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Editorial on the Research Topic
Recent advances in the molecular genetics of glioma

Gliomas, a varied and deadly group of central nervous system tumors of glial
origin, are the leading cause of cancer-related death among females between 0 and
19 years and males between 0 and 39 years of age (Ostrom et al., 2022; Wang et al.,
2022), highlighting the urgent need for effective diagnostic and therapeutic strategies.
The molecular genetics of gliomas represent one of the most challenging and dynamic
frontiers in modern oncology. Understanding the molecular genetics of glioma has
become paramount in the pursuit of effective therapeutic strategies. Advances in
molecular profiling have identified key genetic alterations driving gliomagenesis,
offering new opportunities for targeted therapies. Single gene-targets, including
mutations in genes such as EGFR, IDH, and TP53, have been extensively studied
for their roles in glioma pathogenesis (Cheng and Guo, 2019; Khayari et al., 2022).
Innovative treatments, including small molecule inhibitors, monoclonal antibodies,
and gene editing technologies are being explored to selectively inhibit oncogenic
pathways and disrupt tumor growth (Huang et al., 2022; Chen et al., 2024; Stitzlein
et al., 2024). Precision medicine approaches targeting specific genetic aberrations hold
promise for personalized treatment strategies tailored to individual glioma subtypes.
This Research Topic highlights ten groundbreaking articles that delve into the complex
molecular genetics of gliomas, including three key avenues of leveraging the genomic
and molecular information for therapeutic interventions: single-targets, pan-targets,
and immunotherapy.

Dysregulation of gene expression has long been correlated with the molecular
landscape of gliomas. In this Research Topic, several manuscripts explore expression
profiles of glioma and correlate them to prognosis. Zhao et al. uncovered a <1%
mutation rate in KIF23 using RNA sequencing and Whole-Exome Sequencing (WES)
when screening 319 glioma samples. Subsequent gene-set enrichment analysis (GSEA)
and review of copy number alterations (CNAs) deduced from WES data, the authors
concluded that overexpression of KIF23 was correlated with tumor samples having
amplifications of the genetic region encompassing that gene, and the overexpression
was positively correlated with WHO tumor grade and a worse overall survival. The
analysis of gene expression of ANXA1 in glioma by Zhang et al. utilizing three public
data sources suggested the overexpression of this gene is associated with poor
prognosis and that the elevated expression was an independent prognostic factor
in glioma. Liu et al. identified elevated ESPL1 expression in glioma using GSEA and
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correlated the findings to poor overall survival. The authors
performed in silico analysis of potential drug targets using
CMap, identifying antimycin A, thioguanosine, and
zidovudine as potential small-molecules inhibitors of this
gene’s signaling pathway. In a meta-analysis of four glioma
datasets (TCGA, CGGA, GSE6011 and Rembrandt) by Zhou
et al., high level expression of GAS2L3 was associated with
higher grade tumor and shorter overall survival. Yang et al.
found that centromeric protein A (CENP-A), a protein involved
in chromosomal segregation during cell division, was
upregulated in gliomas and high CENP-A levels were
associated with high grade, response to therapy and shorter
overall survival.

In contrast to their high-grade counterparts, low-grade
glioma (LGG), which are categorized as WHO Grade I or II,
pose different challenges driven by biological processes
highlighted in three articles included in this Research Topic.
Shi et al. conducted gene expression profiling of 433 LGG
patients available in the TCGA database, identifying JAG1
overexpression and Notch pathway activation as indicators
of poorer prognosis and immune response in LGG.
Implications of E3-related gene signatures in LGG was
investigated by Tan et al. who identified AURKA, MAP3K1,
PCGF2, PRKN, TLE3, TRIM17, and TRIM34 as part of an E3-
related prognostic signature and its role in LGG prognosis and
tumor immune microenvironment cell infiltration. Lin et al.
investigated six autophagy-related genes (BAG1, PTK6, EEF2,
PEA15, ITGA6, and MAP1LC3C) to construct an autophagy-
related prognostic risk model in LGG that was validated as an
independent risk predictor for survival. These studies
emphasize the crucial importance of gene expression profiles
in understanding glioma prognosis and shaping therapeutic
strategies.

To leverage the genomic and molecular information for
therapeutic intervention, while single gene-targeted therapies
have shown efficacy in subsets of glioma patients, the inherent
heterogeneity within tumors often leads to therapeutic
resistance and disease progression. Pan-targeted approaches
aim to overcome this challenge by simultaneously inhibiting
multiple signaling pathways involved in glioma progression.
Multi-targeted kinase inhibitors, epigenetic modulators, and
combination therapies are being developed to
comprehensively disrupt tumor cell survival and proliferation.
By targeting interconnected signaling networks, pan-targeted
therapies offer the potential for synergistic effects and improved
clinical outcomes in glioma patients. The need for combination
therapy is blatantly apparent in the most aggressive and
inoperable subtypes of glioma, those affecting the brainstem
such as Diffuse Intrinsic Pontine Glioma (DIPG). Due to an
intact blood-brain-barrier and unique molecular profile, these
tumors have unique treatment challenges.

Immunotherapy has emerged as a promising approach
across many solid tumors including for the treatment of
gliomas. Strategies such as immune checkpoint inhibitors,
chimeric antigen receptor T (CAR-T) cell therapy, and
peptide vaccines are being investigated to enhance anti-
tumor immune responses. By modulating immune
checkpoints or directly engaging immune effector cells,

immunotherapy offers a novel paradigm for glioma
management, aiming to overcome immunosuppressive
mechanisms within the tumor microenvironment. Lin et al.
review the most recent advances in emerging technologies such
as Magnetic Resonance guided Focused Ultrasound (MRgFUS)
and various immunotherapy treatments such as cancer
vaccines, autologous cell transfer therapy, CAR-T cell
therapy, and immune checkpoint blockers for DIPG.
Regarding immune related biomarkers, long noncoding
RNAs (lncRNAs), which are noncoding RNAs that are more
than 200 nucleotides in length without significant protein-
coding function have been shown that these are immune-
related and are prognostic.

In summary, the complex and heterogeneous molecular
genetics of gliomas pose both daunting challenges and
exciting opportunities ripe for therapeutic exploration.
Immunotherapy, single gene-targets, and pan-targets
represent distinct yet complementary strategies in the pursuit
of more effective and personalized treatments for glioma
patients. Ongoing research is imperative to unravel the
intricate genetic and molecular mechanisms driving glioma
development and resistance, paving the way for
groundbreaking interventions that could dramatically improve
patient survival, outcomes, and quality of life.
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Elevated GAS2L3 Expression
Correlates With Poor Prognosis in
Patients With Glioma: A Study Based
on Bioinformatics and
Immunohistochemical Analysis
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Background: Growth arrest–specific 2 like 3 (GAS2L3) is a cytoskeleton-associated
protein that interacts with actin filaments and tubulin. Abnormal GAS2L3 expression
has been reported to be associated with carcinogenesis. However, the biological role of
GAS2L3 in glioma remains to be determined.

Methods: The transcriptome level of GAS2L3 and its relationship with
clinicopathological characteristics were analyzed among multiple public databases
and clinical specimens. Bioinformatics analyses were conducted to explore biological
functions and prognostic value of GAS2L3 in glioma.

Results: GAS2L3 was substantially expressed in glioma, and high GAS2L3 expression
correlated with shorter overall survival time and poor clinical variables. Gene
set enrichment analysis (GSEA), single-sample gene-set enrichment analysis, and
CIBERSORT algorithm analyses showed that GAS2L3 expression was closely linked
to immune-related pathways, inflammatory activities, and immune cell infiltration.
Moreover, GAS2L3 was synergistic with T cell–inflamed gene signature, immune
checkpoints, T-cell receptor diversities, and neoantigen numbers.

Conclusion: This study suggests that GAS2L3 is a prognostic biomarker for glioma,
providing a reference for further study of the potential role of GAS2L3 in the
immunomodulation of glioma.

Keywords: GAS2L3, glioma, bioinformatics, biomarker, tumor microenvironment

INTRODUCTION

Worldwide, gliomas account for approximately 40–50% of all neoplasms of the central nervous
system (CNS) (Ostrom et al., 2018). Although advances in glioma treatment have been achieved
in the past decades, the therapeutic efficacy, especially on glioblastoma (GBM), is still limited
(5-year survival are approximately only 5.5%) (Omuro and DeAngelis, 2013). The molecular
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mechanisms underlying tumor development and progression are
poorly understood, and the lack of specific markers for tumor
type or disease stage further impedes the current understanding
and treatments of glioma.

The growth arrest–specific 2 (GAS2) family, consisting of
four related proteins (GAS2, GAS2L1, GAS2L2, and GAS2L3),
participate in cross-linking of actin and microtubule filaments in
interphase and in growth-arrested cells (Goriounov et al., 2003;
Stroud et al., 2011). Unlike members, GAS2L3 mRNA expression
in resting cells is extremely low, whereas the expression level
gradually increases when the cell reenters the cell cycle and
reaches a peak in the G2/M phase (Wolter et al., 2012). The loss
of GAS2L3 and overexpression studies have implicated GAS2L3
in cytokinesis, chromosome segregation, and abscission (Pe’Er
et al., 2013). Recently, it has been reported that GAS2L3 was
dysregulated in various tumor cells. Shi et al. (2020) reported
that GAS2L3 was significantly related to the deterioration of
overall survival (OS) and disease-free survival in hepatocellular
carcinoma. Seidl et al. (2010) reported that GAS2L3 was
downregulated after incubation with highly cytotoxic α-emitter
immunoconjugates in gastric cancer cells. However, the role of
GAS2L3 in glioma has not been reported.

Here, we investigated the association between GAS2L3 gene
expression and glioma clinical characteristics using data from
public databases and clinical samples from our institution.
Additionally, its potential roles in immune response and immune
infiltration of tumor microenvironment (TME) were analyzed.
Our results could potentially reveal new targets and strategies for
glioma diagnosis and treatment.

MATERIALS AND METHODS

Dataset Selection
The mRNA level of GAS2L3 in different cancer types was
confirmed by the Oncomine database. In glioma, gene expression
and relevant clinical data of patients were obtained from five
cancer datasets. The Cancer Genome Atlas (TCGA) (Wang et al.,
2016) dataset was used as a discover set, whereas the Chinese
Glioma Genome Atlas (CGGA) (Yan et al., 2012), the GSE16011
(from Gene Expression Omnibus database) (Gravendeel et al.,
2009), and the Repository of Molecular Brain Neoplasia Data
(REMBRANDT) (Madhavan et al., 2009) as validation sets.
Additionally, we enrolled a total of 127 glioma patients from the
department of neurosurgery, Huanhu Hospital (Tianjin, China),
as the external validation set. All patients signed an informed
consent form. The study protocol was approved by Huanhu
Hospital Ethics Committee (Tianjin, China).

Immunohistochemistry
Tumor tissues were surgically excised and were immediately fixed
in 10% neutral buffered formalin for 24 h and then embedded
in paraffin. Tissue slides were prepared and deparaffinized by
baking in oven 60◦C for 1 h. Then, antigen unmasking was
done in boiling container with sodium citrate buffer for 20 min.
Goat serum was used for blocking. Slides were then stained with
GAS2L3 rabbit polyclonal antibody (1:400, bioss, BS-23297R)

overnight at 4◦C, and secondary antibodies were incubated for
1 h at room temperature. Positive or negative staining of GAS2L3
was independently evaluated by two experienced pathologists,
and samples were divided into two groups: low expression
group, including negative (−) and weak (+) staining, and high
expression group, including moderate (++) and strong (+++)
staining (Xiao et al., 2015).

Bioinformatics Analysis
The examination of tumor/normal differential expression
analysis of GAS2L3 in TCGA was performed by GEPIA, an
interactive web server containing 8,587 normal samples from
the GTEx database (Tang et al., 2019). The correlation between
GAS2L3 expression and various clinical characteristics was
analyzed and plotted using beeswarm R package. Kaplan–Meier
curve, receiver operating characteristic (ROC) curve, and area
under the ROC curve (AUC) were graphed using survival,
survminer, and ROC packages. Univariate and multivariate Cox
analyses were performed to compare the impact of GAS2L3
expression on the OS alongside with other clinical variables.
The bioinformatics analyses were performed utilizing R software
v3.6.3. All R packages were downloaded from CRAN1 and
Bioconductor2.

Meta-Analysis
We performed a meta-analysis to assess the overall prognostic
value of GAS2L3 in glioma patients among four datasets.
Combined hazard ratio (HR) and 95% confidence interval
(CI) were used to measure the effect size. The heterogeneity
among datasets was assessed by the Q test (I2 statistics). The
random-effects model was used to minimize the influence of
heterogeneity, whereas I2 > 50% or P< 0.10; otherwise, the fixed-
effects model would be applied. The meta-analysis was conducted
in STATA 15 software.

Comprehensive Correlation Analysis in
Tumor Immunity
In the discovery cohort, gene set enrichment analysis (GSEA)
(Subramanian et al., 2005) was conducted to identify Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways, which showed statistically
significant differences between high and low GAS2L3 expression
cohorts. The annotated gene sets of c5.all.v7.2.symbols.gmt and
c2.cp.kegg.v7.2.symbols.gmt in the MSigDB were selected in
GSEA version 4.0 software. The false discovery rate < 0.25 and
normal P < 0.05 were used as thresholds. The single-sample
GSEA (ssGSEA) was used to analyze the RNA-seq data of 29
important immune signatures from each glioma sample in the
form of ssGSEA scores. The signatures for immune cell types
were obtained from previous publications (Bindea et al., 2013;
Liu et al., 2018; Zhou et al., 2020). Furthermore, 22 types of
tumor-infiltrating immune cells [tumor-infiltrating lymphocytes
(TILs)] in glioma microenvironment were assessed based on
CIBERSORT deconvolution algorithm (Newman et al., 2015).

1http://cran.r-project.org/
2http://bioconductor.org/
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The gene expression signature of 22 TILs was obtained from the
CIBERSORT platform3.

The T cell–inflamed gene signature, obtained from a
previously report (Ayers et al., 2017), was calculated by gene set
variation analysis (GSVA). Then, we calculated the expression
levels of programmed cell death ligand 1 (PD-L1) and other
immune checkpoints in sample with GAS2L3-low and -high.
Gene indel mutations and single-nucleotide variants are prone to
result in major histocompatibility complex–binding neoantigens,
which can be recognized by immune cells. The neoantigen load
for each patient from the discovery cohort was obtained from
a previous paper (Schumacher and Schreiber, 2015). The T-cell
receptor (TCR) diversities of patients from the discovery cohort,
which were measured using the Shannon entropy, were obtained
from a previous report (Thorsson et al., 2018).

Statistical Analysis
Patients with missing information were excluded from the
corresponding analysis. Mann–Whitney U and Kruskal–Wallis
test were used to analyze the relationship between GAS2L3
mRNA expression and the clinical features of glioma. For
GAS2L3 protein expression, χ2 test was employed. The
proportions of TILs between GAS2L3 expression-low and -high
subtypes were compared using the Mann–Whitney U test. The
statistical analyses were performed utilizing R software v3.6.3 and
GraphPad Prism 7. All statistical tests were two-sided. P < 0.05
was used to determine the significance level.

RESULTS

Preparation of Datasets
A total of 2,604 cases (including 41 non-tumor samples) from
discovery and validation datasets were included in this study. The
characteristics of the glioma patients in these five datasets were
concluded in Table 1. Patients’ detailed information of Huanhu
dataset is shown in Supplementary Table 1.

GAS2L3 Transcript Levels in Different
Databases
First, the mRNA levels of GAS2L3 in different cancers were
analyzed in Oncomine database. Relative to control specimens,
GAS2L3 was significantly upregulated in brain and CNS, breast
cancer, gastric cancer, kidney cancer, and pancreatic cancer, but
downregulated in leukemia (Figure 1A). These results suggest
that the high expression of GAS2L3 is common in various
types of cancer.

In glioma, GAS2L3 mRNA expression data from TCGA and
207 normal samples from the GTEx project were analyzed
based on GEPIA, and we found that GAS2L3 was significantly
upregulated in GBM and had a relative increased expression in
lower-grade glioma compared to normal samples (Figure 1B).
The differential expression was also confirmed in validation
datasets (Figures 1C,D). Additionally, the expression levels of
other GAS2 members in glioma were also analyzed by GEPIA,

3https://cibersortx.stanford.edu/

TABLE 1 | Characteristics of patients in TCGA, CGGA, GSE16011, REMBRANDT,
and Huanhu datasets.

Characteristic TCGA CGGA GSE16011 REMBRANDT Huanhu

Total 703 1,018 284 472 127

Age (years)

≥52 263 191 133 45

<52 407 558 143 82

Gender

Male 651 442 184 221 77

Female 460 307 92 126 50

Grade

I 8 2

II 249 218 24 98 39

III 265 240 85 85 35

IV 596 291 159 130 53

Histology

Pilocytic astrocytoma 8

Astrocytoma 194 150 29 147 28

Oligodendroglioma 191 76 52 67 46

Oligoastrocytoma 130 232 28

Glioblastoma 596 291 159 219 53

Mixed glioma 11

IDH1 mutation

Yes 91 410 81 87

No 34 339 140 40

1p19q codeleted

Yes 155 110

No 594 45

KPS

<80 151 82

≥80 584 182

but no upregulation was found compared with the control group
(Supplementary Figure 1).

For protein expression level, immunohistochemistry (IHC)
staining indicated that 67.7% (86/127) of glioma tissues had
high GAS2L3 expression. Representative slides are displayed in
Figure 1E and Supplementary Figure 1. Taken together, GAS2L3
was highly expressed at both transcriptional and proteomic levels
in glioma tissues.

GAS2L3 Is Associated With
Clinicopathological Features of Glioma
Because of the heterogeneity of glioma (Lapointe et al., 2018), the
mRNA expression data were analyzed according to the World
Health Organization (WHO) grade, histology, age, isocitrate
dehydrogenase 1 (IDH1) mutation, and other features. In TCGA,
CGGA, GSE16011, and Rembrandt datasets, the expression of
GAS2L3 was the highest in the grade IV compared with the
low-grade tumors (Figure 2A). Besides, GAS2L3 expression
increased in higher histopathologic malignancies (Figure 2B). As
for age and IDH1 mutation status, the higher expression level of
GAS2L3 was detected in patients older than 41 years and those
with wild-type IDH1 in TCGA, CGGA, and GSE16011 datasets
(Figures 2C,D). Then, we quantified the protein level of GAS2L3
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FIGURE 1 | The mRNA and protein expression levels of GAS2L3. (A) GAS2L3 expression level in cancers in Oncomine database: the left box in red indicates the
number of datasets with GAS2L3 overexpression, and the right box in blue indicates the number of datasets with GAS2L3 hypoexpression after comparing
cancerous and normal tissues. (B–D) TCGA (based on GEPIA), GSE16011, and REMBRANDT datasets support the findings that indicate GAS2L3 upregulation in
glioma (*P < 0.05). (E) GAS2L3 protein expression was detected in glioma tissues from Huanhu dataset.

in Huanhu cohort by IHC staining. GAS2L3 was highly expressed
in advanced grades and histopathologic types and wild-type
IDH1, although no association was found between GAS2L3
expression and age (Figure 2E). Additionally, some other clinical
characteristics [1p19q codeletion status, Karnofsky Performance
Status (KPS), chemotherapy, radiotherapy, gender and recurrent
status] were also analyzed (Supplementary Figure 2). These
results indicated that high expression of GAS2L3 predicted high
malignant glioma.

GAS2L3 Predicts Worse Survival in
Glioma
To investigate the prognostic value of GAS2L3 expression,
patients were divided into low or high groups based on the
median expression value. Kaplan–Meier plots demonstrated that
high level of GAS2L3 expression was correlated with unfavorable
OS of glioma patients in different datasets (Figures 3A–D).
ROC analysis showed that GAS2L3 could be a good predictor of
1-year (AUC = 0.842), 3-year (AUC = 0.843), and 5-year survival
(AUC = 0.838) (Figure 3E). These results were validated in other
datasets (Figures 3F–H).

Cox Regression Analysis and
Meta-Analysis
To further explore the prognostic value of GAS2L3, univariate
and multivariate Cox regression analyses were conducted in both
TCGA and CGGA datasets. In TCGA cohort, the univariate
analysis showed that patients with GAS2L3-high expression
had worse OS (HR = 2.50, 95% CI [2.08–3.01], P < 0.001)
(Figure 4A). Besides, clinical characteristics, age (HR = 1.06,

95% CI [1.05–1.08]), grade (HR = 4.71, 95% CI [3.51–6.34]),
histological type (HR = 1.71, 95% CI[1.42–2.06]), and KPS
(HR = 0.952, 95% CI [0.940–0.964]) also correlated significantly
with poor survival (all with P < 0.001). After adjusting for
other clinicopathologic characteristics, the multivariate analysis
revealed that GAS2L3 expression remained independently
associated with OS (Figure 4B, HR = 1.77, 95% CI [1.38–2.27],
P < 0.001). These results were also validated in CGGA cohort
(Figures 4C,D), demonstrating that GAS2L3 expression is an
independent prognostic factor of glioma.

As no published studies have focused on the prognostic role
of GAS2L3 expression in glioma, an integrated meta-analysis of
four datasets was carried out to assess the overall prognostic
value of GAS2L3 in glioma patients (Figure 4E). The pooled
HR (HR = 1.48, 95% CI [1.30–1.67]) using the random-effects
model suggested that a higher expression level of GAS2L3
significantly predicted poorer OS in patients with glioma.
However, heterogeneity was found (I2 = 74.9%, P = 0.008), which
may be partly attributed to the differences of Cox regression
analyses for HR, sequencing methods, or countries among
patients in four datasets.

GAS2L3-Related Immune and
Inflammatory Pathways
Patients with high GAS2L3 expression had a short OS time,
suggesting that GAS2L3 may be involved in the initiation and
the progression of glioma. Then, we performed GSEA to identify
GO and KEGG signaling pathways, which were enriched in
GAS2L3-high expression phenotype in TCGA. The GO analysis
showed that a set of pathways, especially those related to
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FIGURE 2 | Associations between GAS2L3 expression and clinicopathologic variables in different datasets. (A) WHO grade, (B) histological type; PA: pilocytic
astrocytoma, A: astrocytoma, O: oligodendroglioma, OA: oligoastrocytoma, mixed: mixed histological type, GBM: glioblastoma, (C) age (years), (D) IDH1 mutation
status, (E) the differential protein expression of GAS2L3 in samples from Huanhu dataset by IHC method.

immunity, was enriched, including regulation of innate immune
response, regulation of lymphocyte migration, regulation of B
cell–mediated immunity, immune response to tumor cell, and
so on. Meanwhile, immune-related pathways, such as leukocyte
transendothelial migration, TCR signaling pathway, and toll-like
receptor signaling pathway, were also enriched in a cohort with
GAS2L3-high by KEGG analysis (Figure 5A). These results
indicated that GAS2L3 may play an essential role in the immune
microenvironment of glioma.

The Relationship Between GAS2L3 and
Immune Infiltration and Activities
To better comprehend the role of GAS2L3 in immune
activities, we used the ssGSEA to explore the relationship
between GAS2L3 and activities or enrichment levels of

immune cells and functions, based on the 29 well-established
immune-associated gene sets (Bindea et al., 2013; Liu et al.,
2018; Zhou et al., 2020). As the heatmap showed (Figure 5B),
some immune cell types, such as CD8+ T, macrophages, T
helper cells, regulatory T cells (Tregs), immature dendritic
cells (iDCs), and plasmacytoid dendritic cells (pDCs), were
infiltrated in glioma samples with GAS2L3-high, whereas
natural killer cells (NK cells) had an opposite trend.
Additionally, some immune-associated functions also had
positive correlations with GAS2L3 expression. The marker
genes of antigen-presenting cells (APCs) costimulation,
APC coinhibition, chemokine receptor (CCR), immune
checkpoint, cytolytic activity, human leukocyte antigen,
inflammation promoting, major histocompatibility complex class
I, parainflammation, T-cell costimulation, T-cell coinhibition,
and types I and II interferon (IFN) responses were more
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FIGURE 3 | Associations between GAS2L3 expression and prognosis of patients in different datasets. (A–D) Kaplan–Meier estimated of overall survival between
groups harboring different GAS2L3 expression. (E–H) Time-dependent ROC curves of overall survival at 1, 3, and 5 years.

highly expressed in samples with GAS2L3-high than in those
with GAS2L3-low.

As TILs play an essential pathophysiological role in
the development of glioma (Domingues et al., 2016), we
systematically estimated the proportions of 22 TILs in TCGA
glioma samples based on CIBERSORT algorithm (Newman
et al., 2015). The results showed the TIL subsets had significantly
different proportions in different GAS2L3 expression cohorts
(Figure 5C). Coincided with ssGSEA analysis, we observed that
CD8+ T cells, Tregs, γδ T cells, neutrophils, and macrophages
M0, M1, and M2 were enriched in GAS2L3-high cohort.
Nevertheless, monocytes, NK cells activated, mast cells activated,
and eosinophils were enriched in the GAS2L3-low cohort. These
results indicated that GAS2L3 has a close relationship with
immunomodulation of glioma.

GAS2L3 Is a Predictive Marker for
Response of Immunotherapy
Traditional therapies combined with immunotherapies, such as
immune checkpoint inhibitors and chimeric antigen receptor T
cells, have gained promising results in multiple tumor treatments
(Abril-Rodriguez and Ribas, 2017). Several studies have explored
the usage of immunotherapy against glioma (Suryadevara et al.,
2015); however, the therapeutic efficacy was still less than
satisfactory. Here, we investigated the potential of patients with
different GAS2L3 expression to respond to anti–programmed
cell death 1 (PD-1) therapy. As Figure 6A showed, the T
cell–inflamed signature, a predictor of responses to anti–PD-
1 therapy in various types of cancer (Ayers et al., 2017), was
significantly enriched in tumors with GAS2L3-high based on
GSEA analysis. The T cell–inflamed signature score calculated
by GSVA was also higher in GAS2L3-high tumors (Figure 6B).
Patients with higher PD-L1 expression tend to gain more

clinical benefits from anti–PD-1 therapy (Ayers et al., 2017).
Here, we found that GAS2L3 had positive associations with
PD-L1, B7-H3, and other immune checkpoints (Figure 6C).
The TCR diversity and neoantigen numbers, also known to
be predictive markers for anti–PD-1 therapy (Tumeh et al.,
2014), were similarly higher in tumors with GAS2L3-high
(Figures 6D,E). In conclusion, GAS2L3 can help to predict
response of antitumor immunotherapy.

DISCUSSION

Glioma is the most prevalent and lethal primary brain tumors in
adults (Ostrom et al., 2018). Because of the limited improvements
in the treatment of glioma, new therapeutic methods are urgently
needed. A variety of indicators, such as genetic aberrations
and tumor environment, have been reported to participate in
the development and progression of glioma (Molinaro et al.,
2019). The potential roles of GAS2 family in tumorigenesis
of liver cancer (Zhu et al., 2015), leukemia (Kong et al.,
2020), recurrent colorectal cancer (Chang et al., 2016), or lung
adenocarcinoma (Murugesan et al., 2018) have been explored.
However, the prognostic value of GAS2L3 in glioma still
remains unclear. In this study, we evaluated the expression level
and prognostic value of GAS2L3 in glioma based on public
databases and clinical specimens. We observed that GAS2L3
was significantly upregulated in glioma that was associated
with malignant behavior. Our Cox regression models showed
that a high level of GAS2L3 expression correlated with shorter
patients’ survival time. Meta-analysis containing patients from
four public databases further established the critical role of
high GAS2L3 expression in the adverse prognosis of glioma
patients. Functional enrichment analysis illustrated that GAS2L3
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FIGURE 4 | Univariate and multivariate Cox regression analyses regarding OS in TCGA dataset (A,B) and CGGA validation dataset (C,D). Precise forest plots were
graphed, respectively. (E) Forest plot of a meta-analysis of high GAS2L3 expression with worse OS in glioma patients from four datasets.

was significantly involved in plenty of immune-related pathways,
such as regulation of lymphocyte migration, TCR signaling
pathway, and immune response to tumor cell.

Studies have shown that the TME, especially immune
microenvironment, has a great impact on the development
of cancers (Li et al., 2017; Wang et al., 2017). However, the
functions of GAS2L3 in the TME have not been reported.
Here, we employed two different methods (ssGSEA analysis and
CIBERSORT algorithm) to investigate the impact of GAS2L3
on infiltration of immune cells in glioma. ssGSEA showed
that GAS2L3 was positively correlated with the infiltration of
various immune cell types, including T cells [CD8+ T cells,
T helper cell 1 [TH1] cells, TH2 cells, PD-L1], macrophages,

iDCs, and pDCs, whereas NK cells had an opposite trend.
CIBERSORT algorithm further revealed that GAS2L3 impacted
the proportions of 22 TILs in glioma. Patients with different
level of GAS2L3 expression had significant differences in the
proportion of immune infiltration. For example, the proportions
of CD8+ T cells, Tregs, γδ T cells, neutrophils, and macrophages
M0, M1, and M2 were higher in the group with GAS2L3-high,
which were coincided with the ssGSEA analysis. The infiltration
of DCs, the classical APCs, can help present tumor-associated
antigens to T cells (Gardner and Ruffell, 2016). The increase of
CD8+ T cells can secrete various cytokines and generate cytolytic
activity to enhance the antitumor immunity (Andre et al., 2018).
The priming of CD8+ cytotoxic T lymphocytes generally requires
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FIGURE 5 | GAS2L3-related inflammatory activities and immune infiltration in TCGA. (A) GO and KEGG pathway analysis. (B) Heatmaps displaying GAS2L3
expression, clinicopathological parameters, and 29 well-established immune-associated gene sets based on ssGSEA method. (C) The different proportions of 22
TILs in glioma samples based on CIBERSORT algorithm.

the participation of CD4+ T-helper lymphocytes (Schoenberger
et al., 1998). GAS2L3 also upregulated the infiltration of Tregs,
which maintain a balance to fight diseases and at the same time
prevent damage to healthy tissues (Schoenberger et al., 1998;
Maghazachi, 2003). It has been reported that macrophages have
a double effect on the development of tumor (Wang et al.,
2015). M1 macrophages participate in antigen presentation and
immune surveillance by secreting proinflammatory chemokines,
whereas M2 macrophages exert inhibitory function (Chen et al.,
2019). Through the ssGSEA analysis, we also found GAS2L3 may
upregulate the level of CCRs and IFN (both types I and II),

which are critical for immune cell recruitment and CD8+ T cell
activation (Balkwill, 2004; Farhood et al., 2019). Consequently,
GAS2L3 may play a critical role in regulating TME in glioma by
participating in cellular and humoral immunity.

In the last decade, immune checkpoint inhibitors have
shown remarkable success in treating various tumors (Abril-
Rodriguez and Ribas, 2017). However, because of the substantial
heterogeneity of tumor cells, the efficacy of immunotherapies
was less than satisfactory in glioma (Suryadevara et al., 2015).
Identifying those who may respond to immunotherapies will
certainly help glioma patients gain more clinical benefits from
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FIGURE 6 | GAS2L3-high and -low tumors exhibit features of anti–PD-1 responsiveness. (A) GSEA of the T-cell–inflamed gene signature in GAS2L3-high and -low
tumors. (B) T-cell–inflamed gene signature scores in GAS2L3-high and -low groups. (C) GAS2L3 was synergistic with PD-L1 and other immune checkpoints.
(D) T-cell receptor (TCR) diversity in GAS2L3-high and -low tumors. (E) Neoantigen numbers in GAS2L3-high and -low tumors. ns, not significant (*P < 0.05,
**P < 0.01, ***P < 0.001).

anti–PD-1 therapy. In this study, we employed several predictive
markers for anti–PD-1 therapy, which have been discussed in
multiple types of cancer. We found that the T cell–inflamed
signature, PD-L1 expression, the TCR diversity, and neoantigen
numbers were significantly enriched in tumors with GAS2L3-
high. In conclusion, it makes sense that GAS2L3 in combination

with these biomarkers may help identify patients who have a
higher likelihood of response to immunotherapies.

The current study had some limitations. First, heterogeneity
was found in our meta-analysis, and we could hardly explain
its source. Thus, more clinical research projects are needed
for further elucidation. Second, the mechanisms by which
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GAS2L3 may play an important role in the immunomodulation
of the glioma microenvironment need further experimental
verification. Third, more data are needed to prove the efficacy of
the combination of GAS2L3 target and immunotherapies.

In summary, multicenter data showed that GAS2L3 was
upregulated in advanced glioma and was related to adverse
clinical outcomes. We found that GAS2L3 was involved in
numerous immune activities and immune cell infiltration. It
makes sense to combine anti-GAS2L3 and anti–PD-1 therapies
to amplify the efficacy of treatments typically used in isolation.
Taken together, GAS2L3 may act as a potential biomarker of
prognosis and therapeutic target for glioma.
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In glioma, kinesin family member 23 (KIF23) is up-regulated and plays a vital role in
oncogenesis. However, the mechanism underlying KIF23 overexpression in malignant
glioma remains to be elucidated. This study aims to find potential causes of KIF23 high
expression at genome level. To clarify this issue, we obtained point mutation and copy
number alterations (CNAs) of KIF23 in 319 gliomas using whole-exome sequencing.
Only two glioma samples with missense mutations in KIF23 coding region were
identified, while 7 patients were detected with amplification of KIF23. Additional analysis
showed that KIF23 amplification was significantly associated with higher expression
of KIF23. Gene ontology analysis indicated that higher copy number of KIF23 was
associated TNF-α signaling pathway and mitotic cell circle checkpoint, which probably
caused by subsequent upregulated expression of KIF23. Moreover, pan-cancer analysis
showed that gaining of copy number was significantly associated with higher expression
of KIF23, consolidating our findings in glioma. Thus, it was deduced that elevated KIF23
expression in glioma tended to be caused by DNA copy number amplification, instead
of mutation.

Keywords: glioma, KIF23, malignancy, mutation, copy number alterations

INTRODUCTION

Kinesin family member 23 (KIF23) is a nuclear protein and plays a key role in regulating cytokinesis
(Nislow et al., 1992; Zhu et al., 2005; Liu and Erikson, 2007). It has been found to be dysregulated
and act as an oncogene with prognostic value in various tumors (Kato et al., 2016b; Iltzsche et al.,
2017; Li X. L. et al., 2019). Our previous study showed that KIF23 mRNA expression was positively
correlated with glioma grade, and high KIF23 expression conferred poor survival in glioma, which
was further validated by the TCGA, REMBRANDT, and GSE16011 database (Sun et al., 2016).
These results indicated that dysregulated KIF23 may play an essential role in tumorigenesis and
progression, but how KIF23 expression is upregulated in cancers remains unelucidated.

Previous study showed that in the tumors with up-regulated KIF23 expression, DNA mutation
of KIF23 was detected in nearly half of tested human cancer types, and CNAs of KIF23 showed
gain in 30% of tested tumors (Cerami et al., 2012). Besides, p.P916R mutation of KIF23 causes a
rare hereditary form of dyserythropoietic anemia (CDA III) with predisposition to blood cancer
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(Liljeholm et al., 2013), and they further demonstrated that
overexpression of KIF23 in non-small-cell lung cancer might
be caused by CNAs (Vikberg et al., 2017). The above studies
indicated that KIF23 gene expression can be modulated either by
DNA mutation or by CNAs. However, KIF23 mutation and CNAs
status in glioma is unclear. Given the idea that KIF23 is a novel
prognostic biomarker with potential therapeutic implications in
glioma, it is valuable to investigate the mutation and CNAs status
of KIF23 in glioma.

In this study, we screened for KIF23 DNA mutation and
CNAs in 319 gliomas with DNA and RNA sequencing data,
and demonstrated that elevated KIF23 expression in glioma was
probably caused by DNA copy number amplification. In terms
of the important role of KIF23 in tumorigenesis and malignant
aggressive progression of glioma, further understanding of its
functional mechanism and pathway should be investigated.

MATERIALS AND METHODS

RNA-Sequencing Data
Two independent RNA-seq datasets (mRNAseq_325 and
mRNAseq_693) and paired clinical information were obtained
from Chinese Glioma Genome Atlas (CGGA) database1 (Zhao
et al., 2021). In the two datasets, only samples with definite WHO
classification were included for survival and grade expression
pattern analysis. Thus, 321 glioma samples (103 WHO grade
II, 79 WHO grade III and 139 WHO grade IV) of CGGA
mRNAseq_325 dataset, 692 glioma samples (188 WHO grade
II, 255 WHO grade III, and 249 WHO grade IV) of CGGA
mRNAseq_693 dataset were enrolled for subsequent analysis.

Whole-Exome Sequencing (WES) Data
Genomic DNA from tumor and matched blood sample was
extracted and confirmed for high integrity by 1% agarose gel
electrophoresis. The DNA was subsequently fragmented, quality-
controlled, and then pair-end libraries were prepared. For whole
exome sequencing, Agilent SureSelect kit v6 was used for target
capture. Sequencing was done on Illumina Hiseq platform using
150 bp pair-end sequencing strategy. In total, 319 whole-exome
sequencing data of glioma samples were obtained, which were
also available at CGGA Network.

DNA sequencing data were then mapped to the reference
human genome (UCSC hg19) using Burrows-Wheeler Aligner
(version 0.7.12-r1039, bwa mem) (Li and Durbin, 2009) with
default parameters. Then, SAMtools (version 1.2) (Li et al., 2009)
and Picard (version 2.0.1, Broad Institute)2 were used to sort
the reads by coordinates and mark duplicates. Statistics such
as sequencing depth and coverage were calculated based on
the resultant BAM files. SAVI2 was used to identify somatic
mutations (including single nucleotide variations and short
insertion/deletions) as previously described (Wang et al., 2016;
Hu et al., 2018). In this pipeline, SAMtools mpileup and bcftools
were used to perform variant calling, then the preliminary

1http://www.cgga.org.cn
2http://broadinstitute.github.io/picard/

variant list was filtered to remove positions with no sufficient
sequencing depth, positions with only low-quality reads, and
positions that are biased toward either strand. Somatic mutations
were identified and evaluated by an Empirical Bayesian method.
In particular, mutations with significantly higher allele frequency
in tumors than that in normal control were selected. Additionally,
CNVkit (version 0.9.4.dev0)(Talevich et al., 2016) was used to
detect copy number changes from WES data.

Gene Set Enrichment Analysis
Firstly, we obtain the KIF23 CNV status WES data from CGGA
database3 and Cancer Hallmarks associated geneset from GSEA
website4 version 7.2. By integrating the WES data and matched
RNA-seq data, we calculated the fold change of gene expression
for each gene between KIF23 with or without CNV. Next, we use
R package GSVA (version 1.36.3) to do enrichment analysis in
cancer hallmarks.

Statistical Analysis
Statistical analysis was performed using SPSS Graduate Pack
(version 16.0) and GraphPad Prism (version 5.0) statistical
software. Descriptive statistics were shown as mean ± standard
deviation. Student’s t test, one-way ANOVA test were used to
test the significance of differences. Overall survival time (OS) was
calculated from the date of histological diagnosis until death or
the last follow-up. Kaplan-Meier survival analysis was used to
estimate the survival distributions, and log-rank test was used
to assess the statistical significance between stratified survivals
groups. Patients with KIF23 expression lower than median level
of KIF23 was defined as low expression, while patients with
higher than the median value or equal to the median one was
defined as high expression. A two-sided p value < 0.05 was
considered statistically significant.

RESULTS

KIF23 Expression Is Positively Correlated
With Tumor Grade and Confers Poor
Survival in Glioma
To validate the results of our previous study (Sun et al., 2016), we
analyzed KIF23 expression pattern using CGGA mRNAseq_325
and mRNAseq_693 datasets. We got the similar results that
KIF23 expression was the highest in grade IV glioma group, while
had the lowest expression in grade II glioma group (p < 0.001)
(Figures 1A,B). Besides, we also found that patients with high
KIF23 expression (median survival in CGGA_mRNAseq_325
dataset is 386 days, and CGGA mRNAseq_693 dataset is
530 days) had a significantly worse overall survival compared
to those with low KIF23 expression (median survival in CGGA
mRNAseq_693 dataset is 3174 days, and CGGA mRNAseq_693
dataset is 2982 days) (p < 0.001) (Figures 1C,D).

3http://cgga.org.cn
4http://www.gsea-msigdb.org/gsea/index.jsp
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FIGURE 1 | KIF23 expression pattern and prognostic value in CGGA RNA sequence database. (A,B) KIF23 expression is positively correlated with tumor grade.
(C,D) High KIF23 confers a poor survival in glioma patients. High group, patients with higher KIF23 expression than the median value or equal to the median one.
Low group, patients with lower KIF23 level than the median one.

