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Editorial on the Research Topic

Human-in-the-loop system design and control adaptation for

behavior-assistant robots

With the progress and development of human-robot systems, the coordination among

humans, robots, and environments has become increasingly sophisticated. In this Research

Topic, we focus on an important field in robotics and automation disciplines, which is

defined as behavior-assistant robots [i.e., rehabilitation robots, assistive robots (Zhang

et al., 2024), homecare robots (Zhao et al.) and so on]. The emergence of robot-assisted

daily behaviors is gradually becoming a part of social life, which improves weak motor

abilities, enhances physical functionalities, and enables various other benefits. For effective

operation of a behavior-assistant robot, one successful strategy is human-in-the-loop (HIL)

control architecture (Zhang et al., 2017). Integration of perception, actuation, and control

technologies forms a HIL system.

Multimodal information-based pattern recognition is an important pathway to obtain

human motion intention. Intelligent wheelchair is a common rehabilitation device,

which is indispensable for people with limited mobility. Huang et al. utilized surface

electromyography (sEMG) and pressure sensors to improve wheelchair user sitting posture

and alleviate lumbar muscle fatigue. The results could provide more scientific guidance

and suggestions for the daily use of wheelchairs. Lower limb rehabilitation robots,

including both rigid exoskeleton (Sankai and Sakurai, 2018) and exosuit (Nuckols et al.,

2021), are crucial devices for stroke or spinal cord injury patients. A key factor of

rehabilitation robots is to estimate continuous joint motions based on sEMG and thus

to ensure unhindered human-robot interaction. Liu et al. proposed a multilayer CNN-

LSTM network incorporating the self-attentionmechanism, which extracted and learnt the

periodic and trend characteristics of sEMG signals, and realized the accurate autoregressive

prediction of human motion information. The results had shown that it is applicable for

both healthy and hemiplegic individuals under non-ideal sEMG conditions. Deformable

registration also plays a fundamental role for image-assisted analysis. Li A. et al. proposed a

novel registration network calledmulti-scale feature extraction-integration network, which

utilized global and local features in images. This algorithm has the potential to predict
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displacement fields with high accuracy. These bio-machine

interfaces expand information dimensions, improve modeling

precision, and promote connections with the human

nervous system, which are crucial for enhancing robot

intelligence technologies.

Safety of HIL systems is a considerable gap to be bridged

before advanced technologies could be widely applied in clinical

rehabilitation settings. Rehabilitation assessment provides a basis

for formulating treatment programs and judging effects. It is

conducted based on the level of function, degree of damage,

and recovery of stroke patients; however, it is subjective, time-

consuming, and non-uniform for clinicians. Bai et al. proposed

an automatic rehabilitation assessment method for hemiplegic

upper limb motor function, which could allow for automated

measurement of 30 items within the Fugl-Meyer scale. Experiments

with 17 participants had demonstrated a significant correlation

between the results of the automated assessment system and

those of the physician’s assessment. For real-time human-robot

interaction, a monitoring system incorporating supervised loop

is anticipated to effectively counter uncertainties arising from

recognition inaccuracies. Zhu et al. proposed a novel exoskeleton

robotic system with remote monitoring function for lower limb

rehabilitation, the force and motion of which were analyzed

in detail to implement closed-loop control. The results had

shown that the exoskeleton robot has satisfactory assistance

performance. In sum, the integration of fault-tolerance control

and neural supervised loop exhibits potential for HIL systems,

which implements a switching mechanism for predefined state

events ensuring safe command over robots, enabling long-term

closed-loop stability.

HIL systems also face challenges from environmental factors.

How to realize the adaptation of the robotic systems and

to robustly cope with uncertainties, is another interesting

Research Topic. Tendon-sheath mechanisms (i.e., cable-driven

actuation or smart material actuation) have attracted widespread

interests due to flexibility, safety, and dexterity. These salient

features guarantee a comfortable and user-friendly human-robot-

environment interaction. Shi et al. proposed an adaptive control

method by describing a SMA actuator as a gray-box model. The

adaptation algorithm was built upon the multi-innovation concept

and incorporated a dead-zone weighted factor, aiming to reduce

computational complexities and enhance robustness properties.

The experimental results of a SMA actuated hand rehabilitation

robot had achieved higher position tracking accuracy. Ren

et al. dealt with the precise modeling of non-linear friction,

and proposed a novel fuzzy control scheme for the Euler-

Lagrange dynamics model of tendon-sheath mechanisms, which

achieved satisfactory tracking performance and provided more

accurate friction compensation. Both of these methods are model-

free control and have no strict requirement for the dynamics

model, which could help improve human-robot locomotion

adaptations, and thus exhibit potential applications in human-

robot-environment interaction within the field of HIL based neural

rehabilitation training.

Results from clinical practice have demonstrated the

practicality and reliability of HIL systems. Li X. et al. analyzed

the effect of electromyographic feedback functional electrical

stimulation (FES) on the changes in the plantar pressure of

drop foot patients. This case-control study enrolled 34 stroke

patients with foot drop during a 4 weeks’ treatments in a

Rehabilitation Center at hospital. Compared with the control

group, the advantages of FES were more significantly reflected in

the improvement of gait speed, the step length symmetry index,

and the enhancement of propulsive force. The results indicated

that integrating FES with robot is more effective than basic

rehabilitation training for stroke patients with foot drop. Ying et al.

dealt with the classification problem of some neurological diseases

such as Parkinson’s Disease and Multiple System Atrophy, and

proposed a novel feature extraction framework called 3D-CAM for

computer-aided diagnosis. The dataset for this study was obtained

from the Neurology Outpatient Department of a hospital, covering

patient data from July 2020 to August 2023. Both studies provide

new ideas for diagnosis and treatment of neurological diseases by

using a more general HIL concept for clinical applications.
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Research status of elderly-care 
robots and safe human-robot 
interaction methods
Donghui Zhao 1,2, Xingwang Sun 1, Bo Shan 1, Zihao Yang 1, 
Junyou Yang 1*, Houde Liu 2, Yinlai Jiang 3 and Yokoi Hiroshi 3

1 School of Electrical Engineering, Shenyang University of Technology, Shenyang, China, 2 Tsinghua 
Shenzhen International Graduate School, Tsinghua University, Shenzhen, China, 3 Department of 
Mechanical Engineering and Intelligent Systems, University of Electro-Communications, Tokyo, Japan

Faced with the increasingly severe global aging population with fewer children, 
the research, development, and application of elderly-care robots are expected 
to provide some technical means to solve the problems of elderly care, disability 
and semi-disability nursing, and rehabilitation. Elderly-care robots involve 
biomechanics, computer science, automatic control, ethics, and other fields of 
knowledge, which is one of the most challenging and most concerned research 
fields of robotics. Unlike other robots, elderly-care robots work for the frail 
elderly. There is information exchange and energy exchange between people 
and robots, and the safe human-robot interaction methods are the research core 
and key technology. The states of the art of elderly-care robots and their various 
nursing modes and safe interaction methods are introduced and discussed in 
this paper. To conclude, considering the disparity between current elderly care 
robots and their anticipated objectives, we offer a comprehensive overview of the 
critical technologies and research trends that impact and enhance the feasibility 
and acceptance of elderly care robots. These areas encompass the collaborative 
assistance of diverse assistive robots, the establishment of a novel smart home 
care model for elderly individuals using sensor networks, the optimization of 
robot design for improved flexibility, and the enhancement of robot acceptability.

KEYWORDS

elderly-care robots, nursing mode, safe interaction methods, practicality, acceptability

1 Introduction

According to the latest data from the United Nations, the global population is expected to 
reach 8 billion by 15 November 2022. The global population will likely grow to around 8.5 billion 
by 2030 and 9.7 billion by 2050. Concurrently, the elderly population is expected to rise from 
771 million in 2022 to 994 million in 2030 and 1.6 billion in 2050. The proportion of individuals 
aged 65 and over is projected to increase from 9.7% in 2022 to 11.7% in 2030 and further to 
16.4% in 2050 (United Nations Department for Economic and Social Affairs, 2023). Moreover, 
the number of frail elderly individuals unable to engage in physical activity is anticipated to 
surpass 440 million by 2021 (World Health Organization, 2022). This global aging phenomenon 
and a low birth rate are increasing the demand for elderly care services. However, statistics from 
2019 indicate that the number of nursing staff dedicated to elderly care accounted for only 9% 
of the professional nursing staff, totaling approximately 15 million individuals worldwide 
(United Nations, 2019). This glaring disparity between the demand for nursing care and the 
available resources has become a pressing global issue (Wu et al., 2021). Consequently, the World 
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Health Organization (WHO) and all United Nations Member States 
approved the “United Nations Decade of Healthy Aging” project in 
2020, which emphasizes the provision and accessibility of long-term 
care for older persons as one of its key areas of focus for the next 
decade (Arias-Casais et  al., 2022). To address these challenges, 
leveraging robotic nursing technology to effectively and safely attend 
to the daily needs of the frail elderly population represents a promising 
solution. This approach helps to bridge the gap between demand and 
resources and enhances the well-being of elderly individuals with 
compromised functional abilities.

The field of elderly care has witnessed the emergence of elderly-
care robots, which can effectively assist and replace manual caregiving 
in meeting the daily life needs of elderly individuals. These robots have 
the potential to alleviate the burden on families and society in 
providing elderly care, as well as address the critical shortage of 
nursing staff (Vercelli et al., 2018). Furthermore, they offer promising 
prospects for improving the quality of life for individuals with 
compromised functional abilities and contribute to social stability and 
development (Pilotto et al., 2018). In contrast to traditional service 
robots (Gonzalez-Aguirre et al., 2021; Lee, 2021) and auxiliary robots 
(Alboul et al., 2023) that provide a wide range of services for different 
types of humans or families in various industries, elderly-care robots 
are tailored to meet the unique needs and challenges of the elderly. 
However, frail elderly individuals often experience motor function 
issues such as osteoporosis and muscle weakness. However, frail 
elderly often experience motor function issues such as osteoporosis 
and muscle weakness. Additionally, the decline in language, limb, and 
emotional expression further complicates the accurate conveyance of 
nursing intentions from elderly individuals with weak functional 
abilities. This presents significant challenges for delivering appropriate 
nursing to this particular group, necessitating a high level of expertise 
in nursing practices. The shortage of nursing staff, coupled with the 
demanding nature of nursing requirements, has given rise to the 
development of the robotic nursing industry. The growing demand for 
high-performance elderly-care robots has provided unprecedented 
opportunities and challenges.

2 Elderly-care robots and their various 
nursing modes

The elderly-care robot integrates advanced robotics technology 
with the specific needs of elderly care, enabling accurate, safe, and 
intelligent nursing to enhance the well-being and level of care for frail 
elderly. Over the past decade, many countries have implemented 
significant policies to promote the development of the elderly-care 
robot industry. Over the past decade, numerous countries have 
implemented tremendous policies to encourage the development of 
the elderly-care robot industry. For instance, the National Science 
Foundation (NSF) funded $37 million in 2016 to support fundamental 
research on companion robots and home care robots (Bekey and Yuh, 
2008). The European Union’s civil robot research and development 
program, SPARC, allocated 700 million euros from 2014 to 2020 to 
develop key technologies for robots to address the challenges of an 
aging society (Huet and Mastroddi, 2016). In 2016, Japan introduced 
the “Five-Year Plan for Care Robots” into the national “2016 
Revitalization Strategy,” investing 100 billion yen to support research 
into robotic technologies for elderly care. This research covered 

various aspects, including transfers, toileting, monitoring, bathing, 
communication, and rehabilitation (Neumann, 2016). The 
development of high-performance elderly-care robots holds 
significant importance in light of the global elderly-care landscape. (1) 
Medical assistant function: Designed to assist with medical tasks with 
almost no social characteristics, such as human physiological index 
monitoring and auxiliary analysis. (2) Daily living assistance and 
rehabilitation training function: Aims to assist frail elderly with simple 
daily living and care tasks, including feeding, walking, mobility, 
turning over, postural support, toileting, sleep care, dressing and 
undressing, and some rehabilitation training tasks. (3) Life companion 
and emotional interaction function: Enhances the quality of life of 
elderly individuals through voice communication and companionship. 
In practical elderly care settings, the integration of these three 
functions aims to achieve the following objectives:

 • Enhancing the autonomy and behavioral abilities of elderly 
individuals, enabling them to live in a comfortable environment 
while preserving their dignity.

 • Ensuring the safety and companionship of elderly individuals, 
maintaining their health and mobility, and promoting a 
healthy lifestyle.

 • Effectively distributing caregiving tasks among nursing staff, 
families, and healthcare organizations, thus optimizing resource 
allocation and efficiency.

Based on the medical assistant function, daily living assistance 
and rehabilitation training function, as well as life companion and 
emotional interaction function of elderly-care robots, and the varying 
emphases of these functions, we categorize elderly-care robots into 
three main types: intelligent robots based on medical functionality 
and physiological index monitoring, life-assisted nursing robots, and 
companion robots based on emotional interaction and behavior 
monitoring. The purpose of this classification is to better meet the 
diverse needs of the elderly and the complexity of real-life elderly 
care scenarios.

2.1 Intelligent robots based on medical 
functionality and physiological index 
monitoring

Addressing specific physiological, motor, and cognitive 
impairments in some elderly individuals, the system aims to 
complement and enhance medical services based on physiological 
monitoring and analysis while respecting user privacy. This 
strengthens the autonomy of elderly individuals and improves their 
physical and cognitive conditions (Heerink et al., 2006; Stefanie et al., 
2017; Etemad-Sajadi and Gomes Dos Santos, 2019).

Personal AAL (Personal Ambient Assisted Living; Corcella et al., 
2019) and Emerald (Rincon et al., 2019) are examples of systems that 
remotely measure physiological indicators using high-precision 
wearable sensors. These systems automatically generate visual health 
recommendations while assessing the users’ health status. Additionally, 
the system can provide early intervention for elderly individuals living 
in the home environment, effectively assess and minimize the long-term 
impact of various factors on health, and encourage elderly individuals 
to maintain an active and healthy lifestyle (Alsulami et al., 2017, 2022; 
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Almalki et  al., 2022). PHAROS (Physical Assistant Robot System) 
combines the Pepper robot (Figure 1A) and a motion expert system to 
analyze users’ motion states during daily training using deep learning 
methods (Costa et al., 2018; Martinez-Martin et al., 2019). It provides 
real-time posture correction and positive feedback to encourage and 
enhance users’ initiative. The system offers personalized training sets 
and programs, compares the degree of decline based on certified clinical 
guidelines, and notifies healthcare professionals of potential physical 
issues. IMBTMMS (Intelligent Mobile Body Temperature Monitoring 
and Management System; Cui et al., 2021) is designed for elderly care 
settings. It regularly processes body temperature, heart rate, and blood 
oxygen data, providing real-time and continuous monitoring, 
prediction, alerting, and management services. The system’s 
implementation in nursing homes has achieved large-scale index 
monitoring and data management, significantly alleviating staff 
shortages during epidemics and reducing the risk of cross-infection. In 
summary, Personal AAL and Emerald utilize wearable sensors to assess 
the health status and physical activity of the elderly, while PHAROS 
employs visual input to analyze motion states. Proper sensor placement 
is crucial for accurate measurement results, and ensuring correct order 
becomes challenging when frail elderly individuals are responsible for 
sensor installation. Furthermore, these technologies primarily support 
and assist medical staff rather than directly replacing them. Therefore, 
medical staff need access to comprehensive physical activity data and 
daily assessment reports to utilize these systems effectively.

Castillo et  al. proposed a robot (Figure  1B) for guiding the 
rehabilitation of language apraxia (Castillo et al., 2018). The model 
parameters are trained using oral motion information from standardized 
elderly individuals. Subsequently, the system captures oral motion and 
utilizes deep learning methods to evaluate key points, ensuring the 
correct execution of the treatment regimen. With the assistance of 
professionals, the system improves muscle movement planning, 
sequencing, and coordination to produce speech ultimately. Regarding 
cognitive aspects, CoME effectively analyzes the development.

process of mild cognitive impairment by detecting early signs of 
abnormal user behavior (COME, 2021). It offers cognitive games, 
monitors health status, provides recommendations for maintaining a 
healthy lifestyle, and offers guidance on daily activities, chores, and 
relevant knowledge for the elderly. MyMemory is a mobile augmented 
memory system that combines schedules and games to help 
individuals with traumatic brain injury recover from autobiographical 
memory deficits (Chang et al., 2018). Clinical research indicates that 
the system aids in recovering autobiographical memory deficits 
among elderly individuals. In the systems mentioned above, nursing 

staff receive personalized reports regarding platform usage, the health 
status of elderly individuals, and their overall progress. Moreover, 
professional nursing staff can create tutorials to guide relatives and 
non-professional caregivers in completing assistance tasks. These 
systems significantly contribute to treating specific conditions such 
as mild cognitive impairment, traumatic brain injury, or language 
apraxia. However, the technologies employed in these systems require 
the supervision of medical professionals. They are limited to use 
during formal treatment periods, hindering elderly individuals from 
independently pursuing physical health and improvement at home. 
To enhance the versatility of such systems, StayFitLonger (Perez-
Marcos et al., 2018) proposes a solution that operates without the 
supervision of medical professionals. This integrated system 
combines physical and cognitive training for elderly individuals, 
offering gamified activities and personalized exercises through 
mobile devices. It allows users to engage in more extended periods of 
activity. Additionally, virtual reality technology provides assistance 
and instructions during exercises, encouraging active participation 
among elderly individuals. The platform aims to empower elderly 
individuals to use it autonomously at home and provides various 
exercise modes based on their flexibility and injury levels.

2.2 Life-assisted nursing robots

The care of frail elderly individuals demands a high degree of 
specialization and remains primarily reliant on manual caregiving. This 
approach not only entails significant caregiving complexity and 
intensity but also places substantial reliance on the service proficiency 
of caregivers. With the development of assistive robots, rehabilitation 
robots, and human-robot interaction technologies, life-assisting nursing 
robots and their key technologies are emerging. These robots must 
adapt to users’ physiological differences and living conditions, enabling 
them to safely operate in a user-centric environment and provide secure 
assistance to frail elderly individuals in mobility, household tasks, 
rehabilitation training, and various daily life demands. In general, these 
robots can be categorized into three main types: robots for autonomous 
assistive tasks, rehabilitation robots in elderly care scenarios, and 
multifunctional nursing robots based on human-robot interaction.

2.2.1 Robots for autonomous assistive tasks
Robots for autonomous assistive tasks can autonomously complete 

repetitive service or nursing tasks without human intervention. They 
can help elderly individuals deliver medicines and items, automatically 

FIGURE 1

Intelligent robots based on medical functionality and physiological index monitoring. (A) PHAROS. (B) Mini.
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clean excrement, dehumidify, purify, and other functions 
(Christoforou et al., 2020).

The XFCS-A (Qian et  al., 2010) nursing robot (Figure  2A) is 
primarily employed to assist elderly individuals or long-term bedridden 
patients in defecation. At the same time, cleaning steps such as warm 
water washing, warm air drying, and negative ion purification are 
performed on the user’s buttocks. This robot has gained significant 
popularity in hospitals and homes due to its convenience, safety, and 
reliability. In 2005, Toshiba Corporation of Japan developed the 
HOSPI-R series of home care robots (Panasonic’s Autonomous 
Delivery Robot - HOSPI(R), 2023; Figure 2B), which includes functions 
such as drug delivery and risk status identification. These robots 
comprehend user instructions through voice and visual systems, 
autonomously follow the user, and assess potential risk states in the 
surrounding environment, providing timely prompts to the operator. 
To address concerns related to drug or liquid overflow caused by robot 
acceleration or deceleration, various storage methods for liquids and 
solids, as well as buffer devices, have been devised to enhance the safety 
of the drug transportation process (Mertz, 2012). Yanshan University 
has invented a bidirectional transfer nursing robot. This innovation 
enables the transfer of frail elderly from hospital beds to stretcher 
workshops, effectively reducing the labor intensity of nursing staff and 
avoiding the secondary damage to the user caused by the traditional 
transfer method (Wang et  al., 2016a,b). Additionally, Shenyang 
University of Technology has developed an intelligent toilet robot with 
autonomous movement and slip risk identification, as well as an 
intelligent wheelchair robot capable of adjusting the user’s seating 
posture (Yu, 2019). To enhance the safety and flexibility of these robots’ 
usage for elderly individuals with weakened functions, a highly robust 
follow-up control method has been proposed for the intelligent toilet 
robot. This involves designing seating trajectories and postures based 
on the principles of user motion engineering, calculating the control 
rate of the intelligent toilet robot accordingly, and providing optimal 
seating postures for users with varying levels of mobility.

2.2.2 Rehabilitation robots in elderly care 
scenarios

Rehabilitation robots in elderly care scenarios are crucial in 
assisting frail elderly with rehabilitation training functions in 
hospitals, nursing homes, homes, and other scenarios.

In the late 20th century, developed countries began to focus on 
the development of nursing bed robots, which are mainly used for 
various operations such as rehabilitation training, turning, and 

defecation of long-term bedridden elderly (Chen, 2016). These 
nursing bed robots provide upper and lower limb rehabilitation 
training and muscle massage functions, promoting bone 
rehabilitation and improving limb blood circulation for individuals 
whose limbs cannot stretch due to prolonged bedridden conditions. 
The nursing bed robots also offer vital signs monitoring capabilities 
and assist nursing staff with real-time user monitoring through 
camera configurations (Zhang et al., 2006). Notable examples include 
the intelligent nursing bed developed by Metrocare based on 
ergonomic principles and motion planning principles (Xin and 
Zhang, 2010), the integrated nursing bed robot with bed and 
wheelchair switching function developed by Devicelink Company 
(Luo, 2005), and the Gakusho series rehabilitation nursing bed robot 
developed by Matsushita Electric Company and Paramount Bed 
Company in Japan (Shi, 2014). In recent years, China has made 
significant progress in the field of rehabilitation nursing bed robots. 
Li Zhenqing et al. has developed a multifunctional nursing robot bed 
capable of addressing the high-efficiency nursing needs of long-term 
bedridden patients, including rehabilitation training, sitting, turning, 
eating, reading, writing, excretion, and entertainment (Li et al., 2012). 
Shanghai University of Technology has also developed a nursing bed 
robot that assists elderly individuals with back support, leg bending, 
turning over, and excreting. The system provides two nursing modes: 
active control and passive control. Furthermore, Zhang Hua et al. 
have invented a nursing bed integrated with a bathroom system, 
serving as an intelligent transportation tool while meeting the various 
daily care demands of families and hospitals (Zhang et al., 2011).

Intelligent assistive systems that facilitate proper standing and 
walking training for elderly with declining lower limb function have 
significant implications for the recovery of lower limb motor function 
and overall physical health. The renowned PAMM (Personal Aid for 
Mobility and Monitoring) system, developed by the Massachusetts 
Institute of Technology, consists of an intelligent walking machine and 
a smart walking stick device. The system utilizes force sensors as the 
primary input interface to drive the active wheel at the base of the 
system, which provides walking assistance to users (Dubowsky et al., 
2000). To address the inconvenience of wearing devices, Honda has 
designed an intelligent lower limb assist system. This mechanical 
device, worn on the hip, assists elderly individuals with insufficient 
muscle strength by improving walking speed, increasing walking 
distance, enhancing gait uniformity, and monitoring the user’s 
heartbeat to adjust walking speed (Kusuda, 2009) automatically. 
Shenyang University of Technology and Kochi University of 

FIGURE 2

Robots for autonomous assistive tasks. (A) XFCS-A. (B) HOSPI-R.
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Technology in Japan have collaborated to develop a walking 
rehabilitation training robot for home care scenarios. This robot offers 
active training, passive training, and active-passive hybrid training 
modes. Equipped with an integrated omnidirectional mobile platform, 
it can operate within small indoor spaces without requiring a turning 
radius. The robot incorporates various interactive modes such as 
touch screen interaction, automatic navigation, and control based on 
the user’s walking direction and speed intentions, considering the 
exercise habits of frail elderly (Zhao et al., 2017). Compared to the 
steps involved in repeatedly placing and calibrating electrodes during 
rehabilitation training using a multi-channel EMG acquisition system, 
Zhao Xingang proposed a hand motion recognition system based on 
single-channel EMG signal decomposition. This system significantly 
improves motion recognition accuracy by 10% while enhancing 
operation convenience and user comfort. Its applications extend to 
daily sign language recognition, prosthetic hand control, and hand 
rehabilitation robot control (Zhao X. et al., 2019). Furthermore, Bai 
Jing from Southeast University proposed an autonomous home 
rehabilitation training and evaluation system based on workspace 
measurement. This system provides three-dimensional spatial image 
information, two-dimensional image information, and quantitative 
data to evaluate training outcomes, providing specific and easily 
understandable visual feedback for patients. The system overcomes 
the limitations of conventional treatment methods, enabling users to 
independently complete home rehabilitation training and evaluation 
without the supervision of a doctor (Bai et al., 2018). Various studies 
on indoor rehabilitation robots in elderly care scenarios have also been 
conducted by the Institute of Automation of the Chinese Academy of 
Sciences, Beijing University of Technology, Harbin Institute of 
Technology, and Huazhong University of Science and Technology.

2.2.3 Multifunctional nursing robots based on 
human-robot interaction

Multifunctional nursing robots based on human-robot interaction 
play a significant role in assisting nursing staff by effectively improving 
nursing ability and efficiency. The German space agency has developed 
the home care robot ecosystem SMILE (Vogel et al., 2021), which 
consists of the wheelchair robot EDAN, the humanoid robot Justin, 
and the tactile remote control device HUG (Figure  3A). EDAN 
integrates a force-controlled light manipulator with a five-finger 

intelligent hand, controllable via joystick, EMG signal, or EEG signal, 
to assist individuals with motor dysfunction. Justin is a robot with a 
wheeled chassis and a humanoid upper body equipped with a four-
finger gripper. The humanoid upper body features two arms capable 
of executing various tasks, including making coffee, mopping tables, 
rinsing cups, and sweeping floors. The tactile remote control device 
HUG enables the remote control operation of EDAN and Justin. The 
system offers various operating modes with different levels of 
autonomy. TRI (Toyota Research Institute) has developed the T-HR3 
(Figure 3B), a humanoid robot capable of safely supporting human 
activities at home or in medical institutions (Toyota Research Institute, 
2021). Additionally, TRI has introduced the Busboy (Figure 3C), a 
new generation of home care robots that can perform relatively 
complex humanoid tasks. Busboy learns various household activities 
through human teachings, such as grasping objects and opening/
closing doors, instead of being directly programmed for fixed tasks. 
Notably, the robot effectively links observed transactions with 
previous learning actions, enabling adaptive autonomous actions 
when encountering specific objects or scenes, even with slight task 
variations. To address the care needs of lonely, frail elderly, a Robotic 
home assistant, “care-o-bot,” has been developed (Hans et al., 2002). 
This series of robots not only performs a range of housework tasks but 
also provides emotional comfort through various interactive methods. 
The latest generation, Care-O-bot 4 (Figure 3D), supports a modular 
design, allowing users to configure it according to their preferences, 
resulting in improved quality and efficiency of care (Kittmann et al., 
2015). The dual-arm robot LIMS2-AMBIDEX, based on tendon-
driven technology, has been developed by KoreaTech in South Korea 
(Kim et al., 2018; Figure 3E). Each arm features seven degrees of 
freedom, and to reduce the inertia of the end effector, the 
corresponding drivers are positioned on the shoulder joint, utilizing 
a line drive transmission scheme. The design achieves an extremely 
lightweight structure of 2.63 kg below the shoulder joint, ensuring the 
safety and high-speed precision of dual-arm operations.

The Swiss F&P Robot Company has developed a multifunctional 
artificial intelligence (AI) nursing robot called Lio (Miseikis et al., 
2020; Figure 3F), which integrates various capabilities such as walking, 
grasping, cognitive nursing, emotional support, disability assistance, 
rehabilitation therapy, patrolling, and delivery of living items. Lio has 
been successfully deployed in numerous nursing homes in Germany 

FIGURE 3

Multifunctional nursing robots based on human-robot interaction with a humanoid structure. (A) EDAN and Justin. (B) T-HR3. (C) Busboy. (D) Care-O-
bot 4. (E) LIMS2-AMBIDEX. (F) Lio. (G) TWENDY-ONE. (H) PR2.
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and Switzerland, effectively assisting nursing staff in providing 
targeted services. Lio is a nursing robot that efficiently assists the 
nursing staff in providing targeted services and is ideally suited for 
nursing homes, hospitals, nursing centers, and private residences. In 
2007, Waseda University in Japan introduced a mobile-based 
multifunctional nursing robot named “TWENDY-ONE” (Hargrove 
et al., 2007; Vallery et al., 2008; Negro et al., 2016; Figure 3G). With 13 
sensors on its hand, including a six-axis force sensor on its fingertips 
and distributed pressure sensors on its palm surface, TWENDY-ONE 
can perform delicate movements and provide a more human-like 
touch sensation through soft skin on its palm surface. Its arm is 
equipped with a high-power output driver that combines high-power.

output with a mechanical impedance mechanism, enabling it to 
perform precise grabbing and lifting tasks for patients. The Georgia 
Institute of Technology has developed the PR2 (Personal Robot 2) life 
behavior assistance robot (Rusu et al., 2009; Figure 3H). This system 
features two 7-degree-of-freedom anthropomorphic arms with a wrist 
equipped with a 6-axis force/torque sensor. The PR2 robot can 
autonomously assist bedridden users in body wiping tasks. The system 
includes an operator selection interface that allows autonomous 
selection of areas that require cleaning, including the upper arm, 
forearm, thigh, and calf (King et al., 2010). In the process of nursing, 
the repeated and repeated transfer services of the frail elderly bring 
excessive physical burden to the nursing staff, resulting in the majority 
of nursing staff in nursing homes suffering from chronic lumbar 
diseases. At the same time, most of the transfer assistive devices 
represented by traditional lifts are inconvenient to use, time-
consuming and laborious and have low penetration rates. To this end, 
the RIBA series of robots have been developed to realize the safe and 
convenient transfer of lower limb disabled elderly in their living space. 
The third-generation Robear robots (Tak et  al., 2010; Figure  4A) 
facilitate the safe and convenient transfer of lower limb disabled 

elderly within their living spaces. By analyzing posture, force, speed, 
acceleration, comfort, and other physical data, these robots can predict 
potentially dangerous behavior during the movement of the frail 
elderly. The robots are equipped with joint torque sensors and 
intelligent electronic rubber skin on their arms and chest, enabling 
them to accurately sense contact forces below 1 N and better 
understand the intentions of elderly individuals during mobile 
operations, ensuring patient health and safety (RIBA-II, 2021). The 
University of Pittsburgh has developed an assisted nursing robot that 
provides comfortable mobile assistance to users (Fan et al., 2018). 
Clinical experiments have demonstrated that this robot effectively 
reduces physiological and psychological pressure on nursing staff, 
thereby reducing overall management costs. Guo Shijie of Hebei 
University of Technology has developed a humanoid back-hugging 
mobile nursing robot with a three-degree-of-freedom chest 
mechanism to support the user’s chest during transfers (Guo et al., 
2019). By imitating human back movements, this robot enables safe 
and efficient mobility and toileting for the frail elderly. The study 
integrates factors affecting mobility comfort into the human-robot 
system model, optimizing robot mechanisms and motion trajectories 
to effectively address the challenges faced by elderly individuals during 
mobility. Harbin Institute of Technology has determined the 
configuration and performance indicators of large-load manipulators 
based on the requirements of mobile tasks (Wu, 2020). They have 
successfully developed a two-degree-of-freedom joint system.

using multi-stage deceleration techniques, accompanied by the 
design of a compact six-degree-of-freedom manipulator. Combined 
with impedance control methods, these manipulators can lift 
paralyzed elderly individuals out of hospital beds. The robotic arm 
also features tactile perception and proximity sensing capabilities on 
its surface, ensuring safe and reliable nursing tasks through the 
proposed active and passive safety control methods. Zhejiang 

FIGURE 4

Multifunctional nursing robots based on human-robot interaction for special behaviors. (A) Robear. (B) Bishamon. (C) Obi. (D) My Spoon.

12

https://doi.org/10.3389/fnins.2023.1291682
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhao et al. 10.3389/fnins.2023.1291682

Frontiers in Neuroscience 07 frontiersin.org

University and Yanshan University have developed a variety of transfer 
nursing robots that assist bedridden elderly individuals and people 
with lower limb disabilities in leaving hospital beds and moving 
conveniently. These robots include functions such as automatic 
folding, all-around automatic walking, automatic lifting, automatic 
toilet opening, and width adjustment. Furthermore, Jiang Yinlai and 
Zhao Donghui have invented a walking support robot with auxiliary 
standing and walking functions, effectively achieving safe and flexible 
standing assistance based on ergonomic principles in the standing 
process and intelligent wheelchair robot integration. Additionally, 
they have developed a multi-channel close-range sensor and a flexible 
control method based on human motion gait (Zhao, 2020). Significant 
research efforts have been made worldwide to enhance the mobility of 
elderly and disabled individuals through intelligent wheelchairs and 
their multimodal interaction technologies. Notable examples include 
the Wheelesley autonomous wheelchair robot (Yanco, 1998), the TAO 
Aicle intelligent wheelchair from Japan (Matsumoto et al., 2006), the 
Connie intelligent company KSI intelligent elderly function electric 
wheelchair, the RoboChair intelligent wheelchair developed by the 
Institute of Automation of the Chinese Academy of Sciences, the 
“Jiaolong” intelligent wheelchair developed by Shanghai Jiaotong 
University (Zhang, 2015), and the multimodal control wheelchair 
developed by Chongqing University of Posts and Telecommunications 
(Luo et al., 2012). These intelligent wheelchairs offer advanced 
features, such as multimodal human-robot interaction, efficient path 
planning, dynamic obstacle avoidance, and autonomous navigation, 
which greatly improve the mobility of elderly and disabled individuals. 
In Japan, the Bishamon care wheelchair bathing robot (He et al., 2019; 
Figure 4B) integrates an adjustable bathtub and an upper and lower 
separable wheelchair, significantly enhancing bathing efficiency and 
nursing care. Henan University of Science and Technology has 
developed a nursing robot bathroom system (Cheng, 2015), which 
includes bathing mechanisms and a robot that integrates auxiliary 
standing, friction, and shampoo mechanisms. This system assists users 
in standing and provides efficient cleaning services, ensuring a 
comfortable bathing experience.

Li et al. have developed a nursing shampoo robot that effectively 
addresses the safety control problem associated with existing shampoo 
robots while ensuring efficient cleaning of the user’s home (Li et al., 
2017). In the domain of feeding assistance for frail elderly, notable 
robots include the Obi robot that helps disabled individuals eat 
unassisted by Design Robot Company in the United  States 
(Automation, 2021; Figure 4C), the My Spoon meal-assistance robot 
by SECOM Company in Japan (Ishii, 2003; Figure  4D), and the 
intelligent feeding assistive robot developed by the University of 
Shanghai for Science and Technology (Xu et  al., 2020). These 
innovative solutions provide effective auxiliary feeding schemes for 
frail elderly. Furthermore, Google’s Liftware Level anti-shake spoon 
has demonstrated its benefits for Parkinson’s patients by offering a 
stable grip and improving the eating experience (Liftware, 2021). 
Additionally, Krati has addressed the assistive dressing needs of frail 
elderly individuals s through the development of a deep learning-
based framework. This framework accurately predicts clothing 
categories and identifies spatial coordinates for grip points, thereby 
streamlining the clothing operation process. Promising results have 
been achieved in fabric type detection and precise grasping 
point determination.

2.3 Companion robots based on emotional 
interaction

Companion robots based on emotional interaction have social 
and companionship capabilities, effectively assisting elderly 
individuals in addressing psychological and emotional problems such 
as isolation, emotion, stress, and loneliness, thereby improving their 
well-being. With continuous innovations in human-robot interaction 
(Goodrich and Schultz, 2007), behavior detection (Mohebbi, 2020), 
and autonomous navigation technologies (Marder-Eppstein et  al., 
2010), increasingly advanced socially interactive robots have emerged 
(Fong et al., 2003; Breazeal, 2004).

Within the scope of Horizon 2020, the European Union’s research 
and innovation framework program, numerous projects focused on 
elderly nursing services, including ENRICHME, SOCRATES, RADIO, 
and STREAMS, have been approved. Research indicates that older 
users are more receptive to robots that resemble pets or babies in both 
appearance and behavior (Breazeal and Scassellati, 2000). Consequently, 
various companion robots with pet-like or baby-like appearances have 
been developed to engage with frail elderly individuals daily. Notably, 
PARO, a seal-shaped robot (Figure 5A), incorporates tactile feedback, 
voice interaction, and posture perception to elicit positive emotions in 
users through real-time responsive behaviors such as head and flipper 
movements (Sabanovic et al., 2013; Hung et al., 2019; Chen et al., 2022). 
PARO has found utility in several nursing homes. NeCoRo robots, 
designed to resemble cats, are capable of expressing emotions like 
satisfaction, surprise, and happiness while responding appropriately to 
user emotions and actions (Nakashima et al., 2010). Clinical trials 
conducted in nursing homes show that NeCoRo effectively assists 
residents in improving communication and comfort among elderly 
individuals. AIBO, another companion robot, has been used in several 
clinical studies on the acceptability of geriatric care (Fujita, 2004). 
Participants exhibited a high degree of dependence on AIBO and 
reported reduced feelings of loneliness. Clinical experiments have 
further revealed that robot-assisted activities can help alleviate 
loneliness and enhance the activity and emotional state of patients with 
Alzheimer’s disease. MARIO (Figure 5B) alleviates the challenges of 
loneliness and dementia in elderly individuals through the development 
of companion robots (MARIO, 2021). A clinical study of MARIO has 
revealed various factors affecting its acceptability, including facial 
appearance, knowledge of user preferences, practicality, and the ability 
to connect users with their family and friends (Casey et al., 2016). The 
Jibo social robot (Figure 5C) conducted a three-week “facilitating social 
interaction experiment” on 19 participants in an assisted living 
community in California (Jibo, 2023). By utilizing natural language 
processing techniques to provide information pertaining to daily 
activities obtained from the internet, Jibo enabled remote nursing staff 
to establish a sense of telepresence within the user’s home (Roy et al., 
2000). Many nursing studies have highlighted the significant influence 
of emotional, behavioral, and environmental factors on the nursing 
experience of elderly individuals (Hirsch et al., 2000). In conclusion, 
social robots have demonstrated their effectiveness in enhancing user 
engagement and fostering social connections. Nevertheless, these 
advancements also shed light on users’ concerns regarding security, 
privacy, and the collective apprehensions surrounding social robotics.

Based on completing the accompanying behavior, the robot can 
provide extensible behaviors such as feeding reminders, abnormal 
behavior recognition, and entertainment activities.
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Mabu, a personal healthcare companion robot, was introduced in 
2015 ((My Website, 2023)). This robot engages in social interactions 
with elderly individuals and creates personalized conversations for 
each user based on classical psychological models of behavior, helping 
to address issues related to chronic diseases, such as medication 
intake. Stevie, developed by Trinity College Dublin (McGinn et al., 
2020), interacts with elderly individuals through a combination of 
sensory data, including gestures, speech, and facial expressions, with 
high acceptability. Mabu and Stevie robots are primarily employed in 
reminder scenarios and do not include behavior monitoring or data 
collection and analysis systems. The HOBBIT project, funded by the 
European Union, aims to develop a socially assistive robot (Figure 5D) 
capable of tasks such as picking up and carrying, emergency 
recognition, fitness planning, and reminders while ensuring the safety 
of elderly individuals (Bajones et al., 2018). The project introduces.

the concept of interactive care, enabling the robot to learn the 
user’s habits and preferences to adapt its behavior. ZORA presents two 
commercial robot solutions (Zorarobotic, 2021). ZoraRobot, based on 
the Nano platform, integrates healthcare applications that assist 
elderly individuals in interactive therapy and entertainment activities 
and have been introduced in nursing homes and retirement 
communities in the United States. Zorabot, on the other hand, is based 
on the Pepper robot platform and incorporates medical applications, 
providing functions such as visiting, greeting and returning, inquiries, 
and medical assistance. Blue Frog has developed a robot named 
BUDDY (BUDDY, 2021), which enhances care for elderly individuals 
by providing companionship and assistance in their daily activities. 
For instance, it can remind them to take medication, make 
appointments, deliver items, or detect abnormal behaviors such as 

falls. In the European Union’s 7th Research Framework Programme 
(FP7), several elderly care projects combine robotics technology with 
ambient intelligence to achieve panoramic semantic integration for 
assisted home care, facilitating independent living for elderly 
individuals (Saunders et  al., 2013). The CompanionAble project 
effectively addresses the social integration and home care challenges 
faced by elderly individuals with chronic cognitive impairment in 
Europe (Badii et al., 2009). The GiraffPlus project combines sensor 
networks to provide a remote-controlled robot for monitoring 
activities within the home environment. The project particularly 
emphasizes the emotional aspect of user interaction to meet their 
needs and capabilities (Coradeschi et al., 2014). The Mobiserv system 
comprises a socially interactive robot, wearable smart clothing, and a 
smart home environment, aiming to support the daily lives of elderly 
individuals with comprehensive care services focused on health, 
nutrition, happiness, and safety, thereby improving their quality of life 
and care efficiency (Nani et al., 2010; Esposito et al., 2014).

Regarding cognitive assistance, LIZA (Le and Wartschinski, 2018) 
has emerged as a widely adopted cognitive companion that enhances 
older adults’ reasoning and decision-making abilities through 
continuous human-robot interaction. This system employs natural 
language interaction based on 66 topic texts to impart knowledge to 
elderly individuals about one or more subjects. By posing synthesized 
questions and adapting to the individual needs of elderly individuals 
during each interaction, LIZA autonomously and subconsciously 
corrects its guidance criteria. Furthermore, social assistance robots 
(Andriella et  al., 2018) have also found extensive applications in 
cognitive assistance. Through efficient interactions, these robots 
encourage elderly individuals to grasp specific tasks or engage in 

FIGURE 5

Companion robots based on emotional interaction. (A) PARO. (B) MARIO. (C) Jibo. (D) HOBBIT.
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cognitive exercises such as the Syndrom-Kurztest neuropsychological 
battery (SKT). They exhibit adaptability to the diverse responses of 
different older adults and provide support and assistance at multiple 
levels of interaction.

In summary, current companion robot technologies are 
predominantly focused on specific domains. In comprehensive elderly 
care scenarios, multiple systems must collaborate to provide 
comprehensive support, which poses challenges in effectively 
managing these systems and accurately monitoring the health 
conditions of elderly individuals. Moreover, using visual sensors in 
home care scenarios raises privacy concerns. Therefore, it is necessary 
to establish appropriate regulations to address the ethical and 
technological boundaries, aiming to minimize threats to the privacy 
of elderly individuals. Furthermore, the issue of acceptance by the 
elderly population presents a significant challenge in the widespread 
adoption of robotics in elderly care. The difficulty in operating high-
tech products and the gap between social experiences and expectations 
contribute to the resistance among some elderly individuals to utilize 
such technologies. Research shows (Sixsmith, 2013) that the 
acceptance of robots depends not only on the personalized 
functionalities they offer, such as entertainment, status enhancement, 
and tangible benefits, but also on the inherent characteristics of 
individuals, including age, needs, gender, technological experience, 
cognitive abilities, education, culture, roles, expectations, attitudes 
toward robots, and the inherent characteristics of robots, such as 
safety, usability, intelligence, appearance, human likeness, facial 
expressions, physical size, gender, personality, and adaptability (Young 
et al., 2009; Frennert et al., 2012). Therefore, effectively handling the 
practicality and social aspects while satisfying the essential 
performance requirements and catering to the individual differences 
of users is crucial to the successful deployment of companion robot 
technologies in elderly care scenarios and to enhance acceptance 
among the elderly population.

3 Safe interaction methods

The safe human-robot interaction method is one of the most 
critical research areas in elderly care scenarios. This technology 
encompasses collision protection between users and robots within 
shared spaces while comprehensively considering various ways in 
which harm can be  inflicted upon frail elderly individuals, from 
physical contact to psychological effects. This paper comprehensively 
describes four aspects of safe interaction methods: control methods, 
motion planning, behavior prediction, and psychological factors.

3.1 Control-based safe interaction methods

Control strategies are commonly used to achieve safe human-
robot interaction, without the need for complex predictive models or 
planning strategies, while still demonstrating high system robustness. 
Among these, safety improvements in human-robot interaction can 
be  split into two distinct phases: pre-collision safety and post-
collision safety.

