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Editorial on the Research Topic
 Molecular informatics in precision medicine





1 Introduction

The emerging concept in medicine shifts toward precision medicine personalized to an individual's unique genetic makeup and environmental factors. By integrating advanced molecular technologies such as genomics, transcriptomics, proteomics, metabolomics and microbiomics we can unlock the potential to revolutionize healthcare. Molecular informatics plays a crucial role in this transformation. By analyzing vast amounts of biological data, researchers can identify genetic markers, predict disease risk and develop personalized treatment strategies. This Research Topic deals the latest advancements in molecular informatics, exploring how these technologies can be connected to improve patient outcomes. Key areas of focus include (i) next-generation sequencing, a leveraging cutting-edge sequencing technologies to unravel complex genetic variations, (ii) computer-aided drug discovery for utilizing computational tools to accelerate drug discovery and development, (iii) molecular modeling and simulation for simulating biological processes at the molecular level to gain insights into disease mechanisms and (iv) bioinformatics specially applying computational methods to analyze and interpret biological data. Through a comprehensive exploration of these topics, this collection of articles aims to provide a valuable resource for researchers, clinicians and industry professionals working at the forefront of precision medicine. By understanding the power of molecular informatics, we can move closer to a future where healthcare is truly personalized.



2 Contributions

A total of nine articles including one review and eight original research articles have been published on this Research Topic. Hu et al. revealed the shared pathogenic mechanisms between type 2 diabetes mellitus and ulcerative colitis using comprehensive strategy merging bioinformatics and machine learning. Authors sourced data from the Gene Expression Omnibus database and targets of Gegen Qinlian decoction were identified using PharmMapper and SwissTargetPrediction. Targets associated with type 2 diabetes mellitus and ulcerative colitis were compiled from various databases. Weighted gene co-expression network analysis, single-cell sequencing analysis, immune infiltration analysis, machine learning, DEG analysis and network pharmacology were the six analysis included in the study. Results showed that the co-morbidity between type 2 diabetes mellitus and ulcerative colitis is primarily associated with immune-inflammatory pathways, including IL-17, TNF, chemokine and toll-like receptor signaling pathways. Machine learning studies identified IGFBP3 as a biomarker for Gegen Qinlian Decoction in treating type 2 diabetes mellitus, while BACE2, EPHB4 and EPHA2 emerged as biomarkers for Gegen Qinlian decoction in ulcerative colitis treatment. The study provides insights into the shared pathogenesis of type 2 diabetes mellitus and ulcerative colitis and proposes novel targets and therapeutic strategies.

Ye et al. reported the presence of mutations in the ANXA4 gene in patients with recurrent spontaneous abortion (RSA). Variants were annotated and filtered and the pathogenicity of mutations was predicted using various tools. Through whole exome sequencing an ANXA4 mutation (p.G8D) was identified in one of the 325 samples from recurrent spontaneous abortion patients. This amino acid change was highly conserved among vertebrate species and predicted to be deleterious. Cell adhesion, migration and invasion were all shown to be inhibited by this mutation in functional experiments. The recently discovered ANXA4 mutation might have important implications for genetic testing and the pathophysiology of recurrent spontaneous abortions. Another interesting bioinformatic meta-analysis by van Wijck et al. exposed a concise gene signature in pathogenesis of sarcoidosis. Expression datasets of sarcoidosis have uncovered both new and previously well-known genes that may be involved in type I and type II interferon-mediated signaling pathways. Cytokines like interferons and STAT1 were upregulated, but eukaryotic initiation factor 2 signaling was downregulated in expression datasets of sarcoidosis according to in silico functional analysis. A key role in pathogenesis of sarcoidosis may be attributed to the unique upregulation of matrix metallopeptidase 12 in afflicted tissues. The authors provided additional evidence on the emerging reported evidence to use JAK inhibitors as a targeted treatment strategy in patients with sarcoidosis. Tissue-specific signatures of genes like MMP12, CXCR6 and SNTB2 observed by the authors suggested that these genes might involve in granuloma formation and progression. It is imperative to do more transcriptome investigations in order to validate the observation from bioinformatic meta-analysis by van Wijck et al..

Shi et al. analyzed the adverse event reports related to immune checkpoint inhibitors such as protein-1 (PD-1) and its ligand (PD-L1). They collected 5,322 reports from the United States food and drug administration adverse event reporting system regarding the adverse event reports related to protein-1 and its ligand inhibitors. The study observed that except for pembrolizumab, five PD-1/PD-L1 inhibitors were associated with serious side effects on the endocrine glands. The majority of patients experienced adverse events between 30 and 365 days with a median time of 61 days. The majority of patients experienced prolonged hospitalization in over 40% and death in over 10% of cases after administration of nivolumab, pembrolizumab, or durvalumab. The authors concluded that men aged ≥65 years should be concerned about endocrine-related adverse events and emphasize the importance of addressing these issues when using these PD-1/PD-L1 inhibitors. Another study by Ni et al. uses a network pharmacology approach to predict the active ingredients of Ixeris chinensis, targets of action, and possible interventions in diseases. The authors utilized various databases and software to predict active ingredients, target genes, protein interactions and signaling pathways. The results revealed 12 effective components of I. chinensis and 40 key targets, including AKT1, EGFR, TNF, SRC and ESR1. Molecular docking analysis revealed that the main active components of I. chinensis can bind well with key targets. The study also provides a basis for research on I. chinensis treatment pathways for related diseases and subsequent drug development. The study further demonstrated the feasibility of I. chinensis as a therapeutic agent for many diseases and established a foundation for investigating the specific mechanisms of treating diseases and the development of novel pharmaceuticals. However, more in vitro and in vivo experiments are needed to verify these observations.

Behairy et al. investigated the disease susceptibility of the mannose-binding lectin (MBL) mutation (rs1800450) in the development of vitiligo and psoriasis. This observational study examined the MBL2 gene at codon 54 using real-time PCR and computational modeling of the single nucleotide polymorphism. All genetic association models found no evidence that rs1800450 significantly impact the risk of psoriasis or vitiligo disease. The study also found no significant correlation with rs1800450 on the clinicopathological features of both psoriasis and vitiligo. The rs1800450 SNP on the MBL2 gene was not associated with autoimmune skin disorders risk in Egyptian adults. The data further supports that MBL2 is redundant and does not significantly affect autoimmune skin disorders. Hemagglutinin is an important element in influenza virus infection, making it a potential target for therapeutic and vaccine development. Zou et al. aimed to create a computational model for identifying hemagglutinin using a benchmark dataset of 106 hemagglutinin and 106 non-hemagglutinin sequences from UniProt. Using the stacking approach, Zou et al. created an integrated classifier model with an accuracy of 95.85% in 5-fold cross-validation and 93.18% in the independent test. The high prediction accuracy makes it useful for biochemical researchers studying hemagglutinin.

Ping et al. developed an amplification analysis using double allele-specific binding primers for accurate measurement of antihypertensive pharmacogenomics. The researchers used quadruplex quantitative PCR (qPCR) and triplex qPCR analysis for genotyping. Mismatch allele-specific F-primers were validated through agreement analysis/reproducibility evaluation. Seven pairs of primers were successfully selected, with amplification efficiency ranging (except for ADRB1) from 0.9 to 1.1 with the coefficient of variation (CV) was < 5%. The study concluded that multiplex amplification analysis using screened allele-specific binding primers is a simple, reliable and accurate tool for guiding drug delivery in antihypertensive personalized treatment. Wen et al. compared the effectiveness of metagenomic next-generation sequencing and conventional microbiological tests in diagnosing pulmonary infections in patients with systemic autoimmune rheumatic diseases receiving immunosuppressant therapy. The study involved reviewing the medical records of 40 patients with pulmonary infections and systemic autoimmune rheumatic diseases treated with immunosuppressants or corticosteroids. Bronchoalveolar lavage fluid samples were collected and examined by metagenomic next-generation sequencing and conventional microbiological tests. The results showed that metagenomic next-generation sequencing had a higher diagnostic accuracy for detecting co-infections with bacteria and fungi and single infections with fungi. The detection rate of co-infection was significantly higher for metagenomic next-generation sequencing than conventional microbiological tests. The study concluded that metagenomic next-generation sequencing's superior accuracy can help ensure timely adjustment of treatment regimens, improving diagnosis and outcomes in patients with systemic autoimmune rheumatic diseases treated with immunosuppressants.



3 Conclusion

The Research Topic “Molecular informatics in precision medicine” presents a compelling collection of research articles that highlight the transformative power of bioinformatics and computational biology in advancing personalized healthcare. One of the key themes explored in this Research Topic is the identification of novel biomarkers and therapeutic targets for complex diseases. For instance, the study by Hu et al. revealed shared pathogenic mechanisms between type 2 diabetes mellitus and ulcerative colitis, suggesting potential therapeutic strategies. Similarly, Ye et al. identified a novel mutation in the ANXA4 gene associated with recurrent spontaneous abortion, opening new avenues for genetic testing and targeted therapies. Another important theme is the application of advanced computational methods to analyze large-scale genomic and clinical data. The study by van Wijck et al. utilized bioinformatic meta-analysis to identify key genes involved in the pathogenesis of sarcoidosis, providing insights into potential therapeutic interventions. The increasing use of immune checkpoint inhibitors has led to significant advancements in cancer therapy. However drugs used are associated with adverse effects. Shi et al. investigated the adverse event reports related to PD-1 and PD-L1 inhibitors, highlighting the importance of careful monitoring and management of treatment-related side effects. In addition to human diseases, the Research Topic also explores into the application of computational methods in drug discovery and development. Ni et al. used network pharmacology to identify potential therapeutic targets for Ixeris chinensis, a traditional Chinese medicine. Finally, the Research Topic highlights the potential of emerging technologies like metagenomic next-generation sequencing in improving clinical diagnosis and treatment. Wen et al. demonstrated the superiority of metagenomic sequencing over conventional methods in diagnosing pulmonary infections in immunosuppressed patients.

In conclusion, the articles in this Research Topic showcase the immense potential of molecular informatics in revolutionizing precision medicine. By integrating computational biology with clinical research, we can unlock new insights into disease mechanisms, identify novel biomarkers, and develop personalized treatment strategies. As technology continues to advance, we can expect to see even more groundbreaking discoveries in the field of precision medicine.
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Background: The accuracy and sensitivity of conventional microbiological tests (CMTs) are insufficient to identify opportunistic pathogens in patients with systemic autoimmune rheumatic diseases (SARDs). The study aimed to assess the usefulness of metagenomic next-generation sequencing (mNGS) vs. CMTs for the diagnosis of pulmonary infections in patients with SARDs receiving immunosuppressant therapy.

Methods: The medical records of 40 patients with pulmonary infections and SARDs treated with immunosuppressants or corticosteroids were reviewed retrospectively. Bronchoalveolar lavage fluid (BALF) samples were collected from all patients and examined by mNGS and CMTs. Diagnostic values of the CMTs and mNGS were compared with the clinical composite diagnosis as the reference standard.

Results: Of the 40 patients included for analysis, 37 (92.5%) were diagnosed with pulmonary infections and 3 (7.5%) with non-infectious diseases, of which two were considered primary diseases and one an asthma attack. In total, 15 pathogens (7 bacteria, 5 fungi, and 3 viruses) were detected by CMTs as compared to 58 (36 bacteria, 12 fungi, and 10 viruses) by mNGS. Diagnostic accuracy of mNGS was superior to that of the CMTs for the detection of co-infections with bacteria and fungi (95 vs. 53%, respectively, p < 0.01), and for the detection of single infections with fungi (97.5 vs. 55%, respectively, p < 0.01). Of the 31 patients diagnosed with co-infections, 4 (12.9%) were positive for two pathogens and 27 (87.1%) for three or more. The detection rate of co-infection was significantly higher for mNGS than CMTs (95 vs. 16%, respectively, p < 0.01).

Conclusion: The accuracy of mNGS was superior to that of the CMTs for the diagnosis of pulmonary infections in patients with SARDs treated with immunosuppressants. The rapid diagnosis by mNGS can ensure timely adjustment of treatment regimens to improve diagnosis and outcomes.

KEYWORDS
 metagenomic next-generation sequencing, systemic autoimmune rheumatic diseases, immunosuppressants, bronchoalveolar lavage fluid, pulmonary infection, antibiotics


Introduction

Systemic autoimmune rheumatic diseases (SARDs) are a group of autoimmune-mediated diseases characterized by the overproduction of autoantibodies. The incidence of SARDs has continued to increase in recent years (1). The propensity for pulmonary infection of patients with SARDs is both an inherent form of disease-related immune dysregulation and acquired by use of immunosuppressants (2). Treatment of SARDs involves using immunosuppressants or immunomodulatory drugs, such as mycophenolate mofetil, azathioprine, and tacrolimus (3). However, immunosuppression and severe activity of the underlying disease often lead to infection by various opportunistic pathogens (4, 5), such as Cryptococcus novelis, which can cause fatal meningoencephalitis in immunocompromised individuals, and Pneumocystis jirovecii, which can cause pneumonia after hematopoietic stem cell and solid organ transplantation and is especially problematic in patients receiving immunosuppressants. Due to the abundance of potential pathogens and the possibility that the symptoms of the primary disease or the treatment regimen may hide an actual pulmonary infection, diagnosis of this population is often challenging (6).

Accurate diagnosis and effective treatment of infections often require testing of pathogens for drug sensitivity. Conventional microbiological tests (CMTs), such as culture-based detection assays, immunological analysis, and polymerase chain reaction (PCR), are commonly used for clinical diagnosis of Pneumocystis jirovecii pneumonia (PJP) (7). However, CMTs are limited by insufficient sensitivity and speed for accurate and rapid identification of pathogens in samples from immunocompromised patients (8). Thus, alternative methods, such as multiplex real-time quantitative fluorescent PCR, biosensors, and metagenomic next-generation sequencing (mNGS), are potentially superior diagnostic options for this patient population. mNGS is a high-throughput nucleic acid sequencing technology that has been widely applied to detect various pathogens (9–13). The advantages of mNGS include shorter detection times and accurate detection of multiple pathogens simultaneously by DNA or mRNA sequencing of clinical samples (14). While mNGS has been used to diagnose pneumonia in immunocompromised patients, with advantages in pathogen detection, particularly in fungal and co-infections, studies exploring its potential application in patients with SARDs remain limited (15, 16). The present study aimed to compare the diagnostic accuracy of mNGS vs. CMTs for the detection of pulmonary infections in immunocompromised patients.



Materials and methods

The cohort of this retrospective study included 40 patients with SARDs and suspected pulmonary infections who were admitted to Guangdong Provincial People’s Hospital (Guangzhou, China) from April 2021 to July 2022 and met the following inclusion criteria: (i) confirmed diagnosis of SARDs, included systemic lupus erythematosus (SLE), systemic vasculitis, rheumatoid arthritis(RA), dermatomyositis(DM), primary Sjögren’s syndrome, immunoglobulin G4-related disease, Adult-onset Still’s disease (AOSD), and mixed connective tissue disease (MCTD). (ii) long-term use of immunosuppressants or corticosteroids, >0.5 mg/kg/day, >1 month; (iii) prior bronchoscopy and collection of bronchoalveolar lavage fluid (BALF); (iv) pathogen detection by mNGS and CMTs with bacterial and fungal smears and cultures; and (v) suspected pulmonary infection confirmed by radiographic images, CT signs included ground glass opacity (GGO), nodules, inflatable sign, parenchymal opacification, reticular or linear shadow, interstitial pneumonia (17).