Mutation Analysis of KIF23 in Glioma
Tumor DNA from 319 glioma patients were available for calling
mutations, as shown in Figure 2. The mutation rate of IDH1 and
TP53 was 53% and 48%, respectively. However, KIF23 mutation
rate was less than 1% (Figure 2A). Only two case-specific
missense mutations were detected, including non-synonymous
change 69733357 G > A in Case104 and 69728081 C > T in
Case241 (Table 1). Our results showed that patients with KIF23
mutation (median survival is 530 days) had a significantly worse

overall survival compared to those without KIF23 mutation
(median survival is 2982 days) (p = 0.025) (Figure 2B).

CNAs Analysis of KIF23 in Glioma
CNAs were analyzed from the above WES data with 319
samples. We defined log ratio > 0.25 as Amplification group
(n = 11), log ratio < -0.25 as Deletion group (n = 40), others
as Wildtype group (n = 268). As shown in Figure 3A, KIF23
expression was the highest in Amplification group. Though

FIGURE 2 | Mutation analysis was done in 319 glioma samples. Only two case-specific missense mutations were detected were detected (A) although mutation of
KIF23 showed worse overall survival (B).
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TABLE 1 | Case-specific non-synonymous mutation of KIF23 in 2 glioma samples.

Sample ID Cancer type Chromosome Mutation position Reference allele Variant allele AA change

Case104 Recurrent GBM 15 69733357 G A G773D

Case 241 Recurrent GBM 15 69728081 C T P415S

FIGURE 3 | CNAs analysis was done in 319 glioma samples. KIF23 expression was highest in copy number amplification group in CGGA dataset (A) and further
validated in TCGA dataset (B). Copy number alteration as universally occurred in various cancers (C) and gaining of copy number was significantly associated with
higher expression of KIF23 (D). Network analysis revealed that KIF23 was tightly involved in mitosis (E).

there’s no significant difference between Deletion group and
Wildtype group, KIF23 in Wildtype group still showed relatively
higher expression than that in Deletion group. The expression
pattern was also independently validated in TCGA dataset
(Figure 3B). Furthermore, we explored other focal CNAs in
both low- and high-expression of KIF23 groups. We identified
several significantly well-characterized genetic alterations in the
case with high KIF23 expression (Table 2), such as PTEN loss
(p value = 7.37e-8), CDKN2A loss (p value = 4.04e-12), CDKN2B

loss (p value = 9.44e-12), KIT gain (p value = 3.33e-7), PDGFRA
gain (p value = 5.06e-7), MET gain (p value = 1.30-04) and CDK6
gain (p value = 3.06e-04). Furthermore, we explore the KIF23
CNVs in Pan-cancer levels from TCGA datasets. Our results
showed that KIF23 CNVs occurred in various human cancers
(Figure 3C), including endometrial carcinoma, melanoma and
gliomas, suggesting KIF23 as a critical role in pan-cancer.
Moreover, pan-cancer analysis showed that gaining of copy
number was significantly associated with higher expression
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TABLE 2 | Significant CNA events between KIF67 high expression and low
expression groups.

Alteration Alt in
exphigh

Alt in
explow

WT in
exphigh

WT in
explow

P value

PTEN_loss 90 42 70 117 7.37e-08

CDKN2A_loss 104 42 56 117 4.04e-12

CDKN2B_loss 104 43 56 116 9.44e-12

KIT_gain 46 11 114 148 3.33e-07

PDGFRA_gain 47 12 113 147 5.06e-07

MET_gain 58 27 102 132 1.30e-04

CDK6_gain 51 23 109 136 3.06e-04

of KIF23, consolidating our findings in glioma (Figure 3D).
Network analysis revealed that KIF23 was tightly involved in
mitosis, by interacting actively with genes such as CDK1 and
CDCA8 (Figure 3E).

Amplification of KIF23 Is a Negative
Prognosticator for Glioma Patients
Since higher expression of KIF23 was negatively associated
with overall survival with patients, we further investigated the
prognostic value of KIF23 amplification with 319 glioma samples.
As what was expected (Figure 4), patient with copy number
gaining of KIF23 showed significantly worse survival than those
without KIF23 amplification (log-rank test, p value = 0.033). This
result was in consistence with the prognostic value of KIF23

high expression, which consolidates the role of KIF23 in glioma
pathophysiology processes.

Higher Copy Number of KIF23 Is
Significantly Associated With TNF-α
Signaling Pathway and Cellular Mitotic
Activities
To explore the underlying mechanism of amplification of KIF23,
we conducted gene ontology analysis for KIF23 copy number
variation. Enrichment analysis revealed that KIF23 copy number
positively associated genes tended to be associated with active
cell biological process (Figure 5A), including TNF-α signaling
pathway (Figure 5B), and G2M checkpoint (Figure 5C). These
results indicated that higher copy number of KIF23 was involved
with active immune activities and mitotic cellular activities,
which further suggested more malignant biological processes.
This is consistent with what we have found in the analysis
of expression of KIF23, consolidating the malignant role of
KIF23 in glioma.

DISCUSSION

KIF23, also known as MKLP1 (mitotickinesin-like protein-1), is
a member of kinesin-like motor protein superfamily. The protein
encoded by KIF23 contains the kinesin superfamily motor
domain at the N-terminal region. The domain mainly localizes in
the interzone of mitotic spindles and acts as a plus-end-directed

FIGURE 4 | Amplification of KIF23 is a negative prognosticator for glioma patients.
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FIGURE 5 | Higher copy number of KIF23 was associated with active cell biological process (A), including TNF-α signaling pathway (B), and mitotic cell circle
checkpoint (C).

motor enzyme that moves along anti-parallel microtubules
(Nislow et al., 1992). KIF23 has been identified as a key regulator
of cytokinesis for its essential role in spindle midbody formation
(Zhu et al., 2005; Liu and Erikson, 2007). Antagonism of KIF23
expression causes cell growth inhibition, and the formation
of enlarged cell bodies with binuclear/multinuclear in many
tumor cells (Liu et al., 2004; Takahashi et al., 2011; Kato et al.,
2016b), probably due to the cell cycle arrest which further caused
mitosis failure.

It seems that elevated of KIF23 expression is a common
event in various human cancers. KIF23 was reported to be
overexpressed in pancreatic ductal adenocarcinoma (Gao et al.,
2020), malignant pleural mesothelioma (Kato et al., 2016a),
lung cancer (Kato et al., 2016b; Ye et al., 2017), breast
cancer (Zou et al., 2014), hepatocellular carcinoma (HCC)
(Sun et al., 2015; Cheng et al., 2020), gastric cancer (Li
X. L. et al., 2019; Liang et al., 2020), and ovarian cancer
(Li T. et al., 2019; Hu et al., 2020). Interestingly, most
studies also showed that patients with higher KIF23 expression
had worse prognosis survival compared to these with lower
KIF23 expression (Kato et al., 2016b; Ye et al., 2017; Li
T. et al., 2019; Li X. L. et al., 2019). All these studies
indicated that KIF23 plays as an oncogene in cancers. In
glioma, KIF23 was also showed to be up-regulated compared
to normal brain samples, and inhibition of KIF23 suppressed
the proliferation of glioma cells both in vivo and in vitro.
Furthermore, high KIF23 expression also conferred poor

survival in glioma patients (Takahashi et al., 2011; Zhao
et al., 2018). However, these two studies only employed 11
and 54 glioma samples, respectively. To further validate the
above results, we investigated KIF23 expression pattern and
its relationship with clinical features in glioma based on
305 samples from CGGA whole genome mRNA expression
microarray data in our previous study. The analysis showed
that: (1) KIF23 expression was positively correlated with tumor
malignancy (grade, wild-type IDH1, G3, and Mesenchymal
subtype preference), (2) patients with higher expression of
KIF23 had a shorter survival time than those with lower
KIF23 expression, and (3) KIF23 was an independent prognostic
biomarker for glioma patients. We also demonstrated that
reduction of KIF23 expression significantly suppressed U87MG
cells proliferation in vitro and intracranial tumor growth in vivo,
as well as prolonged intracranial glioma mice’s overall survival
days (Sun et al., 2016). All these researches indicated the
potential value of KIF23 as therapeutic target in tumors.
Thus, it is urgent and valuable to clarify the signaling
pathway of KIF23, as well as the reason which caused its
abnormal expression.

One study assumed that mutation in the CHR of
KIF23 promoter may cause increased KIF23 expression
(Fischer et al., 2013). In another study, Vikberg et al.
(2017) employed a mutation screening of the KIF23
in 15 non-small-cell lung cancer (NSCLC) cases
with elevated expression level of KIF23, however,
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none of the examined samples had the mutation in the CHR
of KIF23 by using sanger sequencing and single nucleotide
polymorphism (SNP)-array. Interestingly, by assessment of
CNAs in these samples, they concluded the elevated level of
KIF23 might be due to additional copy of chromosome 15. In
other researches, KIF23 p.R671W mutation was detected in one
family with colorectal cancer (DeRycke et al., 2013). Melanoma
cells derived from metastatic lesions patients also found KIF23
mutation by whole-exome sequencing and SNP array profiling
(Cifola et al., 2013). Furthermore, KIF23 mutation was detected
in about half of 38 tested tumor types (20 out of 38 were
confirmed with elevated KIF23 expression). Additionally, CNAs
analysis showed that gain in three out of ten tumors, loss in
two type of cancer and five tumors confirmed with both gain
and loss (Cerami et al., 2012; Vikberg et al., 2017). Based on the
hypothesis that the presence of activating somatic mutation or
CNAs may cause KIF23 overexpression, we first evaluated the
KIF23 expression pattern and prognosis value in CGGA 325 and
693 RNA sequencing database. The results showed that KIF23
expression was positively correlated with tumor grade. Moreover,
higher KIF23 expression conferred poor survival, which was
consistent with our previous study (Sun et al., 2016). In order
to investigate KIF23 somatic mutation and CNAs in glioma, we
then screened the 319 glioma samples by using whole-exome
sequencing analysis from CGGA database. However, only two
case-specific non-synonymous mutations were detected. KIF23
mutation rate was less than 1% in our dataset. Next, we classified
the 319 gliomas into CNAs Deletion group, Wildtype group,
and Amplification group according to the log ratio. Then, the
KIF23 gene expression was calculated, and a positive correlation
was detected between KIF23 FPKM expression values and CNA.
CNAs associated gene ontology revealed that KIF23 amplification
was involved with active immune response and mitotic cell
activities, which was consistent with the function of KIF23
expression in our previous paper. These results indicated that
DNA copy number amplification may potentially contribute to

elevated KIF23 expression in glioma while the biological effects of
nucleotide mutation in KIF23 warrants additional investigation.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

L-HS, ZZ, and ZW contributed to study concept and design. ZZ,
ZW, Z-SB, W-ZG, and Y-DZ contributed to acquisition of data.
C-JR, TL, and YW contributed to analysis and interpretation
of data. L-HS, ZZ, and ZW contributed to draft of the
manuscript. All authors contributed to the article and approved
the submitted version.

FUNDING

The study was funded by National Natural Science Foundation of
China (Nos. 81302183 and 81902528), National Natural Science
Foundation of China (NSFC)/Research Grants Council (RGC)
Joint Research Scheme (81761168038), and Beijing Municipal
Administration of Hospitals’ Mission Plan (SML20180501,
2018.03-2022.02).

ACKNOWLEDGMENTS

We would like to thank Hua Huang and Chengyin Liu from
Beijing Neurosurgical Institute for collecting tumor samples and
clinical follow-up. Furthermore, we appreciate the generosity of
TCGA for sharing the huge amount of genetic sequencing data.

REFERENCES
Cerami, E., Gao, J., Dogrusoz, U., Gross, B. E., Sumer, S. O., Aksoy, B. A., et al.

(2012). The cBio cancer genomics portal: an open platform for exploring
multidimensional cancer genomics data. Cancer Discov 2, 401–404. doi: 10.
1158/2159-8290.CD-12-0095

Cheng, C., Wu, X., Shen, Y., and Li, Q. (2020). KIF14 and KIF23 Promote Cell
Proliferation and Chemoresistance in HCC Cells, and Predict Worse Prognosis
of Patients with HCC. Cancer Manag Res 12, 13241–13257. doi: 10.2147/
CMAR.S285367

Cifola, I., Pietrelli, A., Consolandi, C., Severgnini, M., Mangano, E., Russo,
V., Bellis, G.D., & Battaglia, C., et al. (2013). Comprehensive genomic
characterization of cutaneous malignant melanoma cell lines derived from
metastatic lesions by whole-exome sequencing and SNP array profiling. PLoS
One 8:e63597. doi: 10.1371/journal.pone.0063597

DeRycke, M. S., Gunawardena, S., Middha, S., Asmann, Y., Schaid, D., McDonnell,
S., Riska, S., Eckloff, B., et al. (2013). Identification of novel variants in colorectal
cancer families by high-throughput exome sequencing. Cancer Epidemiol
Biomarkers Prev 22, 1239–1251. doi: 10.1158/1055-9965.EPI-12-1226

Fischer, M., Grundke I, Sohr S, Quaas M, Hoffmann S, Knörck A., et al.
(2013). p53 and cell cycle dependent transcription of kinesin family member
23 (KIF23) is controlled via a CHR promoter element bound by DREAM

and MMB complexes. PLoS One 8:e63187. doi: 10.1371/journal.pone.006
3187

Gao, C. T., Ren, J., Yu, J., Li, S., Guo, X., and Zhou, Y. (2020). KIF23 enhances cell
proliferation in pancreatic ductal adenocarcinoma and is a potent therapeutic
target. Ann Transl Med 8, 1394. doi: 10.21037/atm-20-1970

Hu, H., Mu, Q., Bao, Z., Chen, Y., and Jiang, T. (2018). Mutational Landscape of
Secondary Glioblastoma Guides MET-Targeted Trial in Brain Tumor. Cell 175,
1665-1678 e18. doi: 10.1016/j.cell.2018.09.038

Hu, Y., Zheng, M., Wang, C., Wang, S., Gou, R., Liu, O., et al. (2020). Identification
of KIF23 as a prognostic signature for ovarian cancer based on large-scale
sampling and clinical validation. Am J Transl Res 12, 4955–4976. doi: 10.21203/
rs.2.23036/v1

Iltzsche, F., Simon, K., Stopp, S., Pattschull, G., Francke, S., Wolter, P., et al.
(2017). An important role for Myb-MuvB and its target gene KIF23 in a mouse
model of lung adenocarcinoma. Oncogene 36, 110–121. doi: 10.1038/onc.
2016.181

Kato, T., Lee, D., Wu, L., Patel, P., Young, A., Wada, H., et al. (2016a).
Kinesin family members KIF11 and KIF23 as potential therapeutic targets in
malignant pleural mesothelioma. Int J Oncol 49, 448–456. doi: 10.3892/ijo.2016.
3566

Kato, T., Wada, H., Patel, P., Hu, H. P., Lee, D., Ujiie, H., et al.
(2016b). Overexpression of KIF23 predicts clinical outcome in primary

Frontiers in Genetics | www.frontiersin.org 7 May 2021 | Volume 12 | Article 64692924

https://doi.org/10.1158/2159-8290.CD-12-0095
https://doi.org/10.1158/2159-8290.CD-12-0095
https://doi.org/10.2147/CMAR.S285367
https://doi.org/10.2147/CMAR.S285367
https://doi.org/10.1371/journal.pone.0063597
https://doi.org/10.1158/1055-9965.EPI-12-1226
https://doi.org/10.1371/journal.pone.0063187
https://doi.org/10.1371/journal.pone.0063187
https://doi.org/10.21037/atm-20-1970
https://doi.org/10.1016/j.cell.2018.09.038
https://doi.org/10.21203/rs.2.23036/v1
https://doi.org/10.21203/rs.2.23036/v1
https://doi.org/10.1038/onc.2016.181
https://doi.org/10.1038/onc.2016.181
https://doi.org/10.3892/ijo.2016.3566
https://doi.org/10.3892/ijo.2016.3566
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-646929 May 3, 2021 Time: 16:31 # 8

Zhao et al. KIF23 Genomic Changes in Gliomas

lung cancer patients. Lung Cancer 92, 53–61. doi: 10.1016/j.lungcan.2015.
11.018

Liu, X., Zhou, T., Kuriyama, R., and Erikson, R. L. (2004). Molecular interactions of
Polo-like-kinase 1 with the mitotic kinesin-like protein CHO1/MKLP-1. J Cell
Sci 117 (Pt 15), 3233–3246. doi: 10.1242/jcs.01173

Liu, X., and Erikson, R. L. (2007). The nuclear localization signal of mitotic kinesin-
like protein Mklp-1: effect on Mklp-1 function during cytokinesis. Biochem
Biophys Res Commun 353, 960–964. doi: 10.1016/j.bbrc.2006.12.142

Li, T., Li, Y., Gan, Y., Tian, R., Wu Q, Shu, G., et al. (2019). Methylation-mediated
repression of MiR-424/503 cluster promotes proliferation and migration of
ovarian cancer cells through targeting the hub gene KIF23. Cell Cycle 18,
1601–1618. doi: 10.1080/15384101.2019.1624112

Li, X. L., Ji, Y.-M., Song, R., Li, X.-N., and Guo, L.-S. N. (2019). KIF23
Promotes Gastric Cancer by Stimulating Cell Proliferation. Dis Markers 2019,
9751923. doi: 10.1155/2019/9751923

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al. (2009).
The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–
2079. doi: 10.1093/bioinformatics/btp352

Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-
Wheeler transform.Bioinformatics 25, 1754–1760. doi: 10.1093/bioinformatics/
btp324

Liang, W. T., Liu, X. F., Huang, H. B., Gao, Z. M., and Li, K. (2020). Prognostic
significance of KIF23 expression in gastric cancer. World J Gastrointest Oncol, .
12, 1104–1118. doi: 10.4251/wjgo.v12.i10.1104

Liljeholm, M., Irvine, A. F., Vikberg, A. L., Norberg, A., Month, S., Sandström,
H., et al. (2013). Congenital dyserythropoietic anemia type III (CDA III) is
caused by a mutation in kinesin family member, KIF23. Blood 121, 4791–4799.
doi: 10.1182/blood-2012-10-461392

Nislow, C., Lombillo, V. A., Kuriyama, R., and McIntosh, J. R. (1992). A plus-end-
directed motor enzyme that moves antiparallel microtubules in vitro localizes to
the interzone of mitotic spindles. Nature 359, 543–547. doi: 10.1038/359543a0

Sun, L., Zhang, C., Yang, Z., Wu, Y., Wang, H., Bao, Z., et al. (2016). KIF23 is
an independent prognostic biomarker in glioma, transcriptionally regulated by
TCF-4. Oncotarget 7, 24646–24655. doi: 10.18632/oncotarget.8261

Sun, X., Jin, Z., Song, X., Wang, J., Li, Y., Qian, X., et al. (2015). Evaluation of
KIF23 variant 1 expression and relevance as a novel prognostic factor in patients
with hepatocellular carcinoma. BMC Cancer 15:961. doi: 10.1186/s12885-015-
1987-1

Talevich, E., Shain, A. H., Botton, T., and Bastian, B. C. (2016). CNVkit:
Genome-Wide Copy Number Detection and Visualization from Targeted DNA
Sequencing. PLoS Computational Biology 12, doi: 10.1371/journal.pcbi.1004873

Takahashi, S., Fusaki, N., Ohta, S., Iwahori, Y., Iizuka, Y., Inagawa, K., et al. (2011).
Downregulation of KIF23 suppresses glioma proliferation. J Neurooncol 106,
519–529. doi: 10.1007/s11060-011-0706-2

Vikberg, A. L., Vooder, T., Lokk, K., Annilo, T., and Golovleva, I. (2017). Mutation
analysis and copy number alterations of KIF23 in non-small-cell lung cancer
exhibiting KIF23 over-expression. Onco Targets Ther 10, 4969–4979. doi: 10.
2147/OTT.S138420

Wang, J., Cazzato, E., Ladewig, E., Frattini, V., Rosenbloom, D. I., Zairis, S.,
et al. (2016). Clonal evolution of glioblastoma under therapy. Nat Genet 48,
768–776. doi: 10.1038/ng.3590

Ye, L., Li, H., Zhang, F., Lv, T., Liu, H., and Song, Y. (2017). [Expression of KIF23
and Its Prognostic Role in Non-small Cell Lung Cancer: Analysis Based on the
Data-mining of Oncomine]. Zhongguo Fei Ai Za Zhi 20, 822–826.

Zhu, C., Bossy-Wetzel, E., and Jiang, W. (2005). Recruitment of MKLP1 to the
spindle midzone/midbody by INCENP is essential for midbody formation
and completion of cytokinesis in human cells. Biochem J 389 (Pt 2),
373–381. doi: 10.1042/BJ20050097

Zhao, C., X-B Wang, Y-H Zhang, Y-M Zhou, Q Yin, W-C Yao. (2018). MicroRNA-
424 inhibits cell migration, invasion and epithelial-mesenchymal transition in
human glioma by targeting KIF23 and functions as a novel prognostic predictor.
Eur Rev Med Pharmacol Sci 22, 6369–6378.

Zhao, Z., Zhang, K., Wang, Q., Li, G., Zeng, F., Zhang, Y., et al. (2021). Chinese
Glioma Genome Atlas (CGGA): A Comprehensive Resource with Functional
Genomic Data from Chinese Gliomas. Genomics Proteomics Bioinformatics
doi: 10.1016/j.gpb.2020.10.005

Zou, J. X., Duan, Z., Wang, J., Sokolov, A., Xu, J., Chen, C., et al. (2014). Kinesin
family deregulation coordinated by bromodomain protein ANCCA and histone
methyltransferase MLL for breast cancer cell growth, survival, and tamoxifen
resistance. Mol Cancer Res 12, 539–549. doi: 10.1158/1541-7786.MCR-13-0459

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Zhao, Wang, Bao, Gao, Zhang, Ruan, Lv, Wang and Sun. This
is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Genetics | www.frontiersin.org 8 May 2021 | Volume 12 | Article 64692925

https://doi.org/10.1016/j.lungcan.2015.11.018
https://doi.org/10.1016/j.lungcan.2015.11.018
https://doi.org/10.1242/jcs.01173
https://doi.org/10.1016/j.bbrc.2006.12.142
https://doi.org/10.1080/15384101.2019.1624112
https://doi.org/10.1155/2019/9751923
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.4251/wjgo.v12.i10.1104
https://doi.org/10.1182/blood-2012-10-461392
https://doi.org/10.1038/359543a0
https://doi.org/10.18632/oncotarget.8261
https://doi.org/10.1186/s12885-015-1987-1
https://doi.org/10.1186/s12885-015-1987-1
https://doi.org/10.1371/journal.pcbi.1004873
https://doi.org/10.1007/s11060-011-0706-2
https://doi.org/10.2147/OTT.S138420
https://doi.org/10.2147/OTT.S138420
https://doi.org/10.1038/ng.3590
https://doi.org/10.1042/BJ20050097
https://doi.org/10.1016/j.gpb.2020.10.005
https://doi.org/10.1158/1541-7786.MCR-13-0459
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-678436 June 7, 2021 Time: 17:46 # 1

ORIGINAL RESEARCH
published: 14 June 2021

doi: 10.3389/fgene.2021.678436

Edited by:
Valerio Costa,

Institute of Genetics and Biophysics,
Consiglio Nazionale delle Ricerche

(CNR), Italy

Reviewed by:
Antonio Federico,

Tampere University, Finland
Antonella Iuliano,

Telethon Institute of Genetics
and Medicine (TIGEM), Italy

*Correspondence:
Xingjun Jiang

jiangxj@csu.edu.cn
Jiahui Peng

pengjiahui511@126.com
Caiping Ren

rencaiping@csu.edu.cn

Specialty section:
This article was submitted to

Cancer Genetics and Oncogenomics,
a section of the journal

Frontiers in Genetics

Received: 10 March 2021
Accepted: 29 April 2021

Published: 14 June 2021

Citation:
Cao Y, Zhu H, Tan J, Yin W,

Zhou Q, Xin Z, Wu Z, Jiang Z, Guo Y,
Kuang Y, Li C, Zhao M, Jiang X,

Peng J and Ren C (2021)
Development of an Immune-Related

LncRNA Prognostic Signature
for Glioma. Front. Genet. 12:678436.

doi: 10.3389/fgene.2021.678436

Development of an Immune-Related
LncRNA Prognostic Signature for
Glioma
Yudong Cao1, Hecheng Zhu2, Jun Tan1, Wen Yin1, Quanwei Zhou1, Zhaoqi Xin1,
Zhaoping Wu1, Zhipeng Jiang1, Youwei Guo1, Yirui Kuang1, Can Li1, Ming Zhao2,
Xingjun Jiang1* , Jiahui Peng3* and Caiping Ren4*

1 Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China, 2 Changsha Kexin Cancer
Hospital, Changsha, China, 3 Department of Medical Ultrasonics, Seventh Affiliated Hospital of Sun Yat-sen University,
Shenzhen, China, 4 Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Science,
Cancer Research Institute, Central South University, Changsha, China

Introduction: Glioma is the most common primary cancer of the central nervous
system with dismal prognosis. Long noncoding RNAs (lncRNAs) have been discovered
to play key roles in tumorigenesis in various cancers, including glioma. Because of
the relevance between immune infiltrating and clinical outcome of glioma, identifying
immune-related lncRNAs is urgent for better personalized management.

Materials and methods: Single-sample gene set enrichment analysis (ssGSEA) was
applied to estimate immune infiltration, and glioma samples were divided into high
immune cell infiltration group and low immune cell infiltration group. After screening
differentially expressed lncRNAs in two immune groups, least absolute shrinkage and
selection operator (LASSO) Cox regression analysis was performed to construct an
immune-related prognostic signature. Additionally, we explored the correlation between
immune infiltration and the prognostic signature.

Results: A total of 653 samples were appropriate for further analyses, and 10 lncRNAs
were identified as immune-related lncRNAs in glioma. After univariate Cox regression
and LASSO Cox regression analysis, six lncRNAs were identified to construct a
prognostic signature for glioma, which could be taken as independent prognostic factors
in both univariate and multivariate Cox regression analyses. Moreover, risk score was
significantly correlated with all the 29 immune-related checkpoint expression (p < 0.05)
in ssGSEA except neutrophils (p = 0.43).

Conclusion: The study constructed an immune-related prognostic signature for
glioma, which contributed to improve clinical outcome prediction and guide
immunotherapy.

Keywords: glioma, lncRNA, immune signature, TCGA, risk score
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INTRODUCTION

Glioma is one of the most common primary brain tumors
and accounts for greater than 70% of malignant brain tumors
(Ostrom et al., 2016), presenting only a 5-year survival rate of 30
to 70% in low-grade glioma patients and less than 5% in the most
malignant glioblastoma patients (Gousias et al., 2009; Ostrom
et al., 2014). Although advances have been made in glioma
treatment, including mass surgical resection, radiotherapy, and
chemotherapy, the prognosis and survival rate of glioma patients
are still unsatisfactory (Stupp et al., 2009; Wu et al., 2019).
Unlike traditional therapeutic strategies of curbing cancer cell
proliferation and invasion, more and more research reveals the
importance of the tumor microenvironment (TME) in glioma
development and progression. TME composed of cancer cells
and noncancerous cell types is a complex system, including
endothelial cells, pericytes, fibroblasts, and immune cells (Quail
and Joyce, 2013). As many as 30 to 50% of the cells in
gliomas are microglia or macrophages, and tumor-associated
microglia and macrophages (TAMs) within the brain tend to
be protumorigenic and accumulate as higher as tumor grade
(Komohara et al., 2008; Hambardzumyan et al., 2016). Other
immune cells, such as dendritic cells, also play an essential role
in cancer immune therapy in recent years (Anguille et al., 2014).
Therefore, screening reliable immune predictors and prognostic
indicators to improve the prognosis of glioma and guide the
individual treatment strategies is warranted.

Long noncoding RNAs (lncRNAs) are noncoding RNAs with
more than 200 nucleotides in length without significant protein-
coding function (Wilusz et al., 2009). Despite their limited
expression levels, growing evidence has revealed that lncRNAs
could regulate gene expression at epigenetic, transcriptional,
and posttranscriptional levels or directly modulate protein
activity (Orom et al., 2010; Augoff et al., 2012; Liu et al.,
2015; Wang et al., 2016). LncRNAs have been confirmed to
play an oncogenic or suppressive role in tumor growth and
metastasis including glioma (Sun et al., 2013). For example,
lncRNA CASC2 negatively regulates miR-21 to suppress cell
growth of glioma, whereas lncRNA CRNDE promotes glioma
cell growth and invasion through mTOR signaling (Kang et al.,
2019). LncRNA SNHG18 can promote radioresistance of glioma
cells by suppressing semaphorin5A16 (Zheng et al., 2016). In
addition, lncRNA DANCR has been proved as a diagnostic
marker or a potential therapeutic target for the treatment of
glioma through regulating miR-135a-5p/BMI1 axis (Feng et al.,
2020). Therefore, identifying immune-related lncRNA to predict
the prognosis of glioma patients is of great importance for clinical
diagnosis and treatment.

In the present study, we applied single-sample gene set
enrichment analysis (ssGSEA), Estimation of STromal and
Immune cells in MAlignant Tumor tissues using Expression
data (ESTIMATE), and Cell type Identification By Estimating
Relative Subsets Of RNA Transcripts (CIBERSORT) to classify
the glioma patients by immune infiltration degree. Subsequently,
we selected immune-related lncRNAs as well as differentially
expressed between cancer and normal samples and used the
least absolute shrinkage and selection operator (LASSO) Cox

regression analysis to construct a prognosis-related risk model.
It is hoped that this study will provide promising targets and
stimulate new strategies in glioma patients.

MATERIALS AND METHODS

Data Sets and Grouping of Gliomas
The human glioma transcriptome with format of the FPKM
(fragments per kilobase of per million) and corresponding
clinical data were downloaded from The Cancer Genome Atlas
(TCGA) database1. Twenty-nine immune data sets including
immune cell types, immune-related pathways, and immune-
related functions were obtained from the study by Bindea et al.
(2013). According to the 29 immune data sets, the ssGSEA was
used to calculate enrichment scores for each sample to establish
immune-related term enrichment scores in glioma samples using
the R packages “GSVA,” “limma,” and “GSEABase.” According to
the ssGSEA scores, glioma samples were divided into high and
low immune cell infiltration groups using the R package “hclust.”

Verification of the Immune Grouping
Estimation of STromal and Immune cells in MAlignant Tumor
tissues using Expression data and CIBERSORT were applied to
validate the group divided by ssGSEA. ESTIMATE is a method
that can deduce the stromal and immune cell proportion using
gene expression profiles (Yoshihara et al., 2013). Based on this
algorithm, tumor purity, ESTIMATE score, immune score, and
stromal score of each glioma sample were calculated using
“estimate” in R package. Clustering heatmap and statistical map
between the two immune groups were shown using “pheatmap”
and “ggpubr” in R package. In addition, human leukocyte
antigen (HLA) and CD274 [programmed death 1 ligand [PD-
L1]) expression were also compared between the two groups to
verify the effect of ssGSEA grouping using “ggpubr” and “limma”
in R package. CIBERSORT is another approach to characterize
22 types of immune infiltration cell composition using the
deconvolution strategy (Newman et al., 2015). The CIBERSORT
web tool2 was used, and data with p < 0.05 were selected for
further study. The proportions of immune cell types determined
by CIBERSORT between the two groups were compared using
the Kruskal–Wallis test to verify ssGSEA grouping again.

Screen of Immune-Related LncRNAs
Ensembl database3 was used to screen lncRNAs. All lncRNAs
with false discovery rate (FDR) < 0.05 and | log2FC| ≥ 0.5
were defined as differentially expressed lncRNAs between the
high and low immune cell infiltration groups using the “edgeR”
package. To identify differentially expressed lncRNAs between
the cancer group and the normal groups, gene expression
data that included TCGA lower-grade glioma and glioblastoma
(GBMLGG) gene expression RNAseq and The Genotype-Tissue
Expression (GTEx) gene expression RNAseq were obtained from

1https://portal.gdc.cancer.gov
2https://cibersort.stanford.edu/
3https://www.ensembl.org/
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the UCSC Xena website4. The two profiles were recomputed
from raw RNA-Seq data by the UCSC Xena project based
on a uniform pipeline and shown as log2(x+1) transformed
RSEM normalized count. After identifying the brain samples
in GTEX, quantile normalization of gene expression combining
TCGA and GTEx from UCSC Xena was performed using the
“normalizeBetweenArrays” function in limma of R (Ritchie et al.,
2015). The differentially expressed lncRNAs between the cancer
and normal groups were selected using the “limma” package
with FDR < 0.05 and | log2FC| ≥ 0.5. The lncRNAs selected
in both two analyses were identified as immune-related lncRNA
by Venn analysis.

Construction and Validation of a
Prognostic Immune-Related LncRNA
Signature
Samples with follow-up time >30 days were kept, and univariate
Cox regression analysis of continuous variables was performed
by survival package in R with p < 0.05 as the criteria to
select prognostic immune-related lncRNA. Then, we applied
LASSO Cox analysis, a high-dimensional predictor regression
method using 10-fold cross-validations, to construct an optimal
risk signature model using the “glmnet” R package. The
coefficients of the selected lncRNAs were calculated, and a
risk score for each glioma patient was calculated using the
following formula: risk score =

∑n
1 coefficient

(
lncRNAn

)
×

expression (lncRNAn). According to the formula, the glioma
patients were sorted into a high-risk group and a low-risk group
with the median risk score as the cutoff.

To examine the performance of the prognostic immune-
related lncRNA signature, the receiver operating characteristic
(ROC) analysis was performed, and the area under the curve
(AUC) was calculated using “survivalROC” package in Kaplan–
Meier (K-M) analysis used to compare survival between the high-
and low-risk groups by the log-rank test. To show the expression
patterns of optimal immune-related lncRNAs between the high-
and low-risk groups, principal components analysis (PCA) was
applied with R using the “scatterplot3d” and “limma” package.

In addition, we also used univariate and multivariate
Cox regression analyses to determine whether the signature
could predict prognosis independently from clinical parameters,
including age, gender, and grade. The grade of glioma was sorted
by 2016 World Health Organization (WHO) classification.

Correlation Between Immune Infiltration
and Prognostic Signature
To further explore the relationship between the signature and
TME, the correlation between risk scores and immune infiltration
calculated by ssGSEA was calculated by Pearson correlation.

Clinical Correlation and Functional
Enrichment Analysis
We explored the relationship between the expression of each
lncRNA in the signature and clinical WHO stage by Wilcoxon

4https://xena.ucsc.edu/

signed rank test. In addition, immune-related functional
annotation (immune response and immune system process)
was performed by GSEA to further explore the immune status
between the high- and low-risk groups, and p < 0.05 was
identified as statistically significant.

Statistical Analysis
All statistical analyses were applied by R version 4.0.2 and
corresponding packages. A two-tailed p < 0.05 was considered
statistically significant, and FDR was calculated using Benjamini–
Hochberg methods for multiple corrections to differential
expression analyses results (Benjamini and Hochberg, 1995).

RESULTS

Construction and Verification of Glioma
Groupings
A total of 693 glioma samples were downloaded from
TCGA, and all of them were cancer samples. To evaluate
infiltration of immune of each sample, ssGSEA was applied,
and enrichment scores of the 29 immune-associated gene
sets in the TME were obtained. According to the ssGSEA
scores, glioma samples were hierarchically clustered into two
groups, including the high immune cell infiltration group
(n = 151) and the low immune cell infiltration group
(n = 542; Figure 1A).

In the ESTIMATE algorithm, tumor purity, ESTIMATE
score, immune score, and stromal score of each glioma
sample were determined. Our results showed that tumor purity
was significantly lower (p < 0.001) in high immune cell
infiltration group than that in low immune cell infiltration
group; ESTIMATE score, immune score, and stromal score
were significantly higher (p < 0.001) in high immune cell
infiltration group than those in low immune cell infiltration
group (Figure 1B). In addition, the expression levels of the
HLA family and CD274 (PD-L1) were significantly increasing
in the high immune cell infiltration group than those in the
low immune cell infiltration group, respectively (p < 0.001;
Figures 1C,D). In the CIBERSORT algorithm, the high
immune cell infiltration group showed higher proportion of
immune cells than that in the low immune cell infiltration
group (Figure 1E). Based on the above analysis, the immune
grouping of the glioma samples was reasonable and feasible for
subsequent analysis.

Identification of LncRNAs Differentially
Expressed in Two Classifications
In the 693 glioma samples from TCGA downloaded from
the official website, 369 lncRNAs were differentially expressed
between the high and low immune cell infiltration groups,
including 179 up-regulated lncRNAs and 190 down-regulated
lncRNAs in the high immune cell infiltration group (Figure 2A).
We obtained 702 glioma samples (697 cancer samples and 5
paracancerous samples) and 1,152 normal brain samples on the
UCSC Xena website. After merging the two databases from the
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FIGURE 1 | Construction and validation of glioma grouping. (A) The display of tumor purity, ESTIMATE score, immune score, and stromal score of each sample
gene calculated by ESTIMATE’s algorithm between the high immune infiltration group and the low immune infiltration group. (B) The boxplot showed a statistical
difference between the two groups in tumor purity, ESTIMATE score, immune score, and stromal score. (C,D) The expression of HLA family genes and CD274
between the two groups. (E) The proportion difference of immune cells calculated by CIBERSORT method between the two groups. “Immunity_H” and “Immunity_L”
represent the high immune cell infiltration group and the low immune cell infiltration group, respectively; *p < 0.05 and ***p < 0.001.

FIGURE 2 | Identification of differentially expressed lncRNAs. (A) Differentially expressed lncRNAs between the high immune infiltration group and the low immune
infiltration group. (B) Differentially expressed lncRNAs between the cancer group and the normal group. (C) The intersection of differentially expressed lncRNAs is
shown in the Venn diagram. “Immunity_H” and “Immunity_L” represent the high immune cell infiltration group and the low immune cell infiltration group, respectively.

UCSC Xena website, we identified 69 differentially expressed
lncRNAs between the cancer and normal groups, including 34
up-regulated lncRNAs and 35 down-regulated lncRNAs in the
cancer group compared to the normal group (Figure 2B). A two-
way Venn analysis was then applied to select lncRNAs which were

differentially expressed in both the high immune cell infiltration
group compared with the low immune cell infiltration group and
the cancer group compared with the normal group. Ultimately
10 lncRNAs were identified as immune-related lncRNAs in
glioma (Figure 2C).
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FIGURE 3 | Construction of an immune-related lncRNA prognostic risk score model. (A) LASSO Cox regression analysis of the nine prognostic lncRNAs.
(B) Ten-round cross-validation was conducted for the optimal penalty parameter lambda. (C) Multivariate Cox regression analysis of immune-related lncRNAs.
*p < 0.05, **p < 0.01, and ***p < 0.001.

Construction and Validation of
Immune-Related LncRNA Prognostic
Signature
After screening data with eligible survival information, a
total of 653 samples were available for further analyses.
Univariate Cox regression analysis was used to screen lncRNA
associated with the glioma patients’ overall survival, and
nine lncRNAs were selected. Then these nine lncRNAs were
entered for LASSO regression analysis and multivariate Cox
regression analysis (Figures 3A,B). Ultimately, six lncRNAs
(HCP5, DGCR10, SNHG11, FLJ16779, HAR1A, and POLR2J4)
were selected in this prognostic signature (Table 1) and the
contribution of lncRNAs in the calculation formula is shown
in Figure 3C. Therefore, a prognostic prediction model
was developed based on the six lncRNAs as follows: risk
score = (0.0183)× EXPHCP5−(0.3778)× EXPDGCR10 + (0.0968)
× EXPSNHG11−(0.0229)× EXPFLJ16779−(0.2407)× EXPHAR1A+

(0.3625) × EXPPOLR2J4. According to the risk score, glioma
samples were divided into a low-risk group and a high-risk group

TABLE 1 | The expression levels of these six lncRNAs.

ID Coefficient HR HR.95L HR.95H p value

HCP5 0.0183 1.0185 1.0021 1.0352 0.0273

DGCR10 −0.3778 0.6854 0.5415 0.8674 0.0017

SNHG11 0.0968 1.1017 1.0436 1.1629 0.0005

FLJ16779 −0.0229 0.9773 0.9667 0.9881 4.10e-05

HAR1A −0.2407 0.7860 0.6541 0.9447 0.0103

POLR2J4 0.3625 1.4369 1.2007 1.7196 7.61e-05

with a median risk score as the threshold. HCP5, SNHG11, and
POLR2J4 were highly expressed in the high-risk group, whereas
DGCR10, FLJ16779, and HAR1A were highly expressed in the
low-risk group (Figure 4C). The distribution of risk score and
survival status is illustrated in Figures 4A,B.

To evaluate the prediction model, the K-M curve revealed that
the patients in the high-risk group showed a shorter survival time
or lower survival probability compared to the low-risk group
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FIGURE 4 | Validation of the immune-related lncRNA prognostic risk score model. (A) The distribution of risk score. (B) The distribution of patients’ survival time and
status. (C) Heatmap of selected six immune-related lncRNAs of the classifier. (D) Kaplan–Meier curves of high-risk and low-risk score groups. (E) Time-dependent
ROC analyses of the identified immune-related risk signature. (F) PCA analysis based on six survival-related immune lncRNAs.

