encountered in surgery, but could be used as a starting point for
bridging the cellular and organ scale in regeneration modeling in
computational liver surgery.

Perspective: Regeneration Models in Computational

Liver Surgery
To our knowledge, currently no mechanistic mathematical
model addresses liver regeneration after hepatic surgery. Future
models supporting the prediction of regeneration could be
integrated in surgical risk assessment and help preventing
postoperative complications. The existing predictions of liver
failure could be extended to predicting the recovery of liver
function based on more advanced and more mechanistic
models. The tissue-scale function recovery model (Schliess
et al., 2014; Ghallab et al., 2016) could form the basis for
a model describing changes in lobular architecture and its
impact on more generic function recovery after resection. The
main challenge for modeling recovery of liver function is to
link tissue regeneration to metabolism, as already described
in the previous subsection. Moreover, correlation of volume
and function recovery for different diseases (Yamanaka et al.,
1993) could be used for phenomenological models of functional
recovery.

VISION: SYSTEMS SURGERY OF THE

LIVER

Future integrated models of liver metabolism and regeneration
should provide function-based risk assessment. Such models
need to be accessible via a usable tool for surgery planning.
To achieve a more accurate and comprehensive prediction of
the functional capacity for Systems Surgery, several medical and
computational challenges have to be resolved (Belghiti, 2016).

These challenges involve (a) precise determination of the
preoperative state and functional capacity of the liver, taking
preexisting disease into account (model input data), (b)
estimation of the extent of surgical damage inflicted on the liver
during the resection, and (c) prediction of the impact of hepatic
tissue loss and surgical damage on the functional capacity of the
(diseased) future liver remnant and its recovery process (model
output data).

Integrated Planning Tool for Liver

Resection
Future surgical planning software should include a workflow
for function-based risk assessment. Input data data comprise
in addition to the liver anatomical architecture also spatially
resolved data assessing hepatic perfusion and function as well
as clinical data, e.g., quantitative dynamical liver function tests,
and information about existing liver disease as summarized
graphically in Figure 4. Multi-scale computational models of
the liver based on animal models and clinical data will enable
to predict in silico function and regeneration after resection in
respect to variation of resection surface and safety margins.
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FIGURE 4 | Vision of future liver surgical planning tools. Surgical planning tools of the future will improve risk prediction by accounting for the functional heterogeneity

of the healthy and diseased liver and by providing predictions of the functional capacity of the future remnant liver. Multi-scale computational models of the liver will

provide the required in silico prediction of function and regeneration (blue box). Key information for surgical planning are time-resolved functional recovery curves, e.g.,

how clearance of certain substances is affected and recovers after resection. Suitable computational models have to be integrated and validated based on animal

models and clinical data (for an overview over computational models of the liver applicable in the context of surgical planning see Tables 1–3). The input data for such

function-based risk assessment includes in addition to the assessment of liver geometry, also the spatially resolved assessment of hepatic perfusion and hepatic

function as well as clinical data, e.g., quantitative dynamical liver function tests, and information about existing liver disease. Additional output of the future surgical

planning tool includes prediction of selected functions after resection, (e.g., hepatic perfusion, metabolic parameters) and their recovery in respect to variation of

resection surface and safety margins. CT image stack adapted from (Figure 1B in Chung et al., 2013), image license: CC-BY (https://creativecommons.org/licenses/

by/3.0/).

Functional predictive models need to be integrated into the
existing individual 3D planning of the liver representing the
vascular structure of the liver and the location of the tumor.

Such an integrated planning tool will improve individualized
risk prediction for hepatic surgery and provide important
information about the expected liver function after surgical
intervention and during subsequent liver regeneration. This tool
will ultimately support surgeons in their decision about a patient’s
operability and the choice of a suitable intervention, but will
also make them aware of possible postoperative complications
allowing therapy adjustments after resection.

The integrated tool will support risk assessment depending
on preexisting liver disease and damage of the liver. This
requires integrating underlying pathophysiologic conditions and
preexisting risk states on an individual basis. For example,
steatosis and other chronic liver diseases (such as cirrhosis
already impairing liver function) substantially impact the
function of the future liver remnant and its regeneration, and
hence increase the risk of postoperative complications and
liver failure. Surgeons and patients will benefit from more
comprehensive risk predictions taking functional aspects into

account without the need of own expertise in multi-scale
computational modeling in the implementation.

Future Developments
Further development of such an integrated liver model can be
envisioned to obtain better disease- or cohort-specific predictions
and to enhance the prognostic power for the individual patient.

Reaching better disease- or cohort -specific predictions would
call for including further cohort-specific data to tune the
integrated model according to the specific aspect in question.
Doing so will contribute to getting a better insight into disease
progression and curation. However, this will require to generate
considerably more animal experimental data of the specific
disease and of course to collect a substantial amount of additional
cohort-specific clinical data.

Such data are needed to generate probabilistic disease models,
which have to be integrated into the proposed “liver resection and
regeneration” model.

Enhancing the prognostic power for the individual patient
could be achieved by extending the knowledge-based selection
of relevant patient-specific pre-, peri-, and postoperative data
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considered to be relevant. Additional input data regarding the
activity and severity of the complicating liver disease as well as
data regarding the general patient condition (e.g., cardiovascular
condition) appears extremely useful for this purpose. Similarly,
additional outcome data would be necessary, requiring an
detailed follow-up of the patient to collect data regarding
extra-hepatic surgical and general complications [e.g., abscess
formation, postoperative infections and grade their severity
(Clavien-Dindo classification)] and reflecting the recovery of the
patient’s general condition (e.g., days in ICU and in hospital).
However, increasing the number of entry variables would call for
a higher number of outcome observations.

Alternatively, this could also be achieved using a “big data”
approach by focussing on creating an interface with the currently
used hospital information systems to have access to all patients
and all patient-specific information. Following this approach, a
rather large number of patients would be needed to reflect the
high data variability as presented in true patient cohorts.

Medical Challenges
Determining the preoperative state of the liver and the expected
alterations after surgery must be improved to optimize surgical
planning and reduce the probability of postoperative liver failure.
This involves several challenges.

Improving Preoperative Diagnostics
Here, the key point is to improve spatial resolution, which
will benefit the assessment of morphological and structural
alterations due to the underlying preexisting hepatic disease,
the assessment of hepatic perfusion, and most importantly, the
quantitative assessment of hepatic function.

Identifying Prognostically Relevant Aspects of

Hepatic Function and their Spatially Resolved

Assessment
Identifying meaningful and relevant diagnostic assays from the
multitude of available assays is a major challenge. These assays
should be non-invasive and serve as a basis for valid predictions
regarding surgical complications, surgical outcome, and changes
in liver functions following liver surgery.

Estimating Surgically Induced Damage
It is not sufficient to only quantify the loss of liver volume due
to tissue removal, but also necessary to quantify the volume of
liver tissue at risk due to alterations of hepatic perfusion. The key
challenge is to estimate the loss of functional tissue with respect
to the extent of resection, the resection surface, and the resection
technique. In addition, preexisting global liver diseases impair
hepatic function in a spatially heterogenous way (cf. the section
“Hepatic Diseases”), which has to be taken into account during
the surgical planning phase.

Predicting Postoperative Function of the Liver

Remnant
The functional capacity of the remnant liver should be predicted
based on the preoperative disease state and the predicted loss of
liver tissue and liver function by resection.

Modeling Challenges
Building a comprehensive model for the prediction of the hepatic
functional capacity after resection faces many challenges.

Identifying, Understanding, and Modeling Relevant

Processes in Liver Surgery
A prerequisite for building a comprehensive model of functional
prediction is the availability of high quality models reflecting
those aspects that are important for liver surgery, such as liver
function depending on perfusion, liver volume regeneration in
case of preexisting damage, or recovery of hepatic metabolic
function after resection. The key processes and mechanisms of
all these aspects must be understood in sufficient detail and
transferred to a suitable mathematical formalism. Part of the
challenge is to extend compatible model components and to
develop interfaces to bring these building blocks together.

Improving Data Availability and Quality for

Computational Models
Besides understanding the processes, further key steps for
model building are parameterizing and subsequently validating
parametrized models. A key requirement for these steps is the
availability of high-quality experimental and clinical data.

Many existing studies have only looked at a single aspect
of liver surgery, such as regeneration, liver function, or
changes in perfusion. Assembling data from different sources
is difficult, since the experimental and clinical conditions
are in general vastly different. A multitude of experimental
resection studies has been performed in rodents under controlled
conditions and with various liver diseases, but using a variety of
experimental conditions and read-out parameters. Consequently,
comparability is often limited and data integration into a single
model questionable. A similar problem is the extrapolation from
clinical data measured in one cohort to another cohort with
different characteristics, e.g., data from young subjects to old
subjects. For similar reasons, translation of results from animal
studies to the human situation is even more challenging.

One recurring problem is the quality of experimental
and clinical data, e.g., inaccurate or high-variance data, with
model predictions strongly depending on the accuracy of the
measured patient-specific data. The aforementioned issues with
experimental data require new comprehensive and targeted data
sets to ensure all needed input data were generated under
the same conditions. One key aspect is to perform targeted
experiments and studies to collect the information for model
parameterization and validation. Alternatively (or in addition),
analysis of the effects of the underlying datasets on model
predictions and quantification of the resulting uncertainties in
the predictions must be performed in order to analyze sensitivity.

Integrating Data with Computational Models
One major challenge is the integration of different types of data
(e.g., concentrations, tension, elasticity, image data, omics data,
etc.) and to handle the heterogeneity within similar datasets (e.g.,
from different laboratories, different readers) with computational
models. Standardization of data formats and models for simple
and reproducible integration of the different data sets into the
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models is important (König et al., 2016). Especially with the
perspective of routine application of such models in Systems
Surgery of the liver, standardization of models and experimental
data sets will be a major challenge and facilitator.

Developing Large Multi-scale Models
Multi-scale models and models coupling distinct modeling
approaches are often not easy to compute. Reasons are that such
large computational models require substantial computational
resources (e.g., agent-based, porous media, CFD), and that
coupling of different modeling is often not supported in
simulation software and difficult to implement. Multi-scale
computational modeling requires connecting models via clearly
defined interfaces between the different scales and sub-models.
General challenges of computational modeling like parameter
fitting/overfitting, model selection, parameter selection, or
parameter identifiability are also major challenges in multi-scale
models, often aggravated due to the large number of parameters
in models spanning multiple scales.

Performing Model Reduction
Often, model reduction is necessary for efficient model
simulation (e.g., integration of a system of ODEs for metabolism
in a meso- or macroscale model of whole-liver perfusion) and
reduction of the parameter space for analysis. The overall goal
is to reduce complexity without compromising the aspects
relevant for the question at hand. Different approaches of model
reduction have been applied in the field of liver simulations, e.g.,
representative sinusoids (Schwen et al., 2015), method of proper
orthogonal decomposition (Fink and Ehlers, 2015), or the use
of an energy function (Holzapfel et al., 2000; Humphrey, 2003;
Balzani et al., 2006).

Improving Model Quality and Validating Predictions
Further important challenges are the evaluation of model quality
and validation of model predictions, which are two requirements
for application of such models in surgical support systems.
Validation of models for Systems Surgery of the liver will require
prospective clinical trials, which compare the model predictions
of liver function after resection and during regeneration with
clinical trial data. In the surgical setting, the availability of
postoperative data (invasive methods for data measurements are
not feasible) limits model validation, so this will need to be done
mostly in animal models.

Quantifying Uncertainty and Robustness
Important questions to be answered in the context of model
validation are (a) What is the uncertainty in input data and
model parameters? and (b) How sensitive is the overall system?
Together, this can quantify how robust model predictions
are against uncertainty in the generic model parameters
and individualized input data. There are various sources of
uncertainty, e.g., direct or indirect measurement of biochemical
and biophysical parameters, clinically measured physiological
and systemic functional parameters, limited resolution, and
noise in imaging. An analytic assessment of the sensitivity is
only feasible for sub-models of limited complexity. Quantifying
the robustness of an integrated multi-scale model will require
thorough parameter studies to quantify the sensitivity against

uncertainty in individual parameters and, e.g., Monte-Carlo
simulations to determine confidence ranges of model predictions
under combined parameter uncertainty.

Implementation Challenges
Addressing these clinical and modeling challenges to
achieve such model-assisted risk predictions requires a truly
multidisciplinary approach involving basic and applied, clinical
and computational scientists and engineers. On the one hand,
anatomical and physiological phenomena, as well as clinical
diagnostic and surgical procedures, need to be accurately
described and translated to suitable, improved or novel,
computational models. On the other hand, such models must
be made available in the form of interactive and user-friendly
software and thus usable not only by domain experts in systems
biology. Practical usability requires user interactivity, easy and
quick handling, automation, minimum of editing, and expert
input in the final usage, model adaptation to work on standard
workstations available in the clinics, etc. Moreover, interfaces
have to be developed, which allow integration of computational
models with widely used hospital information systems, e.g.,
using patient data for the personalization of models and adding
model-based risk evaluation to electronic patient records.

CONCLUSION

Already today, patients benefit from computational support in
the planning of liver resections. This is, however, limited to an
assessment of remnant liver volume and taking into account a
number of risk factors for postoperative liver failure. A prediction
of liver function recovery is currently not included, but would be
particularly useful in case of preexisting liver disease.

Basic biological processes involved in liver metabolism,
disease, and regeneration are well-understood, and various
computational models for these aspects are available. However,
no comprehensive model integrating all these effects on different
scales has been presented yet.

With increasing knowledge of disease mechanisms,
availability of experimental and clinical data as input for
model-based predictions, and expertise in design and integration
of computational models, the next logical step is to develop
a comprehensive model for predicting liver function and
regeneration. This type of outcome prediction will be
an indispensable part of a strategy for a patient-tailored
optimization of intervention and therapy after liver surgery.
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Cvitanović, T., Reichert, M. C., Moškon, M., Mraz, M., Lammert, F., and Rozman,

D. (2017). Large-scale computational models of liver metabolism: how far from

the clinics? Hepatology 66, 1323–1334. doi: 10.1002/hep.29268

D’Alessandro, L. A., Hoehme, S., Henney, A., Drasdo, D., and Klingmüller,

U. (2015a). Unraveling liver complexity from molecular to organ

level: challenges and perspectives. Prog. Biophys. Mol. Biol. 117, 78–86.

doi: 10.1016/j.pbiomolbio.2014.11.005

D’Alessandro, L. A., Samaga, R., Maiwald, T., Rho, S.-H., Bonefas, S., Raue, A.,

et al. (2015b). Disentangling the complexity of HGF signaling by combining

qualitative and quantitative modeling. PLoS Comput. Biol. 11:e1004192.

doi: 10.1371/journal.pcbi.1004192

Daylami, R., Schneider, P. D., and Khatri, V. P. (2016). Liver Function Assessment

before and after Hepatic Resection, Vol. 1. Sharjah: Bentham Science Publisher.

De Boer, R. (2012). Theory of Porous Media: Highlights in Historical Development

and Current State. Luxemburg: Springer Science & Business Media.

De Gasperi, A., Mazza, E., and Prosperi, M. (2016). Indocyanine green kinetics

to assess liver function: ready for a clinical dynamic assessment in major liver

surgery?World J. Hepatol. 8, 355–367. doi: 10.4254/wjh.v8.i7.355

de Graaf, W., van Lienden, K. P., Dinant, S., Roelofs, J. J., Busch, O. R. C.,

Gouma, D. J., et al. (2010). Assessment of future remnant liver function

using hepatobiliary scintigraphy in patients undergoing major liver resection. J.

Gastrointest. Surg. 14, 369–378. doi: 10.1007/s11605-009-1085-2

Debbaut, C., Vierendeels, J., Siggers, J. H., Repetto, R., Monbaliu, D., and Segers, P.

(2014). A 3D porous media liver lobule model: the importance of vascular septa

and anisotropic permeability for homogeneous perfusion. Comput. Methods

Biomech. Biomed. Eng. 17, 1295–1310. doi: 10.1080/10255842.2012.744399

Di Martino, M., Pacifico, L., Bezzi, M., Di Miscio, R., Sacconi, B., Chiesa,

C., et al. (2016). Comparison of magnetic resonance spectroscopy, proton

density fat fraction and histological analysis in the quantification of liver

steatosis in children and adolescents. World J. Gastroenterol. 22, 8812–8819.

doi: 10.3748/wjg.v22.i39.8812

Diaz Ochoa, J. G., Bucher, J., Péry, A. R., Zaldivar Comenges, J. M., Niklas, J.,

and Mauch, K. (2012). A multi-scale modeling framework for individualized,

spatiotemporal prediction of drug effects and toxicological risk. Front.

Pharmacol. 3:204. doi: 10.3389/fphar.2012.00204

Dickinson, B. C., and Chang, C. J. (2011). Chemistry and biology of reactive

oxygen species in signaling or stress responses. Nat. Chem. Biol. 7, 504–511.

doi: 10.1038/nchembio.607

Dold, S., Richter, S., Kollmar, O., von Heesen, M., Scheuer, C., Laschke,

M. W., et al. (2015). Portal hyperperfusion after extended hepatectomy

does not induce a hepatic arterial buffer response (HABR) but impairs

mitochondrial redox state and hepatocellular oxygenation. PLoS ONE

10:e0141877. doi: 10.1371/journal.pone.0141877

DuBray, J. B., Levy, R. V., Balachandran, P., Conzen, K. D., Upadhya, G. A.,

Anderson, C. D., et al. (2011). Novel three-dimensional imaging technique

improves the accuracy of hepatic volumetric assessment. HPB 13, 670–674.

doi: 10.1111/j.1477-2574.2011.00350.x

Ehlers, W. (2002). “Foundations of multiphasic and porous materials,” in Porous

Media, eds W. Ehlers and J. Bluhm (Berlin; Heidelberg: Springer), 3–86.

El-Badry, A. M., Jang, J. H., Elsherbiny, A., Contaldo, C., Tian, Y., Raptis, D.

A., et al. (2011). Chemical composition of hepatic lipids mediates reperfusion

injury of the macrosteatotic mouse liver through thromboxane A(2). J. Hepatol.

55, 1291–1299. doi: 10.1016/j.jhep.2011.04.019

Farrell, G. C. (2004). Probing prometheus: fat fueling the fire? Hepatology 40,

1252–1255. doi: 10.1002/hep.20522

Fausto, N. (2000). Liver regeneration. J. Hepatol. 32, 19–31.

doi: 10.1016/S0168-8278(00)80412-2

Fausto, N. (2004). Liver regeneration and repair: hepatocytes, progenitor cells, and

stem cells. Hepatology 39, 1477–1487. doi: 10.1002/hep.20214

Fausto, N., and Campbell, J. S. (2003). The role of hepatocytes and oval

cells in liver regeneration and repopulation. Mech. Dev. 120, 117–130.

doi: 10.1016/S0925-4773(02)00338-6

Fausto, N., Campbell, J. S., and Riehle, K. J. (2012). Liver regeneration. J. Hepatol.

57, 692–694. doi: 10.1016/j.jhep.2012.04.016

Fink, D., and Ehlers, W. (2015). Application and modification of the PODmethod

and the POD-DEIM for model reduction in porous-media simulations. PAMM

15, 385–386. doi: 10.1002/pamm.201510183

Fisher, C. P., Kierzek, A. M., Plant, N. J., and Moore, J. B. (2014). Systems biology

approaches for studying the pathogenesis of non-alcoholic fatty liver disease.

World J. Gastroenterol. 20, 15070–15078. doi: 10.3748/wjg.v20.i41.15070

Fishman, E., Kuszyk, B., Heath, D., Gao, L., and Cabral, B. (1996). Surgical

planning for liver resection. Computer 29, 64–72. doi: 10.1109/2.481467

Friedman, B. H., Wolf, J. H., Wang, L., Putt, M. E., Shaked, A., Christie,

J. D., et al. (2012). Serum cytokine profiles associated with early allograft

dysfunction in patients undergoing liver transplantation. Liver Transpl. 18,

166–176. doi: 10.1002/lt.22451

Fuhr, U., Rost, K. L., Engelhardt, R., Sachs, M., Liermann, D., Belloc, C., et al.

(1996). Evaluation of caffeine as a test drug for CYP1A2, NAT2 and CYP2E1

phenotyping in man by in vivo versus in vitro correlations. Pharmacogenetics 6,

159–176. doi: 10.1097/00008571-199604000-00003

Furchtgott, L. A., Chow, C. C., and Periwal, V. (2009). A model of liver

regeneration. Biophys. J. 96, 3926–3935. doi: 10.1016/j.bpj.2009.01.061

Garbey, M., Bass, B., and Berceli, S. (2012). Multiscale mechanobiology

modeling for surgery assessment. Acta Mech. Sin. 28, 1186–1202.

doi: 10.1007/s10409-012-0133-4

Garcea, G., Gescher, A., Steward,W., Dennison, A., and Berry, D. (2006). Oxidative

stress in humans following the Pringle manoeuvre. Hepatob. Pancreat. Dis Int.

5, 210–214.

Garikipati, K., Arruda, E. M., Grosh, K., Narayanan, H., and Calve, S.

(2004). A continuum treatment of growth in biological tissue: the coupling

of mass transport and mechanics. J. Mech. Phys. Solids 52, 1595–1625.

doi: 10.1016/j.jmps.2004.01.004

Gauthier, L. D., Greenstein, J. L., Cortassa, S., O’Rourke, B., and Winslow,

R. L. (2013). A computational model of reactive oxygen species and

redox balance in cardiac mitochondria. Biophys. J. 105, 1045–1056.

doi: 10.1016/j.bpj.2013.07.006

Geenen, S., Yates, J. W., Kenna, J. G., Bois, F. Y., Wilson, I. D., and Westerhoff,

H. V. (2013). Multiscale modelling approach combining a kinetic model

of glutathione metabolism with PBPK models of paracetamol and the

potential glutathione-depletion biomarkers ophthalmic acid and 5-oxoproline

in humans and rats. Integr. Biol. 5, 877–888. doi: 10.1039/c3ib20245c

Ghallab, A., Cellière, G., Henkel, S. G., Driesch, D., Hoehme, S., Hofmann,

U., et al. (2016). Model-guided identification of a therapeutic strategy

to reduce hyperammonemia in liver diseases. J. Hepatol. 64, 860–871.

doi: 10.1016/j.jhep.2015.11.018

Gille, C., Bölling, C., Hoppe, A., Bulik, S., Hoffmann, S., Hübner, K., et al.

(2010). HepatoNet1: a comprehensive metabolic reconstruction of the human

hepatocyte for the analysis of liver physiology. Mol. Syst. Biol. 6:411.

doi: 10.1038/msb.2010.62

Glombitza, G., Evers, H., Hassfeld, S., Engelmann, U., and Meinzer, H. P. (1999a).

Virtual surgery in a (tele-)radiology framework. IEEE Trans. Inf. Technol.

Biomed. 3, 186–196.

Glombitza, G., Lamadé, W., Demiris, A. M., Göpfert, M. R., Mayer, A., Bahner,

M. L., et al. (1999b). Virtual planning of liver resections: image processing,

visualization and volumetric evaluation. Int. J. Med. Inform. 53, 225–237.

doi: 10.1016/S1386-5056(98)00162-2

Greenspan, H. P. (1976). On the growth and stability of cell cultures and solid

tumors. J. Theor. Biol. 56, 229–242. doi: 10.1016/S0022-5193(76)80054-9

Guerrieri, F., Vendemiale, G., Grattagliano, I., Cocco, T., Pellecchia,

G., and Altomare, E. (1999). Mitochondrial oxidative alterations

following partial hepatectomy. Free Radic. Biol. Med. 26, 34–41.

doi: 10.1016/S0891-5849(98)00145-2

Frontiers in Physiology | www.frontiersin.org 21 November 2017 | Volume 8 | Article 906120

https://doi.org/10.1159/000441385
https://doi.org/10.1056/NEJMra065156
https://doi.org/10.1097/01.CCM.0000142394.28791.C3
https://doi.org/10.1186/s12918-015-0220-9
https://doi.org/10.1002/hep.29268
https://doi.org/10.1016/j.pbiomolbio.2014.11.005
https://doi.org/10.1371/journal.pcbi.1004192
https://doi.org/10.4254/wjh.v8.i7.355
https://doi.org/10.1007/s11605-009-1085-2
https://doi.org/10.1080/10255842.2012.744399
https://doi.org/10.3748/wjg.v22.i39.8812
https://doi.org/10.3389/fphar.2012.00204
https://doi.org/10.1038/nchembio.607
https://doi.org/10.1371/journal.pone.0141877
https://doi.org/10.1111/j.1477-2574.2011.00350.x
https://doi.org/10.1016/j.jhep.2011.04.019
https://doi.org/10.1002/hep.20522
https://doi.org/10.1016/S0168-8278(00)80412-2
https://doi.org/10.1002/hep.20214
https://doi.org/10.1016/S0925-4773(02)00338-6
https://doi.org/10.1016/j.jhep.2012.04.016
https://doi.org/10.1002/pamm.201510183
https://doi.org/10.3748/wjg.v20.i41.15070
https://doi.org/10.1109/2.481467
https://doi.org/10.1002/lt.22451
https://doi.org/10.1097/00008571-199604000-00003
https://doi.org/10.1016/j.bpj.2009.01.061
https://doi.org/10.1007/s10409-012-0133-4
https://doi.org/10.1016/j.jmps.2004.01.004
https://doi.org/10.1016/j.bpj.2013.07.006
https://doi.org/10.1039/c3ib20245c
https://doi.org/10.1016/j.jhep.2015.11.018
https://doi.org/10.1038/msb.2010.62
https://doi.org/10.1016/S1386-5056(98)00162-2
https://doi.org/10.1016/S0022-5193(76)80054-9
https://doi.org/10.1016/S0891-5849(98)00145-2
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Christ et al. Systems Surgery

Haga, J., Shimazu, M., Wakabayashi, G., Tanabe, M., Kawachi, S., Fuchimoto, Y.,

et al. (2008). Liver regeneration in donors and adult recipients after living donor

liver transplantation. Liver Transpl. 14, 1718–1724. doi: 10.1002/lt.21622

Hallet, J., Gayet, B., Tsung, A., Wakabayashi, G., Pessaux, P., and 2nd International

Consensus Conference on Laparoscopic Liver Resection Group (2015).

Systematic review of the use of pre-operative simulation and navigation for

hepatectomy: current status and future perspectives. J. Hepatob. Pancreat. Sci.

22, 353–362. doi: 10.1002/jhbp.220

Hamano, M., Ezaki, H., Kiso, S., Furuta, K., Egawa, M., Kizu, T., et al. (2014).

Lipid overloading during liver regeneration causes delayed hepatocyte DNA

replication by increasing ER stress in mice with simple hepatic steatosis. J.

Gastroenterol. 49, 305–316. doi: 10.1007/s00535-013-0780-7

Hammond, J. S., Guha, I. N., Beckingham, I. J., and Lobo, D. N. (2011). Prediction,

prevention and management of postresection liver failure. Br. J. Surg. 98,

1188–1200. doi: 10.1002/bjs.7630

Hansen, C., Zidowitz, S., Hindennach, M., Schenk, A., Hahn, H., and Peitgen,

H. O. (2009). Interactive determination of robust safety margins for

oncologic liver surgery. Int. J. Comput. Assist. Radiol. Surg. 4, 469–474.

doi: 10.1007/s11548-009-0359-1

Hansen, C., Zidowitz, S., Preim, B., Stavrou, G., Oldhafer, K. J., and Hahn, H. K.

(2014). Impact of model-based risk analysis for liver surgery planning. Int. J.

Comput. Assist. Radiol. Surg. 9, 473–480. doi: 10.1007/s11548-013-0937-0

Hedderich, D. M., Hasenberg, T., Haneder, S., Schoenberg, S. O., Kücükoglu,

Ö., Canbay, A., et al. (2017). Effects of bariatric surgery on non-alcoholic

fatty liver disease: magnetic resonance imaging is an effective, non-invasive

method to evaluate changes in the liver fat fraction. Obes. Surg. 27, 1755–1762.

doi: 10.1007/s11695-016-2531-3

Hetherington, J., Sumner, T., Seymour, R. M., Li, L., Rey, M. V., Yamaji,

S., et al. (2012). A composite computational model of liver glucose

homeostasis. I. Building the composite model. J. R. Soc. Interface 9, 689–700.

doi: 10.1098/rsif.2011.0141

Himpel, G., Kuhl, E., Menzel, A., and Steinmann, P. (2005). Computational

modelling of isotropic multiplicative growth. Comp. Mod. Eng. Sci. 8, 119–134.

doi: 10.3970/cmes.2005.008.119

Hoehme, S., Brulport, M., Bauer, A., Bedawy, E., Schormann,W., Hermes,M., et al.

(2010). Prediction and validation of cell alignment along microvessels as order

principle to restore tissue architecture in liver regeneration. Proc. Natl. Acad.

Sci. U.S.A. 107, 10371–10376. doi: 10.1073/pnas.0909374107

Hohmann, N., Weiwei, W., Dahmen, U., Dirsch, O., Deutsch, A., and Voss-

Böhme, A. (2014). How does a single cell know when the liver has reached its

correct size? PLoS ONE 9:e93207. doi: 10.1371/journal.pone.0093207

Höhme, S., Hengstler, J. G., Brulport, M., Schäfer, M., Bauer, A., Gebhardt, R., et al.

(2007). Mathematical modelling of liver regeneration after intoxication with

CCl4. Chem. Biol. Interact. 168, 74–93. doi: 10.1016/j.cbi.2007.01.010

Holzapfel, G. A., Gasser, T. C., and Ogden, R. W. (2000). A new constitutive

framework for arterial wall mechanics and a comparative study of material

models. J. Elast. Phys. Sci. Solids 61, 1–48. doi: 10.1023/A:1010835316564

Horsager, J., Bak-Fredslund, K., Larsen, L. P., Villadsen, G. E., Bogsrud, T.

V., and Sørensen, M. (2016). Optimal 2-[(18)F]fluoro-2-deoxy-D-galactose

PET/CT protocol for detection of hepatocellular carcinoma. EJNMMI Res. 6:56.

doi: 10.1186/s13550-016-0206-7

Hossain, M. A., Wakabayashi, H., Izuishi, K., Okano, K., Yachida, S., Tokuda, M.,

et al. (2006). Improved microcirculatory effect of D-allose on hepatic ischemia

reperfusion following partial hepatectomy in cirrhotic rat liver. J. Biosci. Bioeng.

101, 369–371. doi: 10.1263/jbb.101.369

Hrydziuszko, O., Silva, M. A., Perera, M. T., Richards, D. A., Murphy, N., Mirza,

D., et al. (2010). Application of metabolomics to investigate the process of

human orthotopic liver transplantation: a proof-of-principle study. OMICS 14,

143–150. doi: 10.1089/omi.2009.0139

Humphrey, J. D. (2003). Continuum biomechanics of soft biological tissues. Proc.

R. Soc. Lond. Ser A Math. Phys. Eng. Sci. 459, 3–46. doi: 10.1098/rspa.2002.1060

Hyötyläinen, T., Jerby, L., Petäjä, E. M., Mattila, I., Jäntti, S., Auvinen, P.,

et al. (2016). Genome-scale study reveals reduced metabolic adaptability

in patients with non-alcoholic fatty liver disease. Nat. Commun. 7:8994.

doi: 10.1038/ncomms9994

Idilman, I. S., Ozdeniz, I., and Karcaaltincaba, M. (2016). Hepatic steatosis:

etiology, patterns, and quantification. Semin. Ultras. CT MR 37, 501–510.

doi: 10.1053/j.sult.2016.08.003

Imbriaco, M., De Luca, S., Coppola, M., Fusari, M., Klain, M., Puglia,

M., et al. (2017). Diagnostic accuracy of Gd-EOB-DTPA for Detection

Hepatocellular Carcinoma (HCC): a comparative study with dynamic

contrast enhanced Magnetic Resonance Imaging (MRI) and dynamic

contrast enhanced Computed Tomography (CT). Pol. J. Radiol. 82, 50–57.

doi: 10.12659/PJR.899239

Jang, J. K., Jang, H.-J., Kim, J. S., and Kim, T. K. (2017). Focal fat deposition

in the liver: diagnostic challenges on imaging. Abdom. Radiol. 42, 1667–1678.

doi: 10.1007/s00261-017-1049-z

Jara, M., Bednarsch, J., Valle, E., Lock, J. F., Malinowski, M., Schulz, A., et al. (2015).

Reliable assessment of liver function using LiMAx. J. Surg. Res. 193, 184–189.

doi: 10.1016/j.jss.2014.07.041

Jerby, L., Shlomi, T., and Ruppin, E. (2010). Computational reconstruction of

tissue-specific metabolic models: application to human liver metabolism. Mol.

Syst. Biol. 6:401. doi: 10.1038/msb.2010.56

Jhaveri, K. S., Guo, L., and Guimarães, L. (2017). Current state-of-the-Art MRI

for comprehensive evaluation of potential living liver donors. AJR. Am. J.

Roentgenol. 209, 55–66. doi: 10.2214/AJR.16.17741

Jones, G. W., and Chapman, S. J. (2012). Modeling growth in biological materials.

SIAM Rev. 54, 52–118. doi: 10.1137/080731785

Jones, H., and Rowland-Yeo, K. (2013). Basic concepts in physiologically

based pharmacokinetic modeling in drug discovery and development.

CPT Pharmacomet. Syst. Pharmacol. 2:e63. doi: 10.1038/psp.

2013.41

Kang, K. J., and Ahn, K. S. (2017). Anatomical resection of hepatocellular

carcinoma: a critical review of the procedure and its benefits on

survival. World J. Gastroenterol. 23, 1139–1146. doi: 10.3748/wjg.v23.

i7.1139

Kayvanpour, E., Mansi, T., Sedaghat-Hamedani, F., Amr, A., Neumann,

D., Georgescu, B., et al. (2015). Towards personalized cardiology:

multi-scale modeling of the failing heart. PLoS ONE 10:e0134869.

doi: 10.1371/journal.pone.0134869

Kele, P. G., de Boer, M., van der Jagt, E. J., Lisman, T., and Porte, R. J. (2012). Early

hepatic regeneration index and completeness of regeneration at 6 months after

partial hepatectomy. Br. J. Surg. 99, 1113–1119. doi: 10.1002/bjs.8807

Kietzmann, T. (2017). Metabolic zonation of the liver: the oxygen gradient

revisited. Redox Biol. 11, 622–630. doi: 10.1016/j.redox.2017.01.012

Kimura, K., Shirabe, K., Yoshizumi, T., Takeishi, K., Itoh, S., Harimoto,

N., et al. (2016). Ischemia-reperfusion injury in fatty liver is mediated

by activated NADPH Oxidase 2 in rats. Transplantation 100, 791–800.

doi: 10.1097/TP.0000000000001130

Kirschner, D. E., Hunt, C. A., Marino, S., Fallahi-Sichani, M., and Linderman, J.

J. (2014). Tuneable resolution as a systems biology approach for multi-scale,

multi-compartment computational models. Wiley Interdiscip. Rev. Syst. Biol.

Med. 6, 225–245. doi: 10.1002/wsbm.1270

Kobayashi, T., Aikata, H., Honda, F., Nakano, N., Nakamura, Y., Hatooka, M.,

et al. (2016). Preoperative fluorine 18 fluorodeoxyglucose positron emission

tomography/computed tomography for prediction of microvascular invasion

in small hepatocellular carcinoma. J. Comput. Assis. Tomogr. 40, 524–530.

doi: 10.1097/RCT.0000000000000405

Kogan, Y., Halevi-Tobias, K. E., Hochman, G., Baczmanska, A. K., Leyns, L., and

Agur, Z. (2012). A new validated mathematical model of the Wnt signalling

pathway predicts effective combinational therapy by sFRP and Dkk. Biochem.

J. 444, 115–125. doi: 10.1042/BJ20111887

König, M., and Holzhütter, H.-G. (2012). Kinetic modeling of human hepatic

glucose metabolism in type 2 diabetes mellitus predicts higher risk of

hypoglycemic events in rigorous insulin therapy. J. Biol. Chem. 287,

36978–36989. doi: 10.1074/jbc.M112.382069

König, M., Bulik, S., and Holzhütter, H.-G. (2012). Quantifying the

contribution of the liver to glucose homeostasis: a detailed kinetic model

of human hepatic glucose metabolism. PLoS Comput. Biol. 8:e1002577.

doi: 10.1371/journal.pcbi.1002577

König, M., Oellrich, A., Waltemath, D., Dobson, R. J., Hubbard, T. J., and

Wolkenhauer, O. (2016). “Challenges and opportunities for system biology

standards and tools in medical research,” in ODLS (London), 1–6.

Kooby, D. A., Fong, Y., Suriawinata, A., Gonen, M., Allen, P. J., Klimstra, D. S.,

et al. (2003). Impact of steatosis on perioperative outcome following hepatic

resection. J. Gastrointest. Surg. 7, 1034–1044. doi: 10.1016/j.gassur.2003.09.012

Frontiers in Physiology | www.frontiersin.org 22 November 2017 | Volume 8 | Article 906121

https://doi.org/10.1002/lt.21622
https://doi.org/10.1002/jhbp.220
https://doi.org/10.1007/s00535-013-0780-7
https://doi.org/10.1002/bjs.7630
https://doi.org/10.1007/s11548-009-0359-1
https://doi.org/10.1007/s11548-013-0937-0
https://doi.org/10.1007/s11695-016-2531-3
https://doi.org/10.1098/rsif.2011.0141
https://doi.org/10.3970/cmes.2005.008.119
https://doi.org/10.1073/pnas.0909374107
https://doi.org/10.1371/journal.pone.0093207
https://doi.org/10.1016/j.cbi.2007.01.010
https://doi.org/10.1023/A:1010835316564
https://doi.org/10.1186/s13550-016-0206-7
https://doi.org/10.1263/jbb.101.369
https://doi.org/10.1089/omi.2009.0139
https://doi.org/10.1098/rspa.2002.1060
https://doi.org/10.1038/ncomms9994
https://doi.org/10.1053/j.sult.2016.08.003
https://doi.org/10.12659/PJR.899239
https://doi.org/10.1007/s00261-017-1049-z
https://doi.org/10.1016/j.jss.2014.07.041
https://doi.org/10.1038/msb.2010.56
https://doi.org/10.2214/AJR.16.17741
https://doi.org/10.1137/080731785
https://doi.org/10.1038/psp.2013.41
https://doi.org/10.3748/wjg.v23.i7.1139
https://doi.org/10.1371/journal.pone.0134869
https://doi.org/10.1002/bjs.8807
https://doi.org/10.1016/j.redox.2017.01.012
https://doi.org/10.1097/TP.0000000000001130
https://doi.org/10.1002/wsbm.1270
https://doi.org/10.1097/RCT.0000000000000405
https://doi.org/10.1042/BJ20111887
https://doi.org/10.1074/jbc.M112.382069
https://doi.org/10.1371/journal.pcbi.1002577
https://doi.org/10.1016/j.gassur.2003.09.012
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Christ et al. Systems Surgery

Kramer, H., Pickhardt, P. J., Kliewer, M. A., Hernando, D., Chen, G.-H., Zagzebski,

J. A., et al. (2017). Accuracy of Liver fat quantification with advanced CT, MRI,

and Ultrasound Techniques: prospective comparison with MR spectroscopy.

AJR. Am. J. Roentgenol. 208, 92–100. doi: 10.2214/AJR.16.16565

Krauss, M., Burghaus, R., Lippert, J., Niemi, M., Neuvonen, P., Schuppert,

A., et al. (2013). Using Bayesian-PBPK modeling for assessment of inter-

individual variability and subgroup stratification. In Silico Pharmacol. 1, 1–11.

doi: 10.1186/2193-9616-1-6

Krauss, M., Schaller, S., Borchers, S., Findeisen, R., Lippert, J., and Kuepfer, L.

(2012). Integrating cellular metabolism into a multiscale whole-body model.

PLoS Comput. Biol. 8:e1002750. doi: 10.1371/journal.pcbi.1002750

Kriete, A., Noguchi, E., and Sell, C. (2014). Introductory review of

computational cell cycle modeling. Methods Mol. Biol. 1170, 267–275.

doi: 10.1007/978-1-4939-0888-2_12

Krishan, S., Jain, D., Bathina, Y., Kale, A., Saraf, N., Saigal, S., et al. (2016). Non-

invasive quantification of hepatic steatosis in living, related liver donors using

dual-echo Dixon imaging and single-voxel proton spectroscopy. Clin. Radiol.

71, 58–63. doi: 10.1016/j.crad.2015.10.002

Kuepfer, L., Lippert, J., and Eissing, T. (2012). Multiscale mechanistic modeling in

pharmaceutical research and development. Adv. Exp. Med. Biol. 736, 543–561.

doi: 10.1007/978-1-4419-7210-1_32

Kuttippurathu, L., Parrish, A., andVadigepalli, R. (2014). Integrated computational

model of intracellular signaling and microRNA regulation predicts the network

balances and timing constraints critical to the hepatic stellate cell activation

process. Processes 2, 773–794. doi: 10.3390/pr2040773

Lagoa, C. E., Bartels, J., Baratt, A., Tseng, G., Clermont, G., Fink, M.

P., et al. (2006). The role of initial trauma in the host’s response to

injury and hemorrhage: insights from a correlation of mathematical

simulations and hepatic transcriptomic analysis. Shock 26, 592–600.

doi: 10.1097/01.shk.0000232272.03602.0a

Lang, H., Radtke, A., Hindennach, M., Schroeder, T., Frühauf, N. R., Malagó, M.,

et al. (2005). Impact of virtual tumor resection and computer-assisted risk

analysis on operation planning and intraoperative strategy in major hepatic

resection. Arch. Surg. 140, 629–638. doi: 10.1001/archsurg.140.7.629

Lautt, W. W., Legare, D. J., and Daniels, T. R. (1984). The comparative effect of

administration of substances via the hepatic artery or portal vein on hepatic

arterial resistance, liver blood volume and hepatic extraction in cats.Hepatology

4, 927–932. doi: 10.1002/hep.1840040524

Lee, F. Y., Li, Y., Zhu, H., Yang, S., Lin, H. Z., Trush, M., et al. (1999).

Tumor necrosis factor increasesmitochondrial oxidant production and induces

expression of uncoupling protein-2 in the regenerating mice [correction of rat]

liver. Hepatology 29, 677–687. doi: 10.1002/hep.510290320

Lee, S., Park, K., Hwang, S., Lee, Y., Choi, D., Kim, K., et al. (2001). Congestion

of right liver graft in living donor liver transplantation. Transplantation 71,

812–814. doi: 10.1097/00007890-200103270-00021

Lehmann, K. S., Ritz, J.-P., Valdeig, S., Schenk, A., Holmer, C., Peitgen, H.-

O., et al. (2008). Portal vein segmentation of a 3D-planning system for liver

surgery–in vivo evaluation in a porcinemodel.Ann. Surg. Oncol. 15, 1899–1907.

doi: 10.1245/s10434-008-9934-x

Lencioni, R., Della Pina, C., Crocetti, L., Bozzi, E., and Cioni, D. (2007). Clinical

management of focal liver lesions: the key role of real-time contrast-enhanced

US. Eur. Radiol. 17(Suppl. 6), F73–F79. doi: 10.1007/s10406-007-0231-8

Linecker, M., Limani, P., Kambakamba, P., Kron, P., Tschuor, C., Calo, N., et al.

(2017). Omega-3 fatty acids protect fatty and lean mouse livers after major

hepatectomy. Ann. Surg. 266, 324–332. doi: 10.1097/SLA.0000000000001968

Liu, P., Xie, S.-H., Hu, S., Cheng, X., Gao, T., Zhang, C., et al. (2017). Age-specific

sex difference in the incidence of hepatocellular carcinoma in the United States.

Oncotarget 8, 68131–68137. doi: 10.18632/oncotarget.19245

Liu, Q., Izamis, M. L., Xu, H., Berendsen, T., Yarmush, M., and Uygun,

K. (2013). Strategies to rescue steatotic livers before transplantation in

clinical and experimental studies. World J. Gastroenterol. 19, 4638–4650.

doi: 10.3748/wjg.v19.i29.4638

Lubarda, V. A., and Hoger, A. (2002). On the mechanics of solids with a growing

mass. Int. J. Solids Struct. 39, 4627–4664. doi: 10.1016/S0020-7683(02)00352-9

Marchesseau, S., Heimann, T., Chatelin, S., Willinger, R., and Delingette,

H. (2010). Fast porous visco-hyperelastic soft tissue model for surgery

simulation: application to liver surgery. Prog. Biophys. Mol. Biol. 103, 185–196.

doi: 10.1016/j.pbiomolbio.2010.09.005

Mardinoglu, A., Agren, R., Kampf, C., Asplund, A., Uhlen, M., and Nielsen,

J. (2014). Genome-scale metabolic modelling of hepatocytes reveals serine

deficiency in patients with non-alcoholic fatty liver disease. Nat. Commun.

5:3083. doi: 10.1038/ncomms4083

Marescaux, J., Clément, J. M., Tassetti, V., Koehl, C., Cotin, S., Russier, Y.,

et al. (1998). Virtual reality applied to hepatic surgery simulation: the next

revolution. Ann. Surg. 228, 627–634. doi: 10.1097/00000658-199811000-00001

Marino,M., Mangiantini, M. T., Spagnuolo, S., Luly, P., and Leoni, S. (1992). Signal

transduction during liver regeneration: role of insulin and vasopressin. J. Cell.

Physiol. 152, 403–409. doi: 10.1002/jcp.1041520223

Markevich, N. I., and Hoek, J. B. (2015). Computational modeling analysis of

mitochondrial superoxide production under varying substrate conditions and

upon inhibition of different segments of the electron transport chain. Biochim.

Biophys. Acta 1847, 656–679. doi: 10.1016/j.bbabio.2015.04.005

Matos, A. P., Altun, E., Ramalho, M., Velloni, F., AlObaidy, M., and

Semelka, R. C. (2015). An overview of imaging techniques for liver

metastases management. Expert Rev. Gastroenterol. Hepatol. 9, 1561–1576.

doi: 10.1586/17474124.2015.1092873

Matz-Soja, M. (2017). Computational modelling of hedgehog

signalling in liver regeneration. Drug Discov. Today Dis. Models.

doi: 10.1016/j.ddmod.2017.06.001

Matz-Soja, M., Rennert, C., Schönefeld, K., Aleithe, S., Boettger, J., Schmidt-

Heck, W., et al. (2016). Hedgehog signaling is a potent regulator of liver lipid

metabolism and reveals a GLI-code associated with steatosis. Elife 5:e13308.

doi: 10.7554/eLife.13308

McCormack, L., Petrowsky, H., Jochum, W., Furrer, K., and Clavien, P. A.

(2007). Hepatic steatosis is a risk factor for postoperative complications after

major hepatectomy: a matched case-control study. Ann. Surg. 245, 923–930.

doi: 10.1097/01.sla.0000251747.80025.b7

Menzel, A., and Kuhl, E. (2012). Frontiers in growth and remodeling. Mech. Res.

Commun. 42, 1–14 doi: 10.1016/j.mechrescom.2012.02.007

Meoli, A., Cutrì, E., Krishnamurthy, A., Dubini, G., Migliavacca, F., Hsia, T.

Y., et al. (2015). A multiscale model for the study of cardiac biomechanics

in single-ventricle surgeries: a clinical case. Interface Focus 5:20140079.

doi: 10.1098/rsfs.2014.0079

Meyer, K., Ostrenko, O., Bourantas, G., Morales-Navarrete, H., Porat-Shliom,

N., Segovia-Miranda, F., et al. (2017). A predictive 3D multi-scale model

of biliary fluid dynamics in the liver lobule. Cell Syst. 4, 277–290.e9.

doi: 10.1016/j.cels.2017.02.008

Michalopoulos, G. K. (2007). Liver regeneration. J. Cell. Physiol. 213, 286–300.

doi: 10.1002/jcp.21172

Michalopoulos, G. K. (2010). Liver regeneration after partial hepatectomy:

critical analysis of mechanistic dilemmas. Am. J. Pathol. 176, 2–13

doi: 10.2353/ajpath.2010.090675

Michalopoulos, G. K. (2017). Hepatostat: liver regeneration and normal liver tissue

maintenance. Hepatology 65, 1384–1392. doi: 10.1002/hep.28988

Miyaoka, Y., and Miyajima, A. (2013). To divide or not to divide: revisiting liver

regeneration. Cell Div. 8:8. doi: 10.1186/1747-1028-8-8

Mun, J. (2013). Radiofluorinated carbohydrates for positron emission tomography.

Curr. Top. Med. Chem. 13, 944–950. doi: 10.2174/1568026611313080007

Nadalin, S., Testa, G., Malagó,M., Beste, M., Frilling, A., Schroeder, T., et al. (2004).

Volumetric and functional recovery of the liver after right hepatectomy for

living donation. Liver Transpl. 10, 1024–1029. doi: 10.1002/lt.20182
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Hepatitis B virus (HBV)-associated acute-on-chronic liver failure (HBV-ACLF),

characterized by an acute deterioration of liver function in the patients with chronic

hepatitis B (CHB), is lack of predicting biomarkers for prognosis. Plasma is an ideal

sample for biomarker discovery due to inexpensive and minimally invasive sampling

and good reproducibility. In this study, immuno-depletion of high-abundance plasma

proteins followed by iTRAQ-based quantitative proteomic approach was employed

to analyze plasma samples from 20 healthy control people, 20 CHB patients and 20

HBV-ACLF patients, respectively. As a result, a total of 427 proteins were identified from

these samples, and 42 proteins were differentially expressed in HBV-ACLF patients

as compared to both CHB patients and healthy controls. According to bioinformatics

analysis results, 6 proteins related to immune response (MMR), inflammatory response

(OPN, HPX), blood coagulation (ATIII) and lipid metabolism (APO-CII, GP73) were

selected as biomarker candidates. Further ELISA analysis confirmed the significant

up-regulation of GP73, MMR, OPN and down-regulation of ATIII, HPX, APO-CII in

HBV-ACLF plasma samples (p < 0.01). Moreover, receiver operating characteristic

(ROC) curve analysis revealed high diagnostic value of these candidates in assessing

HBV-ACLF. In conclusion, present quantitative proteomic study identified 6 novel

HBV-ACLF biomarker candidates and might provide fundamental information for

development of HBV-ACLF biomarker.

Keywords: HBV-ACLF, CHB, iTRAQ, proteomics, biomarker

INTRODUCTION

Acute-on-chronic liver failure (ACLF) is increasingly recognized as an acute deterioration of liver
function combining with liver and multi-organ failures in patients with pre-existing chronic liver
disease, although there is no consensus about its definition (Bernal et al., 2015; Anand and Dhiman,
2016; Arroyo and Jalan, 2016). Hepatitis B virus (HBV) associated ACLF, as a subtype of ACLF, can
develop at any stage in the progression of chronic hepatitis B (CHB) (Zamora Nava et al., 2014).
It is estimated that about 70% of liver failure is caused by HBV infections in the Eastern countries
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(Sarin et al., 2009), and there are approximately 97 million
people suffering from HBV infection in China alone (Cui and
Jia, 2013). HBV-ACLF has a poor prognosis with high mortality
rate (>70%), if emergency liver transplantation is not available
(Marrero et al., 2003). Therefore, it is believed that predicting and
stopping the progression of CHB to ACLF at an early stage may
be the most effective strategy of reducing the mortality of patients
with HBV-ACLF.

Despite a number of scoring systems such as Child-Pugh
score have been used for diagnosis of end-stage liver diseases,
not all of these scores are specifically designed for HBV-
ACLF. So far, various biochemical molecules (e.g., Prealbumin,
Serum ferritin), cytokines (e.g., Interleukin 17, Fibroleukin) and
chemokines (e.g., Macrophage inflammatory protein-3α) have
been evaluated to be novel indicators for HBV-ACLF as reviewed
by Chen et al. (2015). Wan et al. (2015) performed a particle-
enhanced immunonephelometry assay on serum samples from
ACLF patients, and they found that the level of cystain C (CysC)
was significantly higher in the ACLF with kidney failure group
than those in the healthy controls and CHB patients. Their
results suggested that CysC could be considered as a biomarker
for renal dysfunction in ACLF patients. However, no protein
biomarker has reached the clinical setting yet. Considering the
complexity and heterogeneity of HBV-ACLF pathology, it has
been suggested that integrated panel of biomarkers with specific
and complementary functions rather than a single biomarker be
useful in diagnosis of patients with HBV-ACLF.

Unbiased proteomic analysis of plasma samples holds the
promise to discover clinically effective disease biomarkers.
Plasma proteomics is an appealing concept in medicine due
to inexpensive and minimally invasive sampling and good
reproducibility (Harel et al., 2015). Plasma proteins comprise
not only actual plasma proteins that maintain physiological
homeostasis but also low abundance “leakage” proteins from
damaged tissues, which may provide direct information about
the pathology of disease and may serve as clinical biomarkers
for diagnosis and treatment (Lv et al., 2007). Several studies have
successfully applied this strategy to identify biomarkers of liver
disease, includingHepatitis B (He et al., 2003), Hepatitis C (HCV)
associated hepatic fibrosis (Yang et al., 2011) and HBV-associated
hepatocellular carcinoma (HCC) (Niu et al., 2010).

With regard to HBV-ACLF, a study using matrix-assisted
laser desorption/ionization time-of-flight (MALDI-TOF) mass
spectrometry (MS) approach showed that protein profiling was
markedly changed during the progression of CHB to liver
failure and suggested that these dynamic changes can distinguish
different stages of the CHB (Han et al., 2010). Another study
employed two-dimensional gel electrophoresis (2-DE) MS/MS
approach to compared serum samples collected from normal
individuals, CHB patients and HBV-ACLF patients, which
proposed that Alpha-1-acid glycoprotein (A1-AGF) might be
a potential biomarker of ACLF diagnosis for CHB patients

Abbreviations: HBV-ACLF, HBV induced acute-on-chronic liver failure; MMR,

mannose receptor; OPN, osteopontin; HPX, hemopexin; GP73, golgi membrane

protein 1; ATIII, antithrombin-III; APO-CII, apolipoprotein CII; CHB, chronic

hepatitis B; CHC, Chronic hepatitis C.

(Ren et al., 2010). Currently, with the advent of quantitative
proteomic technology, isobaric tagging for relative and absolute
quantitation (iTRAQ) technology makes it possible to quantify
several proteins in a single experiment with improved accuracy
and reproducibility of quantitation (Pierce et al., 2008). Using
this technology, Peng et al. (2013) has identified total of
16 significantly differential proteins in serum from patients
with CHB and patients with HBV-ACLF compared to healthy
controls, and suggested five of those proteins were potentially
associated with progression of hepatitis B and ACLF.

In this study, iTRAQ coupled with LC-MS/MS approach was
utilized to construct the plasma proteome in healthy controls,
patients with CHB and HBV-ACLF to explore disease-associated
alterations of plasma proteins. In addition, we sought to validate
several potential biomarkers that could distinguish ACLF from
both CHB and healthy control by ELISA analysis and subsequent
receiver operating characteristic (ROC) curves analysis. The six
candidates identified in present study can aid clinical biomarker
discovery for HBV-ACLF.

MATERIALS AND METHODS

Human Plasma Sample Collection
Blood samples from healthy people (CON), patients with
chronic hepatitis B (CHB) and patients with HBV induced
acute-on-chronic liver failure (HBV-ACLF) were provided by
Department of Infectious Diseases of Taizhou Hospital of
Zhejiang Province, China (n = 20 per group). The study was
approved by scientific ethics committee (Taizhou hospital of
Zhejiang Province, China). Written informed consent was given
from all participants and legal guardians before commencement
of this study. The diagnoses of HBV-ACLF were based on
criteria previously described (Sarin et al., 2009). Exclusion criteria
included: pregnant or lactating women; liver cancer or suspected
liver cancer; recent infection; use of immune-suppressive agents;
anti-viral therapy, immune disease or malignant tumor; other
types of hepatitis infection and HIV infection patients. Rejection
criteria included: died within 7 days after enrollment, liver
transplantation after enrollment. Information of clinical and
demographic characteristics of patients with CHB, HBV-ACLF
and healthy controls were shown in Table 1. HBV-ACLF
samples were referred to as ACLF in the figure captions.
The collected blood samples were then centrifuged at 3,000
rpm for 10min at room temperature to remove any cells
and debris. Twenty clarified plasma samples of each group
were pooled into 4 samples that contained equal volume of
5 individual plasma samples from each group. As a result,
a total of 60 samples were randomly pooled into 12 pooled
samples.

Plasma Sample Preparation for Proteomic
Analysis
Since disease biomarkers in the plasma are usually covered by
high-abundance proteins, and their signals are weak in the mass
spectrum, removal of high-abundant proteins was performed
using Agilent High-Capacity Human-14 Multiple Affinity
Removal System (MARS Human-14, Agilent, USA) according
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TABLE 1 | Clinical and demographic characteristics of subjects enrolled in this

study.

Variation ACLF (n = 23) CHB (n = 45) CON (n = 20) p-value

Age (year) 45.8 ± 13.3 40.9 ± 10.7 42.7 ± 10.9 0.250

Gender:

male (%)

14 (60.9) 30 (66.7) 12 (60) 0.833

ALT (U/L) 427.2 ± 27.5 422.6 ± 16.4 30.2 ± 1.2 0.042

AST (U/L) 316.4 ± 13.5 189.3 ± 4.4 24.8 ± 0.4 <0.001

TB (µmol/L) 267.2 ± 3.8 37.6 ± 1.4 11.0 ± 0.2 <0.001

HBV-DNA

(log10/mL)

5.4 ± 1.6 5.7 ± 1.4 ND −

HBsAg:

positive (%)

23 (100) 45 (100) ND −

HBeAg:

positive (%)

16 (69.6) 33 (73.3) ND −

ALT, alanine transaminase; AST, glutamic-oxalacetic transaminase; TB, total bilirubin; ND,

not determined.

to the manufacturer’s instructions. Protein concentrations were
determined by tryptophan fluorescence emission at 350 nm using
an excitation wave length of 295 nm (Geiger et al., 2010).
Removal effect was verified by Coomassie-stained gel. Then 100
µg of protein from each pooled sample was processed by the
Filter Assisted Sample Preparation (FASP) method as previously
described (Wiśniewski et al., 2010). Briefly, each sample was
transferred to a 10 kDa filter (Millipore Corporation) and
centrifuged at 14,000 g for 40min at 20◦C. Then, 200 µL of
urea buffer (8M urea, 0.1M Tris-HCl, pH 8.5) was added and
followed by another centrifugation at 15,000 g for 40min. This
step was repeated one more time. The concentrate was then
mixed with 100µL of 50mM iodoacetamide (IAA) in urea buffer
and incubated for an additional 40min at room temperature
in darkness. After that, IAA was removed by centrifugation at
14,000 g for 40min. Next, the sample was diluted with 200 µL
of urea buffer and centrifuged two more times. Then, 200 µL
of 50mM tetraethyl ammonium bromide (TEAB) was added
and the sample was centrifuged at 14,000 g for 40min. This step
was repeated twice. Finally, samples were digested with trypsin
(1:50, enzyme to protein in 50mM TEAB) by incubating at 37◦C
for 16 h.

iTRAQ Labeling of Plasma Samples
Peptides were labeled with iTRAQ reagents according to the
manufacturer’s instructions (AB Sciex, Foster City, CA). To
quantify 12 samples, 2 batches of 8-plex iTRAQ labeling
experiment were performed, with a mixture of 12 samples
in equal amount as a bridge for comparison among different
batches. Each aliquot (50 µg of peptide equivalent) was reacted
with one tube of iTRAQ reagent. After the sample was dissolved
in 15 µL of 0.5M TEAB solution, pH 8.5, the iTRAQ reagent
was dissolved in 50 µL of isopropanol. The mixture was
incubated at room temperature for 2 h. The 8-plex labeled
samples in the same experiment branch was pooled together and
lyophilized.

High pH Reverse Phase Fractionation
(HPRP)
iTRAQ-labeled peptides mixture was fractionated using aWaters
XBridge BEH130 C18 3.5µm 2.1 × 150mm column on
a Agilent 1260 HPLC operating at 0.2 mL/min. Buffer A
consisted of 10mM ammonium formate and buffer B consisted
of 10mM ammonium formate with 90% acetonitrile; both
buffers were adjusted to pH 10 with ammonium hydroxide as
described previously (Wang et al., 2011). A CBS-B programed
multifunction automatic fraction collecting instrument (Huxi
instrument, Shanghai, China) was coupled to the HPLC and used
to collect eluted peptides. A total of 28 fractions were collected
for each peptides mixture, and then concatenated to 14 (pooling
equal interval RPLC fractions). The fractions were dried for nano
LC-MS/MS analysis.

LC-MS/MS Analysis
The reverse phase high-performance liquid chromatography
(RP-HPLC) separation was achieved on the Easy nano-LC system
(Thermo Fisher Scientific) using a self-packed column (75µm
× 150mm; 3µm ReproSil-Pur C18 beads, 120 Å, Dr. Maisch
GmbH, Ammerbuch, Germany) at a flow rate of 300 nL/min.
The mobile phase A of RP-HPLC was 0.1% formic acid in
water, and B was 0.1% formic acid in acetonitrile. The peptides
were eluted using a gradient (2–90% mobile phase B) over a
90min period into a nano-ESI Orbitrap Elite mass spectrometer
(Thermo Fisher Scientific). The mass spectrometer was operated
in data-dependent mode with each full MS scan (m/z 300–
1,500) followed by MS/MS for the 12 most intense ions with
the parameters: ≥ +2 precursor ion charge, 2 Da precursor
ion isolation window, 80 first mass and 38 normalized collision
energy of HCD. Dynamic ExclusionTM was set for 30 s. The full
mass and the subsequent MS/MS analyses were scanned in the
Orbitrap analyzer with R= 60,000 and R= 15,000, respectively.

Database Searching and Analysis
Data were processed by search against the UniProt/SwissProt
Human database (IPI.human.v3.87) using Maxquant (version
1.5.1.0), with default settings including the allowance of
one missed cleavage and 8-plex iTRAQ fixed modifications.
Minimum 7 amino acids for peptide, >2 peptides were
required per protein. For peptide and protein identification, false
discovery rate (FDR) was set to 1%. iTRAQ reporter ion intensity
were used for quantification. By setting the median of intensity
for each channel to equal and matching the distributions of
each treatment iTRAQ reporter group (114, 115, 116, 118, 119,
and 121) to those of the control iTRAQ reporter group (113,
which corresponded to the mixture sample), we able to make
consistent comparisons across different samples obtained from
different iTRAQ 8-plex experiments. The ratio was restored to
the intensity by multiplying the median of intensity of the first
channel 113 (MIX1).

Bioinformatics Analysis
Functional enrichment analysis of Gene Ontology (GO) of
biological process, molecular function, and cellular component
was performed using DAVID Bioinformatics Resources version
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6.7. The protein-protein interaction (PPI) network analysis of
differentially expressed proteins was performed using STRING
(https://www.string-db.org/). And the PPI network was further
processed by Cytoscape software.

Elisa Assay
The expression levels of selected biomarkers were measured in
plasma samples from 20 healthy controls, 45 CHB patients and
23 HBV-ACLF patients using ELISA quantitation kits (APO-
CII, GP73, OPN, MMR, HPX purchased from RayBiotech; ATIII
purchased from R&D systems, UK). The experimental methods
were carried out according to the manufacturer’s instructions.

Evaluation of the Diagnostic Accuracy
Mathematical models for separation of HBV-ACLF from CHB
patients were performed on ELISA results of 6 candidate
biomarkers using SPSS 19.0 software (Chicago, IL, USA). The
diagnostic score of CHB patient was set as “0,” while that of
ALCF patient was set as “1.” The forward stepwise multivariate
regression analysis was conducted to determine which proteins
should be included or excluded from the diagnostic model. The
global performances of the model and individual biomarkers
were evaluated by constructing receiver operating characteristic
(ROC) curves and calculating the area under the curve (AUC)
values.

Statistical Analysis
One way analysis of variance (ANOVA) and Tukey’s honestly
significant difference (HSD) test was performed with language
R. p-value <0.05 was defined as statistically significant. Clinical
chemistry data are expressed as mean ± SEM. Hierarchical
clustering of proteins was performed on logarithmized data,
using Euclidean distances and Ward clustering method using
Package of “pheatmap” in language R. Correlation between
samples was analyzed using Spearman’s rank correlation
coefficient.

RESULTS

Identification of Significantly Changed
Proteins in CHB and HBV-ACLF Groups
In this study, plasma samples from healthy control, CHB
and HBV-ACLF patients were subjected to LC-MS/MS analysis
following removal of high abundance protein, FASP preparation,
tryptic digestion and iTRAQ labeling. The experimental
workflow is illustrated in Figure 1. iTRAQ 113 and 117 were used
to label the mixture of all samples as a reference pool in different
sets, thus allowing for cross-set comparison (Song et al., 2008).

With the false discovery rate (FDR) <1%, 397 and 396
proteins were identified in the 8-plex iTRAQ data set 1
and 2, respectively, resulting in a total of 427 proteins
identified (Table S1). Of which, 364 non-redundant proteins
were commonly identified across all samples by these two
iTRAQ experiments. The quality of the proteomic dataset
and instrumental reproducibility was evaluated. As shown in
Figure 2A, the box plot analysis showed that the log2 protein
intensity medians of all 12 pooled samples were about 1.25,

almost at the same levels across all the samples, suggesting
that there were no biases toward any samples. In addition,
correlation analysis was performed on intensities between
biological replicates inside each cohort or between different
cohorts. Figure 2B showed that all of correlation coefficients
between each two samples were higher than 0.86, demonstrating
good reproducibility of biological replicates. Taken together,
these results suggest that the iTRAQ-MS/MS analysis yielded a
high quality reproducible dataset.

Filtering the iTRAQ data set using criteria of p-value < 0.05
and fold change >2, we identified a total of 149 significantly
changed proteins through comparing each two groups. A full list
of all significantly differential proteins is given in Table S2.

A heatmap analysis of 149 differential proteins using an
unsupervised hierarchical clustering and correlation distance
metric was generated to depict the change of expression level
in different groups (Figure 2C). As the dendrogram indicated,
CON, CHB and HBV-ACLF group samples formed three distinct
clusters and the individuals within each group displayed the
closest relationship.

Venn diagrams displayed unique and overlapping differential
proteins in CHB andHBV-ACLF as compared to CON. As shown
in Figure 2D, 3 overlapping differential proteins were identified
by comparison of each two groups. There were 143 proteins
differentially expressed between HBV-ACLF and CON, of which
42 were significantly changed when HBV-ACLF was compared to
both CON and CHB. There were only 13 proteins differentially
expressed between CHB and CON.

Bioinformatics Analysis of Differentially
Expressed Proteins
To understand biological significance regarding to differentially
expressed proteins in HBV-ACLF patients, the cellular
component, molecular function and biological process of
the 143 proteins were explored by Gene Ontology (GO)
annotation (Table S3). In the cellular component category of
GO, the most over-represented term is high-density lipoprotein
particle (Figure 3A) and the most significant molecular function
is endopeptidase inhibitor activity (Figure 3B). The top 3
biological processes terms were regulation of endopeptidase
activity, platelet degranulation and regulation of complement
activation. Other important biological processes such as
regulation of fibrinolysis, complement activation, immune
response and inflammatory response were also over-represented
(Figure 3C).

To understand functional relationship among the 42
differential proteins between CHB and HBV-ACLF groups,
protein protein interaction (PPI) network based on STRING
action scores was illustrated. The annotations of biological
processes based on GO analysis were also indicated in this
view. PPI analysis showed a complex network with several
distinct biological subgroups that contained highly connected
proteins. As shown in Figure 3D, proteins involved in immune
response, inflammatory response, blood coagulation and lipid
metabolism were highly connected with each other, indicating
that functional network of these processes contribute to
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FIGURE 1 | Workflow chart of the proteomic study. Twelve pooled plasma samples (pooled from n = 5) from 20 healthy controls, 20 CHB patients and 20 ACLF

patients were subjected to removal of high abundant proteins. Then equal amounts of proteins from each sample were digested with trypsin. Resultant peptides were

processed 8-plex iTRAQ labeling, HPRP fractionation and subsequent LC-MS/MS analysis. Bioinformatics analysis was performed using Uniprot and STRING

database. The plasma levels of candidate proteins were further verified by ELISA assay and diagnostic value of these biomarkers were assessed by forward stepwise

logistic regression analysis and ROC curve analysis.

HBV-ACLF pathophysiology. Based on promising reports from
literature, 6 proteins antithrombin-III (ATIII), mannose receptor
(MMR), golgi membrane protein 1 (GP73), osteopontin (OPN),
apolipoprotein CII (APO-CII), hemopexin (HPX) involved in
biological processes mentioned above were selected for further
verification.

Evaluation of Six Selected Proteins as
Biomarker Candidates
To verify whether alterations of 6 selected candidates are reliably
presented in clinical samples, we performed an ELISA assay to
measure protein levels in plasma samples from healthy controls
(CON, n = 20), CHB patients (CHB, n = 45), HBV-ACLF
patients (ACLF, n= 23). The results showed significant elevation
of GP73, MMR, and OPN (p < 0.01) and significant reduction of

ATIII, HPX, APO-CII expression levels (p < 0.01) in the HBV-
ACLF group as compared to both CHB and CON groups. In
addition, significant differences in GP73 and MMR levels were
also observed between the CHB and CON groups (p < 0.01).
These results are consistent with the data obtained from the
proteomic studies (Figure 4A).

Subsequently, the diagnostic values of 6 candidates were
analyzed by forward stepwise multivariate regression. The result
showed that MMR and ATIII were included in this logistic
regression model as below (e is the mathematical constant and
base value of natural logarithms):

P = e−0.0496+0.006MMR−0.176ATIII/1+ e−0.0496+0.006MMR−0.176ATIII

Odds ratios of MMR and ATIII in the diagnostic model were
1.006 and 0.839 respectively. Furthermore, receiver operating
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FIGURE 2 | Identification of total proteins and differentially expressed proteins. (A) Box plots of log2 protein intensity average for each sample. (B) Correlation analysis

between each two samples. Rows and columns represent samples, and each square shows the correlation coefficients between two samples. ***p < 0.001

comparing intensity of each two samples. (C) Heatmap of the significantly changed proteins. Rows represent proteins and columns represent different samples. Color

of each cell represents expression change of proteins, red is increased and blue is decreased relative to control group. (D) Venn diagram shows the overlap of

differential proteins between comparison of each two groups.

characteristic (ROC) curve was exploited based on the results
of the area under the curve (AUC), sensitivity and specificity.
Figures 4B,C and Table 2 showed the results of ROC analysis
of individual biomarkers and the combined biomarker model
for discriminating liver failure patients from CHB patients. The
AUC of the combined biomarker model ATIII+MMRwas 0.993,
higher than any other individual biomarkers, indicating the
combination of ATIII and MMR can effectively discriminate the
HBV-ACLF patients from CHB patients.

