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Editorial on the Research Topic

E�cient artificial intelligence (AI) in ophthalmic imaging

Techniques like optical coherence tomography (OCT), fundus photography, and

fluorescein angiography produce a wealth of visual data, offering a detailed view of the eye’s

structure and function. These imaging tools are essential for identifying and tracking the

progression of conditions such as age-related macular degeneration, diabetic retinopathy,

and glaucoma. While ophthalmologists are well-trained in reading these images, manually

analyzing large datasets can be slow, prone to mistakes, and can vary between observers.

Recently, AI tools have shown great promise in supporting ophthalmologists, helping to

speed up and improve the accuracy of their diagnoses. This Research Topic comprises

nine original research articles covering several different topics using efficient AI, including

diabetic macular edema, large language models, macular axial length measurement, ocular

surface disease diagnosis, diabetic retinopathy, retinal detachment management, retinal

vessel, and microaneurysms segmentation, fundus image registration. A summary of these

articles is presented as follows.

Wang et al. introduced an automated framework leveraging deep learning

advancements to extract twelve 3D parameters from segmented hyperreflective foci

in optical coherence tomography (OCT) images. This development is crucial for

understanding various ocular diseases.

Retinal vessels are vital biomarkers for detecting conditions like hypertensive

retinopathy. Manual identification is labor-intensive and time-consuming. Liu X. et al.

addressed this by proposing a heterogeneous feature cross-attention neural network for

retinal vessel segmentation in color fundus images.

Image registration aligns multiple images from different viewpoints or spaces,

which is essential in vision applications. Chen et al. introduced an AI-driven

approach to unsupervised fundus image registration using a Generalized Polynomial

Transformation (GPT) model. Trained on a large synthetic dataset, GPT simulates diverse

polynomial transformations.

Microaneurysms, early indicators of diabetic retinopathy, are challenging to detect due

to low contrast and similarity to retinal vessels in fluorescein fundus angiography (FFA)
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images. Li J. et al. presented a model for automatic microaneurysm

detection to address these challenges.

Retinal detachment (RD) is a common sight-threatening

condition in emergency departments. Early postural intervention

based on detachment regions can improve visual prognosis. Li H.

et al. developed a weakly supervised model using 24,208 ultra-

widefield fundus images to localize and outline anatomical RD

regions.

The increasing prevalence of diabetic retinopathy-related (DR-

related) diseases among younger individuals poses a significant

threat to eye health. Zhao et al. proposed the Neighbored Attention

U-Net (NAU-Net) to balance identification performance and

computational cost for DR fundus image segmentation.

Pterygium, an ocular surface disease characterized by

fibrovascular overgrowth invading the cornea, requires accurate

diagnosis. Wan et al. proposed a dual-branch network reinforced

by a PFM block (DBPF-Net) for the four-way classification of

ocular surface diseases, utilizing a conformer model backbone.

Axial length (AL) is significant for defining the eye’s refractive

status and is associated with retinal and macular complications.

Excessive AL elongation, often over 26.0 mm, increases the risk

of posterior segment complications. Liu J. et al. developed deep

learning models using macular OCT images to estimate ALs in eyes

without maculopathy.

Jin et al. discussed the promising role of large language models

(LLMs) in shaping AI’s future in ophthalmology. By leveraging

AI, ophthalmologists can access information, enhance diagnostic

accuracy, and provide better patient care. Despite challenges,

ongoing AI advancements and research pave the way for next-

generation AI-assisted ophthalmic practices.
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Automated evaluation of retinal 
hyperreflective foci changes in 
diabetic macular edema patients 
before and after intravitreal 
injection
Xingguo Wang 1,2†, Yanyan Zhang 3†, Yuhui Ma 2, 
William Robert Kwapong 4, Jianing Ying 5, Jiayi Lu 1,2, 
Shaodong Ma 2, Qifeng Yan 2, Quanyong Yi 3* and Yitian Zhao 1,2*
1 Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, China, 2 Institute of 
Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy 
of Sciences, Ningbo, China, 3 The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo, 
China, 4 Department of Neurology, West China Hospital, Sichuan University, Chengdu, China, 5 Health 
Science Center, Ningbo University, Ningbo, China

Purpose: Fast and automated reconstruction of retinal hyperreflective foci (HRF) 
is of great importance for many eye-related disease understanding. In this paper, 
we introduced a new automated framework, driven by recent advances in deep 
learning to automatically extract 12 three-dimensional parameters from the 
segmented hyperreflective foci in optical coherence tomography (OCT).

Methods: Unlike traditional convolutional neural networks, which struggle with 
long-range feature correlations, we  introduce a spatial and channel attention 
module within the bottleneck layer, integrated into the nnU-Net architecture. 
Spatial Attention Block aggregates features across spatial locations to capture 
related features, while Channel Attention Block heightens channel feature 
contrasts. The proposed model was trained and tested on 162 retinal OCT volumes 
of patients with diabetic macular edema (DME), yielding robust segmentation 
outcomes. We further investigate HRF’s potential as a biomarker of DME.

Results: Results unveil notable discrepancies in the amount and volume of HRF 
subtypes. In the whole retinal layer (WR), the mean distance from HRF to the 
retinal pigmented epithelium was significantly reduced after treatment. In WR, 
the improvement in central macular thickness resulting from intravitreal injection 
treatment was positively correlated with the mean distance from HRF subtypes 
to the fovea.

Conclusion: Our study demonstrates the applicability of OCT for automated 
quantification of retinal HRF in DME patients, offering an objective, quantitative 
approach for clinical and research applications.

KEYWORDS

diabetic macular edema, hyperreflective foci, optical coherence tomography, artificial 
intelligence, deep learning
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1. Introduction

Diabetic retinopathy (DR) is one of the most common complications 
of diabetes (1). With about 1 in every 10 diabetic patients developing 
visual impairment due to DR (2). One of the leading causes of visual 
impairment in DR patients is diabetic macular edema (DME) (3). It is 
suggested that in DR patients, disruption of the blood-retina barrier 
leads to increased fluid leakage within the retina, resulting in the 
development of DME (4) ultimately resulting in visual loss.

In recent decades, advances in high-resolution fundus imaging 
techniques have led to the discovery of specific imaging features of 
retinal diseases, which may serve as diagnostic, predictive, and 
prognostic biomarkers for this disease (5). Optical coherence 
tomography (OCT) is an imaging tool that can help in the visualization 
of the intra-retinal layers. Due to its non-invasiveness, affordability 
and high resolution, this imaging tool is suggested as the gold standard 
for the diagnosis and monitoring of DME (6). ‘Hyperreflective foci’ 
(HRF) is a term denoting any hyperreflective lesion, focal or dotted 
appearance, seen at any retinal layer on OCT images (7). Reports 
suggest that HRF is associated with lipid extravasation (7), microglia 
cells (8), migrating retinal pigment epithelium (RPE) cells (9), 
degenerated photoreceptor cells, and visual prognosis (10), increasing 
its clinical significance. In the last decade, it was shown that the 
presence of HRF was associated with DME, and several more recent 
studies have indicated that HRF could serve as a promising biomarker 
for investigating DME, due to its association with the soluble cluster 
of differentiation 14 (CD14) pro-inflammatory cytokine expressed by 
glial cells, monocytes, and macrophages (8, 11).

However, manual annotation of HRF in OCT is time-consuming, 
and sometimes excessively subjective. With the rapid development of 
computer science, there is great potential for automatic segmentation 
and quantification of HRF in OCT images, with benefits for clinical 
practice. The segmentation algorithms for HRF can be categorized 
into two primary groups: traditional segmentation algorithms and 
deep learning-based segmentation methods. Traditional HRF 
segmentation approaches usually require manual parameter tuning 
and extensive prior knowledge. Okuwobi et  al. (12) employed an 
automated grow-cut algorithm for HRF segmentation. It is difficult for 
traditional automated methods to perform accurate HRF 
segmentation due to boundary blurring and speckle noise within HRF 
images. Okuwobi et al. (13) introduced another component tree-based 
method to segment HRF by extracting the extreme regions from the 
connected areas. Still, the method is complicated and relies on 
handcrafted features. Deep learning techniques have achieved 
significant success in medical image segmentation. Yu et  al. (14) 
modified GoogLeNet for HRF segmentation in DR using pixel-level 
predictions of small image patches. However, this method partially 
addresses the class imbalance issue, leading to the mis-segmentation 
of large blood vessels or low-contrast backgrounds as HRF. Xie et al. 
(15) modified 3D-UNet for HRF segmentation, introducing denoised 
and enhanced OCT images as a dual-channel input and dilation 
convolution in the final layer of the encoder to expand the receptive 
field. Nevertheless, this approach overlooks false positive outcomes 
caused by high-frequency noise in the NFL/GCL and IS/OS layers. 
Yao et al. (16) modified U-Net for HRF segmentation, enhancing 
gradient propagation by replacing ordinary convolution blocks with 
dual residual modules and integrating adaptive modules within the 
bottleneck layer to fuse local features and global dependencies. 

However, this network ignores the inappropriateness of employing 
deformable convolutions for the segmentation of HRF due to its small 
size and lack of shape information. Wei et al. (17) preprocessed images 
using Non-local means (NLM) filters and adopted a patch-based 
segmentation approach, employing a lightweight network for 
automated HRF segmentation. This network relies on the patch-based 
method, which further diminishes the limited semantic information 
inherent in HRF.

In this study, we presented a deep learning-based framework for 
the quantitative analysis of HRF in OCT images. Specifically, the main 
contributions of our article can be summarized as follows:

 • We achieve excellent HRF segmentation performance by 
combining nnU-Net (18) adaptability with the advanced long-
range feature-capturing abilities of channel and spatial 
attention modules.

 • Using the proposed method, we  extracted 12 parameters to 
characterize HRF morphology and distribution, showing 
significant differences in volume and amount among the three 
HRF sub-types in retinal OCT images.

 • Using the extracted 12 HRF parameters, we evaluated changes in 
HRF before and after treatment and their correlation with central 
macular thickness (CMT) improvement.

2. Materials and methods

This is a retrospective, longitudinal study conducted at the 
Affiliated Ningbo Eye Hospital of Wenzhou Medical University 
(Ningbo, China) from November 2020 to July 2022. This study was 
approved by the ethics committee of the Affiliated Ningbo Eye 
Hospital of Wenzhou Medical University (ID: 20210327A), and 
informed written consent was obtained from each participant involved 
in our study according to the Declaration of Helsinki.

2.1. DME participants

Type 2 diabetes mellitus (DM) patients were recruited and diagnosed 
by an endocrine specialist. Demographic and clinical information from 
all patients such as age, gender, duration of DM, and systolic/diastolic 
blood pressure were recorded. All patients had an extensive ophthalmic 
examination, involving slit-lamp biomicroscopy, and assessment of 
intraocular pressure, axial length, and visual acuity. The inclusion criteria 
of our patients are as follows: 1. Diagnosed with type 2 DM; 2. 
Age > 18 years; 3. Macular edema, defined clinically and by a retinal 
thickness of >250 μm in the central subfield (19); 4. Could cooperate with 
OCT imaging. Exclusion criteria were as follows: 1. Myopia; 2. Presence 
of media opacities; 3. Inability to cooperate with OCT imaging.

2.2. OCT image acquisition

3D retinal imaging was performed using the OCT tool (Spectralis 
HRA + OCT; Heidelberg Engineering, Heidelberg, Germany, software 
version V6.16.2). This imaging equipment has a scanning protocol of 
40,000 A-scans/s (20), with an axial resolution of 3.9 μm and a lateral 
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resolution of 11.4 μm in high-speed mode. We acquired OCT images 
covering fovea-centered regions of 4.5 × 4.5 mm2, with 384 B-scans, 
and 6 × 6 mm2, with 512 B-scans. OCT images showing retinal 
abnormalities such as age macular degeneration (AMD), severe 
cataract, and glaucoma; images with signal quality less than 7; or with 
OCT artifacts present, were excluded. OCT data displayed in our 
study followed the OSCAR-IB quality criteria (21) and APOSTEL 
recommendation (22). Patients were excluded if their CMT did not 
increase after treatment with anti-vascular endothelial growth factor 
(anti-VEGF).

2.3. HRF and retinal layers segmentation

We introduced an automatic tool for HRF analysis in OCT 
images. A deep learning-based approach was employed for precise 
segmentation of HRF, boundaries of inner retina (IR) and outer retina 
(OR) in OCT images. The resulting segmentations are then used to 
calculate HRF parameters.

2.3.1. Hyperreflective foci segmentation
HRF was defined as discrete and well-defined lesions distributed 

between the in-ternal limiting membrane (ILM) and retinal 
pigmented epithelium (RPE), with similar reflectivity to the RPE layer 
(8). Considering that the most HRFs cross 2–4 B-scans (15), 
we randomly selected 8 consecutive B-scans from each OCT volume 
for manual annotations of HRF. Two senior ophthalmologists made 
manual annotations of HRF on 140 OCT volumes, and their consensus 
was defined as the ground-truth. 112 OCT volumes were randomly 
selected for training: the rest were used for validation. The best-
performing model during training was then used for the evaluation of 
HRF segmentation in intact OCT data from all participants, across 22 
OCT volumes from 11 eyes and a total of 9,216 B-scans. Figure 1A 
shows the automated segmentation results indicating HRF. Section 2.4 
gives a detailed description of the proposed approach.

2.3.2. Inner and outer retinal layers segmentation
The distribution of HRF in the IR and OR, and their downward 

shift, have been previously studied (23). The IR region is defined as the 
region between the upper boundary of the ILM and the upper 
boundary of the outer plexiform layer (OPL), while the OR region is 
defined as the region between the upper boundary of the OPL and the 
lower boundary of the RPE (24). The whole retinal layer (WR) region 
is then defined as including both IR and OR. When HRF cross the 
upper boundary of OPL, they are considered located in the OR region. 
The IR and OR boundaries of 1,120 OCT images randomly selected 
from the training and validation dataset in section 2.3.1 were manually 
annotated by a senior ophthalmologist (Y.Y.Z). We used 896 images 
for training and the rest for validation. The evaluation dataset is also 
the same as in section 2.3.1. Figure 1B illustrates an example of IR and 
OR segmentation in OCT images.

2.4. Methods

2.4.1. Network architecture
In this research, we  modified the nnU-Net, to, respectively, 

perform two segmentation tasks: hyperreflective foci segmentation 

and retinal layer segmentation. The framework comprises a basic 
U-Net architecture library that includes 2D and 3D version.

For the retinal layer segmentation task, we modified the 2D version 
of nnU-Net as the underlying network topology. The network 
architecture is shown in Figure 2. The network consists of six symmetric 
encoder-decoder layers with skip connections, which provides detailed 
features from the encoder to the decoder. A 384 × 384 patch with 3 
channels is first input to one 3 × 3 convolution with stride 1 to obtain the 
low-level feature map with 32 channels. In the encoder, each layer 
contains two 3 × 3 convolutions with stride 1 followed by one 3 × 3 down-
convolution with stride 2. In the decoder, each layer contains a 2 × 2 
up-convolution with stride 2 followed by two 3 × 3 convolutions with 
stride 1. Finally, the feature map of the last decoder layer is fed into one 
1 × 1 convolution with stride 1 to output the segmentation map.

Convolutional neural networks with U-Net structure have higher 
inductive bias, but lack the ability to capture long-distance dependent 
features. Inspired by CS2-Net (25), we embed a spatial and channel 
attention (SCA) module integrating channel attention and spatial 
attention mechanisms at the bottleneck layer. Specifically, the features 
output by the encoder are fed into two sub-modules of SCA in parallel. 
Spatial Attention Block (SAB) aggregates features at each spatial location 
to correlate similar features, while Channel Attention Block (CAB) 
enhances the contrast of each channel feature. The spatial attention 
matrix models the spatial relationship between pixel features. The 
acquisition of intra-class spatial association can be expressed as follows:
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where S x y,( ) represents the influence of the y position on the x 
position. N represents the number of features. T denotes matrix 
transposition. Qy and Kx represent two new feature maps generated 
from input features, representing the vertical and horizontal directions 
of structural features. The channel attention matrix enhances similar 
channel features and reduces different channel features, which can 
be expressed as follows:
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where C x y,( ) represents the association between the features of the 
x-channel and y-channel. C denotes the number of channels. T represents 
matrix transpose. Fx and Fy represent the original input features.

For the HRF segmentation task, we have extended the modified 
nnU-Net from 2D to 3D. To achieve this, we have replaced all the 2D 
operations in both the encoder and decoder modules with 3D ones. 
Additionally, we have incorporated the 3D version of the SCA module 
into the bottleneck layer of the network. The detailed network 
architecture is illustrated in Figure 3.

All convolutions in the encoder and decoder adopt the form of 
Convolution-InstanceNorm-LeakyReLU, which are different from 
that in the vanilla architecture. Specifically, LeakyReLU (negative 
slope = 0.01) is used instead of ReLU, and instance normalization (26) 
is used instead of batch normalization (27). To train the network, the 
framework adopts a combination of dice coefficient loss and cross-
entropy loss:
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   total dice CE= +  (3)

The dice loss formula used here is a variant of that used in 
Drozdzal et al. (28), and it is implemented as follows:
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where u ∈ RI × K denotes the softmax output of the network, v ∈ RI × K 
denotes the one-hot encoding of the ground truth, I  represent the 
number of pixels in a training batch and K represents the number 
of categories.

2.5. Definitions of quantitative parameters

In this study, we analyzed changes in HRF’s morphology and 
distribution in OCT images before and after IVI treatment. A previous 
study limited the maximum diameter range of HRF to 20–50 μm, 
which excludes the other two signals (8), refers to HRF <20 μm 

and > 50 μm, respectively. These signals were considered small noise 
signals (NS) in OCT images, and as hyperreflective clumps (HC) that 
appear as hard exudates in fundus images, respectively. By contrast, 
our study included all three types of these HRFs, allowing us to 
comprehensively investigate their differences in terms of number, 
volume, and spatial distribution. To this end, we first divided HRF into 
three types: NS, hyperreflective dots (HD), and HC, which are, 
respectively, defined as simply connected regions with a diameter 
range 0–20 μm, 20–50 μm, and greater than 50 μm. We then focused 
on 12 parameters that describe the distribution and morphological 
characteristics of these HRF in the retinal regions to be analyzed, as 
depicted in Figures 1C–F. Figures 1E,F demonstrate a 3D volume 
reconstruction case before and after IVI treatment. Following previous 
studies (8, 29), we  selected a circular range of 3 mm in diameter, 
centered on the central macular region, for assessment of horizontal 
B-scans across the macular region. This region was used for analysis 
to ensure consistency in the region of interest across all participants.

2.5.1. Morphology-related parameters

 ‐ Noise Signal Quantity (QNS): Number of NS within the 
analyzed region.

FIGURE 1

Morphology and distribution-related parameters used in quantitative measurements. (A) Shows the segmentation of HRF with NS in yellow, HD in 
green, and HC in red. (B) Shows the segmentation of the retina, with the inner layer in green and the outer layer in red. (C) Shows the distance 
parameter for the foveal direction of HRF. The distance between NS and fovea is shown in yellow, the distance between HD and fovea is shown in 
green, and the distance between HC and fovea is shown in red. The distance is measured in μm. (D) Shows the distance parameters between HRF and 
RPE. The distance between NS and RPE is shown in yellow, the distance between HD and RPE is shown in green, and the distance between HC and 
RPE is shown in red. The distance is measured in μm. (E,F) illustrate three-dimensional volume-rendered optical coherence tomography at the initial 
visit and six months after the initial visit, with NS in yellow, HD in green, and HC in red. For this case, the number parameters (QNS , QHD, QHC), and 
volume parameters (VNS , VHD, and VHC) decreased.
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 ‐ Hyperreflective Dots Quantity (QHD): Number of HD within the 
analyzed region.

 ‐ Hyperreflective Clumps Quantity (QHC ): Number of HC within 
the analyzed region.

 ‐ Noise Signal Volume (VNS ): Volume of NS within the analyzed 
region in μm3.

 ‐ Hyperreflective Dots Volume (VHD): Volume of HD within the 
analyzed region in μm3.

FIGURE 2

Architecture of modified nnU-Net (2D version).

FIGURE 3

Architecture of modified nnU-Net (3D version).
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 ‐ Hyperreflective Clumps Volume (VHC): Volume of HC within the 
analyzed region in μm3.

2.5.2. Distribution-related parameters

 ‐ Distance between noise signal and fovea (DNS fovea, ): Distance 
between NS and fovea, indicating average distance of NS pixels 
from the foveal center in μm.

 ‐ Distance between hyperreflective dots and fovea (DHD fovea, ): 
Distance between HD and fovea, indicating average distance of 
HD pixels from the foveal center in μm.

 ‐ Distance between hyperreflective clumps and fovea (DHC fovea, ): 
Distance between HC and fovea, indicating average distance of 
HC pixels from the foveal center in μm.

 ‐ Distance between noise signal and RPE (DNS RPE, ): Distance 
between NS and RPE, indicating average distance of NS pixels 
from RPE in μm.

 ‐ Distance between hyperreflective dots and RPE (DHD RPE, ): 
Distance between HD and RPE, indicating average distance of 
HD pixels from RPE in μm.

 ‐ Distance between hyperreflective clumps and RPE (DHC RPE, ): 
Distance between HC and RPE, indicating average distance of 
HC pixels from RPE in μm.

2.6. Statistical analysis

All statistical analysis was performed using version 18.0 of 
SPSS software (SPSS, Inc., Chicago, IL, USA). Continuous 
variables were expressed as mean ± standard deviation (SD) for 
normal data; and median and interquartile ranges (IQR) for 
skewed data. Categorical variables were presented as frequencies. 
To compare the differences among different subtypes of HRF and 
the differences in HRF parameters before and after treatment, the 
Wilcoxon signed-rank test was used, and the results were 
expressed as the median (IQR). To investigate the correlation 
between the improvement in CMT and given parameters of HRF, 
Spearman’s rank correlation coefficients were calculated using a 
non-parametric test for linear correlation. A significance level of 
p < 0.05 (two-sided test) was adopted to express 
statistical significance.

3. Results

3.1. Experimental results

3.1.1. Implementation details
The proposed model was implemented in PyTorch using an 

NVIDIA GeForce 3,090 GPU with 24GB memory. The training 
process involved 500 epochs, and employed the following settings: 
Adam optimization, with an initial learning rate of 0.01; a batch 
size of 2 for HRF segmentation; and a batch size of 1 for retinal 
layer segmentation. To enhance training stability, we adopted a 
poly learning rate policy, with a momentum of 0.9.

3.1.2. Evaluation metrics
To quantitatively assess the proposed network’s segmentation 

performance, we employ the following metrics. The Dice Similarity 
Coefficient (DSC) quantifies the agreement between HRF manually 
annotated by expert ophthalmologists and those automatically 
segmented by the proposed network, which can be defined as:

 
DSC TP

P FN TP
=

+ +
2

2F  
(5)

We also assess our method using Intersection over Union (IOU), 
precision, recall, and F1-Score, defined as:
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where TP indicates true positives, FP indicates false positives, TN 
indicates true negatives, and FN indicates false negatives.

3.1.3. Comparison of different segmentation 
methods

In order to evaluate the effectiveness of the proposed network, 
we selected several state-of-the-art neural networks for comparison, 
including FCN (30), U-Net (31), U-Net++ (32), Res U-Net (33), 3D 
U-Net (34), SW-3DUNet (15), SANet (16), DBR-Net (17). The 
evaluation metrics utilized include the DSC, IOU, precision, recall, 
and F1 Score, as detailed in Table  1. We  show that the proposed 
network outperforms other methods regarding DSC, IOU, and 
precision. Although the proposed method has a slightly lower recall 
rate than U-Net, when we  consider both precision and recall 
comprehensively, the proposed method outperforms in terms of the 
F1 Score.

As seen in Figure  4, our proposed network outperforms at 
identifying complete HRF regions and avoiding errors in segmentation 
when compared to other methods in the task of HRF segmentation 
for DME diseases. This indicates that the proposed network can 
effectively extract detailed HRF features and analyze them, by 
combining robust pre-processing capabilities from the baseline 
network and embedding spatial and channel attention modules. As a 
result, there is a notable improvement in segmentation effectiveness.

3.1.4. Ablation experiment
To demonstrate the effectiveness of the channel attention and 

spatial attention modules, we compared our proposed method with 
the baseline method and two variants.
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 • Baseline + SAB: We removed the CAB from this variant to assess 
its contribution.

 • Baseline + CAB: We removed the SAB from this variant to assess 
its contribution.

 • Baseline: We  removed both SAB and CAB to evaluate their 
combined contribution.

Table  2 presents the experimental results for our proposed 
method, the baseline, and its two variants. Compared to the results of 
our proposed method, the variant without SAB exhibited reductions 
of 0.31% in DSC, 4.29% in IOU, 0.7% in recall, 0.4% in precision, and 
0.31% in F1 Score. The variant without CAB showed reductions of 
1.15% in DSC, 5% in IOU, 0.55% in recall, 0.75% in precision, and 
1.55% in F1 Score. Removing both SAB and CAB resulted in 
reductions of 1.7% in DSC, 5.65% in IOU, and 2.91% in recall. 
Although there was a slight increase of 0.41% in precision, there was 
a decrease of 1.7% in F1 Score. The experimental results above 
demonstrate the rationality and effectiveness of embedding spatial and 
channel attention modules in the bottleneck layer of the 
baseline model.

3.2. Quantitative parameter evaluation

We enrolled 47 eyes from 26 patients with DME, acquired with 
OCT (Spectralis HRA + OCT), and a total of 11 eyes from 8 patients 
were included in this study. We excluded 36 eyes from 18 patients 
from the analysis. One eye of one patient was excluded due to poor 
OCT image quality (motion artifacts on OCT images): 22 eyes of 11 
patients were excluded due to lack of follow-up records; and 13 eyes 
from 7 patients were excluded due to no improvement in CMT after 
anti-VEGF or dexamethasone IVI treatment. The characteristics and 
clinical information of our study participants are displayed in Table 3. 
Two sets of OCT data were included for each eye, one at baseline, and 
one at follow-up, for a total of 9,472 OCT B-scans included in 
the study.

3.2.1. Parametric comparison of baseline 
hyperreflective foci

Table 4 compares 12 quantitative parameters of HRF, classified by 
different diameter sizes in WR at baseline. Among the morphology-
related parameters, significant differences were observed between QNS 

and QHD , QHD  and QHC , QNS and QHC , VNS  and VHD, and VNS  and 
VHC (all p = 0.003). No significant differences were found between VHD 
and VHC  (p = 0.131). Among the distance-related parameters, the 
results showed no significant differences between the HRF classified 
according to their diameter size.

3.2.2. Parametric comparison of follow-up 
hyperreflective foci

Due to the retrospective design of the study, OCT examinations 
were not performed at regular intervals. To avoid bias related to the 
duration of follow-up, only two consecutive follow-up visits with 
improvement in CMT were selected for each eye. The longitudinal 
study included 11 eyes from 8 patients, with a follow-up of 
1.9 ± 1.6 months (range 1 to 6, median 1). During study period, all eyes 
were treated with intravitreal injections: 91% (10/11) of eyes received 
anti-VEGF injections and 9% (1/11) of eyes received dexamethasone 
injections. The number of intravitreal injections was 1.4 ± 0.7 (range 1 
to 3, median 1).

We assessed whether changes in HRF were significant at two 
consecutive follow-up visits in the presence of improved CMT. Table 5 
showed the comparison of the 12 quantitative parameters of HRF in 
WR, IR, and OR between the pre-IVI and post-IVI stages. In WR, 
QHD , VNS , VHD, DNS RPE, , DHD RPE, , DHC RPE,  and CMT were 
significantly reduced in post-IVI compared with pre-IVI (p = 0.003, 
p = 0.033, p = 0.003, p = 0.026, p = 0.008, p = 0.004, p = 0.003, 
respectively). There were no significant changes in the other six 
quantitative parameters between the two phases. In IR, DNS RPE,  and 
DHD RPE,  were significantly reduced in post-IVI compared with 
pre-IVI (p = 0.016, p = 0.016, respectively). There were no significant 
changes in the other 10 quantitative parameters between the two 
phases. In OR, QHD, VNS , VHD, DHD RPE, , DHC RPE,  were significantly 
reduced in post-IVI compared to pre-IVI (p = 0.006, p = 0.047, 
p = 0.006, p = 0.004, p = 0.004, respectively). There were no significant 
changes in the other seven quantitative parameters between the 
two phases.

3.2.3. Correlation between follow-up CMT 
changes and baseline hyperreflective foci

We assessed whether there was a significant correlation between 
improvement in CMT at two consecutive follow-up visits and baseline 
HRF. Table  6 shows the correlation between the 12 quantitative 
parameters of baseline HRF in WR, IR, OR, and the percentage of 

TABLE 1 Comparison of different segmentation methods.

Method DSC (%) IOU (%) Recall (%) Precision (%) F1 Score (%)

FCN 59.31 ± 9.30 44.60 ± 9.32 66.07 ± 7.93 57.69 ± 9.69 59.31 ± 9.30

U-Net 62.12 ± 8.91 47.84 ± 9.42 68.89 ± 8.44 60.44 ± 8.64 62.12 ± 8.91

U-Net++ 61.60 ± 9.26 47.48 ± 9.73 67.43 ± 6.60 60.37 ± 11.26 61.60 ± 9.26

Res U-Net 63.93 ± 8.82 50.32 ± 9.31 62.71 ± 9.20 71.37 ± 7.66 63.93 ± 8.82

3D U-Net 61.45 ± 8.64 49.41 ± 10.18 58.64 ± 12.91 65.58 ± 8.73 61.45 ± 8.64

SW-3DUNet 51.18 ± 9.87 36.26 ± 9.08 60.68 ± 12.10 47.62 ± 10.17 51.18 ± 9.87

SANet 64.33 ± 8.68 50.59 ± 9.31 63.09 ± 8.23 70.90 ± 8.40 64.33 ± 8.68

DBR-Net 51.14 ± 7.57 36.71 ± 6.77 48.88 ± 7.69 59.99 ± 6.03 51.14 ± 7.57

Proposed method 66.83 ± 9.06 56.33 ± 7.08 61.12 ± 11.9 82.31 ± 6.39 66.83 ± 9.06

1The variable was expressed as the mean ± standard deviation (SD). The bold value represents the optimal result for the column of indicators.
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FIGURE 4

Comparison between the proposed SW-3DUNet and other methods. Yellow and green arrows represent the regions of over-segmentation and under-
segmentation. B-scans in the second column are taken from fovea-centered regions of 6  ×  6  mm2, while B-scans in the other columns are taken from 
fovea-centered regions of 4.5  ×  4.5  mm2.
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CMT improvement ( ∆ ( )CMT % ). In WR, significant positive 
correlations were shown between baseline DNS fovea, , DHD fovea, , 
DHC fovea, , and ∆ ( )CMT %  (p = 0.015, p = 0.016, p < 0.001, 
respectively). There was no significant correlation between the other 
nine baseline quantitative parameters and ∆ ( )CMT % . In OR, 
significant positive correlations were shown between baseline 
DNS fovea, , DHD fovea, , DHC fovea, , and ∆ ( )CMT %  (p = 0.006, 
p = 0.019, p < 0.001, respectively). There was no significant correlation 
between the other nine baseline quantitative parameters and 
∆ ( )CMT % . In IR, there was no significant correlation between all 12 
baseline quantitative parameters and ∆ ( )CMT % .

4. Discussion

The given study aims to quantify HRF in OCT images as part of 
a retrospective study on patients with DME at baseline and 
follow-up. Previous studies relied on manual counting methods to 
quantify HRF, which is time-consuming and less reliable. In 
examining HRF as a potential biomarker, the existing body of 
literature has been inconsistent (23, 35–42), which may be due to 
variations in the OCT tool used, image quality, and manual 
segmentation of HRF. To address these challenges, our study 
employed artificial intelligence techniques for quantifying HRF, 
thereby overcoming some limitations of previous studies. With 
artificial intelligence, retinal images can be analyzed in a completely 

new way. We  showed that the three subtypes of HRF were 
significantly different in volume and number on retinal OCT images, 
with HC pre-dominating in volume and HD in number. We also 
showed that the mean distance from HRF to RPE was reduced after 
IVI treatment compared to before IVI treatment. In addition, 
we  showed that eyes with less HRF in the center of the macula 
showed greater reduction in macular edema after IVI treatment. 
These findings validate previous findings and suggest new insights, 
emphasizing the potential of deep learning as a powerful tool for 
analyzing baseline and follow-up HRF in DME patients.