Data collection

Demographic and clinical data, including age, sex, type of rheumatic disease, use of steroids and immunosuppressants, underlying illness, chest images, results of CMTs and mNGS, changes to antibiotic therapy, and disease regression data, were obtained from electronic medical records.



CMTs

Blood and BALF samples were obtained from all patients. All bronchoalveolar lavage procedures were performed following standard safety protocols. Cultures and smears of the BALF and sputum samples were immediately prepared. All blood samples were immediately assayed by PCR for detection of human immunodeficiency virus (HIV), Epstein–Barr virus (EBV), cytomegalovirus (CMV), and herpes simplex virus in addition to serological analysis of immunoglobulin G, galactomannan, and Mycobacterium tuberculosis infection.



mNGS detection using BALF samples

The mNGS procedure for BALF samples included nucleic acid extraction, library construction, sequencing, and bioinformatics analysis. When analyzing and extracting respiratory DNA samples, the Jinshi MicroDNA Kit is mainly used for extraction, followed by DNA fragmentation, splicing, biomolecular labeling (barcode) amplification, and onboard sequencing. The quality of the library is achieved through Qubit® one × dsDNA HS assay was used for evaluation, and then evaluated using Qubit4.0 fluorometer. After the library was quantified by real-time PCR, the MGISEQ-200RS high-throughput sequencing platform was used to sequence the library by the shotgun method. It usually takes 3 days to complete the mNGS analysis and publish the report. The mNGS results were interpreted in reference to the criteria used in previous reports of mNGS for the identification of clinically relevant microorganisms (CRMs) with the Beijing Genomics Institute NGS (BGISEQ-500) platform (15, 18). Bacteria (mycobacteria excluded), fungi (molds excluded), viruses, and parasites with relative abundances at the species level of >30% were considered CRMs. Mycobacteria with a strict mapping read number (SMRN) at the species level of >3 and those with evidence of pulmonary pathogenicity and a SMRN at the species level of >10 were also considered CRMs.



Clinical composite diagnosis as the reference standard

Clinical composite diagnostic criteria were used to identify the pathogens, as determined by two experienced clinicians based on epidemiology, clinical presentation, treatment outcome, laboratory findings, and chest radiology. A true positive was defined as consistency between the results of mNGS and CMTs, while a false positive was defined as detection by mNGS, but not considered pathogenic by the gold standard. If two experts could not reach an agreement, in-depth discussions were held with a third expert.



Statistical analysis

The accuracy, sensitivity, specificity, positive predictive value, and negative predictive value (NPV) of the data were calculated and compared. The chi-square test and Fisher exact test were conducted to identify differences between the results of mNGS and CMTs. All statistical analyses were performed with IBM SPSS Statistics for Windows, version 26.0 (IBM Corporation, Armonk, NY, USA). A probability (p) value <0.05 was considered statistically significant.




Results


General characteristic

The study cohort comprised 40 patients (15 males and 25 females; mean age, 50.82 years) with a confirmed pulmonary infection. The clinical characteristics of the patients are shown in Table 1. All 40 patients had SARDs, which included 22 (55%) with either systemic lupus erythematosus or systemic vasculitis, and were treated with immunosuppressants or hormone therapy. The most commonly used immunosuppressants were cyclophosphamide (14/40, 35%), mycophenolate mofetil (10/40, 25%), and methotrexate (9/40, 22.5%).



TABLE 1 The baseline of patients with pneumonia infection.
[image: Table1]



Diagnostic performance of mNGS vs. CMTs

The pathogens identified by CMTs and mNGS among the 40 patients are shown in Figure 1. Of the 40 patients, 37 (92.5%) had confirmed pulmonary infections by NGS. The isolated pathogens included 36 bacterial, 12 fungal, and 10 viral species. The most common bacterial, fungal, and viral pathogens were Pseudomonas aeruginosa, P. jirovecii, and CMV, respectively (Figure 2). The positivity rate of CMTs was significantly lower than that of mNGS (42.5 vs. 92.5%, respectively, p < 0.01). The CMTs detected seven bacteria, five fungi (two Cryptococcus), and three viral species.

[image: Figure 1]

FIGURE 1
 Pathogen detection using mNGS and conventional methods (A) Detection of mNGS, (B) Detection of conventional methods.


[image: Figure 2]

FIGURE 2
 The number of pathogens of all cases detected by mNGS.




Consistency of mNGS with CMTs

Of the 40 cases, 16 (40%) were positive for pathogens by both mNGS and CMTs, 21 (52.5%) by only mNGS, and 2 (5%) by only CMTs, while 1 (2.5%) was negative by both mNGS and CMTs (Figure 3). Of 15 double-positive cases, 1 (6.7%) had an exact match between mNGS and CMTs, 2 (13.3%) had a clear mismatch, and 12 (80%) were partial matches, meaning that at least one pathogen was detected by both the CMTs and mNGS.

[image: Figure 3]

FIGURE 3
 Consistency between mNGS and CMTs.




Diagnostic sensitivity and specificity of mNGS vs. CMTs

For the identification of bacteria, the diagnostic sensitivity and specificity of the CMTs and mNGS were 35%(11/31)/97%(30/31) and 89%(8/9)/89%(8/9), respectively. Notably, the diagnostic accuracy of mNGS for the identification of bacteria was significantly greater than that of the CMTs (95% vs. 53%, respectively, p < 0.01). For the detection of fungi, the diagnostic sensitivity and specificity of the CMTs and mNGS were 23%/95% and 94%/100%, respectively. Similarly, the diagnostic accuracy of mNGS for the identification of fungi was significantly greater than that of the CMTs (97.5 vs. 55%, respectively, p < 0.01).



Performance of mNGS vs. CMTs for detection of co-infections

Of the 40 patients, 4 (10%) were infected with two pathogens and 27 (67.5%) with three or more. The co-infection detection rate was significantly higher with mNGS than with the CMTs (95 vs. 16%, respectively, p < 0.01), and mNGS detected a greater variety of pathogens. Coinfections with fungal-viral-bacterial and bacterial-viral species were the most common. The most common co-infection pathogens involved were P. jirovecii (12/40, 30%) and CMV (13/40, 32.5%).



Diagnostic accuracy of mNGS vs. CMTs

Of the 40 patients, 37 (92.5%) were diagnosed with pneumonia and 3 (7.5%) with non-infectious diseases, of which two were considered primary diseases, and one was an asthma attack. Of the 37 patients diagnosed with pneumonia, 2 (5.4%) had negative mNGS results. All 3 (100%) patients diagnosed with non-infectious diseases had false positive mNGS results, demonstrating sensitivity of 95% (95% confidence interval [CI] = 80–99%), specificity of 33% (95% CI = 1.8–87%), NPV of 33%, and accuracy of 90% (95% CI = 81–99%). In contrast, CMTs misdiagnosed infection in 19 (51.4%) of 37 pneumonia patients, which included one false positive for P. aeruginosa infection, demonstrating sensitivity of 47% (95% CI = 30–64%), specificity of 75% (95% CI = 22–99%), NPV of 14%, and accuracy of 50% (95% CI = 35–65%). The NPV and diagnostic accuracy of mNGS were superior to those of the CMTs (Table 2).



TABLE 2 The sensitivity and specificity of mNGS and CMTs.
[image: Table2]



Clinical impact of mNGS on diagnosis and treatment

The antibiotic regimen was adjusted based on the mNGS results in 27 (67.5%) of the 40 patients. However, adjustments were abandoned in 9 (22.5%) patients due to compliance with the original antibiotic regimen. Of the 27 cases requiring adjustment of the antibiotic regimen: drugs were added in 19 (70.3%) cases, changes were made in 5 (18.5%) cases, and drugs were discontinued in 3 (11.1%) cases (Figure 4). Sulfamethoxazole was the most commonly adjusted drug before and after the detection of pathogenic bacteria with the mNGS (Table 3). Outcomes were improved in 25 (62.5%) of the 40 patients.

[image: Figure 4]

FIGURE 4
 Adjustment of antibiotic drug.




TABLE 3 Comparison of the proportion of antibiotic use before and after adjustment according to mNGS.
[image: Table3]




Discussion

Infection is the leading cause of death in patients with SARDs, and the lungs are the most common site of infection among those receiving immunosuppressant therapy. However, relatively few studies have investigated the use of mNGS for the analysis of BALF samples from patients with SARDs while receiving corticosteroids or immunosuppressants. The present study aimed to compare mNGS vs. CMTs for the identification of pathogens in BALF samples from patients with SARDs treated with corticosteroids or immunosuppressants. Of the 40 patients, pathogens were detected in the BALF samples of 37(92.5%) by mNGS, 18 (45%) by CMTs, and 16(40%) by both methods, while 1 (2.5%) was negative by both mNGS and CMTs. In addition, co-infections were detected in 31 (77.5%) patients by mNGS as compared to only 4 (10%) by CMTs, which led to adjustments of antibiotic regimens for 27 (67.5%) patients. Notably, symptoms improved in 25 (62.5%) of the 40 patients. By comparing mNGS and CMTs, we found that mNGS had the characteristics of high sensitivity and accuracy in pathogen detection, especially for the diagnosis of fungal, viral, specific pathogenic infections, and co-infection, which helped in clinical decision-making and improved prognosis, and was consistent with the findings of a previous report (19).

Among the 40 patients enrolled in this study, 37 (92.5%) received antibiotic treatment before the collection of the BALF samples. Because the detection rate of CMT pathogens is very low, the test results are uncertain. Because CMT has a low detection rate of pathogens, its detection results are unreliable. The results of CMTs usually require 3–5 days as compared to 1 day for mNGS. Compared to CMTs, the results of mNGS are less affected by antibiotics (20). Meanwhile, a wider spectrum of pathogens can be detected by mNGS, which facilitates diagnosis and treatment timely.

In total, 65 pathogens were identified by mNGS and 19 by CMTs. Most of the identified pathogens were bacteria, and only 3 (4.6%) were fungi. The bacteria identified in BALF samples included Haemophilus influenza, Streptococcus pneumoniae, and Pseudomonas aeruginosa, in addition to the opportunistic pathogens Trophozoites whipplei and Prevotella melaninogenica, which are difficult to detect by CMTs.

The most common pathogens detected by mNGS were CMV, EBV, and P. jirovecii. Of the 15 cases of PJP in this study, 14 (93.3%) were diagnosed by mNGS, and only 1 (6.7%) was confirmed by CMTs. Although PJP is traditionally detected by immunofluorescence staining and PCR, the positivity rate of mNGS for the detection of PJP is superior to that of CMTs (21). Moreover, mNGS was comparatively superior for detection of CMV, EBV, and other opportunistic pathogens. Although less virulent in healthy hosts, opportunistic pathogens can cause severe and frequent infections in patients receiving immunosuppressants (22).

In this study, the detection rate of multiple pathogens by mNGS was superior to that by CMTs (72.5% [29/40] vs. 12.5% [5/40], respectively, p < 0.05), demonstrating that mNGS is more suitable for detection of mixed infections (23). Deficiencies of CMTs, such as sensitivity to fungi, viruses, and specific pathogens, in addition to interference by empirical antibiotics can be compensated by mNGS (24, 25).

The treatment regimens of 67.5% (27/40) of patients were adjusted based on the results of mNGS and CMTs, which ultimately resulted in improved outcomes for 62.5% of the cohort. Notably, 10 (25%) patients were diagnosed with PJP based on the mNGS results. Of these cases, the antibiotic regimen was terminated or switched to sulfamethoxazole in 7 (70%). These results suggest that mNGS can more accurately identify pathogens causing pulmonary changes, thereby avoiding overuse of antibiotics.

There were some limitations to this study that should be addressed. First, it’s difficult to obtain BALF from patients with SARDs as a control group when bronchoscopy is not performed in the patient without lesion in the lung. Second, the patients were recruited from a single medical center, which might have introduced bias. Third, it was difficult to determine whether the pathogens detected by mNGS were collateral contaminants, opportunistic colonizers, or causative pathogens because all patients received immunosuppressant therapy for SARDs. Fourth, there may have been some false positives of patients with mixed infections. Therefore, mNGS requires further development to accurately identify multiple types of pathogens. Finally, some patients did not follow up with outpatient clinics or examinations within the prescribed time, resulting in a low follow-up rate. In addition, hospital phone numbers were classified as high-frequency nuisance numbers, making follow-up visits more difficult.

In conclusion, mNGS were significantly better than CMTs for detection of suspected pulmonary infections in patients with SARDs receiving immunosuppressant therapy. Rapid diagnosis by mNGS can ensure timely adjustment of treatment regimens to improve diagnosis and outcomes.
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Introduction: Hemagglutinin (HA) is responsible for facilitating viral entry and infection by promoting the fusion between the host membrane and the virus. Given its significance in the process of influenza virus infestation, HA has garnered attention as a target for influenza drug and vaccine development. Thus, accurately identifying HA is crucial for the development of targeted vaccine drugs. However, the identification of HA using in-silico methods is still lacking. This study aims to design a computational model to identify HA.

Methods: In this study, a benchmark dataset comprising 106 HA and 106 non-HA sequences were obtained from UniProt. Various sequence-based features were used to formulate samples. By perform feature optimization and inputting them four kinds of machine learning methods, we constructed an integrated classifier model using the stacking algorithm.

Results and discussion: The model achieved an accuracy of 95.85% and with an area under the receiver operating characteristic (ROC) curve of 0.9863 in the 5-fold cross-validation. In the independent test, the model exhibited an accuracy of 93.18% and with an area under the ROC curve of 0.9793. The code can be found from https://github.com/Zouxidan/HA_predict.git. The proposed model has excellent prediction performance. The model will provide convenience for biochemical scholars for the study of HA.

KEYWORDS
 hemagglutinin, machine learning, sequence features, feature extraction, stacking


1. Introduction

Influenza is a contagious respiratory disease, posing a significant threat to human health and causing varying degrees of disease burden globally (1, 2). Hemagglutinin (HA), a glycoprotein on the surface of influenza viruses, mediates viral entry and infection by binding to host sialic acid receptors (3). The highly conserved stem or stalk region of HA has been identified as a promising target for the development of a universal influenza vaccine (4). Accurate identification of HA is crucial for targeted vaccine and drug development.

With the increasing maturity of protein sequence coding methods and machine learning algorithms, sequence-based protein recognition has been an effective approach for rapid identification of protein. It achieves classification and identification of specific proteins using protein sequence coding methods and machine learning algorithms, which has been widely used in the prediction studies of cell-penetrating peptides (5), hemolytic peptide (6), anti-cancer peptides (7), hormone proteins (8), autophagy proteins (9), and Anti-CRISPR proteins (10), etc., because of its high recognition accuracy in the protein identification study.

Despite the pivotal role of HA in influenza virus infection, existing machine learning-based research on HA has primarily focused on influenza virus subtype classification (11, 12), influenza virus host prediction (13), influenza virus mutation and evolution prediction (14), HA structure–function analysis (15), and influenza virus pathogenicity and prevalence prediction (16). However, there are currently no approaches for HA identification based on HA sequence information and machine learning techniques.