DISCUSSION

To our knowledge, there are two representative ACLF definitions
proposed by the Asia-Pacific Association for the Study of the
Liver (APASL) and the American Association for the Study of
Liver Disease and the European Association for the Study of
the Liver (AASLD/EASL) (Kim and Kim, 2013). The APASL
focused on the occurrence of complication such as ascites and
encephalopathy within 4 weeks in patients with chronic liver

disease (Sarin et al., 2009), whereas the other one emphasized
the occurrence of multi-organ failure and 3 months mortality
(Olson and Kamath, 2011). However, most researchers agree that
the concept of ACLF should include: acute deterioration of pre-
existing chronic liver disease, multi-system organ failure and
with a mortality ≥15% at day 28 (Kim and Kim, 2013; Blasco-
Algora et al., 2015). Unfortunately, there is a lack of biomarker
highly sensitive and minimally invasive to predict ACLF in CHB
patients. In this study, plasma proteome profiling of healthy
controls, CHB patients and HBV-ACLF patients was established
by iTRAQ-based proteomic analysis, aiming to search novel
diagnostic biomarkers of HBV-ACLF. We identified 6 candidates
with strong biological relevance to HBV-ACLF pathogenesis and
further confirmed their change of plasma levels in 68 subjects
using ELISA assay.

Demographic information exhibited that approximately 60%
patients are male in either CHB or ACLF group as shown in
Table 1. This result was consistent with the study from Rifai et al.
(2012). They found that significantly more males than females
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FIGURE 3 | Bioinformatics analysis of differentially expressed proteins. All of 147 proteins were functionally annotated in according to their cellular component (A),

molecular function (B), and biological process (C). The x axis represent the negative log of p-value. Digits mentioned inside each bar represent the number of proteins

involved in each GO term. (D) Protein-protein interaction analysis of 42 differential proteins between CHB and HBV-ACLF using STRING database. Interactions

between two proteins were indicated with gray edges. Color of node indicates fold change in ACLF. Green represents down-regulated protein and red represents

up-regulated protein. Manual functional annotations based on GO analysis were shown.

underwent liver transplantation for CHB. There may be a gender
difference with more men susceptible to HBV infection and
developing to end-stage liver disease, which could be attribute to
sex hormone effects on HBV transcription and immune response
to HBV infection (Wang et al., 2015).

Individual variations among patients make a big challenge
for applications of conventional proteomics. This issue has
been addressed in plasma proteomic studies (Zhou et al.,
2012). In the present study, particularly, each 5 plasma samples
in the same group were randomly pooled to minimize the
individual variations (Schisterman and Vexler, 2008). Plasma has
been widely used in proteomic study for biomarker discover.
However, the large dynamic range of protein concentrations in
plasma samples exceeds the analytical capabilities of traditional
proteomic methods, making those lower abundance plasma
proteins undetectable (Pernemalm and Lehtiö, 2014). Therefore,
we firstly conducted removal of high-abundance proteins (such
as Albumin and IgG) using immune affinity-based depletion
method to improve depth of detection in plasma sample. In doing

so, a total of 427 proteins were identified across all samples.
We found that more extensive molecular response was occurred
in progression of ACLF (143 altered proteins as compared to
healthy control) than in that of CHB (13 altered proteins as
compared to healthy control).

Accurate diagnostic prediction is critical for distinguishing
CHB patients who require transplantation from those who will
survive following intensive medical care alone. Current Venn
diagram revealed that expression of 42 proteins were changed
significantly when HBV-ACLF group were compared with both
healthy control and CHB groups, indicating these proteins
may be helpful in identifying biomarkers for discriminating
HBV-ACLF from CHB patients. Analysis of the protein-protein
interaction of 42 proteins revealed that these proteins connected
each other to regulate distinct biological process, including
immune response, inflammatory response, blood coagulation,
and lipid metabolic process.

It is well accepted that ACLF is an exaggerated systemic
inflammatory response in context of immune dysregulation.
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FIGURE 4 | Evaluation of plasma levels of 6 candidate proteins in healthy controls, CHB patients and HBV-ACLF patients using ELISA assay. (A) Plasma levels of six

candidates (ATIII, HPX, APO-CII, GP73, MMR, and OPN) in different groups were analysis by ELISA assay. Median values were shown with a horizontal line. *p < 0.01,

Upper panel indicates protein intensity of each candidate obtained from iTRAQ-proteomic analysis. (B) ROC curve analysis of the 6 individual biomarkers. (C) ROC

curve analysis of the combination of ATIII and MMR.
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TABLE 2 | ROC analysis of individual biomarkers and combined diagnostic model.

Proteins AUC 95% CI Sensitivity (%) Specificity (%)

GP73 0.91 0.81–0.96 100.00 75.56

HPX 0.86 0.75–0.93 73.91 90.91

MMR 0.96 0.88–0.99 82.61 95.56

OPN 0.96 0.87–0.99 100.00 88.64

ATIII 0.96 0.89–0.99 91.30 88.89

APO-CII 0.72 0.60–0.82 90.91 50.00

MMR+ATIII 0.99 0.93–1.00 100.00 97.78

The inflammation may also result in the unbalance of pro-
thrombotic and anti-thrombotic states that may be manifested
by either bleeding or thrombotic complications (Blasco-Algora
et al., 2015). Since these biological processes are closely related
to ACLF pathology, we considered 6 proteins (MMR, OPN,
HPX, GP73, ATIII, and APO-CII) involved in these processes as
potential biomarkers for diagnosis of HBV-ACLF and the clinical
relevance of these proteins was further confirmed by ELISA
assay. Subsequent ROC analysis indicated that these candidates,
especially combination of MMR and ATIII, have good sensitivity
and specificity in predicting HBV-ACLF.

Mannose receptor (MMR) locates on the surface of various
cell types such as macrophages and dendritic cells (Martinez-
Pomares, 2012). As a pattern recognition receptor, MMR binds
and internalizes the glycoproteins from various pathogens (e.g.,
virus, bacteria and parasites) (Stahl and Ezekowitz, 1998), thus
playing an important role in innate and adaptive immune
response (Apostolopoulos and McKenzie, 2001). Another
function of the MMR is to eliminate inflammatory agents
released into the circulation during the inflammatory response
(Lee et al., 2002). It has been reported that the concentration
of soluble MMR (sMR) in serum from CHC patients with
cirrhosis was higher than that with mild hepatic fibrosis patients
(Andersen et al., 2014). Similarly, our study showed that levels
of plasma MMR in HBV-ACLF patients were higher than CHB
patients and healthy controls. It can be speculated that MMR-
mediated immune and inflammatory response was dramatically
triggered in context of HBV-ACLF.

Osteopontin (OPN), as a phosphorylated integrin-binding
protein, has been implicated in many distinct pathophysiological
processes including wound healing, bone turnover and
tumorigenesis. Particularly, its roles in immune response and
inflammation have been extensively studied (Rittling and Singh,
2015). OPN contributes to development of immune-mediated
and inflammatory disease by promoting inflammatory cells
recruitment (Apte et al., 2005), enhancing B cell proliferation
(Wang and Denhardt, 2008) and suppressing apoptosis of
immune cells (Denhardt et al., 2001). Several studies have shown
that expression level of OPN was positively associated with CHB,
CHC, alcoholic liver disease, fibrosis and HCC (Nagoshi, 2014;
Fouad et al., 2015; Duarte-Salles et al., 2016). Recent studies
reported remarkable elevation of serum OPN concentration in
fulminant hepatic failure (FHF) patients and acute liver failure
patients (Arai et al., 2006; Srungaram et al., 2015). Consistent
with these findings, this study showed that level of plasma OPN

was significantly elevated in HBV-ACLF groups as compared
to CHB and healthy control groups, and this up-regulation of
OPN may aggravate hepatic inflammation of CHB patients in
progression to ACLF.

Hemopexin (HPX), as an acute phase glycoprotein, can bind
heme with high affinity (Paoli et al., 1999), and the resultant
Heme-HPX complex can be taken up by liver, protecting the
body against free heme-induced oxidative damage (Hvidberg
et al., 2005). Recent study reported anti-inflammatory function
of HPX through its ability to regulate the pro-inflammatory
cytokines and infiltration of Th17 cell (Liang et al., 2009).
Xu et al. (2014) concluded that serum HPX concentration is
negatively associated with severity of rat acute rejection after liver
allograft. In addition, decrease of of HPX level was also observed
in rat model of liver fibrosis induced by carbon tetrachloride
(CCl4) (Zhang et al., 2015). In present study, plasma HPX level
was significantly reduced in HBV-ACLF patients compared to
CHB patients and healthy controls. Low HPX level may be
attribute to impaired function of hepatocyte that is principal site
of HPX synthesis, and decreased HPX may further aggravate
liver damage. However, the role of HPX in pathogenesis of
HBV-ACLF remains elusive to contradictory results reported
by Lu et al. (2010), where up-regulation of HPX level was
observed in plasma sample fromHBV infected patients with liver
fibrosis.

Golgi membrane protein 1 (GP73), as a type II Golgi
membrane protein with unknown function, mainly presents
in biliary epithelial cell and is rarely expressed in normal
hepatocytes (Ba et al., 2012). However, serum GP73 levels are
dramatically elevated in context of various types of liver disease
such as viral infection (HBV, HCV), alcohol-induced liver disease
(Kladney et al., 2002), cirrhosis (Iftikhar et al., 2004), or HCC
(Gao et al., 2015; Sai et al., 2015; Zhang et al., 2016). Wei
et al. (2014) revealed that expression level of serum GP73 was
significantly up-regulated in patient with HBV-ACLF compared
to HCC patients, CHB patients, and healthy controls, supporting
our present result. Biological significance of GP73 elevation
requires further study.

One of the typical clinical characteristics of liver failure
is coagulation dysfunction because of the dysregulated
production of coagulation factors and anti-coagulation
factors. Antithrombin-III (ATIII), exclusively synthesized
by hepatocytes, is a natural anticoagulant that inactivates
several enzymes of coagulation system (Castelino and Salem,
1997). It was reported that ATIII levels are reduced in various
liver disorders, such as cirrhosis, hepatitis and the fatty
liver of pregnancy (Castelino and Salem, 1997). Tischendorf
et al. (2016) suggested that reduced activity of ATIII was
independent predictors of hepatic encephalopathy in patients
with liver cirrhosis. Evaluating 158 HCC patients subjected to
hepatectomy, Mizuguchi et al. (2012) demonstrated the decrease
of serum ATIII as a useful predictor for postoperative liver
dysfunction post hepatectomy. Similar conclusion was also
yielded by Kuroda et al. (2015). In line with these findings,
plasma ATIII level was significantly reduced in HBV-ACLF
patients group.

Liver is the primary site of production for apolipoproteins
that is responsible for the maintenance of lipoproteins and
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lipid metabolism (Bell, 1979). Apolipoprotein CII (APO-
CII), together with APO-CI and APO-CIII are constituents
of chylomicrons, very low-density lipoprotein (VLDL), and
high-density lipoprotein (HDL) in blood circulation. APO-
CII regulates triglyceride metabolism through interact with
lipoprotein lipase (LPL), a enzyme for hydrolysis and clearance
of triglycerides from VLDL and chylomicrons (Jong et al.,
1999). However, both an excess and a lack of APO-CII inhibit
LPL activity and thus result in hypertriglyceridemia (Kei et al.,
2012). Song et al. (2012) concluded that reduced serum APO-
CII and APO-CIII were associated with aberrant biliary cycle,
and considered APO-CII and APO-CIII as potential biomarker
for diagnosis of biliary atresia. Trieb et al. (2016) found that
decrease of serum APO-CIII level was associated with cirrhosis
mortality. However, the relationship between APO-CII and liver
damage such as ACLF has not been reported. Previous study has
suggested that APO-CII levels would not be affected in most
patients with liver disease, despite a down-regulation of APO-
CIII levels (Koga et al., 1984). Our study showed that the plasma
concentration of APO-CII was reduced in HBV-ACLF patients
compared to both CHB patients and healthy controls, which may
reflect impairment of lipid metabolism in HBV-ACLF disease.

According to the previous proteomic study reported by Peng
et al. (2013), there were 16 proteins differentially expressed
in CHB and ACLF patients. We did the comparison of our
differentially expressed proteins with their 16 proteins, and
three proteins were overlapped, including vitronectin (VTN), C-
reactive protein (CRP) and platelet factor 4 (PF4). In their study,
vitronectin (VTN) showed 1.23- and 2.14-fold down-regulation
in CHB and ACLF patients, respectively, and this protein was
also down-regulated in our dataset with the ratio of CHB/CON
= 0.73 in CHB patients and the ratio of ACLF/CON = 0.48
in ACLF patients (Table S2). As a cell adhesion and spreading
factor found in serum and tissues, VTN was reported that
its plasma level dramatically decreased in chronic liver disease
(Tomihira, 1991; Kobayashi et al., 1994). In Peng et al.’s study,
pro-inflammatory protein C-reactive protein (CRP) was 2.46-
fold down-regulated and 4.59-fold up-regulated in CHB and
ACLF patients, respectively, and our data demonstrated that
CRP was up-regulated with the ratio of CHB/CON = 1.97 in
CHB patients and the ratio of ACLF/CON = 5.43 in ACLF
patients. Platelet factor 4 (PF4) was down-regulated with 1.15-
and 1.87-fold in CHB and ACLF patients respectively, and our
data is consistent with theirs with the ratio of CHB/CON =

0.21 in CHB patients and the ratio of ACLF/CON = 0.12 in
ACLF patients. Thus, the similar tendency of these three proteins
between Peng et al.’s study and ours suggested that the potential
clinical application of these proteins for HBV-ACLF diagnosis
can be further investigated.

In summary, this study employed an iTRAQ-based

quantitative proteomic approach to identify plasma biomarkers

for HBV-ACLF diagnosis. Based on protein-protein interaction
analysis, we focused on 6 differentially expressed proteins
involved in inflammation, immune response, blood coagulation
and lipid metabolism. And the following ELISA analysis of
plasma samples from patient cohorts further confirmed the
up-regulation of GP73, MMR, OPN and the down-regulation of
ATIII, HPX, APO-CII in HBV-ACLF patients. These proteins
were involved in the key pathological processes on acute
occurrence of complication or multi-organ failure in the
progression of ACLF. So we believed that these proteins can be
considered as the potential biomarkers for HBV-ACLF diagnosis.
However, more confirmatory studies are required with hope that
theses candidate biomarkers can be applied to routine clinical
practice.
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Glyphosate (N-phosphonomethyl-glycine, GLP) is the most popular herbicide used

worldwide. This study aimed to investigate the effects of glyphosate on rats’ liver function

and induction of pathological changes in ion levels and oxidative stress in hepatic tissue.

Sprague-Dawley rats were treated orally with 0, 5, 50, and 500 mg/kg body weight of the

GLP. After 5 weeks of treatment, blood and liver samples were analyzed for biochemical

and histomorphological parameters. The various mineral elements content in the organs

of the rats were also measured. Significant decreases were shown in the weights of

body, liver, kidney and spleen between the control and treatment groups. Changes

also happened in the histomorphology of the liver and kidney tissue of GLP-treated

rats. The GLP resulted in an elevated level of glutamic-oxalacetic transaminase (GOT),

glutamic-pyruvic transaminase (GPT) and IL-1β in the serum. Besides, decreased total

superoxide dismutase (T-SOD) activity and increased malondialdehyde (MDA) contents

in the serum, liver, and kidney indicated the presence of oxidative stress. Moreover,

increase of hydrogen peroxide (H2O2) level and catalase (CAT) activity in the serum and

liver and decrease of glutathione (GSH) and lutathione peroxidase (GSH-Px) activity in the

kidney tissue further confirmed the occurrence of oxidative stress. The results of RT-PCR

showed that the mRNA expressions of IL-1α, IL-1β, IL-6, MAPK3, NF-κB, SIRT1,

TNF-α, Keap1, GPX2, and Caspase-3 were significantly increased in the GLP-treated

groups compared to the control group. Furthermore, PPARα, DGAT, SREBP1c, and

SCD1 mRNA expressions were also remarkably increased in the GLP-treated groups

compared to the control group. In addition, aluminum (Al), iron (Fe), copper (Cu), zinc (Zn),

and magnesium (Mg) levels were showed a significant difference reduction or increase

in rat liver, kidney, spleen, lung, heart, muscle, brain, and fat tissues. These results

suggested that glyphosate caused obvious damage to rats’ liver and caused various

mineral elements content imbalances in various organs of rats. Ion imbalance could

weaken antioxidant capacity and involve in the mechanism of liver oxidative damage

caused by GLP.
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INTRODUCTION

Glyphosate (GLP) is a non-selective, post-emergence herbicide
used for weed control in various crops, especially in rice, maize
and soybean (Coutinho et al., 2005). Eighty percent of genetically
modified crops were GLP-resistant plants, such as corn, soy,
cotton and canola and so on (Williams et al., 2000). American
farmers have widely used anti-GLP crops since 1996 (Frisvold
et al., 2010). It means there will be much more glyphosate in
soil and water environment. Study has reported that GLP and
its metabolite such as aminomethylphosphonic acid (AMPA) and
formaldehyde were found in the soil and rivers (Temple and
Smith, 1992). It has been extensively demonstrated that exposure
to GLP leads to oxidative stress in several tissue, including
the livers and kidneys (Beuret et al., 2005; El-Shenawy, 2009;
Modesto and Martinez, 2010; Larsen et al., 2012; Cattani et al.,
2014).

GLP can chelate the iron (Fe) and aluminum (Al), which
interferes with ion assimilation in the plant (Eker et al., 2006;
Bellaloui et al., 2009). GLP also change the ion levels in fish by
chelated with them (Ayoola, 2008; Samsel and Seneff, 2013). Al is
widespread in soil, water, and air, and is also the most widely used
metal by humans (Kumar and Gill, 2009). Al is mainly absorbed
by the gastrointestinal tract and easily accumulates in liver
cells and organelles (e.g., macrophages and lysosomes) (Krewski
et al., 2007; Kumar and Gill, 2009). Some scholars believe
that Al accumulation does not causes significant hepatotoxicity,
because it can be eliminated by hepatocytes (Li et al., 2011).
However, most studies reported that Al causes central nervous
system toxicity, hepatotoxicity, nephrotoxicity, cardiotoxicity
and osteoporosis to body tissue (Crisponi et al., 2013; Geyikoglu
et al., 2013). Iron (Fe) is not only an important micronutrient,
but also a redox reaction of the biocatalyst, and when the
transition metal reaches the transition level, is conducive to the
production of reactive oxygen species (Aust et al., 1985). Zinc
(Zn) as an antioxidant, involved in cell membrane stabilization,
copper/zinc superoxide dismutase (Cu/Zn SOD) structure and
metallothionein induction. Zn deficiency can damage the oxidant
defense system and cause oxidative damage to cells or tissue
(Oteiza et al., 1999). Therefore, it is important to study whether
GLP can effects the ion content in the liver and other organs
of rats.

The aim of this study was designed to evaluate liver
histomorphological changes, oxidant/antioxidant status, levels
of inflammatory markers, lipid metabolism factors, and to
investigate ion levels of Al, Fe, Cu, Zn, and Mg ion levels in GLP-
exposed rats’ liver tissues. The specific mechanism between liver
and other organs damage and ion imbalance need to be further
studied.

MATERIALS AND METHODS

Chemicals
Glyphosate, N-(phosphonomethy) glycine (GLP), was purchased
from Shanghai Ryon Biological Technology Co. Ltd (Shanghai,
China).

Animals and Ethic Statement
Eight week-of-age male Sprague-Dawley rats weighting
180–220 g were purchased from the Nanjing Qinglongshan
Experimental Animal Center (Nanjing, China). Prior to
experiment, all rats were allowed to acclimate for at least 1 week.
All rats were housed in separate cages under environmental
conditions (23 ± 2◦C, 50 ± 10% relative humidity, 12-h light:
dark cycle) and had unrestricted access to food and water
throughout the period of the study. Animal care and use were
conducted in accordance with the National Institute of Health
Guidelines for Animal Care and the Committee of Animal
Research Institute, Nanjing Agricultural University, China. At
the same time, the study also received ethical approval from the
committee.

Animal Treatment and Sample Collection
Rats were randomly assigned to 4 groups (n = 8/group). The
rats were orally administered with glyphosate (5, 50, and 500
mg/kg body weight) daily for 35 days at 9 AM. Glyphosate
dose selection was according to GLP no-observed adverse effect
level (NOAEL) of 1,000 mg/kg/day for developmental toxicity
(Williams et al., 2000) and equivalent to 1/1,000, 1/100, and
1/10 of LD 50 in rats (Larini, 1999; Benedetti et al., 2004). GLP
was orally administered at a volume of 0.5 ml/kg. Rats orally
administered with distilled water were used as the control group.
Twenty four hours after the last gavage, rats were weighed and
decapitated. Blood samples were collected from the jugular vein
and placed at 37◦C for 1 h before being centrifuged (3,500 rpm,
15min, 4◦C) for biochemical assays. The liver, kidney, spleen,
heart, lungs, brain, adrenal glands, muscle and fat tissue were
collected, rinsed twice in phosphate-buffered saline (PBS pH 7.4),
use the filter paper to dry the PBS and then accurately weigh and
weighed for further examinations. One piece of liver and right
kidney was used for morphometric analysis and another piece
was used to prepare homogenates for analyses of tissue oxidative
indexes, or frozen in liquid nitrogen for subsequent qualitative
reverse transcription polymerase chain reaction (RT-PCR). The
organ index is calculated as follows:

Organ index (g/gBW)

= Organ absolute weight (g)/Body weight (g)× 100%

Histological Preparation
Samples of tissue (livers and kidneys) were obtained from
the animals and fixed in 4% formaldehyde solution for 24 h
then dehydrated in an ascending series of alcohol, clarified
using xylene, and embedded in paraffin. Paraffin were sectioned
into 5µm slices and stained with hematoxylin-eosin (HE) for
microscopic examination. The score system was used to evaluate
the hepatic and renal damages (Ishak et al., 1995; Zheng et al.,
2005; Klopfleisch, 2013). Briefly, the scores of liver sections
graded on a 0–4 scale for lobular inflammation, focal necrosis and
mononuclear cell infiltration, and kidney graded on a 0–4 scale
for proximal and distal tubular necrosis, glomerular cellularity,
and glomerular necrosis (where 0 represents no abnormality, and
1, 2, 3, and 4 represent mild, moderate, moderately severe, and
severe abnormalities, respectively).

Frontiers in Physiology | www.frontiersin.org 2 December 2017 | Volume 8 | Article 1083139

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Tang et al. Ion Imbalance Caused by Glyphosate

Biochemical Evaluation
For enzymes determination, the suspension of liver, kidney and
the blood samples were centrifuged at 3,500 rpm for 15min. The
homogenate and serumwere collected and used for liver function
assessment including measurements of the enzymes glutamic-
oxalacetic transaminase (GOT), glutamic-pyruvic transaminase
(GPT), total superoxide dismutase (T-SOD), malondialdehyde
(MDA), hydrogen peroxide (H2O2), catalase (CAT), glutathione
(GSH), glutathione peroxidase (GSH-Px). The activities of
SOD, H2O2, CAT, GSH, GSH-Px, and the content of MDA
were assayed using commercial reagent kits obtained from
the Institute of Biological Engineering of Nanjing Jiancheng
(Nanjing, China) following the manufacturer’s instructions. All
operations were done at 4◦C.

Analyses of the SOD activity was based on SOD-mediated
inhibition of nitrite formation from hydroxyammonium in the
presence of O2−generators (xanthine/xanthine oxidase) (Elstner
and Heupel, 1976). The total SOD activity expressed as U/mg
protein. MDA was evaluated by thiobarbituric acid reactive
substances method (TBARS) and expressed as nmol/mg protein
(Draper andHadley, 1990). GSH-PX activity was estimated by the
analysis of reduced GSH in the enzymatic reaction (Sedlak and
Lindsay, 1968). GSH-PX activity was expressed as U/mg protein.
CAT activity was assayed by the method developed by Aebi
(Aebi, 1984), and calculated as nM H2O2 consumed/min/mg of
tissue protein. Protein concentrations in the supernatant were
measured according to the Coomassie Brilliant Blue method. The
activity of serum GOT and GPT was assayed according to the
method that usually used in clinical examination (Reitman and
Frankel, 1957).

Serum Cytokine Measures
Serum levels of IL-1β and IL-6 were determined using a
commercially available enzyme-linked immunosorbent assay
(ELISA) kit purchased from R&D Systems (Shanghai, China).
The results were expressed as pg/mL.

Quantitative RT-PCR (qRT-PCR) Analysis
Total RNA was extracted from the tissue using the reagent box
of Total RNA Kit (Invitrogen, Carlsbad, CA, US), according
to the manufacturer’s instructions. The concentration of RNA
was measured by using a spectrophotometer and the purity
was ascertained by the A 260/A 280 ratio with a Nanodrop R©

8000. Total RNA from each sample was reverse transcribed to
cDNA with an Omniscript R© Reverse Transcription kit (Takara)
with Oligo-dT primers (Takara) according to the manufacturer’s
instructions and used for RT-PCR. The target fragments were
quantified by real-time PCR using a QuantiTectTMSYBR
Green R© PCR Kit (Roche) with 100 ng of the cDNA template.
Each sample was tested in duplicate. The gene expression
data were normalized to β-actin expression. The primers used
correspond to the rat sequences shown in Table 1; primer
design was done using Amplify software (TaKaRa, Nanjing,
China). For each real-time PCR assay, the threshold cycle Ct
was determined for each reaction. Ct values for each gene
of interest were normalized to the housekeeping gene (β-
action); PCR amplification efficiencies were taken into account

by amplifying various amounts of target cDNA for each reaction.
The fold differences in mRNA expression of samples were
relative to the internal control sample, which was included in
all runs.

Ion Concentration
The concentrations of Al, Fe, Cu, Zn, and Mg in the liver, kidney,
spleen, lung, heart, muscle, brain, and fat tissue were determined
by inductively coupled plasma optical emission spectrometry
(Optima 2100 DV; Perkin Elmer, Waltham, MA) using nitric
acid–perchloric acid–based wet digestion. Approximately 200
µl or 0.5 g of each sample was digested with nitric acid (75%)
and perchloric acid (25%) in a microwave digester (MDS- 81D;
CEM Corp., Matthews, NC). We have used the same part of
organ from the control and treated animals and accurately
weighed.

Statistical Analysis
The data were expressed as mean ± standard error of the
mean (SEM) and were analyzed by one-way analysis of variance
(ANOVA), followed by Dunnett’s multiple comparison tests,
which was performed with GraphPad Prismsoftware (GraphPad
Software, San Diego, CA, USA). Differences were considered to
be statistically significant when the p level was less than 0.05.

RESULTS

Body and Organ Weights
After administration of GLP, there was a significant distinction
in rat body weight between the control group and the 500 mg/kg
GLP group (p < 0.05, Table 2). The body weight gain decreased
significantly in 50 mg/kg and 500 mg/kg GLP treatment groups
compared with the control group (p < 0.05). Significant
difference was also observed in the average-day-gain and average
daily feed intake in GLP treatment groups compared with the
control group (p < 0.05). Both of the absolute organ weight or
the relative organ weight for liver, spleen and kidney showed
a significant decrease in the 500 mg/kg GLP group (p < 0.05,
Table 2), which suggested that GLP manifest toxicity principally
toward growth and development at the studied dosages.

Histopathologic Evaluation
The liver and kidney histopathological changes were showed
in Figure 1. The control rats showed hepatic lobules consisting
of a central vein surrounded by radiating hepatocytes which
were separated and did not exhibit any damage in the tissue
(Figure 1A). By contrast, the liver sections of GLP-treated
rats showed apoptosis of some hepatocyte, focal necrosis and
mononuclear cell infiltration in liver tissue. Compared with the
control group, after 5 mg/kg of GLP exposure, the rats showed
mild periportal expansion and apoptosis of some hepatocyte
(Figure 1B). In comparison, the livers of rats in the 50 mg/kg and
500 mg/kg GLP-treated groups demonstrated greater levels of
structural disorder, apoptosis of some hepatocyte and monocyte
infiltration (Figures 1C,D).

The HE staining of renal tissue in control rats demonstrated
overall integrity of glomerulus surrounded by Bowman capsule
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TABLE 1 | Primers used for quantitative real-time PCR.

Gene symbol Accession No. Primer sequence (5′ to 3′) Product size (bp) 40 PCR cycles

IL-1α NM_017019.1 F: GAGTCGGCAAAGAAATCAAGA 112 95◦C for 15 s 60◦C for 30 s 72◦C for 30 s

R: TTCAGAGACAGATGGTCAATGG

IL-1β NM_031512.2 F: GCCAACAAGTGGTATTCTCCA 120 95◦C for 15 s 60◦C for 30 s 72◦C for 30 s

R: TGCCGTCTTTCATCACACAG

IL-6 NM_012589.2 F: AGTTGCCTTCTTGGGACTGA 102 95◦C for 15 s 60◦C for 30 s 72◦C for 30 s

R: ACTGGTCTGTTGTGGGTGGT

MAPK3 NM_017347.2 F: CTACACGCAGCTGCAGTACATC 153 95◦C for 15 s 60◦C for 30 s 72◦C for 30 s

R: GTGCGCTGACAGTAGGTTTGA

NF-kB NM_001276711.1 F: CGACGTATTGCTGTGCCTTC 198 95◦C for 15 s 60◦C for 30 s 72◦C for 30 s

R: TTGAGATCTGCCCAGGTGGTA

SIRT1 NC_005119.4 F: GAAACCCTCAATTTCTGTTCTGCT 226 95◦C for 15 s 60◦C for 30 s 72◦C for 30 s

R: AATGCGATGCTGACTTCCTTCT

TNF-α NM_012675.3 F: TTCCGTCCCTCTCATACACTG 149 95◦C for 15 s 60◦C for 30 s 72◦C for 30 s

R: AGACACCGCCTGGAGTTCT

Keap1 NM_057152.2 F: CATCGGCATCGCCAACTTC 278 95◦C for 15 s 60◦C for 30 s 72◦C for 30 s

R: GCTGGCAGTGTGACAGGTTGA

GPx2 NM_183403.2 F: CCGTGCTGATTGAGAATGTG 113 95◦C for 15 s 60◦C for 30 s 72◦C for 30 s

R: AGGGAAGCCGAGAACCACTA

Caspase-3 NM_012922 F: AAGCCGAAACTCTTCATC 349 95◦C for 15 s 60◦C for 30 s 72◦C for 30 s

R: TGAGCATTGACACAATACAC

PPARα NM_001145367.1 F: CTCGTGCAGGTCATCAAGAA 158 95◦C for 15 s 60◦C for 30 s 72◦C for 30 s

R: CAGCCCTCTTCATCTCCAAG

DGAT NM_053437.1 F: TCTTCCTACCGGGATGTCAATC 204 95◦C for 15 s 60◦C for 30 s 72◦C for 30 s

R: TCCCTGCAGACACAGCTTG

SREBP1c NM_001271207.1 F: GCCATGGATTGCACATTG 187 95◦C for 15 s 60◦C for 30 s 72◦C for 30 s

R: TGTGTCTCCTGTCTCACCCC

SCD1 NM_009127.4 F: CCTTAACCCTGAGATCCCGTAGA 237 95◦C for 15 s 60◦C for 30 s 72◦C for 30 s

R: AGCCCATAAAAGATTTCTGCAAA

FAS NM_139194.2 F: GGACATGGTCACAGACGATGAC 279 95◦C for 15 s 60◦C for 30 s 72◦C for 30 s

R: GGAGGCGTCGAACTTGGA

β-actin NM_031144.3 F:AGCCATGTACGTAGCCATCC 227 95◦C for 15 s 60◦C for 30 s 72◦C for 30 s

R:CTCTCAGCTGTGGTGGTGAA

and convoluted tubules (Figure 1E). In comparison with control
kidney, GLP administration induced markable histological
changes, including proximal and distal tubular necrosis and
glomerular toxicity (Figures 1F–H). And the histologic score of
hepatic and renal damages was significantly increased in the both
GLP-treated groups compared with the control group (p < 0.01)
(Figures 1I,J).

Assessment of Liver Function
To confirm the damage of GLP to liver, the serum GOT and
GPT levels, the main enzymes of liver function, were determined.
The results showed that the levels of the GOT and GPT were
increased in GLP-treated groups compared with the control rats.
Furthermore, there was a significant increase in GOT and GPT
levels with 500 mg/kg of glyphosate compared with the control
group (p< 0.05) as shown in Figures 2A,B. These results showed
that glyphosate can affect hepatic metabolism, causing oxidative
damage to the hepatic tissue.

Assessment of Enzyme Levels in the
Serum to Test Oxidative Stress
To determine whether the GLP could induce the oxidative stress
in vivo, we first examined the SOD, CAT, GSH, and GSH-PX
activities as well as the level of MDA in the serum. The results
showed that SOD activity significantly decreased in the 500
mg/kg GLP-treated group compared to the control (p < 0.05).
The MDA content showed significant increase in the 50 mg/kg
GLP-treated group compared with the control (p < 0.05), and
significantly increased CAT activity than the control in the 500
mg/kg GLP-treated group compared with the control (p < 0.05)
(Table 3).

Assessment of Enzyme Levels in the Liver
and Kidney to Test Oxidative Stress
Liver and kidney are two major organs that suffer from the
oxidative stress, since GLP metabolism mainly occurs in the
liver and the metabolites discharge in the kidney. After GLP
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TABLE 2 | Body weights and organ weights of rats treated with Glyphosate for 5 weeks.

Control GLP (mg/kg body weight)

0 5 50 500

Number of animals 8 8 8 8

Initial body weight (g) 298.60 ± 5.17 323.30 ± 4.94 313.40 ± 7.12 311.40 ± 8.87

Body weight (g) 388.60 ± 7.08 404.00 ± 5.71 369.30 ± 12.57 351.80 ± 7.74*

Weight gain percentage (%) 30.40 ± 3.18 23.42 ± 1.06 17.38 ± 2.49** 17.29 ± 5.41*

Average daily gain (g) 2.57 ± 0.25 2.09 ± 0.10 1.72 ± 0.20* 1.49 ± 0.17*

Average daily feed intake (g) 3.16 ± 0.05 3.27 ± 0.05 2.86 ± 0.05** 2.98 ± 0.08

Liver (g) 12.94 ± 0.45 12.98 ± 0.36 11.83 ± 0.74 10.66 ± 0.44*

Relative liver (%) 3.51 ± 0.07 3.30 ± 0.10 3.20 ± 0.21 2.95 ± 0.09*

Spleen (g) 0.77 ± 0.04 0.71 ± 0.03 0.76 ± 0.06 0.59 ± 0.04*

Relative Spleen (%) 0.21 ± 0.01 0.18 ± 0.01 0.20 ± 0.01 0.16 ± 0.01*

Kidney (g) 1.19 ± 0.04 1.27 ± 0.03 1.18 ± 0.07 1.00 ± 0.02*

Relative Kidney (%) 0.33 ± 0.01 0.32 ± 0.01 0.31 ± 0.01 0.29 ± 0.01*

Heart (g) 1.29 ± 0.05 1.40 ± 0.08 1.22 ± 0.12 1.16 ± 0.07

Relative Heart (%) 0.34 ± 0.01 0.36 ± 0.02 0.34 ± 0.04 0.33 ± 0.02

Lung (g) 2.33 ± 0.08 2.60 ± 0.12 2.40 ± 0.17 2.30 ± 0.10

Relative Lung (%) 0.61 ± 0.02 0.64 ± 0.03 0.69 ± 0.06 0.66 ± 0.03

Adrenal (g) 0.033 ± 0.002 0.034 ± 0.003 0.036 ± 0.003 0.038 ± 0.004

Relative Adrenal (%) 0.009 ± 0.001 0.009 ± 0.001 0.011 ± 0.001 0.011 ± 0.001

The values shown are the mean ± SEM of 8 animals per group. Compared to control; *p < 0.05, **p < 0.01.

FIGURE 1 | Histopathological changes in the livers and kidneys of male rats following oral GLP administration through Hematoxylin and eosin staining. 200 ×

magnification. (A) Normal liver section. Hepatic lobules consisting of a central vein surrounded by radiating hepatocytes which were separated; (B–D) GLP (5, 50, and

500 mg/kg/day) treated presenting periportal expansion, structural disorder, monocyte infiltration (arrows), and congestion (arrowheads). (E) Normal kidney section.

No signs of kidney damage were observed in the kidney of controls; (F–H) GLP (5, 50, and 500 mg/kg/day) treated presenting proximal and distal tubular necrosis

and glomerular toxicity (arrows). (I,J) The hepatic and renal damages histologic score evaluating. Data shown are mean ± SEM of six liver sections in each group.

Compared to control; **p < 0.01.

exposure, SOD activity in the 500 mg/kg GLP-treated group
showed significant decrease in the liver compared with the
control (p < 0.05). However, the level of H2O2 in the 500 mg/kg
GLP-treated group significantly increased compared with the
control group (p < 0.05) (Table 3).

Next, the activity of antioxidant enzymes in the kidney was
examined. As shown in Table 3, the MDA content in the 5 mg/kg
GLP-treated group showed significant increase compared with
the control group (p < 0.01). The SOD and GSH-PX activities
were significantly decreased in the 500mg/kgGLP-treated groups
compared with the control group (p < 0.05). And the GSH

activity also showed significant decrease in the 50 mg/kg GLP-
treated groups compared with the control group (p < 0.05).
However, there was no difference for theH2O2 and CAT activities
between the control and treatment groups (Table 3).

Serum IL-1β and IL-6 Levels
The concentrations of inflammatory mediators IL-1β and IL-
6 in serum were determined as shown in the Figure 3. The
level of IL-1β has a significant increase in the 500 mg/kg
GLP-treated group compared with the control rats (p < 0.05)
(Figures 3A,B).
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FIGURE 2 | Effect of GLP treatment on GPT (A) and GOT (B) enzyme activities in the serum. Data shown are mean ± SEM of eight animals in each group. Compared

to control; *p < 0.05.

TABLE 3 | Effects of GLP on antioxidant enzyme activities and lipid peroxidation levels in serum, liver, and kidney of rats.

Control GLP (mg/kg body weight)

0 5 50 500

SERUM

SOD (U/mL) 13.29 ± 0.16 13.01 ± 0.58 12.89 ± 0.46 11.30 ± 0.28*

MDA (nmol/mL) 20.72 ± 2.16 22.06 ± 2.03 32.38 ± 2.00** 23.23 ± 1.99

H2O2 (nmol/mL) 113.50 ± 10.05 113.80 ± 8.87 117.50 ± 6.63 134.30 ± 7.45

CAT (U/mL) 28.33 ± 1.61 28.66 ± 2.22 30.51 ± 1.52 36.56 ± 1.60*

GSH (mg/L) 536.30 ± 22.76 431.90 ± 46.45 446.20 ± 52.51 423.40 ± 47.15

GSH-PX (U/L) 378.20 ± 37.47 400.80 ± 28.74 429.00 ± 37.64 453.00 ± 13.76

LIVER

SOD (U/mgprot) 49.77 ± 2.06 50.30 ± 2.32 47.08 ± 1.49 41.53 ± 1.19*

MDA (nmol/mgprot) 1.93 ± 0.06 1.89 ± 0.08 1.86 ± 0.08 2.08 ± 0.07

H2O2 (nmol/mgprot) 5.10 ± 0.26 5.42 ± 0.27 5.90 ± 0.23 6.27 ± 0.14*

CAT (U/mgprot) 12.04 ± 0.68 13.01 ± 1.61 14.50 ± 1.22 14.48 ± 1.20

GSH (mg/gprot) 316.40 ± 27.98 342.20 ± 26.16 272.90 ± 25.01 357.80 ± 33.52

GSH-PX (U/mgprot) 64.09 ± 5.76 63.90 ± 7.62 56.43 ± 7.82 46.74 ± 4.39

KIDNEY

SOD (U/mgprot) 97.67 ± 4.51 87.62 ± 6.51 75.10 ± 4.17* 73.06 ± 3.31*

MDA (nmol/mgprot) 1.87 ± 0.20 3.91 ± 0.25** 3.015 ± 0.49 3.026 ± 0.40

H2O2 (nmol/mgprot) 5.28 ± 0.34 6.03 ± 0.63 6.68 ± 0.46 5.58 ± 0.37

CAT (U/mgprot) 764.20 ± 38.35 873.70 ± 66.49 865.90 ± 83.28 819.60 ± 54.81

GSH (mg/gprot) 7.70 ± 1.85 4.31 ± 0.45 2.76 ± 1.06* 4.64 ± 0.75

GSH-PX (U/mgprot) 480.00 ± 19.96 421.80 ± 38.47 342.20 ± 40.60* 297.00 ± 36.08**

The values shown are the mean ± SEM of 8 animals per group. Compared to control; *p < 0.05, **p < 0.01.

Expression of mRNA Levels for
Inflammation Related Genes in the Liver
We investigated the effects of GLP involved in the inflammatory
response in the liver tissue (Figure 4A). Hepatic IL-1α and IL-
1β mRNA expression were significantly increased after GLP
exposure compared with the control group (p < 0.05); IL-6,
MAPK3, SIRT1, TNF-α, GPX2, and Caspase-3mRNA expression

were significantly increased in the 50 mg/kg and 500 mg/kg
GLP-treated group compared with the control group (p < 0.05);

NF-κB mRNA expression showed a significant increase in the

50 mg/kg GLP-treated group compared with the control group
(p < 0.05); at the same time, we also observed a significant
increase in Keap1 mRNA expression in 5 mg/kg GLP-treated

group compared with the control group (p < 0.05).
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FIGURE 3 | The level of IL-1β (A) and IL-6 (B) in the serum was assayed by ELISA. Data shown are mean ± SEM of eight animals in each group. Compared to

control; *p < 0.05.

FIGURE 4 | Real-time RT-PCR analyses of IL-1α, IL-1β, IL-6, MAPK3, NF-kB, SIRT1, TNF-α, Keap1, GPX2, and Caspase-3 mRNA of liver (A). Real-time RT-PCR

analyses of PPARα, DGAT, SREBP1c, SCD1, and FAS mRNA of liver (B). Data shown are mean ± SEM of eight animals in each group. Compared to control;

*p < 0.05, **p < 0.01 and ***p < 0.001.

Expression of mRNA Levels for Lipid
Metabolism Related Genes in the Liver
Compared with the control group, PPARα, SREBP1c, and SCD1
mRNA expression were significantly increased in the 50 mg/kg

and 500 mg/kg GLP treatment rats (p < 0.05); DGAT mRNA

expression was significantly increased in the 500 mg/kg GLP-

treated group compared with the control group (p < 0.05)

(Figure 4B).
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Concentrations of Ions in Liver, Kidney,
Spleen, Heart, Lung, Brain, Muscle, and Fat
Concentrations of Al, Fe, Cu, Zn, and Mg in the liver, kidney,
spleen, lung, heart, muscle, brain and fat were presented in
Tables 4, 5.

In liver, compared with the control group, Al and Zn
concentrations were significantly increased in 50 mg/kg and
500 mg/kg GLP treatment group (p < 0.05); Fe concentration
was significantly increased in 5 mg/kg GLP treatment group
(p < 0.05) and Mn concentration was significantly increased in
500 mg/kg GLP treatment group (p < 0.05); Mo concentration
was significantly decreased in 5 mg/kg and 50 mg/kg GLP
treatment group (p < 0.05) (Table 4).

In kidney, concentrations of Fe level was significantly
increased in 50 mg/kg GLP treatment group compared with the
control group (p < 0.05) (Table 4).

In spleen, Fe content showed significant increase in 50
mg/kg GLP treatment group compared with the control group
(p < 0.05) (Table 4).

In lung, Al concentration was significantly decreased in 5
mg/kg and 50 mg/kg GLP treatment groups compared with the
control group (p < 0.05); Fe concentration was significantly
increased in 500 mg/kg GLP treatment group compared with the
control group (p < 0.05) (Table 5).

In brain, Cu content was significantly increased in 500
mg/kg GLP treatment group compared with the control group
(p < 0.05); Mg concentration significantly increased in 50 mg/kg
and 500 mg/kg GLP treatment group compared with the control
group (p < 0.05) (Table 5).

In muscle, Al concentration was significantly decreased in 500
mg/kg GLP treatment group (p < 0.05) (Table 5).

In fat tissue, concentrations of Cu was significantly increased
in 50 mg/kg and 500 mg/kg GLP treatment groups compared
with the control group (p < 0.05) (Table 5).

DISCUSSION

The present study demonstrated that GLP had an adverse effect
on the histomorphology, inflammation, oxidative stress, lipid
metabolism and ion concentration in adult male rats, and then
discussed the relationship between them. This is the first report
about the effects of GLP exposure on Al, Fe, Cu, Zn, and Mg
content in main tissues of rats. Also we firstly revealed the
connection between dysregulation of ion content and liver injury
in rats exposed to GLP.

The results of our study showed that exposure to GLP for
35 days led to a significant reduction in body weight, body
weight gain, average daily gain, and liver, spleen and kidney

TABLE 4 | The concentrations of Al, Fe, Cu, Zn, and Mg in the liver, kidney, spleen, and heart of rats.

Control GLP (mg/kg body weight)

0 5 50 500

LIVER

Al (mg/kg) 1.75 ± 0.13 2.22 ± 0.14 2.88 ± 0.33* 3.14 ± 0.45*

Fe (mg/kg) 189.00 ± 12.56 244.0 ± 13.60* 218.10 ± 10.44 233.70 ± 13.64

Cu (mg/kg) 8.47 ± 0.13 8.14 ± 0.32 8.06 ± 0.15 8.64 ± 0.30

Zn (mg/kg) 63.45 ± 0.86 63.12 ± 3.46 72.24 ± 1.70* 73.46 ± 2.24*

Mg (mg/kg) 614.30 ± 12.87 579.60 ± 23.19 592.10 ± 11.77 608.90 ± 18.79

KIDNEY

Al (mg/kg) 2.20 ± 0.37 2.52 ± 0.15 2.62 ± 0.33 2.53 ± 0.62

Fe (mg/kg) 150.80 ± 5.64 163.10 ± 7.22 216.70 ± 25.09* 151.00 ± 16.76

Cu (mg/kg) 11.15 ± 0.73 11.49 ± 0.34 11.45 ± 0.43 11.09 ± 0.52

Zn (mg/kg) 59.15 ± 3.53 58.93 ± 2.70 62.55 ± 1.61 56.06 ± 2.18

Mg (mg/kg) 593.90 ± 24.84 605.30 ± 27.81 669.20 ± 20.71 582.40 ± 15.86

SPLEEN

Al (mg/kg) 10.27 ± 0.66 10.05 ± 1.09 9.37 ± 0.83 10.31 ± 0.68

Fe (mg/kg) 1162.00 ± 208.00 1704.00 ± 230.30 2049.00 ± 188.10* 1466.00 ± 98.26

Cu (mg/kg) 7.45 ± 0.35 7.15 ± 0.50 7.76 ± 0.35 7.16 ± 0.15

Zn (mg/kg) 117.10 ± 2.53 120.30 ± 11.39 111.60 ± 7.23 112.50 ± 4.94

Mg (mg/kg) 1185.00 ± 34.60 1182.00 ± 26.26 1240.00 ± 45.99 1159.00 ± 29.09

HEART

Al (mg/kg) 7.07 ± 0.59 7.97 ± 0.37 7.43 ± 0.43 7.30 ± 1.04

Fe (mg/kg) 321.30 ± 11.96 367.70 ± 37.90 401.20 ± 27.08 313.20 ± 25.61

Cu (mg/kg) 20.58 ± 0.79 18.74 ± 0.27 18.63 ± 0.88 18.44 ± 0.47

Zn (mg/kg) 88.82 ± 5.52 79.85 ± 2.45 82.80 ± 5.42 78.39 ± 10.11

Mg (mg/kg) 1131.00 ± 24.37 1059.00 ± 40.66 1039.00 ± 56.45 987.80 ± 33.74

The values shown are the mean ± SEM of 8 animals per group. Compared to control; *p < 0.05.
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TABLE 5 | The concentrations of Al, Fe, Cu, Zn, and Mg in the lung, brain, muscle and fat of rats.

Control GLP (mg/kg body weight)

0 5 50 500

LUNG

Al (mg/kg) 26.55 ± 1.14 21.93 ± 1.05* 20.43 ± 0.71** 23.27 ± 1.52

Fe (mg/kg) 362.30 ± 31.16 446.00 ± 32.30 421.40 ± 35.80 647.30 ± 74.77**

Cu (mg/kg) 10.31 ± 0.27 10.13 ± 0.46 8.92 ± 0.40 9.94 ± 0.83

Zn (mg/kg) 211.00 ± 14.07 236.50 ± 14.07 187.10 ± 6.99 244.90 ± 20.62

Mg (mg/kg) 1133.00 ± 17.40 1114.00 ± 18.28 1045.00 ± 21.90 1016.00 ± 63.47

BRAIN

Al (mg/kg) 4.74 ± 1.16 5.08 ± 0.73 5.38 ± 0.55 4.17 ± 0.24

Fe (mg/kg) 40.79 ± 0.59 50.21 ± 6.04 47.38 ± 2.20 53.01 ± 1.49

Cu (mg/kg) 4.08 ± 0.04 4.50 ± 0.06 5.35 ± 0.59 5.70 ± 0.24*

Zn (mg/kg) 35.59 ± 1.36 37.82 ± 1.08 51.28 ± 8.54 39.62 ± 1.71

Mg (mg/kg) 357.60 ± 8.83 357.90 ± 12.81 415.40 ± 3.05** 416.50 ± 6.58**

MUSCLE

Al (mg/kg) 7.52 ± 0.55 7.54 ± 0.44 6.56 ± 0.54 5.48 ± 0.20*

Fe (mg/kg) 52.76 ± 2.45 57.89 ± 6.47 54.62 ± 4.48 72.62 ± 22.37

Cu (mg/kg) 3.68 ± 0.27 3.47 ± 0.24 3.51 ± 0.35 3.46 ± 0.15

Zn (mg/kg) 53.05 ± 4.89 53.28 ± 2.37 55.79 ± 3.83 58.50 ± 6.08

Mg (mg/kg) 1313.00 ± 14.13 1197.00 ± 26.59 1262.00 ± 33.24 1223.00 ± 55.23

FAT

Al (mg/kg) 3.22 ± 0.29 2.37 ± 0.57 4.09 ± 0.40 3.23 ± 0.15

Fe (mg/kg) 11.16 ± 1.33 10.92 ± 4.01 16.44 ± 2.33 14.41 ± 1.82

Cu (mg/kg) 0.29 ± 0.05 0.35 ± 0.10 0.53 ± 0.03* 0.61 ± 0.04**

Zn (mg/kg) 5.65 ± 0.81 5.35 ± 0.53 6.36 ± 0.70 6.27 ± 1.02

Mg (mg/kg) 25.49 ± 1.25 25.99 ± 2.60 33.41 ± 1.96 33.57 ± 4.12

The values shown are the mean ± SEM of 8 animals per group. Compared to control; *p < 0.05, **p < 0.01.

coefficient. These results suggested that treated with GLP in
male rats for 35 days could affect the growth performance of
rats. In addition, our results also showed that exposure to GLP
for 35 days caused significant hyperemia, cellular degeneration
and necrosis accompanied inflammatory cell infiltration, renal
tubular damage and glomerular filtration impairment in rats’
hepatic and kidney cells, accompanied by significant increases in
GPT and GOT levels. Transaminases are important enzymes and
critical enzymes in the biological processes. GPT and GOT levels
increased in serum can be a sign of liver damage and disruption
of normal liver function (El-Demerdash et al., 2001; Celik and
Suzek, 2008). Results showed that GLP caused damage in liver
morphology and function.

Oxidative stress refers to the oxidation and anti-oxidation
imbalance in vivo (Hou et al., 2013). Some studies reported
that GLP is an organophosphate herbicide and can induce
to oxidative stress and/or an impairment of the antioxidant
defensive mechanisms (Larsen et al., 2012). Animals possess an
antioxidant defense mechanism composed of enzymes including
T-SOD andGPx, as well as non-enzymatic antioxidants including
non-protein thiols, especially GSH. When the defenses of the
organism are insufficient for neutralizing the ROS, oxidative
damage can occur, and one of the most serious types of which
is membrane lipid peroxidation (Ahmad et al., 2004). Liver

is the major detoxification organ exposed to food or drinks
contaminants (Gasnier et al., 2009). GLP-based herbicide has
been demonstrated to damage carp or rat hepatocytes at low
levels (Szarek et al., 2000; Malatesta et al., 2008).

MDA, the stable metabolite of lipid peroxidation (LPO)
products, is a biomarker of LPO (Sun et al., 2001), and is
presented as the total level of LPO products (Drewa et al., 2002).
MDA can be produced by ozone, which reacts rapidly with
cellular structures and generates hydrogen peroxide (Ajamieh
et al., 2004). Hepatic SOD activity also can suggest the extent of
liver damage (Li et al., 2013). CAT catalyzing the breakdown of
H2O2 into O2 and H2O and catalyzing the oxidation of electron
donors (Hou et al., 2013). In addition, GSH provide the major
defense against oxidative stress induced cellular damage (Beuret
et al., 2005; Ozden and Alpertunga, 2010). In the present study,
our results showed that SOD activity significantly decreased in
the serum, liver and kidney of the GLP-treated rats compared
with the control group.MDA content showed significant increase
in the serum and kidney of the GLP-treated rats. At the same
time, CAT activity was also significantly increased in the serum
of the GLP-treated rats compared with the control group. In
addition, H2O2 increased in the liver tissue, suggesting t that
rats were under the oxidant stress. Taken together, the data
demonstrated that GLP could result in liver and kidney damage,
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the decreased SOD activity in the serum and tissue, and the
increased MDA level in the serum, indicative of oxidative
stress. On the other side, we have also tested the inflammatory
Cytokines level in serum, our results showed that the level of IL-
1β has a significant increase in the 500 mg/kg GLP-treated group
compared with the control rats. Thus, we investigate whether the
oxidative stress state of organism has a certain relationship with
the inflammation related genes.

Inflammation, manifested as macrophage infiltration of
adipose tissue, endoplasmic reticulum stress and oxidative
stress (Trayhurn and Wood, 2004). In a few cases, steatosis
causes apoptosis, necrosis, generation of oxidative stress and
inflammation (Marchesini et al., 2008). Animal models of
nonalcoholic fatty liver disease have also suggested a possible
role of free fatty acids, not triglycerides, in the hepatocytes as
factors promoting hepatocellular injury (Yamaguchi et al., 2007).
GLP induced inflammation, which was found to be associated
with induction of IL-33, which is known to induce TNF-α, IFN-
γ, and IL-13 upon antigen challenge followed by activation and
recruitment of inflammatory cells in the airways (Kumar et al.,
2014). In this study, the mRNA expression of IL-1α, IL-1β , IL-
6, MAPK3, NF-κB, SIRT1, TNF-α, Keap1, GPX2 and Caspase-3
were all increased in GLP treatment group compared with the
liver tissue of control rats. Meanwhile, PPARα, SREBP1c, DGAT,
and SCD1 mRNA expressions were significantly increased in
GLP treatment rats. It showed that GLP induced liver toxicity
is mediated by inflammation, oxidative stress and lipid related
pathways. In addition, in the present study, we only focus on
changes in inflammatory markers and lipid metabolite levels in
the liver, possible changes in kidneys will continue to be verified
in future experiments.

Additionally, previous studies also indicated that GLP is
bound to the soil constituent Fe, Al amorphous hydroxides and
ferric oxides (Piccolo et al., 1994; Day et al., 1997). GLP negatively
impact human health, and interference with cytochrome P450
(CYP) enzymes, which play many important roles in the body,
meanwhile, GLP chelation of minerals, such as iron and cobalt
(Samsel and Seneff, 2013). Al accumulation resulted in obvious
damage to hepatic cells, including liver central venous hyperemia,
lipid accumulation, and lymphocyte infiltration (Bogdanović
et al., 2008; Türkez et al., 2010). Fe is an essential nutritional
mineral for all life forms, both of Fe deficiency and excess
in Fe also leads to oxidative DNA damage (Ames, 2001).
Becaria reported that Al augmented oxidative stress injuries
induced by Fe (Becaria et al., 2002). Zn has a relationship
with many enzymes in the body (Powell, 2000; Ozturk et al.,
2003; Ozdemir and Inanc, 2005). One study has shown that

Zn deficiency increases lipid peroxidation in various rat tissues
(Ozdemir and Inanc, 2005). Mg plays a pivotal role as an enzyme
cofactor in biosynthesis of proteins and mineral administration.
It is indispensable to osteogenesis and mineralization of bones
(Rahnama and Marciniak, 2002). Subacute Mg deficiency can
cause lymphopoietic neoplasms in young rats (Ilicin, 1971). Mg,
Zn, and Cu are the cofactors of SOD. Fe and Cu overload
could cause oxidative stress damage to rats’ kidney and liver
(Ozcelik et al., 2003; Bishu and Agarwal, 2006). This study
results showed that the concentration of Al, Fe and Zn were
significantly increased in GLP-treated rats’ liver. Concentrations
of Fe were also increased in the kidney, spleen, and lung tissue in
GLP-treated rats. Al concentration was decreased in the muscle
tissue of GLP-treated rats. In brain and fat tissue, Cu and Mg
concentration were increased in GLP-treated rats. However, there
showed no dose-dependent effect of GLP was found. Combined,
these results suggested that GLP induced the ion-imbalance of
Al, Fe, Mg, Cu, and Zn, which will make damage to hepatic
cells and liver dysfunction, and the role of ion-imbalance in
renal and other organs will continue to be verified in future
experiments.

In summary, current study demonstrated that GLP causes
obvious damage to rat liver, kidney and caused ion-imbalance in
main tissue of rats, and the ion-imbalance is no dose-dependent
effect of GLP was found. It may be due to the too large dose
range we used in the study of the GLP. Ion imbalance-related
oxidative stress may be involved in the mechanism of chronic
liver injury caused by GLP. Simultaneously, GLP-induced ion
imbalance and oxidative stress may also affect kidney damage.
Therefore, the role of ion-imbalance in renal and other organs
and its mechanism must be further confirmed by systematic
experiments in the future.
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The liver is to date the best example of a sexually dimorphic non-reproductive organ.

Over 1,000 genes are differentially expressed between sexes indicating that female

and male livers are two metabolically distinct organs. The spectrum of liver diseases is

broad and is usually prevalent in one or the other sex, with different contributing genetic

and environmental factors. It is thus difficult to predict individual’s disease outcomes

and treatment options. Systems approaches including mathematical modeling can aid

importantly in understanding the multifactorial liver disease etiology leading toward

tailored diagnostics, prognostics and therapy. The currently established computational

models of hepatic metabolism that have proven to be essential for understanding of

non-alcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC) are limited

to the description of gender-independent response or reflect solely the response of the

males. Herein we present LiverSex, the first sex-based multi-tissue and multi-level liver

metabolic computational model. The model was constructed based on in silico liver

model SteatoNet and the object-oriented modeling. The crucial factor in adaptation

of liver metabolism to the sex is the inclusion of estrogen and androgen receptor

responses to respective hormones and the link to sex-differences in growth hormone

release. The model was extensively validated on literature data and experimental data

obtained from wild type C57BL/6 mice fed with regular chow and western diet.

These experimental results show extensive sex-dependent changes and could not be

reproduced in silico with the uniform model SteatoNet. LiverSex represents the first

large-scale liver metabolic model, which allows a detailed insight into the sex-dependent

complex liver pathologies, and how the genetic and environmental factors interact with

the sex in disease appearance and progression. We used the model to identify the most

important sex-dependent metabolic pathways, which are involved in accumulation of

triglycerides representing initial steps of NAFLD. We identified PGC1A, PPARα, FXR, and

LXR as regulatory factors that could become important in sex-dependent personalized

treatment of NAFLD.

Keywords: sexual dimorphism, hepatic metabolism, systemsmedicine, large-scale metabolic model, NAFLD, liver
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INTRODUCTION

The pharmacological and clinical discussions about the influence
of gender on drug metabolism and disease susceptibility are
raising, while on the other hand studies that would reveal
the molecular basis of sex-based differences in humans are
limited (Flórez-Vargas et al., 2016). Sexual dimorphism in animal
kingdom has been known for centuries. Despite this, the majority
of studies still focus on one sex and the results are discussed
in a generalized manner. The choice of males as the dominant
research model was justified by studies that showed females
having higher biological variability associated with fluctuation of
sex hormones during the reproductive cycle (McGregor et al.,
2016).

Sexual dimorphism is a widespread phenomenon of somatic,
physiologic, and behavioral differences between females and
males (Söder, 2007; Urlep et al., 2017). Genes regulated by sex
hormones differ in their tissue expression, which is particularly
true for liver metabolism (Gustafsson et al., 1983). Transcriptome
and proteome studies report that scope of described sexually
dimorphic gene expression is significantly larger than previously
recognized. Thousands of genes differ in expression between
females and males not only in the liver (Laz et al., 2004; Yang
et al., 2006; Waxman and Holloway, 2009) but also in adipose
tissue and muscle, while brain expression seems to be less
sexually dimorphic (Yang et al., 2006). In the context of the
liver pathologies dissimilarities of sex hormones are listed among
the main reasons for the differences in the prevalence of liver
diseases. Hepatocellular carcinoma (HCC) is more frequent in
males (Zheng et al., 2017), while females have increased risk
of autoimmune liver diseases and exacerbated liver damage in
alcoholic liver disease (Guy and Peters, 2013). In non-alcoholic
fatty liver disease (NAFLD) the distinction is less clear with
inconsistent reports of increased incidence in males and post-
menopausal women, possibly due to increased tendency for
visceral fat accumulation (Suzuki and Abdelmalek, 2009; Pan and
Fallon, 2014).

A recent comprehensive review of NAFLD studies (Ballestri
et al., 2017) identified age, sex, body construction, susceptibility
to gaining weight, existence of metabolic syndrome and
genetically determined characteristics as critical factors
influencing NAFLD onset and/or progression. Studies show
that the progression of NAFLD in males is independent of age
(Kojima et al., 2003; Xu et al., 2013). This is in contrast to the
correlation between age and NAFLD incidence in females, where
NAFLD occurrence is decreased in premenopausal, but not in
postmenopausal women (Hamaguchi et al., 2012; Florentino
et al., 2013). Another study reported that women with NAFLD
are approximately 10 years older than men (Carulli et al., 2006).
Based on these studies, premenopausal women might be better
protected from developing NAFLD compared to men and
postmenopausal women. Estrogens might provide part of the
explanation, as it has been reported that women with NAFLD
have lower concentrations of serum estradiol than woman
without NAFLD (Gutierrez-Grobe et al., 2010).

To describe the complex nature of liver metabolism and
predict all possible consequences of genetic and metabolic

insults computational approaches are applied (Petta et al.,
2016; Hoehme et al., 2017; Lorente et al., 2017). Several large-
scale metabolic models have been established to investigate
liver metabolism (Holzhütter et al., 2012; Drasdo et al., 2014)
and liver related diseases, such as NAFLD (Mardinoglu et al.,
2014; Naik et al., 2014) and HCC (Agren et al., 2014). Large-
scale metabolic models of liver metabolism and their clinical
applications have recently been reviewed (Cvitanović et al.,
2017). Among the most popular state-of-the-art computational
approaches are genome-scale metabolic networks, where omics
data are integrated to better understand the genotype-phenotype
relationships (Lewis et al., 2012). Large-scale metabolic models,
however, do not differentiate between genders and are mostly
established and validated on the unified or male data. Gender-
based differentiation has been performed only in smaller models,
which do not account for the whole liver metabolism. Matthews
et al. (2007) constructed a database and a model to predict
reproductive toxicity in both genders, fetal dysmorphogenesis,
functional toxicity, mortality, growth, and new-born behavioral
toxicity of untested chemicals. A computational model of
oxygenation and transport of solutes in the kidneys of
spontaneously hypertensive female rats was used to investigate
the sex differences in nitric oxide levels (Chen et al., 2017). Agren
et al. (2014) established a liver metabolic model that indirectly
accounted for gender-related differences. They reconstructed a
personalized genome-scale metabolic model for each of the 27
patients with hepatocellular carcinoma. Ten of the 27 patients
were females, which shows that personalized approaches can and
should take gender into account. The major reason for the lack
of human gender-based large-scale metabolic models might be
an insufficient number of liver transcriptome-based studies that
would account for both sexes (Zhang et al., 2012; Oshida et al.,
2016).

Herein we present LiverSex, the first gender based multi-tissue
and multi-level liver metabolic model. The construction of the
model was performed with the extension and adaptation of the
SteatoNet model (Naik et al., 2014), which was generated to
investigate hepatic metabolism and liver related deregulations.
SteatoNet as well as LiverSex feature two crucial characteristics:
they account for (1) interactions between hepatic metabolic
pathways and extra-hepatic tissues, and (2) regulations on
transcriptional and post-translational levels. The experimentally
observed sexual differences in liver gene expression were
successfully reproduced in silico with LiverSex. Finally, the
sensitivity analysis was applied to identify sex-dependent liver
metabolic network deregulations that transform healthy liver to
NAFLD.

MATERIALS AND METHODS

SteatoNet and Object Oriented Modeling
SteatoNet (Steatosis Network) (Naik et al., 2014) represents
a dynamic semi-quantitative model based on a steady-state
analysis of differential algebraic equations (DAEs). SteatoNet
was established in object-oriented modeling language Modelica.
It is based on the Systems Biology library SysBio (Belič et al.,
2013), which was constructed to describe biological pathway
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Cvitanović Tomaš et al. Liver Sex-Dependent Computational Model

entities. The SysBio library includes objects corresponding to
the biological behavior of enzymes, metabolites, non-enzymatic
regulatory proteins, mRNAs, flux sources, gene expression
regulations, etc. Using object-oriented modeling approach
models are easy to construct by linking the basic objects of
SysBio library into a meaningful and hierarchical composition.
Due to the steady-state normalization of the observed quantities
most of the parameters describing the dynamics of the observed
system are lumped when using SysBio library. This simplifies the
model establishment, since only a small set of parameters needs
to be evaluated. The main parameters governing the dynamical
properties of the established models describe the metabolic
flux distributions in each of the pathway branches. SteatoNet
includes all major pathways of mammalian liver metabolism.
Pathways that are included in the model were manually acquired
from KEGG (Du et al., 2014) and REACTOME (Croft et al.,
2011) databases and from the literature. SteatoNet additionally
describes the transport of metabolites between liver, adipose
tissue, pancreas, other extra-hepatic tissues, and macrophages
via blood. The external sources of nutrients [influx of fatty acids
and triglycerides (TG), glucose, cholesterol, and essential amino
acids] have also been included into the model. Details of its
structure have been extensively described before (Naik et al.,
2014).

Data Availability
Freely accessible version of the SteatoNet and LiverSex along with
the SysBio library can be downloaded from http://lrss.fri.uni-lj.si/
bio/sysbio. The simulations can be executed with the open source
Modelica simulation environment OpenModelica, which can be
downloaded from https://openmodelica.org.

Construction of LiverSex
The hormonal regulation is simplified to a level that still ensures
normal function. All included hormones are arranged into three
groups: growth hormone, androgen, and estrogens. Androgen or
estrogen groups represent any steroid hormones that regulate
the development and maintenance of sex characteristics in
vertebrates by binding to corresponding steroid hormone
receptor (Sharma et al., 2017). Each group of hormones has
its own source of flux. These sources display differences in
hormonal regulation of liver between females and males. The
growth hormone source acts as a daily oscillator in males or
has a constant concentration in females (Norstedt and Palmiter,
1984; Waxman and O’connor, 2006). The female estradiol source
mimics the monthly estrous cycle that cannot be found in males
(Ciana et al., 2003; Shanle and Xu, 2010; Villa et al., 2012). In
males, the androgen source is 10-fold higher than the estrogens
source (Domonkos et al., 2017), while in females the androgen
source is three-fold lower than the estrogen source (Simpson,
2003). Every hormone source is connected to its respective
receptor. Each hormone receptor has an active and inactive
form, which allows us to simulate different diseases connected
with the perturbations of receptor functions. Active form of the
receptors is in addition linked to SteatoNet according to the
literature evidence (Heine et al., 2000; Barclay et al., 2011; Gårevik
et al., 2012) and these connections than finally lead to the female

and male LiverSex model. A more detailed description of sex-
dependent hormonal regulation of liver metabolism is included
in the Supplementary Data.

Validation of LiverSex
Expression profiling data (GEO database GSE78892) obtained
from the hepatocyte specificCyp51 knockoutmice (Cyp51flox/flox;
Alb-Cre) (Lorbek et al., 2013, 2015) are used for direct LiverSex
validation. Female and male mice of mixed genetic background
(129/Pas × C57BL/6J, close to 90% C57BL/6J) were included in
the experiment and after the weaning period (age 3 weeks) put
on a standard laboratory chow (Altromin) or isocaloric high-fat
diet with 1.25% (w/w) of cholesterol (western diet) for another 16
weeks. For validation of LiverSex three objects defining the diet
have been included in the model: sources of glucose, cholesterol,
and triglycerides. Experimental conditions were simulated in
the model by altering the nutrient (triglyceride and cholesterol)
influx into the network, thus mimicking the experimental
diets. Inconsistencies between biological observations and model
simulations mainly occurred due to the missing components and
regulatory connections in the model. A series of simulations
was executed to identify the network components that caused
erroneous behavior. Further in-depth literature searches were
performed in the context of these components to identify the
regulations that were absent in the network or were incorrectly
depicted. The western diet was replicated in silico by increasing
the influx of triglycerides (10-fold) and cholesterol (five-fold)
(fold-changes were estimated from the strict composition of
western diet and standard laboratory chow).

Sensitivity Analysis
Sensitivity analysis can provide valuable insight in the robustness
of the computational model in dependence on the perturbations
of model inputs, i.e., parameters values (Bentele et al., 2004).
Moreover, sensitivity analysis can identify parameters with the
greatest impact on the observed outputs. These parameters
present potential targets for further experimental analysis (Zi,
2011). Sensitivity analysis has an important function in the
analysis of computational models in systems biology and
medicine (Ingalls, 2008). Metabolic Control Analysis (MCA)
presents a sensitivity analysis method (Fell and Sauro, 1985)
that was initially focused to the analysis of metabolic networks.
The method was later adapted to the models of other biological
networks such as cell signaling models, models of genetic
networks, and models of other biological processes (Westerhoff
et al., 1984; Heinrich and Schuster, 1996). MCA assesses the
sensitivity of the model output with respect to the selected
input with evaluation of control coefficients. Here, metabolic
fluxes through the observedmetabolic reactions or concentration
of metabolites can be used as model outputs while model
parameters can be used as model inputs. The MCA of the
distribution of the metabolic fluxes in each of the pathway
branches can be performed with the following equation:

CX
f =

d (X)

df
=

X∗
− X

f ∗ − f
×

f

X
. (1)
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FIGURE 1 | Modeling hormonal regulation with SysBio library. (A) Graphical presentation of hormonal object in SysBio library. Each hormone group contains its own

source, the hormone and corresponding receptor, which is further connected with hepatocyte based on literature evidence. (B) Differences between hormone sources

based on the literature evidence. FEMALES: Estrogen concentrations are three-fold higher than androgens, and estrogens have one peak, which is consistent with the

monthly oestrous cycle. Because of the estrogen receptor feedback regulation on growth hormone, we can observe the influence of estrous cycle on growth hormone.