(Figure 4D) with 1-, 3-, and 5-year AUC values of 0.866, 0.921,
and 0.851, respectively (Figure 4E). The PCA result of the six
immune-related lncRNAs is shown in the figure and indicated a
significant distinction of the samples after risk score clustering
between precorrection and postcorrection (Figure 4F).

Independent Prognostic Analysis of the
Immune-Related LncRNA Prognostic
Signature
Considering that the prognosis of patients with glioma is
associated with clinical characteristics such as age, gender,
and pathological stage, univariate and multivariate Cox
regression analyses were conducted. The results showed that the
immune-related lncRNA prognostic signature could be taken
as independent prognostic factors, as well as age and grade
in both univariate and multivariate Cox regression analyses
(Figures 5A,B). The contribution of each independent factor is
presented in the nomogram (Figures 5C,E), and it revealed that
the grade was the leading factor for predicting nomogram. Then
we divided the glioma samples into glioblastoma multiforme
(grade 4) and non–glioblastoma multiforme (grades 2 and 3).

The nomogram in non–glioblastoma multiforme showed that
risk score was the leading predicted factor with the grade as
inferior impact (Figures 5D,F).

Correlation Between Immune
Checkpoint Expression and the Risk
Score
Pearson correlation analysis between immune checkpoint
expression and the risk score revealed that risk score was
significantly correlated with all the 29 immune-related
checkpoint expression (p < 0.05) in ssGSEA except neutrophils
(p = 0.43). The relationship is partly displayed in Figure 6.

Clinical Correlation and GSEA Functional
Enrichment Analysis
We found that all lncRNAs in the signature were significantly
different in different grades (Figure 7). In addition, GSEA
suggested that immune response term and immune system
process term significantly enriched in the high-risk group
compared to the low-risk group (Figures 8A,B).
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FIGURE 5 | Independent prognostic analysis of the immune-related lncRNA prognostic signature. The univariate (A) and multivariate (B) Cox regression analysis of
risk score, age, gender, and grade. A nomogram to quantitatively predict 1-, 3-, and 5-year survival for all the glioma patients (C) and non–glioblastoma multiforme
patients (D) Calibration curves of the nomogram model for showing the consistency between predicted and actual survival in all the glioma patients (E) and
non–glioblastoma multiforme patients (F).

DISCUSSION

Glioma is the most common primary cancer of the central
nervous system. Despite advances in conventional therapy,
the prognosis for most glioma patients remains dismal.
Nowadays, increasing insight into immunotherapy suggests
it may be recognized as an effective treatment alternative.
Immunotherapy that aims at stimulating a specific and sustained
antitumor response is taken as a promising therapeutic
approach. Immunomonitoring can track the effects of
immunotherapy upon the patient’s immune system and
accelerate the development of immunotherapeutic agents.
Therefore, investigating potential biomarkers of clinical benefit
that can efficiently reflect treatment efficacy is one of the primary
goals of immunomonitoring in glioma immunotherapy trials

(Lamano et al., 2016). Thus, in the present study, we constructed
a 6-lncRNA prognostic signature related to immune infiltration.

For the first time, immune-related lncRNAs in glioma
were identified by screening differentially expressed lncRNAs
between the high and low immune cell infiltration groups,
which was divided by ssGSEA and verified by ESTIMATE,
the expression of HLA and CD724, and the algorithm of
CIBERSORT. Similarly, the study by Shen et al. (2020) on
immune-related lncRNA prognostic signature for breast cancer
also identified immune cell infiltration group by ssGSEA and
verified the groups by ESTIMATE and CIBERSORT, which
confirmed the feasibility of the methods further, whereas
previous studies in glioma identified immune-related lncRNAs
by GSEA database or the molecular signature database. In
addition, compared to previous studies, the lncRNAs in our
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FIGURE 6 | Correlations between the risk score and infiltration abundances of immune cells and immune-related functions. (A) Dendritic cells, (B) macrophages,
(C) NK cells, (D) B cells, (E) CD8+ T cells, (F) inflammation promoting, (G) T-cell coinhibition, (H) T-cell costimulation, (I) Treg.

signature were not only immune-related but also differentially
expressed between the cancer and normal groups (Tian
et al., 2020; Xia et al., 2021). In this study, our signature
achieved a satisfactory level of 1-, 3-, and 5-year AUC
(0.866, 0.921, and 0.851, respectively), which outperformed
Xia and colleagues’ and Tian and colleagues’ studies’ 3-year
AUC and was comparable with Tian and colleagues’ study’s
1- and 5-year AUCs. Moreover, we established a predicting
nomogram combining age and grade to predict the survival

of glioma patients more accurately and intuitively. When the
samples were divided into glioblastoma (grade 4) and non–
glioblastoma (grades 2 and 3), risk score was the dominant
factor in the nomogram, indicating risk score was an excellent
prognostic factor.

Long noncoding RNAs can be used as biomarkers to classify
and predict tumors because they can display characteristic tissue-
specific and cell-type–specific expression patterns (Deveson et al.,
2017). Increasing evidence has shown that a specific lncRNA
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FIGURE 7 | Expression profile of six immune-related lncRNAs in the signature with different glioma grades.

FIGURE 8 | GSEA for comparing immune response (A) and immune system process (B) between low- and high-risk groups.

plays a role in the onset and progression of various cancers, as
well as tumorigenesis and progression in glioma (Huarte, 2015;
Bhan et al., 2017). In our study, we extracted nine immune-
related lncRNAs correlated with prognosis and differentially
expressed in the cancer group compared to the normal group
at the same time. After LASSO analysis and multivariate Cox
regression analysis, six immune-related lncRNAs were selected
to construct a prognostic signature. Most of them have been
reported to be related to immune or participate in immune

regulation in previous studies. HCP5 was mainly expressed in
immune system cells and had an effect on autoimmunity (Li
et al., 2018). Researches have indicated that HCP5 acted as an
oncogene in glioma, and the expression of HCP5 increased with
the level of grade of glioma (Zou and Chen, 2021). It is also
reported that knockdown of HCP5 can inhibit proliferation, cell
migration, and invasion, so as to promote apoptosis of glioma
cells (Teng et al., 2016). SNHG11 was confirmed to express
highly in glioblastoma compared to normal brain, and it could
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promote proliferation, migration, and invasion via epithelial–
mesenchymal transition by sponging miR154-5p (Geng et al.,
2020). These findings are consistent with our findings that HCP5
and SNHG11 were highly expressed in the high-risk group.
POLR2J4 has been reported as a composition of signature to
predict the survival of cirrhotic hepatocellular carcinoma and
recurrence-free hepatocellular carcinoma (Gu et al., 2019; Ma and
Deng, 2019). It was also found to be a predictor of the risk for site-
specific metastasis of breast cancer (Park et al., 2020). FLJ16779
was implicated in gastric carcinogenesis and progression via
modulating energy metabolism (Wang et al., 2020). HAR1A was
expressed specifically in Cajal–Retzius neurons in the developing
human neocortex, and a previous study reported that HAR1A
could act as a prognostic marker for isocitrate dehydrogenase
mutant glioma (Pollard et al., 2006; Shi et al., 2019; Chen et al.,
2020). However, no published studies have reported biological
functions of DGCR10 so far, and further studies are needed to
investigate its molecular characteristics.

Cancer tissues consist of not only malignant neoplastic
cells but also immune cells, fibroblasts, endothelial cells,
and an abundant collection of cytokines, chemokines, growth
factors (Bremnes et al., 2011). Those components and their
complicated interaction form the TME, and the various cellular
compartments of the TME can critically regulate tumorigenesis,
which is essential not only to tumor initiation, malignant
progression, and metastasis but also to response to therapy
(Klemm and Joyce, 2015). In TME, immune cells are the
predominant host cells that are recruited to and activated
(Bremnes et al., 2011). In myeloid lineage, TAM inhibition
effects on blocking gliomagenesis and activated TAMs have
confirmed the ability to regulate glioma stem cell pools
within the brain. What is more, because of the plasticity of
TAM, it may be feasible to develop strategies to reeducate
macrophages to specifically adopt antitumor phenotypes in brain
tumors, which are likely to be new immunotherapy methods.
In lymphoid lineage, accumulated studies demonstrated that
reprogramming of immunosuppressive T-cell subsets might
boost antitumor immune responses in glioma or other brain
tumors (Quail and Joyce, 2017). It is also an emerging field

in cancer therapy to enhance T-cell activation via enabling
costimulation primary in gliomas or brain metastases (Fecci
et al., 2014; Cohen and Kluger, 2016). In this study, we found
that six-lncRNA prognostic signature for glioma was associated
with the infiltration of immune cell subtypes, which further
verified the signature.

There were some limitations to the present study. First, it was
a retrospective study, and prospective cohort studies are needed
to further validate the results. Second, the biological functions of
the six identified lncRNAs need comprehensive exploration and
should be fully elucidated in in vitro and in vivo experiments,
especially in terms of immune infiltration.

In conclusion, our study established a reliable immune-related
prognostic signature. With further prospective validation, the
signature may become therapeutic targets and offer biological
information for personal treatment of glioma.
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Research has confirmed that extra spindle pole bodies-like 1 (ESPL1), an etiological
factor, promotes the malignant progression of cancers. However, the relationship
between ESPL1 and glioma has not yet been demonstrated. The purpose of this
study was to reveal the potential mechanisms of ESPL1-mediated malignant glioma
progression. Gene expression data and detailed clinical information of glioma cases
were obtained from multiple public databases. Subsequently, a series of bioinformatics
analyses were used to elucidate the effects of ESPL1 on glioma. The results
demonstrated that the mRNA and protein levels of ESPL1 in glioma were higher
than those in normal brain tissues. In addition, ESPL1 expression was considerably
associated with the clinical and pathological features of gliomas, such as World
Health Organization grade, histology, and 1p19q co-deletion status. Importantly, ESPL1
reduced the overall survival (OS) of glioma patients and had prognostic value for gliomas.
Gene set enrichment analysis (GSEA) indirectly revealed that ESPL1 regulates the
activation of cancer-related pathways, such as the cell cycle and base excision repair
pathways. In addition, we used the Connectivity Map (CMap) database to screen three
molecular drugs that inhibit ESPL1: thioguanosine, antimycin A, and zidovudine. Finally,
reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to
detect the expression levels of ESPL1 in glioma cell lines. This study plays an important
role in revealing the etiology of glioma by revealing the function of ESPL1, providing
a potential molecular marker for the diagnosis and treatment of glioma, especially
low-grade glioma.
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INTRODUCTION

Glioma is one of the most prevalent and tricky malignant
intracranial tumors due to its infiltrative growth, high degree
of malignancy, and unfavorable prognosis (Cordier et al., 2016).
According to the 2016 World Health Organization (WHO)
guidelines, gliomas are further classified into grades I–IV, of
which grades I and II are low-grade gliomas and grades III and
IV (glioblastoma, GBM) are high-grade gliomas (Wesseling and
Capper, 2018). GBM is the most malignant type; the median
survival time is still less than 2 years after maximum resection
combined with radiotherapy and chemotherapy, with a 5-year
survival rate of only 9.8% (Stupp et al., 2005, 2009). The
prognosis of grades II and III gliomas was improved but was
still not optimistic at 2 and 2–5 years, respectively (Bell et al.,
2015). Although, worldwide, researchers have made significant
efforts to facilitate early diagnosis and ensure comprehensive
treatment of gliomas, patient prognosis is still not ideal due
to its malignant biological characteristics, causing affliction to
the families of the patients as well as a huge medical burden
to society. One of the reasons for this situation might be the
lack of reliable and effective biomarkers for early diagnosis and
targeted treatment.

Extra spindle pole bodies-like 1 (ESPL1), a cysteine
endopeptidase, plays a vital role in the stable binding between
sister chromatids before anaphase and their timely separation
during anaphase, which is the key to chromosome inheritance
(Chestukhin et al., 2003; Schöckel et al., 2011). When ESPL1 is
overactivated, it acts as an oncogene, making cells susceptible
to aneuploidy induced by chromosomal mismatch as well as
vulnerable to DNA damage and loss of key tumor suppressor gene
sites associated with tumorigenesis and disease progression (Pati,
2008; Mukherjee et al., 2014). For example, the overexpression
of separase in the mammary glands of mouse mammary tumor
virus (MMTV)-ESPL1 mice leads to the occurrence of highly
aneuploid breast cancer, which has a high degree of chromosomal
instability and an invasive disease phenotype. In addition, Liu J.
et al. (2020) showed that the abnormal expression of ESPL1 in
endometrial cancer (EC) cells facilitates metastasis and invasion,
thereby leading to poor prognosis of EC. ESPL1 also participates
in the occurrence and development of other human cancers and
is associated with reduced patient survival (Meyer et al., 2009).
However, the regulatory mechanisms of ESPL1 in gliomas has
not yet been studied. Based on the role of ESPL1 in other tumors,
we speculate that ESPL1 might be associated with the clinical
features and survival prognosis of glioma patients.

The major aim of this study was to evaluate the expression
level, prognostic value, and biological function of ESPL1 based on
glioma tissue samples from multiple databases. High expression
of ESPL1 was observed at both the mRNA and protein levels
by reverse transcription-quantitative polymerase chain reaction
(RT-qPCR) and immunohistochemistry (IHC). Our results
demonstrated that upregulation of ESPL1 is associated with
poor prognosis in glioma patients. Therefore, it is reasonable
to speculate that ESPL1 may represent a novel and reliable
biomarker for glioma and may aid in the development of
individualized treatment strategies.

MATERIALS AND METHODS

Data Collection
Gene expression profiling interactive analysis (GEPIA)1 is a
convenient and intuitive online public database established by
Peking University (Tang et al., 2017). A variety of human tumor
and corresponding normal tissue samples are freely available
on the website. The database was used to detect the expression
levels of ESPL1 in various tumors. The difference in target gene
expression in tumor tissues can be obtained by inputting the
target gene on the official website. In addition, we downloaded
the GSE2223 dataset based on the GPL1833 platform, and the
GSE4290 and GSE50161 datasets based on the GPL570 platform
from Gene Expression Omnibus (GEO)2 (Barrett et al., 2013).
GSE2223 contains 50 glioma and 4 normal tissue samples;
GSE50161 contains 34 glioma and 13 normal tissue samples;
and GSE4290 contains 77 glioma and 23 normal tissue samples.
Three different datasets obtained from the GEO database were
used to analyze the changes in ESPL1 expression levels in glioma
and control brain tissues. These operations were performed using
the limma package in R software according to a cut-off standard
(p < 0.05, logFC > 1) to complete the differential expression of
ESPL1 in glioma and control brain tissues.

The Chinese Glioma Genome Atlas (CGGA)3 is a public
database that contains various types of high-throughput data
and corresponding clinical information. By excluding data
with incomplete clinical information, we obtained an RNA-seq
dataset containing 748 glioma samples and gene microarray
data containing 268 glioma samples. The Cancer Genome
Atlas (TCGA)4 is a credible database that primarily stores
several human malignant tumors (Tomczak et al., 2015).
We also searched for and obtained mRNA sequencing and
clinical information of 653 human gliomas from the TCGA
RNA-seq dataset. Supplementary Tables 1–3 provide clinical
information of the patients corresponding to the three CGGA
RNA-seq, CGGA microarray, and TCGA RNA-seq datasets.
The above three original datasets contain detailed data on
clinical–molecular characteristics, survival time, and status of
glioma patients; thus, they were used to analyze the impact
of ESPL1 expression changes on prognosis, clinical–molecular
characteristics, and diagnostic value of glioma patients. All these
datasets were divided into high- and low-expression groups
according to the median expression level of ESPL1 in all samples
for subsequent analysis. Statistical significance set at p< 0.05 was
considered meaningful.

The Human Protein Atlas (HPA)5 is a comprehensive and
diverse online data platform that contains information about
human RNA and protein expression in various cancers (Uhlén
et al., 2015; Thul et al., 2017; Uhlen et al., 2017; Thul and
Lindskog, 2018). In this study, to detect changes in the expression
level of ESPL1 protein in brain glioma tissue samples, we loaded

1http://gepia.cancer-pku.cn/index.html
2https://www.ncbi.nlm.nih.gov/geo/
3http://www.cgga.org.cn/
4https://portal.gdc.cancer.gov/
5http://www.proteinatlas.org/
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ESPL1 into the database webpage to obtain its expression levels
in normal brain, low-grade glioma, and high-grade glioma tissue
samples. Therefore, we only observed changes in the ESPL1
protein levels among the groups.

GSEA
Gene set enrichment analysis (GSEA) is a tool used to
predict the function of target genes (Subramanian et al., 2005).
We calibrated and normalized the CGGA RNA-seq, CGGA
microarray, and TCGA RNA-seq datasets using limma software
packages. According to the expression levels of ESPL1, it was
divided into high and low expression groups. GSEA 4.0.2 jar
software was used to explore the cell signaling pathways of ESPL1
in glioma patients. The number of gene permutations was set
to 1000; “C2.cp.kegg.v7.4.symbols.gmt[curated]” was selected as
the gene set database. The high expression group of ESPL1
was compared with the low expression group according to the
cut-off standard. Values of p < 0.05 and FDR < 0.25 were
regarded as statistically significant. Finally, the consistent results
of the independent datasets are presented in the experimental
results section.

Connectivity Map Predicts Potential
Therapeutic Drugs
Connectivity Map (CMap) is a drug research and development
system founded by Harvard University and is a common tool
for discovering the potential therapeutic effects of drugs (Lamb,
2007). In this study, we used the R language to screen for genes
with co-expression relationships with ESPL1. We then selected
20 genes (10 positive and 10 negative) and uploaded them to the
official website of CMap for analysis to obtain the corresponding
small-molecule compounds. The obtained small-molecule drugs
are regarded as valuable drugs according to p < 0.001 and
enrichment < −0.75, which are presented in the Experimental
Results section; the chemical structure formula of the final small-
molecule drug as well as its 3D structure were obtained from the
PubChem database.6

Cell Culture and Reverse Transcription
Quantitative Polymerase Chain Reaction
Analysis
Human glioma cell lines (LN229, T98, and A172) and human-
derived astrocytes (HA) were purchased from the Cell Bank of the
Chinese Academy of Sciences (Shanghai, China). All cells were
grown in incubators at 37◦C and 5% carbon dioxide and were
cultured in DMEM (HyClone, United States) supplemented with
10% FBS (Thermo Fisher Scientific, United States). To examine
the expression levels of the three glioma cell lines (LN229, T98,
and A172) and HA in ESPL1, total RNA was extracted from
LN229, T98, A172, and HA cells using Tri-Reagent (Sigma,
United States). Total RNA quality and quantity were determined
using a NanoDrop One spectrophotometer (Thermo Fisher
Scientific, United States), measuring 260/280 nm absorbance
values. Subsequently, the cDNA was reverse transcribed from

6https://pubchem.ncbi.nlm.nih.gov/

total RNA using the Transcriptor First Strand cDNA Synthesis
kit (Novoprotein Scientific Inc., Shanghai, China). RT-qPCR
was performed according to the guidelines for the FastStart
Universal SYBR Green Master (ROX) (Novoprotein Scientific
Inc., Shanghai, China). The results were quantified using
QuantStudio software (Thermo Fisher Scientific, United States),
following the manufacturer’s instructions. GADPH was used as
an internal reference. The primer sequences used in this study
are listed in Table 1. Relative expression levels were determined
using the 2−11Ct method. The expression level of ESPL1 was
detected using the “2−11CT” method. Statistical differences were
analyzed by unpaired t-test; values of p < 0.05, were considered
statistically significant.

Statistical Analysis
R (v.3.6.1) was used for statistical analysis. Cox regression was
used to analyze the relationship between ESPL1 expression and
the prognosis of glioma patients; the Kaplan–Meier method
was used to create survival curves. Finally, the Wilcox or
Kreskas test was utilized to explore the relationship between
clinical molecular characteristics and ESPL1 expression in glioma
patients. Differences were considered statistically significant at
∗p < 0.05 or ∗∗p < 0.01.

RESULTS

ESPL1 Is Highly Expressed in Glioma at
Different Levels
Extra spindle pole bodies-like 1 expression in various tumors and
matched normal tissues was assessed using the GEPIA online
tool (Figure 1A); we observed that ESPL1 was abnormally highly
expressed in a variety of malignant tumor tissues, including
GBM, while the ESPL1 expression level of esophageal carcinoma
(ESCA) was lower than that in normal tissues. Thereafter, to
understand the changes in ESPL1 expression in glioma tissues
at a deeper level, we performed analysis on three glioma-related
GSE datasets (GSE2223, GSE4290, GSE50161) from the GEO
database, including 40 normal brain and 161 glioma samples. As
shown in Figures 1B–D, in these three datasets, the expression
levels of ESPL1 in glioma tissues were significantly higher than
those in corresponding normal tissues. To validate the above
results, we further assessed the expression levels of ESPL1 in
three glioma cell lines (T98, U251, and LN229) and in human
astrocytes (HA) by RT-qPCR. The results revealed that ESPL1 was
markedly overexpressed in glioma cell lines compared to that in
HAs (Figure 1E).

TABLE 1 | Sequences of primers used for qRT-PCR analysis.

Gene Primer sequence (5′-3′)

ESPL1-F GCCCTAAAACTTACAACAAA

ESPL1-R AGACTCAAGCAAGAACAGAA

GAPDH-F CAAGGTCATCCATGACAACTTTG

GAPDH-R GTCCACCACCCTGTTGCTGTAG

F, forward; R, reverse.
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FIGURE 1 | Extra spindle pole bodies-like 1 expression in gliomas. (A) The expression of ESPL1 in a variety of malignant tumors. Red indicates that ESPL1 is higher
than the corresponding normal control group, while green indicates that ESPL1 is highly expressed in the tumor. (B) ESPL1 expression in 50 gliomas and 4 normal
brain tissues in GSE2223. The expression of ESPL1 in gliomas was significantly increased. (C) In the GSE4290 data, the expression of ESPL1 in 77 gliomas and 23
normal brain tissues was compared, and the expression of ESPL1 in gliomas increased. (D) Comparing 34 kinds of glioma tissue specimens with 13 normal brain
tissue specimens in the GSE50161 data set, the expression level of ESPL1 in glioma tissue was significantly increased. (E) RT-qPCR experiments show that the
expression level of ESPL1 in glioma cell lines (LN229, T98, and A172) is higher than that in human astrocytes. *p < 0.05 and ****p < 0.0001.

Overexpression of ESPL1 Leads to Poor
Overall Survival in Glioma Patients
Next, to further examine the effects of abnormally high
expression of ESPL1 on the prognosis of glioma, we analyzed

three data cohorts: CGGA RNA-seq, CGGA microarray, and
TCGA RNA-seq and created survival curves. As indicated in
Figures 2A–C, high expression of ESPL1 in the three data
cohorts consistently conveyed a significant reduction in patient
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FIGURE 2 | The relationship between the difference of the expression level of ESPL1 and overall survival (OS). The red curve in the figure represents the ESPL1 high
expression group, and the blue curve represents the ESPL1 low expression group. (A) CGGA RNA-seq dataset. (B) CGGA microarray dataset. (C) TCGA RNA-seq
dataset.

FIGURE 3 | Univariate analysis and multivariate analysis with Cox regression model. (A) Univariate analysis of CGGA RNA-seq database. (B) Multivariate analysis of
CGGA RNA-seq database. (C) Univariate analysis of CGGA microarray database. (D) Multivariate analysis of CGGA microarray database. (E) Univariate analysis of
TCGA RNA-seq database. (F) Multivariate analysis of TCGA RNA-seq database.
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FIGURE 4 | Prognostic factors and risk assessment of glioma and the diagnostic value of ESPL1. (A) The receiver operating characteristic (ROC) curve in CGGA
sequence. (B) ROC curve in CGGA microarray. (C) ROC curve in TCGA RNA-seq.

overall survival (OS) (p < 0.001). Because the prognosis of
patients with high-grade gliomas and low-grade gliomas is
significantly different, the tissue samples were further divided
into high- and low-grade gliomas for KM survival analysis
to explore the impact of ESPL1 on the prognosis of patients
with different grades. The results showed that the change in
ESPL1 expression level had no significant difference in the
prognosis of high-grade glioma in three independent datasets
(Supplementary Figures 1–3B). However, for the prognosis of
low-grade gliomas, the increased expression of ESPL1 can indeed
reduce the OS time of patients (Supplementary Figures 1–3A).
The 2016 WHO grading standard for gliomas also included
the molecular characteristics of gliomas in the classification of
patients. Therefore, we divided patients into molecular groups
to detect the impact of ESPL1 on the prognosis of patients
between different molecular categories. The results showed that
the increased expression of ESPL1 could significantly reduce the
survival time of patients, whether in the IDH mutation group or
wild-type group and whether accompanied by 1p19q codeletion
or not (Supplementary Figures 1C–E, 2C,D). Although the
abovementioned results were obtained from a large sample
of 1669 gliomas in 3 data cohorts, whether high expression
of ESPL1 represents an independent risk factor for glioma
remains to be verified.

ESPL1 Represents an Independent Risk
Factor in Glioma Patients
To explore whether ESPL1 represents an independent risk factor
for poor prognosis in gliomas, univariate, and multivariate Cox
analyses were performed to verify the relationship between
high expression of ESPL1 and the prognosis of gliomas. As
shown in Figure 3, univariate Cox analysis demonstrated that
increased ESPL1 expression in glioma was closely related to
poor prognosis in CGGA RNA-seq (HR = 1.633), CGGA
microarray (HR = 2.050), and TCGA RNA-seq (HR = 1.353).
High-grade CGGA RNA-seq (HR = 2.883), CGGA microarray

(HR = 2.567), and TCGA RNA-seq (HR = 4.634), in older
patients in CGGA RNA-seq (HR = 1.624), CGGA microarray
(HR = 1.736), and TCGA RNA-seq (HR = 1.072), and in
the PRS type in CGGA RNA-seq (HR = 2.123) and CGGA
microarray (HR = 2.042) (Figures 3A,C,E). At the same time,
multivariate Cox analysis revealed that increased expression
levels of ESPL1 represent a risk factor in CGGA RNA-seq
(HR = 1.237), CGGA microarray (HR = 1.396), and TCGA
RNA-seq (HR = 1.103), in older patients in CGGA RNA-
seq (HR = 1.266) and TCGA RNA-seq (HR = 1.047), and
in PRS type in CGGA RNA-seq (HR = 1.975) and CGGA
microarray (HR = 1.568) (Figures 3B,D,F). Consistently, the
above results demonstrated that ESPL1 can be regarded as
an independent risk factor that conveys an unsatisfactory
clinical prognosis.

The Clinical Diagnostic Value of ESPL1
To determine whether high expression of ESPL1 has clinical
diagnostic value for the prognosis of glioma, we used Cox
regression and Kaplan–Meier methods to draw ROC curves
of the CGGA RNA-seq, CGGA microarray, and TCGA RNA-
seq cohorts (Figures 4A–C). In these three databases, the area
under the curve (AUC) of 3- and 5-years were all greater than
0.7, indicating that ESPL1 has an appropriate diagnostic value.
However, in the 1-year survival curve, except for the AUC of
TCGA RNA-seq which was 0.741, the AUCs of CGGA RNA-
seq and CGGA microarray were all less than 0.7. In addition, in
the grading of gliomas, these independent datasets consistently
showed that the expression level of ESPL1 has good diagnostic
value for the prognosis of low-grade gliomas (Supplementary
Figures 4–6A). However, in high-grade gliomas, only the TCGA
RNA-seq dataset suggested a good diagnostic value for the
prognosis of patients (Supplementary Figures 4–6B). It is worth
noting that the expression level of ESPL1 has good diagnostic
value among various molecular subtypes in the molecular typing
of gliomas (Supplementary Figures 4C–E, 5C,D). In summary,
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FIGURE 5 | Relationship between the expression of ESPL1 in glioma and clinicopathological characteristics in the CGGA RNA-seq, CGGA microarray, and TCGA
RNA-seq datasets. (A) Grade. (B) Age. (C) 1p19q_codeletion status. (D) Chemotherapy status. (E) IDH mutation status. (F) PRS type. (G) Histology (A,
astrocytoma; AA, anaplastic astrocytoma; AO, anaplastic oligodendroglioma; AOA, anaplastic oligoastrocytoma; GBM, glioblastoma; O, oligodendroglioma; OA,
oligoastrocytoma; rA, relapse astrocytoma; rAA, relapse anaplastic astrocytoma; rAO, relapse anaplastic oligodendroglioma; rAOA, relapse anaplastic
oligoastrocytoma; rGBM, relapse oligodendroglioma; rO, relapse oligodendroglioma; rOA, relapse oligoastrocytoma; sGBM, secondary relapse oligodendroglioma).

TABLE 2 | The gene set enriches the high ESPL1 expression phenotype.

CGGA RNA-seq CGGA microarray TCGA RNA-seq

Gene set name NES NOM p-value NOM q-value NES NOM p-value NOM q-value NES NOM p-value NOM q-value

Homologous recombination 1.745 0.009 0.116 1.760 0.011 0.382 1.984 0 0.006

Cell cycle 1.964 0 0.031 1.795 0.014 0.513 2.225 0 0.001

Base excision repair 1.840 0 0.082 1.645 0.045 0.550 1.956 0 0.008

NES, normalized enrichment score; NOM, nominal. Gene sets with NOM p-value < 0.05 was considered as significantly enriched.

Frontiers in Genetics | www.frontiersin.org 7 August 2021 | Volume 12 | Article 66610643

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-666106 August 21, 2021 Time: 18:1 # 8

Liu et al. ESPL1 Is a Biomarker of Glioma

these results indicate that ESPL1 has diagnostic significance for
patients with glioma, especially for low-grade gliomas.

Relationship Between ESPL1 Expression
and Clinical Characteristics in Glioma
Patients
To further investigate the relationship between ESPL1 and the
clinical features of glioma patients, we used R software to
analyze the three databases in detail. As presented in Figure 5A,
high expression of ESPL1 was positively correlated with the
WHO grade in the CGGA RNA-seq, CGGA microarray, and
TCGA RNA-seq databases (p < 0.001). In the CGGA microarray
and TCGA RNA-seq, the expression levels of ESPL1 were
significantly associated with age (Figure 5B). In CGGA RNA-seq,

expression levels of ESPL1 were significantly correlated with
1p19q co-deletion and chemotherapy status (Figures 5C,D,
p < 0.001). In the two CGGA datasets, expression of ESPL1 was
closely correlated with IDH mutation, PRS type, and histology
(Figures 5E–G). These results demonstrate that the expression
levels of ESPL1 are significantly related to diverse clinical
characteristics in glioma patients.

GSEA Identifies ESPL1-Related Signaling
Pathways
These results suggest that ESPL1 plays an important role in
the pathophysiology of glioma, but the underlying mechanism
remains unclear. Therefore, we conducted GSEA analysis
to determine whether ESPL1 is involved in tumor-related

FIGURE 6 | Gene set enrichment analysis (GSEA) of ESPL1 in CGGA RNA-seq, CGGA microarray, and TCGA RNA-seq databases. The results of the three
databases show that ESPL1 is associated with three pathways (A–C) homologous recombination, cell cycle, and base excision repair.
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FIGURE 7 | Protein levels of ESPL1 in normal and glioma tissues by immunohistochemistry based on the Human Protein Atlas (staining: medium; intensity:
moderate; quantity: >75%). (A,D) The expression of ESPL1 in normal brain tissues of men and women. (B,E) The expression status of ESPL1 in low-grade gliomas
in men and women. (C,F) The expression status of ESPL1 in high-grade gliomas in men and women.

signaling pathways. The results demonstrated that homologous
recombination, cell cycle, and base excision repair were
differentially enriched with a high ESPL1 expression phenotype
(Table 2 and Figure 6).

Immunohistochemistry of ESPL1
To verify the expression of ESPL1 in normal brain and
glioma tissues at the protein level, we downloaded six
immunohistochemical slices from the HPA7 (two normal, two
low-grade, and two high-grade), which were stained with
HPA073188 (Figures 7A–F). Results showed that ESPL1 protein
expression levels in glioma tissue samples were significantly
higher than those in normal brains. Furthermore, there was
a direct relationship between higher glioma grade and higher
expression levels of ESPL1.

Potential Drugs for the Treatment of
Glioma Based on CMap Analysis
Through Pearson correlation analysis, we obtained 20 ESPL1-
related genes using co-expression analysis. There were 10 genes
(KIF2C, FAM64A, KIF20A, MKI67, ASPM, HJURP, KIF23,
IQGAP3, TROAP, GTSE1) that were positively correlated and
10 (SPOCK2, LYNX1, CBX7, FBXW4, ADARB2, NEBL, MRVI1,
SCN2B, ETNPPL, LDHD) that were negatively correlated

7https://www.proteinatlas.org/search/ESPL1

(Figures 8A,B). We then uploaded these genes to CMap, which
predicted three drugs that may harbor potential therapeutic
effects on glioma: thioguanosine, antimycin A, and zidovudine
(Table 3). The 2D and 3D structures of these small-molecule
drugs are available from PubChem and are shown in Figure 9.

DISCUSSION

In the field of oncology, several studies have demonstrated that
ESPL is related to the malignant biological behavior of many
human tumors, promoting the development and proliferation
of tumor cells and leading to poor outcomes. For example,
Finetti et al. (2014) reported that ESPL1 is an oncogenic driver
of luminal B breast cancers and has a powerful prognostic
value. Furthermore, Hu et al. (2020) found that an HBV
S-integrated human ESPL1 fusion gene may potentially represent
a biomarker for the early diagnosis of HCC in HBV-infected
patients. In addition, it has been reported that enhanced ESPL1
expression might be the reason for the increased malignancy
of non-small cell and small cell lung cancer, and that ESPL1
represents a potential target for molecular therapy of lung cancer
(Zhang et al., 2016). Similar conclusions have been verified
in other malignant tumors, such as rectal adenocarcinoma,
bladder cancer, and prostate carcinoma (Zhang and Pati,
2017; Chen et al., 2019). However, there is no literature on
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FIGURE 8 | It co-expresses the analysis results. (A) Some genes that have synergistic and antagonistic effects with ESPL1, including their names, correlation
coefficient values, and p-values. (B) The expression relationship diagram of genes related to ESPL1.

the relationship between ESPL1 and glioma. Elucidating the
expression levels of ESPL1 in glioma and its clinical relevance
will help to establish a new therapeutic target to improve existing
treatment methods.

In this study, we first assessed the expression levels of ESPL1
in glioma using the GEPIA, GEO, and HPA databases. The
results demonstrated that ESPL1 expression in glioma tissues
was elevated compared to that in normal brain tissues at both
the mRNA and protein levels. In addition, univariate and
multivariate Cox analyses demonstrated that ESPL1 expression
might be a useful biomarker for glioma prognosis and that ROC
analysis confirmed the diagnostic value of ESPL1 expression in
glioma. Moreover, Kaplan–Meier curves for OS showed that
higher expression of ESPL1 was related to worse outcomes in
glioma patients, especially in patients with low-grade gliomas.
Furthermore, the potential mechanism of these results might
be linked to homologous recombination, cell cycle, and base
excision repair, as indicated by the GSEA results. These signaling
pathways have been shown to play key roles in the biological
behavior of many tumors in terms of metastasis and proliferation,
indicating the potential role of ESPL1 as a new therapeutic
and prognostic biomarker in glioma (Pennington et al., 2014;
Wallace, 2014; Gavande et al., 2016; Ouyang et al., 2016;
Christenson and Antonarakis, 2018). However, the function of
this gene is realized in multiple ways. Therefore, further studies
on the mechanism of ESPL1 in glioma are needed to clarify and
expand upon these findings.

The abnormal expression of many genes is related to the
pathological mechanism and malignant progression of glioma
(Guan et al., 2018; Wang et al., 2018; Feng et al., 2020;
Liu Z. et al., 2020). To determine whether ESPL1 associates

with other genes to promote the malignant development of
glioma, we further analyzed its co-expression and identified
genes with co-expression relationships with ESPL1, confirming
ESPL1 as a cancer gene with abnormally high expression
that promotes the malignant progression of glioma. These
results indicate that high expression of GTSE1, TROAP,
IQGAP3, KIF23, HJURP, ASPM, MIKI67, KIF20A, FAM64A,
and KIF2C might be unfavorable for glioma prognosis, whereas
high expression of LDHD, ETNPPL, SCN2B, MRVI1, NEBL,
ADARB2, FBXW4, CBX7, LYNX1, and SPOCK2 may be
beneficial for the prognosis of glioma. For example, Sun
et al. (2016) revealed that overexpression of KIF23 leads to
unfavorable clinical outcomes in glioma and might be a useful
independent prognostic biomarker for glioma patients (Sun et al.,
2016). On the other hand, it has been reported that reduced
expression of ETNPPL is closely related to the progression
of glioma, particularly in glioblastoma (González-García et al.,
2020). These results are consistent with our analysis. These
genes also indirectly suggest that ESPL1 may promote the
pathological processes of glioma and affect the prognosis of
glioma patients.

TABLE 3 | Three small molecule compounds identified as potential drugs for
glioma treatment in CMap analysis.

CMap name Mean N Enrichment p-Value

Thioguanosine −0.706 4 −0.944 0

Antimycin A −0.592 5 −0.786 0.00084

Zidovudine −0.586 4 −0.754 0.00734

CMap, Connectivity Map.
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FIGURE 9 | Three drugs predicted by CMap analysis results. (A) Structure diagram of thioguanosine, structure formula, and ID. (B) Structure diagram of antimycin
A, structure formula, and ID. (C) Structure diagram of zidovudine, structure formula, and ID.

Finally, the CMap database is an online platform for drug
research and development. It can screen out drugs with potential
therapeutic effects based on the change in gene expression level
in the pathophysiological process of disease, so as to correct
gene disorders and exert its therapeutic effects (Lamb et al.,
2006). In this study, we screened three small-molecule drugs that
may inhibit the occurrence and development of glioma through
CMap analysis: thioguanosine, antimycin A, and zidovudine. The
potential therapeutic effects of these small-molecule compounds
on tumors have been described in the literature. For example,
thioguanosine has been widely used in the treatment of acute
leukemia (Evans and Relling, 1994). Subsequently, Kyritsis et al.
(1996) demonstrated that chemotherapy with a combination
of 6-thioguanine, procarbazine, lomustine, and hydroxyurea is
effective for recurrent anaplastic gliomas (Kyritsis et al., 1996).
In addition, as an antifungal drug, antimycin A was recently
shown to inhibit the self-renewal ability of lung cancer stem
cells by negatively regulating β-catenin signaling (Seipke et al.,
2011; Yeh et al., 2013). Moreover, Wagner et al. (1997) revealed
that zidovudine inhibits the activity of breast cancer. The above
findings indicate that the small-molecule compounds inhibit
tumor growth. However, these small-molecule drugs have not
been reported to prevent anti-glioma cell proliferation. This
study only provides an index to guide more researchers to pay
attention to their potential value in the treatment of glioma.

Drug repurposing can quickly understand the pharmacokinetics
of drugs and evaluate their side effects, so that it can be applied to
the first-line clinical practice (Ashburn and Thor, 2004; Boguski
et al., 2009). For example, atorvastatin was considered to be a
traditional classic antihyperlipidemic drug in the past, but it has
been found to have a good therapeutic effect for chronic subdural
hemorrhage in recent years (Jiang et al., 2018). Zidovudine
has not been previously studied in the field of anti-glioma.
However, it was later found that it can improve the sensitivity
of glioma cells to radiotherapy, so as to play an anti-glioma
therapeutic effect (Zhou et al., 2007). Therefore, these small-
molecule drugs may have similar effects on glioma. Although
there is no direct evidence that these compounds have an
inhibitory effect on glioma, we have sufficient reason to support
them as potentially effective drugs. However, additional studies
are needed to examine their novel effects.