In this study, we proposed a machine learning-based prediction model for HA to achieve effective identification. Firstly, we constructed a benchmark dataset based on existing protein databases. Next, we employed feature extraction methods to encode the protein sequences. Subsequently, we fused all the extracted features and utilized the analysis of variance (ANOVA) combined with incremental feature selection (IFS) strategies to obtain the most informative feature subset. Finally, the HA prediction model was developed based on this optimal feature subset. The workflow is shown in Figure 1.

[image: Figure 1]

FIGURE 1
 Workflow diagram for constructing the HA prediction model.




2. Method and materials


2.1. Benchmark dataset

A benchmark dataset is essential for bioinformatics analysis (17, 18). The dataset used in this study was collected from the Universal Protein Resource (UniProt) (19). To ensure the quality of the dataset, several pre-processing steps were performed. Protein sequences containing nonstandard letters (e.g., ‘B’, ‘U’, ‘X’, ‘Z’) were eliminated. Redundancy removal was done using CD-HIT (20) to remove sequences with high similarity. The cutoff value was set to 80%, and sequences with a similarity higher than 80% were removed. The non-HA dataset was down-sampled to ensure a balanced dataset with equal positive and negative samples. The final benchmark dataset consisted of 212 protein sequences, including 106 HA and 106 non-HA samples. The dataset was randomly split into a training dataset and a test dataset in a 4:1 ratio. The above-mentioned model training set data and test set data are included in https://github.com/Zouxidan/HA_predict.git. At the same time, a dataset named ‘predict_data.txt’ for testing is also included.



2.2. Feature extraction

Feature extraction plays a crucial role in protein identification and prediction (10, 21–25). However, machine learning algorithms cannot directly process protein sequence information for computation and model construction. Therefore, it is necessary to convert protein sequence information into numerical data that can be understood and utilized by machine learning algorithms (26–29). Here, we employed various methods for feature extraction of protein sequences, including Amino Acid Composition (AAC), Dipeptide Composition (DPC), Tripeptide Composition (TPC), Composition of k-spaced Amino Acid Pairs (CKSAAP), Pseudo-Amino Acid Composition (PseAAC), PseAAC of Distance-Pairs and Reduced Alphabet (DCP). These sequence feature extraction approaches have been widely adopted in the field of bioinformatics (30–32). The implementation of these feature extraction methods was based on iLearnPlus (33).

A protein sequence P of length L can be represented as:

[image: image]

where R1 denotes the first amino acid of the sequence, R2 denotes the second amino acid, and so on.


2.2.1. AAC

AAC is a commonly used method for protein sequence feature extraction, which involves 20 feature vectors. AAC was defined as:

[image: image]

where ai denotes the i-th natural amino acid and N(ai) denotes the frequency of amino acid ai in the protein sequence.



2.2.2. DPC

Similar to AAC, DPC counts the frequency of amino acids, but it focuses on the frequency of two adjacent amino acids in a protein sequence. DPC was defined as:

[image: image]

where (ai, aj) denotes two adjacent amino acids and N(ai, aj) denotes the frequency of the amino acid pair (ai, aj) in the protein sequence.



2.2.3. TPC

TPC is another feature extraction method that considers the relationship among three adjacent amino acids, providing more protein sequence information compared to AAC and DPC. TPC was defined as:

[image: image]

where (ai, aj, az) denotes the combination of three adjacent amino acids, and N(ai, aj, az) denotes the frequency of the tripeptide combination (ai, aj, az) in the protein sequence.



2.2.4. CKSAAP

To obtain further sequence information, Chen et al. proposed CKSAAP (34) which was defined as:

[image: image]

where k denotes the number of amino acids spaced between two amino acids, xk denotes k arbitrary amino acids, (ai, xk, aj) denotes the spaced amino acid pair, and N(ai, xk, aj) denotes the frequency of the spaced amino acid pair (ai, xk, aj) in the protein sequence.



2.2.5. PseAAC

To incorporate protein sequence ordinal information and improve prediction quality, a powerful feature, called PseAAC, was proposed, which incorporated the physicochemical characteristics of amino acids. PseAAC was defined as:

[image: image]

where xi denotes the normalized amino acid frequency, ω denotes the weight factor for short-range and long-range, and θj denotes the j-th sequence correlation factor.

θj was calculated as:

[image: image]

Θ(Ri + Ri + j) was defined as:

[image: image]

where H1(Ri), H2(Ri), and M(Ri) denote the standardized hydrophobicity, standardized hydrophilicity, and standardized side chain mass of the amino acid Ri, respectively.

The hydrophobicity, hydrophilicity, and side chain mass of amino acids were standardized using the following equations:

[image: image]

where H1(Ri), H2(Ri), and M(Ri) denote the standardized hydrophobicity, standardized hydrophilicity, and standardized side chain mass of amino acids, respectively, and [image: image], [image: image], and [image: image] denote the corresponding raw physicochemical properties of amino acids.



2.2.6. DCP

To incorporate more protein sequence order information and reduce the impact of high-dimensional features, Liu et al. proposed DCP (35). Based on a validated amino acid simplification alphabet scheme (36), three simplified amino acid alphabets were defined as:

[image: image]

For any simplified amino acid alphabet, DCP was defined as:

[image: image]

where z denotes the number of amino acid clusters in the simplified alphabet, and [image: image] denotes the frequency of any two amino acid clusters with distance d in the protein sequence.

In this study, the following parameters were used for protein sequence feature extraction: k = 1 for CKSAAP (amino acid spacing value), λ = 10 for PseAAC (number of amino acid theoretical properties), and ω = 0.7 for the weight factor for short-range and long-range. Consequently, we extracted features that include 20-dimensional AAC, 400-dimensional DPC, 8000-dimensional TPC, 800-dimensional CKSAAP, 30-dimensional PseAAC, and 1,463-dimensional DCP.




2.3. Feature fusion and selection

Different feature extraction methods offer diverse interpretations and representations of protein sequences. Relying solely on a single feature extraction method may limit the information provided by a single feature. To obtain a more comprehensive and reliable interpretation of protein sequences, we fused all features to create a fused feature set, resulting in a 10,713-dimensional feature set (20 + 400 + 8,000 + 800 + 30 + 1,463). We then selected the optimal feature subset using ANOVA and IFS.

ANOVA, a widely used feature selection tool, tests the difference in means between groups to determine whether the independent variable influences the dependent variable. Its high accuracy has made it an effective choice for feature selection (8). For a feature f, its F-value was calculated based on the principle of ANOVA as follows:

[image: image]

where F(f) represents the F-value of feature f, SSA represents the sum of squares between groups, SSE represents the sum of squares within groups, K-1 and N-K denote the degrees of freedom between and within groups, respectively. N is the total number of samples, and K is the number of groups.

SSA and SSE were calculated as follows:

[image: image]

where [image: image] denotes the j-th feature of the i-th group, K represents the number of groups, and ki represents the total number of samples in the i-th group.

A larger F-value indicates a stronger influence of the feature on data classification, thereby contributing more to the data classification results. In the feature set, the large amount of data, redundant data and noise will not only result in higher computational costs, but also cause the phenomenon of overfitting or reduced accuracy of the prediction model. The above fusion feature set contains 10,713 features, which is a large number of features. For saving computational time and reducing computational cost, we firstly use ANOVA to initially filter to obtain the 1,000 features which have the greatest influence on the classification results.

Next, the optimal subset of features was determined by searching the top 1,000 features ranked by F-value using IFS. IFS is a frequently employed feature selection method in the field of bioinformatics (37, 38). The specific process of IFS is as follows. Firstly, all features were sorted in descending order according to their F-values obtained from ANOVA. Then, each feature was sequentially added to the feature set, and a model was constructed using support vector machine (SVM) for each newly formed feature subset. Grid search was utilized to obtain optimal models, and their performance was evaluated using 5-fold cross-validation. The optimal feature subset was defined as the set of features that maximized the model’s accuracy.



2.4. Machine learning methodology and modeling

The advancement of machine learning has provided an effective approach to solving biological problems (39–42). Utilizing machine learning techniques to identify proteins based on sequence features has proven to be a rapid and widely applied method in various studies (43–45).

Constructing appropriate models is crucial for achieving accurate and robust predictions. In this study, we selected four commonly used machine learning algorithms, namely K-nearest neighbor (KNN) (46), logistic regression (LR) (47), random forest (RF) (48), and SVM (49), to build the fundamental classifier model for the HA dataset. The optimal parameters for each algorithm were obtained using grid search. To further enhance the model’s accuracy and generalization ability, we developed an integrated classifier model by combining the four basic classifier models. The Stacking algorithm was employed, with logistic regression serving as the second-layer classifier. All the machine learning models utilized in this study were implemented using scikit-learn (50).

KNN is a simple yet effective machine learning algorithm based on the implementation of the distance between data and data. LR is a binary classification algorithm based on the sigmoid function, which classifies samples by their corresponding output values. In RF, the result of prediction is determined by the vote or average of decision trees. The basic principle of SVM is to separate two classes of training data by defining a hyperplane and maximizing the distance between the two classes.

The Stacking algorithm is one of the widely used integrated learning methods, which obtains predictive models with higher accuracy and better generalization ability by combining basic classifier models. The Stacking algorithm was initially proposed by Wolpert (51). Its basic idea is to obtain an optimal integrated classifier model by training and combining multiple basic classifier models. In the Stacking algorithm, machine learning algorithms with strong learning and fitting capabilities are frequently used to construct basic classifier models for adequate learning and interpretation of training data. To reduce the degree of overfitting, simple algorithms with strong interpretations are commonly used to construct integrated classifier models.



2.5. Performance evaluation

To assess the effectiveness of the constructed models, we employed 5-fold cross-validation and independent testing. The performance of the proposed model was evaluated using several metrics, including accuracy (ACC), sensitivity (Sn), specificity (Sp), Matthew’s correlation coefficient (MCC), and the area under the receiver operating characteristic curve (AUC) (27, 52–56). ACC, Sn, Sp, and MCC were expressed as:
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where TP, TN, FP, and FN represent the following respectively: correctly identified positive samples, correctly identified negative samples, incorrectly identified negative samples, and incorrectly identified positive samples.

Additionally, we utilized the receiver operating characteristic (ROC) curve to evaluate model performance. A higher AUC value indicates better model performance, as it reflects the proximity to 1 according to the underlying principle.




3. Results and discussion


3.1. Optimal feature subset

We constructed optimal feature subsets using ANOVA and IFS and evaluated the models for each subset using the ACC. Figure 2A shows the IFS curve for the fusion feature set. When the feature set contained 773 features, the prediction model achieved a maximum ACC value of 0.9585.

[image: Figure 2]

FIGURE 2
 Performance analysis for optimal feature subsets and HA prediction models. (A) IFS curve for fusion features. (B) ROC curves of models constructed based on optimal feature subsets and six single feature sets. (C) ROC curves of the integrated classifier model with 5-fold cross-validation. (D) ROC curves of the integrated classifier model with independent testing.


In optimal feature subset, 13-dimensional AAC, 73-dimensional DPC, 629-dimensional TPC, 29-dimensional CKSAAP, and 29-dimensional DCP features are included. Notably, PseAAC is not included in this subset, suggesting that it is less effective in classifying HA compared to the other features. Furthermore, TPC has the highest proportion in optimal feature subset, indicating that TPC provides the best identification and differentiation ability among the six methods for feature extraction.

To demonstrate the impact of optimal feature subsets on model performance, we compared the performance of SVM prediction models constructed with optimal feature subsets to those constructed with six single feature sets. Each model was optimized using grid search within the same parameter range, and all models were evaluated using 5-fold cross-validation. Table 1 presents the results of the comparison, and Figure 2B shows the ROC curves for the 5-fold cross-validation of these models. The model constructed with the optimal feature subset achieved an ACC of 94.06% and an AUC of 0.970, outperforming the models constructed with other single feature sets. These results indicate that the optimal feature subset significantly improved the model’s prediction performance.



TABLE 1 Performance of models constructed based on optimal feature subsets and six single feature sets.
[image: Table1]



3.2. Model construction and evaluation

We constructed four basic models and an integrated model based on the optimal feature subsets. The optimal parameters for each algorithm were as follows: K = 52 for KNN, n = 62 for RF, f = 6 for the number of features considered during best-split search, ξ = 4 for the SVM kernel parameter, and C = 32 for the regularization parameter.

Table 2 presents the performance comparison of different classifier models using two testing methods. Figures 2C,D show the ROC curve of the constructed integration model using these wo testing methods. With 5-fold cross-validation, the proposed integrated model achieved an ACC of 95.85% and an AUC of 0.9863. On the independent test set, the integrated model achieved an ACC of 93.18% and an AUC of 0.9793. These results demonstrate that the proposed integrated model exhibited better HA prediction capability, improved model performance, and enhanced generalization ability compared to a single model.



TABLE 2 Performance of the integrated classifier model and the four basic classifier models.
[image: Table2]



3.3. Comparison of other machine learning algorithms

We have created two models based on optimal feature subsets and compared their performance to demonstrate the superiority of our proposed model. The comparison results are presented in Table 3, where we compared the model constructed with the XGboost algorithm with our proposed model. The main parameters of the model constructed based on the XGboost algorithm are as follows: max_depth = 3, learning_rate = 0.16, colsample_bytree = 0.85, subsample = 0.75. The results in Table 3 show that our model has good classification performance.



TABLE 3 Performance of the stacking classifier model and the XGboost classifier models.
[image: Table3]



3.4. Leave-one-out validation of the model

Due to the small sample data size, model robustness may be questioned. To ensure credible results, we use the leave-one-out method to re-validate model performance. The results of the model performance evaluation based on the leave-one-out method are shown in Table 4. In the performance evaluation of the model using the leave-one-out method, the model achieves an ACC of 93.45% and an AUC of 0.9846. The model shows good performance on both cross-validation methods, signifying its stability and the reliability of its classification outcomes.



TABLE 4 Performance evaluation based on the leave-one-out method.
[image: Table4]




4. Conclusion

Hemagglutinin (HA) is a vital glycoprotein found on the surface of influenza viruses, and accurately identifying HA is crucial for the development of targeted vaccine drugs. In this study, we proposed a prediction model based on HA protein sequence features. The model was constructed using the Stacking algorithm, incorporating an optimal subset of features and a basic classifier model. Our results demonstrated that the constructed model exhibits excellent predictive capacity and generalization ability.

We anticipate that the model will prove valuable in the effective identification and prediction of HA. Moving forward, we plan to explore additional feature extraction methods and optimize our prediction model to further enhance its performance. Additionally, we are committed to developing an accessible web server to facilitate the identification and prediction of HA.

In summary, our research provides a promising approach to accurately identifying HA and lays the foundation for the development of targeted vaccine drugs. We believe that our findings contribute to the advancement of influenza research and offer valuable insights for future studies in this field.
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Objective: Previous studies have proposed that genetic polymorphisms of CYP2D6*10, ADRB1, NPPA, CYP3A5*3, ACE, CYP2C9*3, and AGTR1 are involved in antihypertensive pharmacogenomics. The purpose of this study is to develop an amplification analysis using double allele-specific (AS) binding primers for accurate measurement of antihypertensive pharmacogenomics.

Methods: To establish a quadruplex quantitative PCR (qPCR) analysis for genotyping of CYP2D6*10, ADRB1 (1165 G>C), NPPA (2238 T>C) and CYP3A5*3, and a triplex qPCR analysis for genotyping of ACE (I/D), CYP2C9*3 and AGTR1 (1166 A>C), mismatch AS F-primers were screened by detection of plasmid/gDNA, and were validated by agreement analysis/reproducibility evaluation, in which the ΔCq (differences in threshold cycles between the wild-type F-primer-based amplification assay and the mutant-type F-primer-based amplification assay) was employed to determine genotypes.

