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Editorial on the Research Topic

Data-driven approaches for efficient smart grid systems
s

Smart grid systems (SGSs) are leading the modernization of energy infrastructure
by integrating advanced technologies to improve efficiency, reliability, and sustainability.
These systems demand sophisticated tools to address their complexity, with forecasting and
optimization being crucial areas of focus. Machine learning (ML) techniques, including
both traditional neural networks and advanced deep learning approaches, play a significant
role in tackling the intricate challenges of SGSs.These methods enable accurate forecasting,
which is essential for predicting electricity demand, renewable energy generation, and
system loads. By supporting informed decision-making and efficient resource allocation,
ML provides both theoretical contributions and practical applications for smart grids. This
Research Topic, Data-Driven Approaches for Efficient Smart Grid Systems, explores the
innovative use of machine learning to address challenges specific to SGSs. Forecasting is
central to these efforts, as it forms the basis for understanding and managing the complex
dynamics of SGSs. While traditional methods have demonstrated promise, they also
highlight limitations in adaptability, scalability, and precision, particularly when addressing
the evolving needs of modern smart grids. These challenges call for advanced algorithms
that integrate diverse data sources, capture spatiotemporal relationships, and account for
uncertainties.

The Research Topic is organized into four thematic areas (“forecasting and prediction
techniques”, “optimization and scheduling in power systems”, “data quality, validation, and
identification”, and “research trends and evaluations in energy systems”), which highlight
the variety of approaches and contributions from the 13 papers accepted.

The first area focuses on forecasting and prediction techniques, essential for managing
renewable energy sources and optimizing grid operations. Yang et al. presented “A
Study of Short-Term Wind Power Segmentation Forecasting Method Considering Weather
on Ramp Segments,” introducing a hybrid method that combines LightGBM-LSTM for
non-ramping segments and CNN-BiGRU-KDE for ramp segments, achieving improved
accuracy under extreme weather conditions. Zhao et al. proposed “Photovoltaic Output
Prediction Based on VMD Disturbance Feature Extraction and WaveNet,” which integrates
variational mode decomposition withWaveNet, achieving amean absolute percentage error
of 6.94%. Huang et al. introduced “Ultra-Short-Term Prediction of Microgrid Source Load
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Power Considering Weather Characteristics and Multivariate
Correlation,” presenting a joint forecasting model that uses
multivariate correlation techniques and neural networks to enhance
prediction accuracy for microgrid sources and loads. Peng et al.
proposed “Short-Term Wind Power Prediction and Uncertainty
Analysis Based on VDM-TCN and EM-GMM,” using a VDM-
TCN-based method to reduce RMSE errors and Gaussian mixture
models for uncertainty analysis. Chen et al., in “A Physical Virtual
Multi-Graph Convolutional Coordinated Prediction Method for
Spatio-Temporal Electricity Loads Integrating Multi-Dimensional
Information,” developed a multi-graph convolutional network that
models spatiotemporal dependencies, leading to more accurate
short-term electricity load forecasts.

The second area explores optimization and scheduling in power
systems, which are critical for ensuring cost-effective and reliable
operations. Lu et al., in “Optimal Scheduling of theActiveDistribution
Network with Microgrids Considering Multi-Timescale Source-Load
Forecasting,” presented a hierarchical scheduling strategy that
combines CNN-LSTM forecasting with a two-layer optimization
framework, reducing operational costs and network losses. Jain and
Gupta contributed “Optimal Placement of Distributed Generation in
Power Distribution Systems and Evaluating the Losses and Voltage
Using Machine Learning Algorithms,” introducing a hybrid ML
approach that combines support vector machines, random forest,
and radial neural networks to optimize distributed generation
placement, improving voltage profiles andminimizing power losses.

The third area addresses data quality, validation, and
identification, which are fundamental for the success of ML
applications in SGSs. Jiang et al., in “A Multi-Task Learning-
Based Line Parameter Identification Method for Medium-Voltage
Distribution Networks,” proposed a framework that uses graph
attention networks and multi-gate mixture-of-experts to improve
line parameter identification. Hu et al. developed “Bad Data
IdentificationMethod Considering the On-Load Tap Changer Model,”
a two-stage method that addresses nonlinearities introduced by
on-load tap changers, improving state estimation reliability in
distribution networks. Cao et al., in “Intelligent Substation Virtual
Circuit Verification Method Combining Knowledge Graph and Deep
Learning,” proposed an approach combining knowledge graphs with
deep learning to improve the accuracy of virtual circuit validation
in substations. Li et al., in “Channel Prediction Method Based on
Data-Driven Techniques for Distribution AutomationMain Stations,”
introduced an adaptive broad learning network for communication
channel state prediction, enhancing transmission quality.

The final area examines research trends and evaluations in
energy systems, focusing on broader developments and identifying
gaps in energy system research. Jain and Gupta, in “Evaluation
of Electrical Load Demand Forecasting Employing Various Machine
Learning Algorithms,” evaluated short-term power load prediction
using 5 years of data from the Chandigarh UT electricity utility.
The study compares algorithms such as LSTM, SVM, ensemble
classifiers, and deep learning methods, concluding that LSTM
achieves the lowest prediction errors, outperforming SVM by

13.51%. Kizielewicz, in “Onshore Power Supply: Trends in Research
Studies,” examined the development ofOnshore Power Supply (OPS)
systems in ports to reduce exhaust gas emissions. By analyzing
technical, economic, and logistic factors, the study identifies key
research gaps and outlines a roadmap for future exploration.

The contributions in this Research Topic demonstrate the
potential of machine learning to advance smart grid systems. By
addressing challenges in forecasting, optimization, data validation,
and broader research trends, these papers provide valuable insights
and practical solutions for improving the efficiency, reliability,
and sustainability of SGSs. This collection reflects the growing
importance of data-driven approaches in bridging the gap between
research and real-world applications. We hope these works inspire
further research and collaboration across academia, industry, and
policymaking to enhance the capabilities of smart grids and support
global energy sustainability.

Author contributions

JW: Writing–original draft, Writing–review and editing. YYa:
Writing–review and editing. SS: Writing–review and editing. YYu:
Writing–review and editing.

Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

Frontiers in Energy Research 02 frontiersin.org6

https://doi.org/10.3389/fenrg.2024.1536459
https://doi.org/10.3389/fenrg.2024.1404165
https://doi.org/10.3389/fenrg.2024.1404165
https://doi.org/10.3389/fenrg.2024.1409647
https://doi.org/10.3389/fenrg.2024.1419898
https://doi.org/10.3389/fenrg.2024.1378242
https://doi.org/10.3389/fenrg.2024.1378242
https://doi.org/10.3389/fenrg.2024.1485369
https://doi.org/10.3389/fenrg.2024.1478834
https://doi.org/10.3389/fenrg.2024.1395621
https://doi.org/10.3389/fenrg.2024.1377161
https://doi.org/10.3389/fenrg.2024.1408119
https://doi.org/10.3389/fenrg.2024.1383142
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Onshore power supply–trends in
research studies

Joanna Kizielewicz*

Department of Management and Economics, Faculty of Management and Quality Science, Gdynia
Maritime University, Gdynia, Poland

Restrictive regulations introduced by the European Parliament and the United
Nations have forced the seaport authorities to reach net zero gas emissions by
2030. An important source of pollution emitted in ports involves exhaust gas
emissions from ships powered by ship engines while they are berthed in seaports.
One of the ways to reduce the level of pollution and nuisance caused by ship
engines is to equip ships with Onshore Power Supply (OPS). Unfortunately, still
few ports can boast this type of systems at their quays. There are many
publications devoted to the analysis of this phenomenon in the technical and
engineering terms, but a significant part also concerns the economic, financial,
logistic and organizational aspects. The aim of this research is to identify the
directions of development as for research into OPS, to organize the terminology
devoted to OPS, and to define scientific disciplines of research in the field of OPS.
This research was conducted on the basis of the data mining method using the
Scopus, EBSCO and Web of Science databases, applying the multi-stage
selection of criteria. The research results may provide an interesting material
for scientists to identify the gaps of research regarding OPS.

KEYWORDS

port management, onshore power supply, sustainable development, smart grid,
energy efficiency

1 Introduction

The seaport authorities are currently facing a major challenge related to investments
supporting the protection of environment and counteracting its pollution. Changes in the
Earth’s climate resulting from heavy environmental pollution, caused to a large extent by
the activities in the maritime economy, have made international institutions and
organizations raise the alarm and introduce numerous restrictions regulated by law.
Next to the International Maritime Organization (IMO) Convention for the Prevention
of Pollution from Ships (MARPOL) (IMO, 1973), It is worthmentioning primarily the most
important ones, i.e., The Directive 2000/59/EC on port reception facilities for ship-
generated waste and cargo residues with subsequent additions; Annex VI MARPOL
Convention regarding limits on emissions of SOx, NOx and particulate matter from
exhaust gases emitted from ships (IMO, 2015), and also a document called
“Transforming our world: the 2030 Agenda for Sustainable Development” (General
Assembly, 2015). In addition, two other documents developed in recent years, i.e.,:
17 Sustainable Development Goals (SDGS) issued in 2015 by the Organization of
United Nations, and the European Green Deal (EC, 2019) issued in 2019 by the
European Commission should also be mentioned.

The above-mentioned documents specify, inter alia, the permissible limits for pollutant
emissions in maritime transport and when ships are berthed in ports, and pave the way for
zero. In the case of seaports, it primarily refers to creating conditions aimed to reduce the
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level of pollution emitted by ships in ports (Viana et al., 2014)
increase the energy efficiency in port facilities and provide it for the
operators of ships at berth as well. Seaports are taking various
measures in this regard, and among them there is one solution that is
lately gaining in popularity, i.e., Onshore Power Supply (OPS).
(Vaishnav et al., 2016; Winkel et al., 2016; Innes and Monios,
2018; Chen et al., 2019; OPS Master Plan, 2021; World Port
Sustainability Program, 2021). Recently, the area of research as
regards OPS has been very popular, but it should be noted that the
source literature provides various definitions for OPS, and they are
discussed below in the first part of the study.

The above-mentioned issues and many other related to OPS are
currently the subject of numerous studies and analyses of scientists
from around the world. Therefore, the aim of this paper is to identify
the directions of OPS research development and to define the
scientific disciplines of research in the field of OPS. The
following research questions were formulated: 1) What are the
benefits of investments in OPS? 2) In which scientific disciplines
is OPS research currently conducted? 3)What are the current trends
and areas of research devoted to OPS?

The content of this paper is typical of such scientific papers; it
means that the paper consists of five main sections, including an
introduction to the subject related to the issues concerning OPS. The
second part of this article presents the review of current
achievements in the area of studies regarding OPS. The
methodology of the systematic literature review applied in the
analysis was described in the third part of this article, and the
fourth part was devoted to the presentation of the results. The article
ends with a discussion and conclusions expressing the
recommendations for further research for the potential groups of
interests as well as a list of reference literature.

In the article the method of a multi-stage systematic literature
review with the use of data mining was applied. The process of
selecting the criteria for analysis and the stages of research process
are presented in the chapter devoted to methodology. This article
may constitute the subject of interest for seaport authorities and
cruise ship owners.

2 Literature review

The International Association of Ports and Harbours (IAPH)
World Port Climate Initiative (WPCI) has developed an important
document on Onshore Power Supply, which is a key source of
information for all entities interested in investing in and using OPS,
showing the benefits of replacing onboard-generated power from
diesel auxiliary engines with electricity generated onshore (IAPH,
2010). In addition, the international standards for High-Voltage
Shore Connection (HSCV) (ISO/IEC/IEEE 80005-1:2012, 2012)
have been developed, describing systems for suppling ships with
electrical power from shore.

The website provides information on the environmental benefits
of OPS and the associated costs. It highlights the existing
installations in ports worldwide and the existing suppliers of the
OPS technology and overall provides guidance for OPS
implementation. The website is primarily targeted to port
authorities, terminal operators and shipping companies who are
considering the introduction or expansion of OPS technology.

According to the International Maritime Organization (IMO)
Shore Power Supply (OPS) “is considered a measure to improve air
quality in ports and port cities, to reduce emissions of air pollutants
and noise and, to a lesser extent, to reduce carbon dioxide through
ships at berth replacing onboard generated power from diesel
auxiliary engines with electricity supplied by the shore”
(International Maritime Organization IMO, 2012). At this point,
however, it should be noted that in the literature there are several
terms defining OPS, i.e.,

• Onshore Power Supply (OPS) (Li and Du, 2020),
• Shore-To-Ship Power (SSP) (Innes and Monios, 2018),
• Cold Ironing (CI) (Ballini and Bozzo, 2015),
• Shore Side Electricity (SSE) (Winkel et al., 2016; Stolz
et al., 2021),

• High-Voltage Shore Connection (HSCV) (ISO/IEC/IEEE
80005-1:2012, 2012), and

• Alternative Maritime Power (AMP) (Chen et al., 2019).

Bouman et al. (2017) indicated that Shore Side Electricity (SSE)
is an effective CO2 reduction measure for ships. Additionally, (Stolz
et al., 2021), proved that “shore side electricity can drastically reduce
the emissions from fossil fuel-powered auxiliary engines of ships at
berth”. They published very interesting research results presenting
the “CO2 emissions from the production of electricity required for
SSE and compared to the emissions of ships at berth”. (Stolz
et al., 2021).

Cold-Ironing (CI) is another frequently used term for OPS.
For example (Ballini and Bozzo, 2015), wrote that CI is “a fully
developed technology that allows vessels at berth to use shore
power rather than rely on electricity generated by their Auxiliary
Engines (AE)”. Moreover (Bakar et al., 2022), defined cold
ironing as “an electrification alternative in the maritime sector
used to reduce shipborne emissions by switching from fuel to
electricity when a ship docks at a port”. In this paper, the authors
presented the method of forecasting ship berthing duration that
can contribute to track of the cold ironing consumption. The
forecasting method can be used by other seaports in
estimating demand.

These various terms used to describe OPS have been applied
as keywords in the data mining process among
scientific databases.

Various technological solutions for OPS solutions for ships are
currently offered on the market, i.e.,: mobile power generator units,
compact modular cabling system, or main transformer station with
local stations at the berths, and also shore power box and other. It is
worth emphasizing that the costs of OPS installations depend on
(Bullock et al., 2023):

• types of OPS unit technology (e.g., centralised unit, outlet
points, transformer, frequency converter, groundworks etc.);

• shore network ancillary equipment;
• distance from the power source of OPS devices;
• power draw required for ships and OPS devices;
• cable management system;
• types of vessels moored at the berths in seaports;
• berthing capacity, and
• many other factors.
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The average cost of the OPS installation varies between
€1 million and €35 million, e.g., a total budget of 36.4 million US
dollars was invested in the OPS installation in the Port of Bremen/
Bremerhaven (The Port of Bremen, 2023). Moreover, important are
also the costs of electricity transportation to the OPS devices, which
depend on.

• port location;
• accessibility to the berths from land and sea;
• sources of energy generation;
• power demand;
• vessels types;
• frequency of cruise ships calls.

Low-power ferries and, for example, small cruise ships with the
capacity up to 1000 passengers (Pax) require power only < 3 MW
(megawatt), but giant cruise ships with the capacity of 10,000 Pax
onboard require power from 6 MVA (megawoltamper) to 20 MVA.
The average cost of energy transportation can amount from
$300,000 to $4 million per berth. (Bullock et al., 2023; The Port
of Bremen, 2023) [6969].

It is also crucial to maintain OPS, and the related costs depend
on many factors, i.e.,: costs of maintenance of OPS infrastructure,
price of electricity, number of ships mooring into berths (calls), and
time of mooring ships into berths (hours).

For more than a decade, scientific research has been conducted
in various fields of OPS science by scientists representing technical,
engineering, geographical, biological, chemical sciences, as well as
social sciences in the field of economics and management (Puig
et al., 2022). Maritime transport causes huge environmental
pollution. As research shows among global atmospheric
pollutants, 2 percent of carbon dioxide (CO2), 10 to 15 percent
of nitrogen oxides (NOx) and 6 percent of sulfur oxides (SOx) come
from ships. Solutions that will reduce the scale of this phenomenon
have been sought (Stolz et al., 2021). OPS is just one of such solution
that can bring numerous benefits to the region, local communities,
as well as ship owners. The use of OPS in ports provides, among
others: lower fuel consumption by ships, reduction of pollution
emitted by ships, ship engine noise reduction, removal of vibration
caused by ship engines, and easier maintenance of water purity.

Moreover, disconnecting the ships from ship engine power
supply and connecting them to the onshore generator also
involves savings for the shipowners. However, one more issue
needs to be raised, namely, the fact that still few vessels are
equipped with devices for connecting the ships to onshore power
supply. Despite obvious environmental benefits resulting from using
OPS in seaports, many port authorities are still reviewing the
economic effectiveness of these solutions. Investments in OPS are
highly capital-intensive and their return is spread out over time. The
first economic reports indicate that the investments in OPS in ports
do not always show satisfactory economic efficiency, but they are
certainly ecologically responsible and socially justified (Ballini and
Bozzo, 2015).

A review of previous achievements in the field of research on
energy system models and onshore power supply systems has
showed that this area of research is studied by researchers
around the world, i.e.,: in China (Chen et al., 2019),
United States, (Bouman et al., 2017; Bullock et al., 2023), Norway

(McArthur and Osland 2013), Germany (World Port Sustainability
Program, 2021), Spain (OPS Master Plan, 2021). and other
European seaports (Winkel et al., 2016). For example, the team
(Mattsson et al., 2021) studied, among others: the factors for onshore
and offshore wind power, and existing and future hydropower as
part of research on the Energy System Model. The authors noted
that in order to develop an effective energy system model, cross-
sectoral cooperation is necessary and research in this area should
also be carried out.

In 2016, (Winkel et al., 2016). raised in their research the
economic and environmental aspects of the use of OPS, but they
used the term Shore Side Electricity (SSE). Innes and Monios (2018)
presented analyses regarding the data on energy demand, and
presents a few scenarios for small and medium size ports in the
field of cold ironing installation. Qi et al. (2020) showed the results of
analysis concerning shore power economic challenges from the
perspective of different groups of interests including, i.e., ship
owners, port authorities, and state.

Interesting research on policy support on both capital funding
and tax reform, and also factors affecting shore power economics for
ship and port operators presented by the team of Bullock et al.
(2023) based on research in port of Aberdeen in Scotland. The
authors raised an important issue with OPS, i.e., “high capital costs
for ports, high taxes on land-side electricity and the global lack of
taxation on ships’ fuel oils” (Bullock et al., 2023) and pointed to a gap
in research on this issue. This work is particularly worthy of deeper
analysis, because it contains both economic aspects and feasibility
study, including, inter alia, potential shore power demand by ship
type and economic viability, and what is crucial environmental and
social valuation. Bouman et al. (2017) presented a comprehensive
review of CO2 studies, emissions, reductions, potentials and
measures. Many works address the issues of shipping
decarbonisation. OPS installations are one of the solutions that is
just analyzed by the author.

An important element of research that should also be taken into
account is the development of energy facilities in the vicinity of
seaports enabling the connection to OPS. Interesting studies on
offshore energy hubs were presented by Zhang et al. (2022). The
authors presented the model that “can be used to analyse the
interaction of an offshore energy system and onshore energy
system transition” (Zhang et al., 2022) It should be emphasized
that OPS should be powered by renewable energy sources. It is
crucial in the decarbonization process.

Current research studies regard the use of new technologies
to optimize processes in electrification. The really interesting
research in this area has been carried out, among others, by the
research team (Wang et al., 2021b) who presented the design
principles and techniques used to implement ternary logic gates
using memristor-CMOS hybrid chips for use in strategies for
optimizing performance indicators, including, e.g., power
consumption. A similar line of research was also carried out
by Su et al. (2023) presents innovative research presenting ways
to monitor the condition of batteries, based on the integration of
physical modelling with machine learning techniques. These
types of solutions allow for monitoring and evaluation of
battery performance and can be used in optimising the
performance of batteries and in projects related to the
electrification of port devices.
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Another interesting field of research concern the safety
assurance was carried out by Siu et al. (2022) who presented the
use of a multi-agent command authentication system as a solution to
increase security and economic reliability in power systems, with
particular emphasis on the possibility of emerging cyberattacks.

The important area of research studies in the field of OPS relates
process of integration of energy systems with various power sources.
An interesting study in this area was carried out by the team of
researchers V. Saxena et. al. (2021) (Saxena et al., 2012) who
proposed the MPC Based Algorithm and its validation method
for a multifunctional grid-integrated photovoltaic system. The
results demonstrate the effectiveness of the model-based
predictive control (MPC) algorithm for ensuring energy quality
and reliability in the integration of renewables into the power grid.
Similar studies relating to the management of the integration of
renewable energy sources and the operation of microgrids were
carried out by the team of N. Kumar et. al. (Kumar et al., 2018). The
paper proposes an intelligent control strategy with the use of
artificial intelligence to effectively synchronize the microgrid with
the main power grid, taking into account the situation of partial
shading. Thanks to the proposed solutions, it is possible to ensure
energy efficiency and thus reduce economic and environmental
costs. On the other hand, research supporting practical solutions
for the control and limitations of control techniques for complex
systems in various network structures and dynamic conditions was
presented by G. Chen (2023) (Chen, 2022). To sum up, it can be seen
that onshore power supply is the subject of numerous scientific
studies of various nature and range, both geographical and thematic
and it seems reasonable to try further in-depth analysis.

3 Methodology of the systematic
literature review

The research was a type of qualitative research. In the article, the
method of a multi-stage systematic literature review with the use of
data mining was applied. The independent variable is Onshore
Power Supply (OPS). The literature analysis process consisted of
six stages. To achieve the intended objective of the analysis, i.e., to
identify the development of OPS research and to organize the
terminology devoted to OPS, in the first stage, key phrases and
key words related to onshore power supply were defined. In the
second stage, three databases were selected to conduct the search,
i.e., Science Direct, EBSCO andWeb of Science. In the third stage of
analysis, selection criteria that narrowed the search to specific areas
were defined. The first criterion involved defining the period of
search time, which was limited to a decade, i.e., from 2014 to 2023. In
addition, the type of publications to be analysed were specified; only
research papers and review papers available in the Open Access
option were included. Using publications with limited access to
conduct the extensive data analysis, as is the case here, is too
expensive and often exceeds the researchers’ budgets.

In the next stage of analysis (the fourth), the search was
narrowed down to the phrases listed in Nox table in the titles of
publications, keywords and abstracts from these publications. As a
result, a list of publications for detailed analysis was defined. In the
fifth stage, further criteria narrowing the search area were indicated
and the collected database was grouped into four subject areas, i.e.,:

1) Engineering analysis (technology, technical, etc.) 2) Socio-
economic analysis (financial, fiscal, business, management, etc.),
3) Environmental analysis (protection, pollution, emissions, etc.), 4)
Legal analysis (legal standards, law regulations, etc.) (Scheme 1).

The full texts of selected publications were verified, selected and
put through detailed substantive analysis, and the results thereof are
presented in the next part of this study.

To analyse the data mining of the databases results, the critical
and comparative analysis was applied, as well as inductive and
deductive reasoning.

4 Discussion

A systematic review of databases showed that between 2014 and
2023, assuming the previously described selection criteria, a total of
74,111 scientific publications related to OPS were registered. The
EBSCO database included a total of n = 70,424 scientific publications
placed in review papers and research papers, which referred directly
or indirectly to the issue of OPS, which accounted for as much as
94.98% of all publications in the examined scientific databases.
Meanwhile, ScienceDirect database registered a total of
3431 publications (i.e., 4.63% of all publications) during the
period under analysis. Unfortunately, in the Web of Science
database there are few scientific publications related to OPS,
i.e., 279, which accounts only for 0.39% of the total
number (Figure 1).

A review of the ScienceDirect, EBSCO and Web of Science
scientific databases also indicated that the majority of publications
related to OPS, i.e., 63.47% is devoted to issues under the heading of
“STSP” and 32.38% of “OPS”. This is valuable information for
scientists who will take up the subject of OPS in their future
scientific work. The search limited in the literature queries only
to the common (as it might seem) terms, i.e.: “OPS” (Onshore Power
System) and neglecting “STSP” (Shore To-Ship Power) could
significantly distort the scope of analysis. Other terms related to
OPS, i.e., CI, SSE, or HVSC are less commonly used in the scientific
literature (Figure 2).

By comparing the resources of the three scientific databases
above-mentioned, in the area of publications devoted to OPS with
the use of criteria described above, we also come to the conclusion
that the largest number of publications devoted to “Shore To-Ship
Power” and “Onshore Power Supply” was registered in the EBSCO
database (94.98%). Similarly, in the ScienceDirect database, the
largest number of publications were devoted to “Onshore Power
Supply” and “Shore To-Ship Power”. Whereas scientists rather
rarely use other terms, i.e.: “Cold ironing”, or “Alternative
Maritime Transport” (Figure 3).

As a result of the analysis, a total of 74,135 publications were
filtered from all three examined databases where references to OPS
were found (3rd Stage). Then, in 4th Stage, in accordance with the
planned model of systematic literature review, the search was
narrowed only to publications referring directly to specific
phrases in the titles of these publications and abstracts and
keywords. This resulted in a reduction in the number of
publications to 302. The next step in the 5th Stage was to group
the publications into individual subject areas. In the last stage of the
analysis (6th Stage) the publications were verified and selected. After
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this stage, only 63 publications were qualified for deeper analysis,
which accounted for 20.9% of those selected for analysis, which met
the criteria of the 3rd stage (Table 1).

An important element in the considerations, and also the
superior objective of the analysis, involves the issue of subject
areas of research conducted in the area of OPS (Figure 4). As it
was previously mentioned, OPS is the subject of interest to
researchers from various fields and disciplines of knowledge.
Some areas are excessively analysed in terms of research, while
other, not much. Obviously, one can argue that perhaps these are the
needs on the market, but one can also argue, quite the opposite, that

perhaps these are topics convenient for researchers because they are
consistent with their research interests, and not necessarily
important for stakeholders.

A review of the scientific achievements to date related to the
issue of OPS has shown that this issue is very topical and subject to
analysis within different areas of knowledge, which can basically be
divided into four main research areas, i.e.,: 1) environmental analysis
(protection, pollution, emissions, etc.) 2) engineering analysis
(technology, technical, etc.), 3) socio-economic analysis (financial,
fiscal, business, management, etc.), and 4) legal analysis (legal
standards, law regulations, etc.) (table 2).

SCHEME 1
Database mining and analysis process. Source: own elaboration.

FIGURE 1
Percentage structure of the examined scientific databases by
publications devoted to Onshore Power System. Source: own study.

FIGURE 2
Percentage structure of Onshore Power System publications in
the scientific databases analysed. Source: own study.
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The main reason for investing in OPS refers to the
environmental benefits that reduce noise, vibrations and
emissions of pollution from ships when they are berthed. Hence,
in databases there are numerous publications on this subject
presenting environmental benefits of using OPS technology
(Kizielewicz and Skrzeszewska, 2021; Sciberras et al., 2015;
Saxena et al., 2012; Kumar et al., 2018; He et al., 2020; Wang
et al., 2021b; Reusser and Pérez, 2021; Chen, 2022; Siu et al., 2022; Su
et al., 2023) in particular in the area of CO2 reduction potential of
OPS (Stolz et al., 2021). The research carried out by Reusser and
Pérez (2021) (Wang et al., 2021b) is a good example showing “the
reduction in the specific fuel consumption of the auxiliary engines,
thus reducing emissions in 20% for CO2, 34% for NOx and 30% for
SOx” thanks to applying CI power configuration.

These results confirm the expediency of using CI and should
constitute an important argument convincing to use these
solutions. However, in the area of engineering research, there
are numerous scientific works on the development of OPS
infrastructure and various technologies in this respect used in
seaports, including small and medium ones. Colarossi and
Principi (2020) proposed the methodology of evaluation “the
energy demand of ships at berth and producing electricity
through a highly efficient cogeneration plant”. They also
studied the annual trend in electrical energy required by ships
at berth and tried to estimate the capital, operational and
maintenance costs. They presented the system which consists
of a cogeneration plant that produces simultaneously heat to
cover utilities in port area and power for ships at berth while
(Colarossi and Principi, 2020). Numerous works also refer to the
issue of connecting OPS to energy sources, including renewable
sources. Interesting research on the use of wave energy extraction
and wave energy converters was conducted by Cheng et al.
(2022a) (Port Technology International, 2021; Cheng et al.,
2022a). They described solutions combing floating breakwaters
with wave energy converters and integrating them into a very
large floating structure and developed mathematical models
confirmed by experimental studies. It would be worth

considering the use of offshore wave energy converters in
OPS. There is still a gap in this area of research, and only a
few experimental works have been done in this area. This could
also be an interesting direction for future research.

Bearing in mind different energy supply needs of ships, due to
their type and gross tonnage, research is also conducted on the
electrical characteristics of OPS (Yang and Chai, 2016; Atallah
et al., 2017; Gutierrez-Romero et al., 2019; Badakhshan et al.,
2022; Farrukh et al., 2022). Bearing in mind different energy
supply needs of ships, due to their type and gross tonnage,
research is also conducted on the electrical characteristics of
OPS (Bakar et al., 2022; Sciberras et al., 2015) and transient
overvoltage protection of OPS System (Haddadian and
Haddadian, 2011), and energy efficiency assessment of OPS
(Karimi et al., 2022). A serious problem raised in scientific
works also refers to the cost of energy transportation to OPS
from power sources (Jung and Schindler, 2021), and also energy
optimization of OPS systems. (Galkin and Tarnapowicz, 2022;
Qiong and Xiao, 2015). Martínez-Lopez et al. (2021) noted that
the environmental and economic benefits are only seen when
OPS is powered by renewable sources.

The dominant group of works related to OPS also comprises
studies in the area of socio-economic analysis, including mainly
financial and management analysis of investments in OPS and
benefits to local communities from OPS systems. Such analyses
are a key element in the investment decision-making process of
port authorities. Investments in OPS are highly capital-intensive,
as already mentioned above, and many factors determine the
success of this type of investment. Martínez-Lopez et al. (2021)
presented “a calculation method to estimate a environmental
charge in ports to incentivize cold Ironing use”, which takes into
account “a pollutant differentiation system by considering kinds
of vessel, technical features, port localization and hinterlands
populations”. The team led by Najihah (2023) studied the
“synergy of the cold ironing and microgrid system on ships”
and also presented the “cold ironing cost analysis strategies from
ports’ and ships’ points of view” (Najihah et al., 2023). It is one of
the few scientific studies of this type containing both
technological and economic aspects of CI. Many scientific
papers refer to assessing the economic efficiency of
investments in OPS including, inter alia, pricing strategy and
sale mechanism of OPS (Stolz et al., 2021; Su et al., 2023) and
cost-effective optimization analysis of OPS (Hulme, 2006).

The need for financial support for OPS from public funds (Wang
et al., 2021a) is also raised, because of the environmental benefits for
the region and local communities (Ballini and Bozzo, 2015).
Moreover, a valuable source of information for stakeholders
includes studies devoted to building strategy for OPS System (Yu
et al., 2017) and control strategy for OPS (Ji et al., 2018) presenting
also barriers and drivers to the implementation of OPS (Williamsson
et al., 2022). Finally, there are also works related to energy
management in seaports (Acciaro et al., 2014) including the
management of OPS systems and optimization of daily use of
OPS (Yu et al., 2022).

However, we can feel certain insufficiency when it comes to
scientific studies in the area of managing shipboard energy
(Sciberras et al., 2015), and the state of preparing ships to be
equipped with devices adapted to connect to OPS system and to

FIGURE 3
Number of publications related to Onshore Power System in the
scientific databases analysed (in thousand). Source: own study.
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ensure ship-to-grid integration (Vlachokostas et al., 2019). Few
papers present the results of research on equipping the ships, by
segments (cruise ships, ferry vessels, cargo, etc.) with devices
enabling the connection to OPS, and future electricity and
hydrogen demands for shipping (Ortiz-Imedio et al., 2021; Bakar
et al., 2022). This is the area that should become the subject of future
research. There is also a shortage of reliable economic analyses for
shipowners regarding the benefits of using OPS.

We should also mention the legal and regulatory issues related to
OPS systems, issued by the IMO (IMO, 1973) or IAPH (IAPH, 2010)
and ISO (ISO/IEC/IEEE 80005-1:2012, 2012) regarding the
technical aspects of OPS. These documents provide practical
information about OPS, which constitute the subject of analyses
and scientific discussions (IAPH, 2010; Yu et al., 2017; Tarnapowicz
and German-Galkin, 2018).

Summing up the analysis of databases on previous research on
OPS, it should be emphasized that the main streams of research
concern the following areas.

• Environmental research area–the use of renewable energy
sources to power the operational activities of seaports,
including supplying ships with shore energy (OPS). The
aim is to reduce greenhouse gas emissions and reduce the
emission of harmful substances into the environment.

• Engineering research area–the use of modern technologies in
the construction of OPS infrastructure, including in particular
in relation to transformers, converters, energy storage devices
in order to increase energy efficiency.

• The area of computer science research–the use of new
technologies in the management of energy distribution in

TABLE 1 List of keywords that constitute grounds for searching the scientific databases.

Key phrases N research papers and review papers in scientific databases available in open access
form the period between 2014 and 2023

1st stage 2nd Stage 3rd stage 4th stage 5th stage 6th stage

EnA* EgA* SEA* LA*

Onshore AND Power AND Supply Science Direct n = 2295 n = 27 n = 9 n = 15 n = 1 n = 2 12

Shore AND “To-Ship” AND Power n = 1034 n = 13 n = 3 n = 8 n = 2 n = 0

“High-Voltage” AND “Shore Connection” n = 4 n = 1 n = 0 n = 1 n = 0 n = 0

“Cold Ironing” n = 49 n = 12 n = 1 n = 10 n = 1 n = 0

“Shore-Side” AND Electricity” n = 34 n = 6 n = 0 n = 5 n = 1 n = 0

Alternative AND “Maritime Power” n = 15 n = 1 n = 0 n = 1 n = 0 n = 0

TOTAL ScienceDirect 3432 60 13/12 40/68 5/15 2/3.4

Onshore AND Power AND Supply EBSCO n = 21 511 n = 14 n = 2 n = 8 n = 2 n = 4 35

Shore AND “To-Ship” AND Power n = 45 977 n = 45 n = 8 n = 30 n = 7 n = 0

“High-Voltage” AND “Shore Connection” n = 327 n = 26 n = 4 n = 18 n = 4 n = 0

“Cold Ironing” n = 910 n = 82 n = 14 n = 56 n = 12 n = 0

“Shore-Side AND Electricity” n = 420 n = 6 n = 1 n = 4 n = 1 n = 0

Alternative AND “Maritime Power” n = 1246 n = 3 n = 1 n = 2 n = 0 n = 0

TOTAL EBSCO 70 424 176 30 118 24 4

Onshore AND Power AND Supply Web of Science n = 194 n = 39 n = 7 n = 26 n = 6 n = 0 15

Shore AND “To-Ship” AND Power n = 24 n = 18 n = 4 n = 12 n = 2 n = 0

“High-Voltage” AND “Shore Connection” n = 5 n = 0 n = 0 n = 0 n = 0 n = 0

“Cold Ironing” n = 1 n = 0 n = 0 n = 0 n = 0 n = 1

“Shore-Side” AND Electricity” n = 52 n = 6 n = 2 n = 4 n = 0 n = 0

Alternative AND “Maritime Power” n = 13 n = 2 n = 0 n = 2 n = 0 n = 0

TOTAL Web of Science 279 65 13 44 8 0

TOTAL Scientific bases 74 135 302 56 202 37 7 63

Percentage share in selected publications 100% 18,5% 66,9% 12,3% 2,3% 20,9%

EgA, Engineering analysis; EnA, Environmental analysis; SEA, Socio-economic analysis; LA, Legal analysis and documents.
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port areas in order to optimize its consumption, increase
energy efficiency and estimate energy demand in the future.

• The area of economic research–using knowledge in the field of
management and economics to prepare economic analyses of
the efficiency of investments in OPS in relation to individual
case studies.

It should be emphasized that the research conducted so far has
focused mainly on the analysis of individual cases of engineering,
organizational, technical or architectural solutions in the field of
OPS. Stakeholders interested in investing in OPS and their
development are looking for comprehensive analyses containing
legal, economic, environmental and social analyses, showing a map
of the benefits and costs resulting from investments in OPS. This
type of interdisciplinary research would be more applicable and
could have a greater popularizing value.

4.1 Conclusion and policy implications

In conclusion, it must be emphasized that despite numerous
scientific studies dedicated to the economic analysis of investments
in OPS, there is still a noticeable gap in studies directly dedicated to
the management of investments in OPS and the social aspects of
OPS. Considering that OPS are relatively new investments in
seaports and new technological solutions for OPS continue to
enter the market, port authorities are looking for the most
effective solution models in this regard.

Frequently, port authorities also commission dedicated studies
on the cost-effectiveness of investments and new solutions in OPS.
However, these are industry-related studies rather than scientific
papers and present a case study rather than a broader spectrum of
solutions related to the solidity of investments in OPS.

At present, there are various technological solutions in the field
of OPS, which are described above. The port authorities would be
very interested not only in a comparative analysis of all these
systems, in terms of energy efficiency, technological solutions and
their development (engineering analysis), but also in the
environmental benefits of specific OPS solutions (environmental

analysis), and, most importantly, in assessing the economic viability
of these investments (economic analysis). An important area of
research on OPS is also the way of the OPS management, and
development in seaports (business and management analysis).

One of the limitations of the analysis presented above
involves the subjective criteria adopted by the author of this
article. Limiting the analysis only to a decade, just only to
research papers and review papers published between
2014 and 2023 and available as open access may affect the
analysis results. Nevertheless, the conclusions that can be
drawn present the general trends in research and areas of
interest for scientists as regards the issue of OPS.

The analysis conducted in the study enables to indicate the areas
of knowledge and research working currently on research related to
OPS, which represented the main objective of this research. The
analysis also proved that scientists use different abbreviations (e.g.,:
OPS, SSP, CI, SSE, HSCV and AMP) and concepts to think and
research the same phenomena. This can make analysis and search
difficult and provides an important clue for researchers, It seems that
the terminology in this area should be sorted out.

The review of the previous studies allowed to indicate the main
directions for further scientific research to be conducted in this area
of OPS, i.e.,.

• management of OPS systems and their integration with
onshore energy systems,

• integration of offshore wave energy converters with onshore
energy systems;

• budgeting policy of the investments in OPS co-financed by
public funds;

• demonstrate the policy for economic efficiency of OPS for
stakeholders (port authorities and ship owners);

• popularization of various technical and technological
solutions related to OPS;

• social and environmental policy for OPS development;
• ships’ equipment with a device enabling the
connection to OPS;

• verification of the demand for OPS among shipowners;
• economic efficiency of OPS from the perspective of
shipowners;

• identification of risks associated with investments in OPS.

Summing up, the future research should also address areas that
are still insufficiently researched and described and represent gaps in
research. The future research fields should concern.

• Comparative analyses of various engineering and technical
solutions in the field of OPS, showing which of the solutions
should be used under specific environmental conditions and
financial capabilities of stakeholders.

• Economic analyses using an indicator analysis of the economic
efficiency of individual OPS solutions together with a
prospective analysis of the economic effects of these
solutions in various variants for the region. Such analyses
would be of great application value and could be an interesting
source of information for entities managing port areas,
including port authorities, local governments and private
owners of the port lands.

FIGURE 4
Subject areas of research publications in databases. Source:
own study.
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TABLE 2 Research areas and topics in the field of onshore power supply.

Research areas Research topics

Engineering analysis (technology, technical, etc.) Technologies of OPS

Optimal deployment of OPS

Electrical characteristics of OPS

Transient Overvoltage Protection of OPS System

Energy Optimization of OPS systems

Energy efficiency assessment of OPS

Ship-to-grid integration

Distance to power grids

Fault diagnosis for onshore grid-connected converter in wind energy conversion systems

Uninterruptable Shore-side Power Supply of OPS

Implementing OPS from renewable energy sources

Application Systems to Supply Onshore Grid Power to Offshore O&G Installations

Potential of local solar generation for providing OPS

Integrating Offshore Wind Farms with Unmanned Hydrogen and Battery Ships

Installing cold ironing at small and medium ports

Socio-economic analysis (financial, fiscal, business, management, etc.) Cooperative optimization of OPS

Barriers and Drivers to the Implementation of OPS

Strategy for OPS System

Control Strategy for OPS

Energy management in seaports

Government subsidize for OPS

Electricity subsidy efficiency of OPS

Economic Benefits of OPS

Cost-effective optimization analysis of OPS

Optimization of daily use of OPS

Sale Mechanism of Onshore Power Supply

Pricing Strategy of Cold Ironing

Improving OPS project economics

Techno-economic analysis of OPS

Socio-economic benefit of cold-ironing technology

Managing Shipboard Energy

Ship berthing forecasting for cold ironing

Future electricity and hydrogen demands for shipping

Environmental analysis (protection, pollution, emissions, etc.) Environmental Benefits of Using low-Sulphur Oil and OPS Technology

Evaluation of the emission impact of OPS

Environmental emission Impact of OPS

CO2 reduction potential of OPS

Environmental charges to boost Cold Ironing

(Continued on following page)
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• Environmental analyses showing the benefits of using various
OPS solutions and, on the other hand, the benefits and costs
associated with not using these solutions in ports for the
region and the environment.

• Engineering analyses showing in a comprehensive way the
various possibilities of supplying OPS with energy obtained
from renewable energy sources. Especially in coastal areas, there
are opportunities to use water energy, wind energy and solar
energy. Although such studies are already carried out on a
random basis, they are individual case studies and not
comprehensive and variant analyses. In Europe, investments
in the area of offshore wind farms are currently intensifying.
The costs of preparing and maintaining the OPS supply
infrastructure are significant factors withholding the
development of OPS. It is crucial to demonstrate the benefits
of using renewable energy sources to power OPS in order to
persuade decision-makers to invest in OPS.

• A holistic and interdisciplinary approach showing the state
and prospects for the development of OPS in port areas and
opportunities for regions thanks to investments in OPS, as well
as the risks for the region in the event of a departure from
investments in this area.

• Presentation of the state of technical readiness of the fleet of
vessels in individual segments (cruies ships, ferry vessels, cargo
ships, etc.) for the use of OPS, together with an analysis of
plans for the installation of devices enabling connection to
shore power supply. Currently, analyses in this area are
fragmentary, and the lack of information in this area does
not support investors’ decisions and causes great concern.

• Develop examples of good practice in relation to the
development of international standards and guidelines for
the design, installation and operation of onshore energy
infrastructure.

• Social analyses showing what is the attitude of stakeholders in
relation to both OPS and renewable energy sources. When
talking about stakeholders, we must not forget about the
inhabitants of port cities, who are not always enthusiastic
about, for example, the construction of wind farms and are not
aware of the benefits of investments in this area.

So far, the analysis of research results shows that seaport authorities
are open to create the policy of investments development supporting
the environment management, facilitating the environmental
improvement and reducing the amount of pollutants emitted to the

environment (Kizielewicz, 2023), but they need support in the form of
scientific analyses on the best technological solutions, models, and
sources of financing for the investments in OPS. The challenges faced
by seaports, especially in Europe, resulting from climate change and
restrictive EU and UN regulations, mean that port authorities will have
no choice but to invest in this area.

In future research, a set of other phrases can be reviewed, and
other publications can be selected for analysis. A significant
limitation certainly involves including in the scope of research
the publications with limited access which require paid access
thereto. This type of analysis could be very expensive and
difficult to implement, but perhaps it would provide a different
picture of the ongoing scientific research in the area of OPS.
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TABLE 2 (Continued) Research areas and topics in the field of onshore power supply.

Research areas Research topics

Reducing shipboard emissions

Environmental Ben46efits of OPS

Legal analysis (legal standards, law regulations, etc.) Regulation strategy for OPS

Standardization in the Design of OPS

Source: own elaboration on the base of: (IMO, 2015; Innes andMonios, 2018; IAPH, 2010; Winkel et al., 2016; Stolz et al., 2021; Bakar et al., 2022; Bullock et al., 2023; Hulme, 2006; AAPA, 2007;

Haddadian and Haddadian, 2011; Acciaro et al., 2014; Qiong and Xiao, 2015; Sciberras et al., 2015; Yang and Chai, 2016; Atallah et al., 2017; Yu et al., 2017; Chengdi et al., 2018; He et al., 2018; Ji

et al., 2018; Tarnapowicz and German-Galkin, 2018; Gutierrez-Romero et al., 2019; Kumar et al., 2019; Sun et al., 2019; Vlachokostas et al., 2019; Zis, 2019; Colarossi and Principi, 2020; He et al.,

2020; Wang et al., 2020; Wang et al., 2021a; Jung and Schindler, 2021; Kizielewicz and Skrzeszewska, 2021; Martínez-Lopez et al., 2021; Ortiz-Imedio et al., 2021; Peng et al., 2021; Spengler and

Tovar, 2021; Badakhshan et al., 2022; Farrukh et al., 2022; Galkin and Tarnapowicz, 2022; Karimi et al., 2022; Qiu et al., 2022; Williamsson et al., 2022; Yu et al., 2022; Najihah et al., 2023;

Tarnapowicz and German-Galkin, 2018; Port Technology International, 2021; Reusser and Pérez, 2021; Cheng et al., 2022a; Cheng et al., 2022b; Kizielewicz, 2023).
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Channel predictionmethod based
on the data-driving for
distribution automation
main station
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A data-driven channel prediction method for distribution automation master is
proposed to address the poor quality of communication network and
communication system transmission problems in distribution network
communication. In this paper, an adaptive broad learning network (ABLN)
consisting of a standard broad learning network and a hybrid learning network
is introduced to predict the channel state information of the communication
system. Among them, the hybrid learning network is used to solve the ill-
conditioned solution problem when estimating the output weight matrix of
the standard broad learning network. Therefore, the ABLN produces sparse
output weight matrices and provides excellent prediction performance. In the
simulation analysis, the outdoor and indoor scenes are considered based on
OFDM system. The prediction performance of ABLN is subsequently evaluated in
one step prediction and multistep prediction. The results show that for the
prediction performance is concerned, the maximum improvement of ABLN is
about 96.49% as compared to other evaluation models, indicating that the CSI is
effectively predicted by the ABLN to support the adaptive transmission of the
main station of the distribution automation and to satisfy the quality of the
communication network of the distribution network.

KEYWORDS

distribution automation main station, channel prediction, data-driving, learning
network, broad learning

1 Introduction

Currently, the distribution automation main station (DAMS) tends to huge network
size, wide distribution, harsh environment, and frequent changes of distribution sites
(Gu, 2017). The distribution communication network, as the nervous system of
distribution network automation, is bound to meet the high-quality communication
needs. Therefore, high-quality distribution network communication system is the
foundation of the smart distribution network construction. The distribution network
automation construction presents many challenges to the wireless communication
system (Pan L et al., 2023). Generally speaking, the receiver of wireless communication
system needs to estimate the channel state information (CSI) of transmission
environment through channel estimation technique, and feedback the CSI to the
transmitter. However, in fast time-varying communication environments, the CSI
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tends to be outdated, which degrades the adaptive transmission
performance. Therefore, the channel prediction based on the
outdated CSI is important to support the adaptive
transmission performance of wireless communication systems
such as power IoT (by Flam et al., 2006).

Currently, channel prediction methods can be classified into
three categories, i.e., linear prediction methods parameter class
prediction methods and nonlinear prediction methods
(Sarankumar R et al., 2016) Among them, linear prediction
methods are mainly used to predict the next channel state
information sample by linearly weighting the sum of several
CSI samples in the past by linear fitting. Currently, channel
prediction methods can be classified into three
categories,i.e., linear prediction methods parameter class
prediction methods and nonlinear prediction methods. Among
them, linear prediction methods are mainly used to predict the
value of the next channel state information sampling point by
linearly fitting the past several channel state information sampling
points, i.e., by linearly weighting the sum. Linear prediction
methods include the auto-regression (AR), the recursive least
squares (RLS) and the affine projection algorithm (APA)
(Kapoor et al., 2018). The parameter prediction method mainly
estimates those relevant parameters of transmission delay, such as
the power, the delay and the Doppler shift. In addition, errors in
the estimated channel statistical characteristics and parameters
reduce the accuracy of the channel prediction, so the errors in the
parameter class prediction need to be reduced in order to improve
the performance of adaptive transmission techniques for wireless
communication systems. Scholars have developed relevant studies
on parameter class channel prediction methods. Such as, Niu G Q
et al. (2014) and Yang et al. (2021) proposed a new predictor that
utilizes the powerful time series prediction capability of deep
learning. The prediction result indicates that the deep learning
can offer significant performance improvement compared with the
traditional predictor. To overcome the problem caused by the
nonlinearity of the transmission channel and inter-symbol
interference caused by multipath effects, Tan and Wang, (2023)
used deep learning networks to optimally research the channel
equalization for the optical fiber communication networks, and
constructed an optical fiber communication network channel
model, and used deep learning networks to estimate the
communication network channel loads and operational states.
Trivedi and Kumar, (2018) used a scheduler based on a
standardized SNR for selecting users for data transmission, the
scheduler has higher data rate and long-range transmission
capabilities without requiring much power or bandwidth. In
addition, this paper presents a comparative assessment of the
bit error rate (BER) performance of multi-user multiple input
multiple output orthogonal frequency division multiplexing (MU-
MIMO-OFDM) and MU-MIMO single-carrier frequency-division
multiple access (MU-MIMO-SCFDMA) and investigates the
impact of various factors, e.g., the CSI imperfections, network
heterogeneity, and other factors on the communication
transmission; Bai et al. (2020) proposed a prediction method
based on the long short term memory (LSTM) network and
developed an incremental learning scheme for dynamic
scenarios, which makes the LSTM predictor run online;
(Multiple-Input Multiple-Output, MIMO) system, based on the

measured data of 2.35 GHz band in the road-wall scenario, C Xue
et al. (2021) proposes a Convolutional Long Shore-Term Memory
(CLSTM) and CNN combination of Conv- CLSTM channel
prediction model for typical channel state information, Les
K-factor, RMS delay extension and angle extension
characteristics prediction. Son and Han, (2021) proposed the
channel adaptive transmission (CAT), which uses the LSTM
network for channel prediction and the prediction accuracy is
over 97%, indicating that this algorithm can be effectively used for
channel prediction. Jiang and Schotten, (2019) used the recurrent
neural network (RNN) to construct a frequency domain channel
predictor, which was integrated into the MIMO-OFDM system to
improve the correctness of antenna selection. To avoid the
degradation of communication quality, Ding and Hirose, (2013)
proposed a high-accuracy time-varying channel prediction by
using channel prediction with linear extrapolation and
Varangian extrapolation of frequency-domain parameters, and
by combining a multilayered complex neural network (CVNN)
with a linear FM permutation method. The proposed CVNN-
based predictive channel prediction accuracy is experimentally
proved to be better than the traditional prediction methods (Ding
and Hirose, 2014). Xu and Han, (2016) proposed a new model
adaptive elastic echo state network (ESN), which adopts the
adaptive elastic network algorithm to compute the unknown
weights and combines the advantages of quadratic
regularization and adaptive weighted lasso contraction to deal
with the covariance problem.

In recent years, the deep learning has been successfully applied
in many fields and played an important role in the field of the
artificial intelligence field (Schofield et al., 2019). Wang et al. (2019b)
proposed a hybrid deep learning method of Convolutional Neural
Network (CNN) and LSTM to get the CSI of downlink channel
based on the CSI of uplink channel in FDD system. By extending an
LSTM for reconstructing CSI, Wang et al. (2019a) proposed a real-
time CSI feedback framework applied to point-to-point massive
MIMO. The application of deep learning in channel prediction
successfully solves the problem of traditional manual methods that
are overly dependent on channel-specific parameters and has a
stronger ability to adapt to the environment. However, the deep
learning methods still have some drawbacks. On the one hand, when
facing the high-dimensional data, the deep learning is usually
trained with a complex structure, which means that many model
parameters need to be adjusted. On the other hand, when some new
samples are added, the deep learning often needs to re-train the
model, which is a quite time-consuming process. To address the
issue above, Chen et al. (2018) developed the broad learning system
(BLS). Unlike the deep learning model, the BLS only has two
horizontally aligned hidden layers, i.e., the feature layer and the
enhancement layer (Suganthan and Katuwal, 2021; Pao and
Takefuji, 2021). In the training process of the BLS model, the
input data are firstly generated into feature nodes by feature
mapping, and then the feature nodes are enhanced into
augmentation nodes by nonlinear changes. Finally, the output of
the feature layer and the output of the enhancement layer are
connected to generate the result of the final output layer. The
output weights of the final output layer can be obtained quickly
using the ridge regression algorithm without complex computation
(Chen and Liu, 2018). In addition, BLS has an attractive advantage of
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the universal approximation property (Jin and Chen, 2018). In
particular, the incremental learning algorithms of the BLS can be
quickly reshaped without the need for complete retraining
from scratch.

With these solid foundations mentioned above, a large amount
of work on BLS has been reported. Kurtz, (1987) incorporated the
and paradigm combination into the regular term of the elastic
network into the BLS model thus obtaining ENBLS. ENBLS can
benefit from the trend of both ridge regression and sparse solutions.
However, there are still many drawbacks of the shallow structure,
and the expressive ability is significantly weaker than that of the deep
structure. For this reason, many scholars started to improve the
standard BLS. Then, many more complex BLS appeared. Such as,
Feng and Chen, (2020) integrated BLS with Takagi-Sugeno fuzzy
system to generate the FBLS. In addition, to extend the applicability
of BLS, Zhao et al. (2020) obtained Semi-Supervised BLS (SS-BLS)
by introducing popular learning and thus extending BLS to semi-
supervised learning. However, the SS-BLS requires all labelled
training datasets, which limits the practicability in practical
scenarios. Another structure of online semi-supervised BLS
(Online SS-BLS, OSSBLS) was investigated in Pu and Li, (2020).
In addition, Min et al. (2019) improved the BLS and obtained a
Structured Manifold BLS (SM-BLS), which was used to predict the
time-series. Zhang et al. (2020) also applied the BLS for the emotion
recognition. Then, Liang, (2023) investigated a class of the
distributed learning algorithms based on the BLS, which used a
quantization strategy to reduce the number of bits per transmission
and a communication review strategy to reduce the total number of
transmissions and minimize the communication cost (Huong
et al., 2023).

To meet the demand of the information transmission quality of
the DAMS and solve the problem that the expired CSI reduces the
adaptive transmission performance of wireless communication
system, this paper proposes a channel prediction method for
ADSM based on the ABLN, including the standard BLN and the
hybrid regularization network. Thereinto, the ill-conditioned
solution of the output weight matrix of the former is mainly
solved by the latter. The hybrid regularization network contains
two layers, the first layer is an adaptive weight factor generation
network based on regularization, and the second layer is the output
weight matrix estimation network based on the elastic network. The
hybrid regularization network has the oracle property, which can
effectively solve the output weight ill-conditioned solution problem
of the BLN. Thus, the ABLN can provide well channel prediction
performance.

2 Revelant theory

2.1 Channel estimation for OFDM systems

The channel prediction is an important technique to support
the adaptive transmission of power IoT communication systems
such as distribution network automation master stations. In this
paper, it is assumed that the SCI changes slowly or steadily in a
frame time, so the channel estimation process can be described as
follows. Let si(n) denote the n-th sample of the i-th complex-

valued baseband time-domain transmission signal, then si(n) can
be expressed as

si n( ) � ∑L−1
l�0

Si l( )ej2πnl/L (1)

where Si(l) denotes the frequency-domain transmit signal on the lth
subcarrier of the i-th pilot OFDM symbol, l � 0, 1, 2, . . . . . . , L − 1, L
is the total number of subcarriers in each OFDM symbol. When the
transmitting antenna sends out the transmit signal, the transmit
signal reaches the receiving antenna through the time domain
channel. Therefore, the receiving end estimates the target CSI by
analyzing the received signal. Currently, the two commonly used
channel estimation methods are least squares (LS) method and the
minimum mean square error (MMSE) method. The process of the
channel estimation by LS method is [29]

Yi m( ) � Ei m( )
Si m( ) + Ri m( ) � Yi m( ) + Ri m( ) (2)

where Yi(m), Yi(m), Ei(m) and Ri(m) are the estimated CSI of the
i-th subcarrier of the OFDM symbol, the ideal CSI, the received
symbols, and the corresponding noise for the first subcarrier of the
OFDM symbol at the first pilot subcarrier, respectively. Ri(m) is
modelled as the additive white gaussian noise (AWGN) with mean
0 and variance σ2z.

2.2 The broad learning system (BLS)

As shown in Figure 1, the BLS is used as an alternative to deep
network structure. The input data is mapped to the mapping
features and the enhancement features. The output layer
connects the feature and enhancement layers. The data is
transformed using a linear mapping function connecting the
input weight matrices to obtain the set of mapped features. The
Zi is the mapped feature, which is obtained by linear mapping and
activation function, i.e.

Zi � φi XV ei + αei( ), i � 1, 2, . . . , n (3)
where X ∈ Ra×b denotes the input sample data for model training,
where a is the sample number and b is the dimension. The φi is the
activation function of the feature node, αei denotes the input layer to
the mapping feature layer. The mapping feature group is denoted as

Zm � Z1,Z2,Z3, . . . ,Zm[ ] (4)
The enhancement nodes are obtained from the mapped nodes

by the nonlinear mapping and the activation function
transformation. Yj is the jth set of augmented nodes, which is

Yj � ξj ZmVhj + αhj( ), j � 1, 2, . . . , n (5)

where ξj is the activation function of the enhancement node; Vhj

denotes the random connection weight matrix of the j-th group of
mapped feature nodes to the layer of enhancement nodes; αhj is the
bias matrix of the j-th group, and the group of enhancement nodes
obtained by the n-transform is denoted by

Dn � D1,D2,D3, . . . ,Dn[ ] (6)
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Then, the outputs of the feature nodes and enhancement nodes
are combined, i.e., F � [Zm |Dn]. The weighted mapping of F, forms
the output of the network Ĥ � FV. The mapped feature nodes and
enhancement nodes are used as inputs to the BLS and the feature
vectors are solved. V denotes the weight matrix from the input layer
to the output layer of the system, which is solved by solving the ridge
regression, i.e.,

V � λI +HTH( )−1FHT (7)
where the H denotes the regularization factor and I denotes the
unit matrix.

3 Channel predictionbased of
adaptive BLS

3.1 ABLN

The hidden layer of a typical BLN often has a large number of
neurons. After using Eq. 5 to estimate the BLS network’s output

weight matrix, the estimated value is generally an ill-conditioned
solution, which has a large amplitude. Therefore, the ill-
conditioned solution problem of the output weight matrix is a
problem that cannot be ignored in the training process of the BLN
(Zhou, 2013). To improve the ABLN’s generalization capabilities
throughout the learning process, this study proposes using a
hybrid generalization network to estimate the output weight
matrix. The initial layer of the hybrid generalization network
looks like this:

Jk � arg min
Q̂: ,i

Yi − ZQ: ,i

���� ����22 + λ1 Q: ,i

���� ����22 + λ 1 /

2
Q: ,i

���� ���� 1
2

1
2{ }

k
(8)

where i = 1,2,3, ., I, Yi denotes the target output corresponding
to the i-th step prediction, Q: ,i is the estimated value of the
target output weight matrix corresponding to the i-th prediction.
‖*‖2 and ‖*‖ 1 /

2
denote the l2 norm and l1/2 norm, respectively, and

λ 1 /

2
is the generalization coefficient of l1/2 norm. Therefore, the

first layer is further expressed as

FIGURE 1
The typical network structure of BLS.

TABLE 1 Model parameter settings for the channel prediction method based on adaptive broad learning network.

Symbol Meaning Value Symbol Meaning Value

fd Carrier frequency 2.4 GHz NFFT Total number in FFT 64

BW Bandwidth 2 MHz TIDFT IDFT/DFT period 32us

MD Modulation QPSK Tg Guard interval length 9us

fOFDM OFDM symbol rate 30 kHz Nt Number of transmitting antennas 1

CR Code rate 1/2 Nr Number of receiving antennas 1

DR Data rate 1.2Mbps Nss Quantity of data streams 1

K Subcarrier number per OFDM symbol 50 NDATA DATA OFDM symbol count for each frame 1

NSPS Pilot subcarrier per OFDM symbol 4 fr Sample rate 2 MHz
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Jk � argmin
Q̂: .i

Yi − ZQ: ,i

���� ����22 + λ1 Q: ,i

���� ����22 + λ 1 /

2
Q: ,i

���� ���� 1
2

1
2{ }

k

� arg min
Q̂: .i

Y1 − ZQ: ,1

���� ����22 + λ1 Q: ,1

���� ����22 + λ 1 /

2
Q: ,1

���� ���� 1
2

1
2+

Y2 − ZQ̂: ,2

���� ����22 + λ1 Q̂: ,2

���� ����22 + λ 1 /

2
Q̂: ,2

���� ���� 1
2

1
2+

..

.

YI − ZQ: ,I

���� ����22 + λ1 Q: ,I

���� ����22 + λ 1 /

2
Q: ,I

���� ���� 1
2

1
2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(9)

Therefore, the above Eq. 9 is equivalent to solve the following
issue, i.e.,

Jk � arg min
Q̂: .i

Yi − ZQ: ,i

���� ����22 + λ1 Q: ,i

���� ����22 + λ 1 /

2
Q: ,i

���� ���� 1
2

1
2{ }

k
(10)

where i � 1, 2, 3, ..., I. Then, the above equation is rewritten as

Jk � arg min
Q: ,i

Yi − ZQ̂: ,i

���� ����22 + λ1 Q̂: ,i

���� ����22 + λ 1 /

2
Q: ,i

���� ���� 1
2

1
2{ }

k

� arg min
Q: ,i

Yi

0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ − 1 + λ2( )−1

/

2

Z��
λ2

√
I

⎛⎜⎝ ⎞⎟⎠Q̂: ,i

�����������
�����������
2

2

+ λ2����
1+λ1/2

√ Q: ,i

���� ���� 1
2

1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
k

� arg min
Q: ,i

Ŷi − ẐQ̂: ,i′
���� ���� + λb Q: ,i

���� ���� 1
2

1
2{ }

k

(11)

where

Ŷi � Yi

0
[ ] (12)

Ẑ � 1 + λ2( )−1

/

2 Z��
λ2

√
I

( ) (13)

FIGURE 2
Non-zero weight curves and RMSE curves in ABLN with varying input dimensions: The actual and hypothetical components of the indoor scenario
are shown in (A,B), respectively; The actual and imagined components of the outdoor landscape are shown in (C,D).
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λb � λ2������
1 + λ1/2

√ (14)

Equation 11 is an optimization problem about l1/2 norm.
However, the l1/2 norm is the non-convex and non-smooth, and
some common optimization solution methods, i.e., the Newton’s
method and simulated Newton’s method are difficult to solve the
optimization Eq. 11. The coordinate descent method is utilized to
solve Eq. 11 and its computation process is shown in Algorithm 2.
Then the adaptive weighting factor δ: ,i for the first layer is

δ: ,i � Q: ,i

∣∣∣∣ ∣∣∣∣ + 1
M + L( )[ ]−τ

(15)

where τ ∈ N+ is the adaptive adjustment factor. The second layer of
the output weight matrix estimation network for the BLN is:

Jk � argmin
Q: ,i

∑I
i�1

Yi − ZQ: ,i

���� ����22 + λ1 Q: ,i

���� ����22+
λ2 ∑M+L

j�1
δj,i Qj,i( )⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎠⎧⎪⎪⎨⎪⎪⎩

⎫⎪⎪⎬⎪⎪⎭
k

(16)

where Q: ,i is the output weight matrix corresponding to the i-th
prediction, Qj,i denotes the jth element of the output weight matrix
corresponding to the i-th step prediction, and λ1 and λ2 are the non-

zero penalty coefficients, respectively. Eq. 16 can be further
rewritten as

Jk � arg min
Q: ,i

∑I
i�1

Yi −ZQ: ,i

���� ����22 +λ1 Q: ,i

���� ����22
+λ2 ∑M+L

j�1
δj,i Qj,i( )⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎠⎧⎪⎪⎨⎪⎪⎩

⎫⎪⎪⎬⎪⎪⎭
k

� arg min
Q: ,i

Y1 −ZQ: ,1

���� ����22 +λ2 Q: ,1

���� ����22 +λ1 ∑M+L

j�1
δj,1 Qj,1( )

+ Y2 −ZQ: ,2

���� ����22 +λ2 Q: ,2

���� ����22 +λ1 ∑M+L

j�1
δj,2 Qj,2( )

..

.

YI −ZQ: ,I

���� ����22 +λ1 Q: ,I

���� ����22 +λ2 ∑M+L

j�1
δj,i Qj,I( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(17)

It can be shown that the loss function (17) of the second layer
output weight matrix estimation network can also be converted into
an I optimization problem with respect to the l2 norm and the
adaptive weighting factors, i.e.,

Jk � arg min
Q: ,i

Yi − ZQ: ,i

���� ����22 + λ1 Q: ,i

���� ����22 + λ2 ∑M+L

j�1
δj,i Qj,i( )⎧⎨⎩ ⎫⎬⎭

k

(18)

TABLE 2 One step prediction performance.