Although this study utilized multiple datasets with thousands
of glioma samples for scientific analysis, revealing the mechanism
of ESPL1 in glioma diagnosis and treatment will require
additional studies. This study has several limitations. Since most
of our data were from public databases, detailed treatment
strategies were not available for each patient. However, it
is precisely because of the multi-dataset fusion analysis that
the statistical bias of race is reduced, which makes our
results more reliable.
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In summary, our results suggest that the overexpression of
ESPL1 is closely related to poor prognosis in glioma patients.
We believe that this study further improves our understanding
of the pathogenesis of glioma and provides a novel and effective
prognostic biomarker for gliomas, especially low-grade gliomas.
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A Novel Six Autophagy-Related Genes
Signature Associated With Outcomes
and Immune Microenvironment in
Lower-Grade Glioma
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Since autophagy and the immune microenvironment are deeply involved in the tumor
development and progression of Lower-grade gliomas (LGG), our study aimed to
construct an autophagy-related risk model for prognosis prediction and investigate the
relationship between the immune microenvironment and risk signature in LGG. Therefore,
we identified six autophagy-related genes (BAG1, PTK6, EEF2, PEA15, ITGA6, and
MAP1LC3C) to build in the training cohort (n � 305 patients) and verify the prognostic
model in the validation cohort (n � 128) and the whole cohort (n � 433), based on the data
from The Cancer Genome Atlas (TCGA). The six-gene risk signature could divide LGG
patients into high- and low-risk groups with distinct overall survival in multiple cohorts (all
p < 0.001). The prognostic effect was assessed by area under the time-dependent ROC
(t-ROC) analysis in the training, validation, and whole cohorts, in which the AUC value at the
survival time of 5 years was 0.837, 0.755, and 0.803, respectively. Cox regression analysis
demonstrated that the risk model was an independent risk predictor of OS (HR > 1, p <
0.05). A nomogram including the traditional clinical parameters and risk signature was
constructed, and t-ROC, C-index, and calibration curves confirmed its robust predictive
capacity. KM analysis revealed a significant difference in the subgroup analyses’ survival.
Functional enrichment analysis revealed that these autophagy-related signatures were
mainly involved in the phagosome and immune-related pathways. Besides, we also found
significant differences in immune cell infiltration and immunotherapy targets between risk
groups. In conclusion, we built a powerful predictive signature and explored immune
components (including immune cells and emerging immunotherapy targets) in LGG.
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INTRODUCTION

Diffuse low-grade and intermediate-grade gliomas including WHO
grades II and III, hereafter called lower-grade gliomas (LGG)
(Cancer Genome Atlas Research et al., 2015). Lower-grade
gliomas (LGG) constitute about 15 percent of all primary brain
tumors that originate from glial cells, showing great heterogeneity in
clinical outcomes (Ostrom et al., 2013; Zeng et al., 2018). So far,
maximum surgery, subsequent-radiotherapy, and chemotherapy
have been the standard treatment modalities for LGG (Soffietti
et al., 2010). Although numerous efforts to prolong LGG patient
survival, more than half of them develop and progress to treatment-
resistant and aggressive high-grade glioma in the future (Claus et al.,
2015). Hence, it is urgent to search for novel prognostic biomarkers
and therapeutic targets of LGG. Several genetic biomarkers were
incorporated into the 2016 WHO classification, including
chromosome arms 1p and 19q codeletion, isocitrate
dehydrogenase (IDH) mutation, and O-6-methylguanine-DNA
methyltransferase (MGMT) methylation, to illuminate the
histological characteristics and guide the therapeutic approach
(Hartmann et al., 2010; Wick et al., 2013; Hainfellner et al., 2014;
Louis et al., 2016). Although these widely utilized biomarkers in LGG
have recently been discovered, the novel predictors of clinical
outcomes or therapeutic targets for LGG are not fully unraveled.

Autophagy is a highly conserved lysosomal degradation
process that is crucial for homeostasis, differentiation,
development, and survival (Rabinowitz and White, 2010) and
has been found involved in diverse pathologies, including cancer
(Kondo et al., 2005). By self-degradation of damaged proteins and
intracellular components, autophagy can suppress tumor
initiation, thereby mitigating cell injury and suppressing
chromosomal instability (Mathew et al., 2007; White et al.,
2010). But, autophagy can also facilitate cancer proliferation
by supplying nutritional substance in the context of hypoxic
and innutritious surroundings (Guo et al., 2011). Mostly,
autophagy is believed to impede cancer initiation and promote
tumor progression (Trejo-Solis et al., 2018). In addition,
autophagy can alter the tumor or stroma cell immunogenicity
within the tumor microenvironment (TME) and the
development of antitumor immunity through intertwining
with pattern recognition receptor (PRR), cell death pathways,
and inflammatory (Gerada and Ryan, 2020). Nevertheless, few
studies have reported the impact on prognosis and the correlation
with immune cells of autophagy in LGG.

In the study, we established a powerful prognostic signature
based on six autophagy-related genes, and then a nomogram was
built with the signature and traditional clinical parameters, to predict
clinical outcomes and assist clinical procedures. Moreover, the
association of autophagy-related genes signature with immune
cells and emerging immune targets and was further analyzed.

MATERIALS AND METHODS

Data Collection and Processing
The level 3 RNA-seq expression profiles and corresponding
clinicopathologic data including age, gender, grade, IDH

mutation status, chemotherapy, radiotherapy of LGG patients
were obtained from TCGA Lower Grade Glioma (LGG) of UCSC
Xena (https://xenabrowser.net/). All patients were diagnosed
with LGG, who were followed for more than 90 days and have
complete clinical information. Overall, 433 patients of the LGG
whole cohort met the screening rules. The patients were
randomly separated into a training cohort (n � 305) and a
validation cohort (n � 128) at a ratio of 7:3. mRNA
Expression profiles used in normal brain tissues were
downloaded from the Genome Tissue Expression (GTEx,
https://gtexportal.org/home/datasets) (Consortium, 2015). To
normalize expression data and eliminate the batch effects, the
“sva” R package was used.

Selection and Functional Enrichment of
Autophagy-Related Genes
The “limma” R package was employed to select differentially
expressed genes (DEGs) by comparing TCGA-LGG tissues and
GTEX-brain normal tissues, with the included criteria (Adj. p <
0.05 and |LogFC| > 1) (Ritchie et al., 2015). A volcano plot was
used to visualize the DEGs. The 232 autophagy-related genes
(ARGs) were extracted from the Human Autophagy Database
(HADb, http://www.autophagy.lu/) (Moussay et al., 2011). The
intersection of the DEGs and ARGs was selected as the significant
differentially expressed autophagy-related genes (DE-ARGs) for
further assessment and was then showed in Venn diagrams.

In the whole set, LGG patients were separated into two risk
groups, low- and high-risk groups, according to the optimal risk
cutoff obtained from the training set. To probe underlying
functions of DE-ARGs and risk model, the biological process
of GO and KEGG pathways analysis was performed and GESA
was conducted to identify the critical altered signaling pathways
between high- and low-risk groups, by the aid of the
“clusterProfiler” package in R 3.6.3 (Yu et al., 2012). The
“c2.cp.kegg.v7.0.symbols.gmt” KEGG gene set was adopted as
reference. The nominal p-value (NOM-P) for gene sets <0.05, the
absolute normalized enrichment score (|NES|) > 1.8 and the false
discovery rate (FDR) <0.05 were confirmed as threshold.

Construction and Validation of the Risk
Model Based on Autophagy-Related Genes
Performing univariate Cox regression analysis in the “survival” R
package, 13 of 53 DE-ARGs in the training cohort was identified
with prognosis significance (all p < 0.05) (Linden and Yarnold,
2017). The least absolute shrinkage and selection operator
(LASSO) (Friedman et al., 2010) analysis was utilized to
establish the risk model. The prognostic risk score model
according to a combination of LASSO coefficient and the
corresponding normalized expression level was built in the
following equation: risk score � sum (the normalized
expression level of each gene × corresponding LASSO
coefficient). Subsequently, a risk score was computed for each
patient. All patients were stratified into the low-risk and high-risk
groups based on the optimum cutoff of risk score (risk score �
−7.009) counted by ROC curve using the “survminer” package in
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R (Supplementary Figure S1). Next, a KM plot based on log-rank
test was applied to measure the survival difference between
patients with high- and low-risk groups. The prognostic
capacity of the ARG-based signature was investigated by using
Harrell’s concordance index (C-index), time-dependent receiver
operating characteristic (ROC) curve, and Principal component
analysis (PCA) with the R packages “survcomp,” “survivalROC,”
and “ scatterplot3d” (Harrell et al., 1996; Mächler and Ligges,
2003; Alba et al., 2017). Then, the prognostic effect of the
signature established by the training set was verified in the
validation cohort and the whole cohort using some similar
methods.

Moreover, to evaluated whether the predictive capacity of the
prognostic risk model could be independent of other clinic factors
(including age, gender, WHO grade, radiotherapy,
chemotherapy, and IDH status) for patients with LGG,
univariate Cox regression and multivariate Cox regression
analyses were applied in the TCGA training cohort, the
validation cohort, and the whole cohort. Next, by using “rms,”
“foreign,” and “survival” R packages, we established a nomogram
comprising of traditional clinical factors and risk score based on
the multivariate Cox regression analysis. The prognostic effect of
the prognostic nomogram was examined by Harrell’s
concordance index (C-index), time-dependent ROC curve, and
calibration plots of the nomogram for 3 and 5 years OS plotted to
assess the coincidence of actual observed rates with the predicted
survival probability. Time-dependent ROC analyses were
performed by the “timeROC” R package.

Associations Between Immune
Components and Autophagy-Related
Genes Signature
To identify the potential association between the signature and
immune components, both emerging immune targets and tumor-
infiltrating immune cells were included. The list of potential
immunotherapy targets involved in innate and adaptive immune
processes was extracted from a recent review (Burugu et al., 2018).
We Compared the target gene expression between different risk
groups. CIBERSORT algorithm, a novel deconvolution algorithm,
uses 547 reference gene expression values for estimating enrichment
of different immunocyte subpopulations (Newman et al., 2015). Our
study applied the CIBERSORT algorithm to examine the abundance
of 22 infiltrating immune cells in the high-risk and low-risk group in
the whole cohort. Utilizing the Monte-Carlo sampling, the
deconvolution p-values of samples were computed to offer
reliability in the assessment. Patients with p < 0.05 were
considered to be high reliability of the inferred cell composition.
Therefore, samples with a p value of <0.05 were retained for
subsequent analysis. The expression profiles of TCGA-LGG
patients were put on the CIBERSORT web tool (http://cibersort.
stanford.edu/) for analysis with the default signature matrix at 1,000
permutations.

Statistical Analysis
All data analyses were done on software R (version 3.6.3). The
student’s t-test and chi-square test were used to determine that

whether there is a difference in clinical parameters between the
training cohort and validation cohort and to evaluate the
association between clinical characteristics and the risk score.
Kaplan–Meier survival analysis was used to compare the
prognosis between risk groups. The significantly independent
prognostic factors in LGG were identified using univariate and
multivariate Cox regression. The predictive capacity of the
signature and other clinical parameters was determined by
ROC curves. A nomogram was constructed with the “rms”
package in R, by using multivariate Cox analysis. The C-index
and calibration plot with the bootstrap method were performed
to evaluate the predictive power of the nomogram. A p value
<0.05 is considered statistically significant.

RESULTS

Identification of Differentially Expressed
Autophagy-Related Genes and Enrichment
Analysis
RNA-seq expression data and clinical information of 529 lower-
grade glioma tissue samples were obtained from TCGA, and
1,035 non-tumor samples were selected from GTEX. Of those
patients, a total of 433 LGG patients who were followed for more
than 3 months and had complete clinical data were analyzed in
the study. After analyzing the TCGA-LGG expression data using
limma, 7,143 DEGs were found between LGG and normal tissues
and showed in the volcano plots (Figure 1A). Venn diagrams
revealed that the intersection of fifty-three significant DE-ARGs
were used for further analysis (Figure 1B).

Next, we performed functional enrichment analysis to identify
risk pathways and biological functions associated with the DE-
ARGs. Go enrichment analysis revealed that the biological
process of the DE-ARGs were significantly enriched in terms
of autophagy-related processes; the cellular component of the
DE-ARGs were significantly enriched in the terms
autophagosome membrane, autophagosome and vacuolar
membrane and the molecular function of the DE-ARGs were
significantly enriched in the terms ubiquitin and ubiquitin−like
protein ligase binding, and cyclin−dependent protein serine/
threonine kinase inhibitor activity (Figure 1C). In addition,
KEGG enrichment analysis showed that the DE-ARGs were
mainly involved in cancer-related pathways,
Autophagy−animal and Mitophagy–animal (Figure 1D).

Establishment of an Autophagy-Related
Model for Survival Prediction in the The
Cancer Genome Atlas Lower-Qrade
Qliomas Training Cohort
According to the screening conditions, we randomly separated
433 patients in TCGA-LGG into a training dataset (n � 305) and a
validation dataset (n � 128), using the “caret” package. The chi-
square test demonstrated no significant difference in basic clinical
factors between the two datasets (Table 1). Moreover, the
clinicopathological parameters of LGG patients based on risk
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signature constructed below was also examined (Supplementary
Table S2). After univariate Cox regression analysis, 13
significantly prognosis-associated genes were identified in the

training cohort of 305 LGG patients. These significant genes
entered into LASSO COX regression analyses, and the regression
coefficient was determined. As a result, the six most important

FIGURE 1 | Identification of differentially expressed autophagy-related genes (DE-ATGs) in low grade glioma (LGG) and enrichment analysis. (A) Volcano plot of
DEGs in 529 tumor tissues of The Cancer Genome Atlas (TCGA) dataset and 1,035 normal samples from The Genotype-Tissue Expression (GTEx). The vertical axis
indicates the–log [adjusted p value (adj. p value)], and the horizontal axis indicates the log2 [fold change (FC)]. The red dots represent upregulated genes, and the green
dots represent downregulated genes (adj. p value <0.01 and |log2(FC)| > 1). (B) Venn diagram showing the 53 DE-ARGs (the intersection of the DEGs and ARGs).
(C) Biological processes (BP), Cellular components (CC) and Molecular functions (MF) enriched in the DE-ARGs. (D) Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways enriched in the DE-ARGs.

TABLE 1 | Demographics and clinicopathological data of 433 LGG patients from the TCGA database.

Clinical variables Total set number (%) Training
set number (%)

Validating
set number (%)

p Value

Age at diagnosis
<40 237 (54.73) 159 (52.13) 78 (60.94) 0.1155
≥40 196 (45.27) 146 (47.87) 50 (39.06)

Gender
FEMALE 197 (45.5) 135 (44.26) 62 (48.44) 0.4899
MALE 236 (54.5) 170 (55.74) 66 (51.56)

Grade
G2 206 (47.58) 141 (46.23) 65 (50.78) 0.4473
G3 227 (52.42) 164 (53.77) 63 (49.22)

Radiotherapy
NO 159 (36.72) 113 (37.05) 46 (35.94) 0.9126
YES 274 (63.28) 192 (62.95) 82 (64.06)

Chemotherapy
NO 182 (42.03) 134 (43.93) 48 (37.5) 0.258
YES 251 (57.97) 171 (56.07) 80 (62.5)

IDH status
Mutation 353 (81.52) 246 (80.66) 107 (83.59) 0.5598
Wild 80 (18.48) 59 (19.34) 21 (16.41)
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genes were identified as BAG Cochaperone 1 (BAG1), Protein
Tyrosine Kinase 6 (PTK6), Eukaryotic Translation Elongation
Factor 2 (EEF2), Proliferation and Apoptosis Adaptor Protein 15
(PEA15), Integrin Subunit Alpha 6 (ITGA6), and Microtubule
Associated Protein 1 Light Chain 3 Gamma 5 (MAP1LC3C). An
autophagy-related LGG risk score was constructed through a
linear combination of the expression values of the six autophagy-
related genes adjusted by the LASSO regression coefficient. The
risk score � −0.7733 × expression level of BAG1-0.2010 ×
expression level of PTK6-0.1621 × expression level of EEF2-
0.4639 × expression level of PEA15 + 0.0565 × expression level of
ITGA6 + 0.3223 × expression level of MAP1LC3C. The risk score
for each patient was calculated according to this equation
(Table 2).

Subsequently, we computed the risk score for each LGG
patient in the training cohort. The cutoff risk score (−7.009)
was counted using the “survminer” package in the TCGA-LGG
training cohort. All LGG patients were then separated into low-
(risk score < −7.009) and high-risk (risk score ≥ −7.009) groups
(Figure 2D). Kaplan–Meier survival analysis showed that
patients in high-risk group were associated with a relatively
poor OS as than those in the low-risk group (log-rank p �
1.554e-15, Figure 2A). The heatmap showed that six
prognostic expression profiles between two risk groups
(Figure 2C). Besides, multivariate Cox regression analysis
demonstrated that the risk score could independently predict
OS after adjusting for various clinicopathologic parameters in the
training cohort (Table 3). ROC analysis of 5 years overall survival
was applied to examine the predictive capacity of the six-gene
prognostic risk model. Moreover, the 5 years AUC of risk model
was 0.837, which was markedly higher than that of age (AUC �
0.684), gender (AUC � 0.538), WHO grade (AUC � 0.700),
radiotherapy (AUC � 0.671), IDH status (AUC � 0.293), and
chemotherapy (AUC � 0.616), indicating that it has a more
robust prediction of clinical outcome than the other clinical
parameters (Figure 2B).

Testing the Signature in the Validation
Cohort and the Whole Cohort
The validation dataset and the whole dataset were used to predict
OS and demonstrate the predictive capacity of the risk model. The
risk score in each LGG patient from the validation cohort was
calculated based on the formula. Then, we divided the validation
cohort into a high-risk group (n � 44) and a low-risk group (n �

84) depending on the optimal risk cutoff value in the training
cohort (risk score � −7.009, Figure 3D). Kaplan-Meier analysis
indicated that patients in the high-risk group had a poorer
prognosis compared to those in the low-risk group (log-rank
p � 7.382e-05, Figure 3A). The heatmap displayed that six
autophagy-related expression profiles between low- and high-
risk groups in the validation cohort (Figure 3C). Besides,
univariate and multivariate analysis revealed that the risk score
was significantly associated with OS after adjustment for other
clinical parameters such as age, gender, grade, radiotherapy,
chemotherapy, and IDH status (Table 3). Moreover, The ROC
curves for 5 years overall survival indicated that the risk score has
the best predictive capacity of OS (AUC � 0.755) among the
clinical parameters (Figure 3C).

We then further demonstrated the prognostic predictive
capacity of the six autophagy-related genes signature in the
whole dataset and achieved similar findings. As shown in
Figure 4D, the optimal risk cutoff value in the training cohort
was adopted to separate the whole dataset into a high-risk group
(n � 133) and a low-risk group (n � 300). KM analysis also revealed
that high-risk patients had a poorer prognosis than those in the
low-risk group (log-rank p value � 0e + 00, Figure 4A). Six
autophagy-related expression profiles between low- and high-
risk groups in the whole cohort were also showed in a heatmap
(Figure 4C). Univariate and multivariate analysis still indicated
that the risk signature was significantly associated with overall
survival after adjustment for clinical parameters (Table 3). The
ROC curves for 5 years overall survival also revealed that the risk
score has the best predictive power of OS (AUC � 0.803) than the
other traditional clinical parameters (Figure 4B). These results
suggested the autophagy-related risk signature performed well in
predicting clinical outcomes of LGG patients.

Last, we further compared the predictive capacity of our six
autophagy-related genes signature with the two previous models
based on autophagy-related genes, by performing ROC curves
and Principal component analysis (PCA). The ROC curves for
5 years overall survival revealed that the AUC values of these two
published signatures were 0.487 and 0.726 (Supplementary
Figure S2), which are lower than our signature. The PCA
analysis revealed that our six-autophagy-related genes
signature could clearly split the LGG patients into a high- and
low-risk group, and presents a best distinction effect compared
with other risk models (Supplementary Figure S3). These results
indicated that our risk model has greater predictive performance
in predicting prognosis compared with other signatures.

TABLE 2 | Six survival-related autophagy-related gene in the signature associated with overall survival in the TCGA-training set.

ID uniCox regression LASSO

HR Low 95% CI High 95% CI p value Coefficient

BAG1 0.060069 0.023310698 0.154791644 5.78E-09 −0.773344244
PTK6 0.175985 0.084795649 0.365238271 3.11E-06 −0.200973447
EEF2 0.362671 0.241460173 0.544727587 1.02E-06 −0.162054564
PEA15 0.335272 0.238622505 0.471066233 3.00E-10 −0.463926374
ITGA6 3.111707 1.844873426 5.248445579 2.08E-05 0.056506153
MAP1LC3C 2.274053 1.794350072 2.881999107 1.07E-11 0.322322447
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The Association Between the
Autophagy-Related Signature and
Clinicopathological Factors
To probe the relationship between the risk model and clinical
parameters, we firstly used a heatmap to show the distributions of
age, gender, WHO grade, radiotherapy, chemotherapy, and IDH

status between risk groups in the LGG whole cohort. Figure 5A
showed that the risk groups were significantly associated with
chemotherapy, radiotherapy, age, WHO grade, and survival
status. And there were no significant differences between risk
groups for gender. We next assessed the risk scores in various
subgroups stratified by age, survival status, grade, chemotherapy,
radiotherapy, and IDH status separately. Risk scores in patients

FIGURE 2 |Development of risk score based on the six autophagy-related gene signature of patients with TCGA-LGG training set. (A) Kaplan-Meier plot for overall
survival (OS) based on risk score of the six gene based signature of patients with TCGA-LGG training cohort. (B) ROC curve for 5 years OS in training cohort. (C)
Heatmap of the six autophagy-related gene expression in the training cohort. (D) Risk plot of each point sorted based on risk score. The black dotted line is the optimal
cutoff (−7.009) classifying patients into low risk and high risk groups.
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above 40 years old were higher than those in the younger age
group (Figure 5B). Patients in the alive subtype had obviously
lower risk scores than those in the dead subtype (Figure 5C). For
the WHO grade, the risk scores in the G3 subgroup were higher
than those in the G2 subtype (Figure 5D). The risk scores of
patients receiving chemotherapy and radiotherapy were
separately higher than those without therapy (Figures 5E,F).
With regard to IDH status subtypes, the risk scores significantly
increased in the IDH-wild subtype than the IDH-mutation
subtype (Figure 5G).

We also examined the predictive effects of the six
autophagy-related risk model in different subgroups
stratified by age, gender, WHO grade, IDH status, and
history of radiotherapy or chemotherapy. In the two age
subtypes, higher risk scores predicted decreased survival in
both age subtypes (Figures 6A,B, p < 0.001). Risk scores could
separate patients with or without chemotherapy (Figures
6C,D, p < 0.001) or radiotherapy (Figure 6K,L, p < 0.001)
with distinct outcomes. Similar results were also found in the
IDH wild- and mutation-type groups (Figures 6I,J, p < 0.001),
WHO G2 and G3 groups (Figures 6G,H, p < 0.0001), and
gender groups (Figures 6E,F, p < 0.001).

Establishing a Nomogram as Prognostic
Prediction Model
By integrating the six-autophagy-related signature and six
traditional clinical parameters, we constructed a nomogram to
predict the survival probability at 3 and 5 years of LGG patients in
the whole cohort (Figure 7B). The C-index of the nomogram was

0.845. The AUCs of the nomogram for 3 and 5 years OS
predictions were 0.884 and 0.855, respectively (Figure 7A).
Meanwhile, the calibration plots also demonstrated a good
agreement with predicted and observed values with respect to
probabilities of 3 and 5 years survivals (Figures 7C,D). Together,
those findings indicated that the nomogram predicts precisely the
3 and 5 years survivals for LGG patients.

Functional Annotation and Pathway
Enrichment Analysis Between theHigh-Risk
Group and Low-Risk Group
To probe the potential biological function of risk groups, both the
biological process (BPs) of gene ontology, KEGG, and GSEA were
performed. By applying the limma package, the heatmap showed
1904 differentially expressed genes (Figure 8A) between risk groups.
Significantly enriched BPs were mainly involved in extracellular
matrix organization, T cell activation, and leukocyte cell-cell
adhesion (Figure 8B). As for KEGG pathways enriched in these
DEGs were cell adhesion molecules, phagosome, Th1 and Th2 cell
differentiation, and antigen processing and presentation
(Figure 8D). Functional enrichment analysis was then performed
between risk groups. GSEA illustrated that the most significant
pathways enriched in the high-risk group were Fc gamma receptor-
mediated phagocytosis, leukocyte transendothelial migration,
natural killer cell mediated cytotoxicity, regulation of actin
cytoskeleton, and toll like receptor signaling pathway, while no
significant pathways enriched in low-risk group (Figure 8C). A
complete list of GSEA results can be found in Supplementary
Table S1.

TABLE 3 | Univariate and multivariate Cox regression analysis in TCGA-LGG each cohorts.

Variables Univariate analysis Multivariate analysis

HR (95% CI) p Value HR (95% CI) p Value

Training set (n � 305)
Age (<40/≥40) 3.908 (2.214–6.898) 2.5965E-06 2.750 (1.448–5.222) 0.00198857
Gender (female/male) 1.250 (0.765–2.042) 0.372437476 1.974 (1.160–3.360) 0.01221692
Grade (G2/G3) 3.459 (1.972–6.066) 1.49742E-05 1.774 (0.919–3.422) 0.08750485
Radiotherapy (no/yes) 3.045 (1.583–5.854) 0.000844437 1.507 (0.710–1.131) 0.28553912
IDH status (wild/mutation) 0.143 (0.088–0.234) 9.56649E-15 0.465 (0.191–1.131) 0.09129914
Chemotherapy (no/yes) 1.628 (0.977–2.712) 0.061242815 0.820 (0.470–1.432) 0.4854889
Risk score (low/high) 4.645 (3.353–6.435) 2.59641E-20 2.493 (1.336–4.651) 0.0041002

Validation set (n � 128)
Age (<40/≥40) 3.425 (1.427–8.220) 0.005861356 3.319 (1.097–10.05) 0.03372453
Gender (female/male) 0.794 (0.377–1.673) 0.544405373 1.059 (0.461–2.431) 0.89283856
Grade (G2/G3) 3.572 (1.572–8.117) 0.002367324 2.376 (0.817–6.911) 0.11217943
Radiotherapy (no/yes) 1.775 (0.761–4.140) 0.183865679 1.921 (0.669–5.517) 0.22532202
IDH status (wild/mutation) 0.116 (0.047–0.288) 3.63036E-06 0.776 (0.139–4.338) 0.77242088
Chemotherapy (no/yes) 0.865 (0.421–1.778) 0.693438967 0.218 (0.086–0.553) 0.00131428
Risk score (low/high) 4.334 (2.546–7.381) 6.64509E-08 3.583 (1.151–11.16) 0.02762528

Whole set (n � 433)
Age (<40/≥40) 3.541 (2.243–5.590) 5.70336E-08 2.918 (1.717–4.957) 7.4951E-05
Gender (female/male) 1.060 (0.713–1.576) 0.772843899 1.472 (0.964–2.248) 0.07342518
Grade (G2/G3) 3.307 (2.213–5.151) 1.22602E-07 1.880 (1.115–3.170) 0.01789178
Radiotherapy (no/yes) 2.535 (1.516–4.239) 0.000389848 1.484 (0.818–2.692) 0.19380046
IDH status (wild/mutation) 0.147 (0.098–0.222) 5.54714E-20 0.560 (0.272–1.154) 0.11614564
Chemotherapy (no/yes) 1.333 (0.881–2.016) 0.173180772 0.623 (0.394–0.985) 0.04287472
Risk score (low/high) 4.593 (3.487–6.050) 2.04139E-27 2.714 (1.644–4.482) 9.5588E-05
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Differential Expression of Potential
Immunotherapy Targets and the
Tumor-Infiltrating Immune Cells Between
Two Groups
Pathway enrichment between risk groups suggested that
autophagy-related genes signature was associated with some

immune-related pathways. Thus, we investigated the abundances
of the 22 immune cell types for each LGG patient from the whole
cohortwithin the low-risk group and the high-risk group, according to
the CIBERSORT algorithm. The comparison of 22 immune cells
between risk groups displayed in a radar plot (Figure 9A).
Macrophages M0, M1, and M2, and T cells CD8 were obviously
increased in the high-risk group than the low-risk group; however, the

FIGURE 3 | Development of risk score basedon the six autophagy-related gene signature of patientswith TCGA-LGGvalidation set. (A)Kaplan-Meier plot for overall survival (OS)
based on risk score of the six gene based signature of patients with TCGA-LGG validation cohort. (B)ROCcurve for 5 years OS in validation cohort. (C)Heatmap of the six autophagy-
related gene expression in the validation cohort. (D)Risk plot of each point sorted based on risk score. The black dotted line is the optimal cutoff (−7.009) classifying patients into low risk
and high risk groups.
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expression levels of Eosinophils, Mast cells activated, Monocytes, NK
cells activated, and Plasma cells were obviously lower in the high-risk
group (Figure 10). We also found the gene expressions of multiple
promising immunotherapy targets, includingCD47, CD276, CTLA-4,
LAG3, PD-1/L1, and TIM3, and tumormutation burden (TMB)were
significantly increased in the high-risk group, while the expression
levels of NKG2A was significantly upregulated in the low-risk group
than in the high-risk group (Figure 9B).

DISCUSSION

Autophagy has been reported involved in tumor formation and
progression, and therapy resistance of multiple cancers,
including glioma (Kondo et al., 2005; Mathew et al., 2007;
White et al., 2010). Besides, autophagy can alter the tumor or
stroma cell immunogenicity within the tumor
microenvironment and the response to immunotherapy

FIGURE 4 | Development of risk score based on the six autophagy-related gene signature of patients with TCGA-LGG whole set. (A) Kaplan-Meier plot for overall
survival (OS) based on risk score of the six gene based signature of patients with TCGA-LGG whole cohort. (B) ROC curve for 5 years OS in whole cohort. (C) Heatmap
of the six autophagy-related gene expression in the whole cohort. (D) Risk plot of each point sorted based on risk score. The black dotted line is the optimal cutoff
(−7.009) classifying patients into low risk and high risk groups.
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(Gerada and Ryan, 2020). However, few studies have reported
the impact on prognosis and the correlation with immune cells
of autophagy in LGG. In this study, the whole samples of the
TCGA-LGG project were randomly separated into a training
set, and a validation set and the whole set were created for
further verification. We established a novel prognosis
signature of six autophagy-related genes of LGG in the
training dataset, and the signature was verified in the
validation and whole datasets. The risk score could well
separate patients into a low-risk group and a high-risk
group, with a significant difference in overall survival. The

AUC of the risk score in predicting the 5 years survival rate in
the training set, validation set, and the whole set was 0.837,
0.755, and 0.803, respectively, which suggested that the
prognostic signature performed better in predicting clinical
outcomes than other traditional clinical factors. The six
autophagy-related genes signature could serve as the
independent predictive factor of LGG patients, according to
multivariate analysis and Kaplan-Meier method. Furthermore,
our findings showed that significant differences in tumor
immune microenvironment and promising immunotherapy
targets between two risk groups in the whole cohort.

FIGURE 5 |Relationship between the signature risk scores and clinical factors. (A) The heatmap showed the relationship between the risk signature and the clinical
features (chemotherapy, IDH status, radiotherapy, grade, gender, age and survival status) in the LGG-whole cohort. (B–G) The box plots revealed the association
between risk score and clinical parameters. *p < 0.01, **p < 0.001, ***p < 0.0001.
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Autophagy was involved in a broad range of cellular processes
and human diseases, and it is responsible for both carcinogenesis
and sensitivity to various therapies in recent years (Mathew et al.,
2007; White et al., 2010; Gerada and Ryan, 2020). Hence, it was
important to construct the prognostic model based on
autophagy-related genes to predict overall survival of LGG
patients. Our study first selected 53 DE-ARGs and then
identified six genes significantly associated with prognosis.
Among them, BAG1, PTK6, EEF2, and PEA15 were protected
factors, but ITGA6 and MAP1LC3C were risk factors for LGG
patients in univariate Cox regression. BAG1 is a multifunctional
protein that associates with multiple cellular processes, such as
apoptosis, proliferation, growth, and motility (Ostrom et al.,
2013). Besides, BAG1 was reported to be a protective factor in
breast cancer (Papadakis et al., 2017). Protein Tyrosine Kinase 6
(PTK6) encodes a cytoplasmic nonreceptor protein kinase,
implicated in processes of proliferation, apoptosis, migration,

and invasion in cancer cells (Harvey and Crompton, 2004; Shen
et al., 2008; Xiang et al., 2008; Harvey et al., 2009; Locatelli et al.,
2012; Park et al., 2015). PTK6 was found to be upregulated in
many tumor tissues, including breast cancer (Barker et al., 1997),
bladder cancer (Xu et al., 2017), non-small cell lung cancer (Zhao
et al., 2013), and ovarian cancer (Schmandt et al., 2006), and is
associated with adverse outcomes. However, another study
showed that PTK6 expression was downregulated in laryngeal
squamous cell carcinoma and esophageal squamous cell
carcinoma tissues, and low expression levels of PTK6
predicted short survival (Liu et al., 2013; Chen et al., 2014).
EEF2 plays an essential role in the translocation of peptidyl-tRNA
during protein synthesis. Overexpression of EEF2 was
associated with disease progression of lung adenocarcinoma
cells (Chen et al., 2011). PEA15 is a 15-kDa phosphoprotein
that impedes cell proliferation via inhibiting ERK-dependent
proliferation and gene transcription (Formstecher et al., 2001;

FIGURE 6 | Kaplan-Meier survival curves showed prognostic values of the risk signature in different subgroups of LGG-whole cohort. (A) age ≥ 40; (B) age < 40;
(C) without chemotherapy; (D) chemotherapy; (E) Female; (F)Male; (G) G2; (H) G3; (I) IDH-mutation type; (J) IDH-wild type; (K) without radiotherapy; (L) radiotherapy.
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FIGURE 7 |Nomogram built to predict the prognosis of patients with LGG. (A)ROC analysis for 3 and 5 years OS predictions with the nomogram. (B) A nomogram
based on risk score and other clinical parameters for predicting 3 and 5 years OS of LGG. Calibration curves of nomogram for predicting probabilities of 3 years (C), and
5 years (D) overall survival of patients in the whole cohort. The calibration plots of for predicting probabilities of 3 years (E), and 5 years (F) overall survival of patients in the
training cohort. The calibration plots of for predicting probabilities of 3 years (G), and 5 years (H) overall survival of patients in the validation cohort. The blue line
indicates actual survival.
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Bartholomeusz et al., 2006). In addition, PEA15 was found to
induce autophagy via activation of the ERK1/2 pathway
(Bartholomeusz et al., 2008). ITGA6 is a member of the
integrin alpha chain family that conducts signals through
interacting with extracellular matrix proteins, serving crucial
roles in drug resistance of multiple cancers (Yamakawa et al.,
2012; Brooks et al., 2016; Wei et al., 2019). Additionally,
overexpression of ITGA6 is associated with shorter overall
survival (Zhang et al., 2016; Wei et al., 2019). MAP1LC3A
encodes a light chain subunit of the microtubule-associated
protein 1-light chain three family, participating in the
autophagy and cell mobility process. Giatromanolaki et al.
(2014) reported that the overexpression of MAP1LC3A was
correlated with impaired autophagic degradation activity,
which may facilitate the carcinogenesis of glioblastoma. In
addition, another study showed that the MAP1LC3A
expression at the surgical margins could be a poor biomarker
for clinical prognosis in oral squamous cell carcinoma (Terabe
et al., 2018). In summary, BAG1, PTK6, EEF2, PEA15, ITGA6,
and MAP1LC3C could serve as predictors for survival in
multiple cancers, involving in various biological processes
including autophagy. These ATGs may serve as promising

prognostic biomarkers and therapeutic targets for guiding
LGG therapy.

Then, we established and verified a novel six autophagy-
related genes risk model that improves the survival prediction
of LGG patients. According to the six autophagy-related
signature, LGG patients were separated into a high-risk group
and a low-risk group. Patients with high-risk scores predicted
worse OS compared to patients with low-risk scores. Afterward, it
was successfully validated in the validation and whole datasets,
indicating the good reproducibility of this signature. Moreover,
Cox regression analysis indicated that the risk score of
autophagy-related genes signature is an independent
prognostic factor of clinical outcome for LGG patients in
multiple cohorts. Additionally, we observed that the risk
scores were significantly associated with several clinical factors,
including age, grade, IDH mutation status, chemotherapy and
radiotherapy. As younger age, low grade glioma and IDH
mutation were prognostic factors associated with better
outcomes(Taillibert et al., 2004; Cancer Genome Atlas
Research et al., 2015; Ostrom et al., 2020), we can speculated
that these factors would associated with lower risk scores, which is
consistent with our results. Chemotherapy is recommended as an

FIGURE 8 | Functional annotation and pathway enrichment analysis of risk groups. (A) Volcano plot of differential gene expression analysis between high-risk and
low-risk groups. (B) Functional annotation for signature using GO biological process. (C) Gene set enrichment analysis of curated gene sets obtained from MSigDB
Collections. Pathways of interest with significant enrichment in high-risk group was shown. (D) Pathway enrichment analysis by KEGG.
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optional treatment alone or in combination with radiotherapy for
newly diagnosed LGG patients who cannot undergo gross total
resection (Ziu et al., 2015). The higher residual tumor volume
(Wijnenga et al., 2018) was reported correlated with shorter OS
after adjusting for other clinicopathological factors, suggesting
that chemotherapy and radiotherapy might associated with
unfavorable outcomes or higher risk scores, which is in

accordance with our findings. Moreover, our risk model can
classify LGG patients after clinicopathological parameters into
high- and low-risk groups with a distinct prognosis, making the
risk model can be used to guide individualize treatment. For
example, the median age at time of diagnosis for LGG patients
around 40 years and the older LGG patients more often
associated with unfavorable prognostic factors, including focal

FIGURE 9 | Immune characteristics of risk groups in the whole cohort. (A) The radar plot showed the 22 different immune cell levels between high-risk and low-risk
groups; (B,C) The levels of emerging immunotherapeutic targets and TMB between risk groups. *p < 0.01, **p < 0.001, ***p < 0.0001.
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deficits, larger residual tumor volumes, compared with younger
patients, which may be an explanation for advanced age patients
in LGG usually with a poor prognosis (Corell et al., 2018).
Additionally, previous study suggested undertreatment of the
elderly patients could also contributed to their decreased survival
(Kaloshi et al., 2009).Thus, it is crucial to predict the prognosis of
the elderly LGG patients, to guide whether the older patients
receive the active treatment or not. Fortunately, our autophagy-
related genes signature can divide patients with more than
40 years into high- and low-risk groups with distinct
outcomes, making the signature can be used to guide
individualize treatment. Lastly, we constructed a nomogram
comprising the risk score, age, gender, WHO grade,
radiotherapy, chemotherapy, and IDH status, Calibration
curves of the nomogram predicted the probabilities of 3 and
5 years survival, which corresponded closely with the actual
survival rates, suggesting that the nomogram has an excellent
predictive performance. Hence, our study identified a nomogram
that could help identify LGG patients with a high risk of short
survival and guide the selection of better treatment options,

which is credible to both physicians and patients. To date,
some autophagy-related prognostic classifiers of glioma were
published. We further compared the predictive capacity of our
risk model with two published signatures (Lin and Lin, 2021;
Wang et al., 2021), by performing ROC curves and PCA analysis.
These results proved that our six autophagy-related genes
signature has the best predictive performance than another
signatures, considering different selection criteria of
autophagy-related genes yield different outcomes.

The tumor immune microenvironment plays a crucial role in
cancer biology (Hanahan and Weinberg, 2011). Previous studies
have evaluated the tumor-infiltrating immune cells were deeply
involved in glioma development and progression (Perus and
Walsh, 2019; Wang et al., 2020). And autophagy and
immunity played a momentous role in the tumor
microenvironment. Some studies have demonstrated that
autophagy plays a critical role in innate immunity as well as
the activation of lymphocytes and survival (Germic et al., 2019).
Similar to previous findings, our functional analysis also indicated
that the significant biological processes and pathways enriched in

FIGURE 10 | The difference of significantly immune cells between risk groups. (A) Eosinophils; (B)Macrophages M0; (C)Macrophages M1; (D)Macrophages M2;
(E) Mast cells activated; (F) Monocytes; (G) NK cells activated; (H) Plasma cells; (I) T cells CD8.
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the high-risk group were involved in some immune-related
pathways, such as T cell activation, Th1 and Th2 cell
differentiation, and NK cell-mediated cytotoxicity. We further
evaluated the relationships of 22 types of immune cell between
risk groups in LGG patients. There is a distinctive difference of
the cellular component of innate immunity, such as eosinophils,
monocytes, macrophages, mast cells, and natural killer (NK) cells
between risk groups in the whole cohort. For the eosinophils, the
role of autophagy for regulating eosinophil remains largely
unknown, for less well studied. Mast cells activated were
hypothesized to act as sentinel cells that respond with
pathogens and trigger protective immune responses
(Piliponsky and Romani, 2018). However, little is known
about the mechanism of autophagy for regulating mast cell
functions. As for macrophages, the level of macrophages (M0,
M1, and M2 macrophages) were significantly increased in the
high-risk group than those in the low-risk group, but eosinophils,
mast cells activated, monocytes, and NK cells activated were
higher in the low-risk group. M2 macrophages comprised the
most considerable fraction of macrophages of the high-risk group
in our results, which is consistent with the previous study that
immunosuppressive M2 macrophages were the dominant type of
tumor-associate macrophage (TAM) infiltrations in gliomas (Xu
et al., 2020). M2 macrophages contributed to an
immunosuppressive tumor microenvironment and promote
glioma progression (Xu et al., 2020). Moreover, we found that
the high-risk group have a lower abundance levels of NK cell,
which have cytotoxic potential against tumor cells and its
infiltration is associated with better clinical outcomes (Eckl
et al., 2012). In addition, the high-risk group has higher
fractions of CD8+ T cells. Prior studies have demonstrated
that increased CD8+ T cells are related to prolonged survival
in gliomas (Yang et al., 2010). However, increased expression of
immune checkpoints (such as PD-1/L1, LAG3, TIM3) could
contribute T cell to a dysfunctional exhausted status following
activation (Woo et al., 2012). Our study found that the expression
of immune checkpoints was significantly upregulated in the high-
risk group compared to the low-risk group. Therefore, the
immunosuppressive M2 macrophages, the lower level of NK
cells, and the increased expression of immune checkpoints in
patients with high risk may be an explanation for their decreased
survival.