MALES: Androgen concentrations are 10-fold higher than concentrations of estrogens. Growth hormone concentrations show daily oscillations with ∼24-h period.

where CX
f represents the concentration control coefficient

of parameter f with regard to X. X∗ and X describe the
concentration of the observed metabolite, which presents a
variable under study at nominal (f ) and perturbed flux
distribution value (f ∗). The ratio between f and X is normalized
to achieve the relative value of sensitivity coefficient.

According to our previous experimental data and the
literature data the NAFLD pathogenesis can be associated with
de novo lipogenesis (Lorbek et al., 2013, 2015; Green et al.,
2015; Sanders and Griffin, 2016; Softic et al., 2016). Our analyses
of NAFLD progression were thus based on the observation of
triglyceride accumulation. The variations in their accumulation
were observed in dependence on the distribution of metabolic
fluxes at pathway branch points, which can be described as
model inputs. The concentration control coefficient from the

Equation (1) was thus defined as a partial derivate of the
alterations in triglyceride concentration with respect to the
small changes in the distribution of fluxes at pathway branch
points:

CTG
f =

d (TG)

df
=

TG∗
− TG

f ∗ − f
×

f

TG
, (2)

where TG∗ and TG are triglyceride concentrations with flux
distribution parameter values of f ∗ and f , respectively. The
described method was used to identify the branch points
with the largest sensitivities in each of the models. Moreover,
the obtained values were used to identify branch points and
their corresponding metabolic pathways, which have the largest
gender-dependent influence on NAFLD progression.
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To evaluate the sensitivity of hepatic triglyceride
concentration in dependence on the metabolic flux distribution
of LiverSex, the triglyceride influx into the model was raised
by 10-fold to imitate high fat diet. The distribution parameter
for each branch point in the pathway model was varied
incrementally by 5% up to a maximum of 30%. Further
investigation was focused on the analysis of gender-based
influences of regulatory factors on the previously identified
metabolic pathways. We calculated the concentration control
coefficient of regulatory factors, i.e., CR

f , using Equation (1),

where X is replaced with regulator R from the list of molecular
regulators (see Supplementary Table 2). Analyses were performed
for each of the molecular regulators.

RESULTS

Construction of LiverSex by Modeling

Hormonal Regulation With SysBio Library
LiverSex is composed of mathematical expressions of
relationships between sex hormones and growth hormone,
their corresponding receptors in hepatocytes and is based on
literature evidence. An object named hormonal regulation is
inserted into the blood section of the model. This object is
connected with corresponding pathways in the hepatocyte. As
explained in detail in the Materials and Methods section, it
includes androgens, estrogens, and growth hormone (Figure 1).

Each group of hormones has an effect on its corresponding
receptor. The behavior of hormones is determined by gender,
which results in two gender-specific models.

LiverSex Validation With Experimental Data
Three objects describing the diet have been included in LiverSex:
glucose source, cholesterol source, and triglyceride source.
Experimental conditions were mimicked in the model by altering
the substrate (triglyceride and cholesterol) influx into the
network in dependence on the experimental diets investigated
(standard laboratory diet and western diet).

The set of 45 genes that were differentially expressed between
females and males in mice fed with altromin and western diets
(Lorbek et al., 2013, 2015) was screened for genes that are
regulated inversely in females and males: either upregulated
in males and downregulated in females or vice versa. Three
inversely expressed genes were obtained (Figure 2A). The 1-
AcylGlycerol-3-Phosphate O-AcylTransferase gene Agpat which
is involved in lipid and glucose metabolism, and Protein
Kinase AMP-Activated catalytic subunit Alpha gene Prkaa were
downregulated in males and upregulated in females, while the
Insulin Receptor Substrate gene Irs, which is involved in insulin
signaling pathway, was upregulated in males and downregulated
in females.While the simulation results obtained by the SteatoNet
could only be attributed to males (Figure 2B), LiverSex correctly
described the data from both genders (Figures 2C,D).

FIGURE 2 | LiverSex validation with experimental data. (A) Graph represents gender based gene expression data obtained with the experiment (mice fed with

standard laboratory diet and western diet). For these genes, we looked up the log2 fold change values and p-values for the comparison of both diets in wild-type

female and male mice. (B) SteatoNet simulation results represent only the male gender. (C) LiverSex simulation results represent the male gene expression response

on the high fat diet. (D) The female LiverSex response to the high fat diet.

Frontiers in Physiology | www.frontiersin.org 5 April 2018 | Volume 9 | Article 360154

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
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LiverSex Prediction of Signaling Pathways

That Trigger NAFLD
With sensitivity analysis we were able to identify metabolic
reactions with the largest gender dependent influence on hepatic
triglyceride accumulation, which is considered as the initial stage
of NAFLD. Table 1 shows concentration control coefficients with
respect to hepatic triglyceride accumulation listed in direction
from the maximal to the minimal differences in sensitivity
values for males and females. Only the first 20 parameters
are listed in Table 1 (see Supplementary Material for the full
list of parameters—Supplementary Table 1). If we classify the
metabolic reaction with CTG

f
>1 as highly sensitive with respect

to hepatic triglyceride accumulation, only 3 reactions can be
regarded as highly sensitive: transformation of monoacylglycerol
to glycerol (k159), transport of triglycerides from liver to
adipose triglyceride lipid droplets (k177), and transformation
of acetoacetate to β-hydroxybutyrate (k152). Transformation
of monoacylglycerol to glycerol and transport of hepatic

TABLE 1 | Concentration control coefficients CTG
f

with respect to hepatic

triglyceride accumulation in LiverSex for males in females.

CTG
f

for males CTG
f

for females

Parameter Sensitivity Parameter Sensitivity

k159 88.19979 k159 109.4524

k177 2.179425 k177 2.373645

k500 0.609015 k152 1.469995

k180 0.248614 k500 0.661528

k179 0.082083 k180 0.114715

k142 0.06897 k163 0.052388

k163 0.061144 k142 0.046768

k1051 0.053941 k179 0.044451

k154 0.053466 k800 0.030237

k152 0.051326 k102 0.017683

k155 0.043668 k154 0.01731

k169 0.042516 k176 0.015594

k800 0.039541 k169 0.015429

k150 0.03319 k144 0.01494

k170 0.030855 k155 0.014034

k187 0.026241 k1051 0.012309

k166 0.025481 k187 0.011062

k165 0.025479 k150 0.010651

k164 0.025467 k170 0.010537

k144 0.025462 k105 0.009198

k102, Hepatic glucose → Glucose-6P; k105, Hepatic glucose → Blood glucose; k142,

Fructose-1,6BP → DHAP; k144, mito AcetylCoA + Oxaloacetate → Citrate; k150,

Acetoacetate → blood Acetoacetate; k152, Acetoacetate → β-hydroxybutyrate; k154,

blood β-hydroxybutyrate → adipose β-hydroxybutyrate; k155, blood → Acetoacetate

adipose Acetoacetate; k159, MAG → Glycerol; k163, [Cholesterol source + (LDL

cholesterol → Cholesterol) + (A 2 HDL → Cholesterol) + (HMGCoA → Cholesterol)]

→ Cholesterol utilization; k164, blood → Cholesterol macrophage Cholesterol; k165,

blood→ Cholesterol adipose Cholesterol; k166, blood Cholesterol→ tissue Cholesterol;

k169, adipose Fatty → acids Unsaturated FattyAcylCoA; k170, adipose Fatty → acids

Saturated FattyAcylCoA; k172, UnsaturatedFattyAcylCoA adipocyte → FattyAcylCoA

Glycerol3P to LPA adipocyte; k173, DAG → TG; k177, TG → adipose TG lipid droplet;

k179, blood Fatty → acids tissue Fatty acids; k180, Chylomicron → Chylomicron

remnants; k187, Oxoglutarate + Ammonia → Glutamate; k172, FattyAcylCoA +

Glycerol2P→ LPA; k500, TG→ VLDL; k800, (TG→ DAG)+ (PA→ DAG)+ (MAG DAG);

k1051, Blood → glucoseAdipose glucose; k1071-Hepatic glucoseBlood → glucose.

triglycerides to adipose triglyceride lipid droplets are highly
sensitive metabolic pathways in both genders, but metabolic
reaction from acetoacetate to β-hydroxybutyrate, which is a part
of the body ketone metabolism, shows a higher tendency for
female hepatic triglyceride accumulation only.

The concentration control coefficients reflect the impact
of perturbations on metabolite concentration. In our case,
these coefficients measure the relative steady-state change in
triglyceride accumulation in response to the relative change in
fluxes at metabolic branch points. Data obtained with sensitivity
analysis are sorted by descending absolute difference of sensitivity
values between male and female. It is interesting that the first
few pathways show a predominant effect in females (Figure 3).
The terminal degradation of triglycerides by conversion of
monoacylglycerol to glycerol (k159) seems to be the most
powerful flux in the network in both sexes. However, upon
perturbation with the diet, triglyceride accumulation is affected
more in females. Hepatic glycerol utilization is a metabolic
pathway, which is preferentially connected with carbohydrate
metabolism in men and lipid metabolism in women (Rodríguez
et al., 2015). Females display a higher sensitivity to ketone
body metabolism (k152), transport of triglycerides (k177), and
VLDL transport (k500), which carries triglycerides from the liver,
possibly to avoid the development of fatty liver, taking them to
the peripheral tissues for storage in adipose or for use in skeletal
muscle.

Regulatory Factors Involved in

Sex-Dependent Differences in NAFLD

Progression
Pathway branch points with the most significant absolute
difference of CTG

f between sexes were further investigated to

identify regulatory factors, which are sensitive to alterations
in flux distribution at these branches. By calculating CR

f with

respect to various regulatory factors in the LiverSex, we
obtained results presented in Table 2 and Supplementary
Table 2. Figure 4 illustrates the regulatory factors with high
sensitivity to alterations in flux distributions within the respective
metabolic pathways. PGC1A (Peroxisome proliferator-activated
receptor gamma coactivator 1-alpha, known also as PPARGC1A),
which induces mitochondrial biogenesis, PPARα (Peroxisome
Proliferator Activated Receptor alpha), the major regulator of
lipid metabolism, FXR (Farnesoid X Receptor), a regulator of
bile acid synthesis and excretion, LXR (Liver X Receptor),
involved in lipid and cholesterol metabolism, and ADIPO
(adiponectin), which is involved in glucose regulation and
fatty acid oxidation, display global sensitivity to alterations
in metabolic flux distribution at the majority of the high
sensitivity pathway branches, indicating the broad role of these
transcription factors.

DISCUSSION

Object oriented modeling can be successfully employed to
support hierarchical structuring, reuse and evolution of more
complex models, independently of the application domain.
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FIGURE 3 | Difference between gender dependent concentration control coefficients CTG
f

with respect to hepatic triglyceride accumulation in LiverSex. Data are

obtained with sensitivity analysis and sorted by descending absolute difference of sensitivity values in males and females. Data are presented in the logarithmic scale.

k159, MAG → Glycerol; k152, Acetoacetate → β-hydroxybutyrate; k177, TG → adipose TG lipid droplet; k180, Chylomicron → Chylomicron remnants; k500, TG →

VLDL; k1051, Blood glucose → Adipose glucose; k179, blood Fatty acids → tissue Fatty acids; k154, blood β-hydroxybutyrate → adipose β-hydroxybutyrate; k155,

blood Acetoacetate adipose Acetoacetate; k169, adipose Fatty acids → Unsaturated FattyAcylCoA; k166, blood Cholesterol → tissue Cholesterol; k165, blood

Cholesterol → adipose Cholesterol; k164, blood Cholesterol → macrophage Cholesterol; k150, Acetoacetate → blood Acetoacetate; k142, Fructose-1,6BP →

DHAP; k170, adipose Fatty → acids Saturated FattyAcylCoA; k173, DAG → TG; k187, Oxoglutarate + Ammonia → Glutamate; k172, FattyAcylCoA + Glycerol2P

LPA; k1071, Hepatic glucose → Blood glucose.

This also holds true for the LiverSex, where SteatoNet is
reused for adaptation to gender specific data. An object with
hormonal regulation is added to the SysBio library and after that
positioned into SteatoNet and connected to the liver based on
literature data. These models are constructed manually, i.e., by
connecting the SysBio objects that correspond to the biological
entities within the observed network. We are, however, currently
working on the automation of this construction process. The
LiverSex model by itself has certain limitations, which mainly
originate from the derivation of the SysBio library, which is
used for model construction. In order to reduce the space of
unknown parameters, the SysBio library objects presume the
normalized steady-state of the system. Obtained results thus
do not correspond to the actual concentrations of observed
metabolites due to the normalization of their concentrations
(Naik et al., 2014). The LiverSex was, however, successful in
replicating the results that correspond to different mice strains
as well as human data found in the literature.

The mechanism responsible for NAFLD progression in
humans is not yet fully understood. Furthermore, sex differences
have a big impact on the prevalence of NAFLD. Based on
the current data, premenopausal women are better protected
from developing NAFLD compared to men and postmenopausal
women (Ballestri et al., 2017). In this study, we tried to
expose the sexual differences in NAFLD based on hepatic
triglyceride accumulation. After performing sensitivity analyses,
metabolic differences between sexes in NAFLD were identified
(see Figure 4). Sensitivity analyses pinpointed to metabolic
pathways, in which the same perturbations cause the largest

differences in hepatic triglyceride accumulation. According to
the literature data all metabolic pathways with a high sensitivity
for hepatic triglyceride accumulation as reported by LiverSex are
involved in the earliest stage of NAFLD pathogenesis (Cohen
et al., 2011). One of the initial steps of NAFLD is hepatic steatosis,
which is characterized by the deposition of triglycerides as lipid
droplets (Reingold et al., 2005) and according to the results of
the sensitivity analyses of LiverSex, this metabolic step is more
sensitive in females.

Microsomal triglyceride transfers protein (MTTP) facilitates
triglyceride, cholesteryl ester, and phospholipid transport
between phospholipid surfaces (k500). A defect in lipid export
from the liver may also contribute to the pathogenesis of steatosis
(Fabbrini et al., 2008). MTTP is necessary for the assembly and
secretion of VLDL from hepatocytes (Jamil et al., 1995). It is
responsible for lipoprotein assembly by transferring triglycerides,
to nascent apolipoproteins B. The LiverSex demonstrates that
transferring triglycerides by MTTP, which is involved in NAFLD
progression, is more sensitive in females. It was previously
reported that MTTP expression is sex-dependent and that female
GH secretory pattern has a significant influence on its expression
(Améen and Oscarsson, 2003).

Hormone sensitive lipase (HSL) converts monoacylglycerides
to free fatty acids and glycerol (MGLL or MAGL) (k159) and
this step regulates the quantity of fatty acids, which are used as
signaling molecules and have been shown to promote cancer cell
migration, invasion and tumor growth (Nomura et al., 2010).
MAGL is a crucial lipolytic enzyme and an important regulator
of tumor progression. It can promote hepatocellular carcinoma
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FIGURE 4 | LiverSex identified pathways and regulatory factors with largest difference between genders and with respect to hepatic triglyceride accumulation as the

first step of NAFLD. The displayed pathways that show the largest differences between genders and determine the change in hepatic triglyceride accumulation

highlight branch-points with high dynamic sensitivity. Regulatory factors that are affected by modifications in flux distribution are categorized at the corresponding

reaction to which they are sensitive. MAG, Monoacylglycerol; PGC1A, Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1 alpha; PPARa, Peroxisome

Proliferator-Activated Receptor alpha; FXR, Farnesoid X Receptor; LXR, Liver X Receptor; ChREBP, Carbohydrate Response Element-Binding Protein; SREBP-1c,

Sterol Regulatory Element-Binding Protein-1c; SREBP-2, Sterol Regulatory Element-Binding Protein-2; VLDL, Very-Low Density Lipoprotein; TNFa, Tumor Necrosis

Factor alpha.

progression and was recently suggested as a potential therapeutic
target and as a biomarker for prognosis in patients with HCC
(Zhu et al., 2016). Expression of HSL is decreased in NAFLD
compared with normal liver (Kohjima et al., 2007), which was
also observed in our simulation results. There is currently no
literature data describing the sex-specific differences in the
expression of liver HSL. However, differences were reported
previously in skeletal muscles, where women were found to have
a higher intramuscular triacylglycerol during exercise than men,
and also higher mRNA levels of HSL in the muscle. Yet, as HSL
activity during prolonged exercise is higher in men it is likely
that the enzyme-substrate interactions differ between the sexes
(Roepstorff et al., 2006). In addition, our results show that women
have a higher susceptibility to changes in lipolysis. show that
women have a higher susceptibility to changes in lipolysis.

Removal of FA from the liver occurs by secretion as VLDL
(k500) and by FA oxidation (k152) (Hodson and Frayn, 2011).
Some studies suggest women have enhanced production and
clearance of VLDL compared to men (Wang et al., 2011). Few
studies have investigated sex-specific differences in FA oxidation
and found out that after a prolonged overnight fasting, women
metabolize FA toward 3-hydroxybutyrate (3OHB) to a greater
extent than men (Halkes et al., 2003; Marinou et al., 2011).
Other studies (Koutsari et al., 2011; Marinou et al., 2011) indicate
that women exhibit a higher non-oxidative FFA disposal (i.e.,

esterification and storage as triglycerides) and, after an overnight
fast, they are prone to partition fatty acids toward ketone
body production rather than VLDL. These differences were also
reflected by our LiverSexmodel.

Partition of fatty acids to ketone body production, VLDL
synthesis and fatty acids oxidation, together with deposition of
triglycerides as lipid droplets are considered as parts of NAFLD
pathology, which were all found to be more sensitive in females
in response to a high-fat diet challenge. The ability to partition
fatty acids into different pathways might be one of the possible
protective mechanisms in females leading to delayed NAFLD
progression compared to males. However, further research is
needed to confirm this hypothesis.

There are few metabolic pathways for which regulators
do not show sexual dimorphism, such as transformation of
monoacylglycerides to glycerol, fructose-1,6 bisphosphate to
dihidroxyacetone phosphate and transport of cholesterol from
blood to peripheral tissues. However, transport of fatty acids from
blood to peripheral tissues and cholesterol from blood to the
adipose tissue are pathways, in which regulatory factors differ
substantially between genders. The activity of regulatory factors
such as PGC1A, PPARα, FXR, and LXR is highly related to gender
(see Figure 4).

Several studies have focused on the analysis of mice with
liver-specific knockouts crucial for growth hormone signaling
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TABLE 2 | Regulatory factors with high concentration control coefficients to

alterations in flux distribution at presented branch points.

Parameter Metabolic pathway Regulatory factors

Female Male

k159 MAG→ Glycerol Glucagon Glucagon

Cholesterol Cholesterol

Glucose Glucose

ChREBP ChREBP

SREBP2 SREBP2

k152 Acetoacetate→

BHydroxybutyrate

PGC1A Cholesterol

Adiponectin Glucose

Cholesterol LXR

PPARα ChREBP

FXR PGC1A

k177 TG→ Adipose TG lipid

droplet

Glucagon Glucagon

Cholesterol Glucose

Glucose ChREBP

ChREBP Cholesterol

SREBP2 SREBP2

k180 Chylomicron→ Chylomicron

remnants

PGC1A PGC1A

Adiponectin TNFa

Cholesterol PPARα

PPARα LXR

FXR Adiponectin

k500 Triglycerides→ VLDL PGC1A LXR

Adiponectin Cholesterol

Cholesterol SREBP1c

PPARα SREBP2

FXR PGC1A

k1051 Blood glucose→ Adipose

glucose

PGC1A PGC1A

Adiponectin TNFa

Cholesterol PPARα

PPARα Adiponectin

FXR Glucocorticoid

k179 Blood Fatty acids→ Tissue

Fatty acids

PGC1A LXR

Adiponectin Cholesterol

PPARα SREBP1c

FXR PGC1A

TNFa Adiponectin

k154 Blood BHydroxybutyrate→

Adipose BHydroxybutyrate

PGC1A Adiponectin

Adiponectin PGC1A

PPARα LXR

FXR PPARα

TNFA FXR

k155 Blood Acetoacetate→

Adipose Acetoacetate

PGC1A Adiponectin

Adiponectin PGC1A

PPARα PPARα

FXR LXR

TNFA FXR

(Continued)

TABLE 2 | Continued

Parameter Metabolic pathway Regulatory factors

Female Male

k169 Adipo Fatty acids→

Unsaturated FattyAcylCoA

PGC1A PGC1A

Adiponectin PPARα

Cholesterol Adiponectin

PPARα TNFA

FXR FXR

k166 Blood Cholesterol→ Tissue

Cholesterol

Cholesterol Cholesterol

LXR LXR

SREBP2 SREBP2

SREBP1c SREBP1c

ChREBP Glucose

k165 Blood Cholesterol→

Adipose Cholesterol

PGC1A Cholesterol

Adiponectin LXR

Cholesterol SREBP2

PPARα SREBP1c

FXR Glucose

k164 Blood Cholesterol→

Macrophage Cholesterol

Cholesterol Cholesterol

LXR LXR

SREBP2 SREBP2

SREBP1c SREBP1c

ChREBP Glucose

k150 Acetoacetate→ Blood

Acetoacetate

PGC1A Adiponectin

Adiponectin PGC1A

Cholesterol PPARα

PPARα LXR

FXR FXR

k142 Fructose-1,6BP→ DHAP PGC1A PGC1A

Adiponectin Adiponectin

PPARα PPARα

FXR TNFa

TNFa FXR

proteins indicating an important role of growth hormone in
hepatic triglyceride secretion (Cui et al., 2007; Fan et al., 2009;
Barclay et al., 2011; Sos et al., 2011). Pgc1a has been proposed
as one of the transcriptional targets responsible for steatosis (Cui
et al., 2007; Fan et al., 2009; Barclay et al., 2011; Sos et al., 2011)
and based on our observations women are more susceptible for
this. Skeletal muscle-specific PGC-1a overexpression increased
glucose uptake, glycogen and lipid droplets quantity (Mormeneo
et al., 2012), raising the possibility that PGC1A could also
promote triglyceride accumulation into adipose lipid droplets as
predicted by our model.

PPARα is known to be highly expressed in the liver and
exhibits a sex-dimorphic nature. In the liver, PPARα promotes
fatty acid oxidation, which makes it a possible drug target
for treating hypertriglyceridemia (Rando and Wahli, 2011). In
PPARα-null mice, gross hepatic abnormalities, disclosed to the
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steatotic liver and hepatomegaly, were found in males, but
not females (Costet et al., 1998). LiverSex revealed a higher
capacity of females to secrete triglycerides via VLDL compared
to males, which was also the presumed cause for the increased
steatosis resistance in female PPARα-null mice (Lindén et al.,
2001).

Literature search did not reveal any sex-dependent FXR and
LXR correlation to liver. FXR modulates hepatic inflammation,
thus, FXR sex-dimorphic function in that context is less
clear (Rando and Wahli, 2011). Indication that many of the
FXR, PPARα, LXRα overlapping binding sites are functional
(Boergesen et al., 2012) might present the reason for sex-
dimorphic behavior of these nuclear receptors. Higher FXR
sensitivity to the triglycerides accumulation in females could
be correlated with higher binding of Retinoic X Receptor
(RXRα), which is obligate heterodimerization partner of FXR
to female hepatic chromatin for the essential lipid processing
genes (Kosters et al., 2013). In addition, these sex-specific
binding patterns and differences in ligand responsiveness may
be the reasons for sex-specific distinctive effects of drugs.
LXRs act as liver lipid sensors and regulate the metabolism of
cholesterol and fatty acids (Schultz et al., 2000). LXR indirectly
regulates Srebp1c, which is directly acting on Pnpla3 (Huang
et al., 2010). It has been previously reported that LXR is not
the subject of regulation by either dietary cholesterol or sex
(Lorbek et al., 2013; Feillet et al., 2016), but LiverSex reported
higher sensitivity of LXR in males in the initial steps of
NAFLD.

Several nuclear receptors together with their molecular
cascades are promising pharmacological targets for NAFLD
treatment (Serviddio et al., 2013). Based on the results obtained
by LiverSex, PGC1A, PPARα, FXR, and LXR could provide
novel pharmacological targets for sex-based therapy in the
future. Although the various studies emphasize the importance
of regulators in modulating hepatic lipid homeostasis, data

regarding the sex-dependent effects on the development of
steatosis is still missing, emphasizing the need for further studies.

Our results suggest that one of the major hepatic
characteristics is its sexually dimorphic nature. Sex steroids
and growth hormone play a crucial role in fine-tuning the
sex-dependent metabolic pathways in the liver. Further studies
of sexually dimorphic genes and pathways as well as differences
in their expression, are required for better insights into the
complex functions of the liver and the relation to disease
progression in both sexes. LiverSex and its future extensions
in the context of personalized models may help with finding
preventive approaches for NAFLD as well as other liver related
sex-specific diseases.
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Dysbiosis in the gut microbiome composition may be promoted by therapeutic drugs
such as metformin, the world’s most prescribed antidiabetic drug. Under metformin
treatment, disturbances of the intestinal microbes lead to increased abundance of
Escherichia spp., Akkermansia muciniphila, Subdoligranulum variabile and decreased
abundance of Intestinibacter bartlettii. This alteration may potentially lead to adverse
effects on the host metabolism, with the depletion of butyrate producer genus. However,
an increased production of butyrate and propionate was verified in metformin-treated
Type 2 diabetes (T2D) patients. The mechanisms underlying these nutritional alterations
and their relation with gut microbiota dysbiosis remain unclear. Here, we used Genome-
scale Metabolic Models of the representative gut bacteria Escherichia spp., I. bartlettii,
A. muciniphila, and S. variabile to elucidate their bacterial metabolism and its effect
on intestinal nutrient pool, including macronutrients (e.g., amino acids and short chain
fatty acids), minerals and chemical elements (e.g., iron and oxygen). We applied flux
balance analysis (FBA) coupled with synthetic lethality analysis interactions to identify
combinations of reactions and extracellular nutrients whose absence prevents growth.
Our analyses suggest that Escherichia sp. is the bacteria least vulnerable to nutrient
availability. We have also examined bacterial contribution to extracellular nutrients
including short chain fatty acids, amino acids, and gasses. For instance, Escherichia
sp. and S. variabile may contribute to the production of important short chain fatty
acids (e.g., acetate and butyrate, respectively) involved in the host physiology under
aerobic and anaerobic conditions. We have also identified pathway susceptibility to
nutrient availability and reaction changes among the four bacteria using both FBA and
flux variability analysis. For instance, lipopolysaccharide synthesis, nucleotide sugar
metabolism, and amino acid metabolism are pathways susceptible to changes in
Escherichia sp. and A. muciniphila. Our observations highlight important commensal
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and competing behavior, and their association with cellular metabolism for prevalent
gut microbes. The results of our analysis have potential important implications for
development of new therapeutic approaches in T2D patients through the development
of prebiotics, probiotics, or postbiotics.

Keywords: gut microbiota, dysbiosis, host–microbiome interactions, genome-scale metabolic models, systems
biology

INTRODUCTION

Dysbiosis in the gut bacterial community and concomitant
metabolic changes have an impact on human health (Qin et al.,
2012; Tremaroli and Bäckhed, 2012; Karlsson et al., 2013;
Forslund et al., 2015; Mardinoglu et al., 2016; Magnusdottir
et al., 2017). Gut microbiome could affect host metabolism
(Brillat-Savarin, 1826; Tremaroli and Bäckhed, 2012; Shoaie
et al., 2013, 2015; Magnusdottir et al., 2017) through degrading
non-enzymatically digestible foods, and synthesis of amino
acids and short chain fatty acids (SCFAs). Dysbiosis may have
detrimental effects on host metabolism such as alterations
in abundance of nutrients crucial for homeostasis including
butyrate (Forslund et al., 2015; Mardinoglu et al., 2016; Wu et al.,
2017). Perturbations of intestinal microbiota are recognized as a
risk factor for type 2 diabetes (T2D), a complex chronic disorder
associated with genetic and environmental risk factors such as
age, diet, and lifestyle (Karlsson et al., 2013; Forslund et al.,
2015; Shoaie et al., 2015; Mardinoglu et al., 2016; Magnusdottir
et al., 2017). Recently, compositional shifts in representative gut
microbes were identified in T2D patients undergoing metformin
treatment, the most prescribed antidiabetic drug. These patients
display increased abundance of Escherichia sp., Akkermansia
muciniphila (A. muciniphila), and Subdoligranulum variabile
(S. variabile) (Forslund et al., 2015; Mardinoglu et al., 2016; Wu
et al., 2017), and lower of Intestinibacter bartlettii (Forslund et al.,
2015; Wu et al., 2017), as well as increased levels of the SCFAs
butyrate and propionate. Thus, despite potentially detrimental
effects of gut microbiota dysbiosis, metformin-treated patients
display beneficial alterations in gut SCFA abundances (Forslund
et al., 2015; Mardinoglu et al., 2016). However, the relationship
between the metabolism of representative gut bacteria such as
Escherichia sp., A. muciniphila, S. variabile and I. bartlettii, and
compounds in the intestinal lumen such as SCFAs or amino acids
is unclear.

Clarifying complex metabolic responses and relationships
between gut microbes and host metabolism requires an analysis
of large and highly intertwined reaction networks. GEnome-
scale Metabolic models (GEMs) allow for the analysis of such
complex networks and have successfully been applied to clarify
the mechanisms underlying insulin resistance (Varemo et al.,
2015; Zhang and Hua, 2016; Mardinoglu et al., 2018; Turanli
et al., 2018) and to identify important nutritional interactions
between gut microbes and the host (Shoaie et al., 2013; Ji
and Nielsen, 2015; Mardinoglu et al., 2015; Zhang and Hua,
2016). Synthetic lethality analysis (Pratapa et al., 2015) is
an approach commonly used in constraint-based modeling to
clarify biological phenomena (Mardinoglu and Nielsen, 2012;

Mardinoglu et al., 2016; Magnusdottir et al., 2017). It is used
to identify vital interconnected metabolic processes underlying
a phenotype of interest (Qin et al., 2012; Shoaie et al., 2013;
Magnusdottir et al., 2017) and has been extensively applied in
health and disease (O’Neil et al., 2017). While synthetic lethality
analysis traditionally seeks to identify genes that are individually
essential, this approach may assist in identifying whether the
simultaneous knock-out of two genes of interest leads to cell
lethality, but their individual knock-out maintains cell viability,
i.e., synthetic lethality interactions (Kaelin, 2005).

Through reconstruction and analysis of GEMs, we sought to
understand the contribution of the four bacteria in the physiology
of T2D patients undergoing metformin treatment. We used
AGORA GEM reconstructions of Escherichia sp., A. muciniphila,
S. variabile, and I. bartlettii to analyze relationships between the
bacterial metabolism and the extracellular environment, as well
as predicting the survivability of the bacteria against nutritional
alterations (Magnusdottir et al., 2017). Here, we employed the
concept of synthetic lethality analysis to identify sets of individual
and pairs of reactions that, when not present, abolished growth.
Additionally, we implemented nutritional interactions analysis
to understanding how the presence or absence of gut nutrients
influences bacterial growth by focusing on nutrient transport
reactions (i.e., exchange reactions). Moreover, we assessed the
influence of available nutrients and synthetic lethal reactions on
cellular metabolic pathways to clarify which metabolic pathways
were mostly dependent on nutritional alterations and under
survivability threat, respectively. Lastly, interactions between
the gut microbiota and the environment (host intestine) were
evaluated through a novel approach based on the production and
consumption of substrates of interest under maximal growth and
minimal media conditions of each organism. Our observations
highlight important association between cellular metabolism
of these four prevalent gut microbes and point important
implications for development of new therapeutic approaches in
T2D patients.

MATERIALS AND METHODS

Genome Scale Metabolic Model
Retrieval, Curation, and Modeling
AGORA (Assembly of Gut Organisms through Reconstruction
and Analysis) model reconstructions (Magnusdottir et al., 2017)
were downloaded in SBML format from Virtual Metabolic
Human (VMH) database1 for Escherichia sp. 4_1_40B, and

1https://vmh.uni.lu/#microbes/search
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I. bartlettii (Clostridium bartlettii DSM 16795) on the 27th
of January 2017, for A. muciniphila ATCC BAA-835 and
S. variabile DSM 15176 on the 2nd April 2018. Details regarding
microorganism AGORA reconstructions are accessible in
Supplementary Table S1. The models were manually curated
to ensure biological functionality. The computations were
performed on resources provided by the Swedish National
Infrastructure for Computing (SNIC) through Uppsala
Multidisciplinary Center for Advanced Computational Science
(UPPMAX).

The RAVEN (Reconstruction, Analysis and Visualization of
Metabolic Networks) Toolbox (Agren et al., 2013) was used
to define and set parameters for simulations and perform
analyses of the originated predictions. Unless otherwise stated, all
flux balance analyses (FBAs) considered biomass production as
objective function. For flux variability analysis (FVA), minimum
and maximum flux ranges were calculated for each reaction
for the optimized value of the objective function through
the COBRA (Constraint-Based Reconstruction and Analysis)
Toolbox (Schellenberger et al., 2012).

Synthetic Lethality Analysis
Lethality analysis was performed by adapting the Fast-SL
algorithm (Pratapa et al., 2015) from the COBRA Toolbox
(Schellenberger et al., 2012) to RAVEN Toolbox (Agren
et al., 2013). Fast-SL-derived single and double lethal reactions
predictions (Supplementary Table S2) were further validated
by constraining methods, setting lower and upper bounds to
zero, with biomass maximization defined as objective function.
Single lethal reactions were determined and treated as essential
reactions for cell growth. Double lethal reactions were considered
as those pairs of reactions that induce no growth when
blocked simultaneously but not individually. Exchange reactions
were determined using default RAVEN functions, and only
those involving nutrient exchange with the extracellular space
are reported (i.e., outside reactions, and not inside reactions
which include DNA replication, RNA transcription, protein
biosynthesis and biomass, and are treated as intracellular
reactions). This permits the identification of essential exchange
reactions, which are the nutrients required to be uptaken from
the environment by the organism in order to guarantee cell
survival.

Metabolic Pathway Sensitivity to
Essential Reactions and Nutrient
Changes
The built-in subsystems of the model were used for defining the
pathways (Supplementary Table S5) and unclassified pathways
were ignored. We applied modeling-constraints (lower and
upper bounds set to zero and objective function defined
as biomass maximization) going through each of the single
and double lethal reactions (essential reactions) and non-
essential exchange reactions. Pathway sensitivity to changes
was determined based on the proportion of reactions that
presented absolute flux changes above 0.01 mmol/gDW/h
relative to the respective flux in the reference model where no

constraints were set on lower/upper bounds. This value was
conservatively considered based on the observation that FBA-
based approaches often use 0.001 mmol/gDW/h as threshold
for identifying reactions that have fluxes (Hyotylainen et al.,
2016).

Additionally, these results were compared with those from
FVA in response to the inhibition of single and paired synthetic
lethal (essential) and non-essential exchange reactions, and
compared to a reference output without applied constraints on
lethal neither exchange reactions. Only solutions on flux variation
that achieve ≥90% of the reference solution were considered.
Using the minimum and maximum fluxes determined for each
reaction, we computed the mean and ranges for all reactions in
each subsystem.

Extracellular Nutrient Uptake and
Alternative Aerobic and Anaerobic
Escherichia sp. Growth
We have employed a novel approach which allowed us to
identify which are the minimal sufficient nutrients that when
combined are capable of providing cellular growth when uptaken
by the organism. In order to identify which nutrients are on
the first line promoting cellular growth under environmental
limited conditions, the target reactions of this approach were
non-essential exchange reactions. No constraint was applied
for single essential exchange reactions to ensure that growth
inhibition was not due to the block of required essential nutrients.
Cellular intake through non-essential exchange reactions was
blocked with lower bounds set to zero. Based on FBA methods,
non-essential exchange reactions were blocked one-by-one, two-
by-two, and three-by-three. Future work should test how this
approach compares with existing methods for determining
minimum growth conditions (e.g., Imielinski et al., 2006; Eker
et al., 2013). This was performed for all organisms under
anaerobiosis, and also for Escherichia sp. under aerobiosis.
A biomass flux threshold of 10−5 was defined as minimum to
consider cell growth.

Maximal Growth-Coupled Extracellular
Nutrient Production and Consumption
We developed a novel approach to assess the contribution of
each bacteria for nutrient production and consumption under
the maximum growth rate permitted under minimum media
conditions. Specifically, we determined the maximal rate of
secretion or intake of each metabolite when the organism is at
its highest growth yield by individually setting each metabolite
of interest as objective function at a time, therefore maximizing
its production or consumption. Maximum organism growth
was determined based on FBA under minimal media for
each organism (Supplementary Table S7). Thus, the predicted
maximal growth (0.6387, 0.2268, 0.2599, 0.2460 mmol/gDW/h,
respectively for Escherichia sp., I. bartlettii, A. muciniphila, and
S. variabile) was used as lower bound constraint for biomass
together with minimal media conditions and under anaerobic
conditions (with oxygen exchange constrained to zero in both
models).
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RESULTS

In Silico Identification of Different
Growth Requirements in Representative
Gut Bacteria
To assess growth requirements of Escherichia sp., I. bartlettii, A.
muciniphila and S. variabile, we retrieved AGORA (Magnusdottir
et al., 2017) models for these organisms (Supplementary
Table S1). These models comprise the entire known metabolic
reaction networks of these organisms, and contain 1757, 1095,
1125, and 1057 reactions, and 1267, 730, 592, and 1313 genes,
respectively. Using the FAST-SL algorithm (Pratapa et al., 2015)
based on FBAs) with biomass as objective function, we performed
synthetic lethality interaction analysis (Figure 1) on these four
organisms. Through this approach, we revealed the influence
of an inhibited (i.e., without flux) reaction on the metabolic
network. This allowed for the identification of single essential
reactions (Figure 1A), and those combinations of reaction
pairs that become lethal when blocked simultaneously but not
individually (Figure 1B). In total, this represents between 559,153
to 1,544,403 different conditions (including single and double
reaction combinations) tested.

Additionally, this approach allowed for understanding the
consequences of unavailability of environmental compounds
(e.g., amino acids or oxygen) on cell growth by inhibiting
transport reactions with the extracellular environment (i.e.,
exchange reactions). Escherichia sp., I. bartlettii, A. muciniphila,
and S. variabile respectively displayed 211, 153, 142, and 130
exchange reactions. I. bartlettii was the bacteria with higher
proportion of exchange reactions, while S. variabile was the
organism with higher proportion of single lethal reactions.
Escherichia sp. was the bacteria with lower proportion of
essential exchange reactions (Figure 1A and Supplementary
Table S2). These four organisms commonly shared 46 single
lethal reactions. A. muciniphila presented 182 organism
specific single lethal reactions and 45 additional single lethal
reactions shared with Escherichia sp. Among all exchange
reactions, 10 single-lethal were shared by these four organisms:
environmental exchange of calcium, chloride, carbon dioxide,
copper, potassium, magnesium, manganese, sulfate, zinc,
and ferrous (Fe2+) iron (Figure 1C). Escherichia sp. did not
present organism-specific essential exchange reactions, whereas
I. bartlettii, S. variabile, and A. muciniphila respectively had 1,
2, and 6 single-lethal exchange reactions found only in these
organisms. Both A. muciniphila and S. variabile presented shared
single-lethal exchange reactions with I. bartlettii, where exchange
of ferric iron (Fe3+) was essential in the three organisms.
Exchange of vitamin B5 and tryptophan were essential exchange
reactions found in I. bartlettii and S. variabile, whereas exchange
of hydrogen phosphate is commonly essential in I. bartlettii and
A. muciniphila.

When considering all possible pairs of combinations,
A. muciniphila presented the highest proportion of double lethal
reaction pairs and pairs that include at least 1 exchange reaction.
I. bartlettii was the organism with higher number of organism-
specific lethal reaction pairs with ≥1 exchange reaction, followed

by A. muciniphila (Figure 1B). There were no lethal reaction
pairs (≥1 exchange reactions) exclusively shared by the two
organisms. However, ornithine exchange comprised 7 and 4
organism-specific double lethal reactions in I. bartlettii and
A. muciniphila, respectively. Among those combinations found
together with ornithine exchange, the urea cycle was the only
common pathway between the two bacteria, where arginine and
proline metabolism are specific for A. muciniphila, and alanine
and aspartate metabolism, pyrimidine synthesis, citric acid cycle
are specific for I. bartlettii.

Intracellular reactions involving NADP+/NADPH became
lethal when combined with riboflavin or diaminoheptanedioate
exchange in I. bartlettii. In turn, intracellular reactions involving
NADP+/NADPH together with environmental exchange of
vitamin B5, the fatty acid laurate or thymidine were synthetic
lethal reaction pairs in Escherichia sp., but not in I. bartlettii.
Escherichia sp. displayed the lowest proportion of double lethal
reactions, as well as the lowest proportion of double lethal
reactions with ≥1 exchange reactions, and the lowest number
of organism-specific lethal reaction pairs with ≥1 exchange
reactions. Among these pairs with ≥1 exchange reaction
which involved fatty acids, Escherichia sp. and A. muciniphila
respectively displayed 20 of 21 shared reaction pairs involving
laurate exchange and an intracellular reaction associated with
fatty acid synthesis or oxidation. Simultaneous inhibition of
acetate exchange and acetate kinase or phosphotransacetylase
reactions were lethal in A. muciniphila.

Several double lethal pairs involving nicotinate exchange were
present in S. variabile (three pairs) and I. bartlettii (four pairs).
Lethal pairs involving nicotinamide mononucleotide (NMN)
exchange were also found for S. variabile (three pairs) and
Escherichia sp. (two pairs), where one pair involves nicotinate-
nucleotide adenylyltransferase in both organisms. Reactions
involved in hypoxanthine exchange and purine synthesis were
found in 10 double lethal pairs exclusive of S. variabile.

The inhibition of L-lysine exchange simultaneously with
diaminopimelate decarboxylase reaction was the only lethal
pair found in the four organisms. Reaction pairs including
exchange of arginine, alanine, asparagine, aspartate, isoleucine,
lysine, tyrosine, valine, thymidine, or thiamine (vitamin B1)
were synthetic lethal in one or more organisms. S. variabile, A.
muciniphila, Escherichia sp., and I. bartlettii respectively had 4,
2, 1 and 1 double lethal pairs involving 2 exchange reactions.
Simultaneous inhibition of NMN exchange and nicotinate, or L-
tyrosine coupled with glycyl-L-tyrosine, or phosphate paired with
glycerol 3-phosphate and uracil paired with succinate became
lethal in S. variabile. In A. muciniphila inhibiting the exchange of
L-asparagine together with glycyl-L-asparagine or thiamin led to
lethality. Notably, simultaneous blocking of exchange of oxygen
with ferric iron (Fe3+) or nicotinate, respectively prevented
growth in Escherichia sp. and I. bartlettii. While I. bartlettii is
an obligate anaerobe (Supplementary Table S1), the observation
that O2 exchange is present in this model could indicate that
the model failed to describe its aerotolerance. However, the two
following points indicate that the model predictions are robust
to O2 availability. First, the Spearman correlation between model
fluxes in presence vs. absence of O2 was very high (Spearman’s
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FIGURE 1 | Specific growth requirements suggest lower vulnerability of Escherichia sp. to environmental nutritional deficiencies. (A) Proportions of single lethal
reaction sets for the entire metabolic network and for exchange reactions in the four organisms, and number of exclusive and shared single lethal reactions
(Supplementary Table S2) (B) Number of double lethal reaction pairs. (C) Essential metabolites consumed by the four organisms. Multiple colored metabolites are
consumed by several bacteria according to the legend.

ρ > 0.82, P < 10−70 considering all 304 non-null fluxes of both
models). Second, the reactions catalyzed by antioxidants against
reactive oxygen species (hydrogen peroxide reductase) showed
activity in a model encompassing oxygen exchange, but not
in its absence (Supplementary Table S3). We finally, removed
oxygen exchange from the I. bartlettii model and repeated the
lethality analysis for the entire reaction network. The comparison
of synthetic lethality analysis under aerobic versus anaerobic
conditions changes the number of single lethal reactions from
80 to 85, and from 124 to 171 lethal pairs (Supplementary
Table S4), respectively. However, only one additional single lethal
exchange reaction (methionine exchange) was identified in the
I. bartlettii model. These observations reinforce the confidence
in the predictions of the model in terms of environmental
dependency or synthetic lethal reactions.

Identification of Sensitive Pathways to
Inhibition of Lethal and Non-essential
Exchange Reactions
We investigated which pathways were mostly altered by single
and double synthetic lethal reactions (i.e., essential reactions)

and non-essential exchange reactions. Escherichia sp. displays 73
metabolic pathways, I. bartlettii displays 66, A. muciniphila has
68 and S. variabile displays 63, of which 54 are commonly present
in the four organisms (Supplementary Table S5). Considering
the entire metabolic network and sets of single, paired essential
reactions, and non-essential exchange reactions individually and
coupled in pairs, we computed the proportion of reactions that
are altered in each pathway in comparison with each bacteria’s
reference model, i.e., the model with no reaction blocking.
To do so, we used FBA to identify flux distribution between
pathways while maximizing for bacterial growth, i.e., “pathway
sensitivity” to reaction blocking. Additionally and to complement
this methodology, we employed FVA (Supplementary Table S6).
We observed (Figures 2, 3) that several pathways show significant
alterations in >50% of their reactions. For instance, cholesterol
(and squalene) synthesis but not other reactions involved in
cholesterol metabolism, were highly perturbed by essential
reactions and partly by environmental exchange reactions in
Escherichia sp. In turn, cholesterol metabolism was highly
perturbed by essential and environmental exchange reactions
under the same constraints in A. muciniphila but not in
I. bartlettii and S. variabile.
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FIGURE 2 | Pathways of Escherichia sp. and Intestinibacter bartlettii show distinct vulnerability to environmental nutritional changes. Synthetic lethality analysis was
performed in Escherichia sp. (A) and I. bartlettii (B) for blocking of single reactions or pairs of reactions belonging to the entire metabolic network (“All essential
reactions”), for exchange reactions, or for non-essential exchange reactions and then we determined the fraction of pathway reactions altered (>1% change with
respect to the reference model). For reaction pairs, we also considered pairs comprising 1 exchange reaction and 1 intracellular reaction. Columns have different
number of blocked reactions, and only one pair of essential exchange reactions was found in each organism (see text). Columns leading to no pathway changes are
not shown; for non-essential exchange reactions, only those in the top 30% inducing most pathway changes are shown. Amino acids are abbreviated by their
common three-letter names. Total number of reactions in each pathway are presented in brackets. Due to the large number of possible combinations, only those
pairs of non-essential exchange reactions that resulted in high pathway changes are shown (sum over all pathways >4).
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FIGURE 3 | Pathway susceptibility to environmental changes in Akkermansia muciniphila and Subdoligranulum variabile. Synthetic lethality analysis was performed in
A. muciniphila (A) and S. variabile (B) similarly to Figure 2. Amino acids are abbreviated by their common three-letter names. Total number of reactions in each
pathway are presented in brackets. Due to the large number of possible combinations, only those pairs of non-essential exchange reactions that resulted in high
pathway changes are shown (sum over all pathways >4).
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Akkermansia muciniphila showed the most significant cellular
pathway alterations in response to essential reactions including
N-glycan synthesis, exclusive to this bacteria (Figure 3A).
Lipopolysaccharide (LPS) biosynthesis and nucleotide sugar
metabolism were metabolic pathways highly perturbed in
A. muciniphila and Escherichia sp., but not in S. variabile. I.
bartlettii showed (Figure 2B) substantial (>50%) alterations
in metabolism of propionate, phenylalanine, alanine but no
change in chloroalkane and chloroalkene degradation, a species-
exclusive metabolic pathway. In turn, metabolism of butyrate and
vitamin B2 showed substantial (>50%) alterations in metabolism
in Escherichia sp. (Figure 2A). Oxidative phosphorylation, a
metabolic pathway found in the four organisms, was highly
perturbed in S. variabile when any of its lethal or non-essential
exchange reactions were inhibited. The same was observed in
I. bartlettii, however mainly when double lethal reactions were
blocked simultaneously. The metabolism of sulfur and energy
were equally highly perturbed in S. variabile in response to
inhibition of any of its essential or non-essential exchange
reactions, while sulfur metabolism was poorly affected in other
species and energy metabolism was only considerably perturbed
in A. muciniphila.

While some of the pronounced changes exhibited by some
pathways reflect their small size (e.g., oxidative phosphorylation
with ≤3 reactions), other pathways showed substantial changes
though they comprise more reactions. This is the case of LPS
biosynthesis (27 reactions in Escherichia sp. and 30 reactions in
A. muciniphila), butyrate metabolism (9 reactions in I. bartlettii
and Escherichia sp.), or phenylalanine metabolism (25 and 10
reactions in Escherichia sp. and S. variabile). Importantly, these
trends were also observed when blocking single or pairs of
essential exchange reactions, and for many of the non-essential
exchange reactions, indicating the strong effect of nutritional
availability in these pathways. Metabolic pathways were more
sensitive to inhibition of essential (lethal) reactions that are
intracellular and environmentally exchanged, comparatively to
non-essential exchange reactions in the four organisms. FVA
showed qualitatively similar results, though it indicates that more
pathways were sensitive to perturbations than FBA.

Tyrosine, Phenylalanine, and Vitamin B6
Permit Escherichia sp. Growth Under
Aerobic but Not Anaerobic Conditions
Bacteria present different growth requirements, and thus may
present selective advantages and disadvantages. Among the four
bacteria tested here, all are strict anaerobes with exception to
Escherichia sp., a facultative aerobe. In Escherichia sp., blocking
of oxygen and iron exchange together induces lethality (but not
individually, since production of ferric iron depends on oxygen
through the reaction 4H++ O2 + 4Fe2+

→ 2H2O + 4Fe3+).
We questioned if pathway utilization may differ not only in
response to nutrients but also in response to oxygen availability
(Figure 4A, top). Such differential nutritional responses may
present an added selective advantage over anaerobic bacteria.

We investigated pathway response to oxygen availability
in Escherichia sp., and determined the minimum growth

requirements for the four organisms. We developed an approach
complementary to those used above for assessing pathway
sensitivity (Figure 4A, bottom). Briefly, from the entire metabolic
reaction network, we selected those involving exchange reactions
and blocked all non-essential single exchange reactions identified
above, whereas the single-lethal exchange reactions identified
above are unblocked. All non-lethal exchange reactions are firstly
blocked, and then unblocked one by one, two by two, etc. The
synthetic lethality approach employed above optimized for cell
growth, and thus allowed for identification of those exchange
reactions that most penalize cell growth and whose blocking
prevents cell growth using otherwise unconstrained models.
In turn, the approach used here optimizes flux distribution
in a tightly constrained model and permits identifying those
combinations of exchange reactions that, when simultaneously
unblocked, promote cell growth. This additionally permits
identifying those pathways showing the greatest changes while
conferring the greatest increments to cell growth by comparison
with the reference fully unconstrained model.

None of the four gut bacteria under study displayed cellular
growth when unblocking any single exchange reaction. Only
pairs comprising either oxygen or iron exchange resulted in
growth for Escherichia sp. when combinations of two-by-two
non-essential reactions were allowed. In combinations of three
exchange reactions, oxygen and iron exchange is always present
as one of the necessary reactions for growth (results not shown).
Unblocking combinations of two non-essential reactions in
A. muciniphila and S. variabile provided significant cellular
growth. Notably, employing this approach yielded no growth in
I. bartlettii using combinations of 1, 2, and even 3 unblocked non-
essential exchange reactions (results not shown), suggesting that
more nutrients must be available in order to permit growth. The
Escherichia sp. model shows growth with as few as 12 exchange
reactions (of which 10 are single-essential), whereas the model for
I. bartlettii does not grow with 18 exchange reactions (including
15 single-essential). Additionally, A. muciniphila shows growth
with only 23 exchange reactions (which includes 21 single-
essential), while S. variabile shows growth with only 14 exchange
reactions (of which 12 single-essential).

Escherichia sp. displays substantial pathway changes
(Figure 4B) in LPS, squalene and cholesterol biosynthesis,
nucleotide sugar metabolism (>90% pathway reactions
with >1% fluxes under all assessed conditions), purine and
butyrate metabolism (>74% reactions altered), as well as
metabolism of histidine, tryptophan, valine, leucine, isoleucine,
aspartate, alanine, and lysine (>70%). Glutathione and nitrogen
metabolism tend to be mostly unchanged (<2%). Additionally,
we observed that Escherichia sp. responds differently depending
on oxygen availability. As expected from aerobic growth,
ROS detoxification is significantly active when O2 exchange
is unconstrained versus no changes when Fe3+ is unblocked
but O2 exchange is blocked (respectively, >33 vs. 0%, compare
Figure 4B, left with right). Slight increased fluxes are also
identified under aerobic conditions in energy metabolism
(mean pathway reaction changes >21% aerobic vs. 16%
anaerobic), pentose phosphate pathway (57 vs. 50%), starch
and sucrose metabolism (14 vs. 3%), and metabolism of
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FIGURE 4 | Effect of availability of environmental nutrients on pathway responses and growth rates in Escherichia sp. under aerobic and anaerobic growth. (A) Due
to their aerotolerance, the facultative Escherichia sp. may respond differently to environmental nutrients under aerobic versus anaerobic growth, which may provide a
selective advantage with respect to the obligate anaerobe I. bartlettii. We employed a novel in silico approach where all single essential reactions are kept unblocked,
and the non-essential exchange reactions (in Figure 2) are unblocked one-by-one and two-by-two. This approach may thus assist in identifying those combinations
that confer the highest increments on cell growth, as well as determining which pathways most support this response. (B) Escherichia sp. pathway reactions that are
altered (% from total) as response to availability of specific nutrients, together with oxygen or iron exchange (only pairs that either included oxygen or iron exchange
resulted in growth). No growth is observed when unblocking single reactions for Escherichia sp., or in I. bartlettii for single, pairs, or triplets of reactions (results not
show). Reactions were considered altered when their flux were altered >1% against the reference model. (C) Growth rates for Escherichia sp. achieved by
unblocking exchange reactions together with O2 exchange (i.e., aerobic conditions) or iron exchange (i.e., anaerobic conditions).
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vitamins B6 (64 vs. 57%) and B2 (71 vs. 64%). Oxidative
phosphorylation shows substantial increases (>66%) in some
entries under aerobic conditions, but not under anaerobic
conditions, when exchange of some compounds and amino acids
is unblocked (e.g., NMN, alanine, glutamine, glycine, proline,
serine, threonine, and tryptophan). In turn, sulfur metabolism
(18 vs. 25%) and glyoxylate/dicarboxylate metabolism (29
vs. 35%) are slightly altered under anaerobic conditions.
Practically all nutrients confer highest growth rates under
aerobic than anaerobic conditions, with exception to nitrate
exchange that elicits similar growth rates under aerobic and
anaerobic growth. NMN, glutamate, aspartate, nitrate, and
nitrite exchange confer the most substantial increases to
growth under aerobic and anaerobic conditions (Figure 4C).
Interestingly, tyrosine, phenylalanine, tyramine, and vitamin B6
uptake allow for cell growth under aerobic but not anaerobic
conditions.

Commensal and Competing Metabolic
Behavior of Gut Bacteria in the
Utilization of Amino Acids and Short
Chain Fatty Acids
We also determined how amino acids, short chain fatty
acids, and other nutrients important for host and bacterial
metabolism (Shoaie et al., 2013; Forslund et al., 2015; Mardinoglu
et al., 2016) were produced or used by the four bacteria.
To this extent, we aimed to determine for each metabolite
its maximum growth-coupled uptake/secretion fluxes under
maximal growth and minimal media conditions in anaerobiosis
(Supplementary Table S7, see section “Materials and Methods”),
since the human intestinal environment is predominantly
anaerobic (Tremaroli and Bäckhed, 2012; Donaldson et al.,
2015). We observed that the four organisms may contribute
for the production of extracellular acetate, whereas all but
S. variabile produced propionate. Predictions have shown
butyrate production by S. variabile. In turn, I. bartlettii produced
isobutyrate (Figure 5A and Supplementary Table S8), while
both Escherichia sp. and I. bartlettii revealed to compete for
ribose, deoxyribose and cysteinylglycine, as well as for aspartate
and phosphate, which were both products of S. variabile
(Figure 5B).

Potential commensal behavior may occur, since some of
these compounds may be produced by A. muciniphila and
S. variabile (e.g., threonine and glycine), while consumed by
Escherichia sp. and I. bartlettii. Phenylalanine produced by
the three other bacteria may be consumed by I. bartlettii,
which in turn is predicted to secrete phenylacetate. Proline
and glutamine were produced by A. muciniphila, I. bartlettii
and S. variabile and consumed by Escherichia sp. Finally,
Escherichia sp. was involved in the production of the gasses
hydrogen and, together with A. muciniphila, both may produce
hydrogen sulfide; whereas I. bartlettii produced methanethiol
(Figure 5C). Because Escherichia sp. is a facultative aerobe
we repeated these analyses under aerobic conditions, and
observed some differences in comparison with the results
under anaerobiosis, specifically in the secretion of amino

acids (e.g., proline, glutamate, and threonine) and nucleobases
(Figure 5B).

Altogether, our results demonstrated that the four bacteria
displayed substantial differences in substrate requirements for
growth, as well as metabolic responses to nutritional changes
in the environment. As a consequence of their metabolisms,
these four organisms differently contributed and competed for
nutrients in the gut, which among those were short chain fatty
acids, amino acids, and gasses.

DISCUSSION

Dysbiosis is one of the main features observed in metformin-
treated T2D patients, where there is higher relative abundance
of Escherichia spp., A. muciniphila, S. variabile but lower of
I. bartlettii (Forslund et al., 2015; Mardinoglu et al., 2016; Wu
et al., 2017). Moreover, larger concentrations of the SCFAs
propionate and butyrate were reported under drug treatment
(Forslund et al., 2015; Mardinoglu et al., 2016; Wu et al., 2017).
However, the observation that metformin-treated T2D patients
show a depletion in Firmicutes bacteria including I. bartlettii
(Forslund et al., 2015; Wu et al., 2017), and that Firmicutes and
Clostridia are major sources of butyrate (Tremaroli and Bäckhed,
2012; Shoaie et al., 2013, 2015), raises questions about the possible
sources of SCFAs. Systems biology approaches have consistently
been applied to clarify complex biological processes (Benfeitas
et al., 2017; Lee et al., 2017, 2018; Uhlen et al., 2017) including
in the relationship between host and gut microbiota (Shoaie
et al., 2013, 2015; Forslund et al., 2015; Mardinoglu et al., 2015).
Here, we used systems biology methodologies including genome-
scale metabolic models and flux balance optimization to clarify
the metabolic relationships between the prevalent gut bacteria
Escherichia sp., A. muciniphila, S. variabile, and I. bartlettii
and their contributions for extracellular pool of compounds
including SCFAs and amino acids. Based on synthetic lethality,
we also examined the influence of uptake reactions, which
involve substrate exchange with the extracellular space, not only
on bacterial growth rates but also on flux distribution across
intracellular pathways.

The cumulative evidence presented here suggests that
the shifts in microbiota diversity reported under metformin
treatment and their resulting increase in butyrate and propionate
pool (Forslund et al., 2015; Mardinoglu et al., 2016; Wu
et al., 2017) may be due to an increased abundance of
S. variabile, a butyrate-producing anaerobe (Louis and Flint,
2009). A. muciniphila may produce aminobutyrate, while
I. bartlettii produces isobutyrate, a branched chain fatty acid
that has been associated with increased risk of colon cancer
(Shoaie et al., 2015). In turn, while the enzyme-coding genes
involved in butyrate production are present in Escherichia sp.,
this compound is not produced by the wild-type bacterium but
may be engineered to do so (Baek et al., 2013). It remains to test
if other butyrate-producing bacteria (Forslund et al., 2015) show
similar trends. Moreover, our modeling simulations indicate that
I. bartlettii, A. muciniphila, and Escherichia sp. may contribute
for the extracellular pool of propionate, of which A. muciniphila
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FIGURE 5 | Contribution and competition of the four bacteria for extracellular substrates including short chain fatty acids (A), amino acids and nucleobases (B), and
gases (C). Metabolic models for all organisms considered biomass maximization under minimal media anaerobic or aerobic conditions (respectively, solid and
dashed arrows, see section “Materials and Methods” and Supplementary Tables S7, S8). Cys–Gly indicates Cysteinylglycine. Glutamine, deoxyribose, aspartate,
and Cys–Gly show no flux under aerobic growth. Metabolite colors indicate the bacteria that influence its extracellular levels. For all bacteria we considered minimal
medium conditions (see section “Materials and Methods”) with exception to A. muciniphila, which additionally requires mucin to grow (de la Cuesta-Zuluaga et al.,
2017).

had previously been observed to produce propionate (Derrien
et al., 2004). These observations were associated with the
major changing pathways in the four organisms. Propionate
metabolism was the pathway displaying the highest responses
to alterations in nutrient uptake in I. bartlettii, together with

metabolism of phenylalanine. In turn, butyrate metabolism in
S. variabile was perturbed depending on the inhibited reactions.

Bloating and intestinal discomfort are reported side-effects
of metformin medication (Forslund et al., 2015), and gasses
produced by gut microbiota enhance these adverse side effects

Frontiers in Physiology | www.frontiersin.org 11 June 2018 | Volume 9 | Article 775172

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-00775 June 21, 2018 Time: 15:56 # 12

Rosario et al. Modeling Gut Microbiota Nutritional Requirements

(Lewis and Cochrane, 2007; Jahng et al., 2012; Forslund
et al., 2015). Colonic transit may be beneficially influenced
by the production of hydrogen (Lewis and Cochrane, 2007;
Jahng et al., 2012). Our observations show that hydrogen
was produced by Escherichia sp., which also contributed for
hydrogen sulfide production together with A. muciniphila.
Hydrogen sulfide may have several beneficial effects for
both host and gut microbes, displaying anti-inflammatory
properties, and promoting smooth muscle relaxation and
antioxidant defense (Al Khodor et al., 2017). Future work
should experimentally test the contributions of the four
bacteria to the extracellular pool of gasses, SCFAs, and amino
acids.

The mechanism of action of metformin on glucose
metabolism was suggested to be mediated through the
bacterial production of SCFAs, where local LPS-triggered
inflammation and lower intestinal lipid absorption are side
effects of the drug (Forslund et al., 2015; Mardinoglu et al.,
2016; Wu et al., 2017). A. muciniphila and Escherichia sp., two
bacteria whose abundance is increased in metformin-treated
T2D patients, were the two organisms with the most shared
single and double essential reactions as indicated by synthetic
lethality. These similar responses among the two bacteria
are consistent with the high sensitivity of LPS biosynthesis
(a pathway exclusive of both bacteria), and nucleotide sugar
metabolism.

Among those nutrients that confer the highest increases
to Escherichia sp. growth both under anaerobic and aerobic
growth are NMN and nitrate exchange, as well as tyrosine,
phenylalanine, and tyramine uptake under aerobic conditions.
NMN exchange is involved in the coenzyme nicotinamide
adenine dinucleotide (NAD) salvage pathway I (Henry et al.,
2010; Keseler et al., 2013; Wattam et al., 2017) essential
for microbial catabolism and growth (Berríos-Rivera et al.,
2002). In turn, nitrate exchange was the only reaction that
stimulated similar growth rate under alternative circumstances.
Denitrification occurs as part of anaerobic respiration by
replacing oxygen as final electron acceptor in the electron
transport chain. Nitrate:nitrite antiporters (NarU and NarK)
are responsible for the incorporation of nitrate and export
of nitrogen (Moreno-Vivian et al., 1999; Keseler et al.,
2013). The catabolism of aromatic amino acids is one of
the important commensal functions between this bacteria and
the host (Díaz et al., 2001; Fuchs et al., 2011), and plays an
important role in microbial-mediated food digestion in the
intestine (Donaldson et al., 2015; Shoaie et al., 2015). Our
observations further suggest that potential commensal behavior
may be displayed by Escherichia sp. and I. bartlettii under
anaerobic growth, where on one hand the former produces
phenylalanine required by the latter, and on the other hand
I. bartlettii produces proline, glutamine, and glutamate that
are uptaken by Escherichia sp. Moreover, phenylalanine,
tryptophan, and threonine are essential amino acids which
must be ingested by the host for nutritional availability,
and which are part of the set minimal sufficient sources
promoting cellular growth of Escherichia sp. Complementarily,
arginine, cysteine, glutamine, glycine, proline, and tyrosine

are conditionally non-essential amino acids as well as
contributing as first line of sufficient sources for Escherichia
sp. growth.

The dysbiosis induced by metformin treatment of T2D
patients promotes nutritional imbalances (Forslund et al., 2015;
Mardinoglu et al., 2016) that may impose fitness disadvantages
for specific bacterial taxa. The alterations in relative abundance
of Escherichia sp. was consistent with our observed growth
organism requirements. Escherichia sp. is a facultative aerobe and
displays a slightly lower number of essential uptake reactions
and higher number of uptake reactions when compared with the
other bacteria under study. Additionally, the former organism
is capable of growing while requiring fewer uptake reactions
when compared with the other three organisms. Thus, our
observations are consistent with Escherichia sp. showing a
higher robustness to environmental nutrient changes. Together
with its aerotolerance and steep oxygen gradient in the gut
(Díaz et al., 2001; Bueno et al., 2012; Donaldson et al., 2015),
this may confer a selective advantage to Escherichia sp. over
other gut microbes (Díaz et al., 2001; Magnusdottir et al.,
2017), allowing it to grow near the oxygen-rich epithelial
surface.

Interestingly, among all exchange reactions, simultaneous
blocking of oxygen and ferric iron (Fe3+) uptake prevents
growth of Escherichia sp, whereas ferrous iron (Fe2+) uptake
is by itself essential. Although iron and other metals may be
toxic due to radical formation by reaction with reactive oxygen
species [i.e., Fenton reaction (Koppenol, 1993)], it is essential
for bacterial growth. Iron is a component of hemic enzymes
such as hydroperoxidases and cytochromes, and sensed by the
BasS-BasR two-component system involved in LPS modification
and anoxic redox control (Bueno et al., 2012). In the absence
of oxygen, iron may act as electron acceptor whereby reduction
of Fe3+ is coupled with oxidation of organic matter (Lovley
and Phillips, 1986), and its addition to cell culture promotes
growth under anoxia (Bueno et al., 2012). Although one may
question whether the observed O2/Fe3+-associated lethality
patterns are plausible considering that Fe2+ iron is uptaken
by the cell, the oxidation of Fe2+ to Fe3+ by bacterioferritin
requires oxygen (4Fe2+

+ 4H+ + O2 → 4Fe3+
+ 2H2O).

The essentiality of iron in Escherichia sp. has been extensively
discussed elsewhere (Braun and Braun, 2002), and is encoded
into the biomass equation of Escherichia sp. where both redox
forms are present.

Overall, our in silico observations suggest commensal
and competing behavior in the production of extracellular
compounds including short chain fatty acids and amino
acids, among which the metabolism of Escherichia sp.,
A. muciniphila, S. variabile, and I. bartlettii may explain
the observed features in metformin-treated type 2 diabetes
patients. These observations remain to be experimentally
tested, though the above observations indicate good agreement
with previously known features of these organisms; multiple
studies have shown that growth predictions by FBA and
gene essentiality prediction are in good agreement with
experimental observations (Edwards et al., 2001; Feist et al.,
2007). Microbiota modulation approaches based on probiotics,
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prebiotics, and postbiotics are considered as potential therapies
in type 2 diabetes patients. Thus, identification of intestinal
bacteria playing a beneficial role or promoting adverse effects on
glucose and fatty acids metabolism, will allow the identification
of potential microbial targets to improve host metabolism.
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Organisms adapt their metabolism and draw on reserves as a consequence of food
deprivation. The central role of the liver in starvation response is to coordinate a sufficient
energy supply for the entire organism, which has frequently been investigated. However,
knowledge of how circadian rhythms impact on and alter this response is scarce.
Therefore, we investigated the influence of different timings of starvation on global
hepatic gene expression. Mice (n = 3 each) were challenged with 24-h food deprivation
started in the morning or evening, coupled with refeeding for different lengths and
compared with ad libitum fed control groups. Alterations in hepatocyte gene expression
were quantified using microarrays and confirmed or complemented with qPCR,
especially for lowly detectable transcription factors. Analysis was performed using self-
organizing maps (SOMs), which bases on clustering genes with similar expression
profiles. This provides an intuitive overview of expression trends and allows easier global
comparisons between complex conditions. Transcriptome analysis revealed a strong
circadian-driven response to fasting based on the diurnal expression of transcription
factors (e.g., Ppara, Pparg). Starvation initiated in the morning produced known
metabolic adaptations in the liver; e.g., switching from glucose storage to consumption
and gluconeogenesis. However, starvation initiated in the evening produced a different
expression signature that was controlled by yet unknown regulatory mechanisms. For
example, the expression of genes involved in gluconeogenesis decreased and fatty acid
and cholesterol synthesis genes were induced. The differential regulation after morning
and evening starvation were also reflected at the lipidome level. The accumulation of
hepatocellular storage lipids (triacylglycerides, cholesteryl esters) was significantly higher
after the initiation of starvation in the morning compared to the evening. Concerning
refeeding, the gene expression pattern after a 12 h refeeding period largely resembled
that of the corresponding starvation state but approached the ad libitum control state
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after refeeding for 21 h. Some components of these regulatory circuits are discussed.
Collectively, these data illustrate a highly time-dependent starvation response in the liver
and suggest that a circadian influence cannot be neglected when starvation is the focus
of research or medicine, e.g., in the case of treating victims of sudden starvation events.

Keywords: hepatocyte, circadian regulation, self-organizing map, starvation, refeeding

INTRODUCTION

Organisms handle periods of food deprivation by drawing on
reserves and adapting their metabolism. Humans use fasting to
lose weight and for spiritual reasons. The liver is the central hub
for metabolic processes, including glucose, amino acid, and lipid
metabolism. Therefore, the impact of fasting and refeeding is
immense, especially on hepatic parameters (Longo and Mattson,
2014). In this study we addressed the question how the circadian
regulation influences the hepatic starvation response with a rarely
but powerful used approach called self-organizing map (SOM).

Livers in the post-prandial state store excessive metabolites
as glycogen and produce fatty acids, which are transiently
stored as triacylglycerides (TAGs) or secreted as very low
density lipoprotein (VLDL) (Rui, 2014). The liver synthesizes
new carbohydrates and produces ketone bodies in periods of
prolonged fasting after depletion of glucose stores. Hormones,
such as insulin and glucagon, regulate these processes at
a systemic level, and transcription factors, such as PPARs
(peroxisome proliferator activated receptor), SREBP transcripts
(sterol regulatory element binding transcription protein), and
ChREBP [carbohydrate-responsive element-binding protein or
MLX-interacting protein-like (MLXIPL)] adjust the metabolism
at the molecular level.

