About this Research Topic
In mammals, however, the hippocampus appears to be a central component of the global navigation system dedicated to spatial processing. This forebrain region, located in the medial temporal lobe, has been under close scrutiny for decades, but the discovery of a particular class of cells in the early ‘70s by John O’Keefe shed new light on the hippocampal cognitive mapping theory. These pyramidal cells, termed “place cells”, are thought to provide the mammalian brain with a unique spatial signature for any given environment, and to encode a memory trace of the animal’s location.
However, although there is little doubt about the role played by place cells across these various species in spatial processing, some differences remain, especially regarding their properties in the primate brain. It is possible, however, that these discrepancies arise from the experimental design per se, rather than from any interspecies differences.
At the cellular level, with the advent of molecular techniques in the late 1980s and the development of transgenic mouse models, a growing number of studies have attempted to decipher the fundamental mechanisms supporting place cell function. In line with these cellular considerations, intracellular electrophysiological recordings allow researchers to gain precise knowledge of the mechanisms by which the brain processes spatial information and provide therefore an essential means of investigation. The use of computational models is also of primary importance to understand the mechanism of place-field activity in particular and spatial processing in general.
To summarize, this Research Topic aims to review the role of hippocampal place cells in spatial processing and other cognitive functions using a comparative approach (drawing on evidence gathered from the whole vertebrate group), and focusing on multiple levels of analysis (including behavioral, computational, anatomical, molecular and physiological aspects of place cell function).
Keywords: place cells, hippocampus, spatial processing, behavior
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.