4.1. Differences between baseline HRF 
parameters

Statistical analysis indicated significant disparities in both the 
number and volume parameters of baseline HRF subtypes. Our study 
validated HRF discrimination based on diameter range by analyzing 
baseline HRF morphological parameters. A previous study used 
20 μm and 50 μm diameters to differentiate HRF subtypes (8), found 
a positive correlation between the number of HRF subtypes in the 
20–50 μm range and the levels of CD14, without discussing the other 
two subtypes. Our study revealed significant differences among the 
three subtypes. Our findings corroborated previous studies showing 
that smaller HRFs merge into larger HRF (7), and show differential 
treatment responses (23). Furthermore, our study observed different 
responses to IVI treatment in the number and volume of the smallest 
HRF subtype, which may include microglia cells, whose activation 
decreased with treatment (43).

4.2. Follow-up findings

We showed the mean distance from HRF to RPE was significantly 
reduced after IVI treatment. By studying the distribution parameters 
of HRF in a longitudinal analysis of two consecutive follow-ups, our 
study indicated the tendency of HRF to migrate from the inner retina 
to the outer retina after IVI treatment; similar to our findings, Pemp 
et al. showed that DME uptake triggered the downward migration of 
HRF (44) into the outer retina. Notably, despite the lack of response 
to IVI treatment, the largest diameter HRF subtype exhibited a 
significant reduction in mean distance to the RPE in both OR and 
WR. This finding was consistent with Marmor’s mechanistic model of 
retinal fluid movement (45), which postulated fluid flowed across the 
retina due to intraocular pressure, choroidal osmolarity, and active 
fluid uptake by the RPE. The migration of partial HRF was impeded 
by narrow channels on the ELM, composed of zonular adhesions 
between Müller cells and photoreceptor inner segments. Consequently, 

TABLE 2 Ablation experiment.

Method DSC (%) IOU (%) Recall (%) Precision (%) F1 score (%)

Baseline 65.13 ± 9.75 50.68 ± 9.89 58.31 ± 12.93 82.72 ± 5.68 65.13 ± 9.75

Baseline + SAB 65.68 ± 9.62 51.33 ± 9.65 59.57 ± 12.41 81.56 ± 6.19 65.68 ± 9.62

Baseline + CAB 66.52 ± 9.55 52.04 ± 10.10 60.42 ± 12.37 81.91 ± 6.26 66.52 ± 9.55

Proposed method 66.83 ± 9.06 56.33 ± 7.08 61.12 ± 11.9 82.31 ± 6.39 66.83 ± 9.06

1The variable was expressed as the mean ± standard deviation (SD). The bold value represents the optimal result for the column of indicators.

TABLE 3 Demographics.

Characteristics

Number of patients 8

Number of eyes 11

Age, mean ± SD (range), years 48.4 ± 11.0 (33 to 61)

Male gender, n (%) 4 (50)

Type 2 diabetes, n (%) 8 (100)

Diabetes duration, mean (IQR), years 7.9 (5 to 10)

DR severity, n (%)

Severe non-proliferative DR 10 (91)

Proliferative DR 1 (9)

Baseline BCVA, mean ± SD (range), LogMar 0.59 ± 0.17 (0.4 to 0.8)

Final BCVA, mean ± SD (range), LogMar 0.57 ± 0.16 (0.3 to 0.8)

1The retrospective nature of this study resulted in missing data, including the duration of 
diabetes for one patient, baseline BCVA for one eye, and follow-up BCVA for another eye. 
2DR, diabetic retinopathy; IQR, interquartile range; BCVA, best-corrected visual acuity; 
LogMar, logarithm of the minimal angle of resolution.
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this fraction of HRF aggregated in front of the ELM, forming the HRF 
isoform with the largest diameter, supporting the study conducted by 
Bolz et al. (7). However, no evidence was found to indicate migration 
of HRF toward or away from the fovea after IVI treatment, suggesting 
that IVI treatment did not significantly impact the distribution of HRF 
in the direction of the fovea. Further studies are required to confirm 
this conjecture.

4.3. Correlations between HRF parameters 
and CMT improvement

We also showed that improvement in CMT resulting from IVI 
treatment was positively correlated with the mean distance from 
HRF to the fovea in OR and WR, and not significantly correlated 
with other parameters. We explored the correlation between the 
therapeutic effect of IVI on foveal edema and the quantitative 
parameters of HRF at baseline by examining the quantitative 
parameters of HRF at baseline and the percentage improvement in 
CMT at two consecutive follow-up visits. A previous study (46) 
performed two-dimensional quantification of hard exudates in OCT 
enface images, and found that the area of hard exudates in the fovea 
at baseline was inversely correlated with BCVA at the 12th month. 
Similar to the aforementioned report, we showed that in both OR 
and WR, the percentage of IVI treatment-induced improvement in 
CMT was inversely correlated with the concentration of HRF in the 
fovea at baseline, but independent of other quantified parameters. 
Notably, the concentration of the largest-diameter HRF subtype in 
the fovea was inversely correlated with the reduction in CMT (rs
=0.882, p < 0.001), which could explain why there was no correlation 
between the concentration of baseline HRF in the fovea in IR and 
the reduction in CMT, since the convergence of smaller HRF 
subtypes to larger HRF subtypes mainly occurs in OR according to 
the discussion above. We  speculate that future studies on the 
differential distribution of HRF aggregated in the fovea may be able 

to verify whether it produces some physiological changes that affect 
the outcome of IVI treatment.

4.4. Limitations

Our study has certain limitations. Firstly, all participants were 
Chinese, and enrolled from a single medical center: larger and more 
various samples would be an advantage. More multi-center studies 
should therefore be  conducted on larger cohorts to confirm the 
reproducibility of analysis on these parameters of HRF. Secondly, the 
enrollment criteria for this study only included cases with a positive 
response to injection therapy, rather than including refractory cases. It 
would be more convincing to recruit subjects with definitive treatment 
and make a long-term follow-up comparison. Thirdly, the study design 
lacked untreated blank controls to derive reasons for changes in 
parameters before and after treatment, while the small sample size and 
high homogeneity made the study findings more indicative of a pilot.

5. Conclusion

We introduced a deep learning-based approach to quantify 
hyperreflective foci in OCT images of DME patients. Our retrospective 
analysis of 11 eyes using this method showed that it effectively quantified 
baseline and follow-up changes in hyperreflective foci by extracting 
relevant geometric parameters. In this study, we were able to validate 
certain findings reported in prior research and uncover novel insights: 
for instance, our investigation revealed that the concentration of HRF 
in the fovea region may influence the efficacy of IVI treatment. 
We believe that accurate quantification and follow-up of HRF in OCT 
images at baseline and during treatment may enable clinicians to 
monitor DME disease progression, assess treatment response and 
identify patients who may benefit from a personalized approach 
to treatment.

TABLE 4 Parametric comparisons of hyperreflective foci of different diameters.

Variable, in 
WR

Morphology-related parameters Variable, in 
WR

Distribution-related parameters

Pre-IVI, n  =  11 P Pre-IVI, n  =  11 P

QNS
QHD

60 (26–101)

239 (76–411)
0.003 DNS fovea,

DHD fovea,

991.35 (959.52–1072.49)

982.67 (921.75–1028.42)
0.062

QHD
QHC

239 (76–411)

20 (8–37)
0.003 DHD fovea,

DHC fovea,

982.67 (921.75–1028.42)

985.87 (909.17–1093.25)
1.0

QNS
QHC

60 (26–101)

20 (8–37)
0.003 DNS fovea,

DHC fovea,

991.35 (959.52–1072.49)

985.87 (909.17–1093.25)
0.286

VNS
VHD

2.88 × 105 (1.14 × 105–3.68 × 105)

9.22 × 106 (2.56 × 106–1.30 × 107)
0.003 DNS RPE,

DHD RPE,

216.45 (204.38–239.87)

213.52 (188.28–230.87)
0.424

VHD
VHC

9.22 × 106 (2.56 × 106–1.30 × 107)

1.18 × 107 (1.53 × 106–2.86 × 107)
0.131 DHD RPE,

DHC RPE,

213.52 (188.28–230.87)

213.86 (202.93–273.82)
0.110

VNS
VHC

2.88 × 105 (1.14 × 105–3.68 × 105)

1.18107 (1.53 × 106–2.86 × 107)
0.003 DNS RPE,

DHC RPE,

216.45 (204.38–239.87)

213.86 (202.93–273.82)
0.062

1The variable was expressed as the median (IQR); the p value was obtained by Wilcoxon Signed Rank Test. 2 WR, the whole retinal layer; IVI, intravitreal injection; QNS , noise signal quantity; 
QHD, hyperreflective dots quantity; QHC, hyperreflective clump quantity; VNS  noise signal volume; e; VHD, hyperreflective dots volume; VHC , hyperreflective clump volume; DNS fovea, , 
distance between noise signal and fovea; DHD fovea, , distance between hyperreflective dots and fovea; DHC fovea, , distance between hyperreflective clumps and fovea; DNS RPE, , 
distance between noise signal and RPE; DHD RPE, , distance between hyperreflective dots and RPE; DHC RPE, , distance between hyperreflective clumps and RPE.
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TABLE 5 Comparison of parameters between pre-IVI and post-IVI.

WR IR OR

Pre-IVI, n  =  11 Post-IVI, n  =  11 P Pre-IVI, n  =  11 Post-IVI, n  =  11 P Pre-IVI, n  =  11 Post-IVI, n  =  11 P

QNS 60 (26–101) 64 (24–84) 0.247 14 (9–36) 15 (9–20) 0.241 43 (21–94) 48 (15–63) 0.533

QHD 239 (76–411) 210 (71–232) 0.003 33 (20–75) 23 (12–49) 0.173 216 (59–318) 168 (55–209) 0.006

QHC 20 (8–37) 27 (13–40) 0.213 0 (0–1) 0 (0–1) 0.317 19 (8–37) 27 (12–38) 0.213

VNS 2.88 × 105 (1.14 × 105–3.68 × 105)
2.47 × 105 (1.05 × 105–

3.54 × 105)
0.033

5.32 × 104 (3.40 × 104–

1.35 × 105)

5.27 × 104 (3.85 × 104–

9.58 × 104)
0.374

2.16 × 105 (9.22 × 104–

3.45 × 105)
1.94 × 105 (6.43 × 104–2.57 × 105) 0.047

VHD 9.22 × 106 (2.56 × 106–1.30 × 107)
5.66 × 106 (2.55 × 106–

8.45 × 106)
0.003

9.71 × 105 (5.74 × 105–

2.04 × 106)

7.61 × 105 (2.86 × 105–

1.32 × 106)
0.155

7.67 × 106 (1.84 × 106–

1.05 × 107)
4.52 × 106 (2.10 × 106–7.69 × 106) 0.006

VHC 1.18 × 107 (1.53 × 106–2.85 × 107)
9.97 × 106 (4.65 × 106–

2.66 × 107)
0.929 0 (0–1.53 × 105) 0 (0–2.11 × 105) 0.345

1.18 × 107 (1.53 × 106–

2.84 × 107)
9.97 × 106 (4.65 × 106–2.66 × 107) 0.929

DNS fovea, 991.35 (959.52–1072.49) 1042.95 (1014.85–1064.91) 0.534 1103.94 (1057.83–1212.58) 1086.73 (1030.12–1237.50) 0.534 954.27 (906.40–1023.99) 1011.02 (960.74–1060.23) 0.594

DHD fovea, 980.67 (921.75–1028.42) 1005.93 (973.22–1066.87) 0.131 1035.34 (919.43–1184.14) 1014.14 (956.53–1106.73) 0.79 1000.76 (888.70–1024.25) 1011.21 (948.34–1083.34) 0.131

DHC fovea, 985.87 (909.17–1093.25) 970.50 (833.29–1020.72) 0.79 0 (0–909.00) 0 (0–664.33) 0.893 9983.01 (909.17–1093.25) 970.50 (833.29–1022.10) 0.79

DNS RPE, 216.45 (204.38–239.87) 190.71 (160.61–202.84) 0.026 293.66 (260.66–322.31) 234.73 (197.79–246.13) 0.013 191.16 (179.96–214.40) 174.93 (147.46–185.65) 0.075

DHD RPE, 213.52 (188.28–230.87) 177.60 (162.27–200.99) 0.008 278.50 (270.14–336.15) 242.80 (210.56–249.98) 0.016 196.62 (181.72–211.72) 172.52 (149.30–192.06) 0.004

DHC RPE, 213.86 (202.93–273.82) 177.44 (167.83–204.70) 0.004 0 (0–274.30) 0 (0–242.46) 0.686 213.28 (202.93–273.82) 177.44 (167.83–204.70) 0.004

CMT 401 (383–490) 315 (253–367) 0.003

1the variable was expressed as the median (IQR); the P value was obtained by Wilcoxon Signed Rank Test. 2WR, the whole retinal layer; IR, the inner retinal layer; OR, the outer retinal layer; IVI, intravitreal injection; QNS , noise signal quantity; QHD, hyperreflective 
dots quantity; QHC, hyperreflective clump quantity; VNS , noise signal volume; VHD, hyperreflective dots volume; VHC , hyperreflective clump volume; DNS fovea, , distance between noise signal and fovea; DHD fovea, , distance between hyperreflective dots and 
fovea; DHC fovea, , distance between hyperreflective clumps and fovea; DNS RPE, , distance between noise signal and RPE; DHD RPE, , distance between hyperreflective dots and RPE; DHC RPE, , distance between hyperreflective clumps and RPE; CMT, central 
macular thickness.
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Deep learning-based estimation of 
axial length using macular optical 
coherence tomography images
Jing Liu 1,2, Hui Li 1, You Zhou 3, Yue Zhang 1,2, Shuang Song 1, 
Xiaoya Gu 1, Jingjing Xu 3 and Xiaobing Yu 1,2*
1 Department of Ophthalmology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric 
Medicine, Chinese Academy of Medical Sciences, Beijing, China, 2 Graduate School of Peking Union 
Medical College, Beijing, China, 3 Visionary Intelligence Ltd., Beijing, China

Background: This study aimed to develop deep learning models using macular 
optical coherence tomography (OCT) images to estimate axial lengths (ALs) in 
eyes without maculopathy.

Methods: A total of 2,664 macular OCT images from 444 patients’ eyes without 
maculopathy, who visited Beijing Hospital between March 2019 and October 
2021, were included. The dataset was divided into training, validation, and 
testing sets with a ratio of 6:2:2. Three pre-trained models (ResNet 18, ResNet 
50, and ViT) were developed for binary classification (AL  ≥  26  mm) and regression 
task. Ten-fold cross-validation was performed, and Grad-CAM analysis was 
employed to visualize AL-related macular features. Additionally, retinal thickness 
measurements were used to predict AL by linear and logistic regression models.

Results: ResNet 50 achieved an accuracy of 0.872 (95% Confidence Interval [CI], 
0.840–0.899), with high sensitivity of 0.804 (95% CI, 0.728–0.867) and specificity 
of 0.895 (95% CI, 0.861–0.923). The mean absolute error for AL prediction was 
0.83  mm (95% CI, 0.72–0.95  mm). The best AUC, and accuracy of AL estimation 
using macular OCT images (0.929, 87.2%) was superior to using retinal thickness 
measurements alone (0.747, 77.8%). AL-related macular features were on the 
fovea and adjacent regions.

Conclusion: OCT images can be  effectively utilized for estimating AL with 
good performance via deep learning. The AL-related macular features exhibit a 
localized pattern in the macula, rather than continuous alterations throughout 
the entire region. These findings can lay the foundation for future research in the 
pathogenesis of AL-related maculopathy.

KEYWORDS

optical coherence tomography, axial length, artificial intelligence, deep learning, 
Grad-CAM

1 Introduction

Axial length (AL) is a widely discussed parameter, significant not only for defining the eye’s 
refractive status but also due to its strong association with retinal and macular complications (1, 
2). The excessive elongation of AL, often exceeding 26.0 mm, is the dominant cause of an 
increased risk of posterior segment complications, including vitreous liquefaction, choroidal 
atrophy, retinoschisis, macular hole, and macular choroidal neovascularization (3). These 
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complications are vision-threatening and often result in irreversible 
and permanent vision damage if left untreated (4). In the past, it has 
not been clear whether there are pre-existing differences in macular 
structure among eyes with prolonged AL prior to the development of 
maculopathies, except a few studies have reported that AL was 
positively associated with central retinal thickness, but negatively 
associated with peripheral retinal thickness farther from the 
macula (5–8).

Artificial intelligence, specifically deep learning, has exhibited 
significant potential in medical imaging diagnosis and interpretation 
(9, 10). Deep learning allows systems to acquire predictive 
characteristics directly from an extensive collection of labeled images, 
eliminating the necessity for explicit rules or manually designed 
features (11). In recent research, deep learning models have been 
developed that demonstrate precise estimation of AL or refractive 
error using color fundus photographs (12–14). Additionally, Yoo et al. 
(15) have introduced a deep learning model that predicts uncorrected 
refractive error by utilizing posterior segment optical coherence 
tomography images, suggesting a potential association between AL 
and the sectional structure of the retina. Considering that a long AL 
is a significant risk factor for complications that can potentially impair 
vision, investigating the alterations in macular structure resulting 
from prolonged AL prior to the onset of maculopathies holds 
immense significance in guiding the clinical management and 
prognosis of patients with long AL eyes (4). However, the application 
of deep learning to estimate AL based on macular OCT images 
remains unexplored.

Gradient-weighted class activation mapping (Grad-CAM), a 
commonly employed approach for visualizing models, utilizes the 
gradient details that flows into the final convolutional layer of a 
convolutional neural network (CNN) to construct a heat map that 
unveils the pivotal regions that are most relevant for the decision-
making process (16). This study aimed to assess the capability of 
macular OCT images to estimate ALs of eyes without maculopathy 
using deep learning algorithms and visualize the cross-sectional 
alterations in macular structure resulting from the prolonged AL 
using Grad-CAM.

2 Materials and methods

2.1 Study design and overview

The data of this study were retrospectively collected from patients 
who visited the Department of Ophthalmology at Beijing Hospital 
between January 2019 and October 2021 and were scheduled for 
cataract surgery. Patients included in the study were required to 
be  aged 18 years or older and have undergone macular OCT 
examination and AL measurement. Eyes with evident macular 
abnormalities, such as macular edema, epiretinal membrane, macular 
hole, macular retinoschisis, and macular neovascularization, were 
excluded. Furthermore, images of poor quality were also excluded. 
The study followed the principles of the Declaration of Helsinki and 
received approval from the institutional review board at Beijing 
Hospital. Given the retrospective nature of the study, the requirement 
for written informed consent was waived.

In this study, OCT scans were acquired using the Spectralis OCT 
device (Heidelberg Engineering, Germany). Images scanned with a 

stellate scan model centered on the fovea were selected for model 
development. This scanning model comprises six scans that traverse 
the fovea, each spanning a length of 6 mm. Moreover, retinal thickness 
in various subfields was recorded using OCT. The macular region was 
divided into 9 subfields by employing three concentric circles centered 
on the fovea, with diameters of 1 mm, 3 mm, and 6 mm. The average 
thickness of the innermost ring defined the central retinal thickness 
(CRT). Furthermore, the inner (1–3 mm) and outer (3–6 mm) rings 
were subdivided into superior, nasal, inferior, and temporal subfields, 
designated as the parafovea and perifovea, respectively. AL 
measurements were obtained from the IOL Master 700 (Carl Zeiss, 
Germany).

2.2 Deep learning model and its training

Figure 1 presents the data management and the flowchart for deep 
learning models in this study. Two classic CNN models, ResNet18 and 
ResNet50, along with a Transformer-based model called Vision 
Transformer (ViT), were introduced to establish the relationship. The 
detailed description of the models used in this study was presented in 
Supplementary material 1. In the ViT architecture, the number of 
encoder blocks was reduced to 6 to prevent overfitting. The input size 
for the vision transformer is fixed at 224 * 224 to ensure a fair 
comparison across all models. The SGD (Stochastic Gradient Descent) 
method serves as the optimizer for all three models. AL measurements 
obtained by IOL Master 700 (Carl Zeiss, Germany) served as the 
ground truth for AL prediction. The prediction task is divided into a 
regression task and a binary classification task by adjusting the 
dimension of the output result for comprehensive evaluation. To 
improve accuracy and efficiency, we implement a transfer learning 
strategy using models pretrained on ImageNet. The salient areas of the 
feature maps in the latter layers of these models are visualized using 
the Grad-CAM interpretability method, which illustrates the 
contribution of each pixel to the final decision.

During training, we employ multiple data augmentation methods to 
enhance the model’s generalization ability. The random resize crop 
strategy is used to capture different parts of the image with varying scales. 
Furthermore, horizontal flipping, color jittering, gamma transformation, 
and random Gaussian noise are applied to augment the training samples 
for OCT data. Eventually, we implement the normalization to scale the 
training and testing input from 0 to 1. To expand the dataset, each case 
is considered independent and equipped with 6 OCT B-scans. This 
allows us to formulate a dataset with 2,664 images. The data split ratio for 
training, validation, and testing was 6:2:2, and the split was randomized 
based on the AL. The training set and validation set were combined, and 
a 10-fold cross-validation was conducted to demonstrate the reliability 
of the methods. In the 10-fold cross-validation, the training instances are 
divided into 10 equally-sized partitions with similar class distributions. 
Subsequently, each partition is sequentially employed as the test dataset 
for the classifier generated using the remaining nine partitions.

2.3 Statistical analysis

The classification task utilized the cross-entropy loss function, and 
various metrics such as sensitivity, specificity, area under the receiver 
operating characteristic curve (AUC), and accuracy were calculated 
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to evaluate performance. In the regression task, the MAELoss function 
was used as the loss function, and the mean absolute error (MAE) was 
used as the evaluation metric. The agreement between the actual and 
predicted AL was assessed using the Bland–Altman plot. The Y-axis 
represents the difference between the actual and predicted ALs, and 
the X-axis represents the average of the actual and predicted ALs. The 
mean difference (MD) and 95% limits of agreement (MD ± 1.96 
standard deviations) were calculated to assess the agreement.

3 Results

3.1 AI models performance

Finally, a total of 2,664 images from 444 eyes (306 patients) were 
included in the model development. The mean age was 
69.02 ± 10.37 years. Among 444 eyes, 113 eyes (25.5%) were high 
myopic without maculopathy (AL ≥ 26.0 mm). Finally, 266 eyes (1,596 
images) were used for training (60%), 89 eyes (534 images) for 
validation (20%), and 89 eyes (534 images) for testing (20%). The 
mean age for the training, validation and testing set were 69.36 ± 10.52, 
67.89 ± 10.65, and 69.21 ± 9.63 years, respectively. Demographic 
characteristics of each dataset are summarized in Table  1. Three 
models (ResNet 50, ResNet 18, and ViT) were developed for the 
binary classification task of distinguishing AL ≥ 26.0 mm from others. 
The 10-fold cross-validation results showed the robust performance 

and high discriminative power of all three models, as illustrated in 
Table 2. On the test dataset, ResNet 18, ResNet 50, and ViT achieved 
AUC (95% Confidence Interval [CI]) values of 0.918 (0.886–0.951), 
0.929 (0.899–0.960), and 0.924 (0.892–0.955), respectively (as shown 
in Figure 2A). ResNet 50 and ResNet 18 had the same accuracy of 
0.872 (95%CI, 0.840–0.899), which was the highest among the models. 
ResNet 50 also exhibited the highest performance, with a sensitivity 
of 0.804 (95%CI, 0.728–0.867) and specificity of 0.895 (95%CI, 0.861–
0.923). Therefore, based on the classification results, particularly the 
AUC and accuracy, ResNet 50 was selected for further analyses.

The ResNet 50 model was employed for the regression task. The 
MAE for predicting AL on the test dataset was 0.83 mm (95%CI, 

FIGURE 1

Datasets and the architecture of the deep learning model. (A) Data management for model development. (B) The flowchart for deep learning.

TABLE 1 Summary of the demographical characteristics of training, 
validation, and test data sets.

Training set Validation set Test set

No. of eyes 266 89 89

No. of images 1,596 534 534

Age, year 69.36 ± 10.52 67.89 ± 10.65 69.21 ± 9.63

Sex, male, n (%) 121 (45.5%) 43 (48.3%) 41 (46.1%)

AL, mm 24.67 ± 2.19 24.73 ± 2.19 24.73 ± 2.33

AL < 26 mm 199 66 66

AL ≥ 26 mm 67 23 23

AL, axial length.
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0.72–0.95 mm). The predicted AL and actual AL had a linear 
relationship with an R2 of 0.763 in the ResNet 50 model (Figure 2B). 
Bland–Altman plots revealed a bias of 0.09 mm, with 95% limits of 
agreement ranging from −2.2 to 2.3 mm (Figure 2C). Prediction bias 
of 64.8% of the test dataset was less than 1 mm error (Figure 2D); while 
a calculation of relative bias revealed that 73.1% of the testing 
difference was within the range of 5% error and 96.5% within 
10% error.

3.2 Grad-CAM and model visualization

Grad-CAM was used to identify the regions within the original 
OCT images that the models relied on for their predictions. Figure 3 
shows representative OCT images with their corresponding 

Grad-CAM from the test set, which were correctly predicted. The heat 
maps revealed that AL-related macular features exhibit a localized 
pattern in the macula, rather than continuous alterations throughout 
the entire region. Both the region of retina and choroid were 
highlighted in the heat maps. For eyes with ALs < 26.0 mm, the CNN 
models predominantly relied on the curvature and shape of the fovea, 
whereas for eyes with ALs ≥ 26.0 mm, the models relied on the regions 
flanking the fovea, where the most obvious retinal curvature changes.

3.3 Predicting AL based on retinal 
thicknesses

The macular thickness of the eyes from the test set was recorded. 
ROC analyses and linear regression analyses were performed to 

TABLE 2 Performance of deep learning models for binary task (axial length  ≥  26.0  mm).

Mean results of 10-fold cross validation Test set (95% CI)

AUC Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity

ResNet 18 0.908 ± 0.048 0.898 ± 0.042 0.807 ± 0.107 0.997 ± 0.008 0.918 (0.886, 0.951) 0.872 (0.840, 0.899) 0.783 (0.704, 0.848) 0.902 (0.869, 0.929)

ResNet 50 0.932 ± 0.048 0.906 ± 0.033 0.920 ± 0.082 1.000 0.929 (0.899, 0.960) 0.872 (0.840, 0.899) 0.804 (0.728, 0.867) 0.895 (0.861, 0.923)

ViT 0.885 ± 0.075 0.884 ± 0.051 0.766 ± 0.151 1.000 0.924 (0.892, 0.955) 0.867 (0.836, 0.895) 0.693 (0.609, 0.769) 0.927 (0.897, 0.951)

FIGURE 2

Performance evaluation of deep learning models. (A) Classification performance of deep learning models to identify eyes with axial lengths ≥26.0  mm 
in the test dataset. (B) Correlations between actual and predicted axial length using the ResNet 50 model. (C) Bland–Altman plots for the real and 
predicted axial length using ResNet 50 in test dataset. (D) Prediction bias frequency distribution.
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predict AL based on retinal thickness in different macular regions. The 
largest AUC value, 0.747, was obtained for CRT. The highest accuracy 
in distinguishing long AL eyes was 77.8%, achieved by using retinal 
thickness measurements in the perifoveal (3–6 mm) nasal quadrant 
(Supplementary material 2). However, both the AUC and accuracy 
were lower compared to deep learning models that utilized OCT 
images (p < 0.001). Linear regression analyses showed that the MAE 
values were 1.78 ± 1.25 mm and 1.57 ± 1.29 mm when using CRT and 
retinal thickness measurements from all nine regions to predict AL, 
respectively. These biases were also higher than those observed in deep 
learning models (p < 0.001).

4 Discussion

The present study demonstrated that deep learning models using 
macular OCT images can accurately estimate AL and differentiate eyes 
with long AL. The Grad-CAM analysis revealed that the deep learning 
models primarily relied on the foveal and adjacent regions, as well as 
the subfoveal choroid for AL estimation. This deep learning model 
was designed to estimate the AL based on macular OCT images. This 
study established a significant association between AL and macular 
structure, demonstrating the AL-related changes in the macular 

structure as imaged by OCT. These findings provide a solid foundation 
for research on the pathogenesis of AL-related structural maculopathy.

Previous studies have used fundus photos to estimate AL via 
developing deep learning models. Dong et al. (12) and Jeong et al. (17) 
reported the use of CNN models to estimate AL based on 45 degrees 
fundus photographs, achieving MAE values of 0.56 mm (95% CI, 
0.53–0.61 mm) and 0.90 mm (95% CI, 0.85–0.91 mm), and R2 values 
of 0.59 (95% CI, 0.50–0.65) and 0.67 (95% CI, 0.58–0.87), respectively. 
Oh et al. (14) developed an AL estimation model using ultra-widefield 
funds photos with an MAE of 0.74 mm (95% CI, 0.71–0.78 mm) and 
an R2 value of 0.82 (95% CI, 0.79–0.84). However, this study represents 
the first attempt to estimate AL using macular B-scan OCT images via 
deep learning. B-scan images provide cross-sectional views of the 
retina, offering improved visualization of retinal layers and their 
integrity (18). The theoretical foundation of this study lies in utilizing 
the potential alterations in macular structure associated with AL 
elongation to predict AL. Additionally, we also excluded the eyes with 
any maculopathy to investigate the changes in macular structure 
before the development of myopic maculopathy in eyes with long 
AL. In the current study, the MAE was found to be 0.83 mm (95% CI, 
0.72–0.95 mm) and the R2 was 0.763 in the regression task, while the 
classification model achieved an accuracy of 0.872 (95% CI, 0.840–
0.899) in identifying eyes with AL ≥ 26.0 mm. These findings suggest 

FIGURE 3

Representative OCT images and their heat map images.

23

https://doi.org/10.3389/fmed.2023.1308923
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Liu et al. 10.3389/fmed.2023.1308923

Frontiers in Medicine 06 frontiersin.org

that macular structure changes in eyes with long AL occur 
independently of OCT-detectable myopic maculopathy, which aligns 
with clinical observations of a higher risk of the prevalence and 
progression of myopic maculopathy in eyes with longer AL (19, 20).

The results showed that the accuracy of AL estimation using 
macular OCT images (87.2%) was superior to using retinal thickness 
measurements alone (77.8%) in the same study sample. This can 
be attributed to the detailed structural information available in B-scan 
images (18). The Grad-CAM analysis revealed that for eyes with ALs 
shorter than 26.0 mm, the deep learning models primarily relied on 
the fovea, while for eyes with AL greater than or equal to 26.0 mm, the 
models showed a preference for regions mainly on either side of the 
fovea. These findings are consistent with a deep learning model for AL 
estimation using color fundus photos reported by Dong et al. (12). In 
their study, the heat map analysis demonstrated that eyes with ALs 
shorter than 26.0 mm predominantly utilized signals from the foveal 
region in the fundus photos, while those with AL greater than 26 mm 
primarily relied on signals from the extrafoveal region (12).

Clinical studies have demonstrated that eyes with high myopia, 
characterized by an AL exceeding 26.0 or 26.5 mm, were more likely 
to develop traction maculopathy, such as macular hole and 
maculoschisis (4, 21, 22). Furthermore, Park et al. (23) found that the 
development of myopic traction maculopathy was associated with the 
foveal curvature, which were calculated based on the retinal pigment 
epithelium hyper-reflective line in OCT images including the fovea. 
Based on the visualization results obtained from our OCT-based AL 
estimation model, we speculate that the highlighted regions in the heat 
maps indicate areas where the changes in retinal curvature are most 
pronounced (24). In addition, our results also suggested that structural 
changes in the macula caused by axial elongation exhibit a localized 
pattern, primarily concentrated at the fovea and the areas where the 
retinal curvature changes the most significantly, rather than displaying 
continuous alterations throughout the entire region. Besides retina, 
the choroid from the corresponding regions were also highlighted in 
the heat maps. Previous studies have reported that AL was negatively 
associated with choroidal thickness in both young and elderly people 
(25, 26), indicating the choroidal atrophy with the elongation of 
AL. These findings can explain the involvement of choroid in the heat 
maps when predicting AL in this study. These findings will be helpful 
for further research on the pathogenesis and prevention of AL-related 
structural maculopathy.

Several limitations should be  noted in this study. First, the 
sample size is relative small. To minimize the impact of potential 
sources of bias, we specifically enrolled subjects from a solitary 
ophthalmological clinic and utilized images acquired using the 
identical imaging machine. Consequently, the recruitment of 
additional samples was constrained. Advancements in model 
predictive performance can be expected when more samples are 
gathered and analyzed. Second, due to the limited number of eyes 
with short AL in this study, only two groups (whether AL longer 
than 26.0 mm) were defined in the classification model 
development. Nevertheless, this limitation is unlikely to undermine 
the overall findings, as the focus of this study was on the deep 
learning model’s performance in distinguishing eyes with elongated 
AL. Third, it is important to note that we  excluded eyes with 
OCT-detectable maculopathy as our aim was to identify 
AL-specific macular characteristics prior to the onset of myopic 
maculopathy. Therefore, caution should be  exercised when 

generalizing these findings to eyes with existing maculopathy. 
Lastly, the current model was developed based on the macular 
B-scans centered on the fovea by the stellate 6-scan pattern, which 
scans from 6 different directions. Since OCT B-scans centered on 
the fovea exhibit the similar imaging pattern, it is very likely that 
the deep learning model developed in this study would 
be applicable to macular OCT B-scans scanned by other pattern 
centered on the fovea or OCT scans from different manufacturers. 
However, further research and verification are needed to validate 
the generalization of the model. Additionally, it’s worth noting that 
this model was developed using adult eyes with a mean age of 
69 years. Considering that the macula develops and axial length 
increases in children and teenagers, additional studies are required 
to develop models based on younger age groups.