Besides the impact of feeding state on the liver metabolism, the
timing of food supply influences the metabolic state enormously
(Wehrens et al., 2017). In general, the mammalian physiology
is synchronized by an inner time-keeping mechanism called
the circadian clock. The molecular circadian regulation is
based on central clock genes expressed in almost all tissues
and cells. The translated proteins generate and regulate the
circadian rhythm via transcriptional and translational feedback
loops. The transcriptional activators ARNTL (aryl hydrocarbon
receptor nuclear translocator-like protein 1 or BMAL1) and
CLOCK (circadian locomotor output cycles kaput) stimulate
the expression of the negative regulators Period (Per1, Per2,
and Per3) and Cryprochrome (Cry1 and Cry2), which in
turn repress ARNTL/CLOCK activity. The overall circadian
rhythm is coordinated by the suprachiasmatic nuclei (SCN)
in the hypothalamus (Ralph et al., 1990; Welsh et al., 2010).
Synchronized by an optic light/dark signal the SCN generates
output signals coupling the central pacemaker with the peripheral
tissues. On the basis of oscillating hormonal and endocrine
signals (Yang et al., 2007) the peripheral organs, such as the liver,
synchronize their own circadian oscillation. Approximately 15%
of all genes are transcribed in a circadian manner whereby one
big aspect of circadian regulation includes metabolic processes
and energy homeostasis in peripheral tissues, especially in liver
(Albrecht, 2012). The tight connection between circadian clock

and metabolic processes is underlined by the fact that a vast
majority of liver genes is expressed rhythmically, including those
regulating, e.g., glucose or lipid metabolism (Stratmann and
Schibler, 2006; Ferrell and Chiang, 2015). Interestingly, the liver
clock was shown not only be entrained by SCN-synchronization,
but also by external factors. One of the most prominent
influencers of liver circadian rhythms is the feeding regime. The
consumed food volume and the starvation intervals between the
meals are able to alter the liver clock (Hirao et al., 2010) and
restricted feeding can even rapidly uncouple the liver rhythm
from that of SCN (Stokkan et al., 2001).

Disturbance of the normal eating patterns of mice using
external food restriction alters the entire metabolism (Jensen
et al., 2013), which were analyzed previously using different omics
approaches (Bauer et al., 2004; Sokolović et al., 2008; Hakvoort
et al., 2011). However, knowledge of specific modulations
produced by circadian regulation is scarce. Therefore, we
analyzed the impact of fasting and refeeding at two different time-
points [zeitgeber time (ZT) 3 and ZT 12] on the physiological and
metabolic states of primary hepatocytes at a global omics level.
Evaluations of transcriptome data were performed using SOMs.
SOMs are an alternative approach that allows the identification
of global expression trends via clustering of similarly expressed
genes. The relative expression of gene groups is color-coded
and enables an intuitive and unbiased interpretation of the
data (Wirth et al., 2011). The results demonstrated that the
timing of food restriction altered the influence of starvation on
hepatocytes. A 24-h starvation period produced different gene
expression patterns and lipidome profiles in liver cells depending
on the starting time. While starvation started in the morning
led to the known adaptions like initiation of gluconeogenesis
and suppression of fatty acid and cholesterol synthesis, starvation
started in the evening decreased gluconeogenesis-associated gene
expression and induced fatty acid synthesis genes. Refeeding mice
for 12 h after a 24-h long starvation period was not sufficient to
restore the gene expression pattern of ad libitum fed mice, which
was revealed by persistent dysregulation of essential metabolic
pathways, such as lipid metabolism and autophagy. However,
an extended refeeding period of 21 h approached an expression
pattern similar to that of the ad libitum state, but some differences
persisted.

MATERIALS AND METHODS

Maintenance of the Mice and Feeding
Male C57BL/6N mice were maintained in a pathogen-free facility
on a 12:12 h light–dark cycle (light on at 6 a.m = ZT 0, light off
at 6 p.m. = ZT 12), according to German guidelines and those of
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the world medical association declaration of Helsinki for the care
and safe use of experimental animals. The animal experiments
were approved by the Landesdirektion Sachsen. The mice had
free access to regular chow (ssniff R© R/M-H V1534; 58%, 33%,
9% calories from carbohydrates, proteins and fat, respectively;
metabolisable energy: 12.8 kJ/g; ssniff R© Spezialdiaeten GmbH,
Germany) and tap water.

Prior to the experimental procedures, animals were randomly
segregated into six groups (n = 3 each). In a first experiment,
starvation was started either at ZT 3 (9 a.m.) or at ZT 12 (6 p.m.)
and mice were sacrificed after 24 h at the same times on the
next day together with ad libitum fed groups (Figure 1A). In the
refeeding experiment two groups of mice were starved for 24 h
started at ZT 15 followed by refeeding for 12 or 21 h until ZT 3
and ZT 12 on the next day, respectively (Figure 1B).

Isolation of Primary Mouse Hepatocytes,
RNA Isolation, and Quantitative
Real-Time PCR (qPCR)
The primary hepatocytes were isolated from male C57BL/6N
mice, treated like explained above. Isolation was performed by
a collagenase perfusion technique as described before (Gebhardt
et al., 2003). The cell suspension was cleared of non-parenchymal
cells by differential centrifugation steps (Matz-Soja et al., 2014).
Pure hepatocyte fraction was used for further procedures.

Total RNA from hepatocytes was extracted using RNeasy R©

Mini Kit (Qiagen, Hilden) and the quality was controlled
by agarose gel electrophoresis. The reverse transcription was
performed with the Proto Script M-MuLV First Strand
cDNA Synthesis Kit (New England Biolabs). Gene expression
quantification by qPCR was performed in duplicates using
the Rotor-Gene SYBR R© Green PCR Kit and a Rotor-Gene Q
(Qiagen). Gene specific intron-spanning primers were designed
with Primer 3 software and are listed in Supplementary
Table 1. The specific qPCR products were quantified using
internal amplification standards; 18S was used as reference
gene. Values are plotted as average of biological replicates
(n = 3) ± standard deviation. The statistical evaluation was
performed with the unpaired Student’s t-test (GraphPad Prism
7). The null hypothesis was rejected at ∗p < 0.05, ∗∗p < 0.01, and
∗∗∗p < 0.001 levels.

Illumina Microarray Processing and Data
Analysis Using SOM
For each condition, the RNA from three mice was pooled
and used as one sample in the microarrays (BeadChip Array
MouseRef-8 v2, Illumina). The analysis was performed by the
Interdisciplinary Centre for Clinical Research, Leipzig (Faculty
of Medicine, Leipzig University). The following link provides the
raw data of the microarray1.

All computational analyses were performed using R software
(Ihaka and Gentleman, 1996). Microarrays were annotated
using the annotation provided by Illumina and raw expression

1https://seek.lisym.org/data_files/98?code=YGHGwNPpYhqpiEBnnv4qb%
2BchjgjUoYGhH6bc3OQp

data were pre-processed using the lumi package (Du et al.,
2008). Pre-processing included background correction using
the bgAdjust method, variance stabilization transformation, and
quantile normalization. Detection calls were performed with
default parameters to remove absent beads. Furthermore, the
expression values for single beads were mapped to a gene symbol
identifier. For each array, multiple bead IDs mapping to the same
gene symbol were averaged.

General expression trends in each sample were identified using
SOMs as implemented in the oposSOM package (Löffler-Wirth
et al., 2015). SOMs are artificial neural networks trained by
unsupervised learning (Kohonen, 1982). This machine learning
approach allows dimension reduction of high-dimensional data
by clustering similarly regulated genes to so-called “metagenes”.
For each treatment, it can be defined if the expression of a certain
metagene is over or under the mean expression of this metagene
in the analyzed pool (termed as over- and underexpression),
and all groups are compared equivalently. The metagenes, here
20 × 20, can be visualized in a map where adjacent metagenes
have similar expression profiles and more distant ones are
expressed differently, with the invariant genes located in the
center of the map. Furthermore, a color gradient codes the
expression level of the metagenes, maroon indicating the highest
expression, blue the lowest expression, and yellow and green
intermediate levels (Wirth et al., 2011). This image-based analysis
allows an intuitive interpretation and provides an overview of the
overall regulation patterns. Apart from the creation of SOMs, the
oposSOM package also provided additional analytical methods
including the identification of over- or underexpressed spots in
the SOMs, clustering of metagenes using k-means (Hartigan and
Wong, 1979), and enrichment testing for metagene-cluster and
over- or underexpressed spots using Gene Ontology (GO) terms
(Ashburner et al., 2000) as provided by the Ensembl database
(Aken et al., 2016).

Based on the k-means clustering as performed automatically
by the oposSOM package, we performed a gene enrichment
analysis (GEA) for all genes with an absolute expression
change ≥ 1.5-fold and the genes from each cluster using
the web-based tool DAVID (Database for Annotation,
Visualization and Integrated Discovery Bioinformatics
Resources 6.82, RRID:SCR_001881). We selected Mus
musculus as the background and filtered the GO terms with a
Benjamini–Hochberg corrected p-value < 0.05.

Visualization of single genes for the identified significant GO
terms was performed using heatmaps. The expression levels
of single genes were displayed as relative expression values
compared to the mean expression in all six samples analogous
to the metagenes (termed as over- and underexpression). All
genes with an absolute expression change ≥ 1.5-fold [log2(1.5)]
between at least two of the six groups were considered for further
analysis.

The STRING database version 10.53 was used to explore the
interactions between the studied genes/proteins related to hepatic
starvation response (Szklarczyk et al., 2015). The networks were

2https://david.ncifcrf.gov/
3http://string-db.org
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FIGURE 1 | Timeline of feeding/starving cycles and sacrifice. (A) Mice were fed ad libitum or starved for 24 h prior to sacrifice at ZT 3 (9 a.m.) or ZT 12 (6 p.m.).
(B) Mice were starved for 24 h from ZT 15 (9 p.m.) to ZT 15 and refed for 12 or 21 h prior sacrifice. The arrows indicate the times of sacrifice.

constructed in the “confidence” mode with a high confidence
score (0.7).

Shotgun Lipidomics
Lipids from primary hepatocytes were extracted by a modified
protocol of Folch (Folch et al., 1957) and analyzed by shotgun
mass spectrometry as described previously (Schuhmann et al.,
2012). Briefly, hepatocytes (an amount equivalent to 10 µg of
total protein) were dissolved in 200 µl ammonium bicarbonate
solution (150 mM). For the subsequent quantification
10 µl internal standard mixture were added (20 pmol TAG
12:0-12:0-12:0, 20 pmol DAG 17:0- 17:0, 40 pmol diethyl PC
18:0-18:0, 50 pmol diethyl PE 20:0-20-0, 10 pmol PG 17:0-17-0,
40 pmol PS 12:0-12:0, 50 pmol PI 16:0-16-0, 40 pmol LPC
12:0, 40 pmol LPE 14:0, 30 pmol SM d18:1-12:0, 90 pmol CE
12:0, 20 pmol Cer d18:1-12:0, 50 pmol cholesterol d7; Avanti
Polar Lipids, Inc., Alabaster, AL, United States). Then, 265 µl
of methanol and 730 µl of chloroform were added and the
mixture was vortexed for 1 h at 4◦C. The lower organic phase
was collected, dried in a vacuum centrifuge and the lipid extracts
were re-dissolved in 120 µl chloroform:methanol [1:2 (v/v)]
mixture. The analysis was performed in both, negative, and
positive ion mode. For negative mode analyses, 10 µl extract
were mixed with either 12 µl of 13 mM ammonium acetate
in isopropanol or 0.1% (v/v) triethylamine in methanol. For
positive mode analyses, 10 µl extract were mixed with 90 µl of
6.5 mM ammonium acetate in isopropanol before infusion. The

analyses were performed on a Q Exactive mass spectrometer
(Thermo Fisher Scientific, Germany) equipped with a robotic
nanoflow ion source TriVersa NanoMate (Advion BioSciences,
Ithaca, NY, United States). High resolution (140,000 at m/z
200) FT-MS spectra were acquired for 1 min within the range
of m/z 420–1000 in negative and 450–1000 in positive mode.
Cholesterol was quantified as previously described (Liebisch
et al., 2006). Briefly, 30 µl of extract were dried under vacuum,
then 75 µl acetyl chloride:chloroform [1:2 (v/v)] were added,
incubated for 1 h at room temperature, dried under vacuum
and re-dissolved in 60 µl chloroform:methanol [1:2 (v/v)].
10 µl extract were mixed with 90 µl of 6.5 mM ammonium
acetate in propanol before infusion and analyzed in positive
ion mode. The following lipid classes were identified and
quantified using the LipidXplorer software (Herzog et al.,
2011): tri- and diacylglycerides (TAG/DAG), cholesteryl esters
(CE), sphingomyelins (SM), phosphatidylethanolamines (PEs),
phosphatidylcholines (PCs), and cholesterol. The concentrations
are plotted in pmol lipid per µg total protein as average of the
biological replicates (n = 3)± standard deviation.

RESULTS

Feeding procedures immensely affect an organism’s metabolism.
The present study examined alterations in the physiology and the
metabolism of murine hepatocytes following a 24-h starvation
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period initiated at ZT 3 (morning) or ZT 12 (evening) compared
to hepatocytes from mice fed ad libitum (Figure 1A). Our data
indicated that the effects strongly depended on the timing of
starvation. We also compared hepatocytes in refed state to the
corresponding starvation group and ad libitum fed mice to
evaluate whether 12 or 21 h of refeeding were sufficient to restore
the ad libitum expression profile (Figure 1B).

Global Hepatic Gene Expression Is
Influenced by Feeding and Timing
Illumina microarrays, analyzed, and visualized using SOMs,
delivered an overview of the hepatic alterations induced by
different feeding regimes. A GEA of all regulated genes
(Supplementary Table 2A) produced an impression of the
involved GO terms. Further we performed a separate analysis
for each cluster to distinguish between them. Based on the
SOMs of the ad libitum samples from ZT 3 and ZT 12
it strikes that a large amount of the genes in the liver
were expressed in a circadian manner (Figure 2A), since the
expression of almost all metagenes differed. ZT 3 showed two
overexpression spots at the left margin, annotated as clusters A
and B by a k-means clustering of the SOMs (Figure 2D and
Supplementary Table 2B). Cluster A is associated with immune
system processes (‘complement activation,’ classical pathway,’
‘innate immune response’) and many GO terms in regard to
extracellular space and membrane (‘extracellular region,’ ‘plasma
membrane,’ ‘cell surface’), while cluster B contains many lipid
metabolism associated GO terms (‘fatty acid metabolic process,’
‘acyl-CoA metabolic process’) and the GO term ‘autophagy.’
The large underexpression spot in the upper right corner
partly covered by cluster J contains many cholesterol and
steroid associated GO terms (‘cholesterol metabolic process,’
‘steroid metabolic process,’ ‘fatty acid metabolic process’). In
comparison to ZT 3, ZT 12 exhibited a mean expression
in the area of clusters B and J (Figures 2A,D). But ZT
12 had a small overexpressed area in the upper left corner
(cluster H) related to the GO term ‘metabolic process’ and
an underexpression spot in the lower right corner (cluster
F) containing GO terms associated with protein binding
and degradation (‘chaperone binding,’ ‘endoplasmic reticulum,’
‘proteasome accessory complex’).

Starvation started at both ZT 3 and ZT 12 immensely changed
the expression profiles of the metagenes in the SOMs compared to
the related ad libitum state (Figure 2B). Additionally, comparing
ZT 3 and ZT 12 starvation no congruence is visible, which
implies a diurnal-driven response to fasting. The 24-h starvation
period at ZT 3 began during the day followed by a whole
night of fasting (Figure 1A), which changed the size and shape
of the overexpression spot in the lower left corner and the
underexpression spot in the upper right corner (clusters B
and J), regions associated with lipid and steroid metabolism
(Figures 2B,D). In contrast, the ZT 12 starvation period started
in the night followed by a whole day of fasting (Figure 1A)
and resulted in a totally changed metagene expression, where
the whole left margin is underexpressed, while the right margin
shows an overexpression (Figure 2B). The regions (clusters B

and J) where GO terms related to autophagy, lipid and steroid
metabolism are localized have an opposed expression comparing
ZT 3 and ZT 12 starvation.

The refeeding experiment (Figure 1B) revealed disparate
SOMs after refeeding mice for 12 h and the ZT 3 ad libitum group
(Figure 2C). However, the SOM of 12 h refeed (Figure 2C, upper
panel) showed high similarity with the corresponding ZT 12
starvation group (Figure 2B, lower panel). The mice sampled
at ZT 12 were starved for the same 24-h period, but were refed
for 21 h prior sacrifice. This prolonged refeed period produced
a somehow mixture of expression profiles from ZT 12 ad libitum
and starvation state (Figure 2C). While clusters F and H resemble
that of ZT 12 ad libitum (Figure 2A, lower panel), the regions
where lipid and steroid metabolism are localized (clusters B and
J) still showed the starvation pattern (Figure 2B, lower panel).

Alterations in Relevant Metabolic
Features Following Starvation and
Refeeding
SOM analysis identified differently regulated metabolic
alterations produced by the various feeding regimes. A list
of all regulated genes detected by the microarrays is compiled
in Supplementary Table 3. The present study focused on
the expression of genes related to intermediary metabolism
(glucose and lipid metabolism), steroid metabolism, insulin
signaling, and autophagy. We also analyzed central clock gene
expression because the circadian aspect of the feeding regimes
was particularly interesting. The interactions of the involved
genes/proteins were visualized within a protein interaction
network, illustrating the mutual connections (Supplementary
Figure 1).

Circadian Regulation
Diurnal influence
Being the first order clock genes, Arntl and Clock gene products
activate the expression of different target genes, including
Per1/2/3 homolog and Cry. PER and CRY, in turn, repress their
own expression by interacting with ARNTL and CLOCK (Partch
et al., 2014). Consequently to these regulations the expression
of Arntl/Clock and Per occurs in antiphase, which is seen in
Figure 3 (ad libitum). In the ad libitum state Arntl and Clock
were overexpressed at ZT 3 and underexpressed at ZT 12, Per1
and Per2 were regulated vice versa. Nr1d2 (Rev-erb beta), another
gene of the negative feedback loop, exhibited a typical rhythmic
regulation with a higher expression at ZT 12 than at ZT 3. These
results were verified by qPCR and used to validate the microarray
(data not shown).

Starvation
Expression of central clock genes were primarily regulated in
a diurnal manner (Figure 3). However, fasting also influenced
central circadian genes. A 24-h starvation period initiated at ZT 3
or ZT 12 increased Arntl and Clock expression levels, but the
typical diurnal regulation of these genes remained. The opponent
Per2 was down-regulated after starvation initiated at ZT 3 and
up-regulated in the ZT 12 starvation mice compared to the
corresponding ad libitum samples. The Per1 expression was only
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FIGURE 2 | Global hepatic gene expression dependent on feeding patterns and timing. (A–C) Self organizing maps (SOMs) illustrating the expression of metagenes
(20 × 20); maroon indicates an overexpression, blue an underexpression. Mice were sacrificed at ZT 3 and ZT 12 after (A) fed ad libitum, (B) starved for 24 h or (C)
starved for 24 h and refed for 12 h until ZT 3 or 21 h until ZT 12. (D) Annotation of the SOMs using k-means clustering and following gene-enrichment analysis.
Selected GO terms are shown. A full list is available in Supplementary Table 2B.
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FIGURE 3 | Heatmap of differentially expressed central circadian genes. Red
indicates an overexpression, and blue indicates an underexpression.

marginally changed by 24-h starvation in the morning and the
evening, while Nr1d2 was decreased after both starvation periods.

Refeed
When mice were fasted for 24 h and refed for 12 h until ZT 3, the
Arntl expression was highly increased, while a prolonged refeed
period of 21 h abolished the effect of starvation (Figure 3). The
Clock expression was no longer altered after both refeed periods.
Per1 expression was decreased after a 12 h refeed, but the 21 h
refeed already restored the ad libitum expression. Per2 expression
was higher after both refeed periods in comparison to ad libitum.
The expression of Nr1d2 showed big changes after both refeed
periods, the expression was further decreased after 12 h and
increased after 21 h refeed.

All in all, a 21 h refeeding seemed to be sufficient to abolish
the alterations in the expression of the genes of the primary
negative-feedback loop (Arntl, Clock, Per1, and Per2) caused by
starving the mice. But after 12 h refeed the expression of Arntl,
Per1, and Per2 still showed major changes compared to the ad
libitum sample.

Insulin Signaling
Diurnal influence
Insulin is one of the master regulators of the metabolism
and its effects are partially mediated by insulin receptor
signaling (Boucher et al., 2014). The microarray analyses revealed
diurnal regulation of several genes of this pathway (Figure 4).
For example, Pik3r1 (phosphatidylinositol 3-kinase, regulatory
subunit, polypeptide 1), part of the inositol phosphorylation
complex, showed a lower expression in the morning (ZT 3)
compared to the evening (ZT 12). The same regulation occurs
for Mup4 (major urinary protein 4) whose influence on
energy metabolism is not well understood yet. However, Pdk4
(pyruvate dehydrogenase kinase, isoenzyme 4), regulator of
glucose metabolism, was higher expressed in the morning than
in the evening.

Starvation
The 24-h starvation period initiated in the morning produced
strong overexpression of central hepatic insulin signaling genes

FIGURE 4 | Heatmap of differentially expressed genes related to insulin
signaling. Red indicates an overexpression, and blue indicates an
underexpression.

[e.g., Pdk4, Mup4, Irs2 (insulin receptor substrate 2) and Igfbp1
(insulin like growth factor binding protein 1)]. Notably, all of
these genes, except Pdk4, were strongly down-regulated after
starvation initiated at ZT 12. The expression of Pik3r1 and
Eif4ebp2 (eukaryotic translation initiation factor 4E binding
protein 2), which is a regulator of translation, was lowered in both
starvation periods (Figure 4). The transcription factor Srebf1c
was down-regulated only due to starvation started at ZT 3, and
it was unaffected by evening starvation (Figure 6).

Socs2 and Socs3 (suppressor of cytokine signaling), which were
not regulated diurnally in ad libitum fed mice, are associated to
the negative regulation of insulin signaling. The data for Socs2
and Socs3 revealed a change from an overexpression in ZT 12
ad libitum sample to a strong underexpression due to starvation
started at ZT 12. Socs3 expression also slightly decreased when
starvation was initiated at ZT 3, but Socs2 expression slightly
increased (Figure 4).

Refeed
The expression of nearly all detected genes of insulin receptor
signaling did not recover during the 12 h refeeding and
resembled the expression of the ZT 12 starvation mice (Figure 4).
Exceptions included Pdk4, which almost reached ad libitum
levels, and Srebf1c, which was highly induced during refeeding.
The gene expression levels of Pdk4, Eif4ebp2, Pik3r1, and Irs2
after a refeeding period of 21 h were similar to the corresponding
ad libitum levels. The Socs2 and Socs3 genes were considerably
underexpressed after both refeeding periods.

Autophagy
Diurnal influence
In ad libitum fed mice, central genes of the mammalian
autophagy pathway, such as Ulk2 (unc-51 like kinase 2) and
Uvrag (UV radiation resistance associated gene), were lower
expressed in the morning compared to evening. However, Sqstm1
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FIGURE 5 | Heatmap of differentially expressed genes related to autophagy.
Red indicates an overexpression, and blue indicates an underexpression.

(sequestosome 1), which is required for the recognition of protein
aggregates by the autophagy machinery (Bjorkoy et al., 2005),
was significantly down-regulated at ZT 12 compared to ZT 3
ad libitum. A regulator of autophagy, Cebpb (CCAAT/enhancer
binding protein beta) was higher expressed in the evening than
in the morning (Figure 5).

Starvation
When starvation was started at ZT 3 expression of many of
the autophagy-associated genes [e.g., Ulk2, Uvrag, Sqstm1,
Pik3c3 (phosphatidylinositol 3-kinase catalytic subunit type 3),
Trp53inp1 (transformation related protein 53 inducible
nuclear protein 1), Gabarapl1 (gamma-aminobutyric acid A
receptor-associated protein-like 1), Map1lc3b (microtubule-
associated protein 1 light chain 3 beta)] was not altered
(Figure 5). OnlyTrp53inp2, which is essential for autophagosome
formation, was markedly up-regulated during the ZT 3 starvation
period.

This observation dramatically changed when the starvation
period of 24-h was started at ZT 12. The above-mentioned central
autophagy genes, with the exception of Sqstm1, were dramatically
down-regulated during this fasting period, which was especially
prominent for Ulk2 expression. The transcription factor Cebpb
was up-regulated after food deprivation started at ZT 3 and
down-regulated in the evening (Figure 5).

Refeed
Our study revealed that the dramatic down-regulation of central
autophagy genes due to the initiation of starvation in the
evening remained during a refeeding period of 12 h (Figure 5).
The expression of Uvrag, Trp53inp1, Stbd1 (starch binding
domain 1) and Arsa (arylsulfatase A) was further reduced.
However, Sqstm1 and Irgm1 (immunity-related GTPase family M
member 1), which are involved in autophagic protein degradation

(Traver et al., 2011), were up-regulated during the 12 h refeeding
period. After a prolonged refeeding of 21 h, most autophagy-
related genes approached the ZT 12 ad libitum expression levels,
but did not reach it. Cebpb was expressed at the ad libitum level
after the 12 h refeed, but its expression was lowered after the 21 h
refeed (Figure 5).

Intermediary Metabolism
Diurnal influence
Many genes associated with intermediary metabolism (lipid
and glucose metabolism) showed a time-dependent expression.
The transcription factors that mainly regulate intermediary
metabolism, such as Ppara, Pparg, and Hnf4a (hepatocyte nuclear
factor 4 alpha), were higher expressed at ZT 12 than at ZT 3,
Mlxipl (ChREBP) exhibits a vice versa regulation (Figures 6, 7).
Srebf1 transcripts showed no diurnal changes (Figure 6). The
members of the Elovl (elongation of very long chain fatty
acids protein) family (Elovl2, Elovl3, and Elovl5), which are
involved in lipid metabolism, were higher expressed at ZT 3
compared to ZT 12, but Elovl6 exhibited an inverse regulation
(Figure 7).

Starvation
The regulation of hepatic lipid and glucose metabolisms is
based on different transcription factors. The expression of Ppara,
Pparg, and Hnf4a was elevated after starvation initiation at ZT 3
compared to the ad libitum group (Figures 6, 7).

Notably, starvation initiated at ZT 12 decreased the expression
of Pparg by significantly by more than 40% and Ppara and Hnf4a
were only marginally regulated. Hes6, which is an interaction
partner of HNF4a, exhibited diminished expression during
starvation started at ZT 3 and increased expression under ZT 12
starvation. Fgf21 (fibroblast growth factor 21), which is another
regulatory element that is closely connected to the PPAR family
and the starvation response, exhibited an expression increase by
approximately 20-fold after starvation initiated at ZT 3, but this
increase was much lower in the ZT 12 group (Figure 6). Mlxipl
was strongly down-regulated after starvation in the morning and
was not altered in the evening group. The Srebf1c mRNA levels
decreased by more than threefold after food deprivation started
ZT 3 but were not affected in the ZT 12 group.

The liver ensures the synthesis of sufficient amounts of acetyl
coenzyme A (CoA), especially during starvation. Therefore,
beta-oxidation is increased due to starvation by the up-regulated
expression of many of the involved enzymes, including
Cpt2 (carnitine palmitoyltransferase 2), Hadhb (hydroxyacyl-
CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA
hydratase), Ehhadh, Acaa1b (acetyl-CoA acyltransferase 1B),
Acsl1 (acyl-CoA synthetase long-chain family member 1) and
Decr1 (2,4-dienoyl CoA reductase 1) (Figure 7). However, this
increase was much greater when starvation was initiated at ZT 3
rather than at ZT 12. Members of the Acsl family are responsible
for the activation of long fatty acids and exhibited different
regulation. While Acsl1 strongly increased by starvation started
at ZT 3, Acsl3 and Acsl5 strongly decreased. In contrast, starting
starvation of mice at ZT 12, Acsl1 and Acsl5 expression was not
altered and Acsl3 increased.
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FIGURE 6 | Response of regulatory factors to starvation and refeeding in a diurnal manner. Expression of Ppara, Pparg, Srebf1a, Srebf1c, and Fgf21 in primary
hepatocytes of mice fed ad libitum (white bars), starved 24 h (black bars) or starved 24 h and refed 12 h (until ZT 3) and 21 h (until ZT 12) (gray bars) quantified using
qPCR (n = 3). Data are plotted as mean ± standard deviation relative to ZT 3 ad libitum, ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.

Ketogenesis is an essential metabolic pathway to generate
ketone bodies during starvation. Genes for the two essential
enzymes of ketone body formation, Hmgcs2 (3-hydroxy-3-
methylglutaryl-CoA synthase 2) and Hmgcl (3-hydroxymethyl-
3-methylglutaryl-CoA lyase), were highly increased after 24-h
starvation started at ZT 3, but regulation was only marginal at
ZT 12. Hmgcs2, Hmgcl, Ehhadh, Hadhb, and Acaa1b are also
involved in the degradation of the amino acids valine, isoleucine,
and leucine. The up-regulation of all enzymes after starvation

initiated at ZT 3 ensured an efficient supply of acetyl-CoA
(Figure 7).

The key enzyme of fatty acid synthesis, Fasn (fatty acid
synthase), was decreased by 24-h starvation started at ZT 3 and,
surprisingly, increased in the ZT 12 group. The gene expression
of enzymes involved in elongation and formation of unsaturated
fatty acids [e.g., Scd1 (stearoyl-CoA desaturase 1), Fads1
(fatty acid desaturase 1), Hsd17b12 (hydroxysteroid-17-beta
dehydrogenase 12), Thrsp (thyroid hormone responsive), and
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FIGURE 7 | Heatmap of differentially expressed genes related to intermediary
metabolism. Red indicates an overexpression, and blue indicates an
underexpression.

Mid1ip1 (Mid1 interacting protein 1)] were predominantly
down-regulated after starvation initiated at ZT 3 (Figure 7).
In contrast, starvation initiated at ZT 12 elevated Scd1 and
Mid1ip1 expression and did not change Fads1, Hsd17b12, and
Thrsp. The members of the Elovl family showed only a regulation
when starvation was started at ZT 3, but were not influenced at
ZT 12. The Elovl6 level strongly decreased at ZT 3 starvation,
whereas Elovl3 increased (Figure 7).

By gluconeogenesis the liver can synthesize glucose, which
is an essential pathway during starvation. As expected,
Pck1 (phosphoenolpyruvate carboxykinase 1), the enzyme
for the rate-limiting step of gluconeogenesis, and G6pc
(glucose-6-phosphatase catalytic subunit), essential to release
glucose in the last step of gluconeogenesis, were both increased

due to starvation started at ZT 3, but decreased at ZT 12. Gck
(glucokinase), catalyzing the opposite reaction, shows an inverse
regulation (Figure 7).

Taken together, the expression patterns at ZT 3 predominantly
corresponded to the known starvation responses of the liver.
However, the initiation of fasting at ZT 12 revealed unknown
regulatory events that produced more subtle and inversely
regulated expression levels.

Refeeding
Refeeding mice after a 24 h starvation challenges the liver. The
depleted stores must be refilled, and the metabolism should
return to a normal feeding state. The transcription factors Ppara
and Pparg remained elevated after the 12 h refeeding compared
to the ad libitum group, but ad libitum expression was nearly
restored after refeeding for 21 h. Fgf21 expression remained
increased after both refeeding periods (Figure 6). By contrast,
Hnf4a expression after the 12 h refeeding was comparable to that
after starvation started at ZT 12 and decreased after the 21 h
refeeding compared to ad libitum. Mlxipl expression was restored
after the 12 h refeeding (Figure 7). The expression of Srebf1c
increased significantly after both refeeding periods (Figure 6).

Hepatocytes exhibited a strong up-regulation of Fasn
expression, especially after the 21 h refeed; while after 12 h
refeed the increase was comparable with starvation started at
ZT 12. The genes Scd1, Acsl5, Elovl6, Hsd17b12, Fads1, and
Thrsp showed a similar regulation pattern as Fasn. However, the
expression of other enzymes, such Acsl1, Acsl3, Elovl2, and Elovl3
resembled the corresponding ad libitum sample after 12 and 21 h
refeed (Figure 7). Expression of the enzymes of beta-oxidation
and mitochondrial fatty acid synthesis were restored (Cpt2,
Ehhadh, Hadhb, Decr1) or remained decreased (Acaa1b) after
both refeeding periods (Figure 7).

The synthesis of ketone bodies and degradation of amino acids
are no longer a necessary energy source when sufficient amounts
of nutrients are available. Accordingly, the expression of Hmgcs2
was slightly decreased after 12 and 21 h of refeeding compared to
the corresponding ad libitum samples, and Hmgcl exhibited the
same expression as the ad libitum state. The level of Pck1 strongly
decreased after the 12 h refeeding compared to ad libitum and
was slightly reduced after refeeding for 21 h. Both refeeding times
restored G6pc expression to ad libitum levels (Figure 7).

Steroid Metabolism
Diurnal influence
Steroid metabolism, especially cholesterol synthesis, is another
important function of the liver, and it is partially regulated
diurnally (Figure 8A). Comparing ZT 3 and ZT 12 ad
libitum Pmvk (phosphomevalonate kinase), Mvd (mevalonate
decarboxylase), Ebp (phenylalkylamine Ca2+ antagonist binding
protein), Sc5d (sterol-C5-desaturase), and Cyp17a1 (cytochrome
P450, family 17, subfamily a, polypeptide 1) exhibited a higher
expression in the morning than in the evening. The regulators of
SREBP1, Scap (SREBP cleavage-activating protein) and Insig1/2
(insulin induced gene), were also expressed higher at ZT 3 than at
ZT 12. In accordance with enhanced synthesis over the day, the
amount of hepatic cholesterol is 1.3-fold higher in the evening
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FIGURE 8 | Regulation of steroid metabolism. (A) Heatmap of differentially
expressed genes related to steroid metabolism. Red indicates an
overexpression, and blue indicates an underexpression. (B) Concentration of
cholesterol in primary hepatocytes of mice fed ad libitum (white bars), starved
24 h (black bars) or starved 24 h and refed 12 h (until ZT 3) and 21 h (until ZT
12) (gray bars) (n = 3). Data are plotted as mean ± standard deviation.

than in the morning (Figure 8B). Concerning steroidogenesis
and cholesterol conversion, the hydroxysteroid dehydrogenases
Hsd3b5 and Hsd17b2 showed a higher expression in the evening.

The expression of many enzymes [Cyp7a1, Cyp7b1, Akr1d1,
Akr1c6 (aldo-keto reductase family 1, member D1/C6)] involved
in steroid degradation by formation of bile acids were also higher
expressed in the evening than in the morning.

Starvation
Already in the early fifties it was shown that the synthesis rate of
cholesterol is markedly decreased by starvation. This metabolic
profile was true in mice starved from ZT 3, in which most genes
encoding cholesterol synthesizing enzymes [Pmvk, Mvd, Fdps
(farnesyl diphosphate synthetase), Sqle (squalene epoxidase), Lss
(lanosterol synthase), Dhcr24 (24-dehydrocholesterol reductase),
Cyp51, Nsdhl (NAD(P) dependent steroid dehydrogenase-like),
Hsd17b7, Ebp, Sc5d, and Dhcr7] exhibited reduced expression
compared to ad libitum mice (Figure 8A). By contrast, the
shift of starvation time to the evening produced a reverse
regulation and a primarily elevated expression of these genes.
Notably, 24 h starvation did not significantly alter the cholesterol
content (Figure 8B). The regulatory transcription factor of
cholesterol synthesis, Srebf1a, was not significantly altered
following starvation (Figure 6). Due to starvation initiated
at ZT 3, Insig1 and Insig2 exhibited a reciprocal expression,
reflecting published data (Ye and DeBose-Boyd, 2011), while the
evening starvation period resulted in an equal increase in Insig1
and Insig2 expression. Scap expression was slightly lower after
starvation in both periods (Figure 8A).

Cytochrome P450 enzymes (CYPs) and hydroxysteroid
dehydrogenases (HSDs) synthesize steroid hormones with
cholesterol as starting compound. The expression of Cyp17a1
(steroid 17α-monooxygenase), which is a key enzyme of
steroidogenesis, was highly induced after starvation started
at ZT 12 and not altered in ZT 3 mice. By contrast, Hsd
expression (Hsd3b5, Hsd17b2, and Hsd17b6) was more or less
down-regulated after both starvation periods (Figure 8A).

The breakdown of cholesterol is performed by the synthesis of
bile acids in the liver. Cyp7a1, which is the rate-limiting enzyme,
was dramatically down-regulated following starvation initiated
at ZT 3 and unchanged in ZT 12 mice compared to ad libitum.
Cyp7b1 was almost unaffected after starvation started at ZT 3 and
highly decreased in ZT 12 mice. Akr1c6 is another enzyme of
bile acid synthesis and was down-regulated after both starvation
periods. Akr1d1 was marginally altered. Acox2 was unchanged
after starvation initiated at ZT 3, but it was increased in ZT 12
mice (Figure 8A).

Cholesterol metabolism exhibits a similar regulation in
response to fasting like the lipid metabolism: cholesterol synthesis
was regulated in the known manner in ZT 3 mice, but its synthesis
exhibited unknown regulation in ZT 12 mice.

Refeeding
The genes of cholesterol synthesis (Pmvk, Mvd, Sqle, Lss, Dhcr24,
Hsd17b7, and Scd5) remained elevated after the 21 h refeeding
period compared to ZT 12 ad libitum (Figure 8A). Fdps, Cyp51,
Nsdhl, and Ebp were even higher expressed after 21 h refeeding
compared to the corresponding starvation period at ZT 12. The
expression of almost all above-mentioned genes was elevated
after the 12 h refeed compared to ZT 3 ad libitum and was
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very similar to that under ZT 12 starvation. Only Ebp and Scd5
exhibited restored expression after 12 h refeeding (Figure 8A).
Expression of the regulator Srebf1a was highly induced after the
12 h refeeding compared to ZT 3 ad libitum, and it was restored
after refeeding for 21 h (Figure 6). Scap and Insig2 exhibited a
similar expression after 21 h refeed and at ZT 12 ad libitum.
After 12 h refeed the expression of Insig1 was slightly increased
and Insig2 was elevated much more, whereas Scap was decreased
(Figure 8A).

Cyp17a1 expression remained increased after the 21 h
refeeding and decreased after 12 h compared to the
corresponding ad libitum samples. Hsd17b6 expression was
lower after 12 and 21 h refeed than in the ad libitum samples.
Hsd3b5 remained down-regulated after 21 h refeeding. Hsd17b2
expression increased after 12 h refeed (Figure 8A).

The key enzyme of bile acid synthesis Cyp7a1 was
up-regulated after both refeeding times. Akr1d1 and Akr1c6
were also up-regulated, especially after the 21 h refeed. Acox2

FIGURE 9 | Lipidome profile of primary hepatocytes. Mice were fed ad libitum (white bars) or starved 24 h (black bars). Concentration of tri- and diacylglycerides
(TAG/DAG), cholesteryl esters (CE), sphingomyelins (SM), phosphatidylethanolamines (PE), and phosphatidylcholines (PC) (n = 3). Data are plotted as
mean ± standard deviation, ∗p < 0.05 and ∗∗p < 0.01.
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expression was restored after refeeding (12 and 21 h), but Cyp7b1
remained down-regulated after 21 h of refeeding (Figure 8A).

Lipidome Analysis of Hepatocytes
Beside the evaluation of the gene expression, we analyzed
the lipidome profile of the hepatocytes via mass spectrometry
(Figure 9). The amount of lipids in mice fed ad libitum
exhibited a basal level and no diurnal changes, with the
exception of sphingomyelin (SM), where the content was
1.4-fold higher in ZT 12 than in ZT 3 mice. However,
hepatic lipids used for storage, such as TAGs and cholesteryl
esters (CEs), were strongly elevated in starving mice, and this
regulation is highly time-dependent. Starvation started at ZT 3
produced a greater than fourfold increase in TAGs and CEs
compared to ad libitum mice. By contrast, 24 h starvation
initiated at ZT 12 produced only an approximately twofold
increase. Polyunsaturated TAG species primarily reflected these
differences in TAG levels (Supplementary Figure 2). However,
TAGs with a high saturation level (50:1 and 52:2) were equally
increased after both starvation periods because these TAGs are
less reactive and remain longer in the cells. Diacylglycerides
(DAGs) are transient precursor of TAG, and these molecules
are produced at a much lower level. Both starvation periods
slightly altered DAG levels. The membrane components SM
and phosphatidylethanolamines (PE) were significantly reduced
when starvation was initiated at ZT 12. The PC content did not
change (Figure 9). Hepatic TAG exhibited still a 2.5-fold increase
after the 12 h refeeding compared to ad libitum mice. However,
the 21 h refeeding normalized the TAG concentration. Refeeding
did not significantly alter the other lipid classes (Supplementary
Figure 3).

DISCUSSION

The results of our study revealed a strong circadian-driven
response to fasting in the liver (Figure 10). Twenty-four hour
starvation initiated and terminated in the morning (ZT 3 to ZT 3)
induced the expression of genes involved in metabolic pathways
that produce energy-rich substrates for the organism. The gene
expression of energy-consuming and temporary expendable
processes diminished. However, starvation started in the evening
(ZT 12 to ZT 12) produced a totally different hepatic expression
signature, with partially opposing regulations, e.g., genes involved
in gluconeogenesis decreased, while genes of fatty acid and
cholesterol synthesis were induced. These novel findings were
unraveled by the analysis of transcriptome data using SOMs.
SOMs perfectly visualized the opposing expression profiles of
the above-mentioned processes by comparing ZT 3 and ZT
12 starvation (clusters B and J, Figure 2). These differences in
the expression of metabolic enzymes and their regulators are
discussed below in detail.

Metabolic Adaptions Upon Starvation
So far, it was assumed that starvation adapts liver metabolism
in two ways: (i) by activating processes producing energy-rich
metabolites and (ii) by suppressing energy-consuming pathways.

However, our study revealed new diurnal-dependent aspects
of these mechanisms. Acetyl-CoA and glucose or equivalents
are essential energy-rich substrates produced by the liver upon
starvation. Our study confirmed the strong induction of the
expression of genes responsible for beta-oxidation, especially
when starvation was initiated at ZT 3. However, this induction
was much lower at ZT 12. Expression levels of essential
enzymes of gluconeogenesis (Pck1 and G6pc) and ketone body
synthesis (Hmgcs2 and Hmgcl) were distinctly decreased after
food deprivation started in the evening and increased in the
morning in the known way (Potthoff et al., 2009). Because
both processes use similar starting compounds, IRS2 and PDK4
balance the rate of gluconeogenesis and ketone body synthesis in
the liver upon fasting, respectively. Our microarray demonstrated
increased Irs2 and Pdk4 expression when food deprivation began
at ZT 3, as shown previously (Wu et al., 2000; Ide et al.,
2004), whereas evening starvation did not affect Pdk4 expression
and decreased Irs2. Another process of delivering energy is
autophagy, whereby, especially during starvation, expendable or
dysfunctional cellular components are degraded and recycled
(Yin et al., 2008). As a consequence of starvation started at ZT 12,
however, the autophagic genes exhibited a lower expression
level compared to ZT 12 ad libitum conditions. This result
was consistent with the strongly decreased expression of a
potent activator of autophagy, Cebpb, after starvation in the
evening. In contrast, upon starvation in the morning, Cebpb
exhibited induced expression, although most autophagic genes
were not relevantly altered. It was published that the activation
of autophagy is based on a changed phosphorylation pattern
(Shang et al., 2011), but our results indicate a transcriptional
regulation as well, which needs to be further investigated. The
transcriptional data suggest a so far unknown down-regulation
of energy-supplying processes after starvation started in the
evening, while morning starvation led to the known activation
of those pathways.

For energy-consuming and temporary expendable metabolic
processes, we discovered similar diurnal regulation differences
by starvation. The synthesis of fatty acids, manly carried
out by fatty acid synthase, seems to be increased based on
the elevated expression of Fasn after food deprivation in the
evening. This observation was contrary to the decreased Fasn
expression detected after starvation started in the morning
and the published knowledge of diminished lipogenesis upon
fasting (Horton et al., 1998). The hypothesis of the opposing
lipogenesis regulation after different starvation periods was
strengthened by the expression of Gck, forming the carbon
source (pyruvate) for lipogenesis, which was also induced after
starvation started in the evening and decreased in the known
way after morning starvation (Iynedjian et al., 1987). Cholesterol
synthesis is another process known to be diminished while
starving. However, enzymes of cholesterol synthesis exhibited
elevated gene expression following starvation initiated at ZT 12.
Food deprivation initiated at ZT 3 reduced the expression levels
of most down-stream genes encoding cholesterol synthesizing
enzymes, which indicates diminished cholesterol synthesis,
as previously shown (Tomkins and Chaikoff, 1952), even if
expression of the rate-limiting enzyme of cholesterol synthesis,
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FIGURE 10 | Summary of expression changes after 24 h starvation. Arrows indicate higher (↑) or lower (↓) expression after starvation initiated at ZT 3 (yellow) and
ZT 12 (brown) compared to the corresponding ad libitum samples. Equality signs (=) indicate no expression changes after starvation.

Hmgcr (3-hydroxy-3-methyl-glutaryl-coenzyme A reductase),
was not found in our microarray. Bile acids are secreted into the
intestine to increase the solubility of hydrophobic molecules and
allow their absorption (Hofmann and Borgström, 1964) and have
a poorly understood function as potent signaling compounds
(Chiang, 2017). Our study revealed a higher expression of
genes involved in bile acid synthesis in the evening than in
the morning in ad libitum fed mice. This result was consistent
with the known diurnal expression of the rate-limiting enzyme
CYP7A1, which is highest when the greatest amount of food
is consumed (Gooley, 2016). Mice are nocturnal and consume
approximately three times more food during scotophase than
during photophase (Kurokawa et al., 2000). Bile acid production
is a redundant process during starvation, and our analysis
revealed a lower expression of Cyp7a1 after food deprivation

at ZT 3. However, starvation in the evening did not alter
Cyp7a1 expression. Several groups reported a similar pattern
of Cyp7a1 expression after starvation (Noshiro et al., 1990;
Li et al., 2012), but other studies demonstrated an induction
(De Fabiani et al., 2003; Shin et al., 2003). The timing and
length of the starvation period used by different groups may
explain these diverse results and illustrate the importance of our
study. Steroid hormone synthesis is generally localized in the
gonads and adrenal glands, but the adult liver also performs
steroidogenesis under specific conditions (Grasfeder et al., 2009;
Rennert et al., 2017). Cyp17a1 expression, which is a central
steroidogenic enzyme, was induced following evening starvation.
This result confirms previous work and strengthens the idea
of steroids as mediators of starvation responses (Bauer et al.,
2004; Grasfeder et al., 2009). Our data show a novel regulation
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of energy-consuming processes after starvation started in the
evening, contrary to the established down-regulation frequently
published as the hepatic starvation response after fasting initiated
in the morning.

The accumulation of lipids in the liver (steatosis) often
accompanies starvation (Kok et al., 2003; van Ginneken et al.,
2007). Adipose tissues secrete fatty acids, which are taken up
by hepatocytes and esterified to the storage lipids TAG and CE
or secreted as VLDL. Lipidomics analysis revealed significantly
elevated TAG and CE contents due to starvation, but this
increase was twice as great after food deprivation initiated in
the morning than when it was initiated in the evening. This
may be based on the diurnal regulation of adipose triglyceride
lipase (ATGL) and hormone-sensitive lipase (HSL), which are
the lipolysis pacemaker enzymes in adipose tissue and direct
targets of CLOCK/ARNTL (Shostak et al., 2013). The lower
level of TAG and CE after starvation started in the evening
appears inconsistent with the increased expression of Fasn. Two
possible explanations are (i) since Fasn was only detected at the
mRNA level, the synthesis of enough enzyme protein and the
accumulation of a measurable increase of TAG may be delayed
for several hours and/or (ii) the synthesized fatty acids were not
stored in the liver but secreted, and the analysis could not capture
them. To unravel this uncertainty, additional studies have to be
performed.

Regulation of the Hepatic Starvation
Response
Additionally, for the transcription factors regulating the
observed starvation-induced transcriptional alterations, our
study exhibited novel diurnal expression profiles. A main
activator of the energy-supplying processes is the PPAR family.
Elevated expression of Ppara and Pparg in the liver upon fasting
induces beta-oxidation, stimulating lipid uptake and fatty acid
storage (Kersten et al., 1999; Gavrilova et al., 2003; Tanaka et al.,
2005). However, we detected this up-regulated expression only
when starvation was initiated at ZT 3 and not at ZT 12, which
explains the weak induction of beta-oxidation, the decreased
gluconeogenesis and ketogenesis and the lower amount of TAG
accumulation in the liver after evening starvation. Furthermore,
HNF4A contributes to this regulation due to additional activation
of Ppara and diminishment of the repressor Hes6 (Martinez-
Jimenez et al., 2010). Our data nicely reflected this mechanism
after starvation started in the morning. However, after evening
starvation, Hnf4a was unchanged and the Hes6 level increased.

The SREBP1 family and ChREBP (Mlxipl) are transcription
factors more responsible for the post-prandial state and are
supposed to be down-regulated during starvation to not
activate energy-consuming pathways. For Mlxipl, we detected
a transcriptional response with a strong down-regulation after
starvation in the morning, but no changes were observed when
starvation was initiated in the evening. This was contrary to the
published regulation carried out only at the post-translational
level via phosphorylation (Iizuka and Horikawa, 2008) and
requires a more focused study. Srebf1c expression was reduced
only after food deprivation initiation in the morning, and its

expression was unchanged following starvation in the evening,
which may explain the induced expression of the target Fasn
when starvation was started at ZT 12. SREBP-1a is known to
regulate cholesterol synthesis, but even if its expression was
not relevantly altered, neither after starvation initiated in the
morning nor in the evening, the genes encoding cholesterol
synthesizing enzymes responded with a down- or up-regulation,
respectively. Additionally, the influence of the SREBP1 inhibitors,
INSIG1/2, seemed to depend on diurnality, since Insig1/2
expression was elevated after both starvation periods, but the
regulatory output differed. Therefore, the known regulatory
mechanisms of Srebf1 expression did not seem applicable when
starvation was initiated in the evening, and further investigations
are needed to delineate these mechanisms. All in all, the diurnally
regulated expression of the transcription factors Ppara, Pparg,
Mlxipl, Srebf1a, and Srebf1c following starvation likely underlie
many of the observed metabolic alterations.

Concerning the regulation of the fed and starved state, two
hormones are omnipresent: insulin and glucagon. Since the
hormones were not determined in our study, we can only
speculate about their levels and influence. Shi et al. (2013)
demonstrated diurnal differences in mice with enhanced insulin
activity during the night and a metabolism that was characterized
by insulin resistance during the day. However, 24 h starvation
started in the morning changed the diurnal insulin regulation,
and serum insulin levels dropped by approximately two-thirds,
resulting in the known starvation responses (Ahrén and Havel,
1999), but no data were available for evening starvation.
Glucagon, on the other hand, regulates metabolism in the fasted
state. It was shown that glucagon induces the expression of the
hormone Fgf21 (Berglund et al., 2010), which in turn activates
gluconeogenesis and ketogenesis. The expression of Fgf21 was
much more induced when starvation was started in the morning
than in the evening, which explains the diurnal differences in
gluconeogenic and ketogenic gene expression and suggests that
the glucagon response also depends on the timing of starvation.

The overall regulators of circadian rhythm are the core clock
genes Arntl, Clock and Per, which were elevated after both
starvation periods but maintained their typical diurnal expression
pattern. This result was consistent with a previous study that
demonstrated induced Arntl expression due to raised glucagon
levels (Sun et al., 2015). Since the transcriptional analysis was
performed in hepatocytes, a screen of other organs would help to
fully understand the regulatory differences following starvation
started in the morning and in the evening.

Metabolic Adaptions and Regulations
Upon Refeed
Peripheral tissues first refill their glucose stores when an organism
switches from a starved to a refed state, and the liver subsequently
synthesizes and stores glycogen, fatty acids, and cholesterol (Berg
et al., 2002). Our experimental setting investigated the effects of
two refeeding durations (12 and 21 h) after the same starvation
period (Figure 11). The already mentioned clusters B and J
in the SOMs, where most genes of intermediary and steroid
metabolism were localized, exhibited similar expression profiles
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FIGURE 11 | Summary of expression changes following 12 and 21 h refeeding after 24 h starvation. Arrows indicate higher (↑) or lower (↓) expression after refeeding
for 12 h until ZT 3 (yellow) and 21 h until ZT 12 (brown) compared to the corresponding ad libitum samples. Equality signs (=) indicate a restored ad libitum
expression levels.

after both refeeding periods, which were totally different from
the ad libitum groups. The expression levels in other regions of
the SOM after 21 h refeeding partially resembled the ad libitum
group, which indicated a return to the untreated state.

Since food intake delivers all essential metabolites, the liver
(i) activates the energy-consuming metabolism and (ii) the
production of energy-rich substrates returns to normal. The liver
no longer synthesizes ketone bodies and glucose after refeeding,
and the expression of the relevant genes reached ad libitum or
decreased levels. The genes of beta-oxidation were expressed
at ad libitum levels as well. Early findings demonstrated that
refeeding suppressed autophagy (Mortimore et al., 1983), which
was confirmed since most of the autophagic genes exhibited
a much lower expression after 12 h refeeding compared to
starvation, and these genes returned to an approximately ad

libitum level after 21 h. In contrast, the synthesis of fatty acids
and steroids is induced by refeeding. Our study demonstrated
that the expression of Fasn was highly increased to a maximum
after the 21 h refeed. The genes encoding cholesterol synthesizing
enzymes were elevated after 12 and 21 h of refeeding as well. This
led to an induced synthesis of fatty acids and cholesterol to refill
the emptied stores. Bile acid synthesis is associated with the food
consumption, and it increased due to elevated expression levels
of Cyp7a1, as reported previously (Li et al., 2012). The lipidome
profile revealed that TAG content remained increased after 12 h
refeeding but reached ad libitum levels after 21 h. Previous studies
demonstrated a normalization of liver lipid content after 48 h of
refeeding (Kok et al., 2003).

Since SREBF1 stimulates lipogenesis and cholesterol synthesis,
the expression of the transcription factors Srebf1a and Srebf1c
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was highly induced after 12 h refeeding, which was consistent
with previous results (Horton et al., 1998; Ide et al., 2004) and
resulted in the observed induction of fatty acid and cholesterol
synthesis. Resulting from differences in the timing of applied
starvation periods, our results revealed another profile than
what has been suggested thus far for the expression of the
inhibitors Insig1 and Insig2. We demonstrated that Insig1 levels
were almost unchanged and Insig2 remained highly elevated
after 12 h refeeding compared to the corresponding ZT 12
starvation group, contrary to the published decrease of Insig1 and
Insig2a expression after refeeding (Attie, 2004; Lee et al., 2017).
This discrepancy illustrates the importance of further knowledge
of the circadian-driven response to fasting in the liver. The
transcription factors, Ppara and Pparg, remained elevated after
the 12 h refeeding but reached ad libitum levels after 21 h. Geisler
et al. (2016) demonstrated a similar decline in Ppara levels with
advanced refeeding times.

Linkage of Starvation and Refeed
SOMs that the overall hepatic expression after 12 h refeeding
highly resembled starvation initiated at ZT 12, which was
confirmed according to the details of different metabolic
pathways (e.g., lipogenesis, cholesterol synthesis, autophagy).
This may be a consequence of the nocturnal eating behavior of
mice, because the expression of many genes may be decreased
as a direct consequence of starvation when mice were sacrificed
after 24 h starvation in the morning directly after the scotophase
when they typically consume their major meal. By contrast,
when mice are sacrificed in the evening, the previous period was
the photophase during which they consume less food, and the
diurnal regulation of mice anticipating food may predominate.
Furthermore, mice in which starvation was started in the evening
consumed only small amounts of food in the prior period because
it was daytime, and the fasting period was actually longer and the
stores may be more depleted. These differences may also explain
the differences in TAG content. We can only speculate on these
points because refeeding in our experiments was only initiated in
the evening and not in the morning. We also cannot distinguish
between the effects of the longer refeeding period and circadian
regulation because samples were taken during another circadian
time.

CONCLUSION

Our experiments convincingly demonstrate that the response to
starvation periods differed depending on the timing of starvation
initiation and report valuable new information about expression
levels based on the initiation and termination of starvation in
the evening. Performing analogous experiments in humans may
provide useful information of the metabolic state after differently

timed starvation periods, which may lead to better understanding
stressful starvation conditions and develop medical treatment
strategies for affected patients. In chronic disturbances of meal
timing and the circadian rhythm, e.g., upon shift work, various
metabolic disorders are known (Canuto et al., 2013; James et al.,
2017). The diverse timings and lengths of starvation periods used
in different research groups may explain the variance in published
results and support the necessity for clearly designed and
recorded experimental procedures. Accordingly, the circadian
influence must be considered in all in vivo experiments including
starvation.
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Dynamics as well as localization of Ca2+ transients plays a vital role in liver function under

homeostatic conditions, repair, and disease. In response to circulating hormonal stimuli,

hepatocytes exhibit intracellular Ca2+ responses that propagate through liver lobules in

a wave-like fashion. Although intracellular processes that control cell autonomous Ca2+

spiking behavior have been studied extensively, the intra- and inter-cellular signaling

factors that regulate lobular scale spatial patterns and wave-like propagation of Ca2+

remain to be determined. To address this need, we acquired images of cytosolic Ca2+

transients in 1300 hepatocytes situated across several mouse liver lobules over a period

of 1600 s. We analyzed this time series data using correlation network analysis, causal

network analysis, and computational modeling, to characterize the spatial distribution

of heterogeneity in intracellular Ca2+ signaling components as well as intercellular

interactions that control lobular scale Ca2+ waves. Our causal network analysis revealed

that hepatocytes are causally linked to multiple other co-localized hepatocytes, but

these influences are not necessarily aligned uni-directionally along the sinusoids. Our

computational model-based analysis showed that spatial gradients of intracellular Ca2+

signaling components as well as intercellular molecular exchange are required for lobular

scale propagation of Ca2+ waves. Additionally, our analysis suggested that causal

influences of hepatocytes on Ca2+ responses of multiple neighbors lead to robustness

of Ca2+ wave propagation through liver lobules.

Keywords: calcium dynamics, liver lobule, causal network analysis, computational modeling, spatial calcium

patterns, cell-cell interactions

INTRODUCTION

The liver performs a wide variety of physiological functions, including the regulation
of intermediary metabolism, lipid synthesis, bile production, and xenobiotic detoxification.
Normal liver function requires both tight regulation of intracellular processes and intercellular
coordination. Free Ca2+ in the intracellular domain participates in the regulation of such
hepatocyte functions as glucose metabolism, bile secretion, proliferation, and apoptosis (Exton,
1987; McConkey and Orrenius, 1997; Canaff et al., 2001). Regulation of cytosolic Ca2+ is
particularly important in hepatocytes, the cells responsible for the bulk of metabolic and
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detoxification activities in the liver. Consequently, disruption of
Ca2+ dynamics can potentially lead to pathological conditions,
such as cholestasis (Kruglov et al., 2011).

Structurally, cells in the liver are arranged in lobules, the
functional units of the liver conceptualized as having roughly
hexagonal cross sections delineated by the portal triad and the
central veins. Circulating blood enters lobules through the portal
vein and hepatic artery residing in the periportal region, and
is drained into the central vein after passing through sinusoids.
Hepatocytes are polarized cells arranged alongside sinusoids,
with their basolateral membranes in contact with the systemic
blood flow. Upon contact with Ca2+ mobilizing agents in
the blood stream, such as ATP, hormones, or growth factors,
spikes in cytosolic Ca2+ concentration are observed within the
intracellular domains of hepatocytes (Woods et al., 1986, 1987;
Serradeil-Le Gal et al., 1991). Binding of extracellular stimuli,
such as hormones to receptors on the basolateral hepatocyte
membranes, elicits an intracellular signaling cascade involving
phospholipase C (PLC) activation, inositol triphosphate (IP3)
synthesis, IP3 receptor (IP3R) activation in the endoplasmic
reticulum (ER) membrane, leading to a rapid efflux of Ca2+

from the ER into the cytosol. Once in the cytosol, Ca2+ can
be sequestered by mitochondria, released into the extracellular
region, or pumped back into the ER, thus reducing the cytosolic
Ca2+ levels, yielding a Ca2+ spike. Intracellular Ca2+ spiking
has been reported to arise primarily due to fast activation
and slow inhibition of IP3R by cytosolic Ca2+ operating in
conjunction with active pumping of cytosolic Ca2+ into the
ER by SERCA pumps (Atri et al., 1993; Keizer and De Young,
1993). In the intact rat liver, sustained hormone stimulation
typically leads to Ca2+ spike trains in hepatocytes with inter-
spike intervals dependent upon stimulus strength as well as
intracellular signaling capacity (Robb-Gaspers and Thomas,
1995).

Heterogeneity in the expression and intracellular distribution
of the Ca2+ signaling components as well as variability in
the extracellular regulatory factors can lead to differences in
characteristic Ca2+ spiking frequencies of individual hepatocytes.
Variations in Ca2+ spike frequencies have been shown to lead to
differential downstream gene expression and protein regulation
(Dolmetsch et al., 1998; Zhu et al., 2008; Smedler and Uhlén,
2014). A coherent lobular scale response to extracellular stimuli
requires that the Ca2+ signals in hepatocytes across the lobule
be coordinated. Gap junctions are hypothesized to play a role
in coordinating this response, leading to synchronization of
cytosolic Ca2+ spikes across the liver lobule in response to G-
protein coupled receptor agonists (Robb-Gaspers and Thomas,
1995; Tordjmann et al., 1997). Cytosolic Ca2+ and IP3 from
a hepatocyte can migrate to neighboring hepatocytes, likely
responsible for inducing synchronization of Ca2+ spikes across
the liver lobule (Sáez et al., 1989). Another mechanism of long-
range coordination may involve the release of paracrine signals,
such as ATP, into the extracellular milieu, which then elicits Ca2+

spiking in the neighboring hepatocytes by purinergic receptor
activation (Schlosser et al., 1996). Exchange of molecular signals
between cells through gap junctions or paracrine signaling in
addition to spatially organized heterogeneity could lead to a

coordinated response within a population of cells with regard
to downstream processes regulated by Ca2+ in response to
extracellular stimuli.

In liver lobules, Ca2+ signals commonly manifest as traveling
waves (Keizer and De Young, 1993; Robb-Gaspers and Thomas,
1995; Thomas et al., 1996). Ca2+ waves usually start in cells
located in the pericentral (PC) region of the lobule and propagate
toward the periportal (PP) region (Nathanson et al., 1995; Robb-
Gaspers and Thomas, 1995) upon lobule-wide stimulation by
vasopressin or phenylephrine. The direction of Ca2+ signal
propagation is opposite to the general direction of blood
flow, which is from PP to PC. This observation indicates an
organized spatial heterogeneity, termed liver zonation, in the
Ca2+ signaling capacity of cells. Liver zonation has been observed
in many other physiological functions in liver lobules (Gebhardt
and Mecke, 1983; Jungermann, 1987; Braeuning et al., 2006;
Gebhardt and Matz-Soja, 2014).

Dynamics as well as localization of Ca2+ transients plays a
vital role in liver function under homeostatic conditions, repair,
and disease (Rooney et al., 1990; Pusl and Nathanson, 2004;
Gaspers and Thomas, 2008; Lagoudakis et al., 2010; Fu et al.,
2012; Amaya and Nathanson, 2013; Bartlett et al., 2014; Oliveira
et al., 2015). Although a wealth of information exists regarding
the intracellular Ca2+ dynamics, understanding of lobular scale
propagation of Ca2+ signal, its quantification as well as a clear
understanding of its significance is lacking. Use of computational
modeling to decipher processes that control intracellular Ca2+

spikes and spatial patterns of Ca2+ signal propagation has been
a long-standing area of investigation due to the complexity of
their origin and propagation. For instance, Schuster et al. (2002)
present a detailed discussion of computational models developed
for describing Ca2+ spiking, as well as propagation of Ca2+

waves through co-localized cells. In previous work, we used a
computational model to predict that zonation of intracellular
signaling components as well as gap junction-mediated IP3
exchange between immediate neighbors are required for the
propagation of a Ca2+ signal through a chain of connected
hepatocytes (Verma et al., 2016). A recent study employing
single cell RNA sequencing provided evidence in support of
our predictions of lobular gradients of intracellular signaling
components at the mRNA level (Halpern et al., 2017).

In this study, we combined analysis of experimentally
acquired images of cytosolic Ca2+ dynamics in mouse liver
lobules with dynamic modeling to identify spatial features
of lobular scale Ca2+ signal propagation and putative causal
linkages between adjacent hepatocytes. We imaged cytosolic
Ca2+ levels in response to a vasopressin stimulus in a 2D
optical slice of a perfused intact mouse liver to obtain a data
set on Ca2+ transients in 1300 hepatocytes residing in different
lobules, measured every 4 s over a period of 1600 s. We analyzed
correlation as well as causal networks constructed using the
acquired high-dimensional time series to characterize the spatial
extent and directional alignment of intercellular interactions
that lead to Ca2+ waves across liver lobules. We incorporated
the causal connectivity from network analysis into an ordinary
differential equation-based dynamic model of intra-and inter-
cellular Ca2+ signaling. We utilized the model to evaluate the
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effect of spatial heterogeneity in the intra- and inter-cellular
signaling components on spatial patterns of cytosolic Ca2+

signals. Our dynamic model-based analysis predicted the spatial
distribution of signaling components that yield lobular scale
Ca2+ patterns that are consistent with the experimentally
observed Ca2+ wave propagation.

METHODS

Calcium Imaging in Isolated Perfused
Mouse Livers
All animal procedures used in this study were handled in
accordance with mandated standards of humane care and
were approved by the Thomas Jefferson University Institutional
Animal Care and Use Committee. Confocal imaging of intact
perfused livers was performed as previously described (Robb-
Gaspers and Thomas, 1995; Bartlett et al., 2017). Briefly, livers
from 8–12 weeks old male C57 BL/6 mice were perfused
via the hepatic portal vein with a HEPES-buffered balance
salt solution (121mM NaCl, 25mM HEPES, 5mM NaHCO3,
4.7mM KCl, 1.2mM KH2PO4, 1.2mM MgSO4, 1.3mM CaCl2,
5.5mM glucose, 0.5mM glutamine, 3mM lactate, 0.3mM
pyruvate, 0.2mM bromosulfophthalein (BSP), 0.1% BSA, pH 7.4)
equilibrated with 100% O2 at 30◦C. A Ca2+-sensitive indicator,
fluo-8 AM (5µM) was loaded into the hepatocytes in vivo by
recirculating the perfusion buffer supplemented with fluo-8 AM
plus 0.02% Pluronic F-127 and 2% BSA for 40–50min. Confocal
images were acquired with an EC Plan-Neofluar 10x/0.30 M27
objective using a Zeiss LSM510MP confocal microscope. Fluo-8
images (488 nm excitation, 520–600 nm emission) were captured
every 4 s. Periportal and pericentral zones were identified by
differential dye loading and perfusion of fluorescein-conjugated
BSA.

Image Segmentation and Cytosolic
Calcium Time Trace Extraction
Hepatocytes in the acquired images were segmented manually.
Intensities of all pixels lying within segmented hepatocyte
boundaries were added for every time slice to obtain a 400-
time point cytosolic Ca2+ time series for all the segmented
hepatocytes.

Pre-processing Cytosolic Ca2+ Time Series
Data
The following operations were performed on the cytosolic Ca2+

trace of every hepatocyte (see Supplementary Figure S1 for
details):

Baseline Correction and Rescaling
The cytosolic Ca2+ series for each hepatocyte was detrended
using an implementation of the rolling ball baseline correction
algorithm contained in the baseline package (version 1.2) in R
platform for statistical analysis (version 3.2.3; R Core Team,
2015) to remove low frequency components and correct for dye
photobleaching during the experiment.

Low Pass Filtering and Rescaling
High frequency components in each baseline-corrected Ca2+

time series were removed using the smooth.fft function from the
itsmr package (version 1.5) in R (version 3.2.3). This function
removes frequencies corresponding to the highest nth percentile
from the power spectrum of a given time series. The signal in the
lowest 27.5 percentile of the frequency range in every time series
was retained for subsequent analysis. The amplitudes of cytosolic
Ca2+-dependent fluorescence signal intensity in the resultant
time series were then rescaled to between 0 and 1.

Network Analysis
Undirected Correlation Network Construction and

Analysis
Undirected correlation networks were constructed using pairwise
Spearman rank correlation coefficient estimates of baseline
corrected, low pass filtered, and rescaled time series data.
Edges corresponding to correlation values < 0.75 or those that
were between hepatocytes lying at a distance > 100µm were
discarded. The resultant networks were analyzed for isolated
clusters, their sizes and node degrees. Analysis of the correlation
network was performed using the igraph (version 1.0.1) package
in R (version 3.2.3).

Transfer Entropy (TE) Based Causal Network

Construction and Analysis
Transfer entropy (TE) is a measure of the directed influence
between two random processes. TE from a process X to another
process Y is defined as the amount of reduction in uncertainty
of future values of Y by knowing the past values of X, given
past values of Y. In the present study, pair-wise TE between
Ca2+ responses of hepatocytes was estimated based on Shannon’s
conditional entropy, as follows:
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∑
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TEX→Y = h2 − h1 (3)

where xt and yt represent the cytosolic Ca
2+ levels in hepatocytes

X and Y, respectively, at time t; Xm
t = [xt , xt−1, ..., xt−m+1] and

Yn
t = [yt , yt−1, ..., yt−n+1] are past m and n values of cytosolic

Ca2+ in respective hepatocytes X and Y; p
(

yt+1|Y
n
t ,X

m
t

)

is the
probability of the occurrence of yt+1 given Xm

t and Yn
t , and

p(yt+1,Y
n
t ,X

m
t ) is the joint probability of occurrence of yt+1,

Xm
t , and Yn

t . TE therefore represents the decrease in Shannon’s
entropy when past values of X and Y are used to predict
the current value of Y compared to past values of Y alone.
Information transfer is considered as occurring from X to Y
if TEX→Y > 0 (see Schreiber, 2000 for more details). In this
work, m and n were taken to be 1 based on cross correlation
measures (Figure S2). Additionally, a theoretical estimate of
IP3 diffusion time between two hepatocytes with diameters of
∼ 25µm is 1.1 s based on IP3 diffusion constant values in
xenopus oocyte cytosolic extracts (Allbritton et al., 1992). We
therefore limited our TE analysis to a history value of 1 (4 s
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lag), with information flow interpreted as IP3 exchange between
neighboring hepatocytes. It must be noted that the diffusion
time of IP3 between hepatocytes in vivo might be increased due
to molecular charge, gap junction channel properties and cell-
intrinsic buffering. However, to our knowledge, no data exists
regarding effective diffusivity of IP3 in mouse hepatocytes in vivo.