Pre-collision safety control methods are measures taken before an 
actual collision between humans and robots occurs. These methods 
can be achieved by ensuring collision avoidance as a primary objective 

or by constraining critical parameters of the robot. For instance, 
collision prevention can be achieved by limiting the robot’s speed or 
energy, using defined safety zones, maintaining tracking separation 
distances, guiding the robot away from humans, and other methods. 
The common approach involves controlling safe human-robot 
interaction by setting thresholds for key system parameters, such as 
joint velocity, energy, or force exerted by the robot. One method 
combines a force threshold-based foot motion control strategy with 
an improved robot body center of mass motion for enhanced 
performance when walking on uneven terrain (Heinzmann and 
Zelinsky, 2003). Another approach by Broquere et al. utilizes piecewise 
cubic polynomial chains to construct trajectory chains that limit jerk, 
acceleration, and velocity for pre-collision safety control (Broquere 
et al., 2008). While these methods may be overly conservative without 
imminent collision threats, they provide pre-collision safety by 
globally constraining the robot’s motion without relying on accurate 
and robust detection and tracking of human positions. Another 
method of pre-collision control involves decelerating or stopping the 
robot by utilizing safety zones or separation distances to prevent 
collisions. This method uses depth sensors to estimate the distance 
between the robot and static or moving obstacles. It combines real-
time distance measurements with estimated obstacle velocities to 
adopt a repulsive vector-based collision avoidance controller (Buizza 
Avanzini et al., 2014). De Luca et al. also propose a method utilizing 
a distributed distance sensor and optimization of robot body sensor 
node positions for safety (Flacco et al., 2012). Compared to threshold-
based methods, this method offers greater flexibility but also requires 
robust and low-latency tracking of humans within a given space. 
Incorporating risk criteria and field computation into control 
algorithms can prevent robot collisions. For instance, potential field 
methods define repulsive vector fields that guide robot motion, 
adjusting the trajectory based on changing dynamic environmental 
factors to ensure safety during complex behaviors (Khatib, 1986; 
Kovács et al., 2016). This method allows for more intricate collision 
avoidance beyond adjusting the robot’s speed. However, the method’s 
effectiveness depends on the strategy employed in constructing the 
potential field. In elderly care scenarios, customizing strategies involve 
factors beyond separation distances, such as approach direction, 
emotional states, and human gaze direction. Therefore, in the case of 
unexpected or unpredictable contact, post-collision control methods 
minimize harm by switching to different control strategies, 
differentiating between intentional and unintentional contact, and 
allowing safe physical contact when necessary to achieve effective 
collaboration. The first step in implementing post-collision control 
methods for safe human-robot interaction is to detect whether a 
collision has occurred. Sharkawy et al. propose a collision detection 
method based on a multi-layer feed-forward neural network, utilizing 
robot position and joint torque sensors for detecting collisions 
between operators and robots, applicable to any robot equipped with 
joint torque sensors (Sharkawy et al., 2020). Geravand et al. present 
another method using motor current measurements for detection and 
response, eliminating the need for torque sensors (Geravand et al., 
2013). This system is designed for robots with closed-loop structures, 
capable of distinguishing between intentional collisions and switching 
the robot into a collaboration modality upon collision detection. Golz 
et  al. propose a method utilizing machine learning and physical 
contact models to distinguish between intentional and unintentional 
robot collision detection, employing non-linear support vector 
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machines for classification by observing real collision data and 
extracting a set of features. As interaction scenarios become more 
complex, effectively distinguishing between intentional and 
unintentional contact in collision detection systems becomes critical 
to ensuring safe interactions. When intentional contact is recognized, 
the robot must accurately infer the user’s collaborative intent and 
provide optimal support actions during the interaction rather than 
simply minimizing damage by avoiding collisions or switching 
control. Luca and Flacco proposed an inference framework based on 
user gestures and speech to determine whether users intend to enter 
a collaboration modality and specify body-specific parts where robot 
contact is allowed or prohibited, such as the user’s head (De Luca and 
Flacco, 2012). Additionally, these frameworks can effectively estimate 
interaction forces at contact points and control the robot to ensure 
that they do not exceed predetermined thresholds. In elderly care 
scenarios, collaborative contact requires specific consideration of the 
actual contact points and monitoring and limiting the effects of forces 
during an interaction.

3.2 Motion planning-based safe interaction 
methods

Motion planning-based safe interaction methods employ robot 
path planning and motion planning to avoid collisions and ensure 
safety. In the process of motion planning, human-related constraints, 
such as separation distances and human gaze directions, are directly 
incorporated into the motion planner’s cost functions and objective 
functions to actively avoid collisions and generate comfortable and 
user-acceptable motions, thereby achieving optimal motion planning 
strategies in closed-loop scenarios. Motion planning takes a more 
proactive approach than control-based methods to ensure interaction 
safety. Research has shown that, in some instances, traditional control 
methods for collision avoidance may result in lower safety and 
efficiency compared to perception-based motion planning methods 
and may negatively impact the user’s psychological safety (Lasota 
et al., 2014). Furthermore, motion planning algorithms incorporating 
safety operators apply to almost any robotic platform, such as 
manipulator manipulation and robotic navigation, demonstrating 
good functional generality and portability. These algorithms primarily 
include planners based on human closure constraints and motion 
planners based on geometric and task constraints. Compared to 
threshold-based control methods, the parameters of motion planners 
can minimize risk operators throughout the motion process rather 
than just approaching safety thresholds. Several motion planning 
algorithms have been developed that take human constraints into 
account. For instance, for scenarios involving human-carrying mobile 
platforms, Morales et al. developed the HCoPP (Human Comfort Path 
Planner), which takes into account user preferences, such as the 
desired distance from walls when walking in corridors and visibility 
at corners while approaching turns, to design driving paths that 
provide a comfortable and pleasant experience for the user (Morales 
et al., 2015). In the spatial zones of human-robot collaboration, due to 
the inherent uncertainty in user behavior, motion planning strategies 
need to consider the ability for rapid re-planning based on geometric 
and task constraints. Interaction safety zones and buffer zones can 
be encoded using geometric constraints, while additional information 
guiding the robot’s motion can be modeled using task constraints, 

such as leveraging previous observations to predict the occurrence of 
future events. By hierarchically encoding task constraints and 
geometric constraints and combining them, complex search spaces 
can be efficiently traversed, effectively eliminating illogical solutions 
and local optima, thereby accelerating computation speed Combined 
Task and Motion Planning for Mobile Manipulation (Wolfe 
et al., 2021).

3.3 Perception and prediction-based safe 
interaction methods

Accurate perception and prediction of each other’s behaviors and 
actions are crucial to ensure safe interaction between human users and 
robots in scenarios involving mutual proximity, contact, and dynamic 
interaction. This capability needs to be extended to all members of 
multi-robot systems involved in assistive behaviors alongside users. 
Perception of human activity states encompasses the perception and 
prediction of actions. In pursuit of this goal, research focuses primarily 
on behavior analysis by analyzing the underlying features of motion 
signal sensors, physiological signal sensors, visual sensors, and 
depth sensors.

In the field of elderly care, robots need to monitor and discriminate 
the behavior of elderly individuals in indoor environments, such as 
homes, which is crucial for enhancing safe interaction. These behaviors 
include behavior monitoring, fall detection, abnormal behavior 
detection, and medication monitoring, which significantly improve the 
safety of assisted living in homes. For instance, in designing applications 
for the frail elderly, an effective and common method for fall detection 
involves utilizing the three-dimensional depth data from depth 
cameras to determine the distance from the human centroid to the 
ground and to analyze the vibration characteristics. However, the 
robustness of traditional global visual sensors is compromised when 
there are occlusions between users and robots. A fall recognition 
algorithm based on a set-source filter can effectively identify various 
abnormal gaits, including falls and dragging gaits (Zhao D. et al., 2019). 
Activity prediction using image data has been explored by Azorin-
Lopez et  al., where they establish normalized activity vectors to 
describe RGB (Red Green, and Blue) interaction data, eliminating 
dependence on time or event sequences (Azorin-Lopez et al., 2014). 
Shah et al. utilize a time-series analysis method, defining multivariate 
Gaussian distributions for each motion time step based on tracked 
human arm degrees of freedom (Perez-D’Arpino and Shah, 2015). The 
system utilizes the learned model for Bayesian classification of the 
initial phase of motion to predict the direction of a person’s movement 
and select the robot’s action with minimal interference. Intention 
recognition is a prerequisite for achieving safe human-robot 
interaction, particularly for frail elderly. Intention recognition can 
be  accomplished through explicit and implicit methods. Explicit 
methods directly convey the robot’s intent and planned behavior 
through language, visual cues, auditory signals, and other explicit 
means. In cases where explicit expression of motion goals is not 
desired, the implicit method implicitly embeds subtle cues through 
action performances to convey motion intentions. By combining these 
methods in specific elderly care scenarios, human-robot behavior 
becomes more predictable, allowing for more effective motion planning 
and ensuring safe interaction. Intention recognition needs to 
be specifically defined in conjunction with particular tasks and can 
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involve the recognition of individual action switches, transitions 
between multiple discrete actions, and continuous information. These 
methods have been applied in research on facial recognition-based 
user emotion detection, language recognition, action intention 
recognition, and cognitive emotion regulation methods, providing a 
solid research foundation for human-robot interaction technology in 
the context of elderly care scenarios (Li, 2013; Liu, 2015; Liu et al., 2016; 
Lu, 2017). Particularly in the domain of action intention recognition, 
various applications include control of prosthetic grasping, dexterous 
manipulation of prosthetics, control of brain-computer interfaces, and 
assistance in standing and walking. These motion signal perception-
based studies mainly utilize position sensors, angle sensors, and force 
sensors to capture the motion state of the user’s limb joints, which are 
then fed back to the control unit to form a closed-loop control system. 
This approach enables smooth control, significantly improving 
precision and accuracy and preventing secondary injuries. For instance, 
Xu Wenxia et al. propose a multi-sensor fusion-based motion control 
method for assistive walking robots that can adapt to users’ walking 
intentions, predict potential falls during usage, and take corresponding 
fall prevention strategies. The effectiveness of this method is 
demonstrated through experiments (Xu et  al., 2016). Another 
technique for human action prediction does not directly infer sensor 
data but represents discrete actions or task steps in a labeled form. Task 
models are used to infer actions taken and combined with sequence 
matching and probability recognition methods for prediction. In this 
regard, the objective of perception systems is action detection. 
Nikolaidis et al. encode human-robot collaborative tasks based on 
Markov decision processes and accurately predict the outcome of 
human actions (Nikolaidis and Shah, 2013). They subsequently 
propose a hybrid observable Markov decision process (Nikolaidis et al., 
2015). In this work, the system clusters action sequences, learns reward 
functions for each cluster through inverse reinforcement learning from 
joint action demonstrations, and automatically learns user models. The 
robot then utilizes these models to predict user types for anticipating 
user behavior and executing appropriate expected behaviors.

In order to create a safe, comfortable, and natural assistive 
environment or rehabilitation training system for elderly individuals, 
research on perception and prediction between robots and elderly 
individuals play a crucial role. This research not only identifies the 
current states of elderly individuals and robots but also facilitates 
interaction between them. It can construct a closed-loop control 
system, improve the control accuracy of the system, and use the 
information of force and position to realize the compliant control of 
the robot. In addition, the research of perception and prediction can 
also be used as an evaluation signal to participate in the evaluation and 
calibration of rehabilitation robot performance (Lloyd and Besier, 
2003; Balbinot and Favieiro, 2013). Accurate perception combined 
with high-quality control methods can create a safe and comfortable 
care and rehabilitation environment for elderly individuals, 
significantly improving nursing safety and nursing efficiency.

3.4 Psychological factor analysis based safe 
interaction methods

Enhancing psychological safety is a key factor in users’ 
acceptance of elderly-care robots. Maintaining psychological safety 
means ensuring that users subjectively perceive their interactions 

with the robot as safe without causing any psychological discomfort 
or stress, whether due to the robot’s actions, appearance, speech, 
posture, social behavior, or other attributes. Previous research has 
shown that relying solely on physical safety measures is insufficient 
to improve users’ sense of safety and comfort (Lasota and Shah, 
2015). Therefore, in human-robot interaction, a crucial method for 
ensuring psychological safety is appropriately adjusting the robot’s 
behavior, which can be  categorized into adjustments based on 
robot characteristics and social factors characteristics. Researchers 
commonly evaluate the effectiveness of psychological safety 
through three evaluation methods: questionnaire surveys, 
physiological indicators, and behavioral indicators.

Research on adjustments based on robot features focuses 
primarily on psychological safety factors by modifying various 
parameters of robot motion, such as speed, acceleration, or the degree 
of proximity to human characteristics, to make human-robot 
interaction more comfortable. Previous studies have quantified user 
comfort during human-robot interaction by establishing human 
comfort models. For instance, dynamic comfort models have been 
developed to enhance the comfort of the interaction process by 
adjusting parameters such as robot speed and distance from the user 
(Wang et al., 2018). Sisbot and Alami found that physical safety alone 
is insufficient to achieve user-acceptable human-robot interaction 
and that any behavior that could cause fear or discomfort in humans 
must be  avoided. Therefore, they developed a safety-compliant 
motion planner (Sisbot and Alami, 2012). Mainprice et al. generated 
reactive actions that satisfy human comfort by introducing 
interaction constraints in the motion planner (Mainprice et al., 2011). 
Additionally, it is necessary to consider research and adjustments 
related to robot features and understand the influence of social 
factors (Haring et al., 2013; Costanza et al., 2014; Obaid et al., 2016). 
Factors such as different robot postures, appearance design, and 
different types of background sounds can affect user comfort. 
Another method to enhance interaction safety through psychological 
factors is to adhere to social norms, including considering the 
influence of cultural and personality differences. It is essential to 
translate social habits observed in human interactions into methods 
for interacting with robots and to consider the impact of robots 
violating social conventions on users’ psychological safety. 
Researchers such as Joosse have found that users are highly sensitive 
to the extent to which robots respect social norms when invading 
personal space, and their reactions to robot invasions of personal 
space can be even more potent than those of humans (Joosse et al., 
2013). A six-week clinical study by Walters assessed participants’ 
behavioral preferences when interacting with robots in a home 
environment. The results showed that even without safety hazards, 
robot failures directly increased the expected distance between 
humans and robots. Furthermore, studies have revealed that 
compared to the distances at which users willingly approach robots, 
they allow robots to approach them at greater distances within 
physically constrained areas. Ghazali et al. found that users tend to 
trust robots with human facial features more, and most users exhibit 
higher psychological reactions when interacting with opposite-sex 
robots (Ghazali et al., 2018). Furthermore, studies have indicated that 
users from different cultural backgrounds have varying standards for 
appropriate proximity when robots move toward a group of people, 
and user differences in traits, culture, and experiences can influence 
behavioral preferences (Joosse et al., 2014).
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4 Future development directions of 
elderly-care robots

4.1 Multi-heterogeneous nursing robot 
system and their collaborative control 
technology

Due to the strong individual variations in physical conditions 
among frail elderly individuals, the development of rigid-flexible 
coupled robots for the care of frail elderly and their human-robot 
collaboration is gradually becoming a new trend in achieving 
universal high-quality elderly care. Rigid-flexible coupled robot 
systems, by seamlessly combining flexible actuation and 
transmission with rigid support and execution capabilities, can 
effectively simulate human nursing processes and compensate for 
the shortage of staff nursing. This provides a new safe, efficient, 
and accurate robotic nursing solution. To address the deficiencies 
in contextualization and functionality in daily life, there is a need 
to establish an overall system for a variety of heterogeneous 
elderly care service robots tailored to complex caregiving 
scenarios, alongside a robust communication system. 
Furthermore, it is crucial to develop task planning and 
collaborative control methods customized for specific application 
scenarios, assisting users in achieving safe and smooth state 
transitions to support continuous activities in daily life. 
Additionally, optimizing the structure and nursing modes of 
elderly-care robots based on the analysis of human motion 
functions and human factors engineering is an essential direction 
for the future development of nursing robots, ensuring a balance 
between safety and adaptability in assisting daily living.

4.2 Establishing a new model of smart 
home care for elderly individuals based on 
robotic nursing systems and sensor 
networks

Compared to health care, nutrition, social interaction, and 
other daily living support services provided by adult day care 
centers, long-term care facilities, and nursing homes, elderly 
individuals prefer to live in their own homes and enjoy the sense 
of familiarity, self-confidence, independence, and sense of 
accomplishment brought about by self-care activities. Therefore, 
establishing a home care model that meets specific user needs, 
combined with intelligent home sensor networks and robotic 
nursing technologies, can provide users with context-aware 
ubiquitous computing applications and home automation 
services. What’s more, this technology is a future development 
trend. The framework of home-based elderly care systems should 
possess adaptability to efficiently cater to the diverse needs of the 
elderly population with individual differences. It should correctly 
manage sensor network systems, elderly smart systems with 
medical and metric monitoring, life-assisted nursing robots, and 
companion robots based on emotional interaction. Additionally, 
standardized data communication methods and cloud 
management systems need to be  established to realize a new 
model of smart home-based elderly care.

4.3 Future directions for the safety of 
interactive control and compliance of frail 
elderly in complex scenarios

Considering the physiological characteristics of frail elderly, such 
as decreased continuity, stability, and susceptibility to misleading 
signals in their diminished motor functions, rigid robot operation 
based solely on experience can easily lead to unnoticed secondary 
damage or even life-threatening hazards. The extraordinary physical 
conditions of frail elderly and their demands for nursing safety impose 
strict requirements on the safety and compliance of nursing robots. It 
is essential to combine foundational theories and key technologies 
from the fields of medicine, information, and mechanics to enhance 
the compliance and safety of robot operations. Simultaneously, for 
specific caregiving tasks, selecting effective intent recognition carrier 
signals for frail elderly individuals and effectively combining their 
respective advantages, establishing a method for synchronized 
acquisition of multi-source signals, feature extraction, uniform 
representation, and joint recognition is crucial. This method enhances 
the estimation accuracy and stability of human intent and target 
information, enabling efficient information exchange between frail 
elderly individuals and caregiving robots, and is a key component in 
the development of caregiving robots for frail elderly individuals. 
Moreover, designing efficient control techniques, establishing 
mappings between intent and interfaces, and incorporating 
collaborative task constraints while integrating elderly individuals as 
part of the closed-loop control system, allows robots to adapt to the 
intentions of elderly individuals, ensuring high fault tolerance and 
compliance in their responses. This addresses essential issues in 
nursing robots. To further enhance robots’ safety and caregiving 
capabilities, it is imperative to integrate the physiological characteristics 
of frail elderly individuals and break through the core technologies of 
human-robot coupling dynamics, service robot design, intention 
recognition for frail elderly, and human-robot coordinated control. 
This will establish a new principle and theoretical framework for rigid-
flexible coupled robots tailored for frail elderly care.

4.4 Exploring the critical issues of robotic 
nursing technology, acceptability, and 
ethics

The development of robotic technologies for elderly nursing 
brings benefits to frail elderly but also raises concerns regarding 
privacy rights, interpersonal interaction, quality of care, acceptability, 
and ethical considerations between the elderly and nursing robots. 
Key ethical dilemmas include striking a balance between the need for 
supervision and privacy protection, the potential misguidance caused 
by one-sided emotional bonds with elderly individuals, restrictions on 
elderly individuals’ behaviors due to the autonomy of nursing robots, 
the insufficient acceptability resulting from the objectification risks in 
robot nursing services, and concerns about the deterioration of 
interpersonal skills in elderly individuals. Therefore, it is necessary to 
establish effective, ethical principles considering the differences 
between robot technology and human ethics while meeting the 
principles of specificity, flexibility, and safety to ensure that elderly-
care robots can truly enter and benefit every household.
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5 Conclusion

In summary, the application prospects of elderly-care robots in 
assisting the frail elderly in daily living assistance, nursing, and 
rehabilitation training are extensive, making it one of the most 
challenging research areas in robotics. Over the past 30 years, elderly-
care robots have gradually transitioned from laboratory research to 
clinical applications, giving rise to a significant number of distinctive 
life-assisted nursing robots, companion robots based on emotional 
interaction, and intelligent robots based on medical functionality and 
physiological index monitoring. This progression has greatly advanced 
both the research and application levels in this field. Given that frail 
elderly individuals have direct physical contact with robots, the 
methods for safe human-robot interaction are crucial scientific issues 
affecting interaction performance. Utilizing motion control, motion 
planning, prediction methods, and psychological factors are essential 
means and core technologies for achieving safe human-robot 
interaction strategies. Future research will focus on the collaborative 
assistance of heterogeneous assistive robots, the establishment of 
home-based elderly care models based on robots and sensor networks, 
the optimization of robot flexibility design, and the improvement of 
robot acceptance. These efforts will ultimately enhance the level of 
service and nursing provided by elderly-care robots.
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Introduction: Shape memory alloy (SMA) actuators are attractive options for 
robotic applications due to their salient features. So far, achieving precise control 
of SMA actuators and applying them to human-robot interaction scenarios 
remains a challenge.

Methods: This paper proposes a novel approach to deal with the control 
problem of a SMA actuator. Departing from conventional mechanism models, 
we attempt to describe this nonlinear plant using a gray-box model, in which 
only the input current and the output displacement are measured. The 
control scheme consists of the model parameters updating and the control 
law calculation. The adaptation algorithm is founded on the multi-innovation 
concept and incorporates a dead-zone weighted factor, aiming to concurrently 
reduce computational complexities and enhance robustness properties. The 
control law is based on a PI controller, the gains of which are designed by the 
pole assignment technique. Theoretical analysis proves that the closed-loop 
performance can be ensured under mild conditions.

Results: The experiments are first conducted through the Beckhoff controller. 
The comparative results suggest that the proposed adaptive PI control strategy 
exhibits broad applicability, particularly under load variations. Subsequently, 
the SMA actuator is designed and incorporated into the hand rehabilitation 
robot. System position tracking experiments and passive rehabilitation training 
experiments for various gestures are then conducted. The experimental 
outcomes demonstrate that the hand rehabilitation robot, utilizing the SMA 
actuator, achieves higher position tracking accuracy and a more stable system 
under the adaptive control strategy proposed in this paper. Simultaneously, 
it successfully accommodates hand rehabilitation movements for multiple 
gestures.

Discussion: The adaptive controller proposed in this paper takes into account 
both the computational complexity of the model and the accuracy of the 
control results, Experimental results not only demonstrate the practicality and 
reliability of the controller but also attest to its potential application in human-
machine interaction within the field of neural rehabilitation.

KEYWORDS

adaptive control, SMA actuator, gray-box model, robustness, hand rehabilitation 
robots
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1 Introduction

Shape memory alloy (SMA) actuators present numerous 
advantageous features, including excellent volume output ratios, low 
driving voltages, and noiseless and clean actuations (Shi et al., 2017). 
These attributes render SMA actuators appealing choices for 
rehabilitation robotic systems. The inherent shape memory effects of 
SMAs allow them to revert to predefined shapes upon proper heating. 
Nevertheless, these effects introduce nonlinearities, parameter 
uncertainties, and hysteresis into the control problem (Wiest and 
Buckner, 2014). As of now, achieving precise control of SMA actuators 
remains an unresolved and highly relevant challenge, serving as the 
primary motivation for this study.

In the literature, a particularly intuitive approach involves the 
design of controllers based on mechanism models. Romano and 
Tannuri (2009) exemplified this approach by creating a mechanical 
actuator using SMA. The mechanism model, derived from 
experimental setups, encompasses a thermal model, a phase 
transformation model, and a description of the mechanical properties 
and dynamics of the system. Elahinia and Ashrafiuon (2002) developed 
a sliding mode control (SMC) method based on a mechanism model. 
Given that this control law necessitates full state feedback, the extended 
Kalman filter is employed to update the unmeasurable states. In 
Ashrafiuon and Jala (2009), this approach was implemented in a three-
degrees-of-freedom robotic manipulator. Zakerzadeh and Sayyaadi 
(2013) investigated hysteresis behaviors and integrated a feed-forward 
controller into an adaptive controller, relying on the inverse of the 
hysteresis model. Riccardi et  al. (2013) addressed magnetic SMA 
actuators, introducing a novel technique to compensate for hysteresis 
nonlinearity. In a related context, Pai et al. (2017) proposed a force 
control strategy grounded in the mechanism model. Despite the 
contributions, mechanism model-based controllers have limitations: 
(a) the structures of mechanism models are often very complex; (b) 
updating model parameters recursively is quite challenging, and they 
typically remain fixed for online implementation; (c) the inverse 
hysteresis models are also very intricate and lack adaptability.

As an alternative, neural network models have attracted attention 
due to their approximation accuracy and structural flexibility. Tai and 
Ahn (2010) introduced a model for an SMA actuator based on radial 
basis function neural networks, with parameters updated through 
online learning. Nikdel et  al. (2014) compared the neural model 
predictive control method with the SMC approach. In a related 
context, Son and Anh (2015) proposed an adaptive feed-forward 
neural network model to compensate for hysteresis nonlinearity. The 
model proposed by Son and Anh (2015) is constructed by integrating 
multi-layer perceptron neural networks with a linear model. Tai and 
Ahn (2012) combined the advantages of a direct adaptive controller 
with neural network approximations, showcasing effectiveness in 
compensating for hysteresis and ensuring reliable robustness. In a 
related context, Wiest and Buckner (2014) tackled antagonistic SMA 
systems using a hysteretic recurrent neural network. Meanwhile, Pan 
et al. (2017) focused on a novel SMA actuator designed with reduced 
total stiffness and increased compliance. Neural networks are utilized 
to model this nonlinear plant. The effectiveness of the adaptive 
observer-based output-feedback controller in handling load changes 
is demonstrated. However, despite these merits, several key issues still 
need to be addressed: (a) online training of neural networks may face 
challenges associated with local minima; (b) conducting robust 

stability analysis for systems based on neural networks has proven to 
be difficult; (c) controllers based on neural networks often involve 
significant computational complexities and may be impractical for 
specific applications.

On the other hand, the pseudoelasticity and shape memory effect 
(SME) of SMA hold significant application value in neurology and 
neuromuscular rehabilitation applications (Pittaccio et  al., 2015). 
Specifically, pseudoelasticity has been proposed in various studies, 
including limb positioning and gait rehabilitation (Viscuso et al., 2009; 
Deberg et al., 2014; Mataee et al., 2015). In these studies, the adaptability, 
deformability, and nonlinear mechanical properties of SMA are 
considered effective in addressing clinical issues associated with spasticity 
and paralysis. Similarly, SME can provide the foundational characteristics 
for the design of neural rehabilitation devices, including quasi-constant 
stress levels and a larger range of deformation, and these parameters can 
be manipulated through thermomechanical processing for structural 
design and repair (Pittaccio et al., 2015). SME also enables the SMA to 
integrate the sensor with actuator which can simplify the structure 
(Wang et al., 2021). In addition, SMA actuators are frictionless, quiet, 
corrosion-resistant, offer an extended fatigue life, and demonstrate high 
damping and resistivity (Kumbhar et al., 2017; Shariat et al., 2017). These 
characteristics reduce actuator complexity, size, and weight. Therefore, 
several research teams have employed SMA in wearable rehabilitation 
devices and have devised corresponding system control algorithms. 
Serrano et  al. (2018) introduced an SMA-actuated wrist-based 
exoskeleton with a lightweight and comfortable design. Additionally, 
Serrano et al. (2023) developed a flexible exo-glove powered by SMA, 
capable of executing complex gestures. Jeong et al. proposed a wrist 
exoskeleton robot driven by SMA springs, featuring a high contraction 
strain capacity. However, its coil structure is complex, and despite the 
establishment of a complicated thermodynamic model, the accuracy of 
the model remains unsatisfactory (Jeong et al., 2019, 2022). Wang et al. 
(2021) presented a flexible hand motion device powered by SMA wires. 
This device controls the angle of the robot finger joints by adjusting the 
duty cycle of the PWM pulses. However, the study does not delve into 
the robustness considerations of the robot system. Xie et  al. (2023) 
embedded SMA into a conformal material and proposed a hand 
rehabilitation wearable glove actuated by an SMA-based Soft Composite 
Structure (SSCS). This structure is characterized by simple actuation and 
a large force-to-weight ratio. However, its precision in the motion control 
of the hand is noted to be imprecise. Lai et al. (2023) introduced a hybrid 
actuator combining a flexible actuator and an SMA spring actuator, 
integrated into a soft glove. This configuration offers a larger workspace 
and enhanced output force. However, there is potential for improvement 
in the tracking accuracy of the control system and the anti-interference 
capability. Considering the above set of research results, it is clear that 
ensuring model simplicity and improving the accuracy of control results 
are extremely challenging issues. They directly affect the overall control 
effectiveness and practicality of the actuator.

To this end, this paper proposes describing a SMA actuator using 
a gray-box model. This simple model comprises a first-order discrete 
linear model and unmodeled dynamics, leveraging measurements of 
the actuator’s input current and output displacement as data-driven 
components. Only two model parameters are updated online, resulting 
in a low computational burden. To enhance system robustness and 
reject disturbances, a novel identification algorithm with a dead-zone 
weighted factor is introduced. Robust estimation of unmodeled 
dynamics is necessary, as it can be directly compensated by an adaptive 
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control law. In line with the adaptations, the proportional and 
differential gains of the PI control law are updated online based on a 
pre-specified stable characteristic polynomial. The overall adaptive 
control algorithms are explicit and have been successfully implemented 
in both the Beckhoff controller and the embedded system. More 
interestingly, this method proves to be applicable for handling load 
variations and rejecting disturbances. Furthermore, the integration of 
the SMA actuator into the hand rehabilitation robot system allows for 
position tracking experiments and hand rehabilitation training. These 
experiments are conducted based on the data-driven modeling method 
and the robust adaptive control strategy proposed in this paper. The 
most important contribution of this paper is that, oriented to the SMA 
actuator, a comprehensive method of control system design is 
proposed, which takes into account both the model computational 
complexity problem and the control accuracy problem, tries to give a 
more reasonable solution, and makes this adaptive control technology 
effectively applied in the rehabilitation robot system.

This paper is organized as follows: the problem formulation and 
the adaptive controller are proposed in Section 2, the experiments and 
results are presented in Section 3, a brief summary is given in Section 
4, and the closed-loop stability is analyzed in Appendix.

2 Methods

2.1 SMA characteristics

The SME of SMA wires refers to the fact that the unconstrained 
deformed alloy wire material can be restored to its original shape under 
the condition of external temperature change (Airoldi et al., 1991). On a 
microscopic level, the shape memory properties of a SMA wire are 
caused by changes in its own structure. SMA wires have two main crystal 
states, a martensitic phase at low temperatures, when the SMA wires have 
a monoclinic crystal shape inside; The other is the austenite phase at high 
ambient temperatures, when the material exhibits a cubic crystal 
structure internally; In addition to these two states, SMA wires also have 
an R-phase state at intermediate temperatures, when the material has an 
internal monoclinic crystal structure. The essence of SME is the 
migration of highly ordered “militarization” of crystal atoms within the 
SMA wire (Lagoudas and Dimitris, 2008), from monoclinic to cubic 
crystal structure, and the deformation of the SMA wire is achieved by the 
change of countless such microcrystal structures, a process known as the 
martensitic phase transition, as shown in Figure 1.

There are many types of constituent materials of shape memory 
alloy wires, and the different properties of different materials lead to 
differences in the shape memory function of SMAs, and researchers 
have categorized the SME into three types according to the differences 
in the shape memory function: the single-pass memory effect, the 
two-pass memory effect, and the whole-pass memory effect (Wu et al., 
1996). The SMA wires used in this study were dual-range memory 
effect SMA wires. Dual-range SMA wires have a shape memory effect 
when they are deformed and processed, and they change back to their 
original shape when heated to a certain temperature, and then regain 
their length when cooled. Different heat treatments during processing 
also have a great influence on the SMA wires. Figure 2 shows the 
deformation and temperature curves of SMA wires selected with the 
same diameter and phase transition temperatures of 70 and 90°C, 
respectively, in the process of heating and cooling. As depicted in the 
figure, it is evident that the temperature of deformation increases with 
the higher temperature of the heat treatment.

2.2 Gray-box model description

Plenty of research has demonstrated a fact that it is almost impossible 
to precisely capture the nonlinear dynamics of SMA actuators during a 
relatively wide range. An alternative idea to address the unmodeled 
dynamics is to compensate the negative effects in the subsequent control 
problem, rather than copy with it directly in the modeling problem.

In other words, for the modeling aspect of this work, the aim is to 
approximately capture the main dynamic property of this actuator, based 
on a computationally efficient model. Later, the adaptive controller will 
ensure the robust stability despite the unmodeled dynamics.

Let the single-input-single-output SMA actuator be described as 
a discrete-time nonlinear dynamical system in the following form:

  
y t y t y t n u t u t na b+( ) = ( ) … + −( ) ( ) … + −( ) 1 1 1φ , , , , ,

 
(1)

where the system output y(t) is the displacement of the SMA wire 
(unit: m); the system input u(t) is the current signal (unit: A); na and 
nb are unknown system orders; ϕ[⋅] is a nonlinear function. The origin 
can be assumed as an equilibrium point.

FIGURE 1

Microstructural changes in shape memory alloys.
FIGURE 2

Deformation rate of SMA at different phase transition temperatures.
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FIGURE 3

The adaptive PI control scheme.

By using Taylor’s formula around the origin, the nonlinear system 
(Equation 1) can be  equivalently expressed as a first-order linear 
model together with unmodeled dynamics:

 
A z y t B z u t t− −( ) ( ) = ( ) ( ) + ( )1 1 ζ

 
(2)

where A z−( )1  and B z−( )1  are polynomials in the time delay operator 

z e g z u t u t− − ( ) = −( ){ }1 1
1. .  which are defined as:

 
A z a z− −( ) = +1

1
11

 
B z b z− −( ) =1

1
1

where a1 and b1 are the uncertain system parameters; ζ(t) is the 
unmodeled dynamics, which is unknown and varies due to 
temperature changes, load variations or other factors.

The system Equation (2) can be written as a compact form

 y t t tT( ) = ( ) + ( )ϕ θ ζ  
(3)

where the parameter vector θ and the regressor vector φ(t) are defined 
as follows:

  θ = [ ]a b T
1 1,  

(4)

 ϕ t y t u t T( ) = − −( ) −( ) 1 1,  
(5)

Regardless of ζ(t), the prediction model is considered as:

 ( ) ( ) ( )ˆ1 1ϕ θ+ +Ty t t t
 

(6)

with ( )ˆ tθ  defined as the estimation of θ:

  ( ) ( ) ( )1 1̂ˆ ˆ ,
T

t a t b tθ  =    
(7)

We can approximately capture the main dynamic property  
of the nonlinear plant by the discrete linear model  
(Equation 6). Inevitably, there exist modeling errors based on this 
simple model. But it will be  proved in the Appendix that the 
unmodeled dynamics can be  compensated by the proposed 
PI controller.

2.3 An adaptive control strategy

The utilized PI controller is written as:

 u t u t k t t k tP I( ) = −( ) + ( ) − −( )  + ( )1 1ε ε ε  
(8)

where kp and kI are the proportional and integral gains, and 
ε t y t y t( ) = ( ) − ( )∗  with y t∗ ( ) defined as the reference.

It is desired that the system output tracks the reference,  
and the robust stability is ensured under uncertainties. The adaptive 
PI control scheme is briefly depicted in Figure 3, which consists of 
online parameter adaptation and control law calculation.

2.3.1 Control law for deterministic systems
The above control law can be written in the following form:

 
H z u t G z t− −( ) ( ) = ( ) ( )1 1 ε

 
(9)

where H z h z− −( ) = −( )1 11  and G z g g z− −( ) = +1
0 1

1. Note that the 
proportional and differential gains in Equation (8) are chosen by the 
following relation Equation (10).

 

k k g
h

k g
h

P I

P

+ =

− =










0

1

 

(10)

An effective technique to design the polynomials H z−( )1  and 
G z−( )1  is based on the pole assignment concept (Goodwin and 
Sin, 1984).

Applying the controller Equation (8) and combining Equation (3) 
with Equation (9) yield the closed-loop Equation (11).

  

A z H z B z G z y t

B z G z y t

− − − −

− − ∗

( ) ( ) + ( ) ( )





+( )

= ( ) ( ) ( )

1 1 1 1

1 1

1

   ++ ( ) ( )−H z t1 ζ
 

(11)

Let the closed-loop characteristic polynomial be  defined as 
T z t t z t z− − −( ) = + +1

0 1
1

2
2, which has stable poles.

When A z−( )1  and B z−( )1  are completely known, to ensure the 
closed-loop stability, the polynomials H z−( )1  and G z−( )1  should 
be designed based on:
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T z A z H z B z G z− − − − −( ) = ( ) ( ) + ( ) ( )1 1 1 1 1

 (12)

From Equations (2), (9), and (12), the coefficients are:

 
h t g t t a t

b
g t a t

b
= =

+ −
=

+
0 0

1 0 1 0

1
1

2 1 0

1

, ,
 

(13)

Further based on Equation (10), the proportional and differential 
gains kp and kI are designed as follows:

 
k t a t

b t
k t t t

b tP I= −
+

=
+ +2 1 0

1 0

1 2 0

1 0

,
 

(14)

The above analysis is carried out based on the deterministic 
model. However, such an assumption is unrealistic for the SMA 
actuator. Actually, the parameters a1 and b1 of the gray-box model are 
uncertain, and it is difficult to offline choose fixed and appropriate kp 
and kI to ensure the closed-loop stability during the whole operating 
range. A more reasonable treatment seems to estimate A z−( )1  and 
B z−( )1  recursively, to update H z−( )1  and G z−( )1  online, and then to 
calculate kp and kI.

2.3.2 Online adaptation algorithm
This subsection presents an online adaptation algorithm for 

uncertain parameters. Recursive least squares (RLS) algorithm has a 
fast convergence rate. However, it has high computational 
complexities, especially when it is applied to the Beckhoff IPC 
programming. On the other hand, recursive stochastic gradient (RSG) 
algorithm is more favorable to model adaptations, but it leads to a 
much slower convergence rate. To this end, a novel recursive estimator 
will be introduced, which has a similar form as the RSG algorithm, but 
possesses a similar convergence rate as the RLS algorithm.

The parameter identification will be  carried out based on 
Equation (3). We first impose an assumption on this system.

Assumption 1: The unmodeled dynamics ζ(t) satisfies

  ζ t( ) ≤ ∆ 
(15)

where the bound Δ is user-designed.

Remark 1: This condition is commonly used to improve the 
robustness performance (Goodwin and Sin, 1984). The 
unmodeled dynamics can be treated as a bounded disturbance, 
and the parameter estimation can reject some continuous 
perturbations. The bound Δ is easy to design according to the 
control performance.

Then the uncertain parameter estimation vector ( )ˆ tθ  can 
be  updated by the following modified recursive multi-innovation 
stochastic gradient identification algorithm (Zhang et al., 2008) with 
a novel dead-zone weighted factor:

  E t e t e t e t p T( ) = ( ) −( ) … − +( ) , , ,1 1  
(16)

 Φ t t t t p( ) = ( ) −( ) … − +( ) ϕ ϕ ϕ, , ,1 1  
(17)

 ( ) ( ) ( ) ( )ˆ 1Te t y t t tϕ θ= − −
 

(18)

 
( ) ( ) ( ) 2

21r t r t t= − + Φ
 

(19)

 

( ) ( ) ( ) 2
2

1 ,if

0,otherwise

p
E t p

t E tλ
 ∆
− > ∆= 


  

(20)

 
( ) ( ) ( ) ( ) ( )

( )
ˆ ˆ 1

t t E t
t t

r t
ελ

θθ
Φ

= − +
 

(21)

where p is the dimension of the extended signals, which is designed 
by the user; r(0)=1; e(t) is the model error; E(t) is the extended model 
error; Φ(t) is the extended regressor vector; λ(t) is a nonnegative 
weighted factor; ε is a user-designed adaptation gain and satisfies 0 < 
ε ≤ 2 (Lemma 1 will explain the reason).

Remark 2: It is seen that when p = 1, the algorithm becomes a 
RSG one. Ding and Chen (2006) proved that when p increases, 
the convergence rate of a multi-innovation-based 
identification algorithm tends to an RLS one. To make a 
tradeoff between the convergence rate and the computational 
complexities, we  will select p = 3. More interestingly, the 
update of each parameter can be separated and written in one 
dimensional form, such as 

( ) ( ) ( ) ( ) ( ) ( )2
1 1 0
ˆ ˆ 1 1 / .na t a t y t n e t n t r tελ=

 = − − − − − ⋅  ∑

2.3.3 Control law update
Based on Equation (7), the estimated polynomials at instant t can 

be defined as:

 
( ) ( )1 1

1ˆ ˆ, 1A t z a t z− −= +
 

(22)

  
( ) ( )1 1

1̂ˆ ,B t z b t z− −=
 

(23)

In order to adaptively design the proportional and differential 
gains kp and kI for the PI control Equation (8), a modified relationship 
is as follows:

 
( ) ( ) ( ) ( )1 1ˆˆ , , ε− −=H t z u t G t z t

 
(24)

where ( )1ˆ , −H t z  and ( )1ˆ , −G t z  are used in place of H z−( )1  and 
G z−( )1 . These two polynomials are defined as:

 
( ) ( )( )1 1ˆˆ , 1− −= −H t z h t z

 
(25)

 
( ) ( ) ( )1 1

0 1ˆ ˆ ˆ,G t z g t g t z− −= +
 

(26)
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It is desired that the polynomials ( )1ˆ , −H t z  and ( )1ˆ , −G t z  satisfy 
the following relation:

 
( ) ( ) ( ) ( ) ( )1 1 1 1 1ˆ ˆˆ ˆ, , , ,− − − − −= +T z A t z H t z B t z G t z

 
(27)

where T z t t z t z− − −( ) = + +1
0 1

1
2

2  is a pre-specified characteristic 
polynomial with stable poles.

Now that the estimates ( )1̂a t  and ( )1̂b t  are obtained, then the 
coefficients ( )ĥ t , ( )0ĝ t , and ( )1ĝ t  can be updated based on the 
relation Equation (28):

 
( ) ( ) ( )

( )
( ) ( )

( )
1 0 1 0 2 1 0

0 0 1
1 1

ˆ ˆˆ ˆ ˆ,  ,  ˆ ˆ
t t a t t t a t t

h t t g t g t
b t b t

+ − +
= = =

 
(28)

Similar to Equation (10), now the proportional and differential 
gains in Equation (8) are chosen by the following relation:

 

( )
( )
( )
( )

0

1

ˆ
ˆ

ˆ
ˆ

P I

P

g t
k k

h t

g t
k

h t


+ =



 − =
  

(29)

which means that kp and kI should be designed as:

 

( )
( ) ( )

2 1 0 1 2 0

1 0 1 0

ˆ
,  ˆ ˆP I

t a t t t t tk k
b t t b t t
+ + +

= − =
 

(30)

From Equation (30), it is found that ( )1̂b t  appears in the 
denominator. In order to ensure the smoothness of the control law, 
we impose a constrain on ( )1̂b t :

 
( ) ( )

( )
1

1
1

ˆ
ˆ

ˆ
b b b

b
b

if t
t

t else

 ≤= 


 

 
(31)

where b


 is a pre-specified upper bound. It is noted that such 
treatment has no negative effect on the convergence or stability 
properties (Chen et al., 2001).

The proposed PI controller can be implemented as follows:
Step 1: Update ( )1̂a t  and ( )1̂b t  by Equations (16)–(21);
Step 2: Calculate ( )ĥ t , ( )0ĝ t  and ( )1ĝ t  by Equation (28);
Step 3: Calculate kp and kI by Equation (30);
Step 4: Calculate u(t) by Equation (8);
Step 5: Let t =t + 1 and apply u(t) to the plant.

2.4 Human–robot interaction control 
framework

The integration of voluntary participation and mechanical 
assistance in robot-assisted rehabilitation for hand rehabilitation is 
also crucial. Therefore, a SMA actuator-based rehabilitation robotic 
system is needed to not only perform motion-guided training for 
functional rehabilitation of patients with impaired hand function, but 

also to assist and collaborate with the patient’s preserved motor 
abilities to achieve on-demand assistance. Therefore, collaboration 
and interaction between the patient and the rehabilitation robot 
during human–robot interaction is a major challenge for the control 
system. To address this challenge, we  plan to propose a fusion 
human–robot-environment interaction control framework that 
incorporates multi-level control research techniques. The framework 
for human–robot-environment cohesive interaction control strategy 
is shown in Figure 4.

The intention for motion is generated by the user themselves, 
requiring the recognition of human intent. User states include the 
body’s posture, velocity, and the physical interactions between the user, 
environment, and devices. The external environment comprises spatial 
features and terrain, which the controller can also perceive and take into 
consideration. At the high level, the controller needs to perceive human 
intent, recognize mental thoughts, and perform pattern recognition for 
gesture activities such as clenching fists or bending fingers. In the 
mid-level, the user’s intent is translated into the desired state of the 
device by adjusting controller gains, switching models, or tuning model 
parameters. At the low level, the device’s controller and specific control 
algorithms are responsible for realizing the desired device state and 
achieving compliant motion control of the hand rehabilitation robot. 
Finally, the SMA actuators-based hand rehabilitation robot executes 
control commands to achieve hand rehabilitation for the user. The hand 
rehabilitation robot system could also provide artificial sensory 
feedback in combination with pre-set electrical stimulation, etc.

In the research conducted in this paper, our proposed adaptive 
control method focuses on robust adaptive control at the low level 
controller of the SMA actuator-based hand rehabilitation robots. This 
method ensures stability and practicality during human–robot 
interactions. The experimental verification process will be presented in 
the following sections. It is worth pointing out that in our proposed 
control framework for human–robot interaction, the research methods 
related to mid-level and high-level control are already relatively 
mature. For instance, our research team has proposed a continuous 
estimation method for upper limb multi-joint motions based on sEMG 
(Ding et al., 2016). Moreover, deep learning has recently been widely 
applied in sEMG signal recognition and gesture classification (Xiong 
et al., 2021). In addition, some research teams have proposed methods 
for electrode shifts estimation and adaptive correction, applying them 
to enhance the robustness of sEMG recognition in hand rehabilitation 
processes (Li et al., 2020). Besides, a benchmark dataset of sEMG in 
non-ideal conditions (SeNic) has also been introduced to investigate 
the robustness of gesture recognition based on surface 
electromyographic signals in practical applications (Zhu et al., 2022). 
In summary, extensive research has been conducted on mid-level and 
high-level control for hand neurorehabilitation. Therefore, due to space 
constraints, we will not elaborate further on this aspect.