5 Conclusion

This study developed a deep learning model using macular OCT 
images to estimate AL and identify eyes with long AL, achieving good 
performance. The AL-related macular features exhibit a localized 
pattern, primarily concentrated in the central fovea and adjacent 
regions, suggesting that these specific areas may serve as the initial 
sites for macular alterations caused by AL elongation. These findings 
have significant implications for further research on the pathogenesis 
of AL-related structural maculopathy.
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Exploring large language model 
for next generation of artificial 
intelligence in ophthalmology
Kai Jin 1†, Lu Yuan 2†, Hongkang Wu 1, Andrzej Grzybowski 3 and 
Juan Ye 1*
1 Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China, 
2 Department of Ophthalmology, The Children's Hospital, Zhejiang University School of Medicine, 
National Clinical Research Center for Child Health, Hangzhou, China, 3 Institute for Research in 
Ophthalmology, Foundation for Ophthalmology Development, Poznan, Poland

In recent years, ophthalmology has advanced significantly, thanks to rapid 
progress in artificial intelligence (AI) technologies. Large language models (LLMs) 
like ChatGPT have emerged as powerful tools for natural language processing. 
This paper finally includes 108 studies, and explores LLMs’ potential in the next 
generation of AI in ophthalmology. The results encompass a diverse range of 
studies in the field of ophthalmology, highlighting the versatile applications of 
LLMs. Subfields encompass general ophthalmology, retinal diseases, anterior 
segment diseases, glaucoma, and ophthalmic plastics. Results show LLMs’ 
competence in generating informative and contextually relevant responses, 
potentially reducing diagnostic errors and improving patient outcomes. Overall, 
this study highlights LLMs’ promising role in shaping AI’s future in ophthalmology. 
By leveraging AI, ophthalmologists can access a wealth of information, enhance 
diagnostic accuracy, and provide better patient care. Despite challenges, 
continued AI advancements and ongoing research will pave the way for the next 
generation of AI-assisted ophthalmic practices.

KEYWORDS

artificial intelligence, large language model, ChatGPT, ophthalmology, diagnostic 
accuracy and efficacy

Introduction

The history of artificial intelligence (AI) in medicine dates back to the 1950s when 
researchers began to explore the use of computers to analyze medical data and make 
diagnostic decisions. However, past methods had limitations in accuracy and speed and 
still could not analyze unstructured medical data (1). Natural Language Processing (NLP) 
is a subfield of AI that focuses on enabling computers to understand, interpret, and 
generate human language. It involves the development of algorithms and models that can 
process and analyze unstructured text data. Large Language Models (LLM) refer to 
advanced artificial intelligence models, such as GPT-3 (Generative Pre-trained 
Transformer 3), that are built on transformer architecture. The transformer architecture 
is a deep learning model that efficiently captures context and dependencies in sequential 
data, making it a fundamental choice for natural language processing tasks and beyond. 
These models are trained on massive amounts of text data from the internet, enabling 
them to generate human-like text and perform a wide range of NLP tasks with remarkable 
accuracy and versatility. ChatGPT builds on the capabilities of large language models to 
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generate coherent and contextually relevant responses, making it 
well-suited for chatbot applications. It is designed to generate 
human-like responses to a wide range of prompts and questions 
and may enhance healthcare delivery and patients’ quality of life 
(Figure  1) (2). The use of LLMs in healthcare offers several 
potential benefits.

ChatGPT and LLMs can be applied in various ways. They can 
serve as clinical documentation aids, helping with administrative tasks 
such as clinic scheduling, medical coding for billing, and generating 
preauthorization letters (3). LLMs can also be used as summarization 
tools, improving communication with patients and assisting in clinical 
trials. They can make processes such as curriculum design, testing of 
knowledge base, and continuing medical education more dynamic (4). 
LLMs can reduce the burden of administrative tasks for healthcare 
professionals, save time, and improve efficiency. They also have the 
potential to provide valuable clinical insights and support decision-
making (5). This capability may help ophthalmologists enabling 
evidence-based decision-making and revolutionizing various aspects 
of eye care and research.

Method of literature search

For this review, we followed the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyzes (PRISMA) guidelines.

Study selection and search strategy

We conducted a comprehensive literature search following the 
PRISMA guidelines. Searches were performed on PubMed and 
Google Scholar databases, spanning from January 2016 to June 2023. 
Keywords were selected from two distinct categories: ophthalmology-
related terms (ophthalmology, eye diseases, eye disorders) and large 
language model-related terms (large language models, ChatGPT, 
natural language processing, chatbots). The search strategy involved 
the use of the following keywords: (“Ophthalmology” OR “Eye 
Diseases” OR “Eye Disorders”) AND (“Large Language Models” OR 
“ChatGPT” OR “Natural Language Processing” OR “Chatbots”). The 
terms from each category were cross-referenced independently with 
terms from the other category.

Inclusion and exclusion criteria

We established specific inclusion criteria for article selection. The 
publication period considered research from January 2016 to June 
2023 to ensure the inclusion of up-to-date findings. Initially, 6,130 
articles were identified through titles and abstracts. We prioritized 
research quality and the application of Large Language Models 
(LLMs) in our selection process. Additionally, articles published prior 
to 2016 were included for historical context and those pertinent to 
closely related topics.

In the meantime, studies meeting the following criteria will 
be excluded: (1) duplicate literature previously included in the review, 
(2) irrelevant topics, where the article is unrelated to ophthalmology 
or the application of the large language model, (3) conference 
abstracts, and (4) non-original research, such as editorials, case 
reports or commentaries.

FIGURE 1

Workflow of large language model (LLM) for artificial intelligence (AI) in ophthalmology. Text (symptoms, medical history, etc.) and images (Optical 
coherence tomography, Fundus fluorescein angiography, etc.) are encoded and fed into a model that has been trained on a large amount of data, 
which can decode the relevant information required. LLM applications include automated question-answering, diagnose, information screening, 
summarization, image analysis, predictive modeling.

Abbreviations: AI, Artificial Intelligence; NLP, Natural Language Processing; LLM, 

Large Language Model; GPT, Generative Pre-trained Transformer; HER, Electronic 

Health Records; eAMD, exudative Age-related Macular Degeneration; DR, Diabetic 

Retinopathy; OCT, Optical Coherence Tomography; BERT, Bidirectional Encoder 

Representations from Transformers.
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Language considerations

A comprehensive review was conducted primarily on English-
language articles, totaling 6,130 papers. Furthermore, we evaluated 14 
papers predominantly published in Chinese. For articles in languages 
such as French, Spanish, and German, we assessed their abstracts. This 
multilingual approach allowed us to comprehensively evaluate the 
literature. The primary inclusion criterion required research to 
specifically address the application of AI in ophthalmology and 
demonstrate a certain level of perceived quality.

Data extraction and analysis

Following a rigorous selection process, relevant data were 
extracted and analyzed from the selected articles. Key themes, trends, 
advancements, and challenges related to the utilization of LLMs in 
ophthalmology were systematically synthesized.

In accordance with the PRISMA guidelines, this review adhered 
to a structured and rigorous approach, encompassing a 
comprehensive literature search, meticulous inclusion criteria, 

language considerations, and thorough data extraction (Figure 2). 
A total of 108 articles were independently screened for eligibility by 
two reviewers (Kai Jin and Lu Yuan), including assessments of titles 
and abstracts, followed by full-text review. Any disagreements were 
resolved through discussion with a third author (Juan Ye). 
Ultimately, 108 studies were included in the review.

Results

We finally included 108 studies. The results (Table 1) encompass 
a diverse range of studies in the field of ophthalmology, highlighting 
the versatile applications of LLMs. The results reflect a wide spectrum 
of LLM applications, and subfields of interest in ophthalmology. They 
showcase the versatility of LLMs in addressing various aspects of 
automated question-answering (55 studies), diagnose (5 studies), 
information screening (27 studies), summarization (5 studies), image 
analysis (5 studies), predictive modeling (11 studies). Subfields 
encompass general ophthalmology (38 studies), retinal diseases (32 
studies), anterior segment diseases (27 studies), glaucoma (6 studies), 
and ophthalmic plastics (5 studies) (Figure 3).

FIGURE 2

PRISMA 2020 flow diagram for this systematic review.
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TABLE 1 Summary of representative current studies using LLM in ophthalmology.

Reference Year Publication Subspeciality Aim Application Approaches

Lin et al. (6) 2023 Eye General ophthalmology To compare the performance 
on a practice ophthalmology 
written examination

Automated question-
answering

GPT-3.5, GPT-4

Antaki et al. (7) 2023 Ophthalmology Science General ophthalmology To evaluate the performance 
on ophthalmology questions

Automated question-
answering

ChatGPT

Cai et al. (8) 2023 American Journal of 
Ophthalmology

General ophthalmology To compare the performance 
on ophthalmology board-style 
questions.

Automated question-
answering

Bing Chat, ChatGPT 3.5, 
and ChatGPT 4.0,

Mihalache et al. (9) 2023 JAMA Ophthalmology General ophthalmology To assess the performance on 
board certification exam in 
ophthalmology

Automated question-
answering

ChatGPT

Bernstein et al. (10) 2023 JAMA Network Open General ophthalmology To generate ophthalmology 
advice

Automated question-
answering

ChatGPT version 3.5

Ali et al. (11) 2023 Ophthalmic Plast 
Reconstr Surg

Lacrimal drainage disorders To response to lacrimal 
drainage disorders

Automated question-
answering

ChatGPT

Tsui et al. (12) 2023 Eye Posterior vitreous detachment, 
retinal tear and detachment, 
ocular surface disease, 
exudative age-related macular 
degeneration (eAMD), and 
post-intravitreal injection pain 
and redness

To response to common 
ocular symptoms

Automated question-
answering

ChatGPT

Potapenko et al. (13) 2023 Acta Ophthalmologica Retinal diseases To evaluate accuracy on 
patient information

Automated question-
answering

ChatGPT

Momenaei et al. (14) 2023 Ophthalmology Retina Retinal diseases To evaluate the 
appropriateness and 
readability of the medical 
knowledge

Automated question-
answering

ChatGPT-4

Waisberg et al. (15) 2023 Irish Journal of Medical 
Science

Anterior ischemic optic 
neuropathy

Fundus image analysis Image analysis GPT-4

Hu et al. (16) 2022 Transl Vis Sci Technol. Glaucoma To Predict Glaucoma 
Progression Requiring Surgery

Predictive Modeling Pre-trained Transformers

Lee et al. (17) 2023 Ophthalmic Res General ophthalmology To assign procedural codes 
based on the surgical report

Predictive Modeling Bidirectional Encoder 
Representations from 
Transformers (BERT)

Liu et al. (18) 2023 AMIA Retinal vascular disease To provide a diagnosis based 
on FFA reports

Summarization GPT3.5-Turbo

Yu et al. (19) 2022 BMC Medical 
Informatics and 
Decision Making

Diabetic retinopathy To Identify diabetic 
retinopathy-related clinical 
concepts and their attributes

Information 
screening

NLP(Extraction, Named 
entity recognition), DL, 
Pre-trained Transfomers

Valentín-Bravo et al. 
(20)

2023 Arch Soc Esp Oftalmol. Vitreoretinal disease To write a scientific article Information 
screening

ChatGPT, DALL-E 2

Singh et al. (4) 2023 Clin Exp Ophthamol. Dry eye disease To conduct a literature review Information 
screening

ChatGPT

Singh et al. (21) 2023 Seminars in 
Ophthalmology

Cornea, retina, glaucoma, 
pediatric ophthalmology, 
neuroophthalmology, and 
ophthalmic plastics surgery

To construct ophthalmic 
discharge summaries and 
operative notes

Information 
screening

ChatGPT

Rasmussen et al. 
(22)

2023 Graefe’s archive for 
clinical and 
experimental 
ophthalmology

Vernal keratoconjunctivitis To provided responses to 
patient and parent questions

Automated question-
answering

ChatGPT

lim et al. (23) 2023 Ebiomedicine Myopia To deliver accurate responses 
to common myopia-related 
query

Automated question-
answering

ChatGPT-3.5, 
ChatGPT-4.0, and Google 
Bard

Waisberg et al. (24) 2023 Annals of Biomedical 
Engineering

General ophthalmology To write ophthalmic operative 
notes

Information 
screening

GPT-4
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General ophthalmology

The application of LLMs in ophthalmology is a rapidly growing 
field with promising potential, encompassing various aspects of 
patient care and clinical workflows. LLMs can analyze general 
ophthalmology patient data and medical records to recommend 
personalized diagnosis and treatment plans for individuals with 
specific eye conditions. Chatbots integrated with electronic health 
record (EHR) systems can access patient information to provide 
context-aware responses and support clinical decision-making.

The majority of current NLP applications in ophthalmology focus 
on extracting specific text, such as visual acuity, from free-text notes 
for the purposes of quantitative analysis (25). NLP also offers 
opportunities to develop search engines for data within free-text 
notes, clean notes, automated question-answering, and translating 
ophthalmology notes for other specialties or for patients. Low vision 
rehabilitation improves quality of life for visually impaired patients, 
free-text progress notes within the EHR using NLP provide valuable 
information relevant to predicting patients’ visual prognosis (26). NLP 
with unstructured clinician notes supports low vision and blind 
rehabilitation for war veterans with traumatic brain injury based on 
veterans’ needs rather than system-level factors (27, 28). This suggests 
that AI with NLP may be particularly important for the performance 
of predictive models in ophthalmology. Given the potential of LLMs 
in healthcare and the increasing reliance of patients on online 
information, it is important to evaluate the quality of chatbot-
generated advice and compare it with human-written advice from 
ophthalmologists. The panel of ophthalmologists had a 61.3% 
accuracy in distinguishing between chatbot and human responses (10).

As chatbot technology is continually evolving, there are additional 
applications in general ophthalmology. The researchers evaluated the 
ability of the ChatGPT to respond to ocular symptoms by scripting 10 
prompts reflective of common patient messages relating to various 
ocular conditions (12). These conditions included posterior vitreous 
detachment, retinal tear and detachment, ocular surface disease, 

exudative age-related macular degeneration (eAMD), and post-
intravitreal injection pain and redness. The abilities of ChatGPT in 
constructing discharge summaries and operative notes were evaluated 
through a study conducted by Swati et al. (21). The study found that 
ChatGPT was able to construct ophthalmic discharge summaries and 
operative notes in a matter of seconds, with tailored responses based 
on the quality of inputs given. However, there were some limitations 
such as the presence of generic text and factual inaccuracies in some 
responses. The authors suggest that ChatGPT can be  utilized to 
minimize the time spent on discharge summaries and improve patient 
care, but it should be  used with caution and human verification. 
Another study aimed to assess the performance of an AI chatbot, 
ChatGPT, in answering practice questions for ophthalmology board 
certification examinations (9). ChatGPT correctly answered 46.4% of 
the questions, with the best performance in the category of general 
medicine (79%) and the poorest in retina and vitreous (0%). ChatGPT 
provided explanations and additional insight for 63% of questions but 
selected the same multiple-choice response as the most common 
answer provided by ophthalmology trainees only 44% of the time. The 
researchers compared the performance of several generative AI 
models on the ophthalmology board-style questions (6–8), including 
Bing Chat (Microsoft), ChatGPT 3.5 and 4.0 (OpenAI). Performance 
was compared with that of human respondents. Results showed that 
ChatGPT-4.0 and Bing Chat performed comparably to 
human respondents.

Existing electronic differential diagnosis support tools, like the 
Isabel Pro Differential Diagnosis Generator, have limitations in terms 
of structured input and context-specific language processing. In one 
study, ChatGPT identified the correct diagnosis in 9 out of 10 cases 
and had the correct diagnosis listed in all 10 of its lists of differentials 
(29). Isabel, on the other hand, identified only 1 out of 10 provisional 
diagnoses correctly, but included the correct diagnosis in 7 out of 10 
of its differential diagnosis lists. The median position of the correct 
diagnosis in the ranked differential lists was 1.0 for ChatGPT versus 
5.5 for Isabel.

FIGURE 3

Major applications of LLM in Ophthalmology. The patient’s information like symptoms, medical history and other health-related details are inputted 
into the LLM, which outputs valuable clinical insights to the physician and helps him or her make decisions.
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Retinal diseases

Some studies evaluate the accuracy of an AI-based chatbot in 
providing patient information on common retinal diseases, including 
AMD, diabetic retinopathy (DR), retinal vein occlusion, retinal artery 
occlusion, and central serous chorioretinopathy.

In healthcare settings, when patients provide information about 
their medical history, symptoms, or other health-related details, there 
is the potential for miscommunication or misalignment between the 
patient’s perspective and the physician’s understanding of the situation. 
Traditional methods of obtaining patient information may lead to 
dissatisfaction if the information obtained misaligns with the 
physician’s information (30). ChatGPT can improve patient satisfaction 
in terms of information provision by providing accurate and well-
formulated responses to various topics, including common retinal 
diseases (13). This accessibility can be particularly beneficial when 
ophthalmologists are not readily available. Among retinal diseases, DR 
is a leading cause of blindness in adults, and there is increasing interest 
in developing AI technologies to detect DR using EHRs. Most AI-based 
DR diagnoses are focused on medical images, but there is limited 
research exploring the lesion-related information captured in the free 
text image reports. In Yu et  al. (19) study, two state-of-the-art 
transformer-based NLP models, including BERT and RoBERTa, were 
examined and compared with a recurrent neural network implemented 
using Long short-term memory (LSTM) to extract DR-related concepts 
from clinical narratives. The results show that for concept extraction, 
the BERT model pretrained with the MIMIC III dataset outperformed 
other models, achieving the highest performance with F1-scores of 
0.9503 and 0.9645 for strict and lenient evaluations, respectively. The 
findings of this study could have a significant impact on the 
development of clinical decision support systems for DR diagnoses.

Anterior segment disease

Anterior segment vision-threatening disease included the 
diagnosis of corneal ulcer, iridocyclitis, hyphema, anterior scleritis, 
or scleritis with corneal involvement. Patients with anterior 
segment diseases present a diagnostic challenge for many primary 
care physicians. The researchers developed a decision support tool 
to predict vision-threatening anterior segment disease using 
primary clinical notes based on NLP (31). The ultimate prediction 
model exhibited an area under the curve (AUC) of 0.72, with a 95% 
confidence interval ranging from 0.67 to 0.77. Using a threshold 
that achieved a sensitivity of 90%, the model demonstrated a 
specificity of 30%, a positive predictive value of 5.8%, and a high 
negative predictive value of 99%. One study evaluates the accuracy 
of responses provided by the ChatGPT to patient and parent 
questions on vernal keratoconjunctivitis (VKC), a complex and 
recurring disease primarily affecting children (22). The researchers 
formulated questions in four categories and assessed the chatbot’s 
responses for information accuracy. The chatbot was found to 
provide both relevant and inaccurate statements. Inaccurate 
statements were particularly observed regarding treatment and 
potential side effects of medications. A comparative analysis of the 
performance of three LLMs, namely ChatGPT-3.5, ChatGPT-4.0, 
and Google Bard, was conducted in delivering accurate and 
comprehensive responses to common myopia-related queries. 
ChatGPT-4.0 demonstrated the highest accuracy, with 80.6% of 

responses rated as ‘good’, compared to 61.3% in ChatGPT-3.5 and 
54.8% in Google Bard (23).

Glaucoma

Previous studies have developed predictive models for glaucoma 
progression, but uncertainty remains on how to integrate the 
information in free-text clinical notes, which contain valuable clinical 
information (32). Some studies aim to predict glaucoma progression 
requiring surgery using deep learning approaches on EHRs and natural 
language processing of clinical free-text notes. Sunil et al. presents an 
artificial intelligence approach to predict near-term glaucoma 
progression using clinical free-text notes and data from electronic 
health records (33). The authors developed models that combined 
structured data and text inputs to predict whether a glaucoma patient 
would require surgery within the following year. The model 
incorporating both structured clinical features and free-text features 
achieved the highest performance with an AUC of 0.899 and an F1 
score of 0.745. Another study aims to fill the gap by developing a deep 
learning predictive model for glaucoma progression using both 
structured clinical data and natural language processing of clinical free-
text notes from EHRs. The combination model showed the best AUC 
(0.731), followed by the text model (0.697) and the structured model 
(0.658) (34). Hu et  al. (16) explored the use of transformer-based 
language models, specifically Bidirectional Encoder Representations 
from Transformers (BERT), to predict glaucoma progression requiring 
surgery using clinical free-text notes from EHRs. The results showed 
that the BERT models outperformed an ophthalmologist’s review of 
clinical notes in predicting glaucoma progression. Michelle et al. (35) 
utilized an automated pipeline for data extraction from EHRs to 
evaluate the real-world outcomes of glaucoma surgeries, tube shunt 
surgery had a higher risk of failure (Baerveldt: Hazard Ratio (HR) 1.44, 
95% CI 1.02 to 2.02; Ahmed: HR 2.01, 95% CI 1.28 to 3.17).

Ophthalmic plastics

In the study conducted by Mohammad et al. (11), ChatGPT’s 
performance in providing information about primary acquired 
nasolacrimal duct obstruction and congenital nasolacrimal duct 
obstruction was evaluated. Regarding insights into the history and 
effectiveness of dacryocystorhinostomy surgery, ChatGPT was tested 
on this specific topic. Agreement among the three observers was high 
(95%) in grading the responses. The responses of ChatGPT were 
graded as correct for only 40% of the prompts, partially correct in 
35%, and outright factually incorrect in 25%. Hence, some degree of 
factual inaccuracy was present in 60% of the responses, if we consider 
the partially correct responses.

Discussion

The newer generation of GPT models, exemplified by GPT-3 and 
beyond, differs from their predecessors through significantly larger 
model sizes, improved performance on various language tasks, 
enhanced few-shot learning abilities, and increased versatility, while 
also necessitating more substantial computational resources and 
raising ethical considerations.

31

https://doi.org/10.3389/fmed.2023.1291404
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Jin et al. 10.3389/fmed.2023.1291404

Frontiers in Medicine 07 frontiersin.org

Strengths

AI technology, such as online chat-based AI language models, 
has the potential to assist clinical workflows and augment patient 
education and communication about common ophthalmology 
diseases prevention queries (Table 1). GPT’s medical subspecialty 
capabilities have improved significantly from GPT-3 to GPT-4. 
Both LLMs struggled with image-based and higher-order 
ophthalmology questions, perhaps reflecting the importance of 
visual analysis in ophthalmology. Given the ongoing advances in 
computer vision, it may be possible to address this limitation in 
future LLMs. There is room for improvement in medical 
conversational agents, as all models exhibited instances of 
hallucination, incorrect justification, or non-logical reasoning (36). 
Although ChatGPT 4.0 has demonstrated remarkable capabilities 
in a variety of domains, the presence of these errors raises concerns 
about the reliability of the system, especially in critical clinical 
decision making.

Ophthalmologists are starting to use ChatGPT to help with 
paperwork such as scientific articles, discharge summaries and 
operative notes (15, 24, 37). The scientific accuracy and reliability on 
certain topics were not sufficient to automatically generate 
scientifically rigorous articles. This was also objected to by some 
ophthalmologists (38). Firstly, operative notes are not general 
descriptions of surgical procedures and a specific patient has its own 
unique characteristics. Secondly, operative notes are legal documents 
and the surgeon is responsible for the accuracy and completeness of 
the notes. Thirdly, there is no evidence that GPT-4 can accurately 
capture the unique aspects of individual cases in the real world, such 
as intraoperative complications. Finally, the writing of operative notes 
requires a degree of clinical decision-making and clinical judgment 
that cannot be automated.

In a recent development, ChatGPT has emerged as an author or 
co-author of scientific papers in the field of ophthalmology (39, 40). 
This innovative inclusion has sparked discussions and garnered 
attention from the scientific community. The presence of ChatGPT as 
an author in scientific research reflects the evolving landscape of 
artificial intelligence’s involvement in various domains, including 
ophthalmology, opening avenues for new perspectives and 
collaborative contributions.

Challenges

Despite the promising future, integrating LLMs into 
ophthalmology also poses several challenges that need to be addressed. 
Firstly, ensuring patient data privacy and maintaining the security of 
sensitive medical information will be  critical (41). These models 
require vast amounts of data to achieve their potential, but data-
sharing must be conducted responsibly and in compliance with strict 
ethical and legal guidelines (42, 43).

Another significant challenge is the potential for bias in the data 
used to train these language models (44). If the data used for training 
is not diverse enough, the models may exhibit biases that can lead to 
inaccurate or unfair recommendations, particularly when dealing with 
underrepresented populations. Efforts must be made to identify and 
mitigate these biases to ensure equitable and reliable outcomes for 
all patients.

Furthermore, there may be resistance or skepticism among some 
healthcare professionals towards adopting AI-driven technologies like 
LLMs. It will be crucial to address these concerns, provide proper 
training, and foster a collaborative environment where human experts 
and AI work together synergistically (45).

The interpretability and explainability of the decisions made by 
these models are another challenge. As they are often considered 
“black boxes,” “understanding the reasoning behind their 
recommendations can be difficult,” leading to potential mistrust from 
clinicians and patients (46). Developing methods to make the models 
more transparent and explainable will be essential for their widespread 
acceptance and adoption (47).

Lastly, the rapidly evolving nature of AI and language model 
technologies demands continuous updates and improvements. Staying 
up-to-date with the latest advancements and incorporating new 
knowledge into the models is essential to maintain their accuracy and 
relevance in the ever-changing field of ophthalmology.

While LLMs like ChatGPT offer tremendous potential in 
ophthalmology, addressing the challenges of AI hallucination and 
misinformation is paramount. It is essential to consider the broader 
societal implications, including patient trust, medical liability, ethical 
concerns, scientific integrity, health disparities, and regulatory 
oversight when integrating AI into ophthalmic practices. Responsible 
AI implementation and continuous monitoring are essential to 
harness the benefits of AI while minimizing potential risks. One 
concern in the use of LLMs for medical applications is the lack of 
reproducibility, as these generative models may not consistently 
provide the same answers, potentially impacting the reliability of their 
outputs in clinical settings. Addressing these challenges will 
be essential to fully realize the potential benefits of large language 
models in ophthalmology and to ensure their responsible and ethical 
implementation in patient care (48).

Future perspectives

The future perspectives of LLMs in ophthalmology hold 
tremendous promise for transforming the landscape of eye care and 
research (49). These advanced language models, powered by AI and 
NLP, are poised to revolutionize how ophthalmologists diagnose, treat, 
and manage various eye conditions. LLMs can be  integrated with 
image analysis techniques to create multimodal AI systems. These 
systems can process both textual and visual information, enhancing 
their capabilities in ophthalmology. For instance, LLMs can analyze 
textual patient records and medical literature, while image analysis 
algorithms can interpret medical images such as fundus photographs. 
Through their ability to analyze vast amounts of medical literature, 
patient data, and diagnostic images, these models can provide more 
accurate and timely diagnoses, personalized treatment plans, and even 
predict disease progression. The combination of LLMs and image 
analysis can lead to more efficient and accurate decision-making in 
ophthalmic practice. Additionally, LLMs can be  used as tools to 
support communication and knowledge exchange in the following 
ways. While LLMs themselves do not directly facilitate communication 
like human interaction, their capabilities can enhance and streamline 
information exchange and knowledge sharing among eye care 
professionals worldwide. As research and development in this field 
continue to progress, we can expect these language models to become 
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indispensable tools that enhance efficiency, accessibility, and 
ultimately improve patient outcomes in ophthalmology.

Limitations

This review acknowledges several potential limitations that may 
have affected the comprehensiveness and potential bias of the 
literature search and selection process. These limitations include 
publication bias, language bias due to the focus on English-language 
studies, potential database selection bias, the possibility of excluding 
relevant studies due to search term restrictions, the limited date 
range, and the predefined exclusion criteria that may have omitted 
relevant research. The review also recognizes the potential for missed 
references and acknowledges the subjectivity in reviewer bias, which 
could impact study inclusion. Moreover, the review underscores the 
importance of addressing these limitations to ensure a more 
comprehensive and balanced assessment of the field of AI in 
ophthalmology. Despite these potential constraints, the review 
provides valuable insights into the applications and challenges of AI 
in ophthalmology, but readers should consider these limitations 
when interpreting the findings and drawing conclusions from 
the review.
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Neighbored-attention U-net 
(NAU-net) for diabetic retinopathy 
image segmentation
Tingting Zhao 1†, Yawen Guan 1†, Dan Tu 1, Lixia Yuan 2 and 
Guangtao Lu 3*
1 The Second Department of Internal Medicine, Donghu Hospital of Wuhan, Wuhan, China, 2 The 
Department of Ophthalmology, Donghu Hospital of Wuhan, Wuhan, China, 3 Precision Manufacturing 
Institute, Wuhan University of Science and Technology, Wuhan, China

Background: Diabetic retinopathy-related (DR-related) diseases are posing an 
increasing threat to eye health as the number of patients with diabetes mellitus that 
are young increases significantly. The automatic diagnosis of DR-related diseases 
has benefited from the rapid development of image semantic segmentation and 
other deep learning technology.

Methods: Inspired by the architecture of U-Net family, a neighbored attention 
U-Net (NAU-Net) is designed to balance the identification performance and 
computational cost for DR fundus image segmentation. In the new network, 
only the neighboring high- and low-dimensional feature maps of the encoder 
and decoder are fused by using four attention gates. With the help of this 
improvement, the common target features in the high-dimensional feature maps 
of encoder are enhanced, and they are also fused with the low-dimensional 
feature map of decoder. Moreover, this network fuses only neighboring layers 
and does not include the inner layers commonly used in U-Net++. Consequently, 
the proposed network incurs a better identification performance with a lower 
computational cost.

Results: The experimental results of three open datasets of DR fundus images, 
including DRIVE, HRF, and CHASEDB, indicate that the NAU-Net outperforms FCN, 
SegNet, attention U-Net, and U-Net++ in terms of Dice score, IoU, accuracy, and 
precision, while its computation cost is between attention U-Net and U-Net++.

Conclusion: The proposed NAU-Net exhibits better performance at a relatively 
low computational cost and provides an efficient novel approach for DR fundus 
image segmentation and a new automatic tool for DR-related eye disease 
diagnosis.

KEYWORDS

image semantic segmentation, deep learning, diabetic retinopathy, neighbored-
attention U-net, fundus image

1 Introduction

Recently, as the number of patients with diabetes mellitus (DM) has increased greatly and 
they tend to be younger, an increasing number of people suffer from diabetic retinopathy (DR) 
(1, 2). As an eye disease, DR may cause visual impairment or even blindness if not diagnosed 
and treated in a timely manner (3). DR typically results in optic disc (OD) lesions. These lesions 
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involve abnormal changes in retinal blood flow, and the abnormalities 
primarily include microaneurysms (MA), hard exudates, soft 
exudates, hemorrhages (HA), neovascularization (NV), and macular 
edema (ME) (4). These changes in the OD can be  captured and 
recorded in images using a DR screening device, and OD abnormalities 
can be easily distinguished by experienced doctors by analyzing the 
fundus images. However, the manual diagnosis of DR requires doctors 
to check numerous images, which is time-consuming, resource-
intensive, and expensive.

Owing to the increasing development of computer vision 
technologies, deep learning methods, especially image identification 
technology including image classification and image semantic 
segmentation method, have been introduced for automatic diagnosis 
of DR. As a method of image identification technologies based on 
computer vision, image classification algorithms typically preprocess 
the images first using image processing technologies and then enhance 
or extract some features from the preprocessed images, including 
histograms of oriented gradients (HOG), higher-order spectra (HOS), 
and speeded-up robust features (SURF). The extracted features are 
input into an intelligent classifier model with a category or label. After 
the classifier is trained, it is used to predict a new DR fundus or other 
medical images. It outputs a category or label that represents the type 
of disease (5, 6). The commonly used classifiers include support vector 
machine (SVM), genetic algorithm (GA), and convolutional neural 
networks (CNN) (4, 7). Orfao and Haar (8) compared the performance 
of different classifiers, and their experimental results indicated that the 
radial basis function SVM (RBF-SVM) model obtained a higher 
accuracy and F1-score using the HOG feature of the green channel. 
Ghoushchi et  al. (9) combined fuzzy C-mean (FCM) and GA 
algorithms to identify diabetic and nondiabetic eye images with a 
relatively high recognition rate. Li et al. (10) obtained the features of 
the DR1 and Messidor datasets using a fine-tuning CNN and used an 
SVM model to classify the images. Le et al. (11) first selected the 
feature using an adaptive particle-grey wolf optimization method and 
classified the image using a multilayer perceptron (MLP). Their 
comparative results showed that the new algorithm predicted the 
images with a higher accuracy.