Directed causal networks between hepatocytes based on
TE were constructed using quantized Ca2+ time series of all
hepatocytes. Pre-processed Ca2+ time series for each hepatocyte
was quantized into high (=1) or low (=0) cytosolic Ca2+ at each
time point using the 85th percentile of the cell-intrinsic intensity
distribution as considered the threshold. As an additional filter
to minimize the effect of noise, all high cytosolic Ca2+ values
in the time series were changed to zero unless the value at an
immediately preceding or following time point was also high, i.e.,
cytosolic Ca2+ intensity was sustained above the 85th percentile
within the cell for at least 8 s.

In the absence of a good value of TE to infer cell-
to-cell influence, hepatocyte-specific significance testing was
employed to identify influence edges and construct TE-based
causal networks. For every hepatocyte, pairwise TE values from
all other hepatocytes were estimated to obtain an empirical
distribution. If the TE value to the given hepatocyte from another
adjacent hepatocyte was greater than the 95th percentile of
its empirical TE distribution, a positive causal influence was
considered from the neighbor to the hepatocyte of interest.
The similarity in TE networks identified by our method based
on binarized data and a continuous TE estimation method
implemented in JIDT (Lizier, 2014) can be found in Figure S11.
Additionally, we chose a cell-specific TE threshold instead
of a global threshold to avoid inclusion of false positives
(Figure S12).

Computational Modeling of Intra- and
Inter-cellular Ca2+ Signaling
We started with a receptor oriented, ordinary differential
equation (ODE)-based model of Ca2+ signal propagation in a
cord of hepatocytes detailed in Verma et al. (2016). Here, we
consider the complex spatial features of a liver lobule by allowing
the hepatocytes to be connected with more than two other
hepatocytes, as was the case in the original model of Verma et al.
(2016). In the present computational model, the state of every cell
“i” and its interaction with a set of adjacent cells represented by
the index “j” is defined by the following system of ODEs:

dri

dt
= kri (1− ri) − kdri − kHrH.ri (4)
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Surface receptor activity (r) including non-specific binding
was modeled as shown in Equation (4), where H represents
the hormone level—a model parameter. The total number of
receptors for each hepatocyte was assumed to be constant.
Intracellular IP3 concentration (IP3) balance was modeled using
saturation kinetics for synthesis influenced by hormone binding
to the receptor and cytosolic Ca2+ and mass action kinetics
for degradation (Equation 5). IP3 exchange between adjacent
hepatocytes was modeled as a mass transfer term assuming fast
kinetics, with Gij being the mass transfer coefficient. Increase
in cytosolic Ca2+ (CaI) in the model was regulated IP3R (g)
activation, cytosolic IP3 levels, store Ca

2+ content (CaT), and a
constant leakage from the ER (L), whereas decrease in cytosolic
Ca2+ caused by SERCA pump activity was modeled as a Hill
function (Equation 6). IP3R activation (g) in the model was
regulated by cytosolic Ca2+, whereas a constitutive rate of IP3R
was considered (Equation 7). The model assumed constant
total intracellular Ca2+ for all hepatocytes. Additional details
of model development can be found in Verma et al. (2016).
See Tables 1, 2 for parameter descriptions, their nominal ranges
and initial values for model species. All simulations in this
study were performed using Matlab (version 8.1.0.604 (R2013a)

Mathworks©, Natick, MA).
To identify the effects of non-uniformity of gap junction

conductivity between adjacent hepatocytes in our simulations,
Gij values were sampled as follows: a uniform random number
r1 ǫ [0, 1] was drawn. If r1 exceeded a threshold value pth (two
cases considered: pth = 0.2 or 0.5), a Gij was sampled ǫ [0.5, 0.9].
Otherwise Gij = 0. pth = 0.2 or 0.5 correspond to cases where
20% or 50% Gij values are likely to be 0 respectively.

Model Reproducibility and Comparison of
Alternatives
Simulation results presented in the current work were
reproduced independently using the parameter values
and hepatocyte adjacency information provided as
Supplementary Material with this manuscript. While the
original model was implemented in Matlab as a sequentially
updating model species according to their specific rate equations,
the rate equations in the reproduced model were implemented
as a matrix. The Matlab code for the two independent
implementations is provided in the Supplementary Material).
The simulation results of the two model implementations were
in agreement (see Figure S3 for details).

We also considered an alternative modeling scheme, in which
the store Ca2+ content of each hepatocyte is considered to be a
constant (= 500µM). In this alternative model, Equation (8) is
excluded and Equation (6) was changed as follows:

dCaIi

dt
=

(

1− gi
)
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TABLE 1 | List of species and their initial values in the computational model.

Symbol Value Quantity

CaIi 0.2µM Cytosolic Ca2+ concentration

CaTi 500µM Total Ca2+ concentration

gi 0.25 Ratio of free to total IP3R

IP3i 0.1µM IP3 concentration

ri 0.5 Ratio of free to total agonist receptors in cell i

TABLE 2 | List of nominal parameter values/ranges for the computational model.

Symbol Value Quantity

A 0.20 µM/s Maximal rate of Ca2+ release from ER store

B 0.082 µM/s Maximal rate of cytosolic Ca2+ pump to ER

D 1.6/s IP3 degradation rate

E 1/(µM)4-s IP3R deactivation rate

F 0.01/s IP3R activation rate

G 0–5/s Mass transfer coefficient between cells i and j

H 1.8 × 10−10 M Hormone concentration

k1 0.5µM IP3 concentration for half maximal rate of

catalysis of store Ca2+ release

k2 0.15µM Cytosolic Ca2+ concentration for half

maximal pump rate

k3 1µM Cytosolic Ca2+ concentration for half

maximal rate of IP3 production catalysis

kcat 0.45 Bound receptor ratio for half-maximal IP3
production rate

kd 0.34/s Hormone independent agonist receptor

binding rate

kHr 1 /10−10 M-s Hormone-receptor binding rate

kIP3i 0.7 × 104 – 0.9 ×

104 µM /s

Saturation IP3 synthesis rate

kri 1–2/s Agonist receptor recycling rate

L 0.00015µM /s Ca2+ leakage flux from store to cytosol

−
B.CaI2i

k22 + CaI2i
(6a)

RESULTS

We acquired a dataset consisting of cytosolic Ca2+ dynamics
in 1300 hepatocytes across different liver lobules over a period
of 1600 s (Figure 1). The Ca2+ transients within the lobules
were induced by a sustained vasopressin stimulus (see section
Methods). At low vasopressin stimulus levels (0.1–0.5 nM),
hepatocytes in intact mouse livers did not exhibit sustained
cytosolic Ca2+ spikes (Figure S5). Vasopressin levels to which
cells were exposed during the experiment were varied from 0.5
to 1 nM. The stimulus time profile is shown in Figure 1A. We
used a step-wise increasing stimulus profile to identify cell-cell
interactions that remain unaffected by a change in stimulus
strength. Ca2+ response profiles for all hepatocytes in our data
suggested an overarching synchronized response (Figure 1C).
Cytosolic Ca2+ spikes as well as Ca2+ wave propagation through
a lobular section bounded by a central vein and a portal
triad are shown in Figures 1D,E, respectively. Hepatocytes

generally exhibit asynchronous cytosolic Ca2+ spiking behavior
superimposed on propagating Ca2+ waves.

Correlation Network Analysis
Our data suggested an overall synchronization of intracellular
Ca2+ dynamics across all 1300 hepatocytes that were segmented
within the imaged field even though these hepatocytes were
often separated by several cell layers. With a correlation-based
network analysis, we sought to identify the typical spatial
range within with Ca2+ responses of individual hepatocytes
are synchronized under the experimental conditions. The
correlation networks were constructed using pairwise Spearman
rank correlation coefficients between Ca2+ traces. We used
a minimum correlation coefficient cutoff (Rth) of 0.75 and
maximum inter-hepatocyte distance cutoff (dth) of 100µm to
assign network edges between two hepatocytes. The resulting
network consisted of 669 hepatocytes with 565 edges between
them. The node degree distribution for all hepatocytes in
the network suggested that a large number of hepatocytes
were synchronized with one or two other hepatocytes, for the
chosen Rth and dth values (Figure 2A). In order to identify the
typical spatial extent of Ca2+ response synchronization among
hepatocytes, we decomposed the network into isolated clusters.
We found a set of 14 clusters containing more than 8 hepatocytes
in each cluster (Figure 2B).

We focused our analysis on clusters that consisted of at least
8 hepatocytes (herein referred to as large clusters) for further
analysis. For each large cluster, we estimated node degrees for
individual hepatocytes as well as the average node degree for
all hepatocytes within the cluster. Node degrees of individual
hepatocytes residing in large clusters ranged between 1 and 7
(Figure 2C). Eighty seven out of the 190 hepatocytes residing in
the large clusters had node degrees 3 or greater. Nine out of the
14 large clusters exhibited average node degrees> 2 (Figure 2D).

Mapping of the large clusters onto their physical locations
(Figure 2E) suggested the existence of “islands” of synchronized
Ca2+ response, which were generally situated close to the
central veins. The typical spatial dimension of these synchronized
clusters was less than the lobular dimensions (considered to be
half the typical distance between approximate locations of two
central veins). It must be noted that other smaller clusters, which
are not shown in the figure, may be present in the intermittent
space between the larger clusters.

In summary, analysis of correlation networks constructed
based on hepatocyte Ca2+ response showed that, despite
an apparent global concurrence of Ca2+ peak intensities,
synchronized hepatocytes formed localized clusters spanning
small regions within liver lobules. Ca2+ responses of up to 7
hepatocytes were synchronized within these clusters. However,
only a small fraction of hepatocytes was included in clusters with
sizes 8 or greater (Figure 3C) suggesting that a correlation-based
formulation of cell-cell interactions is insufficient to explain the
observed lobular scale propagation of Ca2+ waves.

Causal Network Analysis
We constructed causal networks between hepatocytes to identify
whether adjacent neighbor-driven intercellular interactions can
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FIGURE 1 | (A) vasopressin stimulation profile used during the course of the experiment; (B) Left: 2D cross section of an idealized liver lobule with locations of portal

triads and central vein. Blood flows from the periportal region toward the pericentral region. Right: Manually segmented hepatocytes with approximate locations of

central veins and portal triads in the imaged area. Different colors represent different manually segmented hepatocytes. The hepatocytes are distributed across

different liver lobules; (C) heat map of cytosolic calcium intensities across all 1,300 segmented hepatocytes over 1,600 s. The data suggests an overall synchronization

of calcium spikes across the imaged area; (D) Sequential cytosolic Ca2+ spiking in 10 hepatocytes residing in the region between a central vein and a portal triad. All

hepatocytes are in the region within the white box in (B). Propagating Ca2+ waves interspersed with asynchronous spiking can be seen; (E) Ca2+ wave propagating

away from a central vein.

account for lobular scale Ca2+ wave propagation. We used a cell-
oriented, transfer entropy (TE) based approach to identify causal
connectivity between neighboring hepatocytes (see Methods).
We considered molecular exchange between hepatocytes as
the basis of causal influence between spatially co-localized
hepatocytes and therefore allowed causal edges to exist only
between closest neighbors. In our analysis, a unidirectional
alignment of causal edges would suggest an organized, wave-like
information flow along hepatocytes. We analyzed the resulting
causal network for average node degree, total node degree, in and
out node degrees, and direction of causal edges, to identify how
many neighbors typically influence a given hepatocyte and the
directional orientation of cell-cell interactions.

The causal network comprised of 1,162 hepatocytes with 1,491
edges between them. The number of hepatocytes included in
the causal network far exceeded that in the correlation network
(669 hepatocytes with 565 edges) suggesting that causality
analysis describes intercellular interactions between neighboring
hepatocytes better than a correlation-based analysis.We analyzed
total node degree and cluster sizes for all nodes in the graph.
The total node degree distribution of the all hepatocytes in the
network peaked at a value of 2, pointing to causal connections
between a given hepatocyte and multiple neighbors (Figure 3A).
Upon decomposing the causal network into isolated clusters,
we found 19 large clusters (cluster size ≥ 8). However, unlike
the large clusters in the correlation network, large clusters in
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FIGURE 2 | Cluster sizes and degree distribution for correlation-based network. (A) Node degree distribution for all nodes in the correlation network. A majority of

nodes exhibit a degree <= 2; (B) cluster size distribution for all isolated clusters. Most clusters consist of 2 nodes and 1 edge. 14 clusters consisted of >= 8

hepatocytes (inset); (C) Node degree distribution for hepatocytes residing in large clusters found in the correlation network. Degree of synchronization for hepatocytes

with their neighbors is frequently >= 3; (D) Average node degree distribution for large clusters. Nine out of Fourteen clusters show average degree > 2; (E) Clusters in

correlation network mapped to their physical locations. Hepatocytes are represented as circles centered at their locations in the imaged field. Red stars mark the

approximate locations of central veins (CV) in the imaged area. Hepatocytes belonging to a cluster have been plotted in the same color. Synchronized “islands” of

hepatocytes cover only small regions of the imaged area.

FIGURE 3 | Cluster sizes and degree distribution for causal network. (A) Total node degree distribution of all hepatocytes in the network; (B) Cluster size distribution

of all and large clusters (clusters with sizes >= 8, inset). Cluster sizes are much higher than those in correlation network analysis; (C) Total node degree distribution for

all hepatocytes in large clusters. Hepatocytes are causally connected to up to 8 neighbors.

the causal network consisted of a higher number of hepatocytes
(up to 160 hepatocytes, Figure 3B). The total node degree
distribution for all hepatocytes residing in large clusters (sizes ≥
8) exhibited similar causal connectivity characteristics between
hepatocytes and their neighbors (Figure 3C).

Figure 4A shows large isolated clusters in the causal network
mapped to their physical locations within the imaged slice.
The large clusters contain 929 of the 1,300 hepatocytes in the
imaged area. In contrast to the correlation network, large clusters
within the causal network span much larger areas of lobules
compared to correlation network clusters. A visualization of the
direction of causal influence between hepatocytes residing in a
large cluster is shown in Figure 4B. Our analysis suggested that
although hepatocytes were causally connected with a number of

neighbors ranging from 1 to 8, the direction of causal influence
was not consistently from the pericentral region to the periportal
region.

Computational Model-Based Analysis of
Spatial Ca2+ Wave Propagation Patterns
We next sought to determine whether a combination of the
causal influence network and a dynamic model of hepatocyte
Ca2+ response can yield propagating Ca2+ waves consistent
with experimental observations. We started with a previously-
published dynamic model of hepatocyte Ca2+ response (Verma
et al., 2016) and extended the model to incorporate cell-cell
connectivity suggested by the causal influence network (see
Methods). In addition, we modified the model parameters
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FIGURE 4 | Spatial mapping of large causal networks. (A) Each cluster is represented by a different color. Large clusters (sizes >= 8) in causal network include

71.4% of the segmented hepatocytes (929 out of 1,300 hepatocytes); (B) causal influence edges in a representative cluster. Green arrows represent causal edges

from the pericentral to the periportal region, whereas red arrows represent causal edges from the periportal region to the pericentral region. Causal influences

identified between hepatocyte pairs are not aligned in a unidirectional fashion in the expected pericentral to periportal direction.

to incorporate zonation patterns of signaling components
based on results from recently published single cell RNA-seq
study (Halpern et al., 2017). We mined the transcriptomic
data set (Table S3 from Halpern et al., 2017) to identify
zonation of mRNA expression of Ca2+ signaling relevant genes.
Specifically, we considered the zonation patterns of arginine-
vasopressin receptor 1a (Avpr1a) and Phospholipase C β-1
(Plcb1). Zonation profiles for Avpr1a and Plcb1 in the data
from (Halpern et al., 2017) are shown in Figure 5A. Avpr1a
expression levels and Plcb1 expression levels correspond to
vasopressin receptor recycling rate (model parameter kr), and
IP3 synthesis rate (model parameter kIP3), respectively, in the
present dynamic model. For the subsequent analysis using
integrated causal network and dynamic modeling, we considered
a large cluster of hepatocytes identified using the causal
network analysis. Experimentally determined Ca2+ patterns in
this cluster of hepatocytes are shown in Figure 5B. Notable
features of Ca2+ wave propagation through the cluster were:
(1) Ca2+ waves propagated through the cluster from the
pericentral region toward the periportal region consistent with
the prior expectation, and (2) Ca2+ waves started from multiple
hepatocytes located closer to the approximate location of the
central vein residing closest to the cluster. We evaluated the
dynamic model of this large cluster to identify the spatial patterns
of intracellular signaling components as well as gap junction
connectivity patterns that are consistent with experimentally
observed Ca2+ wave propagation. In the dynamic model, Ca2+

response coupling is caused by gap junction mediated IP3
exchange, a phenomenon that has been reported previously
(Tordjmann et al., 1997; Eugenín et al., 1998).

We simulated the dynamic model to identify the effect of
gap junctions on coupling of Ca2+ dynamics across hepatocytes.
Simulations were performed using the spatial locations of
hepatocytes for the cluster shown in Figure 5B. The connectivity
structure of the causal influence network from the TE-based

analysis was utilized as the adjacency matrix for cell-cell IP3
exchange.We considered twomodes of gap junction conductivity
(model parameter Gij): (1) no hepatocyte exchanges IP3 with
its neighbors, and (2) each hepatocyte exchanges IP3 with all
its neighbors. Gap junction conductivity parameter between any
pair of hepatocytes, modeled as a mass transfer term assuming
fast IP3 diffusion kinetics, was set to either 0 (no IP3 exchange)
or 0.9.

In the first set of simulations, the individual hepatocyte-
specific values of signaling parameters kr and kIP3 were sampled
from uniform distributions over nominal parameter ranges
listed in Verma et al. (2016) (kr ǫ [1, 2] s−1, kIP3 ǫ [0.7,
0.9] × 104 µMs−1, Figure 6A). The corresponding simulation
results demonstrate that lobular scale Ca2+ waves did not occur
when the gap junction-mediated IP3 exchange was turned off
(Figure 6C). By contrast, Ca2+ waves propagated through the
cluster, when each of the hepatocytes exchanged IP3 with all
their neighbors (Figure 6D). However, the direction of wave
propagation was not necessarily consistent with the experimental
observations (Figure 6B).

We next simulated the dynamic model with the values of
parameters kr and kIP3 drawn from spatial profiles that mimicked
the zonated gene expression levels observed experimentally in
Halpern et al. (2017). We approximated spatial profiles for
mean kr and kIP3 values as exponentially and linearly decreasing
functions with increasing distance from central vein, respectively,
confined within the nominal parameter ranges (Figure 7A;
Table 1; Verma et al., 2016). Parameter values for all hepatocytes
in the model were initialized based on their distance from the
central vein with additive noise (see Figure S6 for a description of
model parametrization). We evaluated the effect of changing gap
junction conductivity, according to the two modes considered in
simulations shown in Figure 6.

The simulation results suggested that even with gradients
in parameters governing receptor-mediated signaling and IP3
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FIGURE 5 | Ca2+ waves in experimental data. (A) zonation of Avpr1a (arginine—vasopressin receptor 1-a) and Plcb1 (PLC beta 1, linked to IP3 production rate) gene

expression profiles across liver lobules (data from Halpern et al., 2017). Means and standard errors for gene expression values (fraction of total cellular mRNA) of each

gene across the 9 layers show decreasing expression patterns from the pericentral region (PC) toward the periportal region (PP). Layer 1 lies closest to a central vein

(acinar zone 3) whereas layer 9 is the farthest away (acinar zone 1); (B) Ca2+ wave propagation through a cluster identified using TE-based analysis. Ca2+ waves are

initiated by hepatocytes lying close to the bottom of each panel and propagate upward. The red star in the right panel represents the approximate location of the

central vein closest to the cluster. Ca2+ waves start from multiple hepatocytes residing near the bottom of each panel.

synthesis, Ca2+ waves did not arise in the absence of molecular
exchange (Figure 7C). In the simulations, propagating Ca2+

wave patterns consistent with experiments were observed when
hepatocytes exchanged IP3 with their neighbors (Figure 7B, D).
Our simulation results differed from experiments with regards
to the region where Ca2+ waves are initiated. In the
experimental observations, Ca2+ waves started from hepatocytes
spread out in a relatively wider area close to the central
vein. This difference could be due to the fact that in our
dynamic model, hepatocytes were parametrized based on their
distance from a central vein approximated as a point, when
in reality the pericentral hepatocyte phenotype might result
from microenvironmental signals in a more diffused region
surrounding the central veins, whose diameters could span a few
cell layers.

We simulated our model to identify the effects of non-
homogeneous gap junction conductivity by varying parameter
Gij. Heterogeneity in gap junction conductivity could account for
variability in cell-cell contact areas and gap junctions themselves.
We considered twomodes of gap-junction non-uniformity where
either 20 or 50% Gij values were likely to be 0 to account
for a fraction of hepatocyte pairs not interacting with each
other. Additionally, the non-zero Gij values in either case were
randomly drawn from a uniform distribution [ǫ [0.5, 0.9]] to
account for variability in gap junction conductivity and number
between a pair of adjacent hepatocytes. Other cell-intrinsic
parameter values were identical to those used in the simulations
corresponding to Figure 7. Effect of gap junction heterogeneity

on spatial patterns of Ca2+ signal propagation through a cluster
of hepatocytes identified using the TE-based analysis are shown
in Figure 8 (see Figure S7 for cell-cell connections).We observed
that in our simulations Ca2+ waves propagated through the
cluster despite 22.1% (Figure 8A) and 50% (Figure 8B) Gij values
set to 0. Consistent with expectation, Ca2+ waves propagated
in the direction of intracellular parameter gradients in both
cases. Our simulations suggested that multiplicity of hepatocyte
interactions makes Ca2+ wave propagation robust to non-
interacting hepatocyte pairs.

Since the store Ca2+ concentration is nearly 1000 times higher
than cytosolic Ca2+ concentration we considered an alternative
model in which the store Ca2+ was considered to be a constant
(see section Methods). In this model formulation, store Ca2+

could be interpreted as a driving force for influx of Ca2+ within
the cytosol instead of being trafficked between the cytosol and the
Ca2+ store. Ca2+ wave propagation characteristics in this case
were similar to the case in which store Ca2+ was dynamic (see
Figure S4).

Low vs. High Stimulus
We used a step-wise increasing vasopressin stimulus over the
course of the live tissue imaging duration (Figure 1). To identify
the effects of change in stimulus, we compared the induced
correlation and causal networks present at different stimulus
levels in our data. We divided the time course into low and high
stimulus regimes based on overall increase in rates of cytosolic
Ca2+ spikes and compared the cluster sizes and localization for

Frontiers in Physiology | www.frontiersin.org 9 October 2018 | Volume 9 | Article 1377203

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Verma et al. Modeling Calcium Patterns in Liver

FIGURE 6 | Effect of randomness of intracellular Ca2+ signaling parameters. Intracellular parameter values were randomly chosen from uniform distributions for each

hepatocyte in the simulation (kr ǫ [1, 2], kIP3 ǫ [0.7, 0.9]). (A) kr and kIP3 values used for each hepatocyte; (B) Ca2+ waves in experimental data; (C) no gap junction

mediated IP3 exchange; and (D) gap junction mediated IP3 exchange with all neighbors. With gap junctions switched off, there are no Ca2+ waves through the

cluster (C). With gap junctions switched on (D), Ca2+ waves propagate, however, the direction of propagation is not consistent with that observed experimentally.

The red stars show the approximate location of the closest central vein. Note that the time points shown in each case were selected to best depict Ca2+ dynamics

and spatial propagation. The times shown in (B) are with reference to the experiment start time. Times shown in (C,D) were measured from the time when stimulus

was introduced in the simulations (T = 200 s).

correlation and causal networks (Figures S8–S10). Our analysis
revealed that although there was an increase in the number of
large clusters in the high stimulus regime, the size of the clusters
decreased (Figure S8). In contrast, we found similar large clusters
in the high stimulus regime with a moderate increase in cluster
sizes present in the causal network. In either case, regions of
the image spanned by the large clusters were dependent on the
stimulus level (Figure S9).

DISCUSSION

In this work, we analyzed Ca2+ signal propagation in a two-
dimensional optical slice of a perfused and intact mouse liver
at the lobular scale. We generated a large-scale data set on
cytosolic Ca2+ responses of 1300 hepatocytes to hormonal

stimuli over a period of 1600 s. We analyzed the synchronization
of Ca2+ response of a large population of hepatocytes in intact
liver using correlation analysis and TE-based causal network
analysis to identify directional flow of causal influence across
hepatocytes in a lobule. We employed a computational model-
based analysis to identify spatial patterns of intracellular Ca2+

signaling components and gap junction conductivity that can
yield lobular scale Ca2+ waves consistent with experimental
observations.

Identification of functional networks within a population
of colocalized cells has gained prominence in recent decades
(Bullmore and Sporns, 2009; Ahrens et al., 2013; Tian et al.,
2018). Correlation (Fox et al., 2005; StoŽer et al., 2013; Markovič
et al., 2015) as well as causal (Lungarella and Sporns, 2006;
Wollstadt et al., 2014; Seth et al., 2015) network analysis
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FIGURE 7 | Effect of lobular gradients of intracellular Ca2+ signaling parameters. (A) kr and kIP3 values used for each hepatocyte. kr values decay exponentially with

increase in the distance of a hepatocyte from the central vein whereas kIP3 values decrease linearly with increasing distance from the central vein; (B) Ca2+ waves in

experimental data; (C) no gap junction mediated IP3 exchange; and (D) gap junction mediated IP3 exchange with all neighbors. No Ca2+ waves appear when gap

junctions are switched off (C). With gap junctions switched on (D) Ca2+ waves propagate through the cluster. However, the Ca2+ waves start from only a few

hepatocytes. A Ca2+ wave propagates through the cluster in ∼ 30 s, as compared to ∼ 50 s in the experiment. The red stars show the approximate location of the

closest central vein. Note that the time points shown in each case were selected to best depict Ca2+ dynamics and spatial propagation. The times shown in (B) are

with reference to the experiment start time. Times shown in (C,D) were measured from the time when stimulus was introduced in the simulations (T = 200 s).

are viable strategies to identify functional connectivity in
cell populations. Correlation networks are commonly used
to analyze Ca2+ responses in a population of cells under a
global stimulus. For instance, correlation networks constructed
using Ca2+ dynamics in Islets of Langerhans exhibit stimulus-
dependent synchronization characteristics when stimulated
by glucose (StoŽer et al., 2013; Markovič et al., 2015).
However, correlation network analysis was insufficient to
explain lobular scale propagation of Ca2+ waves observed
in our experiment. In contrast, causal network analysis
of the experimental data elucidated prominent features of
lobular scale Ca2+ wave propagation such as existence of
“islands” of causally connected hepatocytes within liver lobules
and lack of directional alignment of causal edges between
hepatocytes from the pericentral region to the periportal

region. Although causal network analysis yielded misaligned
causal connections between hepatocytes residing in a cluster,
it pointed toward zonation and intercellular communication
as cell-level dynamics that yield lobular scale organization
of Ca2+ response. Spatially organized heterogeneity leads
to location-based differences in Ca2+ signaling capacity of
hepatocytes. Intercellular communication results in entrainment
of Ca2+ responses of adjacent hepatocytes which extends
throughout liver lobules via local interactions to yield Ca2+

waves.
The computational model of Ca2+ dynamics used in our

study is limited in its scope. Our dynamic model-based
analysis, parametrized using lobular scale spatial patterns of
liver gene expression, represents a specific case of a more
generalized concept of functional gradients that control Ca2+
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FIGURE 8 | Effect of non-uniform gap junction conductivity on Ca2+ signal propagation. Normalized Gij value histograms and Ca2+ wave propagation with 20%

(pth = 0.2, A) and 50% (pth = 0.5, B) likelihood of a given IP3 mass transfer term (Gij) being 0. 22.1% Gij values in (A) and 49.6% Gij values in (B) are 0. In either case,

Ca2+ waves propagate through the cluster. Note that the time points shown in each case were selected to best depict Ca2+ dynamics and spatial propagation.

Times shown in (A,B) were measured from the time when stimulus was introduced in the simulations (T = 200 s).

wave propagation in liver lobules. Functional zonation results
from zonal differences in micro-RNA expression (Sekine et al.,
2009; Chen and Verfaillie, 2014) as well as protein activity
(Gebhardt and Mecke, 1983; Jungermann, 1987). Cytosolic
Ca2+ spiking dynamics have previously been observed in rat
hepatocytes due to activation of adrenergic (Rooney et al.,
1990) and purinergic (Dixon et al., 1990) receptors. Of
the wide array of cell surface receptors and extracellular
stimuli that could be spatially organized in liver lobules,
our model-based analysis considered zonation of Avpr1a
and Plcβ1 only, and response to hormone-induced GPCR
signaling cascade. Additionally, our deterministic model ignores
stochasticity in cellular level phenomena. For example, we
modeled gap junction mediated molecular exchange as a
flux term wherein channel conductivity between a pair
of hepatocytes remained constant over time. However, a
probabilistic treatment of open and closed channels, possibly
linked to intracellular Ca2+ signaling events (Török et al., 1997;
Peracchia, 2004; De Vuyst et al., 2006), may capture cell-neighbor
molecular interactions more accurately. Explicit consideration
of a comprehensive intracellular Ca2+ signaling cascade with
zonal information, a stochastic modeling framework, and
integration of experimental data can potentially capture the
complexity observed in lobular scale Ca2+ dynamics in the
liver, such as lack of directionality of causal linkages between
hepatocytes.

Although Ca2+ as well as IP3 could be exchanged between
neighboring hepatocytes through gap junctions and lead to
Ca2+ efflux from intracellular stores, the effective diffusivity

of IP3 is higher than Ca2+ because Ca2+ is heavily buffered
within hepatocytes (Allbritton et al., 1992). These observations
suggest that IP3 is strongly involved in coordinating Ca2+

responses at the lobular scale. In addition, a loss of wave-
like propagation of Ca2+ signals has been shown upon
disruption of cell-cell contacts using Ca2+ free buffer (Gaspers
and Thomas, 2005). Intracellular Ca2+ mobilization could
arise from paracrine ATP release and subsequent purinergic
receptor activation. The relative contribution of Ca2+ response
synchronization via gap junctions or paracrine ATP would
depend on the tissue and zone-specific expression of Connexin
subtypes and purinergic receptors. Disrupting cell-cell contacts
between hepatocytes in perfused livers results in asynchronous
Ca2+ spikes in hepatocytes under a vasopressin stimulus
and the Ca2+ signals do not spread to neighbors (Gaspers
and Thomas, 2005). These results suggest that the paracrine
ATP release is not sufficient to drive a lobular scale Ca2+

signal propagation observed experimentally. That said, explicit
consideration of other potential paracrine factors such as ATP
will expand the scope and applicability to time scales of cell-cell
interaction beyond the relatively fast timescale considered in this
study.

We note that a variety of fluorophores are available for
reporting intracellular calcium levels, including genetically
encoded calcium reporters. For example, Fluo-8 AM
and Rhod4 have been utilized for cytosolic calcium
reporting in hepatocytes with small differences in Kd
values and photostability (Lock et al., 2015). We have been
using Fluo-8 AM with good success in previous studies
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(Bartlett et al., 2017) and therefore utilized this reporter
for obtaining the dynamic data analyzed in the present
study.

An important consideration in analyzing and modeling Ca2+

signal propagation within liver lobules is the three-dimensional
arrangement of hepatocytes. Although the proximity of
hepatocytes to either a portal triad or a central vein within a
two-dimensional slice can be ascertained, information regarding
the cellular adjacency and spatial localization along a third
dimension is lacking in our experimental data. The lack of
directional alignment of causal edges along a pericentral to
periportal orientation could arise due to the presence of micro-
environmental cues from other pericentral or periportal regions
above or below the optical slice corresponding to the imaged
area. Alternatively, multidirectional alignment of causal edges
may be due to cell-autonomous Ca2+ responses of hepatocytes
within a small region which appear independently of the
global stimulus and do not propagate beyond a few cells. High
spatial and temporal resolution imaging of three-dimensional
tissue structure sufficient to study spatial organization of
Ca2+ signaling in liver lobules remains a challenging problem.
However, imaging techniques are constantly evolving to produce
accurate three-dimensional reconstructions of tissues with high
spatial resolution (Arganda-Carreras et al., 2010; Hoehme et al.,
2010). Intra-vital imaging techniques for visualizing molecular
dynamics in live animals (Benechet et al., 2017; Dunn and Ryan,
2017) could further augment our modeling efforts at small
spatial scales. However, these methods would introduce new
challenges such as lack of control over distribution of stimulus
in the immediate microenvironment of hepatocytes. Application
of a combination of three-dimensional reconstruction and
intra-vital imaging may provide data with the high spatial and
temporal resolution required for a detailed dynamicmodel-based
accounting of Ca2+ signal propagation in liver lobules.
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Being the central metabolic organ of vertebrates, the liver possesses the largest repertoire

of metabolic enzymes among all tissues and organs. Almost all metabolic pathways are

resident in the parenchymal cell, hepatocyte, but the pathway capacitiesmay largely differ

depending on the localization of hepatocytes within the liver acinus-a phenomenon that is

commonly referred to as metabolic zonation. Metabolic zonation is rather dynamic since

gene expression patterns of metabolic enzymes may change in response to nutrition,

drugs, hormones and pathological states of the liver (e.g., fibrosis and inflammation).

This fact has to be ultimately taken into account in mathematical models aiming at

the prediction of metabolic liver functions in different physiological and pathological

settings. Here we present a spatially resolved kinetic tissue model of hepatic glucose

metabolism which includes zone-specific temporal changes of enzyme abundances

which are driven by concentration gradients of nutrients, hormones and oxygen along

the hepatic sinusoids. As key modulators of enzyme expression we included oxygen,

glucose and the hormones insulin and glucagon which also control enzyme activities

by cAMP-dependent reversible phosphorylation. Starting with an initially non-zonated

model using plasma profiles under fed, fasted and diabetic conditions, zonal patterns of

glycolytic and gluconeogenetic enzymes as well as glucose uptake and release rates are

created as an emergent property. We show that mechanisms controlling the adaptation

of enzyme abundances to varying external conditions necessarily lead to the zonation of

hepatic carbohydrate metabolism. To the best of our knowledge, this is the first kinetic

tissue model which takes into account in a semi-mechanistic way all relevant levels of

enzyme regulation.

Keywords: metabolism, metabolic zonation, kinetic model, multiscale model, gene expression

INTRODUCTION

The tightly controlled switch between hepatic uptake and release of glucose keeps the plasma
glucose concentrations within a range between 4 and 10mM despite largely varying carbohydrate
intake and utilization. This homeostatic function of the liver with respect to plasma glucose
is achieved by several enzyme-regulatory mechanisms acting on different time scales. On the
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short term, hormone-dependent reversible enzyme
phosphorylation and changes of reaction rates elicited by
concentration changes of reaction substrates/products and
allosteric modulators enable a metabolic response within seconds
or minutes. Recurrent activation of these fast regulatory modes
is typically accompanied by slow changes in the abundance of
metabolic enzymes on a time scale of hours to days (Hopgood
et al., 1973; Weinberg and Utter, 1980). Both the fast and slow
mode of enzyme regulation are important for the regulation of
the glucose exchange flux between hepatocytes and blood plasma
(Bulik et al., 2016), Owing to concentration gradients of oxygen,
metabolites, hormones, and morphogens along the hepatic
capillaries (sinusoids) the expression of metabolic enzymes may
differ in various zones of the liver acinus. For example, the
oxygen pressure decreases by 50% along the porto-central axis
of the acinus (Jungermann and Kietzmann, 2000). This goes in
line with the number and structure of mitochondria (Schmucker
et al., 1978) and glycolytic capacities in the periportal and
pericentral zone (Braeuning et al., 2006). Hepatocytes close to
the portal pole (zone 1) experiencing the highest concentration
of oxygen pressure are predestined for strong ATP-demanding
anabolic pathways like gluconeogenesis and urea synthesis.
Contrary, hepatocytes close to the venous pole of the acinus
(zone 3) experience the lowest oxygen concentrations and
thus possess a high glycolytic capacity, a typical feature of cells
working under conditions of permanent oxygen deprivation.
The heterogeneous allocation of gluconeogenetic and glycolytic
capacities to different hepatocytes along the porto-central axis
may even result in a situation where a certain fraction of glucose
produced by periportal cells is used to fuel the glycolysis of
pericentral cells (Berndt et al., 2018).

Several blood-born factors have been identified as regulators
of zone-dependent gene expression of metabolic enzymes.
Oxygen, glucose, the hormones glucagon and insulin, the
morphogens Wnt and hedgehog and the growth factor HGF
belong to the best studied factors. The various factors appear
to act in a hierarchical fashion whereby the gradients of
morphogens and growth factors create a basic expression pattern
that is further modulated by nutrition-related factors such as
oxygen, glucose, fatty acids and the hormones insulin and
glucagon. In this work, we will focus on the latter group of
modifiers, i.e., we restrict our model to the metabolic response
of the liver to nutritional challenges and oxygen availability.

Metabolic adaptation of hepatocytes to varying oxygen
pressures is mainly controlled by hypoxia-inducible transcription
factors (HIFs), heterodimeric complexes consisting of a
constitutively expressed β-subunit and an oxygen-sensitive α-
subunit. In the liver, HIF-1α regulates primarily glycolytic genes
whereas HIF-2α is known to primarily regulate genes involved
in cell proliferation and iron metabolism (Ramakrishnan and
Shah, 2017). In line with the falling oxygen pressure along the
porto-central axis, HIFαs were found with higher levels in the
less aerobic pericentral zone (Kietzmann et al., 2001). Besides
oxygen, the pancreatic hormones insulin and glucagon are
important drivers of zone-dependent differences in enzyme
activities. The regulatory role of these hormones is 2-fold. They
control the cellular cAMP level in an antagonistic manner and

thus exert opposite effects on the reversible phosphorylation
of key regulatory enzymes of glycolysis and gluconeogenesis
as PFK2, PK, and PEPCK. The hepatic clearance of the two
hormones by endocytic uptake into hepatocytes creates a
concentration gradient along the porto-central axis which
entails zone-dependent differences in the phosphorylation level
of interconvertible enzymes. With respect to gene expression
of metabolic enzymes, insulin and glucagon also control the
efficiency of several transcription factors as ChREBP, SREBP-1c,
CREB, and Foxo (Han et al., 2016). Both actions of glucagon
and insulin are tightly interrelated and function in part through
the same mechanisms. For example, the cAMP-activated
protein kinase A (PKA) is responsible for phosphorylation of
interconvertible enzymes such as FBPFK2 and PK, as well as for
the phosphorylation of the transcription factors ChREBP and
CREP (Uyeda and Repa, 2006). cAMP is produced by glucagon-
induced activation of the adenylate cyclase and degraded by
insulin-stimulated cAMP phosphodiesterase. Consequently,
the protein level of key regulatory enzymes reflects the integral
hormone levels over longer time periods.

In this work we included dynamic changes in the abundance
of metabolic enzymes into our previously developed multi-scale
tissue model of hepatic glucose metabolism (Berndt et al., 2018).
The rates of protein synthesis and degradation were modeled
by phenomenological rate equations which were parameterized
by using experimentally determined protein levels at varying
concentrations of oxygen, glucose, insulin, and glucagon. The
central aims of our work were (i) to provide a proof of principle
for integrating in a self-consistent manner the temporal gene
expression of enzymes into kineticmodels of cellular metabolism,
(ii) to lend further support to the concept of post-differentiation
patterning according to which metabolic zonation is driven by
gradients of oxygen, nutrients and hormones in the capillary
blood and (iii) to present a modeling approach that obviates
the requirement to measure the cellular abundance of metabolic
enzymes (e.g., by quantitative proteomics) in different physical
states of the liver, a procedure burdened with many problems as,
for example, invasive tissue sampling and protein quantification
in cells separated from different zones.

MODEL DESCRIPTION

The model combines a mathematical model of the sinusoidal
tissue unit (STU) (Berndt et al., 2018) with a kinetic model of
the protein turnover of key regulatory enzymes.

Compartment Model of Metabolite and

Hormone Transport in the Sinusoidal

Tissue Unit (STU)
Structurally, the STU is defined by a single sinusoid, the adjacent
space of Disse and a monolayer of hepatocytes flanking the
space of Disse (see Figure 1A). Functionally, the model describes
the exchange of oxygen, metabolites and hormones between the
sinusoidal blood, the space of Disse and the hepatocytes and
the glucose metabolism within hepatocytes. The transport of
metabolite and hormones within the STU is driven by diffusion
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FIGURE 1 | Schematic model representation (A) sinusoidal blood flow model describing blood flow, nutrient and hormone distribution within the sinusoids. The model

encompasses a single sinusoid, the adjacent space of Disse and the surrounding layer of hepatocytes. It is described by morphological parameters (blood vessel

radius, thickness of the space of Disse, hepatocyte thickness, hepatocyte number, sinusoid length, degree of fenestration), and systemic parameters (central and

portal vein hydrostatic pressure, plasma and lymph oncotic pressure, diffusion coefficients); (B) model of carbohydrate metabolism encompassing glycolysis,

glyconeogenesis and glycogen synthesis and utilization. These pathways comprise the enzymes Glucokinase (GK), Glucose-6-phosphate isomerase (GPI),

Phosphofructokinase 1 (PFK1), Aldolase (ALD), Triosephosphate isomerase (TPI), Glyceraldehydephosphate dehydrogenase (GAPDH), Phosphoglycerate kinase

(PGK), Phosphoglycerate mutase (PGM), Enolase (EN), Pyruvate kinase (PK) Lactate dehydrogenase (LDH), Glucose-6-phosphate phosphatase (G6P),

Phosphofructokinase 2 (PFK2), Fructose-2,6-bisphosphatase (FBP2), Fructose-1,6-bisphosphatase (FBP1), Phosphoenolpyruvate carboxykinase (PEPCK), Pyruvate

carboxylase (PC), Nucleoside-diphosphate kinase (NDK), Malate dehydrogenase (MDH), Pyrophosphatase (PPASE), Glucose-1-phosphate isomerase (P1PI),

Glycuronosyltransferase (UGT), Glycogen phosphorylase (GP), Glycogen synthase (GS) and transporters (ER <-> cytosol: Glucose-6-phosphate transporter (Glc6PT),

Glucose transporter (GlcT); mitochondrion <-> cytosol: Pyruvate transporter (PYRT), Phosphoenolpyruvate transporter (PEPT), Malate transporter (MALT); extern

<-> cytosol: Glucose transporter 2 (GLUT2), Lactate transporter (LACT). Enzymes that are phosphorylated or dephosphorylated in response to insulin (Ins) and

glucagon (Glu) stimulus are marked by a yellow P, allosteric modification of enzymes is marked by a red A. The model contains the metabolites: glucose (Glc),

glucose-6-phosphate (Glc6P), fructose-6-phosphate (Fru6P), fructose-1,6-bisphosphate (Fru16P2), glyceraldehydephosphate (GraP), dihydroxyacetonephosphate

(DHAP), 1,3-bisphosphoglycerate (13P2G), 3-phosphoglycerate (3PG), 2-phosphoglycerate (2PG), phosphoenolpyruvate (PEP), pyruvate (Pyr), lactate (Lac), malate

(Mal), oxaloacetate (OA), glucose-1-phosphate (Glc1P), UDP-glucose (UDP-glc), glycogen, fructose-2,6-bisphosphate (Fru26P2). The cofactors NADH, NAD, ATP,

ADP, UTP and UDP are not treated as dynamic variables. All physiological metabolites produced or consumed in the hepatocyte during glycolysis and

gluconeogenesis are comprised into lactate. Figures adapted from Berndt et al. (2018).

and directional transport along the flow of water and blood.
Lateral blood flow in the vessel is described by Hagen-Poiseuille
law for fluid flow through a cylinder, water flow in the space
of Disse is described by Hagen-Poiseuille law for fluid flow in
a hollow cylinder. Exchange of water between the vessel and
the space of Disse is driven by hydrostatic and oncotic pressure
difference between the blood vessel and the space of Disse.

Conceptually, the STU was divided into NH zones, where NH

is the number of hepatocytes along the porto-central axis. Each
zone is made up of the sinusoid volume, the space of Disse and
the hepatocyte (Figure 1A). Within one zone, the concentration
of metabolites and hormones is given by a single value. The
mathematical description of the STU model and a complete list
of parameters used can be found in Berndt et al. (2018).

Kinetic Model of Hepatocyte Glucose

Metabolism
The reaction scheme for the glucose metabolism of a single
hepatocyte is depicted in Figure 1B. It consists of the
pathways for glycolysis, glyconeogenesis, glycogen synthesis
and degradation. The time-dependent variation of metabolite

concentrations is given by first-order differential equations. The
liver specific enzymatic rate laws take into account substrate
regulation, allosteric regulation and hormonal regulation by
hormone-dependent reversible phosphorylation (Bulik et al.,
2016).

Kinetic Model of Hormonal Signaling
The pancreatic hormones glucagon and insulin are released into
the portal vein in response to the plasma glucose concentration
and are partially cleared during their passage through the liver.
Hence, there is a difference between their plasma concentrations
determined in peripheral blood samples and effective intra-
hepatic concentrations. This difference was taken into account
by setting the concentration values of insulin and glucagon in
the periportal blood to the 2-fold of their plasma values (Balks
and Jungermann, 1984). The rate of intra-hepatic hormone
clearance via receptor binding and subsequent endocytosis was
put proportional to the binding and signaling strength of the
hormone. We used empirical transfer functions to describe the
relationship between glucose and hormone concentrations in the
plasma and the relationship between and the phosphorylation
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state of interconvertible enzymes as described in Bulik et al.
(2016). A detailed description of the functions and their
construction can be found in Berndt et al. (2018).

Kinetic Model of Protein Turnover
The temporal change of the protein level PENZ of a metabolic
enzyme (ENZ) is given by the difference between the rates of
protein synthesis vENZsyn (E) and protein degradation vENZ

deg
(E):

d

dt
PENZ = vENZ(E) = vENZsyn (E)− vENZdeg (E) (1)

The right-hand side of equation (1), vENZ(E), represents the
turnover rate of the enzyme protein. It is controlled by
modulators affecting either the synthesis or the degradation
or both. Note that the enzyme level PENZ scales linearly with
the maximal rate of the enzyme. The rate equations of protein
synthesis and degradation both depend on the momentary
concentration of at least one of the four modulators Ei, i =
1 (insulin), i = 2 (glucagon), i = 3 (glucose), i = 4 (oxygen)
considered in the model. The general structure of the rate
equation for the protein synthesis of enzyme ENZ reads.

vENZsyn = kENZsyn

4
∏

i=1

(kENZi ± fENZi ) (2)

where kENZi is a constant determining the basal synthesis rate
and fi is a nonlinear function of the i-th modulator. The “+”
sign holds if Ei is an activator (inductor) of protein synthesis,
the (–) sign holds If Ei is an inhibitor (repressor) . If Ei has
not been reported so far to exert an effect on the protein
synthesis of enzyme ENZ it holds kENZi = 1 and fENZi = 0
Numerical values for the rate constants kenzsyn and kenz

deg
were fixed

in such a manner that for a normal 24 h plasma profile (see
below) the zone- and time averaged protein levels coincided
with the stationary protein levels as reported in Bulik et al.
(2016). Numerical values of all other kinetic parameters were
obtained by adjusting the rate equations to experimentally
determined protein levels at varying concentrations of the four
possible modulators (see Supplement 1). Table 1 depicts the rate
equations for the synthesis and degradation of those enzymes
of hepatic glucose metabolism possessing in the model timely
variable protein levels.

In order to quantify the sensitivity of the turnover rate vENZ(E)
of a protein against small changes of an modulator E, we used the
sensitivity (elasticity) coefficient as defined in metabolic control
analysis:

SVENZ
=

E

vENZ(E)

∂vENZ(E)

∂E
(3)

Figure 2 depicts the sensitivity coefficients for the turnover
rates of the nine enzyme proteins with variable expression
level as function of the four modulators oxygen (I), glucagon
(II), insulin (III) and glucose (IV). Except for the sensitivities
of the PEPCK and G6PP turnover with respect to glucagon
and glucose, respectively, the extremum of all other sensitivity

characteristics lies within the reported physiological range of
the related modulators (green-shaded areas in Figure 2). The
sensitivity of G6PP turnover with respect to glucose becomes
important in the diabetic case, where glucose levels can exceed
20mM (see below).

RESULTS

Dynamic Metabolic Zonation in a Well-Fed

State of the Rat
First, we used the model to simulate the temporal variation of
enzyme abundances, metabolite concentrations and fluxes within
the various zones along the porto-central axis of the STU. The
simulation was initiated with identical abundance of enzymes
along the sinusoid which we set to the stationary mean protein
abundance used in Bulik et al. (2016). We used as model input
the diurnal glucose profile reported for the healthy normal liver
of a fed rat (La Fleur et al., 1999) and carried out the numerical
integration of the model over several 24 h cycles until there was
no change in the 24 h enzyme and metabolite profiles.

Even with identical enzyme abundances across all hepatocytes,
there occurs a progressive decline of hormone plasma levels from
the portal to the central pole due to the ongoing hormone uptake
by hepatocytes in each zone. Moreover, oxygen uptake in one
zone diminishes the available oxygen pressure seen by the cells
in the adjacent zone toward the pericentral pole. As oxygen is
not part of the model, we assumed a linear decrease in oxygen
partial pressure from 90 mmHG in the periportal zone to 35mm
HG in the pericentral zone (Jungermann and Kietzmann, 2000;
Allen et al., 2005). These initial gradients of hormones, glucose
and oxygen feed back to the level of metabolic enzymes so that
finally zone-dependent patterns of both enzyme abundances and
metabolic variables (see Figures 3, 4) are generated.

Figures 3A–C depicts the timely variation of glucose, insulin,
glucagon in various sinusoidal compartments. Intriguingly, the
highest glucose concentrations in the very portal zone (see
red curve in Figure 3A) are paralleled by the lowest glucose
concentrations in the very central zone (green curve). This
seemingly paradoxical situation is due to the fact that the high
level of insulin and low level of glucagon strongly increase the
glucose uptake capacity of hepatocytes such that the otherwise
strong zone-dependent differences in the glucose exchange flux
(see Figure 3E) almost disappear. The simulation also reveals
large zone-dependent differences in the cellular dynamics of
glycogen (Figure 3D). The variation of the glycogen content in
portal cells is much more pronounced than in central cells.

The time-dependent variation in the protein levels of key
glycolytic and gluconeogenetic enzymes in different zones are
depicted in Figure 4. The uniform overall shape of the curves
reflects essentially the daily variation of the plasma glucose
level. Generally, the daily fluctuations of enzyme levels around
their 24 h mean hardly exceed 10%. Thus, as long as the liver
is repeatedly confronted with the same 24 h plasma profile of
metabolites and hormones, timely variations of protein levels
should have only a marginal impact on the hepatic control of the
plasma glucose level.

Frontiers in Physiology | www.frontiersin.org 4 December 2018 | Volume 9 | Article 1786213

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Berndt and Holzhütter Dynamic Zonation

TABLE 1 | Synthesis and degradation rates of the regulatory enzymes of hepatic carbohydrate.

Enzyme name vENZsyn vENZ
deg

References

Glucose transporter k
glcT
syn ·

(

k1 + k2
glcext

glcext+Kglcext

)

k
glcT
syn = 6.1 · 10−3 k1 = 0.8 k2 = 6

Kglcext = 15 mM

k
glcT
deg

k
glcT
deg

=
ln(2)
40

Postic et al., 1993;

Weinstein et al., 1994

Glucokinase k
gk
syn ·

(

k1 − k2
on2

on2+K
n
o2

)

·

(

k3
ins

ins+Kins

)

k
glcT
syn = 6.5 · 10−3 k1 = 2

k2 = 1 Ko2 = 80 mmHG n = 15 k3 = 10 Kins = 500 pM

k
gk
deg

k
gk
deg

=
ln(2)
15

Dice and Goldberg, 1975;

Sibrowski et al., 1981,

1982; Iynedjian et al., 1989;

Kietzmann et al., 1997

Glucose-6-phosphatase k
g6p
syn ·

(

k1 − k2
glucagonn1

glucagonn1+Kn
glucagon

)

·

(

k3 + k4 · keff
glcn2ext

glcn2ext+K
n2
glcext

)

k
g6p
syn = 1.16 · 10−2 k1 = 1 k2 = 0.8 n1 = 3 Kglucagon = 100 pM

k3 = 1 k4 = 15 keff = 0.3 Kglcext = 17 mM n2 = 20

k
g6p
deg

k
g6p
deg

=
ln(2)
48

Leskes et al., 1971; Argaud

et al., 1996; Massillon, 2001

Phosphofructokinase 1 k
pfk1
syn k

pfk1
syn = 7.8 · 10−3 k

pfk1
deg

k
pfk1
deg

=
ln(2)

22+k2·
insn

insn+Kn
ins

k2 = 80 h

Kins = 100 pM

n = 1.5

Dunaway and Weber, 1974;

Dunaway et al., 1978

Fructosebis-phosphatase 1 k
fbp1
syn ·

(

k1 + k2 ·
glun

glun+Kn
glu

)

k
fbp1
syn = 2.99 · 10−2 k1 = 0.25 k2 = 1

Kglu = 100 pM n = 3

k
fbp1
deg

k
g6p
deg

=
ln(2)
40

Dice and Goldberg, 1975;

Zalitis and Pitot, 1979;

el-Maghrabi et al., 1991

Phosphofructo-kinase

2/Fructosebis-phosphatase

2

k
pk
syn ·

(

k1 − k2 ·
on2

on2+K
n
o2

)

·

(

k3 − k4
glu

glu+Kglu

)

k
pfk2
syn = 1.1 · 10−2

k1 = 2 k2 = 1 Ko2 = 75 mmHG n = 10 k3 = 1 k4 = 1 Kglu = 80 pM

k
pfk2
deg

k
g6p
deg

=
ln(2)
69

Dunaway and Weber, 1974;

Dunaway et al., 1978; Rosa

et al., 1993; Minchenko

et al., 2003

Pyruvate kinase k
pk
syn ·

(

k1 − k2 ·
on2

on2+K
n
o2

)

·

(

k3 − k4
glu

glu+Kglu

)

·

(

k5 + k6
insn2

insn2+Kn2
ins

)

k
pk
syn = 1.06 · 10−2 k1 = 3.2 k2 = 1 Ko2 = 75 mmHG n = 10 k3 = 1

k4 = 0.5 Kglu = 150 pM k5 = 0.2 k6 = 1 Kins = 500 pM n2 = 2

k
pk
deg

k
pk
deg

=
ln(2)
69

Hopkirk and Bloxham,

1979, 1980; Noguchi et al.,

1985; Wölfle and

Jungermann, 1985

Pyruvate carboxylase k
pc
syn ·

(

k1 + k2 ·
glu

glu+Kglu

)

k
pc
syn = 1.47 · 10−2 k1 = 0.1 k2 = 1

Kglu = 150 pM

k
pc
deg

k
pc
deg

=
ln(2)
110

Weinberg and Utter, 1979,

1980

Phosphoenol-pyruvate

Carboxykinase

k
pepck
syn ·

(

k1 + k2 ·
on12

on12 +Kn1o2

)

·

(

k3 + k4
glun2

glun2+Kn2
glu

)

·

(

k5 − k6
ins

ins+Kins

)

k
pepck
syn = 3.43 · 10−2 k1 = 0.5 k2 = 2 Ko2 = 75 mmHG n1 = 10

k3 = 1 k4 = 3 n2 = 0.5 Kglu = 0.2 pM k5 = 1 k6 = 0.8 Kins = 100 pM

k
pepck
deg

k
pepck
deg

=
ln(2)
13

Nauck et al., 1981; Christ

et al., 1988; Gabbay et al.,

1996

In contrast to the modest time-dependent variations of
protein levels, the computed zone-dependent differences of
enzyme levels display a large scatter. The maximal differences
between the enzyme endowment of hepatocytes closest to
the portal and central pole lie between 0.1 [e.g., glucose
transporter (glcT) and phosphofructokinase 1 (pfk1)] and 4.5
[phosphoenolpyruvate kinase (pepck)]. For the validation of
these computational predictions, we calculated the 24 h-average
protein levels of the first (most portal) and last (most central)
hepatocyte and compared the ratio of the computed average
protein levels with experimental data (see first columns for each
enzyme in Figure 5). We further compared the ratio of 24 h- and
zone-averaged mean protein levels between a fed and fasted rat
and a diabetic and normal rat.

This analysis provided a good concordance between
theoretical and experimental results. The only exception

is the pyruvate carboxylase, a key regulatory enzyme of
gluconeogenesis, were portal to central gradients could not
be univocally explained by the reported oxygen dependency.
Oxygen dependency accounts only for about 35% percent of the
observed zonation (see Table 1 and Supplement 1).

Dynamic Metabolic Zonation of the Liver

During Adaptation to Fasting
Next, we studied how the zonation of metabolic enzymes is
affected if the liver has to cope with a fundamentally different
nutritional regime. To this end, we simulated the zone-dependent
dynamic changes of protein levels and metabolites during the
transition from a fed state of the rat to a fasting state. The
simulation started with the stable 24 h zonated enzyme profile
that is established if the liver experiences recurrently the same
plasma profile of a fed rat (see above). At time t = 24 h, the
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FIGURE 2 | Sensitivity coefficients of protein turnover rates defined in equation (3) as function of modulator concentrations.

I Sensitivity of protein turnover rates with respect to oxygen of (A) GK, (B) FBPFK2, (C) PK, (D) PEPCK

II Sensitivity of protein turnover rates with respect to (E) G6PP, (F) FBP1, (G) FBPFK2, (H) PK, (I) PC, (J) PEPCK

III Sensitivity of protein turnover rates with respect to (K) GK, (L) PFK1, (M) PK, (N) PEPCK

IV Sensitivity of protein turnover rates with respect to (O) GlcT, (P) G6PP

The green-shades areas indicate the reported physiological concentration range of the respective modulator.

FIGURE 3 | Diurnal variations in the plasma levels of glucose (A), insulin (B), glucagon (C), cellular glycogen (D) and the glucose exchange flux (E) in different zones

along the porto-central axis. The different curves refer to different spatial positions of hepatocytes, counted from periportal (red curve) to percentral (green curve). The

bold blue line refers to the means values of the shown variable. Note that the red curves (= most portal cell) for the hormones and glucose are identical with their

plasma profiles.
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FIGURE 4 | Diurnal variations in the relative abundance of glycolytic and gluconeogenetic enzymes within hepatocytes along the porto-central axis of a well-fed rat.

The curves illustrate the relative deviation of protein abundances from the overall spatial and 24h- mean (=24 h mean of the bold red curve). From the top to the

bottom, the different curves refer to the spatial position of the hepatocyte counted from periportal to percentral. The bold red line refers to the average protein

abundance across all cells. (A) GlcT, (B) G6PP, (C) GK, (D) PFK1, (E) FBPPFK1, (F) PFK2, (G) FBPPFK2, (H) PK, (I) PC, (J) PEPCK.

plasma profile of the fed rate was replaced by plasma profile of
a fasted rat (La Fleur et al., 1999). The latter was only available
for a time range of 24 h of fasting. After about 16 h of fasting,
stable values of plasma metabolites were reached. Therefore, we
used for time points t > 48 h (i.e., >24 h of fasting) for the model
input a plasma profile that was composed of 6 repetitions of the
last part (16–24 h) of the 24 h fasting plasma profile. As shown in
Figure 6, the fed-to-fasting transition evokes a significant rise in
the abundance of key gluconeogenetic enzymes (GlcT, FBP1, PC,
PEPCK) and drop in the abundance of key glycolytic enzymes
(GK, PFK1, PFK2, FBP2, PK) in all zones. For two enzymes, the
GlcT and the PEPCK, the zone-dependent protein differences
becomemore pronounced compared to the fed state. By contrast,
for the GK, FBP1, GSPP, and PK the zone-dependent protein
differences became smaller.

The computed changes of enzyme profiles toward a more
gluconeogenetic phenotype are accompanied by significant
alterations of the intra-sinusoidal glucose gradient and the zone-
dependent differences in the glucose exchange rate (Figure 7).
Compared with the fed state, the porto-venous glucose difference
becomes much larger in the fasted state (Figure 7A). The same
holds for the glucose exchange rate (Figure 7D).

In agreement with experimental data (Babcock and Cardell,
1974), the glycogen stores are almost depleted after about 1 day
of fasting when the levels of insulin and glucagon have adopted
a new stable temporal profile. Notably, also for the fasted state,
the computed average protein abundance ratios are in good

agreement with experimental data which further substantiates
the reliability of the model (see Figure 5).

Figure 8 illustrates the importance of dynamic zonation for
the adaptation of the porto-venous glucose difference (AVGD)
to a specific nutritional regime. Regulation of interconvertible
enzymes by hormone-dependent phosphorylation alone, i.e., at
fixed protein levels of the fed state (blue line), would result in an
AVGD of about 3.5mM for the typical range of portal glucose
concentrations in the fasted state (red shaded area). Dynamic
adaption of protein levels enlarges the AVGD to about 7mM (red
line) thus rendering the liver to a strong glucose producer in the
fasted state.

Dynamic Metabolic Zonation of the Liver in

Diabetes Type II (“Diabetic Liver”)
Late diabetes type 2 is characterized by long persistence of high
postprandial plasma glucose levels, reduced insulin levels (hypo-
insulinemia) and elevated glucagon levels (hyper-glucagonemia).
It is mainly the shift in the insulin/glucagon ratio that renders
the liver to a glucose producer which on top of the insulin-
resistant muscle and adipose tissue contributes to high plasma
glucose levels. We tested whether our model can also correctly
describe this metabolic abnormality and the observed changes of
protein abundances in different zones. To this end, we used the
glucose-hormone transfer function constructed for the diabetic
case (see Bulik et al., 2016) to calculate the phosphorylation
state of interconvertible enzymes and confronted the model over
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FIGURE 5 | Ratio of enzyme levels in hepatocytes. Red circles indicate the computed ratio of protein levels. Green circles and gray bars indicate the mean value and

the range of variability of various experimentally determined ratios. First columns (pc): Portal-to-central ratios (= 24h-averaged protein levels between hepatocyte #1

and hepatocyte # 25) for the well-fed state of the rat. Experimental data were taken from (Sharma et al., 1964; Katz et al., 1977a,b; Trus et al., 1980; Jungermann and

Katz, 1982, 1989; Probst et al., 1982; Teutsch and Lowry, 1982; Miethke et al., 1985; Quistorff, 1985; Wölfle and Jungermann, 1985; Morselt et al., 1987; Chen and

Katz, 1988; Wals et al., 1988; Evans et al., 1989; Frederiks et al., 1991; Jones and Titheradge, 1996; Minchenko et al., 2003). Second columns (ff): Fed-to-fasted

ratios of 24h- and zone-averaged mean enzyme levels. Experimental data taken from (Dipietro and Weinhouse, 1960; Wimhurst and Manchester, 1970b; Ballard and

Hopgood, 1973; Bock et al., 1973; Zalitis and Pitot, 1979; Cladaras and Cottam, 1980; Neely et al., 1981; Bahnak and Gold, 1982; Van Schaftingen and Hers, 1983;

Donofrio et al., 1984; Colosia et al., 1988; Crepin et al., 1988; Thorens et al., 1990; Giffin et al., 1993; Gannon and Nuttall, 1997). Third columns (nd):

Normal-to-diabetic ratios of 24h- and zone-averaged mean enzyme levels. Experimental data taken from Dipietro and Weinhouse, 1960; Salas et al., 1963; Exton and

Park, 1965; Wimhurst and Manchester, 1970a; Chang and Schneider, 1971; Dunaway et al., 1978; Weinberg and Utter, 1980; Neely et al., 1981; Donofrio et al.,

1984; Miethke et al., 1985; Colosia et al., 1988; Crepin et al., 1988; Thorens et al., 1990; Miralpeix et al., 1992; Slieker et al., 1992; Gannon and Nuttall, 1997; Raju

et al., 1999; Manna and Jain, 2012.

4 days repeatedly with a 24 h glucose profile of a diabetic rat
until an almost stable 24 h pattern of protein abundances had
established (Figure 9). As shown in Figure 9D, all hepatocytes
work permanently as glucose producers, i.e., at all time points
of the day the intra-sinusoidal glucose concentration increases
along the portal-central axis (Figure 9A). The glycogen reserves
are drastically diminished and the different time courses of
glycogen emptying and filling between portal and central regions
(see Figure 2D) are completely abolished. Taken together, the
zonation of glucosemetabolism in the diabetic liver bears a strong
resemblance with that of the fasted liver. It is important to note
that even in this pathophysiological case the computed average
portal-to-central protein abundance ratios are in good agreement
with experimental data (see Figure 5).

DISCUSSION

Metabolic Zonation of Hepatic Glucose

Metabolism Is Driven by Concentration

Gradients of Hormones and Metabolites
In this work we used a mathematical model to study the
dynamic zonation of the hepatic glucose metabolism. To this
end we extended our previously published multi-scale tissue

model of the hepatic carbohydrate metabolism (Berndt et al.,
2018) by rendering the protein levels of key regulatory enzymes
of glycolysis and gluconeogenesis as dynamic model variables
which are controlled by timely variable synthesis and degradation
in dependence from the concentration of the four modulators
glucose, insulin, glucagon and oxygen. The model correctly
replicates experimentally determined protein levels in different
zones of the liver acinus as well as the adaptation of the liver to a
well-fed, fasted and diabetic state. From this we draw four main

conclusions. (1) Zonation of the hepatic glucose metabolism

is a necessary consequence of the fact that the expression of
key regulatory enzymes is controlled by modulators that display

a porto-central concentration gradient along the sinusoid. (2)
Mechanisms controlling the adaptation of enzyme abundances
to varying external conditions necessarily lead to the zonation
of hepatic carbohydrate metabolism. (3) The four modulators
considered in the model are sufficient to describe the dynamic
zonation of the glucose metabolism of the a normal liver. (4) The
use of phenomenological transfer functions which directly relate
the protein turnover to known modulators of gene expression
appears a promisingmodeling strategy to include variable protein
levels in kinetic models in view of the fact that in a foreseeable
future explicit kinetic modeling of complex gene-regulatory
network is out of reach.
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FIGURE 6 | Diurnal variations in the relative abundance of glycolytic and gluconeogenetic enzymes within hepatocytes along the porto-central axis during the

transition from a fed state (t = 0–24 h) to a fasted state (t > 24 h). The curves illustrate the relative deviation of protein abundances from the overall spatial and 24 h

mean (=24 h mean of the bold red curve). From the top to the bottom, the different curves refer to the spatial position of the hepatocyte counted from periportal to

percentral. The bold red line refers to the average protein abundance across all cells. The vertical dotted line indicates onset of the starvation period. (A) GlcT, (B)

G6PP, (C) GK, (D) PFK1, (E) FBPPFK1, (F) PFK2, (G) FBPPFK2, (H) PK, (I) PC, (J) PEPCK.

FIGURE 7 | Diurnal variations in the plasma levels of glucose (A), insulin (B), glucagon (C), cellular glycogen (D) and the glucose exchange flux (E) in different zones

along the porto-central axis during the transition from a well-fed state (t = 0–24 h) to a fasted state (t > 24 h) of the rate. The different curves refer to different spatial

positions of hepatocytes, counted from periportal (red curve) to percentral (green curve). The bold blue line refers to the means values of the shown variables. Note

that the red curves (= most portal cell) for the hormones and glucose are identical with their plasma profiles.

The Proposed Multi-Scale Model

Encompasses All Levels of Metabolic

Regulation
An important feature of the cellular metabolic network of the
liver is the ability to adapt its functional output to varying
external conditions such as changes in nutrient supply and
varying hormone levels. These adaptive mechanisms operate

at two different time scales. The short term adaptation

occurs within seconds or minutes and is brought about by

activity changes in the present metabolic enzymes by substrate

availability, allosteric regulation and reversible phosphorylation.

The second adaptive mechanism operates within hours or days

and is brought about by changes in the enzyme abundances. It

is already known for a long time that the total protein content
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of liver enzymes may largely vary owing to enhanced protein
degradation during fasting (providing glucogenic amino acids
as substrate for gluconeogenesis) mediated by the hormone
glucagon or enhanced protein synthesis by the hormone insulin
(Hopgood et al., 1980). However, such general changes of the
protein content do not tell anything about the changes in the
abundance of individual enzymes, whose expression by insulin
and glucagon differs profoundly. Therefore, it was necessary to
develop empirical rate laws for the synthesis and degradation

FIGURE 8 | Hepatic porto-venous glucose difference (AVGD) for the well-fed

and fasted nutritional state. The daily variations of plasma glucose in the

fasted, fed and well-fed state are indicated by the red-, green- and

blue-shaded areas. The solid lines represent the AVGD if in the fasted state

(red), fed state (green) and the well-fed state (blue). Crosses depict

experimentally measured AVGD (Huang and Veech, 1988).

of individual enzymes. This phenomenological approach was
chosen since currently biochemical information is insufficient
to establish molecular-resolved kinetic models which include,
for example, the interaction of transcription factors among each
other and with specific DNA promotor regions, the processing of
mRNA and the regulation of mRNA translation by micro RNAs
and RNA-binding proteins. For example, PEPCK, probably the
best-studied gluconeogenetic enzyme, is regulated by at least a
dozen transcription factors with partially unknown interactions
(Yang et al., 2009). Even if it was possible to explicitly model
the mRNA transcription for individual enzymes, there is still a
big gap in understanding post-transcriptional regulation and the
processes of post-translational modification.

Metabolic Response of the Liver to Varying

Nutritional Regimes
Our simulations suggest that in the presence of a constant daily
nutritional regime the diurnal variation of enzyme abundances
should be fairly moderate in the range of 10–20% around the
mean. This is a lot less than daily variations in the abundance
of the key regulatory enzyme of cholesterol synthesis, ßHMG-
CoA reductase (Kirkpatrick et al., 1980), exhibiting a pronounced
circadian rhythm or some enzymes of the amino acid metabolism
as, for example, tyrosine transaminase the activity of which is
almost four times as great several hours after nightfall as it is in
the morning (Wurtman, 1974). In contrast, much larger changes
of glycolytic and gluconeogenetic enzyme levels are elicited by a
switch from well-fed to fasting conditions and vice versa. This
metabolic adaptation occurs within a time span of several days
(see Figure 6) and enables vertebrates to maintain the plasma
glucose level in the absence of food. The slow change of enzyme
concentration profiles implies that the capability of the fasted
liver to clear a sudden excess of plasma glucose is diminished
(impaired glucose tolerance) as the capacity of glycolytic enzymes
and enzymes of the glycogen pathway a downregulated (Bulik
et al., 2016). Intriguingly, there appears to be a striking similarity
in the adaptive response of the liver to fasting conditions and
diabetes type 2. In our modeling approach, this is mainly due
to the fact that in both physiological settings the strong effect
of insulin on the expression of glycolytic and gluconeogenetic

FIGURE 9 | Diurnal variations in the plasma levels of glucose (A), insulin (B), glucagon (C), cellular glycogen (D), and the glucose exchange flux (E) in different zones

along the porto-central axis of a diabetic rat.
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enzymes is diminished whereas the effect of glucagon is
more pronounced. As demonstrated in a previous model-based
simulation study (König and Holzhütter, 2012), exposing the
permanently glucose-releasing “starved” liver of the diabetic
patient to a rigorous insulin treatment at persistently elevated
glucagon level may increase the risk of severe hypoglycaemia.
Thus, owing to the equally strong impact of both insulin and
glucagon on the expression and phosphorylation state of liver
enzymes, reconverting the “starved” liver of the diabetic patient
into the normal metabolic phenotype requires the normalization
of the plasma levels of both hormones.