3 Experiments and results

3.1 Experimental validation on the SMA 
actuator-based platform

3.1.1 The experimental set-up
The experimental platform diagram of the SMA actuator is 

depicted in Figure  5, and the experimental set-up is presented in 
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Figure 6. The structure of this SMA actuated system is similar to the 
one in Romano and Tannuri (2009) but without a cooling device. The 
SMA wire is the Flexinol actuator wire which is produced by Dynalloy, 
Inc. For this type of wire, the diameter is 0.25 mm, the length is 
340 mm, the deformations are up to about 4%, and the Austenite start 
temperature is 90°C. In this experiment, the system output is the 
displacement (unit: m) and the input signal is the current (unit: A), 
which is constrained to the range 0 ~ 0.4. The control current applied 
to the SMA actuator is obtained from a V/I converter. The SMA wire 
then generates significant strains in response to the temperature 
changes caused by the current heating effect. The displacement of the 
SMA wire is measured by a high precision encoder. The Beckhoff 
EtherCAT terminals are used for the transformation and conversion of 
data, and the sample frequency is 200 Hz. The load is fixed as 500 g for 
the set-point tracking experiment, but varies for the other experiments.

To describe this nonlinear plant, two groups of models have been 
considered in previous studies (Nikdel et al., 2014; Pai et al., 2017; Pan 
et al., 2017), namely, mechanism models or neural networks models. 
However, there exist some inevitable drawbacks in each group. The 
objective of this work is to find an alternative way to simultaneously 
address the computational burden and the unmodeled 
dynamics issues.

3.1.2 PI controllers design
The proposed adaptive PI controller is applied to this plant. Before 

the control implementation, some offline identifications have been 
carried out in the Matlab software. The purpose of the offline 
procedure is to probe the main dynamic properties of this nonlinear 

FIGURE 4

A framework for human–robot-environment interaction control strategy.

FIGURE 5

The experimental platform diagram of the SMA actuator.

FIGURE 6

The experimental set-up of the SMA actuated system.
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plant. Based on some groups of input–output data around different 
operating points, an RLS algorithm is used to identify the parameters 
of the model Equation (6). Then some groups of convergent parameter 
estimates are obtained. Based on these estimates and other input–
output data, we  have also conducted the model test experiment. 
Finally, the best prediction model is selected as y(t + 1) = 0.9923 y(t) 
+ 0.001 u(t). Meanwhile, the obtained results are used as initial 
conditions for the controller design. For the proposed PI control 
method, the initialization is ( ) [ ]0 0.9923,0.001ˆ Tθ = − , the multi-
innovation length is p = 3, the gain is ε = 1, the bound is Δ = 0.00012, 
the characteristic polynomial is pre-specified as 
T z z z− − −( ) = − +1 1 2

1 1 44 0 445. . , and the constrain is 0.001b =


.
As a comparison, the conventional fixed-gains PI controller is 

applied to this plant as well. The proportional and differential gains kp 
and kI are pre-specified as kp = 500 and kp = 5.

3.1.3 Set-point tracking
The load is fixed as 500 g in this test. Sinusoidal trajectory and 

square-wave trajectory are both considered. The set-point tracking 
results of these methods are shown in Figures 7, 8.

The performance of the adaptive PI controller is better than the 
conventional PI one, especially for the milder control input. It is 
obvious that the adaptive PI controller can accurately track the 
reference trajectory with a slowly changing reference trajectory. In 
addition, the overshoot and oscillation of the adaptive PI controller 
are more satisfactory. Interestingly, the unmodeled dynamics has been 
gradually compensated by the adaptive PI controller, which can verify 
Theorem 1 in Appendix.

3.1.4 Load variations
An additional load with 200 g is imposed on this actuator at 90th 

second, and removed at 105th second. Another heavier load with 300 g 
is added at 120th second, and removed at 135th second. The regulation 
results are shown in Figures 9, 10.

The conventional PI controller leads to unattractive results under 
uncertainties induced by load variations. Worse still, the system 
becomes unstable after 135th second. Obviously, thanks to the online 
adaptation, the adaptive PI controller can ensure satisfactory robust 
stability despite of severe uncertainties.

3.1.5 Disturbance rejection
We further test the disturbance rejection ability. An unknown 

instantaneous vertical force is suddenly imposed on the load at 160th 
second, and then an unknown instantaneous lateral force is suddenly 

FIGURE 7

Set-point tracking results by the conventional PI scheme.

FIGURE 8

Set-point tracking results by the adaptive PI scheme.

FIGURE 9

Regulation results under load variations by the conventional PI 
scheme.
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added at 175th second. The disturbance rejection result of the 
proposed adaptive PI controller is shown in Figure 11.

The result shows that the proposed adaptive PI controller is 
reliable under non-Gaussian stochastic noise, which is ensured by the 
dead-zone weighted factor Equation (20). Though the control input 
varies a lot, the system output stays within a small region.

3.1.6 Summary
For robotic applications, plenty of issues (i.e., modeling error, load 

variations and stochastic noise) may cause uncertainties. The proposed 

adaptive PI controller can address these issues in a computationally 
efficient manner. During the whole operation, the proportional and 
differential gains kp and kI are updated according to the current 
working conditions, as shown in Figure 12. Most interestingly, it is 
seen that when the system suffers from severe uncertainties, especially 
around 135th and 160th seconds, the updated gains can address the 
negative effects timely.

3.2 Experiments on SMA actuator-based 
hand rehabilitation robot system

3.2.1 The experimental set-up
After verifying the driving principle of SMA and the proposed 

adaptive PI control algorithm, we designed an actuator mechanism 
based on SMA and integrated it into a hand rehabilitation robot system 
to form an SMA-based hand rehabilitation robot system platform, 
which is suitable for hand rehabilitation training of hemiplegic patients. 
In this hand rehabilitation robot, each finger is controlled by an 
individual SMA actuator, and the entire robot comprises five identical 
SMA actuators. The SMA actuator is primarily comprised of six 
components, as shown in the left part of Figure 13A. This includes the 
installation of a pulley device on the main plate of the actuator, winding 
a shape memory alloy wire around the pulley, connecting the shape 
memory alloy wire to the output wire and the preloaded pulley through 
connecting members, and incorporating a wiring mechanism on the 
actuator’s main plate for ease of wiring. Additionally, a displacement 
feedback mechanism is established to enhance control over the shape 
memory alloy wire. A prototype SMA actuator was fabricated and 
assembled using 3D printing technology, as shown in the right part of 
Figure 13A. To prevent short-circuiting of the wiring mechanism with 
the shape memory alloy filament, a layer of Teflon tape with insulating 
and high-temperature-resistant properties was applied to the copper 
sheet of the wiring mechanism.

After the hand rehabilitation robot system based on SMA actuator 
is built, the movement of the hand rehabilitation robot is controlled in 

FIGURE 10

Regulation results under load variations by the adaptive PI scheme.

FIGURE 11

Regulation results under non-Gaussian by the adaptive PI scheme.

FIGURE 12

The online updates of the proportional and differential gains.
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the form of sending commands from the upper computer to the lower 
computer, so as to assist the patient in rehabilitation training. The 
framework of the hardware system is shown in Figure 13B.

3.2.2 Position tracking experiments of hand 
rehabilitation robot system based on adaptive PI 
control

In this subsection, the control core utilizes the Raspberry Pi, and 
the SMA is subjected to heating signals dispatched to the controller, 
causing it to contract and deform, thereby propelling the movement 
of the rehabilitation hand. In this experiment, the SMA actuator of the 
index finger part of the hand rehabilitation robot is selected as the 
control object, and based on the adaptive PI control algorithm 
proposed in this paper to track the position response curve of the 
SMA actuator under the step signal as well as the sinusoidal signal. For 
comparative analysis, the PID control law (Khalil, 1996) is utilized as 
a reference algorithm. Meanwhile, in order to be  able to visually 
compare and analyze the control effects of the two control algorithms, 
the errors of the SMA actuator-based hand rehabilitation robotic 
system will be compared when it reaches the steady state under the 
two control algorithms, respectively. The actual results of the robot 
system tracking the step and sinusoidal signals and the steady state 
error results are shown in Figure 14.

From the experimental results in Figure 14A, it can be seen that 
under the adaptive PI control algorithm, the desired value of the hand 
rehabilitation robot system is set to 4 mm at 2 s, and the system 
responds at 2.4 s, reaches the desired position at about 3 s, and 
maintains stability thereafter, with almost no deviation. Meanwhile, 
the response times of the two control algorithms are basically the 
same, but the hand rehabilitation robotic system does not produce 
overshooting and has a smaller steady state error when the step signal 
is tracked under the adaptive PI control algorithm. Consequently, for 
reference trajectories represented by step signals, the hand 
rehabilitation robot system demonstrates superior control 
performance under the adaptive PI control algorithm proposed in 
this paper. Examining the experimental outcomes in Figure 14B, it is 

observed that the hand rehabilitation robotic system adeptly tracks 
sinusoidal signals. While the response times of the SMA actuator 
system remain consistent under both algorithms, the adaptive PI 
algorithm proposed in this paper achieves more accurate position 
tracking with less error when tracking sinusoidal signals. Thus, for 
various signal amplitudes, the methodology presented in this paper 
enables the SMA actuator-based hand rehabilitation robotic system 
to approach the target position with reduced overshooting and a 
smaller steady-state error. These experiments substantiate the 
reliability and accuracy of the proposed methodology, affirming the 
safety of the SMA actuator-based hand rehabilitation robot in 
assisting subjects during the rehabilitation training process.

3.2.3 Experiments on hand rehabilitation training 
with different gestures

We oriented the SMA actuator-based hand rehabilitation robotic 
system platform to conduct the hand passive rehabilitation training 
experiments on subjects with different gestures, and the training 
process is shown in Figure 15. The hand rehabilitation exercises are 
divided into five movements, which are thumb extension/flexion, 
index extension/flexion, index and middle finger extension/flexion, 
three fingers extension/flexion and hand open/close. During the hand 
gesture rehabilitation training experiment with the SMA actuator-
based hand rehabilitation robot system, a complete single flexion-
extension training cycle takes a total of 12 s. Throughout this process, 
spanning from 0 to 4 s, the SMA contracts upon heating and powering, 
propelling the fingers to their maximum extended position. 
Subsequently, from 4 to 12 s, the SMA undergoes cooling facilitated 
by a fan on the outer shell of the hand rehabilitation robot, causing the 
hand to return to its initial state. Importantly, this mechanism satisfies 
the requirements of passive rehabilitation training for multiple 
gestures in patients with hand hemiplegia, demonstrating an optimal 
control effect. This experiment effectively establishes the reliability and 
precision of the SMA actuator-based hand rehabilitation robotic 
system for subject-specific rehabilitation training under the adaptive 
PI control strategy. It is worth noting that, due to space limitations, 

FIGURE 13

Hand rehabilitation robotic system based on SMA actuator. (A) SMA actuator structure diagram: 1- Connection, 2- SMA Wires, 3- Actuator body plate, 
4- Pulley mechanism, 5- Wiring mechanism, 6- Displacement feedback mechanism. (B) System hardware integration framework for hand 
rehabilitation robot.
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our experiments only focused on the low-level robust adaptive control 
of hand rehabilitation robots based on SMA actuators. We did not 
conduct experiments related to neural rehabilitation control involving 
mid-level and high-level controllers. This aspect will be addressed in 
our future research.

4 Discussion and conclusion

This paper presents an innovative adaptive PI control strategy 
tailored for SMA actuators. Utilizing a simplified gray-box model, the 
primary dynamic properties of the plant are approximated. An 
efficient adaptive algorithm is then introduced to iteratively update 
the model parameters. Subsequently, a PI control law is proposed, 
with gains calculated through the pole assignment technique, 
ensuring closed-loop stability under mild conditions. Notably, the 
strategy exhibits robustness, particularly in the face of load variations 
and continuous disturbances. The proposed adaptive control 
algorithm is well-defined and has been initially experimentally 
validated on a Beckhoff controller. Finally, the SMA actuator is 
designed, fabricated and integrated into a hand rehabilitation robot 
system, and the position tracking experiments of the SMA actuator 
based on the proposed adaptive PI control strategy are conducted to 
verify the stability and accuracy of the proposed control algorithm. 
Meanwhile, rehabilitation training for several different gestures was 
conducted for subjects to verify the reliability of the hand 
rehabilitation robot system based on the SMA actuator.

From another perspective, the control method proposed in this 
paper exhibits closed-loop stability. Additionally, it is based on several 
foundational assumptions and theorems, as mentioned in 
Equation (15) and Theorem 1. The assumption in Equation (15) 
implies treating unmodeled dynamics as bounded disturbances, and 
parameter estimation can reject certain continuous disturbances. 
From the practical application standpoint in the field of hand 
rehabilitation robotics, disturbances within bounds refer to slow 
temperature changes in the rehabilitation environment or subtle 
vibrations in the load. Disturbances beyond bounds refer to severe 
shaking of the load or significant parameter drift. Furthermore, 
regarding Equation (A20) in Theorem 1, in actual rehabilitation 
scenarios, especially in hand rehabilitation, the rehabilitation goals 
and environment are relatively stable systems not subject to large-scale 
fluctuations. Therefore, Equation (A20) is satisfied according to the 
practical needs of rehabilitation. For Equation (A21), in practical 
applications, for the safety of patients, the reference trajectory of 
rehabilitation equipment changes slowly and has a small range during 
the hand rehabilitation process. Therefore, we  believe that 
(Equation A21) can be satisfied in practical applications. In summary, 
from the perspective of practical applications in the rehabilitation 
field, our system complies with Theorem 1, demonstrating rationality 
and reliability.

For control issues of SMA actuators, the systematic method 
derived in this work probably is the simplest adaptive controller so far, 
which takes into account the model computational complexity as well 
as the accuracy of the control results, and the controller has good 

FIGURE 14

(A) Position tracking result and system steady state error for step signal tracking. (B) Position tracking result and system steady state error for and 
sinusoidal signal tracking.
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practicability and reliability. In the future, we  expect that the 
theoretical achievements we have obtained can be further applied to 
a broader range of rehabilitation robotic devices.
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The clinical rehabilitation assessment methods for hemiplegic upper limb 
motor function are often subjective, time-consuming, and non-uniform. This 
study proposes an automatic rehabilitation assessment method for upper 
limb motor function based on posture and distributed force measurements. 
Azure Kinect combined with MediaPipe was used to detect upper limb and 
hand movements, and the array distributed flexible thin film pressure sensor 
was employed to measure the distributed force of hand. This allowed for 
the automated measurement of 30 items within the Fugl-Meyer scale. 
Feature information was extracted separately from the affected and healthy 
sides, the feature ratios or deviation were then fed into a single/multiple 
fuzzy logic assessment model to determine the assessment score of each 
item. Finally, the total score of the hemiplegic upper limb motor function 
assessment was derived. Experiments were performed to evaluate the motor 
function of the subjects’ upper extremities. Bland-Altman plots of physician 
and system scores showed good agreement. The results of the automated 
assessment system were highly correlated with the clinical Fugl-Meyer total 
score (r  = 0.99, p  < 0.001). The experimental results state that this system 
can automatically assess the motor function of the affected upper limb by 
measuring the posture and force distribution.

KEYWORDS

rehabilitation assessment, upper limb, posture, distributed force, fuzzy logic

1 Introduction

With the acceleration of social aging, the incidence of stroke is gradually increasing. The 
death and disability rate of stroke is extremely high, and 70% of the survivors have varying 
degrees of disability (Garro et al., 2021). Motor disorders of the limbs significantly reduce 
patients’ quality of life and cause considerable suffering. The plasticity of the nervous system 
has been demonstrated by research (Turon et al., 2018). Early intervention in the early stages 
of the disease has the potential to reduce the severity of disability and significantly improve 
the patient’s quality of life (Meng et al., 2023). Rehabilitation assessment is based on the level 
of function, degree of damage, and recovery of stroke patients. It provides a scientific basis 
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for formulating rehabilitation treatment programs, evaluating 
patients’ functional changes, and judging treatment effects 
and prognosis.

However, the commonly used clinical methods to assess upper 
limb motor function after stroke are mainly qualitative or semi-
quantitative, including active mobility rating (AMR), ARAT-
Brunnstrom, Fugl–Meyer rating (FMA), Barthel index, Wolf motor 
function test (WMFT), and so on (Wolf et al., 1989; Sanford et al., 
1993; Sardari et al., 2023). The degree of limb impairment is mainly 
evaluated subjectively through manual measurement of angle and 
force information by physicians using protractors and dynamometers. 
The traditional scale-based assessment has been widely accepted in 
the medical field (Du et al., 2022), but there are still some shortcomings:

(1) The assessment mechanism is subjective, leading to variation 
in results. Longitudinal results for the same patient cannot 
be compared, let alone between different patients. (2) There is no 
established uniform assessment system among hospitals. (3) The 
process is also time-consuming. Research on quantitative automatic 
rehabilitation assessment methods based on automated information 
technology can improve the standardization of rehabilitation medical 
technology, reduce assessment and testing time, and alleviate the 
burden on rehabilitation physicians. Research into automated 
information technology-based rehabilitation assessment methods 
could improve the standardization of rehabilitation medical 
technology, reduce assessment testing time and relieve the burden on 
rehabilitation professionals.

Modern devices for automatic assessment of upper limb motion 
function mainly include wearable sensors, rehabilitation robots and 
visual motion capture systems (Ona Simbana et al., 2019). Wearable 
sensors mainly include inertial measurement Unit (IMU), surface 
electromyography (sEMG) sensor, data glove, etc. Oubre et al. (2020) 
used two wearable inertial sensors on the wrist and the sternum to 
estimate upper-limb impairment, and proposed an unsupervised 
clustering algorithm and a supervised regression model to estimate 
FMA scores. Ueyama et al. (2023) automated the FMA with 9-axis 
motion sensors and measured 23 FMA upper-limb items. Pan et al. 
(2021) proposed an evaluation method for upper limb motor function 
in stroke patients with five features by using the inertial sensor and 
sEMG sensor. Li C. et al. (2022) used data glove and Thalmic Myo 
armband to assess the hand motor function quantitatively. Dutta et al. 
(2022) developed a data glove housing 6 flex sensors, 3 force sensors, 
and a motion processing unit to evaluate the grasp ability of stroke 
patients. There is also related research on robot rehabilitation 
assessment. Moon et al. (2023) proposed a method for evaluating 
upper limb motor performance with robot based on a normal reaching 
movement model. However, patients need to wear the IMU and attach 
the sEMG sensor to their skin. Wearable IMUs are prone to 
displacement, and stroke may cause hand contractures in some 
patients, making data gloves difficult to wear. Additionally, sEMG 
signals are weak, random, and susceptible to interference from muscle 
status, skin sweat, and the environment. Robots are expensive and 
beyond the reach of the average family.

In terms of visual motion capture systems, VICON (Oxford, 
United  Kingdom) is an optical motion capture system, that has 
become the gold standard for motion analysis (Van Crombrugge et al., 
2022), but it is relatively expensive. Infrared imaging devices are also 
used to assess hand function (Fang et al., 2019). Kinect can visually 
capture three-dimensional motion and has been used in many motion 

analysis studies due to its comfort, low cost, easy installation, and 
suitability for home or community hospitals.

Bai and Song (2019) used Kinect V1 and IMU sensors to evaluate 
15 FMA items, and automatically evaluated the upper limb combined 
with the reachable workspace of each subject. Motion measurement 
sensors, such as inertial and visual sensors (Ambros-Antemate et al., 
2022; Francisco-Martínez et al., 2022), are unable to assess changes in 
stiffness. To quantify joint stiffness, force measurement is a more 
appropriate method. Lee et al. (2016, 2018) used Kinect v2 and force 
sensing resistor sensors, and developed a rule-based binary logic 
classification algorithm, to realize an automated FMA system for 
upper extremity motor function assessment. Li Y. et  al. (2022) 
proposed an automated evaluation system composed with RealSense 
D435, Leap Motion and Force Sensitive Resistors.

Bai proposed less automatic motion protocol (only 15 items). Lee 
uses Kinect v2 sensor, resulting in inaccurate and unstable hand 
posture measurement, and inaccurate forearm pronation/pronation 
tracking. The scheme proposed by Yue Li uses three different types of 
sensors, and the detection system is complex. The accuracy of 
RealSense D435 human posture measurement can be affected by the 
position of the hand attitude measurement sensor and its affiliated 
platform. Furthermore, these studies utilized a single force sensing 
resistor sensor to measure hand grasping ability, which only measures 
thumb and index finger force and may not accurately reflect force at 
other hand positions.

Regarding evaluation methods, the researchers suggest utilizing 
machine learning techniques for data processing (Chung et al., 2022). 
Eichler et al. (2018) developed a multi-camera tracking system with 
SVM and Random Forest to evaluate the motion of stroke patients. 
Kim et al. (2020) proposed a method to judge the severity of elbow 
spasm. Machine learning algorithm was used to analyze the 
acceleration and rotation attributes of the affected elbow joint, and the 
degree of spasm was classified. Miao et al. (2021) proposed to adopt 
smartphone and Kinect sensor to collect upper limb movement data 
and use the long short-term memory neural network to evaluate 
upper limb movement function. Deb et  al. (2022) adapt spatio-
temporal GCN for the assessment of rehabilitation exercises. However, 
implementing machine learning, particularly deep learning, in clinical 
practice is challenging due to the need for extensive labeled data.

To address the issues with the previous studies, this study proposes 
a new approach that utilizes the array distributed flexible thin film 
pressure sensor (DFPS) and Azure Kinect for Upper Extremity FMA 
(FMA-UE) automation. Azure Kinect combined with MediaPipe can 
improve the accuracy of upper limb and hand posture recognition. 
Additionally, the DFPS is used to refine hand joint stiffness 
measurements. The fuzzy logic-based assessment method is adopted 
to avoid the problem of reliance on large amounts of labeled data.

The block diagram of the automatic rehabilitation assessment 
system of upper limb motor function based on posture and distributed 
force measurement is shown in Figure 1. The assessment protocol is 
presented to the subjects through a display screen. The DFPS and 
Azure Kinect are connected to the computer via USB. Azure Kinect 
combined with MediaPipe automatically recognizes the subject’s 
upper limb and hand joint positions, which are used to calculate 
information like motion angles under each assessed movement within 
the FMA scale. DFPS is used to measure force information in the hand 
during different gripping modes. Next, feature information is 
extracted for both the affected and healthy upper limbs and hands. 
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The ratio or deviation is then calculated and input into a single/
multiple fuzzy logic assessment model to derive assessment scores for 
each item in automated FMA-UE scale. Finally, the total assessment 
scores for the upper limbs are calculated.

2 Methods

2.1 Automatic FMA-UE

The Fugl–Meyer assessment is a widely used method for clinically 
evaluating post-stroke motor dysfunction. It consists of 33 items for 
assessing upper extremity motor function, including 18 for 
shoulder-arm motor function, 12 for wrist-hand motor function, and 
3 for coordination. The scoring criteria for the Fugl–Meyer upper 
extremity motor function assessment are: the assessment is scored out 
of 66 points, with 2 points awarded for complete completion of each 
item, 1 point for partial completion, and 0 points for failure to 
complete. The FMA-UE score is used to classify the severity of 
hemiplegia, with scores below 32 indicating severe hemiplegia, scores 
between 32 and 57 indicating moderate hemiplegia, and scores 
between 58 and 66 indicating mild hemiplegia (Gladstone et al., 2002).

The FMA-UE is a detailed scale closely related to the functions 
required for daily living activities. It can visually and quickly reflect 
abnormal movement patterns, making it a comprehensive assessment. 
However, the clinical test is lengthy, tedious, and subjective. To 
effectively assess the motor function of the upper extremity in post-
stroke patients, automating as many items as possible in the FMA-UE 
program is necessary. This study improved the testing method of the 
scale to enable automated measurement of upper limb motor function 
in stroke patients.

The method proposed in this paper contains 30 items (F1–F30) 
for automation, as shown in the “FMA-UE Item” column in the 
Table 1. Only the two items shown in grey are not included, namely 
the “Reflex activity” and the “Normal reflex activity,” as they require a 
small hammer to tap the muscles. All automatic evaluations are 
summarized into 21 sets of actions as shown in the “Motion” column. 
The actions M16–M20 (M16 is hook grasp., M17 is lateral pinch, M18 

is Pincer grasp., M19 is cylinder grasp., M20 is Sphere grasp) adopt 
the DFPS, and other actions are measured using Azure Kinect 
combined with MediaPipe (AKM). The column “Feature” in the table 
indicates the feature information extracted for each item.

2.2 System design

In this study, an automated FMA-UE upper limb motor function 
assessment system is proposed, including an Azure Kinect and a set 
of DFPS. The RGBD camera combined with MediaPipe enables 
motion and posture tracking of the upper limbs and hands. Azure 
Kinect Depth Camera integrates a depth sensor, a spatial microphone 
array, a video camera, and a direction sensor to achieve depth 
recognition based on the TOF principle, which can realize three-
dimensional tracking of the human body and identify the position 
information of 32 joints (Wei et al., 2022). MediaPipe is an open-
source machine learning application development framework 
developed by Google. MediaPipeHands is a high-fidelity hand and 
finger tracking solution. It uses machine learning to infer the 3D 
coordinates of 21 joints of a hand from a single frame.

MediaPipe uses color image to recognize human motion 
information. Azure Kinect’s collection of human joint points includes 
depth image information. Therefore, the color image and depth image 
need to be aligned initially. The camera can capture three types of data 
simultaneously, namely RGB images (three-channel images), depth 
images (single-channel grayscale maps), and color 3D point clouds. 
The device calibration data is retrieved before the coordinate system 
conversion can be  performed. Then the 3D points of the source 
coordinate system are converted into the 3D points of the target 
coordinate system using the external calibration of the camera, and 
the corresponding 2D pixel coordinates are calculated using the target 
camera’s internal calibration to align the depth image and color image 
for subsequent hand tracking and upper limb joint tracking.

The DFPS comprises a sensing element, an array scanning 
module, a signal acquisition and processing module, and a power 
supply module. A piezoresistive tactile sensor is used as the sensing 
element, based on the semiconductor piezoresistive effect. The 

Computer 
host

Azure Kinect
MediaPipe

USB

USBScreen

Distributed sensor array
Data acquisition circuit

The power module 
Gripping objects

DFPS

Distributed force

Upper limb and 
hand posture

Fuzzy logic 
assessment model

Assessment scores 

Range of motion
Mean velocity

Standard deviation
Hand move speed
Finger joint Angle

Sum of forces
Maximum hand tip 

speed
Motion length ratio

Vertical distance ratio

Feature extraction

Patients

FIGURE 1

Automatic rehabilitation assessment system of upper limb motor function based on posture and distribution force.
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TABLE 1 Target FMA-UE items.

Category Motion FMA-UE item Sensors
Feature 
symbol

Feature

Shoulder/elbow

Reflex activity
(1) Flexors data N/A

(2) Extensors N/A

Flexor synergy M1

(3) Shoulder elevation AKM F1

ROM, MV, SD

(4) Shoulder retraction AKM F2

(5) Shoulder abduction (≥90°) AKM F3

(6) Shoulder external rotation AKM F4

(7) Elbow flexion AKM F5

(8) Forearm supination AKM F6

Extensor synergy M2

(9) Shoulder adduction/internal rotation AKM F7

(10) Elbow extension AKM F8

(11) Forearm pronation AKM F9

Volitional movement 

mixing synergies

M3 (12) Hand to lumbar spine AKM F10 Hand-to-hip motion length ratio

M4 + M5 (13) Shoulder flexion 0–90° with the elbow fully extended AKM F11 ROM, MV, SD of M4 and M5

M6 + M7 + M8 (14) Forearm pronation/supination with the elbow 90°and shoulder 0° AKM F12 ROM, MV, SD of M6–M8

Volitional movement with 

little or no synergy

M9 + M5 + M6 (15) Shoulder abduction 0–90° with elbow fully extended and forearm pronation AKM F13 ROM, MV, SD of M5, M8, and M9

M10 + M5 (16) Shoulder flexion 90–180° with elbow fully extended AKM F14 ROM, MV, SD of M10, and M5

M5 + M6+ M11 (17) Forearm pronation/supination with the elbow fully extended and shoulder 30°–90° AKM F15 ROM, MV, SD of M5, M8, and M11

Normal reflex activity (18) Biceps, triceps, finger flexors N/A

Wrist/hand

Wrist stability

M12 + M7 + M8 (19) Wrist stability at 15° dorsiflexion with elbow 90°and shoulder 0° AKM F16 ROM, MV, SD of M12, M7, and M8

M13 + M7 (20) Repeated wrist flexion and extension (WFE) with elbow 90° AKM F17 ROM, MV, SD of M13 and M7

M12 + M5 + M11 (21) Wrist stability at 15° dorsiflexion with elbow 0° and shoulder 30° AKM F18 ROM, MV, SD of M12, M5, and M11

M12 + M5 + M11 (22) Repeated wrist flexion and extension with elbow 0° and shoulder 30° AKM F19 ROM, MV, SD of M12, M5 and M11

M13 + M5 + M11 (23) Circumduction with elbow 0° and shoulder 30° AKM F20 ROM, MV, SD of M5 and M11

Hand

M14 (24) Mass flexion AKM F21
Max angle and MV

M15 (25) Mass extension AKM F22

M16 (26) Hook grasp DFPS F23

Total force per sensing unit

M17 (27) Lateral pinch DFPS F24

M18 (28) Pincer grasp DFPS F25

M19 (29) Cylinder grasp DFPS F26

M20 (30) Sphere grasp DFPS F27

Coordination/speed M21

(31) Finger-nose tremor AKM F28 The MV and MA of the fingertips

(32) Finger-nose dysmetria AKM F29 Vertical distance ratio, motion length ratio

(33) Finger-nose speed AKM F30 V and t

N/A, not applicable. The gray part is not included in this automated FMA-UE. Motion represents all movements; there are 20 motion tasks in total. F1–F20 represent the feature symbol. FMA-UE item represents the item included in this automated FMA-UE. AK means 
Azure Kinect, DFPS means the Array Distributed Flexible Thin Film Pressure Sensor. ROM means Range of motion, MV represents mean velocity, SD means the standard deviation.
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principle of piezoresistive tactile sensors is that the electrical resistivity 
of the elastomer material varies with the magnitude of the pressure, 
which converts the pressure signals on the contact surfaces into 
electrical signals. The array scan module performs periodic scans of 
the sensor array and stabilizes the power supply and battery voltage. 
The TPS62046 is used in the voltage regulator part to convert the 5 V 
DC power supply to 3.3 V. The scanning circuit utilizes the CD4052 
analog multi-switch to cyclically supply power to the sensing unit, 
access the voltage divider circuit for voltage division, and transmit the 
resistive voltage division value of the sensing unit to the signal 
acquisition and processing module. The STM32 microcontroller 
module acquires the voltage value of the sensing unit for data 
interpretation and outputs the measurement results to the computer 
through USB to serial port. The sensor is then calibrated using the 
calibration device to establish the relationship between voltage 
and pressure.

2.3 Data processing

Prior to feature extraction, the raw data of the measured postural 
signals were filtered by a fourth-order Butterworth low-pass filter with 
a cut-off frequency of 12 Hz to remove artefacts caused by the patient’s 
voluntary movement and gravity during the measurement (Ren 
et al., 2020).

In order to enable doctors to quickly use the automatic evaluation 
method proposed in this study, the description of limb movements 
adopts the method in rehabilitation medicine, based on the standards 
defined by the International Society of Biomechanics (ISB) (Wu et al., 
2005). The Standardization and Terminology Committee (STC) of the 
ISB proposes a definition of a joint coordinate system (JCS) for each 
joint (Da Gama et al., 2016). In this paper, only the coordinates of the 
right joints are presented, and the left joint is the mirror image of the 
right (with respect to the sagittal plane z = −z).

The coordinate system for the thorax is defined as follows: the YT 
axis is a unit vector from the spine chest (SC) to the neck, the ISB 
conventionally uses the X-axis turned away from the body and 
pointing directly anterior to the body, and the ZT axis is a unit vector 
perpendicular to the XT and YT axes, which can be computed by the 
cross product between them. The coordinate system for the right 
shoulder joint (CS) is also defined. For that purpose, YS is used as the 
unit vector from ER towards SR, and ZS as the vector perpendicular to 
the plane formed by XS and YS. The flexion/extension, adduction/
abduction and internal/external rotation angles of the shoulder joint 
can be solved using the Euler angles of the rotation matrices of the two 
coordinate systems. The angles of flexion and extension of the wrist 
joint and the anterior and posterior rotation of the forearm can also 
be solved. The elbow flexion angle is defined as the angle between the 
upper arm and the forearm, which can be  determined using the 
flexion angle vector. F1 and F2 can be calculated using the shoulder-
neck (SN) vector with respect to the horizontal and frontal planes, 
respectively.

The range of motion (ROM), mean velocity (MV), and standard 
deviation (SD) are selected as the eigenvalues for item (3–11). ROM 
is defined as the difference between the maximum and minimum 
angle of motion, MV represents the average velocity, and SD is the 
standard deviation of the unaffected side and the affected side. To 

ensure consistency across individuals, the healthy side data is used as 
the standard. The standard deviation (δ) between the unaffected and 
healthy side for the same motion is calculated using Eq. 1.

 
δ = =∑i

n
id

n
1

2∆

 
(1)

where n is the sampling frequency of each action, and Δd is the 
deviation between the unaffected and healthy side. The target symbol 
F1-F9 can extract the ROM, MV and SD of each action as 
feature information.

Item (12) extracts the hand-to-hip motion length ratio α (Eq. 2) 
as characteristic values F10.

 
α = min

d
d

AHC

OHC  
(2)

where dOHC is the distance from the original position of the hand 
to the center of the hip, dAHC is the distance from the actual position 
of the hand to the center of the hip.

As shown in Table 1, item (13), (16), and (20) each contain two 
sub-motions, the ROM and MV and SD of each sub-motions should 
be extracted as F11, F14 and F17 separately. Item (14), (15), (17), (19), 
and (21)–(23) each contain three sub-motions. The ROM and MV and 
SD of each sub-motions (F12, F13, F15, F16, and F18–F20) need to 
be extracted separately.

Aligning the color image and depth image using Azure Kinect 
calibration function. Then, aligning the wrist joint position and 
fingertip position recognized by MediaPipe and Azure Kinect, 
respectively. The coordinates of other hand joints are transformed 
simultaneously. This allows for tracking of hand joint positions and 
capturing of hand posture.

The bending angle of the finger joints was calculated by 
determining the maximum value of the finger’s bending angle and the 
MV to judge the Mass flexion (F21) and Mass extension (F22). Figure 2 
shows the calculation of the bending angle of the finger joints. Panel 
(A) displays the ordinal number of the 21 key points of the hand, while 
panels (B) and (C) show the schematic of the thumb and index finger 
bending vector pinch angles, respectively. The thumb fingertip joint 
point 4 and joint point 3 form vector 3_4. The joint point 2 and wrist 
origin point (joint point 0) form vector 0_2. The angle between vector 
3_4 and vector 0_2 is calculated according to Eq. 3.
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(3)

The angle between vector 0_6, consisting of joints 0 and 6, and 
vector 7_8, consisting of joints 7 and 8, represents the degree of 
curvature of the index finger as shown in Figure 2B. The curvature of 
each finger is represented by the angle between two vectors. 
Specifically, the degree of curvature of the middle finger is represented 
by the angle between vector 0_9 and vector 10_12, the degree of 
curvature of the ring finger is represented by the angle between vector 
0_13 and vector 14_16, and the degree of curvature of the little finger 
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is represented by the angle between vector 0_17 and vector 18_20. The 
motion of the thumb and the average of the remaining four fingers are 
treated as separate sub-motion, and the following evaluator takes the 
maximum averaged angle and the averaged velocity as eigenvalues 
(F21 and F22).

In item 26–30, DFPS is used to measure hand grip force, and a 
certain threshold is set for effective gripping, and the threshold in this 
study is set as the minimum force to be detected by the DFPS. Due to 
the different handles, the positions of the force on the DFPS are 
different. Hook grasp., cylinder grasp and Sphere grasp exert force on 
the whole palm, while lateral pinch mainly exerts force on thumb and 
index finger, and Pincer grasp exerts force on thumb, index finger and 
middle finger. Therefore, it is not feasible to calculate the grip strength 
only by the sum of the thumb and index finger. This study proposes to 
calculate the total grip force of the hand (affected side/healthy side) by 
calculating the sum of the forces of each sensing unit in the inductive 
area (F23–F27).

Coordination and velocity [item (31)–(33)] (Huo et al., 2020): 
based on the measured fingertip data, the velocity and acceleration of 
the fingertip can be  obtained, and average velocity and average 
acceleration are analyzed as feature (F28) for tremor classification. The 
characteristics of finger-nose dysmetria (F29) are mainly manifested 
in two aspects, namely, the ratio of the horizontal distance from the 
fingertip position to the left and right shoulder joints β, and the 
fingertip-to-nose movement length ratio γ  as shown in Eq. 4.

 
γ =

∆d
dFON  

(4)

where ∆d  represents the distance from the real-time position of 
the fingertip to the nose in the vertical direction, dFON is the distance 
from the original position of the fingertip to the nose in the vertical 
direction. The hands are naturally placed at the sides of the body as 
the original position. The greater the movement length ratio, the 
better the patient’s ability to control the affected limb. The 
characteristic of finger-nose speed (F30) is mainly expressed by the 
maximum value of the movement time and the speed of the 
hand movement.

2.4 Assessment method

There is no obvious standard boundary for the classification of 
patients’ motor function grades, and the clinician’s assessment method 
is fuzzy. The use of fuzzy mathematical methods for assessment and 
analysis appears to align more naturally with objective facts. Therefore, 
this study proposes a multi-group fuzzy inference system for 
rehabilitation assessment (FISRA) based on the experience of 
rehabilitation physicians. To standardize the assessment system, the 
movement information of the healthy limb is collected simultaneously 
with the affected limb. The ratio/deviation of the sum of the 
movement/distributed force on the affected side to that on the healthy 
side is used as the eigenvalue to design the assessment method for the 
grades of the affected limb. It is important to note that joint movement 
and force application criteria differ for each subject.

The inputs to FISRA were the ratio of affected side ROM 
(AROM) to healthy side ROM (HROM), the ratio of affected side 
MV (AMV) to healthy side MV (HMV), and the SD. The trapezoidal 
membership function is adopted, as shown in Eq. 5. The output 
represents the assessment score using the triangular membership 
function, as shown in Eq.  6. As Elbow flexion in item (10), the 
FISRA inputs are AROM/HROM, AMV/HMV and SD, using 
trapezoidal membership function. and the output is rehabilitation 
assessment score, using triangular membership function. The 
assessment level is lower when the average speed AMV is slower, the 
AMV/HMV is smaller, and the SD is larger. Conversely, the 
assessment level is higher when the AROM/HROM is larger, the 
average speed AMV is higher, the AMV/HMV is larger, and the SD 
is smaller.
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FIGURE 2

Hand posture (A) hand node serial number, (B) thumb flexion vector angle (blue dot marked as used joint), (C) index finger flexion vector angle (blue 
dot marked as used joint).
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For item (12) Hand to lumbar spine, the extracted feature is the 
length ratio α of the hand to hip movement. The input is the length 
ratio of the affected side to the length ratio of the healthy side (Eα/
Hα). A trapezoidal affiliation function is used. The greater the Eα/Hα, 
the greater the distance from the hand to the hip on the affected side, 
and the lower the assessment score.

For the items containing multiple sub-motions, each sub-motion 
is fuzzy evaluated first, and a separate FISRA is established. Then the 
evaluation results of multiple sub-motions are combined to evaluate 
the motor function score of the affected upper limb, as shown in Eq. 7.
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(7)

 (a) If the score of multiple sub-motion is 2, the final evaluation 
score is 2.

 (b) If one of the multiple sub-motion scores is 0, the motion 
evaluation score for that action is 0.

 (c) All other assessments were scored 1.

Item (13), (16), and (20) each have two actions. For example, (13) 
involves shoulder flexion 0–90° with the elbow fully extended 
including sub-motion M4 and M5. The features of the two 
sub-motions are extracted, FIS1 and FIS2 are used for evaluation, and 
the AROM/HROM, AMV/HMV and SD of each sub-motion are 
input into the model, the two evaluation scores are output respectively, 
and then the results of the two FIS are processed according to Eq. 7, 
as shown in Figure 3.

Items 14, 15, 17, 19, and 21–23 contain three sub-motions 
respectively, then three FISs are adopted. The AROM/HROM, AMV/
HMV and SD of each sub-motion are input into a model respectively, 

the three evaluation scores are output, and then the results of the three 
FISs are processed according to Eq. 7.

Item (24) and (25) contains the motion of five fingers. Two FISs 
are used for the average results of the thumb and the other four 
fingers, respectively. The ratio of the maximum bending angle of the 
affected side to the maximum bending angle of the healthy side 
(AAngle/HAngle) and the AMV/HMV are input into each FIS, and 
then the evaluation scores are output. The larger the AAngle/HAngle, 
the larger the MV, the higher the evaluation score. Then the results of 
the two FIS are processed according to Eq. 7.

In item (26)–(30), the feature extracted by each item is the sum of 
the forces of the sensing unit. The input of the FIS is the sum of the 
distributed forces on the affected side to the healthy side (AFsum/
HFsum). The greater the AFsum/HFsum, the higher the level of hand 
motor function. The lower the AFsum/HFsum, and the lower the level 
of hand motor function.

In the process of fingertip pointing to the nose in action 31, the 
ratio of the movement characteristics of the fingertip on the affected 
side to those on the unaffected side is calculated, AMV/HMV and 
AMA/HMA are input into each FIS to obtain the final assessment 
score. For item 32 finger-nose dysmetria, the characteristics of the 
affected side/unaffected side are calculated. The vertical distance Aβ 
of the affected side is divided by the vertical distance Hβ of the 
unaffected side. The movement length ratio of the affected side Aγ is 
divided by the movement length ratio of the unaffected side Hγ. These 
values are input into the FIS to obtain the assessment score. For item 
33 speed, the ratio of AVmax (maximum velocity) on the affected side 
to HVmax on the healthy side is calculated and inputted into 
FIS. Then, the evaluation grade is obtained.

FIS adopts Mamdani fuzzy inference method, which is obtained 
by Cartesian product of fuzzy set. The defuzzification method is 
“centroid” to transform the fuzzy conclusion into a specific and 
accurate output process.

2.5 Human-computer interaction

Interactive virtual environment can improve the enthusiasm and 
attention of patients. Based on previous research and the doctor’s 
recommendations, this study designed a human machine interface for 
assessing upper limb motor function. It includes motion-teaching 
videos, virtual feedback scenarios, and the distributed force sensor 
results, as shown in Figure 4.

The rehabilitation assessment teaching video is recorded by 
experienced rehabilitation physicians, including 20 actions (M1–M21) 
proposed in 2.1 Automatic FMA-UE. A part of the remaining time is 
set aside after each action, to ensure that the patient has enough time 
to complete the action. The patient’s appearance was neglected during 
illness. This study is based on the concept of paying attention to the 
patient’s mental health. The feedback video does not show the patient’s 
real image to protect the patient’s privacy. Instead, it uses an avatar to 
provide the patient with mirror feedback, display the subject’s 
movement posture, and show the subject’s real posture through a 
small window. In the virtual scene, arrows are added to indicate the 
direction of movement, and the voice is added to prompt the action 
content. Appropriate encouragement is given according to the patient’s 
completion (e.g., very good, come on, you  are awesome, etc.) to 
further enhance the patient’s motivation to participate in the 

FIS1 FIS2

Score 0 Score 1 Score 2

0,1,2 0,1,2

(0,0) (0,1) (0,2)
(1,0) (2,0) (1,1) (2,1) (1,2) (2,2)

FIGURE 3

Two sets of FIS.
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FIGURE 5

Experimental platforms.

assessment of the movement for optimal exercise performance. At the 
same time, the scene is equipped with soothing background music to 
help relieve the patient’s mood.

The specific operating procedures are as follows: First, enter the 
patient’s name and age, select the affected side, and click the Start 
button. The video teaching starts, the patient imitates the movements 
demonstrated by the doctor, and Azure Kinect synchronously collects 
the patient’s postural information, mainly including postural 
measurements of items (3–17), (19–25) and (31–33). Music can 
be played simultaneously by clicking the Music button to create a 
favorable environment. Pause the video at the end of the pose 
acquisition. Then select the appropriate serial port, set the baud rate 
115,200, and click to continue playing the video. Combine the video 
instruction to capture the force information of the items (26–30), click 
the save button to save the force information, switch the serial port 
using the pause button, and click the finish button when the 
acquisition is complete.

3 Experiments and results

3.1 Experiment setup

The experimental equipment of the rehabilitation evaluation 
system mainly includes a computer, a monitor, an Azure Kinect, a 
tripod and a grasping tool attached with a distributed sensor 
[cylinder (diameter: d = 1 cm, d = 3 cm, d = 5 cm), ball, slice], as 
shown in Figure 5. The subjects sat on a chair without armrests, 
with the Azure Kinect placed 1.5 m directly in front of them, so 
that the subjects were in the center of the best visual field of the 
camera, and the grip tools attached with distributed sensors were 
placed on the table next to the subjects. According to the size of 
human palm, 16 rows and 16 columns DFPS is selected. Two 
hundred fifty-six sensing units are distributed in the square of 

150 mm × 150 mm, and the size of each induction unit is 
7.5 mm × 7.5 mm.

While the subject performed various movements according to 
Table 1, the Azure Kinect in combination with the MediaPipe measured 
the posture information of each joint of the upper limb and the hand 
on both the affected and the healthy side. The values of each feature 
used for the evaluation were then calculated. DFPS is attached to the 
gripping tool to measure the distributed force of the hand. During the 
hook grasp (26), the DFPS was attached to a cylinder with a 3 cm 
diameter. The subject’s hand was hooked to grasp the device with 
maximum force in the way of carrying a purse. The forces of both the 
healthy hand and the affected hand were measured. For the lateral 
pinch (27), DFPS was attached to the slice and placed between the 
thumb and index finger. The other four fingers were pinched together 

FIGURE 4

Human machine interface.
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with the thumb to pinch the DFPS with the maximum force. The 
measured result was lateral pinch force. For the Pincer grasp (28), the 
DFPS was attached to the 1 cm-diameter cylinder. The measured hand 
grasps the device as if holding a pencil to measure the force. For the 
cylinder grasp (29), the DFPS is attached to a 5 cm diameter cylinder, 
and the hand grasps the device in the manner of holding a cup. For the 
Sphere grasp (30), the DFPS is attached to the spherical object and the 
device is held in the hand for force measurement. The cylindrical 
grasping and hook grasping posture are shown in Figure 6, panel (A) is 
the hand grasps the cylinder of the 5 cm in a cylindrical shape, panel (B) 
is the hand grasps 3 cm cylinder in the form of a hook.