Cancer immunotherapy is now emerged as the fifth pillar of
cancer treatment, with surgery, chemotherapy, targeted pathway
inhibition, and radiation (Murciano-Goroff et al., 2020). Immune
checkpoint inhibitors (ICIs) have now become the first-line
therapies of choice in multiple cancers, such as advanced non-
small cell lung cancer and melanoma (Larkin et al., 2015; Reck
et al., 2016). However, upregulation of additional immune
checkpoints conferring to ICIs resistance, there is a need to
identify novel antitumor immune-activating agents. Emerging
immunotherapy targets involved in adaptive immunity and
innate immune processes, targeting these agents can greatly
enhance antitumor immunity, thus eradicating cancer cells
(Burugu et al., 2018). For example, LAG-3 has been reported
positive expression on the surface of tumor-infiltrating
lymphocytes (TILs) of multiple cancers (Deng et al., 2016;

Shapiro et al., 2017; Tassi et al., 2017), correlating with
aggressive clinical features. In preclinical mouse models, LAG-
3 inhibition reenergizes CD8+ T cell’s cytotoxicity function and
decreases Treg populations, combined with PD-1 inhibitor could
improve the antitumor effect (Woo et al., 2012; Huang et al.,
2015). Besides, TMB was a potential biomarker for PD-1
inhibitors and patients with high TMB receiving PD-1
inhibition have a higher objective response rate compared to
patients with low TMB (Zhu et al., 2019). Our study investigated
the immunotherapy target gene expression between different risk
groups. The result showed that the gene levels of multiple
potential immunotherapy targets, including CD276, CD47,
CTLA-4, LAG3, PD-1/L1, and TIM3, and TMB were
significantly increased in the high-risk group, while the
expression levels of NKG2A was significantly upregulated in
the low-risk group than in the high-risk group. Therefore, we
speculated that the high-risk patients may benefit from the
blockade of these immunotherapy targets in LGG.

The present study has some limitations. Firstly, we built the
autophagy-related prognosis signature only with the RNA-seq
expression profiles of LGG from TCGA. Although we have
separated whole samples into two sets of training cohort and
validation cohort, and then verified the performance of the risk
signature constructed in the training cohort with the data in the
validation and whole cohorts, our prognosis signature would be
more powerful with verified in independent external cohorts.
Secondly, more details about the molecular mechanisms of six
autophagy-related genes and the cross-talk between the
autophagy and immune cells in LGG patients required further
assessment.

CONCLUSION

In summary, we established a reliable autophagy-related six genes
signature that can effectively assess the prognosis of LGG patients.
Besides, we identified the immune microenvironments and immune
targets were different between risk groups, which could be an
explanation for poor prognosis in the high-risk group.
Furthermore, the six autophagy-related genes risk model might
guide the application of immunotherapy in LGG.
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Objective: The expression, prognosis, and related mechanisms of ANXA1 are
investigated in glioma, with the objective to find potential therapeutic molecular targets
for glioma.

Methods: We analyzed the gene expression of ANXA1 using glioma-related databases,
including the Chinese Glioma Genome Atlas (CGGA) database, The Cancer Genome Atlas
(TCGA) database, and the Gene Expression Omnibus (GEO) database. Moreover, we
collected the sample tissues and corresponding paracancerous tissues of 23 glioma
patients and then conducted a Western blot experiment to verify the expression and
correlate survival of ANXA1. Moreover, we generated survival ROC curves, performing
univariate andmultivariate Cox analyses and the construction of the nomogram. Differential
expression analysis was conducted by high and low grouping based on the median of the
ANXA1 gene expression values. We conducted Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analysis and Gene Set Enrichment Analysis (GSEA) to
explore possible mechanisms, and gene co-expression analysis was also performed.

Results: The results showed that the ANXA1 expression level was higher in gliomas than
in normal tissues, and a high expression level of ANXA1 in gliomas was associated with
poorer prognosis. The independent prognosis analysis showed that the ANXA1 gene was
an independent prognostic factor of glioma. In the analysis of KEGG and Gene Set
Enrichment Analysis (GSEA), it is shown that ANXA1 may play an important role in glioma
patients by affecting extracellular matrix (ECM)–receptor interaction and the focal adhesion
signal pathway. The core genes, including COL1A1, COL1A2, FN1, ITGA1, and ITGB1,
were screened for gene correlation and prognosis analysis. The expression level of the five
genes was verified by qPCR in glioma. We concluded that these five core genes and
ANXA1 could play a synergistic role in gliomas.

Conclusion: The results indicated that a high expression level of ANXA1 leads to worse
prognosis and ANXA1 is an independent prognostic factor and a potentially important
target for the treatment of gliomas.
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INTRODUCTION

Glioma is an intracranial tumor originating from glial cells, and it
is the most common intracranial primary tumor, accounting for
approximately 80% of intracranial malignant tumors (Ostrom
et al., 2014). Glioma is often accompanied by local invasion,
especially glioblastoma (GBM), which invades and destroys the
surrounding normal brain tissue, and the degree of malignancy is
high with a poor prognosis (Weller et al., 2015). High-grade
gliomas (HGGs) are the most common primary brain
malignancies, predicting a 5-year survival rate of less than 5%
(Ostrom et al., 2014). These tumors may arise de novo as isocitrate
dehydrogenase (IDH)–wildtype GBMs or develop from
progressive lower-grade gliomas (LGGs; defined as World
Health Organization (WHO) grades 2–3) (Aldape et al., 2015).
According to theWHO, gliomas were divided into grades I–IV by
pathological characteristics; grade II–IV gliomas are the largest
entity in the group of intracranial brain tumors, with a survival
rate of more than 10 years (grade II) to less than 1 year (grade IV)
(Cordier et al., 2016). However, the therapeutic effect is limited
with conventional treatment of gliomas, including complete
surgical resection and postoperative radiotherapy and
chemotherapy (Stupp et al., 2005; Bush et al., 2017). In recent
years, molecular-targeted therapy and immunotherapy have
achieved good results in many tumors, such as colorectal
cancer, breast cancer, and lung cancer (Naylor et al., 2016;
Esteva et al., 2019; Ganesh et al., 2019; Piawah and Venook,
2019). However, due to the existence of the blood–brain barrier in
the brain and the unique tumor microenvironment in glioma, the
therapeutic effect is poor (Quail and Joyce, 2017). However, at
present, molecular-targeted therapy and immunotherapy have
achieved some effective results. For example, vemurafenib has
demonstrated long-lasting antitumor activity in some patients
with BRAFV600E mutant glioma (Kaley et al., 2018).
Neoadjuvant administration of PD-1 blockers enhances local
and systemic antitumor immune responses (Cloughesy et al.,
2019). With the advent of the molecular era, the classification of
gliomas has changed. Combined with pathological and molecular
characteristics, the classification of gliomas by the WHO in 2016
included molecular markers, such as IDH mutation and 1p19q
(Louis et al., 2016). In 2021, the latest central nervous system
tumor guidelines of the fifth edition of the WHO confirmed the
importance of molecular typing. In the grading of gliomas, the
importance of grading according to molecular characteristics is
more prominent. For example, loss of CDKN2A/B homozygosity
is closely related to poor prognosis, especially in WHO grade III
glioma with loss of CDKN2A/B homozygosity, where the
prognosis is similar to WHO grade IV glioma. Therefore,
CDKN2A/B has been included in the molecular diagnosis of
gliomas (Louis et al., 2021). However, molecular typing still needs
to be further explored to identify more molecular targets for
better diagnosis and treatment of clinical patients. Therefore, we
explore new targets of glioma to provide new therapeutic targets.

Annexin is a well-known calcium-regulated and
phospholipid-dependent membrane-binding protein (Lim and
Pervaiz, 2007). ANXA1 is a member of the annexin family, which
is involved in many important biological processes, such as

inflammation, phagocytosis, proliferation, differentiation, and
apoptosis (Monastyrskaya et al., 2009; Xia et al., 2020). Many
studies have shown that ANXA1 is associated with the
occurrence, invasion, and metastasis of cancer (Mussunoor
and Murray, 2008; Guo et al., 2013). ANXA1 has been
extensively studied in gastric cancer and breast cancer
(Maschler et al., 2010; Cheng et al., 2012). Some studies in
gliomas have shown that ANXA1 is a risk prognostic factor
(Xu et al., 2017; Luo et al., 2021; Wei et al., 2021) Therefore, we
investigated the expression, prognosis, and relatedmechanisms of
ANXA1 using a public database to provide new markers and
potential therapeutic targets for glioma patients.

MATERIALS AND METHODS

Data Acquisition and Download
The GSE4290, GSE7696, GSE29796, and GSE50161 expression
sequences and clinical data were downloaded from the Gene
Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/)
database for gene expression analysis. The GSE4290 dataset
included 23 normal samples, which were obtained from
epilepsy patients and used as nontumor samples, and 153
tumor samples, which included 26 astrocytomas, 50
oligodendrogliomas, and 77 glioblastomas (Sun et al., 2006).
The GSE7696 dataset included 80 glioblastoma specimens and
four nontumor brain samples (Murat et al., 2008). The GSE29796
dataset included 20 normal samples and 52 tumor samples, and
these samples were based on matching patients with disease and/
or pathology, including 20 cases of epileptic pathology and 52
cases of glioma (Auvergne et al., 2013). The GSE50161 dataset
collected samples from surgical brain tumors and normal brains,
including 13 normal samples and 117 tumor samples (Griesinger
et al., 2013). In addition, the expression sequences and clinical
data of 1,018 samples were downloaded from the Chinese Glioma
Genome Atlas (CGGA, http://www.cgga.org.cn/) database, and
the expression sequences and clinical data of 592 samples were
downloaded from The Cancer Genome Atlas (TCGA, https://
portal.gdc.cancer.gov/) database (Jiang et al., 2016), which
included 449 LGG samples and 143 glioblastoma (GBM)
samples. Before further analysis, we performed a log2
transformation on RNA-sequencing data. All sample databases
were screened to remove samples that had omitted clinical
information.

Acquisition of 23 Patient Tissues and
Collection of Clinical Information
We collected sample tissues and corresponding paracancerous
tissues (distance from tumor edge >2 cm) from 23 glioma
patients, including eight GBM samples and their
corresponding paracancerous tissues and 15 LGG samples and
their corresponding paracancerous tissues. Under the guidance of
neurosurgery experts, gliomas and corresponding paracancerous
tissues were obtained from surgery. All samples were obtained
with the informed consent of the patients and their families, and
the present study was approved by the Ethics Committee of the
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Second Hospital of Hebei Medical University. We followed up 23
glioma patients from January 2015 to December 2021, and we
collected the following information: patient age, gender, grade,
radiotherapy chemotherapy, and IDH mutation.

Expression Analysis of the ANXA1 Gene
The GSE4290, GSE7696, GSE29796, and GSE50161 datasets were
downloaded from the GEO database. The expression values of
ANXA1 in glioma and normal brain tissues were imported into
GraphPad Prism 8 software for analysis followed by verification
with Gene Expression Profiling Interactive Analysis (GEPIA,
http://gepia.cancer-pku.cn/) and Human Protein Atlas online
analysis (https://www.proteinatlas.org/). Moreover, Western
blot analysis was also performed to verify the expression level
of ANXA1.

Analysis of Clinical Prognosis and
Clinicopathological Features of ANXA1
The clinical prognosis of ANXA1 was analyzed based on the
transcriptome data and clinical information of 1,018 cases from
the CGGA database. The expression level of ANXA1 was divided
into high and low groups according to the median value. The
survival curves of different expression levels of ANXA1 were
drawn using the “survival” and “survivminer” software packages
in R version 4.0.5. We used the “survival ROC” software package
and the Kaplan–Meier method to calculate the receiver operator
characteristic (ROC) curve of ANXA1 at 1, 3, and 5 years. The
prognostic value of ANXA1 was further evaluated by univariate
and multivariate Cox regression analyses, with a significance level
of p < 0.001. To verify the accuracy of the ANXA1 prognosis,
TCGA data were used to generate the survival and ROC curves
and to perform univariate and multivariate analyses. Finally,
based on the CGGA data, we used the “survival” and “RMS”
software packages in R version 4.0.5 to construct a nomogram for
1-year, 2-year, and 3-year survival using the clinicopathological
characteristics of ANXA1 expression. Subsequently, calibration
curves were drawn to assess the accuracy of matching between
predicted survival and actual survival. In addition, the correlation
between the expression of ANXA1 and clinicopathological
features was analyzed using the “beeswarm’’ package in R
version 3.6.3.

Analysis of Differentially Expressed Genes
and Signal Pathway Mechanism
The mRNA sequencing data of the glioma database were
normalized using the CGGA. The median expression value
of ANXA1 was divided into high and low groups for
differential expression analysis, and the Differentially
Expressed Genes (DEGs), including significantly
upregulated and downregulated genes, were screened by
adjusted p < 0.05 and absolute log2 fold change (FC) > 1.
The “limma” and “ggplot2” software packages (Ritchie et al.,
2015) were used to generate a volcano plot to visualize the
DEGs, and the 30 genes with the most significant upregulation
and downregulation were selected to generate a heat map of

the DEGs using the “pheatmap” software package in R version
4.0.5. Finally, mechanism analysis of the DEGs was performed
using Metascape (https://metascape.org/). In addition, GSEA
(https://www.gsea-msigdb.org/) was also utilized to indirectly
explain the potential mechanism of ANXA1 function. When
NES > 1, p < 0.05, and FDR < 0.05, the gene set was considered
the enrichment group.

Construction of the Protein–Protein
Interaction Network of Differentially
Expressed Genes
The median expression value of ANXA1 was divided into high
and low groups using the cutoff of adjusted p < 0.05 and
absolute log2 fold change (FC) > 1 to screen the DEGs, and a
high threshold (0.7) binding degree was set for node screening
through the STRING (https://string-db.org/) analysis to filter
out the unconnected proteins. The remaining 1,034 proteins
were imported into Cytoscape visualization software (version:
3.7.2). After installing the cytoHubba plug-in, the top 50 hub
genes were screened by degree topology analysis.

Coexpression Analysis of ANXA1 and Core
Genes
We obtained the core genes of ECM–receptor interaction and
focal adhesion pathways by GSEA. Through a protein–protein
interaction (PPI) network analysis, the DEGs were imported
into Cytoscape visualization software to screen the top 50 hub
genes by using degree topology analysis. Five core genes were
obtained through the intersection of the Venn diagram for
gene correlation analysis and coexpression analysis. The
relative expression levels of the five genes in glioma and
their corresponding paracancerous tissues were further
analyzed by qPCR.

Chemical Reagents and Antibodies
The RIPA lysate (product number: p00138b) was purchased
from Beyotime (Shanghai, China). Protein phosphatase
inhibitors and BCA protein concentration determination
kits were purchased from Solarbio (Beijing, China). ANXA1
antibody (catalog number: 21990-1-AP) and β-tubulin
antibody (catalog number: 10094-1-ap) were obtained from
Proteintech (Chicago, IL, United States). The anti-rabbit IgG
HRP-conjugated antibody was purchased from Cell Signaling
Technology. An ECL chromogenic solution (product number:
BL520A) was obtained from Biosharp.

Tissue Protein Extraction and Western Blot
Tissue samples were removed from the −80°C freezer and thawed
on ice. An RIPA lysis buffer, containing protein phosphatase
inhibitor, was added to each sample, and the samples were
homogenized using a homogenizer. The samples were
centrifuged at 4°C and 12,000 rpm for 10 min, and the
supernatants were collected. The protein concentrations were
determined using a commercially available BCA protein
concentration kit. After denaturation, 10–20 µg of the protein
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was separated with 10% SDS-PAGE and then transferred onto
PVDF membranes (Merck Millipore Ltd.). The membranes were
then blocked with 5% nonfat milk powder for 1 h and incubated
with primary antibodies (ANXA1 antibody, 1:2000; and β-
tubulin antibody, 1:1000) at 4°C overnight. The membranes
were then washed thrice with TBST (10 min each wash)
followed by incubation with the appropriate secondary
antibody (anti-rabbit IgG, 1:2000). The membranes were then
washed thrice with TBST (10 min each wash) followed by
development and imaging using a chemiluminescence
photodocumentation system.

RNA Isolation and qPCR
Total RNA was extracted from the remaining eight glioma
samples and corresponding paracancerous tissues with TRIzol
reagent (Invitrogen). The quality of the total RNA of these
samples was evaluated by Nanodrop 2000c and agarose gel
electrophoresis. Complementary DNA (cDNA) was
synthesized using a revert aid first-strand cDNA synthesis
kit (Thermo Fisher Scientific, Waltham, MA, United States).
Quantitative PCR was performed with SYBR Green (Hieff
qPCR SYBR Green Master Mix, YEASEN, Shanghai, China)
on a qPCR system (Model No. CFX96TM Option Module, Bio-
Rad, United States). The specific primers of each gene were
used to analyze the expression of these extracted tissue
samples. All samples were standardized according to the

expression of the gene-encoding human glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) as a reference. Relative
expression levels were calculated as 2−[(Ct of target gene)−(Ct of

GAPDH)]. The sequences of the primers are listed in
Supplementary Table S1.

Statistical Analysis
Based on public databases, the following software programs
and online tools were used for analysis: GraphPad Prism 8
software was used for gene expression analysis; R software
(version: 4.0.1, http://www.r-project.org/) was used for
survival prognosis analysis and gene correlation analysis; R
software (version: 3.6.3, http://www.r-project.org/) was used
for clinicopathological characteristics analysis; Metascape
online website and GSEA software were used for
mechanism analysis; and the GEPIA online website was
used for core gene prognosis analysis. When the results met
the requirements of p < 0.05 and FDR < 0.05, they were
considered statistically significant. In addition, we used
Western blot analysis to verify the expression levels of 23
gliomas and their corresponding paracancerous tissues. The
protein gray values were measured by ImageJ software, and the
results were imported into GraphPad Prism 8 software. qPCR
was used to verify the expression of the five core genes in the
remaining eight pairs of samples. p < 0.05 was considered
statistically significant.

FIGURE 1 |Working diagram of the study. Abbreviations: GEO: Gene Expression Omnibus; CGGA: Chinese Glioma Genome Atlas; DEGs: differentially expressed
genes; GSEA: Gene Set Enrichment Analysis; PPI: protein–protein interaction; ECM: extracellular matrix; FA: focal adhesion; HPA: Human Protein Atlas; GEPIA: Gene
Expression Profiling Interactive Analysis; TCGA: The Cancer Genome Atlas.
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RESULTS

Article Workflow and Sample Information
The workflow of the present study is shown in Figure 1. We
downloaded the glioma sample information of the GSE4290,
GSE7696, GSE29796, and GSE50161 datasets from the GEO
database with 153, 80, 52, and 117 glioma samples and 23, 4,
20, and 52 normal samples, respectively. The clinicopathological
information, including age, grade, category, 1p19q deletion
status, and IDH mutation status, was obtained from the
CGGA and TCGA databases. However, the TCGA database
lacked clinical chemoradiotherapy and MGMT methylation
data, which were only obtained from the CGGA database. The
clinical information and categorical data of glioma patients from
the CCGA and TGGA databases are shown in Table 1. The
clinical information for the 23 glioma patients who provided
samples for Western blot analysis is shown in Supplementary
Table S2.

ANXA1 is Overexpressed in Glioma
Based on the expression data for gliomas and normal tissues in
the GSE4290, GSE7696, GSE29796, and GSE50161 datasets,
the ANXA1 gene was significantly highly expressed in gliomas
(Figures 2A–D), and the results were verified by GEPIA and
Human Protein Atlas online analyses (Figures 2E,F). In
addition, we evaluated 23 glioma sample tissues and their
corresponding paracancerous tissues by Western blot

analysis (Figure 2G), and the results showed that the
ANXA1 expression levels were significantly higher in the 23
glioma sample tissues than their corresponding paracancerous
tissues (p < 0.05, Figure 2H). A paired-sample t-test was
performed separately in 15 LGG samples and their
corresponding paracancerous tissues and in eight GBM
samples and their corresponding paracancerous tissues. In
addition, an independent-sample t-test was also performed
in eight GBM samples and 15 LGG samples. The results
demonstrated that ANXA1 was overexpressed in gliomas
with higher expression in GBM samples than in LGG
samples (p < 0.05, Figure 2I), supporting that ANXA1 is
correlated with a higher grade of gliomas.

High Expression of ANXA1 has a Poor
Prognosis
The Kaplan–Meier survival method was performed to analyze
the survival prognosis using the sample information from the
CGGA database, which showed that high expression of
ANXA1 had worse prognosis (p < 0.001, Figure 3A), and
these results were verified by analysis of the TCGA database
(p < 0.001, Figure 3B). Using the CGGA and TCGA databases,
the ROC curve was generated. The ROC curve of ANXA1 for 1-
, 3-, and 5-year outcomes had AUC values of 0.724, 0.800, and
0.821, respectively, in the CGGA database (Figure 3C). The
ROC curve of the ANXA1 gene was verified in the TCGA
database, with AUC values of 0.839, 0.858, and 0.776 for 1-, 3-,
and 5-year outcomes, respectively (Figure 3D). Univariate
Cox regression analyses showed that the expression of
ANXA1 [HR = 1.370; 95% CI (1.313–1.431); p < 0.001],
type, grade, age, IDH mutation, and 1p19q expression
status were significantly correlated with survival prognosis
(Figure 3E). Moreover, multivariate Cox regression analyses
showed that the expression of ANXA1 [HR = 1.155; 95% CI
(1.092–1.221); p < 0.001], type, grade, age, chemotherapy, and
1p19q expression status were also correlated with survival
prognosis (Figure 3F). The univariate and multivariate
regression analyses were verified in the TCGA database
(Figures 3G,H). Therefore, these findings indicated that
ANXA1 is an independent prognostic indicator of glioma.
In addition, based on the clinical characteristics of the CGGA,
including grade, IDH mutation, methylation level, 1p19q
expression, and ANXA1 expression level, we constructed a
nomogram for quantitative prediction (Figure 3I). Finally, we
found that the actual and predicted survival times were better
matched by the calibration curve in patients with 3-year
survival (Figures 3J–L).

Correlation Between ANXA1 Gene
Expression and Clinicopathological
Features
The correlation analysis of ANXA1 expression and
clinicopathological features demonstrated that ANXA1 was
overexpressed in patients older than 42 years (p < 0.001,
Figure 4A). In addition, the expression of ANXA1 also

TABLE 1 | Clinical information materials of gliomas. CGGA: 686 glioma samples;
TCGA: 592 glioma samples; clinical features: grade, gender, age, IDH
mutation, 1p19q codeletion, MGMT, radiotherapy, and chemistry.

CGGA (n = 686) TCGA (n = 592)

Case Proportion (%) Case Proportion (%)

WHO grade
II 177 25.8 211 35.6
III 226 32.9 238 40.2
IV 283 41.3 143 24.2

Gender
Male 399 58.2 344 58.1
Female 287 41.8 248 41.9

Age
≥42 379 55.2 349 59.0
<42 307 44.8 243 41.0

IDH mutation
Yes 371 54.1 372 62.8
No 315 45.9 220 37.2

1p19q codeletion
Yes 141 20.6 149 25.2
No 545 79.4 443 74.8

MGMT methylation
Yes 386 56.3 — —

No 300 43.7 — —

Radiotherapy
Yes 544 79.3 — —

No 142 20.7 — —

Chemotherapy
Yes 501 73.0 — —

No 185 27.0 — —
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increased with the increase of tumor grade (p < 0.001,
Figure 4B); among the type of pathological features,
ANXA1 was more highly expressed in recurrent patients
(p < 0.001, Figure 4C), and ANXA1 expression was low in
patients with IDH mutation and combined 1p19q expression
(p < 0.001, Figures 4D,E).

Differentially Expressed Genes and
Enrichment Analysis of the ANXA1 Gene
In the differential expression analysis of ANXA1, 1,256
upregulated genes and 227 downregulated genes were obtained
and visualized by a volcano map (Figure 5A), and 30 genes with
significant upregulation and downregulation were utilized to
generate a heat map (Figure 5B). GSEA indicated that the
ANXA1 gene was enriched in the ECM receiver interaction
(NSE = 1.96, NOM p-val = 0.002, and FDR q-val = 0.023) and
focal adhesion (NES = 1.99, NOM p-val = 0.004, and FDR q-val =
0.039) pathways (Figures 5C, D), and Metascape online analysis
showed that the DEGs were enriched in the process of ECM and
focal adhesion (Figure 5E).

Construction of Protein–Protein Interaction
of Differentially Expressed Genes, Filtration
of Core Genes, Core Gene Correlation
Analysis, and Prognostic Analysis
Based on the STRING online analysis, 1,034 proteins were
screened and input into Cytoscape visualization software. The
top 50 hub genes were obtained by a degree topology analysis
using the cytoHubba plugin (Figure 6A). Univariate regression
analysis was performed on the top 50 hub genes, which showed
that these genes were risk factors for glioma (p < 0.001,
Figure 6B). A Venn diagram was used to visualize the
intersection of the top 50 hub genes with core genes enriched
in the pathway, and five core genes were obtained, namely,
COL1A1, COL1A2, FN1, ITGA1, and ITGB1 (Figure 6C). In
addition, gene correlation analysis showed that ANXA1 was
significantly correlated with COL1A1, COL1A2, FN1, ITGA1,
and ITGB1 as indicated by the gene correlation circle diagram
and scatter diagram (Figures 6D–I). In the remaining eight
glioma samples (included four GBM and four LGG) and their
corresponding paracancerous tissues, the relative expression
levels of the five core genes were verified by qPCR (Figures

FIGURE 2 | Expression level of the ANXA1 gene in glioma and normal tissues. (A) GSE4290 data set. (B) GSE7696 data set. (C) GSE29796 data set. (D)
GSE50161 data set. (E) Based on the GEPIA online website, the expression level of ANXA1 in glioma and normal samples. (F) Based on The Human Protein Atlas online
website, the expression level of ANXA1 in the brain tissues of glioma (Intensity: strong; Quantity: 75%–25%) and normal controls (Intensity: weak; Quantity: 75%–25%).
(G)Western blotting images of 23 glioma tissues and their corresponding paracancerous samples (P1–P8: GBM; P9–P23: LGGs). (H) Paired-sample t-test of 23
glioma tissues and their corresponding paracancerous tissues. (I) Paired-sample t-test of GBM and LGG tumor tissues and their corresponding paracancerous tissues,
and independent-sample t-test of eight GBM and 15 LGG samples.
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6J–N). The relative expression level is described in the Method
section. The statistics were carried out by the paired-sample t-test,
and the p values were 0.0078, 0.0151, 0.0234, 0.0974, and 0.0234.
The expression of these genes was higher in gliomas by GEPIA
(Figures 6O–S). The higher expression of these genes in gliomas
was often accompanied by worse survival prognosis
(Figures 6T–X).

DISCUSSION

Glioma is the most common brain malignant tumor, and its
incidence rate has increased in recent years (Wen and Kesari,
2008). Radiotherapy and chemotherapy have become the

standard of care in the treatment of gliomas (Nabors et al.,
2017). Due to different molecular types and grades of gliomas,
GBM, in particular, is often accompanied by high invasiveness
and high recurrence. Even after routine surgery and
concurrent chemoradiotherapy, the prognosis of glioma
patients is still poor (Wang and Jiang, 2013). In recent
years, targeted therapy and immunotherapy have improved
the prognosis in other common tumors. Although some
glioma patients have responded to targeted therapies or
immunotherapies, there is still a lack of obvious effect in
most patients with glioma (Chen et al., 2017; Xu et al.,
2020). Therefore, new predictive targets and potential
therapeutic targets for glioma need to be further explored
and studied.

FIGURE 3 | Survival analysis and independent prognostic analysis of the ANXA1 gene in glioma. (A,B) Survival analysis of ANXA1. (C,D) Survival ROC curve of
ANXA1 at 1, 3, and 5 years. (E,F) Univariate analysis of ANXA1. (G,H) Multivariate analysis of ANXA1. (I) Based on the clinical information of the CGGA database, a
prognostic nomogram model was constructed. (J–L) Calibration curve was constructed according to the CGGA database information. The scores of ANXA1, grade,
IDH, MGMT, and 1p19q factors were used to predict the calibration curve of the 1-year, 2-year, and 3-year prognostic nomogram.
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In our study, we analyzed the expression of ANXA1 in
glioma through the GEO database, which demonstrated that
ANXA1 was highly expressed in glioma patients. The GEPIA
and Human Protein Atlas online analyses verified these results.
Moreover, the overexpression of ANXA1 in glioma was
verified by Western blotting analysis. Survival prognosis,
ROC curve, and univariate and multivariate Cox regression
analyses were performed using the CGGA and TCGA
databases, which further showed that ANXA1 played an
important role in the development of glioma and supported
that ANXA1 was an independent prognostic index of glioma.
In addition, the expression of ANXA1 was investigated
according to the clinical case characteristics of glioma, and
a clinical correlation nomogram was constructed using the
CGGA database, which supported that ANXA1 was an
important predictor of glioma. Finally, calibration curves
were used to verify the matching of actual and predicted
survival, and the matching degree of the 3-year survival is
higher. Therefore, these findings suggested that ANXA1
warrants further study in glioma.

Previous studies have linked ANXA1 with thrombosis and
inflammation (Parente and Solito, 2004; Senchenkova et al.,
2019). In addition, it has been reported that ANXA1 is closely
related to tumor development and invasion (Boudhraa et al.,
2016; Foo et al., 2019). For example, the prognosis of lung cancer
patients with a high ANXA1 expression is poor, and the growth of
lung cancer cells is reduced by downregulating ANXA1 using
small interference RNA (siRNA) (Chuang et al., 2021).

Overexpression of ANXA1 promotes metastasis in breast
cancer patients, resulting in poor prognosis (de Graauw et al.,
2010). Therefore, ANXA1 plays an important role in tumors.

The tumor microenvironment is the internal and external
environment for tumor survival. The components of the tumor
microenvironment include not only tumor cells but also
peripheral blood vessels, ECM, and some molecular signal
factors (Hui and Chen, 2015). In the tumor
microenvironment, tumor cells change and maintain their own
development needs through autocrine and paracrine factors.
There is a two-way driving effect between the tumor
microenvironment and tumor cell progression, invasion, and
metastasis (Meurette and Mehlen, 2018), in which the
molecular mechanism is complex. Moreover, due to the
complex process of the occurrence, development, invasion, and
infiltration of tumor cells (Parker et al., 2020) and the
resourcefulness of tumor cells themselves (Dunn et al., 2002),
it is difficult to effectively control tumors. GBM, a malignant
brain tumor with rapid progression and recurrence, is more
difficult to clinically control (Weller et al., 2015). After an
analysis of the potential molecular targets of glioma, we found
that ANXA1 may play an important role in glioma through
ECM–receptor interaction and focal adhesion signal pathways.
As an important part of the tumor microenvironment, the ECM
has a critical role in tumor occurrence, development, and
invasion (Mohan et al., 2020). Focal adhesion is a subcellular
structure, which not only has strong adhesion to the ECM but
also promotes intracellular reorganization, resulting in a series of

FIGURE 4 | Independent analysis of the ANXA1 gene and clinicopathological features. Based on 686 tumor samples in the CGGA database, the ANXA1 and clinical
characteristics were analyzed independently: (A) Expression of ANXA1 in age (≥42 years, <42 years). (B) Expression of ANXA1 in glioma grade (WHO II, WHO III, and
WHO IV). (C) Expression of ANXA1 in glioma types (primary, recurrent, and secondary). (D) Expression of ANXA1 in IDH mutation state (mutant and wild-type). (E)
Expression of ANXA1 in 1p19q codeletion status (Codel and non-codel).
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dynamic changes in cell function and morphology. Focal
adhesion also plays an important role in the process of
tumorigenesis, development, and infiltration (Legate et al.,
2009). Multifunctional and multiprotein focal adhesion
complexes play a key role in the underlying mechanism,
which not only promote contact with the ECM but also
promote the close conjunction between the ECM and actin
cytoskeleton. Therefore, these complexes control the external
morphology and internal signals of cells in terms of structure
and function to promote cell growth and development,
proliferation, differentiation, and motility (Legate and Fässler,
2009; Eke and Cordes, 2015). The main component of the ECM is
collagen (Nissen et al., 2019). Type I collagen exists in most
connective and embryonic tissues. In general, type I collagen
consists of two chains of the alpha 1 chain (COL1A1) and one
chain of the alpha 2 chain (COL1A2) (Gelse et al., 2003; Exposito
et al., 2010). The alpha 1 chain of type I collagen is encoded by the
COL1A1 gene and has been reported to be expressed in a variety
of cancers, such as gastric cancer (Wang and Yu, 2018) and
glioma (Balbous et al., 2014). COL1A1 is considered to be a
marker of mesenchymal osteoblasts (Mori-Akiyama et al., 2003)
and is also defined as a glioma endothelial marker selectively
expressed in microvessels (Liu et al., 2010). COL1A2 is one of the
most abundant collagen types in the human body, and it is
involved in the process of angiogenesis. It has been reported
that COL1A2 is upregulated in cancer (Greco et al., 2010) and

that it promotes the proliferation and invasion of various cancers,
such as gastric cancer and pancreatic cancer (Wu et al., 2019; Pan
et al., 2021). FN1 is a type of adhesion glycoprotein involved in
the ECM function of tumor cells, including cell adhesion,
proliferation, and migration (Ko et al., 2020). Integrins play an
important role in tumorigenesis, progression, and metastasis
because they mediate the adhesion, migration, proliferation,
invasion, and tumorigenicity of cancer cells (Pinon and
Wehrle-Haller, 2011; Boudjadi et al., 2017). Among them,
integrin α1 (ITGA1) and integrin β1 (ITGB1) are important
members of the integrin family (Humphries et al., 2006; Hu et al.,
2017).

Finally, through the intersection of the enriched core genes
of the two pathways and the hub genes, we found that
COL1A1, COL1A2, FN1, ITGA1, and ITGB1 were highly
correlated with the ANXA1 gene, and these genes were
overexpressed in glioma compared to normal brain tissues,
which was verified in small samples of gliomas by the qPCR
experiment. Through GEPIA, we found that the
overexpression of these five core genes had poor prognosis
in gliomas. Overall, the present study indicated that these five
core genes and the ANXA1 gene participated in the occurrence
and development of gliomas and suggested that they may play
a synergistic role in the prognosis of gliomas. Therefore, the
impact of these genes on gliomas should be further studied to
seek the outcomes for glioma patients.

FIGURE 5 | DEG analysis and ANXA1 gene mechanism analysis. (A) Visual volcano plot of differentially expressed genes. (B) Heat map of DEGs was drawn,
showing DEGs that were significantly upregulated and significantly downregulated. (C) Visual heat map for the mechanism analysis of DEGs on the Metascape online
website. (D,E) Enriched ECM–receptor interaction and focal adhesion signal pathway by GSEA.
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FIGURE 6 | Screening of core genes, gene correlation analysis, and prognostic analysis. (A) PPI was constructed by the STRING online website and Cytoscape
visualization software, and the top 50 Hub proteins with degree values were screened. (B) Univariate regression analysis of the top 50 Hub genes. (C) Intersection
between ECM–receptor interaction and focal adhesion pathway genes and 50 Hub genes and displayed by the Venn diagram. (D–I)Gene correlation circle diagram and
scatter diagram. (J–N) Relative expression levels of the five core genes were detected by qPCR. (O–S) Expression level of core genes in glioma and normal tissues
according to the analysis of the GEPIA online website. (T–X) High expression level of the core genes has poor prognosis in gliomas.
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CONCLUSION

Glioma is a common primary tumor in the brain. The high
recurrence and invasion of gliomas endanger the survival of
patients and pose a serious challenge to human health.
Therefore, we investigated the expression of the ANXA1 gene
in glioma and found that ANXA1 was overexpressed in gliomas.
Moreover, we found that the prognosis of glioma patients with a
high ANXA1 expression was worse and that ANXA1 was an
independent prognostic index of gliomas. The present findings
also indicated that ANXA1 may play an important role in the
occurrence, development, invasion, and infiltration by affecting
the ECM–receptor interaction and the focal adhesion signal
pathways. Finally, by using gene correlation analysis, we found
that the COL1A1, COL1A2, FN1, ITGA1, ITGB1, and ANXA1
genes may play a synergistic role in glioma patients. Therefore,
the present study using public data recommends that ANXA1
may be an important molecular target for glioma. Blocking the
overexpression of the ANXA1 gene is likely to improve the
prognosis of glioma patients. Because the present study was
based on online databases and glioma tissue samples, there
were several limitations, indicating that additional clinical
experimental studies are needed to improve the reliability of
ANXA1 in glioma research.
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Gliomas, a type of primary brain tumor, have emerged as a threat to global mortality due to
their high heterogeneity and mortality. A low-grade glioma (LGG), although less aggressive
compared with glioblastoma, still exhibits high recurrence and malignant progression.
Ubiquitination is one of the most important posttranslational modifications that contribute
to carcinogenesis and cancer recurrence. E3-related genes (E3RGs) play essential roles in
the process of ubiquitination. Yet, the biological function and clinical significance of E3RGs
in LGGs need further exploration. In this study, differentially expressed genes (DEGs) were
screened by three differential expression analyses of LGG samples from The Cancer
Genome Atlas (TCGA) database. DEGs with prognostic significance were selected by the
univariate Cox regression analysis and log-rank statistical test. The LASSO-COX method
was performed to identify an E3-related prognostic signature consisting of seven genes
AURKA, PCGF2, MAP3K1, TRIM34, PRKN, TLE3, and TRIM17. The Chinese Glioma
Genome Atlas (CGGA) dataset was used as the validation cohort. Kaplan–Meier survival
analysis showed that LGG patients in the low-risk group had significantly higher overall
survival time than those in the high-risk group in both TCGA and CGGA cohorts.
Furthermore, multivariate Cox regression analysis revealed that the E3RG signature
could be used as an independent prognostic factor. A nomogram based on the E3RG
signature was then established and provided the prediction of the 1-, 3-, and 5-year
survival probability of patients with LGGs. Moreover, DEGs were analyzed based on the
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risk signature, on which function analyses were performed. GO and KEGG analyses
uncovered gene enrichment in extracellular matrix–related functions and immune-related
biological processes in the high-risk group. GSEA revealed high enrichment in pathways
that promote tumorigenesis and progression in the high-risk group. Furthermore,
ESTIMATE algorithm analysis showed a significant difference in immune and stroma
activity between high- and low-risk groups. Positive correlations between the risk signature
and the tumor microenvironment immune cell infiltration and immune checkpoint
molecules were also observed, implying that patients with the high-risk score may
have better responses to immunotherapy. Overall, our findings might provide potential
diagnostic and prognostic markers for LGG patients and offer meaningful insight for
individualized treatment.

Keywords: E3-related genes, prognosis, tumor immune microenvironment, risk signature, low-grade gliomas

INTRODUCTION

Glioma is a primary type of tumor that occurs in the brain and
spinal cord. The World Health Organization (WHO)
classification system categorizes gliomas from grade I (lowest
grade) through grade IV (highest grade) according to the
malignant histological features (Wesseling and Capper, 2018).
Low-grade gliomas (LGGs), which are less aggressive than
glioblastoma multiforme (GBM), mainly originate from
astrocytes and oligodendrocytes. Patients with LGGs are
categorized as WHO grade II–III gliomas. The standard
management of patients with LGG primarily involves surgical
resection followed by adjuvant radiotherapy and chemotherapy
(Lombardi et al., 2020). Even after patients receive these standard
clinical interventions, the highly invasive nature and
heterogeneity of LGGs can still lead to high rates of tumor
recurrence and noteworthy malignant progression (Brat et al.,
2015; Xia et al., 2018; Gittleman et al., 2020). Furthermore, the
prognosis of LGGs varies diversely due to tumor heterogeneity.
LGG patients (mean age 41 years) are proposed to have survival
averaging approximately 7 years, which is a significant sign of
poor prognosis (Claus et al., 2015). Therefore, it is imperative to
gain a more comprehensive understanding of the pathogenesis of
LGG, identify effective and reliable biomarkers that could predict
clinical outcomes, and formulate optimum therapeutic strategies.