Main Limitations of the Model and Outlook

for Future Model Extensions
The used multiscale tissue model comprises a number of
simplifications of the true anatomical structure of the liver which
may impact on the simulated intra-sinusoidal concentration
gradients of hormones and metabolites. For example, the blood
flow rate within the pericentral zone of the sinusoid may vary
if a sinusoid spreads out, forms anastomoses or merges with
another sinusoid (Rappaport et al., 1954), anatomic peculiarities
of liver parenchyma that are not yet considered in the STU
model. Also, the number of periportal hepatocytes is higher
(∼2–3-fold) compared to pericentral hepatocytes. Regarding the
concentration gradient of oxygen, hormones and metabolites in
the sinusoid it may be of relevance that the terminal branches of
the hepatic artery rarely join with the portal vein already before
the blood enters the sinusoids, as presumed in our model. In the
vast majority the merger of arterial blood with blood from the
portal vein, occurs a few cells downstream within the sinusoid
(Ekataksin and Kaneda, 1999) resulting in a local increase of the
concentration of oxygen concentration at this site. Despite these
limitations, the model correctly describes glucose exchange rates,
gradients and indicator dilution curves for a structurally normal
liver (Berndt et al., 2018). Hence, the functional implications
of the above limitations and other neglected aspects of the real
topology of liver tissue remain unclear. Therefore, in future
work we aim to embed our metabolic cell model in a 3-D
reconstructions of a mouse lobule (Hoehme et al., 2017).

The rate laws presented in this paper are effective transfer
functions describing directly the relation between modulators
(nutrients and hormones) and the turnover rate of a protein.
Usage of effective transfer function raises the question which
properties of the underlying regulatory network have to be
captured. Obviously, not all known modulators of protein
synthesis and degradation have been considered in the
model. Ground-breaking experiments pointed initially to the
oxygen gradient as the most important driving force of
metabolic zonation (Jungermann and Kietzmann, 1997, 2000).
Later experiments with isolated hepatocytes incubated with
varying concentrations of insulin or glucagon (Probst et al.,
1982) revealed an important role of these hormones for the
establishment of liver zonation. Meanwhile a lot more potential
modulators of metabolic zonation have been described in the
literature, among them Wnt/β-catenin pathway (Torre et al.,
2010; Vasilj et al., 2012), MAPK/ERK pathway (Zeller et al.,
2013), Hnf4-alpha (Colletti et al., 2009), or thyroid hormones
(Weinberg and Utter, 1979). However, as demonstrated in this

study, the dynamic zonation of the glucose metabolism can be
well described in different physiological settings by taken into
account only the four modulators oxygen, glucose, glucagon
and insulin. The central role of oxygen, glucose, glucagon and
insulin for the dynamic zonation of the glucose metabolism
does not exclude that morphogens and growth factors may
have an important role in the zonation of other metabolic
subsystems (Gebhardt and Matz-Soja, 2014). For example, the
expression of the glutamine synthetase is restricted to last few
hepatocytes close to the venous pole. Complementary, the urea
cycle enzyme carbamoylphosphate synthetase I (CPS I) is present
in the periportal, intermediate, and the first few layers of the
perivenous zone. It has been clearly demonstrated that Wnt/ß-
catenin signaling pathway plays a central role in the stable
maintenance of these peculiar zonation profiles (Burke et al.,
2009).

CONCLUSION

In summary, we propose a self-consistent model of liver
carbohydrate metabolism that consistently takes into account
variable gene expression of metabolic enzymes, regulation of
metabolic pathways, exchange of metabolites and hormones
between the blood and hepatocytes and microperfusion of the
liver. Once the input of hormones and nutrients to the periportal
region the liver acinus is known, the model allows to compute the
metabolic phenotype of individual hepatocytes along the porto-
central axis. The local hormone and metabolite concentrations
determine the phosphorylation state of the interconvertible
enzymes, hormonal clearance rates and expression level of
metabolic enzymes. The metabolic phenotype in turn determines
the functional output (here: glucose exchange rate) of each
hepatocyte and this way the venous glucose output of the acinus.
Integration across a representative set of acini yields finally the
total glucose output of the liver.
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Currently, knowledge about the impact of high-grain (HG) feeding on metabolite and
protein expression profiles in ruminal tissue is limited. In this study, a combination
of proteomic and metabolomic approaches was applied to evaluate metabolic and
proteomic changes of the rumen epithelium in goats fed a hay diet (Hay) or HG diet.
At the metabolome level, results from principal component analysis (PCA) and PLS-DA
revealed clear differences in the biochemical composition of ruminal tissue of the control
(Hay) and the grain-fed groups, demonstrating the evident impact of HG feeding on
metabolite profile of ruminal epithelial tissues. As compared with the Hay group, HG
feeding increased the levels of eight metabolites and decreased the concentrations
of seven metabolites in ruminal epithelial tissues. HG feeding mainly altered starch
and sucrose metabolism, purine metabolism, glyoxylate and dicarboxylate metabolism,
glycerolipid metabolism, pyruvate metabolism, glycolysis or gluconeogenesis, galactose
metabolism, glycine, serine and threonine metabolism, and arginine and proline
metabolism in ruminal epithelium. At the proteome level, 35 differentially expressed
proteins were found in the rumen epithelium between the Hay and HG groups, with
12 upregulated and 23 downregulated proteins. The downregulated proteins were
related to fatty acid metabolism, carbohydrate metabolic processes and nucleoside
metabolic processes, while most of upregulated proteins were involved in oxidative
stress and detoxification. In general, our findings revealed that HG feeding resulted in
differential proteomic and metabolomic profiles in the rumen epithelia of goats, which
may contribute to better understanding how rumen epithelium adapt to HG feeding.
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INTRODUCTION

In modern intensive animal production, feeding high-grain
(HG) diets to feedlot goats has become a common practice
to meet the energy requirements for the maintenance of the
production performance (Penner et al., 2011). However, although
HG feeding can increase energy available to the animal, there
is a risk of developing acidotic ruminal epithelial damage, thus
affecting nutrient absorption. The rumen epithelium is well
known to play an important role in maintaining the host’s energy
balance and health (Gabel et al., 2002). Previous studies revealed
that the short chain volatile fatty acids (SCVFAs) absorbed
by the rumen epithelium can meet up to 70% of the energy
requirement of ruminants (Bergman, 1990; Penner et al., 2011).
In addition, rumen epithelial cells also are the first line of defense
against hostile rumen conditions such as acidic pH, high osmotic
pressure, and harmful microbial-derived metabolites, such as
lipopolysaccharide (LPS) and histamine (Penner et al., 2011).
In recent years, the effect of HG feeding on rumen epithelial
morphology (Bannink et al., 2008) and physiological functions
(Uppal et al., 2003) have been widely investigated, and the results
revealed that HG feeding increased length and surface of rumen
papilla (Shen et al., 2004) and also impact rumen epithelial
absorption, barrier, and immune function (Liu et al., 2013).
Undoubtedly, these findings improved our understanding of the
adaptative mechanism of the ruminal epithelium in response to
HG diet feeding. However, to our knowledge, previous studies
are only focused on one level (gene, metabolite or morphology)
to investigate the response of rumen epithelial function to HG
feeding, which is limited to understand the global change in
physiological functions of rumen epithelium during HG feeding.

In recent years, omics technologies have been widely used in
understanding the biological mechanism of ruminant (Ametaj
et al., 2010; Bondzio et al., 2011), and this also makes it possible
to investigate the changes in the physiological functions of
rumen epithelium to HG diet comprehensively, therefore it
will be beneficial for modulating the animal performance and
minimizing the negative effect of HG feeding on rumen health.
Up to now, only a few studies have attempted to investigate
the effect of HG feeding on rumen epithelium based on the
omics technologies. For example, Bondzio et al. (2011) used two
dimensional-differential in gel electrophoresis (2D-DIGE) based
proteome analysis methods and identified differentially expressed
proteins related to morphological alterations of the ruminal
epithelium adapting to HG feeding. However, 2D-DIGE does
not allow for the detection of regulatory proteins (Gerber et al.,
2003). As compared with the 2D-DIGE proteomics methods,
label-free liquid chromatography–tandem mass spectrometry
(LC–MS/MS) approach is reported to be particularly effective
for large-scale protein identification (Lin et al., 2003). Thus,
a label-free based proteomic method would provide more
information on the alternation in function of the rumen epithelial
during HG feeding.

In addition to its role in SCVFA absorption and as a selective
barrier, the ruminal epithelium also plays an important role in the
metabolism of SCVFA (Bannink et al., 2016). Until now, the effect
of different dietary strategy on metabolic function of ruminal

epithelial tissue has rarely been studied, and the knowledge of
how the epithelial tissue responds to an HG diet feeding is
very limited. Accordingly, it is of great interest to gain further
insight into how HG diet feeding strategies affect metabolite
profiles and function of rumen epithelial tissue. Metabolomics,
one of omics technology, has been reported to be a useful
approach to characterize the global metabolites of rumen fluid
in goats and dairy cows (Ametaj et al., 2010; Mao et al., 2016),
and thereby it will be possible to enable a more quantitative
characterization of the biochemical composition of this tissue and
thereby provide a method to investigate the metabolic activity
of the ruminal epithelial tissue. However, until now, few studies
have been conducted on investigating the changes in metabolic
characterization of ruminal epithelium during HG feeding.

In the present study, we hypothesized that goats fed HG
diet or hay diet had differences in profile of metabolomics
and proteomics. Therefore, a gas chromatography–mass
spectrometry (GC–MS) based metabolomics method and
a label-free LC-MS/MS proteomics method was used to
characterize the proteomic and metabolic response of rumen
papillae to HG diets.

MATERIALS AND METHODS

Animals, Diets, and Experimental Design
The experimental design and procedures for this study were
approved by the Animal Care and Use Committee of Nanjing
Agricultural University following the requirements of the
Regulations for the Administration of Affairs Concerning
Experimental Animals (The State Science and Technology
Commission of P. R. China, 1988). The current study is a
continuation of previous research, where the effect of HG diets
on the function and health of the rumen by traditional research
methods was investigated (Liu et al., 2013). In the current
study, we mainly paid attention to the effect of HG feeding on
metabolic and proteomic profiles of rumen epithelium in goats.
The experiment design and treatments are described in detail
(Liu et al., 2013). Briefly, a total of 10 rumen-cannulated male
goats of 2–3 years old were used in the experiment. A pure hay
diet was provided for all the goats ad libitum for 5 weeks before
the experiment treatment, and then, all animals were placed in
individual pens (1.2 × 1.2 m) and randomly allocated into two
groups. The body weights of the goats between the two groups
had no significant difference (29.8 ± 0.86 vs. 30.0 ± 1.05 kg;
P = 0.886) at the beginning of the feeding trial. One was the Hay
group that was fed a hay diet (Hay; 81% Leymus chinensis, 15%
lucerne, 0.5% CaCO3, 0.8% NaCl, 1.7% CaHPO4, and 1% mineral
and vitamin supplement; 101 g crude protein/kg DM, and 570 g
neutral-detergent fiber/kg DM; n = 5), and the other was the HG
group that was fed an HG diet (HG; 30% Leymus chinensis, 45%
maize meal, 20% wheat meal, 1.1% soybean meal, 0.95% CaCO3,
0.65% NaCl, 1.2% CaHPO4, 1% mineral and vitamin supplement,
and 0.1% NaHCO3; 101 g crude protein/kg DM, 252 g neutral-
detergent fiber/kg DM, and 582 g starch/kg DM; n = 5). The diets
(750 g DM/animal per day) were offered in equal amounts at
08:30 and 16:30 h daily for 7 weeks.
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Sample Collection
The animals were slaughtered for sampling after 7 weeks.
A segment of the rumen wall from the ventral sac was collected,
and the ruminal epithelium was separated from the muscular and
serosal layers by blunt dissection and immediately washed three
times in ice-cold PBS and frozen immediately in liquid nitrogen.
The ruminal epithelium (2 cm × 2 cm) was used for extracting
proteins and metabolomics analysis.

Protein Extraction and Sample
Preparation
The total proteins were extracted with RIPA Lysis Buffer (Cat.
P0013B, Beyotime Institute of Biotechnology, Shanghai, China).
Proteins were dissolved in 50 mM Tris-HCl (pH 8.0) with 8
M urea and incubated for 60 min in a 60◦C water bath and
alkylated with 1 M iodoacetamide. Subsequently, the samples
were incubated for 45 min at room temperature. Finally, proteins
on the membrane were dissolved in 50 mM NH4HCO3 (pH 7.8).
The digested protein by trypsin was desalted using a C18 column
and then freeze-dried before sample injection.

Mass Spectrometry
The peptides were first dissolved in buffer A (0.1% formic acid).
A 15-cm analytical C18 column (C18, 3 µm, 100 Å) was used
for LC separation. The peptides were eluted by a 2–95% gradient
of buffer B (aqueous 80% acetonitrile in 0.08% formic acid)
at a flow rate of 300 nL/min. The peptides were ionized by
nano-electrospray and subsequent tandem mass spectrometry
(MS/MS) on a Q ExactiveTM Plus (Thermo Fisher Scientific, San
Jose, CA, United States) with the electrospray voltage was 2.2 kV.
The Orbitrap was performed with full scan MS spectra with a
resolution of 60,000 from m/z 350 to 1800.

Protein Identification and Quantification
The original data was analyzed by Proteome Discoverer (version
1.4, Thermo Fisher Scientific, Waltham, MA, United States).
Based on the Q-value, we verified the results of protein
identification to ensure that the error detection rate was less than
1%. The SIEVE software (Version 2.1 Thermo Scientific, San Jose,
CA, United States) was used to analyze two original files for
each group by ChromAlign. When alignment scores aligned by
retention time and mass is higher than 0.75, it is regarded as a
further quantitative analysis. The area under the curve for each
group was calculated.

Metabolite Profiling of the Ruminal
Epithelium
The GC-MS analysis has been described previously (Sun et al.,
2016). Briefly, 30 mg of the ruminal epithelium was mixed with
900 µL methanol containing 13C2-myristic acid (12.5 µg/mL).
The mixed liquor were grounded and centrifuged at 20,000 × g
for 10 min at 4◦C. Then, 100 µL of the supernatant was dried
in a SpeedVac evaporator (Savant Instruments, Farmingdale,
NY, United States). The dried analytes were methoximated with
methoxyamine pyridine solution and trimethylsilylated with
methyl-trimethyl-silyltrifluoroacetamide.

Thirty microliters of n-heptane and methyl stearate
(30 µg/mL) were mixed with samples and then the
0.5 µL of mixture was performed by an RTx-5MS column
(30 m × 0.25 mm i.d. and film thickness of 0.25 µm; Restek
Corporation, Bellefonte, PA, United States). After the raw data
were collected, identification of the compounds was achieved
by comparison of the mass spectra and retention index of all
the detected compounds with authentic reference standards
and those available in the National Institute of Standards and
Technology Library 2.0.

Data Analysis
Statistical calculations of metabolomic and proteomic data were
carried out by conducting tests using the SPSS software package
(SPSS version 18.0.1 for Windows; SPSS Inc., Chicago, IL,
United States). The normality of the distribution of the variables
was tested using the Shapiro–Wilk test. The independent samples
t-test procedure was used to analyze the variables found to
have a normal distribution. The Kruskal–Wallis test was used to
analyze the variables found to have a non-normal distribution.
Significance was set at P < 0.05.

Principal component analysis (PCA), PLS-DA, and loading
plot were carried out using SIMCA-P+ 13.0 software (Umetrics,
Umeå, Sweden). Variable importance in projection (VIP)
was obtained from PLS-DA analysis. Differentially expressed
metabolites (VIP > 1.2) and proteins (FC > 1.5) were selected
according to VIP and statistical analysis (P < 0.05). The
differentially expressed metabolites has been analyzed using the
MetaboAnalyst web server1 for the pathway enrichment analysis.

Bioinformatic Analysis of Differential
Abundance Proteins
The differentially expressed proteins (Table 2) has been analyzed
using the OmicsBean2 for the protein–protein interaction
analysis (PPI) based on gene ontology (GO) enrichment and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway.

RESULTS

Effects of HG Diet Feeding on Ruminal
pH and Concentrations of SCVFAs,
Lactate, and LPS
It is helpful to briefly describe the data of rumen fermentation
published previously (Supplementary Table S1). Briefly, HG
feeding decreased the ruminal pH (P < 0.001) and increased the
concentrations of propionate, butyrate, valerate, isovalerate, total
SCVFA, and lactate (P < 0.001 to P = 0.019).

Multivariate Analysis of Rumen Tissue
Metabolites
A total of 158 valid peaks were detected by the GC-MS that
were unique and non-overlapping in the rumen epithelium

1http://www.metaboanalyst.ca
2http://www.omicsbean.cn/
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FIGURE 1 | (A) Principal component analysis (PCA) of metabolites in rumen epithelium in goats fed hay (Hay) and high grain (HG) diets. PC, the principal component
that distinguish the Hay group and the HG group. PC1 is the first principal component; PC2 is the second principal component; PC1 could explained 35.6% of the
variation; PC2 explained 19% of the variation. (B) Partial least squares discriminant analysis (PLS-DA) of metabolites in rumen epithelium in goats fed hay (Hay) and
high grain (HG) diets. PLS, the principal component that distinguish the Hay group and the HG group. PLS1 is the first principal component; PLS2 is the second
principal component. (C) Loading plot of the 91 commonly detected compounds projected into the PLS-DA model, the most important compounds (VIP > 1.2)
responsible for the discrimination are labeled and colored in pink, and the other compounds were colored in green. Compounds are labeled by the names used in
Table 1. Variables with the same distance from 0 with similar positions are positively correlated. Those in the opposite direction are negatively correlated.
(D) Pathway analysis. Plots depicting computed metabolic pathways as a function of –log (p) and pathway impact for the key differential metabolites. The impact is
the pathway impact value calculated from pathway topology analysis. The larger size indicates higher pathway enrichment, and the darker color indicates higher
pathway impact values.

samples. After rigorous quality control and identification, we
obtained 101 metabolites across all samples. The metabolites
mainly included amino acids, carbohydrates, lipids, nucleoside
and organic chemicals. PCA was carried out to explore
the differences of the metabolites between the two dietary
treatments. As shown in Figure 1A, the first two principal
components (PCs) can explain 54.6% of the variation. The
separation of the two groups in PC 2 revealed significant
differences of rumen tissue metabolites in goats fed the HG
diet and hay diet, which is particularly apparent in Figure 1B,

as analyzed by PLS-DA. PLS-DA scores plots discriminating
between the rumen tissue of goats fed Hay and HG diet
[predictive ability parameter (Q2) (cum) = 0.978, goodness-of-
fit parameter (R2) (Y) = 0.997]. To investigate the individual
rumen tissue metabolites responsible for the variation of
the first two PCs, loading plots were used (Figure 1C).
The loading plot revealed a statistically significant elevation
of glyceric acid, urea, oxalate, 2-keto-gluconic acid, glucose,
phenylethanolamine, allonic acid and maltose in the HG group
compared with the Hay group. Conversely, the metabolic
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TABLE 1 | Candidate compounds in rumen epithelium that differed between hay (Hay) and high grain (HG) groups.

Compounds Chemical class VIP1 FC2 P-value

Alpha-aminobutyric acid Amino acids 1.86 0.45 0.009

Maltose Carbohydrates 1.34 6.53 0.047

Allonic acid Carbohydrates 1.47 2.14 0.028

Glyceric acid Carbohydrates 1.93 2.11 0.016

Glucose Carbohydrates 1.43 2.00 0.028

2-Keto-gluconic acid Carbohydrates 1.45 1.85 0.047

Caproic acid Lipids 1.72 0.52 0.047

Inosine Nucleoside 1.82 0.50 0.016

Phenylethanolamine Organic chemicals 1.84 2.18 0.009

Urea Organic chemicals 1.82 1.76 0.016

Oxalate Organic chemicals 1.91 1.70 0.016

Lactate Organic chemicals 1.23 0.76 0.047

Dodecanedioic acid Organic chemicals 2.06 0.29 0.009

Hydrocinnamic acid Organic chemicals 2.32 0.20 0.009

Benzoate Organic chemicals 1.85 0.50 0.016

1VIP, variable importance in the projection. 2FC, fold change, mean value of peak area obtained from HG group/mean value of peak area obtained from Hay group. If the
FC value less than 1, it means that metabolites are less in HG group than in Hay group.

signature of rumen epithelium tissue in the Hay group consisted
of a higher concentration of alpha-aminobutyric acid, caproic
acid, inosine, lactate, dodecanedioic acid, hydrocinnamic acid
and benzoate. To identify which compounds were responsible for
this difference, the following parameters were used as criteria:
VIP > 1.2 and P < 0.05. As shown in Table 1, eight of
the compounds (allonic acid, glyceric acid, glucose, 2-keto-
gluconic acid, phenylethanolamine, urea, oxalate, and maltose)
were enriched while seven (alpha-aminobutyric acid, caproic
acid, inosine, lactate, dodecanedioic acid, hydrocinnamic acid,
and benzoate) were reduced in the HG group compared with
the Hay group. Through the enrichment analysis, the results
showed that starch and sucrose metabolism, purine metabolism,
glyoxylate and dicarboxylate metabolism, pyruvate metabolism,
glycolysis or gluconeogenesis, glycerolipid metabolism, and
galactose metabolism were significantly enriched (P < 0.05) with
different diets. Through the pathway topology analysis, the results
showed that the pathway impact values of 3 metabolic pathways,
which included starch and sucrose metabolism, glycerolipid
metabolism, and galactose metabolism were higher than 0.03.
Based on both the enrichment analysis and impact value, starch
and sucrose metabolism, glycerolipid metabolism, and galactose
metabolism were closely related with HC diet (Figure 1D).

Identification and Comparison of
Proteins of Differential Abundance
Using label-free LC–MS/MS analysis, a total of 2,150 proteins
were identified within the false discovery rate of 1%. Following
statistical analysis, 35 proteins were found to be differentially
expressed in the rumen epithelium between Hay and HG groups,
with 12 upregulated and 23 downregulated (Table 2) in the
HG group compared with the Hay group. The upregulated
proteins were mainly related to oxidative stress, detoxification,
immune system processes and anabolism of fatty acid, while
the downregulated proteins were mainly related to cell growth

and proliferation, protein metabolic processes, and catabolism of
fatty acids.

Gene Ontology Annotations of Proteins
With Different Abundance
In the cellular component group, the differentially expressed
proteins were concentrated in the cytoplasmic part and
cytoplasm (Figure 2). In the molecular functional group, the
differentially expressed proteins that work as binding proteins
and catalytic activity were ranked at the top of the category
(Figure 2). In the biological process category, the proteins that
participate in single-organism metabolic process and response to
chemical had the highest ratios among the differentially expressed
proteins (Figure 2).

The PPI of the differentially expressed proteins allow us
better understand the key proteins and pathways affected by
HG feeding in the rumen epithelium (Figure 3). The PPI
network indicated that the protein changes in rumen epithelium
were mainly involved in synthesis and degradation of ketone
bodies, butanoate metabolism and valine, leucine and isoleucine
degradation pathways (Figures 3, 4).

DISCUSSION

Here, we investigated the relationships among diet, rumen
epithelial metabolome and proteome. In the present study, results
from PCA and PLS-DA reveal clear differences in the biochemical
composition of ruminal tissue of the Hay and the HG fed groups
(Figures 1A,B), also demonstrating the evident impact of HG
feeding on metabolites of rumen epithelium. This alteration in
the composition of compounds in ruminal epithelial tissues may
be due to the alternation in the ruminal parameters such as
ruminal pH and ruminal metabolites concentration caused by the
high grain feeding (Asma et al., 2013).
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TABLE 2 | List of differentially expressed proteins in rumen epithelium from HG group and Hay group.

Protein ID Gene symbol Protein name Ration (HG/Hay) P-value

Fatty acid metabolism

B6UV59 HADHA Long-chain 3-hydroxyacyl-CoA dehydrogenase 0.38 0.020

W5PGM1 OXCT1 Succinyl-coa:3-ketoacid-coenzyme a transferase 0.01 0.035

K9LQQ8 FABP3 Fatty acid binding protein 3 0.04 0.011

W5QGP1 BDH1 Uncharacterized protein 1.81 0.010

W5Q740 ABCD3 ATP binding cassette subfamily d member 3 0.01 0.044

W5PAS5 HMGCL Uncharacterized protein 3.03 0.014

Cell growth and proliferation

M4WED3 CDC42 Cell division cycle 42 0.26 0.041

W5PPT6 TUBB Uncharacterized protein 0.31 0.020

W5QJ02 DHRS7 Uncharacterized protein 1.74 0.024

W5PXP2 SDPR Uncharacterized protein 0.32 0.032

W5P043 NPM1 Nucleophosmin 1 0.23 0.007

Carbohydrate metabolic processes

D7R7V6 GAPDH Glyceraldehyde-3-phosphate dehydrogenase 0.56 0.016

W5PK04 PGAM1 Phosphoglycerate mutase family member 1 0.57 0.041

Oxidative stress and detoxification

L0CSP6 PRDX5 Peroxiredoxin-5 2.35 0.038

W5PH14 LOC101117764 UDP-glucuronosyltransferase 2.06 0.037

W5NZJ1 SULT1A1 Sulfotransferase 1.55 0.036

W5PJJ7 LOC101109421 Uncharacterized protein 2.71 0.017

W5P382 ZADH2 Uncharacterized protein 0.02 0.050

W5PHN8 LOC101107119 Uncharacterized protein 3.56 0.014

Protein metabolic processes

W5NS93 PSMA4 Proteasome subunit alpha type 2.39 0.034

W5NSG2 TMEM43 Transmembrane protein 43 0.02 0.025

W5PVT6 UBA1 Ubiquitin-activating enzyme E1 0.60 0.031

W5Q834 ERO1A Endoplasmic reticulum oxidoreductase 1 alpha 0.55 0.040

W5PAG0 KARS Lysine–trna ligase 0.02 0.025

W5QB61 FKBP1A Peptidyl-prolyl cis–trans isomerase 0.04 0.049

W5Q1N8 RPS23 Small subunit ribosomal protein S23E 0.10 0.025

W5PHW0 HSP90AB1 Heat shock protein 90 alpha family class b member 1 0.59 0.007

Immune system processes

W5Q5H8 FGA Fibrinogen alpha chain 2.89 0.031

W5PCN2 ANXA7 Annexin 12.29 0.020

Nucleoside metabolic processes

W5PR48 HPRT1 Hypoxanthine phosphoribosyltransferase 0.08 0.035

W5Q3H9 UPP1 Uridine phosphorylase 0.19 0.026

Ion transport

W5PVJ0 N/A Ferritin 45.13 0.013

W5QGG0 TFRC Transferrin receptor 0.09 <0.001

W5PK33 EFHD2 Uncharacterized protein 0.43 0.026

W5PP37 ATP5H Uncharacterized protein 0.18 0.04

In the current study, our data revealed that HG diet supports a
greater level of maltose in the ruminal epithelial tissues compared
with the Hay group (Table 1). As mentioned above, rumen
epithelial tissue has many functions including metabolism,
nutrient absorption, as well as barrier functions. Normally,
maltose cannot be absorbed intact from the lumen of the
rumen, however, a decreased ruminal pH, combined with a high
LPS level, may impair the ruminal epithelial barrier function
(Gäbel et al., 1987; Penner et al., 2011) and further increase

the permeability of the epithelium. A possible explanation for
this result is that HG feeding resulted in an increase in the
permeability of the epithelium. Similarly, a greater abundance of
glucose was also detected in the rumen epithelium of goats that
were fed an HG diet. In the present study, our data also showed
that oxalate level in rumen tissue were significantly greater in
HG group (Table 1). A previous study showed that acidification
of the caecum in rats enhanced the intestinal oxalate absorption
(Diamond et al., 1988). A possible explanation could be the fact
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FIGURE 2 | Gene ontology distribution analysis of differentially expressed proteins in the rumen epithelium in goats from the high grain (HG) group and the hay (Hay)
group.

that lower luminal pH induced by HG diets may cause more
influx of oxalate from the lumen to epithelium.

Hydrocinnamic acid (3-phenylpropionic acid) is derived from
the ruminal metabolism of p-coumaric and ferulic acids in
cellulose (Chesson et al., 1982). Significant down-regulation of
hydrocinnamic acid in the HG group was probably due to a
lower ruminal cellulose degradation ability than in the Hay
group, which is evidenced by the incidence that greater numbers
of cellulolytic bacteria existed in hay-fed animals (Fernando
et al., 2010). The above findings demonstrated that the cellulose
metabolism was affected in rumen of goats fed HG diet. Mao et al.
(2016) found that the lower dodecanedioic acid concentrations
in rumen fluid in goats fed an HG diet may be caused by acid
inhibition of biohydrogenation. Lower levels of dodecanedioic
acid in the rumen fluid may result in decreased absorption by
the ruminal epithelium. In line with this assumption, in the
present study, a significant decrease in dodecanedioic acid level
was found in extracts of ruminal epithelium in the HG group
(Table 1). Caproic acid, a six-carbon straight-chain fatty acid, is
found in trace amounts in rumen fluid. A previous study revealed
that a greater ratio of corn starch led to a lower concentration
of caproic acid in the rumen (Orskov et al., 1967). The decrease
in caproic acid levels in the extracts of ruminal epithelium of
the HG group probably can be attributed to the greater ratio
of grain in their diet. Phenylethanolamine is a type of biogenic
amine detected in the serum of rats and pigs, and it is known to
play an important role in mammalian nervous system function
(Shannon et al., 1981). Previous studies revealed that HG feeding
increased the biogenic amine concentration in rumen fluid of
cattle (Wang et al., 2013), thus, in the present study, the increased
phenylethanolamine detected in extracts of ruminal epithelium

of animal fed HG group may be due to the greater level of
phenylethanolamine in rumen fluid of these animals.

Urea is quantitatively the most important end product of
nitrogen metabolism in ruminants. Previous studies showed that
part of the endogenous urea that is utilized moves into the rumen
interior with saliva, but most of it moves from the blood directly
through the rumen epithelium (Abdoun et al., 2006). Huntington
(1989) reported that feeding a high-starch diet increased the
transfer of urea from the blood into the rumen in beef steers,
indicating that dietary carbohydrate has a marked effect on
urea transfer. Thus, in the present study, a greater urea content
in the rumen epithelium in the HG group is reasonable. The
current study also revealed that the level of lactate in rumen
epithelium tissues in the HG group was lower than that in the
Hay group (Table 1). Lactate can be directly absorbed through
the rumen wall to the blood and partially converted into ketone
bodies in the rumen epithelium (Pennington and Sutherland,
1956). Our results are contrary to a report from a previous study
that showed increasing concentrate intake had increased the net
portal absorption of lactate in lambs (Huntington et al., 1980).
The reason behind this observation is not clear and needs further
investigation. Inosine is an endogenous purine nucleoside, which
is formed during the breakdown of adenosine by adenosine
deaminase (Barankiewicz and Cohen, 1985). The changes in
inosine content could indicate a greater amount of metabolic
active tissue by a concomitant increased HG intake.

As mentioned earlier, protein expression patterns of
the ruminal epithelium of bovine in response to various
feeding regimes have been explored using two-dimensional
electrophoresis, and differentially expressed proteins that
were mainly related to functions involved cellular stress and
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FIGURE 3 | Protein–protein interaction analysis by the OmicsBean.

metabolism (Bondzio et al., 2011). Until now, little information
has been available to characterize the goat rumen tissue
proteome. In the present study, a total of 34 differentially
expressed proteins related to fatty acid metabolism, cell growth
and proliferation, carbohydrate metabolic processes, oxidative
stress and detoxification, protein metabolic processes, immune
system processes, nucleoside metabolic processes and ion
transport were detected between the two groups in goats
(Table 2). Of these differentially expressed proteins, our data
revealed that HG diet feeding decreased the expression of
proteins involved in fatty acid metabolism, such as long-chain
3-hydroxyacyl-CoA dehydrogenase (HADHA), succinyl-coa:3-
ketoacid-coenzyme a transferase (OXCT1), and FABP3. Among
these downregulated expression of proteins, HADHA protein can
catalyze the third step of mitochondrial beta-oxidation (Haglind
et al., 2015), FABP3 protein act as a transport of fatty acids to the
mitochondria or peroxisome for beta-oxidation (Furuhashi and
Hotamisligil, 2008), ATP binding cassette subfamily d member
3 (ABCD3) functions as a transporter for moving the fatty
acids into peroxisome for beta-oxidation (van Roermund et al.,
2014), and OXCT1 was a key enzyme for ketone body utilization
(Song et al., 1997). Thus, the downregulated expression of these
proteins indicates a decreased catabolism of fatty acids in the

HG group. In addition, the present study also revealed that HG
diet feeding resulted in a decreased expression of proteins related
to the carbohydrate metabolic process, including GAPDH and
phosphoglycerate mutase family member 1 (PGAM1). It is well
known that GAPDH and PGAM1 can catalyze the sixth and
eighth step of glycolysis, respectively, and play an important in
glucose metabolism. Thus, the reduced expressions of these two
proteins in the HG group indicate that HG feeding may result in
a decrease in glycolysis in ruminal epithelial tissues.

Our study also demonstrated that seven differentially
regulated proteins related to protein metabolism, including
lysine–tRNA ligase (KARS), endoplasmic reticulum
oxidoreductase 1 alpha (ERO1A), proteasome subunit alpha
type (PSMA4), peptidyl-prolyl cis–trans isomerase (FKBP1A),
small subunit ribosomal protein S23E (RPS23), HSP90AB1, and
UBA1, were affected by HG feeing in goats. Of these proteins
mentioned earlier, ERO1A is reported to be involved in the
essential step of correct protein folding for the formation of
disulfide bonds by reoxidizing protein disulfide isomerase (Gess
et al., 2003). In the present study, the downregulation of ERO1A
might relate to the decrease in the protein disulfide-isomerase,
as Hollmann et al. (2013) reported that HG feeding decreased
the protein disulfide-isomerase which plays a synergistic
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FIGURE 4 | The p-value of enriched KEGG pathway.

effect on protein folding with ERO1A (Santos et al., 2009).
Regarding other differentially regulated proteins involved in
protein metabolism, RPS23 is reported to be involved in protein
synthesis, while KARS plays an important role in the process
of inserting lysine into proteins (Freist and Gauss, 1995).
FKBP1A is believed to play an important role in accelerating
the rate at which proteins fold into their native conformation
(Siekierka et al., 1990), and PSMA4 and UBA1 are involved in the
ubiquitin-proteasome proteolytic pathway (Ciechanover, 1994).
HSP90AB1 plays a key role in protein folding, degradation,
and morphological evolution. Generally, the findings of these
differentially regulated proteins suggest that HG feeding affected
the synthesis, correct folding, and breaking down of proteins in
rumen epithelium.

Interestingly, in the present study, six proteins, PRDX5,
UDP-glucuronosyltransferase (LOC101117764), sulfotransferase
(SULT1A1), ZADH2, LOC101107119, and LOC101109421,
related to oxidative stress and detoxification were upregulated
in response to an HG diet. Of these upregulated expression of
protein, SULT1A1 and LOC101117764 are key components of the
body’s chemical defense system and these two enzymes protein
are believed to play an important role in maintaining host health
(Rubin et al., 1996; Xu et al., 2005). In the present study, the
increase in the relative expression of these two enzymes protein
probably indicates the HG feeding may result in an enhancement
in host deference in response to more toxic substances such as
endotoxin and biogenic amine translocating from the rumen
into the rumen epithelium (Eisenhofer et al., 1997). In the
present study, we also found HG feeding upregulated immune
system processes-related ANXA7 proteins, and this is consistent
with the report by Bondzio et al. (2011) who found increased

expression of ANXA7 in the rumen epithelium in response to
HG diets. As ANXA7 is one of the annexin family members that
is upregulated in inflammatory myopathies (Probst-Cousin et al.,
2004), thus, the upregulation of ANXA7 imply that HG feeding
may trigger an inflammatory response in rumen epithelium, and
this peculations corresponds well to the findings in our previous
report that HG feeding caused local inflammation of the rumen
epithelium (Liu et al., 2013).

Several proteins related to ion transportation were also
different between the two groups. Transferrin receptor (TFRC)
is present on the surface of cells and binds to transferrin to
transport iron into the cell. A previous work showed decreased
TFRC combined with increased ferritin, which may indicate a
disorder of iron metabolism in the HG group. In line with
our findings, Hollmann et al. (2013) found downregulation of
transferrin in the rumen epithelium in response to HG diets.
The previous study has already reported that HG diets decrease
the duration time of the cell cycle in the ruminal epithelium,
and the rates of cell division and turnover are considered to be
related to the pathological conditions, including hyperkeratosis,
parakeratosis, and ruminitis (Goodlad, 1981). In the present
study, six differentially regulated proteins related to cell growth
and proliferation were observed. Given that the inhibition
of CDC42 and Nucleophosmin 1 (NPM1) could induce cell
apoptosis (Ambrogio et al., 2008), the downregulation of them
in response to HG diets may be attributed to accelerated turnover
by promoting cell apoptosis in the ruminal epithelium.

PPI showed that three pathways were enriched in the KEGG,
including butanoate metabolism, synthesis and degradation of
ketone bodies, and valine, leucine and isoleucine degradation.
Although it was well established that rumen epithelium plays
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a crucial role in SCVFA absorption and metabolism (Bannink
et al., 2016), no other differentially expressed protein related
to other SCVFAs uptake and metabolism was detected except
for the protein related to butyrate metabolism. This may be
because butyrate is more readily absorbed and metabolized in
the rumen epithelium than other SCVFAs (Pennington, 1952).
Interestingly, in line with our research, only gene expression
related to butyrate metabolism was upregulated in lower risk
of SARA cows compared to higher risk of SARA cows (Gao
and Oba, 2016), indicating butyrate metabolism in the rumen
epithelium could be more crucial for SCVFA metabolism and
rumen epithelial function.

CONCLUSION

In general, our data showed that long-term feeding of
an HG diet discriminatively altered the protein expression
(with 12 upregulated and 23 downregulated proteins) and
metabolites profiles (with 8 increased metabolites and 7 decreased
metabolites). The downregulated proteins were related to
fatty acid metabolism, carbohydrate metabolic processes and
nucleoside metabolic processes, while most of upregulated
proteins were related to oxidative stress and detoxification.
The enrichment analysis of different metabolites indicated
that HG diet mainly affected starch and sucrose metabolism,
purine metabolism, glyoxylate and dicarboxylate metabolism,

glycerolipid metabolism, pyruvate metabolism, glycolysis or
gluconeogenesis, galactose metabolism, glycine, serine and
threonine metabolism, and arginine and proline metabolism.
These findings may contribute to better understanding how
rumen epithelia adapt to HG feeding.
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Macrophage-derived cytokines largely influence the behavior of hepatocytes during

an inflammatory response. We previously reported that both TNFα and IL-1β, which

are released by macrophages upon LPS stimulation, affect Fas ligand (FasL)-induced

apoptotic signaling. Whereas TNFα preincubation leads to elevated levels of caspase-3

activity and cell death, pretreatment with IL-1β induces increased caspase-3 activity

but keeps cells alive. We now report that IL-1β and TNFα differentially influence NF-κB

activity resulting in a differential upregulation of target genes, which may contribute to

the distinct effects on cell viability. A reduced NF-κB activation model was established

to further investigate the molecular mechanisms which determine the distinct cell fate

decisions after IL-1β and TNFα stimulation. To study this aspect in a more physiological

setting, we used supernatants from LPS-stimulated bone marrow-derived macrophages

(BMDMs). The treatment of hepatocytes with the BMDM supernatant, which contains

both IL-1β and TNFα, sensitized to FasL-induced caspase-3 activation and cell death.

However, when TNFα action was blocked by neutralizing antibodies, cell viability after

stimulation with the BMDM supernatant and FasL increased as compared to single FasL

stimulation. This indicates the important role of TNFα in the sensitization of apoptosis

in hepatocytes. These results give first insights into the complex interplay between

macrophages and hepatocytes which may influence life/death decisions of hepatocytes

during an inflammatory reaction of the liver in response to a bacterial infection.
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1. INTRODUCTION

Liver diseases represent a major burden on health care in the

European Union. Approximately 29 million people suffer from
chronic liver diseases. The end-stage, liver cirrhosis with organ

transplantation as single treatment option, accounts for 170,000
deaths per year (Blachier et al., 2013). Pathogenesis of most
liver diseases is associated with sustained inflammation, causing
enhanced cell death of hepatocytes and, finally, leading to chronic

liver diseases (Malhi and Gores, 2008). Alcohol consumption,
for example, increases permeability of the intestinal epithelial
barrier resulting in the translocation of bacterial products

such as lipopolysaccharide (LPS) from the intestinal lumen
to surrounding lymph nodes and the liver. In the liver, LPS
leads to the activation of Kupffer cells, the liver resident
macrophages, via stimulation of the Toll-like receptor 4 (TLR4)
and the induction of an inflammatory response contributing
to the progression of alcoholic liver disease (Seki and Schnabl,
2012). Among many cytokines and chemokines, interleukin 1
beta (IL-1β) and tumor necrosis factor alpha (TNFα) are the
most prominent pro-inflammatory cytokines released by LPS-
activated macrophages (Tacke et al., 2009; Bode et al., 2012; Rex
et al., 2016). Moreover, they have both been reported to exert cell
death protective and promoting effects dependent on the cell type
and the environmental conditions (Takehara et al., 1999; Malhi
and Gores, 2008; Verma and Datta, 2010; Szabo and Csak, 2012).
This is why we concentrated our work on these two cytokines.

As previously reported, TNFα sensitizes primary murine
hepatocytes to Fas ligand (FasL)-induced caspase-3/7 activation
and apoptosis (Schmich et al., 2011). Normally, TNFα signaling
does not lead to cell death in hepatocytes (Varfolomeev
and Ashkenazi, 2004) due to the inhibition of the caspase-8
containing TNF receptor complex II by the FADD-like apoptosis
regulator (c-FLIP) as well as the induction of pro-survival
pathways by activation of the transcription factor NF-κB (Irmler
et al., 1997; Karin and Lin, 2002). Under certain circumstances,
such as low c-FLIP levels or blockage of the NF-κB signaling
pathway, TNFα can however trigger apoptotic signaling via
caspase-8 activation in complex II (Micheau and Tschopp,
2003). TNFα also activates the c-Jun N-terminal kinase (JNK1/2)
leading to the phosphorylation of the apoptosis facilitator Bim
that is subsequently sequestered by the anti-apoptotic B cell
leukemia/lymphoma 2 (Bcl-2) protein (Schmich et al., 2011;
Geissler et al., 2013). Stimulation with FasL and generation
of the truncated version of the BH3 interacting domain death
agonist (tBid) by activated caspase-8 additionally depletes the
anti-apoptotic Bcl-2 pool rendering hepatocytes more susceptible
to caspase-3/7 activation and cell death (Schlatter et al., 2011;
Schmich et al., 2011). In contrast to TNFα, IL-1β has been
reported to protect mice from FasL-induced apoptosis (Takehara
et al., 1999). We observed that IL-1β sensitizes hepatocytes to
FasL-induced caspase-3/7 activation in a JNK/Bim- and Bid-
dependent manner comparable to TNFα, but partially protects
from cell death (Lutz et al., 2014). Surprisingly, increased
caspase-3/7 activity after IL-1β and FasL stimulation did not
result in the cleavage of the poly (ADP-ribose) polymerase
(PARP) explaining why the cells did not die. The protection

from FasL-induced cell death was associated with increased
NF-κB DNA binding and the transcriptional upregulation of
the caspase-8 inhibitor A20. The seemingly contradictious
occurrence of increased caspase-3/7 activity and cell viability was
further investigated by mathematical modeling, which revealed
different hepatocyte subpopulations. While a fraction of cells
survived the IL-1β/FasL co-treatment, others died via the type I
or the type II apoptosis signaling pathway. This was dependent on
a heterogeneous distribution of Bcl-2 proteins and variations in
Fas signaling among the cell population. Therefore, IL-1β exerts
two effects on the life-death balance in hepatocytes: It shifts
hepatocytes to a mitochondrial type II apoptosis and increased
caspase-3/7 activity following Fas activation and it activates NF-
κB and induces upregulation of anti-apoptotic proteins, such
as A20 that negatively regulates caspase-8 activation. Obviously,
in the end more cells are able to escape apoptosis induction
following IL-1β and FasL stimulation as compared to FasL alone.

NF-κB dimers are held inactive in the cytosol by binding
to their inhibitors, the IκB proteins. Stimulation with either
IL-1β or TNFα activates the IκB kinase (IKK) complex which
then mediates phosphorylation, ubiquitination and degradation
of IκBs allowing translocation of the free NF-κB dimer into
the nucleus to initiate transcription (Karin and Ben-Neriah,
2000). The most prominent NF-κB dimer is the heterodimer
containing the p50 and p65 subunits (Wang and Baldwin,
1998; Tak and Firestein, 2001) and we refer to this dimer
whenever stating NF-κB hereafter. NF-κB induces transcription
of a variety of target genes involved in inflammatory responses
and cell survival (Baltimore, 2011). Furthermore, NF-κB induces
the expression of its own inhibitor IκBα which then binds to
NF-κB dimers and triggers translocation into the cytosol (Sun
et al., 1993). This time delayed autoregulatory negative feedback
loop causes the observed oscillatory behavior of NF-κB
activation (Nelson et al., 2004; Covert et al., 2005).

FasL binds to its cognate receptor Fas/CD95 which is
constitutively expressed on the cell surface of hepatocytes and
induces the apoptotic pathway (Galle et al., 1995). Receptor
activation leads to the formation of the death inducing signaling
complex (DISC) and activation of caspase-8 (Hughes et al., 2009;
Kallenberger et al., 2014). Processed caspase-8 can either directly
activate the effector caspase-3 (type I pathway) or process Bid
into its truncated version tBid which induces mitochondrial
outer membrane permeabilization (MOMP) and release of pro-
apoptotic factors such as cytochrome c and Smac/DIABLO
into the cytosol (type II pathway) (Scaffidi et al., 1998;
Krammer, 2000). Cytochrome c release induces formation of the
apoptosome leading to activation of caspase-9 that can further
process procaspase-3 (Zou et al., 1999). Smac/DIABLO inhibits
the anti-apoptotic X-linked inhibitor of apoptosis protein (XIAP)
that is an inhibitor of caspase-3 and caspase-9 (Verhagen
et al., 2000). Thus, the release of pro-apoptotic factors from
mitochondria leads to increased caspase-3 activity. FasL has
been suggested to mediate hepatic cell death in experimental
models of hepatitis (Galle et al., 1995; Streetz et al., 2000) and
blocking FasL signaling pathways indeed ameliorates liver disease
to various degrees (Kondo et al., 1997; Ksontini et al., 1998).
FasL is primarily expressed on activated T lymphocytes as well
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as on natural killer (NK) cells (Arase et al., 1995; Suda et al.,
1995) and upregulation is associated with pathogenesis of liver
diseases such as viral hepatitis or alcoholic cirrhosis (Galle et al.,
1995). However, the source of FasL during hepatic injury remains
unclear and seems to depend on the experimental models used.
Natural killer T (NKT) cells were previously reported to be
key effector cells in Concanavalin A-mediated liver damage.
Unlike NK cells that kill target cells by releasing TRAIL and
granzyme B, NKT cells kill hepatocytes by expressing and/or
releasing FasL in this model (Takeda et al., 2000). Other studies
using α-galactosylceramide (α-GalCer)-induced liver injury as
a murine model for autoimmune hepatitis showed that TNFα
is involved in α-GalCer-induced upregulation of FasL on NKT
cells (Biburger and Tiegs, 2005). In other scenarios, FasL
expression was also attributed to macrophages or hepatocytes
(Tsutsui et al., 1996; Luo et al., 1997; Mita et al., 2005).

In this study, we analyzed the influence of supernatant
from LPS-treated bone marrow-derived macrophages (BMDMs)
on FasL-induced apoptosis or survival of primary mouse
hepatocytes under more physiological conditions. We show
that TNFα mediates the apoptosis sensitization effect of the
supernatant while IL-1β is more death protective. This is
partly due to the fact that IL-1β and TNFα activate NF-κB
differently. Surprisingly, the supernatant from unstimulated
BMDMs protects from FasL-induced caspase-3/7 activation.

2. RESULTS

2.1. IL-1β and TNFα Differentially Influence
NF-κB Target Gene Expression
As previously reported, both IL-1β and TNFα sensitized
primary murine hepatocytes to FasL-induced caspase-3/7
activation (Schlatter et al., 2011; Schmich et al., 2011; Lutz
et al., 2014). However, while TNFα triggered increased
apoptosis (Schmich et al., 2011), IL-1β partially protected
from FasL-induced death, possibly via a NF-κB-dependent
upregulation of survival factors such as A20, an inhibitor of
caspase-8 activation (Daniel et al., 2004; Lutz et al., 2014).
To uncover differences in NF-κB activity and induction of
respective target genes that may be responsible for the distinct
effects of these cytokines on cell viability, the mRNA levels of 46
genes involved in apoptotic and inflammatory processes were
measured. For that purpose, primary murine hepatocytes were
treated with IL-1β or TNFα for 1, 4, 6, 18, and 30 h and mRNA
levels were determined using the high-throughput Taqman R©

Fluidigm Technology. Data were analyzed using the ddCT
method (Livak and Schmittgen, 2001), normalized to untreated
controls and results are displayed in a heat map (Figure 1).

The expression pattern following stimulation with either
IL-1β or TNFα appeared rather similar. mRNA of the chemokine
ligandCxcl2 and the receptor-interacting serine-threonine kinase
Ripk2 showed the strongest upregulation. Genes involved in
the NF-κB signaling pathway, i.e., the NF-κB inhibitors IκBα

(also named Nfkbia) and IκBζ (also named Nfkbiz), as well as
the zinc finger protein A20, were highly upregulated after both

stimuli, whereas the Bcl-2 family members Bcl2A1 and Bid, as
well as Fas and the cellular inhibitor of apoptosis proteins 1
and 2 (cIAP1/2) were increased to a lesser extent. Despite an
apparently similar expression pattern after both treatments, we
noted some important differences. The induction of several genes
such asA20, COX2, IκBα/Nfkbia, and IκBζ/Nfkbiz during the first
hour of stimulation as well as their oscillations thereafter were
more pronounced for IL-1β as compared to TNFα (Figure 2).
The expression of IκBζ was even 62 times higher after IL-1β
as compared to an upregulation of only 2.7 fold after TNFα
stimulation. The Bcl-2 family members Bcl-2, Bmf, and BclxL
showed the strongest downregulation after IL-1β and TNFα
stimulation. Fas ligand (FasL) was not expressed at all time points
after both stimuli.

2.2. Model-Based Investigation of NF-κB
Dynamics and Cell Fate Following IL-1β

and TNFα Stimulation
The dynamics of NF-κB have not yet been investigated in detail,
although a NF-κB module has been part of our previously
published models for the IL-1β/FasL (Lutz et al., 2014) and
TNFα/FasL (Schlatter et al., 2011) sensitization regimens. The
NF-κB model originally described by Lipniacki et al. (2004)
has been integrated in our models to allow description of
cytokine-mediated transcriptional effects on the FasL-induced
apoptotic pathway. But the model is rather comprehensive with
14 species and 26 parameters and extensively describes the
induced signaling events and complex formation between IKK,
IκBα and/or NF-κB. However, for the observed effects within this
study, mainly the dynamics of NF-κB activity and longer-term
upregulation of NF-κB target genes are decisive. We therefore
reduced the model to 8 states and 10 parameters, as described
in detail in the Supplementary Material (Presentation 1). The
reduced model (Figure 3A) still shows a comparable behavior
to the original model regarding the aforementioned aspects
(Figure 3B). Investigations revealed that a change of parameters
influencing the activation of NF-κB, i.e., the parameters for the
activation and deactivation of IKK (k1, k2), for A20 synthesis
(ksmrna2, k8) or for direct NF-κB activation (k3) mainly influence
the amplitude of the first peak of NF-κB activity. By contrast,
changing the parameters of the reactions which deactivate NF-κB,
i.e., complex formation of NF-κB and IκBα (k4) or degradation
of IκBα (kd5), mainly affected the frequency of NF-κB activity
(Figure S1). Especially the alteration of more than one parameter
such as one for activation and one for deactivation of NF-κB, e.g.,
k3 and k4, resulted in a more pronounced oscillatory behavior
of NF-κB in response to IL-1β. Indeed, as mentioned above,
A20 mRNA is more upregulated after IL-1β than after TNFα.
This difference was already confirmed on the protein level in
the preceding study (Lutz et al., 2014). Accordingly, a 5-fold
increase of the parameters k3 and k4 in combination with an
increase of the mRNA synthesis rate of A20 (ksmrna2) and a 2-
fold reduction of the A20 protein degradation rate (kd8) may well
explain the different biological responses after IL-1β and TNFα
stimulation. All other parameter values were identical for both
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FIGURE 1 | Changes of mRNAs of apoptotic and inflammatory genes after IL-1β or TNFα stimulation of hepatocytes. Gene expression pattern of primary murine

hepatocytes stimulated with (A) IL-1β (20 ng/ml) and (B) TNFα (25 ng/ml) for 1, 4, 6, 18, and 30 h measured via the high-throughput Taqman® Fluidigm system. Data

are analyzed using the ddCT method, normalized to untreated controls and represent 4 independent experiments. Genes marked in red and blue represent

upregulated and downregulated genes, respectively (*p < 0.05, **p < 0.01, ***p < 0.001).

treatments. The parameter values are given in Table S1 and the
simulated time courses of NF-κB and its target genes as well as
A20 are presented in Figure 4, time courses of all species are
shown in Figure S2.

The reduced NF-κB module was implemented and the
influence of increased A20 expression following IL-1β
stimulation on cell fate decisions was investigated. As reported
earlier (Lutz et al., 2014), a cell population does not respond
homogeneously to cell death stimuli; some cells die, others can
escape apoptosis induction. This could result from differences
in gene expression levels among different cells. In agreement
with our earlier studies, we analyzed two key molecules in
the apoptotic pathway and how they influence cell fate: Fas
as a representative of the death-receptor signaling pathway
and Bcl-2 as a representative of the mitochondrial pathway.
We analyzed the influence of small differences in protein
expression by varying the initial conditions of these proteins
for the simulations by 10%. The majority of cells died via
the type I apoptotic pathway following FasL stimulation, but
a few with high levels of Fas and low Bcl-2 expression used
type II apoptosis signaling (Figure 5A). By contrast, those
with low amounts of Fas survived the treatment as reported
previously (Lutz et al., 2014). When IL-1β and FasL were
combined two distinct effects were observed (Figure 5B).
On the one hand, the preincubation with IL-1β depletes the
anti-apoptotic pool of Bcl-2 proteins, rendering cells more
susceptible to type II apoptotic signaling leading to MOMP.

On the other hand, IL-1β induced NF-κB activation mediating
pro-survival effects. When considering the upregulation of
A20 which interfered with caspase-8 activation at the DISC,
the IL-1β-induced protective effect (Figure 5B, light blue
fraction) becomes more pronounced as compared to our
previous studies (Lutz et al., 2014). In contrast, preincubation
with TNFα not only favors MOMP via depletion of Bcl-2, but
also directly activates caspase-8. Since A20 is less upregulated
in this case, the cells treated with TNFα all die via type II
apoptosis (Figure 5C).

2.3. Supernatant From LPS-Stimulated
Macrophages Sensitizes Hepatocytes to
FasL-Induced Apoptosis
To study the differential sensitization effects of IL-1β and TNFα
on FasL-induced apoptosis in a more physiological setting, the
influence of supernatants from murine BMDMs stimulated with
100 ng/ml LPS for 24 h on apoptotic signaling in hepatocytes
was investigated. Primary murine hepatocytes were cultured
on collagen and, after starvation, incubated for 4 h with
the same DMEM medium that was also used for BMDMs.
Then, hepatocytes were preincubated with BMDM-derived
supernatant conditioned with or without LPS for 12 h followed
by incubation with 50 ng/ml FasL for further 6 h. Similar to the
sensitizing effect of the single cytokines, a significant increase in
caspase-3/7 activity (Figure 6A) and cell death (Figure 6B) was
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FIGURE 2 | Differential gene regulation by IL-1β and TNFα. mRNA from selected genes of primary murine hepatocytes stimulated with IL-1β (20 ng/ml) or TNFα

(25 ng/ml) for 0, 1, 4, 6, 18, and 30 h. Gene expression was measured via the high-throughput Taqman® Fluidigm system. Data are analyzed using the ddCT method

and normalized to untreated controls. Means of 4 independent experiments ± s.d. are displayed (***p < 0.001, **p < 0.01, *p < 0.05, IL-1β vs. TNFα treated cells at

the corresponding time point).

FIGURE 3 | Reduced NF-κB model. (A) Structure of the reduced NF-κB module. The model consists of 8 species and 10 parameters. Input of the model is either

TNFα or IL-1β. The model is based on ordinary differential equations and mass action kinetics. Degradation of species is indicated by boxes with dashed border.

(B) Simulated time courses of NF-κB and IκBα mRNA of the reduced model (dashed line) compared to the original one (solid line) in response to TNFα stimulation.

detected when using the LPS-conditioned supernatant together
with FasL as compared to treatment with supernatant from
untreated BMDMs in the presence of FasL. Surprisingly, the

caspase-3/7 activity in hepatocytes treated with BMDM-derived
supernatant without LPS stimulation and FasL (Figures 6A,B,
dark gray bars) was even lower than after treatment with FasL
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FIGURE 4 | Simulation results following TNFα and IL-1β stimulation. Simulated time courses of the reduced model of NF-κB (A) and measured levels of mRNA

(B,C) as well as protein (D) expression after stimulation with TNFα or IL-1β.

FIGURE 5 | Cell fate in dependency of the initial conditions of Fas and Bcl-2. Simulations for treatment with (A) FasL, (B) IL-1β+FasL or (C) TNFα+FasL for different

initial conditions (IC) of Fas and anti-apoptotic Bcl-2 proteins. The nominal initial conditions are 100% for both proteins and were altered ± 10%. The cells are

classified as apoptotic for caspase-3 activity values above 1.5%. If cytochrome c is released during the simulation, the cells are categorized type II apoptotic and

depicted in dark gray. Otherwise they are classified as type I apoptotic and illustrated in light gray. Cells with minor levels of caspase-3 activity below 1.5% are

designated as survivors depicted in blue. The light blue fraction illustrates conditions for which cells survive the combined treatment with IL-1β+FasL but would die

after a single FasL stimulation.

FIGURE 6 | LPS-conditioned BMDM-derived supernatant sensitizes hepatocytes to FasL-induced caspase-3/7 activity and cell death. (A) Caspase-3/7 activity in

relative fluorescent units (RFU) determined by fluorogenic DEVDase assay of hepatocytes treated with FasL (50 ng/ml) for 6 h with or without pretreatment with

BMDM-derived supernatants for 12 + 6 h. Supernatants were obtained from BMDMs stimulated with LPS (100 ng/ml) for 24 h (SUP+LPS) and from untreated BMDMs

(SUP). (B) Cell death ELISA detecting DNA fragmentation (expressed as enrichment factor) in cells treated as described above. Values are normalized to untreated

controls and represent three independent experiments. Mean and standard deviation is shown (*p < 0.05, ***p < 0.001).
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FIGURE 7 | Influence of TNFα in BMDM-derived supernatants on

FasL-induced apoptosis. Primary murine hepatocytes were cultured on

collagen and, after starvation, preincubated with BMDM-derived supernatant

conditioned with (SUP+LPS) and without (SUP) LPS (100 ng/ml) for 24 h as

well as with supernatant from cultures of the v1q cell line containing

TNF-neutralizing antibodies (Quantification of v1q TNF-neutralizing antibodies

is described in Echtenacher et al. (1990) and Schmich et al. (2011). Cells were

stimulated with FasL (50 ng/ml) for another 6 h and DNA fragmentation was

measured using the cell death ELISA Kit plus. Mean value of three

independent experiments with standard deviation is shown.

alone (Figures 6A,B, light gray bars), indicating that untreated
macrophages may secrete factors which protect against FasL-
induced cell death.

2.4. Sensitization of Hepatocytes to
FasL-Induced Apoptosis by the
Supernatant From LPS-Treated
Macrophages Is Mainly Mediated by TNFα

To investigate the role of TNFα in the apoptosis sensitization
effect of BMDM-derived supernatants, hepatocytes were
stimulated as described above in the absence and presence
of TNF-neutralizing antibodies. Cells treated solely with
BMDM-derived supernatant with and without LPS in
the presence of TNF-neutralizing antibodies did not
show any DNA fragmentation, as expected (Figure 7,
dotted bars). Hepatocytes treated with BMDM-derived
supernatant without LPS showed similar cell death rates
after stimulation with FasL alone irrespective of the presence
of the TNF-neutralizing antibodies. However, cells treated
with LPS-conditioned BMDM-derived supernatant and
FasL displayed a reduction in DNA fragmentation in the
presence of the neutralizing antibodies as compared to their
absence Figure 7). This finding indicates that TNFα is the
cytokine secreted by macrophages which exerts the main
sensitizing effect on FasL-induced apoptosis in hepatocytes.
Although the data (n = 3) were not significant, they showed a
clear tendency.

2.5. Supernatant From Unstimulated
Macrophages Protects From FasL-Induced
Caspase-3 Activation
Similar to the protective effect of IL-1β (Lutz et al., 2014),
supernatants from resting BMDMs also appeared to protect from
FasL-induced caspase-3/7 activation in hepatocytes (Figure 6).
We therefore reinvestigated the effects of stimulation with
conditioned BMDM-derived supernatant on the 46 genes
involved in apoptosis and inflammation. Hepatocytes were
treated with supernatant from BMDMs (18 h) that was
conditioned with LPS (24 h, 100 ng/ml) and/or with FasL
(6 h, 50 ng/ml) and mRNA levels were determined using the
high-throughput Taqman R© Fluidigm Technology. Data were
analyzed using the ddCT method (Livak and Schmittgen, 2001),
normalized to untreated controls (18 h DMEM) and results are
displayed in a heat map (Figure 8). The strongest upregulation
after most treatments is shown with the mRNAs of COX2,
Cxcl2, and Socs3. These are genes typically expressed at sites of
inflammation (Vane et al., 1994; Bode et al., 1999; De Filippo
et al., 2013). In contrast, the mRNAs of the growth factor Egf as
well as of the Bcl-2 proteins Bcl-2, Noxa, and Puma exhibited the
strongest downregulation. Most of the other genes investigated
also exhibit the tendency to reduced expression levels compared
to controls. Stimulation with supernatant from resting BMDMs
(Figure 8, 2nd column) abrogated the upregulation of COX2,
Cxcl2 and Socs3 compared to the other treatments. The scenario
that varies the most was the stimulation with supernatant
from untreated BMDMs and FasL (Figure 8, 4th column). The
inhibitors of NF-κB activation, Iκbα/Nfkbia and A20, as well as
IκBζ/Nfkbiz and Ripk2 were strongly upregulated as compared
to controls and treatment with LPS-conditioned supernatant
and FasL (Figure 9). In addition, mRNAs of the Bcl-2 protein
Bcl2A1 and Bid, cathepsin B (Ctsb), FLIPl, Fas, and cIAP2
were upregulated by treatment with supernatant from untreated
BMDMs and FasL compared to all other stimulations. Again,
the regulators of FasL-mediated apoptosis, the long splice variant
of c-FLIP (FLIPl) and cIAP2 were significantly higher expressed
after treatment with supernatant from resting BMDMs and FasL
compared to controls and stimulation with LPS-conditioned
supernatant and FasL (Figure 9). In summary, the supernatant
from resting macrophages in combination with FasL treatment
induces differential expression of NF-κB target genes which could
favor the observed reduction in caspase-3/7 activation.

2.6. NKT Cells Are the Source of FasL in the
Liver During an Inflammatory Response
The endogenous production of FasL has been supposed to
mediate hepatic cell death in the context of inflammatory
disease (Galle et al., 1995; Streetz et al., 2000), but the source
of FasL in the liver following LPS stimulation has remained
unclear. In isolated primary murine hepatic stellate cells (HSCs)
and BMDMs no LPS-mediated mRNA expression of FasL could
be detected (own unpublished results). Hepatocytes also did
not appear to be the source of FasL (Figure 1). Therefore, we
investigated in our in vivo model whether NK and/or NKT cells
express FasL. Mice were injected with 1 µg LPS/g of body weight
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FIGURE 8 | Influence of BMDM-derived supernatant on mRNA expression of apoptotic and inflammatory genes. Primary murine hepatocytes were stimulated with

supernatant from murine BMDMs for 12 h that was conditioned with (SUP-LPS) and without (SUP) LPS (100 ng/ml for 24 h). Subsequently, cells were treated with

FasL (50 ng/ml) for further 6 h and mRNA was analyzed with the high-throughput Taqman® Fluidigm system. Hepatocytes treated with unconditioned DMEM and

FasL (50 ng/ml) served as control. Data are analyzed using the ddCT method, normalized to untreated controls (hepatocytes treated with DMEM only) and represent 4

independent experiments. mRNAs marked in red and blue are upregulated and downregulated, respectively (*p < 0.05, **p < 0.01, ***p < 0.001).

and sacrificed after 6 h to obtain the NK and NKT liver cell
population. Using cytometric analysis it could be demonstrated
that in control mice FasL is expressed mainly on the surface of
NK cells but not NKT cells. Upon LPS stimulation, however, the
expression of FasL significantly increased on NKT, but not on NK
cells (Figure 10).

3. DISCUSSION

Pro-inflammatory cytokines are involved in various aspects
of liver pathogenesis such as sustained inflammation,

hepatocyte cell death as well as the chronification of liver
disease (Malhi and Gores, 2008; Tacke et al., 2009). We
previously reported that both IL-1β as well as TNFα sensitized
primary murine hepatocytes toward FasL-induced caspase-
3/7 activation (Schlatter et al., 2011; Lutz et al., 2014).
While this resulted in enhanced hepatocyte apoptosis in
the case of TNFα, a death protective effect was noted for
IL-1β (Lutz et al., 2014). Both cytokines potently activate
NF-κB (Luedde and Schwabe, 2011), which is supposed to
mediate the majority of anti-apoptotic effects in hepatocytes
(Tak and Firestein, 2001).
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FIGURE 9 | mRNA expression levels of selected genes after stimulation with BMDM supernatant and/or FasL. mRNA expression of primary murine hepatocytes

stimulated with supernatant from murine BMDMs that was conditioned with (SUP+LPS/SUP+LPS+FasL) and without LPS (SUP/SUP+FasL) and/or FasL as indicated.

Gene expression was measured via the high-throughput Taqman® Fluidigm system. Data are analyzed using the ddCT method, normalized to untreated controls

(DMEM) and represent 4 independent experiments. Values are expressed as log2-fold change (FC) of untreated control cells and differential expression was assessed

using the two-sample Student’s t-test (*p < 0.05, **p < 0.01, ***p < 0.001).

In this study, we uncovered a differential influence on the
transcriptional activity of NF-κB as the possible explanation for
the distinct effect of IL-1β and TNFα on hepatocyte survival.
We investigated the transcriptional profile of 46 inflammatory
and apoptotic NF-κB target genes after treatment of primary
murine hepatocytes with these two cytokines. As expected, the
gene expression pattern was qualitatively quite similar, especially
regarding the inflammatory mediators (Figure 1). For example,
we noted the induction of the chemokine ligand Cxcl2, which
is known to recruit neutrophils for a hepatic inflammatory
response (Krohn et al., 2009; Van Sweringen et al., 2011;
Marques et al., 2012). Also high levels of Ripk2 are expected to
contribute to inflammation (Scott et al., 2010) because Ripk2
mediates innate immune signaling (Madrigal et al., 2012) and
is involved in Fas-mediated NF-κB activation (Vallabhapurapu

and Karin, 2009) and pro-survival signaling (Hughes et al., 2009).
Similarly, mRNA of COX2 is usually upregulated at sites of
inflammation (Willoughby et al., 2000) and was reported to
induce pro-survival signaling, e.g. via activation of Akt (Leng
et al., 2003), and to impair apoptosis in liver cells (Fernández-
Martínez et al., 2006; Casado et al., 2007). Finally, it makes
sense that the mRNAs of the negative feedback inhibitors of
NF-κB signaling, IκBα and A20 were upregulated in response to
IL-1β and TNFα (Krikos et al., 1992; Sun et al., 1993). IκBα is
part of the well-known NF-κB-induced autoregulatory feedback
mechanism, whereas A20 interferes with both activation of
NF-κB by inhibiting IKK (Skaug et al., 2011) and of caspase-8
at the DISC (Daniel et al., 2004).

Besides these similarities, we noted differences in the
dynamics of how some of the NF-κB target genes were
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FIGURE 10 | FasL expression in NK and NKT cells after LPS injection. Mice were treated with LPS or PBS for control. After 6 h the liver was perfused using

collagenase to obtain a single-cell suspension. Lymphocytes were isolated using density gradient centrifugation, as described in the materials and methods section.

(A) Representative density plots showing gate in NK (NK1.1 positive) and in NKT (NK1.1 and TCRβ double positive) cells. Number of FasL positive cells in (B) the NK

cell- and (C) NKT cell-pool from LPS-treated mice (black bar) and control mice (gray bar). Mean and standard deviation is shown (*p < 0.05).

transcriptionally upregulated in response to IL-1β or TNFα. The
levels of COX2, IκBα/Nfkbia and A20 mRNAs were significantly
higher after IL-1β than after TNFα stimulation for various
time points. Especially the first peak in gene expression after
1 h as well as the oscillations seemed more pronounced
after IL-1β stimulation (Figure 2). Both COX2 and A20 have
been shown to impair apoptosis in hepatocytes (Daniel et al.,
2004; Fernández-Martínez et al., 2006). The biggest difference
was noted for IκBζ/Nfkbiz (20-fold higher expression with
IL-1β). In contrast to other IκB proteins, IκBζ localizes to
the nucleus (Yamazaki et al., 2001; Totzke et al., 2006). The
precise signaling roles of IκBζ have not yet been identified.
IκBζ-deficient mice exhibit defective development of IL-17-
producing helper T (TH17) cells and IκBζ was reported as
possible transcription factor for IL-17 induction (Okamoto
et al., 2010). In other studies IκBζ was described to influence
NF-κB-dependent transcriptional regulation both positively and
negatively (Motoyama et al., 2005). IκBζ preferably associates
with p50/p50 and p65/p50 NF-κB dimers and inhibits DNA
binding in the nucleus (Yamazaki et al., 2001). In this respect IκBζ

may function in a pro-apoptotic manner. Indeed, transfection of
IκBζ renders peritoneal macrophages more susceptible to TNFα-
induced apoptosis (Yamazaki et al., 2001) and the silencing of
IκBζ renders HeLa cells more resistant to apoptosis (Totzke et al.,
2006). However, this pro-apoptotic property may depend on the
cellular system or the type of death stimuli used. In our scenario,
IκBζ is more likely to function as an anti-apoptotic factor in

response to IL-1β, since this cytokine confers death protection
rather than enhanced apoptosis in response to FasL treatment.