Scenario Database Model Regularization
parameter

RMSE Average sparsity
degree (%)

Average consuming
time (s)

indoor scenario Real component BLN - 9.54e−4 100 0.0258

LBLN 3.9e−4 7.54e−4 3.05 1.5678

RBLN 2.6e−4 4.87e−4 100 0.0258

EBLN 2.8e−4,1.1e−4 6.71e−4 3.05 3.7364

ABLN 1.4e−6,2.7e−6 1.65e−4 3.05 0.8612

Imaginary
component

BLN - 5.11e-4 100 0.0252

LBLN 5.6e−5 3.38e-4 3.13 1.4521

RBLN 4.8e−5 3.38e-4 100 0.0198

EBLN 0.9e−5,2.6e−6 2.41e-4 3.13 2.8974

ABLN 8e−7,4e−6 1.64e−4 3.13 0.4874

Outdoor
scenario

Real component BLN - 2.86e-4 100 0.0109

LBLN 1.1e-4 1.58e-4 3.2 0.8124

RBLN 5.3e−4 2.14e-4 100 0.0137

EBLN 2.6e−6,1.1e−5 1.67e-4 2.05 2.9485

ABLN 1.3e−6,2e−6 8.13e−5 1.99 0.2712

Imaginary
component

BLN - 3.69e-4 100 0.0295

LBLN 2.2e−5 1.63e-4 3.2 1.1566

RBLN 4.8e−5 1.88e-4 100 0.0269

EBLN 1.1e−5,2.8e−6 1.21e-4 2.16 3.8573

ABLN 0.9e−6,1.8e−6 1.27e−4 2.11 0.2433

Frontiers in Energy Research frontiersin.org06

Li et al. 10.3389/fenrg.2024.1377161

24

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1377161


where i � 1, 2, 3, . . . , I. Eq. 17 can be further derived as:

Jk � arg min
Q: ,i

Yi − ZQ: ,i

���� ����22 + λ1 Q: ,i

���� ����22 + λ2 ∑M+L

j�1
δj,i Qj,i( ){ }

k

� arg min
Q: ,i

Yi

0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ − 1 + λ2( )−1

/

2

Z��
λ2

√
I

⎛⎜⎝ ⎞⎟⎠Q: ,i

�����������
�����������
2

2

+ λ2���
1+λ2

√ ∑M+L

j�1
δj,i Qj,i( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
k

� arg min
Q: ,i

Y′
i − Z′Q: ,i′

���� ���� + λs ∑M+L

j�1
δj,i Qj,i( ){ }

k

(19)

Where Y′
i , Z′, Q: ,i′ and λs are defined as follows:

Y′
i � Yj 0[ ]T (20)

Z′ � 1 + λ2( )−1
2 z

��
λ2

√
I[ ]T (21)

Q: ,i′ �
�����
1 + λ2

√
wi (22)

λs � λ1�����
1 + λ2

√ (23)

where I is the unit matrix. It can be shown that Eq. 18 is an
optimization problem with respect to the adaptive weighting
factors. Further definition.

Qj,i
″ � δj,iQj,i

′ (24)

Z″ � Z′
δ: ,i

(25)

Eq. 19 can be further rewritten as:

Jk � argmin
Q: ,i
′

Y ′
i − Z′Q: ,i

″
���� ����22 + λ ∑M+L

j�1
Qj: ,i

″( ){ }
k

� argmin
Q: ,i
′

Y ′
i − Z′Q: ′i

″
���� ����22 + λ Q: ,i

″
���� ����{ }

k

(26)

Eq. 26 is an optimization problem with respect to the
L1-paradigm. Currently, some methods are available, such as the
Newton’s method and the gradient descent method. All of the
approaches, though, need the solution variables’ derivatives. In
this study, we answer Eq. 27 using the minimal angle regression
(MAR) approach, which avoids the derivatives of the variables.
When Q: ,i

″ is obtained, the output weight matrix Q: ,i corresponding
to the ith step prediction is

Q: ,i � Q: ,i
″

δ: ,i
�����
1 + λ2

√( ) (27)

Equation 27 is further modified as (Rodan, 2012):

Q: ,i �
�����
1 + λ2

√
δ: ,i

Q: ,i
″ (28)

TABLE 3 Multistep prediction performance.

Scenario Database Model Average sparsity degree (%) Average consuming time (s)

indoor scenario Real component BLN 100 0.0253

LBLN[33] 20.8 2.1187

RBLN 100 0.0162

EBLN 15.63 1.7548

ABLN 15.09 1.2869

Imaginary component BLN 100 0.0169

LBLN[33] 17.69 1.4467

RBLN 100 0.0089

EBLN 16.64 3.3716

ABLN 15.37 1.2285

Outdoor scenario Real component BLN 100 0.0243

LBLN[33] 5.28 0.9624

RBLN 100 0.0164

EBLN 3.68 3.2686

ABLN 4.47 0.4538

Imaginary component BLN 100 0.0245

LBLN[33] 4.59 1.2572

RBLN 100 0.0142

EBLN 4.46 3.1453

ABLN 4.29 0.6941
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Therefore, the output weight matrix Qout is

Input: training output matrix Y, training input matrix

Z, penalty coefficients λ1, λ2 and λ1/2, adaptive factors

τ, maximum prediction step number I

Output: weight matrix Qout

Step 1: For i � 1,2,3, . . . ,I

Step 2: Solve Eq. 8 to obtain Q: ,i;

Step 3: Calculate the δj,i by Eq. 15;

Step 4: Calculate the modified Y′
i by Eq. 20;

Step 5: Calculate the modified Z″ by Eq. 21;

Step 6: Solve Eq. 26 by the minimum angle

regression method;

Step 7: Estimate by Eq. 28.

end

Step 8: Construct the output weight matrix Qout by Eq. 29

Step 9: Output Qout;

Algorithm 1. Calculation process of the ABLN.

Inputs: input: training output matrix Y, training output

matrix Z, non-zero penalty coefficients λ 1 /

2
, empty

matrix Q0
: ,i

Output: Q: ,i;

Step 1: Q: ,i � Q0
: ,i;

Step 2: For j � 1,2,3, . . . ,L + M;

Step 3: Q0
: ,i � Q: ,i;

Step 4: Estimate Q: ,i, p � 1,2,3,..,j;

Step 5: Judge ∑M+L
j�1

|Q0
j,i − Qj,i|≤ ε. If no, then jump back to

step 3; If yes, then jump to step 2.

End

Algorithm 2. Coordinate descent computation procedure.

Qout � Q1,Q2,/,QI[ ] (29)

The computational pseudo-code for the ABLN is shown in
Algorithm 1 and the computational pseudo-code for the
coordinate descent method is shown in Algorithm 2.

4 Simulation and discussion

These related parameters are part of the channel prediction
approach for the DAMS based on ABLN that is looked at in this
paper; they are shown inTable 1. Both the interior and outdoor scenarios
are taken into consideration in order to assess howwell ABLN performs.

1) The indoor scenario: Among the pertinent features are the
maximum Doppler shift of 80 Hz and the total of six
transmission routes; the delay and power are, respectively,
(0, 120, 430, 860, 1030, 1470) ns and
(0, −1.6, −0.8, −9, −9.4, −2.8) dB.

2) The outdoor scenario: The relevant parameters for the
Nakagami-m channel scenario are as follows: The maximum
Doppler shift is 20 Hz, andm is set to 5. Then, there are a total of
four transmission lines, each having the following powers and
de-lays: 0 dB and (0, 130, 230, 1180) ns, respectively.

This work also examines several of the current BLN-based
methodologies, such as the fundamental BLN (Zhao and Lu,
2023), the lasso regularized BLN (LBLN) (Duan and Xu, 2022),
the BLN with the ridge regularization (RBLN) (Wang, 2022) and the
elastic network BLN (EBLN) (Ding and Xie, 2023). The following
three performance metrics are considered in this paper.

1) The difference between the ideal and expected CSI is
represented by the Root Mean Square Error, or RMSE.
Thus, the prediction performance is evaluated in this paper
using RMSE. Better predictive performance of the model is
indicated by a reduced root mean square error.

2) The examined model’s ability to generate sparse output weight
matrices is shown by its average sparsity. Again, a sparse
output weight matrix demonstrates the significant
improvement in the model’s memory use.

3) The average time spent is used to determine how complex the
computation is during the output weight matrix estimation
procedure. When the average time to estimate the output
weight matrix is lower for a given model, we can conclude
that the model has less computational complexity.

These three metrics are computed and examined in terms of one
step and multi-step prediction in this section. The three measures
are averaged over ten runs to remove randomness. The average
sparsity for one step prediction is the mean number of non-zero
elements in the projected output weight matrix after 10 iterations.
The average sparsity in multi-step prediction is defined as the
average rate of non-zero elements in the predicted output weight
matrix from one step prediction to h-step prediction. Besides, in the
simulation, the relevant parameter parameters of the ABLN include
the neuron number of the feature layer 100, the neuron number 50,
the input scaling factor 0.01 of the feature layer. Random generation
is used to create both the input weight matrix and the internal weight
matrix within the interval [-1, 1]. Each OFDM symbol has
60 subcarriers, as seen in Table 1, and 120 predictors might
theoretically be used to complete the IDFT process. To keep
things simple, the model utilized in this research is only
evaluated using the CSI samples of the first subcarrier. The
model is trained in ABLN using 5000 frames, and its
performance is then assessed using the 1000 frames that follow.

4.1 Input dimensions of ABLN

The model’s input dimensions have an impact on the prediction
performance. As a result, in two channel cases, the input dimensions
of ABLN must be estimated. We present simulation results and a
discussion of input dimensions in ABLN in this sub-section. Table 1
provides these regularization parameters. The x-axis of Figure 2,
which shows the RMSE curves and non-zero weight curves of the
predicted output weight matrices of both evaluation models in the
two scenarios given, represents the input dimension of the ABLN, or
the total CSI samples utilized to forecast the next CSI sample. The
relationship between the RMSE and the input dimension p is thus
shown by the red curve with a solid red circle, and the RMSE is
represented by the left vertical axis. Similarly, the black curve labeled
with black solid triangles represents the relationship between the
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number of non-zero components and the input dimension p, and
the number of non-zero elements in the expected output weight
matrix is displayed on the right vertical axis.

Generally, as the input dimension of the ABLN increases, the
RMSE tends to decrease. Furthermore, when the input dimension
increases, the projected output weight matrix’s non-zero members
also grow. In Figure 2A, due to the increasing input dimensions, the
RMSE curve of the real part of the CSI samples tends to stabilize in
the indoor scenario, and the final RMSE is about 7.9e-4. Because of
the increasing input dimensions, the redundancy information in
Figure 2A raises the number of non-zero components of the
projected output weight matrix. As a result, the lowering.

RMSE has a significant impact on the predicted output weight
matrix’s sparsity. The primary ex-planation behind this is that as input
dimensions grow, the ABLN model has access to more data and may
perform better when making predictions. The number of non-zero
items in the predicted output weight matrix rises as a result of the
increased redundant information brought about by the larger input
dimensions. Generally, the actual fraction of the CSI samples in the
interior situation should have an input dimension of about 35.
Subsequently, regarding the fictitious portion of the CSI samples in
the indoor setting, the stabilized RMSE is about 8.8e-5, and the
appropriate input dimension is about 35. Thus, in the indoor
scenario, we set the input dimensions to 35 for both the imaginary

FIGURE 3
The predicted real and imaginary components of the inside scene are represented by the scenes (A,B), respectively, and the predicted real and
imaginary elements of the outside scene by the scenes (C,D), respectively.
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portion of the CSI samples and the real values. Then the external
situation Figure 2 display the non-zero weight curves and RMSE
curves. The steady RMSEs of the real and imaginary sections of the
CSI samples are, as can be shown from Figures 2C, D, approximately
9.2e-5 and 2.4e-4, respectively, just like in the indoor scene. Therefore,
we also adjust the input dimensions of the real and imaginary sections
of the CSI samples in the outdoor scene set to 35 to reduce the amount
of non-zero weights in the estimated weight matrices.

4.2 One step prediction

Table 2 provides the regularization settings in ABLN for one step
prediction. Moreover, the cost parameter c in the c-SVC, gamma in
the kernel function, epsilon p in the SVM loss function, and 25,

0.001 and 2e-5 for the outside scenario are assigned the values 25,
0.006, and 2e-5. c, g and p for these evaluated model predictive
performances are shown in Table 3. Figure 3 shows the ideal CSI
curves, projected CSI curves, and error curves of the ABLN in the
indoor scene and outdoor scenario for the real and imaginary halves
of the CSI sample. The distribution range of these assessment
models’ estimated output weight matrices is displayed in Figure 4.

The predicted CSI in ABLN, as illustrated in Figure 3A, closely
resembles the ideal CSI with a maximum error of 2e-3, whereas
Figure 3B shows a maximum error of 3e-3 for the imaginary
component of the indoor scene. The correlation curves for the
out-door scenario are displayed in Figures 3C, D. The predicted
CSI curves, with a maximum error of 3e-4 in Figure 3C and 5e-3 for
the imaginary component in Figure 3D, are observed to be
satisfactorily accurate in matching the ideal curves. From

FIGURE 4
The estimated output weight matrix’s distribution range. in the indoor scene, (A,B) are the real and imaginary parts, respectively; (C,D) the real and
imaginary parts in the outdoor scene.
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Figure 3, it can be seen that ABLN has relatively small prediction
errors in one step prediction of indoor scenes versus outdoor scenes
compared to other models. Thus, for the CSI samples in the indoor
scene and the outdoor scene, we can obtain excellent one step ABLN
prediction performance. The one step prediction performance is
shown in Table 2. Table 2 also includes the regularization parameters
of the BLN-based models for the two scenarios. The assessed models’
average sparsity for the actual portion of the CSI samples in the in-door
scenario is 3.05%, except for BLN and RBLN. But ABLN has the lowest
RMSE (1.65e-4) compared to LESN (7.54e-4) and RESN (4.87e-3) and
EESN (6.71e-4). It is calculated that, in terms of one step prediction
performance, ABLN has a maximum improvement of about 96.49%
with the other evaluated models. Furthermore, the amount of time
needed to compute the output weight estimate matrix is also less in
ABLN, with an average consumption time of about 0.8612 s, compared
to 1.5678 s in LBLN and 3.7364 s in EBLN. Specifically, there is a

considerable reduction in the computational time needed for the
adaptive elasticity network in ABLN to estimate the input weight
matrix. Although BLN and RBLN need less computing time
(i.e., 0.0258), they do not yield a sparse output weight matrix. In the
indoor situation, ABLN exhibits the best RMSE of 1.64e-4 and the same
average sparsity of 3.13% for the imaginary part of the CSI samples. It
also requires relatively little processing time, 0.4874 s. It is calculated
that, in terms of the one step prediction performance, the maximum
improvement of ABLN with respect to the other evaluated models is
about 92.96%. ABLN requires smaller regularization parameters
compared to other evaluation models. As a result, ABLN creates
good sparse output weight matrices, has strong one step pre-diction
performance, and uses less computing time to estimate the output
weight matrices for CSI data in indoor environments. In the outdoor
scenario, BLN exhibits the lowest performance for the genuine half of
the CSI samples and requires a large amount of time to train the entire

FIGURE 5
Multi-step prediction performance in indoor and outdoor scenarios: in the indoor scenario, (A,B) are real and imaginary parts, respectively; (C,D) real
and imaginary parts in the outdoor scenario.
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model; in contrast, ABLN requires very little computational time
(0.2712 s) and has an ideal RMSE of 8.13e-5 and 1.99% mean
sparsity. ABLN also has the same mean sparsity (e.g., 2.11%) for the
imaginary component with an ideal RMSE (i.e., 1.27e-4), and a very
short computation time (i.e., 0.2433 s). The highest improvement of the
ABLN for the real and imaginary sections of these CSI samples
compared to the other examined models in outdoor scenarios, is
around 95.01% and 97.31% in terms of one step prediction
performance. Therefore, ABLN can offer good one step prediction

Performance and shorter computing time for estimating the
output weight matrices in two given communication scenarios for
similar sparse output weight matrices.

Figure 4 displays the range of the estimated output weight
matrix’s distribution in the BLN-based assessment model. The
projected output weight matrix in BLN has a substantial size, as
seen in Figure 4A, and it roughly ranges from −5 to 5. Thus
indicating that the generalization ability of the input CSI samples is
unsatisfactory. In addition, the output weight matrix of the BLN is
not sparse. The output weight matrix of the RBLN is also not
sparse, despite having an estimated output weight matrix with the
smallest range of magnitude. Furthermore, even though the
LBLN’s output weight matrix is sparse, its magnitude range
exceeds the magnitude range of the RBLN. Com-pared with the
output weight matrix of EBLN, the output weighting matrix
typically approaches zero in ABLN. In terms of sparsity and
magnitude range of the output weight matrix, ABLN has a clear
advantage, which also indicates that ABLN has good generalization
ability to the input CSI samples.

4.3 Multistep prediction

These parameters are the same as those in Table 3 for multi-step
forecasts. Figure 5 displays the correlation curves for these assessed
models’ 1-step to 15-step predictions for the two provided scenarios.
Overall, the ABLN has the best multi-step prediction performance
better compared to BLN, RBLN, LBLN and EBLN for the two given
scenarios. In the indoor scenario, for the real and imaginary parts of
the CSI samples, the improvement ratios of ABLN with the above
evaluation models in the 15th step are about 80.14% and 82.03%,
respectively, while in the outdoor scenario, these improvement
ratios are about 90.87% and 97.42%, respectively. Moreover,
ABLN has the best multi-step prediction performance for the
BLN-based assessment model, particularly for the real portion of
the CSI samples (Figures 5A, C). For the imaginary part of the two
given scenes (as shown in Figures 5B, D), among the evaluation
models, ABLN performs better in multi-step prediction. In the
indoor scene, the 15th step prediction improvement rates of
BLN-based ABLN compared to other evaluated models are
approximately 35.28% and 28.94% for the real and imaginary
parts of the CSI sample, respectively. Conversely, in the outdoor
scene, these improvement rates are approximately 48.35% and
49.46%, respectively. Thus, as far as prediction performance is
concerned, the ABLN has satisfactory multi-step performance for
both real and imaginary parts in both given scenarios. The results for
the evaluated models in terms of average sparsity and average time
consumption are presented in Table 3. In this paragraph, the average
sparsity and average consumption time are defined using the mean

of predictions made across stages one through fifteen. In the indoor
scenario, the output weight matrix in ABLN exhibits the optimal
sparsity of 14.97% for the real part of the CSI samples, whereas the
output weight matrices in BLN and BLN exhibit no sparsity. The
BLN beats the other evaluation models, including the ABLN, in
terms of the average time needed to estimate the output weight
matrix. But as was already established, the BLN’s output weight
matrix is not sparse. The conclusions are like those of the BLN.
Then, the ABLN is also better in estimating the average time
consumed for the output weight matrix compared to LBLN and
EBLN. Therefore, the ABLN exhibits excellent multi-step prediction
performance for the authentic portion of CSI data in the indoor
scenario, considering both the average time required for calculating
the output weight array and the sparsity of the estimated output
weight matrix. The corresponding outcomes in the outdoor scenario
are comparable to those obtained for the actual portion of CSI
samples in the in-door scenario.

5 Conclusion

The channel prediction problem for distribution automation
masters is the main topic of this study. Specifically, we propose in
this study an ABLN for predicting the CSI of distribution automation
master communications in OFDM systems. In this study, we simulate
and analyze communication scenarios in both indoor and outdoor
environments. The indoor scenario considers the Nakagami channel,
while the outdoor scenario uses the Rayleigh channel. Moreover, in
the simulation part, one step, multi-step and local predictability proofs
for CSI samples are implemented. After the simulation, we draw
several inferences. First, the CSI samples inferred by least squares (LS)
in orthogonal frequency division multiplexing (OFDM) symbol
subcarriers have significant local predictability, especially under the
condition of finite maximum Doppler shift. In both cases, the local
predictability of the best CSI samples exceeds 94.95%. Furthermore, in
both cases, ABLN exhibits excellent one step andmultistep prediction
performance for both the real and imaginary parts of the CSI samples.
In one step prediction, ABLN provides well one step prediction
performance and shorter computation time to estimate the output
weight matrix. In multistep prediction, ABLN provides satisfactory
multistep performance in both real and imaginary parts of two given
scenarios. It is characterised by sparse output weight matrices with
small magnitude and less computational time required to estimate the
output weightmatrix, especially in one step prediction. Themaximum
improvement in the prediction performance of ABLN is calculated to
be about 96.49% compared to other models. In addition, the
regularization factor of ABLN is smaller than the regularization
parameters of other evaluated models. Therefore, ABLN has
advantages in channel prediction based on adaptive distribution
automation master communication and can be used for future
adaptive wireless communication in distribution automation
master. The channel prediction method proposed in this paper can
provide highly accurate channel prediction information, which
provides a guarantee to reduce the impact of outdated channel
state information on wireless communication systems such as
distribution network automation master stations. The optimization
and modification of the ABLN further to improve the prediction
performances of the system model are the works in the future.
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Optimal placement of distributed
generation in power distribution
system and evaluating the losses
and voltage using machine
learning algorithms

Akanksha Jain* and S. C. Gupta

Electrical Engineering, Maulana Azad National Institute of Technology, Bhopal, India

As themodern power system continues to grow in size, complexity, and uncertainty,
traditional methods may occasionally prove insufficient in addressing the associated
challenges. The improper location of distributed generation varies the voltage profile,
increases losses and compromises network capacity. Machine learning algorithms
predict accurate site positions, and network reconfiguration improves the capacity of
the power system. The proposed algorithm is a hybrid of machine learning and deep
learning algorithms. It cascades Support VectorMachine as themainmodel and uses
RandomForest andRadial NeuralNetworks as classification algorithms for accurately
predicting DG position. The non-linearity characteristics of the DG problem are
directly mapped to the proposed algorithms. The proposed algorithm is employed
on familiar test setups like the IEEE 33-bus and 69-bus distribution systems using
MATLAB R2017 as simulation software. The R-squared (R2) values for all parameters
yield a value of 1, while the MAPE values are minimal for the proposed cascaded
algorithm in contrast to other algorithms of LSTM, CNN, RNN and DQL.

KEYWORDS

distributed generation (DG), optimal placement, distribution systems, machine learning,
artificial neural network

1 Introduction

1.1 Background

As electricity demands grow, rather than solely relying on constructing new centralized
power plants and transmission infrastructure, it is wise to integrate smaller-scale production
units nearer to consumption hubs. Compact yet powerful generating units, commonly
known as distributed generation (DG), have garnered increased attention due to their
numerous advantages. Improper allocation of DG within the distribution system (DS) can
have detrimental effects on the power system rather than providing benefits. To guarantee
the best allocation of distributed generation (DG), several optimization investigations have
been recorded in scholarly works.

The optimization of distributed generation (DG) is directed towards fortifying the
reliability of the power network. The application of distributed generation has several
advantages over conventional generation, such as technical, economic, and environmental,
for the electric distribution company and the end consumers. Due to the development of
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emerging technologies, an appropriate allocation involves various
factors like reliability, power quality, voltage profile, power loss, and
control stability of the electric grid.

Effective approaches for the recognition of power system control
challenges have consistently been a focal point. To tackle this issue,
machine learning and deep learning methodologies are utilized to
predict occurrences, evaluate the multitude of variables and
conditions, categorize them, and identify key features when
managing power system control challenges across preventive,
normal, emergency, and recovery situations. Machine learning
methods play a crucial role in discerning patterns and structures
within data, enabling the analysis, processing, prediction, and
categorization of extensive pertinent to the evaluation of intricate
power system issues. Numerous studies have explored machine
learning algorithms, and the proposal introduces the cascaded
machine learning algorithm (CML) specifically designed to
optimize the siting and sizing aspects within distribution systems.
Menke et al. (2019).

An approach centered on estimation for assessing the
dimensions of DG (Distributed Generation) and its impact on
the network, aiming to circumvent the cumbersome and
obligatory application of load flow methods. Various machine
learning techniques, including linear regression, artificial neural
networks, support vector regression, K-nearest neighbours, and
decision trees, have been leveraged for these estimations and
applied across established test systems. Purlu and Turkay (2021).

1.2 Related work

The progression of distributed generation alongside the
utilization of machine learning algorithms and various
optimization methods contributes to enhancing the voltage
profile with minimized losses within the transmission network.
Recently, numerous authors have introduced a variety of
algorithms, incorporating machine learning, deep learning, and
several meta-heuristic functions, aimed at optimizing the
allocation of distributed generation. In Essallah et al. (2019) The
goal of the authors is to secure voltage stability amid load variations
while simultaneously pinpointing ideal locations for distributed
generation (DG) and determining their most suitable power
capacities. Employing the PSAT MATLAB toolbox, they utilized
this approach on the IEEE evaluation systems, encompassing the 33-
bus and 69-bus configurations, revealing the method’s efficacy,
reliability, and robust performance. In the initial scenario, there
was a noteworthy enhancement in the system’s active power,
exceeding its rated value by 50%. Additionally, both the active
and reactive power loads saw a substantial increase of 50% in the
subsequent scenario. In Sambaiah et al. (2019) the authors employed
the Slaps Swarm Algorithm (SSA) for DG allocation. The concept is
based on how slaps forage and navigate by swarming together in the
water. In Liu et al. (2019) The total power losses are decreased by
90%, the cost is lowered by 21%, and the emissions are decreased by
67% for the 33-bus system.

To ascertain the optimal position and dimensions for DG units,
the authors take into account multiple factors including voltage
variation, line loss, and energy-saving benefits during the model
selection process. This necessitates a comprehensive analysis to

ensure accurate decision-making. This thorough evaluation
ensures the optimal decision-making process. In Onlam et al.
(2019) The authors utilized the Adaptive Shuffled Frog Leaping
Algorithm (ASFLA) technique to carry out both network
reconfiguration and DG installation. This approach was
implemented across seven different scenarios for the electrical
systems of IEEE 33-bus configuration and 69-bus configuration.
In the most favorable scenario, the 33-bus system achieved loss
savings of up to 75.57%, while the 69-bus system experienced an
impressive 84.90% reduction in losses. Moreover, the Voltage
Stability Index (VSI) increased by approximately 35.45% and
40.82%, respectively, surpassing their base values. In
Mohammadpourfard et al. (2019) The contribution generates
valuable training data through a scenario generator, along with
specific details outlining the Artificial Neural Network (ANN)
architecture. The results unequivocally illustrate that the
proposed approach effectively addresses the limitations observed
in existing ANN methodologies, particularly those that are not
suitable for grids with significant Distributed Generation (DG)
penetration. In Chege et al. (2019) the authors employ the
voltage stability index technique to determine where distributed
generation and capacitors should be placed. By employing a hybrid
evolutionary programming method, the search for the most suitable
sizes of distributed generation and capacitors to be installed at the
indicated locations is facilitated. When the placement was carried
out using this technique, the lowest voltage values of the network
rose from 0.9036 to 0.9400 per unit, while the minimum Voltage
Stability Index (VSI) values increased from 0.6690 to 0.7841. In Yin
et al. (2019) to determine the feasibility and efficiency of the model,
it is essential to carry out a thorough validation process. Therefore, a
comparison is made between the results obtained and those achieved
through the utilization of genetic algorithms (GA), support vector
machines (SVM), and particle swarm algorithms (PSO). The kernel
machine learning obtains the results of the capacity choice of the DG
that satisfy the target function by training the model. In Shaheen
et al. (2019) The authors suggest that the Stochastic Fractal
Optimization (SFO) algorithm showcases validity, accuracy,
feasibility, and robustness, surpassing alternative simulation
methods in addressing the optimum load power flow (OPF)
issue. In Arif et al. (2020) the authors suggest the
implementation of the Analytical Hybrid Particle Swarm
Optimization (AHPSO) algorithm to assist in evenly distributing,
progressively dispersing, centrally distributing, and randomly
distributing loads. Based on simulation outcomes, the AHPSO
algorithm showcases significantly accelerated convergence rates
compared to the traditional Particle Swarm Optimization
technique. Notably, it demonstrates substantial enhancements in
convergence performance across various distribution systems. The
achieved enhancements are significant, demonstrating
improvements of 32%, 42.59%, 50.91%, and 55.56% for the
distribution systems of IEEE 10-bus, IEEE 33-bus, IEEE 69-bus,
and KEPCO, respectively. Notably, both the normal PSO and
AHPSO algorithms yield similar results for the location and
scaling of DG in every scenario. In Hassan et al. (2020) the
authors suggest a methodology directed at addressing the
concern of siting and determining the dimensions of distributed
generation units fueled by sustainable energy sources. Morales et al.
(2020) A procedure is described to identify the current flow along
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the distribution feeder (DF) while integrating distributed generation
(DG). This method incorporates decision trees (DT), empirical
decomposition (ED), and support vector machines (SVM) to
achieve the intended objective, delineating the steps of the
methodology. In Ismail et al. (2020) The authors introduce an
algorithm designed for power systems utilizing deep learning
principles.

This algorithm achieved an exceptional detection rate of 99.3%
and demonstrated a minimal false alarm rate of only 0.22% by
incorporating specific details related to PV generation, data, and
interpretations extracted from SCADA systems. In Farh et al. (2020)
an inventive technique, the Crow Search Algorithm-based Auto-
Drive Particle Swarm Optimization (CSA-PSO) technique, is
employed to optimize the setup, scale, and quantity of [unclear]
systems with the goal of minimizing overall expenses and reducing
power losses. In Tran et al. (2020) seven different scenarios were
used to evaluate the proposed Stochastic Fractal search (SFS)
algorithm on 33, 69, 84, 119, and 136 buses distribution
networks. When the results from SFS were contrasted with those
from other methodologies, it became clear that SFS produced more
effective solutions. The SFS algorithm has the potential to search
heuristics for solving issues quickly and with high-quality solutions.
In Agajie et al. (2020) the application of the development of a Grid-
based Multi-Objective Harmony Search Algorithm (GrMHSA) to
improve the sizing and placement of Distributed Generation units
ensures the enhancement of the overall system performance. In
Admasie et al. (2020) the Intelligent Detection Method (IIDM)
integrates a sophisticated approach termed Feature-based Wolf-
Optimized 113. Artificial Neural Network (GWO-ANN) using an
intrinsic mode function (IMF). Through MATLAB simulations, the
IIDM’s efficacy is highlighted in achieving high classification
accuracy, computational efficiency, and robustness against noise
interference in measured voltages. In contrast to directly resolving
models under varying operational conditions, this method addresses
the volt-VAR optimization (VVO) challenge in unbalanced
distribution networks employing an advanced Deep Q-Network
(DQN) framework. Its effectiveness is evaluated on IEEE 13-bus
and 123-bus networks with imbalanced characteristics. In Haider
et al. (2021) the application of the algorithm demonstrated
significant efficacy in mitigating voltage fluctuations and reducing
power losses within the distribution network. MATLAB software
was employed to estimate the efficiency of this technique on the
radial distribution network of the IEEE-33 bus system. Through the
integration of a hybrid strategy named Enhanced Wolf Optimizer
and Particle SwarmOptimization (EGWO-PSO), it became viable to
attain optimized placement and sizing, resulting in an overall
enhancement of the system’s performance. This heuristic
approach, EGWO, draws inspiration from wolf behaviors and
presents a hybrid methodology that converges rapidly without
being limited by local best practices Venkatesan et al. (2021). In
Ogunsina et al. (2021) The authors employed the ant colony
optimization (ACO) algorithm identifying the Optimal Positions
and quantities for distributed resources within a power network.
Bajaj and Singh (2021) The authors introduced a multi-objective
method integrating multiple performance index constraints and
compared its outcomes with hosting capacity augmentation
techniques. The method involves the ENLPCI (Extended
Nonlinear Load Position-based APF Current Injection)

technique, facilitating the identification of optimal bus locations
for Active Power Filter (APF) placement and the determination of
required APF quantities.

The algorithm underwent performance evaluation through tests
conducted on the IEEE test system with 69-bus. The outcomes
highlighted the considerable impact of solar fluctuations on the best
positioning and dimensions of Active Power Filters (APF)as part of
the Optimal Placement and Sizing (OPAS) approach. Lakum and
Mahajan (2021). In Lakum and Mahajan (2019) The authors
introduced a novel technique called Non-Linear Load Position-
Based Current Injection (NLPCI) aimed at strategically positioning
the Active Power Filter (APF). The process involves the
identification of suitable bus locations while considering the
presence of Distributed Generation (DG) and excluding linear
loads. To reduce the APF’s size, the algorithm utilizes a voltage
threshold of 5%, employing the Total Harmonic Distortion method.
The implementation of this proposed algorithm notably enhanced
system performance indices, increasing the Hosting Capacity (HC)
across various test systems, including the 59-node Egyptian test
system, 135-node Brazilian test distribution network, additionally,
the analysis includes the IEEE 33-node and IEEE 69-node test power
networks. Moreover, using the NR (Newton-Raphson) and AOA
(Artificially Optimized Algorithm) enhanced the HC of the 59-node
and 135-node test systems by 38.832% and 72.895%, respectively. Ali
et al. (2021) The use of the Meta-heuristic Rider Algorithm (ROA)
aids in evaluating the optimal dimensions and positions for
Distributed Generation (DG) units, which are driven by
sustainable energy resources like biomass-based generation, wind
turbines (WT), and photo voltaic (PV) systems within distribution
networks. Khasanov et al. (2021) The authors ingeniously employed
the coyote technique to efficiently determine the positioning and
capacity of distributed generation (DG) within radial networks. This
approach demonstrated superior performance compared to other
methods like SFO, SSA, and COA in making optimal DG decisions.
Pham et al. (2021). The authors assessed their proposed Modified
Sequential Switch Opening and Exchange (MSSOE) algorithm using
industry-standard distribution systems like IEEE 33-node, IEEE 69-
node, and IEEE 119-node. The findings show that MSSOE surpasses
existing algorithms, delivering a superior global solution with
reduced computational time. Vannak Vai et al. (2021). The study
incorporated the Firefly Algorithm (FA), a meta-heuristic technique,
within the IEEE 33-bus distribution system as part of its
methodologies. This method includes the application of a mixed
probabilistic model to manage both output power uncertainty and
the system load. Naguib et al. (2021). The research integrates hybrid
particle swarm optimization (PSO) algorithms, these methods
incorporate chaotic maps and adaptive acceleration coefficients to
identify the optimal configuration and dimensions of photovoltaic
(PV) systems connected to an electric grid. Belbachir et al. (2021). In
Bajaj et al. (2020) A methodology inspired by the Analytical
Hierarchy Process (AHP) is introduced for evaluating Power
Quality (PQ) in modified distribution power systems undergoing
changes. In Kushal et al. (2020) The authors have introduced a
decision-making methodology that uses the Analytical Hierarchy
Process (AHP) to assess various distributions of Photovoltaic (PV)
and Battery Energy Storage Systems (BESS) resources to load buses.,
considering various scenarios focused on cost and resilience
enhancement. The results indicate that this approach offers
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valuable guidance for planners in making informed investments.
Additionally, they introduced a hybrid technique merging clustering
with particle swarm optimization to optimize Distributed
Generation (DG) allocation. This algorithm clusters buses within
the distribution network and selects the most suitable cluster for DG
allocation, thereby reducing the number of viable production buses.
In the optimal scenarios, the algorithm reduces test feeder losses by
69%, 86%, and 90%, while considering uncertainties in three
different scenarios, achieving reductions of 39%, 53%, and 55%
respectively Eyübog�lu and Gül (2021). The revised method for
updating control variables of the initial slime algorithm led to the
development of a new solution. As a result, the proposed algorithm
demonstrates a notable improvement in reducing voltage deviation
to 1.4779 Pu and power loss to 78.88%. In contrast, alternative
algorithms provided results within the range of 69.10%–78.87% for
loss and 1.5759 to 1.4996 Pu for voltage deviation Pham et al. (2022).
The authors incorporated wind generation into the distribution
system, resulting in enhanced bus voltages and reduced active power
losses. Specifically, nodes 19 and 12 experienced voltage increases of
2.2% and 3.26%, respectively. Consequently, in the IEEE-19 bus
system, losses reduced from 13.54 kW to 6.36 kW, while in the IEEE-
25 bus system, losses decreased from 150 kW to 95.30 kW Routray
et al. (2021). The Loss Sensitivity Factor plays a pivotal role in
determining the search space for Distributed Generation (DG) sites.
Employing an analytical technique, the initial DG sizes are
calculated based on a specific interpretation. Selim et al. (2021).
In Rathore and Patidar (2021) The authors introduce a deep
learning-based algorithm designed for effectively placing and
arranging DG units in optimal locations. This algorithm aims to
enhance voltage characteristics and minimize losses within the
system. In Dheeban and Selvan (2021) The authors utilized the
Thevenin Equivalent Impedance method to simulate the distributed
generation (DG) source on the high-voltage side of the transformer.
The previous sections demonstrate various methods for determining
distribution system voltages, including distribution load flow for
unbalanced systems, symmetrical components, mesh, and nodal
analysis. An enhanced algorithm, incorporated into an adaptive
interference controller, was then applied to the proposed PV-UPQC
(Photovoltaic - Unified Power Quality Conditioner) system. This
advanced fuzzy-model-based controller enhances the system by
analyzing system parameters and facilitating the generation of
reference current Zhang et al. (2020). Mo and Sansavini (2019)
The exploration involves utilizing Optimal Power Flow (OPF) to
calculate the suitability of Energy Not Served (ENS) and Operation
and Maintenance (O&M) costs for Distributed Generation (DG).
This process tends to overestimate unreliability and costs. To
address this issue, the simulation results provide guidance for
decision-making in managing, maintaining, and planning
Distributed Generations. The objective is to mitigate the effects,
minimize O&M expenses, and decrease energy loss, ensuring more
efficient and reliable systems Zhao et al. (2019). The paper
undertakes a comparative analysis between two operational
strategies and multiple islanding strategies for coordinating
dispersed power and storage devices. The study’s results
demonstrate the considerable enhancement in the dependability
of the distribution system caused by implementation of the proposed
dynamic strategy. This enhancement maintains the steady
functioning of vital loads within the system. Furthermore, it

deeply explores fault detection and protection techniques
employed in distributed networks alongside distributed
generation. This paper uniquely contributes by offering a
comprehensive understanding of diverse fault detection strategies,
emphasizing the operational and communication methodologies of
Distributed Generation (DG), different parameters involved, and
their respective limitations Nsaif et al. (2021). In Lotfi (2022) The
method’s effectiveness is evaluated on both a 95-node and a 136-
node test system. The results indicate significant improvements
compared to the base standards. In the first system, energy losses
reduced by 11%, operational costs by 25.5%, and Energy Not Served
(ENS) by 5% through the optimization of the distributed units and
shunt capacitors values. Moreover, in the second system, when
employing the Time-of-Use mechanism to determine DG units,
there was a remarkable decrease of 29% in energy losses, 65% in
operational costs, and 7% in ENS compared to the base values. In
Bhusal et al. (2022) The method was tested on diverse systems,
including the IEEE 123-node distribution setup and an actual 240-
node system in the United States. Findings demonstrate that the
approach effectively identifies coordinated attacks with remarkable
accuracy of up to 99.9%. The research employs different neural
networks, encompassing Convolutional Neural Networks (CNN),
Residual Neural Networks, and Multi-Layer Perceptrons (MLP) to
evaluate the effectiveness of this method. Additionally, the method
contributes significantly to precisely detecting the attack type within
a DG, distinguishing between additive or deductive attacks. This
distinction provides operators with explicit data, enabling them to
undertake corrective measures effectively. The Gauss-Seidel (GS)
method is applied for load flow analysis, offering a simple iterative
approach to solving load flow equations when partial derivatives are
not required Alnabi et al. (2022). A completely distributed energy
trading system based on machine learning was proposed. Design
skeletons for a DC grid energy management system are designed by
developing an experimental strategy and assessing the efficacy in
comparison to other available options. In Yılmaz et al. (2022) the
pyramidal algorithm with wavelet transform is a novel feature
extraction strategy used in the proposed hybrid machine learning
method (UWT). With an accuracy rate of up to 99.59%, the UWT
SGBT approach effectively groups data according to mathematical
and real data results. Furthermore, this approach has been
extensively tested in noisy environments, and the pyramidal
UWT-SGBT method demonstrates superior noise immunity
compared to other machine learning methods that utilize wavelet
transform (WT)-based techniques. In Gawusu et al. (2022) The
study delves into the exploration of patterns and trends in dispersed
generation through data mining (DG). While still at an early stage,
this research provides valuable insights into ongoing research trends
and patterns. These findings would be particularly beneficial and of
significant interest to researchers actively engaged in the Distributed
Generation field. In Bhadoriya et al. (2022), As the load increases,
distribution network losses can cause voltage deviations and
compromise stability. In response, the Transmission System
Operator (TSO) has developed an optimization solution for the
allocation of Distributed Generation (DG) that meets various
equality and inequality requirements. The goal is to mitigate
reduce voltage fluctuation, decrease active power dissipation and
guarantee voltage stability. Significantly, both the IEEE 33-bus and
69-bus distribution systems have experienced considerable decrease

Frontiers in Energy Research frontiersin.org04

Jain and Gupta 10.3389/fenrg.2024.1378242

36

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1378242


in active power dissipation, reaching percentages of 94.29% and
94.71%, respectively. In Pereira et al. (2016), a combined strategy
that merges tabu search with genetic algorithms (GA) has been
proposed for the incorporation of distributed generation (DG) and
capacitor banks into distribution systems (DS) to improve overall
system efficiency. In Battapothula et al. (2019), an innovative
optimization technique, utilizing a hybrid shuffled frog leap
teaching and learning algorithm, has been suggested and
implemented to determine the most efficient placement and
dimensions of electric vehicle rapid charging stations and
distributed generation (DG) units within distribution systems
(DS). In Bo et al. (2020), a hybrid load forecasting model has
been developed by integrating data preprocessing techniques,
forecast algorithms, and weight identification theories. An
approach utilizing wavelet decomposition and quadratic gray
neural network, in conjunction with the enhanced Dickey-Fuller
test, Li et al. (2017), dynamic model selection relying on Q-learning
Feng et al. (2020), a method employing boosting-based multiple
kernel learning Wu et al. (2020), hybrid method that merges
convolutional neural networks (CNN) with long short-term
memory (LSTM) for deep learning (DL). Alhussein et al. (2020),
a DL method Hong et al. (2020), and a hybrid model clustering with
feed forward neural networks (FFNN) Panapakidis et al. (2020) have
been proposed for STLF. A proficient forecasting model is
introduced, incorporating a feature extraction module that
merges variational mode decomposition (VMD) with a
variational auto encoder (VAE) Yang et al. (2022). The project
entails sharing data, which necessitates disclosing the private
information of the participants. To tackle this concern, the
authors integrated variational mode decomposition (VMD), the
federated k-means clustering algorithm (FK), and SecureBoost
into a unified algorithm, named VMD-FK-SecureBoost. Yang
et al. (2023).

1.3 Research Gap

A machine learning algorithm was recently employed in several
data and flow-oriented applications for prediction and selection. The
non-linear machine learning algorithm mapped the objectives and
multiple constraints of DG placement and sizing. Machine learning
provides several algorithms in the domain specified, such as
supervised, unsupervised, and reinforced learning. The reported
survey suggests that most authors employed supervised learning-
based algorithms such as support vector machine (SVM), K-nearest
(KNN), decision tree (DT), extreme learning (ELM), and many
more hybrid algorithms. The limitations of feature selection and
mapping of machine learning algorithms are overcome with deep
learning algorithms.

As evident from the literature review, it is commonly acknowledged
that the load is typically presumed to remain constant, and the DG
output can be regulated during DG allocation. However, in real-world
scenarios, both loads and DG output fluctuate continuously. This
variability poses challenges when calculating losses and other
parameters using power flow-based algorithms, making the process
cumbersome and time-intensive.

Several methodologies focus solely on active power injection,
specifically for distributed generation (DG) with a unity power

factor. Some techniques are designed for allocating a single DG
unit, neglecting environmental considerations. Certain network
constraints may go unnoticed, and economic factors are
overlooked in certain articles. Furthermore, certain methods
exhibit excessively long computational times, and the outcomes
derived from certain approaches may not be optimal.

1.4 Paper contributions

The proposed algorithm effectively addresses issues such as
voltage imbalance, line loading, and power losses within the
distribution system. The frequently employed algorithm for
Distributed Generation (DG) allocation is the support vector
machine (SVM). Recently, several authors employed
convolutional neural networks (CNN) for DG allocation. The
proposed algorithm offers a significant advantage by overcoming
limitations present in Artificial Neural Networks such as
Convolutional Neural Networks (CNN) and Recurrent Neural
Networks (RNN), including Long Short-Term Memory (LSTM)
and Deep Q-learning (DQL) algorithms, while accumulating
various benefits.

The specific contributions of the work proposed are as follows:

1. Estimation of generation unit sizes, power losses within the
distribution network, and minimum voltage (without power
flow estimation)utilized in the test scenarios of IEEE 33-bus
and IEEE 69-bus distribution systems.

2. Evaluation and comparison of RNN, CNN, LSTM, and DQL
algorithm performances on similar test systems, utilizing
metrics like Mean Absolute Percentage Error (MAPE) and R2.

1.5 Paper organization

The forthcoming sections of this manuscript will follow this
structured approach:

Section II: Methodology description detailing DG allocation
and sizing.

Section III: Experimental analysis, presenting the results.
Section IV: Comprehensive overview of the entire study.
Section V: Exploration of potential future avenues in this field

of research.

2 Methodology

The application of Machine Learning for predicting the optimal
locations for distributed generation is explored in this study. The
paper delves into four key algorithms: Recurrent Neural Networks
(RNN) and Convolutional Neural Networks (CNN) under the
Neural Network category, Deep Q-Learning (DQL) as a
Reinforcement Learning method, and Long Short-Term Memory
(LSTM) representing Supervised Machine Learning.

In a quest to enhance distribution system performance, a novel
approach named the cascaded machine learning algorithm is
introduced. This algorithm combines Random Forest, Radial
Neural Network, and Support Vector Machine (SVM). Its
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primary goal is to enhance the placement of Distributed Generation
(DG)with the intention of minimizing power dissipation within the
distribution system. The investigation comprehensively evaluates the
impact on various aspects such as Distributed Generation power
injection, minimum voltage for, and both active and reactive electrical
losses. The study employs test systems based on the IEEE 33-bus and

69-bus configurations. In the method presented, the division of data is
random, with a ratio of 80:20 for training and validation.

The process encompasses various key steps, including feature
selection (input), training and testing phases, as well as validation.
Within this framework, multiple ML models—specifically RNN,
CNN, Proposed model, DQL, and LSTM are constructed to facilitate

FIGURE 1
Flowchart for the process.
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predictions. The validation of the final model is conducted using the
method of hours to ensure accurate predictions for both the testing
setups of IEEE 33-bus and 69-bus systems. Furthermore, the entire
process is elucidated through a flowchart in Figure 1, outlining the
comprehensive process.

2.1 Machine learning algorithms applied

TheMachine Learningmodels were constructed using generated
data sets to facilitate training. Regression-based training algorithms,
including Support Vector Machine (SVM), CNN, and CML, were
utilized. Subsequently, their respective R2 scores and MAPE were
computed to predict reactive power losses and minimum busbar
voltages. The outcomes of Mean Absolute Percentage Error (MAPE)
and R-squared (R2) values for all five models are showcased in
Tables 1–4. These models allow the extraction of output parameters
for forthcoming input data. The study applied the following
machine learning algorithms:

2.1.1 Support vector Machines
Support vector machines (SVM) were created for empirical data

as regression models and binary classifiers as prediction models. The
operation of a support vector machine maps input data onto a two-
dimensional space via a hyperplane. The significance of this
hyperplane lies in its ability to classify data into distinct
categories. The effectiveness of support vector machines relies
heavily on the appropriate choice and maximization of
hyperplanes. Optimization enhances the optimal scope of the
hyperplane, leading to improved predictions by the support
vector machine. The equation for hyperplane is given as Eq. 1

min
1
2
|w|2 + C ∑l

i�0
Ti

⎛⎝ ⎞⎠ (1)

Here data to yi (w.xi + b)≥1-Ti, Ti ≥ 0 for all i
where yi stands in for the class label, which is either +1 or −1,

and xi represents the i
th example. The issue’s dual form is used to

solve it, given in Eq. 2

TABLE 1 DG sizing estimation analysis.

Distribution for test system Algorithm applied R2 MAPE [%]

33-bus RNN 0.9785 0.0247

CNN 0.9678 0.0666

LSTM 0.9885 0.0657

DQL 0.9857 0.0013

Proposed 1 0.0012

69-bus RNN 0.9851 0.0300

CNN 0.9845 0.0578

LSTM 0.9852 0.0789

DQL 0.9734 0.0025

Proposed 1 0.0017

TABLE 2 Active power loss estimation analysis.

Distribution system for test Algorithm applied R2 MAPE [%]

33-bus RNN 0.7078 26.0063

CNN 0.9685 1.4671

LSTM 0.9865 26.0765

DQL 0.7846 1.4854

Proposed 1 0.1917

69-bus RNN 0.5978 26.5257

CNN 0.9871 1.4745

LSTM 0.9784 26.1838

DQL 0.9257 1.1570

Proposed 1 0.1918
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max LD � ∑
i
αi − 1

2
∑

i,j
αi αj y iyj xiTxj( ) (2)

Where 0 ≤ αi ≤ C for all i, ∑iαiyi

2.1.2 Convolutional neural network (CNN)
A Convolutional Neural Network (CNN) is structured with

multiple layers that serve distinct roles in data processing. This
architecture comprises input layers, a convolutional layer, a pooling
layer, a fully connected layer, and an output layer. The effectiveness
of CNN classifiers in data classification and detection is attributed to
the diverse capabilities of these layers.

The convolutional layer, through various window sizes, extracts
different feature information from the data matrix by employing
convolution kernels. Utilizing this convolution operation enables
parameter sharing, wherein the same weight and offset are shared
across the network. As a result, this parameter-sharing technique
substantially diminishes the total number of parameters required by
the neural network, thereby amplifying its efficiency.

After the convolutional layer, the pooling layer implements
diverse sampling techniques to down sample the feature map,

typically using mean or maximum values within specified
window regions. This down-sampling process reduces the size of
the features, effectively diminishing the impact of redundant
information and aids in managing computational complexity.

Consider that the input features of CNN are a map of layer x,
Mx (M0 = F)

The convolutional process can be expressed in Eq. 3 as Li et al.
(2017); Wu et al. (2020)

Mx � f Mx-1 ⊗ Wx + bi( ) (3)
Here Wx is the convolutional kernel weight vector of the x layer,
Symbol ⊗ represents convolutional approach,
bi is the offset vector of x layer. F(x) represents the activation

function. By employing diverse window values, the convolutional layer
extracts varied feature information from the data matrix, utilizing
different convolution kernels. Embracing the concept of ‘parameter
sharing,’ the convolution operation involves using the same weight and
offset for all convolution kernels, thereby significantly reducing the total
number of parameters in the neural network. Subsequent to the
convolutional layer, the pooling layer typically conducts feature map

TABLE 3 Reactive power loss estimation analysis.

Distribution system for test Algorithm applied R2 MAPE [%]

33-Bus RNN 0.9952 2.3209

CNN 0.9973 1.4870

LSTM 0.6009 25.0065

DQL 0.9570 8.1056

Proposed 1 0.1718

69-bus RNN 0.9952 2.330

CNN 0.9973 1.7835

LSTM 0.588 25.5358

DQL 0.9558 8.2616

Proposed 1 0.1906

TABLE 4 Minimum busbar voltage estimation analysis.

Distribution system for test Algorithm applied R2 MAPE [%]

33-bus RNN 0.9933 0.0412

CNN 0.9957 0.0477

LSTM 0.9983 0.0246

DQL 0.9997 0.0079

Proposed 1 0.0011

69-bus RNN 0.9933 0.0430

CNN 0.9957 0.0497

LSTM 0.9977 0.0400

DQL 0.9996 0.0096

Proposed 1 0.0018
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sampling through various algorithms. The pooling layer can be
expressed as follows, where

Mx is the input, and Mx+1 is the output of the pooling layeras
given in Eq. 4

Mx+1 subsampling Mx( ) (4)
The sampling criterion typically involves selecting the mean or

maximum value within the window region. The main objective of
the pooling layer is to reduce the size of the features, thereby
mitigating the impact of redundant features on the model.

2.1.3 Recurrent neural network
The Recurrent Neural Network (RNN) distinguishes itself as a

specialized variant of an artificial neural network designed particularly
for analyzing sequential time series data. One of its key advantages lies
in its ability to process data in a sequential manner through the
establishment of signal pathways both forward and backwards. This is
accomplished by creating internal loops within the network, enabling
connections among hidden components.

RNNs, due to these internal connections, are adept at leveraging
information from past data to predict future data points, a capability
that becomes particularly useful when exploring temporal correlations
among diverse data sets. These networks excel in capturing and
understanding sequential patterns within data sequences, making
them highly suitable for tasks involving time-dependent data
analysis and predictions. Wang et al. (2019) Wang et al. (2020).

2.1.4 Long short-term memory
The inception of Long Short-Term Memory (LSTM) was driven

by a specific aim: to address the challenge of vanishing gradients that
conventional Recurrent Neural Networks (RNNs) encounter when
handling long-term dependencies. Unlike the simple chain-like
structure of a regular RNN consisting of a series of recurrent
units forming a single layer, the architecture of LSTM’s hidden
layers is more intricate and involves a sequence of
repeating modules.

LSTM (Long Short-Term Memory) incorporates gate mechanisms
and memory cells within each hidden layer, forming a memory block
with essential components: an input gate, an output gate, memory cells,
and a gate. Each element fulfils specific functions in regulating
information flow within the network. The input gate controls which
data to preserve in the memory cell, while the output gate determines
when to transmit this information to the next layers. The forget gate, on
the other hand, aids the network in discarding unnecessary or outdated
information, essentially resetting the memory cells.

Crucially, LSTM employs multiplicative gates that facilitate the
retention and access of information over longer time intervals. By
strategically incorporating these gates, LSTM significantly mitigates
the problem of vanishing gradients, ensuring the network can
effectively capture and retain relevant information over extended
sequences, thereby enhancing its ability to handle long-term
dependencies in data. Hu et al. (2020) Qiao et al. (2020).

2.1.5 Deep Q learning
Deep Learning holds significant promise in transforming power

load forecasting methodologies. Its impact on the energy sector’s
data processing methods is noteworthy. Artificial Neural Networks
(ANNs) specifically engineered for this objective include multiple

layers positioned among the input and output strata. These layers
enable the seamless transmission of information forward across the
network through a process known as feed-forward propagation.
This architecture enables the ANN to process forecasting data
effectively, contributing to the growing acceptance and
application of deep neural networks within the energy sector.
Eyübog�lu and Gül (2021).

2.1.6 Proposed Algorithm
The Cascaded Machine Learning algorithm enhances data

training and minimizes network errors by integrating three
supervised learning algorithms: Random Forest, Radial Neural
Network and Support Vector Machine (SVM). Within this
context, the Support Vector Machine serves as the central
processing model. Meanwhile, the Random Forest and Radial
Neural Network serve as classification algorithms. The Random
Forest classifier operates for variable feature selection from DG data,
whereas the Radial Neural Network is responsible for predicting the
optimality of the DGs. This amalgamation enables improved data
processing and accurate prediction within the network.

The processing of the cascaded machine-learning algorithm is
described in Eq. 5 as

Mc x( ) � sgn m1 x( ))sgn m2 x( ) sgn mn xn( )( )( ) (5)
HereMc (x) is themultiple-stage function of the support vectormachine.
The processing of multiple stages is carried out on the feature data of
DGs on distributed networks. For the optimality of DGs, this employs
support vector machine function SVM (fsvm) to separate the hyperplane
of optimal and non-optimal data, as given in Eq. 6.

F x( ) � { −1 if Mc x( ) < 0
sgn f svm x( )( ) if Mc x( )≥ 0

(6)

The selection of features data from DGs matrix is given in Eq.
7 as

Rf x( ) � (P1, . . . , Pm] (7)
Here p1,. . ., pn are the vectors of selected DGs matrix data.

Estimate the entropy of class by variable selector,as mentioned
below in Eq. 8

LX x( ) � (Ei1, . . . , Eik ] (8)
Here E is entropy of variables of DGs matrix.

The training set is derived pairwise (s, [E1,. . ., Ek])
Where s represent the input variable and [P1,. . ., Pk] the

target variable.

ej � { 1, if j � k
0, otherwise

(9)

Eq. 9 signifiesmultiple support vectors. The optimal process of the
variable is selected, and then the process pattern on the radial neural
network call adjusts the weight factor of the cascading process.

Mc ∈ ejd~ ← mapping of optimal data in kernel function.
Call kernel function as described in Eq. 10

k xi, xj( ) � exp
‖ xi − xj ‖2

γ( ), γ ∈ R (10)

End if.

Frontiers in Energy Research frontiersin.org09

Jain and Gupta 10.3389/fenrg.2024.1378242

41

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1378242


3 Simulation and results analysis

The simulation of the entire process is conducted through
MATLAB R2017 software. It includes information regarding DG
power injection, bus bar voltages, load variations, as well as both
active and reactive power losses. The evaluation of these
parameters is conducted using the IEEE 33-bus and IEEE 69-
bus distribution networks as case studies. Figure 2 depicts the
single-line diagram for the 33-bus distribution system, and
Figure 3 illustrates the diagram for the 69-bus distribution
system. This simulation methodology enables a comprehensive
examination and assessment of the system’s performance across

various scenarios and conditions. Arif et al. (2020). The power
load data obtained varies based on the time of day and seasonal
changes. These data can be found in the GitHub repository Lotfi
(2022). The assessment of the algorithms’ performance involves
the utilization of MAPE and R-squared indices. The results in the
upcoming figures illustrate the distributed generation (DG)
power injection, active power losses, reactive power losses, and
minimum busbar voltage for both the IEEE 33-bus and 69-bus
networks, respectively. The gathered R2 and MAPE values used
for prediction are presented in Tables 1–4. Each case is
thoroughly explored in the subsequent section, systematically
analyzing the results and observations.

FIGURE 2
IEEE 33-bus test system.

FIGURE 3
IEEE 69-bus test system.
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3.1 DG power injection

Figures 2, 3 illustrate the single-line diagram of the 33-bus and
69-bus distribution systems, respectively. Distributed generation
(DG) sizing is determined through the utilization of normalized
load variation (NLV).

PDtt = 2566.1833 x Load Level - 53.5766 for 33-bus
distribution system.

PL = 286.3641 x Load Level - 97.0291 for 33-bus
distribution system.

Figure 4 depicts the optimal power injection at different intervals of
scheduled working hours. The methodology for power injection
prediction encompasses the utilization of diverse deep learning
algorithms, including long short-term memory networks (LSTM),
convolutional neural networks (CNN), deep Q-learning (DQL),
recurrent neural networks (RNN), and the defined algorithm.
Comparatively, the sequential algorithm of RNN demonstrates
superior performance when compared to the CNN algorithm, leading
to a notable 7% enhancement in prediction accuracy. Additionally, the
proposed algorithm exhibits superiority over existing algorithms in terms
of prediction ratio, which falls within the range of 5%–7%.

PDtt = 1827.2793 x Load Level - 4.711 for bus
69 distribution system

PL = 318.0325 x Load Level - 108.6808 for bus
69 distribution system.

Figure 5 depicts the optimal power injection at different intervals
of scheduled working hours. The 69-bus system exhibits a diverse
prediction compared to the 33-bus system. The figure illustrates the
deep learning-based approaches employed for the assessment of
optimal DG prediction to enhance the distribution systems. The
proposed algorithm for DG optimal prediction reached the
maximum prediction of the actual value of DG sizing. The
proposed algorithm overcomes the limitations of LSTM, RNN,
CNN, and DQL. The RNN and LSTM algorithms suffer from
training error rates; however, the prediction rate of RNN and
LSTM is less than the actual value of prediction. The CNN

algorithm is better than RNN and LSTM. The overall
improvement in the prediction ratio of DG sizing is 4%–8%
compared to existing algorithms.

3.2 Active power loss estimation

Figure 6 displays the predictions for active power losses in the
33-bus systems based on normalized load variation (NLV). We
employed deep learning based algorithms such as RNN, LSTM,
CNN, DQL, and the proposed algorithm to predict active power loss.
The variation of algorithms employed in deep learning is estimated
in different hours of optimal DG sizing. The LSTM algorithm
exhibits inferior performance compared to both CNN and RNN
algorithms. The LSTM algorithm suffers from the problem of
training errors in prediction data. The conventional RNN
algorithms are better than LSTM. The cascaded proposed
algorithm overcomes the training errors and improves the
prediction of active power loss.

Figure 7 illustrates the forecasts for active power loss by utilizing the
normalized load variation (NLV) of 69-bus systems. The employed
DQL algorithm for deep learning is inferior to other algorithms for
prediction. The primary concern lies in the sluggish training rate of
Deep Q-Learning (DQL), which adversely affects the prediction rate of
active power loss compared to CNN, RNN, and LSTM. To address this
limitation, the proposed algorithm is introduced, markedly enhancing
the accuracy of active power loss prediction andmaximizing accuracy in
forecasting actual values. In the context of 69-bus systems, optimal
sizing results in a notable 5%–10% improvement in the predictive
performance for active power loss.

3.3 Reactive power loss estimation

Figure 8 displays the forecasted reactive loss for the 33-bus
systems, where the CNN algorithm utilized for deep learning shows

FIGURE 4
A comparative analysis of distributed generation (DG) sizing predictions for a 33-bus distribution system.
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inferior performance compared to other deep learning algorithms in
prediction accuracy. The challenge primarily arises from the
selection of the filter matrix for DG sizing data, resulting in
errors and a reduction in active power loss prediction rates when
compared to DQL, RNN, and LSTM. However, with the integration
of the proposed algorithm, there’s a notable enhancement in active
power loss prediction and a substantial improvement in actual value
prediction. For the 33-bus systems, achieving optimal sizing results
in a notable enhancement of 7%–12% in the prediction ratio of
reactive power loss.

Figure 9 showcases the predictions of reactive power loss based on
actual values specifically for the 69-bus system. The predictive analysis
utilized various deep learning algorithms, namely, RNN, LSTM, CNN,
and DQL. The variance in prediction results stems from the training

sequence applied to the DG sizing data, significantly influencing the
outcome. The training process significantly shapes and exacerbates
errors, consequently affecting the performance of RNN. Moreover,
alternative deep learning algorithms like DQL, CNN, and LSTM show
divergent predictions for reactive power loss. The implementation of the
designated algorithm results in an enhancement of the predictive
accuracy for reactive power loss by 2%–8% in comparison to the
observed reactive power loss.

3.4 Minimum busbar voltage estimation

The precise estimation of Minimum Busbar voltages in the 33-
node and 69-node distribution systems has been successfully

FIGURE 5
Comparing DG sizing predictions for the 69-bus distribution system.

FIGURE 6
Comparative analysis of active power loss forecasts for a 33-bus distribution system.
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accomplished by deploying the advanced Cascaded Machine
Learning model. Figure 10 displays the prediction of minimum
busbar voltages specifically related to the 33-bus distribution system.
Various deep-learning algorithms of RNN, LSTM, CNN, and DQL
were employed for minimum voltage prediction. Since busbar
voltage is a time-series data, RNN and LSTM are more suitable
for its prediction. However, due to slow training error rates, the
LSTM’s prediction rate is relatively lower compared to other deep
learning algorithms. The proposed algorithm successfully addresses
the issue of slow training error rates and notably enhances the
prediction rate, improving the actual prediction rate by 5%.

Figure 11 depicts the forecast of minimum busbar voltage
focusing on the 69-bus grid system. In this investigation,
analogous to the 33-bus system, RNN, LSTM, CNN, and DQL
models were employed to perform predictions for minimum voltage.
With busbar voltage being a time-series data, RNN and LSTM are
considered more effective for prediction. Nevertheless, due to slow
training error rates, the DQL’s prediction rate is inferior to other
deep learning algorithms. The proposed algorithm effectively
overcomes the challenge of slow training error rates, significantly
enhancing the prediction rate and improving the actual prediction
rate by 7%.

FIGURE 7
Comparative analysis of active power loss forecasts for a 69-bus distribution system.

FIGURE 8
The predictive analysis of reactive power loss in the 33-bus distribution system.
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3.5 Performance evaluation metrics

The assessment of the cascaded machine learning algorithm’s
performance is conducted using MATLAB software, comparing it
with existing algorithms. This evaluation focuses on DG sizing
placement, minimum busbar voltage, active power loss, and
reactive power loss. The evaluation metrics employed to measure
the algorithm’s performance include R-squared/Coefficient of
Determination and Mean Absolute Percentage Error (MAPE).

The objective is to assess the effectiveness of the cascaded
machine learning algorithm in forecasting DG sizing placement,
minimum busbar voltage, as well as both active and reactive power
losses. This assessment involves comparing the algorithm’s

performance with established methods, utilizing R-squared and
MAPE as crucial metrics.

This structured approach highlights the specific focus on
evaluating and comparing the strength of the cascaded machine
learning algorithm across several parameters against the existing
algorithms.

3.5.1 R-squared/coefficient of determination
The evaluation of the model’s performance and reliability

involves calculating R-squared error metrics. In this evaluation,
real values are utilized to confirm the precision of the model.
R-squared (R2), known as the coefficient of determination, acts
as a statistical indicator in regression models. It denotes the portion

FIGURE 9
The predictive analysis of reactive power loss in the 69-bus distribution system.

FIGURE 10
Minimum busbar voltage predictions for 33-bus distribution system.
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of the variability in the reliant variable clarified by the independent
one. R2 gauges how well the data fits the regression model, ranging
between 0 and 1.

3.5.2 Mean Absolute Percentage Error (MAPE)
The assessment of forecast accuracy and outcome calculation is

performed employing theMean Absolute Percentage Error (MAPE).
MAPE measures the correlation among absolute prediction
inaccuracies and the real values. These metrics quantifies the
accuracy of predictions relative to the actual data.

Tables 1–4 offer a comprehensive analysis of DG sizing, active
power loss, reactive power loss, and minimum voltage estimation.

The results from the proposed model suggest that proposed
algorithm surpasses CNN, RNN, LSTM, and DQL by 5.7%, 6.6%,
13.2%, and 14.2%, respectively, in estimating DG sizing within the
33-bus system, thereby enhancing the model’s efficiency. Similarly,
in the 69-bus system, the proposed model predicts DG sizing better
by 5.6%, 9.3%, 15.8%, and 18.7% for CNN, RNN, LSTM, and DQL,
respectively.

Comparing the proposed method with other state-of-the-art
methods for active power loss estimation reveals significant
performance improvements: 9.1% for CNN, 16.7% for RNN,
24.2% for LSTM, and 28.8% for DQL in the 33-bus test system.
Likewise, in the 69-bus system, the proposed algorithm outperforms
by 4.6%, 6.1%, 10.7%, and 23% for CNN, RNN, LSTM, and DQL,
respectively.