Posttranslational modifications (PTMs) refer to covalent
processing events of proteins which occur after synthesis and
are normally mediated by diverse enzymes. Ubiquitination is a
crucial posttranslational modification of a protein. It is an ATP-
dependent reversible process mediated by the ubiquitin-
proteasome system (UPS), including E1 ubiquitin–activating
enzymes, E2 ubiquitin–conjugating enzymes, E3 ubiquitin-
protein ligases, and deubiquitinating enzymes (DUBs) (Reyes-
Turcu et al., 2009; Schulman and Harper, 2009; Buetow and
Huang, 2016; Stewart et al., 2016). The dysregulation of UPS is
largely involved in numerous biological functions, including cell
cycle progression, cell proliferation, apoptosis, gene transcription,
metastasis, transcriptional regulation, signaling, and inflammation
(Deng et al., 2020). Accordingly, abnormal ubiquitination may
contribute to various human pathologies such as

neurodegeneration (Stieren et al., 2011; Popovic et al., 2014),
autoimmune responses (Zangiabadi and Abdul-Sater, 2022), and
oncogenic processes (Rape, 2018). In the UPS, E3 ubiquitin ligase
serves as the essential part of the ubiquitination process owing to its
substrate specificity (Zheng and Shabek, 2017). UPS is stringently
regulated by E3 ligases that convey the specificity of ubiquitination.
In particular, ubiquitin molecules are transferred from ubiquitin-
conjugating enzymes to specific substrates by E3 ubiquitin–protein
ligases. The misregulation of UPS led by mutations in E3-related
genes (E3RGs) is highly correlated with poor prognosis of cancers
(Seeler and Dejean, 2017). Accumulating studies have
demonstrated the tremendous contribution of E3-related
proteins in glioma pathogenesis. For instance, MYH9-mediated
ubiquitination of GSK-3β promotes malignant progression and
chemoresistance in glioma (Que et al., 2022). The degradation of
TUSC2 induced by NEDD4 facilitates glioblastoma progression
(Rimkus et al., 2022). PARK2, frequently mutated in glioma, acts as
a tumor suppressor by boosting ubiquitination-dependent
degradation of β-catenin, which results in attenuation of Wnt
signaling (Veeriah et al., 2010; Lin et al., 2015). Tripartite motif-
containing protein 11 (TRIM11), overexpressed in glioma,
promotes proliferation, invasion, migration, and glial tumor
growth via the induction of EGFR (Di et al., 2013). In addition,
many E3 ligases have been reported to play vital roles in glioma
carcinogenesis via the regulating PI3K/Akt pathway, such as
SCFβ−TrCP (Warfel et al., 2011), TRAF6 (Feng et al., 2014), and
TRIM21 (Lee et al., 2017). Based on the significant function of E3
ligases in cancer pathogenesis, therapeutics targeting UPS have
shown promising effects in clinical trials against cancers, such as
PROTAC (proteolysis-targeting chimeric) (Qi et al., 2021). Two
PROTAC strategies targeting CDK4 and/or CDK6 have been
tested in glioma cells and are expected in clinical trials soon
(Zhao and Burgess, 2019). Given the crucial roles of E3-related
genes in glioma, the mechanism underlying the relationship
between E3-related genes and the prognosis of LGG needs to be
further addressed.

In the present study, a comprehensive analysis of E3RGs in
LGG was conducted. Transcriptome data and clinical data of
LGG samples were downloaded from The Cancer Genome Atlas
(TCGA) database. Differentially expressed genes (DEGs) with

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 9050472

Tan et al. E3-Related Signature in LGGs

83

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


prognostic significance were screened and identified.
Subsequently, an E3-related prognostic signature was
constructed, and the nomogram based on the risk signature
was established to predict the prognosis of LGG. Meanwhile,
enrichment analyses of risk-related differentially expressed genes
and substrates of the risk signature genes were performed to
disclose the underlying mechanism of LGG progression. Finally,
the correlation between the risk signature and tumor immunity
was analyzed. Our work provided an effective clinical tool for
LGG prognosis prediction and preliminarily explored the
biological functions and immune processes involved in the
signature and the relative regulatory networks.

MATERIALS AND METHODS

Datasets and E3-Related Gene Acquisition
The transcriptome sequencing data and corresponding clinical data
of primary LGG were obtained from the TCGA database (https://
portal.gdc.cancer.gov/) and the Chinese Glioma Genome Atlas
(CGGA) database, respectively, (http://www.cgga.org.cn/). The
TCGA LGG cohort was selected as the training set, which
included 451 tumor samples and five normal brain samples. The
CGGA cohort (DataSet ID: mRNAseq_693) was chosen as the
validation set, containing 240 primary LGG patients. The samples
with incomplete clinical information and overall survival < 30 days
had been excluded. Count data from TCGA and FPKM data from
CGGA were applied for further analysis. The GSE68848 and
GSE4290 datasets procured from the Gene Expression Omnibus
database (GEO; https://www.ncbi.nlm.nih.gov/geo/) were utilized to
validate the expression of the signature genes. The 630 E3RGs
utilized in this study were collected from the ESBL database
(https://esbl.nhlbi.nih.gov/Databases/KSBP2/Targets/Lists/E3-
ligases/) and iUUCD2.0 database (http://iuucd.biocuckoo.org/)
(Supplementary Table S1).

Identification of Differentially Expressed
E3-Related Genes
E3-related DEGs between LGG tissues and normal brain tissues
were analyzed using the “limma,” “edgeR,” and “DESeq2” R
packages with the cut-off criteria of |log2FC|≥ 1 and p < 0.05
(Robinson et al., 2010; Love et al., 2014; Ritchie et al., 2015). The
raw count data of the TCGA LGG cohort were used as the input
for limma, edgeR, and DESeq. Volcano plots were generated to
display DEG distribution from three algorithms mentioned
earlier with the “tinyarray” R package. Venn diagrams were
intersected to obtain the overlapping enriched terms also with
the “tinyarray” R package.

Identification of E3-Related Differentially
Expressed GenesWith the Prognostic Value
The CPM of genes and clinical information were used for the
subsequent analyses. The univariate Cox regression analysis and
log-rank statistical test with the cut-off criteria of p < 0.05 for E3-
related DEGs were applied to select the genes with prognostic

significance, using “survival” and “survminer” packages in R
software. Venn diagrams were used to present the intersection of
the enriched genes fromCox regression analysis and log-rank analysis.

Construction and Validation of the
Prognostic Signature
Tominimize the overfitting high-dimensional prognostic E3-related
DEGs, least absolute shrinkage and selection operator (LASSO)
regression analysis was performed with the “glmnet” R package
(Friedman et al., 2010). Multivariate Cox regression analysis was
conducted to construct prognostic models with the R package
“My.stepwise”. Hazard ratios (HRs) and 95% confidence intervals
(CIs) were reported where applicable. The median risk score was
calculated to categorize the LGG patients into high-risk and low-risk
groups, based on the following formula:

Risk score � ∑n
i�1Coef i × Expri,

(where Coefi is the coefficient and Expri is the expression
level of each intersected gene).

A Kaplan–Meier survival curve was used to determine the
differences in overall survival using the R package “survival”.
Time-dependent receiver operating characteristic (ROC) analysis
was executed to evaluate the prognostic accuracy of the seven-
E3RG risk signature using R package “timeROC” (Blanche et al.,
2013). The survival analysis result was presented by the R package
“tinyarray” and “patchwork.”

Development and Evaluation of the
Nomogram
To assess whether the seven-E3RG prognostic risk signature can
be utilized as an independent prognostic factor, univariate and
multivariate Cox regression analyses were performed using R
package “survival” and “My.stepwise.” The nomogram was
constructed with independent prognostic parameters using the
“rms” R package, and the calibration curves were utilized to
reflect the accuracy of the nomogram.

Risk-Related Differentially Expressed Gene
Analysis
LGG patients were divided into high-risk and low-risk groups
according to the median risk score. The raw count data of the
TCGA LGG cohort were used as the input data for limma, edgeR,
and DESeq. “limma,” “edgeR,” and “DESeq2” R packages with the
cut-off criteria of |log2FC|≥ 1 and p < 0.05 were applied to two
groups for DEG screening. Volcano plots were generated to
display DEG distribution from three algorithms. Venn
diagrams were intersected to obtain the overlapping
enriched terms.

Functional Enrichment and GSEA
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses were performed utilizing the
“clusterProfiler” package to predict the biological function and
related pathways (Yu et al., 2012). The top five enriched terms in
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the biological process (BP), cellular component (CC), and
molecular function (MF) were visualized using “ggplot2” and
“enrichplot” R packages. KEGG pathways with P. adjust<0.01
were chosen for presentation. Gene set enrichment analysis
(GSEA) was conducted using GSEA v4.2.3 software with
hallmark gene sets.

Immune Microenvironment Analysis
The tumor immune microenvironment (TIME) cell infiltration
characterization was evaluated by the single-sample gene set
enrichment analysis (ssGSEA) with the “GSVA” R package
(Hänzelmann et al., 2013). An ESTIMATE algorithm was used to
evaluate the immune and stromal activity in the LGG
microenvironment with the “estimate” R package (Yoshihara et al.,
2013). The correlation analysis was performed based on Pearson’s
correlation coefficient and presented using R packages “corrplot” and
“circlize” (Gu et al., 2014).

Protein–Protein Interaction Network
Analysis
A PPI network was constructed based on the substrates of E3RG
signature with required interaction score > 0.4 using the STRING
database (https://cn.string-db.org/) and visualized using
Cytoscape (version 3.9.1) (Shannon et al., 2003; Szklarczyk
et al., 2019). The top 10 hub genes in the PPI network were
identified using the MCC algorithm with the CytoHubba plugin
in Cytoscape.

RESULTS

Identification of Differentially Expressed
E3-Related Genes With the Prognostic
Value in Low-Grade Gliomas
The overall study workflow is presented in Figure 1. The TCGA
cohort was used as the training set. The transcriptome and
clinical data from TCGA included 451 tumor samples and five
normal brain samples. The 630 E3RGs were selected and applied
in this study (Supplementary Table S1). Three
differential expression analyses were performed. According to
the | log2 FC | > 1.0 and p < 0.05, DEGs were displayed in volcano
plots (Figure 2A). The overlapping of DEGs from three
differential expression analyses indicated that 44 genes were
upregulated and 47 genes were downregulated in tumor
samples (Figure 2B). Subsequently, DEGs were further
analyzed by univariate Cox regression analysis and log-rank
statistical test to evaluate the prognostic significance. In total,
38 E3RGs with a significant prognostic value were obtained by the
intersection of results from both analyses (Figure 2C).

Construction of E3-Related Gene
Prognostic Risk Signature in Low-Grade
Gliomas
To further explore the prognostic value of E3RGs in LGGs, 38
overall survival–associated E3RGs were incorporated into the
LASSO regression (Liu et al., 2021; 2022a; 2022b; 2022c), 20 of
which were selected for further multivariate Cox regression
analysis (Figures 3A,B). Following this, a seven-E3RG
prognostic signature significantly correlated with LGG
prognosis was developed by performing multivariate Cox
regression analysis and shown in the forest plot (Figure 3C).
The risk score was calculated for each LGG patient by the
following formula:

Riskscore=(0.4121493)p AURKA+ (-0.8124184)pPCGF2+
(0.6318466)pMAP3K1+ (0.2558092)pTRIM34+(-0.5951688)p
PRKN+(-0.5669701)pTLE3+(0.1586579)pTRIM17.

The expression of the signature genes was validated in both
GSE4290 and GSE68848 datasets and proved consistent with that
in the TCGA cohort (Figures 3D,E). Univariate Cox regression
analysis revealed that seven signature genes were all strongly
correlated with the prognosis (Figure 4A). As shown in the
Kaplan–Meier curves, four genes of the E3RG signature were
considered to have favorable prognostic effects, while three were
considered to have poor prognostic effects (Figure 4B).

Based on the seven-E3RG risk signature, patients were divided into
the high-risk and low-risk subgroups according to the median risk
score in TCGA cohorts. The resulting Kaplan–Meier curve displayed
a significant difference in overall survival between the LGG patients in
the high-risk and the low-risk group, suggesting the established
signature effectively predicts survival (Figure 5A; p < 0.0001). The
overall survival of patients with low-risk scores was significantly
higher than that of patients with high-risk scores. The genes
referred to in the signature were remarkably differentially
expressed in the high-risk group and the low-risk group. The

FIGURE 1 | Workflow of the study.
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expression of AURKA,MAP3K1, and TRIM34 was lower in low-risk
patients than in high-risk patients, while PCGF2, PRKN, TLE3, and
TRIM17 expressions were higher in patients with low-risk scores than
in those with high-risk scores. The distribution of risk score, survival
status, and the expression of the signature genes is shown in Figures
5B–D. To evaluate the predictive effect of the prognostic model, 1-
year, 3-year, and 5-year time-dependent ROC curves were plotted,
and the concordance index was calculated. The area under the curve
(AUC) values were 0.9 (1-year ROC), 0.89 (3-year ROC), and 0.85 (5-
year ROC) (Figure 5E). Given the results earlier, the risk signature
presented a superior predictive capacity for LGGs.

Validation of the Risk Signature in the
Chinese Glioma Genome Atlas Cohort
To test whether the prognostic gene signature has similar predictive
performance and accuracy in other LGG cohorts, the CGGA cohort
was used as a validation set. In the CGGA cohort, the patients were
divided into low-risk and high-risk groups by the median risk score
with the same formula calculated from the TCGA cohort
(Figure 6B). Consistent with the results obtained from the
training set, survival analysis using the Kaplan–Meier method
exhibited a better prognosis for patients in the low-risk group
(Figure 6A, p < 0.0001). The distribution of risk score and
survival status is shown in Figures 6B,C. A heatmap of gene
expression in the CGGA cohort is presented in Figure 6D, based

on the risk score. The predicted AUCs of 1 year, 3 year, and 5 year
are 0.80, 0.79, and 0.71, respectively (Figure 6E). Prognostic analyses
showed similar results. These results demonstrated that the E3RG
risk signature was positively correlated with LGG prognosis.

Independent Prognostic Value of the
E3-Related Gene Risk Signature in the
Cancer Genome Atlas and the Chinese
Glioma Genome Atlas Low-Grade Glioma
Cohorts and Construction of a Nomogram
We first evaluated the prognostic value of age, gender, and risk score
in patients with LGG from the TCGA cohort through univariate Cox
regression analysis. The result revealed that both age (HR = 1.07, 95%
CI = 1.05–1.09, p < 0.001) and risk score (HR = 2.72, 95% CI =
2.26–3.27, p < 0.001) of LGG patients were significantly correlated
with overall survival (Figure 7A). Moreover, multivariate Cox
regression analysis showed that age (HR = 1.05, 95% CI =
1.03–1.07, p < 0.001) and risk score (HR = 2.28, 95% CI =
1.87–2.76, p < 0.001) affected overall survival as independent
prognostic factors (Figure 7B). Similar results were obtained when
univariate and multivariate Cox regression analyses were applied in
LGG patients from the CGGA cohort. Of note, gender (HR = 1.56,
95% CI = 1–2.44, p = 0.049) and risk score (HR = 1.97, 95% CI =
1.62–2.38, p < 0.001) were correlated with overall survival, but only
risk score (HR = 1.97, 95% CI = 1.62–2.39, p < 0.001) became an

FIGURE 2 | Identification of E3-related DEGs with prognostic value in LGG. (A) Volcano plot of E3-related DEGs between 451 LGG samples and five normal brain
samples identified using edgeR, limma, and DESeq2 algorithms, with the cut-off criterion p < 0.05 and |log2FC| ≥ 1. Blue dots: significantly downregulated genes; red
dots: significantly upregulated genes. (B) Venn diagram of the overlapping E3-related DEGs screened by the three differential expression analyses. (C) Venn diagram of
the intersection for overall survival–correlated E3-related DEGs identified using univariate Cox regression analysis and log-rank statistical test with the cut-off criteria
of p < 0.05. Left, predicted favorable prognosis; right, predicted poor prognosis.

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 9050475

Tan et al. E3-Related Signature in LGGs

86

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


independent prognostic factor in the CGGA cohort (Figures 7C,D).
The subtle difference may be attributed to the ethnicity difference.

On the basis of the seven-E3RG risk signature, we established a
nomogram that could predict the prognosis of LGG in the TCGA
cohort (Figure 7E). Briefly, the points of different variables were
mapped to the corresponding lines, while the total points of the
patients were calculated and normalized to a distribution of
0–100. By performing this, the 1-, 3-, and 5-year survival
status for LGG patients could be approximately estimated
based on the prognosis axis and total point axis. In addition,
the calibration curves for the probability of 1-, 3-, and 5-year
overall survival showed a strong consistency between the

predicted value of the nomogram and the actual value in both
the TCGA and CGGA cohorts (Figures 7F,G). Thus, the
nomogram could serve as a favorable reference for clinical
decision-making.

Identification and Function Analysis of
Risk-Related Differentially Expressed
Genes
To further investigate the potential biological functions and
pathways of the risk signature, we screened the DEGs by three

FIGURE 3 | Construction of the prognostic E3-related signature. (A) LASSO regression cross-validation for tuning parameter lambda selection. (B) Coefficient
profiles of the LASSO regression analysis. (C) Seven optimal prognostic E3-related DEGs selected by multivariate Cox regression analysis are shown in the forest plot.
(D) Expression of the signature genes in the GSE4290 dataset. (E) Expression of the signature genes in the GSE68848 dataset. (*p < 0.05; **p < 0.01; ***p < 0.001;
****p < 0.0001; ns, not significant).
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differential expression analyses between the high-risk group and
the low-risk group in the TCGA LGG cohort. These results were
displayed in volcano plots (Figure 8A). As shown by the Venn
diagrams in Figure 8B, 528 upregulated genes and 134
downregulated genes in the high-risk group were identified
and applied for GO and KEGG pathway analyses (Figure 8B).
From the GO analysis, the risk-related DEGs were enriched in
extracellular matrix–related functions, which suggested stronger
migration and invasion potentials of tumors for LGG patients in
the high-risk group, such as collagen-containing extracellular
matrix and extracellular matrix structural constituent.
Meanwhile, the risk-related DEG high enrichment was
observed in several immune-related biological processes, such
as MHC class II protein complex, MHC protein complex, MHC
class II receptor activity, and immune receptor activity
(Figure 8C). Moreover, the KEGG pathway enrichment
analysis showed that risk-related DEGs were principally
intensified in immune-related pathways and cell adhesion
molecules, which reflected the malignant characteristics of
LGG in the high-risk group (Figure 8D). This was also
consistent with the results of GO analysis.

GSEA Enrichment Analysis
To elucidate the potential functional differences between the
high-risk and low-risk groups, GSEA was performed with the
TCGA LGG cohort. GSEA revealed that pathways related to
inflammatory response, such as complement, IL-2/STAT5

signaling, IL-6/JAK/STAT3 signaling, and inflammatory
response, were enriched in the high-risk group. Pathways that
promote tumorigenesis and progression were also enriched in the
high-risk group, such as PI3K/AKT/MTOR signaling, mTORC1
signaling, epithelial–mesenchymal transition, glycolysis, and
KRAS signaling up. The enrichment of genes related to E2F
targets, G2M checkpoint, and mitotic spindle suggested the
correlation of cell cycle dysregulation with the risk score
(Figure 9).

The Role of the E3-Related Gene Risk
Signature in the Tumor Immune
Microenvironment
In order to further investigate the roles of the risk signature in
TIME cell infiltration, we evaluated the landscape of 28 TIME-
infiltrating cell types in the low-risk and high-risk groups by
ssGSEA (Charoentong et al., 2017). In total, 25 TIME cell types
presented significant differences in infiltration between low-risk
and high-risk groups (Figure 10A). Although eosinophils,
monocytes, and CD56 dim natural killer cells were not highly
enriched in the high-risk group, a mild increase was still noted in
eosinophils and monocytes. The expression of immune cell
markers was displayed in a heatmap (Figure 10B). Next, the
ESTIMATE algorithm was applied to evaluate the immune and
stromal activity in the LGG tumormicroenvironment. The results
disclosed that the immune and stromal activities were

FIGURE 4 | Prognostic analysis of the seven-E3RG risk signature. Univariate Cox regression analysis (A) and Kaplan–Meier curves (B) of the seven-E3RG
prognostic signature (**p < 0.01; ***p < 0.001).
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significantly elevated in the high-risk group, which might provide
evidence for the contribution of an inflammatory environment of
LGG as well (Figures 10C,D). Correlation analysis was
performed, and potential relations between the risk score
signature and each TIME cell type are shown in Figure 10E.
A significant positive correlation between the risk score and
TIME cell infiltration was observed, except for eosinophils,
monocytes, and CD56 dim natural killer cells. The risk score
was proven to be positively correlated with the expression of
immune checkpoint molecules (Figure 10F), implying the
meaningful roles of risk score signature in predicting the
possible response of LGG patients to clinical immunotherapy.

Function Analysis of Substrates of
E3-Related Gene Risk Signature in
Low-Grade Gliomas
To acquire a better understanding of the potential biological
function of the risk signature, the potential substrates of E3-
related gene signature were searched on Ubibrowser 2.0 (http://
ubibrowser.bio-it.cn/ubibrowser_v3/). The known substrates
were applied for protein–protein interaction network analysis
using the STRING database (https://cn.string-db.org/). A PPI
network of 76 substrates of the risk signature, including 69 nodes
and 772 edges, was constructed using the STRING database
(Figure 11A). The top 10 hub genes with the highest linkage
degrees were obtained using the MCC algorithm of the

cytoHubba plugin in Cytoscape3.9.1. These genes included
PARK2, VDAC1, DNM1L, MFN2, MFN1, PINK1, TOMM20,
PARK7, BCL2L1, and SNCA (Figure 11B). To disclose the
potential biological functions of the substrates that were
involved, GO and KEGG pathway analyses were performed.
GO analysis presented high enrichment in neuron death
(regulation of neuron death, neuron death, negative regulation
of neuron death, apoptotic mitochondrial changes, and death
domain binding) and ubiquitin-related functions (ubiquitin-like
protein ligase binding and ubiquitin–protein ligase binding)
(Figure 11C). KEGG pathway analysis results demonstrated
that the substrates were mostly correlated with
neurodegeneration (pathways of neurodegeneration,
Parkinson’s disease, and amyotrophic lateral sclerosis), cell
death (mitophagy, apoptosis, and autophagy), and immune
response (NOD-like receptor signaling pathway, PD-L1
expression, and PD-1 checkpoint pathway in cancer)
(Figure 11D).

DISCUSSION

In the past few decades, overwhelming evidence indicates that E3
ubiquitin ligases play pivotal roles in tumorigenesis, cancer
progression, and treatment responses. Since E3 ligases
determine the targets of the UPS, they play an essential role in
cellular functions. They take part in biological processes,

FIGURE 5 |Distribution and prognostic analysis of the E3RG prognostic signature in the TCGA cohort. (A) Kaplan–Meier curves of overall survival for the patients in
the high-risk group and the low-risk group of the TCGA cohort. The distribution plots (B), corresponding survival status (C), and the expression of the seven signature
genes (D) in the TCGA cohort. (E) Time-dependent ROC curve validation of the predictive capacity of the risk signature in the TCGA cohort.
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including but not limited to apoptosis, cell growth, senescence,
proliferation, immune system evasion, metabolism, DNA repair,
inflammation, invasion, metastasis, and angiogenesis. In GBM,
alterations in EGFR are commonly seen (Brennan et al., 2013).
EGFR could be downregulated by PARK2 but increased by
TRIM11; both are E3 ligases possessing opposite effects on
EGFR (Di et al., 2013; Lin et al., 2015). The PI3K/Akt
pathway is altered in approximately 90% of GBM cases
(Brennan et al., 2013). The PI3K/Akt signaling could be
modulated by the SCFβ−TrCP complex and SCFSkp2 complex
and regulate the proliferation of primary GBM cell lines,
glioma stem cells (GSCs), and established GBM cell line
models (Winston et al., 1999; Li et al., 2009; Yang et al., 2009;
Chan et al., 2012; Feng et al., 2014). Hence, more and more E3
ubiquitin ligases emerge as potential targets of drug designs for
cancer therapies as they own better specificity for the recognition
of substrates.

In this study, we first identified 38 DEGs with survival
significance, in which seven DEGs showed strong prognostic
performance and constituted a risk signature. The signature
consists of AURKA, MAP3K1, TRIM34, PCGF2, PRKN, TLE3,
and TRIM17. Patients in the high-risk group were more likely to
have a worse prognosis compared with the ones in the low-risk
group. Among the seven genes of the risk signature, many have
been reported in glioma pathogenesis. Aurora kinase A
(AURKA) has emerged as a drug target for glioblastoma for
being highly involved in cell proliferation, migration, and

invasion (Wang et al., 2018; Nguyen et al., 2021). MAP3K1
might promote glioma stem cell progression and be positively
associated with resistance to temozolomide (TMZ) and
radiotherapy (Bi et al., 2020; Wang et al., 2020). PRKN, first
found to be mutated in patients with early-onset Parkinson’s
disease, has also been confirmed to carry mutations and
deletions in human malignancies including glioblastoma,
colon cancer, and lung cancers (Veeriah et al., 2010). In
addition, PRKN inhibits glioma cell growth in vitro and in
vivo by downregulating the intracellular levels of β-catenin and
EGFR, leading to decreased activation of both Wnt- and EGF-
stimulated pathways (Lin et al., 2015). Although having not
been reported in glioma-related research, TRIM34, PCGF2,
TLE3, and TRIM17 have been revealed to contribute to the
carcinogenesis of other cancers. TRIM34 appears to attenuate
colon inflammation and tumorigenesis by sustaining barrier
integrity, highlighting its role in immune responses (Lian et al.,
2021). PCGF2 serves as a tumor suppressor in breast cancer,
gastric cancer, and colon cancer probably for the negative
regulation of Akt activation (Wang et al., 2009; Guo et al.,
2010; Zhang et al., 2010). TLE3 expression is positively
correlated with taxane sensitivity in patients with ovarian
carcinoma but not breast cancer (Samimi et al., 2012; Bartlett
et al., 2015). TRIM17 augments BRAF-targeted therapy
sensitivity of melanoma cells by preventing BCL2A1 from
being ubiquitinated and degraded by TRIM28 (Lionnard
et al., 2019). The studies mentioned earlier once again

FIGURE 6 | Validation of the E3RG prognostic signature in the CGGA cohort. (A) Kaplan–Meier curves of the overall survival in the high-risk group and low-risk
group of the CGGA cohort. The distribution plots (B), survival status (C), and the expression of seven signature genes (D) in the CGGA cohort. (E) Time-dependent ROC
curve validation of the predictive capacity of the risk signature in the CGGA cohort.
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FIGURE 7 | Construction and evaluation of a nomogram. Independent prognostic factors were identified by univariate and multivariate Cox regression analyses
(Continued )
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address the potent roles of our risk genes in modulating cancer
biological functions.

We screened the DEGs between high-risk and low-risk
groups and performed the GO and KEGG pathway analyses.
GO analysis revealed that the DEGs were enriched in
extracellular matrix–related (ECM-related) functions in the
high-risk group. The glioma ECM has several unique
characteristics that make it distinct from the ECM of
normal brain tissue. Glioma cells express components such
as tenascin-C, fibronectin, and thrombospondin, which
support the adhesion and migration of glioma cells.

Furthermore, signals driven by the ECM also help shape
tumor phenotypes (Sood et al., 2019). Our result
corroborated that glioma ECM is tightly related to tumor
cell proliferation and differentiation and poor prognosis. In
addition, DEG high enrichment was observed in several
immune-related biological processes such as MHC-related
complex and immune receptor activity. The glioma TIME
has diverse cell types and immune cell infiltration which
consequently create a field of dynamic cytokine and
chemokine communication. MHCII is expressed in different
types of gliomas and is associated with increased infiltration of

FIGURE 7 | regarding overall survival in the TCGA cohort (A,B) and the CGGA cohort (C,D) (*p < 0.05; ***p < 0.001). (E)Construction of a nomogram based on the
independent prognostic values in the TCGA cohort. The calibration curves between predicted and observed 1-year, 3-year, and 5-year outcomes of nomograms in the
TCGA cohort (F) and the CGGA cohort (G). Gray diagonal line represented ideal prediction.

FIGURE 8 | Identification and functional enrichment analyses of risk-related DEGs. (A) Volcano plot of risk-related DEGs between the high-risk group and low-risk
group identified using edgeR, limma, and DESeq2 algorithms, with the cut-off criterion p < 0.05 and |log2FC| ≥ 1. Blue dots: significantly downregulated genes; red dots:
significantly upregulated genes. (B) Venn diagram of the overlapping risk-related DEGs screened by the three differential expression analyses. (C) GO analysis of risk-
related DEGs with three terms biological processes, cellular components, and molecular functions (P.adjust < 0.05). (D) KEGG pathways enriched in the
upregulated and downregulated risk-related DEGs (P.adjust < 0.01).
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T cells. Both clinical and transcriptomic data have uncovered
that tumoral MHCII is tightly correlated with poor prognosis
and immune responses (Chih et al., 2021, 01). The KEGG
pathway enrichment analysis showed that risk-related DEGs
were primarily intensified in immune-related pathways and
cell adhesion molecules. Accordingly, both pathways
contribute to the invasion and metastasis of glioma.

GSEA results showed that pathways related to
inflammatory responses were enriched in the high-risk
group. Previous research indicates that about 15–20% of
cancer cases suffer infection, chronic inflammation, or
autoimmunity in the same tissue before solid tumor
formation (Grivennikov et al., 2010). Meanwhile, the
inflammatory nature of the tumor microenvironment
promotes the development and survival of tumors
(Mantovani et al., 2008). IL-2/STAT5 signaling is crucial for
the regulation of regulatory T cells and immune tolerance (Shi
et al., 2018). Similarly, the IL6-JAK-STAT3 signaling pathway
may promote tumor cell proliferation, invasion, and metastasis
and suppress immune response (Johnson et al., 2018). In
addition, inflammatory responses and complement-related
pathways could affect the tumorigenesis, immune

surveillance, and immunotherapy response (Greten and
Grivennikov, 2019). Our study showed the enrichment of
the immune-related pathways in the high-risk group, which
emphasized their significant roles in glioma prognosis.
Furthermore, pathways that facilitate tumorigenesis and
progression were also enriched in the high-risk group. The
PI3K/AKT/mTOR pathway is widely dysregulated almost in
all human cancers and is pivotal to cancer cell proliferation,
survival, and therapy resistance (Cirone, 2021; Pungsrinont
et al., 2021). Mutations within genes of this signaling pathway
are the most common events occurring in solid malignancies
including glioma (Baghery Saghchy Khorasani et al., 2021).
mTORC1, one of the mTOR forms, comprises mTOR, raptor,
GβL, and deptor. In particular, mTORC1 signaling is mainly
involved in cell growth and metabolism (Unni and Arteaga,
2019). Furthermore, AKT/PI3K signaling could indirectly
activate mTORC1 by the phosphorylation of PRAS40, a
known mTORC1 inhibitor (Sancak et al., 2007; Thedieck
et al., 2007; Vander Haar et al., 2007; Wang et al., 2007).
Activated mTORC1 signaling may trigger recurrent
reprograming that helps escape from glycolytic addiction in
cancer cell lines from various solid tumor types (Pusapati et al.,

FIGURE 9 | Gene set enrichment analysis (GSEA) of DEGs in the high-risk group.
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2016). Recently, treatments targeting PI3K/AKT/mTOR and
mTORC1 pathways have emerged as promising strategies in
cancer therapeutics (Yang et al., 2019; Peng et al., 2022).
Epithelial–mesenchymal transition (EMT) is a process that
the majority of tumors have gone through during tumor
progression. The role of EMT in tumorigenesis has been
extensively investigated in different cancers including
glioma (Lee et al., 2006; Phillips et al., 2006; Hugo et al.,

2007; Thiery et al., 2009; Zarkoob et al., 2013). Activated EMT
has also been found to be associated with the generation of
cancer stem cells (Ye and Weinberg, 2015). KRAS gene
polymorphisms are associated with the risk of glioma (Guan
et al., 2021). Collectively, GSEA results suggested that LGG
patients with high-risk scores tend to develop a faster
deterioration than patients with the low-risk scores.

Recently, a growing body of studies has demonstrated how
E3 ligases function in the tumor microenvironment (Do et al.,
2022; Hosein et al., 2022; Iwamoto et al., 2022). The tumor
microenvironment consists of different cells, including tumor
cells, tumor stem cells, and stromal cells. These cells form a
complex network and interact with one another to regulate
tumor malignant behaviors and treatment resistance. Growth
factors, chemokines, and cytokines released by immune cells
are widely involved in tumor progression and therapy
responses (Bindea et al., 2013). Here, we assessed the
infiltration level of 28 TIME immune cells in the high- and
low-risk groups to explore the roles of identified signature
genes. By ssGSEA, our results showed that 25 out of 28
immune cells are more abundant in the high-risk group
than in the low-risk group. In line with other studies,
macrophages seem to constitute a majority of infiltration
in low-grade gliomas (Rossi et al., 1988; Mieczkowski
et al., 2015). These could be important findings since it has
been shown that the infiltration of macrophages is highly
associated with shorter overall survival in low-grade glioma
(Müller et al., 2017). Our study observed the increase of most
immune cells infiltrated in the high-risk group, which might
be correlated with poor prognosis. The immune activity and
stromal activity were remarkably elevated in the high-risk
group, which once again reiterated the heterogeneity of the
glioma TIME between the two groups. Determining the roles
of the signature genes in TIME cell infiltration heterogeneity
will be beneficial to better understand the mechanisms of the
TIME antitumor immune response and developing novel
immunotherapy strategies (Kim et al., 2022; Ogino et al.,
2022; Tian et al., 2022).

Previous studies have identified different immune
checkpoint molecules in gliomas, such as CTLA-4, TIM-3,
PD-1, CD48, and LAG3 (Chouaib, 2020). Immunotherapy-
targeting immune checkpoint proteins have been found to
trigger an antitumor immune response (Zeng et al., 2013;
Reardon et al., 2016; Boussiotis and Charest, 2018).
Therefore, we evaluated the correlation between the risk
score and the expression of immune checkpoint molecules.
It is worth noting that the risk scores were positively
correlated with the expression of immune checkpoint
molecules. These results implied the involvement of the
signature genes in the pathogenesis of the gliomas via
regulating immune-related pathways. Accordingly, a
preliminary function analysis for the predicted substrates
of the risk signature was used. The results suggested that
the substrates might regulate the pathways of cell death and
immune responses. This partially explained better responses
of individuals with high-risk scores to immunotherapies. Yet,

FIGURE 10 |Role of the risk signature in the TIME. (A) ssGSEA scores of
the 28 immune cells in the high-risk group and the low-risk group (*p < 0.05;
****p < 0.0001; ns, not significant). (B) Heatmap of the expression of the
immune cell markers in the low-risk and the high-risk groups. (C,D)
Differences in overall immune and stromal activity between the high-risk group
and the low-risk group using the ESTIMATE algorithm. (E) Correlation
between the risk signature and 28 TIME cell infiltration. (F) Correlation
between the risk signature and immune checkpoints.
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these results further verified the reliability of the risk model in
predicting LGG prognosis.

Here, we constructed a prognostic model based on E3RGs
and a relevant nomogram in LGG. Of note, we identified a risk
signature in the TCGA dataset, which consisted predominately
of Caucasian and African American cases. Then, we validated
the effect of the risk signature in the CGGA dataset which
consisted of Chinese patients. The similar survival analysis
results observed in both training and validation sets proved
that our model could predict LGG prognosis in varying
ethnicities. Therefore, the predictive capability of this model
could be beneficial to clinical decision-making with LGG
patients. Nevertheless, the construction and validation of
the risk model were accomplished by retrospective analysis.

Prospective clinical research needs to be rendered for further
validation of this model. Moreover, the molecular mechanism
of the genes in the risk model requires in-depth investigation
in the future.

CONCLUSION

In summary, by differential expression analyses following
univariate Cox regression analysis and log-rank statistical test,
E3-related DEGs with a prognostic value were identified. A seven-
gene risk signature was constructed using the LASSO-Cox
regression model. The risk signature achieved good
performance in predicting the prognosis of LGG. Patients with

FIGURE 11 | PPI network and functional analysis of substrates of the E3RG signature in LGG. (A) PPI network of substrates of the E3RG signature
obtained with interaction scores > 0.4 based on the STRING online database and visualized using Cytoscape. (B) Top 10 hub genes identified using the MCC
algorithm of the cytoHubba plugin in Cytoscape. (C) GO analysis of substrates of the E3RG signature with three terms biological processes, cellular
components, and molecular functions (P.adjust < 0.05). (D) KEGG pathways enriched in the substrates of the E3RG signature analyzed using ClueGO
plugin in Cytoscape (p < 0.01).
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high-risk scores were more likely to have a poor prognosis
compared with the ones with low-risk scores. Functional
analyses of the risk signature were performed. This study is
expected to benefit the diagnosis and the potential therapeutics
of low-grade glioma.
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CENP-A is a potential prognostic
biomarker and correlated with
immune infiltration levels in
glioma patients

Yuan Yang1, Mengyun Duan2, Yunfei Zha1* and Zijun Wu1*
1Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China, 2Health Science
Center, Department of Medical Imaging, Yangtze University, Jingzhou, China

Background: Centromeric protein A (CENP-A), an essential protein involved in

chromosomal segregation during cell division, is associated with several cancer

types. However, its role in gliomas remains unclear. This study examined the

clinical and prognostic significance of CENP-A in gliomas.

Methods: Data of patients with glioma were collected from the Cancer

Genome Atlas. Logistic regression, the Kruskal–Wallis test, and the Wilcoxon

signed-rank test were performed to assess the relationship between CENP-A

expression and clinicopathological parameters. The Cox regression model and

Kaplan–Meier curvewere used to analyze the association betweenCENP-A and

survival outcomes. A prognostic nomogram was constructed based on Cox

multivariate analysis. Gene set enrichment analysis (GSEA) was conducted to

identify key CENP-A-related pathways and biological processes.

Results: CENP-A was upregulated in glioma samples. Increased CENP-A levels

were significantly associated with the world health organization (WHO) grade

[Odds ratio (OR) = 49.88 (23.52–129.06) for grade 4 vs. grades 2 and 3], primary

therapy outcome [OR = 2.44 (1.64–3.68) for progressive disease (PD) and stable

disease (SD) vs. partial response (PR) and complete response (CR)], isocitrate

dehydrogenase (IDH) status [OR = 13.76 (9.25–20.96) for wild-type vs. mutant],

1p/19q co-deletion [OR = 5.91 (3.95–9.06) for no codeletion vs. co-deletion],

and age [OR = 4.02 (2.68–6.18) for > 60 vs. ≤ 60]. Elevated CENP-A expression

was correlated with shorter overall survival in both univariate [hazard ratio (HR):

5.422; 95% confidence interval (CI): 4.044–7.271; p < 0.001] and multivariate

analyses (HR: 1.967; 95%CI: 1.280–3.025; p < 0.002). GSEA showed enrichment

of numerous cell cycle-and tumor-related pathways in the CENP-A high

expression phenotype. The calibration plot and C-index indicated the

favorable performance of our nomogram for prognostic prediction in

patients with glioma.

Conclusion: We propose a role for CENP-A in glioma progression and its

potential as a biomarker for glioma diagnosis and prognosis.
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Introduction

Gliomas are among the most lethal cancers and are

characterized by invasive growth within the central nervous

system. The intratumoral heterogeneity of gliomas and the

intrinsic structure of contribute to tumor progression and

treatment resistance (Jackson et al., 2019). Despite current

multimodal therapies, including surgical resection and

postoperative chemoradiotherapy, the prognosis of gliomas,

especially high-grade gliomas, remains low with a median

overall survival (OS) of 15 months (Weller et al., 2015).

Owing to advances in the molecular genetics of gliomas in the

past decade, the diagnostic classification, treatment development,

and prognosis monitoring of gliomas have improved

(Reifenberger et al., 2017). The novel glioma classification

system integrates molecular biomarkers with classic

histological features to define glioma entities (Wesseling and

Capper, 2018). Additionally, preclinical and clinical studies have

explored emerging pharmacological and immunotherapeutic

strategies. Predictive molecular profiling has been proposed to

guide individualized therapy in patients with glioma (Bi et al.,

2020). However, further studies are required to investigate

glioma biomarkers and therapeutic targets.

Centromeric factors are increasingly shown to be involved in

tumor pathogenesis and have been proposed as potential

therapeutic targets or prognostic markers (Filipescu et al.,

2017). Centromeric protein A (CENP-A) is a histone H3-like

protein that is enriched at active centromeres and serves as an

epigenetic mark of centromere identity (Hoffmann et al., 2020).