Model reduction significantly diminished the number of
parameters while maintaining a very similar time course of
NFκB activity and target gene expression compared to the
original model. This facilitated model parametrization and
allowed studying the impact of parameter variations on NF-κB
activation. These investigations revealed that the amplitude and
the frequency of NF-κB activity can be influenced by changing
the parameter values for NF-κB activation (degradation of
IκBα and liberation of NF-κB) and deactivation (reassociation
of NF-κB with newly synthesized IκBα), respectively. Many
posttranscriptional modifications have been described that may
account different kinetics of these steps (Karin and Ben-
Neriah, 2000; Perkins, 2006; Luedde and Schwabe, 2011).
While the phosphorylation of two conserved serine residues of
IκBα (S32/S36) target the protein for proteasomal degradation,
phosphorylation of lysine residues by casein kinase II is
associated with increased protein stability (DiDonato et al.,
1996; Lin et al., 1996). Besides, p65 phosphorylation sites
have been described to either contribute to enhanced (Zhong
et al., 1997) or diminished NF-κB activity (Lawrence et al.,
2005). Further posttranscriptional modifications were shown
to terminate NF-κB activity (Ruland, 2011). For example,
methylation of p65 at K314/K315 seemed to inhibit NF-κB
activity by targeting NF-κB to proteasomal degradation (Yang
et al., 2009), while acetylation of p65 prolonged NF-κB activity
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by preventing its binding to the inhibitory IκBα and thus nuclear
export (Chen et al., 2001). All these modifications depend on
the cellular stimulus and change the kinetics and dynamics of
NF-κB as previously discussed (Hoffmann et al., 2002; Nelson
et al., 2004; Smale, 2011). We hypothesize that IL-1β induces a
more pronounced oscillatory behavior of NF-κB in hepatocytes
than TNFα. Our mathematical model supports the hypothesis
that differences in the oscillatory behavior of NF-κB due to
distinct activation and deactivation kinetics can result in the
differential upregulation of NF-κB target genes depending on
the cytokine added. Whereas IL-1β induced both pro- and anti-
apoptotic effects via activation of JNK and increased induction
of A20, respectively, TNFα predominantly favors apoptosis
induction. However, the precise regulation of the NF-κB pathway
and its implication in pro-survival vs. pro-apoptotic signaling
in hepatocytes during inflammatory reactions requires more
detailed studies in the future.

Besides its pivotal role in inflammation, NF-κB is also
described as a central player in the regulation of liver
homeostasis, liver fibrosis and the development of hepatocellular
carcinoma (Luedde and Schwabe, 2011; Sunami et al., 2012). The
liver innate immune cell population comprises Kupffer cells, the
liver-located macrophages, which are crucial for inflammatory
responses (Zimmermann et al., 2012) as well as NK and NKT
cells (Tacke et al., 2009). Although IL-1β and TNFα are the most
important cytokines secreted by activated macrophages during
an LPS-induced inflammatory response (Ulich et al., 1991; Bode
et al., 2012) others such as IL-6 or IL-10 as well as the Ccl-
and Cxcl-type chemokines and the type I interferon IFNβ are
crucial for liver homeostasis or pathogenesis, too (Rex et al.,
2016). To identify which cytokine was most important for the
sensitizing effect on hepatocytes, we incubated the cells with
the supernatant from LPS-treated BMDM macrophages in vitro.
We found that the treatment of the supernatant with TNF-
neutralizing antibodies tended to prevent the increase in cell
death indicating that TNFα plays an important role as sensitizing
mediator for apoptosis induction in hepatocytes. This is in
accordance with our previous finding that macrophages secrete
TNFα in much higher amounts than IL-1β (Rex et al., 2016).
Therefore, TNFα should be more decisive on the fate of the cells.
However, further studies are needed for final conclusions on the
role of TNFα and IL-1β.

To our surprise, we observed that the supernatant from
resting macrophages, i.e. without LPS conditioning, protected
cells from FasL-induced caspase-3/7 activation similar to IL-1β.
Investigation of the gene expression pattern revealed that FasL
stimulation after preincubation with unconditioned supernatant
also resulted in a differential regulation of specific NF-κB target
genes such as IκBα/NFkbia, A20 and IκBζ/Nfkbiz (Figure 9). In
addition, we noted the upregulation of cIAP2, FLIPl, and Ripk2,
which are all modulators of apoptosis signaling. Ripk2 favors pro-
survival signaling downstream of the DISC through induction
of NF-κB activity (Festjens et al., 2007; Hughes et al., 2009).
cIAP2 can directly inhibit the active forms of the caspase-3 and -7
(Roy et al., 1997) and potentiate NF-κB signaling by destabilizing
IκBα (Chu et al., 1997). Both pro- and anti-apoptotic roles of
FLIPL have been reported (Chang et al., 2002). A few studies

demonstrated that FLIPL inhibits FasL-mediated apoptosis at
high concentrations (Chang et al., 2002; Sharp et al., 2005)
which would be in accordance with the observed effects in
this study. The initial steps in apoptosis induction, formation
of the DISC and the degree of caspase-8 activation has been
shown to determine cell fate (Lavrik et al., 2007; Hughes et al.,
2009; Kallenberger et al., 2014). It seems that after preincubation
with unconditioned BMDM supernatant less apoptotic and more
anti-apoptotic signaling occurs in hepatocytes after stimulation
with FasL. Fas signaling usually induces the apoptotic pathway
but it is also able to trigger NF-κB activation. Studies have
demonstrated that the ratio of FLIPL to caspase-8 at the DISC
is decisive for apoptotic vs. pro-survival signaling (Golks et al.,
2006; Fricker et al., 2010; Lavrik and Krammer, 2012). We
therefore hypothesize that restingmacrophages secrete protective
factors that modify the balance toward pro-survival conditions
such that NF-κB activation and upregulation of respective target
genes prevails apoptosis induction downstream of Fas.

We finally investigated the sources of endogenous FasL in
our scenario of LPS-induced inflammation since various possible
sources have been reported depending on the experimental
model used (Tsutsui et al., 1999; Takeda et al., 2000). NKT
cells are quite abundant in the liver constituting 20–30% of
the liver T cells (Bendelac et al., 1997). They have previously
been implicated in liver damage during hepatitis (Takeda et al.,
2000). Furthermore, FasL expression has been implicated in liver
damage (Galle et al., 1995) and was associated to NK cells (Arase
et al., 1995). Indeed, we could demonstrate that FasL is expressed
on NK cells but strongly induced in NKT cells in our in vivo
model of LPS-induced inflammation in mice. This suggests
that endogenous production of FasL by NKT cells plays an
important role in the observed hepatic cell death in inflammatory
diseases (Galle et al., 1995; Streetz et al., 2000).

In summary, our study shows that it is important to
investigate the aforementioned mediators and the crosstalk of
pro-inflammatory cytokines released by macrophages and FasL-
induced apoptotic signaling in hepatocytes in more detail. We
find that macrophages modulate the hepatocytes both in the
unstimulated and stimulated state. Without an inflammatory
stimulus, macrophages exert a protective effect on hepatocytes,
attenuate apoptosis induction and shift the balance toward
pro-survival signaling. However, they sensitize hepatocytes to
apoptosis induction during LPS-induced inflammation, probably
to rapidly remove damaged cells.

4. MATERIALS AND METHODS

4.1. Mice Strains and Primary Cell Isolation
Wild type (C57BL/6N and C57BL/6J) mice were purchased
from Jackson Laboratories. Primary hepatocytes were
isolated from 8 to 14 week old BL6 mice using the
collagenase perfusion technique and cultivated as previously
described (Klingmüller et al., 2006; Schmich et al., 2011) (see
also Supplementary Material, Presentation 1). The whole
study, including the isolation procedure, was approved by the
animal experimental committee (ethical permission number:
X-12/22D, University of Freiburg). For generation of bone
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marrow-derived macrophages (BMDMs) 8–12 week old male
mice were sacrificed. The animal applications were reviewed and
approved by the appropriate authorities and were performed
in accordance with the German animal protection law (AZ:
84-02.04.2012.A175; Landesamt für Natur, Umwelt und
Verbraucherschutz Nordrhein-Westfalen, Recklinghausen). All
animals were handled and housed according to specific pathogen
free (SPF) conditions.

4.2. Preparation of BMDM Supernatants
The preparation and cultivation of primary murine BMDMs has
been carried out according to the standard operating procedure
(SOP) as previously described (Rex et al., 2016). Summarizing,
after 8 days of BMDM differentiation/cultivation (DMEM:
Biochrom, Berlin, Germany; FCS (Cat.: 10099141, Lot: 769367):
Invitrogen, Karlsruhe, Germany; Penicillin G/Streptomycin:
Cytogen, Wetzlar, Germany), adherent cells were harvested by
gentle trypsinization: Cells were washed twice with prewarmed
PBS (Biochrom, Berlin, Germany) and treated with 3 ml
trypsin/EDTA solution (Cytogen, Wetzlar, Germany) for
approximately 5–10 min. Cells were centrifuged and adjusted in
M-CSF (5 ng/ml; recombinant murine M-CSF: Peprotech, Rocky
Hill, NJ, USA) containing culture medium: 1.4× 106 cells/3.5 ml
per 60 mm tissue culture dish. After 6 h of cultivation, cells
were stimulated with 100 ng/ml LPS (using LPS/DMEM
solution; LPS from Escherichia coli (# L3012, Sigma-Aldrich,
Munich, Germany) or were treated with the corresponding
volume of Dulbecco modified Eagle medium (DMEM) as
control, respectively. After 24 h, cell culture supernatant was
collected under sterile conditions by centrifugation (20 min, 4◦C,
5.500 rpm). Aliquots were prepared and tempered gently up to
−80◦C for storage.

4.3. Quantification of N2A FasL
Quantification of FasL in the Neuro2A supernatant was carried
out as described before (Walter et al., 2008). Briefly, the
human T cells Jurkat E6 were treated or untreated with
Neuro2A supernatant diluted 1:4 (25%) in medium for 1 h.
Defined concentrations of recombinant Fc-FasL served as the
standard and apoptosis was quantified by GFP-annexin-V/PI
FACS analysis.

4.4. Treatment of Isolated Primary Murine
Hepatocytes
To investigate the influence of IL-1β and TNFα on the gene
expression profile primary murine hepatocytes (1× 106 cells)
were stimulated with 20 ng/ml IL-1β or 25 ng/ml TNFα (both
from R&D Systems, Minneapolis, USA) for 1, 4, 6, 18, and 30 h or
left untreated as control. To study the influence of macrophage-
derived mediators on FasL-induced caspase-3/7 activity and
cell death, hepatocytes (2 × 106) were pre-incubated with the
supernatant from LPS-stimulated BMDMs (SUP+LPS) or with
the supernatant from untreated BMDMs (SUP) for 12 h and
subsequently with 50 ng/ml FasL (generated by Neuro2A cells)
for further 6 h. Additionally, hepatocytes were only stimulated
with FasL for 6 h, with the supernatant from unstimulated (SUP),

LPS-treated BMDMs (SUP+LPS), or themediumDMEM for 18 h
as controls.

4.5. DEVDase Assay
The activity of the executioner caspase-3/7 in hepatocytes
(1× 106) was measured by the fluorogenic DEVDase assay as
previously described (Schlatter et al., 2011; Lutz et al., 2014). See
also the Supplementary Material (Presentation 1).

4.6. Cell Death Detection ELISA
To quantify the amount of DNA fragmentation in hepatocytes
(1× 106) after treatment with the different stimuli the cell
death detection ELISAPLUS Kit (Roche, Mannheim, Germany)
was used and performed according to the manufacturer
instruction (Lutz et al., 2014) (for detailed information see the
Supplementary Material (Presentation 1).

4.7. RNA Isolation, cDNA Synthesis and
qRT-PCR
Total RNA was isolated using the RNeasyPlus Kit (Qiagen,
Hilden, Germany) according to the manufacturer instruction.
The quantity and purity of RNA was determined by measuring
the optical density at 260 and 280 nm. 600 ng total RNA
was reverse transcribed to cDNA with TaqMan Reverse
Transcription Reagents (Applera GmbH, Darmstadt, Germany).
For qRT-PCR the Fluidigm Biomark high throughput
qPCR chip platform (Fluidigm Corporation, San Francisco,
CA, USA) with pre-designed gene expression assays from
Applied Biosystems was used according to the manufacturer
instructions (Spurgeon et al., 2008). Data were analyzed
using the ddCT method (Livak and Schmittgen, 2001) and
expression values were normalized to the expression levels
of the β-actin gene. All TaqMan assays are listed in the
Supplementary Material in Data Sheets 1, 2 for stimulation
with IL-1β/TNFα and BMDM supernatant, respectively.

4.8. FACS Analysis/ in vivo Experiments
C57BL/6 mice (8–14 weeks old) were injected i.p. with
1 µg LPS/g of body weight and sacrificed after 6 h. The livers
were extracted and homogenized with a plunger rod over a
70 µm cell strainer in a 50 ml falcon. Hepatic lymphocytes were
further isolated by density gradient centrifugation using 60%
and 40% percoll. Cells were labeled with APC-conjugated anti-
mouse NK 1.1, PerCP-conjugated anti-mouse TCRb and PE-anti
mouse conjugated FasL. Background staining was determined
using a PE-anti mouse IgG isotype control. All antibodies
were used at a concentration of 1 µg/ml and purchased from
BD Biosciences. Flow cytometry analysis was performed using
FACSdiva (BD Bioscience).

4.9. Isolation of NK and NKT Liver Cell
Populations
Single-cell suspensions were prepared from the liver by
collagenase-based perfusion via the portal vein. Total liver cells
were homogenized in a 40% isotonic percoll solution and slowly
passed to a 60% isotonic percoll solution without mixing the
layers. After centrifugation for 20 min at 900 g, the upper layer
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was discarded (debris and hepatocytes) and the mononuclear
cells were collected from the interface. The cells were washed
once with PBS (300 g, 7 min, room temperature) and then 1 ml
red blood cell lysis buffer was added for 3 min. After other
washing step the cells were incubated with Fc-blocking buffer for
15 min and afterwards incubated for 30 min with the following
antibodies: NK1.1-APC, TCRβ-FITC and CD178-PE or Arm
hamster isotype control-PE (eBioscience).

4.10. Statistical Analysis
Values are expressed as means ± standard deviation (s.d.).
Differences in expression, caspase-3/7 activity and DNA
fragmentation were assessed using the two-sample Student
t-test. P-values were calculated and p ≤ 0.05 was considered
as significant.

4.11. Mathematical Modeling and
Simulation
The model is based on ordinary differential equations
and mass action kinetics and was implemented using
MATLAB R2014a. The model setup and reduction is
explained and all model equations can be found in the
Supplementary Material (Presentation 1).
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The liver—a central metabolic organ that integrates whole-body metabolism to maintain
glucose and fatty-acid regulation, and detoxify ammonia—is susceptible to injuries
induced by drugs and toxic substances. Although plasma metabolite profiles are
increasingly investigated for their potential to detect liver injury earlier than current clinical
markers, their utility may be compromised because such profiles are affected by the
nutritional state and the physiological state of the animal, and by contributions from
extrahepatic sources. To tease apart the contributions of liver and non-liver sources to
alterations in plasma metabolite profiles, here we sought to computationally isolate the
plasma metabolite changes originating in the liver during short-term fasting. We used
a constraint-based metabolic modeling approach to integrate central carbon fluxes
measured in our study, and physiological flux boundary conditions gathered from the
literature, into a genome-scale model of rat liver metabolism. We then measured plasma
metabolite profiles in rats fasted for 5–7 or 10–13 h to test our model predictions. Our
computational model accounted for two-thirds of the observed directions of change
(an increase or decrease) in plasma metabolites, indicating their origin in the liver.
Specifically, our work suggests that changes in plasma lipid metabolites, which are
reliably predicted by our liver metabolism model, are key features of short-term fasting.
Our approach provides a mechanistic model for identifying plasma metabolite changes
originating in the liver.
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INTRODUCTION

The liver is the primary organ responsible for metabolizing
drugs and toxicants, a process collectively known as xenobiotic
metabolism. This function makes the liver highly susceptible to
injury and potential failure (Zimmerman, 1999). Current clinical
markers of liver cell damage, such as the enzymes alanine amino
transferase (ALT) and aspartate amino transferase (AST), which
appear one to several days following exposure to a toxicant,
are often limited in sensitivity and specificity to detect the
pathology or injury (Zimmerman, 1999). Metabolite profiles,
as measured in the plasma and urine of laboratory animal models
of liver injury, are actively being investigated for their potential
to detect liver damage earlier than current clinical markers
and thereby facilitate timely intervention (Kamp et al., 2012;
Mattes et al., 2014; Beger et al., 2015; Iruzubieta et al., 2015;
Chang et al., 2017; Jarak et al., 2017). Additionally, they are
being analyzed to identify canonical metabolic pathways (i.e., not
including xenobiotic metabolism), such as lipid, amino acid, and
oxidative stress pathways, which are perturbed during a drug-
or toxicant-induced liver injury. However, plasma metabolite
profiles and canonical metabolic pathways are also affected by
the nutritional and physiological state of an animal, which could
confound the identification of liver injury-induced changes in
the plasma metabolite profile (Mellert et al., 2011; Mu et al.,
2015). Importantly, the plasma metabolite profile consists of
contributions from all other organs in the body, each of which is
determined by the physiological state of the organ. It is important,
therefore, to identify the contributions of liver metabolism
to the plasma metabolite profile, and the metabolic pathways
contributing to the observed changes under physiological and
pathophysiological perturbations.

Genome-scale computational modeling of organ metabolism
constitutes an important approach toward obtaining mechanistic
insights into organ metabolism and canonical metabolic
pathways under various conditions (Blais et al., 2017). Here, we
subjected rats to short-term fasting in vehicle control groups of
a larger study involving three different toxicants, and applied a
genome-scale rat metabolic network to assess liver contributions
to plasma metabolite profiles and to identify the responsible
metabolic pathways. The short-term fasting conditions studied
here were dominated by hormonally regulated changes in liver
glycogen breakdown without significant transcriptomic changes
of liver enzymes, which created a challenge in applying a genome-
scale network modeling approach to describe liver function.
We made our modeling analysis represent the liver mainly by
constraining the model with the measured metabolic fluxes in
this study and fluxes reported in the literature under similar
conditions. Specifically, we measured the evolution of key
metabolic fluxes in the liver, the liver transcriptome, and plasma
metabolite profiles in three in vivo studies during which the rats
underwent short-term food deprivation for up to 13 h. We used a
recently published algorithm to integrate the measurements with
a rat metabolic network model, and predicted the direction of
change in extracellular metabolite concentrations resulting from
a perturbation of metabolic fluxes in the network (Blais et al.,
2017; Pannala et al., 2018). By comparing model predictions

of the directions of metabolite changes with measured plasma
metabolite profiles, we assessed the contributions of the liver to
those changes.

MATERIALS AND METHODS

Animals and Study Groups
Male Sprague-Dawley rats at 10 weeks of age were purchased
from Charles River Laboratories (Wilmington, MA,
United States). The rats were fed with Formulab Diet 5001
(Purina LabDiet; Purina Miles, Richmond, IN, United States)
and given water ad libitum in an environmentally controlled
room with a 12:12-h light-dark cycle at 23◦C. All experiments
were conducted in accordance with the Guide for the Care and
Use of laboratory Animals of the United States Department
of Agriculture, using protocols approved by the Vanderbilt
University Institutional Animal Care and Use Committee, and
by the United States Army Medical Research and Materiel
Command Animal Care and Use Review Office.

Three types of measurements, plasma metabolite profiles,
liver gene expression, and stable isotope tracer-based metabolic
flux profiles, were made at one or two time points in three
experimental studies. The three studies described here were the
vehicle control groups of a larger study involving three different
toxicants. The vehicle for each toxicant was different due to their
differing physical and chemical properties. The time points also
varied slightly because of the differences in their toxicity in the
larger study. Table 1 summarizes the number of animals for each
measurement in each study.

Catheter Implantation for
Infusions and Sampling
Catheter implantation surgery was performed 7 days before each
experiment, as previously described (Shiota, 2012). Rats were
anesthetized with isoflurane, after which one of two procedures
was performed depending on the type of measurement to be
collected during the experiment. To measure changes in gene
expression and plasma metabolite profiles, the right external
jugular vein was cannulated with a sterile silicone catheter
[0.51 mm inner diameter (ID) and 0.94 mm outer diameter
(OD)]. Alternatively, to measure metabolic flux, both the carotid
artery and the right external jugular vein were cannulated with
sterile silicone catheters (0.51 mm ID and 0.94 mm OD). The
free ends of the implanted catheters were passed subcutaneously
to the back of the neck, where they were fixed. Finally, each

TABLE 1 | Number of animals used for each measurement per time point in
Studies 1–3.

Measurement Study 1 Study 2 Study 3

5 h 10 h 5 h 10 h 7 h 13 h

Metabolic flux – 9 – 8 – 8

Plasma metabolite profiles 8 8 8 8 9 9

Liver gene expression 8 8 8 8 8 8
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implanted catheter was occluded with a metal plug after a flush
with heparinized saline solution (200 U heparin/ml). The rats
were housed individually after the surgery.

Procedures for Measuring Changes in
Gene Expression and Plasma
Metabolite Profiles
Two time points were selected for sampling tissue and blood after
vehicle administration in each of the three studies analyzed in the
present paper: they were 5 h and 10 h for Studies 1 and 2, and
7 h and 13 h for Study 3. The administered vehicles and their
dosages were polyethylene glycol at 6 ml/kg, corn oil at 2 ml/kg,
and saline at 2 ml/kg in Studies 1, 2, and 3, respectively. Following
blood collection, animals were given vehicle by oral gavage at
7 a.m. and moved to a new housing cage, where they were
given access to water ad libitum but not food. Then, at 12 p.m.
(5 h group) or 5 p.m. (10 h group), after blood collection, animals
in Studies 1 and 2 were anesthetized by intravenous injection
of sodium pentobarbital through the jugular vein catheter and
immediately subjected to laparotomy. The same procedures were
performed at 2 p.m. (7 h group) or 8 p.m. (13 h group) in Study
3. After laparotomy, the liver was dissected and frozen using
Wollenberger tongs precooled in liquid nitrogen. The collected
plasma and liver samples were stored at −80◦C until use for
further analyses.

Methods for Measuring Metabolite Flux
In vivo Procedures in the Rat
At 7 a.m. on the day of the study, rats in all three studies were
administered vehicle (50% polyethylene glycol or 6 ml/kg of
either saline or corn oil) by oral gavage. Then, after food and
water were removed, they were anesthetized with isoflurane at
12:50 p.m. (Studies 1 and 2) or 3:50 p.m. (Study 3). Subsequently,
a 200-µl arterial blood sample was collected through the carotid
artery catheter to determine the natural isotopic abundance of
circulating glucose, after which a bolus of [2H2]water (99.9%)
was delivered subcutaneously to enrich total body water to
4.5%. A [6,6-2H2]glucose prime (80 mg · kg−1) was dissolved
in the bolus. Post-awakening, at 1 p.m. or 4 p.m. (i.e., 6 or
9 h after dosing), rats were connected to sampling and infusion
lines and placed in bedded containers without food or water.
Following the bolus, [6,6-2H2]glucose was administered as a
continuous infusion (0.8 mg · kg−1

·min−1) into the systemic
circulation through the jugular vein catheter for the duration
of the study. Sodium [13C3]propionate (99%) was delivered as
a primed (110 mg · kg−1), continuous (5.5 mg · kg−1

·min−1)
infusion starting 120 min after delivery of the [2H2] water
bolus. All infusates were prepared in a 4.5% [2H2] water-
saline solution unless otherwise specified. Stable isotopes were
obtained from Cambridge Isotope Laboratories (Tewksbury,
MA, United States). Blood glucose was monitored (AccuCheck;
Roche Diagnostics, Indianapolis, IN, United States) and donor
erythrocytes were infused to maintain hematocrit throughout
the study. Three blood samples (300 µl each) were collected
over a 20-min period following 100 min of [13C3]propionate

infusion. Arterial blood samples were centrifuged in EDTA-
coated tubes for plasma isolation, and the three 100-µl plasma
samples were stored at −20◦C prior to glucose derivatization
and gas chromatography-mass spectrometry (GC-MS) analysis.
Rats were rapidly euthanized through the carotid artery catheter
immediately after the final steady-state sample was collected.

Preparation of Glucose Derivatives
Plasma samples were divided into three aliquots and derivatized
separately to obtain di-O-isopropylidene propionate, aldonitrile
pentapropionate, and methyloxime pentapropionate derivatives
of glucose. For di-O-isopropylidene propionate preparation,
proteins were precipitated from 20 µl of plasma using 300 µl
of cold acetone, and the protein-free supernatant was evaporated
to dryness in screw-cap culture tubes. Derivatization proceeded
as described previously (Antoniewicz et al., 2011) to produce
glucose 1,2,5,6-di-isopropylidene propionate. For aldonitrile and
methyloxime derivatization, proteins were precipitated from
10 µl of plasma using 300 µl of cold acetone and the protein-
free supernatants were evaporated to dryness in microcentrifuge
tubes. Derivatizations then proceeded as described previously
(Antoniewicz et al., 2011) to produce glucose aldonitrile
pentapropionate and glucose methyloxime pentapropionate. All
derivatives were evaporated to dryness, dissolved in 100 µl of
ethyl acetate, and transferred to GC injection vials with 250 µl
glass inserts for GC-MS analysis.

GC-MS Analysis
GC-MS analysis was performed using an Agilent 7890A gas
chromatography system with an HP-5 ms (30 m × 0.25 mm ×
0.25 µm, Agilent J&W Scientific; Agilent Technologies Inc.,
Santa Clara, CA, United States) capillary column interfaced
with an Agilent 5975C mass spectrometer. Samples were
injected into a 270◦C injection port in splitless mode. Helium
flow was maintained at 0.88 ml ·min−1. For analysis of
di-O-isopropylidene and aldonitrile derivatives, the column
temperature was held at 80◦C for 1 min, ramped at 20◦C ·
min−1 to 280◦C and held for 4 min, then ramped at 40◦C ·
min−1 to 325◦C. For methyloxime derivatives, the same oven
program was used except the ramp to 280◦C was 10◦C ·min−1.
After a 5 min solvent delay, the MS collected data in scan
mode from m/z 300 to 320 for di-O-isopropylidene derivatives,
m/z 100 to 500 for aldonitrile derivatives, and m/z 144 to
260 for methyloxime derivatives. Each derivative peak was
integrated using a custom MATLAB R©(Mathworks Inc., Natick,
MA, United States) function (Antoniewicz et al., 2007) to
obtain mass isotopomer distributions (MIDs) for six specific ion
ranges: aldonitrile – m/z 173–177, 259–265, 284–288, 370–374;
methyloxime – m/z 145–149; di-O-isopropylidene – m/z 301–
308. To assess uncertainty, root mean square error was calculated
by comparing the baseline MID of unlabeled glucose samples to
the theoretical MID computed from the known abundances of
naturally occurring isotopes.

2H/13C Metabolic Flux Analysis (MFA)
A detailed description of the in vivo metabolic flux analysis
methodology employed in these studies has been previously
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provided (Hasenour et al., 2015). Briefly, a reaction network was
constructed using the INCA software package (Young, 2014). The
reaction network defined the carbon and hydrogen transitions
for biochemical reactions linking hepatic glucose production and
associated intermediary metabolism reactions. Flux through each
reaction was estimated relative to citrate synthase (fixed at 100)
by minimizing the sum of squared residuals between simulated
and experimentally determined MIDs of the six fragment ions
previously described. Flux estimation was repeated at least
25 times from random initial values. Goodness-of-fit was assessed
by a chi-square test, and 95% confidence intervals were computed
by evaluating the sensitivity of the sum-of-squared residuals to
variations in flux values (Antoniewicz et al., 2006). The average
sum of squares of residuals (SSR) of each experimental group
fell within the 95% confidence interval of the corresponding chi-
square distribution with D degrees of freedom: Study 1 (D = 22):
SSR = 29.65 ± 7.05; Study 2 (D = 23): SSR = 28.77 ± 2.83; Study
3 (D = 26): SSR = 22.69 ± 1.83. Relative fluxes were converted to
absolute values using the known [6,6-2H2]glucose infusion rate
and rat weights. Flux estimates for the steady-state samples were
averaged to obtain a representative set of values for each rat.

Metabolomic Analysis
Sample Preparation and Ultrahigh Performance
Liquid Chromatography/Mass Spectrometry
(UHPLC/MS)
Sample preparation was carried out at Metabolon, Inc. in a
manner similar to a previous study (Hatano et al., 2016).
Briefly, individual samples were subjected to methanol extraction
and then split into aliquots for analysis by UHPLC/MS. The
global biochemical profiling analysis comprised four unique
arms: reverse phase chromatography positive ionization methods
optimized for hydrophilic compounds (LC/MS Pos Polar) and
hydrophobic compounds (LC/MS Pos Lipid); reverse phase
chromatography with negative ionization conditions (LC/MS
Neg), and a hydrophilic interaction liquid chromatography
(HILIC) method coupled to negative ionization (LC/MS Polar)
(Evans et al., 2014). All of the methods alternated between full
scan MS and data-dependent MSn scans. The scan range varied
slightly between methods but generally covered 70–1,000 m/z.

Metabolites were identified by automated comparison of
the ion features in the experimental samples to a reference
library of chemical standard entries that included retention
time, molecular weight (m/z), preferred adducts, and in-source
fragments as well as associated MS spectra, and curated by
visual inspection for quality control using software developed
at Metabolon. Identification of known chemical entities was
based on comparison to metabolomic library entries of purified
standards (Dehaven et al., 2010).

Statistical Analysis of Metabolomic Data
We performed statistical analysis to identify metabolites that
changed significantly with the duration of fasting. The raw
data consisted of MS counts for each metabolite detected in a
given plasma sample. We imputed any missing values with the
minimum observed value for each metabolite. We then computed
distributions of fold-change values for each metabolite and

pooled them across the three studies to resolve changes during
short-term fasting above experimental and biological noise.
From these pooled distributions, we calculated 99% confidence
intervals for the mean fold-change values of each metabolite
using the percentile approach (Efron and Hastie, 2016). Briefly,
for each metabolite at each of the two points in a study, we
constructed n × 105 instances of MS count data by random
sampling with replacement, where n is the number of animals.
Then, for each metabolite in the given study, we calculated
n× 105 fold-change values from the synthetic data sets generated
in the previous step. We pooled these fold-change values across
studies for a given metabolite, and calculated 105 sample means,
which constitute the bootstrapped distribution of the mean fold-
change. To obtain the 99% confidence interval of the mean
fold value for each metabolite, we identified a percentile-based
confidence interval from the bootstrapped distribution of the
mean fold-change value, which excluded values above the highest
0.5th percentile and those below the lowest 0.5th percentile.
A metabolite was determined to have significantly increased or
decreased if both bounds of the 99% confidence interval of
its mean fold-change value were above or below the value 1.
All statistical analyses were performed in MATLAB R©R2017b
(Mathworks Inc., Natick, MA, United States). We have provided
MATLAB code for this analysis in the Supplementary Material.

RNA Sequencing and Data Analysis
RNA Isolation and Sequencing
Total RNA was isolated from the liver, using TRIzol Reagent
(Thermo Fisher Scientific, Waltham, MA, United States) and
the direct-zol RNA Mini Prep kit (Zymo Research, Irvine, CA,
United States). The isolated RNA samples were then submitted
to the Vanderbilt University Medical Center VANTAGE Core
(Nashville, TN, United States) for RNA quality determination
and sequencing. Total RNA quality was assessed using a 2100
Bioanalyzer (Agilent, Santa Clara, CA, United States). At least
200 ng of DNase-treated total RNA with high RNA integrity
was used to generate poly-A-enriched mRNA libraries, using
KAPA Stranded mRNA sample kits with indexed adaptors
(Roche, Indianapolis, IN, United States). Library quality was
assessed using the 2100 Bioanalyzer (Agilent), and libraries were
quantitated using KAPA library Quantification kits (Roche). In
Study 1, pooled libraries were subjected to 75-bp single-end
sequencing according to the manufacturer’s protocol (Illumina
HiSeq 3000, San Diego, CA, United States). In contrast, in
Studies 2 and 3, the respective pooled libraries were subjected
to 150-bp paired-end sequencing on Illumina NovaSeq 6000 and
75-bp paired-end sequencing on Illumina HiSeq 3000 according
to the manufacturer’s protocol. Bcl2fastq2 Conversion Software
(Illumina) was used to generate de-multiplexed Fastq files.

Analysis of RNA-Seq Data
Analysis of RNA-seq data consists of two stages: (1) deter-
mination of transcript abundance and (2) determination
of differentially expressed genes. We determined transcript
abundance from Fastq files, consisting of raw sequence reads,
using a recently published software tool Kallisto (Bray et al.,
2016). Using Kallisto, we first generated a reference transcriptome
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index from cDNA files based on genome assembly Rnor6.0
for rat, published on ENSEMBL Release 92 (Zerbino et al.,
2018). We then determined transcript abundance using Kallisto,
which is based on pseudoalignment of raw sequence reads to
the reference transcriptome index. We used appropriate Kallisto
settings for processing single-end sequence reads from Study 1,
and paired-end sequence reads from Studies 2 and 3. Using these
transcription data, expressed in units of transcripts per million
(TPM), we used the analytical tool Sleuth (Pimentel et al., 2017)
to investigate differential expression of genes between two time
points in each. Within Sleuth, we applied a likelihood ratio test
to identify statistically significant gene expression changes and
a Wald test to compute the effect sizes (logarithms of the fold-
changes), between the two time points in each study, for each
test. From these results, we obtained effect sizes for the genes
that were identified by the likelihood ratio test to have changed
significantly. Finally, we designated the genes with absolute
effect sizes in the top 10th percentile as biologically significant,
conditional upon statistical significance.

Curation of Rat Metabolic Network iRno
and Assignment of Physiological
Flux Bounds
We first updated a recently published functional rat genome-
scale network reconstruction iRno, which contains 2,325 genes
and 5,620 metabolites in 8,336 reactions and eight compartments
connected by Gene-Protein-Reaction rules, and is capable of
simulating 327 liver-specific metabolic functions (Blais et al.,
2017). The updates to iRno included additional reactions
or modification of existing reactions based on experimental
evidence (Supplementary Table S1). For instance, we removed
a reaction (S)-lactate:ferricytochrome-c 2-oxidoreductase, which
was determined to be non-existent in mammalian systems.
Additionally, we added 90 transport and 105 exchange reactions
to iRno to improve its coverage of exchangeable metabolites that
were detected in plasma metabolite profiles in the present study.
The updated iRno contains 2,325 genes and 5,709 metabolites
including 3,201 unique metabolites in 8,534 reactions including
595 exchange reactions in eight compartments. Supplementary
Table S1 provides the updated iRno.

The liver operates in a gluconeogenic mode during the short-
term fasting trajectory in the present study. In this state, the liver
takes up amino acids, lactate, and glycerol to produce glucose
and urea. The liver also takes up non-esterified fatty acids to
produce ketone bodies. We constrained the uptake rates of amino
acids, fatty acids, lactate, and glycerol, using values reported in
the literature from in vivo measurements in rats undergoing
short-term fasting (Supplementary Table S2).

Application of Transcriptionally Inferred
Metabolic Biomarker Response
(TIMBR) Algorithm
Transcriptionally inferred metabolic biomarker response
(TIMBR) is a recently published method developed for
predicting changes in extracellular metabolites due to gene
expression changes under defined physiological operating

conditions by integrating those changes into genome-scale
network reconstructions (see Blais et al., 2017 for details). In the
present study, we applied TIMBR to predict metabolite changes
during a 5–6-h window of short-term fasting, where gene
expression changes have little influence on metabolic state (Ikeda
et al., 2014), in contrast to the changes in the central carbon
metabolism fluxes. TIMBR calculates the global network demand
required for producing a metabolite (Xmet) by minimizing the
weighted sum of fluxes across all reactions for each condition
and metabolite, while satisfying the steady-state mass balance
and a defined optimal fraction of maximum network production
flux capability (νopt) to produce a metabolite as shown below:

Xmet = min
∑
|v|

s.t. : vX ≥ vopt; vlb < v < vub ; S · v = 0
(1)

where ν is a vector of reaction fluxes and S is the stoichiometric
matrix. We included boundary conditions for uptake and
secretion rates into the algorithm by fixing the respective lower
(νlb) and upper bounds (νub) of the metabolite exchange reactions
(νex), as shown in Eq. (2). Similarly, we integrated measurements
from 13C-labeled tracer studies for some of the central carbon
metabolism fluxes into the TIMBR algorithm by constraining
the lower and upper bounds of the respective reactions in
the model (νmfa) (Eq. 3).

vlb < vex < vub (2)

vlb < vmfa < vub (3)

Using this method, we determined the relative production
scores for all metabolites (Xraw) from 5 to 7 h (X5−7) and 10
to 13 h (X10−13) time points (Eq. 4), and then calculated the
TIMBR production scores (Xs) as the z-transformed scores across
all exchangeable metabolites (Eq. 5).

Xraw =
X5−7 − X10−13

X5−7 + X10−13
(4)

Xs =
Xraw − µ

σ
(5)

Figure 1 shows the workflow for the application of the TIMBR
algorithm (adapted from Pannala et al., 2018). We performed
the model computations in MATLAB R2017b using the linear
programming solver provided in the GNU Linear Programming
Kit. We refer the reader to the original publication for detailed
descriptions of the TIMBR algorithm and the corresponding
computer codes (Blais et al., 2017).

RESULTS AND DISCUSSION

Liver Glucose Production and
Glycogenolysis Fluxes Decrease
With Fasting Duration
During fasting, the liver produces glucose by synthesizing
it from glycerol, lactate, and amino acids, as well as by
breaking down glycogen. Figure 2 shows a schematic of the
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FIGURE 1 | Schematic (adapted from Pannala et al., 2018) illustrates how we integrated physiological flux bounds for exchangeable metabolites (νex), measured
central carbon fluxes (νmfa) with the rat metabolic network model iRno to compute global network demand (Xmet) using TIMBR, by minimizing the sum of the
absolute value of flux across all reactions at the earlier (X5-7) and later (X10-13) time points. We then calculated a z-transformed TIMBR score (Xs) from the raw
metabolite production score (X raw) for each metabolite, whose positive or negative sign indicated its predicted tendency to increase or decrease in plasma. The
TIMBR scores were compared with the measured fold-change values of significantly changed metabolites in the plasma to assess the contributions of liver
metabolism to those changes.

liver glucose production pathways, which include reactions of
glycogenolysis, gluconeogenesis, and the tricarboxylic acid cycle.
The aforementioned fluxes are collectively termed central carbon
fluxes. The flux values through individual reactions at 10 and
13 h of fasting (Figure 3, Studies 1–3) were measured by stable
isotope tracer studies, and those at 5–7 h of fasting (Figure 3,
Est. 5–7 h) were compiled from the literature under conditions
similar to our studies. In all studies considered for flux values
at 5–7 h, food was withdrawn at the beginning of the light
cycle. To reduce the influence of potential confounding factors,
we first obtained absolute flux of liver glucose production from
Rossetti et al.’s (1993) study conducted in 322 g male Sprague-
Dawley rats [standard error (SE) = 7 g, n = 35] fed standard
chow under conscious unrestrained conditions. The fractional
contribution of glycogen to liver glucose production (48%) at
5–7 h was reported to be invariant to rat strain, body weight,
state of anesthesia, and measurement technique (Rossetti et al.,
1993; Neese et al., 1995; Peroni et al., 1997; Sena et al., 2007; Jin
et al., 2013). The remaining 52% of glucose output came from
glycerol, and lactate and amino acids (Rossetti et al., 1993; Neese
et al., 1995; Peroni et al., 1997; Sena et al., 2007; Jin et al., 2013).

The reported range of glycerol contribution was 15–19% and
that of lactate and amino acids was 37–41% (Peroni et al., 1997;
Sena et al., 2007; Jin et al., 2013) in various rat strains and a
wide range of body weights. We selected fractional contributions
of glycerol and lactate from the study of Jin et al. (2013)
where they used 324 g male Sprague-Dawley rats (SE = 4 g,
n = 9). Table 2 shows the fractional contributions of various
precursors to liver glucose output at 5–7 h and Figure 3 shows the
absolute flux values.

Overall glucose output progressively decreased by 30% from
5 to 7 h until 13 h of fasting. Much of this reduction was
due to a decrease in the flux of glycogenolysis, whose fractional
contribution to glucose output decreased from 48% at 5 h to
2.3% at 13 h of fasting (Table 2). Thus, the contributions of
the remaining precursors—glycerol, lactate, and amino acids—to
glucose output remained nearly constant as absolute values but
increased as fractions of glucose output. As a result, the absolute
fluxes through the reactions downstream of glycogen breakdown
(PYGL in Figure 2), beginning with glucose-6-phosphate
isomerase (GPI in Figure 2) and ending in the tricarboxylic acid
cycle at succinate dehydrogenase (SDH in Figure 2), were nearly
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FIGURE 2 | Figure (adapted from Pannala et al., 2018) depicts liver central
carbon metabolism pathways that produce glucose by breaking down
glycogen (glycogenolysis) and by gluconeogenesis from glycerol, lactate, and
amino acids during fasting. Unidirectional arrows indicate reactions that
operate far from thermodynamic equilibrium and are practically irreversible.
Bidirectional arrows indicate reactions that operate closer to thermodynamic
equilibrium and are reversible under physiological conditions. ALDO, aldolase;
CS, citrate synthase; EndoRa, endogenous liver glucose production; ENO,
enolase; GAPDH, glyceraldehyde phosphate dehydrogenase; GK, glycerol
kinase; GPI, glucose-6-phosphate isomerase; IDH, isocitrate dehydrogenase;
LDH, lactate dehydrogenase; OGDH, oxoglutarate dehydrogenase; PC,
pyruvate carboxylase; PCC, propionyl-CoA carboxylase; PCK,
phos-phosphoenolpyruvate carboxykinase; PK, pyruvate kinase; PYGL,
glycogen phosphorylase; SDH, succinate dehydrogenase.

equal in magnitude at 10 and 13 h of fasting but higher than the
values at 5–7 h of fasting (Figure 3).

The major conclusions from the central carbon flux data
(Figure 3) were that glycogenolysis and overall glucose output
decline with fasting duration. A key observation was that the
glycogenolysis flux was almost completely depleted after 13 h
of fasting. The flux analysis assumption that liver metabolism
operated in a pseudo-steady state at 5–7 h and 10–13 h is
consistent with numerous observations reported in the literature
(McGarry et al., 1973; Rossetti et al., 1993). The 5–7-h time
interval represented the end of an early post-absorptive period—
where glycogen breakdown contributed to half of the liver glucose
output—which was followed by a steep decline in glycogenolysis
and a steep increase in ketogenesis plateauing at the 10–13-
h time interval. Although the absolute flux of gluconeogenesis
from glycerol was nearly equal at all time points, the flux
of gluconeogenesis from lactate and amino acids was higher
at the 10–13-h time interval, which indicated the coupling
of liver metabolism to extra-hepatic sources of precursors for
gluconeogenesis after longer fasting durations. Finally, a key
approximation in the central carbon flux analysis was that the

FIGURE 3 | Central carbon metabolic pathway fluxes through the reactions
illustrated in Figure 2, measured in Studies 1–3 (10 and 13 h time points), and
estimated from the literature at 5–7 h time interval. Bars represent mean flux
values, and the error bars represent the SE of the means. The numbers of
biological replicates in Studies 1–3 were 9, 8, and 8, respectively. Fluxes
labeled by an asterisk (GAPDH, GK, ENO, and PCC) were expressed in
hexose units, i.e., divided by a factor of two from their actual values.
Abbreviated reaction names on the y-axis follow their definitions in the legend
for Figure 2.

liver provided all of the glucose output. Although the kidney
is also known to contribute to overall gluconeogenesis, its
contribution is important only at fasting durations beyond 24 h
(Mithieux et al., 2006). Together with previous evidence, our data
suggest the presence of distinct metabolic states after 5–7 h and
10–13 h of fasting.

Metabolite Changes Observed
During Short-Term Fasting
Plasma metabolites changed after short-term fasting (Table 3).
Given the similarity in liver central carbon fluxes, we treated the
5-h (Studies 1 and 2) and 7-h (Study 3) fasting durations as early
time points, and the 10-h (Studies 1 and 2) and 13-h (Study 3)
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TABLE 2 | Fractional contributions of metabolic precursors glycogen, glycerol, and
lactate and amino acids to liver glucose production at varying durations of fasting.

Metabolic precursor Percent contribution to liver glucose output

5–7 h 10 h 13 h

Glycogen 48a 20b 2.3b

Glycerol 15a 16b 23.4b

Lactate and amino acids 37a (33a) 64b (51c) 74.3b (59c)

(lactate)

The fractional contribution of lactate alone to liver glucose production is shown in
parentheses adjacent to that of lactate and amino acids in total. a(Rossetti et al.,
1993; Jin et al., 2013). bThis study. c(Lopez et al., 1998).

TABLE 3 | Observed changes in metabolites between early (5–7 h) and late
(10–13 h) time intervals, experimentally measured in the plasma, and in the subset
that is represented in the rat metabolic network model as exchangeable between
the hepatocyte and plasma.

Elevated Depressed

Metabolite set Total (p < 0.01) (p < 0.01)

Experimentally measured in plasma 824 121 72

Model represented and exchangeable 216 33 6

with plasma

durations as later time points for determining metabolite fold-
change values and their statistical significance. Of the 884
metabolites observed across the three studies, 198 changed
significantly (p < 0.01). Of these, 39 metabolites were represented
in the rat metabolic network model (iRno) as exchangeable
between liver cells and the extracellular space or plasma. We
compared our model predictions for the direction of change with
fasting to those for the 39 metabolites, 33 of which showed an
increase and 6 of which showed a decrease.

We also compared the significant changes in plasma
metabolites observed in the present study to those reported

in the literature on short-term fasting in the rat (McGarry
et al., 1973; Ho, 1976; Brass and Hoppel, 1978; Palou et al.,
1981; Kotal et al., 1996; Ikeda et al., 2014). In terms of
major metabolite pathways, most of the changes reported in
the literature were in agreement with those found in our
study (Table 4). Important changes indicative of fasting were
a reduction in glucose and phospholipids, and an elevation of
ketone bodies, fatty acyl carnitines, corticosterone, and choline.
Furthermore, key liver-specific metabolite changes observed here
and in the literature were the elevation of primary and secondary
bile acids, and the elevation of bile pigments bilirubin and
biliverdin. Supplementary Table S3 provides detailed lists of
those metabolites and the entire summary of statistical analysis
of all metabolites.

Reports on large-scale data on plasma metabolite changes
during a short-term fast, the number of biological replicates
required to resolve them, and their sensitivity to the type of
vehicle administered, do not exist in the literature. The number
of metabolites measured in Studies 1, 2, and 3 were 569, 645,
and 633, respectively, where the vehicle administered to the rats
was different for each study. The metabolite fold-change values
needed to be pooled across the three studies to resolve metabolite
changes above experimental and biological noise during short-
term fasting. The sum total of unique metabolites measured in
the plasma in all three studies was 824 (Table 3), of which 420
were common to all three studies, 183 were common to exactly
any two studies, and 221 were observed in exactly any one study.
We calculated bootstrapped 99% confidence intervals of the fold-
change values of the 420 common metabolites and confirmed
that the vehicle was not a significant factor influencing metabolite
changes (see Supplementary Table S3).

Among the 193 significantly changed metabolites (Table 3),
104 (54%) were measured in all three studies, 44 (23%) in
exactly any two studies, and 45 (23%) in exactly any one study.
Similarly, among the 631 unchanged metabolites, 316 (50%) were
measured in all three studies, 139 (22%) in exactly any two

TABLE 4 | Concordance of observed changes in plasma metabolite data with reported changes in the literature due to short-term fasting.

Number of metabolites reported in Fraction in agreement

Pathway this study (and in the literature) with this study Reference

Elevated Unchanged Depressed

Amino acid 3 (6) 18 (13) 1 (3) 0.6 Palou et al., 1981

Carbohydrate 0 0 1 (1) 1.0 McGarry et al., 1973; Palou et al., 1981

Hemoglobin and porphyrin 3 (3) 0 0 1.0 Kotal et al., 1996

metabolism

Lipid/carnitine 0 (0) 0 1 (0) 1.0 Brass and Hoppel, 1978

Lipid/corticosteroids 1 (1) 0 0 (0) 1.0 Dauchy et al., 2010; Ikeda et al., 2014

Lipid/diacylglycerol 1 (0) 0 7 (8) 0.9 Ikeda et al., 2014

Lipid/acyl carnitine 23 (23) 0 0 1.0 Brass and Hoppel, 1978

Lipid/ketone bodies 2 (2) 0 0 1.0 McGarry et al., 1973; Palou et al., 1981

Lipid/phosphatidylcholine 0 0 11 (11) 1.0 Ikeda et al., 2014

Lipid/phosphatidylinositol 0 0 5 (5) 1.0 Ikeda et al., 2014

Lipid/choline 1 (1) 0 0 1.0 Ikeda et al., 2014

Lipid/bile acids 9 (9) 0 0 1.0 Ho, 1976

Lipid/sterol 0 0 1 (1) 1.0 Ikeda et al., 2014
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studies, and 176 (27%) in exactly any one study. Taken together,
there was no study-wise representation bias in the proportion of
metabolites among the changed and unchanged groups, nor was
there any differential effect of the vehicle on metabolite changes
between studies, ensuring that pooling of metabolite fold-change
data across studies was not confounded by known experimental
differences between studies.

Of the 216 metabolites represented in iRno as exchangeable
metabolites, 163 (76%) were measured in all three studies, which
indicated the overall reliability of the data on exchangeable
metabolites. Similarly, among the 39 significantly changed
metabolites, 35 (90%) were measured in all three studies, which
indicated the reliability of the metabolite data against which
our model predictions were compared. Of the remaining four,
N-carbamoylaspartate was measured in Study 3, acetylcarnitine
in Study 1, inosine in Studies 1 and 2, and isocitrate in
Studies 1 and 3.

Metabolite pathway annotations showed that lipids, amino
acids, and cofactors and vitamins account for 49%, 23%,
and 4% of the 824 metabolites, respectively, which indicated
that lipid metabolites constituted the single largest category.
Among the 193 metabolites that changed significantly, lipid
metabolites again constituted the single largest group at 58%. The
fraction of significantly changed lipid metabolites among all lipid
metabolites was also highest at 28%, when compared to changes
in other major pathways (19% or less). These results underscore
the significance of lipids during short-term fasting.

Metabolic Gene Expression Did Not
Change Significantly During
Short-Term Fasting
Gene expression changes in the liver during short-term fasting
in all three studies (Table 5) revealed that the transcripts from
each study mapped to a similar total number of genes (about
14,000), of which 2,258 were mapped to 2,240 in iRno. Out
of the 2,325 genes in iRno, which were annotated with NCBI
gene identifiers, 2,240 had 2,258 ENSEMBL gene identifiers that
were used to annotate our transcriptomic data, with several
genes mapping to than one ENSEMBL identifier. Based on the
criteria of a false discovery rate of less than 0.1 and a biological
effect size cutoff of 0.6 (corresponding to the 90th percentile),
we found no statistically and biologically significant change in the
expression of metabolic genes mapping to iRno in Studies 1 and
3 except for 100 genes in Study 2. Therefore, we did not use any
differential gene expression-based weights in our implementation

TABLE 5 | Summary of gene expression changes with fasting.

Study Number of genes

Mapped to Mapped to

Total iRno (total) iRno (q < 0.1)

1 14,115 2,240 0

2 14,581 2,240 100

3 14,419 2,240 0

of the TIMBR algorithm to predict plasma metabolite
changes. Supplementary Table S4 shows the results of the
gene expression analysis.

Liver Metabolism Accounts for 64% of
Plasma Metabolite Changes
We integrated liver central carbon flux data, as well as known
physiological flux bounds for metabolite exchange fluxes at early
(after 5–7 h of fasting) and late (after 10–13 h of fasting) time
points, with iRno using the TIMBR algorithm. We then used the
TIMBR algorithm to compute a TIMBR score, whose positive or
negative sign indicated the tendency of a metabolite to increase
or decrease in the plasma, respectively, owing to changes in
the liver metabolic network demand induced by fasting. The
TIMBR predictions agreed overall with the metabolite changes
observed here; TIMBR scores accurately predicted five out of
six depressed, and 20 out of 33 elevated metabolites (Table 6).
A summary of the 39 metabolites, their observed log2(fold-
change) values, and corresponding TIMBR scores (Figure 4)
revealed an overall accuracy of 64% for predicting any changes,
and accuracies of 61% and 83% for predicting elevated and
depressed metabolites, respectively. The probability that 64% or
higher prediction accuracy could be achieved by chance was
calculated to be 0.054, using the exact binomial test. Therefore,
our network model of liver metabolism could account for 64%
of plasma metabolite changes (increase or decrease) that were
represented in the model, during short-term fasting.

The results in Figure 4, organized by metabolite pathways,
revealed three major pathways represented in our data set: amino
acids (8 metabolites), cofactors and vitamins (7 metabolites),
and lipids (18 metabolites). The model accuracy in predicting
metabolite changes for these three major pathways was 75% for
amino acids, 42% for cofactors and vitamins, and 78% for lipids,
providing estimates of both the reliability of the network model
and the hepatic origin of metabolite changes in the pathways. In
particular, the model achieved 100% accuracy in predicting the
elevation of five primary and secondary bile acids (under lipids in
Figure 4), and two bile pigments (under cofactors and vitamins),
which are specific to the liver.

Computational Model Assumptions,
Limitations, and Interpretation of
Predictions
The rat metabolic network model, iRno, currently the most
comprehensive genome-scale model of rat metabolism,
instantiated with physiological flux bounds pertinent to the

TABLE 6 | Concordance of TIMBR predictions with observed directions of change
in metabolite data.

Direction of Number of metabolites Concordant model

change measured predictions

Elevated 33 20

Depressed 6 5

All 39 25
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FIGURE 4 | Binary heat map of TIMBR scores of significantly changed exchangeable metabolites in plasma represented in iRno compared with measured
fold-change values, grouped by major biochemical pathways: amino acid, carbohydrate, cofactors, and vitamins, TCA cycle, lipid, nucleotide, and peptide. The
values in the left-hand side column (data) are measured log2(fold change) values of metabolites, grouped as depressed (black background), or elevated (white
background) metabolites. The values in the right-hand side column are the computed TIMBR scores whose negative (black background) or positive (white
background) sign indicates a predicted tendency of the metabolite to be depressed or elevated in plasma.

liver, was tested for satisfying defined liver-specific metabolic
functionalities (Blais et al., 2017). The implicit assumption in our
model was that overall liver metabolism could be represented
by a single network with a representative set of physiological
boundary conditions. This assumption seemed to contradict the
known metabolic differences in hepatocytes between perivenous
and periportal regions in the liver (Thurman et al., 1986).
Despite not representing those different kinds of hepatocytes
in our model, the overall satisfaction of liver metabolic tasks
attested to a sufficient representation of liver metabolic functions
originating in both regions. Additionally, the physiological flux
bounds and central carbon fluxes employed to constrain the
model did not include any metabolic heterogeneity. Finally,
a key assumption in analyzing the model was that the network
maintained a steady state, which was reasonable given the known
metabolic flux conditions at 5–7 h and 10–13 h.

A limitation of our modeling analysis was the restricted
coverage of metabolites exchanged between the plasma and
liver cells. Additional curation of iRno, which included addition

of exchange fluxes to improve network coverage of plasma
metabolites, was limited by the paucity of literature evidence
on the exchangeability of those metabolites. Consequently,
the fraction of lipid metabolites among the 216 exchangeable
metabolites (37%) was lower than that of the overall data set
(49%). However, the fraction of lipid metabolites among the 39
significantly changing metabolites was higher at 46%, which is
consistent with the trend in lipid metabolite fractions observed
in the overall data set. Therefore, metabolite changes mapped to
the network model are not biased by their limited coverage.

The measured changes in the circulating metabolites in plasma
reflected the fasting response of the whole body. Our modeling
effort sought to investigate plasma metabolite changes that can
be associated with changes in liver metabolism under short-
term fasting conditions where the primary observation was a
decrease in the hormonally regulated flux of liver glycogenolysis
and no significant transcriptomic changes of liver enzymes (Lin
and Accili, 2011). Our metabolic network analysis was made liver
specific and relevant to liver metabolism by the flux constraints.
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We used the in vivo central carbon fluxes derived from our tracer-
infusion studies under short-term fasting conditions coupled
with literature data from several studies during short-term
fasting that sets the overall metabolite uptake and secretion
fluxes of the liver (Lopez et al., 1998; Jin et al., 2013). This
analysis assumed that the bulk of the glucose production flux
captured by the in vivo metabolic flux analysis was of hepatic
origin under these conditions (Hasenour et al., 2015). Thus,
even though the measured metabolite changes were reflective
of the overall systemic response, our computational analysis
estimated those changes that were in concordance with a hepatic
origin. To assess the impact of liver transcriptomic changes,
we repeated our implementation of the TIMBR method using
all of the transcriptomic changes regardless of their statistical
significance and found that the predicted directions of metabolite
changes were unaltered from those shown in Figure 4 (see
Supplementary Figures S1–S3).

Finally, the estimated model accuracy in predicting bile
acids and bile pigments (100%, p = 0.004, subset of lipids),
lipids (78%, p = 0.03), and amino acids (75%, p = 0.29)
demonstrated the capability of the model to describe liver
metabolic functions, and provided estimates of contributions of
liver metabolism that agreed with metabolite changes observed in
those pathways. In particular, lipid metabolite changes emerged
as indicators of changes in liver metabolism, which were
characterized both experimentally and computationally with
sufficient statistical significance.

CONCLUSION

Liver glycogenolysis became vanishingly small over the course of
a short-term fast of 13 h, which resulted in a decline in the overall
liver glucose output from 5 h until 13 h. Metabolites in plasma
during this period showed changes known to be associated
with short-term fasting, whereas liver gene expression did not
change significantly. Finally, our computational analysis showed
that two-thirds of the metabolite changes in plasma between
5–7 h and 10–13 h of fasting could be explained by central
carbon flux changes in the liver without significant changes
in gene expression.
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are measured log2 (fold change) values of metabolites, grouped as depressed

Frontiers in Physiology | www.frontiersin.org 11 March 2019 | Volume 10 | Article 161260

https://www.frontiersin.org/articles/10.3389/fphys.2019.00161/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphys.2019.00161/full#supplementary-material
https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-10-00161 February 27, 2019 Time: 16:38 # 12

Vinnakota et al. Network Modeling of Fasting Metabolism

(black background), or elevated (white background) metabolites. The values in the
right-hand side column are the computed TIMBR scores whose negative (black
background) or positive (white background) sign indicates a predicted tendency of
the metabolite to be depressed or elevated in plasma.

FIGURE S2 | Binary heat map of TIMBR scores of significantly changed
exchangeable metabolites in plasma represented in iRno compared with
measured fold-change values, computed using both liver physiological flux
changes and gene expression changes in Study 2 and grouped by major
biochemical pathways: amino acid, carbohydrate, cofactors, and vitamins, TCA
cycle, lipid, nucleotide, and peptide. The values in the left-hand side column (data)
are measured log2 (fold change) values of metabolites, grouped as depressed
(black background), or elevated (white background) metabolites. The values in the
right-hand side column are the computed TIMBR scores whose negative (black
background) or positive (white background) sign indicates a predicted tendency of
the metabolite to be depressed or elevated in plasma.

FIGURE S3 | Binary heat map of TIMBR scores of significantly changed
exchangeable metabolites in plasma represented in iRno compared with
measured fold-change values, computed using both liver physiological flux
changes and gene expression changes in Study 3 and grouped by major
biochemical pathways: amino acid, carbohydrate, cofactors, and vitamins, TCA
cycle, lipid, nucleotide, and peptide. The values in the left-hand side column (data)
are measured log2 (fold change) values of metabolites, grouped as depressed

(black background), or elevated (white background) metabolites. The values in the
right-hand side column are the computed TIMBR scores whose negative (black
background) or positive (white background) sign indicates a predicted tendency of
the metabolite to be depressed or elevated in plasma.
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Ulcerative colitis (UC) is an idiopathic, chronic inflammatory disorder of the colon,
characterized by continuous mucosal inflammation. Recently, some studies have
considered it as part of an inflammatory bowel disease-based global network. Herein,
with the aim of identifying the underlying potential genetic mechanisms involved in
the development of UC, multiple algorithms for weighted correlation network analysis
(WGCNA), principal component analysis (PCA), and linear models for microarray data
algorithm (LIMMA) were used to identify the hub genes. The map of platelet activation,
ligand-receptor interaction, calcium signaling pathway, and cAMP signaling pathway
showed significant links with UC development, and the hub genes CCR7, CXCL10,
CXCL9, IDO1, MMP9, and VCAM1, which are associated with immune dysregulation
and tumorigenesis in biological function, were found by multiple powerful bioinformatics
methods. Analysis of The Cancer Genome Atlas (TCGA) also showed that the low
expression of CCR7, CXCL10, CXCL9, and MMP9 may be correlated with a poor
prognosis of overall survival (OS) in colorectal cancer (CRC) patients (all p < 0.05), while
no significance detected in both of IDO1 and VCAM1. In addition, low expression of
CCR7, CXCL10, CXCL9, MMP9, and IDO1 may be associated with a poor prognosis
in recurrence free survival (RFS) time (all p < 0.05), but no significant difference was
identified in VCAM1. Moreover, the NFKB1, FLI1, and STAT1 with the highest enrichment
score were detected as the master regulators of hub genes. In summary, these results
indicated the central role of the hub genes of CCR7, CXCL10, CXCL9, IDO1, VCAM1,
and MMP9, in response to UC progression, as well as the development of UC to CRC,
thus shedding light on the molecular mechanisms involved and assisting with drug
target validation.

Keywords: ulcerative colitis, colorectal cancer, pathway enrichment, molecular mechanism, bioinformatics
analysis
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INTRODUCTION

Ulcerative colitis (UC) is a global, progressive and complex
disease, the incidence of which is still growing, according to
large-scale epidemiological statistics studies (Ng et al., 2018).
Epidemiological reports shows that the highest annual incidence
of UC was 24.3 per 100,000 person-years in Europe, 6.3 per
100,000 person-years in Asia and the Middle East, and 19.2
per 100,000 person-years in North America; and adjusted
prevalences have exceeded 0.3% in many countries, especially
in Europe and North America (Molodecky et al., 2012; Ng
et al., 2018). A further concern is that the incidence of UC
and the widespread use of therapeutic agents are associated
with an increased risk of cancer (Biancone et al., 2015).
Regarding the pathogenesis of UC, most of the emerging evidence
supports the concept of an “inflammatory bowel disease (IBD)
interactome,” that is, UC is considered as part of a global
disease network, with a complex interplay between host genetics,
immunity, and environmental factors (Dabritz and Menheniott,
2014). According to this model, gene–environment interactions
have pivotal roles in UC progression and mediate UC-related
comorbidities and complications, including colitis-associated
cancer (Dabritz and Menheniott, 2014). In the past two decades,
novel genotyping and sequencing technologies, including RNA
expression profiling, DNA methylation profiling, single-cell DNA
analysis, chromatin immunoprecipitation sequencing, and RNA
sequencing, have launched the era of genetic diseases; so far, 242
susceptibility loci and over 50 hub genes have been discovered
in relation to IBD and various phenotypes (Mirkov et al., 2017).
Moon et al. performed deep resequencing of UC-associated
genes, showing that genetic variants of rs10035653 in C5orf55,
rs41417449 in BTNL2, rs3117099 in HCG23, rs7192 in HLA-
DRA, rs3744246 in ORMDL3, and rs713669 in IL17REL were
significant (Moon et al., 2018). Hong et al. (2018) performed
a trans-ethnic meta-analysis based on Asian IBD patients and
subsequently identified three novel susceptibility loci at MYO10-
BASP1, PPP2R3C/KIAA0391/PSMA6/NFKB1A, and LRRK1; as
well as four previously known loci at NCF4, TSPAN32, CIITA,
and VANGL2. Similarly, Peters et al. (2017) presented a
predictive model of immune-related genes and further analyzed
the functional and regulatory annotations based on genome-
wide association studies. Consequently, a driver set including
DOCK2, GPSM3, AIF1, NCKAP1L, and DOK3 was selected,
representing a high predictive efficiency in the integrated circuits
of genetics, molecular, and clinical traits of IBD (Peters et al.,
2017). The candidate biomarkers identification of UC activity and
tumorigenesis in prior studies were presented in Table 1.

In summary, these novels genotyping and sequencing
technologies and validated hub gene or susceptibility loci not
only confer new regulators of pathophysiology, but also open
a new horizon to find drug targets and redefine the disease’s
regulatory framework. However, these genetic variants combined
only explain one in four cases of UC (Uhlig and Muise, 2017).
The results also suggest that: (1) The genetic variants considered
as personal pathogenic components cannot be isolated in the
gene-environment network; (2) These hub genes show better
statistical significance while loss of the functional and regulatory

TABLE 1 | The candidate biomarkers identification of ulcerative colitis activity and
tumorigenesis in prior studies.

Terms Investigator Candidate biomarker

UC activity Moon et al., 2018 C5orf55, BTNL2, HCG23, and
HLA-DRA, et al.

Hong et al., 2018 MYO10-BASP1, PPP2R3C,
KIAA0391, and PSMA6, et al.

Wu et al., 2014 VCAM1, IL6, IL18, ICAM1, and TNFα

McNamee et al., 2015 CCR7

Ciorba et al., 2010 IDO1, STAT1, TLR9, and CD11

UC-associated
cancer

Zhang et al., 2017 TNFα, IL1β, IFNγ, IL6, IL17a, IL23a,
IL4, and IL12a

Liu et al., 2014 IL1β, IL6, TNFα, NFκB, and STAT3

Shukla et al., 2016 CXCL9, CXCL10, CCL5, IL1α, IL6,
and TNFα

Pujada et al., 2017 MMP9 and S100A8

Thaker et al., 2013 IDO1 and IFNγ

Xu et al., 2018 CCR7, CCL19 and CD31

annotations or may play an important part in protein-protein
interaction (PPI) networks without statistical power; (3) some
of the hub gene information may have been missed, owing
to low abundance or small fold change (FC); and (4) disease-
based co-expression network analysis may further improve
the mining efficiency beyond classical methods (Uhlig and
Muise, 2017). Based on the above notes, we may apply linear
models for microarray data power differential expression analyses
(LIMMA), weighted correlation network analysis (WGCNA),
and principal component analysis (PCA) to explore the hub
gene regulatory network, using high-throughput gene expression
arrays in UC, to further elucidate the molecular mechanisms of
gene–environment interactions.

MATERIALS AND METHODS

Materials
Raw expression microarray array (CEL data) from the GSE13367,
GSE38713, GSE16879, GSE48958, GSE75214, GSE4183,
GSE37283, and GSE31106 datasets were downloaded from Gene
Expression Omnibus1 (Barrett et al., 2013). Probe annotations
and platform information were generated by matching with
the GPL6244 (HuGene-1_0-st) Affymetrix Human Gene 1.0 ST
Array (Affymetrix, Santa Clara, CA, United States).

In this study, we analyzed the patients with colitis exclusively,
no other IBD cases included. Here, GSE48958 and GSE75214
are matching with the GPL6244 (HuGene-1_0-st) Affymetrix
Human Gene 1.0 ST Array, while GSE13367, GSE38713,
GSE16879, GSE37283, and GSE4183 are pairing with the
GPL570 (HG-U133_Plus_2) Affymetrix Human Genome U133
Plus 2.0 Array and the GSE31106 is in line with GPL1261
(Mouse430_2) Affymetrix Mouse Genome 430 2.0 Array. Total
RNA extracted from mucosal biopsies was used to analyze mRNA
expression via Affymetrix arrays, and corresponding grouping

1http://ncbi.nlm.nih.gov/geo/
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information from each sample was subsequently pooled for
further correlation analysis. Statistical analysis was performed
with the R (version 3.3.2).

Data Processing
To remove bias and variability (resulting from heterogeneity and
latent variables) from the high-throughput data for the different
microarrays, the “ComBat” function in the SVA package was
used to directly adjust the batch effects and latent variables
(Leek et al., 2012). Subsequently, all of the microarray raw data
analyzed using bioinformatics methods, including background
correction, quantile normalization, and probe summarization of
the expression values (Irizarry et al., 2003; Ritchie et al., 2015).
Some advanced algorithms were used, including: (1) robust
multi-array average for background-adjusted, normalized, and
log-transformed probe expression values; (2) k-nearest-neighbor
for displacing missing values of probes; (3) the t-test in the
“LIMMA” package to identify differentially expressed genes
(DEGs) in mucosal biopsy specimens from the comparative
analysis among normal, UC, adenoma, and colorectal cancer
(CRC) for GSE4183; and (4) the Benjamini–Hochberg method
to adjust p-values and thus calculate the false discovery rate and
FC (Irizarry et al., 2003; Ritchie et al., 2015). Gene expression
values with | log2FC| > 1.5 and adjusted p-value < 0.05 were
used to define DEGs. The co-annotated genes (a total of 16,653
genes) between GPL570 and GPL6244 platform were selected for
further co-expression network analysis. The analysis strategy is
presented in Figure 1.

Weighted Co-expression Network
Construction and Module Detection
The advantages of co-expression network analysis include the
ability to integrate external information and avoid information
loss in the case of low-abundance or small-FC genes. Systems-
level insight gives WGCNA an edge over other approaches
(Langfelder and Horvath, 2008). Therefore, we carried out a
systems-level analysis based on WGCNA. The analysis involved
the following processes: (1) identifying the appropriate sample
basing on the flash-Clust method; (2) selecting a “soft” threshold
using the scale-free topology criterion; (3) identifying co-
expression modules by employed the dynamic hybrid cut
method; (4) relating the co-expression modules to sample
traits based on the gene significance (GS) measures, which are
defined as the statistical significance of the difference between
the gene profile and the sample trait; and (5) accessing the
interactions and connectivity of eigengenes among different
co-expression modules by the topological overlap matrix method
(Langfelder and Horvath, 2008).