Results: Seven pairs of primers were successfully selected through three rounds of F-primers screening. Except for ADRB1, the robustness assessment showed the amplification efficiency ranging from 0.9 to 1.1. In agreement analysis, two specimens in the training set (n = 203) were defined by the triplex analysis rather than NGS as heterozygotes for ACE, which was evidenced by gel electrophoresis. Reproducibility evaluation demonstrated that the coefficient of variation (CV) was <5%.

Conclusion: Multiplex amplification analysis using screened AS binding primers is a simple, reliable, and accurate tool to guide drug delivery in antihypertensive personalized treatment.
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allele-specific (AS), F-primers, polymorphism, antihypertensive, genotyping


1 Introduction

Hypertension is becoming the main cause of cardiovascular disease (1–4). Patients with hypertension reached 1.278 billion worldwide in 2019 (5). A previous study reported that intensive hypertension control could avoid 2.209 million coronary heart disease (CHD) events, 4.409 million stroke events, and 75,100 cardiovascular deaths in 10 years (6). However, hypertension control is still poor because of insufficient clinical experience and apparent drug resistance (2).

Clinical practices have displayed the heterogeneity of patients' responses to antihypertensive drugs (7, 8). Associated with the efficacy of antihypertensive drugs covering beta-blockers, diuretics, calcium channel blockers (CCBs), angiotensin-converting enzyme (ACE) inhibitors, and angiotensin receptor antagonists (ARBs), the hypertensive pharmacogenomics of CYP2D6*10, adrenergic receptor beta 1 (ADRB1, 1165 G>C), natriuretic peptide type A (NPPA, 2238 T>C), CYP3A5*3, ACE (I/D), CYP2C9*3, and angiotensin II receptor 1 (AGTR1, 1166 A>C) have been documented. For example, genetic polymorphisms of AGTR1 and cytochrome P450 oxidase (CYP2C9) impact ARB drug-target affinity and drug metabolism, respectively. ARBs exert their anti-hypertensive effect by blocking the binding of the AGTR1 receptor with angiotensin II ligands. A carrier with a C-type allele for AGTR1 appears more sensitive to ARBs (9–11). Metabolizing most ARBs, CYP2C9 is a member of the cytochrome P450 oxidase superfamily (12). Patients with the CYP2C9*3 (*1/*1) allele extend their fast metabolic response to ARBs (13, 14).

Discrimination of single nucleotide polymorphisms (SNPs) has become a field of intense investigation, and various technologies have been suggested (15). It is not suitable for next-generation sequencing (NGS) technology to measure SNPs due to expensive equipment and time consumption (16). Presenting high sensitivity, high throughput, and high reliability, quantitative PCR (qPCR) analysis has become a mainstream technique for SNP measurement (17–19). Uniplex amplification analysis for CYP2D6*10, ADRB1 (1165 G>C), NPPA (2238 T>C), CYP3A5*3, ACE, CYP2C9*3, and AGTR1 (1166A>C) has been reported (7, 20–23). In this study, we described a multiplex qPCR analysis using double allele-specific (AS) binding F-primers that included wild-type and mutated-type F-primers to discriminate above genetic polymorphisms.



2 Materials and methods


2.1 Design strategy

To detect the genotypes of CYP2D6*10, ADRB1 (1165 G>C), NPPA (2238 T>C), CYP3A5*3, ACE (I/D), CYP2C9*3, and AGTR1 (1166 A>C), AS F-primers with the second, third, or fifth mismatched base at the 3′-terminal, co-hydrolysis probe, and reverse primers were designed.

First, F-primers were screened by plasmid determination using uniplex qPCR. Second, selected F-primers were screened by detecting genomic DNA using multiplex qPCR, including a quadruplex analysis for CYP2D6*10, ADRB1, NPPA, and CYP3A5*3 and a triplex analysis for ACE (I/D), CYP2C9*3, and AGTR1. Each of the multiplex analyses contained two reactions: the wild-type F-primer-based amplification assay and the mutant-type F-primer-based amplification assay, in which ΔCq (differences in threshold cycles between the wild-type F-primer-based assay and the mutant-type F-primer-based assay) was employed to determine genotypes. Third, the F-primers were screened by robustness assessment. Finally, the screened F-primer-based assay was validated by concordance analysis, using NGS as the reference method. The sterilized distilled water instead of DNA was used as the negative control during the whole experiment process. The design strategy of this study is shown in Figure 1.


[image: Figure 1]
FIGURE 1
 Design strategy of this study. F-primers as polymorphism-binding oligonucleotides were optimized through three rounds of screening and validated with agreement analysis considering next-generation sequencing as a reference method.




2.2 Sample collection and DNA extraction

A total of 203 oral swab samples were collected from Chinese volunteers. Genomic DNA was isolated using the QIAamp DNA Mini kit (Cat No.51304, QIAGEN, Dusseldorf, Germany), according to the manufacturer's instructions. The quality and quantity of DNA were determined by the NanoPhotometer P360 (Implen GmbH, Munich, Germany). Sanger sequencing was conducted by Personal company (Qingdao Personal Biotechnology Co., Ltd., China). NGS sequencing was conducted by the Center for Molecular Diagnosis at Shandong Provincial Hospital, affiliated with Shandong First Medical University (Jinan, China).



2.3 Primers and probe design

Based on the nucleotide sequences of these seven genes, AS F-primers, co-reverse primers, and hydrolysis probes were designed using Primer Express 3.0. The probes for CYP2D6*10, ADRB1 (1165 G>C), NPPA (2238 T>C), and CYP3A5*3 in the quadruplex analysis were labeled with the fluorescent dyes FAM, VIC, NED, and CY5 at their 5′ ends and the quencher BHQ1, BHQ1, BHQ2, and BHQ3 at their 3′ ends, respectively. The probes for ACE (I/D), CYP2C9*3, and AGTR1 (1166 A>C) in the triplex analysis were labeled with the fluorescent dyes FAM, NED, and CY5 at their 5′ ends, and the quencher BHQ1, BHQ2, and BHQ3 at their 3′ ends, respectively. Primers were synthesized by Sangon Biotech (Shanghai) Co. Ltd. (Shanghai, China), and TaqMan probes were synthesized by Invitrogen Corporation (Shanghai, China). According to NCBI, each approximately 400-bp fragment of CYP2D6*10 (rs1065852), ADRB1 (rs1801253), NPPA (rs5065), CYP3A5*3 (rs776746), ACE (rs4646994), CYP2C9*3 (rs1057910), and AGTR1 (rs5186) was chemically synthesized and cloned into pUC57 plasmid vectors by Sangon Biotech Co., Ltd. (Shanghai, China).



2.4 Multiplex AS qPCR

Optimized multiplex AS qPCR was executed in a total of 20 μL reaction mixture containing 10 μL AceQ® Universal U+ Probe Master Mix V2 (Vazyme, Nanjing, China), 0.2 μM of each wild/mutated-type F-primer (0.4 μM for AGTR1), 0.2 μM of each reverse primer, 0.1 μM of each hydrolysis probe, and 10 ng gDNA. The uniplex amplification analysis was conducted according to the same protocol. The qPCR protocols started with a contamination digestion step for 2 min at 37°C, and a pre-denaturation step for 5 min at 95°C, followed by 45 cycles of 95°C for 10 s and 60°C for 35 s. The fluorescence signal was collected at 60°C. These amplifications were performed on the ABI7500 Real-Time PCR Instrument (Thermo Fisher Scientific Inc., MA, USA).



2.5 Data analysis

Data analysis and graphing were carried out using GraphPad Prism software version 9 (GraphPad Software, Inc., San Diego, CA).




3 Results


3.1 First round of F-primers screening by measurement of plasmid using uniplex qPCR

AS F-primers with the second, third, or fifth 3′-terminal mismatched base, co-hydrolysis probes, and reverse primers were designed for each SNP. Uniplex qPCR analysis and plasmid models covering homozygotes and heterozygotes were employed to screen mismatch AS forward primers (n = 72) to roughly enable maximization of ΔCq (differences in threshold cycles between the wild-type F-primer-based assay and the mutated-type F-primer-based assay) (Supplementary material S1). The originally selected F-primers are shown in Table 1.


TABLE 1 Primer and probe sequences.

[image: Table 1]



3.2 Second round of F-primers screening by detection of gDNA using multiplex qPCR

Selected F-primers were in succession screened by examination of human gDNA, comprising homozygotes and heterozygotes. To omit the positive control set in antihypertensive pharmacogenomic measurement, positive outcomes obtained from the wild- or mutated-type F-primer-based assay were required. Because undetermined results were observed in gDNA scans, the concentration of mutated-type F-primer for AGTR1 was adjusted from 0.2 to 0.4 μM to ensure positive outcomes (Figure 2).


[image: Figure 2]
FIGURE 2
 Amplification plots of AGTR1 in the triplex amplification analysis. The concentration of mutated-type F-primer for AGTR1 was adjusted from 0.2 (A) to 0.4 μM (B) to ensure positive outcomes. Wild-type homozygote was detected in duplicate by the triplex amplification analysis.




3.3 Third round of F-primers screening by robustness assessment

Six concentrations (40 ng, 20 ng, 10 ng, 5 ng, 2.5 ng, and 1.25 ng) of heterozygotes from oral swabs were prepared. Amplification efficiency was calculated using the generated calibrator curve: 10−1/slope−1, with the logarithm of the template copies plotted on the X-axis and Cq plotted on the Y-axis (24). The reactions were conducted in duplicate with three dependent experiments. As the calibrator curve did not appear in a dose-dependent manner, F-primer WF2/MF2, probe P2, and reverse primer R2 for ADRB1 were substituted for F-primer WF1/MF1, probe P1, and reverse primer R1, respectively, in the quadruplex amplification analysis (Table 1 and Figure 3). Except for ADRB1, optimized calibrator curves demonstrated amplification efficiencies ranging from 0.9 to 1.1 and analytical sensitivities of at least 1.25 ng (Figure 4).


[image: Figure 3]
FIGURE 3
 Amplification plots of ADRB1 in robustness assessment. To improve the robustness of ADRB1 measurement, F-primer WF2/MF2, probe P2, and reverse primer R2 were substituted for F-primer WF1/MF1, probe P1, and reverse primer R1, respectively, in the quadruplex amplification analysis. (A) Unoptimized amplification plots. (B) Optimized amplification plots. To assess robustness, serial dilutions of heterozygote (1.25–40 ng) were measured by the quadruplex amplification analysis, including the wild-type F-primer-based amplification assay and the mutated-type F-primer-based amplification assay. Reactions were run in duplicate.



[image: Figure 4]
FIGURE 4
 Robustness of optimized amplification analysis. The robustness assessment was executed by employing mismatch allele-specific F-primers targeting single nucleotide polymorphisms to simultaneously detect heterozygotes. Serial dilutions of heterozygotes (1.25–40 ng) were measured by multiplex amplification analysis containing a wild-type F-primer-based amplification assay and a mutated-type F-primer-based amplification assay. (A) (a) Calibrator curves of quadruplex amplification analysis. Amplification efficiency (Eff) % and R2 are shown; (b) Amplification plots of the robustness assessment in quadruplex amplification analysis. Representative amplification plots are shown. (B) (a) Calibrator curves of triplex amplification analysis. Amplification efficiency (Eff) % and R2 are shown; (b) Amplification plots of the robustness assessment in triplex amplification analysis. Representative amplification plots are shown. Reactions were run in duplicate with three independent experiments. Data are expressed as mean ± SE. DF, deletion-type F-primer; IF, insertion-type F-primer; WF primer, wild-type F-primer; MF primer, mutated-type F-primer; Het, heterozygote.




3.4 Verification of screened F-primers-based analysis by agreement analysis

Considering NGS as a reference method, we examined 203 gDNA samples extracted from oral swabs to evaluate the accuracy of the multiplex analyses using double allele-specific binding F-primers. The results showed that, besides ACE, the coincidence rate was 100%. Two specimens (No.001 and No.056) in the training set (n = 203) were defined by the analysis rather than NGS as heterozygotes for ACE, which was evidenced by gel electrophoresis (Figure 5). The cutoff values for genotyping are shown in Table 2.


[image: Figure 5]
FIGURE 5
 Gel electrophoresis of PCR amplicon for ACE. The D/D genotype was identified by the presence of a single 190-bp amplicon, and the I/D genotype extended both 490-bp and 190-bp amplicons. The ACE genotypes of controls 1 and 2 were D/D and I/D, respectively, defined by Sanger sequencing. M, DNA marker; I/D, heterozygote; D/D, deletion homozygote.



TABLE 2 Genotyping cutoff values.

[image: Table 2]



3.5 Substantiation of screened F-primers-based analysis by producibility evaluation

To evaluate the producibility of the analysis, each heterozygote was tested in eight-plicates by two operators, using two different reagent lots every 5 days (n = 80/specimen) at one site. A total of 80 Cq values were collected to calculate the coefficient of variation (CV). The results showed that the CV values for reproducibility were within 4.00% for all days, specimens, replicates, operators, and reagent lots combined (Figure 6).


[image: Figure 6]
FIGURE 6
 Producibility evaluation. (A) The inter-day CV values for the wild-type F-primers-based amplification assay in quadruplex analysis. (B) The inter-day CV values for the mutated-type F-primers-based amplification assay in quadruplex analysis. (C) The inter-day CV values for the wild-type F-primers-based amplification assay in triplex analysis. (D) The inter-day CV values for the mutated-type F-primers-based amplification assay in triplex analysis. The inter-day CV value was <4% for all days, specimens, replicates, operators, and reagent lots combined.





4 Discussion

In this study, multiplex amplification analysis was established for the measurement of hypertensive pharmacogenomics. Due to genetic polymorphism, only about one-third of patients with hypertension accept effective treatment (25–30). Therefore, this study is helpful for hypertension patients to take more effective and well-tolerated medication.

Compared to other methods (31), multiplex qPCR behaves as a simple and effective approach to the detection of pharmacogenomic SNPs (32). Polymorphism-specific binding molecules in PCR-based analysis comprise dsDNA-binding dye, AS probe, and primer (33, 34). The dsDNA-binding dye-based high-resolution dissolution curve (HRM) assay needs a specific equipment module. In addition to the diseconomy, it is time-consuming and laborious to discover an appropriate minor groove binder (MGB) probe (35). The wild-type allele reaction probably outcompetes the mutated-type allele reaction when two AS probes barcoded with different fluorophores are utilized to identify genetic polymorphism (36). Sometimes, it is difficult to accurately discriminate SNPs using single-color melting curve analysis. For enhancement of AS primer specificity, base mismatch is more economical than locked nucleic acid (LNA) decoration (37). In this study, mismatch AS primers were screened and validated. The combination of a wild-type AS F-primer-based amplification assay with a mutated-type AS F-primer-based amplification assay was utilized to obtain ΔCq to define the genotype. The results evidenced that screened F-primer-based amplification analysis is a simple, accurate, and reliable approach to measure antihypertensive pharmacogenomics.