Analyzing reactive power using the proposed method indicates
superior performance over RNN, LSTM, DQL, and CNN with 5.3%,
10.5%, 13.2%, and 23.7%, respectively for the 33-bus test system.
Similarly, in the 69-bus system, improvements over LSTM, CNN,
DQL, and RNN are 3.6%, 7.1%, 10.7%, and 14.3%, respectively.

Predictions for Minimum Busbar voltage in the 33-bus system
using LSTM, RNN, DQL, and CNN are less accurate compared to the
proposedmethod by 0.2%, 0.3%, 0.4%, and 0.8%, respectively. Similarly,
estimations for the 69-bus test systemwith the proposedmethod exhibit
superiority by 0.1%, 0.3%, 0.5%, and 0.8%, respectively.

This section begins by analyzing the data relevant to the issue at
hand. It then proceeds to compare the results obtained from the
newly introduced models with those of the previously utilized ones.
The efficacy of the proposed algorithm surpasses that of CNN, RNN,
LSTM, and DQL across both the 33-bus and 69-bus systems. The
utilization of the proposed algorithm for parameter estimation
showcases superior effectiveness compared to relying on CNN,
RNN, LSTM, and DQL. MAPE values indicate that the proposed
algorithm consistently outperforms other algorithms for all
parameters. R2 values exceeding 0.9 for various parameters
underscore the effectiveness of the developed model. These
findings affirm that the newly proposed model exhibits enhanced
performance and can be relied upon to effectively address the
challenge of predicting distribution system.

4 Conclusion

The study proposed the utilization of a cascaded machine
learning algorithm for distributed generation (DG) allocation
within distribution systems. It found that machine learning (ML)
delivers impressive results for estimations based on single inputs.
The CNN model exhibited significant effectiveness in forecasting
different parameters like distributed generation (DG) sizing, system
inefficiencies, and minimum voltage levels, especially in systems
before incorporating the integration of distributed generation (DG).

The study aimed to assess the electrical distribution system by
analyzing diverse factors, such as distributed generation (DG) power
injection, active and reactive power losses, and minimum voltage,
across both test systems, namely, IEEE 33-bus and IEEE 69-bus.
Various machine learning (ML) models, such as CNN, RNN, LSTM,
DQL, and Cascaded ML algorithm-based models, were developed
and assessed using MAPE and R2 values. Notably, the Cascaded ML
model exhibited high R2 values close to 1, indicating its suitability
for accurate estimations. Validation with test data confirmed the
effectiveness of these models. The findings emphasize the

FIGURE 11
Minimum busbar voltage predictions for 69-bus distribution system.
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effectiveness of the proposed method in precisely assessing the DG
dimension and its consequential impacts on the power
distribution network.

5 Future scope

To further enhance forecasting capabilities, the approach can be
expanded by integrating additional features like line current or voltage
drops during the model’s development. These additional factors can be
incorporated as extra inputs (features) in the input-output design to
improve predictive accuracy. Moreover, the Machine Learning codes
created in this study are versatile and can be adapted for other methods
by adjusting the input data and utilizing the modified data to train
different Machine Learning models.

However, in cases where there is a nonlinear correlation
between input and output data, this model may not be
appropriate for estimating DG integration. It is most effective
for single-input predictions. Additionally, the suggested
algorithm can be utilized to attain the most accurately
predicted outcomes, including the distributed generation unit
size, system losses, and minimum voltages in systems prior to the
integration of DG.
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Multiple microgrids interconnect to form a microgrid cluster. To fully exploit the
comprehensive benefits of the microgrid cluster, it is imperative to optimize
dispatch based on the matching degree between the sources and loads of each
microgrid. The power of distributed energy sources such as wind and
photovoltaic systems and the sensitive loads in microgrids is related to the
regional weather characteristics. Given the relatively small geographical scope
of microgrid areas and the fact that distributed energy sources and loads within
the grid share the same weather characteristics, simultaneous ultra-short-term
forecasting of power for both sources and loads is essential in the same
environmental context. Firstly, the introduction of the multi-variable uniform
information coefficient (MV-UIC) is proposed for extracting the correlation
between weather characteristics and the sequences of source and load
power. Subsequently, the application of factor analysis (FA) is introduced to
reduce the dimensionality of input feature variables. Drawing inspiration from
the concept of combination forecasting models, a combined forecasting model
based on Error Back Propagation Training (BP), Long Short-TermMemory (LSTM),
and Bidirectional Long Short-Term Memory Neural Network (BiLSTM) is
constructed. This model is established on the MV-UIC-FA foundation for the
joint ultra-short-term forecasting of source and load power in microgrids.
Simulation is conducted using the DTU 7K 47-bus system as an example to
analyze the accuracy, applicability, and effectiveness of the proposed joint
forecasting method for sources and loads.

KEYWORDS

weather characteristics, multivariable unified information coefficient, source and load
power, joint prediction, machine learning

1 Introduction

In microgrids, there exists a substantial presence of distributed generation (DG) sources
such as wind and photovoltaic, along with actively time-varying sensitive loads. The power
output of DG and load power are both influenced by complex factors such as regional
weather, date, and special events (Zhu et al., 2023). As microgrid deployment and utilization
expand, neighboring microgrids interconnect to form coexistence of distributed generation
and loads in the same environment, it is imperative to simultaneously conduct joint
prediction of source and load power under the same weather characteristics (Yu et al., 2024).

OPEN ACCESS

EDITED BY

Yang Yu,
Nanjing University of Posts and
Telecommunications, China

REVIEWED BY

Kenneth E. Okedu,
Melbourne Institute of Technology, Australia
Bowen Zhou,
Northeastern University, China

*CORRESPONDENCE

Zhenning Huang,
aaa1748556513@163.com

RECEIVED 31 March 2024
ACCEPTED 22 May 2024
PUBLISHED 10 June 2024

CITATION

Huang Z, Sun N, Shao H and Li Y (2024), Ultra-
short-term prediction of microgrid source load
power considering weather characteristics and
multivariate correlation.
Front. Energy Res. 12:1409957.
doi: 10.3389/fenrg.2024.1409957

COPYRIGHT

© 2024 Huang, Sun, Shao and Li. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Energy Research frontiersin.org01

TYPE Original Research
PUBLISHED 10 June 2024
DOI 10.3389/fenrg.2024.1409957

50

https://www.frontiersin.org/articles/10.3389/fenrg.2024.1409957/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1409957/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1409957/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1409957/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1409957/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2024.1409957&domain=pdf&date_stamp=2024-06-10
mailto:aaa1748556513@163.com
mailto:aaa1748556513@163.com
https://doi.org/10.3389/fenrg.2024.1409957
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2024.1409957


To fully exploit the comprehensive benefits of microgrid clusters, it
is necessary to coordinate and optimize the operation within each
microgrid cluster and between microgrid clusters and distribution
networks based on the matching degree of sources and loads in each
microgrid. Ultra-short-term prediction of source and load power
serves as the foundation for this endeavor. Given the relatively small
geographical area where microgrids are located and the coexistence
of distributed generation and loads in the same environment, it is
imperative to simultaneously conduct joint prediction of source and
load power under the same weather characteristics (Wang
et al., 2024).

Microgrid source and load power ultra-short-term prediction
methods encompass mathematical statistical approaches (Safari
et al., 2018) and artificial intelligence methods (Zhu et al., 2023).
Artificial intelligence methods excel in capturing the nonlinear
relationship between inputs and outputs, demonstrating robust
data analysis and forecasting capabilities. They have emerged as
pivotal techniques for ultra-short-term prediction of microgrid
source and load power (Zhang et al., 2024). Internationally
recognized experts and scholars, considering factors such as
meteorological and calendar features, have employed various
single prediction models like Error Back Propagation Training
(BP), deep recurrent neural network (DRNN), and Long Short-
Term Memory (LSTM) to forecast short-term power for microgrid
DG and loads. In response to the escalating electricity demand and
restructuring of power systems, researchers have proposed a long-
term electricity demand forecasting method based on BP (Masoumi
et al., 2020). This approach utilizes a Time Series Neural Network
(TSNN) structure, employing forward propagation of input load
data, error computation, and weight updating through
backpropagation in training steps, thereby achieving self-learning
and self-organization. To enhance photovoltaic (PV) generation
prediction accuracy, researchers have developed a forecasting
algorithm based on LSTM (Hossain and Mahmood, 2020). This
algorithm combines synthesized weather forecasts with historical
solar radiation data and publicly available sky type predictions for
the host city, utilizing the K-means algorithm for dynamic sky type
classification. This approach significantly improves prediction
accuracy, achieving an increase in accuracy ranging from 33% to
44.6% compared to predictions using fixed sky types. In another
study, G. W. Chang and H.J. Lu integrated grey data preprocessors
with DRNN for day-ahead output prediction in photovoltaic
generation (Chang and Lu, 2018). However, due to the distinct
advantages of different prediction models, achieving optimal
predictive performance with a single model often proves
challenging (Zhu et al., 2019). To address this, experts and
scholars adopt a “modal decomposition-combined prediction”
approach: firstly, utilizing modal decomposition methods to
break down historical data of sources and loads into components
with different frequencies, thereby reducing the complexity of input
data; secondly, introducing a combined model approach, selecting
prediction models with varying performances for different
frequency modal components, and ultimately obtaining the final
prediction results through summation and reconstruction. For
instance, adaptive noise-aided complete ensemble empirical mode
decomposition with adaptive noise (CEEMDAN) was employed to
decompose the raw data of building sub-item energy generation
(Lin, 2022). Subsequently, predictions for different modal

components were conducted using BiLSTM. The final
photovoltaic power generation was obtained through summation
and reconstruction. Another study combined three models,
optimized extreme learning machine (ELM), backpropagation
neural network (BPNN), and dynamic recursive neural network
(ELMAN), for short-term forecasting of wind power plant output
(Ma et al., 2023). In a separate study, variational mode
decomposition (VMD) was utilized to decompose load raw data
into different frequency modal components (Yue et al., 2023).
Subsequently, a Bagging ensemble ultra-short-term multivariate
load forecasting method was developed based on gated recurrent
unit (GRU), LSTM, and BiLSTM models, leading to enhanced
prediction accuracy. In the field of microgrid power forecasting,
predictions of source power and load power are typically conducted
independently based on their respective environmental factors.
However, this approach may overlook an important reality:
under the same environmental conditions, weather characteristics
may simultaneously affect both the source side (such as photovoltaic
and wind power) and the load side of the microgrid. For instance,
sunny weather may increase the output of photovoltaic generation
while also raising the electricity demand for cooling devices like air
conditioners. Therefore, decoupling the predictions of source power
and load power may lead to reduced accuracy in forecasting results,
impacting the economic dispatch and stable operation of the
microgrid. Currently, research on how to comprehensively
consider the simultaneous impact of weather characteristics on
both the source and load sides of microgrids is relatively limited.
Most existing models focus on predicting power for a single energy
source type or only consider the influence of weather factors on load
demand. Such independently predictive methods may fail to fully
capture the comprehensive effects of weather changes on the overall
performance of microgrids. To enhance the accuracy and reliability
of microgrid power forecasting, future research needs to develop
more comprehensive models that can simultaneously consider the
generation characteristics of multiple energy sources and the
response of load demand to weather changes.

To predict both the source and load power in a microgrid under
the same weather conditions simultaneously, it is necessary to
analyze the concurrent correlation between the two variables and
the weather features. Extracting weather characteristics that have a
significant impact on the source and load power in the microgrid
enhances predictive capability. Common methods for feature
extraction include the Pearson coefficient (Xu et al., 2023),
Spearman coefficient (Qun et al., 2023), Maximum Information
Coefficient (MIC) (Reshef et al., 2011), and Uniform Information
Coefficient (UIC) (Jiang et al., 2023). Reference Jiang et al. (2023)
utilized the Uniform Information Coefficient (UIC) to analyze the
correlation between weather characteristics and load power.
Compared to the other three algorithms, UIC is specifically
designed for analyzing relationships among multidimensional
variables, making it more suitable for handling complex
meteorological data and load power data, which are often
multidimensional. Moreover, it is computationally more efficient.
It achieves this by employing a simplified technique based on
uniformly partitioned data grids, replacing the dynamic
programming steps in MIC computation, thus reducing
computational costs. The aforementioned approaches focus solely
on extracting the correlation between a single dependent variable
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(e.g., DG output or load power) and a single independent variable
(weather feature), thereby unable to capture the correlation between
multiple dependent variables (DG output and load power) and a
single independent variable (weather feature). Addressing this
limitation, this study investigates the simultaneous correlation
between source and load power in a microgrid and weather
features, conducting research on the joint ultra-short-term
prediction of source and load power in a microgrid. Additionally,
commonly used dimensionality reduction algorithms include
Principal Component Analysis (PCA) (Wang et al., 2023),
Independent Component Analysis (ICA) (Kobayashi and Iwai,
2018), Factor Analysis (FA) (Ramirez et al., 2019; Wu et al.,
2024), etc. FA merges numerous features into several
representative common factors to extract latent factors among
features, accurately capturing the relevant information in the data
(Zhou et al., 2020). FA is particularly effective in capturing the
underlying structure of data by reducing the dimensionality and
identifying the shared variance among variables. It helps uncover the
latent factors that explain the correlations and patterns within the
dataset, facilitating a deeper understanding of the relationships
among the features.

In conclusion, this manuscript contemplates the impact of
weather features in the region of a microgrid on DG and load
power simultaneously. A joint ultra-short-term prediction model for
source and load power in a microgrid is proposed. Initially, the
concept of the Multi-Variable Uniform Information Coefficient
(MV-UIC) is introduced to analyze and compute the correlation
coefficients between weather features and the sequences of
microgrid source and load power, facilitating the elimination of
redundant features. To diminish the dimensionality of input features
for the prediction models of source and load power, FA is employed.
Addressing the pronounced nonlinearity and non-stationarity in
microgrid source and load power, a model is established by
amalgamating BP, LSTM, and BiLSTM models, considering the
correlation between weather features and multiple variables. Using
the DTU 7K 47-bus as an example in a real system (Baviskar et al.,
2021), specifically with 3 wind farms serving as DG and an
aggregated load, the proposed prediction model is pre-trained
using historical data from the power grid dataset. The accuracy,
applicability, and effectiveness of the proposed joint prediction
method for source and load are then analyzed in the DTU 7K
47-bus system.

2 A weather feature extraction method
based on MV-UIC

The Uniform Information Coefficient (UIC) algorithm,
pioneered by Mousavi and Baranuk (2022), introduces an
innovative methodology for feature extraction. UIC facilitates the
analysis of the correlation between two univariate variables, making
it particularly well-suited for addressing feature extraction
challenges in large-scale datasets. Let A = [a1, . . ., an] and B =
[b1, . . ., bn] denote two sets of feature vectors with a sequence length
of n. The model for the UIC is shown in Eq. 1.

IUIC A;B( ) � I A;B( )
log2 min r, s{ }( ) (1)

where IUIC(A; B) represents the Uniform Information Coefficient
between A and B; I (A; B) denotes the Mutual Information
Coefficient between A and B; r and s correspondingly indicate
the segmentation numbers for A and B; min{r, s} represents the
minimum value between r and s.

In order to ascertain the simultaneous correlation of the
dependent variables, source and load power, with weather
characteristics in a microgrid, this paper adopts an extension of
the method presented in Wang (2020) and Ng et al. (2023), which
expands from the maximum information coefficient between two
variables to the multivariate case. The UIC for the two variables is
extended, introducing the Multi-variable Uniform Information
Coefficient (MV-UIC) algorithm. The specific definition is
outlined as follows: The dataset D consists of three variables:
(PDG, PL), and H. H represents the independent variable,
denoting the regional weather feature vector, while (PDG, PL)
signify the source and load power vectors, respectively, in a
microgrid. H is allocated to the x-axis as X = [xi], where “n”
denotes the sequence length. Similarly, (PDG, PL) are allocated to
the y-axis as Y = [yi]. H is uniformly divided into r blocks, and (PDG,
PL) into s blocks. After partitioning dataset D, r × s grids are
obtained, with each grid representing a subset of data points. The
ratio of the number of points falling into corresponding grid to the
total number of points defines the approximate probability density
of that grid. Subsequently, the mutual information coefficient
between the weather feature variable H and (PDG, PL) is derived.
Normalization is then performed to obtain the multivariate unified
information coefficient between the two variables PDG, PL, and the
univariate H in dataset D. The steps for obtaining MV-UIC are
as follows:

(1) For a given three-variable dataset D and positive integers r, s,
where r, s ≥ 2, D = {(PDG, PL), H}, the mutual information
between them, denoted as IMI(D, r, s, (PDG, PL); H):

IMI D, r, s, PDG, PL( ), H( ) � ∑r
x�1

∑s
y�1

p xy( )log2 p xy( )
p x( )p y( ) (2)

where p(x) represents the edge probability density of the regional
weather characteristic variableH uniformly divided into r grids, p(y)
represents the edge probability density of the source and load power
vectors (PDG, PL) uniformly divided into s grids, and p (xy)
represents the joint probability density of the dataset D divided
into r×s grids.

According to the uniform division method, the length of each
segment after evenly dividing the x and y axes into r and s is:

dx � xmax − xmin

r
, 2≤ r≤ 1 + n0.6

2

dy � ymax − ymin

s
, 2≤ s≤ 1 + n0.6

2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (3)

where dx and dy represent the lengths of partition units for X and Y,
respectively; xmax and xmin denote the maximum and minimum
values of the feature vector X; ymax and ymin correspondingly signify
the maximum and minimum values of the feature vector Y; r and s
designate the number of segments for X and Y, respectively; and n0.6

symbolizes the size of the partition grid, typically chosen as the 0.6th
power of the data volume (Wang, 2020).
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(2) The formula for calculating theMV-UIC between the regional
weather feature vector H and the source and load power
vectors (PDG, PL) in a microgrid is as follows:

MV −MIC PDG, PL( );H{ } � max
r,s < ∂

IMI D, r, s, PDG, PL( ), H( )
log2 min r, s{ }( ) (4)

where I (D, r, s, (PDG, PL),H) denotes the mutual information among
the three entities; log2 (min{r, s}) represents normalization, with min
{r, s} being the minimum value between r and s, and ∂ denoting the
maximum grid partition number (r, s< ∂). The flow chart of the
MV-UIC algorithm is shown in Figure 1.

Based on Eqs 2–4, the MV-UIC between microgrid source, load
power, and weather features can be computed. A higher value
indicates a stronger correlation between the respective weather
feature and the source/load power. Selecting weather features
with high correlations as inputs for source/load power prediction
models helps filter out remaining features, thereby mitigating issues
related to excessive variables and redundant computations.

3 Inputfeature dimensionality
reduction based on FA

Due to the strong interrelationships among weather feature
variables, regression analysis encounters a certain degree of
collinearity issue. FA serves as a multivariate statistical method

that, by solving the correlation matrix of variables, identifies
common factors describing relationships among numerous
variables and simplifies data, thereby reducing the dimensionality
of the dataset. The fundamental principles and computational
procedures of FA are detailed in Wu et al. (2024), wherein the
basic model entails the linear relationship between observed
variables and common factors as Eq. 5:

Ψ � ι*F + E (5)
In the equation, Ψ represents the matrix of observed variables;

F stands for the matrix of common factors; ι denotes the factor
loading matrix, illustrating the relationship between each observed
variable and the common factors; E signifies the matrix of
factor variances.

Utilizing the MV-UIC obtained in Section 1, weather feature
variables with similar attributes are grouped together and
represented by a common factor. Analyzing the correlation
between variables involves solving the eigenvalues and
corresponding orthogonal eigenvectors of the correlation matrix.
Based on the eigenvalues of the correlation matrix, the variance
contribution rate and cumulative contribution rate of common
factors are computed, with a cumulative contribution rate
exceeding 85% serving as the criterion for determining the
number of common factors. Subsequently, factor matrix rotation
yields the factor loading matrix. Factor scores are then calculated
using regression analysis. Higher values in the factor score matrix
indicate a more significant representation of the feature by the
respective factor in the dataset. Dimensionality reduction of input
features for source/load power prediction is conducted based on
factor scores.

4 A short term joint prediction model
for microgrid source and load power
considering weather characteristics
and multivariable correlation

In microgrid systems, predicting source and load power is
crucial for stable operation. Due to their nonlinearity and non-
stationarity, single models struggle to capture these complexities,
leading to poor performance. Empirical Mode Decomposition
(EMD) decomposes source-load sequences into Intrinsic Mode
Functions (IMFs), enhancing prediction accuracy by describing
variations and periodicities. To improve predictive performance
further, joint prediction methods integrate multiple models’
advantages. Weighting different models appropriately creates a
comprehensive model considering various characteristics and
IMFs, yielding more accurate results. Additionally, predicting
source and load power under similar weather conditions requires
analyzing their correlation with weather features. Traditional
methods fail to capture this correlation simultaneously, unlike
the Multi-variable Uniform Information Coefficient (MV-UIC),
which evaluates it effectively. MV-UIC’s application enables
feasible joint prediction of source and load, quantifying the
correlation between multiple dependent variables and a single
independent variable, aiding in constructing precise
prediction models.

FIGURE 1
Flow chart of the MV-UIC algorithm.
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4.1 BP network

The BP network is a multi-layer feedforward neural network. The
topology of a three-layer BP network is illustrated in Figure 2,
encompassing an input layer, an output layer, and a single hidden
layer. Each neuron is connected to all neurons in the subsequent layer,
with no interconnections among neurons within the same layer.

The BP network minimizes error using gradient descent.
Standard BP lacks momentum consideration, causing slow
convergence. Enhanced BP integrates momentum to reduce
oscillations and hasten convergence. The objective function is
defined accordingly. The objective function is defined as Eq. 6:

JBP � 1
2
∑NBP

δ�1
∑mBP

ϕ�1
zδϕ − cδϕ( )2 (6)

where cδϕ represents the output of node ϕ when sample δ is applied; zδϕ
denotes the target value of output busϕ for sample δ,mBP is the dimension
of the output variable, and NBP is the number of training samples.

4.2 LSTM

The LSTM represents an enhanced version of the Recurrent
Neural Network (RNN). Introduced and subsequently refined with

additional forget gates, the improved LSTM addresses the issue of
“vanishing gradients” encountered during model training. Capable
of learning both short-term and long-term dependencies in time
series data, it stands as one of the most successful RNN architectures,
finding applications across various domains. The fundamental unit
of an LSTM network, as depicted in Figure 3.

The fundamental unit of an LSTM network comprises forget
gates, input gates, and output gates. The forget gate determines the
extent of memory to be retained from the state cell, influenced by the
input χt, previous state ~St−1, and the intermediary output ht-1. The
input gate decides the vectors to be preserved within the state cell,
with χt undergoing transformations via sigmoid and tanh functions.
The intermediary output ht-1 is jointly determined by the updated
state ~St and the output ot, as outlined in Eqs 7–12:

f t � σ Wfχχt +Wfhht−1 + βf( ) (7)
it � σ W iχχt +W ihht−1 + βi( ) (8)
g t � ƛ Wgχχt +Wghht−1 + βg( ) (9)
ot � σ Woχχt +Wohht−1 + βo( ) (10)

~St � g t ⊙ it + ~St−1 ⊙ f t (11)
ht � ƛ ~St( ) ⊙ ot (12)

where f t, it, gt, ot, ht and ~St represent the states of the forget gate,
input gate, input node, output gate, intermediary output, and state
unit, respectively. Wfχ , Wfh, W iχ , W ih, Wgχ , Wgh, Woχ , and Woh

denote the matrix weights for the respective gates multiplied by the
input χt and intermediary output ht−1. βf, βi, βg, and βo are the bias
terms for the corresponding gates. The symbol ⊙ represents element-
wise multiplication in vectors, σ denotes the sigmoid function
transformation, and ƛ represents the tanh function transformation.

4.3 BiLSTM

The BiLSTM is an advanced enhancement of the conventional
unidirectional LSTM, integrating both a forward LSTM layer and a
backward LSTM layer, each influencing the output. While the
unidirectional LSTM adeptly utilizes historical data to mitigate
long-distance dependency issues, the BiLSTM benefits from the
incorporation of both forward and backward sequence information,
thoroughly considering past and future data to significantly enhance
model prediction accuracy. The architecture of the BiLSTM, as
illustrated in Figure 4.

The architecture of the BiLSTM involves updates to the hidden
layers of the forward LSTM, the backward LSTM, and the process
leading to the final output of the BiLSTM, delineated in Eqs 13–15:

ςt � fBiLSTM,1 ω1χt + ω2ςt−1( ) (13)
ξt � fBiLSTM,2 ω3χt + ω5ξt+1( ) (14)
γt � fBiLSTM,3 ω4ςt + ω6ξt( ) (15)

where fBiLSTM,1, fBiLSTM,2 and fBiLSTM,3 denote the activation
functions between the different layers; ςt and ξt represent the
corresponding LSTM hidden states for the forward and backward
iterations, respectively; χt represents the corresponding input data;
γt represents the corresponding input data; ω1...ω6 represent the
corresponding weight of each layer.

FIGURE 2
BP network with three layers.

FIGURE 3
Basic unit of LSTM network.
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4.4 VMD

The specific steps of the VMD algorithm are described
as follows:

(1) Define the variational problem: In order to decompose the given
original sequencefVMD() into ~K variational mode components
uκ with different central frequency bandwidths, and the sum of
the estimated bandwidths of each mode is the minimum, the
variational constraint expression is defined as Eq. 16:

min
uκ{ }, ϖκ{ }

∑
κ�1

~K

∂t ϑκ ( )[ ]e−jϖκ
���� ����22⎧⎨⎩ ⎫⎬⎭

s.t.∑
κ�1

~K

uκ ( ) � fVMD ( )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(16)

where the original sequence fVMD() is the set of optimal similar
daily load sequence; uκ{ } ϖκ{ }, which represents the set of all
submodes and their corresponding center frequencies
respectively; ϑκ() represents the analytical signal of the κ

submode after being demodulated by Hilbert; uκ() represents
the modal function of the κ submode.

(2) The formula for the Lagrangian transformation is shown in Eq.
17: In order to solve the optimal solution problem of the above
variational constraint, Lagrange multiplier λ is introduced to
ensure the strictness of the constraint condition and penalty
factor α to ensure the accuracy of signal reconstruction in high
noise environment, and transforms the constraint problem into
an unconstrained variational problem.

LVMD uκ{ }, ϖκ{ }, λ( ) � α∑
κ

~K

∂t ϑκ ( )[ ]e−jϖκ
���� ����22

+ fVMD ( ) −∑
κ

~K

uκ ( )
���������

���������
2

2

+〈λ ( ), fVMD ( ) −∑
κ

~K

uκ ( )〉 (17)

(3) Alternate update: initialize u1κ{ }, ϖ1
κ{ }, λ1, alternate direction

multiplier method solution, and iteratively update u1κ, ϖ1
κ, λ

1.

ûψ+1
κ

f̂VMD ϖ( ) − ∑
] ≠ κ

~K

ûψ
] ϖ( ) + λ̂

ψ ϖ( )
2

1 + 2α ϖ − ϖκ( )2
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ϖ̂ψ+1
κ � ∫∞

0
ϖ ûκ ϖ( )| |2dϖ

∫∞
0
û ϖ( )| |2dϖ

λ̂
ψ+1 ϖ( ) � λ̂

ψ ϖ( ) + τ f̂VMD ϖ( ) −∑
κ

~K

ûψ+1
κ ϖ( )⎛⎝ ⎞⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

where ψ is the number of iterations; τ is the noise tolerance, ûψ+1κ ,
ϖ̂ψ+1
κ represent the mode function and the center frequency at

ψ+1 iteration; λ̂
ψ+1(ϖ) is the Lagrange multiplier value of the

VMD algorithm at ψ+1 iteration; f̂VMD(ϖ), ûψ+1κ (ϖ) and λ̂
ψ(ϖ)

represent the fVMD(), uψ+1 () and λψ() Fourier transform forms
respectively.

(4) Submode output as Eq. 19: according to Eq. 18 determine
whether the termination conditions, if not, return to step 3), if
satisfied, the Fourier inverse transformation of the last update
ûκ(ϖ){ }, get the set uκ(){ } within the time domain range, the
final output κ submode signal, the submode function is uκ(),
and the corresponding center frequency is ϖκ.

∑
κ

~K

ûψ+1
κ − ûψ

κ

���� ����22/ ûψ
κ

���� ����22 < ε (19)

where ε is the judgment accuracy (ε> 0).

4.5 Model construction

The paper exemplifies a 15-min interval to predict the
microgrid’s source and load power sequences for the next hour.
Due to the long time resolution and insufficient accuracy of
numerical weather forecasts, only historical meteorological data is
utilized as weather feature input during the selection of input
features for the prediction model. This data is combined with
historical sequences of microgrid source and load power to
collectively form the input matrix. Regarding historical features,
five historical similar days with significant correlation to the current

FIGURE 4
Structure of BiLSTM network.
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weather and the historical power measurement values from the past
5 days are specifically chosen as historical data (Wang, 2020).

The source and load power in microgrids exhibit strong
nonlinearity and non-stationarity characteristics, rendering single
predictive model methods limited in both fitting performance and
prediction accuracy. To enhance power prediction accuracy, this
study drew upon the methods outlined in Yue et al. (2023). Initially,
VMD was employed to decompose historical source and load power
time series under different weather conditions, yielding multiple
IMF components of various frequencies. Subsequently, the
permutation entropy (PE) values of each IMF were computed,
and based on these PE values, low, medium, and high-frequency
input matrices were constructed. Considering the concurrent
temporal correlation of current microgrid source and load power
values with past and future time information, three homogeneous
recursive neural network models—BP, LSTM, and BiLSTM—were
selected for their robust handling of time-series data. These models
were employed as base learners, utilizing a bootstrapping method to
acquire diverse training set samples, which were then used to train
the base learners. This approach enabled the prediction of different
frequency components, which were subsequently combined to
obtain microgrid source and load power forecasts. High-
frequency data changes typically exhibit strong sequential
dependencies and long-term trends. LSTM models excel at
capturing long-term dependencies within sequential memory and
adaptively adjusting the complexity and variability of sequence
patterns, making them suitable for predicting high-frequency
data trends. Medium-frequency data is often influenced by
preceding and succeeding time-step data, exhibiting certain
contextual dependencies. BiLSTM models, equipped with both
forward and backward memory units, can simultaneously process
forward and reverse sequence information, thus better capturing
contextual relationships within medium-frequency data and
enhancing prediction accuracy. Low-frequency component
variations are relatively slow and stable. The training process of
BP neural networks is relatively straightforward, capable of
providing forecasts of future trends by learning the input-output
mapping relationships of historical data.

In consideration of the aforementioned, this paper contemplates
the correlation between weather characteristics and multivariable
factors, proposing a joint prediction model for microgrid source and
load power based on MV-UIC-FA. The schematic diagram of the
prediction model is illustrated in Figure 5. The specific prediction
steps are as follows:

(1) Acquiring meteorological characteristics for the forecasted
day involves retrieving weather information strongly
correlated with source and load power from historical daily
datasets. Similar days are selected to construct datasets under
distinct weather types.

(2) Data completion: To address gaps in the source and load
datasets, missing values are replenished with the average of six
data points before and after the sampling point.

(3) Normalization: Employing the Z-score algorithm for
normalization ensures a balanced distribution of data.

(4) Timestamp alignment: Concerning the alignment of
timestamps in the dataset, this study will utilize spline
interpolation for the alignment operation.

(5) Feature selection: Utilizing MV-UIC, an analysis is conducted
on the correlation between weather characteristics and
microgrid source/load sequences to filter out weather
features closely associated with the prediction task.

(6) Feature dimensionality reduction: Employing the FAmethod,
the selected weather feature sequences are subjected to
dimensionality reduction while preserving the fundamental
information of the original features.

(7) Offline model training: Constructing input matrices for the
prediction model involves integrating the processed features
with source and load sequences. Following the training
methodology of the combined prediction model, the
processed dataset is partitioned into training, validation,
and testing sets in a ratio of 7:2:1. Subsequently, offline
training is conducted to derive the prediction model.

5 Example analysis

To substantiate the rationality of the jointly proposed ultra-
short-term forecasting methodology for microgrid source and load
power, it is imperative to concurrently acquire the original data
pertaining to weather characteristics, distributed power sources, and
load power within the microgrid’s geographical domain. The source,
load, and weather feature data for the DTU 7K 47-bus system
(Baviskar et al., 2021), available on the official website, are
comprehensive for the period spanning from 1 January 2015, to
31 August 2015. Accordingly, the simulation testing in this study is
conducted utilizing the data from this specific timeframe.

The DTU 7K 47-bus system is an open-source multi-voltage
level distribution grid model developed by the Technical
University of Denmark (DTU). Named the DTU 7k-Bus Active
Distribution Grid Model, it spans three voltage levels and is
geographically modeled for network topology. Key features
include multi-voltage levels enabling analysis of challenges and
opportunities in renewable energy-dependent grids, geographical
data-based network topology modeling for real-world grid
operation simulation, simulation data derived from weather and
measured data, and open accessibility for research and educational
purposes. Data primarily sourced from DTU’s official data-sharing
platform, DTU Orbit, allows researchers access for power system
analysis, renewable energy integration studies, grid planning, and
operational simulations.

The DTU 7K 47-bus system, depicted in Supplementary
Appendix Figure S2, is interconnected with the external grid via
the B-0 transformer at the B-9 bus; the system encompasses three
wind farms, composed of fourth-generation controllable wind
turbines with installed capacities of 12, 15, and 15 MW,
respectively. Due to the location of the DTU 7K 47-bus testing
system within the Danish territory, meteorological data is sourced
from the Danish Meteorological Institute. The selected weather
features include reflectance, snow reflectance, high cloud cover,
low cloud cover, 2-m relative humidity, snow density, 2-m
specific humidity, 10-m wind speed, 30-m wind speed, 50-m
wind speed, 70-m wind speed, 100-m wind speed, atmospheric
pressure, 2-m temperature, total cloud cover, visibility, 10-m wind
direction, and mid-level cloud cover, totaling 18 variables. The
sampling, normalization, and offline training data sample
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quantities for source and load data remain consistent. The sampling
frequency is 15 min, resulting in a total of 23,328 samples. Z-score
algorithm is employed for normalization. Subsequently,
16,330 samples are randomly chosen for training, 4,665 for
validation, and 2,333 for testing. The input time series length is
set at 96.

The models in this study are trained using the Python software.
The performance of the proposed methodology is assessed through

the utilization of root mean squared error (RMSE) and mean
absolute error (MAE) they are as Eqs 20, 21:

vRMSE � ∑NT

i�1
v̂ − v( )2/NT

⎛⎝ ⎞⎠ 1
2 (20)

vMAE � ∑NT

i�1
v̂ − v| |⎛⎝ ⎞⎠/NT (21)

FIGURE 5
Joint prediction model of microgrid source and load power based on MV-UIC-FA.
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In the equation: v is the true value of the source load; v̂ is the
predicted value of the source load; NT is the number of elements in
the test set.

5.1 Simulation case 1: testing of weather
feature extraction and dimensionality
reduction methods

5.1.1 Feature extraction and factor analysis based
on MV-UIC for dimensionality reduction

To substantiate the rationality of the proposed feature extraction
algorithm across diverse seasons, this paper opts for the dates of
April 30th (spring), June 30th (summer), August 31st (autumn), and
February 28th (winter) as prediction days, aligning with the climatic
nuances of Denmark. Historical days with correlation coefficients
exceeding 0.8 concerning the prediction days are designated as
analogous days. The input feature sequences encompass five
historical source-load data points with a kin weather conditions,
the source-load data from the past 5 days, and eighteen weather
attributes. Four forecasted days’ weather features, along with the
MV-UIC of source and load power, are extracted as delineated
in Table 1.

From Table 1, it can be observed that the weather characteristics
vary across different seasons, exhibiting disparate MV-UICs
concerning microgrid source and load power. These weather
features manifest distinct correlations with source and load
power. Given Denmark’s temperate maritime climate,

precipitation (snow) and strong winds are predominantly
observed during the autumn and winter seasons, occasionally
culminating in extreme weather phenomena such as blizzards.
Consequently, during the winter season, the information
coefficients between snow density, wind speed, and source and
load power stand at 0.324 and 0.2037, respectively, indicating
considerable magnitudes. These findings align with Denmark’s
actual climatic conditions and geographical location, thereby
corroborating the rationality and efficacy of the proposed MV-
UIC feature extraction method.

5.1.2 Using FA to reduce the dimension of
input features

The FA method is employed herein to capture the common
factors among input features by constructing a factor score matrix,
facilitating dimensionality reduction for the 18 input features across
four forecast days. The total variance explanation table for the spring
is presented in Table 2, while the factor score matrix is shown in
Table 3. The variance explanation tables and factor score matrices
for the other three forecast days can be found in Supplementary
Appendix SA. From the variance analysis in Table 2, it is evident that
six common factors are extracted from the input features in this
study. As indicated by the factor score matrix in Table 3, these
factors are the wind speed factor, 2 m information factor (including
2 m relative humidity, 2 m specific humidity, and 2 m temperature),
albedo factor, cloud cover factor, surface pressure factor, and wind
direction factor. The cumulative variance contribution rate of these
common factors is 97.966% (>85%), suggesting that these six

TABLE 1 Weather characteristics and MV-UIC of source and load power for four forecast days.

Meteorological characteristics April 30th
(spring)

June 30th
(summer)

August 31st
(autumn)

February 28th
(winter)

Albedo 0.1595 0.1279 0.1932 0.2907

Snow albedo 0.1755 0.0 0.2199 0.3554

High cloud cover 0.1295 0.1719 0.1230 0.1304

Low cloud cover 0.1207 0.1321 0.1234 0.1452

2 m relative humidity 0.1188 0.1449 0.1303 0.1422

Snow density 0.1435 0.0 0.2914 0.3240

2 m specific humidity 0.1965 0.1590 0.1513 0.2382

10 m wind speed 0.1377 0.1586 0.1433 0.2037

30 m wind speed 0.1421 0.1537 0.1405 0.1999

50 m wind speed 0.1314 0.1534 0.1419 0.1966

70 m wind speed 0.1396 0.1608 0.1434 0.1929

100 m wind speed 0.1396 0.1596 0.1462 0.1978

Surface pressure 0.2579 0.2086 0.2985 0.2287

2 m temperature 0.1422 0.1463 0.1333 0.2021

Total cloud cover 0.1335 0.1539 0.1388 0.1564

Visibility 0.1298 0.1399 0.1205 0.1345

10 m wind direction 0.1601 0.1571 0.1518 0.2042

Medium cloud cover 0.1551 0.1541 0.1416 0.1345
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common factors encompass themajority of the effective information
within the sequences of 18 key input features. This is of significant
importance for interpreting the variations in the original data.

5.1.3 Test of feature extraction and factor-based
dimensionality reduction method based on
MV-UIC

To mitigate the non-stationarity of microgrid sources and loads,
an initial step involves employing VMD to decompose the time
series of source and load data for similar and forecast days. The
VMD decomposition results are presented in Supplementary
Appendix SB. This process yields various modal sub-sequences of
source and load power. Subsequently, the PE values are computed
for each sub-sequence. Sequences with PE values exceeding 0.55 are
designated as high-frequency sequences, those with PE values
ranging from 0.25 to 0.55 are categorized as mid-frequency
sequences, and sequences with PE values below 0.25 are
identified as low-frequency sequences. The decomposition results

of the spring forecast day source and load power are illustrated in
Supplementary Appendix Figure SFA1, revealing the absence of low-
frequency components in the wind power output sequence.

In order to validate the rationality of the proposed feature
extraction algorithm in different seasons, the study utilized the
all feature (AF) of the forecast day and input features extracted
based onMV-UIC-FA separately as inputs for the prediction model.
Three types of base learners—BP, LSTM, and BiLSTM—were
employed to individually predict the low, mid, and high-
frequency components of source and load power. The
corresponding evaluation metrics for the prediction results are
presented in Table 4, with a prediction step of 4 for all control
groups. Upon examination of Table 4, it is observed that compared
to using all weather features as input for the prediction model,
employing MV-UIC to extract and dimensionally reduce weather
features before prediction resulted in a reduction of 13.46% and
17.85% in RMSE and MAE for electric power prediction,
respectively. For load power prediction, the RMSE and MAE

TABLE 2 Total variance interpretation table.

Components Initial eigenvalues Extract sum of load Sum of rotating load

Total Percent
variance

Cumulative
%

Total Percent
variance

Cumulative
%

Total Percent
variance

Cumulative
%

1 3.421 38.014 38.014 3.421 38.014 38.014 3.040 33.775 33.775

2 2.013 22.367 60.381 2.013 22.367 60.381 1.787 19.853 53.628

3 1.264 14.040 74.421 1.264 14.040 74.421 1.033 11.478 65.106

4 0.888 9.869 84.290 0.888 9.869 84.290 1.011 11.234 76.339

5 0.661 7.344 91.633 0.661 7.344 91.633 0.981 10.898 87.237

6 0.570 6.332 97.966 0.570 6.332 97.966 0.966 10.729 97.966

7 0.174 1.932 99.898

8 0.005 0.056 99.955

9 0.004 0.045 100.000

TABLE 3 Factor score matrix.

Meteorological
characteristics

Factor score

Components
1

Components
2

Components
3

Components
4

Components
5

Components
6

Albedo −0.028 0.149 0.977 −0.070 0.014 0.103

2 m specific humidity −0.010 0.948 −0.029 0.079 −0.109 0.075

30 m wind speed 0.980 −0.058 −0.016 0.058 0.105 0.131

50 m wind speed 0.980 −0.060 −0.022 0.066 0.104 0.131

70 m wind speed 0.979 −0.060 −0.015 0.065 0.107 0.136

Surface pressure 0.214 −0.142 0.014 −0.110 0.960 −0.032

2 m temperature −0.131 0.909 0.241 −0.074 −0.056 0.023

10 m wind direction 0.285 0.092 0.114 0.062 −0.034 0.944

Medium cloud cover 0.117 0.011 −0.070 0.983 −0.103 0.056

Frontiers in Energy Research frontiersin.org10

Huang et al. 10.3389/fenrg.2024.1409957

59

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1409957


were reduced by 17.62% and 17.31%, respectively. This indicates a
significant improvement in prediction accuracy, validating the
effectiveness of the proposed approach across different seasons.

This simulation yielded the corresponding predictions as shown
in Figures 6, 7.

5.2 Simulation case 2: comparative testing of
accuracy of different prediction models

To verify the accuracy of the joint prediction model for microgrid
source and load power based onMV-UIC-FA proposed in this paper,
predictions of source and load power for four forecasting days were
initially conducted using the MV-UIC-FA prediction model.
Subsequently, comparisons were made with the results of three
single prediction models, namely BP (MV-UIC-BP, MV-B), LSTM
(MV-UIC-LSTM, MV-L), and BiLSTM (MV-UIC-BiLSTM, MV-Bi).
These models utilized dimensionally reduced input features.
Evaluation metrics such as RMSE and MAE for the corresponding
prediction results were obtained and are presented in Table 5 (with a
prediction step of 4 for all control groups). Additionally, comparisons

between the predicted results for source and load power for the four
forecasting days and the actual data are illustrated in Figures 8, 9.

From Figures 8, 9, it can be observed that among the predicted power
for the four forecasting days, the results of the three individual forecasting
models are similar, while the combined forecasting model fully exploits
the advantages of each individual forecasting model, yielding superior
forecasting results. As seen from Table 5, the proposed models in this
study outperform various baseline models in terms of their RMSE and
MAE. Specifically, compared to the forecasting results of the BP, LSTM,
and BiLSTM models, the employment of the proposed model in this
study reduces the RMSE and MAE of the power supply by 25.57%,
25.71%, 23.48%, and 33.4%, 31.41%, 26.92%, respectively, and reduces the
RMSE and MAE of the load power by 25.69%, 18.69%, 18.33%, and
26.79%, 17.71%, 19.07%, respectively.

5.3 Simulation case 3: comparative testing of
accuracy of different prediction models

In this section, the accuracy and robustness of the proposed joint
prediction model for microgrid source and load power based on

TABLE 4 Evaluation indexes of source and load power prediction models after dimensionality reduction of AF and MV-UIC-FA.

Input features April 30 (spring) June 30 (summer) August 31 (fall) February 28 (winter)

RMSE/
MW

MAE/
MW

RMSE/
MW

MAE/
MW

RMSE/
MW

MAE/
MW

RMSE/
MW

MAE/
MW

DG AF 2.0861 1.7307 1.1229 0.8462 4.5418 3.6165 3.3936 2.9253

MV-UIC-FA 1.7910 1.4537 0.9885 0.7241 4.067 3.1751 2.7818 2.0841

Load AF 8.9578 7.6002 14.1083 10.1921 9.0828 7.5761 11.7821 9.2057

MV-UIC-FA 6.9727 5.7600 11.8506 8.0875 7.5069 6.7075 10.0187 8.0180

FIGURE 6
Microgrid power prediction results for four prediction days. (A) Spring. (B) Summer. (C) Fall. (D) Winter.
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MV-UIC-FA are validated using the IEEE 118-bus standard
distribution network test system (Youssef et al., 2020) as shown
in Figure 10. Actual power and load data from the 2014 Global
Energy Forecasting Competition (GEFC) (Hong et al., 2016) are
utilized as the training and testing datasets. Controllable wind
turbines of the fourth generation, each with a rated capacity of
1 MW, are connected to buses 14, 25, 46, 49, 66, and 69 of the IEEE
118- bus test system. Load data and environmental weather
characteristic data from the 2014 GEFC are extracted, covering
the period from March 1st to 12th, 2005, with a sampling frequency
of 1 h, totaling 288 h of data. This dataset is used for experimental
simulations. Meteorological data utilized in the simulations are
sourced from the publicly available local weather information on
the website of the National Renewable Energy Laboratory (NREL)
(NREL, 2024) in the United States. The dataset includes load and

power sequences, temperature, weather type 1, humidity, visibility,
weather type 2, perceived temperature, pressure, wind speed, cloud
cover, wind resistance, precipitation intensity, dew point, and
precipitation probability. Normalization is applied to both power
and load data to meet simulation requirements. Missing values in
the dataset are filled, and normalization is performed. The training
and prediction datasets are divided in an 8:2 ratio. March 12th is
selected as the prediction day.

Based on the findings presented in Figure 11 and Table 6, it is
evident that the predictive performance of the method proposed
in this paper for forecasting source and load power within the
IEEE 118-bus standard distribution network surpasses that of
alternative individual methods, demonstrating superior
predictive accuracy and commendable generalization
capabilities.

FIGURE 7
Microgrid load prediction results for four prediction days. (A) Spring. (B) Summer. (C) Fall. (D) Winter.

TABLE 5 Evaluation indexes of RMSE and MAE for different prediction modelS.

Prediction model Spring Summer Fall Winter

RMSE/
MW

MAE/
MW

RMSE/
MW

MAE/
MW

RMSE/
MW

MAE/
MW

RMSE/
MW

MAE/
MW

DG MV-B 2.2125 1.9671 0.9573 0.7082 4.2045 3.5404 2.7744 2.2158

MV- L 2.0732 1.9361 1.1927 0.8617 4.2443 3.3818 2.3355 1.6197

MV- Bi 2.1235 1.9527 1.0177 0.8208 3.0152 1.876 3.4657 2.5119

The MV-UIC-VMD combined
prediction model

1.7910 1.4537 0.8585 0.6241 2.5884 1.7535 1.8183 1.2153

Load MV-B 10.8240 8.1104 9.9246 9.7192 21.6300 15.2434 25.2227 22.7800

MV- L 8.4671 6.3477 9.7702 9.0331 18.9970 14.1968 25.3980 21.1923

MV- Bi 8.8633 6.7884 7.6545 6.2334 19.0853 13.5598 23.7700 18.2401

The MV-UIC-VMD combined
prediction model

6.9727 5.7600 8.5803 7.9440 14.4447 10.3772 20.0735 16.4130
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5.4 Simulation case 4: with the prediction
results that consider only the distributed
power supply and load alone in correlation
with the weather feature

For comparative analysis, the influence of weather features only
on DG output and load power is set separately using the proposed
algorithm to predict the load in the above two scenarios. The
prediction results are shown in Figures 12, 13 and Table 7.

Based on the simulations of the two scenarios mentioned above,
it can be inferred that considering the correlation between DG

output, load power, and weather characteristics can further improve
the accuracy of load forecasting. Additionally, the proposed
algorithm in this paper has a prediction time of 33.18 s,
demonstrating good timeliness and meeting the requirements of
ultra-short-term load forecasting.

6 Conclusion

In response to the coexistence of distributed power sources
and loads in microgrids, wherein weather characteristics

FIGURE 8
Microgrid power prediction results for four prediction days. (A) Spring. (B) Summer. (C) Fall. (D) Winter.

FIGURE 9
Microgrid load prediction results for four prediction days. (A) Spring. (B) Summer. (C) Fall. (D) Winter.

Frontiers in Energy Research frontiersin.org13

Huang et al. 10.3389/fenrg.2024.1409957

62

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1409957


FIGURE 10
IEEE 118-bus standard power distribution system.

FIGURE 11
Results diagram of source and load power prediction of IEEE 118-bus standard distribution system. (A) DG. (B) Loads.

TABLE 6 Evaluation indexes of source and load power prediction models after dimensionality reduction of IEEE 118-bus standard distribution system.

Prediction model RMSE/MW MAE/MW

DG MV-B 1.108 0.6748

MV-L 0.9564 0.5899

MV-Bi 0.7693 0.5306

The MV-UIC-VMD combined prediction model 0.5361 0.2627

Load MV-B 0.2492 0.1709

MV-L 0.4066 0.3486

MV-Bi 0.2497 0.2084

The MV-UIC-VMD combined prediction model 0.1143 0.1143

Frontiers in Energy Research frontiersin.org14

Huang et al. 10.3389/fenrg.2024.1409957

63

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1409957


FIGURE 12
Only the predicted results of the DG output were considered. (A) Spring. (B) Summer. (C) Fall. (D) Winter.

FIGURE 13
Only the predicted results of the loads were considered. (A) Spring. (B) Summer. (C) Fall. (D) Winter.

TABLE 7 Evaluation indexes of source and load power prediction models after dimensionality reduction.

Prediction model Spring Summer Autumn Winter

RMSE/MW MAE/MW RMSE/MW MAE/MW RMSE/MW MAE/MW RMSE/MW MAE/MW

Only consider loads 6.30469 5.00133 5.01234 3.53141 2.44036 2.08708 2.28101 1.84892

Only consider DG 2.0457 1.5801 1.0663 0.8019 3.7107 2.9303 3.1595 2.3205

Both consider 1.5805 1.039 0.8585 0.6241 2.5884 1.7535 1.3818 0.8841
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concurrently influence their power, a joint short-term power
prediction model for microgrid sources and loads, considering
weather features and multivariable correlations, is proposed to
attain a rational match between microgrid sources and loads.
Illustrated by an analysis of the DTU 7K 47-bus system within
Denmark, an assessment of the accuracy, applicability, and
efficacy of the proposed prediction approach is conducted.
The principal findings are as follows:

(1) MV-UIC can effectively depict the simultaneous impact of
the same weather characteristics on the power of sources
and loads within microgrids, thereby revealing the
correlation between weather features and
microgrid power.

(2) By employing MV-UIC in conjunction with factor analysis
to reduce the dimensionality of input features for source
and load prediction, the power forecasting accuracy
surpasses that achieved when considering all weather
features as input. Compared to single prediction models,
utilizing the prediction model based on MV-UIC-FA for
source and load power also effectively reduces
prediction errors.

Upon deriving the predicted power for microgrid sources and
loads through the methodology advanced in this paper, the
subsequent phase will involve the modeling of the matching
degree between microgrid sources and loads, coupled with the
optimization scheduling research of microgrid clusters.
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Evaluation of electrical load
demand forecasting using various
machine learning algorithms

Akanksha Jain* and S. C. Gupta
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The energy sector heavily relies on a diverse array of machine learning algorithms
for power load prediction, which plays a pivotal role in shaping policies for power
generation and distribution. The precision of power load prediction depends on
numerous factors that reflect nonlinear traits within the data. Notably, machine
learning algorithms and artificial neural networks have emerged as indispensable
components in contemporary power load forecasting. This study focuses
specifically on machine learning algorithms, encompassing support vector
machines (SVMs), long short-term memory (LSTM), ensemble classifiers,
recurrent neural networks, and deep learning methods. The research
meticulously examines short-term power load prediction by leveraging
Chandigarh UT electricity utility data spanning the last 5 years. The assessment
of prediction accuracy utilizes metrics such as normalized mean square error
(NMSE), root mean squared error (RMSE), mean absolute error (MAE), and mutual
information (MI). The prediction results demonstrate superior performance in
LSTM compared to other algorithms, with the prediction error being the lowest in
LSTM and 13.51% higher in SVMs. These findings provide valuable insights into the
strengths and limitations of different machine learning algorithms. Validation
experiments for the proposed method are conducted using MATLAB
R2018 software.

KEYWORDS

forecasting, power load, machine learning, deep learning, load demand

1 Introduction

Load forecasting serves as a crucial intermediary, ensuring a seamless connection
between electricity generation and distribution. Its primary objective is to precisely forecast
the electricity load for the upcoming year, months, and weeks, encompassing both short-
and long-term projections. Effective power load forecasting enables the efficient
management of power distribution scarcity. Demand forecasting also plays a pivotal
role in driving nations’ industrialization and urban development (Lai et al., 2020;
Aslam et al., 2021; Fan et al., 2019; Mosavi et al., 2019). Accurate forecasting is crucial
for effective planning and promoting economic growth within a nation. The power load
forecasting process relies on archived data and statistical models to predict future trends.
However, the nonlinear nature of power generation data frequently leads to increased
prediction errors, which can compromise decision-making regarding power generation and
distribution. Despite the existence of numerous mathematical models for power load
forecasting, attaining high accuracy in these forecasts remains a significant challenge (Su
et al., 2019; Khan W. et al., 2020). Predicting the power load is a contemporary research
focus. The advancement of machine learning (ML) algorithms propels the evolution of
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machine learning and its application in energy forecasting. The
amalgamation of sensor technology with power distribution results
in the accumulation of a significant volume of data. These amassed
data present both opportunities and challenges for making informed
decisions. In-depth data processing is conducted for evaluation and
forecasting, with machine learning algorithms and models playing a
pivotal role in prediction. Due to their efficiency and effectiveness,
these algorithms and models have garnered considerable
importance in predictive modeling for production, consumption,
and demand analysis in recent years (Ahmad W. et al., 2020,
Almaghrebi et al., 2020). Despite the extensive research
conducted on machine learning and the advancements made in
memory-based algorithms, innovative approaches have been
proposed for predicting electricity demand. Several statistical
functions have been used to model and forecast demand,
including gray models, linear regression, autoregressive average
models, and partial linear models, all of which are widely utilized
in this field (Khan P. et al., 2020; Reynolds et al., 2019; O’dwyer et al.,
2019). However, while strong predictive outcomes can generally be
achieved, statistical methods are constrained by the underlying
linear assumption. The gray prediction model operates without
relying on statistical assumptions; nevertheless, its predictive
accuracy depends on the dispersion level within the input time
series (Chapaloglou et al., 2019; Bedi and Toshniwal, 2019; Jiang
et al., 2020). Additionally, due to the distinctive strengths and
limitations of each model, it is rare for a single forecasting model
to maintain superiority in every situation. Another area of this study
focuses on the evolution of load forecasting, transitioning from
statistical to hybrid forecasting methods that integrate intelligent
approaches capable of addressing complex and nonlinear challenges
(Satre-Meloy et al., 2020; Wang R. et al., 2020; Ibrahim et al., 2020;
Heydari et al., 2020). The implementation of the incremental
approach design incorporates machine learning and artificial
neural network algorithms (Ullah et al., 2020; Chammas et al.,
2019; Santamouris, 2020; Sun et al., 2020). In contemporary data
analysis research, both feed-forward neural networks and recurrent
neural networks are extensively used across diverse models to
achieve precise power load forecasting. The reliability of these
predictions depends on the data processing methods used within
the decision system. Among the different algorithms used in
predictive models for electricity data, one involves the formation
of data subsets in time series. Prevalent preprocessing techniques
like singular spectrum analysis, ensemble empirical mode
decomposition (EMD), and enhanced whole-ensemble empirical
mode decomposition with adaptive noise are applied in analyzing
electrical data modeling. These methods aid in establishing a
procedural framework for extracting essential information from
observed load series to forecast future patterns.

The utilization of EMD-based modeling has demonstrated
success in managing electricity demand sequences. The research
findings suggest that the EMD framework shows promise for
accurately forecasting energy demand within specific intervals.
Additionally, they developed feature selection techniques to
improve the model’s performance. They also created a hybrid
feature selection technique to extract fundamental knowledge
from electricity time series. This finding underscores the
importance of utilizing preprocessing techniques to improve
predictions.

In addition to data, weather conditions significantly influence
the precision of power load forecasting. Integrating various
approaches and incorporating energy source guidelines lead to a
new algorithm for short-term load prediction, significantly
enhancing accuracy (Hu et al., 2020; Prado et al., 2020; El-
Hendawi and Wang, 2020). This study investigated an approach
to extracting date-associated details from observed load sequences
and developed techniques for selecting features to enhance model
effectiveness. Moreover, it introduced a hybrid technique to extract
essential knowledge from electricity time-series data. It underscores
the significance of preprocessing methods in refining predictions.
Weather conditions can also impact power load forecasting,
introducing complexities due to seasonal effects and reducing the
accuracy of specific models. Consequently, many researchers suggest
integrating seasonal pattern-effect models into predictive modeling
to address this issue (Li et al., 2020; Qiao et al., 2020; Bakay
et al., 2021).

The primary objective of this paper is to explore power load
forecasting using artificial intelligence methods such as machine
learning and artificial neural networks. The research aims to conduct
experimental analyses on datasets using various machine learning
algorithms to establish a model design for power load forecasting.

The remainder of the paper is structured as follows: Section II
concentrates on recent advancements in power load forecasting;
Section III outlines the machine learning approaches used for
forecasting; Section IV offers an in-depth examination of the
experimental methodology; and finally, Section V concludes the
paper and offers insights into future directions for further
exploration.

2 Related work

In the field of renewable energy forecasting, Lai et al. (2020)
conducted a survey and evaluation of machine learning algorithms.
Moreover, this work clarified the methodologies utilized in machine
learning models for predicting sustainable energy sources,
encompassing data preprocessing methods, attribute selection
strategies, and performance assessment metrics. Additionally, the
study scrutinized renewable energy sources, mean absolute error
(MAE) percentages, and coefficients of determination. Aslam et al.
(2021) provided a thorough examination of existing deep learning
(DL)-based solar modules and wind turbine power forecasting
approaches, along with a significant amount of data on electric
power forecasting. The study included datasets used in training and
validating various predictive models based on deep learning,
facilitating the selection of appropriate datasets for new research
projects. Fan et al. (2019) developed a novel short-term load
prediction algorithm with improved accuracy using the weighted
k-nearest neighbor technique. The forecast inaccuracies of this
model are juxtaposed against those of the back-propagation
neural network model and the autoregressive moving average
(ARMA) model. Evaluation through correlation values
demonstrates the capability of the proposed forecasting model to
offer adaptable advantages, making it suitable for short-term
demand forecasting. Mosavi et al. (2019) presented the current
state of energy machine learning models, along with a new
edition and application taxonomy. A novel methodology is used

Frontiers in Energy Research frontiersin.org02

Jain and Gupta 10.3389/fenrg.2024.1408119

68

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1408119


to identify and categorize machine learning models based on the
method of machine learning simulations, the type of energy, and the
application sector. Through the utilization of hybrid machine
learning models, the efficiency, resilience, reliability, and
generalization performance of machine learning models in energy
systems have all significantly improved. Almaghrebi et al. (2020)
utilized a dataset obtained from public charging stations over a span
of 7 years in Nebraska, United States. The XGBoost regression
model outperforms other techniques in forecasting charging
requirements, showcasing an RMSE of 6.7 kWh and an R2 of
52%. Reynolds et al. (2019) presented two approaches to improve
district energy management. A heater set-point temperature is
implemented to regulate building demand directly. Additionally,
it assists in enhancing district heat production through a multi-
vector energy hub. These observations underscore the potential
benefits of comprehensive energy management, encompassing
diverse energy vectors while considering both supply and
demand aspects. Khan W. et al. (2020) presented machine
learning techniques used to construct a hybrid power forecasting
model. Extreme boosting, subcategory boosting, and the random
forest (RF) technique are the four machine learning algorithms used.
Our hybrid model enhances forecasting by employing feature
extraction to preprocess data. While machine learning algorithms
are frequently effective in handling high-energy situations, our
hybrid version improves forecasts by utilizing feature engineering
to preprocess data. Ahmad W. et al. (2020) proposed a
groundbreaking deep learning-based technique for forecasting
electrical loads. Additionally, a three-step model is developed,
incorporating a hybrid feature selector for feature selection, a
feature extraction technique to reduce redundancy, and improved
support vector machines (SVMs) and extreme learning machines
(ELMs) for classification and forecasting. Numerical simulations are
graphed, and statistics are presented, suggesting that our upgraded
methods are more accurate and perform better than state-of-the-art
approaches. Bedi and Toshniwal (2019) proposed acquiring season-
based segmentation data and developed a deep learning method for
projecting electricity usage while accounting for long-term historical
dependency. First, the monthly electricity use data are utilized to
conduct cluster analysis. Subsequently, load trends are characterized
to enhance the comprehension of the metadata encompassed within
each cluster. Jiang et al. (2020) provided forecast intervals that
represent the intricacies involved in the design and functioning of
power systems with better accuracy. The findings suggest that the
suggested model demonstrates encouraging forecasts compared to
alternative combined methodologies, which can be advantageous for
policymakers and public organizations aiming to maintain the
security and stability of the energy infrastructure. Wang R. et al.
(2020) proposed a useful enhancement integration-model stacking
structure designed to address increasing energy needs. To ensure the
comprehensive observation of datasets from diverse spatial and
structural perspectives, the stacking model harnesses the
strengths of multiple base prediction algorithms, transforming
their outcomes into “meta-features.” With accuracy gains of 9.5%
for case A and 31.6%, 16.2%, and 49.4% for case B, the stacking
method outperforms earlier models. Heydari et al. (2020) proposed
an innovative and accurate integrated model designed for short-
term load and price forecasting. This comprehensive package
incorporates the gravitational search algorithm, variational mode

decomposition, mixed data modeling, feature selection, and
generalized regression neural networks. The proposed model
surpasses current benchmark prediction models in terms of
precision and stability, as indicated by the findings. Wang et al.
(2019) analyzed the systems in depth for forecasting renewable
energy based on deep learning methodologies to determine their
efficacy, efficiency, and relevance. Additionally, to improve
forecasting accuracy, various data preparation strategies and
mistake post-correction processes are examined. Several deep
learning-based forecasting algorithms are thoroughly investigated
and discussed. Sun et al. (2020), in their comprehensive
examination, delved deeply into forecasting energy use in
buildings. Their meticulous analysis encompasses feature
manipulation, potential data-centric models, and projected
outcomes, thus encompassing the entirety of the data-driven
procedure. In a research project, Ahmad and Chen (2019a)
explored short-term energy demand predictions at the district
level. They employed two distinct deep learning models. These
DL models exhibited higher predictive accuracy at distinct
hidden neurons, attributed to the suggested network layout. Hu
et al. (2020), utilizing a novel augmented optimization model,
constructed and refined it using a differential evolution
methodology developed through the bagged echo state network
approach. Bagging, a network generalization technique, enhances
network generalization while reducing forecasting errors. The
suggested model, known for its high precision and reliability,
proves to be a valuable method for predicting energy
consumption. Walker et al. (2020) explored various machine
learning algorithms across a spectrum to estimate the electricity
demand in hourly intervals, both at the individual building and
aggregated levels. Upon factoring in processing time and error
accuracy, the results revealed that random forest and artificial
neural network (ANN) models yielded the most accurate
predictions at an hourly granularity. Prado et al. (2020)
employed methodologies such as the fuzzy inference system
model, auto-regressive integrated moving average, support vector
regression, adaptive neuro-fuzzy inference system, ANN, ELM, and
genetic algorithm. In a sample study, compared to leading artificial
intelligence and econometric models, the proposed method attained
a 22.3% reduction in themean squared error and a 33.1% decrease in
the mean absolute percentage error. Ahmad et al. (2020a) reported
that utility companies require a stable and reliable algorithm to
accurately predict energy demand for multiple applications,
including electricity dispatching, market involvement, and
infrastructure planning. The forecasting results assist in
enhancing and automating predictive modeling processes by
bridging the gap between machine learning models and
conventional forecasting models. El-Hendawi and Wang (2020)
introduced the whole wavelet neural network methodology, an
ensemble method that incorporates both the overall wavelet
packet transform and neural networks. This approach utilizes
both components effectively. The proposed methodology has the
potential to assist utilities and system operators in accurately
predicting electricity usage, a critical aspect for power generation,
demand-side management, and voltage stability operations. Zhang
et al. (2021) proposed utilizing machine learning approaches for
load prediction within the framework of machine learning. The
objective is to accomplish tasks through performance measures and
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learning from past experiences. They conclude with a list of both
well-studied and under-explored sectors that warrant further
investigation. The research introduces a neural network model
specifically designed to predict short-term loads for a Colombian
grid operator spanning a week. The model employs a long short-
term memory (LSTM) recurrent neural network and historical load
data from a specific region in Colombia. The performance of the
model is evaluated using the regression metric MAPE, with the most
accurate week displaying an error rate of 1.65% and the least
accurate week exhibiting an error rate of 26.22% (Caicedo- Vivas
and Alfonso-Morales, 2023). This research introduces a method for
reconstructing input features utilizing the maximum information
coefficient (MIC). The procedure commences by categorizing load
curves through distributed photovoltaic systems (DPVSs) with
Gaussian mixture model (GMM) clustering. The presented case
study illustrates how this proposed feature reconstruction method
significantly enhances the prediction accuracy of deep neural
networks (Zheng et al., 2023). The study suggests utilizing long
short-term memory Bayesian neural networks for forecasting
household loads, especially in scenarios involving EV charging.
The findings demonstrate a comparable level of accuracy to point
forecasts, coupled with the advantage of providing prediction
intervals (Skala et al., 2023).