3.2 Participant and protocol

Participants included 17 stroke patients (10 males, 7 females; Age: 
58 ± 16.5 years) and 1 healthy subject, no severe cognitive impairment 
(MMSE score >15), and able to maintain a chair-sitting position. 
Patients with a Fugl–Meyer score below 10 were excluded due to the 
severity of their post-stroke condition, which hindered the collection 
of signals from the affected limb. Prior to data collection, all patients 
underwent evaluation by a rehabilitation technician and were tested 
for cognitive impairment. The patient’s statistical information is 
shown in the Table 2.

In this study, an experienced rehabilitation physician demonstrated 
and recorded each action of automatic Fugl–Meyer. They also provided 
a detailed explanation for each action. Before each data collection, the 
experimenter explained the experiment process to the patient. Then, 
they played the evaluation action video, and left enough time for the 
patient to practice the action. Finally, the experiment was conducted. 
Each subject was evaluated 6 times, each time at an interval of 10 min, 
to reduce the impact of the previous exercise on the next one. Both the 
affected and healthy limbs were tested with the same movements. It 
should be noted that the experiment will be stopped as soon as the 
subject reports any uncomfortable sensations. To reduce the influence 
of uncertain factors, four better results were selected for each patient. 
These results were used as the original data for the rehabilitation 
evaluation. A total of 72 groups of data were obtained.

3.3 Statistical analysis

To evaluate the accuracy of the proposed assessment method in 
this research, Bland–Altman analysis was applied to assess the 
agreement between the assessment results of this system (SFMA) and 
those of the rehabilitation physicians (RPFMA) Bland–Altman 
analysis calculates the limits of agreement between the two 
measurements, which are then visualized graphically.

Pearson correlation analyses were performed between the 
subjects’ SFMA and the total FMA-UE score (TFMA) to evaluate 
whether the SFMA score of the 30-item motor assessment method 
proposed in this research could replace the TFMA of the 33 upper 
extremity movements in the FMA-UE scale.

4 Results

4.1 Posture measurement results

The partial results of the posture measurements are shown in 
Figure 7. Sub-figure (A) shows the results of the 15th item for a 
subject with a Fugl–Meyer score of 75. This item consists of a total 
of three movements. The graph displays the shoulder abduction 
angle (red solid line) with a maximum of approximately 34°, the 
elbow angle (blue dotted line) with a measured range of 0–2°, 
indicating that the elbow is in a state of straightening, and the angle 
for forearm rotation forward (green dotted line) with a range of 
1–19°, indicating poor forward rotation ability. The results suggest 
that the subject is only able to partially complete the movement, and 
forward rotation of the forearm is essentially impossible. The fuzzy 
controller took AROM/HROM (ROM Ratio), AMV/HMV (MV 
Ratio), and SD as inputs and Rehabilitation Assessment Levels as 
output. Both inputs and outputs used three affiliation functions: low, 
medium, and high. The domains of ROM Ratio, MV Ratio, and SD 
were [0, 1], and the domain of the output was [0, 2]. The three inputs 
were represented as trapezoidal subordination functions with 
parameters [−0.4 −0.1 0.1 0.4], [0.1 0.4 0.6 0.9] and [0.6 0.9 1.1 1.4]. 
The output utilized three triangular membership functions for 

The cylinder grasp The Hook grasp

A B

FIGURE 6

Measuring method of distributed force, (A) the cylinder grasp, (B) the hook grasp.
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affiliation with parameters [0 0 1], [0 1 2] and [1 2 2]. The fuzzy rule 
is illustrated in Figure 8. The FISRA scored the shoulder abduction 
angle with 1 point, the elbow angle with 2 points, and the forward 
forearm rotation with 1 point. The final assessment result was 1 
point, which was consistent with the doctor’s assessment.

Subfigure (B) displays the results of the 21st test maneuver for a 
subject with a Fugl–Meyer score of 82. The maneuver consisted of 
three total movements. The graph displays the wrist dorsiflexion angle 

(black dotted line) with a maximum of approximately 30°. The elbow 
angle (blue dotted line) is measured within the range of 0–3°, 
indicating a straightened elbow joint. The joint forward flexion angle 
(red solid line) is at an angle of about 31°, indicating better completion 
of the subject’s wrist dorsiflexion. The FISRA scored 2 for wrist 
dorsiflexion, elbow joint angle, and shoulder joint angle. The final 
assessment result for this movement was also 2, which was consistent 
with the doctor’s assessment.

TABLE 2 The patient’s statistical information.

Subject Gender Affected side Etiology
Time since stroke 

(month)
FME-UE

S1 M R Ischemic 1 35

S2 M R Hemorrhagic 3 29

S3 M L Ischemic 7 14

S4 M L Ischemic 1 16

S5 M L Hemorrhagic 2 27

S6 F L Hemorrhagic 13 53

S7 F R Hemorrhagic 4 25

S8 F L Ischemic 1 38

S9 F R Ischemic 5 42

S10 M R Ischemic 7 31

S11 M R Hemorrhagic 5 57

S12 M L Ischemic 2 20

S13 M R Hemorrhagic 1 41

S14 F R Hemorrhagic 3 47

S15 F L Ischemic 4 57

S16 F L Hemorrhagic 2 28

S17 F L Hemorrhagic 1 60

The results of item 15

A B

The results of item 21
FIGURE 7

Posture measurement result, (A) the results of item 15, (B) the results of item 21.
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4.2 Distributed pressure measurement 
results

The results of the healthy hand were mirrored to facilitate 
comparison with the affected side. This put the fingers of the affected 
and healthy sides in the same approximate area. Figure 9 displays the 
distributed pressure measured by the cylindrical grasping device. 
Sub-figure (A) shows the maximum force information (Force1) 
when grasping the cylinder with the healthy hand. The force points 
of the thumb, index, middle, ring and little fingers are clearly visible, 
with maximum forces of 12.2 ± 1.3 N, 7.6 ± 1.2 N, 6.3 ± 1.6 N, 

4.1 ± 2.0 N, and 3.6 N ± 2.6, respectively. Together with the force 
information for the rest of the hand, the total combined force of the 
hand is 68.2 ± 5.7 N.

Sub-figure (B) shows the maximum force information (Force2) 
when the affected hand grasps the 5 cm cylinder. This figure only 
shows the force information of the thumb, middle finger and ring 
finger. The maximum forces of these finger are 5.1 ± 2.7 N, 4.5 ± 1.5 N, 
3.4 N ± 1.3 N, respectively. The total force of the palm sensing unit is 
24.8 N. It shows that the patient’s index finger does not produce force 
information. Upon reviewing the patient’s medical records, it was 
found that the patient has motor dysfunction of the index finger joint 

FIGURE 8

Fuzzy rules.

FIGURE 9

Distributed pressure measurement results, (A) Force1 (the maximum force information Force1 when grasping the cylinder with the healthy hand), 
(B) Force2 (the maximum force information Force2 when the affected hand grasps the 5 cm cylinder).
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FIGURE 11

The correlation between SFMAM and TFMA.

on the affected side. The patient’s cylindrical grip motor function score 
on the affected side was assessed as 1 by FISRA, which was consistent 
with the physician’s evaluation.

4.3 Statistical analysis results

The Shapiro–Wilk test was used to test the difference between 
SFMA and TFMA and ensure a normal distribution. Then Bland–
Altman diagram was used to analyze the consistency of the two groups 
of data. As shown in Figure 10, the abscissa represents the average value 
of the two sets of data. The ordinate represents the difference between 
the two groups of data. The upper and lower brown horizontal dashed 
lines represent the upper and lower limits of 95% consistency. The 
middle blue solid line represents the average difference. The orange 
dotted line represents the average difference of 0. The arithmetic mean 
is −0.0102, 95% confidence interval (CI) is −0.3249 to 0.3054. As can 
be seen from the figure, there is no point outside the 95% CI, so the 
consistency between the two evaluation methods is good.

The SFMA mean (SFMAM) of each subject was calculated, and a 
total of 18 data sets were obtained. The Pearson correlation analysis 
between SFMAM and TFMA of the subjects’ upper limbs was shown 
in Figure 11, r = 0.99 ~ p < 0.001. There was a very significant positive 
correlation between them.

5 Discussion

Rehabilitation assessment can evaluate the severity, development 
trend, and prognosis of patients with dysfunction. It provides an 
objective basis for formulating rehabilitation treatment plans. It also 
observes the development and changes of disability to evaluate the effect 
of rehabilitation treatment, and develops new and more effective means 
of rehabilitation treatment. Rehabilitation treatment often starts with a 
rehabilitation assessment and ends with another assessment. Therefore, 
the rehabilitation assessment of stroke patients is very important.

Rehabilitation physicians use protractors, grip dynamometers, 
and other equipment for manual measurement and evaluation. The 

measurement method is related to the doctor’s preference, and the 
measurement results depend on the doctor’s habits. The upper limb 
rehabilitation assessment time lasts more than 30 min. This longer 
time results in fewer clinical and scientific rehabilitation assessment 
methods. Most of the formalized rehabilitation assessments in 
hospitals are assessed only once at inpatient and once at discharge.

The lack of uniform evaluation standards among rehabilitation 
healthcare systems, the lack of reasonable evaluation indexes for 
rehabilitation physicians, and the lack of a way to compare patient 
treatment outcomes limit the development of rehabilitation therapy 
technology. Our proposed automated Fugl-Meyer system, including 
Azure Kinect and distributed pressure sensors need not be worn. The 
device uses automated measurements where the patient only interacts 
with the display without human intervention, improving standardization 
and accuracy of measurements. Each assessment takes less than 10 min, 
greatly improving the efficiency of rehabilitation assessment. Patient 
rehabilitation assessment time included the time for the patient to 
perform the assessment actions and the device switching time. The 

FIGURE 10

The Bland–Altman plot of the two assessment results.
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device switching times were all 3 min, and the time consumed by the 
patients varied, as shown in the Figure 12. At the same time, the addition 
of virtual rehabilitation assessment scenarios can greatly improve the 
enthusiasm of patients to participate in rehabilitation assessment.

Various technologies can be  used to acquire human motion 
information, including data gloves, sEMG, IMUs, robots, and Kinect. 
Data gloves can accurately capture hand opening and closing 
information. However, they may be difficult to wear for patients with 
muscle contractures.

sEMG can measure the EMG signals of a limited number of 
muscles. Since human movement is the result of the joint action of 
upper limb muscles, sEMG cannot fully characterize the overall 
movement of the subject. Additionally, sEMG is susceptible to 
interference and requires close proximity to the muscle being measured. 
Measuring the sEMG signals of the active muscles in the shoulder joint 
necessitates the removal of clothing, making the measurement 
inconvenient (Merletti et al., 2021). The inertial measurement unit used 
to measure movement must be worn in multiple locations and is also 
prone to displacement, causing discomfort to the subject (Li and Yu, 
2023). Robots for rehabilitation assessment can be  expensive and 
limited to hospitals or large communities. However, the Kinect system 
offers a portable, cost-effective, and practical alternative that does not 
require markers and is convenient for patients to use. The Azure Kinect 
is even more optimized and accurate than the previous versions. It is 
important to prioritize patient comfort and universality when selecting 
an assessment device. This paper selects Azure Kinect for upper 
extremity joint acquisition. However, it should be noted that Azure 
Kinect has limited hand joint acquisition capabilities and can only track 
four joint information points: wrists, hand tip, palm center, and thumb. 
To enhance the accuracy of the automatic evaluation system, Azure 
Kinect is combined with MediaPipe to acquire hand posture.

Lee’s device, which uses Kinect combined with FSR sensors for 
rehabilitation assessment, only measures the force exerted on the 

index finger and thumb fingertip. This limited measurement does not 
accurately reflect the force exertion in other parts of the hand. If a 
subject is unable to exert force on the index finger, the hand grip force 
information cannot be accurately measured.

To increase the generalizability of automated devices for 
rehabilitation assessment, this study proposes using a large-area 
distributed flexible pressure sensor to measure hand force during 
different gripping maneuvers. The flexible pressure sensor is 
distributed, thin, and easy to bend. It can be attached to various 
grasping tools to measure hand force information during different 
grasping modes, such as hook grasp., lateral pinch, pincer grasp., 
cylindrical grasp., and spherical grasp. The sensor is distributed and 
has a large area to test the force distribution of the entire palm. This 
allows for a more detailed and accurate measurement of the force 
exerted by the hand at each location. Figure 9 displays the force 
information of the entire palm on the healthy side. The five fingers’ 
tips exert a more pronounced force, and a healthy individual’s 
maximum fingertip force is approximately 12.2 N. Besides the 
fingertip’s tip, force information is also present at the root of the 
index finger, the greater and lesser pisiform areas. Therefore, the 
distributed sensor proposed in this study covers a larger area and 
requires less interference without the need for the user to wear it. 
Users can grasp objects naturally, without the need for a demanding 
grip position.

The assessment criteria for patients may vary due to 
differences in joint strength and range of motion. This study 
extracted characteristic information, such as range of motion, 
speed, length ratio, angle, acceleration, and distribution force. The 
ratios of features or deviations between the affected and healthy 
sides were entered into a single/multigroup fuzzy logic assessment 
model for rehabilitation evaluation. This increases the 
standardization of the rehabilitation assessment system and 
reduces the impact of individual differences on the results.
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FIGURE 12

The rehabilitation assessment time.
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The study proposes an automatic rehabilitation assessment system for 
upper limb motor function based on posture and distributed force 
measurement. The system only requires Azure Kinect and an array of 
DFPS to be connected to a computer and used in conjunction with the 
relevant software. It is simple to operate, easy to install, portable, and 
inexpensive, making it suitable for home rehabilitation assessment. 
Because rehabilitation training is a long-term process, it is not practical or 
cost-effective to conduct it exclusively in the hospital. During the recovery 
and after-effects period of a stroke, it is important to not only receive 
training in the hospital but also to pay attention to rehabilitation training 
at home. This training lacks the guidance of a doctor, so it is crucial to 
focus on rehabilitation assessment. An automated rehabilitation 
assessment device is essential. The automated assessment system 
proposed in this paper can realize safe and efficient home rehabilitation 
training and assessment, combined with the virtual rehabilitation training 
scenario previously proposed by the authors (Bai and Song, 2019).

The combination of Azure Kinect and MediaPipe can improve the 
accuracy of hand posture tracking by largely reducing occlusions and 
singularities. However, it cannot completely eliminate them. 
Occlusions can still occur if the shoulder, elbow, wrist, and Azure 
Kinect are in a straight line. Some scholars have proposed using Leap 
Motion for hand tracking. However, its hand tracking area is limited. 
Additionally, rehabilitation assessment is a dynamic process, and the 
tracking accuracy of Leap Motion decreases under high dynamic 
conditions. Therefore, dynamic high-precision tracking of hand joints 
remains a challenging problem to solve.

6 Conclusion

This research proposed an automatic assessment system for 
the motor function of hemiplegic upper limbs. The system can 
automatically assess the motor function of 30 movements on the 
FMA scale by measuring posture and distribution force. By 
comparing the posture and distribution force information 
between the affected and healthy sides, the influence of individual 
differences on the assessment results is reduced. The experiment 
on automated assessment with 17 participants demonstrated a 
significant correlation (r = 0.99, p < 0.001) between the results of 
the automated assessment system and those of the physician’s 
assessment. This research lays the foundation for standardizing 
and unifying the automatic rehabilitation assessment system.
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Introduction: Patients su�ering from limb movement disorders require more

complete rehabilitation treatment, and there is a huge demand for rehabilitation

exoskeleton robots. Flexible and reliable motion control of exoskeleton robots is

very important for patient rehabilitation.

Methods: This paper proposes a novel exoskeleton robotic system for lower

limb rehabilitation. The designed lower limb rehabilitation exoskeleton robot

mechanism is mainly composed of the hip joint mechanism, the knee joint

mechanism and the ankle joint mechanism. The forces and motion of the

exoskeleton robot were analyzed in detail to determine its design parameters.

The robot control system was developed to implement closed-loop position

control and trajectory planning control of each joint mechanism.

Results: Multiple experiments and tests were carried out to verify robot’s

performance and practicality. In the robot angular response experiments, the

joint mechanism could quickly adjust to di�erent desired angles, including 15◦,

30◦, 45◦, and 60◦. In the trajectory tracking experiments, the exoskeleton robot

could complete tracking movements of typical actions such as walking, standing

up, sitting down, go upstairs and go downstairs, with a maximum tracking error

of ±5◦. Robotic wearing tests on normal people were performed to verify the

assistive e�ects of the lower limb rehabilitation exoskeleton at di�erent stages.

Discussion: The experimental results indicated that the exoskeleton robot has

excellent reliability and practicality. The application of this exoskeleton robotic

system will help paralyzed patients perform some daily movements and sports.

KEYWORDS

exoskeleton robots, behavior-assistant robots, human-robot systems, motion control,

rehabilitation application

1 Introduction

The research direction of lower limb rehabilitation exoskeletons is focused on the

design of these devices for patients with paraplegia, an area that is grounded in bionics

principles and informed by a multidisciplinary intersection of mechanical engineering,

electrical engineering, biomedical sciences, human bionics, artificial intelligence, and

sensing technologies (Plaza et al., 2023). Through the strategic integration of various

sensors, a diverse array of technologies spanning sensing, signal acquisition, and

microcomputing were harnessed to inform the design of these rehabilitation robotic

systems (Sarajchi et al., 2021).

In the context of paraplegia patient care, traditional rehabilitation therapies typically

involve one-on-one or multiple-therapist-to-one treatment modalities administered by

rehabilitation therapists (Wang et al., 2022). However, these approaches are often

characterized by inefficiencies, difficulties in movement control and effect assurance,
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challenges in rehabilitation assessment, and a shortage of qualified

healthcare professionals (Manuli et al., 2021). Rehabilitation

exoskeletons offer a compelling alternative in this scenario, as they

can significantly reduce the workload burdening rehabilitation

departments, effectively liberating these departments and

enhancing treatment efficiencies. Moreover, these exoskeletons

have the potential to promote patient engagement in rehabilitation

training, while also enabling objective evaluations of training

intensity, duration, and outcomes. Consequently, patients can

benefit from more systematic, comprehensive, and standardized

rehabilitation interventions (Pinto-Fernandez et al., 2020).

For individuals with lower limb injuries, the utilization of

lower limb rehabilitation exoskeletons can play a pivotal role in

facilitating normal daily activities. These exoskeletons not only

address various challenges related to medical resource allocation

and manual training in rehabilitation settings, but also allow for

precise measurements of human kinematics and physiological data

through sophisticated sensory systems. These measurements allow

rehabilitation physicians to more accurately assess the patient’s

condition (de Miguel-Fernández et al., 2023) and provide an

objective foundation for refining and optimizing rehabilitation

programs tailored to individual patient needs (Plaza et al., 2021; Su

et al., 2023).

With the enhancement of people’s living standards, individuals

afflicted with limb movement disorders will increasingly pursue

more comprehensive rehabilitation therapies. Consequently, the

demand for these rehabilitative treatments will continue to

escalate. The lower limb rehabilitation exoskeleton, a specialized

medical device designed for patients with lower limb paralysis or

disabilities, will occupy a pivotal position in rehabilitation therapies

(Huamanchahua et al., 2021). The rehabilitation exoskeleton

robot is an industrialization research topic with significant

market prospects. The development of rehabilitation robots also

plays an important role in the technological development of

medical rehabilitation.

Currently, exoskeletons for paraplegic patients are divided into

two main categories: rehabilitation exoskeleton robots consisting

of an exoskeleton, crutches or auxiliary support mechanisms,

and a control handle, such as the ReWalk rehabilitation1 (Zeilig

et al., 2012) bionic robotic leg (Esquenazi et al., 2017); and

exoskeletons that do not need crutches or other auxiliary support

mechanisms2 (Esquenazi et al., 2012). Trajectory tracking control

(Aole et al., 2020) is the main control method inmost of the current

exoskeleton robots (Andrade et al., 2021) and plays an important

role in the operation and implementation of exoskeleton robots

(Shi et al., 2019; Li et al., 2021). Traditional robotic arm modeling

and control theories have laid an important foundation for the

modeling, analysis and control of lower limb exoskeleton robots

(Caulcrick et al., 2021; Shi et al., 2021), such as the sensitivity

amplification control (Zheng, 2021), identification of the dynamic

model (Bryan et al., 2021) and real-time adjustment of torque.

Most current research predominantly concentrates on walking

states, it doesn’t adequately account for the diverse daily life

1 [EB/OL] Rewalk. http://www.rewalk.com.

2 [EB/OL] http://www.gaylord.org/Our-Programs/Spinal-Cord/Ekso-

Bionic-Eksoskeleton.

scenarios encountered by paraplegic patients, such as activities like

standing up, sitting down, navigating stairs, or managing slight

inclines. Moreover, the trajectory tracking control methodologies

commonly utilized often rely on trajectories derived from the

movements of able-bodied individuals in their daily routines,

overlooking the unique circumstances and needs of patients who

use crutches (Embry and Gregg, 2020).

In this paper, a multi-scenario and full-process rehabilitation

exoskeleton robot system for paraplegic patients is proposed,

which can realize daily actions such as walking, standing and

sitting. The designed exoskeleton robot contains active hip

joint mechanism, active knee joint mechanism and passive

ankle joint mechanism. Detailed mechanical analysis and design

were performed for the exoskeleton joint mechanisms. The

exoskeleton control system combined sensors and drive motors

could achieve closed-loop control and tracking motion of

each exoskeleton joint. Motion response experiments and robot

trajectory tracking experiments were conducted to verify its

response performance and reliability. Multiple groups of normal

people wore exoskeletons to test the assistance effect of walking,

standing up, sitting down and other movements. Series of

experiments and tests verified the practicability and stability of the

lower limb rehabilitation exoskeleton robot. This exoskeleton robot

system can help paraplegic patients recover and greatly enhance

their mobility.

2 Exoskeleton robot design and
analysis

2.1 Robot principle

Human lower limb movement represents a sophisticated

and systematic process, initiated by the brain’s dissemination

of intentional movement information (Leech et al., 2022). This

information is conveyed through nerve conduction via the spinal

cord, extending to the nerves innervating the lower limbs.

Subsequently, these nerves exercise control over the contraction

and extension of lower limb muscles, which ultimately impetus

the rotational movement of skeletal joints. Although it is possible

for exoskeleton robot active joints to generate greater torque

than human joints, the number and degrees of freedom (DOF)

of robot joints are typically much lower than the corresponding

number in the human body. This disparity necessitates the

orchestration of coordinated movement between the human

body, characterized by an extensive range of DOF, and the

exoskeleton, which operates with a more restricted range. The

motion control algorithms employed in exoskeletons should

be meticulously designed to accommodate the inherent joint

motion characteristics of the human body, with the aim of

minimizing the sense of discomfort and discomfiture during

human-machine interaction.

The human lower limb comprises three primary joints, namely

the hip, knee, and ankle joints, which collectively facilitate a

wide range of locomotive functions. The main joint movement

mechanisms of the human lower limbs are presented in Figure 1.

Considering the particularity of the exoskeleton robot being

applied to patients with lower limb paralysis, in order to
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FIGURE 1

Movement mechanism diagram of the main joints of the human lower limbs. (A) Hip joint movement; (B) knee joint movement; (C) ankle joint

movement.

TABLE 1 The lower limb DOF of the human and the developed

exoskeleton robot.

DOF Hip Knee Ankle

Human lower limb 3 1 3

Lower limb exoskeleton robot 1 1 3

TABLE 2 Joint motion range of human and exoskeleton on sagittal plane.

Joint Human
motion range

Exoskeleton
motion range

Hip

flexion/extension

−30◦ to 140◦ −30◦ to 115◦

Knee

flexion/extension

−150◦ to 10◦ −100◦ to 0◦

Ankle

dorsiflexion/plantar

flexion

−30◦ to 40◦ −20◦ to 20◦

achieve walking purposes, the exoskeleton robot does not need

to have the motion performance of all joints. Additionally,

given the practical constraints posed by the need to optimize

the size and weight of the exoskeleton, a judicious selection

of joints is warranted. The designed lower limb exoskeleton

robot has a total of 10 DOFs across both legs, with the hip

and knee joints, each endowed with a single DOF, serving

as active drivers of motion. Simultaneously, the ankle joint,

endowed with three DOFs, operates as a passive joint. The DOF

number of the lower lime exoskeleton robot is presented in

Table 1.

In consideration of the operational context of wearable

lower limb exoskeletons, each joint motion range should

be consistent with the normal pedestrian walking. However,

prioritizing the safety and wellbeing of the wearer, it is judicious

to design the motion range of the exoskeleton system to

be slightly restricted compared to that of human joints. The

detail joint motion range on sagittal plane is presented in

Table 2.

2.2 Robot mechanical design

The lower limb rehabilitation exoskeleton is a wearable

mechanical system designed for patients with lower limb paralysis.

This system integrates robotics technology, automation control

theory, and clinical medical technology, culminating in an

automated robotic device dedicated to facilitating a wide range of

daily activities for these patients.When designing this robot system,

the following critical factors should be considered:

(1) Rational allocation of DOF: given the exoskeleton’s primary

function of assisting paralyzed patients in accomplishing daily

tasks—such as standing, sitting, climbing stairs, and walking—

it is paramount to precisely determine joint positions and DOF.

This ensures optimal support for these activities whilemitigating

the risk of secondary injuries to the patient;

(2) Adjustability of the mechanism: the application of the

lower limb rehabilitation exoskeleton encompasses a vast

age range, significant height disparities, and diverse body

types. Consequently, the design process must accommodate

patients with varying heights and weights by incorporating

adjustable features such as leg bar length, waist width, and

strap mechanisms;

(3) Reasonable allocation of joint movement range: while ensuring

the basic range of motion of each joint, it is imperative to

anticipate extreme scenarios, such as drive failures. To mitigate

potential risks, safety limits must be designed to distribute joint

movement ranges in a manner that guarantees wearer safety and

prevents secondary injuries;

(4) Convenient wearability: as the lower limb rehabilitation

exoskeleton is worn externally on the human body, it must

prioritize wearability. Ideally, after a concise user training,

individuals should be able to effortlessly don and doff the

exoskeleton. This requires a thoughtful design approach that

balances complexity with usability, ensuring maximum comfort

and ease of use for the wearer.

According to the above design points, as shown in Figure 2,

a complete set of lower limb rehabilitation exoskeleton robot

is proposed. The overall weight of this exoskeleton robot is
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FIGURE 2

Design of lower limb rehabilitation exoskeleton. (A) Front view; (B) side view of upright state; (C) side view of stepping state.

FIGURE 3

Hip joint mechanism of the lower limb rehabilitation exoskeleton. (A) Overall view; (B) front section view; (C) side section view.

<20Kg.The designed exoskeleton robot mainly includes the

backpack mechanism, the hip joint mechanism, the knee joint

mechanism and the ankle joint mechanism.

The hip joint of the lower limb rehabilitation exoskeleton

holds paramount importance, given its integral involvement in the

majority of movements during daily exercises. Taking into account

the prerequisites of safety, reliability, and practicality pertinent to

patients with lower limb paralysis, the hip joint is designed as a

driven joint. Figure 3 shows the hip joint mechanism of the lower

limb rehabilitation exoskeleton.

Two hip joint mechanisms of the lower limb rehabilitation

exoskeleton robot contain the following main components:

servo motors, worms, worm gears, hip joint connecting rods,

thigh poles, hip joint supports, hip joint axes, lumbar support

plates, belt fixing plates, strap fixing devices, safety limit

devices, confinement devices, sensor devices and a lumbar

connecting plate. The sensor device contains sensor and sensor

connecting rod.

The transmission process unfolds as follows: the servo

motor initiates the motion by driving the reducer, which
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FIGURE 4

Knee joint mechanism of lower limb rehabilitation exoskeleton. (A) Front view; (B) section view; (C) side view.

subsequently propels the worm. The worm then engages

the worm gear, leading to the rotation of the hip joint

connecting rod. This rotation translates into the motion of

the thigh pole, facilitating thigh movements in the human

body. Concurrently, the sensor device plays a pivotal role by

measuring the hip joint angle for purposes of real-time control

and precision.

In the daily movements executed by the human body, the

involvement of the knee joint is almost ubiquitous, underscoring its

importance in the lower limb rehabilitation exoskeleton. The knee

joint mechanism of the lower limb rehabilitation exoskeleton is

designed as an active joint. It also uses the worm gear transmission

method of the hip joint mechanism, and its core structure is similar

to that of the hip joint mechanism. The knee joint mechanism

of the lower limb rehabilitation exoskeleton is shown in Figure 4.

Notwithstanding the similarities, several distinctions between the

hip and knee joints are worth noting:

(1) Dissimilarities in joint angles during movement necessitate

distinct safety limit and support frame structures for each joint;

(2) While the hip joint mechanism interfaces with the human

waist, the upper segment of the knee joint mechanism

interfaces with the thigh bar. The knee joint mechanism

contains a thigh rod connecting rod and no waist

link structure;

(3) In order to improve the overall appearance of the support

frame, the end cover and support frame have been designed

with certain improvements.

Based on the analysis of the ankle joint mechanism, the ankle

joint mechanism of the lower limb rehabilitation exoskeleton has

the following characteristics:

(1) The ankle joint mechanism has as the freedom of

dorsiflexion and plantar flexion;

(2) The ankle joint mechanism is under-actuated and needs to

have elastic elements to self-align;

(3) An elastic energy storage deformation and vibration

damping mechanism is installed at the sole of the foot to

increase the overall comfort of the mechanism.

The ankle joint mechanism of the lower limb rehabilitation

exoskeleton is shown in Figure 5. The designed ankle joint

mechanism encompasses several components: an end cap, a lower

leg link rod, an upward push rod, a spring, a lower push rod, a

pulley, a sole plate, an active axis, an upper sole, an elastic sole, and

an auxiliary cushion block. Its movement principle is: when the sole

of the wearer’s foot is subjected to external force, the sole plate is

driven by the sole to rotate around the axis, and the lower push rod

is driven tomove upward to compress the spring; when the external

force disappears or decreases, the spring pushes the lower push rod

downward, driving the sole plate to rotate around its axis, realizing

that the ankle joint is in an under-driven form and has the function

of autonomous dorsiflexion and plantar flexion freedom.

2.3 Motion and force analysis

The active drive of the ankle joint mechanism in the lower limb

exoskeleton robot offers advantages in gait control and walking

stability. However, it often necessitates additional drive sources,

leading to increased complexity and bulkiness in the ankle joint

structure. The focus of this study lies in catering to patients

with lower limb paralysis. The ankle joint mechanism equipped
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FIGURE 5

Ankle joint mechanism of lower limb rehabilitation exoskeleton. (A) Front view; (B) section view; (C) side view.

with functionalities of support, dorsiflexion, and plantarflexion can

suffice for daily life activities, with the capacity for rotation that

can autonomously return to a supporting position in an unstressed

state. Based on the analysis of ankle joint motion mechanism, the

sagittal plane of the ankle joint mechanism exhibits a dorsiflexion

or plantarflexion range spanning from +20◦ to −20◦, with the

joint’s torsional moment ranging between +3 to −3Nm. Given

these prerequisites, the ankle joint mechanism in this study is

designed as an underdriven, elastic, and flexible structure.

The ankle joint mechanism of the lower limb rehabilitation

exoskeleton robot has a motion range of dorsiflexion and plantar

flexion in the sagittal plane of +20◦ to −20◦. As the angle

of rotation increases, a larger joint torsional moment becomes

imperative. When the rotation angle reaches 20◦, the joint torsional

moment encompasses an approximate range of 3Nm. The design

process entails comprehensive calibration, precise determination

of the distance change of the rotation center, appropriate spring

selection, and pulley trajectory design. Figure 6 illustrates the

posture change diagram of the ankle joint mechanism in the lower

limb rehabilitation exoskeleton, depicting its movement from the

support position to the maximum dorsiflexion, back to the support

position, and subsequently to the maximum plantarflexion before

returning to the support position.

In addressing the aforementioned requirements, modeling

and analysis are performed, as illustrated in Figure 7. The

diagram depicts the mechanism’s motion, with the black solid line

representing the initial state (equilibrium support position), and

the black dashed line denoting an arbitrary state of the mechanism’s

movement. In the schematic, Point O represents the center of

rotation, Point A represents the initial center of the pulley, Point B

represents the center of the pulley in an arbitrary state, θ represents

the angle of rotation, X represents the value corresponding to the

change in height of actuator (from Point A to Point B), r represents

the radius of the pulley, and l represents the distance from the

lowest point on the upper part of the sole plate to the center

of rotation. Other analysis parameters include: spring stiffness

k, spring pressure F, joint moment of force M, torque effective

distance d. X1 represents the distance from an state trajectory point

(intersection of trajectory diagonal and vertical central axis) to the

center of rotation, X2 represents the distance from the arbitrary

state trajectory point to the center of the pulley, X3 represents

the distance from Point O to Point A, and β represents the

angle between the initial position of the inclined plane and the

horizontal line.

According to geometric relations, we can get:

l

sin (π/2 − θ − β)
= X1/ sin (π/2 + β) (1)

X2 = r/ cos (β + θ) (2)

X3 = l+ r/ cosβ (3)

X = X1 + X2 − X3 (4)

According to Equations (1)–(4), X can be expressed as follows:

X = l ·
sin (π/2 + β)

cos(β + θ)
+

r

cos(β + θ)
− l−

r

cosβ
(5)

The torque effective distance d can be get:

d = (X1 + X2) · sin(β + θ) (6)

The spring force F and moment of forceM are as follows:

F = K · X (7)

M = F · d (8)

According to Equations (5)–(8), the effective joint moment M

is calculated as:

Frontiers inNeuroscience 06 frontiersin.org
57

https://doi.org/10.3389/fnins.2024.1355052
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhu et al. 10.3389/fnins.2024.1355052

FIGURE 6

Posture changes of ankle joint mechanism. (A–E) Ankle dorsiflexion movement; (F–J) ankle plantar flexion movement.

FIGURE 7

Ankle joint motion analysis of the lower limb rehabilitation exoskeleton.
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TABLE 3 Performance parameters of compression springs.

Material SWP-
B(2.5)GB/T

Coiled
way

Dextrorotation

Diameter 14.5mm Spin ratio 4.803

Free length 32mm Spring unit

weight

12.13 g/pcs

Active coils 6.3 Pitch 4.28

Telomorphism Rounded and

smoothed

Rigidity 37 N/mm

M = k ·

(

l ·
sin (π/2 + β)

cos(β + θ)
+

r

cos(β + θ)
− l−

r

cosβ

)

· (X1 + X2) · sin(β + θ) (9)

Calculated according to Equation (9), the momentM and angle

θ that meet the design requirements can be obtained.

Due to the presence of friction in themechanism, theminimum

pressure angle is firstly verified to prevent the mechanism from

self-locking phenomenon. Assume the following parameters: the

pressure angle α, the minimum pressure angle αmin, and friction

coefficient µ (value is 0.2), we can get:

Ff = F · cosα · µ (10)

Ft = F · sinα (11)

The force of friction and positive pressure can be calculated

according to Equations (10) and (11). At the instance when force of

friction Ff equals positive pressure Ft , it corresponds to the position

where the minimum pressure angle, αmin is 11◦. According to the

above calculation, the pressure angle of this structure is β+θ . Since

0◦ ≤ θ ≤ 20◦, β ≥ 11◦ can ensure that the mechanism will

not self-lock.

In the elastic component design stage, a compression spring

with ends on both sides was chosen. In alignment with the ankle

joint mechanism dimensions derived from the aforementioned

calculations, an appropriate size and stiffness for the spring were

determined. Additionally, considerations pertaining to installation

dimensions and other related factors were also taken into account.

After repeated verification and design, the specific performance

parameters of the compression spring are presented in Table 3.

Upon analysis, the spring stiffness k is 37 N/mm. According to

the design requirements, when θ is 20◦, M approximates 3Nm, it

is concluded that β is 15◦ and l is 25mm. Relationships between

ankle angle θ and spring deformation X, as well as ankle angle θ

and torque M are shown in Figure 8. It becomes evident that as

the rotation angle θ escalates, the torque M also experiences an

increase, reaching 3.1 N·m when θ is 20◦.

3 Exoskeleton robot control system

3.1 Robot system composition

The lower limb exoskeleton primarily serves patients afflicted

with lower limb motor dysfunction, essentially functioning as

a mechatronic device that aids in rehabilitation training and

facilitates the restoration of upright walking capabilities (Baud

et al., 2021). The hardware design of the lower limb exoskeleton

control system ought to adhere to fundamental principles:

(1) The primary controller must possess adequate peripheral

interfaces capable of receiving diverse sensor signals

integrated within the lower limb exoskeleton. Moreover,

it is imperative for the human-machine interaction signals and

underlying algorithms to exhibit expedited response times,

enabling seamless adaptation to varying motion patterns and

expeditious computation of control inputs for joint motors;

(2) Operating as a rehabilitation robot, the lower limb exoskeleton

necessitates real-time, direct interaction with the patient, along

with the capacity to document rehabilitation training data on

storage devices or visualize it via monitors;

(3) Given its role as an assistive robot for patients with lower limb

motor impairments undergoing gait training, ensuring safety,

reliability, and stability is of paramount importance in the

hardware design of the lower limb exoskeleton control system.

The control system hardware composition of the lower limb

rehabilitation exoskeleton is shown in Figure 9. The hardware

components of the lower limb rehabilitation exoskeleton consist

of two subsystems: the wearable lower limb exoskeleton ontology

control system and the remote monitoring system. The wearable

lower limb exoskeleton ontology control system encompasses

elements such as the central controller, motor drivers, servomotors,

encoders, and photoelectric encoders. On the other hand, the

remote monitoring system comprises a remote control unit and

a remote computer. The wearer can operate the remote control

unit to wirelessly transmit signals to the central controller, which

subsequently issues corresponding control directives to the motor

drivers. The motor drivers then activate the motors, initiating

movement in the hip and knee joint mechanisms. The encoders

are responsible for acquiring data and providing feedback to the

central controller, facilitating closed-loop control. Concurrently,

the central controller relays data in real-time to the remote

computer, which is tasked with storing and exhibiting trajectory

and joint information data.

3.2 Robot control method

The control framework of the lower limb rehabilitation

exoskeleton consists of three layers: the perception layer,

the decision-making layer, and the execution layer, which

collectively control the perception, decision-making, and

execution faculties of the exoskeleton robot. Figure 10 illustrates

the logical architecture of the lower limb rehabilitation exoskeleton

control framework. Patients manipulate the exoskeleton to

operate in various modes, including standing up, sitting

down, continuous walking, and climbing or descending stairs,

through buttons positioned on the right crutch-mounted

segment. Subsequently, the output from the perception layer

conveys the designated trajectory for the exoskeleton to the

decision-making layer. The decision-making layer utilizes an

optimized typical joint trajectory as the foundational trajectory
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FIGURE 8

Variation curve of ankle spring deformation and moment. (A) Relationship between spring deformation and ankle joint angle; (B) relationship

between moment and ankle joint angle.

FIGURE 9

Control system hardware composition of the lower limb rehabilitation exoskeleton.

for trajectory tracking. Concurrently, this layer acquires human-

computer interaction data via sensors, further refines and

adjusts the trajectory being tracked by the exoskeleton, and

ultimately relays the specific joint motion state information

pertaining to the present moment to the execution layer.

The execution layer processes the feedback signals from the

sensors and the trajectory devised by the upper layer, achieving

high-precision regulation of the joint motion state through a servo

control driver.

A dual closed-loop PID control strategy tailored to joint

motion is devised based on the prerequisites of early rehabilitation

training. The detailed block diagram of this control strategy

is depicted in Figure 11, facilitating the precise tracking of

exoskeleton joints along the desired trajectory. Utilizing this
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FIGURE 10

Control layer logic diagram of the lower limb rehabilitation exoskeleton.

FIGURE 11

Control method of the lower extremity rehabilitation exoskeleton.

ideal trajectory as a foundation, a method for reproducible

trajectory planning through the quantification of human-machine

rejection was proposed. Additionally, an innovative human-

machine gait joint moment cycle learning algorithm is adopted

to compute the degree of human-machine rejection. To refine

the ideal trajectory, a fuzzy controller is implemented, and

its efficacy is substantiated through extensive human-computer

experiments, enabling the attainment of trajectory reprogramming

and tracking. To ensure the system’s expedited response to

perturbations, a fuzzy PID controller is integrated into the

closed-loop joint position, thereby optimizing the system’s

overall performance.

4 Experiments and tests

Given the specificity that the lower limb exoskeleton will be

directly applied to human lower limbs, the significance of its safety,

stability, and reliability is particularly emphasized. To ensure the

safety of the users, some fundamental experiments on the lower

limb rehabilitation exoskeleton were performed: robotic motion

response experiments and robotic trajectory tracking experiments.

These experiments aim to assess the system’s performance before

progressing to experiments involving walking, standing up, and

sitting down with able-bodied individuals.

4.1 Robot motion response experiments

The designed lower limb rehabilitation exoskeleton is mainly

used to assist patients with lower limb paralysis to achieve

basic daily movements. In practical control implementations,

this exoskeleton is expected to exhibit swift responsiveness,

attaining the desired angular positions as per control directives

expeditiously. Consequently, conducting robotic motion response

experiments for this lower limb rehabilitation exoskeleton

becomes imperative.

Since the motion structures of the hip and knee joints are

basically similar, the hip joint mechanism was selected for the robot

motion response experiments. These response experiments were

conducted at desired angles of 15◦, 30◦, 45◦, and 60◦. The specific

experimental results are presented in Figure 12. At an angle of 15◦,
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FIGURE 12

Experimental results of hip joint angular response. (A) 15◦; (B) 30◦; (C) 45◦; (D) 60◦.

the adjustment time is approximately 160ms with a lag time of

about 10ms. Similarly, at angles of 30◦ and 45◦, the adjustment

times are around 180 and 200ms, respectively, with a consistent

lag time of about 10ms. This lag can be primarily attributed to

the use of a worm gear transmission. The backlash between the

forward and reverse gears introduces return errors, leading to a

delay in the rotation of the lower limb rehabilitation exoskeleton

in the reverse direction.

Although the exoskeleton system’s mechanical characteristics

introduce a certain degree of lag in response, this lag time

is practically negligible relative to the entire gait cycle.

The experimental results demonstrated that the lower limb

rehabilitation exoskeleton system’s joint angle response speed

could satisfy the practical control requirements for lower limb

rehabilitation exoskeletons. The exoskeleton system performance

meets the expectation for assisting patients with lower limb

paralysis in executing daily movements.

4.2 Robot trajectory tracking experiments

The control strategy employed by the lower limb rehabilitation

exoskeleton relies on passive control, which underscores the

significance of the mechanism’s trajectory tracking proficiency.

The primary technical metric for the lower limb rehabilitation

exoskeleton is its ability to precisely track the desired trajectory

when operating in an unloaded state. In order to evaluate

the trajectory tracking performance of the robot, during the

experiment, the optimized motion curve was used as input,

representing the expected gait trajectory. Meanwhile, the encoder

captures the actual angular positions of the hip and knee joints

of the exoskeleton, which are treated as the output or tracking

trajectory. By analyzing the real-time discrepancies between the

input and output trajectories, the trajectory tracking features of the

exoskeleton were validated, thus ensuring its efficacy in assisting

lower limb rehabilitation.

In the initial crutch walking trajectory tracking experiments,

the optimized crutch walking joint curves were utilized as inputs

and fed into the controller. The resulting output curves were

collected. The trajectory tracking curves for both the hip and knee

joints during crutch walking are presented in Figures 13A, B. The

gait trajectory is represented by the blue line, the real-time tracking

curve of the mechanism is shown in red, and the correction amount

(or gap) is depicted by the black dotted line. It is evident that, within

a gait cycle, the experimental results for crutch walking trajectory

tracking are highly satisfactory. The tracking errors for both the

hip and knee joints are consistently maintained within a range of

±3◦, with themajority of the errors falling within±1◦. The tracking

accuracy can meet the functional requirements of the exoskeleton.

Following the successful completion of the crutch walking

trajectory tracking experiments, additional experiments were

conducted to evaluate the exoskeleton’s performance during

activities such as standing up/sitting down with crutches and

ascending/descending stairs with crutches. The results of these

experiments are displayed in Figures 13C–H. The experimental

results indicated that the actual tracking trajectory trended closely

with the gait trajectories. The trajectory tracking errors are within

a small range of ±5◦, demonstrating excellent trajectory tracking

capabilities for this unloaded lower limb rehabilitation exoskeleton.

From the figure, it can also be found that the tracking trajectory

relative to the gait trajectory has a certain phase lag, which is mainly

caused by two reasons: on the one hand, due to the worm gear has

the return error characteristics; on the other hand, due to the motor

needs a certain response time. In the experiments, the vast majority

of the lag time is very small, basically in the range of 5ms, and does

not affect the overall performance of the mechanism.