As the definition of ACE (I/D) genotype for two specimens differed between triplex analysis and NGS, we utilized PCR-gel electrophoresis to substantiate the outcomes. Located on chromosome 17, the ACE gene consists of 26 exons and appears as a polymorphism in the form of either insertion (I) or deletion (D) of a 287-bp Alu repeat sequence in intron 16. The ACE (I/D) allele can be detected by PCR using the primers flanking the 287 bp insertion sequence (38). In gel electrophoresis, the I/I genotype can be identified by the presence of a single 490 bp amplicon, the D/D genotype can be recognized by the presence of a single 190 bp product, and the I/D genotype extends both 490 and 190 bp amplicons (39). The results of gel electrophoresis validated the accuracy of the triplex analysis for ACE (I/D) measurement (Figure 5).

Based on hypertensive pharmacogenomics of CYP2C9*3, ADRB1(1165 G>C), AGTR1 (1166 A>C), CYP2D6*10, ACE (I/D), CYP3A5*3, and NPPA (2238 T>C), the principle of personalized drug delivery was proposed as follows: (a) doubling the standard dose is suggested when the hypertension is moderately sensitive to certain anti-hypertensive drugs; and (b) the minimum dose is recommended to initiate treatment when the hypertension is highly sensitive to certain anti-hypertensive drugs (7). Following the above principle, clinical studies evidenced that, compared to clinic experience-guided anti-hypertensive therapy, genotype-guided treatment appeared more effective and had fewer side effects. Herein, we established a simple, efficient, and accurate method for simultaneously detecting the genotypes of CYP2D6*10, ADRB1 (1165 G>C), NPPA (2238 T>C), CYP3A5*3, ACE, CYP2C9*3, and AGTR1 (1166 A>C) by screening and verification of mismatched AS F-primers.



5 Conclusion

As an accurate and reliable approach, the analysis described in this study is a valuable tool to determine the genotypes for CYP2D6*10, ADRB1, NPPA, CYP3A5*3, ACE, CYP2C9*3, and AGTR1, which can guide drug delivery in antihypertensive treatment to ensure curative effect. Employing the similar technique verified in this study, our laboratory will design and develop a multiplex amplification analysis for guiding aspirin delivery in the future.
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Mannose-binding lectin gene polymorphism in psoriasis and vitiligo: an observational study and computational analysis
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Introduction: Psoriasis and vitiligo are inflammatory autoimmune skin disorders with remarkable genetic involvement. Mannose-binding lectin (MBL) represents a significant immune molecule with one of its gene variants strongly linked to autoimmune diseases. Therefore, in this study, we investigated the role of the MBL variant, rs1800450, in psoriasis and vitiligo disease susceptibility.

Methods: The study comprised performing in silico analysis, performing an observational study regarding psoriasis patients, and performing an observational study regarding vitiligo patients. Various in silico tools were used to investigate the impact of the selected mutation on the function, stability, post-translational modifications (PTMs), and secondary structures of the protein. In addition, a total of 489 subjects were enrolled in this study, including their demographic and clinicopathological data. Genotyping analysis was performed using real-time PCR for the single nucleotide polymorphism (SNP) rs1800450 on codon 54 of the MBL gene, utilizing TaqMan genotyping technology. In addition, implications of the studied variant on disease susceptibility and various clinicopathological data were analyzed.

Results: Computational analysis demonstrated the anticipated effects of the mutation on MBL protein. Furthermore, regarding the observational studies, rs1800450 SNP on codon 54 displayed comparable results in our population relative to global frequencies reported via the 1,000 Genomes Project. This SNP showed no significant association with either psoriasis or vitiligo disease risk in all genetic association models. Furthermore, rs1800450 SNP did not significantly correlate with any of the demographic or clinicopathological features of both psoriasis and vitiligo.

Discussion: Our findings highlighted that the rs1800450 SNP on the MBL2 gene has no role in the disease susceptibility to autoimmune skin diseases, such as psoriasis and vitiligo, among Egyptian patients. In addition, our analysis advocated the notion of the redundancy of MBL and revealed the lack of significant impact on both psoriasis and vitiligo disorders.
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 psoriasis; vitiligo; MBL; innate immunity; SNP; rs1800450


1 Introduction

Psoriasis and vitiligo are inflammatory autoimmune diseases with genetic factors playing a remarkable role in both diseases (1). Psoriasis is an inflammatory skin disease that is characterized by the development of scaly and erythematous plaques with a global prevalence of approximately 2% (2, 3). Its pathogenesis comprises intricate interactions between the adaptive immune system and the innate immune system (4). Meanwhile, vitiligo represents an autoimmune disease of the skin characterized by autoimmune melanocyte destruction, resulting in the related depigmentation patches affecting the skin in addition to mucosa (5). The prevalence of vitiligo is estimated at approximately 0.2–2% in varied populations (6). Genetic factors have a remarkable role in vitiligo and the risk related to these factors is estimated to reach 75–83%, leaving only approximately 20% for the other environmental factors (7).

One of the important components of innate immunity is mannose-binding lectin (MBL), and the defects of this molecule have been linked with different autoimmune diseases (8). This protein is one of the pattern-recognition molecules that are responsible for activating the complement system through the lectin pathway (9, 10). It is encoded by the MBL2 gene located on chromosome 10, and the presence of certain missense single nucleotide polymorphisms (SNPs) in this gene was associated with notable low levels of MBL (11). One of these specific mutations is rs1800450 in codon 54, which leads to the change of glycine to aspartic acid (12), with the variant allele represented by allele B and the wild-type one represented by allele A (13). Moreover, this missense mutation could impact the binding activity of MBL, leading to implications on its function (14). The presence of this SNP was linked with several autoimmune diseases such as rheumatoid arthritis (15) and systemic lupus erythematosus (16). However, the relationship between this SNP and autoimmune skin diseases, specifically vitiligo and psoriasis, was investigated by only a few studies showing conflicting results (17–20).

More studies are required to investigate the impact of this missense mutation on psoriasis and vitiligo diseases, especially in light of the increasing interest in the genetic association studies with different human diseases (21–24). By deciphering the nature of the relationship between this mutation and such chronic autoimmune diseases and their features, hopes could be raised to improve the guidelines for the prediction and management of these autoimmune conditions.



2 Materials and methods

The study comprised an in silico analysis, an observational study regarding psoriasis patients, and an observational study regarding vitiligo patients. A chart demonstrating the outline of the study research is displayed in Figure 1.
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FIGURE 1
 A chart demonstrating the outline of the study work.



2.1 Analyzing the variant’s effect on the MBL protein function

For estimating how the SNP might affect protein function, MutPred2 was used.1 MutPred2 represents a software package and machine learning technique that combines genetic and molecular data for reasoning probabilistically regarding the pathogenicity of substitutions of amino acids by providing (1) a general prediction regarding pathogenicity and (2) a list describing certain molecular changes that may affect the phenotype (25).



2.2 Analyzing the variant’s effect on the MBL protein stability

The stability of the protein was examined with regard to the chosen mutation using the Mu-Pro tool. The Mu-Pro tool utilizes a strong support vector machine technique that, when used for cross-validation and verification, demonstrates an accuracy of 84%2 (26).



2.3 Secondary structure analysis

The secondary structure of the studied protein was analyzed using the SOPMA server, and the precise alignment regarding the modified amino acids in the secondary structure was figured out.3 In addition, the secondary structures with the selected SNP were examined as well. The SOPMA server could forecast the secondary structures of a given protein by examining the numerous alignments regarding the protein’s sequence (27).



2.4 Conducting post-translational modification analysis

The MusiteDeep server4 was employed to forecast the positions of various types of post-translational modifications. Due to the significant role of PTMs in controlling how proteins function, the recognition of PTMs is crucial for understanding the pathogenesis of diseases (28–30).



2.5 Gene–gene interaction examination

The GeneMANIA tool was employed to produce the MBL2 gene–gene interaction network.5 Using a range of resources and data types, GeneMANIA could predict the genes that strongly interact with a given gene (31).



2.6 Protein–protein interaction analysis

The STRING database6 was adopted to predict the MBL protein–protein interaction network. The STRING database represents a database into which protein–protein interactions, encompassing both functional and physical relationships, are methodically gathered and integrated (32). The prediction was restricted to the 10 proteins representing the most interactive ones.



2.7 Study design of the experimental work

This is a case–control study in which the study participants were recruited from the outpatient dermatology department clinic, Suez Canal University Hospital (SCUH), Ismailia, Egypt, with the study participants classified into three main groups: Group 1 (vitiligo patient group), Group 2 (psoriasis patient group), and Group 3 (control group). All subjects or their next of kin provided informed consent.


2.7.1 Group 1 (vitiligo patients)

After being diagnosed with vitiligo through clinical examination, supplemented with Wood’s lamp, 90 patients from both sexes were included. All the necessary clinicopathological data, such as sex, age, BMI, family history, previous history regarding other autoimmune diseases (e.g., Hashimoto’s thyroiditis, diabetes mellitus, psoriasis, and Addison’s disease), age of the disease onset, severity, disease duration, and treatment, were collected depending on patients’ history. Furthermore, a thorough dermatological examination was applied to all patients to assess the size, site, pattern, and distribution of individual lesions. In addition, disease severity assessment was performed depending on the criteria of the Vitiligo Area Severity Index (VASI) in addition to the Vitiligo European Task Force (VETF).



2.7.2 Group 2 (psoriasis patients)

After being diagnosed with chronic plaque psoriasis, 99 patients of both sexes were included in the study, with the exclusion of those suffering from other autoimmune diseases. All needed clinicopathological data, such as sex, age, BMI, family history, severity, age of the disease onset, lines of treatment, and disease duration, were collected depending on patients’ history. Moreover, a thorough dermatological examination was carried out on all patients to assess the size, site, pattern, and distribution of individual lesions. In addition, disease severity assessment was performed depending on the Psoriasis Area Severity Index (PASI) score. According to the European consensus, PASI is interpreted as mild in cases where the PASI score is less than 10, moderate in cases where the score is between 10 and 20, and severe in cases where the score is greater than 20.



2.7.3 Group 3 (control)

A total of 300 healthy volunteers were recruited from the SCUH blood bank. The members of this third group were matched with the members of the other two groups in terms of sex and age.




2.8 Genotyping

The molecular analysis was conducted at the Center of Excellence of Molecular and Cellular Medicine at the Faculty of Medicine, Suez Canal University and Hospital. The extraction of DNA was conducted from venous blood depending on the QIAamp DNA Blood Mini Kit (Cat. No. 51104, QIAGEN; Hilden, Germany). The concentration and purity of DNA were checked depending on the NanoDrop 2000 1C spectrophotometer (NanoDrop Tech., Inc. Wilmington, DE, USA). The DNA samples were stored at −20°C until further analysis. MBL2 SNP rs1800450 was identified by relying on real-time PCR (RT-PCR) utilizing TaqMan genotyping assays (assay ID: C___2336609_20). The reaction components were obtained from Applied Biosystems (Foster City, CA, USA). A 25-mL reaction volume was used for the PCR, containing 1.25 mL of TaqMan SNP genotyping assay mix, 12.5 mL of TaqMan genotyping master mix, no AmpErase UNG (2×), and 20 ng of genomic DNA, which was diluted to 11.25 mL, utilizing DNase-RNase-free water. After that, the amplification was done using the StepOne™ real-time PCR equipment (Applied Biosystems, Foster City, CA, USA). SDS software version 1.3.1 (Applied Biosystems) was utilized for allelic discrimination. The procedures were conducted blindly with respect to the vitiligo/psoriasis/control groups.



2.9 Statistical analyses

For the statistical analysis, we depended on Statistical Package for the Social Sciences (SPSS) software, version 24 in addition to Microsoft® Excel 2010. Percentage and frequency were adopted to express qualitative variables, with the usage of the chi-squared (χ2) test besides Fisher’s exact tests to compare between groups. Mean ± standard deviation (SD) was adopted to express quantitative variables, with the use of Student’s t-test and one-way ANOVA tests to compare quantitative variables with a normal distribution, while the Mann–Whitney U test and Kruskal–Wallis test were used to compare quantitative variables with a non-normal distribution. Statistical significance was determined by a value of p below 0.05. Moreover, the calculation of odds ratios (OR) was performed using a 95% confidence interval (CI). Hardy–Weinberg equilibrium (HWE) was calculated as well. In addition, SNPSTAT was used for genetic models.




3 Results


3.1 The analysis of the variant’s effect on the MBL protein function

The utilization of the MutPred2 tool revealed a score of 0.849 with rs1800450 SNP, which suggested pathogenicity. Furthermore, molecular alterations were predicted, including losing acetylation at K59 with a probability of 0.27 and a value of p of 7.3e-03, gaining SUMOylation at K56 with a probability of 0.25 and a value of p of 7.8e-03, losing methylation at K56 with a probability of 0.23 and a value of p of 3.1e-03, gaining ubiquitylation at K49 with a probability of 0.17 and a value of p of 0.02, and gaining proteolytic cleavage at D53 with a probability of 0.13 and a value of p of 0.02.



3.2 Analyzing the variant’s effect on the MBL protein stability

The analysis of how the nominated SNP could affect MBL stability was conducted using the Mu-Pro tool. The SNP was predicted by the Mu-Pro tool to decrease the stability with ΔΔG of −0.69653508.



3.3 Secondary structure analysis

The SOPMA tool was used to analyze the anticipated secondary structures of MBL, as demonstrated in Figure 2A. SOPMA revealed that 75 residues were linked with an alpha helix (30.24%), 39 with an extended strand (15.37%), 122 with a random coil (49.19%), and 12 with a beta turn (4.84%). Position 54 was found to be associated with the random coil. Furthermore, the secondary structures with the presence of the selected mutation were predicted, as shown in Figure 2B. In this case, SOPMA exposed that 69 residues were linked with an alpha helix (27.82%), 38 with an extended strand (15.32%), 133 with a random coil (53.63%), and 8 with a beta turn (3.23%). Position 54 was found to be associated with the random coil in this case as well.
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FIGURE 2
 Secondary structure analysis: (A) Secondary structure with wild MBL protein and (B) secondary structure with MBL protein in case of the selected mutation, produced by the SOPMA server. Alpha helix: (h), Extended strand: (e), Beta turn: (t), Random coil: (c).




3.4 The post-translational modification analysis

To identify the expected post-translational modification sites, the MusiteDeep server was utilized; the anticipated post-translational modification sites with MBL protein are shown in Figure 3A. Moreover, the anticipated post-translational modification sites with MBL in the case of the nominated mutation are shown in Figure 3B, and loss of SUMOylation at position 56 could be noticed in this case.

[image: Figure 3]

FIGURE 3
 Post-translational modification analysis (A) post-translational modification sites with wild MBL protein and (B) post-translational modification sites with MBL protein in case of the selected mutation, produced by the MusiteDeep server. P, Phosphorylation; me, Methylation; gl, Glycosylation; Su, SUMOylation; Ub, Ubiquitination; ac, Acetyllysine; pa, Palmitoylation; Pc, Pyrrolidone carboxylic acid; Hy, Hydroxylation.




3.5 Gene–gene interaction examination

Utilizing the GeneMANIA tool, the MBL2 gene’s gene–gene interaction was examined, and the results showed 20 genes with the strongest connections to the MBL2 gene (Figure 4). Among these genes, the mannan-binding lectin serine peptidase 1 gene (MASP1) ranked first. Then, the mannan-binding lectin serine peptidase 2 gene (MASP2) held the second rank. After that, complement C2 (C2) held the third rank.