Pawar and Tarunkumar (2020), within a smart grid featuring a
significant renewable energy presence, recommended using an
intelligent smart energy management system (ISEMS) to meet
energy demands. To achieve accurate energy estimations, the
proposed approach compares various prediction models, focusing on
both hourly and daily planning. Among these models, the particle
swarm optimization (PSO)-based SVM regression model demonstrates
superior performance accuracy. Fathi et al. (2020) showed how change
impacts the energy efficiency of urban structures using machine
learning methods and future climate simulations. Due to the
absence of a globally applicable metric for this assessment,
determining the most reliable machine learning-based forecast
requires an optimal combination of criteria. Somu et al. (2021)
suggested that KCNN-exact LSTM holds promise as a deep learning
model for forecasting energy demand owing to its capability to
recognize spatial and temporal associations within the dataset. To
evaluate its dependability, the KCNN-LSTM model was compared
against the k-means variant of established electricity usage-pattern
forecast models using recognized quality criteria. Ahmad and Chen
(2019b), by using genuine pollution data and sustainable consumption
records, appliedNARM, LMSR, and LS Boostmethodologies to forecast
the energy demands of large-scale urban utilities, utility firms, and
industrial customers. Throughout the summer, fall, winter, and spring
periods, the LS Boost model showcased coefficients of variation of
5.019%, 3.159%, 3.292%, and 3.184%, respectively. Ahmad and Chen
(2020) conducted a thorough assessment and compared several
simulations to select the best forecasting model for obtaining the
required result in a number of situations. With coefficients of
correlation of 0.972 and 0.971, respectively, the Bayesian
regularization backpropagation neural networks and Levenberg
Marquardt backpropagation neural networks provide better
forecasting accuracy and performance. Ahmad et al. (2020b) used
renewable energy and electricity projection models as a key and
systematic energy planning tool. The forecast periods are segmented
into three separate classifications: short-range, intermediate-range, and

long-range. The outcomes of this study will aid practitioners and
researchers in recognizing prediction methodologies and selecting
relevant methods for achieving their desired goals and forecasting
criteria. Choi et al. (2020) developed, in response to the recent
power demand patterns, a unique load demand forecasting system
constructed using LSTM deep learning techniques. They performed
examinations to gauge the inaccuracies of the forecasting module and
unexpected deviations in the energy usage patterns within the real-time
power demand monitoring system. Su et al. (2019) investigated the
ANN, SVM, gradient boosting machines (GBM), and Gaussian process
regression (GPR) as examples of data-driven predictive models for
natural gas price forecasting. To train the model, quarterly Henry Hub
natural gas market pricing data and a pass approach are utilized. These
two machine learning algorithms operate differently in predicting
natural gas prices, with the ANN demonstrating superior prediction
accuracy over the SVM, GBM, and GPR, according to the data. Khan P.
et al. (2020) proposed utilizing a variety of data mining approaches,
such as preprocessing past demand data and analyzing the properties of
the load time series, to examine patterns in energy usage from both
renewable and non-renewable energy sources. O’dwyer et al. (2019)
investigated recent advancements in the smart energy sector, focusing
on methodologies in key application areas and notable implemented
examples. They also highlight significant challenges in this sector while
outlining future prospects. The aim of this inquiry is to assess the
current state of computational intelligence in smart energy
management and provide insights into potential strategies to
overcome current limitations. Chapaloglou et al. (2019) proposed
that smoother diesel generator performance can be achieved by
combining it with peak shaving using renewable energy. This
approach aims to reduce the demand variability that conventional
units must meet. The operation seeks to limit the maximum capacity of
diesel engines while simultaneously increasing the supply of renewable
energy to the grid. Satre-Meloy et al. (2020) applied a unique dataset
containing significant strength and tenant time-use data from
United Kingdom homes. They also utilized a groundbreaking
clustering approach to capture the entire structure. The discussion
focuses on how a customized strategy tailored to the highest demand in
residential areas can lead to reductions in demand and mitigation
actions. Additionally, it enhances our understanding of the limitations
and possibilities for demand flexibility in the household sector. Ibrahim
et al. (2020) reported that the increasing interest in machine learning
technologies underscores their effectiveness in tackling technological
challenges within the smart grid. However, certain hurdles, such as
efficient data collection and the examination of intelligent decision-
making in complex multi-energy systems, as well as the need for
streamlined machine learning-based methods, remain unresolved.
Ullah et al. (2020) provided comprehensive insights into the
utilization of previous advancements in intelligent transportation
systems (ITSs), cybersecurity challenges, the effective use of smart
grids for energy efficiency, optimized deployment of unmanned
aerial vehicles to enhance 5G and future communication services,
and the integration of smart medical systems within the framework
of a smart city. Chammas et al. (2019) proposed that LR, SVM, GBM,
and RF are four alternative classification algorithms compared to our
methodology. A multilayer perceptron (MLP)-based system for
calculating the energy consumption of a building based on data
from a wireless sensor network (WSN), including luminosity, day of
the week, moisture, and temperature, significantly influences the
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outcomes observed in the testing set. This yields cutting-edge outcomes
with a coefficient of determination R2 of 64% , RMSE of 59.9%, MAE of
27.3%, and MAPE of 28.04%. Santamouris (2020) reported on energy,
peak electricity usage, air pollution, mortality, morbidity, and urban
susceptibility. The study also examined recent data on the
characteristics and extent of urban overheating, as well as analyses
of recent research on the connection between urban heat islands and
increasing temperatures. Li et al. (2020) estimated that an SVM and an
upgraded dragonfly algorithm are utilized to generate short-term wind
electricity forecasts. To enhance the performance of the standard
dragonfly approach, an adaptive learning multiplier and a convex
optimization strategy are proposed. The suggested model
outperforms existing methods, such as MLP networks and Gaussian
process models, in terms of forecast precision. Lu et al. (2019) proposed
that residential management systems utilize an hour-ahead load
management algorithm. A stable pricing methodology derived from
artificial neural networks is suggested to address the complexities of
future pricing. Calculations involving non-shiftable, shiftable, and
guided loads are used to validate the performance of the suggested
energy management method (Fathi et al., 2020). Wang H. et al. (2020)
carried out a classification study using AI algorithms and current solar
power prediction models. Taxonomy is a system for classifying solar
energy forecasting methods, optimizers, and frameworks based on
similarities and differences. This study can aid scientists and
engineers in conceptually analyzing various solar forecast models,
allowing them to select the most appropriate model for any given
usage scenario. Ghoddusi et al. (2019) proposed that in energy
economics publications, SVMs, ANNs, and genetic algorithms (GAs)
are among the most commonly utilized methodologies. They explored
the successes and limitations of the literature. Gao et al. (2019) provided
a prediction method based on the weather conditions of previous days
for optimal weather conditions. According to a study of predictive
accuracy between new methods and known algorithms, the RMSE
accuracy of the predicting approach that is built upon LSTM networks
can achieve 4.62%, specifically under ideal weather conditions. Xue et al.
(2019) proposed the ability to forecast the best weather conditions; here,
a method based on the previous-day climatic data is used. The RMSE
accuracy of LSTM infrastructure-predicting approaches can reach
4.62% for favorable climatic circumstances, according to research on
the projected accuracy between innovative approaches and known
algorithms. Qiao et al. (2020) presented a hybrid approach for
carbon dioxide emission forecast that combines the lion swarm
optimizer with the genetic algorithm to improve the traditional least
squares support vector machine model. When compared with eight
previous methods, the novel algorithm demonstrates superior global
optimization capabilities, quicker convergence, enhanced accuracy, and
moderate computational speed. Bakay et al. (2021) reported that
measurements of CO2, CH4, N2O, F-gases, and overall GHG
emissions from the energy-generating industry can be predicted
using DL, SVM, and ANN approaches. All of the algorithms tested
in the study, according to the findings, yielded individually favorable
outcomes in predicting GHG emissions. The greatest R2 value for
emissions, according to the expected data, ranges from 0.861 to 0.998,
and all conclusions are considered “excellent” regarding the RMSE.
Zhou et al. (2019), in their analysis, comprehensively assessed prior
driving prediction techniques, highlighting suitable application
scenarios for each prediction model. Moreover, it outlines methods
to address prediction inaccuracies, aiding designers in selecting suitable

driving prediction techniques for varied uses and improving the
efficiency of predictive energy management strategies for hybrid and
plug-in hybrid electric vehicles. Hao et al. (2019) introduced the DE
clustering technique, derived from fundamental morphological
processes, to recognize days sharing analogous numerical weather
prediction data with the envisaged day within the suggested
approach. The progressive generalized regression neural network
(GRNN) prediction framework rooted in the DE clustering
technique demonstrates superior efficacy in forecasting wind power
for the following day compared to the models utilizing DPK clustering-
GRNN, AM-GRNN, and K-means clustering-GRNN. Ahmed et al.
(2020) discovered that artificial neural network ensembles are the best
for generating short-term solar power forecasts, that asynchronous
sequential extreme learning machines are the best for adaptive
networks, and that the bootstrap procedure is the best for assessing
uncertainty When paired with hybrid artificial neural networks and
evolutionary algorithms, the findings bring up new possibilities for
photovoltaic power forecasting. Antonopoulos et al. (2020) provided a
look at howAI is employed in disaster recovery applications. The study
categorizes research based on the AI/ML algorithms employed
and their applications in energy DR. It culminates by
summarizing the strengths and weaknesses of the AI
algorithms applied in diverse DR tasks, along with proposing
avenues for future research in this burgeoning field (Fathi et al.,
2020). Shaw et al. (2019) presented the predictive anti-correlated
placement algorithm as a revolutionary algorithm that improves
CPU and bandwidth usage. It relies on a comparative analysis of
the most commonly utilized prediction models, placed alongside
each other for comparison. The practical outcomes illustrate that
the suggested approach conserves 18% of energy while reducing
service violations by more than 34%, in contrast to several
frequently used placement algorithms. Hou et al. (2021)
analyzed the impact on energy production, demand, and
greenhouse gas emissions. Climate scenario representative
concentration pathways (RCPs) are used to project changes in
weather elements because of this. Taking into account scenarios
RCP2.6, RCP4.5, and RCP8.5, hydro-power production is
anticipated to increase by approximately 2.765 MW,
1.892 MW, and 1.219 MW, respectively, in the foreseeable
future. Furthermore, the projections suggest a subsequent
increase to approximately 3.430 MW, 2.475 MW, and
1.827 MW, respectively. Jørgensen et al. (2020) discovered
distinct characteristics in neural networks and support vector
machines, which, if modified incorrectly, will cause mistakes. The
algorithms can be adjusted to match a variety of situations owing
to the many parameters. A growing trend involves utilizing
machine learning to digitize wind power estimations.

2.1 Research gap

This project addresses the shortcomings observed in current
research, outlined as follows:

Despite the considerable potential offered by ML and DL
algorithms, the inherent variability among different techniques
remains unexplored. Many investigations focus solely on LSTM,
SVM, and EM without comparing their effectiveness against
traditional deep learning approaches.
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Furthermore, several studies fail to consider methods that
showcase the resilience of assessed models, with cross-validation
being underutilized. Consequently, the results presented often
exhibit significant dependency on the specific data sample used,
thereby limiting reproducibility and applicability to
future datasets.

3 Methodology

3.1 Data preprocessing

Various machine learning methodologies heavily depend on the
caliber and arrangement of the dataset. Implementing efficient
preprocessing techniques, which encompass variable selection,
data filtration, and transformation into an understandable format
for the models, holds paramount significance. Throughout the data
collection phase, inaccuracies in communication or gathering
frequently result in absent values in the final dataset. Moreover,
monitoring programs often capture a myriad of parameters, not all
of which contribute to accurately predicting the target variable. To
discern the most suitable dataset, a feature extraction procedure is
utilized. This involves visually delineating the curves of various
variables influencing the target feature through plotting.
Additionally, this phase enables the extraction of information not
explicitly present as variables but impacting the variability of the
target feature, such as the hour of the day, day of the week, or day of
the year. Typically, the chosen dataset encompasses weather
conditions and electrical load data, with temporal parameters
including the hour of the day, day of the week, and day of the
year. Consequently, the objective is to forecast the output variable,
electrical loads, based on the input variables selected due to their
inherent correlation with variations across different time intervals.
Specifically, the hour of the day facilitates the extraction of daily
patterns, the day of the week reveals weekly patterns, and the day of
the year aids in recognizing seasonal patterns.

Improving pattern recognition from the models is accomplished
through a data-cleansing phase. Here, the data undergo filtration to
identify outliers. Given the substantial instantaneous variability in
electricity consumption, the methodology predominantly relies on
the interquartile range. This iterative process aims to alleviate errors
introduced by anomalous values in the trends. Consequently, values
deviating outside the ranges defined by specific criteria are
deemed invalid.

ub � Q3 + 1.5 * IQR,

lb � Q1 − 1.5 * IQR,

where “ub” and “lb” represent the upper bound and lower
bound, respectively; “Q3” and “Q1” denote the third and the first
quartiles, respectively; and “IQR” signifies the interquartile range.
Values recognized as outliers, in addition to non-existent values
within the dataset, are regarded as absent. Data preprocessing serves
as the initial stage in machine learning, involving the transformation
or encoding of data to prepare them for efficient analysis by the
machine. Essentially, this process ensures that the data are in a
format that enables the model algorithm to effectively interpret
their features.

Data preprocessing holds significant importance for the
generalization performance of supervised machine learning
algorithms. As the dimensionality of the input space increases,
the volume of training data increases exponentially. It is
estimated that preprocessing tasks can consume up to 50%–80%
of the overall classification process time, underscoring their critical
role in model development. Enhancing data quality is also essential
for optimizing performance.

The detailed steps of data preprocessing are outlined below.

3.1.1 Data cleaning and validation
Data cleansing involves the identification and rectification or

removal of incorrect or noisy data from the dataset. It typically
focuses on detecting and replacing incomplete, inaccurate,
irrelevant, or other erroneous data and records. Duplicates can
frequently occur in datasets, particularly when combining data
from various sources, scraping data, or aggregating data from
multiple clients. This situation presents an opportunity for the
generation of duplicate data.

It is common for certain columns in a dataset to have missing
values, which can arise from data validation rules or data collection
processes. However, addressing missing values is essential, as they
can impact the efficacy of the features of a model. When a significant
number of values are missing, straightforward interpolation
methods can be used to address these gaps. One of the most
prevalent approaches involves using mean, median, or mode
values based on the features of the model.

Missing data may result from human error or be generated while
working with primary data. Therefore, it becomes necessary to have
a data assessment process to learn the datatype of the feature and
ensure that all data objects are of the same type. Inconsistent data
might lead to erroneous conclusions and forecasts.

3.1.2 Regression (noise handling)
If noise persists within a class even after identifying loud

occurrences, there are three strategies for addressing it. First,
noise can be disregarded if the model exhibits robustness against
overfitting. Second, noise in the dataset can be filtered out,
adjusted, refined, or re-labeled. If the attribute-related noise
persists, methods such as filtering or refining the erroneous
attribute value, excluding it from the dataset, or utilizing
imputation techniques can help identify areas requiring
cleaning and unveil additional questionable values. This
supervised machine learning technique is used for predicting
continuous variables by establishing relationships between
variables and estimating how each variable influences the
others. To assess the predictions made by regression
algorithms, it is essential to consider variance and bias metrics.

3.1.3 Data integration
Data integration refers to the amalgamation of data sourced

from multiple origins into a unified dataset. This encompasses
schema integration, which entails merging metadata from diverse
sources and addressing discrepancies in data values stemming from
variations in units of measurement, representation, and other
factors. Additionally, it is essential to manage redundant data by
employing techniques such as correlational analysis to uphold high
data quality post-integration.
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3.1.4 Data transformation (normalization)
Normalization becomes necessary when attributes are measured

on different scales. In cases where multiple features exhibit distinct
scales, normalization is essential to standardize them or risk yielding

suboptimal outcomes. This process encompasses techniques such as
min–max normalization, z-score normalization, and
decimal scaling.

3.2 Machine learning algorithm modeling

Anticipating the load on power grids poses a significant obstacle
within the energy industry in the current decade. Machine learning
algorithms provide frameworks for analyzing the production,
consumption, and distribution of power. With the coupling of
supervised and unsupervised learning, machine learning derives
thousands of algorithms as single and multiple predictive models
for forecasting. The development of machine learning focuses on the
accuracy and effectiveness of algorithms. The accuracy of the
algorithms varies according to the sampling of energy data and
modeling. The fundamental principle behind machine learning
algorithms involves selecting past power load data as training
samples, creating an appropriate network structure, and
employing learning algorithms to predict the energy needs within
the power sector. Figure 1 illustrates the process of applying machine
learning models to power load data.

The training phase involves a cross-validation approach to
ensure the efficacy of the applied models. This method is used to
ensure that each split produces results independent of the training,
thereby minimizing overfitting in the modeling. Consequently, the
training process occurs in one partition, comprising 80% of the
training data, while the model’s performance is assessed in another
partition, encompassing the remaining training data. This iterative
process involves alternately positioning the validation subset
throughout the training dataset.

Moreover, the training process utilizes mini-batch gradient
descent to prevent stagnation at local minima and enhance the
model’s convergence [47]. Upon completion of the training phase
with these techniques, the model undergoes evaluation on the test

FIGURE 1
Flowchart for power load forecasting with machine learning
algorithms.

FIGURE 2
Schematic diagram of the support vector machine.
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dataset. This section examines the capabilities and assesses the
suitability of various ML and DL models for electricity load
forecasting.

The fundamentals of ML models are presented, commencing
with SVM, followed by recurrent neural networks (RNNs) and
LSTM. Subsequently, the distinctive features of the DL model
and ensemble classifier are introduced.

The various algorithms applied in this study are described
as follows.

3.2.1 Support vector machine
The SVM learning algorithm was formulated in 1990 and has

since found extensive application in forecasting and pattern
recognition tasks. Schematic Diagram of Support Vector Machine
is shown in Figure 2. SVM learns to estimate input data on a
regression line with a designated threshold. In this model, the ideal
trend line that best fits the data is referred to as the hyperplane, while
the boundary lines delineate the threshold. SVM maps training data
using mathematical equations, called kernels, to determine the
hyperplane containing the maximum input data within the
boundary lines. It can exhibit linear, nonlinear, or sigmoid
characteristics. In nonlinear SVM, the feature data undergo
mapping from one plane to another, and data points are
segregated in a nonlinear manner, with the decision factor
determined by the margin function of the support vector.

1
|w| is the margin. The concept of SVM revolves around

maximizing the margin, as given in Eq. 1

Max
1
w‖ ‖( ). (1)

This concept can be expressed as shown below in Eq. 2

Min w‖ ‖. (2)
The hyperplane for the equation is acquired in the following

manner, as given in Eq. 3 (Jiang et al., 2020; Satre-Meloy et al., 2020;
Wang R. et al., 2020; Ibrahim et al., 2020):

w.xi + b≥ 1, if yi � +1,
w.xi + b≤ − 1, if yi � −1. (3)

Here, w is the weight vector, x is the input vector, and b
is the bias.

The formula for minimizing the support vector is as follows and
given in Eqs 4, 5:

min
w‖ ‖2
2

+ C.
1
n
∑n
i�1
ξi, (4)

yi w.xi + b( )≥ 1 − ξi, ξi ≥ 0, (5)
where ξi is some units of distance away from the correct hyperplane
in the incorrect direction.

“C” is the hyperparameter, which is always a positive value. If C
increases, the acceptance of out-of-bound values also escalates.
Conversely, as C approaches 0, tolerance diminishes, thereby
simplifying the issue and, hence, neglecting the impact of slack.

SVM emerges as a robust machine learning algorithm with
promising benefits for electricity load forecasting, owing to several
key factors.

- Nonlinearity: SVM adeptly captures complex, nonlinear
relationships between electricity consumption and
relevant features.

- Outlier resilience: Its design provides inherent robustness
against outliers, ensuring stable performance even in the
presence of anomalous data points.

- Flexibility: SVM offers adjustable parameters that enable fine-
tuning to strike a balance between model complexity and
generalization, thereby enhancing adaptability to
fluctuations in electricity data.

- Handling high-dimensional data: SVM demonstrates efficacy
in handling datasets with a large number of features without
compromising its predictive performance.

3.2.2 Recurrent neural network
The RNN is a specialized form of the artificial neural network

specifically crafted to analyze sequential time-series data. A key
advantage of RNNs lies in their capability to process signals in both
forward and backward directions. This is possible by creating
network loops and allowing internal connections between hidden
components. Due to their internal connections, RNNs are especially
adept at utilizing information from preceding data to anticipate
future data. Moreover, RNNs enable the exploration of temporal
correlations among different datasets (Wang et al., 2019;Wang et al.,
2020; H. Ghoddusi et al., 2019). Figure 3 shows the processing
of the RNN.

The input to an RNN cell at time step t is typically symbolized as
xt, and the hidden state at time step t is designated as ht. The output
at time step t is denoted as yt. The cell is also equipped with
parameters, such as weights and biases, denoted as W and b,
respectively.

Every concealed layer operates based on two inputs: Xt and Ht−1.
The output Yt is influenced by the input from the hidden layer (ht) at
time t. These two functions are articulated in Eqs 6, 7 as follows:

ht � fh xt, ht−1( ), (6)
ŷt � fo ht( ). (7)

The input, output, and concealed state of an RNN cell are
typically computed using the subsequent Eqs 8, 9:

ht � ϕh Wxh .xt +Whh . ht−1 + bh( ), (8)
ŷt � ϕo Wyh . ht + by( ). (9)

In the transition hidden-layer function of ∅h, a nonlinear
activation function, like a sigmoid or tanh function, is typically
incorporated.

The function ∅o is a nonlinear activation function, such as a
rectified linear unit (ReLU), and is derived by computing the dot
product of the output weight with the hidden layer ht and then
adding the bias term.

RNNs present numerous advantages for electricity demand
forecasting, including the following:

1. Adaptability: RNNs can accommodate variable-length input
sequences, making them flexible in handling datasets with
missing data.
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2. Resilience: RNNs demonstrate robustness against noise and
outliers present in the data. They possess the capability to
detect and filter out irrelevant patterns, ensuring reliable
forecasting outcomes.

3. Global context awareness: RNNs capture global information
and dependencies across various time scales, allowing for a
comprehensive understanding of the underlying patterns
influencing electricity consumption.

4. Interpretability: RNN architectures facilitate better
comprehension of the patterns contributing to electricity
consumption, enhancing the interpretability of
forecasting models.

3.2.3 Long short-term memory
The LSTM architecture was initially proposed by Schmidhuber

in 1997 (Wang R. et al., 2020). Since its inception, the LSTM
architecture has undergone subsequent developments by different
researchers (Xue et al., 2019). LSTM was originally devised to
combat the issue of vanishing gradients encountered in typical
recurrent neural networks when handling long-term
dependencies. Unlike a regular RNN, the hidden layers of LSTM
possess a more intricate structure, consisting of a sequence of
recurring modules. Each hidden layer within LSTM incorporates
gate andmemory cell concepts. The memory block includes four key
elements: an entry gate, an exit gate, a self-connected memory cell,
and a deletion gate. The entry gate regulates the activation of the
memory cell, while the exit gate controls when to transfer
information to the next network layers. Meanwhile, the deletion
gate aids in discarding previous input data and resetting the memory
cells. Additionally, multiplicative gates are strategically utilized to
enable memory cells to retain information over extended periods.
This specific architectural design significantly mitigates the
vanishing gradient problem encountered in traditional RNNs (Hu
et al., 2020; Qiao et al., 2020).

The LSTM features an input x(t), which can originate from
either the output of a CNN or the input sequence directly. h t−1 and
ct−1 are the inputs from the LSTM of the previous time step. ot is the
output of the LSTM for this time step. The LSTM also produces ct
and ht for use by the LSTM in the next time step.

The forget gate ft, as provided in Eq. 10, decides which
previously stored information to maintain or discard upon
receiving new data:

ft � σg Wf .xt + Uf. ht−1 + bf( ), (10)

where σg is the activation function. The sigmoid activation function
is commonly utilized because it condenses information within the
interval [0, 1]. This allows the gate to determine the importance of
information, for example, whether the value is close to or equals 1,
indicating significance, or close to or equals 0, implying
insignificance.

The input gate decides which fresh information to retain in the cell
state. Initially, Eq. 11 determines what information needs updating it.

it � σg Wi .xt + Ui. ht−1 + bi( ). (11)

Via Eq. 12, the sequence, c′t, is regulated. Like the forget gate, the
sigmoid activation function is often employed to retain essential
information.

c′t � σc Wc .xt + Uc. ht−1 + bc( ). (12)

By amalgamating the outcomes of the aforementioned gates with
the previously retained information in the cell state, ct−1, the value of the
cell state denoted by ct, as provided in Eq. 13, undergoes modification.

ct � ft ct−1 + it c
′
t. (13)

Ultimately, the output gate dictates the output of the neuron.
This result integrates the previously stored information with the
fresh data and details obtained from the cell state, as shown in Eq. 14:

ot � σg Wo .xt + Uo ht−1 + bo( ), (14)
ht � ot σc ct( ). (15)

The activation function governing the cell state σc is described in
Eq. 15. The tanh activation function is used to allocate weights to
these maintained values.

LSTM networks stand out for their ability to excel in scenarios
reliant on temporal data, making them particularly advantageous for
electricity load forecasting. The key advantages of LSTM include

FIGURE 3
Process diagram of the recurrent neural network.
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1. Temporal modeling prowess: LSTM architectures are
specifically tailored to model temporal dependencies in data,
making them well-suited for time-series prediction tasks.

2. Context preservation: With their long short-term memory,
LSTM networks can effectively capture short-term
dependencies while accommodating irregular or missing
data points. Additionally, they possess the capability to
grasp long-term dependencies within the data.

3. Scalability: LSTM networks demonstrate effectiveness in
capturing complex patterns from extensive historical data,
enabling robust forecasting in scenarios with diverse and
extensive datasets.

4. Robustness: LSTM architectures exhibit resilience against
noise and outliers present in the data, ensuring reliable
forecasting outcomes even in the presence of data
irregularities.

3.2.4 Deep learning
The potential impact of deep learning on power load forecasting

methods is substantial. Deep learning is a sub-field of machine learning,
which is based on artificial neural networks. In the energy domain, the
precision of power consumption prediction is significantly impacted by
the processing of forecasted data, making deep neural networks highly
relevant. In general, neural networks, better known as MLP, also
referred to as feed-forward artificial neural networks, consist of
multiple layers that establish connections between the input and
output (Ahmed et al., 2020). Each layer comprises its own set of
neurons. The number of input neurons typically aligns with the number
of features, while the number of output neurons corresponds to the
variables to be predicted. The quantity of hidden neurons and layers
varies based on the specific problem. As the number of hidden layers or
neurons increases, the model’s ability to extract complex patterns
improves, albeit at the expense of heightened complexity. In such
scenarios, the internal operations of the neurons rely on the
activation of preceding neurons.

This progression extends from the input layer to the output layer
through the neural interconnections. Moreover, if a node possesses
multiple inputs, the final value of its function is the sum of the
individual values of its functions and their connections. Each
iteration of the training process concludes with backward
propagation, where the error is disseminated back to the input
layers and the weights are adjusted.

In many deep learning problems, we aim to predict an output z
using a set of variables X. In this scenario, we assume that for each
row of the database Xi, there exists a corresponding prediction z, as
given in Eqs 16, 17:

z � ∑wixi + bi, (16)
a � ψ z( ), (17)

where bi is the bias.Wi is the weight. ψ is the activation function. “a”
is the final output.

Deep learning emerges as a widely employed model, highly
conducive to electricity consumption forecasting, owing to several
notable benefits:

1. Nonlinear modeling: MLP exhibits prowess in capturing and
modeling intricate nonlinear relationships within data.

2. Versatility and customization: With an extensive array of
hyperparameters, MLP offers significant flexibility in
configuring network architecture and selecting activation
functions, tailoring the model to specific forecasting
requirements.

3. Robustness to missing data: MLP demonstrates effectiveness in
handling missing data, ensuring smooth operation even in
datasets with incomplete information.

4. Adaptability to evolving patterns: Equipped with the capability
to learn and adjust to dynamic changes in complex data
patterns, MLP showcases resilience in forecasting scenarios
characterized by evolving trends and behaviors.

3.2.5 Ensemble classifier
A practical approach to enhancing load forecasting accuracy is

using an ensemble learning strategy based on artificial neural
networks. This ensemble consists of two essential components: a
technique for generating sub-samples from the training set and a
method for combining them (Ahmad et al., 2020a).

It is crucial to implement both strategies to enhance the overall
performance. To form the ensemble, bagging uses a technique that
generates ANN models. This is achieved by training them
individually on distinct training designs by generating bootstrap
replicas of the original training data. In contrast, boosting involves
gradually learning ANN models. Using bagging and boosting has
yielded positive results in overcoming load forecasting challenges.
Nonetheless, we propose a synergistic approach that combines
bagging and boosting to maximize their unique capabilities in
minimizing variance and bias (Ahmed et al., 2020; Antonopoulos
et al., 2020). Therefore, through training conducted with bagging,
improvements in generalization are achieved by reducing the
model’s sensitivity to data variations.

Ensemble learning stands out as a favored ML approach for
electricity consumption forecasting due to several compelling
factors, highlighted as follows:

1. Regulation and management: Ensemble learning provides a
diverse set of regularization methods to manage data
complexity effectively, curbing overfitting tendencies and
bolstering generalization capabilities.

2. Nonlinearity detection: It adeptly discerns and incorporates
nonlinear associations within electricity consumption patterns,
enabling the modeling of intricate relationships.

3. Adaptability and efficacy: With its adeptness in handling
extensive datasets characterized by high-dimensional feature
spaces, ensemble learning demonstrates scalability and
operational efficiency.

4. Versatility in optimization: Boasting a broad spectrum of
hyperparameters, ensemble learning offers flexibility in fine-
tuning model settings to enhance predictive performance and
adapt to diverse forecasting scenarios.

3.3 Non-linear complexity handling in
machine learning

SVM: SVMs tackle nonlinear complexities by mapping input
data into a higher-dimensional space, where nonlinear relationships
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can be discerned through kernel functions. However, SVMs may
encounter challenges with extremely large datasets and can incur
high computational costs.

LSTM networks: LSTMs employ nonlinear activation functions
such as the sigmoid and hyperbolic tangent (tanh) functions. These
activation functions introduce nonlinearity within the network,
enabling it to grasp intricate patterns and correlations within the
data. These architectures can capture temporal dependencies in
data, allowing them to handle nonlinear sequences of
variable length.

Ensemble classifiers: Ensemble methods amalgamate multiple
base learners to enhance predictive accuracy. They confront
nonlinear complexities by consolidating predictions from diverse
models. Techniques like bagging, boosting, and stacking effectively
capture nonlinear relationships in power demand time-series data
by leveraging the strengths of various base classifiers.

RNNs: RNNs, including LSTM networks, specialize in capturing
temporal dependencies within sequential data. They handle
nonlinear complexities by sequentially processing input sequences
while retaining an internal state that encapsulates historical
information. RNNs are particularly suited for modeling nonlinear
dynamics and complex patterns in time-series data. RNNs
incorporate nonlinear activation functions such as sigmoid, tanh,
or ReLU. These functions introduce nonlinearity into the network,
enabling it to capture complex patterns and relationships within
sequential data. Deep RNNs can capture increasingly complex
patterns and dependencies by hierarchically composing nonlinear
transformations.

Deep learning methods: Diverse deep learning architectures,
such as convolutional neural networks (CNNs) and autoencoders,
offer additional approaches for addressing nonlinear complexities in
power demand time-series data. CNNs excel at capturing spatial
patterns in multidimensional data, whereas autoencoders learn
compact representations of input data for nonlinear feature
extraction and prediction. Techniques for regularization, like
dropout and L2 regularization, are utilized to curb overfitting, a
phenomenon where a model mistakenly learns noise in the training
data as a genuine signal. By mitigating overfitting, these methods
enhance the model’s ability to generalize to unseen data and manage
nonlinear complexities more adeptly (ur Rehman Khan et al., 2023).

In summary, SVMs, LSTM networks, ensemble classifiers,
RNNs, and other deep learning methods possess unique strengths
in managing nonlinear complexities in power demand time-series
data. The selection of an algorithm hinges on factors such as data
characteristics, pattern complexity, and computational resources.

3.4 Limitations or constraints of various
machine learning algorithms for real-world
forecasting

LSTM networks require a large amount of historical data to
effectively capture long-term dependencies, which may not always
be available or reliable in power load forecasting applications.
Additionally, training LSTM models involves tuning multiple
hyperparameters and architecting complex neural network
structures, which can be time-consuming and computationally
expensive. Moreover, LSTMs are susceptible to overfitting,

especially when trained on noisy or limited datasets, which can
lead to poor generalization performance on unseen data (Ahmed
et al., 2023).

RNNs encounter vanishing and exploding gradient problems,
which can make it challenging to learn long-term dependencies in
power load data sequences. Standard RNN architectures have
limited short-term memory, which may restrict their ability to
capture complex temporal patterns in power load data. Training
RNNs can be unstable, particularly when dealing with long
sequences or noisy data, as it requires careful initialization and
regularization to prevent numerical instabilities.

Ensemble learning methods may struggle with the imbalanced
datasets commonly encountered in power load forecasting, where
certain load patterns are significantly more prevalent than others,
leading to biased predictions. The performance of ensemble
methods depends on the selection and diversity of base learners,
which can be challenging to determine and may require extensive
experimentation. Ensembles can be computationally expensive,
especially when combining a large number of base learners or
using complex algorithms as base models, which may limit their
scalability in large-scale power load forecasting tasks.

SVMs provide little insight into the underlying relationships
between input features and power load predictions, making it
difficult to interpret the model’s decisions and identify influential
factors. The performance of SVMs is highly dependent on the choice
of kernel function, which may require domain expertise and
extensive experimentation to identify the most suitable kernel for
power load forecasting. SVMs may face scalability issues when
applied to large-scale power load forecasting problems, as they
require storing support vectors and computing kernel functions
for all data points, leading to increased memory and computational
requirements.

Deep learning algorithms, including LSTM and RNNs, require
large volumes of labeled data to effectively learn complex patterns in
power load data, which may not always be available or feasible to
acquire. Deep learning models have high model complexity due to
their deep architectures and large number of parameters, which can
make them prone to overfitting, especially in power load forecasting
tasks with limited data. Training deep learning models can be time-
consuming, particularly when dealing with large datasets and
complex architectures, which may hinder real-time or near-real-
time forecasting applications.

3.5 Machine learning models for diverse
datasets and time frames

The LSTMmachine learning algorithm is particularly well suited
for handling diverse datasets and time frames in power load
forecasting due to its ability to capture long-term dependencies
in sequential data. LSTM can effectively handle various types of data
encountered in power load forecasting, including historical load
data, weather variables, time of day, day of the week, and holiday
indicators. It can process multivariate time series data, incorporating
multiple features to make accurate load predictions. LSTM is
versatile enough to forecast power load at different time
resolutions, ranging from hourly to daily, weekly, or even
monthly predictions. It can capture both short-term fluctuations
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and long-term trends in energy consumption patterns, making it
adaptable to different forecasting horizons (Dinh et al., 2018).

RNNs are well suited for handling diverse datasets encountered
in power load forecasting, including historical load data, weather
variables, time-related features, and other relevant factors. They can
effectively process multivariate time-series data, incorporating
multiple input features to make accurate load predictions. RNNs
can be applied to forecast power load at various time resolutions,
ranging from short-term (e.g., hourly) to long-term (e.g., monthly or
yearly) predictions. They can capture both short-term fluctuations
and long-term trends in energy consumption patterns, making them
adaptable to different forecasting horizons. RNNs are specifically
designed to capture temporal dependencies in sequential data. They
can learn from the sequential nature of time-series data, identifying
patterns and relationships between past, present, and future load
values. This makes them effective in capturing seasonality, trends,
and periodic fluctuations in power load data.

SVMs are versatile classifiers that can handle diverse datasets
encountered in power load forecasting, including historical load
data, weather variables, time-related features, and other relevant
factors. They can effectively model complex relationships between
input features and output labels, making them suitable for
multivariate time series data. SVMs can be applied to forecast
power loads at various time resolutions, ranging from short-term
(e.g., hourly) to long-term (e.g., monthly or yearly) predictions. They
can capture both linear and nonlinear relationships in energy
consumption patterns, making them adaptable to different
forecasting horizons.

Ensemble learning algorithms can handle diverse datasets
encountered in power load forecasting, including historical load
data, weather variables, time-related features, and other relevant
factors. By combining multiple base models, ensemble methods can
leverage the strengths of different algorithms to improve prediction
accuracy and robustness across various datasets. Ensemble learning
techniques can be applied to forecast power loads at different time
resolutions, ranging from short-term (e.g., hourly) to long-term
(e.g., monthly or yearly) predictions. They can combine forecasts
from multiple models trained on different time frames to generate
more accurate predictions that capture both short-term fluctuations
and long-term trends in energy consumption patterns. Ensemble
learning algorithms use various combination strategies, such as
averaging, stacking, or boosting, to integrate predictions from
multiple base models. These combination strategies can adapt to
different forecasting scenarios and data characteristics, ensuring
optimal performance across diverse datasets and time frames.

Deep learning algorithms, such as CNNs, RNNs, and deep belief
networks (DBNs), can handle diverse datasets encountered in power
load forecasting. These algorithms are capable of processing various
types of data, including time-series data, spatial data, and multi-
modal data, making them suitable for analyzing complex
relationships in power load data. Deep learning algorithms can
be applied to forecast power loads at different time resolutions,
ranging from short-term (e.g., hourly) to long-term (e.g., monthly or
yearly) predictions. RNNs, in particular, are well suited for capturing
temporal dependencies in time-series data, allowing them to
generate accurate 700 forecasts across different time frames
(Chen et al., 2018).

4 Experimental analysis and results

4.1 Case study

The assessment of the efficacy of machine learning algorithms in
forecasting electric load demand involves the utilization of
MATLAB software version R2018. Machine learning algorithms
such as SVMs, RNNs, LSTM, DL, and ensemble learning (EM) are
applied for the load data forecast. Comparative analysis is presented
in Results. The analysis utilizes electricity demand data from UT
Chandigarh, India, spanning the last 5 years. This dataset
encompasses a wide range of demand patterns, including weekly,
monthly, and yearly variations. Additionally, the analysis considers
seasonal variations such as summer, rainfall, and winter, assessing
data variability based on both average and peak values. To mitigate
the consequences of missing data and noise, the data undergo
transformations. Any missing attribute data are filled using the
average value of the available data. Optimizing algorithm
hyperparameters relies on transforming energy consumption
data. This assessment of forecasting accuracy relies on
parameters such as RMSE, normalized mean squared error
(NMSE), MI, and MAE. These parameters are computed for all
the algorithms considered. The formulation of these parameters is
described as follows (Choi et al., 2020; Lu et al., 2019; Zhang
et al., 2021).

The time-related parameters—specifically, hour of the day, day
of the week, and day of the year—are derived from the available data.
Data standardization is executed to ensure accurate adjustments
across all employed models. Features are normalized based on their
mean values, while sine and cosine functions are applied to the
temporal parameters.

To compare results obtained with different methods, the dataset
is divided into training, validation, and testing sets, with proportions
of 80%, 10%, and 10%, respectively. Models undergo training via
cross-validation on the training set, with accuracy evaluated using
the validation set. The test set functions as an autonomous dataset
for the ultimate assessment of model adjustments. During training, a
patience of 100 epochs, a batch size of 64, and an Adam optimizer
with a learning rate of 0.001 are employed.

The SVM model is established with a tolerance of 0.001 and a
regularization parameter of 1. The DL model comprises 4 hidden
layers with 100, 75, 50, and 25 neurons, respectively. The first
three hidden layers are equipped with linear activation functions,
while ReLU is utilized for the fourth hidden layer and the
output layer.

The RNN architecture features 2 hidden layers with 40 and
20 neurons, respectively. The hidden layer with 40 neurons uses a
linear activation function, while ReLU is utilized in the final hidden
layer and the output layer.

In LSTM modeling, short-term memory is imposed on six time
steps, corresponding to the 6 h prior to the forecasted instant. The
initial hidden layer includes an LSTM layer with 64 neurons,
followed by 2 additional hidden layers with 40 and 20 neurons,
respectively, which serve as dense layers. Linear and ReLU activation
functions are applied in these two hidden layers. The LSTM layer is
equipped with predefined activation functions on its gates, while the
output layer also uses a ReLU activation function.
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4.2 Performance metrics

The performance comparison of the models is derived by
normalizing the metrics to the peak electricity consumption in
the series. Consequently, the models are visualized based on
NMSE, RMSE, MAE, and MI.

4.2.1 Normalized mean squared error
The NMSE assesses the mean squared disparity between

predicted and actual values, adjusted by the variance of the
actual values. It is computed by averaging the squared errors and
dividing by the variance of the actual values. The NMSE ranges from
0 to infinity, with lower scores denoting heightened accuracy. The
NMSE is less sensitive to outliers compared to the rawmean squared
error (MSE). It provides a normalized measure of the error, making
it easier to compare across diverse datasets with differing scales and
magnitudes.

The values within the predictive model set are represented by
rnt+1, r̂

n
t+1{ }Nn�1.

The NMSE is determined in Eq. 18 and is as follows:

NMSE � 1
N

∑N
n�1 rnt+1 − r̂nt+1( )2

var y( ) . (18)

Here, n is the number of samples or data points. yi is the actual or
observed value of the target variable for the ith sample. ŷi is the
predicted value of the target variable for the ith sample. Var(y) is the
variance of the actual or observed values of the target variable.

4.2.2 Root mean squared error
The RMSE mirrors the NMSE but delivers the square root of the

mean squared deviation between the predicted and actual values. It is
computed as the square root of the average of squared errors. The
RMSE shares the same units as the initial data, simplifying
interpretation. Similar to the NMSE, diminished RMSE values
signify heightened accuracy, with 0 representing the optimal outcome.

The RMSE is calculated as the square root of the MSE, and it is
defined in Eq. 19 as

RMSE �


1
N

∑N
n�1

rnt+1 − r̂nt+1( )2
√√

. (19)

4.2.3 Mean absolute error
The MAE gauges the mean absolute deviation between the

predicted and actual values. It is computed as the average of
absolute errors. The MAE demonstrates lower sensitivity to
outliers than the RMSE since it refrains from squaring the errors.
Diminished MAE values signify heightened accuracy, with
0 representing the optimal outcome.

The MAE is given in Eq. 20 as

MAE � 1
N

∑N
n�1

rnt+1 − r̂nt+1[ ]. (20)

The inequality remains valid for the two metrics: MAE ≤ RMSE.
Both of these error measures are regarded as informative in

evaluating the model’s performance.

4.2.4 Mutual information
Mutual information (MI) evaluates the level of information

captured by the model in contrast to a reference model. It is
computed as the disparity in information content between the
predicted and actual distributions. Elevated MI values signify
enhanced model efficacy in capturing the inherent patterns
within the data. MI serves as a tool to appraise the predictive
capability of a model relative to more straightforward
baseline models.

The measure of dependency between rt+1 and ut is determined in
Eq. 21 as

MI rt+1; ut( ) � ∑
rt+1 ;ut

p rt+1, ut( ) log p rt+1, ut( )
p rt+1( )P ut( ) ≈

1
N

∑N
n�1

log
p rnt+1l u

n
t( )

p rnt+1( ) .

(21)

MI (rt+1; ut) = 0, when the two variables are independent.
When the two variables are fully dependent, it is bound to the

information entropy, H(rt+1) � −∑
rt+1

p(rt+1) log p(rt+1 ).
Based on the earlier assumption, we obtain rt+1 ut ~ N(r^t+1, β).
Under an additional presumption, rt+1 ~ N(μ, σ).
We calculate the parameters β, µ, and σ.

4.3 Result analysis

4.3.1 Weekly load forecast analysis
4.3.1.1 Root mean squared error

Figure 4 shows the variation in the RMSE for weekly load
predictions using SVM, EM, RNN, DL, and LSTM methods. The
results of this variation are spread throughout the week, with the
LSTM model closely resembling the actual load pattern. During
periods of significant load fluctuations, SVM and ensemble learning
models show larger prediction errors, whereas the LSTM model
accurately captures the load trend. In comparison, RNN and DL
models exhibit greater prediction deviations than LSTM. The
analysis emphasizes that the LSTM model achieves an RMSE
metric of 0.13% when used for a load forecast spanning a week.
This marks a significant improvement, being 23%, 30%, 46%, and
84% less than the relevant metrics for DL, RNN, SVM, and EM
models, respectively.

4.3.1.2 Normalized mean square error
Figure 5 shows the variation in the NMSE for weekly load

predictions. As the duration extends, variations in the model’s
performance become apparent. LSTM consistently exhibits the
lowest NMSE, suggesting superior performance among these
models over this timeframe. The SVM model showed a notable
33% enhancement from its initial error rate, while the EM model
showed an improvement of approximately 20%. This implies a
moderate reduction in error, rendering the model marginally
more dependable. Notably, the RNN model demonstrated the
most significant improvement, with a remarkable 50% reduction
in error. This translates to a substantial enhancement in prediction
accuracy, positioning the RNN as a preferable choice for load
forecasting. Similarly, the DL model witnessed an improvement
of approximately 33%, indicating consistent performance stability.
This underscores the reliability of LSTM in consistently delivering
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accurate predictions. It is worth noting that NMSE values closer to
1 denote poorer performance, thus emphasizing the desirability of
lower values.

4.3.1.3 Mean absolute error
The MAE of the LSTM model is measured at 0.74, indicating a

substantial reduction compared to the RNN, DL, EM, and SVM
models—0.75, 0.81, 0.83, and 0.84, respectively. Figure 6 shows the
MAE for the weekly load forecast. The graph represents the
performance of different machine learning models (SVM, EM,
RNN, DL, and LSTM) over a period of a week.

The SVMmodel achieved a 5.88% enhancement in prediction
accuracy, indicating that its predictions were, on average, 5.88%
closer to the actual values. Similarly, the EM model’s accuracy
improved by approximately 4.88%, resulting in less deviation
from the actual values. The RNN model notably enhanced its
predictions, reducing the error by 6.10%. Likewise, the DL model
showed an improvement of approximately 5.88% in its

predictions. The LSTM consistently delivered accurate
predictions with minimal error, making it a reliable choice for
users seeking stable forecasts.

4.3.1.4 Mutual information
The results of the MI variation demonstrate that higher MI

values correspond to better LSTM predictions, whereas SVM and
EM exhibit lower MI values, indicating weaknesses compared to the
RNN, DL, and LSTM. These findings collectively highlight a
significant enhancement in the prediction accuracy of the LSTM
method compared to other prediction models.

Over the course of 7 days, the SVM model exhibited a 12.5%
improvement in performance. This enhancement translates to a
significant increase in accuracy for SVM predictions. Similarly, the
EMmodel showed an improvement of 10.3% in prediction accuracy.
The RNN model notably enhanced its predictions by 8.8%. The DL
model maintained consistent performance without any decrease.
The LSTM consistently delivered reliable predictions with
minimal deviation.

4.3.2 Monthly load forecast analysis
Throughout the monthly analysis, we adjusted the

hyperparameter settings and conducted the same prediction tests
over a 12-month period. Figures 8–11 show the load fitting curves
for 12-month load predictions generated by various models. The
LSTM model consistently reflects the actual load, while the curves
for the SVM and EM models deviate significantly from the actual
load, making them the least accurate among all the models.
Importantly, the LSTM model proposed in this context shows
the closest alignment with the actual load compared to other models.

4.3.2.1 Root mean squared error
Figure 8 shows the RMSE for the monthly load forecast,

featuring machine learning algorithms including SVM, RNN,
EM, DL, and LSTM. The SVM model’s predictions experienced a
7.69% improvement in terms of the RMSE. Similarly, the EM
model’s accuracy was enhanced by 8.33%. The RNN model
notably improved its predictions by 9.09%. Meanwhile, the DL

FIGURE 4
RMSE for the weekly load estimations of power load using
machine learning algorithms.

FIGURE 5
NMSE for the weekly load estimations of power load using
machine learning algorithms.

FIGURE 6
MAE for the weekly load estimations of power load using
machine learning algorithms.

Frontiers in Energy Research frontiersin.org14

Jain and Gupta 10.3389/fenrg.2024.1408119

80

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1408119


model maintained steady performance without any deterioration,
demonstrating consistent predictions. The RMSE value remained
consistently low for LSTM, indicating its reliability and minimally
varying predictions.

4.3.2.2 Normalized mean square error
Figure 9 gives the NMSE for the monthly forecast. Across all

months, the LSTM model consistently demonstrates superior
performance, exhibiting the lowest NMSE values. This
consistency suggests that it is the most accurate model among
those compared. Both the SVM and EM models show similar
trends, with their NMSE values closely aligned, although SVM
slightly outperforms EM. Similarly, the RNN and DL models
exhibit comparable trends, with the RNN showing a slight
edge over DL.

The SVM model starts with the highest NMSE but shows
significant improvement over time, achieving a reduction of
approximately 40% in the NMSE. Conversely, the ensemble
classifier maintains consistent performance but does not

demonstrate as much improvement as SVM, only reducing
the NMSE by 15%. Initially, the deep learning model
outperforms both EM and SVM models, but its improvement
rate slows down, resulting in a reduction of approximately 25%
in the NMSE.

The RNN model begins with a lower NMSE and steadily
improves over time, achieving a 30% reduction in the NMSE.
However, LSTM consistently maintains the best performance
throughout, achieving a remarkable 50% reduction in the NMSE.
Overall, LSTM emerges as the most consistent and effective model,
achieving the highest reduction in the NMSE over the 12-
month period.

4.3.2.3 Mean absolute error
In contrast, the RNN and DL models exhibit suboptimal

performance across these metrics. Although the RNN model
surpasses the DL, EM, and SVM models regarding the MAE, it
does not match the performance of the LSTM and DL models in
terms of the NMSE.

FIGURE 7
MI for the weekly load estimations of power load using machine
learning algorithms.

FIGURE 8
RMSE for the monthly power load estimations using machine
learning algorithms.

FIGURE 9
NMSE for the monthly power load estimations.

FIGURE 10
MAE for the monthly power load estimations.

Frontiers in Energy Research frontiersin.org15

Jain and Gupta 10.3389/fenrg.2024.1408119

81

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1408119


Consistently, SVM demonstrates the highest MAE across all
months, suggesting that it may be the least accurate model in this
context. On the contrary, LSTM exhibits a consistent decrease in the
MAE from months 0 to 12, indicating an enhancement in accuracy
over time. The EM and RNNmodels show similar patterns, with EM
generally performing slightly better than the RNN. DL’s
performance fluctuates but consistently remains lower than that
of SVM and higher than that of LSTM. When considering overall
performance, LSTM emerges as the best-performing model,
followed by the DL, EM, and RNN models. SVM consistently
falls behind the other models in terms of accuracy.

4.3.2.4 Mutual information
Figure 11 shows the mutual information for the monthly load

forecast, displaying the performance of five machine learning models
(SVM, EM, DL, RNN, and LSTM) across a span of 12 months.

The MI variation results show that higher MI values align with
improved LSTM predictions, whereas SVM and EM present lower
MI values, indicating relative weaknesses compared to the RNN, DL,
and LSTM. The DL and RNN models outperform SVM and EM,
showcasing a comparable range of predictions. Overall, these
findings underscore a notable enhancement in the prediction
accuracy of the LSTM method compared to other models. The
RNN exhibits the most substantial improvement (4%), while the
SVM experiences a slight decrease (2%).

5 Conclusion and future scope

The vitality of the energy industry hinges on the reliability of
power demand forecasting. This study seeks to evaluate the
precision of power consumption prediction using machine
learning algorithms and hybrid models that incorporate artificial
neural networks. Employing these advanced techniques has the
potential to significantly improve power load forecasting
performance. Several machine learning models are proposed in
this study for short-term power load forecasting.

Unlike conventional statistical forecasting models, machine
learning algorithms offer numerous advantages, including the

effective management of nonlinear complexities and the ability
to predict both short-term and long-term dependencies within
power load time-series data. This study places emphasis on this
crucial aspect. Analysis of the results shows that Figures 4–11
reveal that LSTM outperforms SVM, DL, EM, and RNN
regression models in predicting electricity consumption. The
approach involves using a sliding time window to convert
multidimensional data into a continuous feature map input,
harnessing the effectiveness of the CNN in spatial feature
extraction. Our methodology is centered on a moving window-
based LSTM network, enabling the prediction of demand for
specific time intervals.

Following experimental verification analysis, it is concluded that
the LSTMmodel exhibits notable enhancements in theMAE, RMSE,
and NMSE compared to alternative time-series prediction models,
including SVM, DL, EM, and RNN algorithms. Notably, LSTM
outperforms the RNN, DL, EM, and SVM by reductions of 1.35%,
9.45%, 12.16%, and 13.51%, respectively, in predicting the load
for the week.
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Intelligent substation virtual
circuit verification method
combining knowledge graph and
deep learning

Haiou Cao1*, Yue Zhang2, Yaming Ge1, Jiaoxiao Shen3,
Changfeng Tang1, Xuchao Ren1 and Hengxiang Chen2

1State Grid Jiangsu Electrical Power Company, Nanjing, China, 2State Grid Nanjing Power Supply
Company, Nanjing, China, 3State Grid Suzhou Power Supply Company, Suzhou, China

The correctness of the intelligent electronic devices (IEDs) virtual circuit
connections in intelligent substations directly affects the stability of the
system operation. Existing verification methods suffer from low efficiency in
manual verification and lack uniformity in design specifications. Therefore, this
paper proposes a virtual circuit automatic verification method that combines
knowledge graphs with deep learning. Firstly, this method utilizes expert
knowledge and relevant standard specifications to construct a knowledge
graph of virtual circuits, integrating knowledge from historical intelligent
substation configuration files into the knowledge graph. Then, leveraging
multi-head attention mechanisms and Siamese neural networks, it achieves
matching between the textual descriptions of virtual terminals and standard
virtual terminal descriptions. Additionally, a verification process for the virtual
terminal port address string is incorporated. Finally, experimental validation
confirms the effectiveness of the proposed method and strategy, further
enhancing the accuracy of virtual circuit verification.

KEYWORDS

intelligent substation, virtual circuit, knowledge graph, natural language processing,
Chinese short-text matching

1 Introduction

As intelligent substations advance rapidly, the IED within substations has exhibited a
notable surge in the variety of types, a marked increase in automation levels, and a
continuous strengthening of safety requirements (Song et al., 2016; Huang et al., 2017). The
use of optical fibers in smart substations replaces the signal transmission through cables in
traditional substations. The correct configuration of the virtual circuit formed by the logical
connection of virtual terminals in the configuration file is a prerequisite for the reliable and
stable operation of the substation. For a typical 220 kV substation, there can even be
thousands of virtual circuits, andmanual verification alone is difficult to ensure the accuracy
of virtual circuit configuration. In terms of automatic verification, it is affected by non-
standard design, resulting in low verification accuracy and poor universality. To illustrate
the need for validation and the validation process, consider a simplified example of a bus
protection device and a line protection device in an intelligent substation. These devices
need to communicate correctly through virtual circuits to ensure system stability. The bus
protection device may send a signal indicating a fault condition to the line protection device.
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If the virtual circuit connecting these devices is misconfigured, the
fault signal may not be received correctly, leading to potential system
failures. Validating this virtual circuit involves ensuring that the
virtual terminal descriptions and port address data match the
expected configurations. These characteristics present both
opportunities and challenges for the development of automatic
verification of virtual circuits for IED. IED enable
communication by adhering to the unified digital standard
protocol IEC 61850 (Selim Ustun and M. Suhail Hussain, 2020).
Similarly, the testing of IED’s virtual circuits is also based on parsing
IED files in accordance with the IEC 61850 protocol to perform
virtual circuit verification (Zhao et al., 2023).

Currently, in verifying IED in intelligent substations through
digital network communication, manual inspection is required to
assess the correctness of corresponding virtual circuit circuits,
including events, signals, and data, based on the descriptions of
secondary equipment virtual terminals (Cui et al., 2018). This
process is essential for validating the effectiveness of protection
and assessing the accuracy of device parameter settings (Fan et al.,
2020). However, due to the lack of a unified standard for virtual
terminal descriptions, the verification of virtual circuits often relies
on manual inspection. With a multitude of equipment in
substations, the manual verification of virtual circuits is
characterized by inefficiency, prolonged testing cycles, and
susceptibility to variations due to personnel experience and
working conditions. This approach is prone to omissions and
errors, necessitating substantial effort for error correction
following detection.

In addressing this issue, scholars have explored automated
verification methods for virtual circuit circuits. Hao et al. (2020)
instantiated the configuration of IED virtual circuits through sub-
template matching of substation configuration description (SCD)
files, offering a novel approach to virtual circuit verification.
However, the scalability and generalizability of this method need
improvement. Zhang et al. (2015) proposed an expert system based
on SCD files to match virtual terminals and perform intelligent
substation verification, but the classification is relatively simple, and
the process is time-consuming. Some scholars used deep learning and
other intelligent algorithms to solve the verification problem in
intelligent substations. Oliveira et al. (2021) proposed a deep
learning based intelligent substation schedule monitoring method.
Chen et al. (2021) proposed the implementation of IED self
configuration based on the use of natural language processing
technology. Ren et al. (2020) utilized DCNN for text classification of
intelligent recorder configuration files to achieve port address mapping.
While effective for longer texts, this method has limitations with short
texts and does not consider other port address data. Wang et al. (2018)
calculated the semantic similarity of virtual terminals using word
embedding techniques for virtual circuit matching, demonstrating
good matching results. However, their tokenization method for
word embedding does not consider the global semantic information
of the text, leaving room for improvement. Through the above
discussion, it is evident that automated verification schemes for IED
virtual circuits primarily rely on two approaches: one utilizing template-
based matching that has high accuracy but low generalizability, and the
other employing intelligent algorithms or deep learning to classify or
calculate similarity in configuration information, offering strong
adaptability but it is limited to single-device configurations.

Knowledge graph is essentially a semantic network that
includes various semantic connections between different
entities (Chen et al., 2020), exhibiting superior interpretability
and data storage structural performance (Wang et al., 2017). It
has been widely applied in various fields, such as data retrieval,
recommendation systems, and knowledge reasoning (Guan et al.,
2019). For the power system, knowledge graph can integrate
dispersed knowledge within the power system, effectively
excavating useful latent rules from massive textual
information within the power system (Liu et al., 2023). At the
same time, the graph data structure of knowledge graph also
provides great convenience for human understanding. Currently,
research on knowledge graph in the field of power is still in its
nascent stage, with relevant literature mainly focusing on
application exploration and macro framework design. Li and
Wang (2023) proposed a multi-level, multi-category knowledge
graph application framework for assisting decision-making in
power grid fault handling and preliminarily elaborated on the key
technologies and solution approaches within the framework;
Tian et al. (2022) utilized the graph structure of knowledge
graph to express textual information and their relationships,
extracting the information required to construct knowledge
graph from operation and maintenance reports, realizing the
automatic construction of knowledge graph, and proposing an
automatic retrieval method for equipment operation and
maintenance.

Therefore, this study proposes a secondary virtual circuit
automatic verification method combining knowledge graph with
deep learning. This method integrates the advantages of prior
knowledge matching and similarity calculation of virtual terminal
information, utilizes knowledge graph for virtual circuit information
querying and extraction, and employs an improved Siamese neural
network to calculate the similarity of virtual terminal information.
Thus, achieving accurate and efficient secondary virtual circuit
automatic verification.

To provide a comprehensive understanding of our proposed
method, this study is organized as follows. Section 2 introduces
the construction method of a secondary virtual circuits
knowledge graph. Section 3 provides a detailed explanation
of the automatic matching process of virtual terminal
information based on the improved Siamese neural network
model, along with the automated verification process of virtual
circuits. Section 4 presents the experimental results and
performance evaluation, demonstrating the effectiveness of
the proposed method. Finally, Section 5 discusses the
implications of our findings and suggests avenues for future
research in this domain.

2 Knowledge graph construction

2.1 Intelligent substation configuration
file structure

In the intelligent substation secondary system, a single optical
fiber can transmit multiple channels of data and the one-to-one
correspondence of data transmission is ensured by using virtual
terminals. Virtual terminals are not physical terminals; they are used

Frontiers in Energy Research frontiersin.org02

Cao et al. 10.3389/fenrg.2024.1395621

86

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1395621


to identify loop signals between IEDs and serve as signal connection
points during the transmission of generic object-oriented substation
event (GOOSE) and sampled value (SV) messages. From the
perspective of information transmission, there are two main
categories: input virtual terminals and output virtual terminals.
From the perspective of message types, there are two main
categories: SV virtual terminals and GOOSE virtual terminals.

Taking a certain bus protection device and line protection device
as an example, a schematic diagram of virtual terminal connections
is illustrated in Figure 1. The bus protection device and line
protection device are connected via an optical fiber (solid line
with arrow in the diagram), facilitating unidirectional
transmission of information in the form of datasets. The virtual
terminals are interconnected through virtual connections (dashed
line with arrow in the diagram), forming a virtual circuit and thereby
achieving a one-to-one correspondence of data.

IEC 61850 is a communication standard among IEDs in
intelligent substations that ensures interoperability between
different devices. The data modeling technique in IEC
61850 is object-oriented and characterized by a hierarchical
tree structure. The order from top to bottom is as follows:
physical device, logical device (LD), logical nodes (LNs), data
object (DO), and data attribute (DA). Each object in this data
structure has a unique data index within the model. The virtual
terminal data format specified by the IEC 61850 standard is
represented as LD/LN. DO (DA), corresponding to logical
device/logical node. data object (data attribute). For the SV
virtual terminal, the data attribute (DA) is generally left blank.
Therefore, under the IEC 61850 standard, it is ensured that
virtual terminals exhibit significant similarities in their
data formats.

Additionally, to facilitate interoperability among devices from
different manufacturers, designers often include a brief Chinese
description on virtual terminals during the equipment design
process. This practice aims to aid designers in better
understanding and distinguishing virtual terminals associated
with devices from various manufacturers.

2.2 Virtual circuit knowledge graph

In an intelligent substation, IEDs encompass a variety of
devices, including relay protection devices, merging units, smart
terminals, and intelligent recorders. The virtual circuits
corresponding to different IEDs are markedly distinct, and
virtual circuits of the same type of IED may exhibit certain
variations under different states. The verification of virtual
circuits involves three aspects:

(1) Precisely determining all the virtual terminals and IEDs
essential for configuring the virtual circuit verification.

(2) Clearly defining the hierarchical paths and descriptive
features corresponding to different types of IED data formats.

(3) Assessing the correctness of the mapping relationships of
virtual terminals based on their distinctive features.

The construction process of knowledge graph involves the
following steps:

Step 1: Collect SCD files and other relevant documentation from
various intelligent substations. This data provides the raw input
needed to build the knowledge graph.

Step 2: Use natural language processing techniques to parse the
SCD files and extract relevant information such as IED types, virtual
terminal descriptions, and port addresses.

Step 3: Map the extracted information to the ontology. This
involves identifying the appropriate entities and relationships in the
knowledge graph and ensuring that the extracted data fits into
this structure.

Step 4: Use a Siamese neural network with multi-head attention
to calculate the semantic similarity between extracted virtual
terminal descriptions and the standardized descriptions in
the ontology.

Step 5: Integrate the matched data into the knowledge graph,
creating links between historical data and standardized models.
Manual verification is performed for matches below a predefined
threshold to ensure accuracy.

FIGURE 1
Schematic diagram of virtual terminal connections.
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Step 6: Continuously update the knowledge graph with new data
and validation results to improve its accuracy and
comprehensiveness.

This study employed a top–down approach to construct a
knowledge graph for the association of virtual circuits.
Standardization of virtual terminals for relevant IEDs in
intelligent substations was achieved, establishing a
standardized model for virtual terminals. Expert knowledge in
the context of intelligent substations refers to the domain-specific
insights and rules provided by experienced engineers and
technicians. This knowledge encompasses the correct
configurations of virtual circuits, typical faults, and the
standard practices for designing and maintaining these
systems. By modeling virtual circuits based on expert
knowledge according to IED types and associating them with
the standardized virtual terminal data relationships established
according to relevant specifications, a knowledge graph ontology
was formed. The construction process of knowledge graph is
shown in Figure 2. The ontology includes:

(1) Entities: These are the core components such as IEDs, virtual
terminals, LNs, DO, and attributes.

(2) Relationships: These define how entities interact with each
other. For example, an IED may have multiple virtual
terminals, and each terminal can be linked to specific data
attributes.

(3) Attributes: These are the properties or characteristics of the
entities, such as the type of data transmitted, the logical node
identifiers, and port address configurations.

The ontology provides a standardized model that facilitates
consistent representation and querying of virtual circuit information.

Utilizing historical data from intelligent substations for
knowledge learning, this study parsed historical SCD files of
intelligent substations to acquire the associative relationships of
IED virtual circuits. Based on the standardized virtual circuit model
in the knowledge graph ontology, relationships between
standardized virtual circuits and actual virtual circuits within
IEDs are established. The constructed virtual circuit knowledge
graph is shown in Figure 3. Although there are significant format
differences between virtual terminal address configuration data and
textual description information, information logic among the same
type of IEDs shares strong correlations, and the naming and
expressions of identical entities are generally uniform.

FIGURE 2
Knowledge graph construction method.
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Using dictionary list data obtained from processing SCD files,
three categories of information were extracted: IED device type,
virtual terminal address configuration data, and textual description.
The entities are linked in triplets: {device type, virtual terminal
address configuration data, textual description}. The initial
extraction results contained a considerable amount of redundant
data. This study removed numerical information from virtual
terminal address configuration data, retaining only alphanumeric
string information. An index is then constructed by merging IED
type and textual description information. The number and types of
virtual terminal address configuration data in each index are tallied.
Based on the statistical results, the triplets are transformed, retaining
only one triplet for each identical virtual terminal address
configuration data within the same index.