Moreover, because the CNN model shows a powerful ability for 
image enhancement, various CNN models have been introduced 
into image feature selection. CNN models are typically connected 
by a series of convolutional, activation, pooling, dropping, and fully 
connected layers, and based on the architecture of the backbones of 
the CNN, various CNN models, including AlexNet, VGG, 
DenseNet, ResNet, MobileNet, are used for DR and other medical 
image segmentation. Shanthi and Sabeenian (12) used an AlexNet 
with four convolution layers and three pooling layers to augment 
the fundus images of the Messidor dataset and classified the severity 
using filtered data. Khan et al. (13) modified the architecture of 
VGG16 to improve the performance of DR image diagnosis and 
tested the identification performance using the Kaggle dataset. 
Kobat et al. (14) first separated the DR image into parts by resizing 
and dividing the original image and then trained DenseNet201 and 
SVM classifiers to augment and estimate the DR images, 
respectively. Al-Moosawi and Khudeyer (15) diagnosed four 
different categories of DR using a trained ResNet34 and compared 
the performances of different DL architectures. The identification 
results of the fundus images from APTOS 2019 and IDRiD showed 
that ResNet34 performed better in image feature enhancement. 

Moreover, considering its powerful target detection ability, the 
popular Yolo V3 model was introduced for automatic DR fundus 
image identification by Pal et al. (16). Similar studies have been 
conducted by Wang et al. (17), Das et al. (18), Mohamed et al. (19), 
and Santos et al. (20).

In contrast to the aforementioned image classification methods, 
image semantic segmentation methods detect and classify images at 
each pixel (21, 22). Therefore, after semantic image segmentation, the 
retinal blood vessels or other important structures of the DR or other 
medical images are augmented, and the lesion area is directly detected 
and located. Image semantic segmentation algorithms are derived 
from or based on CNN, and typical image semantic segmentation 
architectures are fully convolutional networks (FCN), SegNet, 
pyramid scene parsing networks (PSPNet), DeepLab, Unet, etc. (23, 
24). To achieve a tradeoff between semantic and location information, 
Wang et  al. (25) improved the original R-FCN by adding an 
upsampling unit in the common ResNet101 and used a feature 
pyramid network to generate a feature map with different feature map 
levels. Using the modified R-FCN, higher sensitivity and specificity 
for DR image segmentation were obtained. To increase the feature 
map resolution, the original SegNet used an encoder to obtain the 
feature maps and employed a decoder to up-sample the feature maps 
(26). SegNet was first proposed by Saha et al. (27) for road and indoor 
scene segmentation, and Ananda et al. (28) introduced SegNet for DR 
image segmentation. To make optimal use of the global feature in 
image segmentation tasks, a global pyramid pooling layer and certain 
new strategies were proposed in PSPNet and compared with FCN 
(29). Fang et al. (30) combined a phase-up-sampling module and 
PSPNet for fundus image segmentation. This improved model 
obtained higher intersection over union (IoU) and pixel accuracy 
than the native PSPNet. Chen et  al. (31) introduced arouse 
convolution and a conditional random field (32) to strengthen the 
boundary details and finally obtained a better image segmentation 
effect. This architecture is known as DeepLab v1. To further improve 
the identification accuracy of the boundary, DeepLab v2 (33), 
DeepLab v3 (34), and DeepLab v3+ (35) were developed by 
modifying certain modules of the DeepLab v1 network. Some 
researchers have reviewed and compared the performances of other 
networks (36).

However, the performance of these image segmentation 
algorithms is affected by the number of training samples. In addition, 
datasets of medical images, particularly images of rare cases, are 
typically insufficient. Therefore, the U-Net was first reported by 
Ronneberger et al. (37) to improve the performance of small-sample 
image segmentation. U-Net uses a symmetric architecture to suppress 
the key image features by down-sampling and to extract low-level 
features by skip connection and up-sampling. It finally exhibits 
excellent performance by fusing all the features. Moreover, various 
variants of U-Net have been developed by modifying or adding 
modules to improve their accuracy. However, these variants typically 
achieve excellent performance by fusing multi-scale feature maps with 
dense links between the encoder and decoder, and as a result, they 
usually need the expense of computational and time costs. Therefore, 
to balance the identification performance and computational of the 
algorithm, a novel U-Net named neighboring attention U-Net is 
designed for DR fundus image semantic segmentation.

The paper is structured as follows: Section 2 summarizes and 
discusses the studies on U-Net and its variants. Section 3 introduces 
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the architecture and workflow of the proposed network. Section 4 
provides the details of the datasets and compares the testing 
performances of the different networks. Section 5 summarizes the 
whole study.

2 Related previous works of U-Net 
family

Since the U-Net was first reported by Ronneberger et al. (37) 
in 2015, various variants of the U-Net have been developed and 

have displayed a wide and strong applicability for DR fundus, cell, 
lung, skin cancer, colorectal adenocarcinoma gland, and coronary 
artery image segmentation in the field of medicine. Figure  1 
shows the structure of U-Net and its variants. Apart from the 
original U-Net, the U-Net family primarily includes attention 
U-Net, residual U-Net, residual-attention U-Net, recurrent 
residual convolutional neural network (RRCN) based on U-Net 
(R2U-Net), U-Net++, Nested U-Net, etc. As shown in Figure 1, in 
these variants, some modules are modified or added to further 
focus on their ability for image feature extraction and fusion at 
different levels.

FIGURE 1

Architectures of some variants of U-Net: (A) U-Net, (B) Attention U-Net, (C) R2U-Net, and (D) CE-Net; (E) U-Net++.
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Inspired by the concept of FCN, a new network with an encoder 
and decoder was designed in 2015, and it was called “U-Net” because 
of its symmetric architecture. As shown in Figure 1A, the U-Net 
encoder primarily consists of convolution, ReLU activation, and max 
pooling modules, whereas the decoder primarily consists of 
up-convolution, convolution, ReLU activation, and max pooling 
modules. Moreover, to join the features of the encoder, a cropping 
operation is performed at the corresponding levels in the decoding 
process. Owing to its innovation in image feature extraction and 
fusion at different levels, U-Net has displayed outstanding 
performance in medical image segmentation with a small sample 
size. Çiçek et  al. (38) transformed a 2D U-Net model into a 3D 
U-Net for volumetric segmentation of biomedical images using 3D 
modules. To be more sensitive to the local region, Oktay et al. (39) 
added three attention gates before the copy and cropping operations 
in attention U-Net as shown in Figure 1B. The attention U-Net had 
a higher Dice score and a lower surface distance in the CT abdominal 
image segmentation. To simplify training and decrease the 
degradation of the U-Net model, Zhang et  al. (40) introduced a 
residual mechanism into the architecture and designed a deep 
residual U-Net model for road image segmentation. The residual 
U-Net inherits the depth of the residual network and feature fusion 
ability at different levels. Combining the advantages of the residual, 
recurrent, and U-Net modules, Alom et al. (41) designed R2U-Net 
in 2019. In R2U-Net of Figure  1C, the introduction of RRCN 
modules further enhances the feature extraction ability at each pixel 
and increases its depth. Owing to the powerful abilities of the 
modules, R2U-Net displayed a better response than U-Net in various 
medical image segmentations. Considering that the pooling and 
convolution operations of U-Net typically result in a loss of feature 
resolution and spatial information, Gu et al. (42) designed a network 
called CE-Net shown in Figure 1D, based on U-Net. In addition to 
the encoder and decoder, CE-Net has a context extractor for dense 
atrous convolution and residual modules. The advantages of the 
proposed context extractor in CE-Net are compared and proven by 
segmenting different types of images. Moreover, to achieve high 
accuracy in medical image segmentation, Zhou et al. (43) nested 
different layers of U-Net by adding new skip pathways; therefore, this 
network is called U-Net++ or Nested U-Net. As shown in Figure 1E, 
in U-Net ++, the redesigned pathways mapped the feature maps of 
the encoder to the decoder; consequently, the feature maps of the 
two networks were fused. As the number of pathways increased 
significantly, the parameters of the model expanded, and the 
computational cost increased. The experimental test of CT image 
segmentation showed that it achieved an average IoU improvement 
of approximately 3%, and its total parameters increased by 
approximately 16.5% compared with U-Net. To balance the 
computational cost and segmentation performance, the AdaBoosted 
supervision mechanism was added to U-Net, and this architecture 
was called ADS_U-Net (44). In this model, deep supervision and 
performance-weighted combination were conducted to reduce the 
correlations between different feature maps and obtain excellent 
comprehensive performance in image segmentation and 
computation costs. Inspired by U-Net++, Li et al. (45) proposed a 
residual-attention U-Net++ in which the residual and attention 
modules were embedded into U-Net++. With the assistance of these 
two modules, the degradation was weakened and irrelevant features 

were filtered; therefore, the target feature was enhanced. As a result, 
the modified U-Net++ obtained higher IoU and Dice scores.

As shown in Figure 1, compared with the original architecture of 
U-Net, attention U-Net, U-Net++, and residual-attention U-Net++ 
have more links between the low- and high-dimensional feature maps, 
and these features of different levels are well combined, which filters 
the low-relevance features and boosts the target features. More 
complicated nested layers assist in improving the performance; 
however, they introduce a larger number of parameters and increase 
the computational cost. Therefore, to balance computational 
performance and cost, neighbored attention U-Net (NAU-Net) is 
proposed for DR and other medical image segmentation. In this new 
network, neighboring high- and low-dimensional feature maps are 
fused by an attention gate to filter the target features at a relatively 
low cost.

3 Methodology

3.1 Whole architecture of NAU-Net

Figure 2 shows the NAU-Net’s structure. As shown in Figure 2, the 
NAU-Net adds four attention gates to map the feature maps of the 
encoder to the decoder at different levels. The inputs to the attention 
gate are the two neighboring feature maps of the encoder and decoder 
at the same level. Using these attention gates, similar feature maps are 
fused, and the target features are enhanced. Moreover, this network 
only uses neighboring layers and does not include the inner layers 
commonly used in U-Net++ and residual attention U-Net++. 
Consequently, the proposed network incurs a lower 
computational cost.

To fuse the feature maps conveniently and make the output size 
similar to the input image, the conventional kernel size is 3 × 3, and 
its stride and padding are one. After the convolution operation, the 
ReLU, batch normalization, and max pooling operations are 
performed. The maximum pooling is 2 × 2, and the stride is two. The 
up-convolution operation included up-sampling, 2 × 2 convolution 
with a stride and padding of one, batch normalization, and ReLU 
operations. Finally, a 3 × 3 convolution operation transfers the filtered 
image to one channel.

3.2 Neighbored feature maps fusion

As the convolutional layers of encoder increase, more and more 
detailed features of the target get loss. However, there is some 
similarity between the two-neighboring high-dimensional feature 
maps in the encoder, and this connection between the maps faraway 
gets weaker. Therefore, to enhance the common features in the maps 
with a relative low computation cost, only the two neighboring feature 
maps of the encoder are fused by an attention in NAU-Net.

Before the feature maps of the encoder and decoder are 
combined, the two neighboring feature maps of the encoder are 
fused. Because the dimensions of the two neighbored feature maps of 
the encoder are different, the lower-dimensional feature map is first 
filtered by an up-convolution operation and then fused by a 
concatenation operation. The entire fusion operation is shown in 
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Figure 3. As shown in Figure 3, after the feature map of the L + 1 level 
with dimensions W × B × 2 × ch is processed by up-sampling, 
convolution, batch normalization, and ReLU sequentially, a new 
feature map with the same dimensions as the Lth feature map is 
obtained. Subsequently, the new feature map is concatenated with the 
Lth feature map.

3.3 Attention mechanism in NAU-Net

The high-dimensional feature maps of the encoder usually contain 
fine-grained features of the target, while the low-dimensional ones of 
the decoder contain coarse texture of the target. Therefore, to increase 
the identification accuracy, the multi-scale features of the target in 
low- and high-dimensional feature maps are extracted and fused by 
the attention mechanism in NAU-Net. Figure  4 shows the entire 
procedure for the attention mechanism in NAU-Net. In Figure 4, the 
low- and high-dimensional feature maps are inputted to a common 
attention gate, and the output dL′  of the attention gate is expressed 
as follows:

 
q w e w dL g L x L= ( ) + ( )( )′σ1  

(1)

 α αL Lw q= ( ) (2)

 d dL L L
′ = α  (3)

where σ1 represents the ReLU operation, dL represents the feature 
map of decoder at the level L, wg and wx represent the plain convolution 
and batch normalization operations of the feature maps eL′  and dL, 
respectively, αL represents the attention coefficient, wα represents the 
combining operation convolution, batch normal, and sigmoid 
activation. It is noteworthy that the kernel size of the attention gate 
convolution is 3 × 3 with a stride of 1.

3.4 Loss function

In this study, binary cross-entropy and Dice loss (BCE-Dice loss) 
are selected as loss functions to evaluate segmentation performance 

FIGURE 2

Structure of the NAU-Net.

FIGURE 3

Neighbored feature maps fusion.
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(46). The ith predicted image and its corresponding ground-truth 
image are pi and gi. The BCE-Dice loss is expressed as follows:
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where N is the total number of images and TPi, FPi, and FNi are 
the true positives, false positives, and false negatives of the ith 
predicted image, respectively.

4 Experiments and results

To test and compare the performance of NAU-Net, datasets of DR 
fundus images, including digital retinal images for vessel extraction 
(DRIVE), high-resolution fundus (HRF), and CHASEDB, were tested. 
Figure 5 shows the fundus images from the three datasets. Moreover, 
the segmentation performance of NAU-Net was compared with FCN, 
SegNet and two variants of U-Net, namely attention U-Net and 
U-Net++, whose networks are similar to the proposed model. The 
proposed model and a few existing networks were established by using 
the PyTorch framework (version 1.10.0), and all experimental tests 
were conducted at the High-Performance Computing Center at 
Wuhan University of Science and Technology. All the tests were 
conducted on a computer with four NVIDIA Tesla V100S GPUs, and 
the memory capacity of each GPU board was 32 GB.

4.1 Datasets

4.1.1 DRIVE dataset
The total of 40 color DR fundus images from DRIVE were used in 

this study (47). The resolution of the images was 584 × 565 pixels per 
channel, and each image had three channels. The ratio of the training 
and testing split was 20:20. The ground truth of each image was 
manually segmented and marked by one or two different 
ophthalmological experts.

4.1.2 HRF dataset
The HRF (48) included 45 original DR fundus images, including 

15 healthy, 15 DR, and 15 glaucomatous fundus images. All images 

were manually marked by experts. The image resolution was 
3,504 × 2,336 pixels. Moreover, in this study, healthy and DR fundus 
images were imported; among them, 26 images were selected as the 
training set, and the remaining four were selected as the testing set.

4.1.3 CHASEDB dataset
The 28 color fundus images from CHASEDB (49) were also used 

to display the performance of NAU-Net. Each image contained 
999 × 960 pixels and was marked by two independent experts. The 
training and testing sets contained 21 and seven images, respectively.

4.1.4 Evaluation metrics
To display and compare segmentation performance, some 

commonly used evaluation metrics, including the Dice score, IoU, 
accuracy (AC), and precision (PC), were introduced in this study. 
These four metrics are obtained as follows:

 
DC TP

FP FN TP
=

+ +
2

2  
(5)

 
IoU TP

FP FN TP
=

+ +  
(6)

 
AC TP TN

TP TN FP FN
=

+
+ + +  

(7)

 
PC TP

TP FP
=

+  
(8)

where TP, TN, FP, and FN represent the true positives, true 
negatives, false positives, and false negatives, respectively.

Moreover, the computational cost was evaluated by comparing the 
total number of parameters and GPU memory demands of the models.

4.2 Results

During the inference process, the Adam optimizer was selected, 
and its learning rate was adjusted using the CosineAnnealinLR 
scheduler. The maximum number of iterations was 10. The minimum 
learning rate of the scheduler was 0.0001. The total number of epochs 
was 140, and the batch size was selected as four. All images were 

FIGURE 4

Attention gate in NAU-Net.
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resized to 576 × 576 pixels before inference. Before the images were put 
into the model, they were preprocessed by normalization with 
parameters mean = [0.485, 0.456, 0.406] and std. = [0.229, 0.224, 
0.225]. Moreover, the information of libraries used in this study is 
available at website https://github.com/Aynor007/MyNAUnet.

4.2.1 Computation cost comparison
To evaluate the computational cost of NAU-Net, the number of 

parameters, total memory demand, and complexity of different 
models, including FCN, SegNet, attention U-Net, U-Net++, and 
NAU-Net, were evaluated and compared. The model complexity was 
evaluated by the number of floating points (FLOPs) and multiple adds 
(MAdds), and it was calculated with the help of Torchstat 0.0.7. Table 1 

lists the total number of parameters, total memory demand, number 
of FLOPs, and number of MAdds. Table  1 shows that the 
computational cos of the U-Net family is higher than other models 
including FCN and SegNet. It should be also noted that FCN and 
SegNet usually need a relative larger number of training samples to 
obtain a satisfactory identification accuracy, which finally results in a 
significant increase of the training cost.

Moreover, Table  1 also demonstrates that the number of 
parameters in NAU-Net is slightly higher than those of attention 
U-Net and U-Net++. The total memory of NAU-Net is 20.63% higher 
than that of attention U-Net and 9.53% lower than that of U-Net++. 
Moreover, the number of FLOPs in NAU-Net is 33.29% higher than 
that of attention U-Net, it is 35.68% lower than U-Net++. The number 

FIGURE 5

Fundus images of open datasets: (A) DRIVE, (B) Ground true image of (A,C) HRF; (D) Ground truth image of (C), (E) CHASEDB, and (F) Ground truth 
image of (E).
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of MAdds in NAU-Net is 33.31% higher than that of attention U-Net, 
which is 35.84% lower than that of U-Net++. To reduce the semantic 
gap between the low- and high-dimensional feature maps, a series of 
nested pathways are designed in the U-Net++, and as a result the 
computational cost accordingly increases. However, in the NAU-Net, 
only the neighboring high- and low-dimensional feature maps are 
linked. Moreover, since only the two feature maps with the same 
dimension are connected by an attention gate in the attention U-Net, 
the attention U-Net has less parameters than NAU-Net. Therefore, the 
computational cost of NAU-Net is between the cost of attention U-Net 
and U-Net++.

4.2.2 DRIVE image segmentation
Figure 6 shows three DR fundus images of the DRIVE dataset, 

their ground-truth images of retinal blood vessels, and the 
identification results of attention U-Net, U-Net++, and NAU-Net. 
Figure 6 clearly demonstrates that the proposed NAU-Net can identify 

some tiny and small retinal blood vessels of the DR fundus while the 
other two models detect less, which indicates that the fusion operation 
of the neighboring feature maps successfully extracts detailed features 
from the encoder, and therefore the proposed NAU-Net displays a 
better performance of tiny and small retinal blood vessel segmentation 
than attention U-Net and U-Net++.

Table 2 compares the segmentation performance of the DRIVE 
DR images obtained using the proposed NAU-Net and other 5 existing 
models including FCN, SegNet, attention U-Net and U-Net++. 
Table  2 clearly shows that the proposed NAU-Net obtained the 
maximum values of the Dice score, IoU, and accuracy for DR image 
segmentation of the DRIVE dataset among the five models. Since FCN 
and SegNet usually needs a relative larger number of training samples 
to obtain a satisfactory performance, their evaluation metrics are 
much lower than the models of U-Net family. Moreover, compared to 
attention U-Net and U-Net++, NAU-Net achieves a performance 
improvement from 0.18 to 7.10%, which indicates that the proposed 

FIGURE 6

Image segmentation results of different models for DRIVE dataset.

TABLE 1 Parameters, memory, FLOPs, and Madd of different models.

Models Number of parameters (MB) Total memory (GB) FLOPs (G) MAdds (G)

FCN 15.11 1.07 102.13 203.94

SegNet 29.44 1.14 203.02 405.73

Attention U-Net 34.88 6.06 337.26 673.77

U-Net++ 36.63 8.08 698.94 1,400

NAU-Net 37.25 7.31 449.53 898.19
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NAU-Net has a stronger DR fundus image segmentation ability for the 
DRIVE dataset than the other two U-Net variants.

4.2.3 HRF image segmentation
Figure 7 shows three DR fundus images from the HRF dataset, 

their ground-truth images of retinal blood vessels, and the 
identification results of attention U-Net, U-Net++, and NAU-Net. 
Figure 7 shows that after the training, attention U-Net successfully 
detects most of the large vessels, while U-Net++ identifies some tiny 
retinal blood vessels that are not identified in the original image or 
ground truth. By contrast, the proposed NAU-Net correctly detects 
most of the vessels with the help of the fusion operation of the 
neighboring feature maps, including some tiny ones, which 
demonstrates that the proposed NAU-Net displays a better 
performance in retinal blood vessel segmentation than attention 
U-Net and U-Net++.

Table 3 compares the segmentation performances of the HRF DR 
images obtained using the proposed NAU-Net and other 5 existing 

models including FCN, SegNet, attention U-Net, and U-Net++. 
Similarly, Table 3 demonstrates that FCN and SegNet display a relative 
worse performance than the U-Net family. Table 3 also clearly shows 
that the proposed NAU-Net obtained the maximum values of the 
accuracy and precision for DR image segmentation of the HRF dataset 
among the attention U-Net, U-Net++, and NAU-Net, and its Dice and 
IoU are very close to the ones of U-Net++. Moreover, compared to 
attention U-Net and U-Net++, NAU-Net achieves a performance 
improvement from 0.28 to 9.19%, which indicates that NAU-Net has 
a stronger ability to DR fundus image segmentation for the HRF 
dataset than the other two U-Net variants, and the improvement of 
the proposed model is benefit to feature extraction.

4.2.4 CHASEDB image segmentation
Figure 8 shows three DR fundus images from CHASEDB, their 

ground-truth images of retinal blood vessels, and the identification 
results of attention U-Net, U-Net++, and NAU-Net. Table 4 lists the 
segmentation performance for the CHASEDB DR images obtained 

TABLE 2 DRIVE DR image segmentation performance of NAU-Net and other models.

Models Metrics (Mean  ±  Standard deviation)

Dice IoU Accuracy Precision

FCN 0.614 ± 0.109 0.45 ± 0.095 0.940 ± 0.008 0.704 ± 0.082

SegNet 0.663 ± 0.111 0.505 ± 0.109 0.942 ± 0.028 0.743 ± 0.148

Attention U-Net 0.730 ± 0.145 0.592 ± 0.149 0.950 ± 0.039 0.799 ± 0.16

U-Net++ 0.745 ± 0.147 0.609 ± 0.134 0.960 ± 0.013 0.820 ± 0.068

NAU-Net 0.750 ± 0.133 0.613 ± 0.126 0.962 ± 0.013 0.855 ± 0.055

Improvement (%)
Over Attention U-Net 2.64 3.50 1.21 7.10

Over U-Net++ 0.69 0.71 0.18 4.29

FIGURE 7

Image segmentation results of different models for HRF dataset.
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TABLE 4 CHASEDB DR image segmentation performance of NAU-Net and other models.

Models Metrics (Mean  ±  Standard deviation)

Dice IoU Accuracy Precision

FCN 0.625 ± 0.081 0.459 ± 0.082 0.944 ± 0.006 0.584 ± 0.051

SegNet 0.475 ± 0.157 0.325 ± 0.13 0.948 ± 0.004 0.765 ± 0.067

Attention U-Net 0.736 ± 0.104 0.592 ± 0.116 0.967 ± 0.006 0.800 ± 0.059

U-Net++ 0.738 ± 0.085 0.591 ± 0.095 0.968 ± 0.005 0.839 ± 0.051

NAU-Net 0.755 ± 0.052 0.609 ± 0.063 0.969 ± 0.003 0.829 ± 0.058

Improvement (%)
Over Attention U-Net 2.54 2.86 0.19 3.60

Over U-Net++ 2.30 3.02 0.08 −1.18

using the proposed NAU-Net and other 5 existing models including 
FCN, SegNet, attention U-Net, and U-Net++. Table 4 clearly shows 

that the proposed NAU-Net obtains the maximum value of the Dice 
score, IoU, and accuracy for DR image segmentation of the CHASEDB 

TABLE 3 HRF DR image segmentation performance of NAU-Net and other models.

Models Metrics (Mean  ±  Standard deviation)

Dice IoU Accuracy Precision

FCN 0.547 ± 0.013 0.377 ± 0.012 0.924 ± 0.008 0.497 ± 0.047

SegNet 0.592 ± 0.096 0.427 ± 0.1 0.952 ± 0.003 0.78 ± 0.086

Attention U-Net 0.765 ± 0.035 0.621 ± 0.046 0.965 ± 0.003 0.76 ± 0.079

U-Net++ 0.787 ± 0.044 0.651 ± 0.06 0.966 ± 0.006 0.733 ± 0.087

NAU-Net 0.786 ± 0.032 0.649 ± 0.044 0.969 ± 0.004 0.801 ± 0.108

Improvement (%)
Over Attention U-Net 2.74 4.49 0.37 5.39

Over U-Net++ −0.09 −0.29 0.28 9.19

FIGURE 8

Image segmentation results of different models for CHASEDB dataset.
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dataset among the five models, and U-Net++ achieves the highest 
precision. Moreover, compared to attention U-Net and U-Net++, 
NAU-Net improves the segmentation performance with an average 
increase of 0.08 to 3.60%, which demonstrates that NAU-Net has a 
stronger ability for image segmentation for the CHASEDB dataset 
than the other two U-Net variants.

5 Conclusion

In this study, to achieve a balance between identification 
performance and computational cost, a modified U-Net called 
NAU-Net is proposed for image segmentation of the DR fundus. In 
our new network, only the neighboring high- and low-dimensional 
feature maps of both the encoder and decoder are fused using four 
attention gates. With the help of this improvement, the common target 
features in the high-dimensional feature maps of encoder are 
enhanced, and they are also fused with the low-dimensional feature 
map of decoder by using these attention gates. Moreover, this network 
uses only neighboring layers and does not include inner layers 
commonly used in U-Net++. Consequently, the proposed network 
incurs a better identification performance with a lower computational 
cost. The experimental results of three open datasets of DR fundus 
images, including DRIVE, HRF, and CHASEDB, show that the 
proposed NAU-Net obtains higher scores for the Dice score, IoU, 
accuracy, and precision than FCN, SegNet, attention U-Net and 
U-Net++, while its computation cost is between the costs of the two 
models of attention U-Net and U-Net++. Therefore, the proposed 
NAU-Net exhibits better performance with a relatively low 
computational cost and provides an efficient novel method for DR 
fundus image segmentation and a new automatic tool for DR-related 
eye disease diagnosis. In future work, we will develop an end-to-end 
automatic diagnosis model that combines the proposed architecture 
with other classification models. Moreover, the architecture will 
be further improved for multitask image segmentation of DR fundus 
images with multiple types of lesions.
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Pterygium and subconjunctival hemorrhage are two common types of ocular

surface diseases that can cause distress and anxiety in patients. In this study,

2855 ocular surface images were collected in four categories: normal ocular

surface, subconjunctival hemorrhage, pterygium to be observed, and pterygium

requiring surgery. We propose a diagnostic classification model for ocular

surface diseases, dual-branch network reinforced by PFM block (DBPF-Net),

which adopts the conformer model with two-branch architectural properties

as the backbone of a four-way classification model for ocular surface diseases.

In addition, we propose a block composed of a patch merging layer and a FReLU

layer (PFM block) for extracting spatial structure features to further strengthen

the feature extraction capability of the model. In practice, only the ocular surface

images need to be input into the model to discriminate automatically between

the disease categories. We also trained the VGG16, ResNet50, EfficientNetB7,

and Conformer models, and evaluated and analyzed the results of all models on

the test set. The main evaluation indicators were sensitivity, specificity, F1-score,

area under the receiver operating characteristics curve (AUC), kappa coefficient,

and accuracy. The accuracy and kappa coefficient of the proposed diagnostic

model in several experiments were averaged at 0.9789 and 0.9681, respectively.

The sensitivity, specificity, F1-score, and AUC were, respectively, 0.9723, 0.9836,

0.9688, and 0.9869 for diagnosing pterygium to be observed, and, respectively,

0.9210, 0.9905, 0.9292, and 0.9776 for diagnosing pterygium requiring surgery.

The proposed method has high clinical reference value for recognizing these

four types of ocular surface images.

KEYWORDS

subconjunctival hemorrhage, pterygium, visual recognition, deep learning, computer
aided diagnosis

1 Introduction

Pterygium is a common ocular surface disease caused by overgrowth of fibro vascularity
in the subconjunctival tissue, resulting in invasion of the inner eyelid and outer cornea
(1). It is most prevalent in areas with high ultraviolet light; in some areas, 9.5% of the
pterygium patient population is associated with prolonged exposure to high ultraviolet
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light (2). Clinically, pterygium can be categorized into active
and fixed stages. In the fixed stage, the pterygium invades
the cornea to a lesser extent, with thin fibro vascular tissue
and a smooth, transparent cornea. In the active stage, the
pterygium severely invades the cornea, resulting in a cloudy
cornea, which if not properly controlled can obscure the pupil
and cause irritation and astigmatism, with a more serious effect
on vision and limited eye movement accompanied by pain
(3). In the medical field, the width of the pterygium (WP)
invading the cornea is commonly used as an indicator of
whether to operate; the patient is in the stage to be observed
when the width of invasion is less than 3 mm, and in the
stage to be operated when the width of invasion is greater
than 3 mm (4). Subconjunctival hemorrhage is also a common
ocular surface disease characterized by painless, acute, obvious
red, swollen hemorrhages in the absence of secretions under
the conjunctiva, which may evolve from punctate to massive
hemorrhages, rendering the underlying sclera invisible (5, 6).
Subconjunctival hemorrhage can be defined histologically as
bleeding between the conjunctiva and the outer layer of the
sclera, and the blood component will be found in the lamina
propria of the conjunctiva when the blood vessels under the
conjunctiva rupture (7). In contrast to pterygium, subconjunctival
hemorrhage is not vision-threatening and is predominantly found
in hypertensive groups over 50 years of age (8). Pterygium and
subconjunctival hemorrhage often cause uneasiness and anxiety
in patients; however, most cases do not require much medical
management in the early stages.

Traditional screening methods for ocular surface diseases rely
primarily on capturing anterior segment images using a slit lamp
for patient sampling, followed by clinical diagnosis by experienced
ophthalmologists for early screening and analysis. However, a
lack of ophthalmologists in remote areas with poor healthcare
resources means that screening for ocular surface diseases still faces
great difficulties.

Recently, the increasing application of artificial intelligence
in ophthalmology has led to the rapid development of research
on intelligent ophthalmic diagnosis. Many researchers have used
deep learning algorithms to detect common fundus diseases
on fundus images (9–13). In addition, researchers have used
deep learning for the diagnosis of ocular surface diseases. In
2018, Zhang et al. implemented an interpretable and scalable
deep learning automated diagnostic architecture for four
ophthalmic diseases, including subconjunctival hemorrhage
and pterygium (14). In 2020, a team from the U.S. improved
VggNet16 and applied transfer learning to apply it to screening
for pterygium (15). In 2022, Wan et al. improved the U-Net++
segmentation algorithm and proposed a system to diagnose
and measure the progression of pterygium pathology (16).
To provide high-quality diagnostic services for ocular surface
diseases, we designed an automatic diagnostic model for
ocular surface diseases using deep learning techniques. The
proposed model simultaneously accomplishes the detection
of multiple diseases from ocular surface images and achieves
fast recognition with high accuracy. This capability is crucial
for early screening of ocular surface diseases in remote
areas where access to professional medical personnel and
equipment is limited.

2 Dataset description

The dataset used in this study was provided by the Affiliated
Eye Hospital of Nanjing Medical University, and contains color
images of the ocular surface with good image quality captured
by a professional ophthalmologist. To prevent the leakage
of patients’ personal information, the images do not contain
patients’ personal information, including but not limited to
age, sex, and name.

In this study, 2855 ocular surface images were collected
from patients of different age groups and sexes, including
1312 normal ocular surfaces, 251 ocular surface hemorrhages,
909 pterygiums to be observed, and 383 pterygiums requiring
surgery. Examples of the four types of ocular surface images
are shown in Figure 1. The camera used was a Canon
DSLR, model Canon EOS 600D, with diffuse illumination
from a slit lamp and an image resolution of 5184 × 3456.
The quality of the images was verified by a professional
ophthalmologist. We followed the guidelines proposed by Yang
et al. (17).