[image: Figure 4]

FIGURE 4
 Network of MBL2 gene–gene interactions, produced by GeneMANIA.




3.6 Protein–protein interaction analysis

Depending on the STRING database, the MBL protein–protein interaction network was generated, and the 10 most interactive proteins were predicted, as could be shown in detail in Figure 5.

[image: Figure 5]

FIGURE 5
 Protein–protein interaction network related to MBL protein, generated by the STRING databases (version 12). The nodes signify proteins, whereas the edges indicate protein–protein associations. The edges could possess any of the seven distinct colored lines, with distinct indications. Black lines: co-expression evidence; light blue lines: database evidence; yellow lines: text-mining evidence; purple lines: experimental evidence; blue lines: co-occurrence evidence; green lines: neighborhood evidence; red lines: fusion evidence. MASP2: Mannan-binding lectin serine protease 2 A chain, FCN2: Ficolin-2, MASP1: Mannan-binding lectin serine peptidase 1, PRSS2: Trypsin-2, FCN3: Ficolin-3, CALR: Calreticulin, C4A: Complement C4-A alpha chain, SERPING1: Plasma protease C1 inhibitor, PTX3: Pentraxin-related protein PTX, C4B: Complement C4-B alpha chain (https://string-db.org/ accessed on 23 December 2023).




3.7 Baseline characteristics of population understudy

Our study comprised a total of 489 subjects, including 90 vitiligo patients, 99 psoriasis patients, and a comparable number of healthy control subjects, i.e., 300. The baseline features of enrolled subjects are shown in Table 1. The age of the control, vitiligo, and psoriasis groups ranged from 18 to 63 years, from 6 to 60 years, and from 18 to 60 years, respectively. Meanwhile, the percentage of men in these three groups was 50.3, 61.1, and 45.5%. Considering special habits among the study groups, 53.8% of the control group participants were smokers, 64.4% of vitiligo patients were smokers, and 56.6% of psoriasis patients were smokers. Regarding family history, 18.9% of vitiligo patients had a positive family history, while 15.2% of psoriasis patients had a positive history. No significant statistical difference was found with these baseline characteristics except with the age variable.



TABLE 1 Description of the population understudy.
[image: Table1]



3.8 Clinicopathological data among patient groups understudy

Different clinicopathological features between patient groups are shown in Table 2. The mean of disease duration for vitiligo patients and psoriasis patients was 9.2 ± 9.61 and 7.0 ± 6.25, respectively, with no statistical significance. Furthermore, the mean age regarding disease onset for these two groups was 25.93 ± 15.98 and 35.07 ± 13.34, respectively, with statistically significant differences found between these groups. Studying Vitiligo Disease Activity (VIDA) revealed the presence of 37.5, 3.4, 13.6, 20.5, 22.7, and 2.3% of vitiligo patients in stages −1, 0, 1, 2, 3, and 4, respectively, showing statistical significance. Meanwhile, studying psoriasis severity revealed the presence of 45% of psoriasis patients in the mild subgroup, 31% in the moderate subgroup, and 24% in the severe subgroup, with statistical significance found as well. The mean of the Vitiligo Area Severity Index (VASI) was 0.51 ± 0.30 in the vitiligo group, while the mean of the Psoriasis Area Severity Index (PASI) was 13.66 ± 9.05 in the psoriasis group, with statistical significance indicated by a value of p less than 0.001.



TABLE 2 Clinicopathological data among patient groups’ understudy.
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3.9 MBL2 genotype analysis

Table 3 shows the genotype and allele frequencies of MBL2 gene rs1800450 SNP among the studied skin autoimmune diseases. As shown, the allele frequencies in the control group were 514 (85.67%) and 86 (14.33%) for allele A and allele B, respectively. Regarding the psoriasis group, allele frequencies were 174 (87.88%) and 24 (12.12%), respectively, while with the vitiligo group, allele frequencies were 164 (91.11%) and 16 (8.89%), respectively (Figure 6A).



TABLE 3 Genotype and allele frequencies of the MBL2 gene rs1800450 SNP in the study population.
[image: Table3]
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FIGURE 6
 Genotype and allele frequencies of MBL2 gene rs1800450 SNP among skin autoimmune diseases. (A) Allele frequencies and (B) genotype frequencies (controls = 300 subjects, psoriasis = 99 patients, vitiligo = 90 patients).


Meanwhile, the genotype frequencies for wild genotype, heterozygous genotype, and mutant genotype with the control group were 222 (74%), 70 (23.3%), and 8 (2.7%), respectively. Regarding the psoriasis group, the genotype frequencies were 76 (76.8%), 22 (22.2%), and 1 (1%), respectively, while with the vitiligo group, the genotype frequencies were 75 (83.3%), 14 (15.6%), and 1 (1.1%), respectively (Figure 6B). The genotype distribution in study groups showed consistency with Hardy–Weinberg equilibrium. In addition, allele frequencies for allele B in different populations for the rs1800450 SNP are shown in Figure 7, according to the 1,000 Genomes project, along with the allele frequencies in the study groups.

[image: Figure 7]

FIGURE 7
 Allele frequencies for MBL2 gene rs1800450 SNP according to the 1,000 Genomes Project. This diagram was constructed based on Ensembl, https://www.ensembl.org/index.html (accessed on 17 July 2023).




3.10 Genetic association models analysis

The analysis of MBL2 gene rs1800450 SNP with psoriasis risk was performed under all genetic association models, as shown in Table 4; nevertheless, no statistical significance was uncovered. In addition, the analysis of the rs1800450 variant with vitiligo risk was conducted under all genetic association models as well; however, no significant statistical difference was found, as shown in Table 5.



TABLE 4 Genetic association models for the MBL2 gene rs1800450 SNP with psoriasis risk (total n = 399, controls = 300, psoriasis patients = 99, adjusted by age and sex).
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TABLE 5 Genetic association models for the MBL2 gene rs1800450 SNP with vitiligo risk (total n = 390, controls = 300, vitiligo patients = 90, adjusted by age and sex).
[image: Table5]



3.11 Correlation analysis of the studied variant, psoriasis patients’ demographic data, and clinicopathological features

The inter-relationships between rs1800450 SNP genotyping, psoriasis cases’ demographic data, and their clinicopathological features were analyzed and shown in Table 6. A direct and significant correlation was found between age and duration (r = 0.366; p < 0.001), disease onset (r = 0.890; p < 0.001), and disease (r = 0.310; p < 0.001). Sex had a direct and significant correlation with family history (r = 0.890; p < 0.05). Moreover, duration had a direct and significant correlation with age (r = 0.366; p < 0.001), PASI (r = 0.381; p < 0.001), and severity (r = 0.297; p = 0.003). Furthermore, PASI showed a direct and significant correlation with duration (r = 0.381; p < 0.001) as well as with severity and vice versa (r = 0.930; p < 0.001).



TABLE 6 Correlation matrix between psoriasis patients’ demographic data, clinicopathological features, and the MBL2 gene rs1800450 SNP genotyping.
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3.12 Correlation analysis of the studied variant, vitiligo patients’ demographic data, and clinicopathological features

The analysis of interrelationships between rs1800450 SNP and vitiligo cases’ demographic data and their clinicopathological features was performed, as shown in Table 7. Age showed a direct and significant correlation with VASI (r = 0.271; p = 0.01), duration (r = 0.438; p < 0.001), and disease onset (r = 0.812; p < 0.001). VASI showed a direct and significant correlation with age (r = 0.271; p = 0.01) as well as with duration (r = 0.447; p < 0.001) and vice versa.



TABLE 7 Correlation matrix between vitiligo patients’ demographic data, clinicopathological features, and the MBL2 gene rs1800450 SNP genotyping.
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4 Discussion

Genetics were found to have primary roles in both psoriasis and vitiligo disorders (7, 33–36). SNPs signify the most prevalent type of genetic variation (37), with massive attention attracted to the missense SNP subtype that may result in pathogenic consequences (38). Despite the importance of MBL in the immune system and the discovered links between MBL2 polymorphisms and autoimmune diseases (39), only a few studies to our knowledge have addressed the association between these variants with vitiligo and psoriasis disorders.

By applying the in silico methods, the SNP was predicted to affect protein function and protein stability. Furthermore, a protein’s secondary structure plays crucial functions in both the structure and folding of the protein, demonstrating the relevance of this structure (40); therefore, secondary structure analysis was performed using the SOPMA server. The secondary structure analysis detected no change regarding the alignment of the selected position. Moreover, PTMs could influence protein functions and have the potential to impact many aspects of protein biology, such as stability, cellular localization, and interaction with co-factors (41). Therefore, PTM analysis was performed, which revealed a loss of SUMOylation in position 56 with this mutation. In addition, gene–gene interaction examination revealed the 20 genes with the strongest connections to the MBL2 gene, which might be affected by MBL2 variants. The significance of researching gene–gene interactions while examining disease–gene associations was demonstrated by the verified presence of interaction between various genetic loci (42). Furthermore, mutations that cause diseases show a tendency to cause instability in protein–protein interactions (43). Consequently, the interaction pattern of MBL in conjunction with other proteins was predicted using the STRING database showing the 10 most prominent interactors.

Our experimental analysis revealed genotype frequencies of 76.3, 21.7, and 2% for AA, AB, and BB, respectively, which were similar to previously conducted studies on Egyptian populations. A 2018 study conducted by Hammad et al. showed genotype frequencies of 79.7, 18.6, and 1.7% with AA, AB, and BB, respectively (44). Moreover, genotype frequencies in another Egyptian study by Gomaa et al. exposed genotype frequencies of 64.6, 28.8, and 6.7%, respectively (12). Although the heterozygous allele displayed a high frequency in these studies along with our study, other previous studies showed even more elevated frequencies with the AB allele (9, 45, 46). With only limited exceptions, these remarkably elevated frequencies of this variant allele and other MBL deficiency variant alleles were detected worldwide. It is noteworthy that the allele B has nearly substituted the allele A in specific Indian populations in South America (47). This distinct pattern has raised inquiries about MBL significance and whether these mutations are associated with some kind of biological benefits (48). Different models were introduced in pursuit of the clarification of this phenomenon, resulting in an unsettled debate (49, 50). One explanation assumed a gained protection with these variants due to the associating low MBL levels that could be advantageous in case of tissue damage resulting from a strong inflammatory response (51). This postulation gave explanation to some previous findings that favored the clinical outcome with genotypes of low MBL in case of some disorders; these genotypes were associated with less severe autoimmune manifestations in primary Sjögren’s syndrome (10); moreover, tuberculosis protection was correlated with heterozygosity in MBL alleles, which is responsible for low levels of MBL (52). Furthermore, similar protective benefit was found for these genotypes against visceral leishmaniasis (53). In addition, the elevated MBL levels were identified to confer an augmented risk of ischemic heart disease along with myocardial infarction in rheumatoid arthritis (54, 55). On the other hand, another explanation excluded the existence of selective pressure and displayed the absence of statistical support for this pressure (56, 57), further advocating the redundancy of MBL in human immunity as a result (57).

Subsequently, the association between codon 54 polymorphism and psoriasis risk was investigated. Nevertheless, no significant association was revealed with all genetic association models. Moreover, no significant correlation was discovered between rs1800450 SNP and the clinicopathological features of psoriasis. The significance of MBL and MBL deficiency in disease pathogenesis has been a source of ambiguity and queries as studies indicate that low or elevated MBL levels show a damaging, protecting, or no effect on susceptibility to diseases (51), which could also be the case here, as recent studies have revealed the important role of MBL in psoriasis pathogenesis. One study found that MBL may aggravate psoriatic skin inflammation by assisting the infiltration of the neutrophils in psoriatic lesions (58). Another study revealed that psoriasis patients displayed higher MBL levels than control subjects and that the level of MBL correlated positively with PASI score and psoriasis severity, and found that MBL assisted the differentiating and infiltrating processes of plasmacytoid dendritic cells in initial skin lesions of psoriasis, leading to the aggravation of disease severity (59). Therefore, the reason for the lack of protective effect with MBL-deficient genotypes needs to be explained. One suggested explanation for the neutrality of MBL deficiency in previous studies was by assuming the redundancy of MBL and the existence of adequate substituting immune mechanisms (9, 60), as other pathways or molecules have demonstrated that they may make up for the deficiency of MBL (57, 61, 62).

The scarcity of previous related studies addressing MBL2 variants and psoriasis was noticed. The previously conducted study in the Turkish population included 50 psoriasis vulgaris patients along with 53 control subjects and found a significant association between rs1800450 SNP and psoriasis (20), which differs from our findings and with the potential protective role of MBL as well. However, previous analyses related to the impacts of MBL2 variants have pointed out the role of underpowered studies in inconsistent results (63).

In addition, the analysis was extended to examine the relationship between codon 54 polymorphism and vitiligo risk as well. However, the analysis also did not reveal a significant association with all genetic association models. Furthermore, no significant correlation was uncovered between this SNP and clinicopathological features of vitiligo. To our knowledge, only a limited number of previous studies dealt with this topic. Our result complies with the findings of both Karkucak et al. and Dwivedi et al., who investigated this issue; Karkucak et al. conducted their study on a Turkish population comprising 101 vitiligo cases and 101 control subjects, reporting the absence of the association of vitiligo risk with rs1800450 SNP (18). Moreover, Dwivedi et al. conducted their study on an Indian population comprising 92 cases affected by generalized vitiligo and 94 control subjects, revealing the absence of the association of this disease with rs1800450 SNP and other MBL2 SNPs (17). However, one more Turkish study, including 40 vitiligo patients and 50 healthy subjects, was conducted that suggested a role for rs1800450 in vitiligo susceptibility (19). Complying with the findings of the two studies with a larger sample size gave robustness to our findings. These findings also suggested the notion of redundancy regarding MBL. Finally, the current study had its limitations as well. The patient sample size included in this preliminary study was relatively small. As a result, there is a need for further studies to be conducted on the Egyptian population with a larger patient sample size that encompasses diverse geographic areas. Furthermore, despite investigating the selected variant’s relationship with two autoimmune skin disorders through a combination of experimental and computational approaches, there is still a need for more forthcoming studies that analyze several genetic factors and combine them with environmental factors to understand the full picture regarding these complex diseases.

In conclusion, the in silico analysis forecasted the consequences of the presence of the selected mutation on the protein’s function, stability, PTMs, and secondary structures. Moreover, our analysis emphasized the same frequency pattern of the codon 54 variant among the Egyptian population in comparison with other populations and highlighted the unsettled ambiguity regarding this pattern. The studied variant showed no association with the risk of psoriasis and vitiligo as well. Furthermore, this mutation did not significantly correlate with the clinicopathological data for both diseases. These findings supported the redundancy of MBL and the worth of the compensatory mechanisms.
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Footnotes

1   
http://mutpred2.mutdb.org/index.html


2   
http://mupro.proteomics.ics.uci.edu/


3   
https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_sopma.html


4   
https://www.musite.net


5   
http://www.genemania.org


6   
https://string-db.org/
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Background: Various immune checkpoint inhibitors, such as programmed cell death protein-1 (PD-1) and its ligand (PD-L1), have been approved for use, but they have side effects on the endocrine glands.

Methods: Adverse event reports related to PD-1/PD-L1 inhibitors from the FDA Adverse Event Reporting System (FAERS) from the first quarter of 2019 to the first quarter of 2023 were extracted, and the reported Odds ratio methods (ROR method) and comprehensive standard methods (MHRA methods) were used for data mining and analysis.