PPI Networks and Functional
Enrichment Analysis
We accessed gene biological knowledge, protein functional
associations, and PPIs with respect to genetic function, using a
web-based analytic tool. The analysis flowchart as flowing that:
(1) the gene ontology (GO) functions enrichment was extracted

from the DAVID database2 (Huang et al., 2007) for annotation,
visualization, and integrated discovery bioinformatics resources;
GO terms for which p < 0.05 were considered to be significantly
enriched in the gene modules of interest; and (2) the network
of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
was identified form Metascape database3 (Zhou et al., 2019), and
p < 0.05 and enrichment score >1.0 was set as the cut-off criteria;
(3) after carried out for the genes enriched in KEGG pathway of
immunity, inflammation and tumorigenesis for the interesting
gene modules, we subsequently constructed the PPI biological
networks based on the STRING online database (V10.54) with
the nodes association confidence score >0.4 (Szklarczyk et al.,
2017). In addition, the Cytoscape software (V3.5.15) was used
to visualize and evaluate interactions and identifying the hub
gene in functional networks (Szklarczyk et al., 2017). The top
10 highest-degree nodes were defined as functional hub genes in
the PPI network.

Identification of Candidate Biomarkers
Involving in UC-Associated
Carcinogenesis
Additionally, raw data of GSE4183 was used to analysis the co-
DEGs involved in UC, adenoma, and CRC. Here, we overlapped
the co-DEGs and the PPI network’s functional hub genes, which
constructed by WGCNA key modules and identified as important
parts in response to the pathway of UC immunity-inflammation
and tumorigenesis, to detect the UC-associated carcinogenesis
in hub genes. Additionally, the suitable dataset of GSE37283,
including the expression profiling of UC with neoplasia, UC and
normal mucosa samples, was used to validate the UC-associated
carcinogenesis biomarkers; as well as the mouse dataset of
GSE31106 involved in the multistep process of “inflammation-
dysplasia-cancer.” The human and mouse genes were matched
by Gene database6 (Brown et al., 2015).

The Cancer Genome Atlas (TCGA) colon adenocarcinoma
normalized gene expression value (fragments per kilobase of
exon model per million reads mapped, FPKM) were downloaded
from the “TCGA biolinks” package (Colaprico et al., 2016).
Subsequently, the FPKM data transformed into transcripts per
kilobase million (TPM; Li et al., 2010), a comparable data type,
which used to apply the survival analysis. The sample and
corresponding clinical features were included in further survival
and DEGs analysis.

Investigating the Functional Role and
Transcription Factor of Hub Genes
Importantly, the DAVID7 and Metascape database were used to
explore the GO terms and KEGG pathway enrichment analysis
of candidate targets, respectively. The enrichment cut-off criteria

2http://david.abcc.ncifcrf.gov/
3http://metascape.org/
4http://string-db.org/
5http://cytoscape.org/
6https://www.ncbi.nlm.nih.gov/gene/
7http://david.abcc.ncifcrf.gov/
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FIGURE 1 | Strategy used for the integrative gene microarray bioinformatics analyses.

keep the same with the chapter and Section “PPI Networks
and Functional Enrichment Analysis.” Subsequently, to identify
the transcription factor (TF) of the hub genes, the plug in
iRegulon for Cytoscape software was applied, with the parameters
were set to: (1) minimum identity between orthologous
genes = 0.05; (2) maximum FDR for motif similarity = 0.001;
and (3) normalized enrichment score (NES) ≥ 3.0 (Janky et al.,
2014). Here, the top three regulators with the highest NES value
were detected to construct the regulatory network involved in
UC-associated carcinogenesis process.

RESULTS

Data Processing
The normal and UC mucosa without additional treatment from
GPL6244 (GSE48958 and GSE75214) and GPL570 (GSE13367,
GSE38713, and GSE16879) platform were selected in their
entirety for further analysis, including the 58 normal, 55 UC
inactive and 170 UC active samples (Supplementary Table S1).
After merging the co-annotated genes, 16,653 genes were retained

in further analysis (Figure 2A and Supplementary Table S1).
The PCA of co-annotated genes in response to pre- and post-
correct the batch effects were showing in Figure 2B, which
presenting a significant distinction between control, UC inactive
and UC active samples.

Construction of Co-expression
Network and Gene Modules
After sample cluster analysis, the 283 samples with 16,653
gene variables were divided into 13 clusters (MEblack,
MEblue, MEbrown, MEgreen, MEgreenyellow, MEgrey,
MEmagenta, MEpink, MEpurple, MEred, MEtan, MEturquoise,
and MEyellow; Figure 2C), and no samples removed in this
process (Supplementary Figure S1A).

Following the WGCNA: (1) when the critical parameter of the
power value was 12, the scale independence was up to 0.8 and
had a higher mean connectivity (Supplementary Figure S1B);
(2) two key modules and the relationship with the clinical traits
were detected (Colitis: MEbrown Pearson coefficient = 0.94,
p = 7E-134, MEgreen Pearson coefficient = 0.75, p = 2E-51; UC
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FIGURE 2 | Co-expression modules construction and identify interesting modules of ulcerative colitis and activity. (A) Venn diagram showing the overlap of the
co-annotated genes in GPL6244 and GPL570 platform. (B) The principal component analysis (PCA) for co-annotated genes among the various microarrays in
response to pre- and post-adjusting of the batch effects of the status of ulcerative colitis activity. (C) Construction of co-expression modules based on a dynamic
branch-cutting method. (D) The relationship between the co-expression modules and clinical traits. Red represents a positive correlation, and the green represents a
negative correlation. (E) The connectivity of eigengenes. Red represents a positive correlation, and blue represents a negative correlation. (F) The PCA for interesting
module genes in response to the status of ulcerative colitis activity. (G) The gene significance (GS) and module membership (MM) analysis of interesting modules in
response to ulcerative colitis and activity.
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active: MEbrown Pearson coefficient = 0.69, p = 2E-41; MEgreen
Pearson coefficient = 0.86, p = 1E-85; Figure 2D); (3) the
result of interaction analysis among co-expression modules
suggested a high degree of independence among different module
genes, such that the heatmap showed no significant interaction
among module genes (Supplementary Figure S1C); and (4) The
connectivity of eigengenes in different modules allowed us
to identify three clusters identified, and the eigengenes of
different modules within the same cluster showed significant
connectivity, whereas there was no difference among different
clusters’ modules (Figure 2E). The interesting module gene list
was presented in Supplementary Table S2.

Additionally, in related to UC activity, two-dimensional PCA
results also showing satisfactory connectivity and distinguish
ability of MEgreen and MEbrown module genes in response to
UC and activity (Figure 2F; MEgreen: first principal component:
64.9%, second principal component: 7.2%; MEbrown: first
principal component: 69.8%, second principal component:
23.9%). And, as shown in Figure 2G, the GS analysis results
showing a tight correlation between the gene and the trait of
colitis (MEbrown: Pearson coefficient = −0.41, p = 1.1E-23;
MEgreen: Pearson coefficient = 0.99, p < 1E-200), as well as
the trait of UC active (MEbrown: Pearson coefficient = −0.58,
p = 7.2E-91; MEgreen: Pearson coefficient = 0.93, p = 2.6E-
133). Similarly, the MEbrown and MEgreen module genes also
presented a significant contribution to the module membership
(MM; Figure 2G).

Functional Enrichment Analysis and PPI
Networks Construction
The MEgreen and MEbrown modules were assessed for further
functional enrichment, consisting of GO term enrichment
analysis of module genes of interest. Regarding GO terms
enrichment, the MEgreen module was mainly enriched in GO:
0007041∼lysosomal transport (5 genes enriched; p = 1.11E-05),
GO: 0098609∼cell-cell adhesion (13 genes enriched; p = 1.68E-
04), and GO: 0043254∼regulation of protein complex assembly
(4 genes enriched; p = 6.43E-04). Genes in the MEbrown
module were predominantly enriched in GO: 0071805∼ion
transmembrane transport (21 genes enriched; p = 3.98E-11),
GO: 0042391∼regulation of membrane potential (13 genes
enriched; p = 4.80E-07), and GO: 0034765∼regulation of ion
transmembrane transport (18 genes enriched; p = 3.95E-09).
These results are illustrated in Figure 3A. Regarding the
KEGG pathway enrichment, the MEgreen module genes were
significantly enriched in viral carcinogenesis (15 genes enriched;
enrichment score = 5.01; p = 3.51E-05), proteoglycans in cancer
(10 genes enriched; enrichment score = 3.97; p = 1.01E-03), and
platelet activation (8 genes enriched; enrichment score = 4.91;
p = 1.46E-03). However, genes in the MEbrown module were
significantly enriched in ligand-receptor interaction (22 genes
enriched; enrichment score = 3.55; p = 3.41E-07), calcium
signaling pathway (13 genes enriched; enrichment score = 3.21;
p = 1.72E-03), and adenosine 3′, 5′-cyclic monophosphate
(cAMP) signaling pathway (12 genes enriched; enrichment
score = 2.72; p = 2.36E-03).

Additionally, the Figure 3B illustrating a part of the
visible pathway that tightly correlated with cancer from the
KEGG pathway network (Table 2). These cancer-correlated
pathways were related to immunity-inflammation response and
tumorigenesis. These results also illustrated in Table 2. After
submitting the genes enriched in cancer-correlated pathways to
the STRING database, 50 and 48 PPI nodes were obtained for the
MEbrown and MEgreen modules, respectively, with a confidence
threshold greater than 0.4. After analyzed by Cytoscape software
as an undirected method, the top 10 highest connectivity nodes of
each PPI network were considered to be central agents. The PPI
network of interesting modules was presented in Figure 3B.

Identification of Candidate Biomarkers
Involving in UC-Associated
Carcinogenesis
What’s more, 184 DEGs were obtained in the comparison of
UC and CRC (160 DEGs down-regulated and 24 DEGs up-
regulated in CRC samples), and 344 DEGs were identified in
the comparison of UC and adenoma in GSE4183 (332 DEGs
down-regulated and 12 DEGs up-regulated in adenoma samples)
(Supplementary Table S3). After overlapped, 106 co-DEGs were
selected. Subsequently, we’ve further identified the same genes
between co-DEGs and central agents of each PPI network, which
have been selected as UC-related tumorigenesis genes. And
6 (CXCL10, VCAM1, CXCL9, MMP9, IDO1, and CCR7) out
of the 106 co-DEGs remained after selection (Figure 2B and
Supplementary Table S5). We also found a statistical difference
in the gene expression levels of these genes between healthy
individuals and UC patients (Figure 4A and Supplementary
Table S4), as well as the expression levels between healthy
individuals, UC, adenoma, and CRC patients of GSE4183 dataset
(Figure 4B and Supplementary Table S5).

After validated by GSE37283 and GSE31106 datasets, the six
hub gene expression levels in phases of UC were significantly
increased in compared with the normal sample in both of
the human and mouse’s colonic mucosa (all the p < 0.05;
Supplementary Table S6). Additionally, in comparison with UC
mucosa, the expression level of six hub genes was decreased
in phases of adenocarcinoma in human’s colonic mucosa (all
the p < 0.05; Figures 4C,D). Additionally, in comparison
with normal samples, the expression level of CCR7, CXCL10,
IDO1, and MMP9 were increased in phases of adenocarcinoma’s
tissue, while the expression level of CXCL9 and VCAM1
were decreased. These results are shown in Figure 4 and
Supplementary Table S6.

To extend our findings, the gene expression levels in CRC
and para-cancerous tissues were compared based on TCGA
database. Consequently, the gene differential expression level
with regrading to hub genes was constructed; and all of the hub
genes shown a significant difference in expression level between
cancer and para-cancer tissues (all the p < 0.05; Figure 5A).
Importantly, the Kaplan–Meier survival curves indicated that
a higher expression level of CXCL10 (hazard ratio = 0.63;
p = 0.035), CXCL9 (hazard ratio = 0.63; p = 0.037), MMP9
(Hazard Ratio = 0.61; p = 0.023), and CCR7 (Hazard Ratio = 0.59;
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FIGURE 3 | Identification of key pathways and hub genes in the progression of ulcerative colitis activity and tumorigenesis. (A) Gene ontology (GO) terms enrichment
analyzing was performed using the Database for Annotation, Visualization, and Integration Discovery (DAVID) database. The sizes of the dots represent the counts of
enriched module genes, and the dot color represents the negative Log10 (p-value). (B) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment
was constructed by Metascape database. The sizes of the dots represent the negative Log10 (p-value). Subsequently, the genes enriched in the pathway of
immunity, inflammation, and tumorigenesis were selected to construct the protein-protein interaction (PPI) network basing on the STRING database for modules with
a threshold value >0.4, respectively. And the Venn diagram showing the overlap of the top 10 functional hub genes in the MEgreen and MEbrown PPI networks, and
tumorigenesis genes detected in GSE4183. The font sizes represent the degree of gene interaction in the PPI network.

p = 0.013) were significantly associated with the poor prognosis
for CRC patients; although the difference in overall survival (OS)
between high and low expression of IDO1 (Hazard Ratio = 0.78;

p = 0.27) and VCAM1 (Hazard Ratio = 0.74; p = 0.215) were
not significant. Additionally, there was a clear tendency for lower
expression of CXCL10 (Hazard Ratio = 0.38; p < 0.001), CXCL9
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TABLE 2 | Identifying the cancer-correlated terms form the KEGG pathway network of the interesting modules.

MEmodule KEGG term p Value Enriched genes

MEgreen Platelet activation 0.001 AKT2, RHOA, ITGB1, MMP9, PRKACA, et al.

Proteoglycans in cancer 0.001 AKT2, RHOA, ITGB1, MDM2, PRKACA, et al.

B cell receptor signaling pathway 0.005 AKT2, PPP3R1, RAC1, IKBKG

Chronic myeloid leukemia 0.005 AKT2, MDM2, PTPN11, IKBKG

Pathways in cancer 0.006 AKT2, RHOA, DAPK3, ITGB1, MDM2, et al.

Bacterial invasion of epithelial cells 0.007 RHOA, RAC1, CXCL10, CXCL9, CXCL11, et al.

Ras signaling pathway 0.008 AKT2, RHOA, PRKACA, PTPN11, RAC1, et al.

T cell receptor signaling pathway 0.019 AKT2, RHOA, PPP3R1, IKBKG, CCL19

Rap1 signaling pathway 0.019 AKT2, RHOA, ITGB1, RAC1, TLN1, et al.

VEGF signaling pathway 0.021 AKT2, PPP3R1, RAC1, VCAM1, PTPN11

Colorectal cancer 0.022 AKT2, RHOA, RAC1, CD19, CD274

Leukocyte transendothelial migration 0.027 RHOA, ITGB1, PTPN11, RAC1

Adherens junction 0.035 RHOA, PTPN1, RAC1, TNFSF13B, IDO1, et al.

Pertussis 0.041 RHOA, CFL1, ITGB1, GZMB

Mebrown Calcium signaling pathway 0.000 ATP2B3, AVPR1B, CCKAR, CACNA1B, CAMK2B, et al.

cAMP signaling pathway 0.002 ATP2B3, HCN2, CAMK2B, CNGA4, DRD2, et al.

Oxytocin signaling pathway 0.002 CAMK2B, KCNJ5, OXT, PRKACG, PRKCG, et al.

MAPK signaling pathway 0.013 CACNA1B, FGF6, MAPT, PRKACG, PRKCG, et al.

Wnt signaling pathway 0.015 CAMK2B, PRKACG, PRKCG, CCR7, SFRP5, et al.

Jak-STAT signaling pathway 0.024 CNTFR, EPO, GFAP, GH2, IFNA2, et al.

Cofactor metabolic process 0.026 CAMK2B, DCT, PRKACG, PRKCG, WNT7B, et al.

Basal cell carcinoma 0.034 GLI1, WNT7B, WNT8A, CCR7, APC2, et al.

Cytokine-cytokine receptor interaction 0.041 AMHR2, CNTFR, EPO, GH2, IFNA2, et al.

Breast cancer 0.043 FGF6, PGR, WNT7B, WNT8A, FGF23, et al.

(Hazard Ratio = 0.11; p = 0.004), MMP9 (Hazard Ratio = 0.59;
p = 0.046), IDO1 (Hazard Ratio = 0.53; p = 0.012) and CCR7
(Hazard Ratio = 0.61; p = 0.051) to be associated with a
better prognosis in the recurrence free survival (RFS) time. This
suggests that, to some extent, the effect of CXCL10, CXCL9,
MMP9, IDO1, and CCR7 overexpression on early survival time
resulted in a decrease in the survival rate. And these results are
shown in Figure 6.

Investigating the Functional Role and
TF of Hub Genes
To further understand how the hub genes were correlated with
UC-associated carcinogenesis, we applied DAVID and Metascape
online database to explore the biological function. The results of
GO term enrichment indicated that the GO:0032496∼response
to lipopolysaccharide (Enriched genes: CCR7, CXCL9, IDO1,
CXCL10; p = 1.87E-06), GO:0030816∼regulation of cAMP meta-
bolic process (Enriched genes: CXCL9, CXCL10; p = 1.25E-03),
and GO:0006954∼inflammatory/immune response (Enriched
genes: CCR7, CXCL9, CXCL10; p = 2.11E-03) were mainly
enriched, while pathway of Ecb04668: TNF signaling pathway
(Enriched genes: CXCL10, VCAM1, MMP9; p = 1.36E-03),
Ecb04062: Chemokine signaling pathway (enriched genes: CCR7,
CXCL9, CXCL10; p = 3.76E-03), and Ecb04060: Cytokine-
cytokine receptor interaction (enriched genes: CCR7, CXCL9,
CXCL10; p = 4.64E-03) (Figure 5B).

Finally, we predicted TFs and found that nuclear factor NF-
kappa-B1 (NFKB1) (NES = 14.21, target genes = 5, motifs = 30),

friend leukemia integration 1 TF (FLI1) (NES = 7.57, target
genes = 3, motifs = 5), and signal transducer and activator of
transcription 1 (STAT1) (NES = 7.71, target genes = 3, motifs = 2)
as the master regulators of the hub genes are involved in UC-
associated carcinogenesis (Figure 5C).

DISCUSSION

After adjusting the batch effects, 16,653 co-annotated genes
among GPL6244 and GPL570 platform microarray datasets.
Subsequently, we included co-annotated genes, some of which
were present in low abundance or with small FC, in a
further analysis, in which combination with WGCNA could
integrate external traits and avoid information loss at a system
level. According to the results, both MEbrown and MEgreen
appeared to be moderately effective in revealing the UC-based
global network. Biologically, following the functional enrichment
analysis, the pathways of viral carcinogenesis, proteoglycans in
cancer, platelet activation, ligand-receptor interaction, calcium
signaling pathway, and cAMP signaling pathway were identified
as being significantly associated with UC active. And cancer
with highly correlated pathway and enriched genes were selected
to construct the PPI network. The most critical genes were
CXCL10, VCAM1, CXCL9, MMP9, IDO1, and CCR7, indicating
that genetic variability influences susceptibility to the disease
global network, and subsequently revealing potential regulatory
roles in UC-associated carcinogenesis. Furthermore, these hub
genes majorly enriched in tumor necrosis factor (TNF) signaling
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FIGURE 4 | The gene expression analysis and validation in response to the ulcerative colitis activity and tumorigenesis of hub genes. (A) The hub gene’s expression
in response to ulcerative colitis and activity in integrative microarray datasets. (B) The hub gene’s expression detection of GSE4183 involved in inflammation,
adenoma and colonic cancer. (C,D) The validation in the progression of UC-associated carcinogenesis for six candidate genes in human and mouse microarray
datasets. #Represent p < 0.05 among the multi-comparison between normal, UC, and adenocarcinoma mucosa.
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FIGURE 5 | The molecular mechanism and transcription factors investigation for candidate biomarkers involved in ulcerative colitis activity and tumorigenesis.
(A) The hub gene’s expression levels analysis among cancer and para-cancerous tissues. (B) The KEGG pathway enrichment analysis of detected hub genes based
on Metascape database. The sizes of the dots represent the negative Log10 (p-value). (C) The regulatory network results, based on the iRegulon plugin, showing
that the top three regulators of NFKB1, STAT1, and FLI1 in a set of six hub genes, were selected with the highest normalized enrichment score (NES).

pathway, chemokine signaling pathway, and cytokine-cytokine
receptor interaction; and potentially regulated by NFKB1, FLI1,
and STAT1 in TFs network analysis. Furthermore, a significant
association of CCR7, CXCL10, CXCL9, IDO1, and MMP9 with
UC-correlated CRC development was identified by integrating
gene expression and survival analysis.

Emerging evidence has revealed the central role of gene-
environment interaction in UC-based disease networks.

Extrinsic and intrinsic environmental factors may cause
chronic or acute inflammation in UC patients. Wang et al.
found that calcium signaling pathway contributes to the
development of colonic dysmotility in UC and intestinal
inflammation, may be related with the calcium-transporting
ATPase dysregulation in epithelial cells (Wang et al., 2016).
And, additionally, the evidence for the interdependence of
platelet abnormalities in UC model and patients, suggesting
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FIGURE 6 | The Kaplan–Meier survival analysis for the hub genes. (A) Overall survival analysis illustrating the significant difference between higher expression level
and lower expression level of CXCL10, CXCL9, MMP9, and CCR7 gene with respect to patient survival time; no difference was observed for the VCAM1 and IDO1
gene. (B) Significant differences were detected for the CXCL10, CXCL9, MMP9, IDO1, and CCR7 in recurrence free survival time; no difference was observed for the
VCAM1 gene.

Frontiers in Physiology | www.frontiersin.org 11 May 2019 | Volume 10 | Article 662273

https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-10-00662 May 29, 2019 Time: 19:42 # 12

Shi et al. Ulcerative Colitis Gene Network Analysis

that the pathological state of changes in platelet parameters and
their activation, may be linked to the inflammatory response
and enhanced platelet-leukocyte, and aggregate formation
associated with colitis (Senchenkova et al., 2015; Gawronska
et al., 2017). Proteoglycans have been found to be critical
in the regulation of stem cell through inducing precise and
coordinated modulation of key growth factors, resulting in
selective mitogen-activated protein kinases (MAPK) and/or
another intracellular signaling, demonstrating an aberrant
expression of ligand-receptor interaction on immune cells in
IBD patients (Elshal et al., 2016; Gawronska et al., 2017). Li
et al. demonstrated the multiple proinflammatory signaling
pathways and candidate biomarkers, including STAT1, STAT6,
and cAMP signaling pathway, in the exacerbation of UC (Li
et al., 2012). Boothello et al. (2019) revealed that proteoglycans
mediate cancer stem cells induced CRC xenograft’s growth in
a dose-dependent fashion. Moreover, syndecan-2, a type of
proteoglycan, up-regulates MMP-7 expression in colon cancer
cells via PKCγ-mediated activation of FAK/ERK signaling (Jang
et al., 2017). Therefore, the pathway of the calcium signaling
pathway, ligand-receptor interaction, platelet activation, cAMP
signaling pathway and the none-cancer pathway involved,
may provide insight into the immunological and inflammatory
response, and the hypothesis of phospholipid-related barrier
defects in the intestinal mucosa offers an opportunity to further
understand UC-based pathogenesis.

The association between UC-related chronic inflammation
and colon cancer has long been recognized (Table 1). According
to a systemic review reported by Tatiya-Aphiradee, the pathway
immuno-inflammatory response was closely linked to the
regulation and maintenance of UC pathogenesis, that directly
mediated by dynamic and complex communication between
immune cells and cytokines (Tatiya-Aphiradee et al., 2018).
Biologically, the dysregulation of antigen recognition, neutrophil
chemotaxis, commensal microflora, and epithelial barrier defects
may provide insight into the immunological and inflammatory
response, it might offer an opportunity to further understand
UC-based pathogenesis (Hindryckx et al., 2016). Gene expression
profiling by Zhang’s group shown the pathways includes
PI3K-Akt signaling, cytokine-cytokine receptor interaction
and ECM-receptor interaction was significantly associated
with the process of colitis-associated carcinogenesis (Zhang
et al., 2017). Several potential biomarkers of TNF signaling
pathway, including TNF-α, IL-6, IL-1, TGF-β, and IL-10, have
been confirmed to be involved in the process of malignant
transformation of cells and carcinogenesis (Zhang et al.,
2017). The pathway of cytokine-cytokine receptor interaction
may also be closely linked to UC-related inflammation and
tumorigenesis. Fang et al. (2015) compared IBD microarray
datasets and found an important role for cytokine-cytokine
receptor pathway dysregulation in both pediatric and mouse
models of colitis. In sum, during the procession of intestinal
inflammation and carcinogenesis, a variety of immunological
and inflammatory signaling events, including the TNF signaling
pathway, chemokine signaling pathway, and cytokine-cytokine
receptor interaction, are activated and involved in a complex
biological process.

Among the candidate biomarkers, the current understanding
of the function of CXCL10 and CXCL9 may recruit the
leukocytes to inflammation sites. However, a novel report
from Shukla’s group demonstrated that both CXCL10 and
CXCL9 may promote colonic tumorigenesis via promotes the
cytokine-mediated mucosal injury and inflammation response
(Shukla et al., 2016). Additionally, IDO1 were over-expressed
in inflamed and adenoma of the colon, also functioned in
promotes colitis-associated tumorigenesis independent of T-cell
immune surveillance (Thaker et al., 2013). MMP9 could maintain
the microbiota and colonic epithelium mucosal barrier, also
correlated with tissue remodeling and carcinogenesis via activates
the EGFR signaling pathway (Pujada et al., 2017). The adhesion
molecules VCAM-1 and ICAM-1, associated with macrophage
infiltration, are directly associated with cell transmigration in
inflamed colonic tissue (Wu et al., 2014). In addition, Bernhard
et al. revealed that VCAM1 was correlated with different
subsets of three immune cells and with high densities of
T-cell subpopulations within specific tumor regions in CRC,
thus the expression of adhesion molecules also associated
with survival prognosis (Mlecnik et al., 2010). What’s more,
the lymphoid chemokine receptor CCR7 was re-expressed by
activated T cells, allowing them to flow from the tissue to
the lymph nodes through afferent lymphatics. McNamee’s data
showed a critical role for CCR7 in orchestrating immune cell
traffic (McNamee et al., 2015). The role of chemokines in
tumor angiogenesis was achieved in a CCR7-dependent manner
through inhibiting Met/ERK/Elk-1/HIF-1α/VEGF-A pathway in
CRC (Xu et al., 2018).

Finally, the TFs analysis results shown that NFKB1, FLI1,
and STAT1 were significantly predicted in hub gene’s regulatory
network, correlated with UC-correlated tumorigenesis. Here,
STAT1, the first member of signal transducer and activator
of transcription (STAT) family, has been involved in cancer
suppression, including CRC (Zamanian-Azodi and Rezaei-
Tavirani, 2019). Schwiebs et al. (2019) found that STAT1 has
involved in the process of tumor immune microenvironment
during the crosstalk of “inflammation-to-tumor.” NF-kappa-
B1 (NF-κB1) signaling is a prominent and widely studied
inflammatory signaling cascade in the field of immunology (Eden
et al., 2017). Increased transcription of NF-κB is associated with
inflammation and angiogenesis. Burkitt proposed that NF-κB1
differentially regulate susceptibility to colitis-associated adenoma
development (Burkitt et al., 2015). FLI1, a member of the
family of ETS TFs, contains a highly conserved domain that
recognizes ETS core consensus sites (GGAA/T; Hollenhorst
et al., 2011; Tang et al., 2015). EWS-FLI1 regulates multiple
target genes through binding to typical ETS core consensus sites
or GGAA microsatellites, then participates in the carcinogenic
process (Lessnick and Ladanyi, 2012; Tang et al., 2015). Azuara
et al. (2018) have defined FLI1 as a DNA methylation signature
that can be distinguished in the early detection of CRC
associated with IBD.

In summary, we found that the pathways of platelet activation,
ligand-receptor interaction, calcium signaling pathway, and
cAMP signaling pathway may play an important role in UC
development via multiple physiological and pathophysiological
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processes, revealing a potentially attractive therapeutic target for
UC-based disease networks. The overlapping results for CXCL10,
VCAM1, CXCL9, MMP9, IDO1, and CCR7 were obtained,
which are considered to be hub biomarkers involved in UC-
correlated tumorigenesis. Following the expression validation,
survival analysis, and functional analysis, our results indicated
that the novel biomarkers of CXCL10, VCAM1, CXCL9, MMP9,
IDO1, and CCR7 has powerful statistical efficiency and biological
function. These genes are also linked to immune dysregulation
and inflammation response, and thus provide new insights
into the pathogenetic mechanisms of UC development and
tumorigenic processes. Finally, our results also subsequently
identified that the master regulators of NFKB1, FLI1, and STAT1
have significantly associated with UC activity and carcinogenesis
via target the candidate biomarkers.
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The liver has a unique regenerative capability upon injury or partial resection. The 
regeneration process comprises a complex interplay between parenchymal and 
non-parenchymal cells and is tightly regulated at different scales. Thus, we investigated 
liver regeneration using multi-scale methods by combining non-invasive imaging with 
immunohistochemical analyses. In this context, non-invasive imaging can provide 
quantitative data of processes involved in liver regeneration at organ and body scale. 
We quantitatively measured liver volume recovery after 70% partial hepatectomy (PHx) 
by micro computed tomography (μCT) and investigated changes in the density of CD68+ 
macrophages by fluorescence-mediated tomography (FMT) combined with μCT using a 
newly developed near-infrared fluorescent probe. In addition, angiogenesis and tissue-
resident macrophages were analyzed by immunohistochemistry. Based on the results, a 
model describing liver regeneration and the interactions between different cell types was 
established. In vivo analysis of liver volume regeneration over 21 days after PHx by μCT 
imaging demonstrated that the liver volume rapidly increased after PHx reaching a 
maximum at day 14 and normalizing until day 21. An increase in CD68+ macrophage 
density in the liver was detected from day 4 to day 8 by combined FMT-μCT imaging, 
followed by a decline towards control levels between day 14 and day 21. 
Immunohistochemistry revealed the highest angiogenic activity at day 4 after PHx that 
continuously declined thereafter, whereas the density of tissue-resident CD169+ 
macrophages was not altered. The simulated time courses for volume recovery, 
angiogenesis and macrophage density reflect the experimental data describing liver 
regeneration after PHx at organ and tissue scale. In this context, our study highlights the 
importance of non-invasive imaging for acquiring quantitative organ scale data that enable 
modeling of liver regeneration.

Keywords: non-invasive imaging, modeling, liver regeneration, partial hepatectomy, macrophages,  
angiogenesis, FMT-μCT
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INTRODUCTION

The liver is known for its high regenerative potential being 
able to restore up to 70% of its mass after injury or partial 
resection (Minuk, 2003). The regeneration process constitutes 
a complex interplay of various cell types and signaling pathways 
(Taub, 2004). Depending on the circumstances, two different 
modes of regeneration are known to be  activated. In case 
of an impaired hepatocyte proliferation, as for instance 
following severe or chronic liver injury, liver stem cells (also 
known as oval cells in rodents) become activated as a 
mechanism of the liver to regenerate and recover its function 
(Itoh and Miyajima, 2014). In contrast, after partial resection 
or moderate liver damage, complete liver regeneration is 
achieved by proliferation of the remaining parenchymal and 
non-parenchymal cells. Hepatocytes are the first cells to grow 
and proliferate after partial resection followed by Kupffer 
cells, biliary epithelial cells, and stellate cells. The process 
is accompanied by the induction of angiogenesis that is also 
crucially involved in liver regeneration (Drixler et  al., 2002; 
Uda et  al., 2013). Besides other cell types, macrophages have 
been shown to play a stimulatory role in liver regeneration 
by producing molecular factors that are pivotal in the 
regeneration process (Abshagen et  al., 2007; Li and Hua, 
2017). Depletion of resident macrophages (Kupffer cells) as 
well as an impaired macrophage recruitment from the periphery 
and bone marrow results in a delayed regeneration 
demonstrating the stimulatory function of both resident and 
infiltrating macrophages (Takeishi et  al., 1999; Abshagen 
et  al., 2007; Melgar-Lesmes and Edelman, 2015; Nishiyama 
et  al., 2015). The most frequently used model to study liver 
regeneration is the model of partial hepatectomy (PHx) 
described first by Higgins and Anderson (1931) in rats. 
Mitchell and Willenbring recently developed a modified 
protocol of a standardized surgical technique for PHx in 
mice (Mitchell and Willenbring, 2008). In both models, 
approximately two-thirds of the liver are surgically removed. 
The regeneration process starts immediately leading to full 
recovery of liver mass within 7–10 days (Taub, 2004; Nishiyama 
et al., 2015). The advantage of a surgical model in comparison 
with toxic injury models is the fact that the regeneration 
process after PHx is not associated with massive necrosis 
and necrosis-induced acute inflammation so that all changes 
observed after PHx can be  ascribed to the physiological 
regeneration process (Michalopoulos, 2010). In a clinical 
context, this physiological regeneration process becomes 
important in patients who underwent partial liver resection, 
in donors and recipients following living-donor liver 
transplantation and in patients with acute liver failure.

Liver regeneration is a complex process involving the 
interactions of different cell types on various levels. Thus, 
we followed an approach using multi-scale methods (Castiglione 
et  al., 2014) including non-invasive imaging and histological 
analyses in order to investigate liver regeneration after pHx. 
Non-invasive imaging is a useful tool since it enables a longitudinal 
and quantitative assessment of morphological, functional, and 
molecular parameters at the organ and whole body level.  

Liver volume recovery was measured via micro computed 
tomography (μCT), and the density of CD68+ macrophages 
was determined by combined fluorescence-mediated tomography 
and μCT (FMT-μCT) using a newly developed near-infrared 
fluorescent (NIRF) probe. The in vivo results were validated 
by immunohistochemical analyses of CD68+ and F4/80+ 
macrophages. At the tissue level, the contribution of tissue-
resident macrophages and angiogenesis was investigated by 
additional immunohistochemical analyses. Based on the 
experimental data, a simple model describing liver regeneration 
and the interrelation between volume recovery, macrophages, 
and angiogenesis was generated.

MATERIALS AND METHODS

Generation and Purification of the  
Near-Infrared Fluorescent CD68 Probe
The NIRF probe targeting CD68+ macrophages was generated 
by coupling an amine-reactive NIR fluorochrome (NHS ester), 
VivoTag 680 (excitation peak 665  ±  5  nm, emission peak 
688 ± 5 nm) (Perkin-Elmer), to a rat anti-mouse CD68 antibody 
(AbDSerotec) according to manufacturer’s instructions. In brief, 
VivoTag 680 was dissolved in dry dimethyl sulfoxide (Sigma-
Aldrich) at a concentration of 10  mg/ml. Prior to the labeling, 
the buffer of the antibody was exchanged by dialysis into 
conjugation buffer (50 mM carbonate/bicarbonate buffer, pH 8.5) 
using Slide-A-Lyzer dialysis cassettes (AbD Serotec) according 
to the protocol provided by the manufacturer. After buffer 
exchange, 30  μl of VivoTag 680 was added to the rat anti-
mouse CD68 antibody. Following 1  h of incubation at room 
temperature protected from the light, the NIRF CD68 probe 
(approximately 151  kDa) was separated from free fluorescent 
dye (approximately 1 kDa) and antibody oligomers (larger than 
300  kDa) by fast protein liquid chromatography using a 
Superdex 200 resin in a pre-packed 10/300 GL column  
(GE Healthcare). Probe concentration was determined using 
a BCA Protein Assay Kit (Uptima) according to the protocol 
provided by the manufacturer.

In vitro Binding of the Near-Infrared 
Fluorescent CD68 Probe
Binding specificity of the NIRF CD68 probe was tested  
in vitro by incubating the macrophage cell line J774A.1 (CLS 
Cell Lines Service) with the NIRF CD68 probe (10  nM, 2 or 
4  h, 37°C). For competitive binding analyses, J774A.1 cells 
were incubated with 10  nM of the NIRF CD68 probe and a 
10-fold molar excess of unlabeled CD68 antibody (100  nM, 
2 or 4  h, 37°C). Fluorescent microphotographs were acquired 
with the Axio Imager M2 (Zeiss) and a high-resolution camera 
(AxioCamMRm Rev.3; Zeiss) using a Cy5.5 filter and a fixed 
exposure time. The signal intensities were determined using 
the software ImageJ 1.47v (W. Rasband, National Institutes of 
Health). For quantification, the mean fluorescent signal intensity 
at 695 nm was determined by analyzing five microscopic images 
per well (n  =  3 wells per culture condition).
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Animal Studies
All animal experiments were performed according to German 
legal requirements and animal protection laws and were 
approved by the Authority for Environment Conservation and 
Consumer Protection of the State of North Rhine-Westphalia 
(LANUV).

Biodistribution and in vivo Specificity of 
the Near-Infrared Fluorescent CD68 Probe
Biodistribution and in vivo specificity of the NIRF CD68 probe 
were analyzed in male C57BL/6  J mice (Charles River) (n  =  5 
per group). The mice were fed a chlorophyll-free diet (ssniff 
Spezialdiäten GmbH) 7  days before imaging, and the scanning 
area was depilated prior to the scans. For macrophage imaging, 
2.6  μg of the NIRF CD68 probe dissolved in 0.9% w/v NaCl 
was injected intravenously (i.v.). To analyze the biodistribution, 
animals were scanned longitudinally immediately before and 
1, 3, 6, 12, 24, and 48  h after probe injection by FMT-μCT. 
In vivo specificity of the probe was examined by competitive 
binding analysis injecting a 5-fold mass excess of unlabeled 
CD68 antibody (13  μg) intraperitoneally (i.p.) 1  h before i.v. 
injection of the NIRF CD68 probe (2.6  μg). Directly after the 
last FMT-μCT measurement, the mice were sacrificed, and the 
liver was resected and cryoconserved in Tissue-Tek (Sakura) 
for immunohistochemical analyses.

In vivo Determination of Macrophage 
Density and Volume Recovery During Liver 
Regeneration After Partial Hepatectomy
Liver regeneration was analyzed in male C57BL/6  J mice 
(Charles River) after PHx and sham surgery. One hour before 
surgery, mice were treated with carprofen [subcutan (s.c.) 
5  mg/kg] (Pfizer Animal Health SA). PHx and sham surgeries 
were performed under sterile conditions as previously described 
by Mitchell and Willenbring (2008). In brief, mice were 
anesthetized with isoflurane (2% v/v isoflurane in oxygen-
enriched air) and positioned on a temperature-controlled pad 
to regulate body temperature. For PHx, after midline laparotomy, 
the left lateral lobe was ligated as close to the base of the 
lobe as possible. The secondary knot was placed above the 
gall bladder of the median lobe but not closer than 2  mm 
from the suprahepatic vena cava. The ligated liver lobes were 
surgically resected. At the end of the surgery, the abdomen 
was rinsed with saline solution, and the abdominal wall and 
the skin were sutured separately. For sham surgery, a midline 
laparotomy was performed with gentle palpation and 
manipulation of the liver without resection of the liver lobes. 
Directly after surgery, mice received a s.c. injection of 10 mg/kg 
enrofloxacin (Bayer). Afterwards, analgesia was continued by 
s.c. injection of 5  mg/kg carprofen (Pfizer Animal Health SA) 
once per day for 3  days.

CD68+ macrophages and volume recovery were monitored 
by FMT-μCT and contrast-enhanced μCT at different time points 
(4, 8, 14, and 21 days) after PHx and sham surgery. As an 
additional control, untreated mice were measured. Twelve hours 
before each FMT-μCT measurement, mice were injected i.v. with 

5.7  μg of the NIRF CD68 probe diluted in 0.9% w/v NaCl.  
In addition, 45  min before the FMT-μCT scans, the mice 
received an i.v. injection (150  μl) of the contrast agent Imeron 
400 (Bracco Imaging) to enable a better segmentation of the 
liver. Directly after each FMT-μCT measurement, mice were 
sacrificed, and the liver was resected and cryoconserved in 
Tissue-Tek (Sakura) for immunohistochemical analyses. The 
group size was as follows: for assessment of macrophage density: 
untreated mice: n  =  10; mice after PHx: n  =  5 for day 4, 
n  =  4 for day 8, n  =  4 for day 14, n  =  4 for day 21; sham-
operated mice: n  =  3 for day 4, n  =  3 for day 8, n  =  3 for 
day 14, n  =  6 for day 21. For volume recovery analysis: n  =  5 
for each time point.

Imaging Protocols
Three-dimensional (3D) FMT-μCT scans were conducted as 
described by Kunjachan et  al. (2013). For the measurements, 
mice were anesthetized and positioned in a μCT- and 
FMT-compatible mouse bed. For anatomical information, 
mice were scanned in a dual-energy μCT system (TomoScope 
30s Duo, CT Imaging GmbH). For biodistribution and in 
vivo competitive binding, analyses scans were performed using 
the scan protocol SQD-6565-360-29, which acquires 720 
projections with 516  ×  506 pixels requiring a scanning time 
of 29 s per subscan. For the assessment of macrophage density 
and liver volume, the HQD-6565-360-90 protocol was applied, 
which acquires 720 projections with 1,032  ×  1,012 pixels 
requiring a scanning time of 90  s per subscan. Directly after 
acquiring the μCT scans, the mouse bed was transferred to 
the FMT system (FMT 2500LX, PerkinElmer), and FMT scans 
were performed at 680  nm using 120 excitation positions 
(3  mm distance). Data fusion and reconstruction of the 
fluorescence distribution were performed as described (Gremse 
et  al., 2014). Based on the μCT data, organs were manually 
segmented, and the liver volume and probe concentration 
in the segmented organs were determined using the Imalytics 
Preclinical software (ExMI/Gremse-IT) (Gremse et  al., 2016). 
To assess the variability of the organ segmentations, several 
organs (liver, lung, heart, kidney, and bladder) were segmented 
in five representative scans by two different persons. The 
organ volumes of the two analyses correlated strongly 
(R2 = 0.996, p < 0.05) between the users. DICE scores, which 
describe similarity between segmentations, were also high 
(0.92  ±  0.045), showing good reproducibility of the manual 
organ segmentation. To further confirm the accuracy of 
manual organ segmentation, we  performed an additional 
correlation analysis between segmented organ volumes and 
weights of excised organs. Organ weights (heart, liver, kidneys, 
spleen, and tumors) and contrast-enhanced μCT scans (n = 6) 
were available from a previous study (Rosenhain et al., 2018). 
The analysis resulted in a strong correlation between segmented 
organ volumes from contrast-enhanced μCT scans and the 
organ weights (R2  =  0.976). The slope of the regression line 
was 0.84, i.e., below 1, which can be  explained by the loss 
of blood during the organ excision and harvesting procedure 
(thus lower values for the organ weights as compared to the 
segmented volumes).
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Antibodies
The following primary antibodies were used to stain macrophages/
Kupffer cells: rat anti-mouse CD68 antibody (AbDSerotec), rat 
anti-mouse F4/80 antibody (AbDSerotec), and rat anti-mouse 
CD169 antibody (AbDSerotec). To stain endothelial cells, rat 
anti-mouse CD31 antibody (BD Biosciences) was applied. Goat 
anti-mouse VEGFR2 antibody (R and D Systems) was used 
to determine the VEGFR2 density. Secondary IgG antibodies 
(donkey anti-rat Alexa Fluor 488, donkey anti-rat Cy-3 and 
donkey anti-goat Cy-3) were obtained from Dianova. Cell nuclei 
were counterstained with 4′,6-diamidino-2-phenylindole (DAPI; 
Merck KGaA).

Indirect Immunohistochemistry
For immunohistochemical analysis, frozen organs were cut into 
8-μm slices. Fixation and staining of the cryosections were 
performed as previously described (Lederle et  al., 2010). Per 
section, five to seven fluorescent microphotographs were acquired 
with the Axio Imager M2 (Zeiss) and a high-resolution camera 
(AxioCamMRm Rev.3; Zeiss). The number of CD68+, F4/80+, 
CD169+ and DAPI+ cells per microphotograph was counted 
manually using the ImageJ 1.47v software (W. Rasband, National 
Institutes of Health), and the percentage of CD68+, F4/80+ 
and CD169+ cells per DAPI+ cells was calculated, respectively. 
Quantitative analysis of microvessel density and angiogenic 
activity was done using the AxioVisionRel 4.8 software (Zeiss). 
The microvessel density was determined by quantifying the 
CD31+ area fraction, and the angiogenic activity was assessed 
by determining the proportion of the VEGFR2+ area fraction 
to the CD31+ area fraction. The group size was as follows: 
untreated mice: n  =  10 (CD169: n  =  5); mice after PHx: 
n  =  5 for day 4, n  =  4 for day 8, n  =  4 for day 14, n  =  4 
for day 21; sham-operated mice: n  =  4 for day 4, n  =  6 
(CD169: n  =  3) for day 8, n  =  3 for day 14, n  =  7 for day 21.

Numeric Modeling
Stimulation and growth of liver cell compartments (hepatocytes, 
Kupffer cells, macrophages, and endothelial cells) were described 
by differential equations in a simplified model. Based on data 
from literature, relative proportions of these cell types in healthy 
livers were assumed to be 0.8, 0.06, 0.06, and 0.08, respectively 
(Vekemans and Braet, 2005). To simulate PHx, these values 
were multiplied by 0.3 at the initial state of simulation to 
account for the reduced total cell amount. The first derivative 
of each cell compartment fraction was assumed to depend 
linearly on the amount, excess, or lack of other cell compartments, 
with six coefficients describing the strength of the corresponding 
effect. The parameters kHE and kME describe the stimulation 
and support of vessel growth by a hepatocyte lack and macrophage 
excess, respectively. kHM describes attraction of macrophages 
by a lack of hepatocytes. kHK describes stimulation of Kupffer 
cell growth by a lack of hepatocytes. kEH describes the connection 
of blood vessel and hepatocyte growth, because the latter is 
limited by nutrition supply and structural alignment requirements. 
A parameter khomeostasis describes other effects not covered by 
our simplified model, and it drives the four cell compartments 

slowly toward the homeostatic situation. Therefore, the derivatives 
of the four compartments are the weighted sums of the affecting 
coefficients and expressions for relative or absolute lack as 
described in the following:

dH dt k H k H E/ / . . / . /= -( ) + -( )homeostasis HE1 0 8 0 8 0 08

dK dt k K k H/ / . .= -( ) + -( )homeostasis HK1 0 06 0 8

dM dt k M k H/ / . .= -( ) + -( )homeostasis HM1 0 06 0 8

dE dt k E k H

k M H K M E

/ / . .

/ .

= -( ) + -( )
+ + + +( ) -

homeostasis HE

ME

1 0 08 0 8

0 066( )

The simulation was performed using fourth-order Runge-Kutta 
integration with the time interval of 60  min over a period of 
100  days, resulting in four-cell compartment curves. From 
these, simulated measurement curves were computed, i.e., volume 
(sum of all compartments), total macrophages (sum of 
macrophages and Kupffer cells), and Kupffer cells and 
angiogenesis (derivative of endothelial growth). The six 
parameters were iteratively adjusted until simulated and measured 
curves matched.

Statistical Analysis
Statistical analysis was performed using Prism 5.0 (GraphPad 
software). Results are shown as mean  ±  standard deviation. 
All statistical analyses were performed using one-way analysis 
of variance (ANOVA) followed by Bonferroni correction for 
multiple comparisons (*p  <  0.05, **p  <  0.01, ***p  <  0.001).

RESULTS

In vitro Binding Specificity of the  
Near-Infrared Fluorescent CD68 Probe
For non-invasive imaging of macrophages by FMT-μCT, a NIRF 
probe targeting CD68+ macrophages was generated and evaluated 
in vitro and in vivo. The binding specificity of the NIRF CD68 
probe was evaluated in vitro by competitive binding analysis 
using the macrophage cell line J774A.1. After 2 and 4  h of 
incubation with the NIRF CD68 probe alone, a strong fluorescent 
signal in the cells was observed (Figure 1A). Incubation of 
the cells with the NIRF CD68 probe together with a 10-fold 
excess of unlabeled anti-CD68 antibody resulted in a strongly 
reduced signal at both time points. Quantification of the 
fluorescent images revealed an increase in signal intensity from 
2 to 4  h and confirmed a significantly lower mean signal 
intensity in the cells of the competitive binding group as 
compared to the cells incubated with the NIRF CD68 probe 
alone (p  <  0.001) (Figure 1B).

Biodistribution and in vivo Specificity of 
the Near-Infrared Fluorescent CD68 Probe
The biodistribution of the NIRF CD68 probe was analyzed 
longitudinally in healthy mice by FMT-μCT 1, 3, 6, 12, 24, 

280

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Zafarnia et al. Imaging and Modeling Liver Regeneration

Frontiers in Physiology | www.frontiersin.org 5 July 2019 | Volume 10 | Article 904

and 48  h after injection. Quantitative analysis of the NIRF 
CD68 probe accumulation in the liver, lung, and kidneys 
revealed a significantly higher mean concentration in the liver 
as compared to the kidneys and the lung at all measuring 
time points (p  <  0.001 for all time points, respectively) 
(Figure  2A). The concentration in the kidneys and the lung 
was constantly low without significant changes over time. In 
the liver, the mean concentration increased after probe injection 
reaching a maximum concentration at 12  h after injection. 
Thereafter, the mean probe concentration in the liver declined 
to a value similar to that observed at 1  h after injection 
(Figures  2A,C; representative 3D rendering of reconstructed 
FMT-μCT data shown in Figure 2B).

The in vivo specificity of the NIRF CD68 probe was 
analyzed in a competitive binding experiment in which a 
5-fold excess of unlabeled CD68 antibody was injected 1  h 
prior to injection of the NIRF CD68 probe (competitive 
binding group). In the liver, starting from 3  h after probe 
injection, a lower mean probe concentration was measured 
in the competitive binding group at each time point compared 
to the concentration measured after injection of the NIRF 
CD68 probe alone (control group) (Figure 3A; representative 
transversal FMT-μCT fusion images of competitive binding 
and control mice are shown in Figure 3B). The difference 
in the mean concentration of NIRF CD68 probe in the liver 
was significant 12  h after injection.

A

B

FIGURE 1 | In vitro competitive binding analysis of the NIRF CD68 probe. To test the binding specificity of the NIRF CD68 probe, J774A.1 macrophages were 
incubated for 2 and 4 h with the NIRF CD68 probe alone (NIRF CD68 probe) or with the NIRF CD68 probe and a 10-fold molar excess of unlabeled anti-CD68 
antibody (competitive binding). (A) Fluorescence images show a high fluorescent signal at 695 nm in macrophages after 2 and 4 h of incubation with the NIRF CD68 
probe. Competitive binding results in a strongly reduced signal. NIRF CD68 probe in red, counterstaining of the nuclei with DAPI in blue, scale bar = 20 μm.  
(B) Quantitative analysis of mean fluorescent signal intensities in the NIRF CD68 probe group and in the competitive binding group shows a significantly lower signal 
intensity as a result of competitive binding (***p < 0.001; data are presented as mean values ± SD). a.u., arbitrary units.
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Volumetric Recovery of the Liver After 
Partial Hepatectomy
To investigate liver regrowth after PHx by non-invasive imaging, 
the volume of the liver was measured via contrast-enhanced 
μCT. Quantitative analysis revealed that >70% of the total liver 
volume was reached at day 4 and  >  80% was regained at day 
8 after PHx (Figure 4A; representative 3D rendered CT images 
with segmented organs of an untreated control mouse and 
mice after PHx are shown in Figure 4B). The mean value 
determined at day 14 was slightly above the mean volume of 
the liver of untreated control mice. The mean volume at day 
21 after PHx was comparable to control values.

In vivo Monitoring of CD68+ Macrophage 
Density During Liver Regeneration
Macrophages play an important stimulatory role during liver 
regeneration (Takeishi et  al., 1999; Abshagen et  al., 2007; 
Nishiyama et  al., 2015). Thus, we  investigated the time course 
of macrophage density after PHx by non-invasive FMT-μCT 
imaging. CD68+ macrophages were monitored at day 4, 8, 14, 
and 21 after PHx and sham surgery using the NIRF CD68 
probe. As an additional control, untreated mice were measured. 
Quantitative analysis of probe accumulation revealed a higher 
mean NIRF CD68 probe concentration in the liver at day 8, 
14, and 21 after PHx compared to untreated and sham-operated 
control mice (Figure 5A). The mean concentration was highest 

at day 8 and 14 after PHx followed by a decline between day 
14 and 21 indicating a transient increase in the density of 
CD68+ macrophages. No major changes in the mean NIRF 
CD68 probe concentration were measured in the liver of sham-
operated mice during the whole observation period. 
Representative frontal plane FMT-μCT fusion images of an 
untreated control mouse and mice after PHx are shown in 
Figure 5B.

Immunohistochemical Analysis of 
Macrophage Subpopulations During  
Liver Regeneration
To validate the in vivo results, the density of CD68+ macrophages 
in the liver of untreated and sham-operated control mice and 
mice after PHx was determined by immunohistochemical 
analyses. Quantification of the density of CD68+ macrophages 
confirmed the trend of the in vivo findings showing a significant 
increase in the mean values after PHx until day 8 followed 
by a decline to levels observed in untreated control animals 
at day 21 (Figure 6A, p < 0.001). The mean density in the 
liver of sham-operated animals remained similar to that of 
untreated control animals without significant changes over time.

For further validation, we performed an immunohistochemical 
analysis of cells expressing F4/80, a generic macrophage marker 
that is independent of CD68 expression. Quantitative analysis of 
the density of F4/80+ macrophages showed a similar trend over 

AA

CC

BB

FIGURE 2 | In vivo biodistribution of the NIRF CD68 probe. To analyze the biodistribution of the NIRF CD68 probe, the accumulation in different organs was 
measured longitudinally over 48 h in healthy mice by FMT-μCT. (A) Quantitative analysis of the NIRF CD68 probe concentration in the kidneys, liver, and lung 
revealed a significantly higher concentration in the liver compared to the kidneys and the lung at all measuring time points (p < 0.001 for each time point, data are 
presented as mean values ± SD). (B) Representative 3D rendering of reconstructed FMT-μCT data of a mouse 12 h after NIRF CD68 probe injection.  
(C) Representative frontal plane images of reconstructed FMT-μCT data at different time points after NIRF CD68 probe injection show an increasing fluorescent 
signal intensity in the liver until 12 h after injection, followed by a decline (dashed yellow line indicates the liver).
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time as compared to CD68+ macrophages with a significant 
transient increase and highest mean values at day 8 after PHx 
(Figure 6B, p < 0.001). Again, the mean density of F4/80+ in 
the liver of sham-operated animals was comparable to that of 
untreated control animals and did not significantly change over time.

An increased density of macrophages during liver regeneration 
can be  a result of tissue-resident Kupffer cell proliferation or 
caused by an infiltration of macrophages from the blood 
circulation. Both Kupffer cells and infiltrating macrophages have 
been shown to play an important role during liver regeneration 
(Takeishi et  al., 1999; Abshagen et  al., 2007; Melgar-Lesmes 
and Edelman, 2015; Nishiyama et  al., 2015). To investigate the 
contribution of tissue-resident macrophages to the increased 
macrophage density, we  analyzed the expression of CD169 by 
immunohistochemical analysis. In contrast to CD68+ and F4/80+ 
macrophages, no significant differences in the density of CD169+ 
macrophages were observed in the liver of untreated and sham-
operated control mice and mice after PHx (Figure 6C).

Immunohistochemical Analysis of 
Angiogenesis During Liver Regeneration
Angiogenesis is a crucial process involved in liver regeneration, 
and macrophages have been shown to stimulate endothelial 
cell activation and to regulate vessel growth (Melgar-Lesmes 
and Edelman, 2015). To investigate the interrelation between 
macrophage density and angiogenesis, we  analyzed the 

microvessel density and angiogenic activity in the liver of 
untreated control mice and in mice after PHx and sham surgery 
using immunohistochemistry.

Microvessel density was not significantly different between 
mice after PHx, untreated and sham-operated control mice 
(Figure 7A). However, the angiogenic activity, as assessed by 
the proportion of the VEGFR2+ area fraction to the CD31+ 
area fraction, was markedly increased on day 4 after PHx 
followed by a continuous decrease until day 21 (Figure 7B). 
In sham-operated and untreated mice, no significant changes 
were found over time.

Modeling of Liver Regeneration After 
Partial Hepatectomy
The in vivo and immunohistochemical results revealed different 
time courses of volume recovery, macrophage density and 
endothelial cell activation (angiogenesis). A simplified 
mathematical model was developed including different cell 
compartments of the liver (hepatocytes, Kupffer cells, recruited 
macrophages, and endothelial cells), and the growth and interplay 
of these compartments after PHx was simulated (Figures 8A,B). 
Based on the resulting cell compartment curves (Figure 8B), 
simulated measurement curves were computed describing liver 
volume (sum of all compartments), total macrophages (sum 
of recruited macrophages and Kupffer cells), and Kupffer cells 
and angiogenesis (derivative of endothelial growth) (Figure 8C). 

AAA

BBB

FIGURE 3 | In vivo specificity of the NIRF CD68 probe. To analyze the in vivo specificity of the NIRF CD68 probe, a competitive binding experiment was performed 
in which a 5-fold excess of unlabeled CD68 antibody was injected 1 h prior to the injection of the NIRF CD68 probe (competitive binding group). Probe accumulation 
in the liver was compared to the concentration measured after injection of the NIRF CD68 probe alone (control group). (A) Quantitative analysis of probe 
accumulation in the liver showed a significant difference in the mean concentration 12 h after injection (*p < 0.05; data are presented as mean values ± SD).  
(B) Transversal FMT-μCT fusion images of representative mice 12 h after injection show a high fluorescent signal in the liver of the control mouse and a strongly 
reduced signal in the liver as a result of competitive binding (dashed yellow line indicates the liver).
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After parameter adjustment, the time courses of the numerical 
model matched the experimental data of angiogenesis, 
macrophages, and liver volume obtained by non-invasive imaging 
and immunohistochemical analyses (Figures 8C,D). In detail, 
there was an early onset of angiogenesis, which was followed 
by an increase in the overall macrophage density peaking on 
day 8. The liver volume increased rapidly after PHx reaching 
levels above healthy liver on day 14 before normalization.

DISCUSSION

Liver regeneration after injury or partial resection comprises 
a complex interplay of different cell types and is tightly regulated 
at various scales (Taub, 2004; Michalopoulos, 2010; Li and 
Hua, 2017). To address alterations during liver regeneration 
after PHx at different levels, we  used non-invasive imaging in 
combination with immunohistochemistry and developed a 
simple mathematical model describing the interrelations between 
different cell types involved in liver regeneration, angiogenesis 
and liver volume recovery.

Liver volume recovery was non-invasively monitored by μCT 
imaging. The measurements revealed that >70% of the total 
liver volume were regained within 4 days. However, normalization 

of the liver volume was not reached until day 21 due to an 
increased volume observed on day 14. The increased volume 
can be  explained by edema formation that sometimes occurs 
during liver regeneration (Pleskovic et  al., 1996).

Since macrophages are known to play an important stimulatory 
role during liver regeneration, we  investigated the density of 
different macrophage populations after PHx by non-invasive 
imaging and immunohistochemistry. For non-invasive imaging, 
we  used combined FMT-μCT imaging and generated a NIRF 
probe targeting CD68. Specific binding of the NIRF probe to 
CD68+ macrophages was confirmed by competition analyses 
in vitro and in vivo. Quantitative in vivo FMT-μCT imaging 
after PHx and sham surgery revealed an increased mean 
concentration of the CD68 probe in the liver at day 8 and 
14 after PHx indicating a transient increase in the density of 
CD68+ macrophages. Immunohistochemical analyses of CD68+ 
and F4/80+ macrophages showed the same trend with a 
significantly higher macrophage density on day 8 after PHx 
as compared to untreated and sham-operated control mice. 
However, the immunohistochemical data were more distinct 
than the results obtained by FMT-μCT imaging. The difference 
in precision can be  explained by the lower spatial resolution 
of the FMT (about 2  mm). Small changes in the density of 
macrophages are more difficult to determine by FMT-μCT 

A

B

FIGURE 4 | Liver volume recovery after PHx. Liver volume was determined non-invasively at day 4, 8, 14, and 21 after PHx and in untreated control mice by 
contrast-enhanced μCT. (A) Quantitative analysis showed that >70% and > 80% of the total liver volume were regained at day 4 and day 8 after PHx, respectively 
(*p < 0.05, ***p < 0.001; data are presented as mean values ± SD). (B) Representative 3D rendered CT images with segmented organs of an untreated control 
mouse and mice after PHx show the growth of the remaining liver lobes during regeneration (red, heart; pink, lungs; brown, liver; beige, stomach; ochre, bladder). 
UT, untreated mice.

284

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Zafarnia et al. Imaging and Modeling Liver Regeneration

Frontiers in Physiology | www.frontiersin.org 9 July 2019 | Volume 10 | Article 904

than via immunofluorescence microscopy. Furthermore, although 
absorption and scattering of the photons are taken into account 
in the fluorescence reconstruction algorithms, numerical 
limitations of the complex diffuse optical behavior can still 
affect the accuracy of the data, especially in deeper lying organs 
and in organs with a high blood volume, such as the liver, 
since blood is the main near-infrared absorber in vivo (Gremse 
et al., 2014). Moreover, the blood pool of the circulating probe 
and the unspecific hepatic uptake of foreign substances such 
as probes and contrast agents can lead to an unspecific probe 
signal. Antibodies are known to have a long blood half-life 
(Freise and Wu, 2015). Since we  used an antibody as targeting 
molecule, we cannot exclude that the blood pool of the imaging 
probe has influenced the measurements. To reduce the impact 
of the blood pool, a different targeting molecule could be chosen, 
e.g., a nanobody, that has a shorter blood half-life.

To analyze the contribution of tissue-resident Kupffer cells 
in liver regeneration after PHx, we  investigated the expression 
of CD169 by immunohistochemical analysis. Quantification 
revealed no significant differences in the density of CD169+ 
macrophages in the liver of untreated and sham-operated 
control mice and mice after PHx. Thus, while the overall 
density of macrophages in the liver increased significantly after 
PHx, the density of tissue-resident CD169+ Kupffer cells did 
not. This is in line with previous findings showing that the 
number of Kupffer cells correlates with liver restoration rate 
(Melgar-Lesmes and Edelman, 2015). Therefore, the results 

provide further evidence for the involvement of macrophages 
recruited from the blood circulation in liver regeneration after 
PHx (Melgar-Lesmes and Edelman, 2015; Nishiyama et  al., 
2015; Wen et  al., 2015). However, further investigation is 
needed to unravel the details of resident Kupffer cell and 
infiltrating macrophage contribution to liver regeneration.

Angiogenesis is an important process involved in liver 
regeneration after hepatectomy and mutual interactions have 
been described between hepatocytes, Kupffer cells/macrophages 
and endothelial cells during liver regeneration (Drixler et  al., 
2002; Uda et  al., 2013; Castiglione et  al., 2014). Therefore, we 
analyzed the angiogenic endothelial cell activity and microvessel 
density in the liver after PHx by immunohistochemistry. A 
markedly increased mean angiogenic activity was detected at 
day 4 after PHx that decreased steadily until day 21 which is 
in accordance with previously published data (Alizai et  al., 
2017). Quantitative analysis of the microvessel density showed 
no significant differences between mice after PHx and control 
mice. This finding is not in line with results published by other 
groups that showed an increase in the microvessel density 
following PHx (Drixler et  al., 2002, 2003). The discrepancy can 
be  explained by different quantification methods. While 
we  included larger arterioles and venules in the quantification, 
they were excluded by the other groups. Larger vessels contribute 
more to the overall CD31+ area fraction than very small vessels. 
Thus, changes in the density of these small vessels do not have 
a major effect on the overall vessel density.

A

B

FIGURE 5 | In vivo assessment of CD68+ macrophages in untreated control mice, sham-operated mice and mice after PHx. CD68+ macrophages were  
non-invasively monitored by FMT-μCT at day 4, 8, 14, and 21 after PHx and sham surgery and in untreated control mice. (A) Quantitative analysis showed a 
higher mean NIRF CD68 probe concentration in the liver at day 8, 14, and 21 after PHx compared to untreated and sham-operated control mice. The highest 
mean concentration was reached at day 8 (data are presented as mean values ± SD). (B) Representative frontal plane FMT-μCT fusion images of an untreated 
control mouse and mice after PHx show a higher fluorescent signal in the liver of mice at day 8, 14 and 21 after PHx (dashed yellow line indicates the liver).  
UT, untreated mice.
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The in vivo and immunohistochemical results revealed 
differences in the time courses for volume recovery, macrophage 
density and angiogenic endothelial cell activity, nevertheless, 
all three time courses show a progression towards levels of 
healthy situation over time. To describe the interrelation between 
volume recovery, macrophage density and angiogenesis occurring 
at different scales, we developed a numerical model that describes 
the growth and interplay of the involved liver cell compartments 
(hepatocytes, Kupffer cells, recruited macrophages, and 
endothelial cells). A numerical model serves to bridge the gap 
between hidden parameters (e.g., kHE) and observable 

measurements. The model may contain many direct interactions 
between cell types which are simple by themselves but result 
in a complicated situation altogether, which cannot be described 
by closed formulas but require numerical approaches instead. 
Our simulated measurements generally reflect the experimental 
data obtained by non-invasive imaging and immunohistochemical 
analyses. Differences remain in the earlier increase of the 
macrophage and Kupffer cell populations in our model as 
compared to the measurements. The maximum in angiogenic 
activity precedes the peak of macrophage density and 
normalization of liver volume. This shows that the model can 

AA BB

CC

FIGURE 6 | Immunohistochemical analysis of CD68+, F4/80+ and CD169+ macrophages in the liver of untreated and sham-operated control mice and mice after 
PHx. The density of CD68+, F4/80+, and CD169+ macrophages was determined by immunohistochemical analyses in liver sections taken from mice at day 4, 8, 14, 
and 21 after PHx and sham surgery and from untreated control mice (*p < 0.05, **p < 0.01, ***p < 0.001; data are presented as mean values ± SD).  
(A,B) Quantitative analysis of the density of CD68+ (A) and F4/80+ (B) macrophages showed an increase in the mean values after PHx with a maximum at day 8.  
(C) Quantitative analysis of the density of CD169+ macrophages showed no significant differences in the liver of untreated and sham-operated control mice and 
mice after PHx. UT, untreated mice.

A B

FIGURE 7 | Immunohistochemical analysis of the microvessel density and angiogenic activity in the liver of untreated and sham-operated control mice and mice 
after PHx. The microvessel density and angiogenic activity were determined by immunohistochemical analysis of liver sections taken from mice at day 4, 8, 14, and 
21 after PHx and sham surgery and from untreated control mice (data are presented as mean values ± SD). (A) Quantitative analysis of the microvessel density 
showed no significant differences between untreated and sham-operated control mice and mice after PHx. (B) Quantitative analysis of the angiogenic activity 
showed a markedly increased mean activity at day 4 after PHx that decreased steadily until day 21. UT, untreated mice.
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describe liver regeneration at organ and tissue scale, and that 
the model substantially benefits from experimental quantitative 
non-invasive imaging data. Nevertheless, higher sample numbers 
would improve the stability and reliability of the model. At 
tissue scale, different mathematical models with considerable 
higher complexity than our model have been established that 
describe and predict specific important processes involved in 
liver regeneration. Recently, a mathematical model revealed a 
crucial role of hybrids consisting of hepatocytes and bone 
marrow cells that trigger proliferation in the regeneration 
process (Pedone et  al., 2017). For liver regeneration after CCl4 
damage, Hoehme et al. have established a model that describes 
structural alignments of hepatocytes to sinusoids as a crucial 
pre-requisite for regaining the complex microarchitecture 
(Hoehme et  al., 2010). Simple algorithmic models like the one 
proposed here have the advantage of high robustness and thus 
the suitability for integrating less quantitative in vivo data but 
also face several limitations. The model does not comprise 
the full complexity of the interrelations between the hepatocytes, 
macrophages, and endothelial cells that occur during liver 
regeneration. In addition, it does not describe causal relationships 
between the involved cell compartments in a detailed mechanistic 
way. Furthermore, the model does not take into consideration 
hepatic stellate cells, resident and monocyte-derived liver 
macrophages, additional immune cells such as lymphocytes or 
dendritic cells, the biliary system, different blood vessel 
compartments, hepatic blood flow or portal vein pressure, or 
the complex microarchitecture of the liver. Nevertheless, our 
model links information about liver regeneration and the 
interaction of different cell compartments (hepatocytes, Kupffer 
cells/macrophages, endothelial cells) from tissue to organ scale 

data. While our model is simplification as explained above, it 
can be  extended to describe further liver cell compartments 
such as stellate cells, bile duct cells, and additional immune 
cells beyond macrophages or different macrophage populations. 
In addition, hepatocyte subpopulations in different activation 
states such as quiescent, primed, and replicating cells could 
be included as described by Furchtgott et al. (2009). A numerical 
model can also be  used to extrapolate additional time points. 
To enable unambiguous parameter estimation, an increase in 
model complexity should be  accompanied by an increase of 
measurement values. In our study, we  used in vivo and 
immunohistochemical analyses for modeling, resulting in mean 
time curves and therefore one model per group. If longitudinal 
in vivo measurements are used, a model could be  applied to 
analyze individual mice, enabling statistical comparison of 
kinetic parameters between groups. Either way a numerical 
model could be  used to investigate and explain the effects of 
genetic modifications, e.g., csf1-knock-out resulting in a reduced 
number of macrophages (Amemiya et  al., 2011), macrophage 
depletion, or extended liver resection (Christ et  al., 2017) on 
different aspects of liver regeneration and such data could 
be  used to refine, extend, or validate our simplified model. 
In addition, advanced numerical models could be  used to get 
a comprehensive insight into the interrelations between different 
cells and signaling pathways in chronic liver disease progression 
or in response to therapeutic interventions (Cook et  al., 2015; 
Schwen et  al., 2016).

In summary, based on non-invasive imaging and 
immunohistochemical analyses, we have established a mathematical 
model for liver regeneration describing the interrelations between 
hepatocytes (volume recovery), macrophages, and endothelial 

A B

C D

FIGURE 8 | Mathematical model describing liver regeneration. A mathematical model has been developed describing liver regeneration at organ and tissue scale. 
(A) The scheme shows the interrelations between liver cell compartments (hepatocytes, Kupffer cells, recruited macrophages, and endothelial cells) during liver 
regeneration. (B) The simulated cell compartment curves show the normalization of relative cell amounts after PHx. (C) The simulated measurement curves were 
computed based on the simulated cell compartment curves. After iterative adjustment the simulated curves describing liver volume, total macrophages, Kupffer 
cells, and angiogenesis showed similar time courses as the experimental data. (D) Diagram showing the time courses for liver volume, CD68+ macrophage density, 
CD169+ macrophages, and angiogenic activity of the experimental data acquired in mice after PHx.
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cells (angiogenesis) at organ and tissue scale. In this context, 
non-invasive imaging and suitable probes targeting cell populations 
such as macrophages are of great value for data acquisition in 
the course of liver regeneration at organ scale.
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