3 Materials and methods

Currently, image classification algorithms based on deep
learning are primarily composed of convolutional neural networks
or visual transformer modules. Convolutional neural networks
were first proposed by Lecun et al. (18), and several representative
modeling algorithms have subsequently emerged. Among them,
the residual network architecture proposed by He et al. (19)
is an important milestone in the field of computer vision
that solves the problem of network training difficulty owing
to gradient vanishing and gradient explosion in convolutional
neural networks. The vision transformer (20), proposed by
researchers at Google Brain, is an image classification algorithm
based on the transformer model that allows images to be
viewed as sequences and uses a self-attention mechanism
to extract features. Traditional convolutional neural networks
perform excellently in the field of image processing; however,
the convolutional kernel limits its receptive field and may
ignore global information in the image. The transformer can
consider all the pixels in the image simultaneously, thus capturing
global information more reliably. We adopted the conformer
model as the main body, which combines the convolutional
neural network and transformer models by parallel fusion to
fuse local and global features effectively (21). In addition,
we propose a structural feature extraction block composed
of a patch merging layer and a FReLU layer (PFM block),
which improves the conformer to further differentiate between
pterygium to be observed and pterygium to be operated.
We propose this dual-branch network reinforced by PFM
block (DBPF-Net).

3.1 Network structure

In computer vision, local and global features are an important
pair of concepts that have been extensively studied in the

Frontiers in Medicine 02 frontiersin.org48

https://doi.org/10.3389/fmed.2023.1309097
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-10-1309097 December 22, 2023 Time: 15:58 # 3

Wan et al. 10.3389/fmed.2023.1309097

FIGURE 1

Examples of ocular surface samples. (A) Normal ocular surface; (B) subconjunctival hemorrhages; (C) pterygium to be observed; and (D) pterygium
requiring surgery.

long history of visual feature description. Local features
characterize local regions of images and are represented by
compact vectors in local image domains (22); global features
include contour representations, shape descriptors, and object
representations at long distances (23). Local features provide
information about the details in the image, whereas global
features provide information about the image as a whole.
Using both local and global features helps improve the
model performance. In deep learning, a convolutional neural
network collects local features in a hierarchical manner through
convolutional operations and retains local cues as feature maps,
and a vision transformer aggregates global representations in
compressed plots by cascading self-attention modules. The
conformer efficiently fuses local and global features through
concatenation and bridging.

The overall architecture of the conformer is shown as
the backbone in Figure 2A, which is mainly composed of
ConvTrans blocks. The stem block, consisting of a 7 × 7
convolutional layer with stride 2 followed by a 3 × 3 max
pooling layer with stride 2, is used to extract the initial local
features, which are then fed into the two branches. The internal
structure of the ConvTrans block is shown in Figure 2B. This
consists of the convolutional neural network (CNN) branch
on the left and the transformer branch on the right, with
the feature interactions between them accomplished by the
upsampling and downsampling branches. The local features
extracted from the CNN branch are transformed into the form
of patch embeddings for the transformer branch through the
downsampling branch; the global features extracted from the
transformer branch are transformed into the form of feature
maps for the CNN branch through the upsampling branch.
The downsampling operation of the downsampling branch is
performed through the max pooling layer, whereas the upsampling
operation of the upsampling branch is performed through bilinear
interpolation. In every ConvTrans block except for the first one,
there are upsampling and downsampling branches for feature
exchange.

The core of the transformer branch is multi-head self-attention
(24), as shown in Figure 2C. Multi-head self-attention is a
technique that introduces multiple heads into the self-attention
mechanism, which is used to process sequential data and assign
a weight to each element in the sequence to better capture
the relationships between them. In the traditional self-attention
mechanism, only one head is used to compute the attention
weights. In contrast, the multi-head self-attention mechanism
introduces multiple heads, each of which has its own weight

calculation system to learn different semantic information, thus
improving the expressive power of the model.

The input sequence X is first subjected to three different
linear transformations to obtain the representations of Q (query),
K (key), and V (value). Subsequently, Q, K, and V are divided
into multiple heads, denoted Qi, Ki, Vi. Then, for each head,
the attention weights are computed separately by computing
the dot product of Qi and Ki and then performing softmax
normalization. Next, a weighted summation is performed on Vi
using the attention weights to obtain the attention output for
each head, which is concatenated and linearly transformed to
obtain the final multi-head self-attention output. The calculation
procedure is shown in Eqs 1–4, where WQ ∈ Rdmodel×dmodel , WK ∈

Rdmodel×dmodel , WV ∈ Rdmodel×dmodel , WQ
i ∈ Rdmodel×dk , WK

i ∈

Rdmodel×dk , WV
i ∈ Rdmodel×dv , andW0

∈ Rhdv×dmodel

Q = XWQ;K = XWK;V = X (1)

MultiHead (Q,K,V) = Concat
(
head1, ..., headh

)
Wo (2)

headi = Attention (QWQ
i ,KWK

i ,VWV
i ) (3)

Attention (Qi,Ki,Vi) = softmax(
QiKT

i√
dk

) Vi (4)

The PFM block comprises two novel layer structures: the
patch merging (25) and flexible rectified linear unit (FReLU) non-
linear activation layers (26). The operating principles for these
are shown in Figures 2D, E, respectively. Patch merging acts
as downsampling for resolution reduction, which is a similar
operation to pooling; however, unlike pooling, patch merging
does not lose feature information. FReLU is a context-conditional
activation function that relies on the local information of the center
pixel to obtain pixel-level constructive capabilities. It operates on
a localization of the feature map through a parameter-learning
convolution kernel, compares it with the center pixel point, and
takes the maximum value. This provides each pixel with an
option to view the contextual information, which enables spatial
structure extraction of the feature map. Formally, the joint action
of multiple FReLUs can provide a wider selection of information
for each pixel, which helps focus on the structural features
of the pterygium and differentiate effectively between the two
subclasses of pterygium. The structure of the PFM block is shown
in Figure 2F, where the downsampling operation is performed
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FIGURE 2

Model structure. (A) DBPF-net; (B) ConvTrans block; (C) multi-head self-attention; (D) schematic of patch merging; (E) schematic of the FReLU
activation function, which can be expressed as Y = MAX(X, T(x)); and (F) PFM block.

by patch merging, followed by a 1 × 1 convolutional layer to
change the number of channels. Finally, non-linear activation
is performed by the FReLU activation function, which is in
line with the design concept of traditional convolutional neural
networks.

We designed the PFM block to further differentiate between
the similar cases of pterygium to be observed and pterygium
requiring surgery. The relationship between the spatial structure
of the pterygium and the cornea is particularly important in the
medical field, where the depth of pterygium invasion into the
cornea is usually used as a discriminator. Relying on the basic
lossless downsampling of patch merging and the spatial structure
feature extraction of the FReLU activation function, the bottom-
layer feature map output from the first 3× 3 convolutional layer in
the ConvTrans block is passed to the top-layer feature map through
the two processes of the PFM block, which causes the network
to focus on extracting the spatial structure features. The overall
architecture of DBPF-Net is shown in Figure 2A.

3.2 Data division and pre-processing

The original dataset used in this study consisted of 2855
ocular surface images. Considering the reliability of the model’s
performance on the validation set and its generalization on the
test set, we divided the dataset into training, validation, and test

sets in a ratio of 7:1:2. In the original dataset, there is generally
only one image for an eye, and images from the same eye only
appear inside one dataset (i.e., training set, validation set, test
set). The number of samples for each category in each subset is
shown in Table 1. Owing to the different difficulties in obtaining
samples for each image category, the number of samples for the four
categories is not balanced, which may lead to the model focusing
excessively on categories with a large number of training samples
and lack of attention to categories with a small number of samples.
Therefore, we used enhancement methods to reduce the impact of
data imbalance, including image bilinear interpolation stretching,
random horizontal flipping, random small-angle rotation, central
region cropping, and normalization. The purpose of these steps was
to minimize the influence of the upper and lower eyelids during
training while preserving the conjunctiva. These augmentation
techniques do not eliminate the pathological regions present in
the original images, such as hemorrhages on the conjunctiva and
pterygium invading the cornea.

3.3 Model training

We used the Adam optimization algorithm (27) during model
training, with a weight decay of 0.0005. The training batch size
was 4, the total number of training iterations was 90, and the
initial value of the learning rate was 0.0001. Two cross-entropy loss
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TABLE 1 Data division.

Category Train Validation Test Total

C0 919 131 262 1,312

C1 176 25 50 251

C2 637 91 181 909

C3 269 38 76 383

Total 2001 285 569 2,855

C0, C1, C2, and C3, respectively, represent normal ocular surface, subconjunctival
hemorrhages, pterygium to be observed, and pterygium requiring surgery.

functions were used to supervise the classifiers of the two branches
separately, and the importance of the loss function was identical
for both. The learning rate was adjusted dynamically using the
cosine annealing strategy (28), which helps prevent the model from
falling into local optimal solutions during the training process, as
well as to avoid the impact of sudden learning rate changes on the
training process. In addition, we selected VGG16 (29), ResNet50
(19), EfficientNetB7 (30), and conformer models to compare the
classification results, all of which used ImageNet pretrained model
parameters as initial conditions.

The central processor used in our experiments was a 3.6 GHz
Intel i7-7700, and the graphics processor was an NVIDIA RTX
2080Ti with 11 GB of RAM. The operating system was Windows 10,
the programming language was Python 3.6, and the deep learning
framework was Pytorch 1.7.

3.4 Model evaluation indicators

This study is a multi-categorization task, and we evaluate
the effectiveness of the model from two perspectives. The first
approach involves evaluating the overall performance of multi-
class classification using the kappa coefficient, which demonstrates
consistent agreement. The calculation of the kappa coefficient is
based on the confusion matrix, and its value typically ranges from 0
to 1. A higher kappa coefficient indicates a higher level of agreement
between the model’s evaluation and the diagnostic assessment by
experts. The formula for the kappa coefficient is as follows:

k =
po − pe
1− pe

(5)

pe = =
a1 × b1 + a2 × b2 + ...+ ac × bc

n× n
(6)

where po is the sum of all correctly classified samples divided by
the total number of samples, ai is the number of true samples in
category i, and bi is the number of predicted samples in category i.

Another approach is to convert a multi-classified problem into
multiple independent binary classification problems. For example,
to identify the normal ocular surface, the normal ocular surface
is labeled as a positive sample, whereas the three categories
of subconjunctival hemorrhage, pterygium to be observed, and
pterygium requiring surgery are labeled as negative samples. To
calculate the evaluation indicators for the binary classification
problem, the number of true positive (TP), true negative (TN),
false positive (FP), and false negative (FN) samples were first
obtained from the confusion matrix, and then the accuracy (ACC),

sensitivity (SE), specificity (SP), and F1-score (F1) were calculated.
Accuracy indicates the proportion of correctly diagnosed samples
to the total number of samples; sensitivity indicates the proportion
of samples predicted to be positive and actually positive to the
proportion of all actual positive samples; specificity indicates
the proportion of samples predicted to be negative and actually
negative to the proportion of all actual negative samples; and
F1-score is defined as the harmonic average of accuracy and
sensitivity, which is meaningful for datasets with unbalanced
samples.

ACC =
TP + TN

TP + FN + TN + FP
(7)

SE =
TP

TP + FN
(8)

SP =
TN

TN + FP
(9)

F1 =
2TP

2TP + FP + FN
(10)

Receiver operating characteristics (ROC) curves are commonly
used to analyze the classification performance of different models,
owing to their visualization features. The area under the ROC
curve (AUC) was used to evaluate the classification accuracy.
Generally speaking, an AUC value of 0.50–0.70 is regarded
as a low diagnostic value, 0.70–0.85 is regarded as a general
diagnostic value, and 0.85 and above is regarded as a good
diagnostic value.

4 Results

In this study, 569 ocular surface images were randomly selected
as a test set containing 262 images of a normal ocular surface, 50
images of subconjunctival hemorrhage, 181 images of pterygium to
be observed, and 76 images of pterygium requiring surgery. The
model with the best accuracy on the validation set was considered
the optimal model for evaluating the performance of the models
on the test set.

The best diagnostic results of each model on the test set are
presented in Figure 3, in the form of confusion matrices.

The purpose of this study was to correctly diagnose four
categories of ocular surface images: normal ocular surface,
subconjunctival hemorrhage, pterygium to be observed and
pterygium requiring surgery. To demonstrate the performance
of the models clearly, we quantified their evaluation indicators,
with results as listed in Table 2. These evaluation indicators are
calculated according to Eqs 5–10.

In summary, the DBPF-Net model achieved high sensitivity and
specificity values, indicating that it performs well in differentiating
between positive and negative samples, which is valuable for clinical
diagnoses that require accurate identification and differentiation
of different disease categories. In addition, its high F1-score and
kappa coefficient indicate that the model has excellent classification
performance when the data are unbalanced, and high consistency
with the evaluation of the expert diagnostic group. The ROC curves
for each model with the best accuracy are shown in Figure 4.
Moreover, we used Grad-CAM (31) to analyze the region of interest
of the models for the ocular surface images, as shown in Figure 5.
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FIGURE 3

Confusion matrix for each model. (A) VGG16; (B) ResNet50; (C) EfficientNetB7; (D) Conformer; and (E) DBPF-Net.

5 Discussion

Ocular surface diseases have received worldwide attention as
a common public health problem. The variety and complexity
of these diseases are important factors that should not be
ignored in their diagnosis. Therefore, diagnosis and treatment
require doctors with rich experience and professional knowledge

to be able to determine the condition accurately and take
appropriate treatment measures. Currently, the lack of
specialized ophthalmologists in areas with a high prevalence
of ocular surface diseases leaves many patients without
timely diagnosis and treatment. Therefore, it is important to
develop an automatic diagnostic model for initial screening
and diagnosis.
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TABLE 2 Evaluation indicators for each model in each category.

Models Evaluation indicators C0 C1 C2 C3

VGG16 Sensitivity 0.9987± 0.0017 0.96± 0.0163 0.9152± 0.0213 0.8947

Specificity 0.9945± 0.003 1.0 0.9759± 0.0012 0.9702± 0.0084

F1-score 0.9962± 0.0015 0.9795± 0.0084 0.9306± 0.0103 0.8577± 0.0229

AUC 1.0 1.0 0.9944± 0.0008 0.991± 0.0018

Kappa 0.9319± 0.0105

Accuracy 0.9548± 0.007

ResNet50 Sensitivity 0.9949± 0.0017 1.0 0.9281± 0.0078 0.8859± 0.0223

Specificity 0.9967 1.0 0.9742± 0.0042 0.9756± 0.0028

F1-score 0.9955± 0.0008 1.0 0.9359± 0.0021 0.8668± 0.0090

AUC 1.0 1.0 0.9960± 0.0001 0.9931± 0.0012

Kappa 0.9389± 0.0022

Accuracy 0.9595± 0.0014

EfficientNetB7 Sensitivity 0.9962 1.0 0.9355± 0.0051 0.9517± 0.0123

Specificity 1.0 1.0 0.9879± 0.0024 0.9763± 0.0019

F1-score 0.9981 1.0 0.9539± 0.0026 0.9041± 0.006

AUC 0.9999 1.0 0.9909± 0.0006 0.9860± 0.0009

Kappa 0.9568± 0.0024

Accuracy 0.9712± 0.0016

Conformer Sensitivity 0.9962± 0.0031 0.9933± 0.0094 0.9668± 0.0078 0.8903± 0.0223

Specificity 0.9967± 0.0026 0.9987± 0.0008 0.9776± 0.0044 0.9892± 0.0038

F1-score 0.9962± 0.0015 0.9901 0.9597± 0.0033 0.9082± 0.0031

AUC 0.9999 1.0 0.9958± 0.0002 0.9934± 0.0006

Kappa 0.9583± 0.0033

Accuracy 0.9723± 0.0021

DBPF-Net Sensitivity 0.9962± 0.0031 1.0 0.9723± 0.009 0.9210± 0.0186

Specificity 0.9989± 0.001 0.9987± .0008 0.9836± 0.0048 0.9905± 0.0034

F1-score 0.9974± 0.0017 0.9934± 0.0046 0.9688± 0.0025 0.9292± 0.0079

AUC 0.9989± 0.0006 1.0 0.9869± 0.0109 0.9776± 0.0155

Kappa 0.9681± 0.0022

Accuracy 0.9789± 0.0014

C0, C1, C2, and C3, respectively, represent normal ocular surface, subconjunctival hemorrhages, pterygium to be observed, and pterygium requiring surgery. The variable was expressed as the
mean± standard deviation.

The application of artificial intelligence to the field of medical
image processing has been based on traditional convolutional
neural networks and has achieved remarkable research results in
recent years. The emergence of vision transformers has confirmed
the advantages of global features in image recognition, and a variety
of deformation models have been derived (25, 32, 33). The DBPF-
Net model proposed in this study selects the conformer as the
backbone of the four-way classification model for ocular surface
diseases. Compared with other models, the conformer’s ability to
extract and fuse global and local features gives it better feature
extraction capability. In addition, we propose a PFM block for
enhancing the conformer’s extraction of spatial structural features
to differentiate further between the two pterygium categories.

Several research groups have investigated the classification and
diagnosis of ocular surface diseases. Elsawy et al. (34) employed an

improved VGG19 model to classify corneal diseases automatically,
achieving an overall F1-score in excess of 86%. Zhang et al.
(14) implemented an automated diagnostic architecture with
deep learning interpretability and scalability, achieving over 95%
accuracy for pterygium. Xu et al. (35) Proposed a computer-aided
pterygium diagnosis system based on EfficientNetB6 with transfer
learning, achieving a sensitivity of 90.06% for pterygium to be
observed and 92.73% for pterygium requiring surgery. Huang et al.
(36) developed a deep learning system for pterygium grading,
using a classification algorithm to categorize pterygiums from
non-pterygiums, and then a segmentation algorithm to segment
pterygiums for grading, achieving sensitivities ranging from 80 to
91.67%. These studies exclusively employed CNN models without
specific disease-targeted feature modules. Our study focused on the
practical situation of whether or not patients with pterygium need
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FIGURE 4

Receiver operating characteristics curves for each model. (A) Normal ocular surface; (B) subconjunctival hemorrhage; (C) pterygium to be observed;
and (D) pterygium requiring surgery.

FIGURE 5

Heat maps of the models for subconjunctival hemorrhage, pterygium to be observed, and pterygium requiring surgery.

surgery. The proposed DBPF-Net achieved an accuracy of 97.89%
for the four categories, demonstrating promising results. In our
experiments, we compared it with three other representative CNN
models and the original conformer model.

As shown in Figure 3 and Table 2, the overall evaluation
indicators of DBPF-Net were generally higher than those of the
other models. Among the test results for all models, evaluation
indicators for the normal ocular surface and subconjunctival
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hemorrhage categories reached a high level, mainly because
of the sufficient number of samples in the normal ocular
surface category and the significant characteristics of the
subconjunctival hemorrhage category. The test results for the
categories of pterygium to be observed and pterygium requiring
surgery demonstrate that the conformer model exhibits superior
discriminative ability compared to VGG16 and ResNet50, While in
comparison with EfficientNetB7, each of the two was dominant.
Compared to the conformer model, DBPF-Net showed an
improvement of 0.55% in sensitivity, 0.6% in specificity, and 0.91%
in F1-score for the category of pterygium to be observed. For the
category of pterygium requiring surgery, DBPF-Net achieved an
increase of 3.07% in sensitivity and 2.1% in F1-score. Overall,
DBPF-Net showed further improvement in pterygium diagnosis
compared with Conformer. Although the proposed method has
a slightly lower AUC than Conformer, the proposed method
outperforms in terms of the F1 Score. The heat map shown in
Figure 5 demonstrates that DBPF-Net focuses on the area of
hemorrhage in the category of subconjunctival hemorrhage, the
area of pterygium tipping into the cornea in the category of
pterygium to be observed, and the area of pterygium approaching
the center of the cornea in the category of pterygium requiring
surgery. The heat maps generated by VGG16, ResNet50, and
EfficientNetB7 indicate that their attention on the lesion area
is not adequately concentrated, as well as on the pupil area. In
comparison, Conformer exhibits a similar focus area to DBPF-Net,
the latter is more focused.

Our study has some limitations. First, the dataset used in this
study has a limited number of samples and an uneven number
of samples per category, which leads to poorer generalization and
precision for categories with fewer samples. Second, the hardware
configuration of the experimental platform in this study was
ordinary, and the model performance was limited by the amount
of GPU RAM. In the future we will continue to collect datasets,
improve the model to increase its accuracy, and consider a method
of semantic segmentation of images to assist in classification.

6 Conclusion

In this paper, we propose DBPF-Net, a model that achieves
high classification performance on four categories of ocular surface
images: normal ocular surface, subconjunctival hemorrhage,
pterygium to be observed, and pterygium requiring surgery. This
model is hopefully to achieve initial screening for ocular surface
diseases in remote areas where access to professional medical
personnel and equipment is limited. In addition, we hope to help
reduce the workload of medical personnel in primary care facilities.
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Artificial intelligence-assisted 
management of retinal 
detachment from ultra-widefield 
fundus images based on 
weakly-supervised approach
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Background: Retinal detachment (RD) is a common sight-threatening condition 
in the emergency department. Early postural intervention based on detachment 
regions can improve visual prognosis.

Methods: We developed a weakly supervised model with 24,208 ultra-widefield 
fundus images to localize and coarsely outline the anatomical RD regions. 
The customized preoperative postural guidance was generated for patients 
accordingly. The localization performance was then compared with the baseline 
model and an ophthalmologist according to the reference standard established 
by the retina experts.

Results: In the 48-partition lesion detection, our proposed model reached 
an 86.42% (95% confidence interval (CI): 85.81–87.01%) precision and an 
83.27% (95%CI: 82.62–83.90%) recall with an average precision (PA) of 0.9132. 
In contrast, the baseline model achieved a 92.67% (95%CI: 92.11–93.19%) 
precision and limited recall of 68.07% (95%CI: 67.25–68.88%). Our holistic lesion 
localization performance was comparable to the ophthalmologist’s 89.16% 
(95%CI: 88.75–89.55%) precision and 83.38% (95%CI: 82.91–83.84%) recall. 
As to the performance of four-zone anatomical localization, compared with 
the ground truth, the un-weighted Cohen’s κ coefficients were 0.710(95%CI: 
0.659–0.761) and 0.753(95%CI: 0.702–0.804) for the weakly-supervised model 
and the general ophthalmologist, respectively.

Conclusion: The proposed weakly-supervised deep learning model showed 
outstanding performance comparable to that of the general ophthalmologist 
in localizing and outlining the RD regions. Hopefully, it would greatly facilitate 
managing RD patients, especially for medical referral and patient education.

KEYWORDS

weakly supervised, deep learning, localization, retinal detachment, ultra-widefield 
fundus images
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1 Introduction

Retinal detachment (RD) is a sight-threatening condition that 
occurs when the neurosensory retina is separated from the retinal 
pigment epithelium (1). Several population-based epidemiological 
studies of RD find an annual incidence of around 1 in 10,000 (2). It 
has been estimated that the lifetime risk of RD is about 0.1% (3, 4). 
However, early intervention facilitates the prevention of disease 
progression and improves prognosis. Clinically, scleral buckle, 
vitrectomy, and pneumatic retinopexy are the most common 
surgical approaches to repairing RD (5–7). Before the surgery, 
patients should be instructed to lie in the appropriate position to 
minimize the detachment extending and improve visual outcomes 
(6, 8, 9). Postural guidance is consistent with the localization of the 
lesion throughout the management. However, corresponding 
patient education is not often adequate in busy clinical situations 
which may lead to poor patient compliance (10). Therefore, an 
efficient and reliable method for localizing and estimating the 
detached retinal regions is fundamental for detailed postural 
instruction and medical referrals, especially in remote areas with 
insufficient fundus specialists.

In recent years, artificial intelligence (AI) models for RD detection 
based on color fundus photography (CFP) and optical coherence 
tomography (OCT) have been gradually established (11–14). However, 
the emergence of the ultra-widefield fundus (UWF) imaging system 
promotes the intelligent diagnosis of fundus diseases to a new height. A 
panoramic image of the retina with 200° views allows for detailed 
rendering of the peripheral retina, which compensates for the deficiency 
of traditional fundus images (15). Ohsugi et al. (16) made a pioneering 
attempt to diagnose rhegmatogenous RD with a small sample of UWF 
images based on deep learning algorithms. Later, Li et al. (17) proposed 
a cascaded deep learning system using UWF images for various RD 
detection and macula status discerning. Despite promising 
advancements, their work mainly focused on the presence or absence of 
the target disease. However, the concrete localization of the RD lesions, 
a crucial need for therapeutic decision-making including the 
preoperative posture and surgical options, is not fully emphasized 
(18–21).

Generally, the extent of the retinal lesion is obtained using the 
supervised models which requires elaborate labeling for most existing 
algorithms. Whereas, the equivocal boundaries of lesion, as well as the 
lack of expert annotations considerably hinder the efficient 
development of related models. In this context, weakly supervised 
learning, where the learning model can be trained with incomplete 
and simplified annotations, has attracted great attention (22). It 
typically fits for training lesion localization and segmentation models 
in medical images. For instance, Ma et  al. (23) resorted to 
classification-based Class Activation Maps (CAMs) to segment 
geographic atrophy in retinal OCT images. Monaro et  al. (24) 
proposed an architectural setting that enabled the weakly-supervised 
coarse segmentation of age-related macular degeneration lesions in 
color fundus images. The incorporation of lesion-specific activation 
maps provides more meaningful information for diagnosis with great 
explainability. In medical imaging, Gradient-weighted CAM (Grad-
CAM) (25) is one of the most commonly used techniques to generate 
coarse localization maps. However, most approaches derived from it 
only focus on the discriminative image regions but ignore much 
detailed information. To alleviate this issue, Qin et al. (26) proposed 

an activation modulation and recalibration (AMR) scheme. The 
combination architecture of a compensation branch and spotlight 
branch could achieve better performance on image-level weakly 
supervised segmentation tasks. Given our purpose of achieving lesion-
specific holistic localization, working under coarse image-level 
annotation instead of bounding box annotation is highly desirable (22, 
27–29). Moreover, incorporating the AMR scheme mentioned above 
with our approaches could generate high-quality activation maps to 
compensate for previous detail-loss issues.

Therefore, we proposed a weakly supervised learning model to 
generate localization maps that outline the RD lesions based on UWF 
images. Relying on the localization maps, the potential diagnostic 
evidence will be  instantaneously transmitted to the clinicians for 
reference. Furthermore, individual postural guidance will be generated 
for healthcare reference to the patients.

2 Materials and methods

This study was conducted adhering to the tenets of the Declaration 
of Helsinki. It was approved by the Medical Ethics Committee of the 
Second Affiliated Hospital of Zhejiang University, School of Medicine.

2.1 Data acquisition

A total of 30,446 UWF images were retrospectively obtained from 
visitors presenting for ophthalmic examinations between 1 May 2016 
and 15 August 2022, at Eye Center, The Second Affiliated Hospital, 
School of Medicine, Zhejiang University. Images insufficient for 
interpretation were excluded, including (1) Poor-view images, 
referring to images with significant deficiencies in focus or 
illumination, visibility of the optic disc, or over one-third of the field 
obscured by the eyelashes or eyelids. (2) Poor-position images, 
referring to images with significantly off-center optic disc and macula 
due to incorrect gazing in the image capture process. The UWF images 
were captured using an OPTOS nonmydriatic camera (OPTOS 
Daytona, Dunfermline, United Kingdom) with 200-degree fields of 
view. The subjects underwent the examinations without mydriasis. All 
of the UWF images were anonymized before being involved in 
this study.

2.2 Image labeling and the definition of RD 
regions

A professional image labeling team was recruited to generate the 
ground truth. The team consisted of two retinal specialists with more 
than 5 years of clinical experience and one senior specialized 
ophthalmologist with over 20 years of clinical experience.

At first, the included UWF images were annotated with image-
level labels after quality filtration. Two specialists, respectively, 
classified all images into two types: RD and Non-RD. The ground 
truth was determined based on their consensus. Any divergences were 
finally arbitrated by the senior specialized ophthalmologist. Figure 1 
illustrates the workflow of image classification.

Then, the uninvolved fovea of each RD image (Macula ON) was 
marked manually to further obtain the specific anatomical zone for 
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postural guidance. Besides, the RD regions of images in the test set 
were independently contoured by two specialists. The ground truth of 
the RD region was determined based on the intersection of their 
labeled areas. Any image with less than 0.9 intersection-over-union 
(IOU) of the labeled RD regions was confirmed by the senior 
specialized ophthalmologist.

2.3 Development of the weakly-supervised 
deep learning model to localize the RD 
regions

UWF images incorporate a vast of critical information about the 
profile and distribution of the lesions, which is essential for the 
healthcare of RD patients. Clinically, typical RD is recognized by an 
elevated and corrugated retinal appearance accompanied by retinal 
breaks, and such features can often be recognized by the deep learning 
algorithm. Based on this rationale, we propose a model that enables 
the localization of RD regions based on weakly supervised training. 
The design of the model consisted of two sections: localizing the RD 
lesions and generating postural guidance according to the anatomical 
zone of the lesion.

In the localization section, an attention modulation module 
(AMM) (26) was involved in our scheme to realize recalibration 
supervision and generate lesion-specific activation maps. In the first 

place, it was necessary to extract the fundus’ region of interest (ROI). 
The four corners (left and right top, left and right bottom) in a UWF 
image were called irrelevant areas since there was no fundus 
information in these four regions. These irrelevant regions from 
different images were variable in texture but highly similar in extent. 
We manually crafted an ROI template to erase pixels in these irrelevant 
regions. Local contrast enhancement (CLAHE) was applied to image 
augmentation afterward.

A ResNet-101 (30) was pre-trained to identify RD cases with 
a learning rate of 0.01 and focal loss (alpha was set to 0.65, gamma 
was set to 1.15). Then, AMM was employed to emphasize region-
essential features for the segmentation task between every two 
stages, as shown in Figure 2. Features from the discriminative 
regions were considered to be the most sensitive features, and the 
minor features referred to features that are important but easily 
ignored (31). The AMM can rearrange the distribution of the 
feature importance to highlight sensitive and minor activations, 
which is crucial to generating semantic segmentation masks. The 
ResNet-101 with AMMs was fine-tuned with a learning rate of 
0.001. Probability maps were generated based on feature maps 
from stage 4 by Grad-CAM and resampled to the original 
size afterward.

In the guidance section, the coarse segmentation of the RD 
region with pseudo labels obtained from localization maps with a 
probability threshold of 0.5 was carried out. As shown in Figure 2, a 

FIGURE 1

The workflow of developing a weakly supervised learning model for the localization of RD region based on UWF images. RD, retinal detachment; UWF, 
ultra-widefield fundus.
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coordinate system was constructed based on the recognition of fovea 
marked manually and optical disc segmented by U-Net (32). Details 
on the established zoning principles are presented below. The 
primary zone label is assigned corresponding to the largest number 
of RD pixels. Then, the predicted label was output based on the 
coarse lesion segmentation results to generate the customized 
postural guidance.

2.4 Zoning principles

The panoramic retinal view is divided into four zones centered on 
the manually labeled macula fovea. It is calibrated with a horizontal 
line through the fovea and optic disc center. In a clockwise direction, 
we designate 2–4 o’clock as the right zone, 10–2 o’clock as the superior 
zone, 8–10 o’clock as the left zone, and 4–8 o’clock as the inferior zone. 
In addition, we pay more attention to the posterior pole, designated 
as the circle centered on the macula and including the optic disc (33), 

which is closely associated with the surgical option and visual 
prognosis (4, 6). To further evaluate the holistic localization 
performance, each zone was divided clockwise by 15° to obtain 48 
anatomical regions defining the entire retina as shown in Figure 2. 
Each image has a 48-length vector label for 48-partition localization. 
The label is assigned as 1 when more than 50 RD pixels fall into 
this partition.

2.5 Sensitivity analysis

Given that difference in image resolution of input data may have 
impacts on the localization outcome. We  implemented sensitivity 
analyses based on three common image resolutions including 
256 × 256, 512 × 512, and 1,024 × 1,024 pixels. We  evaluated the 
48-partition localization performance of our weakly-supervised 
model in these contexts separately and selected the optimal resolution 
model for further evaluation.

FIGURE 2

The schema of the overall study. The brief illustration of RD region localization and corresponding postural guidance (A). The retina was divided into 48 
anatomical regions to evaluate the holistic localization performance. The final four-zone overlaid image was generated for postural guidance (B). RD, 
retinal detachment; M, macula zone; S, superior zone; R, right zone; I, inferior zone; L, left zone.
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2.6 Comparisons of the proposed model 
with the baseline model and general 
ophthalmologist

A comparison experiment with the proposed model was 
conducted using a baseline model without AMM to explore the 
performance enhancement that comes with the AMR scheme. 
Meanwhile, to evaluate our weakly-supervised deep learning model 
in the localization of the RD region, we  recruited a general 
ophthalmologist with 3 years of clinical experience. It is challenging 
to clearly define the contours of the RD region, considering its 
equivocal borders, even for clinicians. Given that the final localization 
is the essential factor for postural instruction, we  evaluated their 
performance of lesion body localization rather than the edge 
segmentation performance. According to the defined ground truth, 
we compared the localization performance of the proposed model 
with that of the baseline model and general ophthalmologist based on 
the test set, respectively.