Establishing a knowledge graph using virtual circuit
information from historical SCD files has limitations. Therefore,
in this study, based on the similarity calculation between the
virtual circuit and the standardized model of virtual circuit
data, IED virtual terminals are automatically matched to
standardized virtual terminals. Subsequent manual verification
is conducted to establish the relationship between IED virtual
terminals information and the standard virtual terminals
information, achieving knowledge fusion. Knowledge fusion
involves integrating information from various sources to create
a comprehensive and coherent knowledge graph. In our method,
knowledge fusion occurs in two main steps:

(1) Historical Data Integration: We parse historical SCD files
to extract virtual circuit configurations from previously
implemented substations. This data includes IED types,
virtual terminal descriptions, and port address
configurations.

(2) Standardization and Matching: The extracted data is
compared against the standardized models defined in the
ontology. Virtual terminals are matched to their standardized
counterparts based on semantic similarity calculations and
expert-defined rules. This step ensures that the knowledge
graph accurately reflects both historical configurations and
standardized practices.

3 Virtual terminal automatic matching

Due to the predominantly Chinese short-text nature of the
virtual terminal textual descriptions, a text-matching model is
proposed that integrates a multi-head attention mechanism and a
Siamese network. The model utilizes a mixed vector of characters
and words as input to enhance semantic information, employing a
bidirectional gated recurrent unit (Bi-GRU) instead of bidirectional
long short-term memory (Bi-LSTM) to reduce parameters and
expedite training speed. The multi-head attention mechanism is
introduced as a separate module, employing an autoencoding layer
to capture semantic features from different perspectives. A Siamese

FIGURE 3
Knowledge graph structure diagram.
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network is constructed to transform sentences of varying lengths
into sentences of equal length, placing them in the same semantic
space. Weight sharing is implemented to reduce half of the training
workload. In the interaction layer, the mixed vector of characters
and words for one sentence interacts with that of another sentence,
utilizing the multi-head attention mechanism to acquire interactive
semantic features.

3.1 Siamese neural network model

The schematic diagram of the Siamese neural network model is
shown in Figure 4.

The Siamese network model (Liang et al., 2018) is broadly
divided into three parts: preprocessing, shared neural network,
and information aggregation. The processing flow of the Siamese
network is as follows: firstly, preprocess the obtained sentences to
obtain word vector representations; then, encode the obtained
sentence representations using a Siamese network constructed
with Bi-LSTM and attention mechanisms; finally, aggregate
information from the sentence representations processed through
the Siamese network.

(1) Preprocessing: To begin, sentences containing contextual
information are obtained. Each word in the sentence is
then represented using word vectors. A sentence is
represented as �VS1 ∈ Rm×d , �VS2 ∈ Rn×d , where m and n
represent the lengths of sentences S1 and S2 , respectively,
and d is the dimensionality of the word vectors.

(2) Shared neural network: After obtaining the representation of
sentences, the word vectors pass through a Bi-LSTM
algorithm to encode information about the sentences. A
standard Bi-LSTM algorithm is employed, representes by
Eqs 1–3 as follow:

ht
→� f U1xt, U3ht−1

��→
, bt
→( ) (1)

ht
← � f U2xt, U4ht+1

←��
, bt
←( ) (2)

yt � concat ht
→
, ht
←�( ) (3)

where, ht
→
, ht
←
, xt and yt represent the forward propagation hidden

layer state, the backward propagation hidden layer state, the input
values of the neurons, and the output values of the hidden layer state
at time t, respectively; ht−1

���→
represents the forward propagation state

at time t-1 and ht+1
���→

represents the backward propagation state at
time t + 1; U1, U2, U3 and U4 denote the weight matrices
corresponding to different components, respectively; bt

→
and bt

←
represent bias vectors in the forward propagation hidden layer
and backward propagation hidden layer, respectively; concat
denotes concatenate operation.

Following the Bi-LSTM layer, an attention mechanism is
introduced. The shared-weight neural network consists of the
aforementioned Bi-LSTM layer and an attention mechanism layer.

(3) Information aggregation: The processed representations of
the two sentences need to undergo information fusion, and
common fusion methods include fully connected neural
networks, calculating the cosine similarity, and the
Manhattan distance between the two vectors.

3.2 Interactive text matching model
integratingmulti-head attentionmechanism
and siamese network

The Siamese network model does not fully leverage interactive
information between texts, nor does it adequately capture the
representation capabilities of the text. Therefore, this study
proposed an improved model, the Interactive Text Matching
Model, which integrates a multi-head attention mechanism with
a Siamese network, as shown in Figure 5.

Chinese writing is logographic, meaning that each character
represents a word or a meaningful part of a word. This differs from
alphabetic languages where words are composed of letters.
Therefore, the network uses character-based embeddings in
addition to word-based embeddings to capture the nuances of
Chinese text. This dual representation ensures that both
individual characters and their combinations are effectively
represented.

This model initially preprocesses two sentences at the input
layer, obtaining mixed vectors for both sentences. The resulting
mixed vectors undergo normalization through a regularization layer.
Subsequently, these processed vectors are separately fed into the
difference unit and interaction unit.

In the difference unit, the input texts are first encoded using a
bidirectional GRU, constructing a Siamese network. The Manhattan
distance is then employed to aggregate the encoded information.
Simultaneously, within the interaction unit, the auto-encoding layer
is utilized to encode the input sentences separately, forming another
Siamese network. Subsequently, the semantic features from the self-
encoding layer undergo interaction through the multi-head

FIGURE 4
Siamese neural network.
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attention mechanism’s interaction layer. Finally, the interactive
information, along with the information from the difference unit,
is output to the fully connected neural network in the output layer.
The classification result is obtained through a sigmoid function.

3.2.1 Difference unit
Firstly, the training set is tokenized into word and character level

representations using the Jieba segmentation tool. For input
sentences Si, after word and character level segmentation, two
representations are obtained: a word sequence and a character
sequence. By loading the pre-trained Word2vec model weights,
each word or character can be mapped to a vector, extracting the
corresponding word/character vectors, the formal description of
sentence Si is given by Eqs 4, 5:

Si � W1
i ,W

2
i , . . . ,W

lw
i{ } (4)

Si � C1
i , C

2
i , . . . , C

lc
i{ } (5)

where lw and lc represent the number of words and characters in
sentence Si, respectively.

The length of the word vectors is extended tomatch the length of
the character vectors. Subsequently, concatenating the two
representation vectors yields the final hybrid representation
vector VSi, which combines both character and word

embeddings. This hybrid word-character vector is then fed into
the normalization layer.

VSi � v1Si , v
2
Si
, . . . , vNi

Si{ } (6)

where Ni represent the length of vector VSi.
In this study, the Bi-GRU structure was employed to replace the

Bi-LSTM algorithm in the Siamese network for text information
encoding. A GRU (Cho et al., 2014) is a variant of LSTM with a
simplified architecture. It employs an update gate in place of the
forget and input gates in LSTM and introduces a new hidden unit.
The model structure is simpler than that of LSTM and is represented
by Eqs 7–10:

zt � σ Wzxt + Uzht−1( ) (7)
rt � σ Wrxt + Urht−1( ) (8)

h̃t � tanh rt · Uaht−1 +Waxt( ) (9)
ht � 1 − zt( ) · ht−1 + zt · h̃t (10)

where zt and rt represent the update gate and reset gate, respectively;
h̃t represents the aggregation of the input xt and the output of the
previous hidden layer ht−1; σ denotes the sigmoid function, and tanh
denotes the hyperbolic tangent function; Wz, Uz, Wr, Ur, Ua, and
Wa are the weight matrices used in training.

FIGURE 5
Interactive text matching model.
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The update gate indicates how much of the current hidden state
is inherited by the new hidden state, while the reset gate indicates
howmuch information from the past hidden state should be ignored
and reset using the current input. GRU has fewer parameters
compared to LSTM, making training faster and requiring less data.

3.2.2 Interaction unit
The Siamese network model introduces the attention

mechanism directly after the neural network to extract essential
word information from sentences. However, it does not adequately
extract the semantic features of sentence pairs and let them interact.
Therefore, this study treated the multi-head attention mechanism as
a separate unit for computation, extracting interaction features
between text pairs. The basic attention network is segmented into
different sub-networks, learning more semantic features from
various perspectives, with the aim of achieving a comprehensive
interaction between semantic features. The interaction unit
comprises the autoencoding layer, interaction layer, and pooling
layer, as illustrated in Figure 6.

(1) Autoencoding layer

In the autoencoding layer, the mixed-word vectors VS1 and VS2

are separately encoded. This layer consists of two parts, the encoder

and the decoder, forming a symmetrical structure. Both the encoder
and decoder typically comprise three-layer neural networks,
including input, hidden, and output layers, as illustrated in
Figure 7. Here, the output of the encoder serves as the input to
the decoder, and the outputs of the encoder and decoder are
represented by Formulas 11, 12, respectively:

Zi � f1 WeVSi + be( ) (11)
VSi

′ � f2 WhĤ + bh( ) (12)

where We and Wh represent weight matrices; be and bh are bias
vectors; f1 and f2 are activation functions; Ĥ represents the hidden
layer vector.

The autoencoder network extracts high-dimensional features
through the encoder, reducing the dimensionality to process the
output text features, denoted as Zi. The decoder, employing a
symmetric network structure, reconstructs the input VSi of the
encoder to obtain VSi

′ aiming to fit an identity function using neural
networks and enhance the feature extraction capability of the encoder.
The reconstruction process utilizes mean square error as the loss
function, and L2 regularization is employed to prevent model
overfitting, thereby improving the model’s performance on the test set.

(2) Interaction layer

FIGURE 6
Interaction unit structure diagram.
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In the encoding layer, each text is individually encoded,
obtaining diverse contextual semantic information to enhance the
representation of text features. However, due to the Siamese
network’s inclination to represent semantic feature vectors of
different lengths in the same semantic space, the interaction
information between texts is overlooked. Compared to typical
Chinese text, descriptions of virtual terminals consist of shorter
sentences, and there is no contextual semantic relationship between
sentences. Therefore, the interaction layer is introduced to
separately extract word and sentence interaction features between
text pairs. Each word can interact with words in the other text,
capturing syntactic and semantic dependencies between text pairs.

This layer is introduced to address the deficiency of the Siamese
network in semantic interactions. Multi-head attentionmechanisms are
employed to extract interaction information between the two texts. The
mixed-word vectors after autoencoding VS1

′ and VS2
′ are concatenated to

form Vtext, and then utilize multi-head attention based on scaled dot-
product attention (Vaswani et al., 2017) to capture interactions between
pairs of sentences and can be described by Eq. 13:

Attention Q,K,V( ) � softmax
QKT��
dk

√ V( ) (13)

where Q, K, and V represent the query vector, key vector, and value
vector respectively, with dk being the dimensionality of key vector.
In this study, self-attention is employed to extract features of Vtext,
thus Q, K, and V are all equal to Vtext.

The attention mechanism acts as semantic feature extraction
and encoding, providing each word with three vectors. Each
operation involves calculating the similarity between a word’s
query vector and all key vectors through dot-product, resulting
in weight coefficients representing the word’s relevance to other
words. These coefficients are then used to weigh all value vectors to
obtain semantic encoding. Multi-head attention allows different
attention weights to be assigned to different positions, acquiring

better semantic information and effectively preventing overfitting, as
describes in Eqs 14, 15 (Guo et al., 2019):

Multi − head Q,K,V( ) � concat head1, head2, . . . , headH( )WO

(14)
headi � Attention QWQ

i , KW
K
i , VW

K
i( ) (15)

where WO, WQ
i , W

K
i , W

V
i represent the weight matrix.

(3) Pooling layer

The pooling layer’s function is to extract global features from the
word vector sequences. This includes both max pooling and average
pooling. Each dimension of the word vector reflects different
information, and pooling operations help to extract comprehensive
information from the word vectors. Considering that max pooling
retains prominent information from the word vectors, while average
pooling retains information from all word vectors (Bieder et al., 2021),
we simultaneously use both max pooling and average pooling, and
then concatenate the results, as describes in Eqs 16–18:

Vtext,avg � ∑NVtext

i�1

Vi
text,att

NVtext

(16)

Vtext,max � max
i∈ 1,NVtext[ ]V

i
text,att (17)

Vtext,pool � concat Vtext,avg, Vtext,max( ) (18)

where Vtext,avg, Vtext,max, Vtext,pool represent average pooling result,
maximum pooling result, and pooling layer result. Vtext,att

represents the output result of multi-head attention in the
interaction layer; NVtext represents the length of vector Vtext,att.

For the output, the results Xitac and Xdiff from the interaction
unit and the difference unit are hybrid through a fully connected
neural network. The final classification result is obtained using the
sigmoid activation function, as describes in Eqs 19, 20:

R � sigmod FC Xitac, Xdiff( )( ) (19)
FC X( ) � relu Wx + b( ) (20)

where W represents the weight matrix; b represent bias vector. relu
represents the rectified linear unit

The model utilizes mean squared error as the loss function.
Additionally, the Adam optimization algorithm is applied to
enhance the convergence speed, as describes by Eq. 21 (Reyad
et al., 2023).

LossMSE � 1
N

∑N
1

Yi − Ŷi( ) (21)

whereN represents the number of samples; Yi and Ŷi represent the
true value and predicted value, respectively.

3.3 Verification method based on port
address data

Through experiments, it was observed that accurately
calculating the textual similarity values can reliably detect the
desired virtual terminals. However, in some cases, there may be

FIGURE 7
Autoencoder structure diagram.
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more than one matching result. This is attributed to incomplete or
the repetitive construction of certain virtual terminal description
texts. To distinguish virtual terminal ports in such cases, reliance on
port address data information becomes crucial, as each virtual
terminal’s port address is unique.

Therefore, this study introduced a verification process based on
port address configuration data to address situations where textual
descriptions alone cannot establish mapping for the data. Leveraging
port address configuration data helps discern matching relationships
due to the systematic naming patterns inherent in port address
configuration data, with most strings carrying practical significance.

The longest common substring (LCS) method proposed by
Amir et al. (2020) was employed to assess the similarity of
virtual terminal port addresses. The calculation of the virtual
terminal port address similarity involves evaluating the similarity
of four attributes constituting the virtual terminal port address:
logical device, logical node, data object, and data attribute. The
weighted average of these individual similarities is taken as the
overall similarity of the virtual terminal port address.

3.4 The automatic verification process for
virtual circuit

In intelligent substations, the virtual circuit information of
various IEDs is integrated into the station-wide configuration

SCD file. Before verification, the SCD file is parsed to obtain the
IEDs that need to be checked. The output interface addresses and
descriptions are extracted from the SCD file to form the output
interface information for the corresponding IED.

During the verification process, the knowledge graph provides
the reference model against which current virtual circuit
configurations are compared. This comparison helps in
identifying discrepancies and potential faults. The verification
process begins with the IEDs in the knowledge graph. The
matching is conducted along the path indicated by the arrows in
Figure 8. The device model information parsed from the SCD file is
used to search for the corresponding IED in the knowledge graph.
The virtual terminal information extracted from the SCD file for the
identified IED are then matched with the virtual terminal
information in the knowledge graph, specifically matching them
to standard virtual terminal information. This process enables the
detection of all virtual circuits for the specified IED, achieving
automatic verification of virtual circuits in intelligent substations.

If the corresponding IED cannot be matched in the knowledge
graph during verification, a search is conducted based on the device
type to find the standard output interface addresses corresponding
to that device type in the knowledge graph. Subsequently, the
similarity between the virtual terminal information of the IED
and the standard virtual terminal information is calculated. Any
matches below a predefined threshold undergo manual
confirmation to establish the association between the IED’s

FIGURE 8
Automatic verification path.
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virtual terminal addresses and the standard virtual terminal
addresses. This association is then stored in the knowledge graph
to facilitate knowledge updates.

4 Case study

4.1 Dataset

To validate the effectiveness of the proposed configuration method,
a sample set was selected comprising 10 SCD files from 220 kV
intelligent substations and 20 SCD files from 110 kV intelligent
substations. These samples encompassed 3,869 IEDs and
29,110 records of configured virtual circuits. To conduct
experimental analysis, the dataset was divided into training, testing,
and validation sets in a ratio of 7:2:1. Since virtual circuit configurations
vary significantly across intelligent substations with different voltage
levels, data sets were randomly extracted from SCD files of different
voltage levels to ensure the generalizability of the proposed method. A
subset of the data samples is presented in Table 1. It is evident that the
textual descriptions of virtual circuit endpoints share significant
similarities, yet there are distinct differences in the address data. In
the virtual terminal address data, most strings carry meaningful
information; for instance, “MU” signifies a merging unit, and
“UATATR” denotes voltage sampling. However, even for the same
voltage sampling virtual terminal, the configuration data for virtual
terminal addresses can be entirely different. This discrepancy arises due
to varying naming conventions among different manufacturers’ IEDs,
and certain strings such as “mag” and “AnIn” pose challenges in
determining their actual significance. Despite such differences in
address configuration, the textual descriptions exhibit a high degree
of similarity. This observation underscores the rationale behind the
main focus of this study on matching information points primarily
through text.

4.2 Implementation

Our model incorporated both word and character vectors,
utilizing pre-trained Word2Vec (Li et al., 2018) embeddings
trained from the Chinese Wikipedia and the electrical vocabulary

corpus extracted from the Sogou InputMethod, it was then fine-tuned
on our dataset for virtual terminal matching with a reduced learning
rate of 0.0001 to prevent overfitting on the smaller dataset. The fine-
tuning process lasted for 10 epochs. Each vector was set to a
dimensionality of 300. To mitigate overfitting and enhance
accuracy, Dropout probability was introduced during the
experimentation. Following the input layer, sentence vectors are
fed into a dual-layer bidirectional GRU with a hidden layer
dimension of 128 for each GRU. The attention mechanism
comprised eight units, and a rectified linear unit served as the
activation function. To achieve optimal experimental results, early
stopping was implemented as a training strategy.

In the experiments, the dimension of the word vectors used to
initialize embedding vectors was 100, and we fixed the word
embedding. The maximum length of the input sequence we
chose was 15, and characters that were not in the dictionary
were replaced with 0. The model was trained to minimize the
cross-entropy of error loss through backpropagation and the
Adam optimization algorithm was used with a 0.001 learning
rate. The dropout rate was 0.5.

The experimental evaluation drew inspiration from concepts in
machine learning, employing precision and recall. The comparative
results can be categorized into true positive (TP), false positive (FP), true
negative (TN), and false negative (FN). The confusion matrix, as
illustrated in Table 2, served as the basis for the performance
evaluation using the accuracy and F1-score, as describe by Eqs 22–25:

recall rate � TP

FN + FP
(22)

precision rate � TP

FP + TP
(23)

accuracy � TN + FP

FN + TN + FP + TP
(24)

F1 − score � 2 p
precision rate p recall rate

precision rate + recall rate
(25)

4.3 Baseline methods

In the experiment dataset, eight baseline methods were
employed, including representation-based text classification

TABLE 1 Partial data samples.

Order Input virtual terminal Output virtual terminal

Description Address Description Address

1 A-phase voltage sampling value MU/UATVTR1. Vol1 Voltage A-phase measurement value SVLDO1/SVINUATVTR1. Vol2.
Inst mag. I

2 B-phase voltage sampling value MU/UBTVTR1. Vol1 Voltage B-phase measurement value SVLDO1/SVINUBTVTR1. Vol2.
Inst mag. I

3 C-phase voltage sampling value MU/UCTVTR1. Vol1 Voltage C-phase measurement value SVLDO1/SVINUCTVTR1.
Vol2.inst mag. I

4 Merge unit optical port transmission
optical power

PIGO/GOINGGIO17. AnIn10.
mag. f

Bus merging unit board 1 optical port
1 optical power

MUGO/SCLI9. LigIntes. mag. f

5 Intelligent terminal network port
1 abnormality

PIGO/GOINGGIO
1. SPCSO6. stVal

Bus intelligent terminal network port 1 is
abnormal

RPIT/GOAlmGGI
O1. Alm6. stVal
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models such as Bi-LSTM, CNN, TextCNN (Cao and Zhao, 2018);
interactive-based text classification models such as ESIM (Chen
et al., 2016), Siamese Bi-LSTM (Li et al., 2021), Attention-Bi-LSTM
(Xie et al., 2019); and pre-trained based text classification models
such as BERT.

In parameter settings, we strived to ensure consistency across
various models as much as possible; in cases where consistency
could not be guaranteed, efforts were made to maintain consistency
with the original literature. Specifically, for CNN and TextCNN, a
two-layer feedforward neural network was employed, with each
layer having 128 hidden units. For Bi-LSTM, ESIM, Siamese Bi-
LSTM, and Attention-Bi-LSTM, the hidden units for both the Bi-
LSTM and feedforward neural network were set to 256.
Additionally, consistent with both baseline methods and the
proposed approach, Dropout (uniformly set to 0.5) was utilized
to mitigate overfitting issues, while training was conducted using the
Adam optimizer with a learning rate of 0.001. Regarding BERT, we
first separated text pairs in the samples using the SEP token and then
inputted them into the BERT-Base model. The vector corresponding
to the [CLS] token at the head was extracted as the matching vector
for the two sentences, which was then fed into a feedforward neural
network to obtain the matching results for the two sentences. Due to
convergence issues with a high learning rate, the learning rate for the
BERT model was set to 0.0001.

4.4 Results and discussion

4.4.1 Comparative experiment
In order to substantiate the superiority of the proposed text

matching model, which integrates multi-head attention and Siamese
neural networks, experiments were conducted. The results of the
comparisons are presented in Table 3.

The experimental results showcased in Table 3 highlight the
effectiveness of our proposed text-matching model compared to
traditional text classification approaches. Our proposed text
matching model outperformed all baseline models, achieving an
impressive accuracy of 97.52% and an F1-score of 97.89%. The
integration of multi-head attention and Siamese neural networks
enables our model to effectively capture semantic similarities
between sentences. The substantial performance improvement of
our model over traditional approaches underscores the importance
of integrating multi-head attention and Siamese neural networks for
text-matching tasks. The superior accuracy and F1-score achieved
by our model signify its robustness and effectiveness in capturing
semantic relationships between sentences.

Table 3 displayed the training times for nine experimental
models on training and test dataset. Bi-LSTM, CNN,Attention-
Bi-LSTM and TextCNN demonstrated a clear advantage in

training time, while ESIM and Siamese Bi-LSTM required longer
training times. Our model integrated Siamese network, Bi-GRU, and
muti-head attention, resulting in a complex structure, hence its
training time was only surpassed by the structurally complex BERT.
In practical applications, since text matching model training
generally occurs offline, the model’s time complexity requirement
is not high, with more emphasis placed on the accuracy of similarity
judgment. Additionally, the training time of our model is essentially
the same as that of the baseline Siamese Bi-LSTM model. This
indicates that in the task of virtual terminal matching, the extraction
of interaction features from text pairs based on interaction units has
minimal impact on the model’s time complexity.

4.4.2 Ablation experiment
In order to comprehensively understand the contribution of

different aspects of our proposed model, we conducted an ablation
study. We explored various granularities, pooling strategies
(average, max), multi-head attention mechanisms, and the impact
of incorporating address string validation on experimental results.
The findings are summarized in Table 4.

The experimental results indicate that utilizing both character
and word embeddings as input can capture more textual
information. Employing both max-pooling and average-pooling
facilitates effective interaction with semantic information in
sentence pairs. The incorporation of attention mechanisms
enables the model to capture diverse semantic relationships,
thereby enhancing its performance. Additionally, integrating port
address validation improves the model’s accuracy and F1-score,
ensuring its robustness in text matching tasks.

4.4.3 Parameter sensitivity experiment
In the experiment, the variation in the number of heads in the

multi-head attention mechanism and the layers in the GRU has a
certain impact on the model. Therefore, this study employs
sensitivity analysis to investigate and analyze the parameters.
Sensitivity analysis primarily involves analyzing the effect of
changing a specified piece of information under the assumption
of a certain state, designating it as the independent variable, and
examining how this designated independent variable affects changes
in other variables. In this experiment, we set the independent
variables as the number of heads in the multi-head attention
mechanism and the layers in the GRU, exploring their effects on
the trend of virtual terminal matching results.

(1) Impact of the number of heads in multi-head attention

Multi-head attention enables the aggregation of information
from multiple dimensions, facilitating a better understanding of
semantic information from different spatial perspectives and
preventing overfitting. Leveraging this characteristic, this study
tests the number of heads in the multi-head attention mechanism
on the validation set, sequentially setting the number of heads as [2,
4, 6, 8, 10] for experimentation. The most suitable number of heads
is selected to configure parameters for the pseudo-anchor matching
model, as shown in Figure 9 with the experimental results.

According to the experimental results in Figure 9, it is evident
that on the validation set, when the number of heads in the multi-
head attention mechanism reaches 8, the F1-score and accuracy

TABLE 2 Confusion matrix.

Reality Matching result

Positive example Negative example

True TP FN

False FP TN
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attain their maximum values at 85.01. At this point, the model
demonstrates optimal performance. As the number of heads
gradually increases or decreases from 8, the F1-score and
accuracy of the model progressively decreases. When a single
attention head is applied to a sentence, although each word
embedding contains embeddings from other words, it is
predominantly influenced by the embedding of the word itself.

However, utilizing multiple heads enables attention to be
concentrated at different positions, aggregating multi-layered
information. The advantage of the multi-head attention
mechanism lies in its ability to balance the model, providing an
additional space for parameter adjustment. This indicates that
neither an excessive nor insufficient number of heads is optimal;
rather, a balance is required. Both an excess or a deficiency in the
number of heads will affect the virtual terminal matching results.
Through testing, it is observed that in this model, the optimal
performance in virtual terminal matching is achieved when the
number of heads is set to 8.

(2) Impact of GRU layers

GRU strengthens the connection between vocabulary and
context when processing information, enriching the semantic
information of features and alleviating the problem of differences
between sentences. The different layers of GRU affect the complexity
of the model and have a certain impact on data fusion. In this study,
GRU is utilized to process information. To investigate the influence
of GRU layers on the model, experiments are set up, selecting GRU

TABLE 3 Comparative experiment results.

Model Accuracy (%) F1-score (%) Training time (s)

Bi-LSTM 82.64 83.15 2,310

CNN 83.69 84.27 983

TextCNN 93.77 93.89 1280

ESIM 94.13 94.49 3379

Siamese Bi-LSTM 95.56 95.67 3529

Attention-Bi-LSTM 94.02 94.06 2,581

BERT 96.17 96.28 62,788

Our model 97.52 97.89 3752

TABLE 4 Ablation experiment results.

Model Accuracy (%) F1-score (%)

Only word 93.78 93.89

Only character 94.16 94.53

Average pooling 95.23 95.43

Max pooling 95.31 95.39

Without multi-head attention 95.87 96.18

Without port address validation 94.41 94.93

Our model 97.52 97.89

FIGURE 9
Accuracy and F1-score with different number of heads.
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FIGURE 10
Accuracy and F1-score with different number of GRU layers.

FIGURE 11
Verification results of virtual circuit verification system.

TABLE 5 Comparison of verification results.

Verification method Number of virtual circuits Accuracy (%) Time (min)

Manual verification 6000 92 160

Our model 6000 99 3
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layers as [1, 2, 3, 4, 5], and testing and analyzing them on the
validation set. The specific results are shown in Figure 10.

From Figure 10, it can be observed that when the number of
GRU layers is set to 2, the model performs better compared to
other values. This is primarily because when the number of GRU
layers is 1, the model can only learn information in one
direction, resulting in poor fitting to the dataset and inferior
performance in extracting information compared to multi-layer
GRU. However, when the number of layers increases to 2, GRU
can learn information in two directions, enabling better
learning of forward and backward contextual information.
This facilitates capturing deeper relationships among hidden
states, enriching the textual representation of vocabulary, and
obtaining better text representation. However, due to the
existence of GRU, both memory and time overheads increase.
Therefore, as the number of GRU layers continues to increase,
the time overhead increases with the increase in the number of
neurons in GRU, and memory overhead also becomes
significant. Moreover, the problem of vanishing gradients
between layers becomes more apparent, leading to issues
with data generalization and a higher likelihood of
overfitting. Hence, this study sets the number of GRU layers
to two to better learn information from various aspects and
achieve better virtual terminal matching results.

4.4.4 Engineering application
The SCD editing tool modifies the SCD file in the sample to be

verified. This process manually sets the error virtual circuits. A
virtual circuit verification system based on the established
knowledge graph and virtual circuit verification process, the
verification results are shown in Figure 11. When a virtual
circuit does not exist in the verification template based on the
SCD file that passed the verification, the program automatically
identifies the newly added virtual circuit and marks it as “!” as a
reminder. When a virtual circuit is missing, the program
automatically identifies the missing virtual circuit and marks it
“?” as a reminder. The standard terminal library and virtual circuit
verification template file based on the proposed method
automatically verify the virtual circuit of the SCD file. The
verification results were correct, showing the effectiveness of the
proposed method.

In order to demonstrate the feasibility of system application,
the efficiency and accuracy of intelligent verification and
verification designed in the article were compared with manual
verification by selecting the same number of intelligent substation
configuration file verification tasks. The comparison results are
shown in Table 5. It can be intuitively observed that compared with
manual verification, the application of automatic verification
technology for virtual circuit verification can help improve the
efficiency and accuracy of intelligent substation virtual circuit
verification.

5 Conclusion

In addressing the complexities associated with the
verification of virtual circuits in intelligent substations, this
study introduces a novel method that synergizes the strengths

of knowledge graphs and deep learning. Through this fusion, we
not only enhance the accuracy of virtual circuit verification but
also set a new benchmark that surpasses the capabilities of
traditional manual inspections and existing automated
solutions. Our approach, characterized by its innovative
integration of a Siamese neural network with a multi-head
attention mechanism, demonstrates robust performance in the
context of virtual terminal matching. Additionally, the inclusion
of virtual terminal address string verification further enhances
the accuracy of virtual circuit verification, presenting a new
method for the verification of virtual loops in intelligent
substations.

Future research will explore the method’s adaptability to real-
time configuration changes and potential integration with existing
substation management systems, aiming to provide a more
cohesive and efficient operational framework for intelligent
substations and the broader power system. In addition, as
intelligent substations continue to evolve, incorporating
advancements such as IoT devices and advanced
communication protocols, future research will focus on
adapting our verification method to these new technologies.
This includes exploring how to effectively process and integrate
real-time data from a variety of sources to continuously update and
refine the verification process.
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Traditional load prediction methods are unable to effectively predict the loads
according to the spatial topology of each electricity consumer in neighboring
areas and the load dependency correlations. In order to further improve the load
prediction accuracy of each consumer in the region, this paper proposes a short-
term prediction method of electric load based on multi-graph convolutional
network. First, the input data are selected withmaximum information coefficient
method by integrating multi-dimensional information such as load, weather,
electricity price and date in the areas. Then, a gated convolutional network
is used as a temporal convolutional layer to capture the temporal features of
the loads. Moreover, a physical-virtual multi-graph convolutional network is
constructed based on the spatial location of each consumer as well as load
dependencies to capture the different evolutionary correlations of each spatial
load. Comparative studies have validated the effectiveness of the proposed
model in improving the prediction accuracy of power loads for each consumer.

KEYWORDS

graph convolutional network, short-term load, multidimensional information,
spatiotemporal prediction, maximum information coefficient

1 Introduction

The global electricity demand is experiencing rapid growth, and the structure
of urban distribution networks is becoming increasingly complex, which elevates
the challenges associated with power grid scheduling and control (Hou et al.,
2021). The ongoing expansion of hybrid renewable power systems has led to the
integration of a substantial number of variable renewable energy sources, such as
wind and solar, transforming the grid into an active distribution network. This
transformation has concomitantly increased the volatility and uncertainty inherent
to power systems (Cleary et al., 2015). Accurate load prediction is of paramount
importance for enhancing the safety, stability, and efficient operation of the power grid
(Celebi and Fuller, 2012). Furthermore, as power systems undergo reform, electricity
sales companies and virtual power plants participating in the electricity market
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must accurately predict the electricity consumption of individual
consumers (Aparicio et al., 2012).

The existing research on power load prediction can be broadly
categorized into two primary methodological approaches: statistical
models and machine learning techniques. The statistical modeling
approach offers simplicity and expedient prediction capabilities.
Prominent statistical methods include linear regression and
exponential smoothing (Shi W. et al., 2023). Saber and Alam (2017)
leveraged the autoregressive integrated moving average model
to analyze the correlation between load demand and influential
factors, and established a non-stationary stochastic prediction
framework. However, such statistical techniques generally suffer
from limitations in prediction accuracy and robustness. In
contrast, machine learning methods possess adaptive and self-
learning capabilities that have demonstrated improvements in
load prediction precision. These advanced analytical techniques
include support vector machines, extreme learning machines, long
short-term memory (LSTM) networks, and convolutional neural
networks (Li et al., 2020; Samadianfard et al., 2020; Zhang J. et al.,
2021; Tang et al., 2021; Roy and Yeafi, 2022; Sun et al., 2023;
Deng et al., 2024). Specifically, Li et al. (2020) proposed a power
load decomposition and reconstruction prediction approach
based on support vector machines. Furthermore, Roy and Yeafi
(2022) and Sun et al. (2023) leveraged machine learning theory
to establish residual self-attention encoding-decoding networks
for electricity consumption and wind power prediction, effectively
capturing the coupling relationships within the data. Additionally,
Tang et al. (2021), Zhang J. et al. (2021) and Samadianfard et al.
(2020) employed echo state networks, LSTM, and multi-layer
perceptrons to predict wind direction, speed, and power generation.
While the aforementioned methods utilize multi-dimensional
information, such as load data and weather factors, to model the
temporal correlations in load patterns, they have largely overlooked
the potential spatial correlations in electricity consumption among
multiple consumers. Neighboring consumers are affected by factors
such as weather, electricity prices, and holidays, exhibiting similar
electricity consumption behaviors and load profiles (Lin et al.,
2021). Fully capturing and leveraging the spatial correlation
information among these neighboring consumers has the potential
to further improve the accuracy of load prediction. However, the
non-Euclidean, interconnected graph structure of the consumer
data limits the direct applicability of conventional neural network
architectures, and thus necessitates specializedmodeling approaches
capable of learning from the complex spatial correlation of
neighboring consumers.

Graph neural networks have attracted widespread attention
because they can learn implicit representations of node data on
graph structures and process non-Euclidean spatial data. Currently,
graph neural networks have been successfully applied in fields such
as transportation and load prediction. Yan et al. (2021) proposed
a multi-time scale traffic prediction method based on graph
convolutional networks, which treats each road sensor as a node
to construct a spatio-temporal module and capture spatio-temporal
correlations. Liao et al. (2023) established a three-dimensional
Gaussian wake function that represents the relevant information of
each wind turbine and used graph neural networks combined with
attention mechanisms to predict the output power of non-uniform
wind farms, reducing prediction errors. Shi P. et al. (2023) proposed

FIGURE 1
Spatial and temporal load structure diagram.

a multi-user short-term power load spatio-temporal prediction
method using multi-head attention and adaptive graph theory and
compared it with various methods. Zhang L. et al. (2021) used K-
means clustering to divide user groups, capture the intrinsic spatio-
temporal correlation information of the data using local spatio-
temporal graphs, and finally aggregate the calculation results of
each part to predict the future spatio-temporal power demand
sequence. Fahim et al. (2024) took a load of each charging station
as a node, used an adaptive adjacency matrix to reflect the
spatial relationship between stations, and proposed a multi-station
charging demand prediction method for electric vehicle charging
stations based on graph networks. Existing literature has shown
that graph neural networks can explore potential relationships
between loads and improve prediction accuracy. However, the above
literature only considers the fixed spatial connection relationships
of consumers and relies on a single graph representation, failing to
reflect the various spatial correlations between electricity loads in
the neighbors.

Multimodality neural networks have improved prediction
accuracy, which has attracted the attention of researchers.
Zheng et al. (2023) used virtual dynamic graph and physical road
graph to extract heterogeneous, variable, and inherent spatial
patterns of the road network. Liu et al. (2020) presented a physical-
virtual collaboration graph neural network for passenger flow
prediction. The network is a general model that can be directly
applied to online pedestrian flow prediction. Xiu et al. (2024)
adopted parallel convolutional networks and combines relational
data within the metro network to predict ridership. In addition, the
train timetable as feature input to the network, improving prediction
accuracy. However, there is limited application of literature in load
prediction. How to design a proper prediction network based on the
characteristics of electricity demands is an important issue.

Multi-graph convolutional networks have been applied in
literature for load prediction. Wei et al. (2023) presented a novel
multi-graph neural networks for short-term electricity demand
prediction, which is embedded with the directed static graph and
directed dynamic graph. The results show that the network has
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TABLE 1 Influencing factors of electric load.

Type Factor Meaning Label

Historical load Load Historical electricity load A

Time

Time Time B

Date Weekday, weekend, holiday C

Temperature Temperature at the time of prediction D

Meteorological condition

Humidity Humidity at the time of prediction E

Wind speed Wind speed at the time of prediction F

Rain Rain at the time of prediction G

Price Electricity price Peek, flat, valley H

FIGURE 2
Convolutional network: (A)Full convolution, (B)Dilated convolution.

a strong ability to capture periodic features. Yanmei et al. (2024)
adopted dynamic load knowledge graph to extract the correlation
between internal at-tributes and external influencing factors of
various loads. Moreover, the attention mechanism enhances the
learning ability of load feature representation. To capture complex
non-linear correlations of loads, Wang et al. (2023) proposed spatial
and temporal graph neural network for residential load prediction.
The multiple dependence graphs consists of synchronization graph
and causality graph, which can model linear and non-linear
dependence. However, the exist research has not fully captured the
in-dependence with multidimensional data, and electricity demand
is associated with various complex and unknown factors. Therefore,
predefined graphs cannot fully reflect load correlations. In addition,
the coupling of spatio-temporal multidimensional information and
the large amount of datamake effective utilization to improvemodel
performance another key issue.

This article proposes a multi-graph convolutional spatio-
temporal collaborative prediction method for power load
integrating multi-dimensional information. By constructing a
multi-graph network, the spatial information of each consumer’s
load is fully captured to improve prediction accuracy. First, based
on historical load, weather, and electricity prices, the maximum
information coefficient (MIC) is used to analyze the correlation of
load sequence and to construct input data that integrates multi-
dimensional information. Then, the network adopts a dilated
convolution and gatingmechanism to parallelly capture the practical
information of temporal loads. Moreover, based on the actual
location connection between consumers and the similarity of
electricity loads, a physical, virtualmulti-graph convolutionalmodel
is established to capture various interrelationships between loads in
space. T the performance of the proposed model is tested on real
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FIGURE 3
Graph convolution operation: (A)The form of convolution, (B)Convolutional operation.

electricity datasets and compared with other baseline models to
verify its effectiveness.

The innovation of this paper is as the following:

• The gated casual convolution is adopted to accelerate the
temporal convolution, which can capture correlation of time
series information.
• We proposed a physical virtual multi-graph convolutional
network to fully capture electricity load evolution
patterns. The physical graph contains connection
and distance data, which is based on realistic grid
topology. The virtual graphs are built based on human
domain knowledge.

Moreover, the main contribution of this paper is to use
MIC to obtain the correlation of nonlinear influencing factors,
which reduces input data redundancy. Specifically, this method
filters out irrelevant spatio-temporal data and selects high MIC
values as input, reducing the interference of input on the
prediction results.

2 Spatio-temporal network of
electricity loads

2.1 Spatial and temporal load structure

Stable electricity promotes the development of social
production, and electricity is transmitted through power grid lines.
The power consumption fromdifferent spatial locations is ultimately
integrated into the power load of different grid nodes.As shown
in Figure 1, different nodes in the grid topology correspond to
electricity demand generated in different actual geographic areas.
The load in an area corresponding to a grid node is regarded as
the information of the nodes in the graph G, and the connection
between grid nodes is regarded as the edges between the nodes in
the graphG. We use the graphG(V,E,A) to describe the spatial load
information, where V is a node, E is an edge, and A is an adjacency
matrix, representing the connection between nodes. Each node in
the graph G generates data with a total number of features F in a
time interval. As shown in Figure 1, each time slice is a spatial graph
that records the feature information of all nodes in the time interval.
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FIGURE 4
Spatio-temporal convolution.

2.2 Definition of parameters and sets for
electricity load prediction

Let the electricity load generated by each node in the graph in
a future time period be the forecast data. Let x f ,it be the features
f generated by node i in the time interval t, then Xc = (x f

1,…,x
f
τ)

be the features f generated by all nodes in time period τ, and
χ = (X1,…,Xτ) be all features generated by all nodes in time period
τ. It is assumed that the load yit = x

f ,i
t generated by a node i at a

certain time t, that is, all the characteristics χ including the load
generated by all nodes within a certain time period are known.Then,
the electricity load Ŷ = (ŷ1,…, ŷN) for a certain time period in the
future is predicted where ŷi is the electricity load during a certain
time period of the node.

2.3 Maximum information coefficient

Themain factors influencing load prediction are historical loads,
weather conditions, time, and electricity prices (Quilumba et al.,
2014; Sun et al., 2022). Table 1 summarizes the load influencing
factors. Although applying influencing factors directly to neural
networks as input data can also predict loads, excessive data
increases computational complexity and speed. Using proper
methods to select input data can improve prediction accuracy and
accelerate computational speed. Therefore, this paper applies the
maximum information coefficient theory for feature extraction.

The maximum information coefficient was proposed by Reshef
based on mutual information theory (Reshef et al., 2011). MIC can
analyze the linear and nonlinear correlation between two variables

and screen parameters that affect load. The mutual information
between sequences Xa and Ya can be expressed as Eq. 1.

Im (Xa,Ya) = ∑
xa∈Xa

∑
ya∈Ya

p(xa,ya) log2
p(xa,ya)

p(xa)p(ya)
(1)

where Im(Xa,Ya) represents mutual information, and p(⋅) is the
probability density function, xa ∈ Xa and ya ∈ Ya.

Let Da = {(xa,i,ya,i), i = 1,…,n} be the set of binary data, and
divide the value domains of Xa and Ya into segments pa and qa in
grid Ga. Define the maximum mutual information of Da in grid Ga
to be Imi that is calculated using the Eq. 2.

Imi (Da,pa,qa) =max Im (Da ∣ Ga) (2)

where Da ∣ Ga represents the data Da divided by grid Ga.
Therefore, the maximum information coefficient is formulated

as Eq. 3.

Imic (Xa,Ya) = max
paqa<B(n)

Imi (Da,pa,qa)
log2 (min(pa,qa))

(3)

where Bn is the limit on the number of grid divisions, generally
Bn = n

0.6 (Reshef et al., 2011).

3 Spatio-temporal multi-graph
prediction network

The spatio-temporal power prediction model mainly comprises
a data embedding layer, a spatio-temporal prediction layer, and
an output layer. The spatio-temporal prediction layer contains a
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FIGURE 5
Spatio-temporal multi-graph prediction network structure.

temporal convolutionmodule and a spatial multi-graph convolution
module to capture the spatio-temporal correlation features of the
data and the spatio-temporal dependencies of the data.

3.1 Data embedding layer

The data embedding layer consists of a convolutional network
that transforms the input feature volume into high-dimensional
data suitable for the spatio-temporal prediction layer. A standard
convolutional network consists of three parts: convolutional,
pooling, and fully connected layers, where the convolution is
defined by Eq. 4

yc = f (x
∗
inωc + bc) (4)

where xin is the input to the convolutional layer; ωc is the
convolutional kernel, i.e., the weight parameter; bc is the bias value;
f(⋅) is the convolution operation; is the activation function; yc is the
output value. In this paper, linear convolution is used to linearly
transform the input data into high dimensional data by convolution
operation, i.e., no activation function is used.

3.2 Spatio-temporal prediction layer

Mining the dependencies of loads in the time dimension can
help improve prediction accuracy, and choosing an appropriate
network structure is crucial. Recurrent neural networks have the
structure of loops that accept data from themselves and other
neurons and are particularly suitable for processing time-series
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FIGURE 6
The overall flowchart.

TABLE 2 Parameters of the model.

Parameters Values Parameters Values

Chebyshev polynomial order 3 Batch size 32

Iterations 200 Learning rate 0.0001

Dropout 0.3 Dilation factor 1, 2, 4, 8

Convolution kernel 2 Optimizer Adam

data. However, deeper networks take a long time to compute
results, and they are prone to gradient explosion and vanishing
problems. In this paper, we choose convolutional neural networks
with strong robustness and faster computation to capture themutual
characteristics of data in time.

3.2.1 Causal convolutional networks
Causal convolution is a special convolutional neural network

that utilizes only past data in its computation. Its expansion factor
can be controlled to quickly increase the receptive field, thus
capturing load data for a longer period. As shown in Figure 2,
causal convolution does not rely on data from future moments
for computation compared to ordinary convolutional networks. In
addition, stacking more layers of the null convolution can result in
an exponential increase in the receptive field, covering more input
data and speeding up the computation. The causal convolution can

be expressed by Eq. 5 (Wu et al., 2019).

m(t)∗xd =
K−1

∑
s=0

m (s)xd (t− qds) (5)

where m is the convolution kernel of the null convolution; s is
the serial number of the convolution kernel; K is the size of the
convolution kernel; xd ∈ R

T is the input sequence; t is the moment;
qd is the dilation factor, i.e., the interval between two factors.

3.2.2 Gated mechanisms
Gating methods can selectively control the rate of data

accumulation to avoid memory saturation. Combining the gating
mechanism with a casual convolutional network can capture the
complex relationship between loads in the temporal dimension,
which has a significant advantage in processing sequential data. The
output of the gating operation can be expressed as Eq. 6.

hg = gh (ω
∗
h xg) ⊙ gs (ω

∗
s xg) (6)

where xg is the input data; ωh and ωs are the learnable
model parameters; gh(⋅) is the hyperbolic tangent function;
gs(⋅) is the Sigmoid function; ⊙ is the operator for multiplying
elements; hg is the output value. The temporal convolution
module mined the features and correlations between power
loads of the time series using gated null convolution network
and fed the processed data into the spatial multi-graph
convolution module.
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3.3 Spatial multi-graph convolution
module

In order to exploit the dependencies between electric loads in
space, this section proposes a representation and calculationmethod
of spatial loads based on spectral graph theory. Then, a physical-
virtual multi-graph convolutional network based on the spatial
location of loads and load similarity is built to represent the different
dependencies of loads in the spatial dimension.

3.3.1 Spectral convolution
The graph load data is non-Euclidean space data, and each

load node has a different connection relationship with other nodes.
Moreover, the convolutional network is based on the translation
invariant operation of the data, which cannot be directly applied
to the non-Euclidean space. Bruna et al. (2014) defined graph
convolution operation in spectral space based on graph theory and
expressed the graph structure as a mathematical form. As a result,
the non-Euclidean space data is transformed into Euclidean data for
convolution operation.

In spectral theory, graph information can be represented by a
Laplace matrix L. The equation is L = D −A and the standard form
is L = Iℕ −D

1
2AD

1
2 whereA is the adjacency matrix,D is the degree

matrix, and IN is the identity matrix. Let αi,j and di,j be the elements
of A and D, and i and j be the number of rows and columns, then
di,j = ∑jai,j. Decompose L into eigenvalues, L = UΛUT , where U is
the eigenvector andΛ is the diagonal array of eigenvalues.The graph
convolution operation relies on the Fourier transform, defining the
Fourier transform of the information on the graph x as x̂ = UTx and
x̂ as the value of x in the spectral domain. Accordingly, the Fourien
inverse transform of x is x = U x̂. By the convolution theorem, the
Fourier transform of the convolution of signals is equal to the
product of their individual Fourier transforms (Shuman et al., 2013).
Therefore, it is possible to multiply the Fourier transform of the
information on the graph by the information in the spectral domain
and then invert the transformation to obtain the convolution result
on the graph, as shown in Eq. 7.

x∗Gz = U ((U
Tx) ⊙ (UTy)) = UgθU

Tx (7)

where x and z are the signals on the graph; ∗G is the graph
convolution; gθ is the convolution kernel, and gθ = U

Tz
The graph convolution operation can be realized based on Eq. 7.

However, calculating the Laplace matrix is cumbersome when the
graph size is large. Therefore, the Chebyshev graph convolution
approximation is used to solve the convolution kernel to simplify
the operation:

x∗Gz = UgθU
Tx ≈

M−1

∑
m

θmTm (L̃)x (8)

where θm is the Chebyshev polynomial coefficients; Tm(L̃) is the
Chebyshev polynomial, Tm(L̃) = 2L̃Tm−1(L̃) −Tm−2(L̃) and T0(L̃) =
1, T1(L̃) = L̃; L̃ = 2L/λmax − IN; and m is the order of Chebyshev
polynomial.

The information in the graph is updated by the order
information of itself and its neighboring nodes M− 1, and the
depth of the transmitted information can be adjusted by controlling
the maximum order M. In the actual calculation, the value of

L = IN −D
− 1

2AD−
1
2 is dispersed, so it is generally replaced

D̂−
1
2 ÂD̂−

1
2 , where Â = A+ IN and D̂ are the degree matrices of

Â (Yan et al., 2021).
An example of graph convolution operation is shown in Figure 3.

Figure 3A is form of convolution, and the right side shows the
convolution on non-Euclidean space. Figure 3B shows the spectral
convolutional operation. Given a 6-bus grid, the adjacency matrixA
and degree matrix D are obtained based on the grid. Then, we can
get D−

1
2AD−

1
2 . Given the input data xct and convolution kernel gθ1,

the result of graph convolution xct ∗Gz can be obtained.
The representation of the convolutional results on the network

is further enhanced by the activation function ReLU:

hf = gr(
M−1

∑
m

θmTm (L̃)x) (9)

where gr is the activation function ReLU and hf is the spatial
convolution output.

3.3.2 Multi-graph construction
Different dependencies are implied between loads at different

locations in space. The load relationship implied by the different
interconnections and distances of electric loads in different regions
is called neighborhood dependence, and the relationship implied
by the different load similarities due to the different patterns of
electricity use is called load correlation. In order to mine the
proximity dependence and load correlation of electric loads at each
location in space, a physical connectivity map, location distance
map, and virtual correlation map are constructed.

1) Physical connection graph: The connection matrix is
established based on the connection relationship between the
lines where the power loads are located at each location, i.e., the
interconnections of the nodes in the grid topology. The element of
this matrix can be defined as Eq. 10.

aai,j =
{
{
{

1, node i isconnectedtonode j

0, else
(10)

2) Positional distance graph: A distance matrix is created based
on the distance of the nodes where each power load is located Ad.
The element of this matrix can be defined as Eq. 11.

adi,j =
{{{
{{{
{

exp(−
d2i,j
ε2d
), di,j ≥ ρd

0, di,j < ρd

(11)

where adi,j is the element in Ad; di,j is the distance between node i
and node j; ɛd is the matrix threshold parameter; ρd is the distance
threshold parameter.

3) Virtual similarity graph: A similarity matrix is created based
on the similarity between the electrical loads at each location As

(Shi J. et al., 2023). The element of this matrix can be defined as Eq.
12, and the similarity between the load of node i and the load of node
j can be calculated by Eq. 13.

asi,j = exp(−ρsc
d
i,j) (12)

cdi,j = √
T

∑
t=1
(xlt,i − x

l
t,j)

2 (13)
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where asi,j is the element in As; ρs is the parameter controlling the
decay rate; cdi,j is the similarity between the load of node i and the
load of node j; xlt,i and x

l
t,j are the loads of node i and node j at time t.

ThematricesAa,Ad andAs are used to obtain the corresponding
La,Ld andLs by bringing them into the standard computational form
of the Laplace matrix, respectively.The Laplace matrices are brought
into Eqs 8, 9 to obtain the convolution results of the loadings in
each graph.

3.3.3 Multi-graph fusion
The graph fusion method is the key to graph neural networks,

and a simple average summation of each graph will reduce the
prediction performance. In this paper, we use the convolution results
of each graph to be fused into a new graph by weighted summation
to reflect the degree of influence of each graph in space. The
weights of each graph are normalized using the Softmax function
formulates as Eq. 14.

was,wds,wss = gso (wa,wd,ws) (14)

where gso is the Softmax function; wa, wd and ws are the learnable
weight parameters of the physical connectivity graph, positional
distance graph and virtual association graph, respectively; was, wds
and wss are the weights of the graphs after normalization, which
indicate the influence degree of each graph in the new graph.

The weight parameters are multiplied with the results of the
convolution of each graph and then summed, as shown in Eq. 15.

hnew = was ⊙ h
a
f +wds ⊙ h

d
f +ws s ⊙ h

s
f (15)

where hnew is the convolution result of the new graph; haf , h
d
f and

hsf are the convolution outputs of the physical connectivity graph,
the positional distance graph and the virtual association graph,
respectively.

The data features are extracted through the spatio-temporal
convolution module, and the spatio-temporal convolution process
is shown in Figure 4.

3.4 Output layer

The output layer is connected to the spatio-temporal prediction
layer, which converges and transforms the passed results into the
desired dimensions. The use of linear convolution can effectively
transform the data dimension, and the selection of an appropriate
activation function can extract the nonlinear features of the data.
Due to the large degree of nonlinearity and high dimensionality of
the data, this paper adopts the ReLU activation function and linear
convolution twice in series, i.e., the predicted power load value is
finally obtainedwithout losing toomuch information each time.The
prediction step size of this network is adjustable, i.e., the load value
can be obtained at one time for more than one moment.

3.5 Spatio-temporal multi-graph
prediction network structure

Before inputting the data, the resulting data should be blank-
filled, outliers removed, and corrected (Azeem et al., 2021). The

Input: Data set of {Xi}M; the size of Xi is i ∗ f ∗ t;

i is node, f is feature, and t is time.

Output: Multi-graph convolution model result Ŷ;

1:   for each epoch do

2:   for each batch do

3:   Linear convolution: Conv(Xi) → Xstart;

4:   Initial value 0→ Xres;

5:   for each spatio-temporal convolutional

layer do

6    if first layer then

7:     Xstart→ Xin

8:    else

9:     Previous Xres is current Xin: Xres→ Xin;

10:    end if

11:    Gated casual convolution:

Conv(Xin) ⊙Conv(Xin) → Xw;

12:    Skip connection: Yskip +Xskip→ Yskip;

13:    Graph 1 convolution: G1conv(Xskip) → XG1;

14:    Graph 2 convolution: G2conv(Xskip) → XG2;

15:    Graph 3 convolution: G3conv(Xskip) → XG3;

16:    Graphs fusion: XG1 +XG2 +XG3→ Xres;

17:    Residual connection: Xres +Yres→ Yres;

18:   end for

19:   Linear convolutions: Conv(Conv(Yres)) → Yout;

20:   Obtain MAE of network;

21:   Adjust hyperparameters;

22:  end for

23: end for

24:   Obtain result of Ŷ.

Algorithm 1. Spatio-temporal multi-graph prediction algorithm.

features such as historical electric load power, weather, and date are
filtered usingmaximum information coefficient analysis to select the
most relevant features as input data into the prediction network.The
structure of the spatio-temporal multi-graph prediction network is
shown in Figure 5, and the corresponding multi-graph convolution
algorithm is shown in Algorithm 1.

The prediction network mainly comprises a data embedding
layer, a spatio-temporal prediction layer, and an output layer. The
spatio-temporal prediction layer consists of multiple temporal and
spatial convolutional blocks stacked together, enabling the network
to capture data correlations at different temporal levels. Different
spatio-temporal convolutional blocks converge different levels of
information to the output layer through skip connections. In
addition, residual connections are utilized in the blocks to accelerate
convergence and to address possible degradation of the deep
network (He et al., 2016).The overall flowchart is shown in Figure 6.

3.6 Evaluation indicators

The performance of the prediction network is evaluated by
applying Mean Absolute Error (MAE) IMAE calculated by Eq. 16,
Mean Absolute Percentage Error (MAPE) IMAPE calculated by Eq.
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17, Mean Squared Error (MSE) IMSE calculated by Eq. 18, and Root
Mean Squared Error (RMSE) IRMSE calculated by Eq. 19. MAE is
the difference between the predicted load and the actual load, which
truly reflects the prediction error, and in this paper, we choose the
Mean Absolute Error as the loss function of the network.

IMAE =
1
TM

T

∑
t=1

M

∑
m=1
|yt,m − ŷt,m| (16)

IMAPE =
1
TM

T

∑
t=1

M

∑
m=1
|
yt,m − ŷt,m

yt,m
| × 100% (17)

IMSE =
1
TM

T

∑
t=1

M

∑
m=1
(yt,m − ŷt,m)

2 (18)

IRMSE = √
1
TM

T

∑
t=1

M

∑
m=1
(yt,m − ŷt,m)

2 (19)

where yt,m and ŷt,m are the real and predicted values of load at time
t node m respectively; m is the node number; and M is the total
number of nodes.

4 Case study

4.1 Data set and parameters

In this paper, we use the 10 kV voltage level electric load dataset
of a region inNorthChina, including loads, weather conditions, date
information and electricity prices, as shown in Table 2. All data have
been desensitized and normalized to [0, 1]. The dataset contains a
total of 10 bus data with a time range of 1 January 2020 to 1 June
2021, with a time interval of 60 min and a total of 24 points per day.

The predictive network model is implemented in Python
software’s PyTorch learning library. In the debugging process of
the network, considering the size of the data volume, the data
set is taken as 70% as the training set, 20% as the validation set,
and 10% as the test set. After several comparative analyses and
comprehensive prediction performance, the model parameters are
set as shown in Table 2. Among them, the Dropout means to make
the neurons not work in a certain proportion, which can make the
model generalization ability stronger. In addition, the model is a
single-step prediction, i.e., all bus loads at the next moment are
predicted using all bus data of the previous day. The framework of
the model of this paper is illustrated in Figure 7.

4.2 Feature selection results

The historical characteristics of Table 1 were analyzed by the
maximum information coefficient analysis method to calculate the
contribution of the influence of each characteristic quantity on the
load, and the results are shown in Figure 8.

The meanings of the letter labels in the graph
are shown in Table 1, and label I is the predicted day load. It
can be seen that the MIC of historical load, time and electricity
price with forecast daily load is high, which represents a strong
correlation. And the MIC between electricity price and time is
1, which represents a high correlation with cyclical changes in time

and electricity price on a daily basis. Due to the higherMIC between
electricity price and load, electricity price was chosen as one of the
input features.TheMIC for weather conditions is generally between
0.2 and 0.4, with temperature and humidity having a greater impact
on load. Too much input data will reduce the computing speed of
the model, in order to have better performance of the prediction
network, this paper takes the threshold of MIC as 0.3. In summary,
the input features are historical load, temperature, humidity and
electricity price.

4.3 Analysis of forecast results

The neighbor matrices in the physical connection graph,
location distance graph and virtual association graph of the
prediction model are shown in Figure 9. It can be seen that since
some of the nodes are not directly connected to each other, the
elements of the connection matrix are 0. To control the sparsity
of the graph, the distance matrix elements of the two nodes that
are too close to each other are set to 0 to improve the speed of
operation. The similarity matrix elements vary as the nodes have
different power usage patterns. We adjust the parameters ρs to make
the distribution of the adjacency matrix more uniform. Applying
the proposed spatio-temporal multi-graph prediction model, the
metrics for evaluating power load forecasts at 10 nodes are shown
in Table 3.As can be seen from Table 3, the mean absolute error
varies from node to node due to their different load characteristics,
and the overall MAE is 0.0136. The node 4 has a smaller MAE
and a larger MAPE due to its small load power and high degree
of fluctuation. However, node 6 and node 7 have irregular daily
power loads with high uncertainty, resulting in larger MAPE
and MSE. Node 3, node 5, node 8 and node 9 have smooth
and distinctly cyclical load variations and have higher predicted
MAPE. Node 1 has a higher load MAE and MAPE than node
5, but low MSE and RMSE, which indicates a higher degree of
deviation from the individual results of the predictive model at
node 5. Overall, the multigraph convolutional model predicted
a MAPE of 5.26%.

4.4 Model comparison

To further validate the performance of the spatio-temporal
multi-graph prediction network, it is compared with the following
four widely used prediction networks:

1) Historical Average (HA): this model takes the average of the
most recent load data as the predicted value and is one of the
most classical statistical methods;

2) Gated Recurrent Unit (GRU): this network is a type of
recurrent neural network that employs a gating mechanism
to filter out the information in the long term sequences, thus
improving the prediction performance;

3) Convolutional Neural Network-Long Short-term Memory
Network (CNN-LSTM): this network utilizes a convolutional
neural network to extract valid information from the input
data. Due to the ability of LSTM to handle longer time series,
they are integrated into the CNN for prediction;
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FIGURE 7
The framework of the model.

FIGURE 8
MIC of each feature.

4) Spatio-Temporal Convolutional Network (STGCN): this
network consists of gated linear units to extract temporal
features, graph convolutional networks to extract spatial
features, and multiple spatio-temporal blocks superimposed
to form a prediction network (Yu et al., 2017).

The prediction results are shown in Table 4. It can be seen that
the performance of the multi-graph convolutional prediction model
proposed in this paper are satisfactory. Since HA relies on simple
averaging of historical loads to obtain the results, it is unable to

capture the nonlinear factors of power loads in the time series,
and thus has the lowest prediction accuracy. The GRU, a neural
network with memory function, captures the correlation features of
loads in the time series, with a MAPE of 6.62%, which reduces by
1.44% compared with that of HA, and achieves a better result. CNN-
LSTM utilizes the convolutional network to process the feature
information of the input load, which further reduces the MAPE by
0.31%.STGCN, a classical graph neural network, predicts a MAE of
0.0152 and a MAPE of 5.63%, which outperforms the traditional
neural networks and statistical models. This is due to the fact
that graph convolutional networks can process non-Euclidean load
information and capture the hidden information of spatial loads.
Due to the use of physical-virtual multi-graph structure to mine the
different evolutionary relationships of loads in space, the proposed
method has a MAPE of 5.26%, which is the best performance. The
predicted MAE and MAPE evaluation metrics for each comparison
method at each node load are shown in Figure 10.

It can be seen that the MAE and MAPE of each method are
differentduetothedifferentfluctuationpatternsofelectric loadsateach
node. HA is a classical statistical model with large prediction errors in
predicting more volatile loads such as nodes 4, 6 and 7. While deep
learning models such as GRU and CNN-LSTM have less difference
inMAPE at each node.The prediction networks with graph structure
such as STGCN and MGCN can learn the potential relationship of
each node and can further reduce the prediction error of each load.

4.5 Ablation experiments

In order to analyze the contribution of each module in the
proposed physical virtual multi-graph network structure, we design
ablation experiments. We compare the proposed model with the
following variants:
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FIGURE 9
The adjacency matrices of the graphs: (A) 10 kV power grid topolpgy, (B) Convolution matrix, (C) Distance matrix, (D) Similarity matrix.

TABLE 3 Load prediction results of each node.

Node MAE MAPE/% MSE/1e-5 RMSE

Node 1 0.00409 4.60 2.37 0.00487

Node 2 0.0219 4.09 75.34 0.0274

Node 3 0.00835 3.00 10.35 0.0101

Node 4 0.006794 9.61 7.52 0.00867

Node 5 0.00391 2.13 2.60 0.00510

Node 6 0.0359 8.13 194.23 0.0440

Node 7 0.0279 11.73 108.43 0.0329

Node 8 0.0101 2.93 15.54 0.0124

Node 9 0.000963 2.48 16.93 0.0130

Node 10 0.0169 3.87 63.41 0.0251

Average 0.0136 5.26 49.67 0.0222

• MGCN: The model is the proposed network, which contains
the multi-graph and temporal convolutional network
simultaneously.

TABLE 4 Load forecasting results of different methods.

Model MAE MAPE/% MSE/1e-5 RMSE

HA 0.0225 8.06 104.84 0.0323

GRU 0.0192 6.62 86.58 0.0294

CNN-LSTM 0.0171 6.31 60.76 0.0246

STGCN 0.0152 5.63 52.79 0.0229

MGCN 0.0136 5.26 49.67 0.0222

• PC-GCN: In this variant, we retain the physical connection
graph and remove the other graphs.
• P-GCN: Similarly, the virtual similarity graph is
removed, retaining the positional graph and the physical
connection graph.
• VS-GCN: This variant adopts virtual similarity matrix as
features of graph, without employing the physical connection
and distance graph.
• TCN: Different with above variants that contain the graph
network, the variant is constructed with only temporal
convolutional network.

The performances of different variants is shown in Table 5.
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FIGURE 10
MAE and MAPE of each node: (A) MAE of load, (B) MAPE of load.

In Table 5, TCN obtains the MAPE of 6.40, which is similar to
the performance of GRU and CNN-LSTM. Due to the lack of graph
modules, they can only capture temporal features of data.When there
is a physical graph in themodel, the error in load prediction decreases
significantly. In addition, We can observe that the MAE of P-GCN is
very close to that of the STGCN. This indicates that physical graphs
can extract hidden patterns of loads in the spatial dimension. We
further combine a virtual similarity graph with the convolutional
network,which achieves superior performance.Notably, theproposed
virtual graph based on human domain knowledge can fully explore
the evolution patterns of electricity loads.

5 Conclusion

In order to fully explore the correlation of various modes
between the power loads of each node, this paper proposes a

multi-graph convolutional spatio-temporal synergistic prediction
method for power loads by fusing multi-dimensional information,
and the theoretical analysis and the results of the arithmetic
examples show that:

1) The maximum information coefficient method can effectively
analyze load prediction influencing factors, select the most
relevant features and reduce the redundancy of input
information;

2) The non-Euclidean load information is processed by using
spectral graph theory, and the constructed physical-virtual
multi-graph convolutional network mines multiple spatial
relationships between loads at each node, enriches the spatial
characteristics of loads and improves the prediction accuracy;

3) Compared with statistical models, traditional neural networks
and graph convolution models, the multi-graph spatio-
temporal prediction network proposed in this paper has
high prediction accuracy, which verifies the effectiveness of
the method;

Although this paper has made some progress in constructing
multi-graph convolution for spatio-temporal load prediction, the
graph convolution network needs to be improved further: 1)
The superior performance of the graph convolution network
requires multiple rounds of manual hyperparameter tuning. More
generalized and concise prediction networks can be considered for
future adoption to improve the model’s quality. 2) The electricity
demand periodically changes over a large period. For example,
the electricity load during the New Year is usually similar.
We can add modules to learn load characteristics if there is
continuous electricity data for every year. 3) We will design more
general prediction models to achieve robust performance with
incomplete data.
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Short-term wind power
prediction and uncertainty
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EM-GMM
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Ruoping Liu

Grid Planning and Research Center, Guangdong Power Grid Co., Ltd., Guangzhou, China

Due to the fluctuating and intermittent nature of wind energy, its prediction is
uncertain. Hence, this paper suggests a method for predicting wind power in the
short term and analyzing uncertainty using the VDM-TCN approach. This method
first uses Variational Mode Decomposition (VDM) to process the data, and then
utilizes the temporal characteristics of Temporal Convolutional Neural Network
(TCN) to learn and predict the dataset after VDM processing. Through
comparative experiments, we found that VDM-TCN performs the best in
short-term wind power prediction. In wind power prediction for 4-h and 24-h
horizons, the RMSE errors were 1.499% and 4.4518% respectively, demonstrating
the superiority of VDM-TCN. Meanwhile, the Gaussian Mixture Model (GMM) can
effectively quantify the uncertainty of wind power generation at different time
scales.