Results: A total of 5,322 reports (accounts for 6.68% of the total reports)of AEs in endocrine system were collected, including 1852 of pabolizumab (34.80%), 2,326 of navuliumab (43.71%), 54 of cimipriliumab (1.01%), 800 of atilizumab (15.03%), 222 of duvariumab (4.17%) and 68 of averumab (1.28%). Endocrine system-related AEs were mainly present in men (excluding those treated with pembrolizumab) aged ≥65 years. The ratio of AEs components in the endocrine system for the six drugs was approximately 3–8%. The main endocrine glands involved in AEs were the thyroid (pembrolizumab), pituitary and adrenal (nivolumab), adrenal (cemiplimab, atezolizumab, and avelumab), and thyroid (durvalumab). Most patients experienced AEs between 30 and 365 (mean, 117) days,the median time was 61d. AEs resulted in prolonged hospitalization in >40% and death in >10% of cases after administration of pembrolizumab, nivolumab, or durvalumab.

Conclusion: Men aged ≥65 years should be concerned about endocrine-related AEs. There was a lengthy interval between the use of PD-1/PD-L1 inhibitors and endocrine system-related AEs, but the outcome was serious. Special attention should be given to endocrine system-related AEs when using pembrolizumab, nivolumab, or durvalumab.
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1 Introduction

The programmed death-1 and programmed cell death-ligand 1 (PD-1/PD-L1) were major immune checkpoint inhibitors. The PD-1/PD-L1 derived drugs were specifically recognizing and blocking immunosuppressive molecules to achieve anti-tumor response, namely enhancing anti-tumor immune response, inhibiting immune evasion, inducing tumor cell death,It’s called immunotherapy for tumors (1–3). The immunotherapy is another important therapy strategy after surgery, chemotherapy and radiotherapy, which has been widely applied in the treatment of melanoma, lung, lymphoma, kidney, endometrial and other tumors (2, 4–6). However, PD-1/PD-L1 inhibitor will enhance over-activated immune cells response to normal cells, resulting in immune-related adverse events (irAEs) in organs or tissues.

Therefore, while benefiting from treatment, cancer patients will also be troubled by irAEs, such as gastrointestinal toxicity, skin toxicity, endocrine toxicity, immune-associated pneumonia, etc. (2), involving multiple systems. Treatment can trigger autoimmune reactions in various ways (e.g., increasing the level of autoantibodies (1)) and then involve multiple glands (e.g., pituitary, thyroid, and adrenal) to cause the corresponding functional disorders. Recent studies have shown that endocrine toxicity is irreversible in 50% of cases (7) and can be life-threatening if not identified and treated appropriately (8–10). The disproportional reporting is most usually employed in adverse drug events signal monitoring, which containing reporting odds ratio (ROR), comprehensive standard (MHRA) and proportional reporting ratio (PRR) methods. Up to date, there are numerous studies have been applied these methods in drug safety investigation (11–13).

Therefore, the proportional imbalance method was adopted in this study, we conducted data mining through the US Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) database. We focused on AEs reported after the use of PD-1/PD-L1 inhibitors in the endocrine system. We concentrated on the risks and characteristics of AEs caused by these drugs and provided references for further prevention and management.



2 Methods


2.1 Data sources

FAERS is an open database of anonymous patient health and treatment information that contains information on adverse event and medication error reports submitted to FDA. We used data from the FAERS database. The present study did not involve therapeutic interventions or the collection of human samples and, as such, was exempt from approval from an institutional review board approval. There are seven tables: patient demographic and administrative information, medication information, adverse drug reaction information, information on reporting sources, start and end dates of drug therapy, indications for use/diagnosis, and case deletions.

There are numerous types of PD-1/PD-L1 inhibitors. We included only single-agent preparations and excluded varieties available only on the market in China. As a result, we included six drugs for analyses. Pembrolizumab is a PD-1 inhibitor. Nivolumab is a PD-1 inhibitor. Cemiplimab is a PD-L1 inhibitor of atezolizumab, durvalumab, and avelumab.



2.2 Data processing

Cemiplimab was launched in the USA relatively recently (September 2018) compared with the other drugs. Hence, the time range of data extraction in the present study was the first quarter of 2019 to the first quarter of 2023 (17 quarters in total). The search terms (including the generic name and trade name of the drug) we used were “pembrolizumab/Keytruda,” “nivolumab/opdivo/opdualag,” “cemiplimab/libtayo,” “atezolizumab/tecentriq,” “durvalumab/imfinzi,” and “avelumab/bavencio.” The FAERS database is updated each quarter, so published reports will inevitably be duplicated. Hence, reprocessing was done using MySQL 8.0,1 as recommended by the FDA. If the CASEID and FDA_DT were identical, then the latest PRIMARYID was selected. If the CASEID and FDA_DT were identical, then the DELETE report was selected from the DELETE table. The FAERS database is encoded using the Medical Dictionary for Regulatory Activities (MedDRA) of the International Council for Organizations of Medical Sciences. Therefore, systematic organ classification (SOC) and the preferred term (PT) in the latest edition of the MedDRA Glossary of Adverse Drug Reactions (MedDRA 25.1) were used in the present study. MedDRA 25.1 standardizes and minimizes international terminology of terms to describe AEs (14, 15). According to PUBMED age grouping standard (16), the entire population was categorized into three distinct age groups: minors (age < 18 years), adults (18 ≤ age < 65 years), and senior citizens (≥65 years).



2.3 Data analyses

Data (e.g., target number of AEs reports and background number of AEs occurrences of the primary suspected drug) were obtained. Potential AE signals were screened based on a four-cell table (14, 17) of the proportional imbalance method (See Supplementary Table S1). Adopt the ROR and MHRA method, the ROR, proportional reporting ratio (PRR), and X2 equivalents are calculated, respectively. To avoid false-positive signals, the calculated corresponding values should reach the set threshold and be defined as the PT of valid signals (See Supplementary Table S2) (18–20). The larger the calculated value, the stronger the signal, indicating that the target drug is more likely to be associated with the target AEs, but this does not mean that there is a causal relationship between the two (21). All statistical analyses were undertaken using Prism 8 (GraphPad, La Jolla, CA, United States), SPSS29 and Excel® (Microsoft, Redmond, WA, United States).




3 Results


3.1 Primary characteristics of AEs reported in the endocrine system

As of the first quarter of 2023, the FAERS database collected 79,700 AEs reports. Among them, there were 22,918, 34,267, 1,239, 13,862, 6,014, and 1,300 AEs reports involving pembrolizumab, nivolumab, cemiplimab, atezolizumab, durvalumab, and avelumab as the primary suspected drug, respectively. Among them, there were 5,322 reports related to the endocrine system (accounting for 6.68% of the total reports), with the aforementioned six drugs accounting for 34.80, 43.71, 1.01, 15.03, 4.17 and 1.28%, respectively. Patients who suffered PD-1/PD-L1 inhibitor-associated AEs were predominantly male (except for those who had AEs after taking pembrolizumab) and most of the population is over aged >65 years. The occupations at the top of the list were physician and consumers. The countries with the largest number of AEs reports by drug were mostly Japan. The specific number and proportion of reports are shown in Table 1.



TABLE 1 Clinical characteristics of reported cases of AEs in endocrine system (n, %).
[image: Table1]



3.2 Proportion of AEs in the endocrine system

After SOC classification of excavated effective signals, we found no significant difference in the ratio of AEs components associated with PD-1/PD-L1 inhibitors in the endocrine system (approximately 3–8%). The specific numbers of cases and composition ratios are shown in Figure 1.

[image: Figure 1]

FIGURE 1
 Component ratio of AEs in endocrine system.




3.3 AEs signals and correlation with the endocrine system

A total of 131 AEs signals were detected in the endocrine system: 37 for pembrolizumab, 43 for nivolumab, six for cemiplimab, 25 for atezolizumab, 13 for durvalumab, and seven for avelumab. Endocrine system-related AEs had a strong correlation with pembrolizumab, including immune-mediated hypothyroidism (X2 = 27,216.81, ROR = 312.66), adrenocorticotropin deficiency (10,269.46, 105.25), and hypothyroidism (6307.58, 14.73). AEs closely associated with nivolumab were pituitary inflammation (X2 = 14,605.84, ROR = 82.57), adrenal insufficiency (6549.80, 19.03), and hypopituitarism (5874.78, 48.99). Adrenal dysfunction was the main factor in AEs attributed to a strong correlation between the use of cemiplimab and atezolizumab (X2 = 497.78, ROR = 25.10; X2 = 4582.73, ROR = 23.79). The AEs with a strong correlation with durvalumab use was silent thyroiditis (X2 = 508.62, ROR = 94.22). The AEs with strong association of avilumab was adrenal disease (X2: 252.79, ROR: 44.68). See Figure 2 for details.
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FIGURE 2
 Signals and correlation of adverse events in endocrine system.




3.4 Time of occurrence of AEs in the endocrine system

The onset time of AEs in the endocrine system was more distributed between 30–365 days, the median time was 61d, the median onset time of AEs in the endocrine system was 42d for pembrolizumab, 63 days for nivolumab, 161 days for cemiplimab, 73.5 days for atezolizumab, and 42 days for durvalumab. Avelumab was 56 days. Time of adverse endocrine system events with the use of six drugs. See Figure 3 for details.
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FIGURE 3
 Time distribution of AEs in endocrine system.




3.5 PD-1/PD-L1 inhibitors produce AEs in the endocrine system

In addition to unknown serious medical events, the most prevalent outcome of endocrine system AEs due to the use of PD-1/PD-L1 inhibitors was prolonged hospital stay (44.18–57.78%). The other most prevalent outcomes were death, life-threatening injury, and disability. Death due to taking pembrolizumab, nivolumab, or durvalumab accounted for >10% of cases. See Figures 3, 4 for details.

[image: Figure 4]

FIGURE 4
 Outcome distribution of AEs in endocrine system.





4 Discussion


4.1 Basic characteristics of reported cases of PD-1/PD-L1 inhibitor-associated endocrine system AEs

We found that, except for pembrolizumab, five PD-1/PD-L1 inhibitors associated with AEs occurred mainly in men, a result which is consistent with those of other studies (22, 23). Our finding is probably related to the completeness of the data. Compared with the data for the other five drugs, the data size for pembrolizumab was relatively large. The proportion of cases in which the sex of the patient was not known was relatively low (2.81%). Results can vary if data on sex are missing. All six PD-1/PD-L1 inhibitors were used for patients aged >65 years, which may have been related to the age when the disease was diagnosed (24, 25), however, elderly men over 65 years of age should be especially aware of the occurrence of relevant AEs. Most of the reporters are medical personnel, indicating that the AEs reported to the database has strong reliability. The countries that reported the most AEs were Japan and the USA. This finding suggests that other countries may be paying less attention to AEs in the endocrine system, but this may also be related to the number of people taking these drugs in such countries.



4.2 AEs distribution and correlation in endocrine system associated PD-1/PD-L1 inhibitors

The findings of this study, the number of AEs signals associated with the endocrine system was higher for PD-1 inhibitors than for PD-L1 inhibitors and the degree of correlation was also larger, especially pembrolizumab and nivolumab. The above findings are similar to the results of previous relevant studies (26), and this kind of ADR should be paid attention to when using related drugs. The results also suggest that, which should be considered (especially for pembrolizumab and nivolumab). The main organs involved in AEs associated with pembrolizumab use were the thyroid gland and adrenal glands, whereas they were the pituitary gland and adrenal glands for nivolumab, the adrenal glands for cemiplimab, the adrenal glands for atezolizumab, and the thyroid gland for avelumab. According to the Clinical Application Guide of Immune Checkpoint Inhibitors for Gynecological Tumors (2), the common types of endocrine toxicity caused by ICIs are dysfunction in the thyroid gland and acute pituitary inflammation, these data are consistent with the results of our study. As mentioned above, endocrine glands contain rich blood flow and may trigger autoimmune reactions through various ways such as the activation of autoimmune cells, thus involving multiple glands (1). However, the mechanism of adverse reactions in different glands may be different. In addition to immune-mediated mechanisms (3), thyroid injury may also be associated with the upregulation of PD-1 receptors in the thyroid gland (1). Furthermore, elevated levels of serum IL-1β, IL-2, and GM-CSF at baseline, as well as decreased levels of serum IL-8, G-CSF, and MCP-1 at an early stage are correlated with thyroid dysfunction (27, 28). Pituitary is also associated with humoral immunity, usually involving the anterior pituitary, which results in permanent dysfunction of one or more pituitary endocrine axes (29, 30). Combined with the results of our study, the use of PD-1/PD-L1 inhibitors seems to result in additional abnormalities in the functions of the thyroid gland and pituitary gland. These data suggest that monitoring abnormalities in the function of these two organs is important. In the event of a serious acute reaction, immunotherapy should be stopped promptly, and the corresponding drug treatment and symptomatic treatment should be applied (1).

In addition, the above guidelines mentioned that adrenal diseases were rare endocrine toxicity, but the results of this study found that the use of PD-1/PD-L1 inhibitors had a large association with adrenal diseases, which is worth noting. The mechanism of this glandular disease may be related to the infiltration of CD4 + t cells, especially Th1 and Th17 cells (3). Therefore, in clinical practice, medical personnel should still pay attention to the occurrence of such AEs. If patients have abnormal adrenal function and indicators, physicians and clinical pharmacists should judge whether it is caused by such drugs according to the baseline assessment, so as to correctly handle adverse drug reaction (ADR), it also provides reference for whether to adjust the anti-tumor therapy regimen in the future.



4.3 Occurrence time and outcome of AEs in endocrine system associated with PD-1/PD-L1 inhibitors

Our data suggested that AEs in the endocrine system occurred between 30 and 365 (mean, 117) days after the use of PD-1/PD-L1 inhibitors, the median time was 61d, which was consistent with Viola suggestion (31). The above results indicate that this type of AEs occurs slowly, and long-term follow-up monitoring is needed for patients using this type of drugs.

Hospitalization/prolonged hospitalization was the most prevalent outcome of AEs, followed by death, life-threatening illness, and disability. According to the Common Terminology Criteria for Adverse Events (CTCAE), patients who reach grade 3 or above will be hospitalized for intravenous hormone therapy (2), especially if there is a corresponding emergency/crisis, Additional treatments, such as anti-infection therapy, blood purification, and ventilatory support, are needed (1), if the treatment is not timely and incorrect, it can endanger life or even death (33), indicating the severity of the AEs, it is necessary to do a baseline assessment before the use of this type of drug in clinical practice, and close monitoring during use to identify ADR as early as possible and timely intervention to reduce or even avoid the occurrence of adverse outcomes. It is worth noting that the death outcome of pembrolizumab, nivolumab and durvalumab accounted for more than 10%. When patients use the above three drugs, clinical pharmacists should set them as key monitoring objects, closely monitor the corresponding indicators and changes in symptoms and signs, pay attention to the suitability of medication, and cooperate with the clinic to improve the prognosis.