2.7 Statistical analysis

The precision, recall, F1 score, sensitivity, specificity, and accuracy 
of the models and general ophthalmologist were calculated according 
to the reference standard. The F1 score is the harmonic mean of 
precision and recall, which is calculated as:

 
F score

Precision Recall

Precision Recall
1

2
=

∗ ∗
+

The precision-recall curve was generated to visualize the 
localization performance of the deep learning models. The Cohen’s 
Kappa value of the model and general ophthalmologist compared with 
the reference standard for the four-zone localization was calculated to 
evaluate the consistency. All statistical analyses for the study were 
conducted using SPSS 26.0 (Chicago, IL, United States) and Python 
3.7 (Wilmington, DE, United States).

3 Results

3.1 Data characteristics

In total, 30,446 images were obtained for preliminary model 
development. After filtering 6,238 poor-quality images that are insufficient 
for interpretation, 24,208 eligible images were annotated. Two thousand 
four hundred and three were classified as RD, while the remaining 21,805 
images were classified as non-RD. The dataset was randomly split in 80:20 
ratios according to the Pareto principle, with 19,365 (80%) images as a 
training set and 4,843 (20%) as a test set. The baseline characteristics of 
collected images are summarized in Table 1.

3.2 Evaluation of the weakly-supervised 
deep learning model to localize the RD 
regions

In the test set, the associated lesions of 480 RD images are 
successfully localized with activation maps. Only two cases have been 
missed due to the inconspicuous shallow detachment. In 467 
Macula-ON RD images, the entire retina is divided into 48 anatomical 
regions based on the location of the optic disc and macula fovea, as 
illustrated in Figure 2, to evaluate the holistic localization of the RD 
region in the test set. The following anatomical localization evaluation 
will be specific to these 467 RD images.

Table  2 exhibited the holistic localization performance of our 
weakly supervised model with three image resolutions for sensitivity 
analysis. The results showed that the image resolution of 1,024 × 1,024 
pixels had the highest precision of 89.14% (95%CI: 88.52–89.73%). 
However, the image resolution of 512 × 512 pixels achieved the highest 
recall of 83.38% (95%CI: 82.91–83.84%) and acceptable precision with 
an optimal F1 score of 84.81% (95%CI: 84.26–85.35%). As a result, the 
following localization evaluation adopted the image resolution of 
512 × 512 uniformly.

The performance of the baseline model, the proposed model, and 
general ophthalmologist to identify whether the posterior pole is 

TABLE 1 Baseline characteristics of the training and test datasets.

Training set (80%) Test set (20%)

(n  =  19,365) (n  =  4,843)

RD Non-RD RD Non-RD

Total no. of images 1,921 17,444 482 4,361

No. of OD images 1,019 9,163 256 2,325

No. of OS images 902 8,281 226 2,036

RD, retinal detachment; OD, right eye; OS, left eye.

TABLE 2 The holistic localization performance of our weakly-supervised model with different image resolutions.

Resolutions (pixels) Precision (95%CI)1 Recall (95%CI)1 F1 score (95%CI)1

256 × 256 0.8718 (0.8653–0.8780) 0.7381 (0.7304–0.7457) 0.7994 (0.7931–0.8055)

512 × 512 0.8642 (0.8581–0.8701) 0.8327 (0.8262–0.8390) 0.8481 (0.8426–0.8535)

1,024 × 1,024 0.8914 (0.8852–0.8973) 0.7284 (0.7206–0.7361) 0.8017 (0.7955–0.8078)

1The localization performance of the weakly-supervised deep learning model was evaluated with a probability threshold of 0.5. 
The bold values are the optimal indicator results of different resolutions.
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involved or not is shown in Table 3. The general ophthalmologist had 
an 86.49% (95%CI: 85.85–87.10%) sensitivity and an 86.30% (95%CI: 
85.63–86.93%) specificity, whereas the model had an 82.49% (95%CI: 
81.50–83.44%) sensitivity and a 91.16% (95%CI: 90.34–91.91%) 
specificity with a probability threshold of 0.5. Despite a high specificity 
of 91.89% (95%CI: 91.13–92.59%) achieved, the baseline model 
showed limited sensitivity of 74.53% (95%CI: 73.39–75.64%) for 
early identification.

As for localizing RD lesions in 48 anatomical regions, the 
general ophthalmologist had an 89.16% (95%CI: 88.75–89.55%) 
precision and 83.38% (95%CI: 82.91–83.84%) recall. In contrast, 
our model had an 86.42% (95%CI: 85.81–87.01%) precision and 
an 83.27% (95%CI: 82.62–83.90%) recall with an average precision 
(AP) of 0.9132. Though the baseline model achieved a 92.67% 
(95%CI: 92.11–93.19%) precision which could be attributed to the 

most discriminative response region, it showed limited recall of 
68.07% (95%CI: 67.25–68.88%). For visualizing the model 
performance when different probability thresholds are applied, 
the precision-recall curve of the model is shown in Figure 3. The 
performance of localizing RD lesions in all 48 anatomical regions 
by the proposed model and general ophthalmologist is shown in 
Table 4.

Compared with the ground truth, the unweighted Cohen’s κ 
coefficients were 0.710 (95%CI: 0.659–0.761) and 0.753 (95%CI: 
0.702–0.804) for the weakly-supervised model and the general 
ophthalmologist, respectively. The four-zone location accuracy of 
our model is 0.8051 (95%CI: 0.7656–0.8395), which is slightly 
inferior to the general ophthalmologist’s accuracy of 0.8437 
(95%CI: 0.8068–0.8748). The confusion matrixes are shown in 
Figure 4.

TABLE 4 The performance of localizing RD lesions in 48 anatomical regions by the baseline model, weakly-supervised model, and the general 
ophthalmologist, compared with the ground truth in the test set.

Index Precision (95%CI) Recall (95%CI) F1 score (95%CI)

Baseline model (without AMM)1 0.9267 (0.9211–0.9319) 0.6807 (0.6725–0.6888) 0.7849 (0.7785–0.7912)

Weakly-supervised model1 0.8642 (0.8581–0.8701) 0.8327 (0.8262–0.8390) 0.8481 (0.8426–0.8535)

General ophthalmologist 0.8916 (0.8875–0.8955) 0.8338 (0.8291–0.8384) 0.8617 (0.8564–0.8668)

1The localization performance of the weakly-supervised deep learning model was evaluated with a probability threshold of 0.5. The image resolution of the input data is 512 × 512 pixels.
AMM, attention modulation module.

TABLE 3 The localization of RD in the posterior pole area by the weakly-supervised deep learning model and the general ophthalmologist compared 
with the ground truth in the test set.

Index Sensitivity (95%CI) Specificity (95%CI) Accuracy (95%CI)

Baseline model (without AMM)1 0.7453 (0.7339–0.7564) 0.9189 (0.9113–0.9259) 0.8295 (0.8224–0.8363)

Weakly-supervised model1 0.8249 (0.8150–0.8344) 0.9116 (0.9034–0.9191) 0.8651 (0.8586–0.8713)

General ophthalmologist 0.8649 (0.8585–0.8710) 0.8630 (0.8563–0.8693) 0.8639 (0.8593–0.8683)

1The localization performance of the weakly-supervised deep learning model was evaluated with a probability threshold of 0.5. The image resolution of the input data is 512 × 512 pixels.
AMM, attention modulation module.

FIGURE 3

The precision-recall curve of holistic localization performance of RD region based on the weakly-supervised model and general ophthalmologist, 
compared with the ground truth in the test set. AP, average precision. RD, retinal detachment. AMM, attention modulation module.
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4 Discussion

RD is a typical ophthalmic emergency. Early medical 
interventions based on the precise localization of lesions could 
increase the success rate of surgical repair and avoid permanent 
visual impairment (6, 34). Here, we  established a standardized 
procedure for RD localization from UWF images using a weakly-
supervised approach. It could provide a corresponding medical 
reference to both clinicians and RD patients throughout the early-
stage management. Compared with the baseline model which only 
focused on the most discriminative regions with limited recall, our 
weakly supervised model incorporated the AMR scheme. For this 
reason, the generated localization maps yielded a comprehensive 
presentation of RD lesion-related information. The four-zone 
anatomical localization performance of our model, which was highly 
related to posture regimens (6, 35, 36), showed substantial 
consistency with the specialists according to the unweighted Cohen’s 
kappa coefficients of 0.710(95%CI: 0.659–0.761). The human-model 
comparisons also demonstrated its localization performance with 
high precision and recall, almost equaled to a general 
ophthalmologist’s judging ability. In general, our model exhibits 
acceptable performance for the holistic localization of the RD 
regions. To the best of our knowledge, this is the first attempt to 
precisely localize the RD regions.

Previously, several deep learning systems in identifying RD in 
fundus images presented favorable performance (16, 17, 37, 38). 
Similarly, our model also showed a perfect capacity of discernment for 
RD from UWF images. Nevertheless, previous deep learning models 
were mainly proposed for classification tasks, and CAMs were 
employed for post-hoc interpretability. Since such heatmaps were 
classification-oriented, they tended to resort to some discriminative 
regions instead of the holistic bound of the whole object. Even though 
Li et al. (17) attempted to visualize the decisive regions with saliency 
maps and embedded an arrow according to the hot regions for head 
positioning guidance, the most decisive regions in the heatmaps may 

not be the primary location of RD lesions. The classifiers may only 
focus on a small part of the target lesions (26, 39). Moreover, the 
limited localization results from true-positive samples had yet to 
be thoroughly evaluated for general feasibility. In contrast to simply 
utilizing classification-oriented heatmaps, our model presents the 
edge of providing lesion-specific holistic activation maps to localize 
RD regions. For digging out the regions that are essential but easily 
ignored for lesion segmentation by the weakly supervised algorithm, 
we introduce AMM to our scheme to provide recalibration supervision 
and task-specific concepts. The lesion information of clinical interests 
provided by this interpretable method complies with cognitive law, 
which could indicate the diagnostic reference to the clinicians and 
could be  verified easily. Moreover, in the coordinates established 
above, the model could elaborate on the anatomical zones of the RD 
lesions. According to the most affected zone, a supine preoperative 
position is advised for RD in the superior zones and a sitting position 
for RD in the inferior zones (9). Patients with RD lesions in the right 
or left zones were positioned flat on the right or left side of the affected 
eye, respectively (40). The involvement of the posterior pole is almost 
suggestive of a relatively poor vision prognosis if emergency repair 
surgery is not available before the macula is involved (4, 7, 41). 
Patients should maintain a supine position during this time and take 
an urgent referral.

In our research, most cases can realize holistic localization of RD 
lesions with great satisfaction. As shown in Figure 5, the corrugated 
retinal appearance of RD lesions makes them more distinguishable, 
whereas the shallow RDs are easily missed due to their atypical 
appearance. In addition, interference from irrelevant factors can also 
be misleading for automatic localization. The OPTOS camera pads 
and artifacts with RD-similar edges may result in mistaken highlights 
in  localization maps. In future work, these problems could 
be  improved by further training based on large-scale images with 
corresponding issues.

This study has several limitations. First, blurred border and 
texture feature differences within the RD regions made it difficult for 

FIGURE 4

The confusion matrixes of four-zone RD localization performance based on the weakly-supervised model (A) and the general ophthalmologist (B), 
compared with the ground truth in the test set. RD, retinal detachment.

63

https://doi.org/10.3389/fmed.2024.1326004
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Li et al. 10.3389/fmed.2024.1326004

Frontiers in Medicine 08 frontiersin.org

the activation maps to highlight the whole area of the lesion. The 
regions with inconspicuous texture features were easily missed even 
though the advanced AMM module had been incorporated, which 
may result in some inconsistency in anatomical localization. Strictly, 
the localization of breaks of the rhegmatogenous RD had more 
significance for posture instructions. However, the small breaks in 
the retina were not always visible, especially in the peripheral 
regions. Given most of the breaks are within the detached retina, the 
localization of the RD region could extend its clinical applications 
considerably. In addition, the determination of whether the posterior 
pole was involved may not represent the status of the macula, 
especially when the macula was located near the borderline of the 
RD regions. Hence, further work is warranted to accurately discern 
the status of the macula for determining operation time and 
predicting visual prognosis. Furthermore, automatic postural 
guidance had a relatively limited application range due to the high-
quality images required for anatomical localization. The anatomical 
localization of RD was highly dependent on the clear presentation 
of the retina. Those fundus images with significant opaque refractive 
media, inappropriate illumination, and invisible optic disc were not 
eligible for inclusion in this study. Finally, our model was developed 
based on single-center retrospective datasets with limited 

generalization. The evaluation of localization accuracy was 
conducted on a single-disease dataset and was not strictly validated 
in the cases of fundus comorbidities. In the future, we expect to 
explore more advanced methods to aid the full-stage management 
of RD, incorporating the medical history and other imaging data. 
Meanwhile, we  will expand the training samples of fundus 
comorbidity images and facilitate the evaluation based on the large-
scale test scenario.

5 Conclusion

In this study, we developed a weakly-supervised deep learning 
model to localize RD regions based on UWF images. The lesion-
specific localization maps could be incorporated into the diagnostic 
process and personalized postural guidance of RD patients for 
reference. Moreover, the implementation of this task considerably 
surmounted the current “label-hunger” difficulty. It would greatly 
facilitate managing RD patients when insufficient specialists are 
available, especially for medical referral and postural guidance. The 
application of this model could significantly equilibrate medical 
resources and improve healthcare efficiency.

FIGURE 5

Visualization of representative cases. The corrugated retina and the edge of breaks are highlighted in lesion-specific maps, the detached regions were 
demonstrated in 48-partition localization maps and four-zone localization maps (A). The shallow retinal detachments are not detected in the inferior 
quadrant, while OPTOS camera pads are highlighted. Artifacts caused by opaque refractive media are highlighted in localization maps (B). The red 
arrowheads indicate the borders of the RD region.
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Retinal vessels play a pivotal role as biomarkers in the detection of retinal

diseases, including hypertensive retinopathy. The manual identification of these

retinal vessels is both resource-intensive and time-consuming. The fidelity of

vessel segmentation in automated methods directly depends on the fundus

images’ quality. In instances of sub-optimal image quality, applying deep

learning-basedmethodologies emerges as amore e�ective approach for precise

segmentation. We propose a heterogeneous neural network combining the

benefit of local semantic information extraction of convolutional neural network

and long-range spatial features mining of transformer network structures. Such

cross-attention network structure boosts the model’s ability to tackle vessel

structures in the retinal images. Experiments on four publicly available datasets

demonstrate our model’s superior performance on vessel segmentation and the

big potential of hypertensive retinopathy quantification.

KEYWORDS

retinal vessel segmentation, hypertensive retinopathy quantification, deep learning,

cross-attention network, color fundus images

1 Introduction

Hypertension (HT) is a chronic ailment posing a profound menace to human

wellbeing, manifesting in vascular alterations (1). Its substantial contribution to the global

prevalence and fatality rates of cardiovascular diseases (CVD) cannot be overstated. The

escalated incidence and mortality rates are not solely attributable to HT’s correlation with

CVD but also to the ramifications of hypertension-mediated organ damage (HMOD).

This encompasses structural and functional modifications across pivotal organs, including

arteries, heart, brain, kidneys, vessels, and the retina, signifying preclinical or asymptomatic

CVD (2, 3). HTmanagement’s principal aim remains to deter CVD incidence andmortality

rates. Achieving this goal mandates meticulous adherence to HT guidelines, emphasizing

precise blood pressure monitoring and evaluating target organ damage (4). Consequently,

the early identification of HT-mediated organ damage emerges as a pivotal concern.
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The retinal vascular system shares commonalities in structural,

functional, and embryological aspects with the vascular systems

of the heart, brain, and kidneys (5–9). Compared to other

microvascular territories, the distinctive attributes of the retinal

microcirculation enable relatively straightforward detection of

localized HMOD (5, 9). Its capacity to offer a non-invasive and

uncomplicated diagnostic tool positions retinal visualization as

the simplest means of elucidating the microcirculatory system.

In hypertensive patients, retinal microvasculature gives insight

into the wellbeing of the heart, kidneys, and brain (5, 10, 11).

Early detection of HT-mediated retinal changes indirectly mirrors

the vascular status of these organs, facilitating refined evaluation

of cardiovascular risk stratification, timely interventions, and

improved prognostication, thereby holding substantial clinical

significance. Traditional clinical methodologies for diagnosing HT-

mediated retinal alterations, while reliant on the proficiency of

ophthalmic professionals, often demand considerable time and

specialized expertise (12). Figure 1 presents a sample fundus

image, demonstrating the complexity of the retinal vasculature and

image intensity variation. However, integrating AI-based models

in ophthalmology holds promising prospects for revolutionizing

this paradigm. Leveraging machine learning algorithms and deep

neural networks, AI-enabled diagnostic tools have demonstrated

the potential to expedite and enhance the assessment of HT-

related retinal vessel changes (13–17). These AI models learn

from extensive datasets of annotated medical images, swiftly

recognizing subtle retinal anomalies that might elude human

detection. By automating the analysis and interpretation of retinal

images, AI-based systems offer the prospect of reducing diagnostic

timeframes, improving accuracy, and potentially mitigating the

need for extensive human oversight. In this work, we proposed a

heterogeneous features cross-attention neural network to tackle the

retinal vessel segmentation task with color fundus images.

2 Related work

Segmenting blood vessels in retinal color fundus images

plays a pivotal role in the diagnostic process of hypertensive

retinopathy. Over the years, researchers have explored computer-

assisted methodologies to tackle this task. For instance, Annunziata

and Trucco (18) introduced a novel curvature segmentation

technique leveraging an accelerating filter bank implemented via

a speed-up convolutional sparse coding filter learning approach.

Their method employs a warm initialization strategy, kickstarted

by meticulously crafted filters. These filters are adept at capturing

the visual characteristics of curvilinear structures, subsequently

fine-tuned through convolutional sparse coding. Similarly, Marín

et al. (19) delved into the realm of hand-crafted feature learning

methods, harnessing gray-level and moment invariant-based

features for vessel segmentation. However, despite the efficacy of

such techniques, the manual crafting of filters is inherently time-

intensive and prone to biases, necessitating a shift toward more

automated and data-driven approaches in this domain.

Deep learning techniques based on data analysis have

demonstrated superior performance to conventional retinal vessel

segmentation approaches (18–20). For instance, Maninis et al. (21)

developed a method wherein feature maps derived from a side

output layer contributed to vessel and optic disc segmentation.

Along a similar line, Oliveira et al. (22) combined the benefits of

stationary wavelet transform’s multi-scale analysis with a multi-

scale full convolutional neural network, resulting in a technique

adept at accommodating variations in the width and orientation of

retinal vessel structures. In terms of exploiting the advance of the

Unit structure, there are previous methods that achieved promising

performance. For example, Yan et al. (23) implemented a joint loss

function in U-Net, comprising two components responsible for

pixel-wise and segment-level losses, aiming to enhance the model’s

ability to balance segmentation between thicker and thinner vessels.

Mou et al. (24) embedded dense dilated convolutional blocks

between encoder and decoder cells at corresponding levels of a

U-shaped network, employing a regularized walk algorithm for

post-processing model predictions. Similarly, Wang et al. (25)

proposed a Dual U-Net with two encoders: one focused on spatial

information extraction and the other on context information. They

introduced a novel module to merge information from both paths.

Despite the proficiency of existing deep learningmethodologies

in segmenting thicker vessels, there remains a challenge in

combining heterogeneous features from different stages of the deep

learning models via Transformers and CNN models. Generally,

improving deep learning-based techniques for vessel segmentation

can be approached from various angles, including multi-stage

feature fusion and optimization of loss functions. This work

proposes a heterogeneous feature cross-attention neural network

to address the above challenge.

3 Materials and methods

3.1 Heterogeneous features
cross-attention neural network

A detailed model structure overview is shown in Figure 2.

In detail, two brunches of feature extraction modules are

proposed to extract heterogeneous features from different stages

of the backbone network. In detail, there is CNN-based (Conv-

Block) and transformer-based (Trans-Block) brunch, which focus

on local semantic and long-range spatial information. Those

two features’ information are both important for the vessel

segmentation task.

The interaction between the two branches is used as a

cross-attention module to emphasize the essential heterogeneous

(semantic and spatial) features. It is used as the main structure to

facilitate the interaction and integration of local and long-range

global features. Drawing inspiration from the work by Peng et

al. (26), the intersecting network architecture within our model

ensures that both Conv-Block and Trans-Block can concurrently

learn features derived from the preceding Conv-Block and Trans-

Block, respectively.

3.1.1 CNN blocks
In the structure depicted in Figure 2, the CNN branch

adopts a hierarchical structure, leading to a reduction in the

resolution of feature maps as the network depth increases

and the channel count expands. Each phase of this structure
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FIGURE 1

Sample retinal fundus image for vessel segmentation and hypertensive retinopathy quantification. The yellow areas in Ground Truth represent the

retinal vessel area that needs to be segmented for disease analysis.

FIGURE 2

Figure of our proposed model structure. Our model contains three modules, including Trans-Block, CNN-Block and Fusion-Block. The detailed

structure of each module is shown in the figure.

consists of several convolution blocks, each housing multiple

bottlenecks. These bottlenecks, in accordance with the ResNet

framework (27), comprise a sequence involving down-projection,

spatial convolution, up-projection, and a residual connection

to maintain information flow within the block. Distinctly,

visual transformers (28) condense an image patch into a

vector in one step, which unfortunately leads to the loss of

localized details. Conversely, in CNNs, the convolutional

kernels operate on feature maps, overlapping to retain intricate

local features. Consequently, the CNN branch ensures a

sequential provision of localized feature intricacies to benefit the

transformer branch.
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3.1.2 Transformer blocks
In line with the approach introduced in ViT (28), this segment

consists of N sequential transformer blocks, as showcased in

Figure 2. Each transformer block combines a multi-head self-

attention module with an MLP block, encompassing an up-

projection fully connected layer and a down-projection fully

connected layer. Throughout this structure, LayerNorms (29) are

applied before each layer, and residual connections are integrated

into both the self-attention layer and the MLP block. For

tokenization purposes, the feature maps generated by the backbone

module are compressed into 16 × 16 patch embeddings without

overlap. This compression is achieved using a linear projection

layer, implemented via a 3 × 3 convolution with a stride of 1.

Notably, considering that the CNN branch (3 × 3 convolution)

encodes both local features and spatial location information, the

necessity for positional embeddings diminishes. This strategic

adaptation results in an improved image resolution, advantageous

for subsequent tasks related to vision.

3.1.3 Feature fusion blocks
Aligning the feature maps derived from the CNN branch

with the patch embeddings within the transformer branch poses a

significant challenge. To tackle this, we introduce the feature fusion

block, aiming to continuously and interactively integrate local

features with global representations. The substantial difference

in dimensionalities between the CNN and transformer features

is noteworthy. While CNN feature maps are characterized by

dimensions C×H ×W (representing channels, height, and width,

respectively), patch embeddings assume a shape of (L + 1) × J,

where L, 1, and J denote the count of image patches, class token, and

embedding dimensions, respectively. To reconcile these disparities,

feature maps transmitted to the transformer branch undergo an

initial 1 × 1 convolution to align their channel numbers with

the patch embeddings. Subsequently, a down-sampling module

(depicted in Figure 2) aligns spatial dimensions, following which

the feature maps are amalgamated with patch embeddings, as

portrayed in Figure 2. Upon feedback from the transformer to the

CNN branch, the patch embeddings necessitate up-sampling (as

illustrated in Figure 2) to match the spatial scale. Following this,

aligning the channel dimension with that of the CNN feature maps

through a 1×1 convolution is performed, integrating these adjusted

embeddings into the feature maps. Furthermore, LayerNorm and

BatchNorm modules are employed to regularize the features.

Moreover, a significant semantic disparity arises between feature

maps and patch embeddings. While feature maps stem from local

convolutional operators, patch embeddings arise from global self-

attention mechanisms. Consequently, the feature fusion block is

incorporated into each block (excluding the initial one) to bridge

this semantic gap progressively.

3.2 Experiments

3.2.1 Datasets
Four public datasets, DRIVE (30), CHASEDB1 (31), STARE

(32), and HRF (33), were used in our experiments. The images of

these datasets were captured by different devices and with different

image sizes. A detailed description of each dataset is elaborated

below:

1). DRIVE dataset: the dataset known as DRIVE comprises

40 pairs of fundus images accompanied by their respective

labels for vessel segmentation. Each image within this dataset

measures 565× 584 pixels. Furthermore, the dataset has been

partitioned into distinct training and test sets, encompassing

20 pairs of images and corresponding labels within each set.

Notably, in the test set, every image has undergone labeling

by two medical professionals. Typically, the initial label is

considered the reference standard (ground truth), while the

second label serves as a human observation used to assess

accuracy.

2). CHASEDB1 dataset: the CHASEDB1 dataset encompasses a

collection of 28 images, comprising samples from both the left

and right eyes, with each image possessing dimensions of 999

× 960 pixels. Past investigations have specifically delineated

the dataset’s utilization, designating a distinct partition for

training and testing purposes. According to prior scholarly

research (31), a selection strategy has been employed, with

the final eight images demarcated for evaluation as testing

samples, while the preceding images have been earmarked

for utilization as training samples. This segmentation strategy

in the dataset facilitates a structured approach for model

training and evaluation, enabling a systematic analysis of

algorithm performance on separate subsets of images to

ensure robustness and generalizability in vessel segmentation

tasks.

3). STARE dataset: each image within the STARE dataset

measures 700 × 605 pixels. This dataset comprises 20 color

fundus images without a predefined division into training

and test sets. Previous studies have employed two common

schemes for test set allocation to assess method performance.

One approach involves assigning 10 images to the training

set and the remaining 10 to the test set. Alternatively, the

Leave-One-Out method has been utilized, wherein each image

successively serves as the test set while the remaining images

form the training set for evaluation purposes in different

iterations.

4). HRF dataset: the HRF dataset comprises 45 fundus images

with a resolution of 3,504 × 2,336 pixels. From this

dataset, 15 images from are allocated to the training set,

while the remaining 30 images constitute the test set. To

mitigate computational expenses, both the images and their

corresponding labels are downsampled twice, as noted in (34).

3.2.2 Loss functions
Commonly utilized region-based losses, like Dice loss (35),

often result in highly precise segmentation. However, they tend to

disregard the intricate vessel shapes due to a multitude of pixels

outside the target area, overshadowing the significance of those

delineating the vessel (36–40). This oversight may contribute to

relatively imprecise retinal vessel segmentation and, consequently,

inaccurate quantification of hypertensive retinopathy. In response,
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we incorporated the TopK loss (Equation 1) (41, 42) to emphasize

the retinal vessels during the training process specifically. When

objects exhibit sizes that are not notably smaller in comparison to

the convolutional neural network’s (CNN) receptive field, the vessel

emerges as the most variable component within the prediction,

displaying the least certainty; thus, the loss within the vessel region

tends to be the highest among the predictions (43). Building upon

these observations and rationale, the TopK loss is formulated as

follows:

LTopK = −
1

N

∑

i∈K

gi log si (1)

where gi is the ground truth of pixel i, si is the corresponding

predicted probability, and K is the set of the k% pixels with the

lowest prediction accuracy. While sole vessel-focused loss often

causes training instability (44), region-based loss, such as Dice loss

(Equation 2) (35), is needed at the early stage of the training. We

represent Dice loss as follows:

LDice = 1−
2|Vs ∩ Vg |

|Vs| + |Vg |
(2)

where Vg is the ground truth label and Vs is the prediction result of

segmentation.We coupled TopKwith region-basedDice loss as our

final loss function (Equation 3) for the retinal vessel segmentation.

L = LTopK + LDice (3)

3.2.3 Experimental setting
To enrich the dataset, we introduce random rotations on the

fly to the input images in the training dataset, applied to both

segmentation tasks. Specifically, these rotations span from –20 to

20 degrees. Additionally, 10% of the training dataset is randomly

chosen to serve as the validation dataset. The proposed network

was implemented utilizing the PyTorch Library and executed on

the Nvidia GeForce TITAN Xp GPU. Throughout the training

phase, we employed the AdamW optimizer to fine-tune the deep

model. To ensure effective training, a gradually decreasing learning

rate was adopted, commencing at 0.0001, alongside a momentum

parameter set at 0.9. For each iteration, a random patch of size

118 × 118 from the image was selected for training purposes, with

a specified batch size of 16. A backbone of ResNet50 (27) is used in

this work.

3.2.4 Evaluation metrics
The model’s output is represented as a probability map,

assigning to each pixel the probability of being associated with the

vessel class. Throughout the experiments, a probability threshold

of 0.5 was employed to yield the results. To comprehensively assess

the efficacy of our proposed framework during the testing phase,

the subsequent metrics will be computed:

• Acc (accuracy) = (TP + TN) / (TP + TN + FP + FN),

• SE (sensitivity) = TP / (TP + FN),

• SP (specificity) = TN / (TN + FP)

• F1 (F1 score) = (2× TP) / (2× TP + FP + FN)

• AUROC = area under the receiver operating characteristic

curve.

In this context, the correct classification of a vessel pixel

is categorized as a true positive (TP), while misclassification is

identified as a false positive (FP). Correspondingly, accurate

classification of a non-vessel pixel is considered a true

negative (TN), whereas misclassification is denoted as a false

negative (FN).

3.3 Compared methods

We compared our approach to other classic and

state-of-the-art models that have achieved promising

performance on different medical image segmentation

tasks. All of the experiments are conducted under the same

experimental setting. The compared methods are briefly

introduced below:

• Unet (45): Unet is a CNN architecture used for image

segmentation tasks. Its U-shaped design includes an encoder

(contracting path) for feature extraction and a symmetric

decoder (expansive path) for generating segmented outputs.

The network uses skip connections to preserve fine details and

context, making it effective for tasks like biomedical image

segmentation.

• Unet++ (46): Unet++ is an advanced version of the U-

Net architecture designed for image segmentation tasks. It

improves upon U-Net by introducing nested skip connections

and aggregation pathways, allowing better multi-scale feature

integration and context aggregation. This enhancement leads

to more accurate and precise segmentation results compared

to the original U-Net model.

• Swin-Transformer (47): Swin-Transformer is a hierarchical

vision transformer (28) structure. It uses shifted windows

to process image patches hierarchically, allowing for

improved global context understanding. This architecture has

demonstrated competitive segmentation performance with

efficient computation.

• AttenUnet (48): The AttenUnet enhances the traditional U-

Net architecture that integrates attention mechanisms. These

mechanisms enable the network to focus on important image

features during segmentation tasks. It improves accuracy

by refining object delineation and suppressing irrelevant

information. This variant is particularly effective in tasks like

medical image segmentation, where precise localization of

structures is essential.

• TransUnet (49): TransUNet is a proposed architecture

to improve medical image segmentation, addressing

limitations seen in the widely used U-Net model. It

combines the strengths of Transformers’ global self-

attention with U-Net’s precise localization abilities. The

Transformer part encodes image patches from a CNN

feature map to capture global context, while the decoder

integrates this with high-resolution feature maps for

accurate localization.
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FIGURE 3

Qualitative results of the vessel segmentation. We compare our model with Unet (45), Unet++ (46), Swin-Transformer (47), AttenUnet (48), TransUnet

(49). Our method can produce more accurate segmentation results than the other methods compared with the ground truth.

TABLE 1 Quantitative results comparison between our methods and other compared state-of-the-art methods on DRIVE dataset.

Methods Acc SE SP F1 AUROC

Unet 90.1 (89.1, 90.8) 76.5 (74.2, 78.1) 97.7 (95.8, 99.1) 80.3 (78.3, 82.3) 97.2 (95.0, 98.0)

Unet++ 91.3 (90.4, 92.7) 79.2 (78.0, 80.6) 97.9 (95.2, 99.0) 81.0 (79.2, 82.5) 97.1 (95.8, 99.0)

Swin-Transformer 92.3 (91.5, 92.9) 79.0 (77.9, 80.6) 98.1 (96.4, 99.2) 82.0 (81.0, 84.0) 97.6 (96.1, 98.3)

AttenUnet 92.1 (91.3, 93.2) 80.0 (78.3, 82.0) 98.3 (96.1, 99.5) 80.4 (78.5, 82.1) 97.4 (96.2, 98.6)

TransUnet 91.8 (91.2, 93.0) 80.3 (79.1, 81.3) 98.3 (97.2, 99.6) 80.1 (78.8, 80.9) 97.3 (96.4, 99.0)

Ours 93.8 (92.9, 94.8) 81.0 (80.2, 82.6) 98.5 (96.7, 99.1) 83.3 (78.8, 82.1) 97.9 (96.2, 98.8)

Performance is reported with Acc, SE, SP, F1 and AUROC. 95% confidence interval is presented in the bracket. The best performance is highlighted in bold.