KEYWORDS

wind power prediction, time sequence convolutional neural network (TCN), variational
mode decomposition (VDM), Gaussian mixture model (GMM), uncertainty analysis

1 Introduction

Wind power, being the world’s most significant new energy development focus, has seen
global annual new wind power installations exceeding 50 GW since 2015. In 2019 alone, the
newly installed capacity increased by 19% compared to 2018, reaching 60.4 GW (GWEC,
2022). Due to its inherent characteristics, accurate prediction of wind power is essential for
grid-connected operations to ensure the smooth functioning of the power grid (Zhou et al.,
2023). Hence, wind power prediction holds utmost importance.

In current wind power prediction research, the prediction time scale for wind power
varies due to the impact of scheduling strategies (Zhou et al., 2023). In the long-term and
medium-term prediction, wind power resources are generally predicted throughout the year
to target wind power siting (Desalegn et al., 2023). At the same time, the installed capacity of
wind farms is configured according to the range of prediction results. In addition, the results
of short-term and ultrashort-term predictions over a 3-day period are usually used for
bidding for feed-in services for wind power to guarantee power quality (Hong et al., 2019),
and the results of wind power predictions are used for day-ahead or intraday scheduling of
the grid (Jia et al., 2024).

In the realm of wind power prediction research, the prediction technology for wind
power under various scenarios is commonly categorized into physical prediction and
statistical prediction (Gu et al., 2021). Physical prediction studies typically involve the joint
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simulation of atmospheric conditions (Zheng et al., 2022), and wind
turbine behavior to forecast wind power generation over a specific
time frame (Yang Y. et al., 2023). Statistical prediction techniques
(Wang et al., 2024), which are typically applied to vast amounts of
wind power data, utilize neural networks, multiple regression
methods, and deep learning algorithms to model and predict
wind power for future time periods (Meng et al., 2024).

As the depth of learning in intelligent algorithms continues to
increase, the field of wind power prediction extensively employs
these algorithms to develop novel prediction systems (Zhang et al.,
2023). Within machine learning prediction models, temporal
characteristics are commonly leveraged to assimilate historical
wind power generation data (Sun and Zhao, 2020). Some
researchers utilize historical and future forecast data from
numerical weather predictions (NWP) to establish correlations
between past inputs and outputs (Hong et al., 2019; Medina and
Ajenjo, 2020). Wei et al. addressed the issue of low accuracy in ultra-
short-term wind power prediction by proposing the use of LSTM for
learning and prediction. They compared it with the traditional
ARIMA model and found a significant improvement in
prediction accuracy (Wei et al., 2023). Zhang et al. (2024)
proposed a CNN-BiLSTM algorithm theory for multi-layer wind
farm prediction, demonstrating a higher level of accuracy compared
to traditional methods. While machine learning techniques have
been widely applied in wind power prediction research, most studies
have focused on their use for predictive purposes.

However, the accuracy of wind power prediction is influenced
by various factors, and most individual algorithms are unable to
address these challenges (Lin et al., 2024). Therefore, in recent
years, hybrid algorithms have been commonly utilized in wind
power prediction research (Zhu et al., 2023). For example, Yuan
et al. introduced a hybrid model that combines the Least Squares
Support Vector Machine (LSSVM) and the Gravitational Search
Algorithm (GSA) for wind power generation prediction. They used
the GSA algorithm to optimize the parameters of the LSSVM
model in order to improve the prediction quality (Yuan et al.,
2015). Zhou et al. (2019) proposed a K-Means-LSTM network
model for wind power prediction and a bandwidth-optimised non-
parametric kernel density estimation (KDE) model for
probabilistic interval prediction of wind power. The K-Means
clustering method is used to form different clusters of wind
power impact factors to generate a new LSTM sub-prediction
model. As well as non-parametric kernel density estimation
generates intervals with narrower prediction intervals, higher
interval coverage and higher prediction accuracy. Another study
(Yuan et al., 2015) proposed a wind power prediction model based
on the hybrid GWO-Copula approach to address the issue of wind
power prediction distribution. It was observed that incorporating
Copula with GWO (Grey Wolf optimization algorithm)
significantly enhanced prediction accuracy without additional
complexity. Additionally, Tu et al. developed an ARIMA-
GARCH-T model to tackle the intricate timing challenges in
wind power prediction, rectifying timing learning flaws and
enhancing prediction accuracy (Tu et al., 2021). While the
aforementioned research has made significant progress in
optimizing wind power model parameters and improving model
learning, there remains a limited focus on feature information
processing.

In order to further enhance its ability of time series information
extraction as well as anti-interference generalization, a combination
of machine learning and load decomposition algorithms is often
used (Zhang et al., 2018). To address the issue of poor model
learning effectiveness, Deng D and colleagues developed a
prediction method based on EEMD-GRU-MLR utilizing data
characteristics. The Ensemble Empirical Mode Decomposition
(EEMD) algorithm was employed for data decomposition,
followed by evaluation of the prediction performance (Deng
et al., 2020). EEMD serves as an enhanced version of Empirical
Mode Decomposition (EMD). This technique necessitates the
addition of white noise to the original signal to address spectral
overlap, decay fluctuations, and trend information present in EMD.
It filters out minor non-noise component fluctuations in the initial
data, leading to irreversible loss of information. Consequently, the
algorithm exhibits inherent limitations (Papazoglou et al., 2023).

Comparatively speaking, the signaling principle of the VMD
algorithm is not complex, and the computational load is significantly
smaller compared to EMD and EEMD. Moreover, its theoretical
foundation is more robust. Unlike its predecessors, VMD does not
rigidly define the meaning of each component but allows for
independent selection of the number of components, enabling
decomposition based on specific requirements (Kousar et al.,
2022). However, new challenges have emerged with this
algorithm. As each dimension of the data needs to be
decomposed, predicted, and reconstructed separately, the
computational time required remains substantial. To address
issues related to limited algorithm accuracy, high computational
complexity, lengthy model training times, low model generalization,
and insufficient information extraction, this paper proposes a
prediction method based on VDM-TCN for achieving high-
precision wind power predictions.

Analyzing the uncertainty of wind power prediction is crucial. In
uncertainty analysis methods, it can be divided into parametric
methods and non-parametric methods. Parametric methods are
based on point prediction models and assume the form of error
distribution. However, this method may have limitations when
dealing with diverse error distribution characteristics. In contrast,
non-parametric methods use non-parametric estimation methods,
do not need to assume the form of the target distribution, and can
more accurately express the prediction error distribution, improving
the analysis accuracy. For the uncertainty of wind power prediction,
commonly used confidence interval methods are used for qualitative
and quantitative analysis. The calculation of confidence intervals for
uncertainty in wind power prediction can use parametric methods,
non-parametric methods, and the decomposition and superposition
of uncertainty factors. These methods help to better understand and
address the uncertainty of prediction errors.

To ensure power grid stability, accurate assessment of future
uncertainties in wind power bidding is crucial. While existing studies
have delved into wind power prediction and uncertainty analysis, further
exploration is needed to characterize multi-scale wind power prediction
and uncertainty analysis. This study introduces a new wind power
prediction framework based on VDM-TCN-EM-GMM to
comprehensively investigate the relationship between the law and
uncertainty of wind power prediction. By utilizing the VDM
algorithm for data feature decomposition, the TCN algorithm for
data prediction learning, and applying EM-GMM for qualitative and
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quantitative analysis, this study redefines the performance of wind power
prediction uncertainty across multiple time scales, elucidating
uncertainty patterns in wind power prediction at different time
scales. The research aims to thoroughly examine uncertainties in
wind power prediction, aiming to establish a robust prediction
framework and provide valuable insights in this field. The process is
shown in Figure 1.

(1) The key contributions of this study include the development
of the comprehensive VDM-TCN-EM-GMM model,
addressing challenges in quantitative wind power
prediction and standardizing the process of wind power
prediction uncertainty analysis. Compared to existing
prediction algorithms and uncertainty analysis models, this
framework can evaluate multi-time scale wind power
prediction models comprehensively, enhancing the stability
and accuracy of prediction results.

(2) Additionally, an in-depth investigation into prediction
patterns and uncertainty characteristics across different
time scales in various wind farms has been conducted,
offering valuable data support and theoretical guidance for
accurate wind power prediction in the future, bringing
important insights for the development and application of
the wind power industry.

Section 2 of this paper will introduce the principles and
structures of the TCN model, the EM-based mixture Gaussian
distribution model, and the confidence interval calculation
model. Section 3 will present example analyses of the predictions
for a wind farm using different models and time periods, along with
uncertainty analysis and a comparison of the uncertainties in the
confidence intervals. Finally, this study will be summarized
in Section 4.

2 VDM-TCN model principle

The VDM-TCN model combines the advantages of variational
mode decomposition (VDM) principles and time convolutional
neural network (TCN) in a hybrid network. The VDM
component decomposes the input wind power feature dataset
into different modes, allowing the model to capture various
fluctuation patterns present in the data. These modes are then
fed into the TCN component, which utilizes temporal
convolutional layers to learn the temporal dependencies and
relationships of the wind power data features. The integration of
VDM for mode decomposition and TCN for temporal modeling
enhances the learning effectiveness of TCN, thereby improving
prediction accuracy.

2.1 Principles of the TCN model

Temporal Convolutional Networks (TCNs) represent a neural
network architecture specifically crafted for handling sequential
data. TCNs employ one-dimensional convolutional layers to
capture temporal relationships present in the input data.
Through the utilization of dilated convolutions, TCNs can
significantly enlarge the receptive field without a notable rise in
the parameter count. This capability enables TCNs to effectively
model extensive dependencies within the input sequence.
Furthermore, TCNs integrate residual connections to aid in the
training of deeper networks and address the issue of vanishing
gradients (Yang S. et al., 2023).

In this model, the wind power feature dataset X �
x1, x2, x3.....xt{ } always corresponds to the wind power

FIGURE 1
The VDM-TCN-EM-GMM technical process.

Frontiers in Energy Research frontiersin.org03

Peng et al. 10.3389/fenrg.2024.1404165

118

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1404165


generation dataset O � o1, o2, o3.....ot{ }. At the same time, an
intermediate hidden layer H � h1, h2, h3.....ht{ } is introduced. All
outputs satisfy the causal condition restriction, i.e., the current
output yt is only related to x1, x2, x3.....xt{ }, and is not related to
the “future” input xt+1, xt+2, xt+3.....xt+T{ }. This is also in line with
most of the time-series models in real life. This is consistent with
most real-life applications, where future states are predicted with
only historical data.

The relationship in the output can be represented as Eq. 1:

o1, o2, o3.....oT � f x1, x2, x3.....xT( ) (1)

What sets TCN apart from CNN models is that it
incorporates both causal convolutions and dilated
convolutions. Based on the actual data types and
distributions, the network architecture of TCN for wind
power prediction models in this study is depicted in Figure 2.
The dimension of wind power input for x1, x2, x3.....xt{ } is 10,
and output for O � o1, o2, o3.....ot{ } is 1.

2.1.1 Causal convolutional layer
In a time convolutional neural network, a causal convolutional

layer ensures that each output element depends only on past input
elements, In current wind power prediction model, this primarily
refers to the correspondence between the wind speed, wind
direction, temperature, and other data input at time t and the
wind power generation at time t. This means that the layer does
not have any connections to future input elements, preventing
information leakage from the future. This property is crucial for
tasks where the model should not have access to future information,
such as in time series prediction or sequence modeling. The hollow
causal convolution used in this paper combines the temporal
constraints of causal convolution with the characteristics of
dilated convolution in terms of skip sampling, ensuring that the
output at the current time step depends only on the preceding states
and is independent of the subsequent states (Guo et al., 2023). The
formula for hollow causal convolution calculation is as follows Eq. 2.

f x( ) � o*f( )x � ∑k−1
t�0

f i( )Xo−di (2)

Where X is the input, f is the filter, d and k are the dilation
factor and convolution kernel size respectively. In the wind power
prediction model based on the TCN algorithm in this study, the
dataset’s dilation factor is set to 8, and the convolution kernel is
set to 20.

This paper incorporates dilated convolutional layers into the
constructed TCN model. The expansion convolutional layer plays a
crucial role in capturing complex patterns and relationships within
the temporal data by increasing the richness of the learned
representations. This process enables the network to extract more

FIGURE 2
Structure of temporal convolutional network.

FIGURE 3
Diagram of residual block.
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intricate features and enhance its ability to learn and generalize from
the input data.

2.1.2 Residual convolutional layer
Due to the large-scale data feature quantities and datasets required

for wind power prediction training, using deeper networks can lead to
the problem of gradient explosion. However, residual convolution can
also improve the learning effectiveness of deep convolution. The residual
convolutional layer in TCN (Temporal Convolutional Network) plays a
crucial role in capturing long-range dependencies in sequential data. By
incorporating residual connections, the network is able to learn the
residual information between the input and output of each layer,
allowing for easier optimization and training of deep networks. This
enables the network to learn more effectively from the input data and
improve the overall performance of themodel. Furthermore, the residual
convolutional layer in TCN allows for the efficient extraction of temporal
features from sequential data by applying convolutional operations with
shared weights across different time steps. This helps the network to

capture complex patterns and dependencies in the data, leading to better
generalization and prediction capabilities.

To address the channel width issue of wind power prediction data in
matrices, thewidth of residual tensors is adjusted using 1*1 convolutions.
As shown in Figure 3, in order to achieve complete coverage of the
receptive field, residual blocks need to be incorporated into the TCN
model. The width of the receptive field increases twofold with the
addition of each residual block. Also, in order to avoid the saturation
problem with multi-layer residuals, we increase the sparsity of the
network by adding a corrected linear unit (ReLU) function to each
layer of residuals. The calculation formula are as follows Eqs 3, 4:

r � 1 +∑n−1
i�0

2 × k − 1( ) × bi (3)

ReLU x( ) � max 0, 1( ) (4)

In this context, r represents the receptive field, k denotes the
kernel size, and b stands for the dilation base.

FIGURE 4
Wind power prediction process for VDM-TCN-EM-GMM.

FIGURE 5
Annual wind farm power data.
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Finally, F(X) is added to X to obtain the output value y as in
Eq. 5.

O � Activation x + f x( )( ) (5)

where f(x) denotes the output of the convolutional layer and
Activation(.) denotes the activation function.

In terms of loss function design, this study uses the mean
squared error (MSE) function to measure according to the actual
characteristics of the training data as well as the specific network
structure, and optimises the overall model by minimising the above
error. The details are shown in Eq. 6.

MSE � 1
N

∑N
i�1

yi − y′
i( )2 (6)

In this study, we found through experimental comparisons that
RMSPropOptimizer can better ensure the stability of the error gradient of
temporal convolutional neural networks during the training process, and
it canmodify the traditional gradient accumulation into an exponentially
weighted moving average, so that it can adaptively regulate the change of
the learning rate. Therefore, this study uses RMSPropOptimizer as an
optimiser for TCN networks to better optimise the network model
parameters. The formulas are given in Eqs 7, 8.

Sdw � βSdw − 1 − β( )dw2 (7)
W � W − α

dw����
Sdw

√ (8)

where β is the smoothing constant, dw refers to the square of the
gradient and W is the learnable parameter.

FIGURE 6
4-h wind power prediction results.
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2.2 Variational modal decomposition

VDM(VariationalModeDecomposition) is a data-driven technique
used for signal processing and analysis. It decomposes a signal into a set
of modes that represent different oscillatory components of the signal.
The process ofVDM involvesfinding a set ofmodes that best capture the
variations in the signal. This is achieved by formulating an optimization
problem where the modes are obtained by minimizing a cost function
that measures the differences between the original signal and its
reconstructed version using the modes. The key idea behind VDM is
to decompose the signal into a finite number of modes that are
orthogonal to each other and capture different frequency
components of the signal. This allows for a more efficient
representation of the signal and can help in identifying and analyzing
the underlying dynamics of the signal (Zhao et al., 2023).

Therefore, VDM needs to first use the Hilbert transform to
calculate the analytic signal of each modal function uk(t), then mix
the analytic signals of each mode with the central frequency e−jwkt,
and finally demodulate the signals using Gaussian smoothing and
the gradient square criterion to obtain the bandwidth of each
decomposition mode. The formula are as follows Eqs 9, 10:

min ∑K
k�1

‖βt β t( ) + g

πt
( )λk t( )[ ]e−gkwt‖22⎧⎨⎩ ⎫⎬⎭ (9)

s.t.∑K
k�1

uk � f (10)

Furthermore, the optimization is enhanced by effectively solving
through the utilization of penalty function α and Lagrange
multiplier β.

L uk{ }, wk{ }, λ( ) � α∑K
k�1

‖βt β t( ) + g

πt
( )λk t( )[ ]e−gkwt‖22+‖f t( ) − λk t( )[ ]‖22

+ γ t( ), f t( ) −∑K
k�1

λk t( )⎡⎣ ⎤⎦ (11)

The alternating direction multiplier method is used in VMD to
solve the variational problem of Eq. 11 by alternately updating ukn+1,
ωk

n+1, and λk
n+1 to solve the improved Lagrangian expression

“saddle point”, i.e., the optimal solution of the constrained
variational model in Eq. 9. where the modal components of the
solution are new uk and centre frequency ωk, respectively:

ûk
n+1 �

f̂ ω( ) − ∑
i≠k

ûi ω( ) + ûi ω( )
2

1 + 2α ω − ωk( ) (12)

ωn+1
k � ∫∞

0
ω ûk ω( )| |2dω

∫∞
0
ûk ω( )| |2dω (13)

2.3 EM-GMM model

As wind power prediction is affected by dataset errors as well as
characterisation factors, a strong uncertainty is reflected in the
prediction results, which is also known as error fluctuation. In
order to ensure the competitive bidding of electricity and the
stable operation of wind power, the uncertainty of wind power
needs to be described to qualitatively and quantitatively analyse the
prediction error of wind power to control the fluctuation range of
the uncertainty error. Therefore establishing an error distribution
for wind power prediction as well as establishing confidence
intervals for wind power prediction is the best way to quantify
the uncertainty of wind power prediction errors. The distribution
models based on the combination of genetic algorithms and GMM
are able to optimise these Gaussian mixture parameters using the
selection, crossover and mutation operations of genetic algorithms
to help the GMM fit the data distribution better. The advantage of
this approach lies in its ability to fully leverage the global search
capability of genetic algorithms while utilizing the flexible modeling
capability of GMM, resulting in a more accurate description of the
data distribution. Additionally, this combined approach can
overcome the drawback of GMM being prone to local optima,

TABLE 1 Comparison of RMSE and MAE values for different prediction
models in February.

RMSE SDE MAE

VDM-TCN 1.4999 1.3345 1.2225

CEEMDAN-TCN 2.0777 0.5046 1.7029

GRU 2.3859 2.2493 1.9842

BILSTM 2.4608 2.3237 2.0019

LSTM 2.7103 1.9744 2.1992

TCN 2.2041 2.1749 1.4753

4 h PSO-BP 3.9827 1.3007 3.7643

BP 4.6284 1.3607 4.4238

WNN 6.1861 1.2952 6.049

VDM-TCN 4.4518 4.2343 3.0803

CEEMDAN-TCN 5.0996 4.9920 4.0605

GRU 5.7955 5.7254 4.1027

BILSTM 5.5582 5.5575 4.0593

LSTM 5.9286 5.8766 4.3306

TCN 5.3731 5.1953 4.1386

Feb 24 h PSO-BP 7.2572 5.5628 6.5352

BP 7.3778 5.7249 6.6567

WNN 10.3357 5.1188 9.6935

VDM-TCN 6.9254 6.9144 4.9209

CEEMDAN-TCN 7.5615 7.2244 6.2156

GRU 9.0590 7.8007 7.4141

BILSTM 8.8224 7.1544 7.8590

LSTM 9.7594 7.6034 8.176

TCN 7.8642 7.8526 6.3630

72 h PSO-BP 10.2066 7.1924 8.483

BP 10.4728 7.1958 8.8248

WNN 17.6777 7.5986 16.0872
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thereby improving the robustness and generalization ability of
the model.

2.3.1 Gaussian mixture models
GMM is a probabilistic model that represents a

combination of multiple Gaussian distributions. Its structure
is a method of approximating the probability distribution of a
variable by linear mixing using a certain number of
Gaussian functions.

Since each Gaussian component in the GMM mixture model is
characterized by its mean and covariance matrix, these matrices
determine the shape, position, and orientation of the distribution. At
the same time, the data is generated by a mixture of Gaussian
distributions under multiple weights and selections. Therefore, it is

necessary to perform iterative training based on the EM algorithm,
which estimates the parameters of the Gaussian components by
maximizing the likelihood of the observed data, thus obtaining the
optimal Gaussian parameter values. GMM is commonly used for
clustering and density estimation tasks, aiming to divide the data
into different groups based on the underlying distribution of the
data. By using a combination of simple Gaussian components to
capture the complex structure of the data, it is represented as
follows Eqs 14, 15:

P Xt( ) � ∑K
i�1
ωiμ Pt, γi,∑i

( ) (14)

μ Pt, γi,∑i
( ) � 1

2π( ) n
2 ∑i

∣∣∣∣ ∣∣∣∣ 12 exp −1
2
Pt − γi( )T∑−1

i
Pt − γi( )( ) (15)

FIGURE 7
24-hours wind power prediction results.
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where n is the dimensionality of the pixel point in the high

dimensional space, ωi is the weight ∑K
i�1
ωi,t � 1, μi and m are the

mean and covariance matrices.
The parameter estimation of GMM is generally optimised by

using the algorithm of EM for nonlinear probability functions
during the training process, which greatly improves the
implement ability of the algorithm under the premise of
guaranteeing the accuracy. The specific principle is as follows.

Assuming xj � (ωj, μj,∑j), j � 1, 2,/, K, there are a total ofK
Gaussian models for the GMM, and all the parameters of the GMM
are estimated through the sample set X: Θ � (x1, x2,/, xK)T, then
the sample P is the log function with e as the base in Eq. 12, i.e., it can
be written as ln, but the vast majority of representations of the log-
likelihood function are still expressed in Eq. 16:

C P Θ|( ) � log∏T
m�1

HK Pi( ) � ∑T
m�1

log∑R
j�1
ωjμj Pi; γj,∑j

( ) (16)

where T is the total number of samples, the parameters of the mixed
model appropriate to the current sample set will maximise the log-
likelihood function of Eq. 13, i.e., the estimation of the statistical
parameters of the mixed model satisfies Eq. 17.

Θ0 � argmax
θ

C Θ( ) (17)

The EM algorithm is initially a statistical method that is an
iterative algorithm. Assuming an initial estimate of the GMM
parameters as Θ(0), and assuming that the mixed model
parameters for the q step iteration are Θ(q), the q + 1 step
iteration process is:

(1) Calculate the expectation (E-Step)

Calculate the posterior probability that each data belongs to the
j − th class of distribution according to the parameters Θ(q) of the
current mixture model (Eq. 18):

FIGURE 8
72-h wind power prediction results.
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ϖ q+1( )
ij � ω

q( )
j μj Pj;Θ q( )( )

∑K
m
ω

q( )
r μj Pj;Θ q( )( ); 1≤m≤T, 1≤ j≤R (18)

(2) Maximising expectation (M-Step)

After obtaining the posterior probability that each data belongs
to each subclass, Eq. 14 is solved using gradient descent to obtain an
estimate of Θ at step q + 1.

Update the weights (Eq. 19):

ω a+1( )
j � ∑N

i�1
ϖ q+1( )

ij (19)

Update mean values (Eq. 20):

μ
q+1( )

j �
∑N
i�1
ϖ q+1( )

ij Xi

∑N
i�1
ϖ q+1( )

ij

(20)

Update covariance matrix (Eq. 21):

∑ q+1( )
j

�
∑N
i�1
ϖ q+1( )

ij Xi − μ
q+1( )

j( ) Xi − μ
q+1( )

j( )T

∑N
i�1
ϖ q+1( )

ij

(21)

Repeat steps (19), (20), (21) until ‖Θ(q+1) − Θ(q)‖ sufficient
hours to stop.

TABLE 2 Comparison of RMSE and MAE values for different prediction
models in August.

RMSE SDE MAE

VDM-TCN 1.0344 0.9949 0.3687

CEEMDAN-TCN 1.2949 1.5188 0.9967

GRU 2.5317 1.2042 2.2517

BILSTM 3.2332 2.5696 2.6362

LSTM 3.3593 2.9562 2.7157

TCN 1.3011 1.2643 1.0480

4 h PSO-BP 4.3548 3.1014 4.0159

BP 4.6529 3.2495 3.8920

WNN 7.5868 2.8236 7.0418

VDM-TCN 3.3869 3.3771 2.6583

CEEMDAN-TCN 3.4552 3.3031 2.6473

GRU 4.5569 4.1813 3.4885

BILSTM 4.2636 3.7984 3.1175

LSTM 4.6174 4.5279 3.7009

TCN 3.5913 3.4681 2.9193

August 24 h PSO-BP 4.9861 4.2973 3.7836

BP 5.2140 4.7103 3.8039

WNN 9.5918 6.3797 7.6712

VDM-TCN 6.9690 6.0642 5.7049

CEEMDAN-TCN 7.2858 6.6284 6.3456

GRU 8.9160 7.8879 6.5391

BILSTM 8.1683 7.2741 6.0462

LSTM 9.9912 9.097 7.461

TCN 7.9496 6.1311 6.7782

72 h PSO-BP 10.5957 7.6008 7.8764

BP 11.0357 7.7612 8.3986

WNN 23.2394 11.1917 20.5747

TABLE 3 MW level t-test distribution.

Time Model Error RMSE

p t p t

72 h

CEEMDAN-TCN 1.02E-07 −5.37 0.006 −3.12

TCN 3.01E-14 −7.24 0.0021 −3.61

BILSTM 3.02E-12 −7.01 0.0006 −4.73

GRU 8.24E-09 −5.14 0.0002 −5.12

LSTM 2.71E-12 −8.02 0.0007 −4.14

PSO-BP 6.84E-23 −17.17 0.0003 −5.22

BP 3.78E-23 −10.35 4.10E-05 −6.20

WNN 7.77E-42 −12.91 3.53E-04 −4.21

24 h

CEEMDAN-TCN 0.0121 −1.24 0.0178 −1.93

TCN 3.82E-04 −2.78 0.0104 −2.11

BILSTM 1.12E-04 −4.55 0.0108 −2.45

GRU 0.0187 −1.98 0.005 −3.56

LSTM 3.21E-05 −4.12 0.0013 −3.69

PSO-BP 4.10E-10 −6.57 3.56E-03 −4.58

BP 1.24E-08 −4.77 4.42E-03 −4.61

WNN 5.05E-27 −12.15 1.58E-04 −5.14

4 h

CEEMDAN-TCN 0.3212 −0.23 0.0121 −2.78

TCN 0.2457 −0.48 0.0456 −2.54

BILSTM 0.196 −0.68 0.0014 −3.45

GRU 0.3257 −0.47 0.0031 −3.47

LSTM 0.8796 −0.0023 2.98E-04 −4.23

PSO-BP 0.02678 −1.57 2.12E-04 −5.74

BP 0.23747 −1.18 1.47E-04 −5.78

WNN 4.75E-04 −3.15 4.45–06 −7.01
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2.3.2 Confidence intervals based on GMM
Based on the use of GMM, this study incorporates confidence

interval calculation to quantitatively describe the uncertainty of
predictions.

The wind power prediction error is the difference between the
predicted value of wind power Pfore and the actual value of wind
power Pture at a certain point in time, as shown in Eq. 22.

e � Pfore − Ptrue (22)

The formula is as follows:

P αlow < α< αup( ) � 1 − θ (23)

In Eq. 23, [αlow , αup] is the refers to the upper and lower limits of
the confidence interval. 1 − θ is the reliability of the true value in
the interval.

For uncertainty analysis modeling, it is challenging for overall
error modeling or single-point error modeling to consistently
demonstrate high reliability and adaptability at all times.
Therefore, this study employs standard predictive analysis
methods and Gaussian Mixture Model (GMM) for
comprehensive analysis to enhance the clarity of predictions in
uncertain scenarios.

The overall calculation steps are: Step1 Firstly, use the GMM
method to establish the corresponding wind power error probability
density map and calculate the wind power error probability
density curve.

Step2 Under the given confidence level, find a shortest
interval, so that the probability of the deterministic
prediction error value falling into the interval is equal to the
confidence level.

Step3 Use the (αup and αlow) to derive the upper and lower limits
of the wind power.

2.4 Data preprocessing techniques and
predictive evaluation indicators

There are many factors affecting the prediction results in
wind power prediction, among which the accuracy of the data
and the size of the data volume often determine the prediction
results, so it is necessary to carry out relevant preprocessing of
historical data.

2.4.1 Wind power data screening
In the actual wind power generation process, due to turbine

maintenance or shutdown, the power generated will be negative
or zero value, as well as non-normal circumstances NWP value
sudden change, such as the wind speed is greater than 40 m/s.

TABLE 4 Comparison of RMSE results for VDN-TCN models with different residual convolution and number of VDM decompositions.

VDM0-TCN0 VDM0-TCN10 VDM6-TCN10 VDM6-TCN20

Count 10 10 10 10

Mean 10.98884 10.54142 10.26444 9.87834

Std 2.0306 1.9514 0.9786 0.4066

Min 10.77 10.1686 9.7089 9.385

25% 10.799475 10.3333 10.0377 9.70555

50% 10.8646 10.6576 10.3815 9.8457

75% 11.078975 10.716475 10.517675 10.02035

Max 11.5925 10.8061 10.5914 10.4822

FIGURE 9
The 72-h probability density distribution of wind power
prediction error under different distribution models.

FIGURE 10
The 24-h probability density distribution of wind power
prediction error under different distribution models.
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These data in the learning and prediction process will
inevitably affect the learning effect, taking into account these
factors, this paper in the data preprocessing of the data to
be deleted.

2.4.2 Data standardisation
In order to improve the model’s fitting results and reduce errors,

the article conducted standardization processing with the following
formula (Eq. 24):

xnorm � x − min

max − min
(24)

Where xnorm is the standard value of wind power;max indicates
the maximum value of wind power data; min indicates the
minimum value.

2.4.3 Evaluation index of deterministic
prediction error

The root mean square error (RMSE) and mean absolute error
(MAE) are used to evaluate the wind power forecast model. The
formula are as follows Eqs 25–28.

RMSE �

����������������
1
N

∑N
t�1

Ptrue − Pfore( )2
√√

(25)

PRMSE �

���������������
1
N ∑N

t�1
Pture − Pfore( )2

√

Pcap
(26)

MAE � 1
N

∑N
t�1

Ptrue − Pfore| | (27)

FIGURE 11
Distribution of confidence intervals for the 4-h prediction of the VDM-TCN model.
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PMAE �
1
N ∑N

t�1
Ptrue − Pfore| |
Pcap

(28)

Pcap is the total installed capacity of the wind farm. PRMSE and PMAE

is the ratio of the RMSE and MAE to the installed capacity.

2.4.4 Error evaluation indexes of uncertainty
analysis methods

The coverage rate is used to evaluate the quality of the
confidence intervals, as shown in Eq. 29.

ρp � 1
m

× ∑m
i�1
ρi (29)

where ρi is the coverage factor.
The technical route for short-term prediction and uncertainty

analysis of wind power based on TCN-EM-GMM proposed in this
paper is shown in Figure 4.

3 Case study

3.1 Data sources

The wind power data originates from a wind farm located in
northern China, at 114°E longitude and 41°N latitude. The wind
farm has an average elevation of 1,600 m and is equipped with
90 wind turbines, each with a power capacity of 1.5 MW. The
entire dataset of a wind farm with a total installed capacity of
180 MW was chosen for prediction. The rotor diameter of the
wind turbines is 70.5 m, and the tower height is 67 m. The wind
power prediction data used in this study includes actual output
power data from the wind farm’s Supervisory Control and Data
Acquisition (SCADA) system, as well as Numerical Weather
Prediction (NWP) data for the wind farm. The time resolution
of the actual output power data is 15 min. The NWP data is
sourced from the National Meteorological Center, with a spatial
resolution of 1 km. Therefore, there are multiple spatial grid

FIGURE 12
Distribution of confidence intervals for the 24-h prediction of the VDM-TCN model.
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points with NWP data within the wind farm, and the average of
these grid points’ NWP data is used in this study. NWP data
attributes include wind speed, wind direction, air pressure,
temperature, and humidity, with a time resolution of 15 min.
The experimental results are also in accordance with
IEC standards.

As shown in Figure 5, we selected data from the entire year of
2010 and the first half of 2011 as the study data, with a time granularity
of 15 min. To evaluate the effectiveness of the algorithm, we examined
data from two specific intervals (February 10–13, 2011, andAugust 1–3,
2011) to understand their patterns across different time scales and
seasons. The input data dimension is 10, which includes 6*n
decomposed data groups from VDM-decomposed wind speed, and
1*n feature data groups for wind direction, air pressure, temperature,
and humidity. The output dimension is 1*n wind power generation
data, where n equals the number of data points at 15-min intervals
required for training and prediction.

3.2 Wind power prediction and its
uncertainty analysis

3.2.1 Wind power prediction analysis
The results of wind power generation prediction for 4-h

intervals on February 4th and August 3rd in winter are presented
in Figures 6A, B. The red solid line represents the VDM-TCNmodel.
It can be observed that the VDM-TCN model aligns most closely
with the actual values represented by the black solid line, followed by
the CEEMDAN-TCNmodel. Furthermore, based on the values of 4-
h RMSE and MAE displayed in Table 1, it is evident that learning
conducted after VDM decomposition leads to a reduction in RMSE
of over 0.8% compared to learning without decomposition.
Additionally, the TCN model outperforms the LSTM, BP, PSO-
BP, and WNN models in the 4-h prediction. The WNN model
exhibits the poorest predictive performance, yet still remains within
7%. This can be attributed to the utilization of wavelet functions in

FIGURE 13
Distribution of confidence intervals for the 72-h prediction of the VDM-TCN model.
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the activation function of the WNN, which results in suboptimal
handling of the features of wind power data.

(Figures 7A, B) illustrates the 24-h wind power prediction
outcomes for the 4th of February and 3rd of August during the
winter season. The results indicate that VDM-TCN exhibits the
highest prediction accuracy throughout the 24-h wind power
prediction process. We observed a significant improvement in
the prediction accuracy of the TCN algorithm after decomposing
the wind power characteristic dataset, with an increase in RMSE
of 0.3% compared to the undecomposed dataset. Additionally,
the decomposition of the VDM algorithm exhibited higher
adaptability than the CEEMDAN algorithm, showing superior
predictive performance in February and August. From Figure
7A, it can be observed that, apart from VDM-TCN, the models
exhibit significant discrepancies between the predicted results
and the ground truth within the first 50 data points. This
disparity can be attributed to the utilization of VDM for data
decomposition, wherein certain anomalous frequency band data
are extracted post decomposition. Consequently, the TCN
model, by incorporating the anomalous characteristics of this
data during the fitting process, achieves a more stable
prediction outcome.

The forecast results for 72 h in Figure 8A, B show that in the 3-
day forecast, VDM-TCN still maintains a significant advantage with
better stability and more stable predicted values. TCN also
demonstrates high predictive performance. However, data
decomposed by VDM shows better learning and prediction
compared to not using it. As shown in Figure 8B, although the
learning and prediction effect of VDM on TCN is greatly sacrificed,
some outliers still occur in small frequency bands. Through research,
it was found that this is due to certain errors in the NWP values, and
most importantly, the shutdown of some wind turbines in the wind
farm due to wake effects and equipment damage reduces the
matching degree between data and wind speed. This will also be
a focus for future improvements.

Based on the comprehensive analysis of Figures 6–8 and
Tables 1, 2, it is evident that VDM-TCN demonstrates superior
predictive performance across various time scales. Additionally,
the TCN model exhibits high stability during predictions, thus
validating the effectiveness of the VDM-TCN model in wind
power prediction. These findings provide data support for

subsequent uncertainty analysis, with all RMSE prediction
results falling within 8%.

The author employed a t-test to assess the significance of
differences in prediction errors and RMSE results for May data
from the same sample. A p-value ≤0.05 led to the rejection of the null
hypothesis, indicating a significant difference in the predictive
outcomes of the two models. Conversely, a p-value ≥0.05 resulted
in the acceptance of the null hypothesis, suggesting no significant
difference between the models’ predictions. As presented in Table 3,
there were statistically significant differences between the VDM-
TCNmodel and othermodels in terms of 72-h and 24-h forecasts for
both prediction error and RMSE, with negative t-values, indicating
that the mean prediction error and RMSE of the VDM-TCN model
were lower than those of the other models, thus confirming its
superior predictive performance.

In order to better verify the accuracy and applicability of the
model, we conducted ablation experiments for the VDN-TCN
model with different residual convolution and number of VDM
decompositions. Through Table 4, it can be clearly seen that the
stability and accuracy of the prediction results are increasing
with the addition of VDM and the introduction of residual
convolution.

3.2.2 Wind power forecast and quantitative
distribution analysis

Although the prediction errors of wind power generation can be
qualitatively analyzed, it is still challenging to quantify them. In
order to characterize the distribution of prediction errors in wind
power generation quantitatively, this study utilizes GMM estimation
to establish confidence intervals.

To calculate the confidence intervals for wind power generation
prediction, the computation of probability density distribution is
first required. In this study, a mixture of Gaussian model (GMM)
and non-parametric kernel density estimation method are employed
to obtain the probability density distribution of wind power
prediction errors. Figures 9, 10 illustrate the probability
distributions of wind power generation forecast errors for 72 h
and 24 h. It can be observed that the non-parametric kernel density
estimation method is more accurate than GMM in capturing trends
across a wide range of distributions, but falls short in capturing
certain abrupt changes at small scales compared to GMM. This
discrepancy arises from the non-parametric kernel density
estimation method’s use of smoothing kernel functions to fit
observed data points for modeling the true probability
distribution curve, which is susceptible to bandwidth and
data influences.

In order to better demonstrate the superiority of the GMM
algorithm, we chose non-parametric kernel density estimation
(NPKDE) and Gaussian modelling (GM) to contrast with the
GMM algorithm and compare the uncertainty ranges of the
predictions of different algorithms.

From the data, it can be observed that for Figures 11–13, the
probability of the prediction values for the entire wind energy
decreases with confidence intervals greater than the current
confidence level. However, some forecasted values are not
included in the confidence intervals due to actual output
power changes caused by NWP errors, changes in operating
states or gusts, and other factors. Furthermore, as the

TABLE 5 Coverage rate of confidence interval for wind power based on
VDM-TCN model.

month Confidence
level

72 h (%) 24 h (%) 4 h (%)

97.5 98.26 97.93 100

95 96.53 95.87 100

February 90 90.28 90.72 94.12

85 86.46 85.54 88.24

97.5 98.26 97.94 100

95 96.18 95.88 100

August 90 92.71 91.76 94.12

85 88.19 90.72 88.24
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confidence level increases, the width of the confidence interval
also increases, with a higher probability of encompassing the
forecasted values, which aligns with the principles of confidence
interval calculations.

As shown in Table 5, we observe that the prediction intervals of
the VDM-TCN model have high coverage rates at different
confidence levels. Additionally, the VDM-TCN demonstrates
high stability across various time ranges. Its coverage area meets
the basic requirements of including the true values. This also proves
that the GMM algorithm can accurately quantify the requirements
of wind power prediction uncertainty.

4 Conclusion

This study innovatively proposes a method for short-term wind
power prediction and uncertainty analysis using the VDM-TCN-
GMM approach, which facilitates multi-scale short-term predictions
of wind power via the VDM-TCN model. By applying variational
mode decomposition technology to decompose the NWP, this
method enhances feature diversity and improves data
assimilation. Furthermore, the TCN model is utilized to identify
and extract relationships among sequential features, thereby
facilitating learning within a time-series framework. The
Gaussian mixture model is also used to qualitatively analysis the
uncertainty of wind power prediction and establish confidence
intervals for quantitative analysis, and the following conclusions
are drawn:

(1) The proposed VDM-TCN model not only has a temporal
recursive nature, but also has an obvious advantage in feature
extraction learning, which makes the VDM-TCN model have
an obvious advantage in predicting wind power with time
series characteristics.

(2) The prediction errors of the VDM-TCN model are all within
8%, with an improvement in RMSE prediction performance
of over 1%.

(3) GMM is able to quantitatively calculate the distribution range
and quantitative analysis of the prediction uncertainty in
wind power generation. The coverage of the confidence
interval is larger than the confidence level in 4 h, 24 h,
and 72 h wind power prediction.

Although we have carried out multi-scale prediction and
uncertainty analysis of wind power using VDM-TCN and EM-
GMM algorithms, there is still a large amount of work that needs to
be carried out for further research, and some of the much-needed
work is as follows: 1) Wind power prediction needs to be further
explored in terms of the impact of multi-source feature datasets on
wind power prediction. 2) More algorithms need to be introduced
into the field of wind power prediction to demonstrate the
prediction performance of different models in different
environments. 3) In terms of wind power uncertainty analysis,
wind power uncertainty models will be further developed in the
future to provide more accurate qualitative and quantitative analyses
of wind power prediction.
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Bad data identification method
considering the on-load tap
changer model
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Yuxuan Ma2 and Tianlei Zhang2
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With the connection and integration of renewable energy, the on-load tap-
changer (OLTC) has become an important device for regulating voltage in
distribution networks. However, due to non-smooth and non-linear
characteristics of OLTC, traditional bad data identification and state estimation
methods for transmission network are limited when applied to the distribution
network. Therefore, the nonlinearity and droop control constraints of the OLTC
model are considered in this paper. At the same time, the quadratic penalty
function is introduced to realize the fast normalization of the tap position. It
proposes a two-stage bad data identification method based on mixed-integer
linear programming. In the first stage, suspicious measurements are identified
using projection statistics and maximum normalized residual methods for
preprocessing the measurement data. In the second stage, a linearization
approach utilizing hyhrid data-physical driven is applied to handle nonlinear
constraints, leading to the development of a bad data identification model
based on mixed-integer linear programming. Finally, the proposed
methodology is validated using a modified IEEE-33 node test feeder example,
demonstrating the accuracy and efficiency of bad data identification.

KEYWORDS

bad data identification, on-load-tap-changer, hyhrid data-physical driven,mixed integer
linear programming, linearization

1 Introduction

In the context of distribution network state estimation, the integrity of the estimation
process can be compromised by the presence of erroneous data. Such data may arise from a
variety of sources, including heterogeneous measurement instruments, sensor failures, and
communication disruptions. These inaccuracies have the potential to severely impact the
reliability and accuracy of the state estimation outcomes (Chen et al., 2021). The same time,
With the continuous integration of renewable energy sources, OLTC is increasingly being
utilized in power grid applications every year. It plays an important role in ensuring the safe
and reliable operation of distribution networks and grid dispatching (Ju and Huang,
2023).The relevant parameters of the on-load tap-changer device exhibit nonlinearity and
discreteness in mathematical models, and traditional continuous variable processing
methods may reduce the accuracy of state estimation.

Traditional methods for bad data identification primarily encompass residual search
methods (Handschin et al., 1975; Lin and Abur, 2018; Zhao and Mill, 2018), zero residual
methods (Zhuang and Balasubramanian, 1987), and estimation-basedmethods (Huang and

OPEN ACCESS

EDITED BY

Jinran Wu,
Australian Catholic University, Australia

REVIEWED BY

Yongqiang Kang,
Lanzhou Jiaotong University, China
Zhesen Cui,
Changzhi University, China

*CORRESPONDENCE

Shiyao Hu,
841341970@qq.com

RECEIVED 11 August 2024
ACCEPTED 26 September 2024
PUBLISHED 11 October 2024

CITATION

Hu S, Rong C, Zhang M, Chai L, Ma Y and
Zhang T (2024) Bad data identification method
considering the on-load tap changer model.
Front. Energy Res. 12:1478834.
doi: 10.3389/fenrg.2024.1478834

COPYRIGHT

© 2024 Hu, Rong, Zhang, Chai, Ma and Zhang.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Energy Research frontiersin.org01

TYPE Methods
PUBLISHED 11 October 2024
DOI 10.3389/fenrg.2024.1478834

133

https://www.frontiersin.org/articles/10.3389/fenrg.2024.1478834/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1478834/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1478834/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2024.1478834&domain=pdf&date_stamp=2024-10-11
mailto:841341970@qq.com
mailto:841341970@qq.com
https://doi.org/10.3389/fenrg.2024.1478834
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2024.1478834


Lin, 2004). These approaches are susceptible to errors such as
misjudgment and missed detection. Contemporary techniques for
bad data detection and identification predominantly include
optimization-based and intelligent algorithm-based approaches.
Among these, optimization-based methods have demonstrated a
significant capacity for accurate identification of erroneous
measurement data. A literature (Irving, 2008) proposes a robust
state estimation model based on mixed integer nonlinear
programming (MINLP). This method has high accuracy in
identifying bad data, but lacks precision in estimation.
Additionally, the model is nonconvex, nonlinear, and introduces
a large number of 0/1 integer variables, making it difficult to solve.
When the scale of the system increases, the solution efficiency de-
creases. The Schweppe-type generalized M-estimator with Huber
psi-function (SHGM) is currently a method with good robustness
(Mili et al., 1996). Introduces coefficients that reflect the lever-age
properties, which can suppress the weight of bad data in leverage
points and weaken the effect of bad data residuals in the objective
function. However, it cannot completely filter out the impact of bad
data. Existing methods need further improvement in terms of
computational efficiency, accuracy, and ability to handle bad data.

For state estimation problems involving discrete variables,
modelling and solving based on MINLP methods may have low
convergence and computational efficiency. In order to avoid solving
MINLP problems, in traditional state estimation, OLTC tap
positions are usually treated as continuous variables (Shiroi and
Hosseinie, 2008), which may lead to biases in the estimated results
due to mismatch with the actual operating characteristics of OLTC.
The literature (Korres et al., 2004; Teixeira et al., 1992; Handschin
and Kliokys, 1995) presents, in addition to the traditional treatment
of continuous variables, using rounding or sensitivity analysis to
round the tap positions to integers. These integer values are then
taken as known parameters and used in the state estimation problem
to solve state variables such as voltage magnitude and phase angle.
The literature (Maalouf et al., 2013) develops a mixed integer
quadratic programming model with discrete variables, which can
effectively address the tap position rounding issue with high
accuracy, although the approach is more complex. Furthermore,
the literature (Nanchian et al., 2017) applies a hybrid particle swarm
optimization method to solve MINLP problems that involve discrete
tap positions, but the algorithm has a long computation time and
low efficiency.

To address the challenges of nonlinearity and low efficiency in
bad data identification for OLTC discrete variables, this paper
introduces a two-stage bad data identification method utilizing a
positive curvature quadratic penalty function to facilitate rapid
adjustment of OLTC tap positions. This method enhances
solution efficiency while maintaining the accuracy of
identification. The main contributions are as follows:

1) In order to improve the accuracy of bad data identification, an
optimization-based method for bad data identification is
proposed in this paper. This method can accurately and
effectively identify the presence of bad data in the
measurement data, demonstrating a good
identification accuracy.

2) To cope with the issue of low efficiency in solving traditional
MINLP models due to a large number of discrete and

nonlinear constraints, this paper presents a two-stage bad
data identification model based on mixed integer linear
programming (MILP). In the first stage, all measurements
are distinguished using projection statistics and maximum
normalized residual methods, generating a reduced set of
suspicious measurements. In the second stage, a
linearization model based on hyhrid data-physical driven is
proposed to linearize nonlinear constraints, leading to aMILP-
based bad data identification method that significantly
improves the accuracy and efficiency of bad data identification.

The organizational structure of this paper is as follows: Section 2
introduces the method of identifying leverage points and suspicious
measurement bad data based on projection statistics and maximum
normalized residual method, and obtains the reduction of suspicious
measurement set; Section 3 introduces the traditional MINLP bad
data identification model, and proposes a hyhrid data-physical
driven linearization model considering OLTC constraints, and
constructs a bad data identification model based on MILP;
Section 4 illustrates the experimental at IEEE-33 node test feeder;
Section 5 provides the conclusion.

2 Stage 1: reduction of suspicious
measurement set

In this paper, the reduced suspicious measurement set mainly
consists of two parts. The first part involves the identification of
leverage points through the use of projection statistics, while the
second part involves the identification of suspicious measurements
in non-leverage points using the maximum normalized residual
method. The detailed explanation of the two algorithm processes is
provided below.

2.1 Identification of leveraged
measurements using projection statistics

This subsection describes the mathematical model for
identifying leverage points based on projection statistics. Firstly,
the connotation of leverage points and their impact on state
estimation are introduced. Currently, there are two types of
definitions for leverage points. As shown in Figure 1, the first
type is based on regression model analysis, while the second type
is based on the analysis of diagonal elements of the hat matrix. The
difference between the two methods is as follows: The first type
constructs a factor space composed of the measurement Jacobian
matrix and the measurement vector, obtaining the distribution of
row vectors in each group of measurement Jacobian matrix and the
measurement vector in the factor space, and identifies outliers as
leverage points; the second type is based on residual sensitivity
analysis, namely, determining whether the measurement residual
increases significantly when there is a large measurement error in
the system, and identifying measurements where the measurement
error cannot be positively fed back to the measurement residual as
leverage points.

The first method based on regression model analysis is
introduced as follows. The first-order Taylor expansion is
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performed at the initial value point x0 and the approximate
expression of the measurement error is obtained as follows:

Δzi � HiΔx + ei (1)
Where, Δzi is the error between the true measurement value and

the measurement vector; Hi represents the ith row element of the
Jacobian matrix H; Δx represents the error between the current
estimated value of the state variable and the initial value.

The above Equation 1 is called the regression analysis model in
statistics. Δzi is the output of the regression analysis model, Δx are
the regression variables, and H is the coefficient matrix of the
regression analysis. (Δzi,Hi) represents a point in the factor
space and also indicates the relationship between the
measurement vector and the true value, as well as the state
variables. The regression factor is defined as, in the m × n
dimensional Jacobi matrix, there is a total of m Hi,and the
elements of each Hi correspond to an n-dimensional space
coordinate, then they are all located in this n-dimensional space.
These coordinates are called the corresponding measured factors,
and the n-dimensional space is the factor space of the
regression analysis.

Due to the system network parameters, measurement errors,
and other reasons, abnormal values may appear in the above
factor space, that is, the data is quite different from other data,
and it is shown as outliers in the two-dimensional space. When
outliers appear in the Y-space ’ of the factor space, that is, in the
ordinate axis ’ Δzi ’ direction, they are bad data in the
conventional sense of state estimation. When the outliers
only appear in the ’ X-space ’ of the factor space, that is, in
the ’ hi ’ direction of the abscissa axis, the corresponding
measurement is leverage measurement; when the outliers
occur in ’ X-space ’ and ’ Y-space ’ at the same time, the
corresponding measurement is the leverage measurement bad
data. In the state estimation of power system, the leverage
measurement is determined by the network topology, line
parameters, measurement position and the meter error of the
measurement instrument. Once the system network parameters
are determined, whether the leverage measurement will become
the inherent attribute of a certain measurement will not change

with the change of the state variables and measurement values of
the system.

To identify outliers in the “X-space,” that is, to identify
anomalies in the row vectors of the Jacobian matrix compared to
other row vectors, this can be achieved by calculating distance
measures between the individual row vectors. The Mahalanobis
distance and other similar distance measures based on this can be
used to calculate the distances between the row vectors. The criterion
of such methods is to compare the distance between the row vectors
with a set threshold. Measurements greater than this threshold are
considered leverage measurements. The threshold setting criterion is
to designate measurements that are far from most other
measurements as leverage measurements. However, in cases
where there are multiple leverage measurements in a system,
problems may arise due to mutual masking between the leverage
measurements, causing this type of method to potentially struggle to
accurately identify systems with multiple leverage measurements.

The second method based on residual sensitivity analysis is
introduced as follows. The estimation of the measurement error
based on the least square method is defined as Δẑ, and the matrix
expression is as follows.

Δẑ � H HTR−1H( )−1HTR−1Δz
W � H HTR−1H( )−1HTR−1{ (2)

Where, W is defined as a hat matrix.
When Equations 1, 2, the measurement residual is defined as the

difference between the measured value and the estimated
measurement vector, which can be equivalent to the error
between the estimated measurement error value Δẑ and the
measurement error value.

r � Δz − Δẑ � I −W( )Δz � SΔz (3)
In the equation, I is the identity matrix with diagonal elements

equal to 1 and off-diagonal elements equal to 0; S defines the residual
sensitivity matrix, with its matrix expression shown as shown in
Equation 4:

S � I −H HTR−1H( )−1HTR−1 (4)

FIGURE 1
Dy11 on-load tap changer equivalent model.
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The hat matrix W has the property of idempotence, where the
matrix elements satisfy as shown in Equation 5:

Wii � W2
ii +∑

i≠j
W2

ij (5)

From the above equation, Based on Equation 3, we know that
when the diagonal elements of are close to 0. If the measurement
error is large and the diagonal elements of the multiplication of the
sensitivity matrix remains very small, indicating that the
measurement error cannot be reflected in the residual of the
measurement, then define this type of measurement as a leverage
measurement. Furthermore, the leverage measurement can also be
determined by comparing with its expected value to assess its
relative magnitude.

The expected value is calculated as shown in Equation 6:

�W � E Kii[ ] � 1
m
∑m
i�1
Kii � 2n − 1

m
(6)

If Wii ≫ �W,it is determined that the measurement
corresponding to the diagonal element is determined to be a
leverage measurement. On the basis of empirical experience, it is
generally considered that when Wii ≥ 2 �W, the measurement is a
leverage measurement.

To avoid the difficult identification of leverage measurements
that may arise from the two aforementioned methods, this paper
adopts a method based on projection statistical values for the
identification of leverage measurement. This method circumvents
the calculation problem of the covariance matrix and directly utilizes
the projections of the row vectors of the Jacobian matrix onto the
relevant subspace to identify leverage measurements. First, calculate
the projection statistical values for all measurements, with the
calculation formula as follows:

PSi � max
k

HiHT
k

∣∣∣∣ ∣∣∣∣
Sk

(7)

Where PSi represents the statistical projection value for
measurement i, Hi represents the i-th element of the Jacobian
matrix H; HT

k represents the transpose of the k-th element of the
Jacobian matrix H; Sk represents the covariance of Hi and HT

k .
The calculation formula for Sk is given by the

following equation:

Sk � 1.1926 lomed
i

lomed
j≠i

HiH
T
k +HjH

T
k

∣∣∣∣ ∣∣∣∣ (8)

Where, lomed is defined as [(m + 1)/2], [x] represents the value
of the integer part of n. For example,: m � 6, [(m + 1)/2] � 3.

After calculating the projection statistical values corresponding
to each measurement based on Equations 7, 8, compare them
numerically with the projection statistical cutoff values. Under a
Gaussian distribution, the projection statistics typically follow a Chi-
square distribution, satisfying Equation 9:

bi � χ2v,0.975 (9)

Where, bi is the calculated cutoff value.
When comparing the calculated projection statistical values with

the cut off values, you can determine whether the measurement is a
leverage measurement based on the comparison results.

Di � PSi · /bi( )> 1 (10)

If the calculated projection statistical value D for measurement i
satisfies Equation 10, then measurement i is determined to be a
leverage measurement. The calculation of projection statistical
values only involves simple algebraic operations and does not
require matrix inversion. Therefore, even in cases where the
Jacobian matrix is very sparse, accurate identification of leverage
measurements can be achieved in a system with multiple leverage
measurements.

2.2 Identification of suspicious bad data
usingmaximumnormalized residualmethod

As the calculation of residuals is approximate to the error values,
it may not be able to detect bad data. By using standardized
residuals, a more accurate method for identifying bad data can
be obtained. The normalized residual value for measurement i can
be obtained by dividing the residual value by the corresponding
diagonal element in the residual covariance matrix.

rNi � ri| |���
Ωii

√ � ri| |����
RiiSii

√ (11)

In Equation 11: rNi represents the normalized residual value; R
represents the measurement error covariance matrix; S represents
the sensitivity matrix;Ω represents the residual covariance matrix; r
represents the residual value.

Ωii � Rii − hi · Ti 1≤ i≤m (12)
In Equation 12:Ω is the residual covariance matrix, T � G−1HT,

G is the gain matrix, The calculation formula of G is G � (HTR−1H)
, Rii � σ2i represent the measurement variance matrix of the error i.

When solving the weighted least squares state estimation, the
residual value can be calculated. The calculation formula is as shown
in Equation 13:

r � z − h x( ) (13)
For non-leverage measurement, the normalized residual vector

rN obeys the standard normal distribution, As Equation 14:

rNi ~ N 0, 1( ) (14)

Therefore, the maximum element in rN is compared with the
statistical threshold to determine the existence of suspicious
measurement bad data. The threshold can be selected according
to the required detection sensitivity level.

3 Stage 2: bad data identification based
on mixed integer linear programming

In order to improve the solving efficiency of the traditional
MINLP model, the hybrid data-physical-driven linearization
model is first applied to linearize the non-linear constraints in
the state estimation of on-load tap changer in transformers.
Subsequently, an MILP-based bad data identification model is
constructed. The following provides a detailed description of the

Frontiers in Energy Research frontiersin.org04

Hu et al. 10.3389/fenrg.2024.1478834

136

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1478834


linearization process and the construction of the
optimization model.

3.1 Bad data identification based on MINLP

The traditional MINLP-based bad data identification model is
represented as follows:

min ∑m
i�1
bi (15)

s.t. c x( ) � 0 (16)
hi x( ) − zmi ≥ − 3σ i −Mbi (17)
hi x( ) − zmi ≤ 3σ i +Mbi (18)

In Equations 15–18: c(x) represents equality constraints,
including balanced node phase angle constraints, injection
equality constraints, and load tap transformer droop control
constraints., and hi(x) represents nonlinear measurement
equations, including node voltage amplitude measurement
equations, branch current amplitude square measurement
equations, branch active power measurement equations, and
branch reactive power measurement equations. zmi represents
measurement values, M is a large positive number, taken as
10,000 in this paper. bi is a binary variable. When bi equals 0, it
indicates that measurement i is not bad data, and the corresponding
measurement equation inequality constraint is effective. When bi
equals 1, it can be determined that the measurement corresponding
to i is bad data, and the corresponding measurement equation
inequality constraint is invalid.

The bad data identification method based on mixed integer can
overcome the problem that the residual method is difficult to
identify the bad data of the multi-leverage measurement system,
and has high identification accuracy. However, due to the serious
non-convex nonlinearity of the model, the requirement for the
solver is high, and the computational efficiency of the model
solution is low.

3.2 The hybrid data-physical-driven
measurement equation linearization model

3.2.1 OLTC model considering non-smooth
control characteristics

OLTC includes two parts, “transformer” and “tap changer.”
Unlike traditional transformers, an OLTC sets the tap position as an
unknown variable during modelling. By controlling the amplitude of
the secondary side voltage to meet a certain dead band range, the
OLTC adjusts the tap position to maintain the voltage level at the
load center within a certain error range, thereby enhancing the
power quality for the user. This paper proposes a droop control
model for the OLTC, where the amplitude of the secondary side
voltage and the tap turns ratio of the OLTC align with the droop
control curve.

Define the column name of the nodal association matrix to
represent the node i − a, i − b, i − c, j − a, j − b, j − c,the line name
corresponds to the branch connected to i − a,the branch connected

to j − a,the branch connected to i − b,the branch connected to
j − b,the branch connected to i − c,the branch connected to
j − c,where i、 j represent node; a、 b、 c represented by three
phases of each node. The nodal correlation matrix is as shown in
Equation 19:

node

C � branch

1 −1
1

1 −1
1

−1 1
1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(19)

Where represents the association between a branch and a node,
with its direction flowing out of the node; and represents the
association between a branch and a node, with its direction
flowing into the node.

Taking phase A as an example, according to the law of energy
conservation on the primary and secondary sides of the transformer,
the voltage and current on the winding satisfy the following
relationship:

_Ii−a
_Ij−a

� − 1
ta

_Ui−a
_Uj−a − _Ij−a/ya

� ta

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(20)

Here, _Ii−a and _Ij−a represent the branch currents flowing
through the branches connected by i − a and j − a, respectively.
ya � 1/(Ra + jXa) represents the equivalent internal impedance
of phase A of the transformer, ta represents the turns ratio
of phase A.

The relationship between branch current and node voltage is
expressed as shown in Equation 21:

_Ii−a � − 1
ta
_Ij−a

� − 1
ta

_Uj−a −
_Ui−a
ta

( )ya

� ya

t2a
_Ui−a − ya

ta
_Uj−a

_Ij−a � _Uj−a −
_Ui−a
ta

( )ya

� −ya

ta
_Ui−a + ya

_Uj−a

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

Equation 20 is expressed as a matrix as shown in Equation 22:

_Ii−a
_Ij−a

[ ] �
ya

t2a
−ya

ta

−ya

ta
ya

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ _Ui−a

_Uj−a
[ ] (22)

Similarly, the relationship between the branch current and node
voltage for phases B and C is derived, and the relationship between
the three-phase branch current and voltage is ultimately obtained
as follows:
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_I � Ypr
_U

Ypr �

ya

t2a
−ya

ta

−ya

ta
ya

yb

t2b
−yb

tb

−yb

tb
yb

yc

t2c
−yc

tc

−yc

tc
yc

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

In Equation 23: _I � [ _Ii−a _Ij−a _Ii−b _Ij−b _Ii−c _Ij−c ]T represents
the branch current matrix of the OLTC, _U �
[ _Ui−a _Uj−a _Ui−b _Uj−b _Ui−c _Uj−c ]T represents the node voltage
matrix of the OLTC; Ypr is defined as the original admittance
matrix; tb, tc respectively represent the B and C phase
transformation turns ratios.

By combining the original admittance matrix with the node-
branch incidence matrix, the node admittance matrix is obtained
from the following equation:

Ybus � CTYprC

The branch power connected to each node is calculated using the
node injection power expression as shown in Equations 24 and 25:

PReg
i−φ � Ui−φ ∑

β�A,B,C
Uj−β GReg

ij−φβ cos θij−φβ + BReg
ij−φβ sin θij−φβ( )[ ] (24)

QReg
i−φ � Ui−φ ∑

j�A,B,C
Uj−β −BReg

ij−φβ cos θij−φβ + GReg
ij−φβ sin θij−φβ( ) (25)

GReg
ij−φβ and BReg

ij−φβ represent the real and imaginary parts of the
corresponding elements in the node admittance matrix Ybus of the
on-load tap changer, GReg

ij−φβ represents the mutual conductance
between node i − φ and node j − β, BReg

ij−φβ represents the mutual
susceptance between node i − φ and node j − β; The row name and
column name of Ybus are expressed as: node i − a, i − b, i − c, j − a,
j − b, j − c.

The following describes the modelling of the regulator part
in Figure 2.

The tap position of OLTC are regulated through a control
circuit. When voltage control, direct control cannot be carried
out on the high-voltage circuit. Therefore, voltage and current
transformers are used to construct a simulated circuit - the
control circuit. The control circuit is a proportional model of the
actual line. For example, if the actual line transformer has a
secondary side rated at 2.4 kV, the control circuit operates at a

FIGURE 2
Detailed schematic diagram of OLTC voltage regulator part.
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voltage level of 120 V. By monitoring the voltage of the control
circuit, the voltage at the load center of the actual line can be
determined. If the voltage is below the normal level, indicating that
the voltage at the loading center is below the position of the normal
level, the tap changer is adjusted to raise the voltage at the loading
center. For three-phase supply voltages below 10 kV, the allowable
deviation is 7% of the rated voltage. For single-phase supply voltages
of 220 V, the allowable deviation is +7% and −10% of the rated
voltage. Rkj,eq and Xkj,eq are the proportional impedances of the
actual line in the control circuit and are typically known quantities.

For the control circuit, the current rating of the primary winding
of the current transformer is set asCTP, and the current rating of the
secondary winding is set as CTS (usually taken as 5). The voltage
transformer turns ratio is set asNPT. First, according to Ohm’s law,
the equivalent impedance of the three-phase line is calculated as
shown in Equation 26:

Rline + jXline �
_Uk − _Uj

_Ikj
(26)

It should be noted that the equivalent impedance of the three-
phase line is not the actual line impedance; it is the turns ratio of the
actual measured voltage on the secondary side to the load center
voltage difference to the load side current under the rated turns ratio.

The equivalent impedance of the line compensator is calculated
from the equivalent impedance of the three-phase line as Rkj,eq、

Xkj,eq using the formula as shown in Equation 27:

Req,kj + jXeq,kj � Rline + jXline( ) · CTP

NPT · CTS
(27)

The current in the compensator branch is obtained from the
actual line current _Ikj and the current transformer _Ikj,eq.

_Ikj,eq � _Ikj · CTS

CTP
(28)

In Equation 28: _Ikj � [ _Ikj−a _Ikj−b _Ikj−c ]T represents the three-
phase current in the line.

The voltage difference _Udrop of the compensator branch is
obtained as shown in Equation 29:

_Udrop � Rkj,eq + jXkj,eq( ) · _Ikj,eq (29)

Finally, the control voltage of the compensator branch is as
shown in Equation 30:

_Ur �
_U3

NPT
− _Udrop (30)

Applying the droop control to the control voltage and tap
changer turns ratio, taking phase A as an example, the principle
of droop control for the OLTC is introduced. Define Δta, Δtb, Δtc as
the adjustment amounts of the tap changer turns ratio for phases A,
B, and C relative to their respective initial turns ratios, and add to the
objective function as shown in Equation 31:

min Δt2a + Δt2b + Δt2c( ) (31)

The physical meaning of the above equation is that when the
control voltage is within the dead zone, the OLTC tap position
remains unchanged.