The tracking curve and gait curve maximum error appeared

in the trajectory tracking experiments on crutches standing up,

and the instantaneous maximum error of 20◦. By analyzing

the gait trajectory, it can be found that the acceleration at

the moment of standing up was too large, which was caused

by the sudden change in speed (the curve was close to

90◦). Although the error is large at this time, the tracking
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FIGURE 13

Experimental results of trajectory tracking. (A) Hip joint angle change while walking on crutches; (B) knee joint angle change while walking on

crutches; (C) hip joint angle change while standing up and sitting down; (D) knee joint angle change while standing up and sitting down; (E) hip joint

angle change while walking down the stairs; (F) knee joint angle change while walking down the stairs; (G) hip joint angle change while walking up

the stairs; (H) knee joint angle change while walking up the stairs.

trajectory is always the same as the gait trajectory. There

is a certain phase deviation and curvature difference, and

the maximum deviation is <100ms, which can meet the

performance of the lower limb rehabilitation exoskeleton

standing action.

There is a certain lag between the tracking trajectory and the

gait trajectory, but its trend is always consistent and the error is

within an acceptable range. The experimental results indicated that

the lower limb rehabilitation exoskeleton had an excellent trajectory

tracking performance under unloaded condition, and could meet

the actual motion requirements.

4.3 Human-machine wearing tests

The safety, stability, and reliability of the developed lower limb

rehabilitation exoskeleton mechanism have been verified through

series of experiments. Tests involving normal humans wearing the

exoskeleton were carried out, encompassing a range of activities

such as walking, standing up, and sitting down.

In the preliminary experiments, gait curves andmoment curves

for the assisted walking, standing up, and sitting down processes

of the lower limb exoskeleton were obtained. These curves were

derived by measuring joint angle values and effective moment

values in the sagittal plane of the active joints. The characteristics

of these curves are used to verify the reliability and validity

of the lower limb exoskeleton’s assisted walking functionality.

Additionally, subjective evaluations provided by the experimental

subjects were utilized to assess the performance of the exoskeleton

mechanism in assisting human movement.

During the test procedure, three healthy and normal

experimental subjects were selected. The first subject was 24

years old, weighed 65 kg, and stood 174 cm tall. The second

subject was 25 years old, weighed 62 kg, and measured 168 cm in

height. The third subject was 50 years old, weighed 65 kg, and was

176 cm tall. The tests primarily consisted of standing up, walking,

and sitting down activities. These subjects wore the lower limb
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FIGURE 14

Test process of the lower limb rehabilitation exoskeleton robot worn by normal people. (A–C) Standing up test; (D–G) walking test; (H–J) sitting

down test.

rehabilitation exoskeleton, which was placed in a wheelchair. They

then performed the designated tasks while being supported by

the exoskeleton and crutches. Specifically, the subjects stood up

with assistance from the crutches and the exoskeleton, walked in a

straight line for ∼10 meters while being supported by the crutches

and exoskeleton, and finally sat down with the aid of the crutches

and exoskeleton. Figure 14 shows the process of standing up,

walking and sitting down in a normal human wearing the lower

limb rehabilitation exoskeleton.

Through multiple tests, active joint angle and moment

curves during motion were acquired. For analysis, a set of

active joint angle and moment curves during the stand-up

phase and another set within one gait cycle were selected as

performance characteristic curves. Test curves of a normally-abled

individual wearing an exoskeleton during stand-up are shown

in Figures 15A, B, encompassing hip and knee joint angle and

moment curves. The blue line represents actual joint moment

curves, while the red line denotes actual joint angle curves, with

the yellow-shaded area indicating the stand-up process. The joint

angle curve trends align with the body’s rising motion, with

peak effective moments reaching 44Nm for the hip and 68Nm

for the knee. The effective assistance can be provided by the

lower limb rehabilitation exoskeleton during stand-up, enabling

subjects to complete the action with support, thereby validating

the exoskeleton’s reliability and effectiveness in facilitating the

stand-up process.

Test results of normal human walking wearing the lower

limb rehabilitation exoskeleton are shown in Figures 15C, D.

The exoskeleton gait aligns seamlessly with human walking

patterns, exhibiting smooth, noise-free curves, thereby reinforcing

the mechanism’s reliability and stability. According the moment

curves of both hip and knee joints, in a single gait cycle, the

maximum effective moment for the hip joint reaches 65 and

34Nm for the knee joint. These variations mirror typical gait

patterns observed in healthy individuals. Synchronization between

moment and angle curves, evident from their respective values
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FIGURE 15

Test results of normal human wearing exoskeletons. (A, B) During stand-up stage; (C, D) during walking stage.

and trends, indicates the effective assistance provided by the lower

limb rehabilitation exoskeleton to subjects during walking, thus

verifying the exoskeleton’s reliability and efficacy.

In the human-machine wearing tests, the peak torque value

is smaller than the peak torque value when normal people walk.

The main reasons include: (1) when the normal person wears the

exoskeleton, the exoskeleton can provide gait torque, the human

body may also provide some effective torque; (2) Using crutches to

assist walking can appropriately reduce the joint torque required

for actual walking.

Through interviews conducted with the three experimental

subjects, users generally indicated that they could distinctly sense

the assistedmovement provided by the exoskeleton during walking,

standing up, and sitting down. This was particularly evident

in scenarios where, while walking, the experimental subjects

consciously relinquished control of their lower limbs, allowing the

exoskeleton to drive their lower limb movements. With the aiding

effect of their upper limbs and crutches, they could adeptly execute

the prescribed gait patterns. Moreover, during the processes of

standing up and sitting down, even though it is challenging to

assert that the human body did not contribute any assisting force,

the experimental subjects could unmistakably perceive the assisted

thrust generated by the exoskeleton.

Through the aforementioned experiments and subsequent

analysis, it becomes evident that the lower limb rehabilitation

exoskeleton offers substantial assistance to the experimental

subjects in facilitating normal activities such as standing up and

walking. The lower limb rehabilitation exoskeleton robot effectively

aids the experimental subjects in accomplishing a wide range of

movements, thereby validating the strong reliability, efficacy, and

stability of the lower limb rehabilitation exoskeleton presented in

this study.

5 Conclusion

In this paper, we propose a new exoskeleton robot system for

lower limb rehabilitation. According to the design requirements,

the mechanical structural design and force analysis of the lower

limb rehabilitation exoskeleton are carried out. The structural

components of the lower limb rehabilitation exoskeleton mainly

include: the backpack mechanism, the hip joint mechanism,

the knee joint mechanism and the ankle joint mechanism.

The exoskeleton control system executes actions through a

variety of hardware, such as sensors and drive motors, and

can realize closed-loop position control and trajectory planning

control of each exoskeleton joint mechanism. A series of

performance experiments and wearing tests were conducted on

the designed lower limb rehabilitation exoskeleton device. In

the robot angle response experiment, four response angles were

verified, including: 15◦, 30◦, 45◦, and 60◦. The experimental

results indicated that the exoskeleton joints have fast response

characteristics. Through testing typical movements such as

walking, standing up, and going down and up and down

stairs, the robot trajectory tracking experiments verified the

excellent trajectory tracking characteristics of the lower limb

rehabilitation exoskeleton, with a maximum tracking error of ±5◦.

In addition, multiple sets of wearing tests were performed to test

the assistive effect of the lower limb rehabilitation exoskeleton

during walking, standing up and sitting down to verify the

reliability, safety, effectiveness and stability of the mechanism.

This exoskeleton robotic system helps patients perform daily

movements. The test results indicated that the exoskeleton robot

has good reliability and safety. This exoskeleton robotic system

is conducive to performing some daily movements and sports of

paralyzed patients.
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In future work, we will further verify the robot wearable

application experiments in more complex daily life scenarios,

the control methods will be optimized by combining

electroencephalogram signals and other methods. Combined

with clinical needs, the patient’s status will be analyzed to enhance

the effect of intelligent robots in the patient’s rehabilitation process.
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In clinical practice and research, the classification and diagnosis of neurological 
diseases such as Parkinson’s Disease (PD) and Multiple System Atrophy (MSA) 
have long posed a significant challenge. Currently, deep learning, as a cutting-
edge technology, has demonstrated immense potential in computer-aided 
diagnosis of PD and MSA. However, existing methods rely heavily on manually 
selecting key feature slices and segmenting regions of interest. This not only 
increases subjectivity and complexity in the classification process but also 
limits the model’s comprehensive analysis of global data features. To address 
this issue, this paper proposes a novel 3D context-aware modeling framework, 
named 3D-CAM. It considers 3D contextual information based on an attention 
mechanism. The framework, utilizing a 2D slicing-based strategy, innovatively 
integrates a Contextual Information Module and a Location Filtering Module. 
The Contextual Information Module can be applied to feature maps at any layer, 
effectively combining features from adjacent slices and utilizing an attention 
mechanism to focus on crucial features. The Location Filtering Module, on 
the other hand, is employed in the post-processing phase to filter significant 
slice segments of classification features. By employing this method in the fully 
automated classification of PD and MSA, an accuracy of 85.71%, a recall rate 
of 86.36%, and a precision of 90.48% were achieved. These results not only 
demonstrates potential for clinical applications, but also provides a novel 
perspective for medical image diagnosis, thereby offering robust support for 
accurate diagnosis of neurological diseases.

KEYWORDS

medical image analysis, computer-aided diagnosis, deep learning, Parkinson’s disease, 
multiple system atrophy, regional Homogeneity, general feature extraction network

1 Introduction

In clinical practice, Parkinson’s Disease (PD) and Multiple System Atrophy (MSA) are two 
neurodegenerative diseases. Despite their obvious differences in prognosis, treatment, and 
pathologic features, they are extremely similar in early symptoms (Palma et al., 2018). This 
poses a great challenge for doctors in their diagnosis (Song et al., 2007; Antonini, 2010). 
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Parkinson’s disease has a high degree of heterogeneity, with different 
clinical subtypes, which makes diagnosis difficult (Wullner et  al., 
2023). According to statistics, the misdiagnosis rate of early-stage 
Parkinson’s disease can be as high as 20–30% (Poewe and Wenning, 
2002). Misdiagnosis can potentially lead to doctors providing patients 
with incorrect treatment plans, resulting in disease progression and 
even irreversible neurological damage. Therefore, it is evident that 
diagnostic methods that rely solely on the personal experience of 
physicians may not be sufficiently reliable. As a result, there is an 
urgent need for a scientifically validated auxiliary diagnostic 
approaches to assist doctors in making diagnoses.

In recent years, with the development of medical imaging 
technology, many studies have been conducted to differentiate PD and 
MSA using advanced medical imaging. Among them, machine 
learning-based methods for extracting medical image features have 
shown promising results. For example, Chen et  al. (2017, 2023) 
explored the differences in brain functional connectivity patterns 
between patients with PD and MSA, provided a diagnostic tool for PD 
and MSA using machine learning methods. Pang et  al. (2020) 
extracted radiomics features on Susceptibility-weighted-imaging 
using machine learning methods for differential diagnosis of PD and 
MSA. Kim et al. (2022) constructed a machine learning model to 
extract radiological features using medical images, successfully 
differentiating various types of Parkinsonian syndromes. Bu et al. 
(2023) utilized different kinds of medical images to build a radiological 
model based on machine learning to differentiate PD from 
MSA. Although the above methods have shown good results in the 
diagnosis of PD and MSA, they all rely on manually selecting key 
feature slices and segmenting regions of interest. In addition, the 
features extracted by machine learning methods are filtered from a 
fixed set, which also presents limitations.

Currently, deep learning, as a cutting-edge technology of machine 
learning, shows great potential in the field of computer-aided 
diagnosis (Greenspan et  al., 2016) and has made remarkable 
achievements in many aspects such as medical image analysis, 
pathology diagnosis and clinical decision support (Litjens et al., 2017; 
Panayides et  al., 2020; Rehman et  al., 2021). Some scholars have 
started applying deep learning techniques to studies on PD or MSA 
(Zhao et al., 2019; Jyotiyana et al., 2022; Wu et al., 2022). Among them, 
for the specific task of PD and MSA classification, some scholars have 
achieved considerable results by applying deep learning methods 
based on medical images. For example, Huseyn (2020) utilized 
Magnetic Resonance Imaging (MRI) with an improved AlexNet 
network structure to diagnose Parkinson’s disease, multiple system 
atrophy, and healthy individuals. Rau et al. (2023) proposed a deep 
learning algorithm capable of precisely segmenting the nucleus and 
shell, applying it to the diagnosis of PD and MSA. Compared to the 
aforementioned machine learning algorithms, although the features 
extracted by these methods are no longer limited to a fixed set of 
features, they still need to rely on manually selecting key feature slices 
and segmenting regions of interest, which does not allow for fully 
automated classification and diagnosis of diseases.

Therefore, we  urgently need to develop a fully automatic 
classification model that can achieve classification diagnosis of PD and 
MSA without the need for manually selecting key feature slices and 
segmenting regions of interest. This approach would allow the model 
to comprehensively utilize data from the entire brain, enabling a 
comprehensive analysis of lesion features across various brain regions, 

thereby providing more reliable support for accurate diagnosis. In this 
study, we propose a novel 3D context-aware modeling framework 
called 3D-CAM. It allows a suitable convolutional neural network to 
be freely selected and embedded according to the dataset features in 
order to construct a classification model. The framework employs a 
2D slicing-based strategy to process 3D Regional homogeneity (ReHo) 
data from brain Blood Oxygenation Level Dependent (BOLD) 
sequences (Zang et al., 2004). It segments the data into multiple 2D 
slices and uses them to train the classification model. The framework 
integrates two innovative modules: the Contextual Information 
Module and the Location Filtering Module. The Contextual 
Information Module is a feature enhancement module that can 
be inserted into any feature layer. It not only introduces features of 
adjacent slices, but also utilizes an attention mechanism to analyze the 
feature similarity between adjacent slices, enhancing focus on crucial 
features. This step effectively complements the inadequacy of 2D 
classification models in handling spatial information and contextual 
relationships. The Location Filtering Module is a post-processing 
module that not only leverages the 2D slice information to enable the 
model to concentrate on the slice segments with key features, but also 
analyzes and integrates the 2D slice information into the final 3D 
classification results. This step contributes to enhancing the model’s 
classification performance and enables it to identify key features 
more accurately.

The main contributions of this paper are as follows:

 • A feature extraction framework called 3D-CAM is proposed for 
neurological disease classification. The framework achieves 
automatic classification with significant results in the 
classification tasks of PD and MSA.

 • We propose a Contextual Information Module that can fuse the 
features of adjacent slices in any feature layer, enabling the 
network to emphasize key features and capture the spatial 
correlation between slices.

 • We propose a Location Filtering Module that accurately 
concentrates on slice segments with key features, effectively 
enhancing the model’s classification performance by analyzing 
and integrating 2D slice information into 3D classification results.

2 Materials and methods

2.1 Dataset and preprocessing

The dataset for this study was obtained from the Neurology 
Outpatient Department of the First Hospital of China Medical 
University, covering patient data from July 2020 to August 2023.

For data acquisition, a 3.0 T MRI scanner outfitted with a 
32-channel head coil was employed to acquire high-resolution T1 
weighted MRI sequence and BOLD sequences in accordance with 
standardized scanning protocols. Subsequently, these sequences 
underwent processing to derive ReHo data. All processing 
procedures were executed using the Data Processing & Analysis of 
Brain Imaging (DPABI, RRID:SCR_010501), encompassing artifact 
removal, motion correction, temporal adjustments, and spatial 
normalization, as documented in pertinent literature (ChaoGan 
and YuFeng, 2010). Rigorous data quality assurance measures were 
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undertaken, including meticulous data cleansing with manual 
exclusion of motion exceeding 3 mm, to ensure the integrity of 
the dataset.

Finally, we successfully obtained ReHo data from 189 patients, 
including 105 PD cases and 84 MSA cases. To ensure the effectiveness 
of model training, tuning, and evaluation, we divided these datasets 
into training set, validation set, and testing set according to the ratio 
of 7:1:2. Detailed sample information is shown in Figure 1.

2.2 Experimental setup and evaluation 
criteria

2.2.1 Implementation
The classification models in this paper are programmed using 

Python and Pytorch. We performed all experiments on a personal 
workstation with an Nvidia GeForce RTX 3080 GPU. For the 
optimizer, we chose a learning rate of 0.0001, a weight decay of 0.0001, 
and used a stochastic gradient descent algorithm with a momentum 
of 0.9. The batch size for training was set to 32. In addition, we chose 
the cross-entropy loss function during the training process. This loss 
function is widely used in classification problems and can effectively 
measure the difference between the model output and the real labels, 
which helps to optimize the network parameters to improve the 
classification accuracy.

2.2.2 Evaluation criteria
In evaluating the network’s classification performance, various 

evaluation metrics were introduced, including accuracy, precision, 
and recall. These indices are defined by Equations (1)–(3). Where TP, 
FN, FP and TN represent correctly classified positive samples, 
misclassified positive samples, misclassified negative samples and 
correctly classified negative samples, respectively. In this paper, 
positive samples are PD patient data and negative samples are MSA 
patient data.

 
Accuracy TN TP

TN TP FN FP
=

+
+ + +

×100%
 

(1)

 
Recall TP

TP FN
=

+
×100%

 
(2)

 
Precision TP

TP FP
=

+
×100%

 
(3)

In addition, we introduce the Receiver Operating Characteristic 
(ROC) curve and the Area Under the Curve (AUC). The ROC curve 
is a curve plotted with the True Positive Rate (TPR) as the vertical 
coordinate and the False Positive Rate (FPR) as the horizontal 
coordinate at different thresholds. The AUC value is the area under 
the ROC curve, which is used as a measure of the quality of the 
classifier’s prediction. The closer the AUC value is to 1, the better the 
performance of the classifier. In order to verify the robustness and 
generalization ability of the model, several experiments were 
conducted and the results were statistically analyzed and compared.

2.3 Methodology

2.3.1 Overall framework
In this work, we propose a novel deep learning-based framework 

for 3D medical image classification, named 3D-CAM. The framework 
of 3D-CAM is illustrated in Figure 2. 3D-CAM employs a 2D slicing-
based strategy to slice the 3D ReHo data into multiple 2D slices for 
putting into the network. Unlike traditional training methods, 
we incorporate several adjacent slices surrounding the current slice as 
inputs to the network. 3D-CAM can be divided into two main stages 
as follows.

In the first stage, we  freely choose a suitable convolutional 
network, such as ResNet (He et  al., 2016), and embed it into the 
3D-CAM framework. As the convolutional network extracts features 
from the current slice layer by layer, it also simultaneously extracts 
features from adjacent slices. During the feature extraction process, 
we introduce a Contextual Information Module at an optimal location. 
This module can simultaneously receive feature maps of the current 

FIGURE 1

Example of ReHo data slices for PD patients and MSA patients.

70

https://doi.org/10.3389/fnins.2024.1364338
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Ying et al. 10.3389/fnins.2024.1364338

Frontiers in Neuroscience 04 frontiersin.org

slice and its adjacent slices as inputs, thereby achieving the effect of 
introducing contextual information. In order to make the network 
focused on overall features and capture the spatial correlation between 
slices, we introduce attention mechanism in this module. By analyzing 
the similarity between the features of the current slice and its adjacent 
slices, we  reassign weights to different features for feature 
enhancement. Afterwards, the enhanced features are further processed 
by convolutional networks to obtain the prediction results of 2D slices.

In the second stage, we introduce a Location Filtering Module to 
enhance the classification performance and integrate the 2D 
classification information into 3D classification results. This module 

is designed to filter the sliced segments with more significant 
classification features. In this step, we categorize all the 2D slice data 
used for training by location and compute the prediction accuracies 
of the slices with different locations in validation set. Based on this 
analysis, we  filter out the consecutive slices with high prediction 
accuracy as the key prediction segments of the sample. Following this, 
we apply a voting mechanism to integrate the prediction results of 
each 2D slice within the segment to obtain 3D prediction results. This 
process aims to optimize and accurately extract segments with 
significant classification features serving as the basis for 
3D classification.

FIGURE 2

Network architecture of 3D-CAM. The upper part depicts the overall structure of 3D-CAM, including the specific configuration of the Location Filtering 
Module. The lower part depicts the detailed structure of the Contextual Information Module.
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2.3.2 Contextual information module
When a 2D slicing-based strategy is used to process 3D data, the 

connection between different 2D slices is usually ignored, which leads 
to the loss of some spatial information. Therefore, to comprehensively 
capture data features and conduct a holistic analysis, we propose a 
Contextual Information Module, depicted in specific structure as 
illustrated in Figure 2.

When inserting a Contextual Information Module at the l th 
layer of a neural network with a depth of L to extract features, 
each input slice, following the initial l  layers of the neural 
network, generates a collection of feature maps denoted as (4). 
Fi
l( )  denotes the set of feature maps obtained by extracting the i

th input slice in the l th layer of the neural network. N  denotes the 
number of feature maps in the l th layer, and fi j

l
,
( ) denotes the j th 

feature map extracted from the ith input slice after passing 
through l  layers of the neural network.

 
F f f fi
l

i
l
i
l

i N
l( ) ( ) ( ) ( )= …{ }, , ,1 2

, , ,
 

(4)

When the network acquires Fi
l( ), its adjacent slices features Fi

l
−
( )

1  
and Fi

l
+
( )

1  are also acquired at the same time and stored in the 
contextual feature module.

Next, to enhance the neural network’s attention to the overall 
features as well as to capture the spatial correlation between slices, 
we introduce attention mechanism. We compute the similarity 
between the feature map fi j

l
,
( ) obtained from the current slice and 

the feature maps fi j
l
−
( )

1,
 and fi j

l
+
( )

1,
 of its adjacent slices. The 

Structural Similarity Index (SSIM) (Wang et al., 2004) is used here 
as a similarity measure. SSIM is an effective image similarity 
metric and its computation includes the consideration of statistics 
such as mean, variance and covariance. The SSIM formula (5) for 
calculating the similarity between two feature maps A and B is 
as follows:

 

SSIM ,A B
c c

c c
A B AB

A B A B
( ) = +( ) +( )

+ +( ) + +( )
2 21 2

2 2
1

2 2
2

µ µ σ

µ µ σ σ
 

(5)

In this formula, Aµ  and Bµ  denote the pixel mean values of 
feature maps A and B, 2

Aµ  and 
2
Bµ denote their respective pixel 

variances, σ AB is their pixel covariance, and c1 and c2 are constants 
introduced for stability.

Based on the aforementioned SSIM formula, we define the weight 
(6) as the average value of the similarity between the feature map fi j

l
,
( ) 

and its adjacent slices of the feature maps fi j
l
−
( )

1,
, fi j

l
+
( )

1,
. The formula 

for this weight is as follows:
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In this formula, SSIM ,f fi j
l

i j
l

−
( ) ( )( )1, ,  denotes the similarity between 

feature maps fi j
l

,
( ) and fi j

l
−
( )

1,
, while SSIM ,f fi j

l
i j
l

, ,

( )
+
( )( )1

 denotes the 

similarity between feature maps fi j
l

,
( ) and fi j

l
+
( )

1,
. The introduction of 

such weights aims to make the network paying more attention to the 
consistency of overall features while capturing spatial correlations 
between slices.

In order to better capture the correlation between feature maps, 
we specially design a neural network (7, 8) structure to dynamically 
adjust the original weight ωi j

l
,
( ). This structure comprises two linear 

layers and two activation functions. Here, W1 and b1 denote the weight 
matrix and bias terms of the first linear layer, and ReLU denotes the 
activation function of the first layer. W2 and b2 denote the weight 
matrix and bias terms of the second linear layer, and Sigmoid denotes 
the activation function of the second layer. The formulas are 
as follows:

 
( ) ( )( )1 1, ,ReLU .l l
i j i jh W bω= +

 
(7)

 
( ) ( )( )2 2, ,Sigmoidl l
i j i jW h bω ′ = ⋅ +

 
(8)

Then, applying the adjusted weight ωi j
l
,
( )′  to the original feature 

map, the weighted feature map (9) can be obtained.

 

( )
( ) ( )
, ,,

l
l l

i j i ji jf fω ′= ⋅

 (9)

After that, each feature map in Fi
l( )  is weighted based on the 

previously mentioned steps to form a new set (10) of feature maps:

 

( ) ( ) ( ) ( )
,1 ,2 ,, , ,

l

l l l l

i i i i NF f f f
  = … 
  


 



 
(10)

By introducing the attention mechanism, we adjust the weight of 

each feature map. The new set of feature maps 
( )l
iF
  contains more 

spatially relevant and globally consistent features. It is conducive to 
better integrating spatial information into the feature extraction 
process, improving the perceptual ability and performance of 
the network.

In order to better incorporate the spatial information into the 
feature extraction network, we embed the feature maps fi

l
−
( )

11,
 and 

fi j
l
+
( )

1,
 of adjacent slices together into the network, so as to 

comprehensively considering the contribution of adjacent slices 
features to the current features. We  use weights α, β to perform 
weighted summation on the feature map sets Fi

l
−
( )

1 , Fi
l( )  and Fi

l
+
( )

1  to 
obtain the final feature (11) after enhancement, where α is a smaller 
weight than β to emphasize the importance of the current slice. The 
formula of Wi

l( ) is:

 
( ) ( ) ( ) ( )

1 1
l l l l

i ii iW F F Fα β α− += ⋅ + ⋅ + ⋅
 (11)
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This approach efficiently integrates the features of adjacent slices 
into the current feature maps, enhancing the capacity for global 
information representation of features.

After processing in the Contextual Information Module, we obtain 
a set of enhanced feature maps. These feature maps contain more 
spatial information and help the network to focus more on overall 
feature consistency while taking into account the importance of 
different features. Using similarity information to enhance the 
perception of spatial correlation can improve the feature representation 
capability of the network.

2.3.3 Location filtering module
In order to improve the classification performance and integrate 

the 2D classification information into 3D classification results, this 
paper introduces a Location Filtering Module. In many 3D medical 
datasets, such as the dataset used in this paper, the slices at both ends 
usually contain less image information. Therefore, we want to filter the 
slice segments with more significant classification features located in 
the center location and vote them as key slice segments to obtain more 
accurate classification results.

First, we calculated the prediction accuracies of slices at different 
locations in the validation set. Let the number of 2D slices for each 
sample be N and the location number be i (from 1 to N). The accuracy 
of each location i is Acci (12). Here, Correcti  denotes the number of 
correctly predicted samples at location i, and Totali  denotes the total 
number of samples at location i.

 
Acc Correct

Totali
i

i
= ×100%

 
(12)

Next, we aim to find a contiguous segment among all possible slice 
segments where the average accuracy within that segment exceeds the 
threshold T . Additionally, this segment should be the longest among 
all possible segments, in order to retain as much information as 
possible while maintaining a high level of accuracy. This selected 
segment can be  considered as the key slice segment and will 
be involved in subsequent voting and analyses. The formula to find 
this segment (13) is shown below:

 
S L k Acc k Tj k

l j

j k

l, argmax( ) = >
























=

+ −

∑, · ·1

1

 
(13)

In this equation, j  and k  are parameters used to search for the 
longest segment. j  represents the starting position, while k  represents 
the length of the segment. 1 ·( ) is an indicator function that returns 1 
if 

l j

j k

lAcc k T
=

+ −

∑ >
1

·
 and 0 otherwise. Through this step, we  finally 

identify the region of interest with a starting position S and length L 
with high prediction accuracy and use it as the key prediction segment.

Next, we adopt a voting mechanism to integrate the prediction 
results of each 2D slice located at the key slice segment aforementioned 
(14). The specific formula is as follows:

 
P c

N
c c

i

N
i( ) = =( )

′ =

′

∑1 1
1  

(14)

In this equation, P c( )  denotes the probability that the final 
weighted voting prediction result is class c. ′N  denotes the total 
number of filtered slices in the key slice segment. 1 ·( )  is an 
indicator function, which indicates 1 when c ci = , and 0 otherwise. 
ci  denotes the prediction category of the ith slice. Finally, 3D 
prediction results can be  obtained based on the prediction 
probability P c( ).

3 Results

In order to verify the reliability of the proposed method in this 
paper and to propose new methods for automatic diagnosis of PD and 
MSA, we conducted the following experiments.

3.1 Model selection and performance 
comparison

We applied our proposed innovative framework, 3D-CAM, to 
the classification tasks of PD and MSA. Specifically, we applied 
the two innovative modules, the Contextual Information Module 
and the Location Filtering Module, to specific layers of the 
classical model in order to enhance its performance. To ensure 
consistency, we inserted the Contextual Information Module in 
the layers corresponding to the 32 × 32 feature maps of each 
model. Additionally, we  have investigated several families of 
classical convolutional neural network models, including 
EfficientNet (Tan and Le, 2020), DenseNet (Huang et al., 2018), 
ResNet (He et al., 2016), and Inception (Szegedy et al., 2015) as 
backbones. In order to identify the model with the best 
performance in our task, we compared multiple versions in each 
model family. Finally, we  selected the best-performing model 
from each family for further analysis. The experimental results 
are detailed in Table 1.

In our experiments, we  observe that different feature 
extraction networks can be embedded into 3D-CAM, while all of 
them show different degrees of improvement in classification 
accuracy. We also find that for our task, ResNet34-based 3D-CAM 
shows the best performance with 85.71% accuracy on the test  
set.

TABLE 1 Comparative experimental results of different models.

Model Accuracy Recall Precision

Inception 65.71% 68.18% 75.00%

Inception +3D-CAM 77.14% 77.27% 85.00%

DenseNet 68.57% 72.73% 76.19%

DenseNet +3D-CAM 80.00% 81.82% 85.71%

EfficientNet 71.72% 68.18% 83.33%

EfficientNet 

+3D-CAM

82.86% 86.36% 86.36%

ResNet 71.42% 72.73% 80.00%

ResNet + 3D-CAM 85.71% 86.36% 90.48%

The best-performing results are highlighted in bold.
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3.2 Ablation experiments

To verify the effect of our proposed two modules on the model 
performance, we conducted ablation experiments. On the currently 
best-performing model, we gradually removed these two modules and 
obtained two sets of ablation experimental results, as detailed in 
Table  2. Here, Module 1 represents the Contextual Information 
Module, and Module 2 represents the Location Filtering Module.

The results of the ablation experiments showed that the removal 
of either module resulted in a significant decrease in model 
performance. This validates the importance of both modules to the 
model performance. These results strongly support the validity of our 
proposed modules and confirm their positive impact on the overall 
model performance.

3.3 Optimal insertion location analysis of 
the contextual information module

In order to determine the optimal insertion location of the 
Contextual Information Module, we  conducted additional 
experiments. On the base of the currently best-performing model, 
we  adjusted the insertion location of the Contextual Information 
Module and observed its effect on the model performance. 
We attempted to insert the modules at locations with different feature 
map sizes and recorded the optimal performance of the model 
performance in each case, as shown in Table 3.

The results above show that inserting the Contextual Information 
Module after a feature map of 32×32 size can bring the maximum 
performance improvement to the model with an accuracy of 85.71%. 
The ROC curve of the best-performing model is shown in Figure 3, 
with an AUC value of 0.85. This result also demonstrates the impact 
of different insertion locations of the Contextual Information Module 

on the model performance. These results strongly support the 
necessity of exploring the optimal insertion location for the Contextual 
Information Module and provide important ideas for improving the 
model performance.

In summary, through all the aforementioned experiments, 
we have successfully determined the optimal model for this task. This 
process not only validates the effectiveness of the proposed innovative 
modules, but also provides an effective method for the automatic 
classification of PD and MSA.

4 Discussion

Our experimental results demonstrate that the deep learning 
framework 3D-CAM can effectively classify PD and MSA based on 
medical images, achieving a classification accuracy of 85.71% and an 
AUC value of 0.85. This outcome shows the capability of our research 
method to learn disease-related image features from medical imaging 
data in an effective manner.

We speculate that the reason why the 3D-CAM framework 
performs well in experiments and outperforms other classical deep 
learning models is because it is specifically designed for PD and MSA 
classification tasks. It not only learns features from the current slice 
but also integrates key features from adjacent slices. At the same time, 
by utilizing attention mechanisms, it allows the network to focus 
more on overall features and the segment of slices that contain 
crucial features.

Recently, several studies have shown promising results in the 
diagnosis of PD and MSA using machine learning methods, such 
as Chen et al. (2017), Pang et al. (2020), Bu et al. (2023), and Chen 
et al. (2023). Among them, the dataset volume used by Pang et al. 
(2020) is comparable to our research, making it highly relevant. 
They obtained an AUC value of 0.862 in the classification task of 
PD and MSA on the test set, slightly higher than our result of 
0.85. Although their results slightly outperforms the one 
we proposed, the approach by Pang et al. (2020) relies on manually 
selecting key feature slices and segmenting regions of interest, 
which greatly increases the subjectivity and complexity of the 
classification process. Moreover, the features extracted by 
machine learning methods are selected from a fixed set, which 

TABLE 2 Ablation experiments.

Model Accuracy Recall Precision

ResNet 71.42% 72.73% 80.00%

ResNet + Module 1 74.29% 72.73% 84.21%

ResNet + Module 

1 + Module 2

85.71% 86.36% 90.48%

The best-performing results are highlighted in bold.

TABLE 3 Experimental results inserted by the Module 1 at different 
locations on the optimal model.

Feature map 
size at the 
Module 1 
insertion 
point

Accuracy Recall Precision

64 × 64 80.00% 81.82% 85.71%

32 × 32 85.71% 86.36% 90.48%

16 × 16 82.86% 81.82% 90.00%

8 × 8 74.29% 77.27% 80.95%

The best-performing results are highlighted in bold.

FIGURE 3

ROC curve.
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also presents limitations. The other studies based on machine 
learning methods mentioned above also suffer from these issues.

Some researchers have attempted to diagnose PD and MSA 
through deep learning methods, such as Huseyn (2020) and Rau 
et al. (2023). Among them, Huseyn (2020) proposed an innovative 
deep learning model, achieving an accuracy of about 88% in the 
classification task of PD and MSA, slightly higher than our 
proposed model’s accuracy of 85.71%. However, the 
aforementioned deep learning methods still rely on manually 
selecting key feature slices and segmenting regions of interest, 
which does not allow for fully automated classification and 
diagnosis of diseases. In addition, neurodegenerative diseases 
affect the entire brain of patients, and relying solely on local brain 
information within the regions of interest limits exploration of 
lesion features in other brain regions.

Compared to previous studies, 3D-CAM framework has 
achieved significant progress in the classification of PD and 
MSA. It no longer rely on manual selection of slices and regions 
of interest, successfully achieving fully automated classification. 
This method significantly reduces the investment of manpower 
and time. Additionally, by conducting direct analysis of global 
brain data instead of restricting to specific regions of interest, it 
enables the capture of more comprehensive feature information 
from the entire brain, leading to a significant enhancement in 
diagnostic accuracy and efficiency.

However, despite the promising results achieved by our approach, it 
is important to note some potential limitations. Firstly, although we have 
conducted our research using a large amount of data, the outcomes are 
still constrained by the current dataset. In the future, with the increase of 
data volume, we are expected to further optimize the model to obtain 
more reliable and comprehensive diagnostic results. Secondly, our study 
has focused solely on the classification tasks of PD and MSA, and 
applications to other neurological disorders have not been explored. 
Therefore, future research can further investigate the applicability of this 
framework in classifying other diseases.

In conclusion, our research has proposed an effective deep 
learning framework that offers a reliable solution for the classification 
of PD and MSA based on medical imaging, achieving satisfactory 
classification accuracy. This study offers strong support for early 
detection of neurodegenerative diseases and has broad prospect for 
clinical application. Additionally, our research provides new ideas 
and tools for the diagnosis and treatment of neurodegenerative 
diseases, and is expected to provide solid support for the future 
advancement of related fields.
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Improving wheelchair user sitting 
posture to alleviate lumbar 
fatigue: a study utilizing sEMG 
and pressure sensors
Zizheng Huang , Jianwei Cui *, Yuanbo Wang  and Siji Yu 

Jiangsu Key Lab of Remote Measurement and Control, School of Instrument Science and 
Engineering, Southeast University, Nanjing, China

Background: The wheelchair is a widely used rehabilitation device, which is 
indispensable for people with limited mobility. In the process of using a wheelchair, 
they often face the situation of sitting for a long time, which is easy to cause fatigue 
of the waist muscles of the user. Therefore, this paper hopes to provide more 
scientific guidance and suggestions for the daily use of wheelchairs by studying the 
relationship between the development of muscle fatigue and sitting posture.

Methods: First, we collected surface Electromyography (sEMG) of human vertical 
spine muscle and analyzed it in the frequency domain. The obtained Mean Power 
Frequency (MPF) was used as the dependent variable. Then, the pose information 
of the human body, including the percentage of pressure points, span, and center 
of mass as independent variables, was collected by the array of thin film pressure 
sensors, and analyzed by a multivariate nonlinear regression model.

Results: When the centroid row coordinate of the cushion pressure point is about 
16(range, 7.7-16.9), the cushion pressure area percentage is about 80%(range, 
70.8%-89.7%), and the cushion pressure span range is about 27(range, 25-31), 
the backrest pressure point centroid row coordinate is about 15(range, 9.1-18.2), 
the backrest pressure area percentage is about 35%(range, 11.8%-38.7%), and the 
backrest pressure span range is about 16(range, 9-22). At this time, the MPF value of 
the subjects decreased by a small percentage, and the fatigue development of the 
muscles was slower. In addition, the pressure area percentage at the seat cushion is a 
more sensitive independent variable, too large or too small pressure area percentage 
will easily cause lumbar muscle fatigue.

Conclusion: The results show that people should sit in the middle and back of the 
seat cushion when riding the wheelchair, so that the Angle of the hip joint can be in a 
natural state, and the thigh should fully contact the seat cushion to avoid the weight 
of the body concentrated on the buttocks; The back should be fully in contact with 
the back of the wheelchair to reduce the burden on the waist, and the spine posture 
can be adjusted appropriately according to personal habits, but it is necessary to 
avoid maintaining a chest sitting position for a long time, which will cause the lumbar 
spine to be in an unnatural physiological Angle and easily lead to fatigue of the waist 
muscles.
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sEMG, muscle fatigue, MPF, sitting posture detection, multiple nonlinear regression
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1 Introduction

With the spread of electronic communication devices and changes 
in office practices, sedentary lifestyles are spreading around the world, 
with approximately one-third of the global population aged 15 years 
and older experiencing inactivity (Park et  al., 2020). Unlike the 
sedentary daily office population, wheelchair users are forced to sit in 
wheelchairs for long periods due to their lack of autonomous mobility.

In modern society, wheelchairs, as an important rehabilitation aid, 
are widely used in individuals with limited mobility, especially those 
suffering from spinal cord injury, motor nervous system diseases, 
elderly people, or other lower limb mobility disorders (Mikołajewska 
and Mikołajewski, 2013; Leaman and La, 2017). Although wheelchairs 
play an important role in improving the quality of life and social 
participation of these people, the health problems caused by prolonged 
use of wheelchairs also require attention. When people are in a sitting 
posture, the lumbar muscle group plays a key role in supporting the 
spine and maintaining posture stability (Callaghan and McGill, 2001; 
O’Sullivan et al., 2002; Nowakowska et al., 2017), and is an important 
part of the core muscle group of the human body. However, sitting in 
a wheelchair for a long time may lead to persistent tension and fatigue 
of the waist muscles, which may cause discomfort in the waist, which 
greatly affects the comfort of wheelchair users.

Previous studies have pointed out that different sitting positions 
have a direct impact on waist comfort (Vergara and Page, 2002). One 
study (Black et al., 1996) classified sitting positions as comfortable 
(taking a comfortable, relaxed position), hunched, upright, and 
forward-leaning (leaning forward by hip flexion), and evaluated the 
effect of lumbar and pelvic tilt changes (achieved by hip flexion) on 
cervical vertebrae while maintaining lumbar lordosis. Another study 
(Claus et al., 2009) classified the Slump, Flat, Long lordosis, and Short 
lordosis types of sitting based on their thoracolumbar and lumbar 
angles, and discussed which spinal formations were beneficial. The 
methods adopted in these studies need to verbally describe or show 
pictures to the subjects to make them imitate each posture. The 
postures presented vary greatly under the influence of people’s 
subjective factors, so the detection and classification of sitting posture 
require more objective features or indicators.

There are also differences in people’s sitting posture in different 
scenarios. Current studies on sitting comfort in different scenarios 
include: Literature (Schmidt et  al., 2014) analyzed several papers 
suggesting the optimal driving posture of cars, and discussed several 
factors affecting the optimal posture such as gender, seat design, body 
shape, and age; Literature (Mörl and Bradl, 2013) studied the waist 
posture and muscle activity of the human body in the office. However, 
most people who use wheelchairs lack self-care ability and often face a 
situation in which they are in a relatively fixed posture for dozens of 
minutes or even longer, so a reasonable sitting posture will be  very 
effective in delaying the generation of lumbar muscle fatigue of wheelchair 
users. At the muscle level, fatigue means that muscle fibers have a reduced 
ability to produce force (Marco et al., 2017). The measurement of fatigue 
in the state of exercise is generally to measure the change of muscle power 
or power, which is achieved by the maximum autonomous contraction 
test (MVCs) (Yousif et al., 2019). For wheelchair users, most of the time 
the body is in a static state, so the use of non-invasive technology such as 
sEMG can better assess the state of muscle fatigue (Barsotti et al., 2020). 
For example, literature (Liu et al., 2019) studies an EMG patch device that 
can be transmitted wirelessly and uses the EMD method to decompose 

the sEMG signal to obtain MF value to evaluate muscle fatigue state. In 
another paper (Cahyadi et al., 2019), DELSYS Bagnoli EMG 8 channel 
and surface EMG sensor-based single difference system were used to 
collect sEMG data, and the average power frequency (MNF) in frequency 
domain analysis was used as an index to study the progress of muscle 
fatigue during arm movement.

At present, there are relatively few studies on the influence of different 
sitting positions on lumbar fatigue during wheelchair use. Therefore, the 
objective of this paper is to obtain the lumbar muscle fatigue status of 
wheelchair users by studying the detection method of human sitting 
position and sMEG collection and analysis method and to combine the 
characteristics of human sitting position with frequency domain analysis. 
The effects of different sitting conditions on the fatigue progress of lumbar 
muscles were analyzed. Ultimately, we hope to provide more scientific 
recommendations for wheelchair users by comparing the effects of 
different sitting positions on lumbar muscle fatigue.

The remainder of this article is organized as follows. In Section 2, 
we describe the materials and methods used in the study. In Section 
3, we  describe the steps of the experiment and the multivariate 
nonlinear regression model. In Section 4, we present the results and 
discuss them. Finally, we give a conclusion about the whole article.

2 Materials and methods

2.1 sEMG data acquisition methods

The sEMG signals collection process for muscle fatigue analysis in 
this study is as follows: Initially, sEMG signals raw signals were 
obtained from the erector spinae muscles using Ag/AgCI electrodes 
with adhesive properties and wires (as shown in Figure 1, where white 
represents positive, black represents negative, and green represents the 
reference electrode). The wires were connected to an sEMG signals 
acquisition board for signal collection and storage, and finally, the data 
were imported to a PC for further analysis.

The sEMG signals acquisition board, designed and manufactured 
by our team, is depicted in Figure  2. According to the Nyquist 
sampling theorem, the sampling frequency must be  twice the 
maximum signal frequency. As the frequency range of sEMG signals 
is 0 ~ 500 Hz, the sampling rate of our designed sEMG signals 
acquisition board is set at 1000 Hz.Since the original sEMG signal is a 
weak electrical signal with a small amplitude that is challenging to 
directly collect, we initially used an amplifier circuit with a gain of 500 
(AD620, Analog Devices) to amplify it. Subsequently, the signal 

FIGURE 1

Schematic diagram of Ag/AgCl electrode placement.
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underwent filtering processing through a second-order Butterworth 
high-pass filter with a cutoff frequency of 10 Hz and a second-order 
Butterworth low-pass filter with a cutoff frequency of 500 Hz. This 
filtering aimed to avoid interference from DC components, baseline 
drift, and high-frequency signals. Since the ADC (Analog-to-Digital 
Converter) of the microcontroller can only accept non-negative 
inputs, and the amplitude of the electromyographic signal is negative, 
the signal also needs to be elevated through an adder circuit (LM321, 
Texas Instruments). Finally, we collected the sEMG signal through the 
ADC pins of the microcontroller and stored it in memory for retrieval 
by the PC.

2.2 Data preprocessing

The raw sEMG data collected after acquisition is in the form of 
digital output from the ADC. Therefore, we  need to perform a 

calculation to restore the amplitude of the signal. The calculation 
formula is shown in Equation 1.

 
sEMG Amplitude

Digital valueV
Vref

n add 
 

=
−

−
.

2 1  
(1)

In the formula, Digital value  is the digital value output by the 
ADC, Vref  is the reference voltage of the ADC, n is the number of bits 
of the ADC, and Vadd  is the elevated voltage value of the adder circuit. 
The raw sEMG data is already in a relatively suitable frequency range 
through the filter in the circuit, but we also need to filter it to eliminate 
power frequency interference. In Figure 3, we can see from the power 
density diagram of the original signal that there are relatively obvious 
power frequency interference of 50 Hz and its harmonics, so we use a 
45 dB attenuated Butterworth trap filter in Matlab to eliminate 
these noises.

FIGURE 2

sEMG acquisition board structure diagram.

FIGURE 3

Time-domain and power spectral density comparison of sEMG signals before and after notch filtering.
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2.3 Muscle fatigue analysis methods

After the collection of sEMG data is completed, frequency domain 
analysis of sEMG data is required to obtain characteristic parameters 
related to the development of muscle fatigue. Among them, MF 
median frequency and MPF average power frequency are commonly 
used to judge muscle fatigue (Cao et al., 2018). The average power 
frequency is the weighted average of the spectrum, obtained by 
multiplying each frequency component of the spectrum by its 
corresponding power, then summing all frequencies, and finally 
dividing by the total power. The basic formula is shown in Equation 2.

 

MPF
f P f df

P f df

f
f

f
f
a

b

a

b
=

( )

( )

∫

∫

.

 

(2)

In the formula, f  represents frequency, fa and fb are the upper 
and lower limits of the spectrum, and P f( ) is the power at the 
frequency f .