CENP-A regulates centromere integrity and chromosome

segregation during cell division, and its overexpression leads

to ectopic CENP-A deposition causing consequent defects in

chromosome segregation (Lacoste et al., 2014). Accordingly,

mislocalization of CENP-A resulting from its overexpression

contributes to chromosomal instability and aneuploidy

(Shrestha et al., 2021), which have long been recognized as

hallmarks of tumor growth, malignant progression, and

treatment resistance (Zhang et al., 2016; Sansregret et al.,

2018). Recent studies have indicated that CENP-A

overexpression induces chromosomal instability in cancer cells

(Amato et al., 2009; Quevedo et al., 2020). Additionally, increased

CENP-A expression is implicated in malignant progression (Sun

et al., 2016) and correlates with poor prognosis in cancers (Zhang

et al., 2020a; Saha et al., 2020; Xu et al., 2020), including breast

(Rajput et al., 2011), lung (Wu et al., 2012; Liu et al., 2018), and

hepatic carcinoma (Zhang et al., 2020b). CENP-A

downregulation induces cell cycle arrest and cell death in

hepatoma and lung carcinoma (Li et al., 2011; Wu et al.,

2014). In patients with high-grade glioblastoma (GBM),

increased CENP-A expression is associated with short

OS(Stangeland et al., 2015; Chen et al., 2020). However,

although CENP-A overexpression was proposed as a common

feature of numerous cancer types (Li et al., 2019; Qi et al., 2019),

its role in gliomas is unclear. The prognostic value of CENP-A in

gliomas including GBM and low-grade gliomas remains to be

investigated. In particular, the association between CENP-A

expression and clinicopathological features of patients with

glioma, as well as the detailed molecular mechanism of

CENP-A in gliomas, have not been reported yet.

In the present study, we explored The Cancer Genome Atlas

(TCGA) database to obtain glioma RNA-sequencing data and

performed a series of bioinformatic analyses to comprehensively

investigate CENP-A expression patterns and its prognostic

significance in gliomas. We compared CENP-A expression

among patients with glioma and healthy individuals, and

analyzed the association of CENP-A mRNA expression with

parameters in clinical data. To determine the effects of CENP-

A on glioma prognosis, we performed survival analyses using

CENP-A expression and clinicopathological features in the Cox

regression model and developed a nomogram to predict glioma

prognosis. We also verified the expression pattern and role of

CENP-A at the mRNA level in The Chinese Glioma Genome

Atlas (CGGA) cohort. To highlight the genes and functional

pathways closely correlated with CENP-A expression,

enrichment analysis was performed, including gene ontology

(GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and

gene set enrichment analysis (GSEA). Our study investigated the

role of CENP-A in gliomas and discussed the possible CENP-A-

related immune mechanisms involved in the pathogenesis of

glioma.

Materials and methods

Data sources and pre-processing

We obtained publicly available RNA-seq and

clinicopathological data of 696 glioma patient samples from

TCGA and data of normal brain samples from the GTEx

database. For subsequent analyses, all gene expression profiles

were processed using Toil software (Vivian et al., 2017) and

normalized as values in transcripts per million reads (TPM). The

relevant clinical information of patients included age, gender,

world health organization (WHO) grade, histological diagnosis,

status of molecular markers, and follow-up outcomes. Our study

conforms to the publication requirements of TCGA. For further

validation, glioma data from the Chinese cohorts were obtained

from CGGA datasets.

Differentially expressed genes analysis

CENP-A expression in patients across TCGA was statistically

ranked by median value and defined as high and low expression

groups. Differentially expressed genes (DEGs) between the high-

and low-CENP-A expression groups were identified via entry of
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expression profiles (HTseq-Counts) into the DESeq2 R package

(Love et al., 2014). Genes with | log2 fold change (FC) | > 2.0 and

an adjusted p < 0.01 were included to obtain statistically

significant differences.

Metascape enrichment analysis

Metascape is a well-maintained online portal for

comprehensive gene list analyses and interpretations. Herein,

enrichment analysis of pathways and biological processes was

performed for CENP-A-specific DEGs using Metascape (Zhou

et al., 2019). Only conditions with an enrichment factor > 1.5,

minimum count of 3, and p < 0.01 were considered significant. To

further explore DEGs, protein-protein interaction (PPI) networks

were modeled by importing the data from three databases, BioGrid,

OminiPath, and InWeb_IM, into Metascape along with the

Molecular Complex Detection (MCODE) algorithm, in which

the tightly connected PPI network components were identified.

Gene set enrichment analysis

To explore the underlying functional or pathway differences

between high- and low-CENP-A groups, GSEA was conducted

using the R package clusterProfiler (3.14.3) (Yu et al., 2012). For

each analysis, gene cluster random permutations were performed

1,000 times. The terms with |NES| > 1, adjusted p < 0.05, and

FDR q value < 0.25 were interpreted as statistically significant

differences between the groups.

Analysis of immune infiltration and its
correlation with centromeric protein A
expression

By adopting the single-sample GSEA (ssGSEA) approach in the

R package GSVA, we analyzed immune infiltration in glioma and

the correlation between infiltration level andCENP-A expression. To

analyze the relative invasion levels of 24 immune cell types, the

enrichment of published immunocyte signature genes (Bindea et al.,

2013) was qualified using the expression profiling of each tumor

sample. The Wilcoxon rank-sum test was employed to investigate

the enrichment differences in immune cells between the CENP-A

high and low expression groups. The association between CENP-A

and immune cell infiltration was determined using Spearman’s

correlation coefficient.

Statistical analyses

All statistical analyses were performed using the R software

(v3.6.2). Wilcoxon signed-rank and Wilcoxon rank-sum tests were

performed to compare CENP-A expression levels in glioma and

normal samples. The receiver operating characteristic (ROC) curve

obtained using the pROC package was used to evaluate the

effectiveness of CENP-A expression in discriminating between

glioma and healthy samples (Robin et al., 2011). We used the

Wilcoxon test, Kruskal–Wallis test, and Spearman’s correlation to

evaluate the association between CENP-A and clinicopathological

characteristics. Fisher’s exact test, Pearson’s χ2 test, and univariate

logistic regression analyses were conducted to evaluate the correlation

between CENP-A expression level and clinicopathological variables.

Significant variables (p< 0.01) based on the univariate Cox regression
analysis were included in the multivariate Cox regression model to

identify independent prognostic parameters. Accordingly, survival

curves were generated using the Kaplan–Meier method and

compared using the log-rank test for each subgroup. Based on the

optimal model determined by the above multivariate analysis, a

nomogram was established using the R package rms to individualize

the prediction of patient survival probability. The hazard ratio (HR)

with a 95% confidence interval (95%CI) was used tomeasure the risk

of individual clinical characteristics. Statistical significance was set at

p < 0.05.

Results

Clinical characteristics of patients

The clinicopathological characteristics of patients with

glioma collected from TCGA included age, WHO grade,

isocitrate dehydrogenase (IDH) status, 1p/19q co-deletion,

primary therapy outcome, gender, and histological type. A

cohort of 298 females and 398 males was studied. Analysis of

clinical data indicated that CENP-A expression was significantly

associated with age (p < 0.001), WHO grade (p < 0.001), IDH

status (p < 0.001), 1p/19q co-deletion (p < 0.001), primary

therapy outcome (p < 0.001), and histological type (p <
0.001). No statistical association was detected between CENP-

A expression and gender (Table 1).

Centromeric protein A expression and
clinical correlation in the cancer genome
atlas and validation in Chinese glioma
genome atlas

To compare CENP-A expression levels in glioma and normal

samples, Wilcoxon signed-rank tests were used. CENP-A

expression was significantly higher in glioma tissues than in

healthy tissues (Figure 1A). As shown in Figure 1B, CENP-A

expression showed excellent ability in distinguishing tumors

from healthy tissues with an area under the ROC curve (AUC)

of 0.960. Pan-cancer analysis consistently showed upregulated

CENP-A expression in numerous tumor types (Figure 1C).
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Moreover, results based on clinical information and expression

data (Figure 2) showed that, the expression level of CENP-A was

associated with age (p < 0.001), WHO grade (p < 0.001), IDH

status (p < 0.001), 1p/19q co-deletion (p < 0.001), and primary

therapy outcome (p < 0.001). The analysis stratified by WHO

grade indicated consistent results in low-grade glioma

(Supplementary Figure S1). In CGGA dataset, results

(Supplementary Figure S2) showed consistent association

between CENP-A expression and WHO grade (p < 0.001),

age (p < 0.001), IDH mutation (p < 0.001), 1p/19q co-

deletion (p < 0.001), as well as IDH mutation & 1p/19q co-

deletion status (p < 0.001).

To determine the correlation between CENP-A expression

levels and clinicopathological variables, univariate logistic

regression was performed. Elevated CENP-A expression was

significantly associated with poor prognostic characteristics,

including age > 60 years [OR = 4.024 (2.678–6.175)

for >60 vs. ≤ 60 years], high WHO grade [OR = 49.884

(23.515–129.060) for G4 vs. G2 and G3], poor primary

therapy outcome [OR = 2.444 (1.641–3.675) for progressive

disease (PD) and stable disease (SD) vs. partial response (PR)

and complete response (CR)], wild-type (WT) IDH [OR = 13.760

(9.247–20.963) for WT vs. mutated], and absence of 1p/19q co-

deletion [OR = 5.910 (3.947–9.061) for no co-deletion vs. co-

deletion], with p < 0.001. These results were validated using Chi-

square analysis (Table 2). Our observations suggest that gliomas

with upregulated CENP-A expression are prone to poor

clinicopathological factors and a high degree of malignancy.

Centromeric protein A was an
independent prognostic factor for glioma
patients

To determine the correlation between CENP-A expression

and survival of patients with gliomas, univariate and multivariate

TABLE 1 Clinical characteristics of patients with glioma from TCGA.

Characteristic Low CENP-A expression High CENP-A expression p-value

Number of cases 348 348

WHO grade, n (%) <0.001
G2 188 (29.6%) 36 (5.7%)

G3 115 (18.1%) 128 (20.2%)

G4 6 (0.9%) 162 (25.5%)

IDH status, n (%) <0.001
WT 36 (5.2%) 210 (30.6%)

Mut 309 (45%) 131 (19.1%)

1p/19q co-deletion, n (%) <0.001
Co-deletion 137 (19.9%) 34 (4.9%)

No co-deletion 210 (30.5%) 308 (44.7%)

Primary therapy outcome, n (%) <0.001
PD 52 (11.3%) 60 (13%)

SD 92 (19.9%) 55 (11.9%)

PR 51 (11%) 13 (2.8%)

CR 102 (22.1%) 37 (8%)

Gender, n (%) 0.592

Female 153 (22%) 145 (20.8%)

Male 195 (28%) 203 (29.2%)

Age, n (%) <0.001
≤60 313 (45%) 240 (34.5%)

>60 35 (5%) 108 (15.5%)

Histological type, n (%) <0.001
Astrocytoma 112 (16.1%) 83 (11.9%)

Glioblastoma 6 (0.9%) 162 (23.3%)

Oligoastrocytoma 90 (12.9%) 44 (6.3%)

Oligodendroglioma 140 (20.1%) 59 (8.5%)

Age, median (IQR) 39 (32, 51) 53 (39, 63) <0.001

WHO, world health organization; IDH, isocitrate dehydrogenase; WT, wild-type; MUT, mutated; PD, progressive disease; SD, stable disease; PR, partial response; CR, complete response.
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analyses were performed. As shown in Figures 3A–C,

Kaplan–Meier survival analysis indicated that glioma cases

with elevated CENP-A expression had a worse prognosis than

those with low CENP-A levels (p < 0.001). Univariate assessment

revealed that high CENP-A expression was markedly correlated

with shorter OS (HR: 5.42; 95% CI: 4.04–7.27; p < 0.001), poor

disease-specific survival (HR: 5.81; 95% CI: 4.25–7.95; p < 0.001),

and poor progression-free interval (HR: 3.34; 95% CI: 2.66–4.19;

p < 0.001). Additionally, multivariate analysis supported an

independent correlation between CENP-A and OS (HR: 1.967;

95% CI: 1.280–3.025; p < 0.002) as well as between OS and age,

WHO grade, primary therapy outcome, and IDH status

(Table 3). Therefore, elevated CENP-A expression was of

prognostic significance in glioma.

Development and validation of a
centromeric protein A based prognostic
prediction nomogram

To predict the survival of glioma individuals using a

visualized approach, a nomogram was created by integrating

CENP-A expression and other independent prognostic factors

including age, WHO grade, primary therapy outcome, IDH

status, and 1p/19q co-deletion (Figure 3D), which were

determined by the above multivariate Cox analysis. A lower

survival probability was represented by a higher value of total

points accumulated from the points of all variables on the

nomogram. A calibration plot for survival probabilities

showed that nomogram prediction well agrees with observed

fraction (Figure 3E). Our prognostic nomogram achieved

promising predicting efficacy for the 1-, 3-, and 5-years

survival probabilities. Moreover, Harrell’s concordance index

(C-index) for the nomogram was 0.859, with 1,000 bootstrap

resamples. These findings indicate that the nomogram performs

better than clinical prognostic factors in predicting the survival

probability of patients with glioma.

Effect of centromeric protein A expression
on glioma prognosis in patient subgroups

To better assess the prognostic ability of CENP-A, the

relationship between CENP-A expression and patient survival

FIGURE 1
High CENP-A expression in tumor tissues. (A) CENP-A expression levels in glioma tissues compared with normal tissues (control). (B) ROC
analysis of CENP-A expression showing its excellent ability in distinguishing tumors from normal tissues. (C) Pan-cancer analysis of CENP-A
expression across different cancers based on TCGA data. ns, no significance, p > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001.
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in subgroups stratified by clinicopathological characteristics was

investigated using univariate Cox analysis (Figure 4). High

CENP-A expression was associated with shorter OS among

patients with different 1p/19q co-deletion statuses and age

(Figures 4B–E). Additionally, elevated CENP-A expression was

specifically associated with decreased OS in patients with

mutated IDH [HR = 2.41 (1.55–3.76), p < 0.001] and in

patients with WHO grades G2 and G3 [HR = 3.25

(2.14–4.92), p < 0.001], but not in other subgroups (Figures

4F–I). Glioma patients in CGGA showed similar results,

especially within WHO grade G2 and G3 cohort (p < 0.05,

Supplementary Figure S3). The results confirmed that CENP-A

retained its ability to predict survival among subgroups with

various clinicopathological factors.

FIGURE 2
Clinical correlation analysis of CENP-A expression with clinicopathologic features. (A) WHO grade, (B) Primary therapy outcome, (C) Age, (D)
IDH status, and (E) 1p/19q co-deletion. WHO, World health organization; IDH, isocitrate dehydrogenase; WT, wild type; MUT, mutated.

TABLE 2 Association of CENP-A expression with the clinicopathological characteristics of patients with glioma (logistic regression).

Characteristics Total (n) Odds ratio (OR) p-value

WHO grade (G4 vs. G2 and G3) 635 49.884 (23.515–129.060) <0.001
Primary therapy outcome (PD and SD vs. PR and CR) 462 2.444 (1.641–3.675) <0.001
IDH status (WT vs. Mut) 686 13.760 (9.247–20.963) <0.001
1p/19q co-deletion (no co-deletion vs. co-deletion) 689 5.910 (3.947–9.061) <0.001
Age (>60 vs. ≤60) 696 4.024 (2.678–6.175) <0.001
Gender (Male vs. Female) 696 1.098 (0.813–1.484) 0.540

WHO, world health organization; IDH, isocitrate dehydrogenase; WT, wild-type; MUT, mutated; PD, progressive disease; SD, stable disease; PR, partial response; CR, complete response.
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Identification of differentially expressed
genes betweenhigh- and -lowcentromeric
protein A in patients with glioma

Based on threshold values (|log2 FC| > 2 and adjusted p <
0.01) (Love et al., 2014), DEGs between high- and -low CENP-A

were identified after an analysis of HTSeq-Counts data from

TCGA using the R package DESeq2. DEGs are presented in a

heatmap and volcano plot (Figure 5). A total of 521 DEGs

(460 upregulated and 61 downregulated) that correlated with

CENP-A are included in the volcano plot (Figure 5A). The top

and bottom five genes in the heatmap showed significantly

positive and negative correlations with CENP-A expression,

respectively (Figure 5B). Among the DEGs, CENP-A was

positively correlated with UBE2C (Spearman’s r = 0.969, p <
0.001), BIRC5 (Spearman’s r = 0.966, p < 0.001), and CCNB2

(Spearman’s r = 0.964, p < 0.001) (Figures 5C–E). UBE2C,

BIRC5, and CCNB2 were reported to be oncogenic and are

associated with several cancers including glioma (Renner et al.,

2016; Dastsooz et al., 2019; Wang et al., 2021b). These results

suggest the involvement of CENP-A in a wide array of pathways

and processes through gene regulation.

Gene ontology and kyoto encyclopedia of
genes and genomes functional
enrichment and protein-protein
interaction network analyses of
differentially expressed genes

For an in-depth understanding of the identified DEGs, we

proceeded to GO and KEGG functional enrichment analyses

using Metascape tools and found that 521 DEGs were involved in

diverse biological processes (BP), cellular components (CC), and

molecular functions. Those associated with CENP-A-related

DEGs included cell cycle, skeletal system development,

FIGURE 3
Survival analyses and prognostic nomogram. (A–C) Impact of CENP-A on the overall, progression-free, and disease-specific survival rates in
glioma according to TCGA. (D,E) Development and verification of a glioma predictive nomogram based on CENP-A expression levels and
independent prognostic factors.
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embryonic morphogenesis, Naba matrisome associated, mitotic

cell cycle phase transition, extracellular matrix organization,

assembly of collagen fibrils and other multimeric structures,

Naba core matrisome, and PID aurora b pathway (Figure 6).

Accordingly, CENP-A-specific DEGs were closely associated with

cell cycle progression. Furthermore, PPI networks were

constructed in Metascape to identify protein interactions

between DEGs and better illuminate the biological significance

(Figure 6D). To derive more biologically interpretable results, the

most significant MCODE sub-networks that are highly

interlinked were extracted from PPI, and each complex was

assigned a unique color (Figure 6E). These pathways or

processes may provide clues for exploring the potential

functions of CENP-A in glioma.

Identification of centromeric protein
A-related signaling pathways

GSEA of high and low CENP-A expression datasets was

conducted to identify the critical signaling pathways or

phenotypes involved in gliomas. There was a significant

differential enrichment of numerous pathways within the

MSigDB collection (c2.cp.v7.2.symbols, h. all.v7.2.symbols, and

c5.all.v7.2.symbols) with a threshold of FDR < 0.25 and adjusted

p < 0.05. As shown in Figure 7, the signaling cascades, including

cell cycle, DNA conformation change, chromosome

condensation, chromosome segregation, G2M checkpoint, IL6-

JAK-STAT3 signaling, apoptosis, nucleosome assembly, and

histone modifications, were enriched in the high-CENP-A

group, thereby highlighting the potential functions of CENP-A

in gliomagenesis.

Correlation of centromeric protein A with
immune infiltration

Brain tumor immunity has gained increased attention for

its vital role in affecting therapeutic response and prognosis

(Sampson et al., 2020). We further explored the correlation

between CENP-A expression and immunocyte enrichment

levels quantified by ssGSEA in the glioma tumor

microenvironment via Spearman correlation. The results

showed that Th2 cells had a remarkable positive

correlation with CENP-A expression (Spearman’s r = 0.85,

p < 0.001; Figure 8). Moreover, as illustrated by the Wilcoxon

rank-sum test, the enrichment score of Th2 cells was

significantly higher in high-CENP-A samples than in low-

CENP-A samples. The relative abundance of other immune

cell populations, including plasmacytoid dendritic cells

TABLE 3 The correlation of CENP-A and clinicopathologic characteristics with overall survival in patients with glioma in TCGA, and the multivariate
survival model based on univariate selection (Cox regression).

Characteristics Total (n) Univariate analysis Multivariate analysis

Hazard
ratio (95% CI)

p-value Hazard
ratio (95% CI)

p-value

WHO grade 634

G2 and G3 466 Reference

G4 168 9.496 (7.212–12.503) <0.001 4.106 (1.429–11.794) 0.009

IDH status 685

Mut 439 Reference

WT 246 8.551 (6.558–11.150) <0.001 2.708 (1.712–4.282) <0.001
1p/19q co-deletion 688

No co-deletion 518 Reference

Co-deletion 170 0.226 (0.147–0.347) <0.001 0.736 (0.422–1.285) 0.281

Primary therapy outcome 461

PD&SD 259 Reference

PR&CR 202 0.209 (0.120–0.366) <0.001 0.302 (0.164–0.559) <0.001
Age 695

≤60 552 Reference

>60 143 4.668 (3.598–6.056) <0.001 4.116 (2.548–6.647) <0.001
CENP-A 695

Low 348 Reference

High 347 5.422 (4.044–7.271) <0.001 1.967 (1.280–3.025) 0.002

WHO, world health organization; IDH, isocitrate dehydrogenase; WT, wild-type; MUT, mutated; PD, progressive disease; SD, stable disease; PR, partial response; CR, complete response.
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(pDCs), macrophages, eosinophils, and activated dendritic

cells (aDCs), was moderately correlated with CENP-A

expression. Glioma data from CGGA showed similar

correlation trend between CENP-A expression and

infiltration of Th2 cells and pDCs (Supplementary

Figure S4).

FIGURE 4
The correlation of CENP-A expression with glioma prognosis among patients with various clinicopathological characteristics. (A) Forest plots
showing the subgroup analysis of overall survival. (B–I) Kaplan–Meier survival curves of each patient subgroup.
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Discussion

At present, the study of gene expression profiles in glioma has

been widely applied to explore glioma pathogenesis and

management. Identifying molecular markers is a promising

way to guide decision-making and improve prognosis for

clinical glioma. CENP-A regulates centromere protein

assembly and is essential for progression through

chromosome segregation, mitosis, and cell division.

Experiments have demonstrated that excess CENP-A

accumulates ectopically in the human cancer genome (Athwal

et al., 2015). Accumulating evidences have verified that the

overexpression of CENP-A becomes a common result in a

growing body of research on cancers (Renaud-Pageot et al.,

2022). CENP-A overexpression plays a pivotal role in

chromosomal instability and pathogenesis of malignancies

through chromosome segregation defects (Shrestha et al.,

2017), a mechanism involved CENP-A in cancers (Sun et al.,

2016; Sharma et al., 2019). In addition, elevated CENP-A levels

promote the proliferation of cancer cells in hepatoma (Li et al.,

2011), prostate (Saha et al., 2020) and renal cell carcinoma

(Wang et al., 2021a). The observations support an association

of CENP-A function with cell proliferation. Besides a role in cell

proliferation following malignant transformation, in the cellular

context of defective p53 (Filipescu et al., 2017; Jeffery et al., 2021),

CENP-A overexpression stimulates epithelial-mesenchymal

transition, a major contributing factor in the metastasis of

cancer cells (Jeffery et al., 2021). CENP-A expression was

FIGURE 5
Differentially expressed genes (DEGs) between high and low CENP-A expression glioma groups in TCGA dataset. (A) Heatmap of the top five
upregulated and downregulated DEGs. (B) Volcano plot of DEGs expression profiles. (C–E) Scatter plot showing the correlation between CENP-A
expression and UBE2C (C), BIRC5 (D), and CCNB2 (E) expression.
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FIGURE 6
Functional enrichment and protein-protein interaction (PPI) enrichment analyses of CENP-A-related DEGs. (A) Heatmap showing Gene
Ontology (GO) functional enrichment analysis. (B,C) Visualized network of top 20 GO enriched terms. (D,E) PPI networks and the most significant
Molecular Complex Detection (MCODE) sub-networks.
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positively associated with cancer metastasis in gastric (Xu et al.,

2020) and renal (Wang et al., 2021a) cancers. Taking the evidence

together, we believe that CENP-A overexpression is related to

malignant transformation, tumor invasiveness and metastasis in

specific cancer contexts. In reports with patient data, elevated

CENP-A levels prognosticate poor patient survival for cancers

(Zhang et al., 2016; Saha et al., 2020) and patient outcome after

chemotherapy (Zhang et al., 2016). However, the clinical

significance of CENP-A in glioma, especially its expression

pattern and prognostic role, has not yet been systematically

explored. In our study, bioinformatic analyses of TCGA RNA-

sequencing data combining GBM and low-grade glioma

FIGURE 7
Gene set enrichment analysis (GSEA) enrichment plots including (A) cell cycle, (B) DNA conformation change, (C) chromosome condensation,
(D) chromosome segregation, (E) G2M checkpoint, (F) IL6-JAK-STAT3 signaling, (G) apoptosis, (H) nucleosome assembly and (I) histone
modifications.
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FIGURE 8
The role of CENP-A in tumor immune responses. (A) A forest plot showing the association betweenCENP-A expression and immune infiltration
level. (B,C) The abundances of Th2 cells and pDC cells among low- and high-CENP-A expression groups. (D,E) The correlation between CENP-A
expression levels and the relative enrichment levels of Th2 and pDC cells.
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confirmed increased CENP-A expression which was associated

with malignant clinicopathological status (high WHO grade,

primary therapy outcome of PD&SD, age > 60, WT IDH

status, and absence of 1p/19q co-deletion), short survival time,

and poor prognosis. The results were further validated in CGGA

dataset. Furthermore, GSEA revealed that the high-CENP-A

phenotype showed differential enrichment of pathways

including cell cycle, DNA conformation change, chromosome

condensation, chromosome segregation, G2M checkpoint, IL6-

JAK-STAT3 signaling, apoptosis, nucleosome assembly, and

histone modifications. Immune filtration analysis suggested

that the expression of CENP-A correlated with immune

infiltration status. Our results support CENP-A as a potential

prognostic biomarker for gliomas.

In subgroup analysis, CENP-A expression remained correlated

with poor prognosis in subsets grouped by WHO grade, IDH, 1p/

19q co-deletion, and age statuses, which strongly suggests that

CENP-A is a glioma grading biomarker within these subsets. We

found a marked association between expression levels of CENP-A

and OS in all 1p/19q co-deletion and age subgroups. Notably, there

was a significant association between CENP-A expression levels and

OS in grades 2 and 3 andmutated IDH status, but not in grade 4 and

wild-type IDH status. The results from CGGA dataset validated this

association in glioma, as well as grade 2 and 3 subgroups. These

findings indicate that the association between CENP-A expression

levels and survival varies by WHO grade and IDH status, and high

CENP-A expression is more likely to negatively impact the survival

of patients with low-grade gliomas.

The Cox model showed that CENP-A was an independent

prognostic predictor of glioma. Subsequently, a nomogram was

developed for the accurate prediction of prognosis with a

personalized score for individual patients, and the model

combined CENP-A with other predictors, including WHO

grade, primary therapy outcome, age, IDH status, and 1p/19q

co-deletion. Glioma with high WHO grade, IDH-wild-type, 1p/

19q-non-codeleted and primary therapy outcome of PD are

inclined to adverse survival (Eckel-Passow et al., 2015; Weller

et al., 2015). IDH and 1p/19q co-deletion statuses were determined

as classifying factors in the 2016 WHO diagnostic criteria for

gliomas. IDH-mutant and 1p/19q-codeleted have been regarded as

clinically relevant biomarkers in lower-grade gliomas with a

favorable prognosis (Brat et al., 2015). 1p/19q co-deletion status

is especially associated with patient outcomes in response to

adjuvant chemotherapy (van den Bent et al., 2013). Age at

diagnosis affects incidence rates of glioma remarkably. Older

Age is associated with worse glioma survival and the effect on

survival differs in glioma subtypes (Ostrom et al., 2019). The

C-index and calibration plot confirmed that the nomogram

performed well in predicting the 1-, 3-, and 5-year survival of

patients with glioma. Therefore, our nomogram is a valuable

clinical prognostic model.

To further investigateCENP-A function, GSEAwas performed

which showed that CENP-A was associated with cell cycle

regulation, chromosome segregation, and nucleosome assembly

in glioma. Previous studies have revealed that defects in

chromosome segregation can lead to the phenotypes observed

in tumor cells. Additionally, chromosomal instability induced by

abnormal nucleosome assembly and chromosome segregation in

the cell cycle may contribute to the progression of glioma

(Milinkovic et al., 2012; Ferguson et al., 2015). Our results

revealed an association between CENP-A and apoptosis, which

is consistent with a previous study showing that nucleosome

assembly failure is correlated with radiation-induced GBM cell

death (Serafim et al., 2020). Moreover, HJURP is recognized as a

CENP-A-specific chaperone, and its overexpression often

accompanies the overexpression of CENP-A (Foltz et al., 2009).

HJURP knockdown increases radiation-induced apoptosis in

glioblastoma cells (Serafim et al., 2020). The functional

enrichment analysis with Metascape (Zhou et al., 2019) showed

consistent results that found an enrichment in cell cycle. Therefore,

CENP-Amay play a role in the cell cycle regulation to promote the

survival and proliferation of glioma cells. However, it remains

unclear whether elevated CENP-A levels contribute to glioma

progression by inducing chromosomal instability.

Additionally, we revealed that high CENP-A expression

phenotype was strongly associated with the inflammation-

related IL6-JAK-STAT3 signaling pathway, which is associated

with poor prognosis in patients with glioma (Yao et al., 2016). In

the tumor immune microenvironment, the IL6-JAK-

STAT3 pathway is hyperactivated in a multitude of cancers,

which suppresses the anti-tumor immune response and

promotes tumor progression (Yao et al., 2016). Preclinical and

clinical investigations showed that IL6-JAK-STAT3 pathway

inhibition has therapeutic benefits in cancer and that

STAT3 inhibition inhibits the growth of glioma cells (Shen

et al., 2009; Johnson et al., 2018). Nevertheless, the regulatory

mechanisms underlying these associated functions and pathways

remain poorly characterized and require further research.

Tumor immunosuppressive microenvironment represents

an important factor of cancer progression and poor prognosis

in glioma (Jackson et al., 2019). Since the prognostic role of

infiltrating immune cells have been proposed across many

human cancers (Gentles et al., 2015), we pay attention to the

link between glioma immunity and CENP-A in this research.

Several research models regarding centromeric factor in cancer

proposed the association with immune infiltration (Shi et al.,

2021; Zeng et al., 2021; Zhou et al., 2021). We also showed that

CENP-A expression level was associated with the level of

infiltrating immune cells in gliomas and presented the

strongest correlation with Th2 cells and pDCs. Tumor-specific

Th2 cell responses are associated with tumor immune evasion,

and Th2 cytokines such as IL-4 and IL-13 are implicated in the

suppression of host immune effector responses to tumors

(Gordon and Martinez, 2010; Tosolini et al., 2011).

Th2 cytokines are strongly expressed in glioma cell lines and

GBM samples (Hao et al., 2002). Moreover, a strong Th2-bias
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response was reported in patients with gliomas, especially those

with recurrent GBM(Shimato et al., 2012; Harshyne et al., 2016),

and the Th2 phenotype is associated with a poor prognosis in

patients with glioma (Piperi et al., 2011; Shimato et al., 2012).

This is consistent with our results that found an increased

enrichment of Th2 cell in high CENP-A expression, which

predicted poor prognosis. Additionally, pDCs play a

suppressive role in tumors and impaired pDC activity is

implicated in reduced immune responses in tumors (Reizis,

2019). Diffuse low-grade glioma with a better outcome

showed elevated pDC level (Wu et al., 2020). pDCs induce

anti-tumor therapeutic efficacy in GBM by producing IFN-α
(Candolfi et al., 2012). Therefore, elevated CENP-A expression

may induce Th2 cell infiltration and pDC deficiency in the tumor

microenvironment, which contributes to immunotherapy

resistance and poor treatment response in glioma. Collectively,

our results indicate the potential role of CENP-A in modulating

glioma-related immune responses; however, the underlying

regulatory mechanisms require further investigation.

The present study has several limitations. First, it was based

on open tumor databases and bioinformatics analysis and was

not validated in vitro or in vivo. Second, the analysis was

conducted only on the expression profiles at the mRNA level,

not protein expression levels. Therefore, our results need to be

validated using CENP-A protein expression levels and

subsequent laboratory experiments.

In summary, our findings highlight the prognostic value and

immune relevance of CENP-A in glioma, supporting its

exploration as a potential biomarker for prognosis or a target

for molecular targeted therapy. Furthermore, CENP-A may

contribute to glioma progression through the regulation of

pathways, including the cell cycle, nucleosome assembly, IL6-

JAK-STAT3 signaling, and DNA repair. Further studies are

required to elucidate the clinicopathological and biological

significance of CENP-A expression. This study provides new

insights into the molecular pathogenesis and individualized

treatment of gliomas.
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Significance of NotchScore
and JAG1 in predicting
prognosis and immune
response of low-grade glioma

Bo Shi1,2,3†, Fei Ge4†, Liangliang Cai1,3†, Yi Yang1,3†, Xiaohui Guo2,
Rui Wu2, Zhehao Fan1,3, Binjie Cao1,3, Ning Wang1,3, Yue Si1,3,
Xinyue Lin1,3, Weibing Dong2* and Haibo Sun1,3*

1Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China, 2School
of Life Science, Liaoning Normal University, Dalian, Liaoning, China, 3Jiangsu Key Laboratory of
Experimental & Translational Non-Coding RNA Research, Yangzhou, Jiangsu, China, 4Department of
Gastroenterology, Haian Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of
Chinese Medicine, Nantong, Jiangsu, China
Introduction: Low-grade glioma (LGG) is a prevalent malignant tumor in the

intracranial region. Despite the advancements in treatment methods for this

malignancy over the past decade, significant challenges still persist in the form of

drug resistance and tumor recurrence. The Notch signaling pathway plays

essential roles in many physiological processes as well as in cancer

development. However, the significance of the pathway and family genes in

LGG are poorly understood.

Methods: We conducted gene expression profiling analysis using the TCGA

dataset to investigate the gene set associated with the Notch signaling pathway.

we have proposed a metric called "NotchScore" that quantifies the strength of

the Notch signaling pathway and enables us to assess its significance in

predicting prognosis and immune response in LGG. We downregulated JAG1

in low-grade gliomas to assess its influence on the proliferation and migration of

these tumors. Ultimately, we determined the impact of the transcription factor

VDR on the transcription of PDL1 through chip-seq data analysis.

Results: Our findings indicate that tumors with a higher NotchScore, exhibit

poorer prognosis, potentially due to their ability to evade the anti-tumor effects

of immune cells by expressing immune checkpoints. Among the genes involved

in the Notch signaling pathway, JAG1 has emerged as the most representative in

terms of capturing the characteristics of both NotchScore and Notch pathways.

The experimental results demonstrate that silencing JAG1 yielded a significant

decrease in tumor cell proliferation in LGG cell lines. Our study revealed

mechanisms by which tumors evade the immune system through the

modulation of PDL1 transcription levels via the PI3K-Akt signaling pathway.

Additionally, JAG1 potentially influences PDL1 in LGG by regulating the PI3K-

Akt signaling pathway and the expression of the transcription factor VDR.
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Discussion: These findings contribute to our understanding of immune evasion

by tumors in LGG. The insights gained from this research may have implications

for the development of therapeutic interventions for LGG.
KEYWORDS

notch, low-grade glioma, prognosis, tumor immune microenvironment, JAG1, PDL1
Introduction

Glioma is a type of tumor that commonly develops within the

central nervous system and has been extensively researched. The

World Health Organization (WHO) has established a classification

system for gliomas, which categorizes them into four grades

according to their histopathological and molecular features (1, 2).

Low-grade gliomas (LGG) are normally considered to have a low

malignancy. However, LGG can still proliferate and progress in

various ways, and the survival rate for patients with LGG is not

ideal. According to a recent study, the median overall survival for

grade II glioma patients with LGG is 78.1 months (2). Therefore,

early diagnosis and treatment of LGG are crucial, and regular

follow-up of LGG patients is necessary to detect any deterioration

in their condition and to adjust treatment plans in a timely manner.

The Notch signaling pathway is a highly conserved pathway

across evolution that contributes in regulating a number of cellular

behaviors. These processes encompass cell proliferation, apoptosis,

differentiation, tissue homeostasis maintenance, immune

regulation, and disease progression (3, 4). Importantly, reports

have discovered that blockade of the Notch pathway disrupts

tumor blood vessel structure and promotes tumor metastasis (5).

In osteosarcoma tissues and cells, there is a high expression of

different molecules involved in the Notch signaling pathway (6).

Specifically, the protein JAG1, belonging to the Notch family,

exhibits significantly increased levels in highly metastatic

osteosarcoma cells compared to low metastatic ones. Recent

studies have demonstrated that suppressing JAG1 expression

results in decreased proliferation, migration, and invasion

capabilities of osteosarcoma cells (7).

As research on the tumor microenvironment (TME) continues,

immunotherapy based on TME has been increasingly applied in

clinical practice with promising results (8, 9). Recent studies have

highlighted the close relationship between the biological

characteristics of gliomas and their immune microenvironment

(TME) (10). Glioma cells secrete diverse chemokines, cytokines,

and growth factors that contribute in promoting immune cell

infiltration into the tumor microenvironment. These cell types

comprise most of the white blood cells including circulating

progenitor cells, astrocytes, pericytes, endothelial cells, as well as

various immune cells, including peripheral macrophages, microglia,

effector T cells, and regulatory T cells (Treg cells) (11). Identifying

these factors may aid in enhancing the immune modulation

utilized by glioma cells, thereby serving as a basis for glioma
02117
immunotherapy (11, 12). In previous studies, mice with

glioblastoma (GBM) were subjected to treatment using anti-PD-1

antibody or combinational therapies using anti-PD-1 and anti-

CTLA-4 antibodies. Notably, both wild-type (WT) mice and

CD73-/- mice receiving the combination therapy, which included

anti-PD-L1, exhibited significantly improved survival rates

compared to the control group (13). Hence, exploring the

benefits of immune checkpoint inhibitors in LGG might be a

viable approach.

Here, we studied the role of the Notch signaling pathway in low-

grade gliomas (LGG). By analyzing the gene expression profiles of

Notch signaling pathway-related genes in the TCGA dataset, we

developed a metric called “NotchScore” to distinguish two distinct

subtypes of LGG (CS1-CS2). Subsequently, we assessed the

prognostic relevance of these two subtypes and investigated their

disparities concerning the TME. Lastly, we conducted experimental

validation to establish the critical role of the Notch family protein

JAG1 in this process. These findings may provide a solid foundation

for future research on targeted therapy for LGG.
Results

NotchScore clustering

In this study, we collected Notch signaling pathway-related

genes from the HALLMARK database and previous studies.

Utilizing the STRING database, we performed a protein-protein

interaction (PPI) network analysis for identification of the crucial

genes within the selected gene set and elucidate their interactions.

We aimed to identify the core genes of the Notch signaling pathway

within the selected gene set and gain a comprehensive

understanding of their interactions. (Figure 1A). To explore the

prognosis of LGG patients with different expression levels of Notch

gene sets, unsupervised clustering analysis was performed on 483

LGG samples to determine the expression patterns of different

groups of Notch gene sets. Cluster-consensus analysis and inter-

group principal component analysis indicated that K=2 was the

optimal cluster number, and thus the LGG samples were divided

into two groups for further analysis (Figures 1B–E). The study

established a NotchScore scoring method using the Genomic Grade

Index to evaluate the expression of Notch-associated genes from

each group of patients. These findings indicated that the CS2 group

exhibited a higher NotchScore in comparison to the CS1 group
frontiersin.org
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(Figure 1F), and the heat map shows that samples in the CS2 group

exhibit a diverse opposite patten of Notch gene expressions

compared to CS1 group (Figure 1G).
The NotchScore is related to LGG
prognosis and specific signaling pathways

To examine the correlation between NotchScore and prognosis

of LGG patients, survival analysis was performed using TCGA

dataset. The results showed that patients in the CS2 group,

characterized by high NotchScore, had a poorer prognosis

compared to those in the CS1 group, characterized by low

NotchScore (Figure 2A).To further explore the association
Frontiers in Immunology 03118
between the mRNA levels of Notch-associated genes and

prognosis, we conducted differential gene analysis. This analysis

involved applying specific criteria, including a fold change (FC)

threshold of >2 or<-2, |log2FC|>1, and significant p-values (p.val)<

0.05, -log10 (p.val) >-log10 0.05. As a result, we identified 738

upregulated differentially expressed genes (DEGs) and 909

downregulated DEGs (Figure 2B).We performed enrichment

analysis on the DEGs to identify relevant biological functions and

signaling pathways. The gene ontology (GO) analysis revealed

enrichment in channel activity, positive regulation of cell

adhesion, and actin cytoskeleton. Additionally, the Kyoto

Encyclopedia of Genes and Genomes (KEGG) analysis identified

several important signaling pathways, including the p53, cAMP,

MAPK, cell cycle, and PI3K-Akt signaling pathways (Figures 2C, D).
B C

D E F

G

A

FIGURE 1

Cluster analysis and NotchScore. (A) Protein-protein interaction network diagram of Notch-related genes. (B) consensus matrix CDFs from K=2 to 6.
The cumulative distribution functions are shown for varying values of k. CDF: cumulative distribution function. (C) Delta Area Plot, this graph
illustrates the relative change in the area under the cumulative distribution function (CDF) curve when compared to k-1., (D) Heatmap of the matrix
for k = 2. (E) Principal Component Analysis (PCA) based on mRNA expression patterns in LGG. PCA quantifies the differences between two groups of
sample data by extracting two principal components, PC1 (Principal Component 1) and PC2 (Principal Component 2), which capture the largest and
second-largest variations in the data, respectively. (F) Establishment of NotchScore to compare the differences between the two groups.
(G) Heatmap illustrating the expression patterns of Notch-related genes in the two groups. PA-like: Based on the molecular similarity with pilocytic-
astrocytomas. Classic-like: tumors belonging to the classical gene expression signature. Codel: consisting of IDH-mutant-codel LGGs. CIMP-high:
IDH-mutant-non-codel glioma (LGG, GBM) manifesting relatively low genome wide DNA methylation. CIMP-low: IDH-mutant-non-codel glioma
(LGG, GBM) with higher global levels of DNA methylation. Mesenchymal-like: enriched with mesenchymal subtype tumors.
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Moreover, we conducted gene set enrichment analysis (GSEA) and

observed that the CS2 group exhibited upregulation of the ECM-

receptor interaction, PI3K-Akt signaling pathway, and Th17 cell

differentiation (Figures 2E–G).
NotchScore and Notch-related genes are
correlated with TME

Recent studies have demonstrated that T cell antigen receptor

(TCR), CD28, and interleukin-2 receptor activate PI3K through the

phosphorylation and deactivation of PI3K inhibitory molecules.
Frontiers in Immunology 04119
PI3K converts PIP2 into PIP3, which in turn recruits downstream

signaling molecules such as PDK1 and Akt to the membrane and

activates them (14). mTORC2 further activates Akt and promotes

metabolic expansion and T cell effector function (14, 15). The

enrichment pathway analysis showed significant enrichments of the

PI3K-Akt and Th1 and Th2 cell differentiation signaling pathways,

indicating notable differences in immune function between the two

groups. Using GSVA gene set variation analysis, the study found

that compared to the CS1 group, the CS2 group had an upregulation

trend in antigen presentation, white blood cell function, lymphocyte

functions (B cell, T cell, and NK cell), and cell cycle (Figure 3A).