The Δta − Ur−a droop control function of the variation in the
variable turns ratio variation and the control voltage is shown in
Equation 31:

Δta �

Δtmax − Δt0 Umin ≤Ur−a <Ul

kdr1 Ur−a − Udbl( ) Ul ≤Ur−a ≤Udbl

0 Udbl <Ur−a <Udbh

kdr2 Ur−a − Udbh( ) Udbh ≤Ur−a ≤Uh

tmin − Δt0 Uh <Ur−a ≤Umax

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(32)

The relationship between Δta and the control voltage Ur−a
satisfies the following curve in Figure 3:

Where, Δtmax and Δtmin respectively represent the upper and
lower limits of the variation in turns ratio Δt; Δt0 represents the
change in tap position corresponding to the initial turns ratio; Udbh

and Udbl respectively represent the upper and lower bounds of the
voltage dead zone; Uh and Ul respectively represent the upper and
lower bounds of the voltage droop control curve; Umax and Umin

respectively represent the upper and lower bounds of the bus voltage
magnitude; kdr1 and kdr2 respectively represent the droop control
coefficients, and kdr1 < 0, kdr2 < 0 . When the voltage Ur−a is within
the dead zone range, the OLTC does not actuate, and the variation in
turns ratio is 0.

The relationship between the droop control coefficient and the
variation in the turns ratio and the voltage is as shown in
Equation 33:

kdr1 � Δtmax

Ul − Udbl

kdr2 � −Δtmin

Udbh − Uh

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (33)

From Figure 3, it can be seen that the characteristic curve
represents a piecewise function. When the system operates near
the turning point, the derivative is discontinuous, the algorithm
search direction is uncertain, and it is difficult to smoothly switch
operating curves, so the piecewise droop control function has strong
non-smooth characteristics and is difficult to solve. Usually, mixed
integer nonlinear programming is used to describe piecewise
function control characteristics, but this method has low
computational efficiency. In this paper, a fitting function is used
to approximate the piecewise function, and the fitted droop control
function is shown in Equation 34:

Δta � Δtmax + kdr1
α

ln 1 + eα Ur−a−Ul( )( ) − ln 1 + eα Ur−a−Udbl( )( )[ ]
+kdr2

α
ln 1 + eα Ur−a−Udbh( )( ) − ln 1 + eα Ur−a−Uh( )( )[ ] (34)

Where, α is the fitting coefficient, set α � 500 in this paper.
Approximately fitting the piecewise droop control function

can transform it into a smooth function that is continuously
differentiable, as shown in Figure 4. The smoothing function can
avoid sudden changes in derivative order during algorithm
iteration calculations, thus improving the convergence of
the algorithm.

The variation of the ratio of the voltage regulator and the tap
variable satisfies the relationship is shown in Equation 34:

Δta � xd−a · Δd (35)
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In the equation, xd−a is the phase A tap-changer variable; Δd is
the turns ratio change corresponding to a 1-tap adjustment, which is
typically taken as Δd � 0.00625 p.u. in distribution networks.

In this paper, the discrete tap-changer variable is first treated as a
continuous variable for state estimation calculations to obtain a
continuous optimal solution for state estimation. Subsequently, a
positive curvature quadratic penalty function is introduced in the
objective function, and the state estimation is continued using the
continuous optimal solution as the initial value to obtain an integer
solution for the tap-changer setting.

Taking phase A as an example, the positive curvature quadratic
penalty function is shown in Figure 5. xd0、 xd1、 xd2 are any three
continuous discrete component values. Define the neighborhood
R(xd−a) as shown in Equation 36:

R xd−a( ) � xd−a
∣∣∣∣∣∣∣xd1 − 1

2
Δd≤xd−a ≤xd1 + 1

2
Δd{ } (36)

Where, xd1 is the neighborhood center, which is the closest
discrete grading value determined according to the continuous
optimal solution.

FIGURE 3
Voltage regulation control curve showing the variation of the turns ratio with control voltage droop.

FIGURE 4
Derivative comparison diagram before and after fitting.
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In the optimization process, when the value of xd−a is in the
neighborhood of the above definition, the penalty function ε(xd−a)
is introduced:

ε xd−a( ) � 1
2
μd xd−a − xd1( )2 (37)

In the equation, μd is the penalty factor, a known quantity; the
penalty function will force xd−a within the neighborhood to
approach the neighborhood center. From Equation 37, we can
obtain the first and second derivatives of the quadratic penalty
function within the neighborhood.

∂ε xd−a( )
∂xd

� μd xd−a − xd1( )

∂2ε xd−a( )
∂xd

2 � μd

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (38)

From Equation 38, it can be observed that for the Newton
method, the introduction of a penalty function in the objective
function will result in the incremental inclusion of the first and
second derivative terms in the Jacobian matrix and the Hessian
matrix during the optimization iteration. Through this procedure,
not only can rapid convergence of OLTC tap positions be achieved,
but also the positive definiteness of the iteration matrix can be
strengthened, thereby improving algorithm convergence. From a
perspective in the field of power systems, this approach enables
efficient adjustment of OLTC tap positions and enhances algorithm
convergence by modifying derivative terms in iterative matrices.

3.2.2 Hybrid data-physical-driven linearization
Nonlinear constraints in themodel of OLTCmainly fall into two

categories: the first category is branch power constraints; the second
category is droop control nonlinear constraints. Due to the
introduction of the unknown variable t of the voltage regulator
in the branch power constraint and the logarithmic function in the
droop control nonlinear constraints, the aforementioned physical
linearization methods are no longer applicable. In this paper, it is
proposed to utilize a first-order Taylor expansion for physical
linearization, followed by using Partial Least Squares Regression
(PLSR) to calculate compensation errors, resulting in the
development of a hybrid data-physical-driven Linearization model.

Firstly, introduce the principle of linearization of power
constraints. For ease of description, define the relationship
between the branch power of the transformer and the variables
as shown in Equation 39:

PReg
i−φ � fP

i−φ XReg( )
QReg

i−φ � fQ
i−φ XReg( )

XReg � θi−ABC Ui−ABC θj−ABC Uj−ABC tABC[ ]T
⎧⎪⎪⎨⎪⎪⎩ (39)

WhereXReg represents the variables of the on-load tap-changing
transformer, composed of the phase angle and voltage magnitude of
the primary and secondary sides, and the three-phase turns ratio;
fP
i−φ and fQ

i−φ respectively represent the functional relationships
between the active and reactive power of phase φ branch and the
variables of the on-load tap-changing transformer.

The first-order Taylor expansion is performed at the initial point
XReg,0 of the variable, as shown in Equation 40:

fP
i−φ XReg( ) ≈ fP

i−φ XReg,0( ) + fP′
i−φ XReg,0( ) · XReg −XReg,0( ) + ΔPReg

i−φ
fQ
i−φ XReg( ) ≈ fQ

i−φ XReg,0( ) + fQ′
i−φ XReg,0( ) · XReg −XReg,0( ) + ΔQReg

i−φ

⎧⎨⎩
(40)

In the equations, fP′
i−φ and fQ′

i−φ represent the partial
derivatives of the active and reactive power functions of the
phase φ branch with respect to each variable in XReg; ΔPReg

i−φ and
ΔQReg

i−φ respectively represent the compensating errors of the active
and reactive power of the phase φ branch, and the compensating
errors are also calculated using the PLSR method.

Next, the linearization principle of the droop control function of
the OLTC is introduced. Similar to the linearization principle of
branch power, the functional relationship between the turns ratio
change and the control voltage is defined in Equation 41:

Δt � fΔt Ur( ) (41)
Where, fΔt represents the functional relationship between the

variable ratio variation and the secondary side control voltage.
The first-order Taylor series expansion is performed at the initial

value point Ur,0 of the variable, as shown in Equation 42:

fΔt Ur( ) ≈ fΔt Ur,0( ) + fΔt′ Ur,0( ) · Ur − Ur,0( ) + Δtr (42)

In the formula, fΔt′ represents the derivative of the variable
turns ratio variation function to the variable Ur ; Δtr represents the
compensation error of the variable turns ratio variation.

Then, the PLSR algorithm is used for data-driven error
compensation, the specific principle and mathematical
expressions are as follows:

The compensation error Δy of active power is defined in
Equation 43:

Δy � ξy′ + η

Δy � ΔPm
PV−φ ΔQm

PV−φ[ ]T
y′ � PPV−φ

load QPV−φ
load[ ]T

⎧⎪⎪⎨⎪⎪⎩ (43)

Among them, ξ is the coefficient matrix and η is the constant
matrix, which are obtained by PLSR fitting is the independent
variable matrix of load composition; PPV−φ

load and QPV−φ
load represent

the vectors composed of active and reactive loads of the grid-
connected node φ phase of the system.

FIGURE 5
Quadratic penalty function model.
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The independent variable set and the dependent variable set can
be obtained from the results of the power flow calculation. After
obtaining the set of independent variables R and the dependent
variable set Z, it is standardized.

R* � R − �R( )S−1R
Z* � Z − �Z( )S−1Z{ (44)

In Equation 44: R*, Z* represent the standardized independent
variables and dependent variable sets; �R and SR respectively
represent the mean and standard deviation of the independent
variable set R.

For the standardized independent variable and dependent
variable sets, the least squares regression analysis method is used
to calculate the fitting coefficients, with the knowledge in the field of
power systems:

C � PLS R*, Z*( ) (45)

η � �Z − �R

SR
C ⊙ SZ (46)

In Equations 45 and 46: C represents the regression coefficient
matrix obtained by PLSR. ξ and η represent the coefficient matrix
and the constant matrix in the linear regression equation,
respectively. Thus, the compensation error Δy can be obtained.
Finally, the correction equation of the measurement is shown in
Equation 47:

fm−p
PV−φ XPV( ) ≈ fm−p

PV−φ X0
PV( ) + ∇fm−p

PV−φ X0
PV( ) × XPV −X0

PV( ) + ΔPm
PV−φ

fm−Q
PV−φ XPV( ) ≈ fm−Q

PV−φ X0
PV( ) + fm−Q

PV−φ X0
PV( ) × XPV −X0

PV( ) + ΔQm
PV−φ
(47)

3.3 Bad data identification model based
on MILP

For the suspicious measurement set, the MILP bad data
identification model is constructed based on the hyhrid data-
physical driven linearization method as shown in Equations 48–51:

min ∑m
i�1
bi (48)

s.t. cL x( ) � 0 (49)
hLi x( ) − zmi ≥ − 3σ i −Mbi (50)
hLi x( ) − zmi ≤ 3σ i +Mbi (51)

Where, cL(x) represents the linearized equality constraint,
and hLi (x) represents the linearized measurement equation
of the line.

When zi is a normal measurement, that is, it does not belong to
the suspicious measurement set, Formulas 50, 51 in the model
should be rewritten as shown in Equations 52 and 53:

hLi x( ) − zmi ≥ − 3σ i (52)
hLi x( ) − zmi ≤ 3σ i (53)

The MILP bad data identification method is not affected by the
leverage point, and can quickly and accurately identify the bad data
in the leverage measurement.

4 Case study

Due to the need for further improvement in the accuracy and
computational efficiency of the current bad data identification
method in distribution networks, this paper proposes a bad data
identification method based on MILP model to simultaneously
address the issues of model accuracy and computational
efficiency. In this chapter, a typical low-voltage 42-node
distribution network case study is used to validate the
effectiveness of the proposed bad data identification model. The
relevant case studies are conducted on the MATLAB software
platform, utilizing an Intel(R) Core(TM) i5-10210U CPU
1.60 GHz processor. The simulation calculations are carried out
using per unit values, with a base voltage of 13.8 kV and a base power
of 100 kVA for the case study system. The state estimation
calculations are initialized in a flat start manner, with
measurement values subject to Gaussian distribution errors with
mean of 0 and variance of σ2 added to the true values. The standard
deviations for voltage measurements, branch power measurements,
and node injection power measurements are set as σ i � 0.004,
σBran � 0.008, and σNode � 0.01.

For ease of analysis, this paper selects two mathematical
indicators, the Root Mean Square Error (RMSE) and the
Maximum Absolute Error (MAE). In this paper, RMSE
represents the square root of the ratio of the sum of the squares
of errors between the estimated values and the true values to the data
dimension; MAE is generally used to measure the range of absolute
errors, i.e., the maximum absolute error between the estimated
values and the true values. The mathematical expressions for
these two indicators are as follows:

RMSE �
������������
1
n
∑n
i

xi − x̂i( )2
√

(54)

MAE � max xi − x̂i| |{ } i � 1, 2, 3 . . . (55)
In the equation, x̂i represents the true value of the state

variable xi.
To verify the model, the modified IEEE-33 node test feeder is

used to test the linearization and bad data identification model
proposed in this paper.

The schematic diagram of the modified IEEE-33 node test feeder
is shown in Figure 6. The feeder consists of 33 nodes and
32 branches. The power flow results of the system are used as
the normal measurements for the entire system, including
402 measurements, including 6 voltage magnitude measurements,
198 branch power measurements, and 198 node injection power
measurements.

4.1 Linearization accuracy comparison

Firstly, test the hybrid data-physical-driven linearization model
proposed in this paper. Based on the IEEE 33-node parameters,
training and test datasets can be generated from the AC power flow
model. The case study sets training and testing data as simulated
data randomly generated within the range of 95%–105% of the
actual load after removing outliers, with a total of 100 sets of training
samples. The measurement linearization accuracy obtained from
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three hybrid data-physical-driven methods, namely, Taylor
expansion linearization, PLSR regression, Least squares regression
(LSR) (Shao et al., 2023), and Bayesian linear regression (BLR) (Liu
et al., 2019), are compared. To facilitate analysis, the difference
between the linearized power flow results and the true values is
represented by two mathematical indicators, RMSE and MAE, as
shown in Equations 54, 55 respectively. The comparison results
in Table 1.

As shown in Table 1, the hybrid data-physical-driven
Linearization method proposed in this paper has a higher
advantage in terms of linearization accuracy. Compared to
physical-driven linearization, This method can improve the
accuracy by 108 of magnitude. Additionally, compared to data-
driven error compensation methods such as LSR and BLR, the PLSR
method used in this paper has the highest accuracy and is closer to
the results of nonlinear constraints.

4.2 OLTC tap position analysis

The OLTC tap position is verified by introducing a positive
curvature quadratic penalty function into the tap position

alignment model proposed in this paper. The tap position is
treated as a continuous variable for state estimation calculations,
obtaining a continuous optimal state estimate. The positive
curvature quadratic penalty function is introduced into the
objective function, using the continuous optimal solution as
the initial value to continue the state estimation and obtain an
integer solution for the tap position. Two different tap position
processing models for on-load tap changing are set up to verify
the effectiveness of the proposed model.

Model 1: Traditional direct treatment of the tap position as a
continuous variable.

Model 2: Tap position rounding method based on positive
curvature quadratic penalty function for OLTC.

The accuracy of voltage magnitude estimation for the two
models is shown in Table 2.

The results indicate that for the OLTC model, the method of
rounding tap positions with a positive curvature quadratic
penalty function can lead to state estimation results with
higher accuracy.

4.3 Analysis of bad data identification results

4.3.1 Comparative analysis of traditional statistical
methods for bad data identification

According to the two-stage bad data identification model
proposed in this paper, 10 bad data are set as shown in Table 3. At
the same time, the false alarm rate is set to Pe � 0.0025. By
querying the standard normal distribution table, the normal
range of normalized residuals can be obtained, and the

FIGURE 6
A modified IEEE-33 node test feeder.

TABLE 1 Comparison of the accuracy between linearization methods.

Linearization method RMSE MAE

Hybrid data-physical-driven LSR 1.36 × 10−2 0.6104

PLSR 4.326 × 10−11 3.593 × 10−5

BLR 1.4784 × 10−6 1.16 × 10−2

Physical driven linearization — 7.2 × 10−3 0.410

TABLE 2 Voltage magnitude estimation results under different OLTC tap position handling methods.

Model RMSE MAE

Phase A Phase B Phase C Phase A Phase B Phase C

Model 1 1.119 × 10−2 3.063 × 10−3 8.643 × 10−3 0.125 3.238 × 10−3 0.140

Model 2 5.405 × 10−3 4.968 × 10−4 2.944 × 10−3 0.09 3.469 × 10−2 0.094
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detection threshold τ is set to 3 and the threshold D for the
projection statistics is set to 1.

According to Table 4, among the 10 bad data, the projection
statistical method effectively identified only 8 pcs bad data,
while all other measurements with projection statistics

values greater than 1 resulted in false alarms. Similarly,
the maximum normalized residual method also failed to
accurately identify the bad data. Therefore, both traditional
statistical methods for bad data identification have certain
limitations.

TABLE 3 Detail information of the bad data and the corresponding projection statistics and normalized residual values.

Measurement number Measurement name True value (p.u.) Bad data (p.u.) Di ri

19 branch powerP2-3-a 4.693 8.9 0.422 5.367

25 branch powerP3-4-b 4.553 10 0.936 7.219

33 branch powerP3-5-b 4.006 9.65 0.690 7.704

38 branch powerP6-7-b 3.539 7.37 0.484 5.113

45 branch powerQ7-8-a 2.854 5.49 1.201 2.222

59 branch powerQ9-11-c 0.919 3.377 1.711 2.408

66 branch powerQ19-20-c 0.844 8.3 0.334 9.359

93 branch powerQ22-27-b 0.863 7.68 0.344 6.936

164 branch powerP36-38-b 0.436 5.5 0.970 9.140

172 branch powerQ39-40-c 0.045 6.7 0.251 8.354

TABLE 4 Comparison of results of different identification methods.

Identification method
Stage 1 Stage 2

Projection statistics method Maximum normalized residual method MILP

Identification result (pcs) 265 8 10

TABLE 5 Comparison of test results of different bad data identification methods.

Identification method Identification
model

Solver Identification
Result

CPU time-consuming/s

Two-Stage Test 1 CPLEX (Kia et al., 2016) True 0.546

BARON (Ghildyal and Sahinidis, 2001) True 0.702

OSICPLEX (Apland and Sun, 2019) True 0.159

OSIMOSEK (Baradar and Hesamzadeh,
2014)

True 1.234

SCIP (Vigerske and Gleixner, 2017) True 1.716

Test 2 BONMIN (Gupta and Ravindran, 1985) True 1,000.00(Over the maximum time
limit)

Single-Stage Test 3 CPLEX True 0.826

BARON True 1.362

OSICPLEX True 1.011

OSIMOSEK True 1.911

SCIP True 39.700

Test 4 BONMIN True 1,000.00(Over the maximum time
limit)
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4.3.2 Comparative analysis of single-stage and
two-stage bad data identification methods

Due to the potential for misjudgments and missed detections by
traditional statistical methods when multiple measurement bad data
points are present in the system, these methods may not accurately
identify measurement bad data. In contrast, the MILP bad data
identification model used in the second stage can accurately identify
all measurement bad data in the set identified by traditional methods
when misjudgments or missed detections occur in the first stage.
Therefore, in the first stage of this paper, all 265 lever measurements
in the system were placed into a suspicious measurement set. The
maximum normalized residual method was then used to identify the
remaining 137 measurements, thereby validating the accuracy of the
proposed bad data identification model and its efficiency compared
to the single-stage model. Four sets of tests were conducted to
compare the bad data identification method proposed in this paper
with the traditional MINLP-based bad data identification method:

Test 1: Compression of the suspicious measurement set using
the MILP-based two-stage bad data identification method proposed
in this paper;

Test 2: Compression of the suspicious measurement set using
the traditional MINLP-based two-stage bad data
identification method;

Test 3: No compression of the suspicious measurement set,
directly using the MILP-based single-stage bad data
identification method;

Test 4: No compression of the suspicious measurement set,
using the traditional MINLP-based single-stage bad data
identification method.

Models were built for both methods in the GAMS optimization
software, different solvers were called for calculation, and the results
were compared and analyzed.

According to Table 5, for the modified IEEE-33 node test feeder
case chosen in this paper, the two-stage model reduces the number
of 0/1 integer variables and improves identification accuracy.
However, for traditional MINLP-based bad data identification
models, feasible solutions could not be obtained with most
solvers, with correct results only achievable using the BONMIN
solver. In contrast, the MILP-based bad data identification model
achieved accurate identification results with most solvers. In terms
of identification efficiency, even with the two-stage model, the
MINLP identification model’s solving time reached the
computational limit of 1,000 s, and the solver exited abnormally,
indicating limited applicability. For the MILP-based bad data
identification method, using the two-stage model, the SCIP solver
improved solving efficiency by approximately 23 times, and the
CPLEX solver achieved the highest efficiency, requiring only 0.546 s.

5 Conclusion

To cope with the issue that existing traditional identification
methods do not consider the nonlinear and discrete characteristics
of on-load tap changers, making it difficult to achieve accurate and
efficient identification of bad data., This paper proposes a MILP-
based two stage bad data identification method. Detailed control
characteristics of on-load tap changers are modelled, and a positive
curvature quadratic penalty function is introduced to achieve fast

tap normalization. In the first stage, leveraging projection statistics
and maximum normalization residue methods effectively identifies
leverage points and suspicious bad data, reduces the set of suspicious
measurements. In the second stage, by linearizing nonlinear
constraints and solving bad data identification model based on
the MILP, the efficiency of the solution is greatly enhanced. The
proposed model can achieve efficient and accurate identification of
bad data, while ensuring optimal solutions by introducing penalty
functions into the objective function for effective tap normalization.
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The short-term fluctuation of wind power can affect its prediction accuracy.
Thus, a short-term segmentation prediction method of wind power based on
ramp segment division is proposed. A time-series trend extraction method based
on moving average iteration is proposed on the full-time period to analyze the
real-time change characteristics of power time-series initially; secondly, a ramp
segment extractionmethod based on its definition and identification technique is
proposed based on the results of the trend extraction; and a segmentation
prediction scheme is proposed to lean the power prediction under different
time-series: the LightGBM-LSTM is proposed for the non-ramping segment using
point prediction, and the CNN-BiGRU-KDE is proposed for probabilistic
prediction of ramp segments. From the results, this ramp segment definition
and identification technique can effectively identify the ramp process of wind
power, which makes up for the misidentification and omission of the classical
climbing event definition; meanwhile, the segment prediction scheme not only
meets the prediction accuracy requirements of the non-ramping segment, but
also provides the effective robust information for the prediction of the ramping
period, which offers reliable reference information for the actual wind farms. In
particular, it is well adapted to wind power prediction under extreme working
conditions caused by ramping weather, which is a useful addition to short-term
wind power prediction research.

KEYWORDS

ramp segment, wind power, trend identification, probabilistic fitting, segmental
prediction

1 Introduction

In 2020, with the deepening understanding of the “dual-carbon” goal by all parties in
society, China has put forward the goal of “2030 carbon peak, 2060 carbon neutral” (State
Grid, 2021), and wind power is ushering in rapid development. Wind power is difficult to
predict due to its unique stochasticity and instability, which poses a great challenge to the
reliable operation of wind farms and smart energy systems. With the development of
China’s power marketization, accurate and efficient short-term wind power prediction is
especially important to enhance the capacity of wind power consumption and promote the
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efficient interaction of source, grid, and load (Lefeng et al., 2022;
Lefeng et al., 2021; Lefeng et al., 2020). Currently, there is a lack of
in-depth research on the short-term power prediction method for
wind power over the whole period considering the weather in the
climbing segment (Cheng and Yu, 2019).

Existing short-term power prediction methods for wind power
can be divided into two kinds: the physical method (Ernst et al.,
2007) and the data-driven method (Wang et al., 2022). Among
them, the former is built based on the atmospheric motion portrayal,
according to the meteorological environment, geographic factors,
and other information, the use of hydrodynamics and other physical
laws to establish a model, focusing on the optimization of the
boundary conditions and physical solution rules, with the
characteristics of modeling difficulties, large computational
volume, and therefore poor timeliness, is generally suitable for
medium- and long-term forecasting (Cassola and Burlando,
2012). The latter takes the establishment of linear or nonlinear
mapping between relevant meteorological features and power time
series as the main means, emphasizes the search for intrinsic laws
from multi-source, multi-dimensional, and multi-modal data, and
has been widely used because of its better prediction accuracy (Zhou
et al., 2021).

Existing studies usually categorize data-driven methods into
deterministic forecasting and uncertainty forecasting based on the
result presentation. Among them, the existing deterministic wind
power prediction methods mainly include Auto-regressive and
moving average (ARMA) (Erdem and Shi, 2011), Convolutional
Neural Networks (CNN) (Men et al., 2016), and vector machines
(Hu et al., 2014). Deterministic methods can form a mathematical
abstract mapping relationship between inputs and outputs through
data mining and machine learning and are suitable for power time
series with gentle curve fluctuations. Specifically, literature (Meng
et al., 2021) proposes a parameter optimization-based attention
mechanism for accelerating the early prediction model to mine
the temporal correlation of the input series-gated recurrent unit
(GRU) short-term wind power prediction model; literature (Zhou
et al., 2021) proposes a wind power prediction model that introduces
the volatility hierarchical error correction model, which is based on
the improvement of long-term recurrent convolutional neural
network. All of the above literature has improved the prediction
accuracy to a certain extent, and better prediction results can be
achieved under normal fluctuating power hours. However, in the
face of the ramping section of the weather under the fluctuating
power, a single use of the above deterministic prediction methods
will not be able to quantify the prediction error, and the stability of
the prediction results is poor, and the combination of prediction
techniques is applied and born (Gao et al., 2016; Liu et al., 2024). At
the same time, due to the more complex and variable wind power
scenarios, it poses a more serious challenge to the prediction
methods. For this reason, we have carried out an in-depth study
of the problems and difficulties existing in the current wind power
prediction work.

Uncertainty prediction is a probabilistic interval prediction
method represented by kernel density estimation (KDE) (Wang
et al., 2024; Haoyi et al., 2023). Uncertainty prediction considers the
randomness of the results, quantifies the prediction error, provides
more information compared to the traditional point estimation, and
can significantly improve the effectiveness of power hour prediction

under weather in the climbing section (Jianhou et al., 2024).
Specifically, literature (Wang et al., 2024) introduces a new
offshore wind speed point and interval prediction model that
combines an innovative two-layer decomposition technique, GRU
and KDE. However, the lack of a typical power scenario delineation
leads to a low prediction accuracy of the model for some power
periods. Literature (Zareipour et al., 2011a; Cui et al., 2019) proposes
data-driven probabilistic wind power ramp prediction methods
based on massive simulated scenarios, but such models have yet
to improve their robustness under weather in the ramp section.
Literature (Ouyang et al., 2019) proposes an integrated learning
method to generate probabilistic prediction results, but the method
does not take into account the interference of power timing pseudo-
inflection points on the complete extraction of the ramp segment
period and does not highlight the improvement of the model’s
accuracy under ramp segment weather. The above uncertainty
prediction method improves the performance of wind power
prediction under complex meteorological conditions to a certain
extent, but there are still the following shortcomings: first, the lack of
targeted optimization of the ramp segment of the extreme weather
caused by the sudden change of power scenarios, which affects the
prediction accuracy; second, the deterministic prediction method of
the gentle power period is sufficient to meet the demand for
prediction accuracy and stability, and the uncertain prediction
takes up a large number of computing resources and the
prediction interval under the gentle power period is too long to
meet the prediction accuracy and stability requirements. Second, the
deterministic prediction method is sufficient to meet the demand for
prediction accuracy and stability in the gentle power period, while
the uncertainty prediction takes up a lot of computing resources and
the prediction interval is too large in the gentle power period, which
affects the reasonableness and intuition of prediction.

The basis of ramp prediction is its identification technology.
There have been in-depth studies on the research of wind power
ramp events abroad, but the definition of it by various research
institutions has not yet formed a unified standard. Literature
(Potter et al., 2009; Ferreira et al., 2011) summarized four
different definitions of ramp events by considering several
factors such as power amplitude change, duration, and
ramping rate. According to Truewind (2008), the occurrence
of a “ramp event” is accompanied by a large change in wind
speed in a short period, and the larger the amplitude change, the
smaller the duration, and the faster the ramping rate, the more
serious the ramp event is. Common studies set the minimum
threshold of climb duration at 1 h, but ramp events of less than
1 h are also possible (Kamath, 2010; Kamath, 2011). Further, the
literature (Zheng and Kusiak, 2009; Zareipour et al., 2011b) used
a mean clustering algorithm and support vector machine to
classify the ramp events in the historical data, respectively, and
analyzed the characteristics and hazards of different types of
ramp events.

The recognition technology of ramp events in China is not
mature, and it is based on power prediction. Literature (Greaves
et al., 2009) used a numerical weather prediction system to identify
possible future wind power’s ramp events by obtaining
meteorological background information. In literature (Cui et al.,
2014; Huang et al., 2016; Ouyang et al., 2017), ARMA, Kalman, and
neural network models were used to predict the power first, and then
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the predicted power was used for ramp recognition. Due to the lack
of consideration of the characteristics of ramp events, the
effectiveness of these methods in the identification of ramp
events is very limited, which makes the identification of ramp
events one of the urgent problems to be solved in the grid
connection of wind power.

Aiming at the above deficiencies, a short-term wind power
segmentation prediction method based on ramp period division
is proposed in this paper. Specifically, a trend extraction model
based on the moving average sensitivity method (MASM) is first
proposed for the whole period to characterize the real-time
change of power time series preliminarily; furthermore, a hill-
ramp segment definition and identification method is proposed
to extract the hill-ramp power period for the sub-time period;
finally, a segmented prediction method is proposed to make lean
prediction of wind power for the whole period: a light gradient
boosting machine (LightGBM) - Long short-term memory
(LSTM) is proposed for the non-hill-ramp segment period.
Finally, a segmented prediction method is proposed to make a
lean prediction of wind power for the whole period: a LightGBM-
LSTM combination prediction method is proposed for the non-
ramp period; a probabilistic prediction method based on CNN-
BiGRU-KDE is proposed for the ramp period. The experimental
results show that the prediction accuracy of the method proposed
in this paper is greatly improved compared with the existing
methods, providing new ideas for short-term wind power
prediction.

2 Basic idea

Changes in meteorological parameters under ramp segment
weather are characterized by instantaneous sudden changes and
drastic amplitude, which leads to many problems in wind power
prediction under ramp segment weather conditions.

The main problems are as follows:

(1) As the weather in the ramp segment has various changes in
meteorological patterns in a short period, it is easy to cause
misjudgment of the trend, which affects the accuracy of power
extraction in the ramp segment.

(2) Due to the strong stochasticity and complexity of the weather
mutation period in the ramp segment, it is difficult to accurately
and completely extract the power mutation period in the ramp
segment by the power mutation period extraction method with
the fixed characteristics as the extraction factor.

(3) Different meteorological models correspond to different time
series characteristics in the ramp weather period. To fully
utilize the performance advantages of deterministic and
uncertainty prediction methods, it is one of the urgent
problems to propose a segmented prediction strategy to
match different weather patterns.

To address the above issues specifically, this paper proposes a
segmented prediction method based on ramp segment identification
and recognition technology. The specific method flow is shown in
Figure 1. Firstly, the MASM model is used to extract the trend
components in the time series, smoothing transitions and capturing
trend changes. Subsequently, the power mutation sensitivity factor
(PMSF) is employed to calculate specific power points of sudden
changes, identify key changes in the time series, and obtain the
exponential moving average (EMA) sequence. On this basis, ramp
segments in EMA are identified and extracted by defining ramp
segments and setting ramp thresholds (ramp amplitude, ramp rate),
i.e., periods of significant changes in weather conditions, to analyze
their impact on electricity demand. In the prediction phase, a
segmented prediction method is adopted, processing the time
series according to different characteristics or patterns.

For non-ramp segments, the LightGBM-LSTMmodel is used for
point prediction, combining the advantages of gradient boosting and
long short-term memory networks to capture complex patterns and
temporal dependencies. For ramp segments, the CNN-BiGRU-KDE
model is employed for probabilistic prediction, generating predictive
probability distributions. Finally, the results of point prediction and
probabilistic prediction are integrated to form the final segmented
prediction. This method not only considers the accuracy of
prediction but also incorporates prediction uncertainty, providing
more comprehensive and reliable prediction results.

3 Time-series trend extraction

Under the weather of the ramp segment, the wind power shows
drastic changes, to accurately identify the ramp power period, the first
step is to extract the time series trend of the whole period. The
traditional method of recognizing the time series mutation is to
extract the index parameters such as mutation amplitude and

FIGURE 1
Method flow chart.
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mutation duration as the basis of identification. This method is only
applicable to a single time-sequence mutation scenario, and it is easy to
cause insufficient extraction of themutation period for the complex and
variable time-sequence mutation scenarios of the ramp segment. To
establish an ideal early warning mechanism for weather periods in the
ramp segment, this paper proposes a novel method of describing the
time-sequence trend by taking the historical time-sequence
characteristics into full consideration. Different from the traditional
trend extractionmethod that directly takes the original time series as the
feature extraction object, this method takes the moving average as the
trend research object. It not only avoids the trend misjudgment caused
by the raw power time series noise but also retains the timeliness of the
time series change trend. This method extracts the time-series trend
from the power curve 1 h before the point in time to be predicted.

MASM is a technical indicator that utilizes the aggregation and
separation conditions between short-term averages and raw data
combined with the time series characteristics of the averages
themselves to investigate and judge the highs and lows of the
prediction object (Li, 2013). The principle of MASM is to use the
EMA that characterizes the short-term trend of the raw data and to
compute the PMSF of the current instantaneous rate of change of the
EMA. The PMSF can better project the inflection point of the trend
after the comprehensive evaluation of the mutation sensitivity. The
specific steps of MASM are as follows:

Find the N-day smoothed moving average X of t if X′ is the N-1
day smoothed moving average:

X � EMA t,N( ) � N − 1( ) × X′ + t

N
(1)

Where: t is the current time point; X is the N-day smoothed moving
average of the time series at moment t; X′ is the N-1 day smoothed
moving average of the time series.

The EMA curve obtained above is smoothed by the Gaussian
window method, and the rate of change of each moment in the time
sequence is further calculated as PMSF. The specific calculation is
as follows:

PMSF � Xsmooth t( ) −Xsmooth t − Δt( )
Δt , Δt → 0 (2)

Where:Xsmooth(t) is the smoothed EMA value at the time t − Δt;
Xsmooth(t − Δt) is the smoothed EMA value at time t − Δt. The effect
of EMA and PMSF applications is shown in Figure 2. The EMA and
PMSF are calculated using Equations 1, 2.

4 Ramp segment identification

Considering that a ramp event is a large change in wind power
over a short period, the wind power ramp event can be redefined by
the ramp amplitude and ramp rate. In this paper, we will first find
the extreme points of historical wind power sequences, and analyze
and identify the ramp events based on the sequence of extreme
points to avoid the identification of ramps under different
definition criteria.

The current wind power ramp is generally studied as an “event”,
and the complete ramp event consists of multiple ramp segments, so
this paper will take the “ramp segment” as an object to study, and put
forward a new approach to identify the ramp segment, the basic idea
is shown in Figure 3.

As can be seen in Figure 3, on the one hand, the original wind
power sequence is extracted from the extreme point to find out the
extreme sequence; on the other hand, the new definition is
determined by the typical definition of ramp events; the
magnitude threshold and rate threshold are set in combination
with the above two aspects to identify the ramp segment; finally, the
feature analysis is carried out to determine the ramp segments in a
specific region.

4.1 Extreme extraction process

The extreme extraction method achieves the effect of feature
extraction by extracting the extreme values of the original sequence,

FIGURE 2
Schematic diagram of the effect of EMA and PMSF. (A) Raw
power data. (B) 60 min Expontial Movieng Average (EMA). (C) Extreme
Point detection.

FIGURE 3
Basic flow of ramp segment recognition.
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by searching the local extreme points of the numerical sequence.
Assuming that the original information matrix is X, X can be
expressed as.

X � T1, ..., Ti, ..., Tm

P1, ..., Pi, ..., pm
[ ]T

i � 1, ..., m

⎧⎪⎨⎪⎩ (3)

Where: X is the original data matrix; T1, Ti, and Tm are the 1st, I,
andmth data moments, respectively; P1, Pi and pm are the 1st, i, and
mth power data, respectively; i is the counting point;m is the amount
of original data. Extracting the extreme sequence fromX, the specific
process is as follows:

1) Initialize the beginning and end of E as the beginning and
end of X:

E 1, 1( ) � T1; E 1, 2( ) � P1

E d, 1( ) � Tm; E d, 2( ) � Pm
{ (4)

Where: E is the extreme matrix; d is the number of extreme points.

2) Give the discriminant of the extreme point:

①: Pi−1 >Pi <Pi+1
②: Pi−1 <Pi >Pi+1

{ (5)

If condition① is met, it is a point of minimal value; if② is met, it
is a point of maximum value. Store Ti、 Pi to E at the
extreme point.

3) Correction for the beginning of the polar matrix.

Sbin � E 2, 2( ) − E 3, 2( )
E 2, 1( ) − E 3, 1( ) (6)

Lbin � Sbin E 1, 1( ) − E 2, 1( )( ) + E 2, 2( ) (7)
Where: Sbin is the magnitude of the ramp, from the start to the end;
Lbin is the first and last of the positive correction. The first and last of
E are corrected using (Equations 6, 7).

(4) Extreme matrix terminal correction.

Send � E d − 1, 2( ) − E d − 2, 2( )
E d − 1, 1( ) − E d − 2, 1( ) (8)

Lend � Send(E d, 1( ) − E d − 1, 1( )) + E d − 1, 2( ) (9)
Where: Send is the terminal ramp; Lend is the terminal correction
value. The terminal of E is corrected using (Equations 8, 9).

The above content provides a detailed introduction to the basic
principles of the extreme extraction method and practical operation
steps. We utilize the wind power data measured at a wind farm to
verify the reliability of the extreme extraction method every 15 min,
and the verification results are shown in Figure 2C.

The solid line in Figure 2C is the characteristic line of the
extracted extreme points. From Figure 2C, it can be seen that the
extreme extraction method can effectively extract the extreme points
in the power series, and less extreme data can be used in the
presentation of the change characteristics of the original series, to
achieve the effect of data compression and achieve the purpose of
feature extraction.

To facilitate the analysis of the following article, the extreme
points are called temporary ramp points (TRP), and the E is called
TRP series Y, that is:

Y � TY
1 , ..., T

Y
j , ..., T

Y
n

PY
1 , ..., P

Y
j , ..., P

Y
n

[ ]T

j � 1, .., n

⎧⎪⎨⎪⎩ (10)

Where: Y is the TRP matrix; TY
j、 PY

j are the TRP moments with
power; j is the number of counts of temporary ramps; n is the
number of temporary ramps.

4.2 Definition of the ramp segment and
threshold setting

4.2.1 Definition of a ramp segment
1) The classical definition of a ramp event.

Literature (Zhang et al., 2018; Freedman et al., 2008; Cutler
et al., 2011) summarizes several typical definitions of
ramp events.

Definition I. The condition is met if the difference between the
power at the cutoff time and the power at the start time exceeds a set
threshold λ within a given period [t, t+Δt].

Pt+Δt − Pt| |> λ (11)

Then the power ramp event is considered to occur in this time
frame, where λ is the threshold of the ramp amplitude.

The literature (Zhang et al., 2018) recommends that a change in
amplitude greater than about 15%–20% of the total installed
capacity is recognized as a ramp event. The threshold of ramp
magnitude for wind farms is used for the test, which results in an
average value of about 30–40 MW. Figure 4 shows the ramp
identification plot according to Definition I (Equation 11), taking
λ = 35 MW.

FIGURE 4
Ramp segments identified according to Definition I.
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From Figure 4, this definition recognizes simple ramp events in
the power sequence. However, only the ramp amplitude is
considered, and the ramp rate (the change characteristics of the
power in the ramp process) is not considered, resulting in the loss of
power characteristics. In addition, the ramp amplitude threshold set
only based on the installed wind farm cannot effectively reflect the
actual power amplitude change of the wind farm, which is easy to
causes the omission of identification.

Definition II. Firstly, a time range [t, t+Δt] is circled, and then the
maximum and minimum values are searched in this time range to
find their extreme difference which is larger than λ, that is

max P t,t+Δt[ ]( ) −min P t,t+Δt[ ]( )> λ (12)

Then the power ramp event is considered to occur in this time
interval. Definition II considers the power amplitude in the time
interval, while the rate of change is not characterized.

Definition III. Circle a certain time range [t, t+Δt], and when the
power rate is greater than the value of β, it is the ramp rate in that
time range:

Pt+Δt − Pt| |
Δt > β (13)

Then the power ramp event is considered to occur within this
time frame, where the β is the threshold for ramp rate. This
definition is simultaneously able to determine the up-ramping
and down-ramping situations. Equation 13 defines an up-ramp
event when Pt <Pt+Δt and a down-ramp event when Pt >Pt+Δt.

According to the literature (Truewind, 2008; Cutler et al., 2011),
only when the power change of the wind farm reaches at least 50% of
the installed capacity within 4 h is recognized as a ramp event, so the
corresponding rate threshold can be calculated according to
0.417 MW/min. Combined with Equation 13, the ramp diagram
identified by Definition III is drawn, as shown in Figure 5.

As can be seen in Figure 5, although the dynamics can be
accurately depicted based on the ramp rate, the information

redundancy of the ramp events is also increased by the
extraction points with small change amplitude, leading to an
unclear identification of the ramp events.

The definition of the above ramp event method identifies
different results, which is not popularized in practical
applications. And for the ramp events with complex processes
and long periods, they are often interspersed with non-ramp
intervals which cause ramp misrecognition. In the following
segment, we will take a segmented approach, and based on the
definition of a typical ramp event, we will define the ramp
segment, and discuss and find the method of setting the
ramp threshold.

2) A new type of ramp segment definition.

As can be seen from Figures 4, 5, it is difficult to recognize the
complex process of ramp events by using Definitions I–III alone. In
this paper, the ramp event is segmented, and Definitions I–III are
combined and refined to redefine the ramp segment by combining
(Equations 3–9) with the Y, as follows:

ramp points: PY
j+1 − PY

j

∣∣∣∣∣ ∣∣∣∣∣> λ C1( )and

βmax >
PY
j+1 − PY

j

∣∣∣∣∣ ∣∣∣∣∣
TY
j+1 − TY

j

> β C2( )

stationary point: PY
j+1 − PY

j

∣∣∣∣∣ ∣∣∣∣∣< λ or
PY
j+1 − PY

j

∣∣∣∣∣ ∣∣∣∣∣
TY
j+1 − TY

j

< β

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(14)

where βmax is the highest value of the rate of change of the incoming
power determined by the wind farm installation and the grid, with
the specific reference values shown in Table 1.

Equation 14 makes a limitation on the ramp amplitude (C1) and
ramp rate (C2); when the C1 is available, the power rate between
TRPs (Equation 10) is examined; when the C1 and C2 are satisfied at
the same time, it is determined that the ramping has occurred
between the TRPs, and the PZ

q is judged to be a ramp point, see the
following ramp point matrix Z:

Z � TZ
1 , ..., T

Z
q , ..., T

Z
r

PZ
1 , ..., P

Z
q , ..., P

Z
r

[ ]T

q � 1, .., r − 1

⎧⎪⎪⎨⎪⎪⎩ (15)

Where: Z is the ramp point matrix; TZ、PZ are the moment and
power of the ramp point; q is the number of counts of ramp points; r
is the number of ramp points.

The combination of condition I and condition II (Equation 12)
makes the information redundancy better in complex ramp
segments. Since TY

j+1, TY
j are not a fixed time range, therefore, λ

and β do not constitute a fixed mathematical relationship, but two
independent conditional thresholds, and the setting between λ and β
is discussed on this basis.

Equation 14 introduces the concept of stationary point (SP),
defines the TRP with ramp amplitude less than λ or ramp rate less
than β as a stationary point, and replaces the successive stationary
points with a horizontal line, whose value is equal to the value of the
starting stationary point. By introducing the concept of stationary
point, clear statistics of the ramp period, reducing the redundancy of
information in the ramp segment, and reducing the statistical error

FIGURE 5
Climbing segments identified according to Definition III.

Frontiers in Energy Research frontiersin.org06

Yang et al. 10.3389/fenrg.2024.1474969

152

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1474969


of ramp duration, we can effectively distinguish and recognize the
calm and slow zones during power ramp.

4.2.2 Discussion of ramp threshold setting
1) Setting of β

C2 of Equation (14) already specifies the method for calculating
the ramp rate. As shown in Figure 6A, the ramp rates of adjacent
TRP are calculated and counted, and the confidence intervals of the
ramp rates are analyzed by their cumulative probability distribution
plots. Figure 6A shows that more than 90% of the ramp rates are less
than βmax, indicating that the majority of the ramp rates can meet
the grid connection

Requirements, and more than 80% of the rates are greater than
0.417MW/min. The ramp rate threshold for this wind farm is 0.4MW/
min, which can be obtained according to the recommendation of
Literature (Huang et al., 2016), which indirectly verifies the validity
of determining the ramp threshold by the method of mathematical
statistics. According to the definition of Equation 14, when the rate of
change of power in a certain time range is greater than a certain
threshold value, it can be determined that the ramp may occur in this
period. According to the mathematical and statistical results in

Figure 6A, more than 80% of the power changes are contained in
cases where the absolute value of the power rate of change is greater
than or equal to 0.417 MW/min, which is consistent with today’s
prevailing view of hill-ramp rate threshold setting.

2) Setting of λ.

To address the problem of setting λ (Equations 11, 12), this paper
utilizes mathematical statistics to determine the ramp magnitude
threshold by counting the power magnitude changes between
sequences of TRP, as shown in Figures 6B–F for β = 0.4314 MW/
min, λ = 2.875 MW, 5.588 MW, 22.873 MW, and 45.1598 MW. From
the figure, it can be seen that different ramp amplitudes can recognize
different ramp processes, and lower amplitude thresholds can have a
good description of the ramp process, but it is impossible to exclude the
interference of small fluctuations in power, which results in wrong
recognition. With higher amplitude thresholds, small fluctuations in
power can be excluded and the ramp process can be depicted with fewer
points. Setting different ramp amplitude thresholds and combining the
actual dynamic changes in the wind field, is a method to select the
optimal ramp amplitude threshold by choosing the probability interval
of changes with different amplitudes.

TABLE 1 Recommended value of maximum power rate change of wind farm.

Installed capacity of wind farms/MW Maximum change in 10 min/MW Maximum change in 1 min/MW

<30 20 6

30–150 Cap/1.5 Cap/5

>150 100 30

FIGURE 6
Ramp diagram under different ramp thresholds. (A) Ramp amplitude at neighboring TRPs. (B) The ramp amplitude threshold is 0 MW. (C) The ramp
amplitude threshold is: 2.873 MW. (D) The ramp amplitude threshold is: 5.5882 MW. (E) The ramp amplitude threshold is: 22.8731 MW. (F) The ramp
amplitude threshold is: 49.1598 MW.
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The determination of ramp amplitude thresholds using the
mathematical and statistical method has an obvious advantage in
that the thresholds can be set flexibly, and this threshold setting is
more prominent compared to the traditional method. The
magnitude of historical power changes is summarized through
statistics and analysis of historical data of a specific wind field to
set the ramp magnitude threshold flexibly, thus providing flexible
identification of ramp events.

4.3 Ramp segment identification based on
extreme point extraction

Through the redefinition of the ramp segment and the
discussion of the ramp threshold, combined with the experience
of the selection of the ramp threshold in the typical definition of

ramp, the uphill point is identified as an ascent point when the ramp
rate is greater than or equal to the value of β, the typical definition of
the ramp rate is less than the value of β, and the typical definition of
the ramp rate is greater than or equal to the value of β as the
characteristic ramp identification schematic as shown in Figure 7.
And the time of ascent was counted according to the ascent
schematic, and the results are shown in Figure 8. The formula is
as Equation 16 to discriminate the point of up and down the ramp,
and the formula is calculated as Equation 17 the duration of ramp.

up − ramping:
PZ
q+1 − PZ

q

TZ
q+1 − TZ

q

> β

down − ramping:
PZ
q+1 − PZ

q

TZ
q+1 − TZ

q

< − β

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(16)

T � TZ
q+1 − TZ

q+1
TFSP − TZ

q+1
{ (17)

where TFSP is the moment of the starting stationing point.
Figure 8A shows the distribution of ramp length, 12 ramp

segments were identified, the shortest segment was 0.5 h, the
longest segment was 3 h, and the average time of each segment
was 1.8 h. Figure 8B shows the cumulative distribution of
continuous time ramp, with more than 90% of the continuous
time counted in the area within 2.234 h.

Combined with the previous analysis, the basic flow of this
algorithm is given as follows: based on the extraction of extreme
value points, the identification of ramp segments is completed.

Step 1. Extract the extreme point of the historical actual power
sequence, according to the extreme value extraction
method and Equations 3–9 to get the extreme value
series E, also known as the TRP series Y.

Step 2. the amplitude change of power, according to C1 of Equation
14 and the TRP sequence calculation statistics, analyzes the
cumulative probability distribution of amplitude change by
calculation, sets the ramp amplitude threshold limit, and
finds out Equation 14.

Step 3. sets the ramp rate threshold and calculates and analyzes the
power rate of C2 of Equation 14 and the TRP sequence by
calculating and analyzing the cumulative probability
distribution of the rate of change.

Step 4. Identify the stationary point based on the stationary point
identification condition in Equation 14 Identify the
stationary point based on Equations 15, 16 based on the
parameters determined by STEP2 and STEP3, and identify
the upper and lower ramps based on Equations 15, 17 to
count the length of the ramp time.

5 Segmentation prediction algorithm

To improve the performance of wind power prediction under
the full-time period and make the model fit the typical
characteristics of various meteorological types, this paper

FIGURE 7
Wind power ramp diagram based on extreme point extraction.

FIGURE 8
Ramp duration chart. (A) Ramping duration distribution. (B).
Cumulative probability distribution of ramping duration.
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proposes a time-series segment prediction algorithm that combines
point prediction and probabilistic prediction. Based on the
extraction results of meteorological periods in the ramp segment
in Section 3, the time series is divided into a fluctuation segment and
a low output leveling segment, corresponding to the probability
prediction and point prediction respectively. This method helps to
improve the reasonableness and readability of the prediction results,
and reduces the amount of modeling operations, and improves the
computational efficiency.

5.1 LightGBM-LSTM based point
prediction method

In practical applications, full-time power prediction challenges a
single prediction model. In this paper, a combined LightGBM-
LSTM prediction method is proposed to improve the problem of
insufficient prediction accuracy in specific scenarios. Massive feature
data are used as inputs to the LSTM network and LightGBM
prediction model, respectively; meanwhile, to improve the
prediction accuracy of the LSTM neural network, the preliminary
prediction result of the LightGBM model is input into the LSTM
network as one of the features. This combined prediction model can
combine the respective features of the above 2 models, which can not
only explore the intrinsic connection between multi-feature data but
also avoid the bad influence on the prediction accuracy due to
over-fitting.

5.1.1 LightGBM model
LightGBM is a framework for implementing the gradient

boosting decision tree algorithm. The training speed is faster, the
memory consumption is lower, the accuracy is better, the support of
distributed, and the fast processing of massive data can be performed
(Chen et al., 2021). Themain improvements of the LightGBMmodel
include the histogram algorithm and the Leaf-Wise Reading Strategy
(Ju et al., 2019). Among them, the former can be substantially
reduced in terms of memory usage; the latter can grow deeper
decision trees for better prediction accuracy with the same number
of breaks. In addition, LightGBM supports category characteristics
that do not need to be transformed (e.g., whether it is weather on a
ramp road) and incorporates decision rules for category
characteristics in the decision tree algorithm.

5.1.2 LSTM
LSTM is a special kind of Recurrent Neural Network

architecture (Nguyen. et al., 2024), which can solve the problem
of modeling time-series data of integrated drives. LSTM can
effectively deal with the long-time dependency relationship and
introduces the “memory unit” and gating mechanism. The structure
of LSTM is shown in Figure 9.

Figure 9 shows the input Xt, the output Ht, the memory cell
state Ct, and the candidate memory cell state ~Ct of the LSTM at
the t time.

The Ct is the main memory unit responsible for storing and
transmitting information in the LSTM. It is similar to the hidden
layer in a traditional neural network, but it gets updated with
information at every step. This design allows it to maintain long-
term memory.

The input information for each step of the LSTM contains the
Ct−1,Ht−1 of the previous step and the Xt of the current step, which
allows it to preserve long-term dependencies over the entire time
series. The core of the LSTM is a 3-gate structure, the oblivion gate,
the input gate, and the output gate, whose outputs are ft, it and ot,
respectively.

The oblivion gate decides which information of Ct−1 from the
previous step is to be forgotten. Its uses a Sigmoid function to obtain
the ft. It is a vector in the range [0, 1] which is used to control how
much of Ct−1 is forgotten.

The computational expression for ft is:

ft � σ wf Ht−1, Xt[ ] + bf( ) (18)
Where: σ is the activation function of the gate structure; wf , bf are
the weight and bias of the oblivion gate.

The input gate controls the input information of the current
step. It consists of two parts: one part uses a tanh function to filter
valid information from Xt as ~Ct; the other part uses a Sigmoid
function to obtain it, which is used to control the degree of validity of
the candidate memory cells.

The computational expressions for the it, ~Ct and Ct are
respectively:

it � σ wi Ht−1, Xt[ ] + bi( ) (19)
~ct � tanh wc Ht−1, Xt[ ] + bc( ) (20)

Ct � ft ⊗ Ct−1 + it ⊗ ~ct (21)
where:wi, bi are the input gate weights and bias;wc, bc are the weight
and bias of the candidate memory cells; ⊗ is the element-by-
element product.

The output gate determines the output information of the
current time step, which uses the Sigmoid function to obtain ot;
ot and Ct together determine the Ht of the neuron at the
current time step.

The computational expressions for the ot and the Ht are:

ot � σ wo Ht−1, Xt[ ] + bo( ) (22)

FIGURE 9
Model structure of LSTM.
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Ht � ot ⊗ tanh Ct( ) (23)
where: wo, bo are the output gate weight and bias. In summary, the
basic model of LSTM is formed by Equations 18–23.

5.2 Probabilistic prediction methods based
on temporal pattern classification

5.2.1 Convolutional neural networks
CNN is a feed-forward neural network type of deep learning

model, due to its properties of extracting spatial features commonly
used in various data analysis, computer vision, natural language
processing, and other fields, so a convolutional layer is set up in the
data to extract spatially correlated features. Especially for the
characteristics of multi-dimensional extraction of data, to reduce
the complexity of the problem; the pooling layer is designed to
reduce the dimensionality and number of data so that it can reduce a
lot of features that need to be operated to improve the learning
efficiency; with the development of deep learning, more and more
forms of convolution can be exercised to improve the effect of
residual convolution, Alexnet and other convolution of
different functions.

5.2.2 Bidirectional gated recurrent unit (Bi-GRU)
GRU uses recursion to obtain global information from the input

sequence, utilizes update gate and reset gate to reduce gradient
dispersion, and achieves the ability to remember the sequence over
time and less computational loss. The update gate determines how
much previous information is currently retained at the
forecast point.

zt � σ Wz · ht−1, Feat[ ] + bz( ) (24)
where: zt is the output of the update gate; Feat denotes the input
matrix for time step t. ht−1 is the hidden state of the previous time
step t-1. Wz bz are weight and base of the update gate.

Reset gate controls how much historical information should be
ignored and determines whether the storage unit removes
unnecessary detection features. Described as

rt � σ Wr · ht−1, Feat[ ] + br( ) (25)
where: rt is the output of the reset gate;Wr, br are weight and base of
the reset gate.

Effective forecasting models need to extract implicit features and
complex changes in serial data. However, GRU can only extract
information from the forward direction, while ignoring the valuable
information in the backward time series data. Therefore the
algorithmic idea of Bi-GRU is proposed, in which the Bi-GRU
layer in the encoder consists of two independent GRU networks as
shown in Figure 2. They are interconnected at adjacent depths to
ensure that the hidden layer state at the previous depth can be
transferred to the next hidden state in one direction and features can
be extracted from both directions. Bi-GRU can be represented as

hT � F �Lt, L
←

t( ) (26)

where: �Lt, L
←

t are the hidden states of the forward and backward
GRUs. F denotes how the outputs of the two directions are

combined, e.g., multiplication function, averaging function,
summation function, etc. In summary, the basic unit model of
Bi-GRU is constituted by Equations 24–26.

6 Calculation validation

6.1 Description of experimental data

Selected for this test sample is information from a wind farm in
the country. The data and information of this experiment include
the annual output power of this wind farm in 2021 as well as a
variety of meteorological factors during the same period. All the
above data intervals are 15 min. To verify the effectiveness and
superior performance of the algorithm of this paper for the weather
conditions of the ramp segment, 10% of the wind farm data of
variable meteorological scenarios containing the weather of the
ramp segment are specially selected as the validation dataset.

6.2 Evaluation indicators

The article evaluates the prediction performance in terms of both
deterministic and uncertainty prediction metrics. Among the
deterministic prediction evaluation metrics include relative root mean
square error (RRMSE) and mean absolute percentage error (MAPE).

RRMSE � n

�������������
1
n
∑n
i�1

f − fhis( )2
√⎡⎣ ⎤⎦/ ∑n

i�1
fhis

⎛⎝ ⎞⎠ (27)

MAPE � 100%
n

∑n
i�1

f − fhis

fhis

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ (28)

Where: n is the total number of prediction samples; f is the
prediction value; fhis is the true power value.

Uncertainty prediction evaluation metrics include prediction
interval coverage percentage (PICP) and prediction interval average
width (PINAW) (Ushakov and Ushakov, 2012).

RPICP � 1
W

∑W
w�1

kwa (29)

RPINAW � 1
T
∑T
t�1
U xt( ) − L xt( ) (30)

Where: RPICP is the PICP value; W is the point to be predicted
and is taken as 250 in this paper; kwa is a Boolean quantity, kwa =
1 means that the actual power value of the point to be measured falls
within the prediction interval at the given confidence level. RPINAW is
the PINAW value; T is the time-range prediction; U(xt), L(xt) are
the upper and lower power predictions. A smaller PINAW
corresponds to a better prediction when the PICPs are equal.

6.3 Validation of point prediction results

The LIGHTGBMmodel in the MATLAB platform is used to call
the LIGHTGBMmachine learning library, the number of weak back
trees is 200, the number of leaves is 50, the learning rate is 0.05, and
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the number of iterations is 3,000; the short-term prediction model of
wind power based on the LSTM model constructed by using the
KERAS framework. The initialization parameters of the prediction
model are: the number of nodes in the hidden layer of the model
network and the learning rate of the weights are determined by the
IGWO algorithm, the number of model iterations is 15, and the
activation function of the LSTM model uses the Sigmoid function.

The data for the training set of the model is the first 80% of the
full year 2021 data, while the data for the test set is the last 20%. To
observe the prediction effect over a longer time interval, the
2021 data is subjected to several sets of short-term 60-day rolling
forecasts with a forecast window of 10 days, i.e., the power changes
are predicted 10 days in advance for the next 10 days. As described in
5.1, the algorithm especially selects the power-abrupt time-series
segments containing the weather of the ramp segment as the
validation dataset and predicts the wind power under the
variable meteorological scenarios using LightGBM (Zheng and
Kusiak, 2009; Zareipour et al., 2011b), LSTM (Greaves et al.,
2009), and LightGBM-LSTM, respectively, and the prediction
results of the algorithms are shown in Table 2. The resultant
curves are predicted in different ways, as shown in Figure 10.

Comparing the prediction curves in Figure 10, it can be seen that
the prediction effect of LightGBM-LSTM algorithm is closer to the
real value. And it can be further seen from the prediction errors
(RRMSE and MAPE were calculated using Equations 27–28) in
Table 2 that it has better performance in both RRMSE and MAPE,
indicating that the model not only has high prediction accuracy, but
also can capture the features of the data well and give predictions

close to the true value. Meanwhile it has better prediction stability
and generalization ability to prevent overfitting. The improved
LightGBM-LSTM algorithm combines the respective features of
LSTM and LightGBM, which can not only mine the intrinsic
connection between multi-featured data, but also avoid the
adverse effects of overfitting, and improve the prediction
accuracy of the method by combining the prediction strategies.
The LightGBMmodel has an obvious advantage in prediction speed,
but its training process is susceptible to overfitting, which results in a
lower prediction accuracy is low. The LSTM network in the
combined prediction model adds LightGBM as one of the input
feature tensors, and thus has a better prediction effect.

6.4 Analysis of inter-area prediction results

The data of a wind farm with an installed capacity of 201 MW in
China is selected for example analysis. Figure 11 shows the

TABLE 2 Presents the recommendedmaximumpower rate change value for
wind farms.

Model RRMSE MAPE

LSTM 12.475 10.843

LightGBM 8.857 6.934

LightGBM-LSTM 6.734 4.174

FIGURE 10
Comparison of point prediction performance.

FIGURE 11
Error distribution of probabilistic predictions.

FIGURE 12
Probability interval prediction effect diagram.
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distribution of prediction error, and Figure 12 shows the prediction
effect of a certain 5-day period in 2021, which shows that the interval
prediction model can closely follow the trend of the wind power
series under the same confidence level, and obtains a narrower
average bandwidth and a higher interval coverage. It can provide
more accurate forecast information for decision-makers.

The probabilistic prediction effect is shown in Figure 12, where
the probabilistic prediction performance is portrayed through the
PICP (Equation 29) and PINAW (Equation 30) evaluation metrics,
respectively. It can be seen that the actual power timeseries curve is
surrounded by the estimated confidence interval. According to the
performance effect of prediction, the model is better able to extract
and recognize the transitive time period timing pattern. Obviously,
for the probabilistic prediction time period, the prediction intervals
of lower confidence intervals are surrounded by higher confidence
intervals, which effectively avoids the intersection of quartiles and
proves that the power prediction method proposed in this paper has
a good comprehensive performance. Further, the CNN-BiGRU-
KDE probabilistic prediction method proposed in this paper
shows certain accuracy advantages in the 80%, 85%, and 90%
confidence intervals, which further demonstrates the effectiveness
and superiority of the method proposed in this paper. Meanwhile, it
can obtain interval coverage greater than the preset confidence level
at different confidence levels. And the probabilistic prediction
method based on CNN-BiGRU-KDE not only produces favorable
bias at all confidence levels, but also has high reliability.

Based on the above analysis of the deterministic prediction
results, it is easy to see that the LightGBM-GRU algorithm
adopted in this paper shows a high prediction effect in the small
fluctuation and gentle power period. However, for the weather
segments with violent fluctuations and ramp segments, there is
still a certain error. Especially, it is more obvious in the period of
frequent large waves, so the point prediction-probability interval
prediction segmentation method proposed in this paper can better
make up for the above shortcomings. On the other hand, the
probabilistic prediction results are shown as the upper and lower
bounds of the confidence interval and the probability density
distribution, and the accuracy of the point prediction is sufficient
to support the actual demand in the non-ramp weather segments.
This is a further manifestation of the rationality of the segmented
prediction strategy proposed in this paper. As can be seen from the
presentation of the segmented prediction results in Figure 12 above,
the actual power time series curve is surrounded by the estimated
confidence interval. According to the predicted performance results,
the model can extract and recognize the ramp segment period
timing patterns better. The prediction intervals of lower
confidence intervals are surrounded by higher confidence
intervals, which effectively circumvents the interquartile crossover
against the probabilistic prediction periods, proving that the
comprehensive performance of the power prediction approach
mentioned in this paper is good.

7 Conclusion

This paper proposes a short-term wind power segmentation
prediction method based on the identification of ramp segment
periods for the phenomenon of sudden power change in a short

period of time under climbing segment meteorology. Compared
with the existing methods, the proposed method improves the
efficiency and accuracy of fluctuating period extraction in the
ramp segment through the adaptive turning time period
identification method based on local feature distribution; the
improved LightGBM-LSTM algorithm can not only mine the
intrinsic connection between multi-feature data, but also avoid
the adverse effect of overfitting, and improve the prediction
accuracy through the combination of prediction strategies; the
proposed CNN-BiGRU-KDE probabilistic prediction method
shows good prediction performance at the specified confidence
level; by proposing a segmented prediction method based on the
temporal pattern, it overcomes the influence of the variability of the
power temporal features on the prediction results under the
meteorological model, and significantly improves the model
prediction performance. In summary, the prediction method
proposed in this paper has good prediction accuracy in the full
time period including the ramp segment weather, and has good
generalization performance, which provides a certain useful
supplement for the research in the field of ultra-short-term wind
power prediction.
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A multi-task learning based line
parameter identification method
for medium-voltage distribution
network

Xuebao Jiang, Chenbin Zhou*, Qi Pan, Liang Wang,
Bowen Wu, Yang Xu, Kang Chen and Liudi Fu

Suzhou Power Supply Company, State Grid Jiangsu Electric Power Co., Ltd., Suzhou, China

Accurate line parameters are critical for and dispatch in distribution systems.
External operating condition variations affect line parameters, reducing the
accuracy of state estimation and power flow calculations. While many methods
have been proposed and obtained results rather acceptable, there is room
for improvement as they don’t fully consider line connections in known
topologies. Furthermore, inaccuracies in measurement devices and data
acquisition systems can introduce noise and outliers, impacting the reliability
of parameter identification. To address these challenges, we propose a line
parameter identification method based on Graph Attention Networks and
Multi-gate Mixture-of-Experts. The topological structure of the power grid
and the capabilities of modern data acquisition equipment are utilized to
capture. We also introduce a multi-task learning framework to enable joint
training of parameter identification across different branches, thereby enhancing
computational efficiency and accuracy. Experiments show that the GAT-MMoE
model outperforms traditional methods, with notable improvements in both
accuracy and robustness.