2.4 Sitting posture detection methods

As for the detection methods of human posture, scholars from various 
countries have proposed a variety of feasible schemes. For example, van 
Nassau et al. (2015) and Rowlands et al. (2014) chose the scheme of 
activPAL activity monitor, which detected human posture by wearing an 
accelerometer on the wrist and thigh of the subjects. However, this 
method can only roughly determine whether the human body is in a 
standing or sitting position, and cannot obtain more detailed information 
about the human posture. Estrada and Vea (2016) used a customized belt 
to fix three gyroscopes on the subjects’ thoracic vertebrae, thoracolumbar 
vertebrae, and lumbar vertebrae to detect the human sitting position. 
Although this scheme could better restore the shape of the human spine, 
due to the need for additional wearing devices on the back during the 
detection process, it could not fully restore the natural sitting position. 
Similar to the scheme adopted by Huang and Ouyang (2012) and Matuska 
et al. (2020), multiple pressure sensors were installed on the back and 
cushion of the seat to detect the human sitting position. However, due to 
the small number of sensor points, this scheme could only detect several 
preset sitting types.

In the actual sitting state, due to the differences in people’s sitting 
habits and body types, it is not completely accurate to distinguish the 
sitting position of the human body simply by the Angle of the seat. 
Therefore, to better obtain the force distribution of the wheelchair without 
affecting the seated position of the passenger, a 32*32 array thin film 
pressure sensor was selected to be installed on the cushion and back of the 
wheelchair, as shown in Figure 4. This array pressure sensor has 1,024 
independent sampling points. It can better restore the force of the back of 
the wheelchair and the cushion, and use it to distinguish the sitting 
situation of the human body. According to the actual sampling 
requirements, our team independently designed a collection card system 
(Cui et al., 2023), which can collect and report data for each point.

2.5 Sitting posture feature extraction 
methods

Seating posture data is obtained from the array-type thin-film 
pressure sensor mentioned in Section 2.4. Each force unit of this 
sensor acts as a variable resistor. Based on this characteristic, 
we designed a data acquisition card with a voltage series negative 
feedback amplifier circuit, capable of collecting the resistance values 
at each point on the sensor. Additionally, the acquisition card features 
a row-column scanning circuit, which, under MCU control, connects 
the specified force unit to the feedback amplifier circuit, followed by 
voltage value collection through ADC. According to the characteristics 
of the series negative feedback amplifier circuit, the output voltage of 
the ADC can be derived from Equation 3.

 
V

R
R

Vout
f

in= +








×1

 
(3)

In the formula, Rf  represents the resistance value of the force unit, 
R is a fixed resistor, Vin is the input voltage at the inverting terminal of 
the operational amplifier. Therefore, through the ADC-collected 
voltage value Vout , we can obtain the value of Rf . Then, using the 
characteristic curve of Rf  with pressure, the pressure received by each 
force unit can be calculated. For the collected pressure data, we will 
save it through the upper computer of the PC. The pressure data of 
several different sitting states are shown in Figure 5. Part A shows a 
sitting position with a relatively backward seating position and a large 
backrest contact area; Part B demonstrates a sitting position with a 
relatively forward seating position and a small backrest contact area; 
Part C demonstrates a sitting posture in which the seating position 
and backrest contact area are moderate.

For the collected pressure data, we  extract three features to 
reflect the body posture: pressure percentage, span, and centroid, as 
shown in Figure  6. The percentage refers to the percentage of 
pressure points exceeding a certain threshold in the entire sitting 
posture area compared to the total number of sensor force units. A 
higher percentage indicates a larger contact area between the body 
and the wheelchair, reflecting a more even pressure distribution, 
while a lower percentage indicates a smaller contact area. The span 
represents the distribution range of pressure points in the row 
direction, i.e., the difference between the top and bottom rows of 
pressure points, reflecting the variation range of the sitting posture 
in the row direction. The centroid represents the average position 

FIGURE 4

Schematic diagram of thin film pressure sensor installation locations.
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of pressure points in the entire sitting posture. It is the center 
position calculated based on weights (i.e., pressure values). Here, 
we only calculate the row coordinate of the centroid (the column 
coordinate is more correlated with the occupant’s position relative 
to the sensor and less relevant to the sitting posture), and its 
calculation formula is shown in Equation 4.

 
Centroid row

y p

y
i i i

i i
_ =

∑
∑  

(4)

In the formula, yi represents the vertical coordinate of the pressure 
point, and pi  represents the pressure value of that point. The above 
three characteristic quantities provide information about the 
distribution, balance, and range of variation of sitting posture 
respectively, and also include body shape factors to a certain extent. 
Compared with the human posture features such as lumbar spine and 
pelvic Angle commonly used in previous studies (Ma et al., 2016; Wan 
et al., 2021), the features derived from pressure data can more truly 
reflect the load distribution and posture changes of the human body 
on the wheelchair, rather than the information of some specific joints 
or parts. Moreover, there is no need to wear additional equipment in 
the collection process. The error caused by flexible materials such as 
clothing and straps can be eliminated, and the sitting position of the 
human body can be better restored and presented.

3 Experiment and analysis

3.1 Experiment procedures

The experiment invited 20 male volunteers, aged between 21 and 
34, whose daily work and life were mainly office environment. All 
volunteers had no diseases related to the waist or spine. We informed 

the subjects about the types and uses of data to be  collected and 
obtained their consent. Before the experiment, we will inform each 
subject of the specific process of the experiment, including the 
placement of electrode strips and the process of data collection. To 
minimize the impact on the subject’s wheelchair usage habits, the 
sitting posture in the wheelchair is not specified, and personal usage 
habits shall be subject to.

To ensure that people’s physical state is relatively consistent, the 
experiment is chosen to be carried out at 9 o ‘clock every day, and only 
one experiment is carried out every day. Before the formal start of each 
experiment, we first disinfected and cleaned the waist skin of the subjects, 
and then placed the electrode patch at the position of the vertical spinal 
muscle and started the collection of sEMG. When the subject sits in the 
wheelchair, we will properly adjust the leg support Angle of the wheelchair 
so that the knee joint is in a state of 90°, and the foot height will be adjusted 
so that each subject’s feet can be naturally placed on the foot without 
hanging. The backrest Angle and foot Angle of the wheelchair remain 
unchanged, and the volunteers can freely adjust their sitting position 

FIGURE 5

Three sets of pressure data graphs for different situations, with the upper part being the backrest and the lower part being the seat cushion: Part 
(A) represents the seating position being rear; Part (B) indicates that the seating position is in the front; Part (C) indicates a moderate seating position.

FIGURE 6

Schematic diagram of three seating posture features.
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within 1 min after the start of the experiment until the most comfortable 
state, as shown in Figure 7. The whole experiment will last for 1 h. During 
the experiment, the fit degree between the back of the subject and the 
back of the wheelchair should be kept unchanged as far as possible. The 
buttocks and legs should not have large movements, while the upper 
limbs can move freely. We will check the current sitting position through 
the upper computer every 5 min to ensure that there is no major change 
in sitting position.

We will collect the sitting position data and the sEMG data of the 
vertical spine muscle for the first time 1 min after the start of the 
experiment. When the experiment time reaches 60 min, we will collect 
the sEMG data of the vertical spine muscle for the second time, and 
the duration of each sEMG data collection is 30 s.

3.2 Multiple nonlinear regression

In all the experimental data, the dependent variable was the 
percentage decrease in the average power frequency of the EMG 
signal, and the independent variable was six sitting features from the 
human body. Due to the non-simple linear relationship between the 
dependent variable and independent variables in this study, the data 
exhibits different curvatures in certain regions. Therefore, a 
multivariate nonlinear regression analysis is employed to analyze the 
relationship between fatigue values and sitting posture features. In 
multivariate nonlinear regression, it is commonly assumed that there 
is a complex nonlinear relationship between the dependent and 
independent variables, and nonlinear functions are used to fit the data. 
This model can more accurately describe the relationship between 
actual data and variables, capturing nonlinear effects.

We used MATLAB software for data analysis and multivariate 
binomial regression toolbox for regression analysis. The basic formula 
of the pure quadratic model invoked is shown in Equation 5.

 
y x x xm m

i

m
ii i= + +…+ +











=
∑β β β β0 1 1

1

2

 
(5)

In the equation, y is the dependent variable, x xm1 −  are 
independent variables, β0 is the intercept, β β0 − m are coefficients of 

independent variables, and β β11 − mm  are coefficients of quadratic 
terms. The experimental data are shown in Table 1. The leftmost part 
is the dependent variable, that is, the percentage decline of MPF value, 
and the rest is the independent variable. From left to right, they are 
respectively: line coordinates of the centroid of the pressure point at 
the cushion, percentage of the pressure area at the cushion, row span 
of the pressure area at the cushion, line coordinates of the centroid of 
the pressure point at the backrest, percentage of the pressure area at 
the backrest and row span of the pressure at the backrest.

Firstly, import the data of 6 independent variables into a 20 × 6 matrix 
as input variables, denoted as X x x x x x x= [ ]1 2 3 4 5 6, , , , , , and import the 
dependent variable into a 20 × 1 matrix as output, denoted as Y . Secondly, 
invoke the rstool command to import the input, output, and the model, 
as shown in Figure 8. The images from left to right represent the centroid 
coordinates of pressure points at the cushion, the percentage of pressure 
area at the cushion, the range of pressure span at the cushion, the centroid 
coordinates of pressure points at the backrest, the percentage of pressure 
area at the backrest and the range of pressure span at the backrest and the 
regression relationship between the percentage decline of MPF. The red 
dotted line represents the independent variable, the green represents the 
dependent variable, and the purple line represents the change interval of 
the actual data.

4 Result and discussion

By moving the data label in Figure 8, it can be seen that when the 
centroid row coordinate of the cushion pressure point is about 16, the 
cushion pressure area percentage is about 80%, and the cushion 
pressure span range is about 27, the backrest pressure point centroid 
row coordinate is about 15, the backrest pressure area percentage is 
about 35%, and the backrest pressure span range is about 16. At this 
time, the MPF value of the subjects decreased by a small percentage, 
and the fatigue development of the muscles was slower. In addition, 
we can see that the pressure area percentage at the seat cushion is a 
more sensitive independent variable, too large or too small pressure 
area percentage will easily cause lumbar muscle fatigue, and too small 
pressure area percentage is caused by the seat position too far forward 
or the big legs do not touch the seat cushion. The excessive pressure 
area percentage is caused by the seating position too far back, which 
is also confirmed by the changing trend of the pressure point centroid 
coordinates at the cushion and the pressure span range at the cushion. 
In addition, the data analysis results of the backrest can show that 
maintaining a large percentage of pressure area is conducive to 
delaying the generation of muscle fatigue, that is, people should 
contact the back of the wheelchair as much as possible to reduce the 
burden on the waist, whether it is the back or the waist to contact the 
back of the wheelchair can play a certain effect, depending on the 
individual’s sitting habits. However, try to avoid the sitting posture 
with the chest, maintaining such a sitting posture for a long time is 
easy to leads to fatigue of the waist muscles, which can be seen from 
the centroid coordinates of the pressure point at the back.

Due to the limitations of the site and experimental conditions, the 
experimental subjects in this paper are all men. Considering the 
differences in body structure between different genders, the 
experimental results of women may be somewhat deviated from the 
current results. Therefore, we plan to recruit female volunteers to 
further supplement the experimental samples in the future to improve 
the universality of the conclusions.

FIGURE 7

Schematic Diagram of muscle fatigue and seating posture detection 
experiment.
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5 Conclusion

Because of the situation that wheelchair users are prone to lumbar 
muscle fatigue when they keep sitting for a long time, this paper hopes 
to study the relationship between different sitting positions and the 
development of lumbar muscle fatigue in the process of using 

wheelchairs, to provide more scientific guidance and suggestions for 
the use of wheelchairs. First, sEMG signal data from the upright spine 
muscle of the human body were collected, and the MPF decline 
percentage of the sEMG signal was obtained as the dependent variable 
through frequency domain analysis. Then, an array of thin film 
pressure sensors was used to obtain information on human sitting 

TABLE 1 Experimental data.

MPF Seat Backrest

Centroid Percentage Span Centroid Percentage Span

−6.2894 15.30519 82.48828 28 13.2854 38.76953 22

−6.9056 12.77845 76.95313 30 11.51089 30.56641 21

−6.4382 13.82326 83.88672 28 12.81855 31.93359 16

−7.2153 10.03658 70.85938 28 9.18744 37.20703 22

−6.9228 11.05657 75.76953 26 10.90965 18.75 14

−6.321 16.49812 80.53906 26 14.48153 29.88281 20

−6.5555 13.20405 78.61328 28 14.27513 31.54297 20

−7.1298 7.769629 89.78906 29 16.97433 32.03125 14

−6.8112 9.52833 77.27344 26 16.53466 11.81641 9

−6.7243 14.36115 77.12891 23 18.23038 22.16797 17

−6.5408 9.067584 81.05469 28 14.7101 27.05078 21

−7.0093 10.89296 86.64063 28 16.17976 33.39844 22

−6.7687 12.06241 80.85938 30 15.37197 32.51953 21

−6.5976 14.04636 79.48828 28 12.22669 22.94922 17

−6.4891 16.96319 80.61328 25 10.25274 31.64063 15

−7.0564 11.3105 72.36328 26 15.07457 15.82031 14

−6.6645 14.0427 78.61328 29 9.301891 26.75781 21

−6.8461 10.63302 85.21484 31 15.36672 19.33594 13

−6.3887 12.87032 83.46875 25 12.11112 33.39844 17

−7.0313 11.8302 86.13281 28 15.442 17.77344 21

FIGURE 8

Multivariate nonlinear regression curve plot.
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posture, and six features of pressure point centroid, area percentage, 
and span from the seat cushion and backrest were extracted as 
independent variables. Multivariate nonlinear regression is used to 
capture the relationship between independent variables and dependent 
variables. Through the analysis of the experimental data, we give the 
following suggestions for the use of wheelchairs: When riding a 
wheelchair, people should sit in the middle and back of the seat 
cushion, so that the Angle of the hip joint can be in a natural state, and 
the thigh part should fully contact the seat cushion to avoid the weight 
of the body concentrated on the hip; The back should also be fully in 
contact with the back of the wheelchair to reduce the burden on the 
waist, and the spine posture can be adjusted appropriately according 
to personal habits, but to avoid maintaining a chest for a long time, 
which will lead to the lumbar spine in an unnatural physiological 
Angle and easily lead to fatigue of the waist muscles.
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Introduction: The tendon-sheath actuated bending-tip system (TAB) has

been widely applied to long-distance transmission scenes due to its high

maneuverability, safety, and compliance, such as in exoskeleton robots, rescue

robots, and surgical robots design. Due to the suitability of operation in a narrow

or tortuous environment, TAB has demonstrated great application potential in

the area of minimally invasive surgery. However, TAB involves highly non-linear

behavior due to hysteresis, creepage, and non-linear friction existing on the

tendon routing, which is an enormous challenge for accurate control.

Methods: Considering the di�culties in the precise modeling of non-linearity

friction, this paper proposes a novel fuzzy control scheme for the Euler-Lagrange

dynamics model of TAB for achieving tracking performance and providing

accurate friction compensation. Finally, the asymptotic stability of the closed-

loop system is proved theoretically and the e�ectiveness of the controller is

verified by numerical simulation carried out in MATLAB/Simulink.

Results: The desired angle can be reached quickly within 3 s by adopting the

proposed controller without overshoot or oscillation in Tracking Experiment,

demonstrating the regulation performance of the proposed control scheme.

The proposed method still achieves the desired trajectory rapidly and accurately

without steady-state errors in Varying-friction Experiment. The angle errors

generated by external disturbances are <1 deg under the proposed controller,

which returns to zero in 2 s in Anti-disturbance Experiment. In contrast,

comparative controllers take more time to be steady and are accompanied by

oscillating and residual errors in all experiments.

Discussion: The proposed method is model-free control and has no strict

requirement for the dynamics model and friction model. It is proved that

advanced tracking performance and real-time response can be guaranteed

under the presence of unknown bounded non-linear friction and time-varying

non-linear dynamics.

KEYWORDS

tendon-sheath mechanism, fuzzy control, friction compensation, robust control,

robotic flexible endoscope

1 Introduction

The tendon-sheath mechanisms (TSM) have attracted widespread interest in the

field of surgery, pipeline inspection, and rehabilitation due to their flexibility, safety,

and dexterity, such as applied in the neurosurgery surgical robot, the otolaryngology

robot, the cardiac surgical robot, etc. (Burgner-Kahrs et al., 2015; Do et al., 2015a, 2016;

Kang et al., 2020; Yin et al., 2020; Wang et al., 2023). The flexible characteristics of
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TSM make it highly versatile and applicable in narrow scenarios

(Berthet-Rayne et al., 2018; Wang et al., 2020, 2021; Rho et al.,

2021). Consequentially, numerous studies have focused on the

application of TSM in the field of tendon-sheath actuated bending-

tip (TAB) systems for natural orifice transluminal endoscopic

surgeries (NOTES) as shown in Figure 1 in which bronchi is

provided by Servier Medical Art (https://smart.servier.com) under

CC BY 3.0 license. Due to the fact that the TAB can be deformed

to fit the shape of the channel to avoid damaging the inner organ.

However, the unknown friction existing in the tendon routing

introduces motion backlash and persistent residual errors, which

in turn increases the difficulties in the accurate tracking task of TAB

systems. Therefore, it still requires extra effort to address the control

issues of TAB systems.

The hysteresis effect is a crucial issue for the precise control

of TAB systems. Most previous studies focused on improving the

model accuracy of the hysteresis phenomenon in the TSM. For

example, Do et al. (2015a,c, 2016) modified the Coleman-Hodgdon

model for the hysteresis phenomenon of TSM and proposed a series

of control methods, where no exact value of model parameters

are required. Moreover, Thai et al. (2021) developed a simplified

hysteresis model based on the generalized Bouc-Wen hysteresis

model, while providing higher accuracy than previous Bouc-Wen

models. Legrand et al. (2018) and Zhang et al. (2014) built piecewise

models for the TAB systems. Similarly, Lee et al. (2021) proposed

a simplified piecewise linear model to construct both backlash

hysteresis and dead zone compensators together. Their research

suggested that the errors from backlash hysteresis and dead zone

are considerably reduced and therefore the accuracy of robotic

control is improved.

Friction in the tendon-sheath actuator brings significant effects

on the control performance of the objective system, such as

additional chattering and input backlash. Previous research has

focused on developing specific friction models for TSM to improve

the modeling precision of the TAB. For example, inspired by

the static Coulomb friction model and Hill muscle model, Zhang

et al. (2017) presented a high-accuracy transmission model for the

TSM. Moreover, Do et al. (2015b) developed a dynamic friction

model to predict friction force for small displacement by using the

LuGre model, which can capture the asymmetric loops and dead

zone accurately. With consideration of the interaction continuity,

Norouzi-Ghazbi and Janabi-Sharifi (2020) successfully proposed an

equivalent model to estimate forces and moments applied to the

sheath of the TSM. Furthermore, Jung and Bae (2016) proposed

a feedforward scheme based on the force transmission model to

compensate for the friction in a double-tendon-sheath actuated

system. However, the TAB system has unknown dynamics and

time-varying parameters, and it is very difficult to compensate for

friction in real time precisely. In addition, whenever there is a

change in working conditions caused by variations in TSM/TAB

configurations, the friction model needs to be reidentified to

achieve optimal results, which is challenging to apply in dynamic

environments. Hence, there still remain open issues with design

controllers that can overcome these model uncertainties for TAB

systems.

Various control schemes have been proposed for TAB

systems based on the concept of hysteresis compensation for

TSM (Wu et al., 2014). Considerable works have focused on the

perfect cancellation of backlash-like hysteresis using nonlinear

adaptive algorithms and machine learning. Nguyen et al. (2014)

developed an adaptive control scheme without requiring prior

information of TAB systems to eliminate the hysteresis effects. To

realize the position control of the TAB system Without sensory

feedback, Wang et al. (2018) proposed a non-collocated position

control method based on the inverse model of the TSM and 3-D

reconstruction algorithm. Besides, Jiang et al. (2015) provided an

adaptive PID controller with friction compensation for accurate

position control of the dynamic model of TSM. Machine learning

has also demonstrated its effectiveness in position control of

the TAB system in recent years. For example, based on the

kinematic model, Porto et al. (2019) proposed a learning-based

hysteresis compensation technique, which directly employed the

off-line parameters. Furthermore, Wu et al. (2019) proposed a

neural-network-based sliding-mode control scheme by applying

the radial basis function network to improve the position-control

accuracy of the TAB system with modeling uncertainties and

external disturbances. It is noteworthy that the integration of visual

servoing with neural networks has recently become a research

hotspot (Huang et al., 2022; Li et al., 2023; Cui et al., 2024). To

ensure the tip of an instrument remains consistently centered in

the camera, Huang et al. (2024) proposed an error learning-based

sliding mode control, realizing the 4-DOF visual servo control

in the robotic flexible endoscope system. The aforementioned

research is impressive and offers a novel research perspective.

However, these control schemes rely on an accurate reference

model, and the updated process may be time-consuming

in training. Therefore, developing a model-free adaptive

controller to handle unknown friction for the TAB system is a

worthwhile study.

In this paper, to achieve robust control of the TAB system

with time-varying dynamics model parameters, a novel adaptive

fuzzy controller is proposed. In particular, the complex frictional

force between the tendon and sheath may be affected by the

sheath deformation and lumina pressure, which brings difficulties

to the accurate modeling of the TAB system. To handle this issue,

the fuzzy logic system is utilized to compensate for the time-

varying dynamics associated with unknown friction. The stability of

the closed-loop system is guaranteed by Lyapunov-based analysis.

Then, numerical simulations are implemented to further validate

the tracking performance of the proposed control scheme. The

main contributions of this manuscript can be summarized as

follows:

1) By lumping the unknown friction, a novel dynamics model of

TAB is established. It’s worth mentioning that the proposed

model diminishes its reliance on a priori information

regarding friction and obviates the necessity for model-

based linearization or supplementary linear parameterization

conditions for global dynamics, thus rendering it more

versatile.

2) To the best of our knowledge, this paper first applies fuzzy

logic in the estimation of nonlinear dynamics due to unknown

friction in TAB. By combining robust control with fuzzy logic

regulated by an adaptivemethod, satisfactory performance can

still be achieved under unknown time-varying friction and

external perturbations.
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FIGURE 1

Illustration of TAB utilized in flexible bronchoscopy.

3) The asymptotic stability of the closed-loop system is

rigorously proven stable using the Lyapunov method, and

the effectiveness and robustness of the controller under

perturbations are verified through simulation experiments.

The rest of this paper is arranged as follows: Section 2 introduces

the problem formulation including the dynamics model of the TAB

system and control objective. Next, A robust fuzzy-based controller

is given in Section 3 with the Lyapunov stability analysis in Section

4. Then, Section 5 describes the simulation results and analysis of

the proposed method. Finally, Section 6 provides the conclusion of

this research.

2 Problem formulation

In this paper, the control problem for the bendingmotion of the

TAB system was focused on. As shown in Figure 2, TAB consists of

two sections of soft materials with different elastic modulus, and

two symmetrically distributed actuators are built in as tendons. To

facilitate the analysis of the dynamics, the bending tip is assumed to

be a part of a constant curvature arc. Then, based on the Lagrangian

theory, the dynamics model of the TAB system can be depicted as

the following form as studied in Wang et al. (2023):

M(α)α̈ + C(α, α̇)α̇ + G(α) = µ − Ff (1)

FIGURE 2

The driving principle of TAB system.

whereM(α), C(α, α̇), G(α) represent the inertia matrix, centripetal

and Coriolis force, and the gravitational force, respectively. The

detailed physical meaning of parameters in Equation (2) are

given in Table 1. µ represents the input control, Ff denotes

the unknown friction. M(α), C(α, α̇), G(α) in Equation (1) are

depicted, respectively, as follows:

M(α) =
mL2

f

3α2
, C(α, α̇) = −

mL2
f
α̇

3α3
, G(α) =

5πED4α

64Lf
(2)
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TABLE 1 Nomenclature and symbols in nominal dynamics model.

Symbols Physical meaning Unit

α Bending angle of TAB’s bending part deg

αd Desired angle deg

m Mass of TAB’s bending part kg

Lf Length of TAB’s bending part m

E Young’s modulus of bending part’s

epidermis of TAB

Pa

D Diameter of TAB’s bending part m

where α, α̇, Lf , D, m, and E represent the bending angle, the

bending angular velocity, the length, the diameter, the mass of

the bending part, and Young’s modulus of the scope’s epidermis,

respectively. For simplicity, the term M(α), C(α, α̇), and G(α)

will be abbreviated as M, C and G respectively. According

to Equation 2, it can be found that they satisfy the following

properties.

Property 1. In this paper, α is the system output, and M(α) is

positive and bounded, which can be described as follows:

∃ x1 > 0, x2 > 0, x1 ≤ M(α) ≤ x2 (3)

Property 2. In Equation 2, M(α) and C(α, α̇) are associated and

satisfy

∀α ∈ Rn,
1

2
Ṁ(α)− C(α, α̇) = 0 (4)

It is generally accepted that certain models take major friction

effects into account, notably encompassing Coulomb friction

and Stribeck effects in tandem, with the aim of achieving a

more precise representation of friction. Regrettably, owing to the

material creepage and the time-varying contact force between

the tendon and the sheath, attaining a precise description of

friction distribution in TAB solely reliant on existing models is

a formidable challenge (Zhang et al., 2017; Norouzi-Ghazbi and

Janabi-Sharifi, 2020; Yin et al., 2022). Moreover, the static controller

struggles to effectively handle dynamic uncertainties caused by the

bending of soft material. In practical application, the time-varying

friction between the tendon and sheath is typically assumed to

change slowly and without abrupt variations. Nevertheless, the

friction Ff and model parameters M(α), C(α, α̇), G(α) are also

unknown but bounded (UBB). The basic control task is to estimate

dynamic parameters in real-time to achieve the tracking control

of the bending part under the disturbances of unknown friction.

Specifically, the control task can be quantified as follows:

lim
t→∞

e(t) = lim
t→∞

α(t)− αd = 0 (5)

where αd represents the desired angle.

3 Controller design

An angle control algorithm based on fuzzy adaptive sliding

mode control is presented in this paper. In order to facilitate the

subsequent procedure, from Equation 5, the angle tracking errors,

angular velocity tracking errors, and angular acceleration tracking

errors of the bending part are defined respectively as follows:

e = αd − α

ė = α̇d − α̇

ë = α̈d − α̈

(6)

where α̈, αd, α̇d and α̈d represent the angular acceleration, desired

angle, angular velocity, and angular acceleration, respectively. An

intermediate variable α̇a is defined as follows:

α̇a = α̇d + c(αd − α) (7)

where c is a known positive constant. From Equations 6 and 7, the

sliding surface is defined as follows:

s = ė+ ce = α̇a − α̇ (8)

Then, the derivative of the sliding mode variable is derived as

follows:

ṡ = ë+ cė = α̈a − α̈ (9)

From Equation 1, the dynamics model can be written as follows:

α̈ = M−1(µ − Cα̇ − G− Ff ) (10)

From Equations 8–10, it can be presented as follows:

Mṡ = Mα̈a −Mα̈

= Mα̈a − µ + Cα̇ + G+ Ff

= −Cs− µ + Ff +Mα̈a + Cα̇a + G

(11)

The unknown dynamics in Equation 11 is defined as a

nonlinear function P = Mα̈a +Cα̇a +G. Then, it can be simplified

that

α̈a = M−1(P − Cα̇a − G) (12)

The fuzzy approximation is widely recognized as an effective

technique to estimate the nonlinear and uncertainty of the system

in robot control, owing to its strong capability for approximations

and fault tolerance (Zhao et al., 2023). In this article, the problem

of time-varying dynamics and unknown friction in TAB can be

effectively solved by constructing a fuzzy system to approximate

the intricate nonlinear dynamics and utilizing a model-free sliding

mode control scheme.

Lemma 1. The nonlinear dynamics P can be approximated by the

constructed fuzzy system with reasonable errors, it is expressed as

the following continuous equation (Wang, 1994).

P = θ∗
T
φ(ξ )+ ε (13)

|ε| ≤ εU (14)

where θ∗ represents adaptive weight vector, φ(ξ ) is the fuzzy basic

function, ε is the approximation error, εU represents the upper

boundary of fuzzy approximation errors. Define input states of
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fuzzy system as x = [α; α̇]T, then fuzzy basic function φ(ξ ) is

constructed as follow:

φ (ξ) = φl1l2 (x) =

2
∏

i=1
µ
A
li
i

(xi)

lM
∑

l1=1

lN
∑

l2=1

(

2
∏

i=1
µ
A
li
i

(xi)

)

(15)

where li(i = 1, 2) represents the number of membership, lM and

lN represent the maximum number and the minimum number

of membership, respectively, A
li
i is Fuzzy set of input variables xi,

µ
A
li
i

(xi) represents the membership function of input variables

xi(i = 1, 2).

According to the former description of the friction between

tendon and sheath, the sampling time can be selected small enough

to reduce the estimation errors to ensure the validity of the method

(Elmali and Olgac, 1996; Wu et al., 2019). The unknown friction is

estimated by the following equation:

F̂f = µt−T −Mα̈ − Cα̇ − G (16)

where F̂f represents the estimated friction, µt−T is control input

in the previous time step. The estimation errors F̃f are described

as F̃f = Ff − F̂f . As a result, it is reasonable to assume that the

estimated errors are bounded, and the boundary can be given as

follows:

∣

∣F̃f
∣

∣ < ρ (17)

where ρ is a positive constant representing the upper boundary. In

order to solve the chattering problem, the saturated function sat(s)

and the control law are elaborately designed as follows respectively:

sat(s) =











1 s > 1

s/1 |s| ≤ 1

−1 s < −1

(18)

µ = θ̂Tφ(ξ )+ F̂f + a · s+ b · sat(s) (19)

where θ̂ is the approximation value of θ∗, a and b are two positive

constants. And the approximation value θ̂ will be estimated by the

following update law:

˙̂
θ = Lφ(ξ )s (20)

where L is a known positive constant. By utilizing the designed

controller 19 with update law 20, time-varying dynamics and

unknown friction will be compensated in real-time. The overall

block diagram of the proposed strategy is shown in Figure 3.

4 Closed-loop stability analysis

TAB system with the proposed control law is asymptotic stable

in the Lyapunov sense. The Lyapunov stability criteria was used

to verify the closed-loop stability of the TAB system under the

proposed adaptive fuzzy robust control strategy.

Proof. A Lyapunov candidate function is adopted as follows:

V =
1

2
(Ms2 + L−1θ̃Tθ̃) (21)

where the errors between the ideal value and approximation are

represented as θ̃ = θ∗ − θ̂ . Differentiating Equation 21 and

substituting Equations 10 and 11, for the ease of derivation, the

auxiliary terms are added to the last two terms, V̇ can be arranged

as:

V̇ = Msṡ+
1

2
Ṁs2 − L−1θ̃T

˙̂
θ

= Ms{α̈a −M−1(µ − Cα̇ − G− Ff )}

− L−1θ̃T
˙̂
θ +

1

2
Ṁs2 − Cs2 + Cs2

(22)

According to the designed controller, based on Equation 16, by

inserting Equations 19 into 22 it can be indicated as follows:

V̇ = Ms{α̈a −M−1[θ̂Tφ(ξ )+ a · s+ b · sat(s)− Cα̇ − G

+ F̂f − Ff ]} − L−1θ̃T
˙̂
θ +

1

2
Ṁs2 − Cs2 + Cs2

(23)

Then, for eliminating time-varying model parametersM andG,

according to Equations 13–15, substitute Equations 12 and 13 for α̈

and P respectively, Equation 23 can be re-expressed as:

V̇ = Ms{M−1(P − Cα̇a − G)−M−1[θ̂Tφ(ξ )+ a · s+ b · sat(s)

− Cα̇ − G− F̃f ]} − L−1θ̃T
˙̂
θ +

1

2
Ṁs2 − Cs2 + Cs2

= Ms{M−1[θ∗Tφ(ξ )+ ε − Cα̇a − G]−M−1[θ̂Tφ(ξ )+ a · s

+ b · sat(s)− Cα̇ − G− F̃f ]} − L−1θ̃T
˙̂
θ +

1

2
Ṁs2 − Cs2 + Cs2

= s[θ∗Tφ(ξ )− θ̂Tφ(ξ )+ ε − C(α̇a − α̇)− a · s

− b · sat(s)+ F̃f ]− L−1θ̃T
˙̂
θ +

1

2
Ṁs2 − Cs2 + Cs2

(24)
Further simplification, by combining Equations 8 and the

definition of θ̃ to Equation 24, the added positive auxiliary termCs2

is offset, V̇ can be derived as:

V̇ = s[θ̃Tφ(ξ )+ ε − Cs− a · s− b · sat(s)+ F̃f ]− L−1θ̃T
˙̂
θ

+
1
2 Ṁs2 − Cs2 + Cs2

= s[ε − Cs− a · s− b · sat(s)+ F̃f ]+ sθ̃Tφ(ξ )− L−1θ̃T
˙̂
θ

+
1
2 Ṁs2 − Cs2 + Cs2

= s[ε − b · sat(s)+ F̃f ]− (C + a)s2 + sθ̃Tφ(ξ )− L−1θ̃T
˙̂
θ

+
1
2 Ṁs2 − Cs2 + Cs2

= s[ε − b · sat(s)+ F̃f ]− a · s2 + sθ̃Tφ(ξ )− L−1θ̃T
˙̂
θ

+
1
2 Ṁs2 − Cs2 (25)

After that, by substituting update law Equation 20, and

according to Property 1 and Property 2, i.e. Equations 3 and 4 the

last four terms will be eliminated, and Equation (25) is deduced as:

V̇ = s
[

ε − b · sat(s)+ F̃f
]

− a · s2 (26)
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FIGURE 3

The block diagram of proposed controller.

FIGURE 4

Simulation results in Tracking experiment: Case 1 (reference values-blue solid line; proposed controller-orange dashed line; PID controller-yellow

dotted line; SMPI controller-green dash-dot line; LQR controller-purple solid line).
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FIGURE 5

Simulation results in Tracking experiment: Case 2 (reference values-blue solid line; proposed controller-orange dashed line; PID controller-yellow

dotted line; SMPI controller-green dash-dot line; LQR controller-purple solid line).

Finally, a is a positive constant, and according to Equations 17,

18, Equation 26 can be expressed as follows:

V̇ ≤ s[ε − b · sat(s)+ F̃f ]

≤ |s|
[

|ε| +
∣

∣F̃f
∣

∣ − b · sat(|s|)
]

≤ |s|
(

|ε| + ρ − b
)

(27)

If the positive gain b satisfies

b ≥ |ε| + ρ (28)

By inserting Equations 28 into 27, V̇ is obtained as

V̇ ≤ 0 (29)

Equations 21 and 29 indicate that the chosen Lyapunov

candidate V is positive definite, and V̇ is negative definite. As

a result, the asymptotic stability of the TAB system under the

proposed control law has been proved. The angle-tracking errors

gradually converge to 0 and approach the sliding surface (i.e., s = 0)

in finite time.

5 Simulation and analysis

In this section, simulation experiments and results are provided

to validate the performance of the proposed control scheme. Firstly,

three different tracking trajectories are designed to evaluate the

tracking performance of the control scheme. Then, experiments

on varying-friction with and anti-disturbance experiments are

conducted to compare the performance and robustness of the

proposed schemewith the standard PID controller, slidingmode-PI

(SMPI) controller, and linear quadratic regulator (LQR) controller.

The reason for choosing PID-based methods and LQR as the

controllers for comparison is because they have been widely applied

and demonstrated good performance in the field of robotic flexible

endoscope (Jiang et al., 2020; Kong et al., 2023). It should be

pointed out that the three comparative control methods have been

modified according to the dynamics model of this paper, and the

control gains have been correspondingly adjusted by trial and error

to guarantee tracking accuracy. The three controllers and their

elaborately tuned control gains are adopted as follows respectively:

1. Standard PID controller

µ = Kpe+ Ki

∫

edt + Kd ė (30)

where Kp, Ki, Kd are positive gains. After appropriate

optimization adjustments, they are selected as Kp = 1000,

Ki = 3000, Kd = 200.

2. SMPI controller

s = ė+ ce

µ = Ksps+ Ksi

∫

sdt
(31)

where e = αd − α, c, Ksp and Ksi are positive gains. They are

chosen as c = 1.5, Ksp = 3, Ksi = 3000.
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FIGURE 6

Simulation results in Tracking experiment: Case 3 (reference values-blue solid line; proposed controller-orange dashed line; PID controller-yellow

dotted line; SMPI controller-green dash-dot line; LQR controller-purple solid line).

3. LQR controller

J =
∫ ∞

0 eTQe+ µ
TRµdt

µ = −Ke
(32)

where e = [e, ė]T, Q and R are weighting matrix. They are

selected as Q = diag{1, 20}, R = diag{0.01}.

5.1 Tracking experiments in di�erent cases

To validate the effectiveness of the proposed control algorithm,

a series of numerical simulations were carried out in a

MATLAB/Simulink environment. To ensure the fidelity of the

simulation, parameters in the dynamics model were selected to

align with the actual material parameters of the real TAB system,

as presented in previous work (Wang et al., 2023).

m = 0.01kg, E = 500Pa, D = 0.003m

Lf = 0.15m, α(0) = 5 deg
(33)

Then, to achieve satisfactory tracking performance, the control

gains in Equations 19 and 20 are elaborately tuned as:

a = 5, b = 2, c = 2, L = 2 (34)

Considering both computational accuracy and computational

cost, the membership function of each state is set to 5 fuzzy subsets

corresponding to its value range. Then, the fuzzy logic system with

2 input states α and α̇ can produce 25 fuzzy rules. Based on the

operational constraints of α and α̇ applied in real robotic flexible

endoscope, the Gaussian membership functions are selected as

follows respectively by trial and error.











f (α, σ1, vi) = e
−

(α−vi)
2

2σ1
2

f (α̇, σ2,wi) = e
−

(α̇−wi)
2

2σ2
2

(35)

where σ1, σ2, vi and wi (i = 1, 2, 3, 4, 5) are prechosen

coefficients. The values of them are selected as σ1 =

1.39, σ2 = 0.93, vi = [ 5(9−π)
2 , 5(18−π)

4 , 22.5, 5(18+π)
4 , 5(9+π)

2 ],wi =

[ 5π3 , 5π6 , 0,− 5π
6 ,− 5π

3 ].

Remark 1. In this article, the parameters in the control law are

tuned by trial and error to guarantee optimal performance. Fine-

tuning a and cwill reduce response time, L is closely associated with

the steady-state error of the system, and proper b can effectively

prevent system oscillations or overshoot. Parameters in fuzzy logic

are empirically tuned by trial and error to ensure the accuracy of

approximation. σ1 and σ2 influence the shape of the membership

functions, thereby affecting the results of fuzzy inference. vi and

wi are empirically partitioned into equal intervals based on the

operational range.

To verify the tracking performance of the proposed controller,

three different tracking cases are chosen as follows:
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FIGURE 7

Simulation results in Varying-friction experiment (reference values-blue solid line; proposed controller-orange dashed line; PID controller-yellow

dotted line; SMPI controller-green dash-dot line; LQR controller-purple solid line).

1) Case 1: (step trajectory) The amplitude of the step

trajectory is set as 20 deg.

2) Case 2: (sine trajectory) The frequency, the initial phase,

the amplitude, and the offset of the desired sine trajectory are set as

π rad/sec, 0 deg, 5 deg, and 15 deg, respectively.

yd(t) = 5 sin(t)+ 15 (36)

3) Case 3: (triangular-wave trajectory) The frequency,

amplitude, and offset of the desired triangular-wave trajectory are

set as 0.1 Hz, 7.5 deg, and 17.5 deg, respectively.

In Tracking experiments: Case 1, the parameters of the

proposed method are set as in Equations 33 and 34. Also, the initial

and target angles are set to 5 deg and 20 deg respectively. The

simulation results of Tracking experiments: Case 1 are shown in

Figure 4, the desired angle can be reached quickly within 3 s by

adopting the proposed controller without overshoot or oscillation,

demonstrating the regulation performance of the proposed control

scheme. In contrast, comparative methods, i.e. Equations 30–32

take more time to be steady and are accompanied by oscillating and

residual errors.

In Tracking experiments: Case 2, to further confirm

the tracking performance of the proposed method, the same

parameters are set as Case 1. The initial angle and desired trajectory

are set to 5 deg and Equation 36, respectively. The results of

Tracking experiments: Case 2 are given in Figure 5, the angle errors

can be quickly converged to 0 within 3 s without overshoot or

oscillation by adopting the proposed control method. In contrast,

as shown in Figure 5, comparative methods take a longer time to

achieve the desired trajectory, and there are obvious overshooting

and oscillations. Therefore, the simulation results show that the

proposed method has a faster response and smaller steady-state

errors than comparative controllers.

The simulation results of Tracking experiments: Case 3 are

shown in Figure 6, the bending-tip can reach the desired trajectory

within 3 s by using the proposed control method. For comparative

methods, the response time is longer. Besides, oscillations still

exist for comparative methods at 5, 10, and 15 s. In contrast,

the proposed method guarantees regulation stability without any

residual errors. Therefore, the simulation results of three different

cases in tracking experiments show that the proposed method has

satisfactory tracking performance and acceptable steady response.

5.2 Varying-friction experiment

In order to test the dynamic adaptability of the proposed

controller, in this experiment, the friction force is set as a time-

varying signal with constant amplitude and varying offset for

simulating the switching of working conditions. Three bounded

sets of unidentified friction, each representing different working

conditions due to different ranges were employed. It is worth

mentioning that the form of friction in this experiment is just

selected as an example, the controller proposed in this paper only

requires the friction force to be bounded without a specific model,
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FIGURE 8

Simulation results in Anti-disturbance experiment (reference values-blue solid line; proposed controller-orange dashed line; PID controller-yellow

dotted line; SMPI controller-green dash-dot line; LQR controller-purple solid line).

which is a contribution of this paper. The specific form of friction

force is as follows:

Ff =











sin t 0 ≤ t < 6.28

sin(t + π/2)− 1 6.28 ≤ t < 12.56

sin(t − π/2)+ 1 12.56 ≤ t ≤ 20

(37)

The simulation results of Varying-friction experiment are

shown in Figure 7, the same parameters are set as in Tracking

experiments: Case 3. As shown in Figure 7, the proposed method

still achieves the desired trajectory rapidly and accurately without

steady-state errors. In contrast, the PID controller and SMPI

controller have obvious oscillations near 6.28 s and 12.56 s,

and the LQR controller has a much slower transient response.

In consequence, the proposed method can effectively cope with

varying friction Equation 37 under different working conditions.

5.3 Anti-disturbance experiment

To verify the robustness of the controller suffering episodic

disturbances in the unstructured environment, a constant external

force of 1N lasting 1 second is added at the 10th second on the

basis of Tracking experiments: Case 1, and the simulation results

of Anti-disturbance experiment are shown in Figure 8. The angle

errors generated by external disturbances are less than 1 deg under

the proposed controller, which returns to zero in 2 s. In contrast,

the same disturbances under comparative methods excite larger

amplitudes (LQR) and sharper force fluctuations (PID, SMPI). In

summary, the proposed method is non-sensitive to disturbances

and fast-tracking of the desired trajectory without steady-state

errors. As a result, it is possible to conclude with certainty that the

proposed controller has both excellent tracking performance and

satisfactory robustness.

Remark 2. Although the method proposed in this paper achieves

effective tracking and compensation of unknown bounded friction,

there are still some limitations. One concern about the proposed

controller is that the setting of fuzzy logic membership functions

and fuzzy rules relies on empirical knowledge and requires

considerable effort to tune for satisfactory performance. It is

worth mentioning that reinforcement learning has demonstrated

significant performance in finding optimal control policy in recent

years (Goharimanesh et al., 2020). As a consequence, fuzzy control

based on reinforcement learning is poised to become a further

improvement for our method in the future.

6 Conclusions

Based on the Lagrangian dynamics model for the TAB

systems, this paper proposed a robust controller for tracking

tasks. Specifically, the nonlinear friction with consideration of its

boundary is described according to the dynamics model of TAB.

Then, the fuzzy logic system is used to achieve the estimation
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of nonlinear time-varying dynamics. At last, a sliding mode

control method was designed, which achieved effective tracking

performance and compensation of the unknown boundary friction.

Lyapunov stability criteria was also utilized to prove the asymptotic

stability of the proposed controller. Simulations are also carried out

to validate the efficiency of the proposed method. The proposed

method is model-free control and has no strict requirement for

the dynamics model and friction model. It is proved that advanced

tracking performance and real-time response can be guaranteed

under the presence of unknown bounded nonlinear friction and

time-varying nonlinear dynamics. In future research, we will

further investigate the universal applicability of the proposed

method in addressing unknown friction and its practical utilization

in experiments involving flexible endoscope robots.
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The effect of electromyographic 
feedback functional electrical 
stimulation on the plantar 
pressure in stroke patients with 
foot drop
Xiaoting Li , Hanting Li , Yu Liu , Weidi Liang , Lixin Zhang , 
Fenghua Zhou , Zhiqiang Zhang * and Xiangnan Yuan *

Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, China

Purpose: The purpose of this study was to observe, using Footscan analysis, the 
effect of electromyographic feedback functional electrical stimulation (FES) on 
the changes in the plantar pressure of drop foot patients.

Methods: This case–control study enrolled 34 stroke patients with foot drop. 
There were 17 cases received FES for 20  min per day, 5  days per week for 4  weeks 
(the FES group) and the other 17 cases only received basic rehabilitations (the 
control group). Before and after 4  weeks, the walking speed, spatiotemporal 
parameters and plantar pressure were measured.