These findings imply potential variations in the tumor immune
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FIGURE 2

Survival analysis and functional specificity analysis of subgroups. (A) Kaplan-Meier curves of overall survival (OS) for the two groups after clustering
analysis. (B) Volcano plot illustrating the distribution of differentially expressed genes. Genes with a P-value< 0.05 and |log2FoldChange| > 1 are
considered differentially expressed, with 738 genes upregulated and 909 genes downregulated. (C) Gene Ontology (GO) enrichment pathway
analysis. The x-axis of the bubble plot represents the proportion of differentially expressed genes in each pathway, while the y-axis represents the
enriched pathways. “Count” indicates the number of differentially expressed genes enriched in each pathway. The color of the circles represents the
-log10(P-value) of pathway enrichment. (D) Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment pathway analysis. (E–G) Pathway
analysis using the gene set enrichment analysis (GSEA) method (CSEA).
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microenvironment between the CS1 and CS2 groups. Therefore, the

study analyzed related immune factors such as immune infiltration

and immune checkpoints. MCPcounter and TIMER were utilized to

assess the immunoheterogeneity between these subtypes and
Frontiers in Immunology 05120
provide a comprehensive overview of distinct immune cell

infiltrations. Specifically, compared to samples with low

NotchScore, samples with high NotchScore showed low levels of

immune cell infiltration, including T cells, cytotoxic lymphocytes,
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FIGURE 3

Immune characteristics of two subclasses in the metadata set. (A) Evaluation of pathway/function activity changes using Gene Set Variation Analysis
(GSVA). (B, C) Analysis of differences in immune cell abundance between different groups using two methods: MCPcounter and TIMER.
(D, E) Expression levels of CD8_T effector factors and immune checkpoints. The x-axis represents different genes, while the y-axis represents gene
expression levels. (F) Univariable cox analysis. (G) Univariable cox analysis. (H) Venn diagram illustrating three genes that meet the criteria for risk
factors, with higher gene expression levels in tumors. High expression of these genes in patient samples is associated with poor prognosis.
(I) Kaplan-Meier curve demonstrating the expression of JAG1 and overall survival (OS) in LGG patients. (J) Differential expression of JAG1 between
normal brain tissue and LGG. (K, L) Correlation between JAG1 expression and immune infiltration levels, as well as the expression of immune
checkpoints. *:P<0.05, **:P<0.01, ***P<0.001.
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macrophages, NK cells, and B cells (Figures 3B, C). Furthermore,

immune checkpoint and CD8 T cell effectors were significantly

upregulated in the group with higher NotchScore (Figures 3D, E).

The TIDE Score Calculation, utilized for evaluating the potential

clinical effectiveness of immunotherapy in various risk groups,

mirrors the potential tumor immune evasion capability (Figure

S1-B). The analysis results suggest an elevated probability of

immune evasion in patients with a high NotchScore. Univariable

analysis and multivariate analysis of the Notch gene set showed that

genes were identified as risk factors for the CS2 group (Figures 3F,

G). The NotchScore value exhibits statistical significance in its

impact on survival time(HR=1.07, 95%CI 1.035-1.10, P<0.001)

(Figure 3G). We then set the criteria for gene selection, focusing

on genes that were not only risk factors for the CS2 group but also

exhibited higher expression levels in tumors and their high

expression in patient was associated with poor prognosis. Venn

diagram analysis revealed that three genes, namely JAG1, MFNG,

and HEYL, met these criteria (Figure 3H). The data analysis

revealed a significant correlation between high JAG1 expression

and poor prognosis in patients. Additionally, the expression of

JAG1 in tumor tissues is elevated compared to normal brain tissues

(Figures 3I, J). Specifically, JAG1 expression showed a positive

correlation with the immune cell infiltrations of various cell types,

including B cells, T cells, neutrophils, macrophages and dendritic

cells. Additionally, There is a positive correlation between mRNA

levels of JAG1 and various immune checkpoint markers, including

CD274, PDCD1, PDCD1-LG2, and HAVCR2 (Figures 3K, L).

These findings show that JAG1 may be a new target for detecting

sensitivity to tumor and immune therapy, as well as for

tumor treatment.
JAG1 silencing reduces Notch
signaling transduction

To evaluate the effects of JAG1 silencing on the cell proliferation

and migration capabilities in low-grade glioma (LGG) cells, we

employed small interfering RNA (siRNA) specifically designed for

JAG1 and transfected it into SW1088 and HS683 cell lines.

Subsequently, we examined the expression of JAG1 after siRNA

interference and confirmed that JAG1 expression was effectively

suppressed both at the mRNA and protein levels (Figures 4A, B).

The downstream factors of Notch signaling pathway including

Hes1, Hey1, and VEGF of the were also examined, and qPCR

results showed that their transcription levels were decreased after

JAG1 silencing, indicating that Notch signal transduction was

inhibited (Figure 4C). MTT assays were further conducted in

order to evaluate the impact of JAG1 silencing on cell

proliferation. The results demonstrated a notable reduction in the

proliferation capacity of HS683 and SW1088 cells compared to the

control group. (Figure 4D). Scratch assays were thereafter

conducted to test JAG1 silencing on the migration ability and

results revealed a decrease in the migration ability of HS683 and

SW1088 cells following JAG1 silencing. (Figures 4E–H).

Furthermore, changes in the cell cycle of HS683 and SW1088

cells after JAG1 silencing were examined. The results indicated a
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rise in the population of cells in the G1 phase, together with a

reduction in cells in the S and G2 phases. These findings suggest a

potential cell cycle arrest effect. (Figures 4I–L). Additionally,

immunoblot results showed that core cell cycle regulating factors

such as MCM2, cyclin D1 and cyclin E1 were downregulated at the

protein level after JAG1 silencing (Figure 4M).
JAG1 expression regulates immune
checkpoint-related genes

To examine the association between JAG1 and immune

checkpoints, this research assessed the mRNA levels of immune

checkpoints. The findings revealed a noteworthy reduction in the

expression of PDL1 and PDCD1 upon JAG1 knockdown. However,

the expression levels of other immune checkpoints remained

unaltered. (Figures 5A, B). Previous research has indicated that

the AKT-mTOR pathway promotes immune evasion in lung

adenocarcinoma by driving PD-L1 expression (16). Furthermore,

the Notch signaling pathway interacts with the PI3K-AKT pathway

to some extent. In this study, we indeed found a strong significance

of the PI3K-AKT signaling pathway in differential gene enrichment

pathways and P-AKT levels were decreased after JAG1 knockdown

(Figure 5C). To investigate the transcriptional regulatory

relationship between JAG1 and PDL1, this study predicted the

transcription factors of PDL1 through cistrome DB (Figure 5D),

and then selected the top 10 ranked transcription factors for

mRNA-level detection. The qPCR results showed that among the

10 transcription factors, C-JUN, NFKB2, and VDR were

downregulated at the mRNA level in HS683 and SW1088 cells

when JAG1 was silenced (Figure 5E). Additionally, we reanalyzed

previous reported CHIP-seq data of C-JUN (GSM1208639), NFKB2

(GSM1208776), and VDR (GSM791404), and discovered that VDR

may exhibit a higher binding peak by binding to the promoter

region of PDL1 (Figures 5F, G). Simultaneously, we observed

distinct binding peaks of VDR in the PDL1 promoter region

across various tissues (Figures S1-C). Since VDR has been shown

to regulate PDL1 transcription (17, 18), our preliminary results

indicate that JAG1 may activate PDL1 transcription through up-

regulation of VDR.
Discussion

The Notch signaling pathway is a conserved signaling pathway

that depends on direct cell-to-cell contact between cells of the same

type or different types for signal transmission (7). The Notch

receptor and ligand can be expressed on the same cell or on

different cells (3). Due to its robust intercellular communication,

the Notch signaling pathway plays an important role in regulating

and controlling cell fate. The Notch pathway has been associated

with various types of cancer including brain cancer, breast cancer,

and lung cancer, among others (3). This provides a solid theoretical

basis for further investigating the Notch signaling pathway in low-

grade glioma (LGG). Our analysis revealed that high expression

levels of Notch-related genes are linked to poor survival and
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reduced immune infiltration. These findings suggest that the Notch

signaling pathway is vital for immune cell differentiation, tumor

microenvironment formation, and tumor development. Analysis

using COX regression and a comparison of Notch gene expression

between normal tissues and tumors revealed that JAG1 expression

is elevated in tumors and is positively associated with a poorer

prognosis. Moreover, JAG1 exhibits a strong correlation with the

immune response. These results suggest the importance of JAG1

in LGG.

In brain and ovarian cancer, JAG1 is strongly expressed in

tumor-associated blood vessels, suggesting its involvement in

angiogenesis (19). Previous studies have demonstrated that

increased JAG1 expression activates the Notch signaling pathway,

promoting the proliferation of invasive cancer cells in

adrenocortical carcinoma (20). Interestingly, a previous

immunohistochemical assay showed an increase in JAG1
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expression with higher WHO grades of gliomas (levels from II to

IV) (21), which indicates JAG1 protein expression maybe associated

with progression of the disease. In the context of LGG, experimental

results indicate that silencing JAG1 reduces the mRNA expression

level of VEGF, a key regulator of angiogenesis, and weakens the

migration ability of HS683 and SW1088 cells (3). Cell cycle analysis

revealed that JAG1 knockdown led to an increased proportion of

cells in the G0/G1 phase. Moreover, the protein levels of cell cycle

regulatory proteins, such as cyclin D1 and cyclin E1, were reduced.

These proteins has been recognized to regulate the transition of G1

to S phase of the cell cycle. These findings suggest that JAG1

potentially influences the proliferation and migration of LGG cells

by modulating downstream activity of the Notch pathway and cell

cycle regulatory proteins, thereby promoting tumor progression.

In addition, the researchers found that soluble monomeric

JAG1 signaling significantly reduced the immunosuppressive
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FIGURE 4

JAG1 regulates the proliferation and migration of LGG cells. (A) qPCR results confirm the effective downregulation of JAG1 in HS683 and SW1088
cells. (B) Western blot results validate the successful silencing of JAG1 in HS683 and SW1088 cells. (C) qPCR analysis reveals the expression levels of
downstream factors (HES1, hey1, VEGF) in the Notch signaling pathway at the RNA level. (D) Impact of JAG1 silencing on the proliferation of HS683
and SW1088 cells. (E, G) Effect of JAG1 silencing on the migration capability of SW1088 and HS683 cells. (F, H) Bar graphs depicting cell migration
rates at 24 hours and 48 hours. (I, K) Flow cytometry analysis investigating the influence of JAG1 silencing on the cell cycle of HS683 and SW1088
cells. (J, L) Bar graphs illustrating the distribution of cells in the G0/G1, S, and G2/M phases. (M) Western blot analysis of key cell cycle regulators.
*:P<0.05, **:P<0.01, ***P<0.001.
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function of Treg cells and increased anti-tumor immunity, further

highlighting the crucial role of Notch signaling and its related

ligands in immunity (22). The study also showed that silencing

JAG1 significantly down-regulated the mRNA levels of PDL1 and

PDCD1 in LGG cells. It has been reported that the activation of the

PI3K-AKT, Wnt, and EGFR pathways in glioma samples can all

promote the upregulation of PD-L1 expression levels (14, 15).

Consistent with these findings, we confirmed the upregulation of

PD-L1 in LGG cells at the protein level. To investigate the

regulatory mechanism of JAG1 on PDL1, we employed cistrome

DB to screen for potential transcription factors that could bind to

the PDL1 gene. After silencing JAG1, the mRNA levels of JUN,

NFKB2, and VDR exhibited a significant decrease. Using the

transcription factor prediction website JASPAR, we predicted the
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binding motifs of VDR with JUN, NFKB2, and VDR, and their

binding with the 5’ promoter region of PDL1. The results showed

multiple predicted binding sites of VDR in the PDL1 promoter

region. Overall, our findings suggest that JAG1 may affect the

transcription of PDL1 by regulating the expression of VDR,

leading to tumor immune escape, promoting tumor cell survival,

and shortening patient survival.

Our study has several limitations. Tumors can exhibit diverse

characteristics in their external and internal microenvironments.

Treating the tumor as a whole may not effectively differentiate the

Notch expression levels and immune status across different tumor

locations. To address this, future studies can explore the application

of single-cell RNA sequencing in combination with spatial

transcriptomics analysis. Moreover, it’s worth noting that the data
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FIGURE 5

JAG1 regulates PDL1 through the PI3K-AKT pathway and VDR. (A, B) qPCR analysis reveals the changes in mRNA expression of immune checkpoint
genes following JAG1 silencing. (C) Western blot analysis demonstrates the protein level alterations of key factors (p-AKT and AKT) in the PI3K-AKT
signaling pathway upon JAG1 silencing. (D) Prediction of transcription factors regulating PDL1 using cistrome DB. (E) qPCR analysis shows the
changes in mRNA expression of transcription factors after JAG1 silencing. (F) Chip-seq analysis investigates the binding sites of transcription factors
with PDL1. (G) Motif analysis predicts the binding sites of PDL1 with VDR. *:P<0.05, **:P<0.01, ***P<0.001.
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and tissues utilized in this study were obtained from public

databases, which may not encompass all the changes occurring in

all relevant regions of LGG cases. Therefore, it is crucial to analyze

multiple datasets from various sources and validate the results. This

should be the focus of future research.

In summary, our LGG classification based on the Notch gene set

provides a clear description of the heterogeneity of the immune

microenvironment in different LGGs. Our study also demonstrates

that JAG1 affects the proliferation of LGG cell lines and PDL1

expression, thus influencing tumor development. This provides

valuable insights for the development of therapeutic drugs

targeting LGG.
Materials and methods

Data collection

In this study, the clinical and RNAseq data of 483 LGG patients

was obtained from the TCGA database. As normal brain tissue

samples were not available in the TCGA LGG dataset, we

downloaded 207 RNA-seq datasets of normal brain tissues as

controls from the GTEX database. Therefore, a total of 483 LGG

and 207 normal samples were included for the analysis. To mitigate

the influence of batch effects, this study employed ComBat from

SVA to process the data. The ChIP-seq data is derived from

cistrome DB (http://cistrome.org/db/).
Protein interaction network

This study analyzed the Notch pathway in low-grade glioma

(LGG) by selecting 43 relevant genes from the HALLMARK

database. Using the R package “Consensus-ClusterPlus” with

parameters reps=1000 and pItem=0.8, the 483 LGG patients were

clustered based on the mRNA levels of these genes. Principal

component analysis (PCA) was conducted to visualize

classification differences among the identified clusters. PCA were

compared using the R packages “FactoMineR”. Survival curves were

compared using the R packages “survival” and “jskm”. The STRING

database was utilized to construct and visualize the interaction

interface of the Notch-related gene set, while GeneMania was used

to visualize protein connections.
NotchScore

In this study, the NotchScore for each patient was calculated

using unsupervised clustering based on Notch pathway-related gene

expression. Common differentially expressed genes (DEGs) were

captured between the clustered groups. The Notch Score was

defined using the Genomic Grade Index (GGI). It involved

multiplying the weights of DEGs with significant differential

expression in the Notch pathway-related gene cluster (PC1/PC2)

by the GGI (i) and summing them to obtain the patient’s Notch
Frontiers in Immunology
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Score. The NotchScore was then used to assess Notch pathway

activity and its relationship with LGG prognosis.

NotchScore =o(PC1i + PC2i)
Functional enrichment analysis and
TME analysis

This study utilized various analytical techniques to investigate

cancer hallmark pathways in LGG patients. The techniques

included GSVA and GSEA for pathway analysis, GO and KEGG

enrichment analyses for gene annotation, TME analysis using the

ESTIMATE package, quantification of immune cell infiltration with

ssGSEA, and evaluation of immune checkpoints. The functional

enrichment analysis and TME analysis were compared using the R

packages “GSEABase”, “limma” and “clusterProfiler”. The TIDE

Score is calculated through the TIDE online calculation website

(http://tide.dfci.harvard.edu/).
Cell culture and treatment

All cell lines were cultured under conditions recommended by

product instructions. HS683 (Yaji Biotechnology, Shanghai, China)

and SW1088 cell (Tongpai Biotechnology, Shanghai, China) were

both cultured in DMEM medium with 10% FBS. The se-quence of

siRNA can be found in Supplementary Table S1 (Geneseeq

Technology, Su-zhou, China). Each well of the 96-well plate was

seeded with 5000 cells and treated with MTT mixed solution on days

0, 2, 4 and 6, followed by 4-hour incubation. After removing the

supernatant, 120ml of DMSO was supplied to dissolve the sediment,

and the OD value was measured (490 nm wavelength) to detect cell

proliferation. When the number of cells reaches 2*106 in the 6-well

plate, the cells should be digested, fixed with 70% ethanol, and then

incubated with PI dye for detecting the cell cycle using a flow

cy-tometer.
Western blotting

Standard Western blotting assay was performed using rabbit

polyclonal anti-JAG1, anti-P27, anti-MCM2, anti-cyclin D1, anti-

cyclin E1, and mouse monoclonal anti-GAPDH purchased (Sanying

Biotechnology,Wuhan, China). Rabbit polyclonal anti-pAKT and anti-

AKT were obtained (Cell Signaling Technology, Massachusetts, USA).

The protein levels were normalized, and quantification analysis was

executed using ImageJ. The bar graph shows fold changes.
RNA extraction, reverse transcription,
and qPCR

In this study, TRNzol was used to extract total RNA from HS683

and SW1088 cells (Tiangen Biotech, Beijing, China). The extracted
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RNA was reverse transcribed into cDNA using HiScript III RT

SuperMix with gDNA wiper (Vazyme Biotech, Nanjing, China).

RT-QPCR was performed using the ABI 7900 RT-PCR system.

The relative mRNA levels of the genes were calculated using the 2-

DDCt method, with GAPDH serving as the internal reference. The

primers used in the study can be found in Supplementary Table S2.
Statistical analysis

The statistical analyses were conducted using RStudio.

Independent sample t-tests were utilized to analyze normally

distributed continuous variables. Apply the Kaplan-Meier method

to analyze the survival of the samples. Statistical significance was

considered as a p-value< 0.05. In the text, p-values are indicated

using asterisks “*”. *:P<0.05, **:P<0.01, ***P<0.001. QPCR, cell

proliferation and cell cycle experiment were performed three

independent times.
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Diffuse intrinsic pontine glioma (DIPG) is an aggressive brain tumour that occurs
in the pons of the brainstem and accounts for over 80% of all brainstem gliomas.
The median age at diagnosis is 6–7 years old, with less than 10% overall survival
2 years after diagnosis and less than 1% after 5 years. DIPGs are surgically
inaccessible, and radiation therapy provides only transient benefit, with death
ensuing from relentless local tumour infiltration. DIPGs are now the leading cause
of brain tumour deaths in children, with a societal cancer burden in years of life
lost (YLL) of more than 67 per individual, versus approximately 14 and 16 YLL for
lung and breast cancer respectively. More than 95 clinical drug trials have been
conducted on children with DIPGs, and all have failed to improve survival. No
single or combination chemotherapeutic strategy has been successful to date
because of our inability to identify targeted drugs for this disease and to deliver
these drugs across an intact blood-brain barrier (BBB). Accordingly, there has
been an increased focus on immunotherapy research in DIPG, with explorations
into treatments such as chimeric antigen receptor T (CAR-T) cells, immune
checkpoint blockades, cancer vaccines, and autologous cell transfer therapy.
Here, we review the most recent advances in identifying genetic factors
influencing the development of immunotherapy for DIPG. Additionally, we
explore emerging technologies such as Magnetic Resonance-guided Focused
Ultrasound (MRgFUS) in potential combinatorial approaches to treat DIPG.

KEYWORDS

glioma, diffuse intrinsic pontine glioma (DIPG), immunotherapy, brainstem, blood-brain
barrier (BBB)

Introduction

Diffuse intrinsic pontine glioma (DIPG) is a brain tumour occurring in the pons of the
brainstem and accounts for over 80% of all brainstem gliomas (Srikanthan et al., 2021).
DIPGs are a subset of diffuse midline gliomas (DMG) and are characterized by the lysine
27 to methionine (K27M) mutation on histone 3 (H3K27M) (International Agency for
Research on Cancer, 2022). The median age at diagnosis is 6–7 years old, with less than 1%
survival after 5 years (Johung and Monje, 2017; Srikanthan et al., 2021). Its location in the
pons makes it impossible to resect the tumour, with chemotherapy and radiotherapy
providing only transient benefits. More than 95 clinical drug trials have been conducted on
children with DIPGs, and all have failed to improve survival. No single or combination
chemotherapeutic strategy has been successful to date because of our inability to identify
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targeted drugs for this disease and to deliver these drugs across an
intact blood-brain barrier (BBB).

Recent advances in immunology have allowed for
improvements to cancer treatment. Immunotherapy focuses on
harnessing the individual’s immune system to eradicate the
tumour, with the characteristics of the tumour-immune
microenvironment (TIME) playing a major role in the efficacy of
these therapeutics (Waldman et al., 2020). Tumours with higher
numbers of immune cells are called “immune-hot” and generally
respond better to immunotherapy. In contrast, those with a low
immune cell population are “immune-cold,” and immunotherapy

has minimal effects as these treatments rely on immune activation to
clear the tumours (Galon and Bruni, 2019). Past studies have shown
DIPG as an “immune-cold” tumour, characterized by a low
population of immune cells and reduced expression of immune
checkpoint molecules, which poses a significant challenge in
immunotherapy treatments in DIPG (Figure 1). In a healthy
individual, the balance between inhibitory and stimulatory
immune checkpoint pathways is maintained such that inhibitory
pathways support self-tolerance and immunosuppression, while
stimulatory pathways are focused on activating the immune
system against foreign antigens (Marin-Acevedo et al., 2018;

FIGURE 1
Overview of current immunotherapeutic approaches in DIPG. Cancer vaccines, antibodies, CAR-T cells, and autologous cell transfers are currently
being investigated as possible immunotherapy for DIPG. Potential target genes include various immune checkpoints and tumour associated antigens.
Drug delivery can be conducted through CED, MRgFUS, or intra-arterial therapy. Created with BioRender.com.
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Zhang and Zheng, 2020). In a tumour context, the downregulation
of immune stimulatory signals and upregulation of suppressive
signals mediated by these checkpoints reduces anti-tumour
activity (He and Xu, 2020; Zhang and Zheng, 2020). By
modulating the signalling of immune checkpoints, overall
immune activation can be increased to kill cancer cells.

Immune checkpoint approaches

In DIPG patients, Hwang et al. (2018) found that inhibition of
PD-1, an immunosuppressive checkpoint molecule, using
pembrolizumab resulted in a worsened condition, while Cacciotti
et al. (2020) and Dunkel et al. (2023) (NCT03130959) found no
significant improvements in survival as well as minimal to no
adverse effects. Overall results for the use of anti-PD1 in DIPG
do not seem promising (Hwang et al., 2018; Cacciotti et al., 2020;
Dunkel et al., 2023). Recent studies have also investigated other
checkpoint molecules such as TIM3, B7-H3, and CD40. TIM3 is an
inhibitory checkpoint expressed on DIPG cells and immune cells
such as microglia and macrophages. Ausejo-Mauleon et al. (2023)
reported that using TIM-3 blockades promotes anti-tumour effects
in immunocompetent DIPG murine models and found enhanced
microglia- and CD8+ T cell-mediated pro-inflammatory immune
responses, which ultimately improved survival (Ausejo-Mauleon
et al., 2023). The differences in efficacy between anti-PD1 and
anti-TIM3 may be attributed to the tumour-immune
microenvironment (TIME) composition. Past research indicates
that the DIPG TIME has low PD-1 expression, while there is a
comparatively higher TIM3 expression (Lin et al., 2018; Ausejo-
Mauleon et al., 2023; Chen et al., 2023). This highlights the role that
macrophages may play in the TIME and is a potential area for
exploration (Lin et al., 2018; Lieberman et al., 2019). B7-H3, also
known as CD276, is expressed on both tumour and antigen-
presenting cells and inhibits the anti-tumour functions of T cells
(Zhang and Zheng, 2020). In the DIPG context, studies have utilized
convection-enhanced delivery in combination with the monoclonal
B7-H3 antibody, 8H9, as well as the development of anti-B7-
H3 CAR-T cells (Souweidane et al., 2018; Vitanza et al., 2023)
(NCT04185038). Clinical trials are currently ongoing for various
forms of B7-H3-targeting CAR-T cells, such as the single target B7-
H3 and the quad-target B7-H3, EGFR806, HER2, and IL13-Zetakine
(Quad) CAR-T Cell (NCT04185038, NCT05768880). Preliminary
results of the anti-B7-H3 CAR-T cell study showed improved
survival (Vitanza et al., 2023). Extended survival was also
observed in the 8H9 antibody study, although selection bias may
be present due to the study’s design (Souweidane et al., 2018).

The indoleamine 2,3-dioxygenase (IDO) pathway is primarily
involved in the conversion of tryptophan into kynurenines, but
indoleamine 2,3-dioxygenase 1 (IDO1), an enzyme in the pathway,
also acts as an immune checkpoint by modulating
immunosuppressive responses (Zhai et al., 2018). A clinical trial
(NCT02502708) evaluating indoximod, an IDO pathway inhibitor,
combined with the chemotherapy drug temozolomide and radiation
recently published its results. Overall, the authors concluded that the
combination treatment can be tolerated, with variable disease and
immune responses observed among the participants. Further studies
must be conducted to evaluate treatment efficacy (Johnson et al.,

2023). Contrary to the previously mentioned immune checkpoints,
CD40 is typically involved in the stimulatory pathway and is
expressed on immune cells to promote tumour-killing activity.
An agonistic CD40 antibody, APX005M, has been developed to
enhance immune activity against the tumour and induce tumour cell
apoptosis. Studies have confirmed preliminary safety, with efficacy
against DIPG being tested (Lindsay et al., 2020) (NCT03389802).

Targeting of tumour-associated antigens

Tumour-associated antigens (TAAs) are also potential targets in
immunotherapy, ranging from antigens seen across different cancer
types to DIPG-specific TAAs. GD2 is a disialoganglioside that is
highly expressed in solid tumours, including DIPG, small cell lung
cancer, and melanoma; GD2 expression in normal tissue is limited,
making GD2 an ideal target for immunotherapy with minimal off-
target effects (Mount et al., 2018; Nazha et al., 2020). Clinical trials
are ongoing for anti-GD2 CAR-T cells (NCT04196413) and C7R-
coexpressing anti-GD2 CAR-T cells (NCT04099797), with clinical
and radiological improvements observed in DIPG/DMG patients
enrolled in the anti-GD2 CAR-T cells trial (Majzner et al., 2022).
Anti-GD2 CAR-T cells and anti-GD2 CAR NK-92 cells are effective
in in vivo assays using patient-derived DIPG cells and DIPG cell
lines (Mount et al., 2018; Mount et al., 2018; Zuo et al., 2023). The
Wilms’ tumor 1 gene (WT1) is an oncogene in various cancers
including leukemia, breast cancer, glioblastoma, and DIPG.
Overexpression of WT1 is associated with these cancers, and
targeted protein knockdown inhibits cancer growth (Qi et al.,
2015). A completed clinical trial that studied DSP-7888, a cancer
vaccine that induces WT1-specific T cells, showed improved
survival in DIPG patients compared to controls (Fujisaki et al.,
2018) (NCT02750891). Separately, an ongoing clinical trial
investigates vaccination with WT1 mRNA-loaded autologous
monocyte-derived dendritic cells (DCs) as a potential therapeutic
for DIPG. It is hypothesized that the DC vaccine will act as an
adjuvant to boost anti-tumour immune activity with minimal side
effects, given its specificity toWT1-expressing cells (NCT04911621).
Epidermal growth factor (EGFR) is another common TAA
expressed in tumour cells with limited expression in normal
tissue. EGFR mutations leads to constitutive activation of the
gene and results in cancer phenotypes, with EGFR
overexpression observed in DIPG (Li et al., 2012). More recent
studies focus on using nimotuzumab, an anti-EGFR, combined with
radiation or radiochemotherapy (Fleischhack et al., 2019)
(NCT04532229). While radiation with nimotuzumab does not
significantly improve survival compared to radiochemotherapy
alone, side effects and adverse events were significantly reduced.
Overall, the DIPG patients had an improved quality of life, albeit no
changes in survival (Fleischhack et al., 2019). The HER2 protein is a
member of the EGFR family, and its overexpression is seen in many
solid tumours, including DIPG, with breast cancer being the most
notable (Oh and Bang, 2020). Wang et al. (2023a) investigated the
use of anti-HER2 CAR-T cells as a therapeutic in DIPG and other
DMGs. Results showed HER2-specific immune targeting and
cytokine release when co-cultured in vitro with patient-derived
DIPG cells. Anti-HER2 CAR-T cells also reduce tumour size in
in vivo DIPG xenografts. The authors concluded that the CAR-T
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cells may show efficacy in DIPG patients, although a clinical trial is
needed to confirm their hypothesis (Wang et al., 2023a). Vascular
endothelial growth factor (VEGF) is a molecule regulating
angiogenesis. However, in a tumour context, this is harnessed by
the tumour cells to improve tumour angiogenesis and blood vessel
accessibility, ultimately supporting tumourigenesis (Shibuya, 2011).
A recently completed clinical trial with results published in
2020 showed that the anti-VEGF, bevacizumab, in combination
with valproic acid and radiation, was well tolerated but did not
improve survival (Su et al., 2020) (NCT00879437). In addition, an
ongoing clinical trial will evaluate the survival of DIPG patients
when treated with bevacizumab in combination with low-dose
radiation (NCT04250064).

Survivin is an inhibitor of the apoptotic pathway and can be
found in most cancers (Chen et al., 2016). It is also involved in
various cell cycle and signalling pathways such as p53, Wnt, and
Notch. Mutations in survivin allow the tumour cells to persist as
apoptosis is inhibited (Chen et al., 2016). SurVaxM, a vaccine that
immunizes patients with survivin proteins, has been developed. This
allows the immune system to recognize survivin-expressing cells as
“harmful” and kill the cells, leading to an anti-tumour effect. The
clinical trial for SurVaxM is currently in progress and is combined
with adjuvant Montanide ISA 51 administration to boost immune
responses (NCT04978727). As the hallmark mutation in DIPG,
many therapeutic developments have also focused on H3K27M-
targetted therapies. This includes the use of H3K27M antigen
vaccines (NCT04749641) (Zhang et al., 2023), CAR-T cells
(Wang et al., 2023b), and combination therapies with immune
checkpoint blockades (NCT02960230) (Grassl et al., 2023).
Preliminary data from the NCT04749641 trial testing H3K27M
antigen vaccines indicates that survival may be improved compared
to other therapies (Zhang et al., 2023). Anti-H3.3K27M CAR-T cells
that are specific to HLA-Ap02:01 have recently been developed
(Wang et al., 2023b). HLAs, also known as human leukocyte
antigens, are proteins that bind to peptides and subsequently
present them on the cell surface for T cell recognition (Kulski
et al., 2022). In this case, the CAR-T cells would only be able to
recognize the H3.3K27M peptide in the context of the HLA-Ap02:
01 complex. Wang et al. (2023b) evaluated the binding and
recognition capacity of the CAR-T cells using DIPG cell lines.
No binding was detected, and upon further investigation, they
found that H3.3K27M peptides were not endogenously presented
on HLA-Ap02:01 complexes in the DIPG cell lines. The authors
concluded that anti-H3.3K27M CAR-T cells specific to HLA-Ap02:
01 would not be a feasible immunotherapy for DIPG (Wang et al.,
2023b). An ongoing clinical trial is investigating the safety and
immune activity of a combination therapy using the H3.3.K27M
peptide vaccine, poly-ICLC, and the PD-1 blockade antibody
nivolumab. Poly-ICLC acts as an adjuvant to boost immune
activity. At the same time, nivolumab can block
immunosuppressive signalling, which should enhance the anti-
tumour activity induced by the H3.3.K27M peptide vaccine
(NCT02960230). Separately, Grassl et al. (2023) evaluated the
combination therapy of H3K27M peptide vaccines with anti-PD-
1 in DMG; some participants had tumours in the pons, indicating
DIPG. Due to regulations, the authors could not conduct their study
using a consistent anti-PD-1 treatment. Thus, the drugs used were
based on availability. Overall, results indicate that the combination

therapy is both safe and immunogenic. Additionally, peripheral
immune activity decreased over time, along with the observed
tumour regression, and tumour progression coincided with
decreased immune responses (Grassl et al., 2023).

Other cell-based therapies

Autologous cellular vaccines and cell transfers allow for
targeting of tumour- and patient-specific antigens. In cellular
vaccines, the immune cells and tumour lysate containing the
antigens are derived from patients. The cells are then incubated
or “pulsed” with the lysate to improve tumour antigen-specificity
and re-infused into the patient (Alaniz et al., 2014; Yan et al., 2020).
Currently, the immunogenicity and safety of cellular vaccines have
been shown in non-DIPG gliomas (Yan et al., 2020). An ongoing
clinical trial (NCT04837547) is focusing on vaccination with
autologous dendritic cells that have been pulsed with total
tumour messenger ribonucleic acid (TTRNA-DC) derived from
the patient, this allows the dendritic cells to become loaded with
the antigens and can present them to T and B cells when re-infused
into the patient (Yan et al., 2020). The same trial will stimulate
autologous T lymphocytes ex vivo using total tumour messenger
ribonucleic acid (TTRNA-xALT) and similarly transfer back into
the patient. This clinical trial will primarily assess the safety and
feasibility of these therapies. Separately, another clinical trial also
focuses on vaccination with TTRNA-DC, but in combination with
the cytokine GM-CSF as an adjuvant to boost immune response
(NCT03396575). Benitez-Ribas et al. (2018) also published
preliminary results demonstrating the safety of autologous
dendritic cells pulsed with tumour lysates derived from allogenic
DIPG cell lines (Benitez-Ribas et al., 2018).

There has also been interest in natural killer (NK) cells for cell
transfers other than CAR-T cells. NK cells have increased anti-
tumour activity compared to T cells in glioblastoma due to T cell
targeting mutations in the tumour (Lieberman et al., 2019; Galat
et al., 2023). Galat et al., 2023 differentiated human pluripotent stem
cells into NK cells and assessed their cytotoxicity in vitro using DIPG
cell lines. They found that the cells could successfully engraft in
peripheral blood samples and are cytotoxic against DIPG cells. A
separate study is focusing on AloCELYVIR, a novel therapy where
oncolytic Adenovirus-infected bone marrow-derived allogeneic
mesenchymal stem cells are transfused into the patient. These
cells can enhance anti-tumour responses and transport oncolytic
molecules to various tumour sites, enabling the killing of cancer cells
in locations that are more difficult to reach with conventional
therapy. Assessments for the safety and efficacy of this therapy in
DIPG patients are currently in progress (NCT04758533).

Combination therapies

There are also studies focusing on combination therapies, with the
majority involving immune checkpoint blockades and cancer vaccines.
A clinical trial evaluated the efficacy of nivolumab (anti-PD-1) with
ipilimumab (anti-CTLA-4). However, no significant improvements in
survival compared were noted (NCT03130959) (Dunkel et al., 2023). A
novel neo-antigen heat shock protein vaccine (rHSC-DIPGVax)
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targeting different DIPG/DMG neo-epitopes has also been developed.
Investigation into the vaccine’s safety and tolerability in combination
with balstilimab (anti-PD-1) and zalifrelimab (anti-CTLA-4) is currently
ongoing (NCT04943848). Dual checkpoint inhibitors have been shown
to improve objective response rates in cervical cancer compared to
standard treatments, although only in patients with PD-1-expressing
tumours (O’Malley et al., 2022). Several clinical trials have also
investigated combination therapies such as bevacizumab (anti-VEGF)
with cetuximab (anti-EGF) (NCT01884740), as well as nivolumab (anti-
PD-1) with bempegaldesleukin, which is an immunostimulatory
IL2 pathway agonist (NCT04730349), but have since been terminated
due to low accrual (NCT01884740) and change in business objectives
(NCT04730349).Nivolumabwith bempegaldesleukin showed efficacy in
various solid tumours regardless of the PD-1 expression levels (Diab
et al., 2020); this may be a potential area to explore as DIPG typically has
low PD-1 presence (Lin et al., 2018).

Challenges

A major challenge with DIPG treatments is the delivery method, as
the BBB restricts the penetrance of drugs, antibodies, or exogenously
administered molecules. More than 95 clinical trials attempted to date
have shown no improvements in survival forDIPGpatients, likely due to
insufficient drug delivery to the target site and, as such, unable to reach
therapeutic concentrations. Although recent advances may alleviate this
issue, novel delivery methods include convection-enhanced delivery
(CED), intra-arterial therapy, and magnetic resonance-guided focused
ultrasound (MRgFUS) (Haumann et al., 2020; Pandit et al., 2020). CED
utilizes hydraulic pressure to deliver drugs through a microcatheter
driven by a pump; pressure allows for homogenous drug distribution
throughout the tumour. Several clinical trials have verified the safety and
feasibility of this method in DIPG. Still, the invasive nature of the
microcatheter insertion and drug leakage into non-target areas may be
causes for concern, especially for off-target effects in healthy tissue (Zhou
et al., 2017). In intra-arterial therapy, the drug is injected into an artery
close to the tumour, followed by a hyperosmolar drug to open the BBB
(Haumann et al., 2020; Pandit et al., 2020). An issue with this method is
that the opening of the BBB is non-selective and dependent on the brain
region, which allows for the passage of other agents as well as increases in
brain fluid due to hyperosmotic-like conditions and impaired
homeostasis of endothelial cells (Ikeda et al., 2002; Pandit et al.,
2020). These side effects may lead to neurological deficits and
toxicity (Pandit et al., 2020). However, conflicting evidence indicates
that intra-arterial therapy is safe and feasible (Uluc et al., 2022).MRgFUS
is a non-invasive method in which microbubbles are intravenously
injected and oscillate upon encountering a focused ultrasound field;
allowing for safe and transient opening of the BBB (Alli et al., 2018;
Haumann et al., 2020; Pandit et al., 2020). The ultrasound beam can be
targeted specifically to cover the tumour location, thus minimizing off-
target effects. Various therapeutics can be delivered using MRgFUS,
including chemotherapy agents, nanoparticles, antibodies, and gene

vectors (Haumann et al., 2020). Safety, feasibility, and efficacy using
chemotherapy agents have been demonstrated in DIPG mouse models
(Alli et al., 2018; Englander et al., 2021; Ishida et al., 2021). In addition,
our group has recently initiated a clinical trial evaluating the delivery of
doxorubicin, a BBB-excluded drug, to DIPG patients using MRgFUS
(NCT05615623). Regarding immunotherapy, MRgFUS has also been
shown to affect and modulate the immune system (Kovacs et al., 2017;
Choi et al., 2022), although further investigation is needed to characterize
the immune changes in DIPG.

Conclusion

The numerous studies and clinical trials focusing on
immunotherapeutics in DIPG open up exciting possibilities for
the future. Drug delivery methods can also be assessed in
combination with immunotherapeutic approaches to maximize
safety and efficacy in prolonging the survival of DIPG patients.
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