KEYWORDS

line-parameter identification, multi-task learning, mixture of experts, medium-voltage
distribution system, graph attention network

1 Introduction

The rapid development of new power systems has increased the complexity of power
grid operations.The integration of distributed power sources and energy storage introduces
randomness and volatility, presenting new challenges for the control and operation of
distribution networks. Nowadays, power grids are mutating into Smart EEPS with highly
integrated cyber systems, physical systems, and social systems. Among ML, RL has strong
adaptability; thus, it is applied in many aspects of Smart EEPS, such as stability control,
AGC (Automatic Generation Control), VQC (Voltage Quadergy Control), OPFC (Optimal
Power Flow Control) and other scenarios (Cheng and Yu., 2019). Accurate line parameters
are crucial for state estimation (SE), event detection, fault analysis, and various calculations
within the distribution network (Zhang et al., 2020; Shi et al., 2020).

Unlike the transmission network, where line parameters can be derived from physical
or empirical formulas based on line length, resistivity, and geometric positioning,
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the distribution network requires different approaches due to
its radial topology and numerous feeder nodes (Wang et al.,
2016; Asprou and Kyriakides, 2018; Li et al., 2018). Blueprints
and planning documents can provide design parameters, but
real parameters often differ due to system upgrades. As a
result, traditional transmission line parameter identification (TLPI)
methods struggle when applied to distribution networks. The key
challenge is linking collected data to the line model. Existing
parameter estimation methods can be grouped into two categories:
model-driven and data-driven.

In medium voltage distribution networks, the complexity of
operations and time-varying loads make it hard to build accurate
mathematical models. To obtain more accurate line parameters,
real-time line parameter identification can be carried out based
on measurement data obtained by on-site measuring devices
(Singh et al., 2018; Yu et al., 2018; Yu et al., 2019). Currently,
the data used in parameter estimation mainly comes from two
types of sensors: Supervisory Control and Data Acquisition
(SCADA) systems and PhasorMeasurement Units (PMUs). SCADA
devices have been widely installed in medium voltage distribution
networks, capable of collecting the amplitude of the electrical
quantities but unable to obtain the phase data. PMUs can
provide synchronized electrical quantities, but their high cost
has limited large-scale deployment in distribution networks,
failing to meet observability requirements under most conditions.
Therefore, domestic and foreign scholars have conducted research
on distribution network line parameter identification methods
using phase-free data (Xiao et al., 2021). When PMUs are not
available (Shi et al., 2024), applied a linear regression to estimate line
parameters, topology, and phase labels, with nodal angles recovered
via non-linear regression.

Since measurement devices characteristics can lead to outliers, it
is essential to consider the DLPI problem with outliers and propose
a new robust method to improve the accuracy of line parameter
identification, especially under conditions involving PMU outliers
and discrepancies in the accuracy of the coefficient matrix and
observation data matrix. Research methods mainly focus on the
least, squares method, residual sensitivity analysis, and regression
methods (Zhu and Abur, 2010; Lin and Abur, 2018). A new iterative
weighted least squares (WLS)method for dealing with line parameter
deviations from systematic errors is also proposed, using estimates
to calculate the gain matrix and prior knowledge to calculate the
covariance matrix Pegoraro and his team focused on the estimation
of measurement uncertainty and correction factors of D-PMUs,
conducting a series of studies (Pegoraro et al., 2017; Puddu et al.,
2018; Pegoraro et al., 2019a; Pegoraro et al., 2019b; Pegoraro et al.,
2022). However, these methods assume widespread deployment of
micro-PMUs, which limits their application. Thus, the performance
of the linear regression method is limited by the incomplete
configuration of measuring equipment in distribution networks.
Meanwhile, as noted in Yu et al. (2019), imperfect synchronism
and time interval deviations in smart meters may not ensure instant
measurements for distributed generations (DGs), flexible loads, and
electric vehicles with relatively dynamic behaviors.

Thanks to the development of machine learning and deep
learning technologies, data-driven methods are gradually being

widely applied to analyze and extract deep insights from data
based on partial real-time data. In Li et al. (2022), a differential
evolution algorithm is employed to identify line parameters, even
when many original parameters are missing. Chen and his team
find out that the integration of heuristic swarm intelligence search
algorithms and AI technologies offers a significant approach to
addressing the behavioral decision-making challenges (Cheng,
2020; Cheng et al., 2021; Cheng et al., 2022). Another study (Wang
and Yu, 2022) develops a physics-informed graphical learning
algorithm, using stochastic gradient descent to update the three-
phase series resistance and reactance (Yang et al., 2022) proposed
an RBFNN-MRO method combining a radial basis function neural
network with multi-run optimization, which does not require
synchronized phasor measure data as it uses a constant feeder
parameter model over a specified short period. Other study
Li et al. (2024); Yang et al. (2023) introduced a deep-shallow
neural network to approximate power flow equations, employing
reinforcement learning to optimizewhile ensuringmaximal physical
consistency. To reduce the influence of noise and deviation,
different robust methods are used to improve accuracy. Sun et al.
(2019) use convolutional neural networks (CNNs) to classify
line impedance values and the results deviate from the original
within 10%. Also, recent research in parameter identification
focuses on overcoming limitations related to data structure, noise,
and accuracy. Graph-based models (MNGAN, MFAGCN) are
proposed using attention mechanism to enhance identification
with non-Euclidean structures (Xia et al., 2022; Zou et al., 2024;
Wang et al., 2022).

Above all, future works in DLPI should integrate physics
information with deep learning methodologies. This paper
introduces a multi-branch method for identifying line parameters
using data from both ends of distribution lines. Addressing
current limitations in identifying parameters of branched medium
voltage distribution networks with topological constraints,
the paper proposes a GAT-MMoE based DLPI method. This
approach employs a multi-task neural network incorporating graph
convolutional networks to tackle the line parameter identification
problem. The graph attention network (GAT) uses an attention
mechanism to learn the importance of neighboring nodes in a
graph. Unlike traditional methods, where the contribution of
neighbors is fixed, GAT dynamically adjusts the influence of
each neighboring node based on its relevance to the target node.
This leads to more accurate and nuanced feature representation.
The MMoE model extracts topology features of the distribution
network, with node features derived from graph attention networks
and a multi-task learning model employing homoscedastic
uncertainty loss.

The rest of this paper is structured as follows: Section 2
describes the modeling of the task of multi-branch line parameter
identification in the distribution network, including problem
formulation and the construction of the graph attention and
multi-task modules. Section 3 covers the overall framework and
workflow of the suggested method. Section 4 presents results
and discussion, along with dataset description and comparison
to alternative machine learning methods. Finally, this paper is
summarized in Section 5.
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2 Problem formulation

2.1 Parameter identification task and
system construct

Current line parameter identification technologies face several
challenges: 1) The low investment and high construction costs of
smart devices impede the deployment of PMUs at each bus node,
making real-time monitoring of voltage phase angle information
difficult. 2) The integration of distributed photovoltaic systems on
the user side causes reverse power flow and significant voltage
fluctuations, making it difficult tomaintain accuracy and robustness
in the task of distribution line parameter identification.

The objective of DLPI is to find the mapping between node
characteristics and line parameters and to identify the line resistance
and reactance of each branch. Given the features of power grid
branch, it is achieved using the active power, reactive power, and
voltage amplitude provided by measuring equipment in medium-
voltage distribution networks. The powerful learning ability of
neural networks can be utilized to build a power flow model, mine
constraints, and learn historical data to train the model. The power
flow calculation using polar form of the nodal power Equation 1 is:

{{{{{{{{{{{
{{{{{{{{{{{
{

Pi = PGi − PLi =
n

∑
j=1

ViVj(Gij cos θij +Bij sin θij)

Qi = QGi −QLi =
n

∑
j=1

ViVj(Gij sin θij −Bij cos θij)

Zij = Rij + jXij =
Gij

G2
ij +B

2
ij
− j

Bij

G2
ij +B

2
ij

(1)

where Pi andQi are the active and reactive power injected into node
i, respectively. PGi andQGi are the active and reactive power from the
power source at node i; PLi andQLi are the active and reactive power
consumed by the load at node i; Gij and Bij are the conductance
parameters consisting of g and b between nodes i and j, respectively.
Vi and Vj are the voltage amplitudes of nodes i and j, respectively;
θij is the difference in the phase angle of the voltage between nodes i
and j. In the modeling stage, we use power flow equations expressed
in polar coordinates to accurately represent the system’s behavior.
However, during the experimental phase, the results are provided in
terms of impedance parameters (resistance R and reactance X) as
the original IEEE test case data is given in these terms. To facilitate
direct comparisonwith the IEEE standard data, the node admittance
matrix is converted into corresponding impedance values.

Meanwhile, parameter identification can be considered as a
multi-task regression problem. Considering that the phase angle
difference between the two ends of each branch of the distribution
network is tiny, we assume that the phase angle difference of adjacent
nodes i and node j is 0 for easy analysis.Thus, the linear voltage drop
equation for line k is:

Vi −Vj = Rk
Pij
Vi
+Xk

Qij

Vi
(2)

where Rk and Xk are the line resistance and reactance. Equation 2
represents the node connection relationship and line parameters,
describing the relationship between node voltage and power.
When constructing the system, lines are numbered according to
the order of the end nodes of the line. For line k, the input

characteristics of the distribution network can be expressed as Xk =
(Pki ,P

k
j ,Q

k
i ,P

k
j ,V

k
i ,V

k
i ) ∈ ℝ

6
k, allowing the mapping of R and X to be

determined from the input Xk.
In traditional line parameter identification, the problem can

be generalized as a linear regression problem or a quadratic
programming problem. However, due to the fitting properties
of linear regression, outliers can have significant effects on the
regression, resulting in poor robustness. As the distribution network
often encounters noise interference, datamissing, or other situations
due to the complicated operational conditions and numerous
measurement devices, the performance of the linear regression
model will deteriorate. Therefore, we select the deep learning
method to extract the features of nodes on the premise of obtaining
reconstituted measurement data samples. Deep learning techniques
offer robust feature extraction capabilities, making them well-suited
to handle the complexities and noise inherent in medium-voltage
distribution networks.

2.2 System graph construction

Using network topology as a graph to analyze features allows
for a more comprehensive utilization of structural information
compared to solely relying on measurement data. Graph data
G(V ,L), consisting of a vertex set V and an edge set L, being
non-Euclidean structured, results in better classification accuracy.

In constructing the general distribution network diagram
model, the bus is typically regarded as the node and the connecting
line as the edge. However, graph learning focuses on node
features. Therefore, for parameter identification tasks, we consider
parameters as nodes of the graph and common buses between lines
as edges to represent the connection relationships between lines.The
feature extraction process is illustrated in the following Figure 1.

For undirected graph G(V ,L,A), V is the set of n vertices, Vi ∈
V,L is the set of edges in the graph, and Eij ∈ E. A ∈ ℝ

n×n is the
adjacency matrix, representing the topology among the nodes. Take
X as the input,U is the eigenvector matrix of the normalized Laplace
Matrix of the graph, gθ is the response function of the eigenvalue.
Original standard of GCN is defined as:

X∗ gθ = UgθU
TX (3)

Use Chebyshev polynomials gθ(Λ) = ∑
K
k=0θkTk(Λ) to

approximate and substitute it into Equation 3 to obtain Equation 4,
in which L̃ = 2

λmax
L− IN:

X∗ gθ =
K

∑
k=0

θkTk(L̃)X (4)

Then the convolution process is approximately
defined as Equation 5 by using first-order Chebyshev polynomial to
generate the local convolution kernel:

X∗ gθ = θ(IN +D
−1/2AD−1/2)X = θ(D̃−1/2ÃD̃−1/2)X (5)

In this formula, Ã = A+ IN, Dii = ∑jÃij. The spectral theory is
applied and the output of each layer can be written as Equation 6:

Xk
(l+1) = f(Xk

(l),A) = σ(D̂−1/2AD̂−1/2X(l)k W(l)k ) (6)
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FIGURE 1
Graph extraction process.

where X(l+1)k is the mapping of each layer, l ∈ {0,…,L− 1}, X(0)k is
the input feature Xk. X(l)k represents the feature matrix of the lth
layer of the model. σ(∙) is the activation function, W represents
the weight matrix in neural network. Since the model’s input is
the graph structure data X, including the adjacency matrix and
corresponding attributes, the graph construction process must be
completed before model training to represent the data itself and
uncover the association relationships between the data.

3 GAT-MMoE model design for line
parameter identification

3.1 Graph attention module design

Graph Attention Network (GAT) combines a graph neural
network (GNN) with an attention mechanism, specifically tailored
for processing graph-structured data by assigning different
attention to neighboring nodes on a graph (Velickovic et al.,
2017). It can reduce the computational cost and make it more
scalable than methods that consider all neighbors equally, such as
traditional Graph Convolutional Networks (GCNs). This flexibility
is particularly important for large, sparse graphs. In this paper, GAT
module is applied to transform the feature of each node into an
inter-node attention coefficient through the graph attention layer,
producing a new feature that allows for monitoring changes in
neighboring nodes. Thus, information about each branch line and
the distribution of impedance values between adjacent branches can
be learned, improving the accuracy of parameter identification. We
inputX(0)k and the adjacencymatrix into the graph convolution layer
to learn the node features and structure.

First, the voltage amplitude of nodes under a single time section
is input into the graph attention network to calculate the similarity
between each node and its neighbors in the distribution network.
For each node i, calculate the corresponding coefficient between
node j and itself:

ekij = a([W
khiW

khj]), j ∈Ni (7)

where [⋅⋅] is the concatenation operation.Wk is the learnable weight
matrix for kth layer of the attentionmechanism, finally a(∙) is used to
map the concatenated high-dimensional features to a real number.
Ni indicates the set of nodes adjacent to node i, hi and hj represent
the feature value for node i and j respectively.

After obtaining the correlation coefficient for all the
neighboring nodes of node i, the attention coefficient is normalized
using softmax:

αkij = so ftmax(eij)
exp(LeakyReLU(ekij))

∑
j∈Ni

exp(LeakyReLU(ekij))
(8)

LeakyReLU(x) =
{
{
{

x,x > 0

βx,x ≤ 0
(9)

Where αkij is the attention coefficient between the k head
attention mechanism node i and the adjacent node j. According
to Equations 7, 8, new node features are formed by aggregating
information using the attention coefficient matrix a.

After the attention weights of all nodes are normalized, the
information of nodes is extracted through the graph attention layer.
For different features, different attentionweights need to be assigned.
If only single-layer attention is used, the same attention weights
are applied to all attributes of the neighbourhood node, which will
weaken the learning ability of the model.The specific calculations in
each layer are shown in Equations 9–11.

In each attention layer, we use this to weigh the messages of a
node’s neighbours, which are the neighbour’s features multiplied by
the same learnable weight matrix W. We do this for each attention
head and concatenate the result of the heads together:

h′i =
K
‖
k=1

σ(∑
j∈Ni

αkijW
khj) (10)

σ(x) = 1
1+ e−x

(11)

K is the attention head number and we choose Sigmoid as the
activation function. The feature hi

', calculated by the multi-head
attention mechanism, incorporates the contribution of the features
of neighboring node j to node i, therefore having a stronger ability to
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express features.The feature information is then input into themulti-
task module after being learned by the GAT module to identify
branch line parameters. Identification tasks for different branch
parameters are input into separate expert networks, with each
expert responsible for a specific subspace. Moreover, GAT possesses
topological extrapolation capabilities. If the topology of the station
area changes due tomaintenance or other reasons, adaptive anomaly
identification can be performed by inputting the new adjacency
matrix after training the original adjacency matrix into GAT.

3.2 Multi-task module design

In the parameter identification work of distribution networks,
multiple branches typically require parameter identification, with
each branch having multiple target parameters to identify. The
magnitudes of branch resistance and reactance are generally quite
different, but their characteristics depend on the same factors.
Moreover, branch data are strongly interrelated, and variations in
the electrical variables of one transmission branch often affect
the measurement data of the entire distribution network. Multi-
task learning leverages the correlations between multiple tasks to
optimize the performance of multi-parameter identification. In
this paper, a multi-task strategy is employed to identify multiple
targets simultaneously, thereby reducing computational effort.
According to previous works, different branches are identified as
independent tasks.

3.2.1 Model choosing and sharing policy
TheMixture of Experts (MoE) approach was initially developed

and explored within the field of artificial neural networks, where
experts are typically neural network models used to predict
numerical values in regression or class labels in classification.
To capture differences among multiple branch line parameter
identification tasks, a gating network is added for each task,
forming the Multi-gate Mixture of Experts (MMoE) model on the
basis of MoE (Shazeer et al., 2017; Ma et al., 2018). The MMoE
enhances performance by allowing multiple tasks to share a set
of expert networks, while also assigning different combinations
of those experts to each task. The architecture setup which
contains a set of expert networks and gating networks enables
better task-specific learning and reduces the risk of overfitting,
especially when different tasks are related but still require some
specialization. For medium-voltage distribution systems, which
face constantly changing conditions like load variations and fault
scenarios, traditional methods like FCNs often struggle to adapt
in real-time across multiple tasks without significant re-calibration.
MMoE excels in these environments by providing a more efficient
and adaptive solution, improving both accuracy and reliability in
parameter identification across different branches.

Multi-task learning can be divided into two mechanisms: hard
parameter sharing, where different tasks share the bottom hidden
layer, and soft parameter sharing. Both mechanisms have their
advantages and disadvantages. In the hard sharing mechanism,
parameter sharing is used for feature extraction andoutput, reducing
the risk of overfitting. However, if task differences are large, the
model results become less credible (Jacobs et al., 1991; Eigen et al.,
2013). The MMoE module represents a soft parameter sharing

model, using expert networks as shared substructures for parameter
sharing. Each task employs a gating network to learn different
combination patterns of the expert networks. Compared to the hard
parameter sharing model, MMoE handles task differences more
effectively and has demonstrated better performance in practice.The
principle is shown in Figure 2.

The MMoE model primarily consists of two core components:
Gate Net and Experts. The role of Gate Net is to establish a
connection between the data and the expert model, determining
which expert model should process the input sample. Experts form
a relatively independent set of models, each responsible for handling
a specific input subspace. First, multiple branch identification tasks
are decomposed into several sub-tasks, each corresponding to a
network, with an expert model trained in each subnet. We use
Equations 12–14 to represent the model construction.

Let x represent the model input, for task k, the MMoE model is
formulated as

yk = h
k( f(x)) (12)

fk(x) =
n

∑
i=1

g(x)i fi(x) (13)

where n represents the number of tasks, hk represents the specific
tower network where features are fed up and analyzed. Gate
networks G assign different weights to each expert, with gk being
the output of the gate network corresponding to expert network i
for each subtask k. The gating network interprets the predictions
made by each expert and aids in deciding which expert to trust
for a given input. It takes the input pattern provided to the expert
models and outputs the contribution that each expert should have
in predicting the input:

gk(x) = softmax(Wgkx) (14)

Wgk is a trainablematrix,W ∈ ℝn×d . Graphs constructed in Section 2
are sparse graphs, thus fit properly as embeddings for sparse features.

For the multi-branch parameter identification task, only highly
correlated experts are selected to provide accurate answers. The
expert model in this paper is implemented using Multilayer
Perceptrons (MLPs). Output results are obtained using pooling
methods to achieve a weighted sum prediction based on expert
weights. The gated model then receives data elements as input,
assigns them to different expert models for inference, and outputs
weights representing each expert’s contribution to processing the
data. The pooling system calculates a weighted sum of the classifier
outputs for each class and selects the class with the highest
weighted sum. To control overall sparsity, the design and parameter
adjustment of the gated network are primarily relied upon when
there are many learning tasks. The involvement of more expert
models increases the complexity of the calculation. If the gated
network activates more expert models in a single selection, model
performance improves and sparsity is reduced.

3.2.2 Loss function design
In MTL, label loss is the loss in the calculation of real data

labels and network prediction labels for each task. Usually, the
label loss is determined by the nature of the learning task and is
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FIGURE 2
Soft-sharing mechanism.

realized through Equation 15 by weighted summation of the loss of
different tasks:

Ltotal =∑iωi(t) ∗ Li (15)

However, simply using linear weighting of multiple task
losses has some significant disadvantages. Therefore, according
to Cipolla et al. (2018) and Fernandez-Delgado et al. (2019),
considering the distinctive contributions of different tasks to helping
the final results, we use homoscedastic uncertainty as a basis for
weighting losses to adjust the influence of tasks in the final loss
function for optimizing the whole framework. Take two tasks, for
example, the log likelihood for this output can then be written as
Equations 16, 17:

log p(y = c| fW(x),σ) = 1
σ2

fWc (x) − log∑c
′exp( 1

σ2
fWc′ (x)) (16)

p(y| fW(x),σ) = So ftmax( 1
σ2

fW(x)) (17)

fW(x) is the output of a neural network with weightsW on input x.
σ is a positive scalar, which is learnt in the training process.Then we
can attain joint loss of different tasks through Equation 18

L(W,σ1,σ2) = − log p(y1,y2| f
W(x)) (18)

The multiple final loss is Equation 19:

Ltotal =∑iωi(t) ∗ Li =∑i
1
2σ2i

Li + log σi (19)

3.3 Overall framework of the proposed
method

The overall framework of the proposed GAT-MMoE for
distribution line parameter identification is depicted in Figure 3 As

shown in Figure 3, amulti-task learningmodel based on an attention
graph is constructed. The input of GAT-MMoE we proposed is
feature matrix X and the adjacency matrix A, which means that our
input features contain n nodes, each node containing six features.
The final output of the wholemodel can be expressed as Equation 20:

Ỹk =MTk(Xj) (20)

where MTk represents the mapping function of the k-th branch. Xj
is the j-th expert output.

To overcome the DLPI problems, the system graph is
established according to the description in Section 2, with each
node corresponding to a physical bus in the distribution network.
The input feature of the distribution system is expressed as
(Pi,Pj,Qi,Qj,Vi,Vj) ∈ X

k. The number of nodes is decided by the
scale of distribution network, which means that our input features
contain n nodes, each node contains the above six features.

The GAT module extracts the characteristics of the system and
pays attention to different branch information in different subspaces
by using multi-head attention mechanism. Then the different
subspaces are concatenated to infuse the learnt information. The
features information is then input into the multi-task module for
training. The multi-task module is an MMoE-backboned MTL
module, which contains multiple expert subnetworks. Gate control
units are used to calculate the loss for different tasks during the
training process and update the parameters related to each task
based on the loss. The model’s outputs are the estimated branch line
impedance.

4 Case studies

In this section, the IEEE 14-node distribution network (case 1)
and the IEEE 33-node distribution network (case 2) are selected
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FIGURE 3
Overall framework of the proposed GAT-MMoE model.

FIGURE 4
IEEE-14 distribution system.

as research objects to verify the effectiveness and robustness of the
proposed method. The corresponding topological structure of the
system is represented by Figures 4, 5. Experiments are performed on
a computerwith Intel Core i7-8700K@3.70 GHzCPU, andNVIDIA
GeForce RTX 3060 Ti GPU. It utilizes Python3.10, Pytorch2.0.1 and
pandapower2.13.1.

4.1 Dataset description

The power flow formula of power system is as follows:

{{{{{
{{{{{
{

Pi = Vi

n

∑
j=1

Vj(Gij cos θij +Bij sin θij)

Qi = Vi

n

∑
j=1

Vj(Gij sin θij‐Bij cos θij)
(21)

According to Equation 21, Node voltage, active power
and reactive power data are simulated by pandapower toolkit
(Thurner et al., 2018). The active power injected by nodes in the
load data is sampled by the Latin hypercube sampling method at
[0.8Ps,1.2Ps], where Ps represents the standard active power of the
distribution network. Reactive power data set is generated by active
power data set and power factor. The power factor cosφ satisfies the
uniform distribution of parameters (0.85,0.95). Reactive power is
calculated by power factor through Equation 22. The formula for
calculating reactive power injected by nodes is as follows:

Qi(t) =
Pi(t)

tan(arccos φ(t))
(22)

where φ(t) ∈ [0.85,0.95], Pi(t) and Qi(t) are the active power and
the reactive power injected into node i at time t. φ(t) represents the
power factor of the system at time t.

In this paper, 20 types of radiative network topologies are
selected, then we add Gaussian noise with σ of 0.01, 0.03, 0.5, 1, 2
to each load level, and sample each noise 6 times. A total of 69,120
sets of samples are obtained and divided, including 70% data as
training set, 20% data as test set, 10% data as verification set. The
hyperparameters of the model, such as the attention coefficient α,
and learning rates are determined by 10% of the data set.

4.2 Evaluation index and baseline model
setup

Asuite ofmetrics is employed tomanifest the performance of the
model proposed in this work. Specific calculation formula as shown
in Equations 23, 24:
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FIGURE 5
IEEE-33 distribution system.

FIGURE 6
Training loss over epochs.

Root mean square error (RMSE):

ERMSE = √
1
K

K

∑
i=1
(yi − ̂yi)

2

(23)

Mean absolute percentage error (MAPE):

EMAPE =
1
K

K

∑
i=1
|
yi − ̂yi
yi
| × 100% (24)

Where yi and ̂yi respectively represent the true value and the
predicted value, K represents the sampling number.

In order to prove the validity of our proposed model, we adopt
the following methods as baselines:

1) LR: By minimizing the sum of squares of errors, the linear
regression model is used to provide coefficients that quantify
the contribution of each feature to the target variable, but may
face the problem of overfitting.

2) SVR: Support vector regression is a machine learning method,
which adopts the idea of support vector and the Lagrange
multiplier to perform regression analysis on data when doing
data fitting.

3) FCN: Fully connected neural network is a type of linear
neural network, which inevitably faces the problem of poor
precision in dealing with nonlinear data sets and overfitting.
Fully connected prediction is accomplished by flattening the
input matrix.

In our implementation, the GATmodule utilizes three attention
heads, with a hidden representation dimensionality set to 128
and a dropout rate of 0.3. For optimization, we use a batch
size of 128 and a learning rate of 0.005. The MMoE module is
trained with the Adam optimizer and the learning rate is grid
searched from [0.0001, 0.001, 0.01]. To prevent overfitting in
both the expert and gating networks, the dropout rate is 0.2.
Different weights of each task are assigned using homoscedastic
uncertainty.

4.3 Results and discussion

According to Figure 6, We can find that the gradient of our
proposed model decreases rapidly and converges fast after around
the 20th epoch with little change in accuracy, which demonstrates
the superiority of our model in deep learning-based algorithms.

From Figure 7, it can be noticed that the proposed GAT-MMoE
model can effectively identify the branch line parameters. For case
1, the max relative errors lie in branch 7 and 1 respectively for R
and X, reaching 3.83% and 4.35%. Table 1 shows the parameter
identification errors of branch resistance and reactance, the
corresponding average errors are 3.84% and 2.67% for R and X. For
case 2, the relative max errors are 9.63% and 9.87%. From Table 2,
average errors for R and X are 6.69% and 7.24%. The GAT-MMoE
model can achieve the lowest error in most cases. The deviation
comes from the Gaussian noise we add and as the resistance and
reactance have different orders of magnitude, the errors are within
the allowable range.

Frontiers in Energy Research 08 frontiersin.org167

https://doi.org/10.3389/fenrg.2024.1485369
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Jiang et al. 10.3389/fenrg.2024.1485369

FIGURE 7
Identification results presented with true values and identification values. (A) line resistance of IEEE-14 system; (B) line reactance of IEEE-14 system; (C)
line resistance of IEEE-33 system; (D) line reactance of IEEE-33 system.

Compared with the baseline model, our proposed GAT-
MMoE model demonstrates higher accuracy and better robustness
considering measurement error. The results in Tables 1–4 indicate

that the proposed GAT-MMoE method outperforms all other
models in terms of RMSE and MAPE. Network-based methods
generally show superior performance compared to linear regression
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TABLE 1 Identification errors in IEEE-14 system.

LR SVR FCN GAT-MMoE

Average error of R 0.3732 0.0578 0.0622 0.0384

Average error of X 0.3485 0.0563 0.0588 0.0267

Max error of R 0.1022 0.0344 0.0425 0.0218

Max error of X 0.1234 0.0437 0.0438 0.0319

Min error of R 0.4043 0.0726 0.0733 0.0083

Min error of X 0.3732 0.0794 0.0799 0.0035

TABLE 2 Identification errors in IEEE-33 system.

LR SVR FCN GAT-MMoE

Average error of R 0.3763 0.0609 0.0652 0.0569

Average error of X 0.3815 0.0593 0.0618 0.0426

Max error of R 0.4173 0.0756 0.0763 0.0638

Max error of X 0.5489 0.0824 0.0929 0.0612

Min error of R 0.1552 0.0434 0.0495 0.0168

Min error of X 0.1264 0.0467 0.0568 0.0153

and traditional machine learning methods, underscoring the value
of graph attention learning in extracting high-quality features for
DLP prediction. The superior performance of GAT-MMoE can be
attributed to its effective utilization of related knowledge between
neighboring nodes in the graph. Most baseline methods do not
specifically address the issue of sparsity in their models, resulting
in suboptimal performance. Our model leverages multiple data
sources to construct the information network and employs a multi-
task learning framework to address the specific task of predicting
branch line parameters. Consequently, GAT-MMoE outperforms
the selected baselines. Additionally, the model demonstrates
good robustness when photovoltaic power supply is integrated
into the system. Once the model training is completed, it can
simultaneously predict all parameters of the power grid branch.
Despite the lengthy training process, the method’s robustness and
accuracy compensate for this drawback. Moreover, the trained
neural network model can be easily and rapidly deployed to the
required locations, making it a practical solution for real-world
applications.

From Tables 3, 4, different we can find that our proposed GAT-
MMoE model achieves the best identification results in most cases.
The indexes of multi-task learning model are better than that of
single task learning model. By comparing the machine learning
methods, we can find that the LR method achieves very good
identification results without noise, but when the input features
contain disturbance and noise, the accuracy of branch parameter
identification is greatly reduced. Deep learning method like FCN

TABLE 3 Identification indexes compared with different baseline models
in IEEE-14 system.

R RMSE MAPE X RMSE MAPE

LR 0.8732 0.7322 LR 0.4198 0.3485

SVR 0.1924 0.0845 SVR 0.2643 0.0967

FCN 0.2494 0.1412 FCN 0.0953 0.0876

GAT-
MMoE

0.0545 0.0203 GAT-
MMoE

0.0638 0.0311

TABLE 4 Identification indexes compared with different baseline models
in IEEE-33 system.

R RMSE MAPE X RMSE MAPE

LR 0.9302 0.1222 LR 0.5598 0.5697

SVR 0.2521 0.1245 SVR 0.2743 0.1267

FCN 0.6578 0.2612 FCN 0.3453 0.2384

GAT-
MMoE

0.0689 0.0317 GAT-
MMoE

0.0688 0.0487

fail to balance accuracy between resistance and reactance, as the loss
function is only simple addition. Also, the method is more inclined
to the identification result of line resistanceR and ignores the branch
reactance X.

The influence of distributed photovoltaic access on the proposed
identificationmethod is further explored.We incorporated multiple
distributed photovoltaic (PV) systems into the distribution network,
with the power data of the PV sources derived from the Desert
Knowledge Australia Solar Centre (DKA Solar Center, 2024) We
integrated PV1 and PV2 at nodes 7 and 12 in the IEEE 14-
bus system, and at nodes 22 and 33 in the IEEE 33-bus system.
Based on the sampling frequency of every 15 min, the system
node data is obtained by power flow calculation. After collecting
system P, Q, and V data over multiple time profiles, we input
them into the model for parameter identification. Figure 8 shows
that the identification error increases when a distributed power
supply is present in the network. This increase is due to the
changes in power flow direction caused by the integration of
distributed photovoltaics. However, the identification errors remain
within the acceptable range, demonstrating the robustness of
the method.

For most existing distribution power system, the complexities
and dynamic conditions present unique challenges and
opportunities for parameter identification. Given that most
existing power grid branch parameter identification methods are
model-driven, resulting in low accuracy and poor reliability, our
proposed model leverages a large volume of multi-source power
grid operation data. It is constrained by the grid topology while
integrating both local and global information. This approach
allows for the comprehensive use of historical data to more
accurately identify branch parameters, which can be then fed
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FIGURE 8
Identification results in IEEE-33 system with PV access: (A) line resistance MAPE of IEEE-33 system; (B) line reactance MAPE of IEEE-33 system.

back to the power grid dispatch center. As a result, dispatch
operators gain a clearer understanding of the changing trends in
branch parameters, ensuring the safe and stable operation of the
power grid.

5 Conclusion

Parameter identification is crucial for distribution network
scheduling and control, making it a significant research task.
Current methods, which are primarily model-driven, are sensitive
to data loss and noise. This paper introduces a novel line
parameter identification method for medium-voltage distribution
networks, considering the topology constraints of power network
branches and being validated on IEEE14-M and IEEE33 systems.
When there are too many layers of adjacent nodes, the global
information tends to become similar, resulting in redundancy.
By introducing an attention mechanism, the proposed method
focuses on relatively important nodes and perform feature fusion
on key branches and features. The proposed method consists of
three components: graph generation, attention calculation, and
multi-task prediction. The GAT module uses adaptive attention

weights to flexibly model dependencies among different nodes.
The MMoE algorithm addresses the coupling characteristics among
multiple branches by utilizing multiple expert networks, thereby
improving accuracy.

The method’s effectiveness and robustness are validated
through simulated grid tests, demonstrating improved results
compared to traditional methods. Results show that the GAT-
MMoE method achieves lower identification deviations 3.84% and
2.67% in IEEE14-M, and 5.69% and 4.26% in IEEE33 compared
to the LR, SVR and FCN methods, achieving high prediction
accuracy, good performance, and robustness against various
types of noise.

Moreover, the GAT-MMoE method relies solely on nodal
measurements of injected active power, reactive power, and
voltage magnitude, streamlining the identification process without
compromising accuracy. As smart grid technologies continue
to evolve, data-driven deep learning approaches will play an
increasingly important role in improving parameter identification
in distribution networks. Future work will aim to extend this
approach to a wider range of line parameters while addressing
issues such as limited data availability and dynamic topology
adaptation.
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Photovoltaic output prediction
based on VMD disturbance
feature extraction and WaveNet

ShouSheng Zhao*, Xiaofeng Yang, Kangyi Li, Xijuan Li, Weiwen Qi
and Xingxing Huang

State Grid Zhejiang Electric Power Co., Ltd., Shaoxing Power Supply Company, Shaoxing, Zhejiang, China

Traditional photovoltaic (PV) forecasting methods often overlook the impact of
the correlation between different power fluctuations and weather factors on
short-term forecasting accuracy. To address this, this paper proposes a PV output
forecasting method based on Variational Mode Decomposition (VMD)
disturbance feature extraction and the WaveNet model. First, to extract
different feature variations of the output and enhance the model’s ability to
capture PV power fluctuation details, VMD is used to decompose the PV output
time series, obtaining IMFs modes representing output disturbances and quasi-
clear sky IMF modes. Then, to reveal power changes, especially the underlying
patterns of disturbances and their relationship with weather factors, K-means
clustering is applied to the IMF modes representing output disturbances,
clustering the disturbance IMFs into different power change feature clusters.
This is combined with Spearman correlation analysis of weather factors and the
construction of an experimental dataset. Finally, to enhance the model’s learning
ability and improve short-term output forecasting accuracy, the WaveNet model
is employed during the forecasting phase. Separate WaveNet models are
constructed and trained with the corresponding datasets, and the total PV
output forecast is obtained by superimposing the predictions of different IMF
modes. Experimental results are compared with traditional methods,
demonstrating a significant improvement in forecasting accuracy, with a Mean
Absolute Percentage Error (MAPE) error of 6.94%, highlighting the effectiveness
of our method and providing strong technical support for the refined
management and intelligent forecasting of PV energy.

KEYWORDS

photovoltaic output prediction, VMD, K-means, spearman, WaveNet

1 Introduction

As a clean and renewable energy source, PV power generation plays an increasingly
important role in the global energy transition and the development of renewable energy.
Traditional PV output prediction methods mainly rely on artificial intelligence methods
and numerical weather forecasting to predict future PV output. However, changes in
lighting conditions often have a significant impact on the output time series, especially in
cases of abrupt changes in short-term lighting due to weather variations, resulting in large
fluctuations in PV power. In recent years, researchers have actively explored various
methods to predict PV output accurately and anticipate power fluctuations. With the
advancement of computer technology, data-driven artificial intelligence algorithms have
been widely applied in PV power prediction (Miao et al., 2023; Dong et al., 2024).
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For short-term PV forecasting, literature (Dong et al., 2023)
introduced a method based on the Improved Grey Wolf
Optimization (IGWO) algorithm and Spiking Neural Network
(SNN) for short-term PV output prediction. In the field of ultra-
short-term PV power forecasting based on deep learning, Raiker
proposed an ultra-short-term PV power forecasting model based on
optimal frequency-domain decomposition and deep learning. The
model uses convolutional neural networks to predict the low-
frequency and high-frequency components separately, and then
reconstructs the final prediction result through addition,
significantly improving prediction accuracy and time efficiency
(Raiker et al., 2021). Addressing the issue of data quality
dependence in PV power model prediction, another literature
(Wang et al., 2022) proposed a combination prediction method
for ultra-short-term PV power generation by integrating Singular
Spectrum Analysis and Local Emotion Reconstruction Neural
Network. Recognizing the tendency of traditional Extreme
Learning Machines to fall into local optimums and the
characteristics of environmental changes causing PV output
fluctuations, literature (Cheng et al., 2023) constructed a PV
output short-term prediction model by employing an Adaptive
Noise Complete Ensemble Empirical Mode Decomposition
(CEEMDAN) algorithm combined with chimp optimization
algorithm (Ceyhun and Hakan, 2021; Leiming et al., 2023) to
optimize the Extreme Learning Machine neural network
(Muqaddas et al., 2022). Utilizing the CEEMDAN algorithm,
critical environmental factors affecting PV output power are
decomposed to obtain local features of data signals at different
time scales, reducing the non-stationarity of environmental factor
sequences. Then, each decomposed subsequence and historical PV
data sequence are used as inputs to the Extreme Learning Machine
prediction model optimized by the chimp optimization algorithm
for prediction. To address the incompleteness in considering the
volatility of PV output and meteorological factors, literature (Bian
and Sun, 2021) proposed an improved Typical Meteorological Year
(TMY) method to generate representative meteorological data. This
method constructs a dataset by selecting specific monthly data that
best represent long-term average meteorological characteristics.
Specifically, it uses metrics like Root Mean Square Error (RMSE)
and correlation coefficients to choose the months with the smallest
errors and highest correlations, forming a complete TMY dataset.
This dataset, combined with the Generalized Regression Neural
Network (GRNN) (Zhuang et al., 2019), is used for PV power
prediction, thereby improving the accuracy and reliability of the
predictions. Another literature (Jin et al., 2024) utilized clustering
algorithms to cluster raw data and implemented PV power
prediction using Long Short-Term Memory (LSTM) neural
networks. They also employed an improved Sparrow Search
Algorithm for neural network hyperparameter optimization,
achieving optimization for different power feature scenarios. In
enhancing the accuracy of PV output interval prediction,
literature (Zhang C. et al., 2023) introduced a PV output interval
prediction model based on Improved Ensemble Empirical Mode
Decomposition and Quasi-Affine Transformation optimized
Bidirectional Long Short-Term Memory neural networks (Zhu
et al., 2020; Zhang et al., 2024). Additionally, literature (Wu
et al., 2023) proposed a support vector machine PV power
interval short-term prediction model based on Ensemble

Empirical Mode Decomposition and Chaos Ant-Lion Algorithm.
In terms of spatial correlation analysis, M. Zhang proposed a short-
term solar power forecasting method based on an optimal graph
structure that considers surrounding spatio-temporal correlations.
This method improves forecasting performance by utilizing spatial
information from neighboring photovoltaic stations combined with
a graph convolutional network (Zhang M. et al., 2023). In terms of
hybrid forecasting methods, X. Zhang proposed a new digital twin
(DT) supported PV power prediction framework. This framework
ensures reliable data transmission and leverages the advantages of
both digital physical models and neural network models, thereby
improving prediction accuracy (Zhang X. et al., 2023). In the field of
deep learning networks based on satellite cloud images, Cheng
proposed a graph learning framework. This framework generates
directed graphs by simulating cloud movements and applies a
spatio-temporal graph neural network, effectively improving the
accuracy of photovoltaic power prediction while reducing image
input redundancy (Cheng et al., 2022).

Although the aforementioned methods have achieved promising
prediction results, they still have some limitations. Firstly, these
methods may not fully capture all the factors affecting PV output
when dealing with complex weather conditions and sudden
environmental changes. Therefore, it is necessary to enhance the
ability to identify weather changes, environmental conditions, and
internal noise to more accurately capture the root causes of PV
output fluctuations. Secondly, these methods have not deeply
studied the characteristics and variation patterns of various
output fluctuations. These methods also have not thoroughly
considered the correlations between various disturbances and
weather factors, resulting in a need for improved prediction
accuracy under changing weather conditions. Therefore, there is
a need to establish more comprehensive predictive models that
consider various factors’ influences to enhance the understanding
and predictive ability of PV output fluctuations.

To address the low prediction accuracy of existing PV power
prediction techniques and the weak correlation between
meteorological factors and power fluctuations, this paper
proposes a PV output prediction method based on VMD and
WaveNet. Firstly, to extract different feature variations of the
output, VMD (Meng et al., 2023; Parri et al., 2024; Wang and
Ma, 2024; Yagang et al., 2024) is utilized to decompose the PV
output time series, obtaining Intrinsic Mode Functions (IMFs)
modes representing output disturbances and quasi-clear sky IMF
modes. Subsequently, K-means clustering is applied to the IMFs
modes representing output disturbances to cluster the disturbance
IMFs into different power change feature clusters (Sleiman and Su,
2024). Spearman correlation analysis is then conducted on different
feature clusters combined with weather factors to construct an
experimental dataset. Lastly, to enhance the model’s learning
ability, a WaveNet model (Pramono et al., 2019; Deng et al.,
2022; Wang H. et al., 2023; Wang Y. et al., 2023) is employed in
the prediction phase. WaveNet is selected due to its superior
capabilities in handling time-series data. It effectively processes
long-term dependencies through its dilated convolution structure,
captures multi-scale temporal features with its deep convolutional
layers, and maintains robustness and stability with residual
connections. Moreover, WaveNet’s ability to model non-linear
relationships makes it particularly suited for PV output
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prediction, which involves complex interactions between various
factors. Based on the input of the corresponding feature IMF time
series and combined with relevant meteorological data, WaveNet
models are separately constructed for training and prediction. The
predicted results of different IMF modes are then superimposed to
obtain the total PV output prediction. The effectiveness and
accuracy of the proposed method are validated using historical
data from a PV station in Zhejiang, China.

2 Power feature extraction

2.1 VMD power feature decomposition

VMD is a method used for decomposing signals and extracting
different frequency features. In this paper, VMD is employed to
decompose the PV output time series into different IMFs modes,
which reflect varying patterns at different time scales. VMD
decomposes the original time series data into multiple IMFs with
different frequency characteristics, thereby better representing the
feature variations of the output. This facilitates the analysis of quasi-
clear sky and output disturbance characteristics, clustering them into
feature clusters, laying the foundation for subsequent PV output
prediction.

During the VMD decomposition, the sum of the expected
bandwidths for each power IMF mode is minimized, with the
constraint that the sum of all decomposition modes equals the
original output feature signal sequence. The constrained variational
problem is formulated as follows (Equation 1):

min
uk{ }, wk{ }

∑
k
∂t δ t( ) + j

pt( )*uk t( )[ ]e−jwkt
������ ������2

2

{ }
s.t. ∑

k

uk � f

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (1)

In the equation, f represents the original time series, δ(t) is the
Dirac distribution function, {uk}={u1,. . .,uk} and {wk}:={w1, . . . ,wk}
are shorthand symbols for all modes and their corresponding center
frequencies, respectively. e−jωkt represents the exponential term at the
respective center frequency wk for mode uk.

By introducing Lagrange multipliers to transform the inequality
constraint into an equality constraint, and then solving the above
equation, the solution formula for mode uk can be obtained as follows
(Equation 2):

ûn+1
k w( ) � f̂ w( ) − ∑i≠kûi w( ) + λ̂ w( )

2

1 + 2α w − wk( )2 (2)

In the equation, α is a quadratic penalty factor used to balance
the trade-off between the objective function and the degree of
violation of the constraint. By penalizing the constraint, the
algorithm is encouraged to converge towards solutions that
satisfy the constraint. λ is the Lagrange multiplier operator.

The formula for the center frequency wk is (Equation 3):

wn+1
k � ∫∞

0
w ûk w( )| |2dw

∫∞
0
ûk w( )| |2dw (3)

In PV output prediction, quasi-clear sky IMFs and output
disturbance IMFs have different physical meanings and predictive

patterns. Quasi-clear sky IMFs mainly reflect the basic
characteristics of PV output under clear sky conditions, while
output disturbance IMFs reflect the influence of other factors
(such as cloud cover, temperature changes, etc.) on PV output.
Separating quasi-clear sky and output disturbance IMFs can allow
the prediction model to capture different types of variations more
finely, thereby improving prediction accuracy.

2.2 Disturbance IMF clustering

After obtaining the quasi-clear sky IMF and various disturbance
IMFs, clustering operations are performed on the disturbance IMFs.
K-means is a clustering algorithm (Sleiman and Su, 2024) that
partitions data points into different clusters based on their feature
similarity. In this paper, K-means is used to cluster the IMFs modes
representing PV output disturbances, grouping these modes into
different clusters of power change features to better understand and
describe the operating characteristics of PV power generation
systems. The specific algorithm process is as follows:

1) Initialize the centroids for the disturbance IMF clusters and
select the number of clusters, K.

2) Assign samples D and calculate the Euclidean distance
between each sample point and the cluster centroids Ci.
Find the optimal distance and assign the sample points to
the feature clusters corresponding to Ci (Equation 4):

d x, Ci( ) �
�������������∑m

j�1 xj − Cij( )2√
(4)

In the equation, Ci represents the ith cluster centroid, m is the
dimensionality of the data objects, and Cij denote the jth attribute
values of x and Ci, respectively.

3) Update the cluster centroids by computing the mean and squared
error of all points in each cluster. Update the centroids and repeat
step 2). The calculation formula is as follows (Equation 5):

∑k

i�1∑x ∈ Ci
d x, Ci( )| |2 (5)

4) When the cluster centroids no longer change or reach the
maximum number of iterations, stop the loop, update the
clustering results, and calculate evaluation metrics. For
different numbers of clusters K. For the disturbance IMFs,
this paper calculates the Davies-Bouldin index (DBI) and the
silhouette coefficient index (SC) to select the optimal index and
its corresponding number of clusters KK as well as the
corresponding clustering situation as the clustering result.

2.3 Spearman correlation analysis

Spearman correlation is a non-parametric method used to
measure the monotonic relationship between two variables. It is
robust and not influenced by outliers, making it suitable for various
types of data analysis, particularly effective in detecting nonlinear
relationships.
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By employing Spearman correlation analysis, we can assess the
degree of association between different IMF feature clusters and
weather features. This helps identify which weather factors have a
significant impact on different PV output features, aiding in the
selection of the most relevant features to guide model construction
and prediction processes. The formula for calculating the Spearman
correlation coefficient is as follows (Equation 6):

ρ � 1 − 6∑d2
i

n n2 − 1( ) (6)

In the equation, ρ represents the Spearman correlation
coefficient, di denotes the difference between the ranks of each
corresponding pair (i.e., the difference between the rankings of IMF
variables and weather feature variables), n is the number of
data pairs.

3 WaveNet model

The WaveNet model, based on convolutional neural networks
(CNNs) with different structures, is essentially a probabilistic
autoregressive model for time series data. It has shown good
performance in audio analysis applications, utilizing its strong
capability in handling time-series features to improve short-term
forecasting effects. In PV prediction, the WaveNet model can
effectively capture the temporal features and nonlinear
relationships in PV output data, thereby enhancing prediction
accuracy and generalization capability.

The basic module of WaveNet mainly consists of dilated
convolutional structures, residual connections, and gating unit
structures, as shown in Figure 1. The input layer uses causal
convolutions to preserve the positional information of the

model’s time-series feature input, preventing the model from
seeing the entire temporal information at once during learning.
Its convolutional structure includes causal convolutions and dilated
convolutions, connecting convolutional layers with different
dilation rates to obtain an ultra-long receptive field, extracting
time-series features of different lengths of PV output changes,
analyzed by the causal convolutional layers. The computation of
the model’s gating units is shown in Equation 7, and the calculation
formula for the input-output of a single filter in the dilated
convolutional layer is shown in Equation 8.

z � tanh Wf*x( ) ⊙ σ Wg*x( ) (7)

In the equation, x represents the input time series to the gating
unit, Wf and Wg are the corresponding weight parameters for the
gating mechanism input.

y � x t( )*f t( ) � ∑K−1
n�0

f t( )x t − dn( ) (8)

In the equation, y represents the output of a single filter in the
dilated convolutional layer, x(t)x(t) is the time series input to the
dilated convolutional layer, f(t) is the filter with a kernel size of k, d is
the convolutional dilation rate, and n is the convolutional
kernel index.

The complete WaveNet model is formed by stacking multiple
basic dilated convolutional layers, which process very long time
series data through stacking multiple identical parameterized basic
structures. The lower layers of the convolutional structure learn
short-term patterns, while long-term patterns are learned by higher
layers of convolutional layers. Additionally, a residual network
structure is employed to address the problem of gradient
vanishing and exploding during training caused by excessive
model depth. The model’s output is fused using skip connections,
which combine the feature quantities extracted at different
convolutional layer levels, and the final prediction result is
outputted through multiple causal convolutions.

4 PV output prediction based
on WaveNet

Based on the above methods, this paper proposes a PV output
prediction method based on VMD disturbance feature extraction
andWaveNet model. The structure of the prediction model is shown
in Figure 2.

First, to extract the different feature changes in the output, this
paper adopts VMD to decompose the PV output time series,
obtaining the IMFs modes representing output disturbances and
quasi-clear sky IMF modes. The input for this stage is the historical
PV output data, and the output is the decomposed IMFs modes.

The PV power generation varies rhythmically with the
alternation of day and night. During the day, when the sunlight
intensity is high, the power generation increases. Conversely, during
the night, when the sunlight diminishes, the power generation
decreases. This rhythmic variation is an inherent characteristic of
PV power generation induced by the rotation and revolution of the
Earth. However, sudden changes in meteorological conditions can
affect the output power of the PV system, causing irregular

FIGURE 1
The structure diagram of the WaveNet model.
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fluctuations. By using VMD to extract quasi-clear sky curves and
disturbance curves, as shown in Figure 3, this paper reveals that the
quasi-clear sky curve reflects the regular changes in the output of the
PV system, while the disturbance curve reflects the irregular

fluctuations caused by changes in meteorological conditions. By
decomposing and analyzing regular and irregular variations, a better
understanding of the characteristics and variation patterns of the PV
system’s output can be achieved.

FIGURE 2
Flowchart of photovoltaic output prediction based on VMD disturbance feature extraction and WaveNet neural network.

FIGURE 3
Example diagram of VMD feature decomposition.

Frontiers in Energy Research frontiersin.org05

Zhao et al. 10.3389/fenrg.2024.1422728

177

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1422728


Next, the IMFs modes representing the output disturbance are
subjected to K-means clustering to cluster the disturbance IMFs
according to their power variation characteristics and plot their
cluster centroids. The input for this stage is the IMFs modes
representing output disturbances, and the output is the clustered
disturbance IMFs and their centroids. This clustering method helps
capture different types of power fluctuation patterns in the
experimental dataset. By analyzing these clustered feature
clusters, we can better understand the impact of different types
of disturbances on PV output, providing more information and
features for subsequent prediction models.

Establishing the experimental dataset is a crucial step in PV
output prediction research. The input for this stage is the clustered
disturbance IMFs and historical meteorological data, and the
output is the experimental dataset for model training and
validation. By clustering the disturbance IMFs into different
power variation feature clusters and conducting Spearman
correlation analysis based on their cluster centroids, optimal
weather features for each feature cluster are selected, facilitating
the construction of an experimental dataset for model training and
validation. In the experimental dataset, each feature cluster
represents a type of power fluctuation pattern and contains
relevant weather data samples for that pattern. Constructing the
dataset in this way helps train the model to better adapt to different
types of power variation scenarios.

Finally, to further enhance the model’s learning capability, the
WaveNet recurrent neural network is employed in the prediction
stage. The input for this stage is the experimental dataset
consisting of feature IMF time series data and relevant
meteorological data, and the output is the predicted PV output
for each IMF mode. By combining the corresponding feature IMF
time series data with relevant meteorological data, a WaveNet
model is constructed for training and prediction. WaveNet is a
convolutional neural network structure composed of a series of
convolutional layers, each containing multiple convolutional
kernels. These kernels have gradually expanding receptive
fields, allowing the network to capture rich information at
different time scales. During the prediction process, the
corresponding feature IMF time series data is combined with
relevant meteorological data to train and predict using the
WaveNet model. WaveNet can effectively handle time series
data and extract important feature information, aiding in
better understanding the spatiotemporal structure and related
properties of the data. WaveNet itself has strong nonlinear
modeling capabilities, capable of capturing complex patterns
and regularities in time series data. By employing the WaveNet
model in the prediction stage, PV output time series data can be
better processed, thereby improving prediction accuracy and
generalization capability.

Once the model training is completed, the predicted results of
different IMF modes are aggregated to obtain the predicted total PV
output. The input for this stage is the predicted outputs of different
IMF modes, and the output is the aggregated total predicted PV
output. This approach combines the different feature IMF time
series data and utilizes the model’s learning capabilities for each
IMF, resulting in a more comprehensive prediction of the total
output of the PV system, further improving the accuracy and
reliability of the prediction results.

5 Case study

To validate the effectiveness of the proposed PV output
prediction method based on VMD disturbance feature extraction
and WaveNet model, historical data from a PV station in Zhejiang,
China, was used as the experimental dataset. The historical PV
output data covers the fourth quarter of the year 2022, from
1 October 2022, 0:00 to 31 December 2022, 23:55. The data is
sampled at a frequency of 5 min per point, and the output data is in
units of watts.

5.1 Evaluation metrics

The forecasting part of the experiment focuses on turbine output
prediction. The results are evaluated using RMSE, Mean Absolute
Error (MAE), andMAPE as the evaluationmetrics. The formulas for
these metrics are (Equations 9–11):

eRMSE �

���������������
1
N

∑T+N
t�T+1

αst − α̂st( )2
√√

(9)

eMAE � 1
N

∑T+N
t�T+1

αst − α̂s
t

∣∣∣∣ ∣∣∣∣ (10)

eMAPE � 1
N

∑T+N
t�T+1

αst − α̂s
t

αst

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ (11)

In power output prediction, αst � ps
t represents the actual value

of the output, while âst � p̂s
t represents the predicted value of the

PV output.

5.2 Decomposition of output using VMD

First, the historical output time series is decomposed using VMD
to extract and analyze different modes of output variations. In VMD,
the parameter α controls the balance between the smoothness of
decomposition and the fitting of data. To better fit the data, the

FIGURE 4
Number of clusters for disturbance IMFs clustering at different k.
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experimental setting for the fitting coefficient alpha is set to 10. During
the VMD operation, the experiment initially sets the number of
modes, k, to 3, 5, 7, 9, 11, etc., and then applies K-means
clustering to the obtained disturbance IMFs for different values of
k. The number of clustered disturbance IMFs for different values of k
is shown in Figure 4.

From Figure 4, it can be observed that as the number of VMD
decompositions, k, increases, the subsequent clustering numbers
stabilize starting from k = 7. It can be seen that increasing the
number of decompositions does not change or improve the
clustering effect. Therefore, in this experiment, the number of
modes, k, is set to 7. The VMD decomposition diagram of the
PV output is shown in Figure 5.

According to Figure 5, VMD decomposes the output into seven
characteristic IMFs. IMF1 represents the clear-sky curve of the day,
reflecting the output curve unaffected by weather conditions. IMF4 and
IMF5 represent high-amplitude low-frequency disturbances caused by
changes in cloud cover, while IMF2 and IMF6 represent high-amplitude
mid-frequency disturbances caused by changes in cloud cover.
IMF3 and IMF7 represent low-amplitude high-frequency
disturbances caused by changes in cloud cover and the PV system
itself. The Residue represents the noise component of the PV system.

5.3 Disturbance IMF clustering

Next, K-means clustering was applied to the disturbance IMF
modes excluding the clear-sky IMF. The clustering SC and DBI
scores are shown in Figure 6, and the centroids of the clusters are
depicted in Figure 7.

According to Figure 6, when K = 3, both the DBI index and SC
index are optimal, indicating the best clustering effect. That is, the
disturbance IMF is mainly divided into three categories, and the IMF

time series data of the same category are used to construct the
prediction model for training in subsequent predictions. Figure 7
shows the cluster centroids of the disturbance IMF, and the
clustering results are consistent with the conclusions of VMD
decomposition. By identifying different disturbance feature
classes, the variation patterns and periodic influences of PV
power output disturbances can be explored. Combined with
historical meteorological data, further analysis of weather change
patterns can improve the accuracy of PV power output prediction.

5.4 Spearman correlation analysis

After obtaining the clustering results from K-means, the
Spearman correlation analysis was conducted between the class
clear-sky IMF curve and the clustering center lines of disturbance
clusters 1, 2, and 3, respectively, with historical weather data. The
correlation analysis results are shown in Table 1.

From the data in Table 1, it can be analyzed that there is a very
high Spearman correlation between the clear sky IMF and
irradiance, indicating a significant correlation between the clear
sky IMF and irradiance. However, the Spearman correlations
between the disturbance IMF clusters 1, 2, and 3 and various
meteorological parameters are relatively low, suggesting weak
associations between them and the meteorological parameters.
Specifically, disturbance IMF cluster 2 has the lowest Spearman
correlation coefficients with all meteorological parameters,
indicating the weakest connection with each meteorological
parameter. In contrast, disturbance IMF cluster 1 shows relatively

FIGURE 5
The VMD decomposition diagram of PV power output.

FIGURE 6
Evaluation indices for K-means clustering.

FIGURE 7
The central line of uphill climbing clustering.
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high Spearman correlations with irradiance and surface
temperature, while disturbance IMF cluster 3 exhibits relatively
high correlation with humidity, indicating that meteorological
factors have the greatest influence on disturbance IMF cluster 3.
Based on this analysis, this study selects the optimal meteorological
factors for each power cluster to construct the experimental dataset.

5.5 WaveNet prediction model

During the prediction phase, WaveNet prediction models were
separately constructed for the class-sunny-day IMF and the power
IMFs within each disturbance IMF cluster. Predictions were made for
each IMF component, and these predictions were then aggregated to
obtain the overall PV power output prediction. In the experiment, the
above steps were organized into an experimental dataset. The dataset

was divided into training and testing sets, with the last 3 days’ data
reserved for testing and the remaining data used for training.

In the comparative experiment, the models were divided into
three categories: CNN-based models, RNN-based models, and
hybrid models. The reason for selecting these three categories is
to comprehensively evaluate the performance of different types of
neural networks in PV power output prediction. CNN-based models
excel at handling short-term complex fluctuations and can quickly
capture local features in time series data; RNN-based models have
advantages in dealing with long-term dependencies and can better
capture long-term trends in time series data; hybrid models combine
the strengths of both CNNs and RNNs, enabling them to handle
both short-term fluctuations and long-term trends. Each category
included versions with and without VMD decomposition and
Spearman correlation analysis. The specific models included:
VMD-TCN, VMD-LSTM, VMD-GRU, VMD-CNN-LSTM,

TABLE 1 The results of Spearman analysis.

Irradiance Pressure Surface temperature Humidity Wind speed at 70 m

clear-sky IMF 0.9002 0.1907 0.4905 0.7965 0.3008

clusters 1 0.0367 0.0449 0.0063 0.0279 0.0131

clusters 2 0.0153 0.0166 0.0029 0.0242 0.0101

clusters 3 0.4094 0.1705 0.3072 0.2609 0.0398

FIGURE 8
Comparison chart of predicted actual values vs. predicted values.
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VMD-CNN-GRU, VMD-Transformer, and their counterparts
without decomposition. Additionally, this study proposed the
VMD-WaveNet prediction model. The performance of these
models was evaluated by comparing the actual and predicted
outputs, as shown in Figure 8, analyzing the performance of
different methods in PV power output prediction.

Figure 8 shows the comparison between the actual PV power
output (blue solid line) and the predictions from two models: VMD-
WaveNet (red dashed line) and WaveNet (green dashed line) over
3 days. The VMD-WaveNet model is closer to the actual values most
of the time, especially at the two main peaks around 150 min and
430min, where it captures the fluctuations in the actual output more
accurately, while the WaveNet model shows larger errors at these
peaks. The zoomed-in plot further illustrates the details within the
100 to 200 min time period, where the VMD-WaveNet model is
closer to the actual values than the WaveNet model, particularly
during periods of large fluctuations, demonstrating higher predictive
accuracy. At several peaks and troughs, the VMD-WaveNet model
better tracks the changes in actual output, whereas the WaveNet
model exhibits greater prediction errors at these points. Overall, the
VMD-WaveNet model outperforms the WaveNet model in
capturing both the overall trend and local fluctuations in PV
power output predictions, indicating that the incorporation of
VMD decomposition and Spearman correlation analysis
significantly enhances the performance of the PV output
prediction model.

According to the results in Table 2, CNN-based models such as
WaveNet perform well in short-term predictions and can quickly
respond to rapid changes in PV power.

Traditional LSTM and GRU models have advantages in
handling long-term dependencies. However, models without
VMD processing exhibit deficiencies in noise handling and
feature extraction, leading to lower prediction accuracy. The
RMSE of VMD-LSTM is 88.56W, significantly better than the
183.04W of the undecorated LSTM; similarly, VMD-GRU has an
RMSE of 76.93W, compared to the 169.77W of the undecorated
GRU, demonstrating the effectiveness of VMD decomposition in
these models. Hybrid models such as VMD-CNN-LSTM and
VMD-Transformer combine the strengths of CNN and RNN,
performing well in handling both short-term fluctuations and
long-term trends. The RMSE of VMD-Transformer is 42.09W,

better than the 132.31W of the undecorated Transformer, further
proving the value of VMD processing.

Compared to other RNN, CNN, and hybrid models, the
WaveNet model excels in handling time series data. By utilizing
the structure of convolutional neural networks, WaveNet performs
exceptionally well in dealing with short-term complex fluctuations
and long-term dependencies. Although the prediction accuracy of
the WaveNet without VMD processing is slightly inferior to that of
VMD-WaveNet, its RMSE is still 75.22W. Notably, the RMSE of
WaveNet is the lowest among all models without VMD processing:
LSTM has an RMSE of 183.04W, GRU has an RMSE of 169.77W,
TCN has an RMSE of 121.86W, and Transformer has an RMSE of
132.31W. This indicates that WaveNet excels in capturing short-
term fluctuations and long-term dependencies even without VMD
processing, surpassing other traditional RNN and hybrid models,
highlighting its advantages in time series data processing.

The VMD-WaveNet model combines the advantages of VMD
decomposition with WaveNet’s powerful time series processing
capabilities. By extracting features of different frequencies
through VMD decomposition and conducting Spearman
correlation analysis with meteorological data, it can more
accurately capture the short-term fluctuations and long-term
trends of PV power output. Figure 8 shows that the VMD-
WaveNet model significantly outperforms the undecorated
WaveNet model in predicting multiple peaks and valleys,
especially near the main peaks at 150 min and 430 min, where
the VMD-WaveNet model is closer to the actual values.
Additionally, the evaluation metrics in Table 2 further confirm
this, with the VMD-WaveNet model achieving an RMSE of
27.01W, an MAE of 10.90W, and a MAPE of 6.94%, all
significantly better than other models. This demonstrates that the
VMD-WaveNet model, through more refined feature extraction and
comprehensive consideration of multiple relevant factors,
significantly improves the accuracy and stability of PV output
prediction, showing the best predictive performance.

6 Conclusion

The existing short-term forecasting techniques for PV power
face challenges such as low prediction accuracy and weak correlation

TABLE 2 Evaluation metrics for prediction results.

Group Model RMSE
/(W)

MAE
/(W)

MAPE
/(%)

Model RMSE
/(W)

MAE
/(W)

MAPE
/(%)

CNN-based proposed 27.01 10.90 6.94 WaveNet 75.22 32.69 7.17

CNN-based VMD-TCN 47.41 20.34 6.99 TCN 121.86 45.67 7.32

RNN-based VMD-LSTM 88.56 35.89 7.28 LSTM 183.04 68.42 7.42

RNN-based VMD-GRU 76.93 30.56 7.25 GRU 169.77 62.43 7.39

Hybrid models VMD-CNN-LSTM 70.52 24.76 7.22 CNN-LSTM 152.69 58.27 7.36

Hybrid models VMD-CNN-GRU 44.93 15.68 7.10 CNN-GRU 141.28 54.32 7.34

Hybrid models VMD-Transformer 42.09 14.76 7.02 Transformer 132.31 50.89 7.33
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between meteorological factors and power fluctuations. To address
these issues, this paper proposes a PV power prediction method
based on VMD for disturbance feature extraction and
WaveNet model.

To capture the diverse features of PV power output, VMD is
applied to decompose the PV power time series into IMFs
representing disturbance and clear-sky components. The clear-
sky curve reflects regular variations in PV output, while the
disturbance curve reflects irregular fluctuations caused by
changes in meteorological conditions.

To better understand the impact of different disturbance types
on PV output and provide more information and features for the
model, the IMFs representing power disturbances are clustered
using K-means clustering based on their power change
characteristics. Through analysis of these clustered feature
clusters and Spearman correlation analysis of weather factors,
different types of power fluctuation patterns are explored more
accurately, thereby enhancing the predictive performance of
the model.

In the prediction stage, a WaveNet model is employed. By
combining the corresponding feature IMF time series data with
Spearman-correlated meteorological data, a WaveNet model is
constructed for training and prediction. The WaveNet model can
effectively capture features and patterns in time series data,
considering the temporal correlation and non-linear
characteristics of the data, thus improving the accuracy and
generalization ability of PV power prediction.

In the experimental section, evaluation metrics are computed,
and the predicted data from different models are compared with the
ground truth data to validate the computational accuracy and
effectiveness of the proposed method for PV power prediction.
The results demonstrate that the model provides effective
predictions of PV power output, thereby supporting operational
management of PV stations.
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