Results: After 4 weeks treatments, Both the FES and control groups had increased 
walking speed and single stance phase percentage, decreased step length 
symmetry index (SI), double stance phase percentage and start time of the heel 
after 4 weeks (p < 0.05). The increase in walking speed and decrease in step length 
SI in the FES group were more significant than the control group after 4 weeks 
(p < 0.05). The FES group had an increased initial contact phase, decreased SI of the 
maximal force (Max F) and impulse in the medial heel after 4 weeks (p < 0.05).

Conclusion: The advantages of FES were: the improvement of gait speed, step 
length SI, and the enhancement of propulsion force were more significant. The 
initial contact phase was closer to the normal range, which implies that the 
control of ankle dorsiflexion was improved. The plantar dynamic parameters 
between the two sides of the foot were more balanced than the control group. 
FES is more effective than basic rehabilitations for stroke patients with foot drop 
based on current spatiotemporal parameters and plantar pressure results.

KEYWORDS

stroke, foot drop, gait analysis, electrical stimulation therapy, electromyography 
feedback, rehabilitation

1 Introduction

Stroke is one of the most serious diseases affecting humans, and it can cause chronic motor 
dysfunction (Johnston et al., 2009). An epidemiological survey showed that there are more 
than 7 million stroke survivors in China, and about 70% of them have dysfunction (Liu et al., 
2007), which affects their quality of life and imposes a huge burden on their families and 

OPEN ACCESS

EDITED BY

Bi Zhang,  
Chinese Academy of Sciences (CAS), China

REVIEWED BY

Jing Guo,  
Stanford University, United States
Tuantuan Zhao,  
Mayo Clinic, United States

*CORRESPONDENCE

Zhiqiang Zhang  
 zhangzq@sj-hospital.org  

Xiangnan Yuan  
 yuanxn@sj-hospital.org

RECEIVED 28 January 2024
ACCEPTED 22 March 2024
PUBLISHED 02 April 2024

CITATION

Li X, Li H, Liu Y, Liang W, Zhang L, Zhou F, 
Zhang Z and Yuan X (2024) The effect of 
electromyographic feedback functional 
electrical stimulation on the plantar pressure 
in stroke patients with foot drop.
Front. Neurosci. 18:1377702.
doi: 10.3389/fnins.2024.1377702

COPYRIGHT

© 2024 Li, Li, Liu, Liang, Zhang, Zhou, Zhang 
and Yuan. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE Original Research
PUBLISHED 02 April 2024
DOI 10.3389/fnins.2024.1377702

98

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2024.1377702&domain=pdf&date_stamp=2024-04-02
https://www.frontiersin.org/articles/10.3389/fnins.2024.1377702/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1377702/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1377702/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1377702/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1377702/full
mailto:zhangzq@sj-hospital.org
mailto:yuanxn@sj-hospital.org
https://doi.org/10.3389/fnins.2024.1377702
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2024.1377702


Li et al. 10.3389/fnins.2024.1377702

Frontiers in Neuroscience 02 frontiersin.org

society (Patel et al., 2019). Foot drop is a common abnormal gait after 
stroke, and is caused by the decrease in the motor control of the tibialis 
anterior muscle, high tension of the plantar flexor muscle, or the 
contracture of the ankle joint (Kottink et al., 2012). This abnormal gait 
can disturb the foot contact pattern with ground, increase asymmetry 
of both legs and case high risk of falls. So it is an urgent to find an 
effective and convenient treatment method to correct foot drop.

Common treatments for foot drop include ankle foot orthosis 
(AFO), transcutaneous electrical nerve stimulation and FES (Bosch 
et al., 2014; Gil-Castillo et al., 2020). The conventional therapy for foot 
drop is the application of AFO. AFO passively immobilizes the ankle 
in a neutral position during walking. Although AFO can alleviate 
some walking difficulty, it is not conducive to providing or maintaining 
dynamic functions (Nolan et al., 2015). An alternative method to 
promote active movement is functional electrical stimulation (FES) of 
the common peroneal nerve. In contrast to AFO, no mechanical 
constraints are imposed by FES, enabling normal ankle range of 
motion and facilitating optimal residual plantarflexor activity 
(Liberson et al., 1961). Although a meta-analysis showed that gait 
speed and functional capacity were not significantly different between 
AFO and FES (Prenton et al., 2016). Walking in daily life demands 
continual adaptations to environmental challenges, such as inclines, 
uneven terrain, or traffic. Compared to AFO, FES is better in dealing 
with complex environmental conditions and overcoming obstacles 
because of its unrestricted ankle motion (Berenpas et al., 2019). FES 
is a practical, long-term, and cost-effective treatment for the correction 
of drop foot (Taylor et al., 2013). These advantages may explain why 
patient satisfaction is higher for FES than AFO (Bosch et al., 2014). 
Transcutaneous electrical nerve stimulation is an effective treatment 
in improving muscle strength and preventing muscle atropy (Thomaz 
et  al., 2019), but this passive electrical stimulation has not report 
beneficial to improve foot drop gait (Park and Wang, 2017). While the 
advantages of FES are that it actively increases muscle recruitment and 
corrects abnormal gait (Reisman et al., 2013; Melo et al., 2015).

Collaborative efforts of stroke rehabilitation and neural 
engineering demonstrated how neuroprosthetics can control devices 
and ultimately facilitate body functional recovery (Moritz et al., 2008; 
Bouton et al., 2016; Biasiucci et al., 2018). In this study, we used a type 
of electromyographic feedback FES, which translated myoelectric 
signals into meaningful electrical impulsions that may drive activity-
dependent neuroplasticity and functional motor recovery (Daly and 
Wolpaw, 2008; Ethier et al., 2015; Bao et al., 2020). Compared to some 
passive treatments such as acupuncture and low frequency 
electrotherapy, FES requires more active participation, and gives 
patients more positive feedback. The neuronal activity might 
be modified through this individualized practice with feedback and 
reward (Milosevic et al., 2020).

However, how to evaluate the effect of FES on foot drop? Most 
previous studies focused on lower limb function scales and ankle joint 
range of motion (Laufer et al., 2009; Bidabadi et al., 2019). In fact, the 
most direct and important process during walking is the interaction 
between feet and the ground. The plantar pressure system focuses on 
the interaction between feet and the contact surface (Low and Dixon, 
2010). The system can obtain quantitative data related to walking, 
including spatiotemporal parameters and pressure distributions 
(Leunkeu et  al., 2014; Lim et  al., 2016). Plantar pressure-related 
studies have investigated patients with flat and cavus feet, diabetes 
mellitus, pressure ulcers, strokes, obesity, rheumatoid arthritis, 

Parkinson’s disease, and spinal cord injury (Janisse, 1993; 
Kimmeskamp and Hennig, 2001; Morrison et al., 2010; Manor and 
Chen, 2014; Skopljak et al., 2014; Yuan et al., 2019; Li et al., 2023).

Recent studies have reported the immediate effect of FES to 
plantar pressure (Yuan et al., 2015) and outcomes of implantable FES 
to velocity and life quality (Buentjen et  al., 2019). However, such 
studies have rarely assessed the effect of non-invasive FES to the 
spatiotemporal and plantar pressure variables in foot drop patients. 
Therefore, in the current study, we intended to verify the potential 
benefits of FES over control patients during walking in one treatment 
cycle. We proposed the hypotheses that both the FES and control 
groups would improve the spatiotemporal parameters and plantar 
pressure results. The FES group had better ankle dorsiflexion control 
than the control group. This study perhaps the first one to link FES 
with ankle dorsiflexion control of foot drop after stroke, demonstrating 
the improvement of neuromuscular control by myoelectric signals 
feedback FES and providing another optimal clinical decision for the 
treatment of foot drop after stroke.

2 Participants and methods

2.1 Design

This was a retrospective, case–control study. Because one 
treatment course for FES was about 3–4 weeks. So the FES group 
received FES and basic rehabilitation for 4 weeks and the control 
group only received basic rehabilitation for 4 weeks (17 cases in each 
group). Basic rehabilitation mainly refers to gait correction training 
by a same physical therapist. Patients walked on the treadmill with 
FES at self comfortable speed. The treatment timeline was 20 min per 
day, 5 days per week for 4 weeks. Footscan plantar pressure and 
walking speed tests were finished not more than 1 week before 
treatment, and within 1 week of completing the training (testing was 
performed without the FES machine). The flowchart of the experiment 
was shown in Figure 1.

2.2 Participants

Between June 2017 and June 2019, a total of 34 subjects were 
collected from the Rehabilitation Department at Shengjing Hospital 
of China Medical University, China. All subjects provided signed 
informed consent. The protocols were approved by the Clinical 
Research Ethics Committee at Shengjing Hospital of China Medical 
University (approval No. 2015PS438KJ). The inclusion/exclusion 
criteria were as follows.

Inclusion criteria of stroke patients:

 1 The diagnosis of stroke was established by magnetic resonance 
imaging or computed tomography scan.

 2 First-ever unilateral stroke (hemorrhagic or ischemic) and all 
subjects were able to understand and follow the 
experimental instructions.

 3 Ability to walk independently, without assisting devices for 
more than 10 m.

 4 The mortified Ashworth score of spasticity of the lower 
extremities was less than level II.
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 5 Foot drop during walking, but the Brunnstrom stage was 
phase III or higher (patients could perform ankle 
dorsiflexion voluntarily).

Exclusion criteria of stroke patients:
Bilateral paralysis, subarachnoid hemorrhage, sequelae of 

previous neurologic or orthopedic disorders that could impair 
locomotion, limited range of motion or severe spasticity of the lower 
extremities, skin lesions or rashes, severe cognitive or visuospatial 
dysfunction, and/or severe medical illness.

2.3 Intervention (treatment methods)

Foot drop individuals who still retained voluntary residual 
myoelectric signals, which means patients could perform ankle 
dorsiflexion voluntarily allow the use of FES. The FES (PAS system, 
Japan KR-7) consisted of a mainframe, a controller, and electrodes. 
The controller was a single-channel stimulator powered by 4AA 
batteries with output current of 0–27 mA at a frequency of 1–100 Hz 
to produce a bi-phasic rectangular pulse at 150 μm. The application 
mode was power assisted. Before treatment, the subjects were 
informed that the purpose of the FES was to assist with lifting their 
toes while their foot is elevated. The patient then assumed a sitting 
position. Two surface electrodes were placed near the peroneal head 
(directly over the motor nerve) and tibialis anterior muscle. Firstly, 
we  asked patients to perform dorsiflexion of their ankle and 
we regulated the sensitivity according to the myoelectric signals that 

the computer received. Then, we  established the minimal and 
maximal output current and synchronized the host data with the 
controller, removed the host, and instructed the patient to wear the 
controller while walking on the treadmill at the patient’s comfortable 
speed. The treatment timeline was 20 min per day, 5 days per week for 
4 weeks. Each machine was individually programmed (stimulation 
intensity and duration) by an experienced clinician. Rarely occurring 
adverse events include skin rashes and pain at the site of 
electrical stimulation.

2.4 Acquisition of walking data

Walking data were collected using the Footscan plantar 
pressure system (RSscan International, Olen, Belgium) with 8,192 
resistive sensors within a 1 m long force plate. The force plate was 
mounted on the center of a 10 m long rubber flat surface. The 
pressure range was 1–127 N/cm2. The frequency of data acquisition 
(up to 500 Hz) was adjusted according to the walking speed from 
10 meters walk test (10MWT), the faster the walking speed, the 
higher the acquisition frequency. In order to adapt themselves to 
the experimental process, each subject practiced walking along the 
flat surface at their comfortable and self-selected speed in their 
bare feet at least two times. Then, each subject was asked to walk 
on the Footscan plantar pressure system for at least three successful 
trials. In one successful trial, 2–4 footprints can be collected on 
each side of the foot. Then the mean spatiotemporal parameters 
were calculated from all the footprints. Because the calculation of 

FIGURE 1

Flowchart of the experiment. FES, Functional electrical stimulation.

100

https://doi.org/10.3389/fnins.2024.1377702
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Li et al. 10.3389/fnins.2024.1377702

Frontiers in Neuroscience 04 frontiersin.org

pressure parameters needs a complete footprint. Whereas the 
footprints at the edge of the force plate were incomplete, so each 
foot had one complete footprint in one gait cycle for the calculation 
of pressure parameters. Subjects were permitted to rest for at least 
2 min between trials, if expressing fatigue. Because the force plate 
was only 1 m long, so patients completed 10MWT (Beata et al., 
2018) for walking speed (Figure 2). Data collection for each subject 
was performed by a same experimenter who was not involved in 
the treatment.

2.5 Data analysis

Patients completed 10MWT for walking speed analysis (m/s).
The Footscan plantar pressure system divided the foot into the 10 

anatomical regions (Figure 3), including (1) toe 1 (T1), (2) toes 2 to 5 
(T2–5), (3) metatarsal 1 (Meta 1, M1), (4) metatarsal 2 (Meta 2, M2), 
(5) metatarsal 3 (Meta 3, M3), (6) metatarsal 4 (Meta 4, M4), (7) 
metatarsal 5 (Meta 5, M5), (8) midfoot (MF), (9) heel medial (HM), 
and (10) heel lateral (HL).

Subjects’ spatiotemporal parameters included gait cycle time, 
double/single stance time, stride length, start time of the heel, initial 
contact phase, and step length. The pressure parameters included 
maximum force (Max F), impulse, contact area, and symmetry 
index (SI).

Calculations of the average gait parameters. To ensure that the 
parameters were comparable between different subjects, some of the 
parameters were standardized. The specific formula is as follows:

The stance phase percentage was calculated as the percentage of 
stance time to gait cycle time:

 

single

double
stance phase percentage

single

double/

/







 =









×
 stance time

gait cycle time
100%

The initial contact phase percentage was calculated as the 
percentage of initial contact phase to stance time:

 
initial contact phase percentage

initial contact phase

stan
=

cce time
×100%

The regional Max F percentage was calculated as the percentage 
of the Max F value of the 10-anatomical regions to the sum of Max F 
value in the whole foot:

 
regional F percentage

F value of each region

F value o
max

max

max
=

ff the whole foot
×100%

The regional impulse percentage was calculated as the percentage 
of impulse value of the 10-anatomical regions to the sum of impulse 
value in the whole foot:

 

regional impulse percentage

impulse value of 

each region

im
=

ppulse value of 

the whole foot

×100%

The regional contact area percentage was calculated as the 
percentage of contact area value of the 10-anatomical regions to the 
sum of contact area value in the whole foot:

 

regional contact area percentage

contact area of 

each regi
=

oon

contact area of 

the whole foot

×100%

The calculation formula of the SI of the gait variables was as 
follows. The Step length SI, Max F SI, impulse SI and contact area SI 
values were calculated separately. The closer an SI value was to 0, the 
better the symmetry was.

FIGURE 2

10MWT.

FIGURE 3

The foot pressure was divided into 10 anatomical regions in the 
Footscan plantar pressure system (T1, toe 1; T2–5, toes 2 to 5; M1, 
metatarsal 1; M2, metatarsal 2; M3, metatarsal 3; M4, metatarsal 4; 
M5, metatarsal 5; MF, midfoot; HM, heel medial; HL, heel lateral).
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2.6 Statistical analysis

SPSS 20.0 software (SPSS, Chicago, IL, United States) was used 
for data analysis. The data were expressed as the mean ± SD. Normal 
distribution was tested first. The paired t-test was used for 
intragroup analyses and the independent-samples t-test was used 
for intergroup comparisons of the gait parameters of the 
FES-group and the control-group (the Wilcoxon test was used if 
the data were not normally distributed). Values with p < 0.05 were 
considered statistically significant. Intergroup comparisons were 
performed when intragroup comparisons of both groups were 
statistically significant.

3 Results

The study did not detect any significant differences in the baseline 
demographics between the FES-group and control-group (p > 0.05; 
Table 1).

3.1 Spatiotemporal variables in the FES 
group and the control group

After treatment, the walking speed increased in both groups (p < 
0.05), with the FES group improving more than the control group (p 
< 0.05). The FES group exhibited increased step lengths in the affected 
side (p < 0.05), while the control group had increased step length in 
the unaffected side and decreased step length in the affected side (p < 
0.05). Both of the groups exhibited improved step length SIs (p < 0.05), 
and the FES group improved more than the control group (p < 0.05). 
Stance time percentage, and double support time percentage 
decreased, and single support time percentage increased in both 
groups after treatment (p < 0.05), but there was no significant 
difference between the two groups (p > 0.05). The gait cycle time of 
both groups decreased after 3 weeks of treatment, but there was no 
significant difference between the two groups (p > 0.05) (Table 2).

3.2 Start time of the heel and initial contact 
phase percentage

Both groups had earlier heel medial and heel lateral start times 
after 4 weeks (p < 0.05), and there was no significant difference 
between the two groups (p > 0.05). Only the FES group had a 

TABLE 1 Baseline demographics.

Group Sex Age 
(years)

Body 
mass (kg)

Body 
mass 
index 

(kg/m2)

Lesions Affected side Mean 
time 
since 
stroke 

(weeks)

Male Female Infarct Hemorrhage Left Right

FES 13 4 43.5 (13.64) 66.69 (8.64) 24.16 (2.1) 12 5 10 7 10.25 (4.59)

Control 11 6 49.42 (12.03) 67.53 (10.4) 25.09 (2.74) 13 4 9 8 8.97 (5.18)

FES, Functional electrical stimulation. Values are presented as mean (standard deviation).

TABLE 2 Spatiotemporal variables in the FES group and control group.

Parameters FES group (n  =  17) Control group (n  =  17) Intragroup P Intergroup P

Baseline Week 4 Baseline Week 4 FES 
group

Control 
group

Baseline Week 4

Walking speed (m/s) 0.46 (0.18) 0.63 (0.3) 0.43 (0.1) 0.49 (0.09) 0.01 0.04 0.54 0.04

Stride length (cm) 60.31 (13.03) 71.02 (21.38) 57.49 (13.17) 59.62 (14.43) 0.13 0.57 0.32 0.54

Step 

length 

(cm)

Unaffected side 30.44 (8.17) 34.54 (11.24) 27.62 (13.33) 33.15 (10.22) 0.12 0.02 0.15 0.36

Affected side 32.02 (7.39) 40.26 (13.94) 34.57 (4.78) 29.58 (8.14) 0.01 0.01 0.24 0.01

Step length SI 0.3 (0.3) 0.15 (0.11) 0.39 (0.19) 0.23 (0.18) 0.04 0.001 0.14 0.03

Gait cycle time (ms) 1822.52 

(378.331)

1685.26 

(451.69)

1691.26 

(235.62)

1619.93 (364.76) 0.11 0.05 0.09 0.06

Stance phase percentage (%) 70.65 (10.02) 63.88 (9.99) 70.47 (3.13) 66.28 (6.96) 0.03 0.03 0.95 0.42

Single stance phase 

percentage (%)

19.96 (5.47) 23.16 (6.66) 16.06 (6.06) 22.18 (3.71) 0.03 0.001 0.06 0.60

Double stance phase 

percentage (%)

26.41 (8.32) 22.03 (5.79) 25.41 (5.59) 21.72 (2.97) 0.04 0.001 0.68 0.84

SI: Symmetry index; values are presented as the mean (standard deviation). Intragroup P: baseline vs. after 4 weeks (the paired t-test). Intergroup P: FES group vs. control group (the 
independent-samples t-test).
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FIGURE 4

Abnormal lateral metatarsal bones as the initial contact points and the correction from a patient before and after FES treatment. (A) Before treatment, 
the lateral metatarsal bones of the affected side (right) contacted the ground first. (B) After treatment, the heel of the affected side (right) contacted the 
ground first.

significantly longer initial contact phase percentage after 4 weeks (p < 
0.05) (Table  3). Before treatment, the lateral metatarsal bones 
(Figure  4A) or flat foot (Figure  5A) of the affected side (right) 
contacted to the ground first. After treatment, the heel contacted the 
ground first (Figures 4B, 5B). The abnormal initial contact points were 
corrected after FES treatment (Figures 4, 5).

3.3 Regional Max F, impulse, contact area 
percentage and symmetry index of the FES 
group and control group

Result of regional Max F/impulse/contact area percentage: The 
regional Max F percentage of toe 1 increased in both groups (p < 0.05), 

and the FES group increased more than the control group (p < 0.05). 
The regional Max F and contact area percentage of the midfoot both 
increased in the FES group (p < 0.05) (Figures 6A–C; Table 4).

Results of regional Max F/impulse/contact area percentage SI 
(Figures 7A–C; Table 4): The regional Max F and impulse percentage 
SI of the medial heel both decreased (p < 0.05) (Figures 7A,B; Table 4). 
The regional impulse percentage SI of the meta5 and midfoot decreased 
in the FES group after 4 weeks (p < 0.05) (Figure 7B; Table 4).

4 Discussion

Drop foot may be caused by decrease of ankle dorsiflexion 
control, increase of plantar flexor tension, or both. We mainly 

TABLE 3 Start times of the heel and initial contact phase percentage.

Parameters FES group (n  =  17) Control group (n  =  17) Intragroup P Intergroup P

Baseline Week 4 Baseline Week 4 FES 
group

Control 
group

Baseline Week 
4

Heelmedial start time (ms) 10.85 (19.03) 2.36 (6.67) 23.32 (26.90) 3.45 (6.90) 0.02 0.03 0.13 0.64

Heellateral start time (ms) 16.82 (24.86) 2.38 (6.73) 12.02 (11.52) 3.42 (6.98) 0.02 0.04 0.24 0.66

Initial contact phase percentage (%) 1.50 (2.71) 4.16 (3.23) 2.89 (1.58) 3.54 (4.00) 0.01 0.94 0.06 0.77

Values are presented as the mean (standard deviation). Intragroup P: baseline vs. after 4 weeks (the paired t-test). Intergroup P: FES group vs. control group (the independent-samples t-test).
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focused on the control of the tibialis anterior muscle in this study. 
The tibialis anterior muscle does eccentric contraction during the 
initial contact phase to control the fall of the foot and does 
concentric contraction during the initial swing phase to promote 
the propulsion. So if the tibialis anterior muscle is not activated 
properly, the motion control caused by eccentric contraction and 
motion generation caused by concentric contraction are both 
badly affected (Sheng, 2009). Therefore, no matter what kind of 
problem causes foot drop, improving the control of dorsiflexion is 
conducive for propulsion (motion generation) and maintaining 
support stability (motion control) (Tenniglo et al., 2018). In this 
study, we focused on the gait parameters including spatiotemporal 
variables, initial contact phase and plantar pressure after 
FES. We found that the most meaningful result was the longer 
initial contact phase, which means better motion control of 
dorsiflexion after FES than the control group.

4.1 Spatiotemporal variables

Insufficient ankle dorsiflexion in the late swing phase would 
affect the initial loading site, and then decreased the walking speed 
(Sheng, 2009). Previous studies indicated that FES can increase 
walking speed (Embrey et al., 2010; Hakansson et al., 2011; Sabut 

et al., 2011; Taylor et al., 2013; Buentjen et al., 2019). However, gait 
speed lacks the sensitivity to differentiate the true restitution of gait 
impairments. If increases in walking speed are because of the 
compensations of the non-paretic leg, it will aggravate the 
asymmetry (Allen et  al., 2018). Thus, the assessment of other 
spatiotemporal parameters will help assess walking quality. 
Decreases in the double stance phase and increases in the single 
stance phase percentage of the affected limb were considered a 
better weight bearing (Mâaref et al., 2010). The stance and swing 
phase percentages are usually unbalanced in stroke patients 
(Hollman et  al., 2011; Kilby et  al., 2014). The stance phase 
percentage of healthy individuals is about 60%. In this study, both 
groups had less stance phase percentages after treatment, and 
returned to close to normal (60%). Therefore, FES and basic 
rehabilitation can improve weight bearing capacity (Kim and 
Hwangbo, 2015). We found the step length of the paretic limb was 
longer than the nonparetic limb before treatment, which was 
similar to the results of Xu et al. (2016), Kottink et al. (2012), and 
Meijer et al. (2011). The gait patterns of healthy individuals are 
symmetrical (Plotnik et  al., 2013). The main reason for 
asymmetrical gait is that with shorter stance phase and poor weight 
bearing of the paretic limb, the center of gravity will move to the 
nonparetic side, which will results in dysfunction in the swing 
phase (Kamibayashi et  al., 2010; Rusu et  al., 2014) and cause 

FIGURE 5

Abnormal flat foot as the initial contact point and the correction from a patient before and after FES treatment. (A) Before treatment, the affected side 
(right) exhibited flat foot at the initial contact phase. (B) After treatment, the heel of the affected side (right) contacted the ground first.
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shorter step length in the nonparetic leg (Patterson et al., 2010). 
Compared to changes in step length, the improvement of symmetry 
is more important in decreasing the risk of falling (Meijer 
et al., 2011).

4.2 Initial contact points and initial contact 
phase

A gait cycle starts from the initial contact of the heel. If the 
ankle dorsiflexion is insufficient, the initial contact is at the 
forefoot, the outer edge of the foot, or the whole foot palm, which 
affects the stability of the supporting phase. If the ground reaction 
force falls in front of the knee, overextension of the knee will occur, 
affecting the forward movement of the tibia and leading to 

insufficient propulsion, a compensatory reduction of the stride 
length, and a deceleration of speed (Perry et al., 2010). Such actions 
are called “well begun, half done.” Thus, the correction of the 
abnormal initial contact mode is an important part of the 
normalization of the whole walking cycle.

During normal gait, the heel touches the ground first. Thus, the 
start time of the heel is 0 ms. However, in patients with drop foot, 
the lateral metatarsal bones contacted to the ground first 
(Figure 4A). Under those conditions, the stability of the stance 
phase was destroyed and the risk of falls increases. After 4 weeks, 
the start time of the medial and lateral heel were decreased, and 
thus, both FES and basic rehabilitation can effectively correct the 
abnormal initial contact mode. Thus, the heel contacted the ground 
first (Figure 4B), which was the most basic and key step for the 
onset of the gait cycle.

FIGURE 6

Result of Max F, impulse and contact area percentage in the 10 anatomical regions of the affected side. (A) Regional Max F percentage. (B) Regional 
impulse percentage. (C) Regional contact area percentage. “a” p  <  0.05, significant difference between baseline to 4  weeks (the paired t-test). “b” 
p  <  0.05, significant difference between FES and control group after 4  weeks (the independent-samples t-test). Max F, Maximum force; Meta, 
Metatarsal.
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The start time of the heel is a time point. This is different from the 
initial contact phase, which is the range in time from heel strike to 
when the complete heel contacts the ground. In healthy individuals, 
the increasing pre-tibial activity at the end of the swing phase can 
ensure the ankle and foot are prepared for the following heel strike 
(Perry et al., 2010). Other research showed that foot and ankle motor 
control at the initial contact phase can significantly improve the 
stability and posture (Lee et  al., 2013). Stroke patients had an 
inadequacy in eccentric contraction or loss of the control of the 
tibialis anterior at the end of the swing phase, which caused flat foot 
or drop foot following heel strike (Figure 5A). Recently, most studies 
have focused on the ankle angle following heel strike using 3D gait 
analysis (Bae et al., 2019; d'Andrea et al., 2023), but few studies focus 
on the control of ankle dorsiflexion at the initial contact phase. The 
time of the initial contact phase can reflect the motor control of 
tibialis anterior eccentric contraction. The heel strike process was 
gentle and the foot slap was decreased, thus, improving shock 
absorption (Figure 5B). In this study, the normal range of the initial 
contact phase percentage was 5–15% (according to Footscan 
software). The FES group was close to the normal range after 4 weeks 
(4.16%). This may be because FES needs to detect patients’ active 
contraction signal first, and then release the corresponding electrical 
stimulation, which is a positive feedback. Thus, those patients were 
more likely to focus on ankle dorsiflexion during the training process, 
and had a stronger sense of active participation, improving their 
active control. This was also the most significant and irreplaceable 
result of FES in this study, which was difficult for conventional 
rehabilitation (control group) to achieve it.

4.3 Plantar pressure parameters

The peak pressure in the toe 1 region occurred at the end of the 
stance phase, i.e., the propulsive phase (Booth et al., 2018). In this 
study, the Max F percentage in the toe 1 area of the affected side 

increased more significantly in the FES group, which indicated that 
FES was more beneficial than basic rehabilitation to enhance the 
propulsive force at the end of the stance phase (Sabut et al., 2011; 
Lee et al., 2014; Melo et al., 2015; Schiemanck et al., 2015). The 
medial heel was the area with the largest proportion of Max F and 
impulse in the sole. Therefore, the improvement of Max F and 
impulse SI in the medial heel and the SI decrease in other regions 
indicated that the forces on both sides were symmetrical during the 
supporting period, which was conducive to the maintenance of 
posture stability and the reduction in the risk of falls. Because the 
longer initial contact phase can lead to a more stable ankle joint 
(Sheng, 2009), so the forces on the bilateral sole were more balanced 
in the FES group. The reasons why there were some baseline 
differences between the two groups and most of the pressure 
parameters were not statistically significant. To analyze the possible 
causes, this study observed the effect of FES after 4 weeks of 
treatment. There was no FES effect during the data collection 
process, which was different from the previous experiment to 
observe the immediate effect of FES on plantar pressure (Yuan et al., 
2015). Secondly, the diversity of plantar pressure distribution 
patterns was affected to a moderate degree (<50%) by various 
factors, such as walking speed, step length, weight, gender, foot 
structure, range of motion, peripheral sensation (Menz and Morris, 
2006; Yan et al., 2013). Previous studies found that changes in gait 
speed have an impact on the forces in all areas of the foot (Burnfield 
et al., 2004). Booth et al. (2018) found that with increases in walking 
speed, the heel pressure increased in the early stage and decreased 
in the middle stage of the support phase. The pressure in most areas 
decreased in the middle and end of the support phase. In this study, 
the changes in spatiotemporal parameters such as velocity and step 
length had an impact on the plantar pressure. There were also 
various foot contact and force patterns in post-stroke patients 
(Hillier and Lai, 2009; Jasiewicz et al., 2019). Thus, the changes in 
the symmetry index before and after 4 weeks on both feet would 
be more significant.

TABLE 4 Some absolute values of regional Max F, impulse, contact area percentage and symmetry index of the FES group and control group.

Parameters FES group (n  =  17) Control group (n  =  17) Intragroup P Intergroup P

Baseline Week 4 Baseline Week 4 FES 
group

Control 
group

Baseline Week 4

Regional Max F percentage of 

Toe 1

6.28 (5.45) 11.44 (10.49) 4.01 (4.94) 5.13 (4.05) 0.03 0.02 0.41 0.01

Regional Max F percentage of 

Midfoot

14.35 (5.58) 17.10 (5.29) 15.86 (5.03) 17.76 (5.67) 0.04 0.19 0.65 0.87

Regional contact area 

percentage of Midfoot

21.45 (2.69) 22.89 (2.96) 22.05 (3.34) 22.72 (3.01) 0.02 0.48 0.07 0.79

Regional Max F percentage SI 

of Heel Medial

0.25 (0.26) 0.14 (0.16) 0.44 (0.44) 0.25 (0.3) 0.01 0.09 0.08 0.03

Regional impulse percentage 

SI of Meta 5

1.45 (1.69) 0.64 (0.89) 0.92 (1.02) 0.62 (0.67) 0.04 0.28 0.11 0.87

Regional impulse percentage 

SI of Midfoot

1.03 (1.53) 0.41 (0.24) 0.36 (0.33) 0.57 (0.51) 0.04 0.11 0.05 0.16

Regional impulse percentage 

SI of Heel Medial

0.31 (0.21) 0.17 (0.10) 0.62 (0.45) 0.45 (0.3) 0.02 0.09 0.07 0.03

Values are presented as the mean (standard deviation). Intragroup P: baseline vs. after 4 weeks (the paired t-test). Intergroup P: FES group vs. control group (the independent-samples t-test).
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4.4 Limitations

A limited number of subjects meeting inclusion criteria were 
collected over a 2-year period. So the limitation of this study was that 
the sample size was small. This was an observational study, and 
we  intended to summarize possible advantages of FES from the 
existing cases. To further clarify the specific differences between FES 
and basic rehabilitation, the sample size should be further increased. 
Additionally, there were many factors that affect gait abnormalities in 
hemiplegic patients, and thus, the individual differences were large. 
The plantar pressure data represented the results of the entire support 
phase, and there was no distinction between the initial contact phase, 
the loading-response phase, and the propulsive phase. In this study, 
we only collected and analyzed the spatiotemporal parameters and 
dynamic plantar data, while the specific muscle activation and 

strength evaluation in the walking state needed to be combined with 
electromyography data.

5 Conclusion

The aim of this study was to observe the effect of FES on the 
changes in the plantar pressure of drop foot patients. The results 
showed that the therapeutic effect of FES include a more balanced 
plantar dynamic parameters, and the improvement of gait speed, step 
length SI, initial contact phase and propulsion force than the control 
group. Therefore, under the conditions used in this study, the 
therapeutic effect of FES in drop foot patients, and in particular, in the 
improvement of ankle joint control during the heel strike process was 
better than that observed following simple basic rehabilitation.

FIGURE 7

Results of Max F, impulse and contact area percentage SI in the 10 anatomical regions. (A) Regional Max F percentage SI. (B) Regional impulse 
percentage SI. (C) Regional contact area percentage SI. “a” p  <  0.05, significant difference between baseline to 4  weeks (the paired t-test). Max F, 
Maximum force; SI, Symmetry index; Meta, Metatarsal.
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Introduction: With the help of robot technology, intelligent rehabilitation of

patients with lower limb motor dysfunction caused by stroke can be realized.

A key factor constraining the clinical application of rehabilitation robots is how

to realize pattern recognition of human movement intentions by using the

surface electromyography (sEMG) sensors to ensure unhindered human-robot

interaction.

Methods: A multilayer CNN-LSTM prediction network incorporating the self-

attention mechanism (SAM) is proposed, in this paper, which can extract and

learn the periodic and trend characteristics of the sEMG signals, and realize the

accurate autoregressive prediction of the human motion information. Firstly, the

multilayer CNN-LSTM network utilizes the CNN layer for initial feature extraction

of data, and the LSTM network is used to improve the enhancement of the

historical time-series features. Then, the SAM is used to improve the global

feature extraction performance and parallel computation speed of the network.

Results: In comparison with existing test is carried out using actual data from five

healthy subjects as well as a clinical hemiplegic patient to verify the superiority

and practicality of the proposed algorithm. The results show that most of the

model’s prediction R > 0.9 for different motion states of healthy subjects; in the

experiments oriented to the motion characteristics of patient subjects, the angle

prediction results of R > 0.99 for the untrained data on the affected side, which

proves that our proposed model also has a better effect on the angle prediction

of the affected side.

Discussion: The main contribution of this paper is to realize continuous motion

estimation of ankle joint for healthy and hemiplegic individuals under non-ideal

conditions (weak sEMG signals, muscle fatigue, high muscle tension, etc.), which

improves the pattern recognition accuracy and robustness of the sEMG sensor-

based system.

KEYWORDS

nonlinear systems, surface electromyography signal, machine learning network,
uncertainties, robust estimation
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1 Introduction

Stroke and other diseases may lead to lower limb motor
dysfunction in patients. With the assistance of robotic technology,
intelligent rehabilitation therapy can be realized to reduce the
workload of clinical medical staff and improve the efficiency of
patients’ rehabilitation training (Kapelner et al., 2020). In the
human–machine interaction between rehabilitation robots and
patients, traditional human–machine interaction techniques often
involve the robot passively receiving instructions, which may not
be convenient for patients with motor function impairments (Zhai
et al., 2017; Zhang et al., 2022). In recent years, human–machine
interaction technology needs to evolve toward allowing robots to
actively understand human behavioral intentions, resulting in a
new type of interaction based on human biological signals.

Human bioelectric signal is the potential difference activated
when the nerve signal containing human behavioral information
is transmitted to the relevant organs or tissues, which is a direct
reflection of human behavioral intentions (Ma et al., 2021). It
is of great significance to break the human–machine barrier
and realize natural human–machine interaction by decoding
human bioelectric signals to recognize human behaviors, and
empowering robots to understand the human body’s intentions
as an information medium for interaction between human
beings and the outside world (Qi et al., 2020). Currently,
widely studied bioelectric signals include electromyogram
(EMG), electroencephalogram (EEG), electrocardiogram
(ECG), and electrooculography (EOG). We focus on the surface
electromyography (sEMG), which originates from the bioelectrical
activity of spinal motor neurons under the control of the motor
cortex of the brain, and are the temporal and spatial sum of
sequences of action units produced by peripherally active motor
units. Since sEMG has the advantages of being non-invasive, and
simple to use, it is more suitable to be applied to the design of
human–machine interaction control systems for rehabilitation
robots (Xiong et al., 2021). The core technology to build the EMG
human–machine interaction system is to decode the human body’s
motion intention through EMG signals, and the usually discussed
motion intention decoding includes two categories, one is to
recognize the discrete limb movements based on sEMG, such as
the movements of the hand’s clenched fist, extended palm, etc.,
and the other is to estimate the continuous joint motions based
on sEMG, such as the continuous quantities of the joint moments
and the joint angles, etc. In this study, we focus on healthy people
and hemiplegic patients, and carry out research on sEMG-based
continuous motion estimation methods for the foot and ankle area
of the lower limb, which lays the foundation for future natural
human–machine interaction control.

Human walking characteristics are crucial in studies targeting
the continuous movement of the lower limb. Many features of the
musculoskeletal system of the lower limbs implied in the human
walking information. Human walking information can be used as
a basis for the recognition of human movement intentions and the
estimation and prediction of the human body’s movements, which
in turn improves the stability and accuracy of human–computer
interactions with external devices, such as exoskeletons. It is also
possible to compare the gait characteristics of different walking
bodies, especially between healthy and patients. This enables an
intelligent online evaluation of patient rehabilitation effects, such

as stroke rehabilitation. Lower limb walking in healthy people
is cyclic, and the inherent states of its musculoskeletal system,
such as human limb properties and muscle activation states, are
also relatively stable and have good model interpretability, so
mechanistic models have been used to describe them in many
studies (Zhang L. et al., 2021). There are also some research works
that describe machine learning models such as neural networks
with straightforward modeling process and unrestricted utilization
of sEMG.

However, in research focused on hemiplegic patients, there are
large differences in the nature of the bilateral cyclic reciprocity,
with the healthy side usually experiencing weak functional decline
and the affected side experiencing more severe fluctuations in
cyclic information (Aymard et al., 2000; Zhao et al., 2023). The
alternation of useful and useless information can lead to problems
such as gradient disappearance or gradient explosion, causing
loss of information (Meng et al., 2023). In addition, these weakly
abled people are also prone to problems such as muscle fatigue or
even spasticity, and in some cases excessive muscle tone (Zhang
et al., 2019; Moniri et al., 2021), all of which will lead to a high
degree of difficulty in estimating the continuity of a patient’s lower
extremities based on EMG signals (Sarasola-Sanz et al., 2018;
Fleming et al., 2021; Zhu et al., 2022).

In machine learning network architectures for the study of
continuous lower limb motion, auto-regression is a widely used
method for time series prediction. It can capture the correlation
and dependency of input and output sequences well, and has the
advantages of simple structure, flexible order selection and easy
application (Lehtokangas et al., 1996). The observations at the
current time of the time series data are correlated with the historical
observations. Autoregressive technologies can make use of cyclical,
trend and seasonal characteristics of historical data to predict
future data (Yin et al., 2023). The combination of autoregressive
techniques and neural networks can effectively improve the ability
of learning, understanding and forecasting of time series data
(Taskaya-Temizel and Casey, 2005). A nonlinear autoregressive
neural network with exogenous inputs has been proposed to
model the dynamic behavior of an automotive air conditioning
system (Ng et al., 2014). Combing autoregressive integrated moving
average (ARIMA) and probabilistic neural network (PNN), a
hybrid network model has been proposed in order to improve
the prediction accuracy of ARIMA models (Khashei et al., 2012).
Therefore, this article will process the sampled motion data by
autoregressive technology, so that the network can fully learn the
hidden features and improve the learning efficiency of the network.

In order to improve the robustness of time series signal
prediction, a convolutional neural network (CNN) can be used to
extract initial features from the data (Shao et al., 2024). The CNN is
a specific type of feedforward neural network with a grid topology
(Li Z. et al., 2021). CNN uses sparse interaction, parameter sharing
and variant representation techniques to improve the feature
extraction performance of convolutional operations (Li et al., 2016).
Each convolution layer of CNN contains multiple convolution
kernels, and each convolution checks data for sliding convolution
to achieve feature extraction of time series data to obtain local
features and short-term dependencies. The pooling layer performs
summary statistics on the output obtained by the convolution layer
(Gu et al., 2018). The local perception and weight sharing of CNN
can also effectively reduce the number of weight parameters for
model learning, thus improving the efficiency of model learning.
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Based on deep CNN, a joint multi-task learning algorithm has been
developed to predict effectively attributes in images (Abdulnabi
et al., 2015). A joint classification-and-prediction framework
has been proposed based on CNN for automatic sleep staging
(Phan et al., 2018). Combing CNN architecture with depth wise
separable convolutions with kernels (CNN-DSCK) has developed
for prediction rating exploiting product review (Khan and Niu,
2021). The prediction applications of these complex systems show
the advantages of CNN networks in time series feature extraction.
For complex and long-term dynamic systems, whose data series
have long-term correlation, LSTM network with better long-term
feature capture ability can be considered for feature extraction
(Bi et al., 2021; Zhang N. et al., 2021; Zha et al., 2022). LSTM
network is an improvement of recurrent neural network (RNN)
network, which can effectively improve the gradient disappearance
and gradient explosion of RNN network in time series prediction
(Kim and Cho, 2019). Complex system prediction based on LSTM
network has achieved a series of innovative results (Rathore and
Harsha, 2022). Based on multi-layer LSTM networks, a forecasting
method with a strong capability has been proposed for predicting
highly fluctuating demand (Abbasimehr et al., 2020). According to
the characteristics of chemical process data, a key alarm variables
prediction model has been developed in chemical process based
on dynamic-inner principal component analysis (DiPCA) and
LSTM network (Bai et al., 2023). Adding self-attention mechanism
after LSTM network can further capture the correlation between
features directly from a global perspective (Zhang et al., 2020).
Increasing attention mechanisms can also compensate for gradient
disappearance or gradient explosion problems that LSTM networks
face, which can lead to loss of information in time series data (Li J.
et al., 2021). By integrating CNN, attention mechanism and LSTM,
it is expected to build a network with better predictive performance.

Therefore, this article proposes a robust multi-layer network
with excellent performance by integrating LSTM network with
CNN network and adding self-attention mechanism technology.
In order to extract and learn the period and trend characteristics
of EMG signals, autoregressive processing is performed on the
collected data. The CNN layer is used to extract the features from
the EMG signal. The LSTM network is used to consolidate and
enhance the historical temporal features. self-attention mechanism
(SAM) is utilized to improve the global feature extraction
performance and the parallel computing speed of the network.
Finally, compared with the existing algorithm, the superiority and
practicability of the proposed network are verified by using the data
of healthy laboratory subjects and clinical patients with hemiplegia.

The main contributions of this article are as follows: (1)
To address the periodicity of human lower limb gait walking,
a multi-layer machine learning network architecture has been
designed. It improves the interpretability and prediction accuracy
of the auto-regression model, and reduces the problems of
gradient disappearance or explosion caused by redundant sensor
information. (2) The practicality of the algorithm has been
validated, undergoing testing not only on healthy individuals but
also utilizing data from hemiplegic patients. It has successfully
achieved continuous lower limb motion estimation under non-
ideal conditions (weak sEMG signals, muscle fatigue, high muscle
tension, etc.). This ensures both accuracy and robustness in

identification, laying a foundation for the design of human–
machine interaction methods for future rehabilitation robots.

In order to facilitate understanding, the chapter part of this
article is summarized as: a novel artificial intelligence algorithm is
proposed in section “2 Materials and methods,” the experiments
and results are presented in section “3 Experiments and results,”
and finally main key conclusions of this article are given in section
“4 Discussion and conclusion.”

2 Materials and methods

2.1 Data acquisition and processing

Five subjects (age: 26.6 ± 2.6 years, height: 1.74 ± 0.08 m,
weight: 69 ± 10.9 kg) and one patient tester (male, 67 years
old, Brunnstrom stage IV) participated in the data collection of
this experiment. The sEMG signal acquisition equipment is a
Noraxon Ultium EMG system and AgCl electrodes, as shown
in Figure 1. Alcohol wipes are used to wipe the surface skin
of the tested muscles to remove impurities such as dead skin
and sweat adhering to the skin surface. Two electrodes for each
channel are spaced 20 mm apart and affixed to the muscle belly
along the muscle fiber direction of the target muscles of both
legs of the subjects (Hermens et al., 2000). Subjects walk on a
treadmill at 2.0 km/h, 3 km/h, and 5.0 km/h and EMG signals
are collected. Subjects walk for 3 min at a time with a 1-min
rest between each trial to avoid the effects of muscle fatigue. The
sEMG sampling frequency is 1,200 Hz, as shown in Figure 2, three
muscles of the ankle joint, tibialis anterior, peroneus longus, and
gastrocnemius are collected. Meanwhile, the kinematic parameters
are collected using a Noraxon myoMOTION Inertial Measurement
Unit (IMU), which collects the angular changes in the sagittal plane
of the ankle joint of the lower limb, with a sampling frequency
of 200 Hz. Written informed consent was signed by all subjects
before inclusion in this study. The experimental procedures follow
the Declaration of Helsinki and were approved by the Ethics
Committee of Liaoning Provincial People’s Hospital (Grant No.
2022HS007).