4 Results

4.1 Vessel segmentation performance

Figure 3 illustrates qualitative comparison with other compared

methods on the test dataset. Tables 1–4 shows the quantitative

performance of Ours and other methods on four different

datasets, respectively.

Our proposed method can outperform other compared

methods on DRIVE, CHASEDB1, STARE, and HRF datasets,

respectively. In detail, Ours achieved 83.3% F1 on DRIVE dataset,

which outperformed Unet (45) by 3.6%, outperformed Swin-

Transformer (47) by 1.6% and outperformed TransUnet (49) by

4.0%. Ours achieved 81.6% F1 on CHASEDB1 dataset, which

outperformed Unet++ (46) by 1.9%, outperformed AttenUnet (48)

by 2.1% and outperformed TransUnet (49) by 1.5%. Ours achieved

86.6% F1 on STARE dataset, which outperformed Unet (45) by

2.7%, outperformed AttenUnet (48) by 2.4% and outperformed

TransUnet (49) by 1.6%. Ours achieved 79.9% F1 on HRF dataset,

which outperformed Unet++ (46) by 0.8%, outperformed Swin-

Transformer (47) by 0.5% and outperformed TransUnet (49) by

1.3%. Notably, Swin-Transformer (47) and TransUnet (49) belong

to the transformer-based model structure, which demonstrates a

superior performance on many tasks. However, in this work, the

limited data size is one of the leading reasons for the relatively low

performance of those datasets. Another reason could be the task’s

own nature of vessel segmentation, where more local information

is needed rather than the long-range relationship between pixels.

Thus, given two brunches with transformer and CNN structures

and fusion modules, our proposed model can simultaneously

tackle both the local semantic information and long-range spatial

information for the segmentation task.

Figure 3 shows the qualitative comparison between ours and

other compared methods. It demonstrated that our proposed
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TABLE 2 Quantitative results comparison between our methods and other compared state-of-the-art methods on CHASEDB1 dataset.

Methods Acc SE SP F1 AUROC

Unet 91.2 (89.8, 92.3) 60.3 (58.2, 61.4) 97.1 (96.4, 97.9) 79.7 (76.9, 81.0) 97.7 (96.6, 98.2)

Unet++ 91.6 (89.8, 93.2) 63.0 (61.2, 65.0) 97.3 (95.5, 98.3) 80.1 (78.5, 82.1) 97.7 (96.2, 98.3)

Swin-Transformer 92.3(91.0, 94.1) 62.9 (61.4, 64.0) 97.8 (96.2, 98.5) 80.3 (78.7, 81.7) 97.9 (96.2, 98.8)

AttenUnet 92.4 (91.0, 94.2) 67.7 (65.5, 68.3) 97.7 (96.2, 98.4) 79.9 (77.4, 80.6) 97.8 (97.0, 98.5)

TransUnet 92.6 (90.2, 94.4) 66.1 (64.6, 67.7) 98.0 (96.7, 99.0) 80.4 (78.9, 82.1) 98.2 (96.3, 99.9)

Ours 93.7 (91.7, 95.2) 69.0 (67.4, 70.5) 98.9 (97.2, 99.3) 81.6 (81.0, 93.0) 98.9 (98.1, 99.3)

Performance is reported with Acc, SE, SP, F1 and AUROC. 95% confidence interval is presented in the bracket. The best performance is highlighted in bold.

TABLE 3 Quantitative results comparison between our methods and other compared state-of-the-art methods on STARE dataset.

Methods Acc SE SP F1 AUROC

Unet 93.3 (91.7, 95.2) 80.8 (78.7, 81.8) 98.1 (97.1, 99.0) 84.3 (82.2, 86.3) 98.1 (97.0, 99.0)

Unet++ 94.2 (92.5, 96.0) 82.6 (81.6, 83.1) 98.0 (96.4, 99.0) 84.5 (83.7, 85.2) 98.3 (97.1, 99.2)

Swin-Transformer 93.9 (92.8, 94.7) 83.0 (82.0, 84.2) 98.2 (96.9, 99.1) 84.1 (82.5, 86.2) 98.5 (97.4, 99.3)

AttenUnet 93.6 (92.7, 94.7) 82.9 (81.7, 84.2) 98.6 (96.2, 99.3) 84.6 (82.9, 86.3) 98.6 (96.7, 99.5)

TransUnet 93.4 (91.9, 94.7) 83.2 (81.6, 85.0) 98.7 (96.6, 99.4) 85.2 (83.7, 86.9) 98.1 (97.2, 99.1)

Ours 94.8 (92.9, 95.6) 84.2 (82.6, 86.1) 99.2 (97.7, 99.4) 86.6 (85.9, 87.4) 99.3 (98.4, 99.7)

Performance is reported with Acc, SE, SP, F1 and AUROC. 95% confidence interval is presented in the bracket. The best performance is highlighted in bold.

methods can segment the vessels more accurately. This is important

for vessel segmentation tasks and hypertensive retinopathy

quantification with more accurate vessel area calculation.

4.2 Ablation study

4.2.1 Ablation study on loss functions
We did ablation study experiments on loss functions. We

maintain the same model structure and only change the loss

functions. In detail, we remove Dice loss and TopK loss,

respectively, to evaluate their respective contribution to the

performance of the proposed models. Furthermore, we replace

TopK loss with a cross-entropy loss to validate the effectiveness

of TopK loss in the segmentation task. Table 5 demonstrates that

Dice Loss can lead to a 6.2% F1 and TopK loss can lead to a

2.9% F1 performance. On the other hand, Dice loss can lead to

15.5% SE performance, and TopK loss can lead to a 2.8% SE

performance on Drive dataset. Additionally, compared with cross-

entropy loss, the TopK loss could lead to a 1.5% F1 improvement

and 2.3% SE improvement. Each loss function can boost themodel’s

performance in different evaluation metrics. This demonstrated

that the adopted loss function can both contribute to the learning

process and benefit the vessel segmentation performance.

4.2.2 Ablation study on the models’ components
We did ablation study experiments on the model’s components.

In detail, we maintain the same model structure and only change

the models’ structure by removing different modules, including

Trans-Block, CNN-Block and Fusion-Block, respectively. In detail,

we remove each of those three modules, respectively, to evaluate

their respective contribution to the performance of the proposed

models. Table 6 demonstrates thatTrans-Block can lead to a 10% F1,

CNN-Block can lead to a 10.3% F1 performance and Fusion-Block

can lead to a 7.9% F1 performance boost. On the other hand, Trans-

Block can lead to a 3.3% SE performance, CNN-Block can lead to

a 2.3% SE performance, and Fusion-Block can lead to an 0.9% SE

performance on Drive dataset. Each module can boost the model’s

performance in different evaluation metrics. This demonstrated

that the proposedmodules can all contribute to the learning process

and benefit the vessel segmentation performance.

5 Hypertensive retinopathy
quantification

The proposed method has demonstrated a promising retinal

vessel segmentation performance on different datasets and

benchmarks. Additionally, precise segmentation of retinal vessels

plays a vital role in hypertensive retinopathy detection, whereas

manual segmentation tends to be cumbersome and time-

consuming (50). The model proposed can generate a binary mask

distinguishing vessel pixels as one and background pixels as zero.

This mask effectively quantifies the total count of vessel pixels

within each mask. The ratio (Rvessel) between the count of vessel

pixels and non-vessel pixels is defined as follows:

Rvessel =
Nv

Nnon − Nv
, (4)

where Nv represents the count of vessel pixels, and Nnon denotes

the count of non-vessel pixels. The ratio Rvessel (Equation 4)

serves as a valuable metric in identifying hypertensive retinopathy

within fundus images. Hypertensive retinopathy leads to vascular
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TABLE 4 Quantitative results comparison between our methods and other compared state-of-the-art methods on HRF dataset.

Methods Acc SE SP F1 AUROC

Unet 94.4 (92.3, 96.0) 77.7 (75.8, 79.0) 95.1 (93.8, 96.7) 78.6 (76.9, 79.1) 97.2 (96.0, 98.0)

Unet++ 94.8 (92.8, 96.2) 78.9 (78.0, 79.6) 95.1 (93.8, 96.4) 79.3 (78.7, 80.5) 97.3 (96.1, 98.3)

Swin-Transformer 94.6 (92.9, 96.0) 79.1 (77.9, 80.5) 94.4 (92.7, 96.0) 79.5 (77.7, 80.6) 97.8 (96.2, 98.6)

AttenUnet 95.8 (93.9, 96.9) 77.6 (75.8, 79.1) 94.6 (93.9, 95.4) 78.8 (76.9, 79.5) 98.2 (97.0, 99.0)

TransUnet 95.3 (94.2, 96.3) 78.6 (77.4, 79.8) 94.7 (92.9, 96.3) 78.9 (77.0, 79.9) 98.3 (97.2, 99.1)

Ours 96.2 (95.0, 97.1) 79.9 (78.0, 81.0) 94.9 (92.8, 96.0) 79.9 (77.9, 81.2) 98.8 (97.9, 99.3)

Performance is reported with Acc, SE, SP, F1 and AUROC. 95% confidence interval is presented in the bracket. The best performance is highlighted in bold.

TABLE 5 Quantitative ablation study results of the loss function on DRIVE dataset.

Methods Acc SE SP F1 AUROC

w/o Dice loss 86.4 (85.0, 88.0) 70.1 (68.2, 72.5) 94.4 (92.3, 96.0) 75.6 (74.1, 76.2) 94.5 (92.8, 95.6)

w/o TopK loss 88.9 (87.3, 89.6) 78.8 (76.9, 80.3) 96.0 (94.2, 97.2) 78.0 (77.0, 79.2) 96.3 (94.8, 97.7)

w/ Cross-entropy loss 90.3 (89.6, 91.0) 79.2 (78.5, 80.0) 96.9 (95.8, 97.4) 79.1 (78.0, 80.2) 96.9 (95.8, 97.5)

Ours 93.8 (92.9, 94.8) 81.0 (80.2, 82.6) 98.5 (96.7, 99.1) 80.3 (78.8, 82.1) 97.9 (96.2, 98.8)

Performance is reported with Acc, SE, SP, F1 and AUROC. 95% confidence interval is presented in the bracket. The best performance is highlighted in bold.

TABLE 6 Quantitative ablation study results of the model’s components on DRIVE dataset.

Methods Acc SE SP F1 AUROC

w/o Trans-Block 88.9 (87.6, 89.5) 78.4 (76.8, 79.3) 92.1 (91.2, 92.9) 73.0 (71.5, 74.6) 95.2 (93.7, 96.6)

w/o CNN-Block 89.1 (87.9, 90.8) 79.2 (78.2, 80.6) 92.3 (91.4, 92.9) 72.8 (71.6, 73.5) 95.3 (93.8, 96.6)

w/o Fusion-Block 91.2 (89.9, 92.3) 80.3 (78.8, 81.6) 93.1 (92.1, 94.4) 74.4 (72.6, 76.6) 96.3 (95.8, 96.7)

Ours 93.8 (92.9, 94.8) 81.0 (80.2, 82.6) 98.5 (96.7, 99.1) 80.3 (78.8, 82.1) 97.9 (96.2, 98.8)

Performance is reported with Acc, SE, SP, F1 and AUROC. 95% confidence interval is presented in the bracket. The best performance is highlighted in bold.

constriction (51, 52), resulting in a decrease in the count of vessel

pixels (Rvessel).

Detection of hypertensive retinopathy, characterized by

vascular constriction, involves assessing changes in Rvessel across

sequential examinations. Increases or decreases in Rvessel indicate

the occurrence or progression of hypertensive retinopathy,

respectively. Hence, our proposed methods offer a straightforward

approach for detecting hypertensive retinopathy.

In the future, with increased datasets comprising fundus images

from hypertensive and healthy patients, we can further analyze

vessel changes within these images. In real-world clinical practice,

comparing the Rvessel obtained from consecutive visits can serve

as a diagnostic tool. Additionally, the detection of newly formed

vessels can be achieved by subtracting images from successive visits

post-segmentation. This approach enables the identification and

tracking of changes in vasculature over time, offering potential

insights for clinical assessment and monitoring.

6 Limitation and future works

While our deep learning method has shown promising

results in the challenging tasks of retinal vessel segmentation

and hypertensive retinopathy quantification, it’s important to

acknowledge the nuanced landscape of limitations accompanying

such endeavors. One notable factor is the inherent variability

present in medical imaging datasets. Our model’s performance

could be influenced by factors such as variations in image

quality and disease severity across different datasets. Moreover,

despite achieving commendable results overall, there are instances

where the model might struggle to accurately delineate intricate

vascular structures or detect subtle manifestations of hypertensive

retinopathy. This suggests the need for further exploration and

refinement of our approach.

In future research, attention could be directed toward

enhancing the model’s robustness and adaptability to diverse

imaging conditions and patient populations. Techniques such as

advanced data augmentation and domain adaptation strategies

could prove instrumental in achieving this goal. Additionally,

integrating complementary sources of information, such as

clinical metadata or genetic markers, holds promise for enriching

the predictive capabilities of our model and enhancing its

clinical relevance. Furthermore, the pursuit of interpretability

and explainability remains paramount. Providing clinicians with

insights into how the model arrives at its predictions can foster

trust and facilitate its integration into real-world clinical workflows.

However, this pursuit must be balanced with ethical considerations,

particularly concerning patient privacy, algorithmic bias, and

the potential consequences of automated decision-making in

healthcare settings. By addressing these multifaceted challenges, we
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can pave the way for more effective and responsible deployment of

deep learning technologies in ophthalmology and beyond.

7 Conclusion

We have proposed a novel and comprehensive framework

for retinal vessel segmentation and hypertensive retinopathy

quantification. It takes advantage of heterogeneous feature cross-

attention with the help of local emphasis CNN and long-range

emphasis transformer structure with a fusion module to aggregate

the information. Our experiments on four large-scale datasets have

demonstrated that our framework can simultaneously conduct

accurate segmentation and potential hypertensive retinopathy

quantification performance.
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Introduction: Microaneurysms serve as early signs of diabetic retinopathy, and

their accurate detection is critical for e�ective treatment. Due to their low

contrast and similarity to retinal vessels, distinguishing microaneurysms from

background noise and retinal vessels in fluorescein fundus angiography (FFA)

images poses a significant challenge.

Methods: We present a model for automatic detection of microaneurysms. FFA

images were pre-processed using Top-hat transformation, Gray-stretching, and

Gaussian filter techniques to eliminate noise. The candidate microaneurysms

were coarsely segmented using an improved matched filter algorithm. Real

microaneurysms were segmented by a morphological strategy. To evaluate the

segmentation performance, our proposed model was compared against other

models, including Otsu’s method, Region Growing, Global Threshold, Matched

Filter, Fuzzy c-means, and K-means, using both self-constructed and publicly

available datasets. Performance metrics such as accuracy, sensitivity, specificity,

positive predictive value, and intersection-over-union were calculated.

Results: The proposed model outperforms other models in terms of accuracy,

sensitivity, specificity, positive predictive value, and intersection-over-union. The

segmentation results obtained with our model closely align with benchmark

standard. Our model demonstrates significant advantages for microaneurysm

segmentation in FFA images and holds promise for clinical application in the

diagnosis of diabetic retinopathy.

Conclusion: The proposed model o�ers a robust and accurate approach to

microaneurysm detection, outperforming existing methods and demonstrating

potential for clinical application in the e�ective treatment of diabetic retinopathy.

KEYWORDS

diabetic retinopathy, segmentation model, microaneurysms, fluorescein fundus

angiography, computer-aided diagnosis

1 Introduction

Diabetic retinopathy (DR) is known as a blinding eye disease in the working

population. Most of the patients with type 1 diabetes mellitus and nearly 60% of the

patients with type 2 diabetes mellitus will develop retinopathy following a long duration of

diabetes (≥20 years). However, it is difficult to detect DR until it develops into the advanced

vision-threatening stage (1). DR is often divided into two stages: non-proliferative DR

(NPDR) and proliferative DR (PDR). In the NPDR stage, hyperglycemia can cause
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serious injuries to retinal capillaries, which can weaken the capillary

walls and lead to the occurrence of microaneurysms (MAs). MAs

are the small outpouchings of retinal capillaries and the early signs

of NPDR, as well as the indicators for DR progression (2, 3).

MAs appear as small, reddish, and circular shapes in color fundus

images. They can be clinically identified by ophthalmoscopy as the

deep-red dots varying from 10 to 100µm in diameter (4, 5). Thus,

automatic detection of MAs is important for DR diagnosis, which

can help in controlling and retarding visual loss.

Previous studies have reported that several imaging modalities

have been developed for MA detection, including color fundus

images (6), optical coherence tomography angiography (OCTA)

(7), and fluorescein fundus angiography (FFA) (8). Colored fundus

photography has often been used due to its low cost compared with

Optical coherence tomography machines. Walter et al. proposed

a method for the automatic detection of MAs based on diameter

closure and kernel density estimation (6). Melo et al. proposed a

method for MA detection using the sliding band filter algorithm in

color fundus images (9). MAs are situated on retinal capillaries and

are not often visible, whichmakes them difficult to distinguish from

the noises and pigmentation variations in color fundus images. An

OCTA can provide detailed visualization of vascular perfusions.

However, optical coherence tomography (OCT) machines are very

expensive, and the interpretation of OCTA data is still challenging

due to the complicated image artifacts and elusive algorithmic

details of OCTA data (10, 11). FFA can be used for the detection of

small changes in retinal vessels. The small and leaky MAs are easily

ignored without the aid of FFA. FFA is highly effective in detecting

MAs, especially when MAs are close to the vessels or too small to

distinguish (12, 13). However, objective segmentation of MAs in

FFA images is still challenging because MA segmentation requires

laborious manual segmentation by experienced graders. Therefore,

it is necessary to develop a model for automatic detection of MAs

in FFA images for DR diagnosis.

Computer-assisted MA detection is important for DR

diagnosis. Baudoin et al. used a mathematical morphology method

to remove vessels and applied a top-hat transformation with the

linear structuring elements to detect MAs (14). Spencer et al.

proposed an image correction procedure for MA segmentation

by calculating the true- and false-positive rates (15). Mendonca

et al. further improved this method by altering the pre-filtering

and classification procedures. However, shade corrections may

produce false positives caused by the darkening of regions close to

the bright patterns (16). Walter applied mathematical morphology

to segment the vascular trees of retinal angiograms. This algorithm

can extract patterns if vein width is constant, but it cannot extract

them from narrower/wider veins (17). Zhang et al. proposed

a model based on the dynamic thresholding and correlation

coefficients of a multi-scale Gaussian template (18). Antal and

Hajdu proposed an ensemble-based method for MA detection by

selecting an optimal combination of pre-processing methods and

candidate extractors (19). Saleh et al. developed a DR detection

system based on the Gaussian filter, a multi-layered dark object

filtering method, and a singular spectrum analysis (20). Despite

their clinical significance, MAs pose challenges for accurate

detection due to their low-contrast and close resemblance to blood

vessels. Thus, further study is necessary to refine MA detection

algorithms and enhance accuracy, particularly in FFA images. In

this study, we present a novel model for the automatic detection

of MA lesions in FFA images. Our proposed model comprises

pre-processing of FFA images, followed by coarse segmentation

of candidate MA regions and fine segmentation of MA regions.

Subsequently, comparative studies were conducted to assess the

MA detection performance of the proposed model.

2 Materials and methods

2.1 The proposed model for MA detection

The flowchart of the proposed MA detection model is shown

in Figure 1, including pre-processing of FFA images, coarse

segmentation of candidate MA regions by the matched filter

(MF) algorithm, and fine segmentation of MA regions by the

morphological strategy.

2.2 Pre-processing of FFA images

High-noise and low-contrast can pose great difficulties for

the identification of MAs in FFA images. In the pre-processing

step, the FFA images underwent decomposition into individual

channels to alleviate computational demands, given that the pixel

values across each channel were identical. Subsequently, each single

channel underwent processing, employing top-hat transformation

and gray-stretching (21) to enhance the contrasts between MAs

and the background. Following this processing, the processed result

underwent further refinement via a Gaussian filter to reduce noise.

The top-hat transformation was defined according to Equation

(1) (22):

Ith(x, y) = I(x, y)− I(x, y) ◦ B(u, v) (1)

where I(x, y) refers to the grayscale image, B(u, v) refers to the

structural element constructed as a circle with a radius of 45 pixels,

and ◦ refers to the open operation. Opening of I(x, y) by B(u, v) was

defined according to Equation (2):

I(x, y) ◦ B(u, v) = (I(x, y)2B(u, v))⊕ B(u, v) (2)

where 2 and ⊕ refer to the erosion and dilation operations,

respectively. The erosion and dilation of I(x, y) by B(u, v) were

defined according to Equations (3) and (4):

I(x, y)2B(u, v) = min
u,v

(I(x+ u, y+ v)− B(u, v)) (3)

I(x, y)⊕ B(u, v) = min
u,v

(I(x− u, y− v)+ B(u, v)) (4)

Gray-stretching was defined according to Equation (5) (23):

Inew = (
Gmax − Gmin

Imax − Imin
)(I − Imin)+ Gmin (5)
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FIGURE 1

Flow chart of the proposed model for microaneurysm (MA) segmentation.

where Imax and Imin refer to the largest and smallest gray values in

the original images, respectively. Gmax and Gmin refer to the largest

and smallest gray values in the transformed images.

The Gaussian filter was defined according to Equation (6) (24):

G(x, y) =
1

√
2πσ

e
−(x2+y2)

2σ2 (6)

where σ 2 refers to the variance of the Gaussian filter.

In the pre-processing step, top-hat transformation, gray-

stretching, and a Gaussian filter were employed for MA

extraction by strengthening, enhancing, and denoising. A top-hat

transformation was used to highlight the object edges and remove

distracting information such as background noises. Gray-stretching

mapped the grayscale ranges of FFA images. The Gaussian filter

smoothed FFA images and removed irregular details such as noise

points and burrs in the FFA images.

2.3 Coarse segmentation of MAs by the MF
algorithm

The candidate MA regions in the FFA images were detected

using the MF algorithm. MF was initially proposed by Chaudhuri

et al. (25) for blood vessel extraction. Analogous to the matching

filter concept in signal processing, a blood vessel image can be

interpreted as a signal. Blood vessels exhibit characteristics such as

a narrow range of width variation and parallel inner walls. Based

on the prior knowledge, MF can construct a template to match

the cross-sectional structure of blood vessels. Consequently, when

the blood vessel component is input, a higher value is yielded,

whereas a lower value is produced for the background, facilitating

the separation of blood vessels. Hence, MF effectively enhances

blood vessels and suppresses background noises.

MF was defined according to Equation (7) (26):

f (x, y) =
1

√
2πs2

e
−x2

2s2 −m, |x| ≤ t × s,
∣∣y

∣∣ ≤
L

2
(7)
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FIGURE 2

Original fluorescein fundus angiography (FFA) images and segmentation results of MAs by the proposed model and retinal clinicians.

where s refers to the filter scale,m is used for normalizing the mean

value of the filter to 0, which is defined as Equation (8), L refers to

the neighborhood length along the y-axis and is used to smooth the

noises. L was deduced by s. When s was small, L was set relatively

small, and vice versa. The criterion t is a constant and was set to

3 (27).

m =

∫ ts
−ts

1√
2πs2

e
−x2

2s2 dx

2ts
(8)

The performance of the MF algorithm is heavily reliant on the

design of the template. Poorly designed templates or significant

deviations from the actual blood vessel structure can result in

inaccurate extraction or an abundance of noise. Genetic algorithms

(GA), an optimization technique introduced by John Holland,

offer a solution to this challenge. GA mimics natural selection

and genetic mechanisms to search for optimal solutions within

the solution space. By using GA, one can efficiently explore and

identify template configurations that yield improved accuracy and

robustness in vessel extraction.

Hence, GA can be utilized to automatically adjust the threshold

value of MF to accommodate the morphological features of blood

vessels in various images. The GA process comprises five key steps:

population initialization, fitness assessment, selection, crossover,

and mutation. In the population initialization step, chromosome

length was set to 8 and population size was set to 10. In the fitness

assessment step, the efficacy of a solution was determined using a

fitness function, where solutions with higher fitness were deemed

superior. In our study, the fitness function of the GA is defined as

in Equation (9) (28). In the selection step, the elitism strategy was

adopted. In the crossover step, the crossover probability was set to

0.7. In the mutation step, the mutation probability was set to 0.4.

In the later stages of the genetic algorithm’s evolution, adjustments

were made to both the crossover andmutation probabilities, setting

them to 0.3 each.

Through iterative optimization via GA, the MF template

that most accurately aligns with blood vessels can be gradually

identified, enabling the identification of all candidate MAs.

f = p1 × p2 × (µ1 − µ2)
2 (9)

where p1 and p2 refer to the number of the target pixels and

background pixels, respectively,µ1 andµ2 refer to the average gray

values of the target pixels and background pixels, respectively. f is

the fitness value.
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2.4 Fine segmentation of MAs by the
morphological strategy

Real MA regions were determined by the morphological

strategy, including removing vessels, hemorrhages, and exudates

from the candidate MA regions based on area features and

shape features, respectively. Previous studies have developed

multiple image processing and machine learning algorithms for the

automatic detection of MAs and recognized that the area size of

MAs was typically between 5 and 100 pixels. In addition, real MAs

were often localized next to the capillaries, appearing as dotted

or rounded structures (29–31). The vessels, hemorrhages, and

exudates were removed from the candidate MA regions according

to Equation (10). Hemorrhages and exudates caused by the injured

vessels were removed from the candidate MA regions according to

Equation (11) and the threshold for roundness was set to 0.51.

I(x, y) =






0, S > 100

1, 5 ≤ S ≤ 100

0, S < 5

(10)

Roundess =
4πS

C2
(11)

where S refers to the pixels of the candidateMA regions andC refers

to the circumference of the contour.

2.5 Dataset

The FFA dataset comprises 1,010 FFA images, each with

dimensions of 768 × 868 pixels, obtained from 65 eyes of 60 DR

patients aged between 31 and 81 years. These patients underwent

FFA examinations at the Eye Hospital affiliated with Nanjing

Medical University between 2015 and 2019. The FFA images

were captured using Heidelberg Retina Angiography (Heidelberg

Engineering, Germany) by experienced clinicians. Notably, the

FFA dataset did not include blurry or overexposed images. For

labeling MAs in FFA images, three retinal clinicians with over

10 years of experience independently annotated MAs, serving as

the benchmark standard. Patients with FFAs indicating mild or

moderate DR were eligible for inclusion. The following exclusion

criteria were used: (1) presence of other ocular diseases unrelated

to diabetes, such as retinal arteriovenous obstruction, age-related

macular degeneration, glaucoma, and uveitis; (2) any condition

causing poor image quality or inability to visualize the optic

disc and vessels, such as dense cataracts or corneal opacity; and

(3) history of previous ophthalmological interventions, such as

laser photocoagulation, vitrectomy, or anti-vascular endothelial

growth factor injection. To ensure the reliability and validity of

segmentation results, FFA images were independently divided into

three sets: 830 images for training, 90 images for testing, and

90 images for validation. Figure 2 shows the original FFA images

and MA detection results by the proposed model and benchmark

standard.

Another publicly available dataset was utilized to assess the

performance ofMA detection. This dataset consisted of FFA images

obtained from diabetic patients. The images were captured as part

of a study conducted at the Persian Eye Clinic (Feiz Hospital),

affiliated with the Isfahan University of Medical Sciences. The

dataset comprised retinal images from 70 patients, with 30 samples

categorized as normal and 40 samples representing various stages

of DR.

2.6 Evaluation metrics

Five different metrics, including accuracy (Acc) (30), sensitivity

(Se) (30), specificity (Sp) (30), positive predictive value (PPV) (31),

and intersection-over-union (IOU) (32), were employed to evaluate

the detection performance of MAs according to Equations (12–16):

Acc =
TP + TN

TP + FP + TN + FN
(12)

Se =
TP

TP + FN
(13)

Sp =
TN

TN + FP
(14)

PPV =
TP

TP + FP
(15)

IOU =
TP

TP + FP + FN
(16)

where TP denotes the region that was predicted as MAs and

was real MAs; FP denotes the region that was predicted as MAs

but was background; TN denotes the region that was predicted

as background and was real background; and FN denotes the

region that was predicted as background but was MAs. Accuracy

(Acc) is defined as the measure providing the ratio of total well-

segmented pixels based on the gold standard for hand-labeled

detection. Sensitivity (Se) and specificity (Sp) measures the ability

of the model to detect well-segmented MAs and background

pixels, respectively. PPV represents the correct proportion of the

sample with a positive prediction. The IOU reflects the degree

of coincidence between the MA detection result of the proposed

model and the benchmark standard.

2.7 Implementation

All experiments were conducted on a PC with an Intel Core

processor running at 2.50 GHz and equipped with 8 GB of RAM,

using the MATLAB 2013a software.

3 Results

Our proposed model encompassed the pre-processing of

FFA images, followed by coarse segmentation of candidate MA
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TABLE 1 Performance comparison between our proposed model and the microaneurysms-matched filter (MAs-MF) model.

Model Evaluation metrics

Acc (%) Se (%) Sp (%) PPV (%) IOU (%)

Clinician 99.94± 0.04 96.65± 0.08 99.96± 0.02 92.91± 0.09 90.02± 0.08

MAs-MF 99.43± 0.06 90.95± 0.46 99.46± 0.05 42.42± 0.97 40.64± 1.07

Our model 99.80± 0.05 92.10± 0.20 99.85± 0.04 75.07± 0.44 70.57± 0.55

FIGURE 3

Detection results of MAs by microaneurysms-matched filter (MAs-MF).

regions and fine segmentation of MA regions. To assess the

MA detection performance of our proposed model, two distinct

experiments were conducted. In Experiment 1, our proposed

model was juxtaposed against the MF model optimized by the

GA algorithm (referred to as MAs-MF). In Experiment 2, our

proposed model was compared against previous MA detection

models. To maintain the integrity of our experiments, the

outcomes presented for the clinician in Table 1 were segmented

by a skilled clinician who did not participate in the dataset

labeling process.

3.1 The ablation experiment suggests that
our proposed model improves MA
detection performance

We compared our proposed model against the MAs-MF model

to evaluateMA detection performance. The results ofMA detection

are shown in Figure 3. The metrics of MA detection are shown in

Table 1.

From Figure 3 and Table 1, we can observe that there

were several label errors of small blood vessels for MA

detection results in the MAs-MF model, as shown in the red

squares in Figure 3. Compared with the MAs-MF model,

the MA detection performance of the proposed model

was close to the MA detection results of the clinicians.

Compared with the MAs-MF model, the proposed model

had greater values of accuracy (Acc), sensitivity (Se),

specificity (Sp), PPV, and IOU, which were 99.80 (0.37↑),

92.10 (1.15↑), 99.85 (0.39↑), 75.07 (32.65↑), and 75.57

(29.93↑), respectively.

3.2 The comparison experiment suggests
that the proposed model has an obvious
MA detection advantage over previous MA
detection models

We further compared our proposed model against other MA

detection models, such as Otsu’s method (33), Region Growing

(34), MF (25), Global Threshold (35), K-means, (36) and Fuzzy

c-means, (37) to evaluate MA detection performance. The results

of MA detection are shown in Figure 4, and the metrics of MA

evaluation are shown in Table 2.

As shown in Figure 3 and Table 2, Otsu’s method, Region

Growing, MF, Global Threshold, K-means, and Fuzzy c-means

models could not accurately detect the boundaries of MA regions

and normal regions. Additionally, there were some omissions and

false detections, which are marked by red squares in Figure 4.

The proposed model had greater values of PPV and IOU than

other models. Furthermore, our proposed model demonstrated

performance in MA detection that closely aligned with the

benchmark standard, surpassing the performance of other MA

detection models.

To further evaluate MA detection performance, we used a

publicly available dataset, which was obtained during a study

conducted at the Persian Eye Clinic (Feiz Hospital) in Isfahan

University of Medical Sciences (32), including retinal images from

70 patients, with 30 samples classified as normal and 40 samples

representing different stages of DR. As shown in Table 3, MA

detection using our proposed model had an average accuracy of

99.42%, a sensitivity of 90.21%, a specificity of 98.86%, a PPV of

71.93%, and an IOU of 64.89%, showing an obvious advantage over

other MA detection models.
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FIGURE 4

MA segmentation results from di�erent models.
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TABLE 2 Comparison of microaneurysm (MA) segmentation performance between our proposed model and other previously reported models.