In this experiment, the ankle EMG input and output signals
of five healthy individuals and one stroke patient are used as test
and validation signals for the network model. Four sets of test
data with a length of 120,000 are obtained from the left foot
of the healthy tester under four states: 2 km/h speed, 3 km/h
speed, 5 km/h speed, and plantarflexion dorsiflexion maneuver.
Two tests are conducted on the left foot of the stroke patient
and the length of the sampled data is taken as 70,000. Due to
the large amount of noise signals in the original acquired sEMG
signals, and the frequency range of sEMG signals are in the
range of 0–500 Hz. In this article, the original sEMG signals are
filtered and denoised, and then the irrelevant noises are removed
from the original sEMG signals in order to retain the valuable
information as much as possible. The sEMG signals are first
band-pass filtered with a fourth-order 10–500 Hz Butterworth
band-pass filter. Then, a 50 Hz trap filter is used to eliminate
the industrial frequency interference. After that, the data used
will be normalized.
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FIGURE 1

Noraxon sEMG and inertial sensor acquisition system.

FIGURE 2

Setup of the EMG signal acquisition experiment.

2.2 CNN-LSTM networks with
self-attention

2.2.1 Convolutional neural network
For the collected data, CNN uses convolution layer to convolve

the input vector matrix to extract the local features of the time
series data. The feature sequence generation equation is shown in
Equation 1.

Chi = f (WhXi:i+h−1 + b) (1)

where Wh is the weight matrix of the convolution kernel; b is
biased unit; Xi:i+h−1 is the sequence matrix from i to i+ h− 1
in a time series; h is the size of the convolution kernel; f is the
activation function.

The calculated feature set Cn can be expressed as Equation 2.

Cn = {C1,C2, ...,Ci+h−1} (2)

The pooling layer extracts the features of the time series obtained
by the convolution layer, outputs a matrix of fixed size, reduces
the dimension of the output result and retains the features. In
this article, the maximum pooling method is used to calculate the

pooling layer. The computational equation of the eigenvector after
the pooling of convolution nuclei is represented by Equation 3.

Cpool = Max(C1,C2, ...,Cn−h+1) (3)

2.2.2 LSTM neural network
LSTM network is a variant of RNN. The key point of LSTM

is to control the flow and forgetting of information through the
use of structures called gates. The function of these gates is to
selectively allow information to pass through or prevent the flow
of information, and the core unit is the cell state, which can be
regarded as the network’s memory. The LSTM network consists of
several key components.

1. Cell state: it is the main storage unit of LSTM and is
responsible for storing and transmitting information.

2. Input gate: the input gate determines whether new
information is added to the status unit at the current time step.

3. Forget gate: the forget gate determines what information is
deleted from the state unit.
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4. Output gate: the output gate determines which information
in the state unit is output to the next time step. The relevant
calculation formulas are shown as Equations 4–9.

It = σ(XtWxi +Ht−1Whi + bi) (4)

Ft = σ(XtWxf +Ht−1Whf + bf ) (5)

Ot = σ(XtWxo +Ht−1Who + bo) (6)

C̃t = tanh(XtWxc +Ht−1Whc + bc) (7)

Ct = Ft � Ct−1 + It � C̃t (8)

Ht = Ot � tanh(Ct) (9)

The principle is to combine the current input Xt and the hidden
state Ht−1 of the previous time step, which are activated by sigmoid
function respectively. Calculate the activation value It of the input
gate; calculate the activation value Ft of the forgetting gate and Ot
of the output gate; Xt and Ht−1 are combined, and then activated
by tanh function to selectively retain the current memory, which is
recorded as C̃t ; the state Ct−1 of the previous time step is selectively
forgotten by using the forgetting gate Ft . The input gate It is used to
selectively retain the current state C̃t of the time step, and the two
are added together to update the state unit Ct . Multiply the new
state unit Ct with the output gate Ot to get the hidden state Ht of
the current time step.

2.2.3 Self-attention mechanism
Compared with conventional networks such as RNN and

LSTM, which process the features of time series data with
equal weight, self-attention can calculate the correlation degree
between each time series data from a global perspective, and
allocate different attention to different locations at the end to
enhance the main features of time series data. The self-attention
mechanism can flexibly adapt to different input sequences and task
requirements. For time series A = [a1, a2, ...an], the attention
B = [b1, b2, ...bn] of each position is obtained by obtaining
the correlation degree between the sequence data. The specific
calculation process is as follows.

Each value of the sequence A maps to three different spaces. For
each input ai, multiply by three trainable weights wq, wk, and wv,
respectively, to obtain three values of qi, ki, and vi, namely query,
key, and value as shown in Equations 10–12.

qi = wq · ai (10)

ki = wk · ai (11)

vi = wv · ai (12)

Using the weight matrices, Wq, Wk, and Wv, they can be
further expressed in the following matrix form, as shown in
Equations 13–15.

Q = Wq · A (13)

FIGURE 3

Generation of Q, K and V matrices.

FIGURE 4

Generation of 3 and 3
′

.

FIGURE 5

Generation of output matrix O.

K = WK · A (14)

V = WV · A (15)

The generation diagram of matrix Q, K, and V is shown in Figure 3.
With each input value ai(i = 1, ...n) corresponding to qi,

and all input values aj corresponding to kj, calculate the degree
of correlation between ai and aj by dot product, as shown in
Equation 16.

δi,j = (ki)τ · qj (16)
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FIGURE 6

Proposed CNN-LSTM network model with self-attention mechanism.

Its matrix form is shown in Equation 17.

1 = KT
· Q (17)

Dividing δi,j by the dimension
√
dk of qi or ki can control the size

of the dot product result to prevent situations where the gradient is
too large or too small and leads to poor training results, as shown
in Equation 18.

αi,j =
δi,j√
dk

(18)

Its matrix form is shown in Equation 19.

3 =
1√
dk

(19)

The activated correlation matrix 3
′

can be obtained by softmax
operation on the correlation matrix3.

The calculation process is shown in Figure 4.
Use the resulting 3′ and V to calculate the attention

corresponding to each input vector ai as shown in Equation 20.

bi =
∑n

j = 1
vj · α

′

i,j (20)

Its matrix form can be expressed as Equation 21.

B = V ·3′ (21)

where B is the matrix of attention bi.
The computational equation of the self-attention mechanism

can be summarized as Equation 22.

Output = softmax(
KTQ√
dk
)V (22)

The calculation process of attention b1 for the first input value a1 is
shown in Figure 5.

2.2.4 CNN-LSTM network
The proposed CNN-LSTM prediction model integrated

with self-attention mechanism in this article is shown in
Figure 6. The predictive network model mainly includes data
autoregressive processing, preliminary feature extraction layer
based on CNN network, depth feature extraction layer based on
LSTM network, and full connection layer. Note that in practical
engineering applications, the collected data should be cleaned
reasonably, including removing singular values, averaging and
noise elimination which can effectively improve the training and
testing effect of the network. The time step of autoregression cannot
be taken too long or too short. If the time step is taken too long, the
less relevant time series information in the past may be added to the
current information prediction, which may reduce the prediction
accuracy. If the time step is taken too short, it may reduce the
correlation extraction between continuous data. Therefore, in the
practical application process, the regression time step should be
selected according to the specific research object and sequence
characteristics. When the network is used for online prediction
or control, too many network layers may improve the prediction
accuracy of the algorithm, but it may also increase the computing
burden of the network.

2.2.4.1 Autoregressive processing

Surface electromyography has typical nonlinear and fast time-
varying characteristics, and it is difficult to capture and extract
the trend of sEMG by conventional fitting methods. In order
to improve the periodicity, trend and seasonality of the output
data, autoregressive processing should be carried out on the pre-
training data.

2.2.4.2 Preliminary feature extraction layer

In order to make the input data after autoregressive processing
easier to train, the batch normalization layer (BN layer) is used to
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FIGURE 7

Fitted curves of ankle EMG signals at four exercise speeds in four healthy subjects. (A) Fitting results for subject 1. (B) Fitting results for subject 2.
(C) Fitting results for subject 3. (D) Fitting results for subject 4.

normalize each batch. The normalized operation of the BN layer
can not only improve the convergence speed of the network model,
but also enhance the correlation degree between the data in the
batch, and prevent the model from overtraining some data and
resulting in overfitting. Then, the features of the time series are
initially extracted by using CNN. The CNN can not only extract
features through the convolution operation of multiple convolution
kernels, but also obtain local dependencies of sequence data by
convolution operation with sliding window. For the obtained
features, the ReLU activation layer can be activated to enhance the
expression ability of the features.

2.2.4.3 Depth feature extraction layer
The extracted features can be used to further extract the long-

term dependencies in the time series data through the LSTM

network. The data processed by the LSTM layer enters the
Sigmoid layer for activation. Then, the self-attention mechanism
is added to calculate the correlation between all features and the
weight matrix, and the weight matrix is constantly trained, so
that the model can allocate attention independently according
to the data characteristics, and improve the role of features in
prediction. Finally, the ReLU activation layer is used to activate the
features. After the above two deep feature extraction, the obtained
deep features are fed into the LSTM layer for comprehensive
strengthening and consolidation.

2.2.4.4 Fully connected layer
The features obtained from the depth feature extraction layer

are mapped to the fully connected layer to obtain the prediction
results. In order to make the model have stronger generalization
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FIGURE 8

Comparison of the fitting results of the proposed algorithm for healthy subject 1 with the experimental results of the existing algorithm.

ability and avoid the problem of gradient vanishing or gradient
explosion, the network proposed in this article adopts the strategy
of gradually decreasing the number of neurons, and uses two linear
mapping layers in the fully connected layer to continuously reduce
the number of neurons, and obtains the single-valued prediction
result. In addition, adding the intermediate mapping layer can
also enable the model to learn more feature combinations and
representations.

3 Experiments and results

3.1 Performance evaluation

The R2 score and Root Mean Square Error (RMSE) are
commonly used as evaluation metrics of regression performance
for continuous estimation of joint angles (Zhong et al., 2022).
In order to obtain more accurate continuous estimation results
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FIGURE 9

Fitted curves of EMG signals of the healthy ankle from the first set of data of the diseased test subjects.

TABLE 1 Comparison of MSE based on training data.

Healthy (group 1) Healthy (group 2) Healthy (group 3) Healthy (group 4) Patient (group 1)

2 km/h 0.7412 0.6723 0.5221 0.2811 0.2362

3 km/h 0.5030 0.6530 0.9210 0.6909 \

5 km/h 0.6857 0.6110 0.6741 0.6267 \

Static 2.4677 3.7219 3.1074 1.0042 \

for the lower extremity joints, the regression performance of the
lower extremity hip, knee, and ankle joints is evaluated using the
following R2 performance metrics. R2 and RMSE are defined as
shown in Equations 23, 24, respectively:

R2
= 1−

i = 1
n
6 (θi−θ̂i)

2

i = 1
n
6 (θi−θ)2

∈ [0, 1] (23)

RMSE =

√√√√ i = 1
n
6
(
θi−̂θi

)2

n
(24)

where θi is the actual value of the angle of the target joint, θ̂i is the
angle of the joint predicted by the model, θ is the average value of
the actual angle θi, and n is the length of the sampling sequence. In
addition, we perform a statistical analysis using one-way analysis of
variance (ANOVA) under the 0.05 level of significance.

3.2 Result and discussion

Since each healthy person has 4 test states, 5 healthy people
contain 20 sets of test data. The patients contain 2 sets of test data.
Considering that the output signals are characterized by obvious
periodicity, trend and seasonality, autoregressive processing is
performed on the test data in order to highlight the characteristics
of the output data for the training of the proposed network model.
According to the length of the data sequence, the data of the first
4 healthy subjects, which is the first 90,000 points of the 16 sets
of data with the first 50,000 points of the first set of data of the
patients are taken respectively. The time step of autoregression is
chosen as 5, which is the input and output data at the moment
of t–1, t–2,......t–5 and the input data at the moment of t are used
simultaneously for the prediction of the output data at the moment

of t. In the experimental process, for the proposed network, one
layer CNN is set for initial feature extraction. A two-layer LSTM
network with SAM followed by one-layer LSTM is used for depth
feature extraction. Three full connection layers is applied to obtain
the predicted output. Adam is used as an optimizer to determine
the optimal solution of the loss function. The parameter setting
strategy of the network not only ensures that the network captures
data characteristics efficiently, but also does not have too much
computational burden. Since the data input dimension is 3 and the
output dimension is 1, the data before combination is a vector of
6 rows and 4 columns. The data after regression combination is
transformed into a vector of 1 row and 24 columns, where the data
in the first 23 columns are treated as input data to the model, and
the data in the last 1 column is the output data corresponding to the
current t moment. Combined with the time dimension, the length
of the time series is 1,490,000. The first 23 columns of data are input
into the model to obtain the predicted value y of the model, and the
loss value is calculated for the predicted value and the 24th column
of output data in order to update the parameters of the network
model and complete the learning and training of the model. Using
the trained model, predictions are made for the posterior 30,000
points of data for the first 4 health testers, and for the posterior
20,000 points of data for patient group 1. The test results for the
four groups of health testers are shown in Figure 7. In order to
highlight the superiority, the existing prediction LSTM algorithm
in Dong et al. (2023) and the algorithm in Zhou et al. (2022) are also
tested for prediction healthy subject 1 in Figure 8. Comparison and
verification results show that the proposed prediction algorithm has
better prediction accuracy and robustness. The results for patient
group 1 are shown in Figure 9. The results show that the proposed
method has good tracking performance for lower limb motion
angle prediction.

The results of the MSE comparison between the predicted data
and the real data for the different exercise modes are shown in
Table 1. It can be seen from the table that the MSE errors in the
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FIGURE 10

Histogram of the coefficient of determination of projected versus real data.

walking condition are small and within 1◦ for both healthy and
diseased subjects. The static metatarsal dorsiflexion exercise had an
MSE within 5◦ due to the wider angular range of the exercise.R2 can
be used as a better criterion for use in this study as the error range
of MSE fluctuates due to the different angular ranges of motion of
different subjects in different modes of motion.

3.2.1 Effects of different exercise modes
The ankle angle prediction curves for the four movement

speeds of the testers are shown in Figures 7, 9. Not only the
tracking deviation between the estimated angle and the target angle
of healthy subjects is small in the CNN-LSTM model, but the model
also shows good regression performance for the ankle motion of
diseased testers. It can be seen that our proposed multilayer CNN-
LSTM network model incorporating the self-attention mechanism
has good tracking performance and high prediction accuracy.

Two indicators, RMSE and R2 are used to evaluate the quality
of the method in predicting the ankle joint angle. Comparison of
the coefficient of determination between the predicted data and the
real data under different motion modes is shown in Figures 10, 11,
and it can be seen that most of the coefficients of determination
are above 0.99, which means that the predicted data of the model
have a better correlation with the real data, and they can reflect
the dynamic characteristics of the system very well. It should be
noted that the movement of the tester at 2 km/h belong to slow
movement. Due to the difference in height and weight, in this case,
the lower limbs of the test subjects cannot be fully moved, resulting
in different EMG signals for each test subject. The test results in
Figure 7 also show that the prediction error is larger under the
motion state of 2 km/h. Therefore, the error band for 2 km/h

FIGURE 11

Comparison of the coefficient of determination between predicted
and real data for different exercise modes.

is larger in Figure 11. When the walking speed is increased to
3 km/h, it is closer to the natural walking speed of the human body,
the human gait is more natural, the muscle coordination is stable
and flexible, and the prediction performance will be improved.
However, when the walking speed increases to 5 km/h, which
is faster than the human walking speed, the accuracy starts to
decrease. This indicates that the closer the walking speed is to
the normal walking speed of human body, the better the muscle
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FIGURE 12

Cross-validation of ankle EMG signal fitting curves for the fifth healthy tester and the second set of data from the diseased tester.

FIGURE 13

Comparison of determination coefficients between prediction and cross-validation data.

coordination of the lower limbs is; when it is faster or slower
than the normal walking speed of human body, the muscles of
the lower limbs are in a situation of insufficient coordination or

fatigue, which is contrary to the normal pattern, and the prediction
results of the model will decline more and more, which is in
line with the normal walking law. For the static plantarflexion
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TABLE 2 Comparison of MSE based on test data.

2 km/h
(healthy group 5)

3 km/h
(healthy group 5)

5 km/h (healthy
group 5)

Static (healthy
group 5)

Left foot (patient
group 2)

0.2728 0.6909 0.6267 1.0042 6.0589

state, the model predicted the best results, which may be due
to the fact that there is no floor force contact with the ankle
plantar dorsiflexion in the static state, which reduces the complex
interactions between the foot and the ground or the influence of
shoes.

3.2.2 Effects between healthy and patient
subjects

The MSE values of healthy subjects and patients under walking
exercise showed significant differences. Since people with weak
abilities are also prone to problems such as muscle fatigue or even
cramps, and in some cases there are factors such as high muscle
tone, this study can further explore the reasons for these differences,
such as physical fitness differences, testing conditions, and health
status. It helps to understand the differences in physiological
responses between healthy and sick subjects at different exercise
intensities. As shown in Table 1 the MSE values of sick subjects are
generally lower than those of healthy subjects, which suggests that
there are some differences between the results of sick testers and the
expected values in these particular exercises.

3.2.3 Effects of model-oriented motor
characteristics of healthy and patient subjects

For patients with lower limb motor dysfunction, there is usually
a more severe motor deficit on the affected side, whereas the
functional decline is usually weaker on the healthy side. As a result,
the sEMG signals we acquire often alternate between useful and
useless information, which can lead to problems such as gradient
vanishing or gradient explosion, causing loss of information. In
addition, these dysfunctional people are prone to problems such
as muscle fatigue and even spasticity. The angles of their lower
limb movements are more complicated and abnormal. Therefore,
extracting the relationship between sEMG signals and movement
trajectories under the above more complicated and non-ideal
factors is a challenging problem.

In order to verify the generalization performance of our
proposed model and the motion estimation performance for
subjects with lower limb motor dysfunction, we input the
second set of untrained data from the fifth healthy and diseased
participants into the model for ankle joint angle prediction. The
results are shown in Figure 12. For healthy subject 5, who is
not included in the trained dataset, sEMG and corresponding
movement angles are measured at different movement speeds
(2 km/h, 3 km/h, 5 km/h) and static plantarflexion and dorsiflexion
movement states. The results in Figure 13 indicate that, in
comparison with subjects 1–4, the predicted R for the walking
angle of healthy subject 5 without model training is slightly
lower but still greater than 0.985. However, with p > 0.05,
the difference is not statistically significant. This confirms that
the model exhibits good prediction performance for data from
subjects not included in the training set. For patient subject
2, the R > 0.99 for the untrained data on the affected side

demonstrates the effectiveness of our proposed model in predicting
angles on the affected side. However, as indicated in Table 2,
the MSE value is higher compared to the training data, reaching
6.0589. This may be attributed to the extensive angle fluctuation
in the late stages of exercise due to muscle spasm or fatigue in
diseased subjects. Consequently, the MSE value of the prediction
exhibits a substantial error compared to that of the training
data.

By estimating the lower limb motion for subjects other than
the training data, it can be seen that our proposed method
not only has better model generalization ability, but also can
predict the lower limb motion angle of the patient in a more
ideal way. This helps to identify the physiological differences
between healthy individuals and patients in specific movement
states or static states. Further analysis can try to identify the
physiological or medical factors that lead to these differences, which
has potential applications for disease diagnosis, treatment, or health
status assessment.

4 Discussion and conclusion

In this article, a multilayer CNN-LSTM prediction network
model incorporating a self-attention mechanism is proposed. In
order to validate the performance of the model in predictive
tracking of ankle joint mobility for different populations. The
remaining data of both healthy and patient subjects are treated
as test data and inputted into the model, and the prediction
results of different motion states for the fused model are
compared. The results show that most of the model’s prediction
R > 0.9 for different motion states of healthy subjects; in the
experiments oriented to the motion characteristics of patient
subjects, the angle prediction results of R > 0.99 for the untrained
data on the affected side, which proves that our proposed
model also has a better effect on the angle prediction of the
affected side. Therefore, the model we propose in this article
not only has a good exercise estimation ability for healthy
subjects, but also can be used for exercise estimation of lower
limb dysfunction, which helps to understand the differences
in physiological responses between healthy and patients under
different exercise modalities, and further analysis can try to find out
the physiological or medical factors that lead to these differences,
which can then be used for the evaluation of rehabilitation
efficacy oriented to clinical patients. The main merits of the
proposed method include that the design network architecture has
been designed and improves the interpretability and prediction
accuracy of the auto-regression model, and reduces the problems
of gradient disappearance or explosion caused by redundant
sensor information.

Electromyogram neural information collected from
the human body provides a new idea for human–robot
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interaction, and this study provides a feasible solution for
accurately estimating the ankle angle of the lower extremity in both
health and patients. Future work can be applied to the control of
exoskeleton robots, clinical rehabilitation training and evaluation.
However, this study also has some limitations. Since patients with
post-stroke hemiparesis are virtually unable to perform lower limb
walking movements in Brunnstrom stage I and II, our experiment
was only able to estimate movements for patients in stage III and
above. Subsequently, we will expand the number and range of
subjects and explore multi-sensor fusion methods to enhance the
reliability of the model.
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Deformable registration plays a fundamental and crucial role in scenarios 
such as surgical navigation and image-assisted analysis. While deformable 
registration methods based on unsupervised learning have shown remarkable 
success in predicting displacement fields with high accuracy, many existing 
registration networks are limited by the lack of multi-scale analysis, restricting 
comprehensive utilization of global and local features in the images. To address 
this limitation, we  propose a novel registration network called multi-scale 
feature extraction-integration network (MF-Net). First, we propose a multiscale 
analysis strategy that enables the model to capture global and local semantic 
information in the image, thus facilitating accurate texture and detail registration. 
Additionally, we  introduce grouped gated inception block (GI-Block) as the 
basic unit of the feature extractor, enabling the feature extractor to selectively 
extract quantitative features from images at various resolutions. Comparative 
experiments demonstrate the superior accuracy of our approach over existing 
methods.

KEYWORDS

deformable image registration, unsupervised learning, convolutional neural network, 
multi-scale, gating mechanism

1 Introduction

Deformable image registration involves obtaining non-rigid spatial transformations from 
a moving image to a fixed image, representing a crucial step in tasks such as surgical navigation 
and image-assisted analysis (Nakajima et al., 2020; Drakopoulos et al., 2021; Geng et al., 2024). 
For instance, Drakopoulos et al. (2021) introduced the deformable registration method into 
the AR neuro-navigation system to assist brain tumor resection in functional areas of the 
brain. Geng et al. (2024) used deformable registration to obtain brain templates for Chinese 
babies, which can be  used for investigating neural biomarkers for neurological and 
neurodevelopmental disorders in Chinese populations. The significance of deformable 
registration in influencing the outcomes of these tasks cannot be overstated, as it plays a crucial 
role in ensuring their success.
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Learning-based methods for deformable registration involve 
modeling the registration process as a neural network. This approach 
entails iteratively optimizing the network parameters across the entire 
dataset to obtain a shared registration function. Learning-based 
registration can be  categorized into supervised and unsupervised 
learning methods.

Supervised learning registration uses the true spatial 
transformations as labels, wherein neural networks are utilized to 
learn the spatial relationships between moving and fixed images. 
Obtaining these labels through manual annotation is impractical; 
hence, they are commonly obtained through traditional algorithms 
(Cao et al., 2017, 2018; Yang et al., 2017). For instance, Yang et al. 
(2017) proposed a Large Deformation Diffeomorphic Metric Mapping 
(LDDMM) model to register brain MR scans by using results from 
optimizing the LDDMM shooting formulation as labels. Cao et al. 
(2018) used the SyN algorithm (Avants et al., 2008) and Demons 
algorithm (Vercauteren et al., 2009; Lorenzi et al., 2013) to obtain 
displacement fields as labels for training the model, resulting in a 
model for aligning brain MR scans. However, this method for 
obtaining labels has limitations. Specifically, the use of traditional 
algorithms can potentially constrain the model’s performance due to 
the accuracy limitations inherent in these algorithms. Consequently, 
the performance of supervised registration is limited by the 
restrictions of label acquisition.

Due to the limitation of supervised registration, current research 
has shifted toward unsupervised registration. These models 
incorporate a differentiable Spatial Transformer Network (STN) 
module (Jaderberg et  al., 2015) to apply the displacement fields 
generated by neural networks to the moving images, resulting in 
warped images. The similarity between the warped images and fixed 
images serves as the loss function guiding the optimization of model 
parameters (Balakrishnan et al., 2018; Hu et al., 2019; Mok et al., 2020; 
Ma et  al., 2023). VoxelMorph (Balakrishnan et  al., 2018), a 
representative unsupervised registration network, used a U-shaped 
network as its backbone to align brain MR scans. Huang et al. (2022) 
proposed a network for brain registration, which enhanced the 
model’s capabilities by introducing an inception block and a 
hierarchical prediction block based on the U-shaped network. 
Additionally, Chen et al. (2022) proposed a brain registration network 
utilizing transformer modules and adopting a U-shaped structure. The 
aforementioned work addressed the deformable registration issue to 
some extent. However, these registration models only extract features 
from the original resolution image pairs, which overlooks the analysis 
of multi-scale semantic information and constrains the comprehensive 
utilization of global and local features by the model. As a result, these 
methods fail to achieve finer registration.

Several studies have addressed unsupervised registration task 
from the multi-scale perspective, such as LapIRN (Mok and Chung, 
2020), Dual-PRNet (Kang et  al., 2022), and Symmetric pyramid 
network (Zhang et  al., 2023). These methods achieve multi-scale 
registration by progressively warping images through the acquisition 
of multiple upsampled displacement fields. However, upsampling and 
composition of displacement fields can lead to error accumulation, 
resulting in deviation between the final registration outcome and the 
true transformation, especially when noise or distortions are 
introduced at multiple stages. In addition, the lack of control over 
information flow prevents these models from adequately filtering out 
valid information.

To improve the model’s multi-scale analysis capability, 
we introduce a new registration network called the multi-scale feature 
extraction-integration network (MF-Net). This work’s main 
contributions are:

 • Our novel unsupervised deformable registration network is 
based on a multi-scale feature extraction-integration strategy and 
comprehensively models both global and detailed information of 
images, thereby enhancing the deep representation of the 
registration model. The network is comprised of three main 
components: an image pyramid, a selective feature extractor 
(SFE), and a feature integration path (FIP). This design allows for 
the comprehensive capture of image features at different scales 
while also integrating them effectively to enhance the overall 
registration performance.

 • The grouped gated inception block (GI-Block) was specifically 
designed as the basic unit of the SFE in order to facilitate the 
selective extraction of different features from images of varying 
resolutions. By employing filters with various receptive fields and 
utilizing gating mechanism to regulate feature flow, the GI-Block 
is able to effectively extract quantitative information from images 
at different resolutions. Furthermore, the implementation of 
grouped convolution operations within the GI-Block contributes 
to the efficient processing of information.

 • Comparative experiments show that our model achieves higher 
accuracy than existing models. Ablation studies also confirm the 
effectiveness of the multi-scale strategy and gating mechanism.

2 Methods

2.1 Formalized description

For a pair of fixed image F R:Ω→  and moving image M R:Ω→  
defined in the subspace Ω  of R3, the objective of deformable 
registration is to predict a displacement field φ :Ω→ R3 to warp the 
moving image so that the warped image M φ is aligned with the fixed 
image F , as shown in Equation (1).

 
F x M x x x( ) ≈ + ( )( ) ∈φ , Ω

 (1)

Where “ ≈ ” denotes that M φ  and F  achieve the highest 
anatomical similarity, and x denotes any point in the image. We model 
deformable registration as Equation (2).

 
f F Mθ φ,( ) =  (2)

where θ  represents the parameters of the function. We employ a 
neural network to learn this registration function.

2.2 Multi-scale feature 
extraction-integration network (MF-Net)

Figure  1 illustrates the overall architecture of the proposed 
MF-Net. For clarity, we use 2D slices instead of the original 3D images. 
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Rather than employing an encoder-decoder strategy like U-shaped 
structure, our method utilizes a multi-scale feature extraction-
integration strategy. Specifically, our model is composed of an image 
pyramid, a selective feature extractor (SFE), and a feature integration 
path (FIP). To begin, an image pyramid is generated from an image 
pair consisting of a fixed image F  and a moving image M . Following 
this, the different levels of the image pyramid are input into a shared 
SFE to extract features at corresponding scales. Ultimately, the 
extracted multi-scale features are integrated by FIP to generate the 
displacement field φ , which includes the displacement of each pixel in 
the x, y, and z directions.

2.2.1 Image pyramid
To address the limitations of the U-shaped structure, which only 

extracts features from the original resolution images, an image 
pyramid component is introduced into our network. This component 
follows the multi-resolution strategy employed in traditional image 
algorithms. Specifically, the fixed image and the moving image are 
concatenated along the channel dimension and down-sampled using 
trilinear interpolation to generate an N-layer image pyramid 
L L LN1 2, , ,…{ }, where L1 is the original image pair. For simplicity, N  is 

set to 3 in this paper.

2.2.2 Selective feature extractor
To adaptively extract quantitative information from various levels 

of the image pyramid, we propose the SFE. The SFE utilizes grouped 
gated inception blocks (GI-Blocks) with a gating mechanism, allowing 
for adaptive feature extraction from images at varying resolutions. For 
various levels of the image pyramid, features are extracted using a 
shared SFE. This design ensures versatile feature extraction capabilities 
tailored to the varying resolutions of the image pyramid.

2.2.2.1 Architecture of SFE
The proposed SFE architecture is shown in the top half of Figure 2. 

SFE is comprised of densely connected GI-Blocks. The decision to use 

dense connections for feature extraction is rooted in the idea that 
these connections continually amalgamate features at various levels, 
thereby allowing the model to seamlessly integrate semantic 
information from different levels and synthesize semantic cues for the 
generation of a registration displacement field.

We start by feeding a specific level Ln from the set L L LN1 2, , ,…{ } 
into a strided convolutional layer to halve the size of the feature map, 
as shown in Equation (3).

 
Y StridedConv Ln

C
n

1
3 3 3
2 1= ( )× ×
→

 (3)

Where StridedConv C
3 3 3
2 1

× ×
→  represents a 3 × 3 × 3 kernel size 

convolutional layer with input channels of two, output channels of C1
, and a stride of two. Next, the feature map is fed into a dense path 
comprised of densely connected GI-Blocks, as shown in Equation (4).

 
Y DensePath Yn n

2 1= ( )
 

(4)

Where the DensePath  represents a densely connected path 
consisting of M  GI-Blocks. We fix the output channel number of the 
GI-Blocks as K , which is also referred to as the growth rate (Huang 
et al., 2017).

According to the structure of the dense connection, the channel 
number of Yn2 is C M K1 + × . To simultaneously fix the input channel 
number of the GI-Blocks, we linearly scale the channel number of the 
feature map to 4K  before feeding it into the GI-Block. Finally, 
we linearly scale the channel number of the output from the densely 
connected path to 4K  and feed it into a transposed convolutional layer 
with an output channel number of C2to restore the size of the feature 
map, as shown in Equations (5, 6).

 
Y LinearScale Yn

C M K K
n

3 4 21= ( )+ ×( )→
 

(5)

FIGURE 1

Overview of the proposed MF-Net framework. Our MF-Net consists of three main modules: an image pyramid, a shared SFE, and a FIP. Firstly, the 
image pyramid is used to create multi-resolution sub-bands of the original image. Then, the shared SFE is employed to extract features from the 
different sub-bands generated by the pyramid. Finally, the FIP performs the crucial task of integrating the multi-scale features extracted by the SFE and 
utilizing the integrated features to produce the displacement field.
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F TransposeConv Yn

K C
n= ( )× ×

→
4 4 4
4 32

 
(6)

We set K  and C1 to 32, C2 to 16, and M  to 5. Note that for 
simplicity, only four GI-Blocks are shown in Figure 2.

2.2.2.2 GI-Block
To adaptively extract quantitative information from images at 

various resolutions, we propose the GI-Block. The structure of the 
GI-Block is shown in the lower part of Figure  2. The proposed 
GI-Block consists of four parallel branches. The first branch 
employs a 3 × 3 × 3 convolutional layer to extract features with a 
smaller receptive field. The second branch uses two 3 × 3 × 3 
convolutional layers to approximate a 5 × 5 × 5 convolution (Szegedy 
et al., 2016), extracting features with a larger receptive field. The 
third branch includes a max-pooling layer and a linear scaling layer 
(i.e., a 1 × 1 × 1 convolutional layer). The max-pooling layer is 
responsible for extracting representative information from the 
input feature map, and the linear scaling layer scales the extracted 
representative information. Finally, the fourth branch utilizes only 
a linear scaling layer to preserve the features of the original input. 
We split the input feature map into four parts along the channel 
dimension, and then input each part into each of the four branches 
mentioned above.

To enhance the differentiation of receptive field weights for 
feature maps at varying resolutions in GI-Block, we introduce the 
gating mechanism. This mechanism addresses the need for distinct 
receptive field weights for images with different resolutions. 
Specifically, information extracted from a smaller image should 
include more features extracted using a smaller receptive field filter, 
while information extracted from a larger image should include 
more features extracted using a larger receptive field filter. To 
achieve this, the gating mechanism is incorporated. We feed the 
features extracted by the first two branches into a convolutional 
layer with a kernel size of 3 × 3 × 3 and an activation function of 

SoftSign to obtain weights in the range of 0–1. These weights are 
then multiplied with the original features, resulting in the gated 
features. The formula for the gating mechanism is described as 
Equation (7).

 
Y X Sigmoid Conv XC C= × ( )( )× ×

→
1 1 1  

(7)

Where X represents the input to the gating mechanism, and Y 
represents the output of the gating mechanism.

Finally, the feature maps extracted by different branches are 
merged along the channel dimension and fused through a 1 × 1 × 1 
convolutional layer to prevent potential feature disintegration caused 
by group convolution.

2.2.3 Feature integration path
To integrate the extracted multi-scale semantic information and 

generate a registration displacement field using the integrated 
semantic information, we propose the FIP module. Figure 3 illustrates 
the structure of the FIP. The lower resolution feature map is doubled 
in size through transpose convolution and then connected to the 
feature map at a higher resolution via residual connection. The 
resulting feature map then undergoes the same process iteratively until 
reaching the feature map at the highest resolution, as shown in 
Equation (8).

 
F TransposeConv F F n Nn

C C
n n

′
× ×
→

+
′= ( ) + ∈ −[ ]4 4 4

2 2
1 1 1, ,

 
(8)

When n N= , F FN N
′ = . Finally, the integration features pass 

through the output layer, a convolutional layer with a SoftSign 
activation function, to produce the registration flow field, as shown in 
Equation (9).

 
φ = × ( )( )× ×

→ ′R SoftSign Conv FC
N3 3 3

3

 
(9)

FIGURE 2

Architecture of the SFE. For simplicity, only four GI-Blocks are shown.
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where R is the scale factor and we set R to 20.

2.3 Loss functions

To guide the optimization of the neural network, we employ an 
intensity-based similarity metric between M φ  and F . Our 
method is unsupervised as the loss function does not necessitate 
the introduction of labels. In order to mitigate folding in the 
displacement field that deviates from anatomical constraints, 
we  utilize the gradient norm of the displacement field as a 
regularization term.

2.3.1 Similarity loss
We use normalized cross-correlation (NCC) to measure the 

similarity between M φ  and F . The NCC function yields values 
ranging from 0 to 1, with higher values indicating higher similarity. 
We  take the negative of the similarity metric so that as the loss 
function decreases, the similarity measure between the images 
increases, as shown in Equation (10).

 
L M F NCC M Fsim  φ φ, ,( ) = − ( )  (10)

2.3.2 Grad loss
If the optimization of the neural network is guided solely by 

the similarity metric between M φ  and F , it may lead to results 
that do not conform to anatomical constraints, such as abrupt 
changes or folding of the displacement field. To mitigate this 
situation, we introduce the norm of the displacement field gradient 
as a regularization term in the loss function, as shown in 
Equation (11).

 
L xgrad

x
φ φ( ) = ∇ ( )

∈
∑1

3

2

Ω Ω  
(11)

We combine the similarity metric and the regularization term into 
the overall loss function, as shown in Equation (12).

 
L L M F Ltotal sim grad= ( ) + ( )φ λ φ,

 (12)

Where λ is a hyperparameter used to balance the contributions of 
the two terms.

3 Experiments

3.1 Dataset and preprocessing

We conducted atlas-based registration experiments on the 
publicly available OASIS dataset (Marcus et  al., 2007). OASIS 
comprises 416 3D brain MR scans from participants aged 18–96. 
We utilized a processed version of OASIS (Balakrishnan et al., 2019), 
where the brain scans underwent skull stripping and subcortical 
structure segmentation. For our experiments, we randomly selected 
200, 35, and 35 scans as the training, validation, and test sets, 
respectively. We randomly chose five scans from each of the validation 
set and test set as fixed images, with the remaining scans serving as 
moving images. That is, each method was optimized on a training set 
containing 10 × 200 image pairs during training, and each method 
registered 5 × 30 image pairs during validation or testing.

We cropped unnecessary regions around the brain and resample 
the images to 96 × 112 × 96. Subsequently, intensity normalization was 
applied to each scan, mapping pixel intensities to the range [0,1] to 
facilitate network convergence. Finally, we  conducted affine 
pre-registration on the moving and fixed images in the dataset using 
ANTs toolkit (Avants et al., 2011).

3.2 Baseline methods and implementation

We compared the proposed MF-Net with three baseline methods, 
namely VoxelMorph, SYMNet (Mok et  al., 2020), and 
LapIRN. VoxelMorph is a classic unsupervised registration model 
utilizing a U-shaped convolutional network to predict the 
displacement field. We evaluated two variants proposed in their paper: 
VoxelMorph-1 and VoxelMorph-2. SYMNet predicts both forward 
and inverse transformations simultaneously through a U-shaped 
network, and provides diffeomorphic properties. LapIRN combines 
displacement fields at multiple scales to obtain the final registration 
displacement field. This study also predicts diffeomorphic 
transformations. We conducted evaluation on both LapIRN and its 
variant, LapIRNdisp., the latter of which abandons the diffeomorphic 
property while enhancing registration accuracy. All the mentioned 
methods were used for brain MR registration in their respective 
original papers. We  used the official implementations of these 
methods and followed the recommended guidelines, adjusting 
hyperparameters to ensure the best registration performance.

FIGURE 3

Architecture of the FIP. F1, F2, and F3 represent features extracted 
from L1, L2, and L3, respectively. φ  denotes the final output of the 
network, i.e., the displacement field.
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We implemented MF-Net using PyTorch (Paszke et al., 2017) and 
employed the AdamW optimizer (Loshchilov and Hutter, 2017) with 
a learning rate of 0.0001 for training over 100 epochs. The 
hyperparameter λ is set to 1. All experiments were conducted on a 
personal workstation equipped with an RTX 3080 GPU and an 
Intel(R) i7-10700KF CPU.

3.3 Evaluation metrics

3.3.1 Dice score
We quantified the degree of overlap between the fixed image and 

the warped image using the dice score, Dice (1945) computed from 
the anatomical tissue segmentation masks of the fixed image and the 
warped image, as shown in Equation (13).

 

Dice
F M

F M

msk msk

msk msk
= ⋅

∩ ( )
+

2




φ

φ
 

(13)

Where Fmsk  and Mmsk  denote the subcortical segmentation 
masks of the fixed image and the moving images, respectively. The 
dice score, ranging from 0 to 1, signifies the degree of overlap, with a 
higher score reflecting increased registration accuracy.

3.3.2 Jacobian determinant
We evaluated the smoothness of the deformation field by 

computing the percentage of voxels with a non-positive Jacobian 
determinant (|JD ≤ 0|). The formula for the Jacobian determinant of 
the displacement field is given by Equation (14).

 

J p

p
x

p
y

p
z

p
x

p
y

p
z

p

x x x

y y y

z

φ

φ φ φ

φ φ φ

φ

( ) =

∂ ( )
∂

∂ ( )
∂

∂ ( )
∂

∂ ( )
∂

∂ ( )
∂

∂ ( )
∂

∂ (( )
∂

∂ ( )
∂

∂ ( )
∂x

p
y

p
z

z zφ φ

 

(14)

A smaller percentage suggests a higher level of smoothness.

3.4 Comparative evaluation

Table 1 provides the average dice score and the percentage of 
voxels with non-positive Jacobian determinants (|JD ≤ 0|) for all 
subjects and structures, encompassing VoxelMorph-1, VoxelMorph-2, 
SYMNet, LapIRN, LapIRNdisp, and our MF-Net. We also include affine 
transformation for comparison purposes. It is evident that our 
MF-Net achieves better registration accuracy with few folding voxels. 
While SYMNet and LapIRN achieved entirely smooth displacement 
fields through diffeomorphic transformation, this achievement comes 
at the expense of registration accuracy.

Figure 4 illustrates registration example slices of brain MR scans 
under different methods. As evident from the difference map between 
the fixed image and the warped image obtained by various methods, 

our method yielded a warped image that is most similar to the fixed 
image. Both quantitative and qualitative evaluations demonstrate the 
effectiveness of our multi-scale feature extraction-fusion strategy. 
Additionally, to improve comprehension of the registration process, 
we display the slices of the displacement field output by each method 
in Figure 5.

3.5 Ablation analysis

To further validate the effectiveness of the multi-scale feature 
extraction-fusion strategy, we  omitted the multi-scale strategy of 
MF-Net and predicted the displacement field solely based on images 
at the original resolution. We label this network as MF-Net-1. Table 2 
displays the registration metrics of MF-Net and MF-Net-1 on the test 
set. It can be  observed that MF-Net exhibits higher registration 
accuracy than MF-Net-1. This experiment demonstrates that our 
network, employing the multiscale analysis strategy, can more 
efficiently capture features at various scales, thereby improving the 
model’s registration performance.

To verify the effectiveness of the proposed gating mechanism, 
we  omitted the gating mechanism of GI-Block in our variant 
MF-Net-2. Table  3 presents the quantitative evaluation results 
before and after the removal. It is evident that MF-Net demonstrates 
better registration accuracy compared to MF-Net-2. This 
experiment demonstrates that the gating mechanism can efficiently 
extract meaningful information from redundant cascade features, 
automatically learning the weights of different sensory field 
features, and thereby improving the model’s registration  
performance.

4 Discussion

Although both utilize multi-scale information from images, 
MF-Net differs from existing models represented by LapIRN. Like 
most existing registration networks based on multi-scale strategies, 
LapIRN achieves multi-scale information fusion by continuously 
compositing the generated multi-scale displacement fields. In contrast, 
MF-Net extracts multi-scale features, then fuses these features, and 
finally, obtains the registration displacement field from the fused 
features. In other words, MF-Net fuses the multi-scale information 

TABLE 1 Comparison of different methods on the dataset, with affine 
registration used for reference.

Method Dice (%) |JD  ≤  0|

Affine Only 56.33±0.04 -

VoxelMorph-1 73.07±0.04 186±38

VoxelMorph-2 73.94±0.05 392±69

SYMNet 71.89±0.31 0.5±0.4

LapIRN 71.43±0.04 0

LapIRNdisp 74.89±0.18 1757±259

MF-Net (ours) 75.38±0.05 332±22

Dice measures registration accuracy (higher values are better), and |JD ≤ 0| indicates the 
number of folding voxels that do not conform to the anatomical structure. Please note that 
the best-performing results are highlighted in bold.
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earlier than LapIRN, which may be one of the reasons for the better 
accuracy of our method, considering that LapIRN uses multiple 
displacement fields that may cause the accumulation of errors. 
Furthermore, our feature extractor adjusts the flow of feature 
information through gating mechanism, which may be  another 
contributing factor.

In addition, we  changed the resolution of images in the 
preprocessing stage through resampling, potentially impacting the 

model’s performance due to the loss of image information. It is 
important to note that while our manipulation has affected the results 
of individual models, it does not alter the comparison of different 
models, as our comparisons of different models were conducted under 
the same conditions. The disparity between MF-Net and the baselines 
might become more apparent when training and testing are conducted 
using images at their original resolution. Given our model’s better 
feature extraction abilities, it is expected to more effectively analyze 

FIGURE 4

The registration results for a representative sample within the dataset employing six distinct methods. The second and fourth rows show the heat 
maps, which illustrate the absolute differences between the warped image and the fixed image. Notably, the lower right corner of the warped image 
shows the dice score, which indicates the degree of similarity between the warped image and the fixed image.
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the additional information available at the original resolution. 
Therefore, the gap between our model and the baselines may expand 
in such scenarios.

5 Conclusion

In this study, we introduced a novel 3D image deformation 
registration network named MF-Net, which is built upon the 
multi-scale feature extraction-fusion strategy. MF-Net enhances 
the model’s analytical ability by integrating multi-scale 
information, thereby balancing image texture and detail 
registration. Within our network, we design the GI-Block as the 
basic unit of the feature extractor, which adaptively extracts 
quantitative information through gating mechanism. Compared 
with existing registration approaches, our network demonstrated 

better registration accuracy. Ablation experiments further 
indicated that the proposed multi-scale strategy can improve 
registration performance. Our work has potential applications in 
the fields of neuronavigation and brain image-assisted analysis. 
This expands the scope for future research and applications in the 
realms of neurosurgery and neuroscience.
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FIGURE 5

Slices of the displacement field. The red, green, and blue colors in 
the image show voxel displacement in three directions.

TABLE 2 Ablation analysis of the multiscale strategy on the MF-Net.

Method Dice (%) |JD  ≤  0|

MF-Net 75.38±0.05 332±22

MF-Net-1 75.18±0.01 268±11

MF-Net is the proposed model, and MF-Net-1 is based on MF-Net but eliminates the multi-
scale feature extraction-integration strategy.

TABLE 3 Ablation analysis of the gating mechanism on the MF-Net.

Method Dice (%) |JD  ≤  0|

MF-Net 75.38±0.05 332±22

MF-Net-2 75.02±0.05 168±8

MF-Net is the proposed model, and MF-Net-2 is based on MF-Net but eliminates the gating 
mechanism.
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