Model Evaluation metrics

Acc (%) Se (%) Sp (%) PPV (%) IOU (%)

Otsu’s method 99.71± 0.08 79.55± 0.97 99.80± 0.08 63.85± 0.85 54.43± 1.11

Region growing 99.73± 0.07 81.80± 0.89 99.80± 0.07 63.92± 0.82 55.42± 1.07

Matched filter 99.73± 0.07 84.60± 0.57 99.79± 0.06 63.57± 0.80 57.40± 0.99

Global threshold 99.73± 0.08 78.06± 0.75 99.82± 0.06 62.88± 0.88 53.43± 1.12

K-means 99.76± 0.07 80.39± 0.68 99.83± 0.05 60.27± 0.75 52.36± 0.98

Fuzzy c-means 99.74± 0.06 76.52± 0.56 99.84± 0.05 63.23± 0.57 52.71± 0.92

Our model 99.80± 0.05 92.10± 0.20 99.85± 0.04 75.07± 0.44 70.57± 0.55

TABLE 3 Comparison of MA detection performance between our proposed model and previous detection models using the publicly available dataset.

Model Evaluation metrics

Acc (%) Se (%) Sp (%) PPV (%) IOU (%)

Otsu’s method 95.37± 0.12 79.76± 0.97 97.43± 0.16 64.43± 0.95 55.83± 1.05

Region growing 98.78± 0.11 82.22± 0.29 98.75± 0.21 67.21± 0.65 56.87± 1.21

Matched filter 98.54± 0.15 83.76± 0.29 98.46± 0.11 66.45± 0.86 56.87± 0.76

Global threshold 98.76± 0.09 79.12± 0.69 99.29± 0.16 64.64± 0.72 55.65± 1.08

K-means 98.55± 0.12 81.43± 0.87 99.12± 0.21 63.32± 0.86 54.65± 0.91

Fuzzy c-means 97.87± 0.11 79.47± 0.72 98.54± 0.13 64.54± 0.75 53.81± 0.87

Our model 99.42± 0.35 90.21± 0.54 98.86± 0.12 71.93± 0.41 64.89± 0.35

4 Discussion

MA detection is highly important for the diagnosis of DR (5).

FFA is a technique used for the evaluation of retinal and choroidal

circulation. MAs are immediately visible following the arterial

phase of FFA (33). In this study, we propose a three-step model for

MA detection in FFA images. Initially, FFA image pre-processing is

conducted to enhance the contrasts of FFA images. Subsequently,

candidate MA regions are coarsely segmented using an improved

MF algorithm. Finally, real MA regions are identified through a

morphological strategy. This proposed model aims to enhance the

accuracy and efficiency of MA detection in FFA images, thus aiding

in the early diagnosis and management of DR.

Automatic segmentation of MAs is still a tricky problem

due to their tiny sizes, low contrasts, and high similarities to

retinal vessels. The high-noise and low-contrast of FFA images

can also affect the quality of FFA images and reduce the accuracy

of MA detection (33). The goal of image enhancement is to

decrease image noise and enhance the contrasts of the targets

and backgrounds. In this study, top-hat transformation, gray-

stretching, and a Gaussian filter were used for the improvement

of FFA image quality. Top-hat transformation and gray-stretching

can efficiently solve the problem of uneven illumination, while a

Gaussian filter can efficiently reduce the potential impacts of retinal

noises on FFA images.

We also evaluated the MA detection performance of the

proposedmodel by comparing it with otherMAdetectionmethods.

Compared with Otsu’s method, Region Growing, MF, K-means,

Global Threshold, and Fuzzy c-means (3, 25, 34–37), the proposed

model has the greatest accuracy and efficiency for MA detection

in FFA images. The evaluation metrics of the proposed model,

including accuracy, sensitivity, specificity, PPV, and IOU, have the

highest value. Moreover, the proposed model has a similar MA

detection performance as the clinicians.

Recently, deep learning-based algorithms have gained

popularity for medical image analysis. However, these algorithms

typically demand high-performance computing resources, such

as central processing units (CPUs) and graphics processing units

(GPUs), as well as a substantial amount of labeled data for training.

Unfortunately, many hospitals lack access to such resources and

specialized personnel (38). Given this context, there is a pressing

need for simpler methods for analyzing FFA images. In contrast

to deep learning-based approaches, the proposed model does not

necessitate a large number of labeled images or high-performance

computing resources. Moreover, it offers comparable accuracy

to manual labeling by clinicians but with faster detection speed.

This feature makes it a practical and efficient solution for MA

detection in clinical settings where resources and expertise may

be limited.

5 Conclusion

This study provides a new model for the detection of

MAs in FFA images, which consists of three steps. First, the

quality of FFA images was improved by the image enhancement

methods, including top-hat transformation, gray-stretching, and
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the Gaussian filter. Then, the candidate MAs were coarsely

segmented by the MF algorithm. Finally, real MA regions

were determined by the morphological strategy. Compared

with manual MA labeling or other existing MA detection

algorithms, the proposed model shows promising performance

for the early diagnosis of DR by detecting MA lesions. This

model is expected to assist ophthalmologists in efficiently

detecting MA lesions, thereby enhancing the overall efficiency of

DR diagnosis.

6 Limitations of this study

The number of MAs tends to increase as the severity of

DR worsens. While the proposed model effectively detects the

presence of MA lesions in FFA images, there are limitations

to its clinical application. Indeed, MA formation is associated

with various pathological changes such as basement membrane

thickening, pericyte degeneration, and endothelial injury, which

can lead to retinal vessel leakage, edema, and even hemorrhage.

Given that vessel leakage, edema, and hemorrhage are closely

linked to the size and volume of MAs, accurately detecting

these parameters can provide additional valuable information

for DR screening and monitoring. To achieve broader clinical

applicability, the proposed model should be integrated with

algorithms for detecting the size and volume of MAs, as

well as for identifying edema and hemorrhages. This enhanced

model would significantly improve the accuracy of assessing DR

severity and estimating DR risk. Due to the high variability

in pathological features and the quality of FFA images, deep

learning techniques could play a crucial role in detecting

and quantifying these features more accurately and efficiently.

Therefore, in the future, we plan to incorporate deep learning

approaches to further enhance the efficiency of MA detection

in FFA images and improve the overall diagnostic capabilities

for DR.
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We introduce a novel AI-driven approach to unsupervised fundus image

registration utilizing our Generalized Polynomial Transformation (GPT) model.

Through the GPT, we establish a foundational model capable of simulating

diverse polynomial transformations, trained on a large synthetic dataset to

encompass a broad range of transformation scenarios. Additionally, our

hybrid pre-processing strategy aims to streamline the learning process by

o�ering model-focused input. We evaluated our model’s e�ectiveness on

the publicly available AREDS dataset by using standard metrics such as

image-level and parameter-level analyzes. Linear regression analysis reveals

an average Pearson correlation coe�cient (R) of 0.9876 across all quadratic

transformation parameters. Image-level evaluation, comprising qualitative

and quantitative analyzes, showcases significant improvements in Structural

Similarity Index (SSIM) andNormalizedCross Correlation (NCC) scores, indicating

its robust performance. Notably, precise matching of the optic disc and

vessel locations with minimal global distortion are observed. These findings

underscore the potential of GPT-based approaches in image registration

methodologies, promising advancements in diagnosis, treatment planning, and

disease monitoring in ophthalmology and beyond.

KEYWORDS

image registration, unsupervised learning, polynomial transformation, foundational

model, color fundus photography

1 Introduction

Image registration is an essential process in vision applications where multiple images

obtained from different viewpoints or spaces, are aligned. In medical imaging, this

technique holds significant importance, enabling the comparison and analysis of images

to gain insights into structural changes, disease progression, and treatment efficacy. The

primary objective of image registration is to align two images, denoted as a fixed image

(target) F and a moving image (source) M, by establishing spatial correspondence within

a shared coordinate system. In a simpler term, assuming x and y represent the column

and row indices, image registration involves mapping a position (x, y) from M to a new

warped/aligned image W at position (u(x, y), v(x, y)), where u and v denote different

types of transformation functions. Image registration encompasses linear and non-linear

transformations. Linear transformations involve global geometric adjustment of the
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moving image, while non-linear transformations allow for

local or regional deformations to the moving image. Linear

transformations often serve as the prerequisite step for non-

linear registration techniques by addressing global distortions from

differing viewpoints, making them an essential component in the

image registration pipeline. The most basic linear transformation

type for image registration is translation, wherein u and v can be

expressed in Equation (1):

u = x+ tx and v = y+ ty (1)

Here, tx and ty represent the translation lengths along the respective

axes. Affine transformation is a common linear technique

employed in image registration to address distortions arising

from non-ideal camera angles. Typically, an affine transformation

encompasses four fundamental operations: rotation, translation,

scaling, and shearing. The expressions for u and v in the context

of affine transformation are given (see Equation 2):

u = a00x+ a01y+ tx and v = a10x+ a11y+ ty (2)

where, a00, a01, a10, a11, tx and ty are the transformation

parameters. The planetary of surfaces, parallelism and angles

between lines are all preserved in affine transformation.

Furthermore, projective transformation is a type of geometric

transformation that maps points in one plane to another plane

using a projective matrix. It involves transforming points in a two-

dimensional space, such as an image, to another two-dimensional

space, allowing for changes in perspective, rotation, skewing, and

other distortions. The expressions for u and v in the context of

projective transformation is given in Equation 3:

u =
b00x+ b01y+ b02

b03x+ b04y+ c
, v =

b10x+ b11y+ b12

b13x+ b14y+ c
(3)

where b00-b14 are the projective transformation parameters; c

represents the coefficient associated with the z-coordinate in

homogeneous coordinates. It is commonly referred to as the

projective invariant and is used to represent the translation

component of the transformation. Projective transformations

are frequently employed in retinal image registration and

geometric correction (1, 2). Retinal image registration is crucial

in the diagnosis of eye diseases as it enables the accurate

assessment of disease-related features and progression. Fundus

imaging, including color fundus photography, optical coherence

tomography (OCT), fluorescein angiography and other advanced

imaging modalities, provides essential visual information for

the diagnosis and management of retinal diseases and systemic

diseases (3–5). The registration of fundus images allows for

the alignment and comparison of images over time, facilitating

the identification of changes in related features such as drusen,

geographic atrophy (GA), and choroidal neovascularization (CNV)

(6, 7). Fundus image registration is particularly important in the

context of multi-modal imaging, where the integration of different

imaging modalities such as OCT and fluorescein angiography

enhances the comprehensive assessment (4, 5). By registering

fundus images with other imaging modalities, clinicians can

obtain a more comprehensive understanding of the structural and

functional changes, leading to improved diagnostic accuracy and

prognostic evaluation (8, 9). Moreover, the application of advanced

technologies such as deep learning has shown promise in leveraging

fundus image registration for the differential diagnosis, as well as

for the automated segmentation of related lesions such as GA (10–

12). These technological advancements enable the precise analysis

of fundus images, contributing to the development of prognostic

biomarkers and the prediction of disease progression (13). Deep

learning-based image registration has emerged as a promising

approach, offering solutions for linear transformations using

convolutional neural networks (CNNs). The Spatial Transformer

Network (STN) was among the pioneering CNN-based methods,

focusing on learning two-dimensional affine transformations for

distorted MNIST digit classification through supervised learning.

Miao et al. (14) introduced a supervised CNN approach to regress

three-dimensional transformation matrices for affine registration

of X-ray images, utilizing synthesized transformation parameters

as ground truth. However, the reliance on labeled ground truth for

supervised methods can be limiting, prompting the development

of unsupervised models that do not require transformation

ground truth. De Vos et al. (15) proposed an unsupervised

Deep Learning Image Registration (DLIR) framework, enabling

joint affine and nonlinear registration without the need for

labeled ground truth. The affine transformation framework within

DLIR employs a multi-stage approach tailored for multi-temporal

image registration. Additionally, Chen et al. (16) proposed

an unsupervised CNN approach focused on explicitly learning

specific geometric transformation parameters such as translations,

rotations, scaling, and shearing. Unlike traditional methods that

regress affine transformation matrices, this approach targets

individual transformation parameters, offering a tailored solution

for affine registration tasks in multi-modality image registration

scenarios.

Current limitations in deep learning-based models for image

registration are: (1) While much attention has been devoted to

affine transformation for linear registration in deep learning-

based models, real-world scenarios often involve more complex

distortions that may not be adequately addressed by affine

transformation alone. Powerful and complex linear registration

techniques, such as projective transformation or polynomial

transformation, offer additional flexibility in capturing the

intricacies of image distortions. Affine transformations, while

effective for linear registration tasks, have limitations in capturing

non-linear distortions or irregular deformations present in many

medical imaging applications. By incorporating projective or

polynomial transformations, which allow for non-linear and

higher-order transformations, these techniques can better model

the intricate variations and deformations encountered in medical

images. This enhanced flexibility enables more accurate alignment

and registration of images, leading to improved diagnostic and

analytical outcomes. However, the exploration of these techniques

in the context of deep learning-based image registration remains

limited. (2) Lack of generalized models for image transformation:

One significant limitation in the realm of deep learning-based

image registration lies in the absence of generalized models

capable of learning image transformations universally. Many

existing models are meticulously designed for specific images and

modalities, hindering their adaptability to a broader range of

scenarios. This limitation restricts the scalability of these models,
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making them less effective in scenarios where a diverse set of

images or modalities is encountered. Consequently, the field faces

challenges in achieving a more comprehensive and generalized

approach to image transformation learning and expansion.

2 Methods

Addressing the constraints observed in existing deep learning-

based fundus image registration models, we proposed a generalized

model that introduces an unsupervised approach tailored

specifically for quadratic transformations, the second degree

of polynomial transformation. Polynomial transformation is a

process in which the input features are transformed by using a

polynomial function of a certain degree. The goal of polynomial

transformation is to capture more complex relationships between

the features and the target variable than a simple linear model

would. It can be useful when the relationship between variables is

curvilinear rather than linear. However, higher-degree polynomials

can also lead to over-fitting, so the degree of the polynomial

should be chosen carefully based on the characteristics of the data.

Mathematically, the u and v for polynomial transformation can be

defined in Equation 4:

u =

p∑

d=0

p−i∑

d=0

adx
dyd and v =

p∑

d=0

p−i∑

d=0

bdx
dyd (4)

where p is the degree of polynomial and ad, bd, are the

transformation parameters. These transformations include linear

(p = 1), quadratic (p = 2), cubic (p = 3), bi-quadratic (p = 4)

and quintic (p = 5) ones as special cases. For this work, quadratic

(p = 2) transformation is used and can be expressed as:

[
u

v

]
= Q

[
x2 y2 xy x y 1

]T

=

[
q00 q01 q02 q03 q04 q05
q10 q11 q12 q13 q14 q15

] [
x2 y2 xy x y 1

]T
(5)

where Q is the quadratic transformation matrix. For image

registration tasks, quadratic transformation can be formulated as

an energy minimization problem (see Equation 6):

Q∗ = argmax
Q

{
Q | S(F,QM))

}
(6)

where S is the metrics to measure the similarity between a fixed

image F and the warped image QM. Our model aims to optimize

each individual transformation parameter q00 - q15, instead of

directly optimizing the transformation matrix Q. In the following

sections, we providemore details of our framework, highlighting its

two distinct features: the Generalized Polynomial Transformation

(GPT) model and an unsupervised GPT-based transformation

model specifically tailored for fundus image registration. The

overview of our proposed model is represented in Figure 1.

Firstly, we propose the GPT model, serving as a foundational

model to emulate diverse polynomial transformations. To

construct a synthetic dataset to acquire knowledge of the quadratic

transformation, we randomly selected each q parameter from

the raw Q and then generated a synthetically wrapped image by

the new Qs matrix according to Equation (5). More specifically,

each q ∈ Qs is derived from the distribution of the corresponding

q ∈ Q. For example, q15 ranges from 651.0 to –278.0 across the

non-hold out testing set, so the new q15 is assigned a random value

within this range. Given unlimited combination, we developed an

"on-the-fly" synthetic dataset generation approach during training

steps, continuously generating synthetic data until the model

achieved full convergence. To achieve full convergence, the "on-

the-fly" synthetic data generator continuously produces random

parameters for each epoch. This process involves generating a

diverse set of synthetic image pairs by applying various quadratic

transformations. The synthetic data generator operates iteratively,

introducing new transformation parameters in each epoch to

ensure that the model is exposed to a wide range of transformation

scenarios. The training continues until the evaluation accuracy

on the validation dataset stabilizes, indicating that the model

has effectively learned the transformation characteristics and can

generalize unseen data. This dynamic approach helps prevent

over-fitting and ensures robust performance by leveraging an ever-

expanding dataset that reflects the complex nature of real-world

transformations. This step offers the advantage of automatically

generating ground truth data without the need for manual

annotations. It enables GPT to investigate a broad spectrum

of polynomial transformation scenarios, encompassing nearly

all possible transformation combinations. This strategy allows

its convolutional neurons to be activated appropriately when

capturing relevant features for geometric transformation. Without

employing the "on-the-fly" synthetic dataset generation approach,

the convolutional neurons in the model might be influenced by

potential biases arising from a limited number of training samples.

This could lead to sub-optimal learning outcomes and reduced

model generalization ability, as the network may not adequately

capture the full variability and complexity of the transformation

space in Q. By continuously generating synthetic data on the

fly, the model receives a diverse and extensive training dataset,

mitigating the risk of over-fitting and enhancing its ability to learn

robust representations of quadratic transformations.

In this study, the GPT model is trained using binary masks

extracted from fundus images, where non-black areas are encoded

as 1, and black areas are assigned a value of 0. This strategic

approach enables the model to focus on capturing the global

features of transformation between images while filtering out

irrelevant local features such as vessels. By prioritizing the

essential structural elements of the images, the GPT model can

effectively learn and reproduce accurate geometric transformations,

leading to improved image registration performance. A well-

tuned GPT model can be extended as a generalized model across

various imaging modalities where polynomial transformations are

required, providing a versatile solution for image registration tasks.

The development of our GPT model is based on the

EfficientNetV2 architecture (17), which is chosen for its well-

established balance between model complexity and computational

efficiency, rendering it ideal for training on a large synthetic dataset.

The global max pooling layer was introduced in GPT because

it can enhance the GPT model’s ability to focus on essential

features contributing to overall image transformation. The output

layer is a linear activation function, facilitating the generation of
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FIGURE 1

Overview of our proposed model for unsupervised polynomial image registration.

regressed parameters for the randomly polynomial-transformed

image. To guide the training process effectively, we propose a

hybrid loss function in Equation 7, denoted as Lhybrid, which

combines Mean Squared Logarithmic Error (MSLE) (Equation 8)

and Cosine Similarity (CoS) (Equation 9). In which, ω represents

the weighting factor for balancing between two terms. Specifically,

in our implementation, we set ω to 0.5 to ensure equal contribution

from both terms.

Lhybird(Q,Q′) = ωMSLE+ (1− ω)(1− CoS) (7)

where,

CoS(Q,Q′) =
Q ·Q′

‖Q‖ × ‖Q′‖
=

∑
(Q×Q′)√∑

Q2 ×
√∑

Q′2
(8)

MSLE(Q,Q′) =
1

N

N∑

i=0

[ log (Qi + 1)− log (Q′
i + 1)]2 (9)

Given the diverse ranges of parameters (N = 16) within Q,

MSLE serves as a robust loss measure. By utilizing a logarithmic

scale, MSLE effectively addresses large outliers, treating them

comparably to smaller deviations. This feature is particularly

advantageous for ensuring model balance, especially when striving

for uniform percentage errors across Q. To address negative values

of parameters within Q, CoS evaluates the directional consistency

between vectors of Q and Q′, offering significant utility when

handling transformations that incorporate negative values. Our

Lhybrid loss functions fortify the GPT model, empowering it to

adeptly capture and mimic diverse polynomial transformations

with resilience and efficacy.

Note that the pre-trained GPTmodel cannot be directly applied

to real fundus image pairs because it was tuned using binary masks

and is not trained with any local features such as vessels and the

optic disc. In the methodology of our model for unsupervised

fundus image registration, the pre-trained GPT model is severed

as the foundation, namely pre-trained weights, leveraging its

capabilities in capturing diverse polynomial transformations to

train a new tailored model for fundus image registration. In which,

we proposed a new Polynomial Transformation Layer (PTL) to

warpM by the regressed transformationsQ′. In PTL, interpolations

of Q′M can be formulated in Equation (10) according to Equation

(5):

u = q00x
2 + q01y

2 + q02xy+ q03x+ q04y+ q05,

v = q10x
2 + q11y

2 + q12xy+ q13x+ q14y+ q15 (10)

The objective is tomaximize the similarity between the transformed

image Q′M and the target image F, facilitating unsupervised image

registration as the model encounters real transformed images. The

loss functionLunsupervised (see Equation 11) is based on Normalized

Cross Correlation (NCC) by measuring the correlation between

corresponding pixel values.

Lunsupervised(F,Q
′M)

= 1−

∑
x,y(F(x,y)−F̄)(Q′M(x,y)− ¯Q′M)

√∑
x,y(F(x,y)−F̄)2

∑
x,y(Q

′M(x,y)−M̄)2
(11)

3 Experiments

In this section, we detail experiments conducted to validate

our GPT-based model for unsupervised fundus image registration.

Through a series of experiments and analyzes, we aim to assess

the model’s ability to accurately align fundus images without the

need for ground truth transformation parameters. By detailing
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the experimental methodology, dataset characteristics, evaluation

metrics, and results, we provide insights into the robustness and

reliability of our proposed approach in the context of ophthalmic

imaging and clinical practice.

3.1 Dataset

Our methodology is applied to a longitudinal dataset

comprising color fundus images from the AREDS study (18),

captured using the Zeiss FF-series 30-degree fundus camera

at baseline, 2-year, and subsequently annually (19). Extracting

longitudinal color fundus images from 4,903 eyes (involving

2,702 participants) sourced from the AREDS study, each patient

underwent a minimum of three follow-up visits after the baseline

examination. Categorizing the fundus images into non-advanced

(early/intermediate stage) and advanced (late stage) AMD, with

advanced AMD characterized by the presence of drusen or

geographic atrophy, the dataset is publicly available upon request

from the database of Genotypes and Phenotypes (dbGaP; accession:

phs000001.v3.p1). All analyzes adhere to the approved research use

statement.

3.2 Pre-processing

In our approach to unsupervised fundus image registration, we

recognize the significance of targeted pre-processing to enhance

the model’s focus on crucial features. We introduced a hybrid

pre-processing approach incorporating both Contrast Limited

Adaptive Histogram Equalization (CLAHE) (20) and bilateral filter

(21).

CLAHE is a preprocessing technique particularly beneficial for

enhancing contrast and improving image quality in fundus images.

By locally adapting the contrast enhancement process, CLAHE

ensures that the contrast improvements are tailored to the specific

characteristics of different regions within the image. This helps in

bringing out subtle details and structures in fundus images, such

as blood vessels and pathological features. Additionally, CLAHE

helps in reducing the impact of uneven illumination and varying

brightness levels often present in fundus images, thereby aiding in

standardizing the image appearance and facilitating more reliable

analysis algorithms. However, as observed in Figure 2C, CLAHE

may inadvertently over-enhance unnecessary features in fundus

images. Consequently, to address this issue and further denoize the

images, a bilateral filter was introduced as a subsequent step in the

preprocessing pipeline.

A bilateral filter is employed to systematically eliminate

irrelevant and non-diagnostic elements from fundus images. The

bilateral filter acts as a selective tool, smoothing the images while

preserving essential features such as the optic disc and blood

vessels. By doing so, we effectively reduce noise and unwanted

details, creating a cleaner input for the subsequent learning stages.

This refined dataset allows our model to concentrate on the

pertinent anatomical structures, namely the optic disc and vessels,

optimizing its ability to learn and predict image transformations

accurately. The impact of the bilateral filter can be observed in

Figures 2B, D, where a bilateral filter is applied to raw images

(Figure 2A) and post-CLAHE images (Figure 2C), respectively.

With our hybrid pre-processing strategy, the objective is to

optimize the learning process by offering the model a concentrated

and pertinent input (see Figure 2D). This approach enhances the

model’s interpretability and fosters a more efficient understanding

of fundus images.

3.3 Training

The dataset was partitioned at the patient level, with 60%

allocated for training, 20% for validation, and 20% for hold-out

testing purposes. Training employed the Adam optimizer, a widely

embraced algorithm in deep learning, with an initial learning rate of

0.001, facilitating effective model convergence. Input images were

resized to 256x256 pixels, and for normalization, we adopted a scale

spanning from –1 to 1 instead of the conventional 0–1 range. This

deliberate choice prevents the suppression of convolutional neuron

activation in black areas, which often contain relevant features for

geometric transformation. To enhance model generalization, we

applied data augmentation techniques, including flipping, rotation,

random brightness, and random contrast.

Our GPT-based model, constructed upon the pre-trained GPT

architecture, served as the foundational framework for image

registration. Fine-tuning the training set showcased the model’s

adaptability in capturing diverse Polynomial Transformations,

proving advantageous for aligning fundus images. Transparency in

our methodology is maintained by providing access to the code,

models, and data employed in this experiment, implemented using

TensorFlow (version 2.10). During the training phase, where the

regression work involves various parameter ranges, we took into

account the potential inefficiency of the last linear layer. To address

this, our model regressed on normalized values within the [0, 1]

range. This strategic approach facilitated a more effective learning

process. Once the model converged, we implemented a scaling

process to transform each parameter back to its actual range. This

scaling step is particularly crucial for subsequent interpolation

work, ensuring that the model’s learned parameters align accurately

with the original data characteristics. By incorporating this

normalization and scaling strategy, our methodology enhances the

model’s adaptability to diverse parameter ranges and contributes to

the precision of the final predictions.

3.4 Evaluation metrics

To assess the effectiveness of our model, we employed

standard evaluation metrics for image registration at both the

image level and parameter level. At the parameter-level, Bland-

Altman plots and Pearson correlation coefficients were utilized

to evaluate the agreement between predicted and ground truth

parameters. Bland-Altman plots visually display the agreement

between two quantitative measurements by plotting the difference

between the pairedmeasurements against their mean. Additionally,

correlation coefficients provide a numerical measure of the

strength and direction of the linear relationship between two
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FIGURE 2

Our hybrid pre-processing strategy incorporates both Contrast Limited Adaptive Histogram Equalization (CLAHE) and bilateral filter. From left to

right, raw images (A), post-bilateral filtering (B), post-CLAHE (C) and images after hybrid pre-processing for a pair of fundus images are displayed,

respectively.

variables, indicating the degree of agreement between predicted and

ground truth parameters. Meanwhile, at the image level, Structural

Similarity Index (SSIM) and Normalized Cross Correlation

(NCC) were employed. These metrics provided a comprehensive

assessment of the overall quality of image alignment by measuring

both structural and pixel-wise similarity between the predicted and

target images (see Equations 11 and 12).

SSIM(It , Iw) =
(2µItµIw + C1)(2σItσIw + C2)

(µ2
It
+ µ2

Iw
+ C1)((σ

2
It
+ σ 2

Iw
+ C2)

(12)

4 Results

In the results section, we extensively assess the performance of

our GPT-based model for unsupervised fundus image registration

using the AREDS dataset.

Firstly, We normalized the predicted and target transformation

parameters to a range of 0 to 1 to ensure consistency and

comparability between the values. This normalization allows for

a standardized scale across all parameters, facilitating easier

interpretation and analysis of the data. Additionally, by scaling

the parameters to a common range, we mitigate the effects of

varying magnitudes and ensure that each parameter contributes

proportionally to the overall transformation. Upon comparison of

their distributions (see Figure 3), it allows us to visually assess the

similarity between the predicted and target parameter distributions,

providing insights into the model’s performance in capturing the

transformation characteristics accurately.

Then, we analyzed the non-zero parameters individually,

examining their respective distributions and correlations with

the target parameters in terms of the correlation coefficient R.

For each non-zero parameter in Q, the correlation coefficient R

ranges from 0.895 to 0.990, with associated p-values <0.00001,

indicating a strong linear relationship between the predicted and

target values. These correlation coefficients signify the degree of

agreement between the predicted and target parameters. Figure 4

illustrates the corresponding Bland-Altman plots, showcasing the

mean difference and upper/lower limits, providing visual insights

into the agreement and potential biases between the predicted and

target parameters.

While individual parameters show promising results, the

overall mean performance of GPT lacked evaluation. To address

this, linear regression analysis was conducted across all quadratic

transformation parameters, yielding an average correlation

coefficient R of 0.9876. Figure 5 illustrates the regression results

and corresponding Bland-Altman plot. This high level of

correlation underscores the GPT model’s ability to accurately

predict transformation parameters, demonstrating its efficacy

in aligning fundus images without the need for ground truth

transformation data.

At the image level evaluation, we conducted both qualitative

and quantitative analyzes to comprehensively assess the

performance of our model. For the quantitative analysis, we

initially evaluated the SSIM and NCC scores before alignment

to establish a baseline measurement of similarity between

the fixed and moving images prior to any transformations.

This baseline provides insights into the initial degree of

correspondence before considering the contributions of our

models. The SSIM and NCC scores before alignment are 0.6096

and 0.524, respectively. According to Equation (9), the warped

images were generated using the transformation parameters

(model outputs) based on the corresponding moving images.
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FIGURE 3

Comparison of normalized distributions of each quadratic transformation parameter.

FIGURE 4

Bland-Altman plots illustrating the distribution of each non-zero quadratic transformation parameter, accompanied by correlation coe�cient R,

p-value, mean di�erence, and upper/lower limits.

The SSIM and NCC scores after alignment by our model

are 0.8075 and 0.6765, respectively, demonstrating a huge

improvement over the baseline. Additionally, the contribution

of the pre-processing steps is significant. When these steps are

omitted, the SSIM and NCC scores decrease to 0.7649 and

0.6305, respectively.

For qualitative analysis, overlapping and heat maps are

employed to visualize differences between images. Figure 6
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FIGURE 5

Comparison of the overall mean performance of the generalized polynomial transformation (GPT) model. The (left figure) displays the results of

linear regression analysis, while the (right figure) presents the Bland-Altman plot.

FIGURE 6

Qualitative analysis with overlapping and heat maps reveals four di�erent visits of one eye.

illustrates the fixed images, moving images, and our warped

images in the first three columns across four different visits of

one eye. Subsequent columns display the overlap between the

fixed images and the moving/warped images, followed by heat

maps showcasing differences. Significant differences are observed

between fixed images and moving images in the overlapping and

heat maps, attributed to variations in image acquisition such as

differing camera angles or positions. However, comparing fixed

images with our warped images reveals a reduction in differences.

Particularly, global distortion is minimized, and the locations of
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the optic disc and vessels are matched precisely. To the best of our

knowledge, our work represents the first unsupervised registration

method specifically targeting polynomial transformations. This

novel approach sets it apart from the majority of existing models,

which predominantly focus on nonlinear or affine transformations.

The unique nature of our method introduces challenges in direct

comparisons with other models, as their underlying objectives

differ significantly.

A limitation of our work is that image intensity-based

metrics like SSIM and NCC may not be sufficient for evaluating

performance. Variations in illumination or field of view between

image pairs can lead to an underestimation of our model’s

capabilities. It would be beneficial to use ground truth segmentation

of the optic disc or vessels for evaluation, as this approach

can eliminate irrelevant features from images taken from

different viewpoints, providing a more accurate assessment of

performance. Moreover, exploring alternative evaluation metrics

without segmentation labels that account for these challenges,

such as domain-specific similarity measures or perceptual metrics,

could provide a more comprehensive assessment of performance

in real-world scenarios. In addition to the limitations mentioned,

variations in image quality across different datasets or imaging

devices may also pose challenges for our model. Addressing these

factors and developing robust techniques to handle artifacts could

further enhance the reliability and applicability of our approach.

Overall, our GPT model showcases its efficacy in aligning

fundus images, presenting a notable advancement in the field

of medical image registration. By harnessing the power of deep

learning and unsupervised learning techniques, our model achieves

remarkable results without relying on ground truth transformation

data. This not only streamlines the registration process but

also mitigates the need for labor-intensive manual annotation,

making the approach more scalable and applicable to large-scale

datasets. Furthermore, the versatility of the GPT model allows

it to adapt to diverse transformation scenarios, offering a robust

solution for aligning fundus images acquired from different sources

and modalities.

5 Conclusion

Our work presents a novel approach to unsupervised fundus

image registration using the GPT model. Through GPT, we

introduced a foundational model capable of emulating diverse

polynomial transformations, trained on a large synthetic dataset to

cover a wide spectrum of transformation scenarios. Additionally,

our hybrid pre-processing strategy aims to optimize the learning

process by providing the model with focused input. To assess our

model’s effectiveness, we employed standard evaluation metrics

on the publicly available AREDS dataset, including image-level

and parameter-level analyzes. Linear regression analysis yielded

an average correlation coefficient R of 0.9876 across all quadratic

transformation parameters. In image-level evaluation, both

qualitative and quantitative analyzes were conducted, revealing

significant improvements in SSIM (20%) and NCC (15%)

scores, indicating robust performance. Particularly noteworthy

is the precise matching of optic disc and vessel locations and

the minimization of global distortion. Our findings highlight

the potential of GPT-based approaches in image registration

methodologies, and promising advancements in diagnosis,

treatment planning, and disease monitoring in ophthalmology.
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