5 Research limitations

First, the FAERS database has a large amount of data, there are also a lot of missing data information such as gender, age and adverse event occurrence time, especially the time is not accurate enough. Secondly, the accuracy and professionalism of the information of “adverse events” in the database need to be improved. Reporters from different occupational backgrounds may use different descriptions of endocrine toxicity and endocrine disorders, which may lead to deviations in the equivalence calculation of ROR and PRR for a single PT. Despite these limitations, spontaneous reporting may be the best way to collect more AEs that might otherwise be overlooked (34). Third, the AEs signal detected in this study indicates that the drug is statistically correlated with the AEs, but it does not mean that there is a causal link in biology, and further clinical trials are needed to explore (35, 36). In addition, sensitivity analysis cannot be performed in the current proportion imbalance method, and the impact of combined drug use on the outcome is difficult to predict,other research methods can be explored to evaluate the impact in the future. Fourth, due to a lack of information on the total number of people used, the incidence of specific adverse events cannot be calculated (37), therefore, the intensity of the association between drugs and adverse events was measured.



6 Conclusion

Men aged ≥65 years should be concerned about endocrine-related AEs. The use of different PD-1/PD-L1 inhibitors mainly involves interaction with the endocrine glands, so physicians should be careful when prescribing drugs for patients with associated underlying diseases. There was a lengthy interval between the use of PD-1/PD-L1 inhibitors and endocrine system-related AEs, but the outcome was serious. Therefore, long-term, meticulous monitoring and appropriate treatment are necessary. Special attention should be given to endocrine system-related AEs when using pembrolizumab, nivolumab, or durvalumab.
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Bioinformatic meta-analysis reveals novel differentially expressed genes and pathways in sarcoidosis
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Introduction: Sarcoidosis is a multi-system inflammatory disease of unknown origin with heterogeneous clinical manifestations varying from a single organ non-caseating granuloma site to chronic systemic inflammation and fibrosis. Gene expression studies have suggested several genes and pathways implicated in the pathogenesis of sarcoidosis, however, due to differences in study design and variable statistical approaches, results were frequently not reproducible or concordant. Therefore, meta-analysis of sarcoidosis gene-expression datasets is of great importance to robustly establish differentially expressed genes and signalling pathways.

Methods: We performed meta-analysis on 22 published gene-expression studies on sarcoidosis. Datasets were analysed systematically using same statistical cut-offs. Differentially expressed genes were identified by pooling of p-values using Edgington’s method and analysed for pathways using Ingenuity Pathway Analysis software.

Results: A consistent and significant signature of novel and well-known genes was identified, those collectively implicated both type I and type II interferon mediated signalling pathways in sarcoidosis. In silico functional analysis showed consistent downregulation of eukaryotic initiation factor 2 signalling, whereas cytokines like interferons and transcription factor STAT1 were upregulated. Furthermore, we analysed affected tissues to detect differentially expressed genes likely to be involved in granuloma biology. This revealed that matrix metallopeptidase 12 was exclusively upregulated in affected tissues, suggesting a crucial role in disease pathogenesis.

Discussion: Our analysis provides a concise gene signature in sarcoidosis and expands our knowledge about the pathogenesis. Our results are of importance to improve current diagnostic approaches and monitoring strategies as well as in the development of targeted therapeutics.
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 sarcoidosis; granuloma; gene expression; meta-analysis; IFN-JAK-STAT signalling


Background

Sarcoidosis is an inflammatory disorder characterized by the formation of non-caseating epithelioid granulomas in various organs. However, the aetiology and pathogenesis of sarcoidosis are not fully understood. The lungs and hilar lymph nodes are most often affected, but almost all organs can be involved (1). The clinical presentation of sarcoidosis is therefore heterogeneous and can range from small benign skin lesions to chronic systemic inflammation. This variability in disease presentation makes it challenging to diagnose sarcoidosis. This diagnosis is mainly based on clinical and radiographic presentation, pathological evidence of non-caseating granulomas and the exclusion of other granulomatous diseases (2, 3). Even though, the lesions resolve spontaneously in a large portion of patients, irreversible tissue damage, like pulmonary fibrosis occurs in up to 20% of cases leading to increased morbidity and mortality (4, 5). More knowledge about the molecular mechanisms involved in the pathophysiology of sarcoidosis is warranted to develop better and more adequate monitoring strategies as well as treatment options.

There is a consensus that complex interactions between genetic and environmental triggers culminate into an aberrant immune response to unidentified antigens including infectious agents (6). Moreover, it is proposed that sarcoidosis encompasses both autoinflammatory and autoimmune features (7). Particularly the similarities of sarcoidosis with Blau syndrome (early-onset sarcoidosis), caused by mutations in nucleotide-binding oligomerization domain containing 2 (NOD2), supports an autoinflammatory hypothesis. Meanwhile, the association with HLA-DRB1 genotypes provides more evidence in the direction of autoimmunity (8). In patients with sarcoidosis, an altered T helper 1 (Th1) immune response is observed partly through activation of signal transducer and activator of transcription 1 (STAT1) and production of interferons (IFNs) (9, 10). This has led to the targeting of the Janus kinase (JAK)-STAT signalling pathway in sarcoidosis using inhibitors like baricitinib (11) and tofacitinib (12) for patients with refractory symptoms.

Gene expression studies, also referred to as transcriptomic studies, have been very promising and widely used to identify disease-associated differentially expressed genes (DEGs). Such studies can provide candidate targets for therapy as well as disease biomarkers. However, a concern about transcriptomic studies is their reproducibility and generalizability mainly due to differences in study design, data analysis strategies and limited sample size. With the increasing awareness of open data, more and more datasets are becoming available allowing to identify specific disease associated genes and pathways suitable for therapeutic intervention. Systematic meta-analysis of transcriptomic data for sarcoidosis provides a powerful tool to identify robust gene signatures. Therefore, we systematically analysed sarcoidosis transcriptome by performing meta-analysis on 22 gene expression datasets obtained from various tissues, bronchoalveolar lavage fluid (BALF) and peripheral blood comparing sarcoidosis patients with healthy controls taking into account both the blood and target tissue samples.



Methods


Dataset acquisition

The genome expression omnibus (GEO) database (13) was queried for expression profiling by array or high-throughput sequencing using the following string: “Sarcoidosis [All Fields] AND GSE [All Fields].” Datasets containing human RNA expression were selected and further explored with original papers for study design. We excluded single-cell RNA sequencing experiments as well as those with unclear study design or sample annotation. Only datasets with more than four sarcoidosis patients and healthy controls were included in this comparative study. Raw data from these selected studies were downloaded from the GEO database and further processed.



Dataset preparation and processing

Normalization of Affymetrix and Illumina BeadChip array data was performed with robust microarray average (RMA) within the R package affy (14) and with neqc within the R package limma (15), respectively. Quantile normalization on the gProcessedSignal and subsequent log-transformation, was used for Agilent datasets. RNAseq count data was normalized within the R package DESeq2 (16). Principal component analysis was performed to assess batch effects and if that was suspected, the ComBat function within the SVA R package (17) was used for batch correction of the gene expression dataset. Differential expression was calculated for every dataset using the limma and DESeq2 R packages for array and sequencing data, respectively. If a dataset contained multiple cell-types or tissues, it was analysed separately based on the cell-types. A paired analysis was performed on datasets containing multiple samples from a single individual. We did not adjust for confounding factors like age, gender or ethnicity, due to the scarcity of data in the datasets, whereas we aimed at analysing each dataset systematically and uniformly.



Analysis of datasets for shared genes and signalling pathways

First, we investigated the sarcoidosis datasets for commonly DEGs. In this analysis, we did not differentiate datasets based on cell type or tissue. A list of DEGs was obtained per dataset by setting the significance level of the adjusted p-value (padj) to less than 0.05 and subsequently annotated the acquired gene lists with HUGO gene symbols. Because the threshold put on the log fold change (FC) depends on the gene and experimental context (18), we did not use the log FC to determine DEGs as a standardized threshold would be too lenient for some datasets and too stringent for others. Ingenuity Pathway Analysis (IPA) (19) was used for functional core analysis of all acquired gene lists. A comparative analysis was performed to investigate the pathways and upstream regulators involved across datasets. Second, the gene lists of DEGs were analysed for overlapping genes. After the individual differential expression analyses, a meta-analysis was performed to test the robustness of our findings. The p-values from the individual analyses were combined using Edgington’s method (20) within the R package metap (21). The calculated pmeta-analysis was subsequently Bonferroni corrected to adjust for multiple testing. Pattern of differential expression was investigated for each gene in the individual datasets through the log FC, where a positive and negative log FC were categorized as upregulation and downregulation of the gene, respectively. If the pattern differed in more than three datasets, the gene was not considered consistently differentially expressed and was excluded from further analysis. Thus an acquired gene list was loaded in IPA to build an integrated gene network. Furthermore, to examine these genes in the context of JAK–STAT pathway, IFN signalling was investigated in a separate analysis. These genes were loaded in a dataset (GSE110549) generated by the Immunological Genome Project exploring in vivo effects of IFN-α and IFN-γ stimulation on murine macrophages (22).



Identification of tissue-specific genes and pathways

Furthermore, we investigated whether there are cell type or tissue-specific gene expression profiles in sarcoidosis to determine biological mechanisms of granulomatous inflammation and find specific targets for therapy. Because the majority of datasets contained blood samples, we made a distinction between blood and other cell types. We investigated the acquired gene lists for genes exclusively differentially expressed in the affected sarcoidosis tissues. Finally, identified genes that were exclusively up- or downregulated in tissues were uploaded in IPA to investigate possible tissue-specific pathways, upstream regulators and gene networks.




Results


Search and analysis of GEO database

A systematic search was conducted in the GEO database for sarcoidosis specific datasets. Up until January 2024, our search strategy retrieved 80 datasets worldwide, of which 22 datasets (23–41) were selected and subjected to further analysis after rigorous exclusion criteria (Table 1 and Figure 1). In these 22 datasets, a total of 461 sarcoidosis and 497 healthy control samples across multiple tissues and cell types were analysed. Thirteen datasets used blood derived cells for their analysis, whereas 8 datasets were derived from lung, BALF, nasal brush, lymph node and skin tissue. One dataset contained both blood and BALF samples, which were analysed as separate datasets. Besides diagnostic parameters, clinical details were often not included or reported for individual samples. According to the original manuscripts, 11 out of 22 datasets contained at least one sample that used immunosuppressive therapy for sarcoidosis. Analysis of individual datasets for DEGs (padj < 0.05) revealed altered expression of a large number of genes. Thus derived lists of DEGs per dataset ranged from zero to thousands of genes, including two out of 22 datasets that did not show any DEGs (Figure 1).



TABLE 1 Included datasets and their characteristics.
[image: Table1]
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FIGURE 1
 Flowchart of dataset selection and analysis. *One dataset contained both blood and BALF samples.




Genes and signalling pathways associated with sarcoidosis

In order to allow cross-platform comparison of the data sets, we annotated the lists of DEGs using the platform identifier with HUGO gene nomenclature. Highly consistent DEGs were identified: 30 genes were differentially expressed in at least 13 datasets, of which 20 showed very consistent pattern of differential expression (if the pattern of differential expression differed in more than three datasets, the gene was not considered as a DEG) across the datasets (Table 2). These genes were differentially expressed in both blood-derived datasets as well as in datasets derived from affected tissues. Guanlytate-binding protein 1 (GBP1), STAT1 and tryptophayl-tRNA synthetase 1 (WARS1) showed most consistent differential expression in 16 out of 22 datasets and expression levels were found predominantly upregulated in sarcoidosis. Differential expression of genes high-affinity gamma FC receptor I (FCGR1A also referred as CD64), GBP2, and vesicle-associated membrane protein 5 (VAMP5) was observed in 15 datasets. Interestingly, STAT1, GBP1, GBP2 and GBP5 were upregulated in all datasets (Table 2).



TABLE 2 Differentially expressed genes in at least 13 datasets.
[image: Table2]

Next, we integrated all the datasets to perform meta-analysis on the p-values to identify additional consistent DEGs as some genes could not be investigated on all transcriptomic platforms due to their varied design. Pooling of p-values with Edgington’s method and subsequent Bonferroni correction resulted in 36 significantly expressed genes. Of these 36 genes, 12 displayed variable pattern of up or down regulation and hence, they were excluded from further analysis (Table 3). To investigate the relationship between the remaining 24 genes, a connectivity plot was generated in IPA (Figure 2). Remarkably, more than half (14 out of the 24) of the genes were well connected in the connectivity network. STAT1, IL-12, and IFN signalling pathways appeared centrally positioned within the network and were predicted to be activated. Also insulin was positioned in the network. Both type I IFN (IFN-α and IFN-β) and type II IFN (IFN-γ) were predicted to be upregulated within the connectivity network. Therefore, we explored this further in a murine dataset specifically on IFN signalling (GSE110549) where we verified that half of the genes identified in the meta-analysis were upregulated upon IFN stimulation, advocating for a pivotal role of altered IFN signalling in sarcoidosis (Supplementary Figure S1).



TABLE 3 Gene list of the significant (padj < 0.05) genes in the meta-analysis.
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FIGURE 2
 Connectivity network generated on 16 of the 25 significant genes from the meta-analysis. Centrally positioned in the network are STAT1 and interferon alpha, which suggests these play an important role in sarcoidosis. Red and green molecules are up- and downregulated in the genelist respectively, whilst orange and blue are predicted to be up- and downregulated based on the input genelist by the molecule activity predictor (MAP) function within IPA.




In silico functional analysis for the signalling pathways

All individual gene lists of DEGs were loaded into IPA for functional pathway analyses. Eukaryoitc initation factor 2 (EIF2) signalling pathway was consistently predicted to be downregulated across datasets in sarcoidosis patients as compared to healthy controls. On the other hand, pro-inflammatory pathways like IFN-signalling, neuro-inflammation and hypercytokinaemia/hyperchemokinaemia were predicted to be activated in sarcoidosis patients (Figure 3A). This was further indicated by the upstream regulators found within IPA analysis. Pro-inflammatory transcription factors and cytokines (i.e., STAT1, TNF, IL-6 and IL-1β) were consistently predicted to be activated (Figure 3B). Also type I and type II IFNs were consistently predicted to be upregulated, strongly suggesting activation of the IFN-STAT1 pathway. Only a few upstream regulators were consistently downregulated after stringent filtering within IPA. Inhibitors like, PD98059 U0126 and LY294002 (Figure 3B) target the MAPK/ERK and PI3K/AKT/mTOR pathways, suggesting that these chemical compounds could inhibit these activated signalling pathways in sarcoidosis. These pathways often run in parallel and converge to regulate important cellular processes.

[image: Figure 3]

FIGURE 3
 In silico functional analysis of the individual differentially expressed gene lists. (A) Heatmap of the comparison analysis within IPA that shows the canonical pathways involved in each individual dataset. Across the datasets, similar canonical pathways were predicted to be involved. (B) Heatmap that shows the upstream regulators predicted to be involved across the functional analyses of the individual datasets.




Identification of tissue-specific DEGs

Finally, we investigated tissue-specific gene signatures in sarcoidosis. We hypothesized that DEGs in affected tissues may play a crucial role in granuloma formation and their maintenance. Nine datasets were retrieved from tissues, of which 8 showed DEGs. A disintegrin and metalloprotease like decysin 1 (ADAMDEC1) and WD repeat and SOCS box-containing protein 1 (WSB1) were differentially expressed (upregulated) in seven datasets, however, these were also differentially expressed in a few blood datasets. The most consistent tissue-specific DEG was matrix metallopeptidase 12 (MMP12), which was highly upregulated in 6 tissue-derived datasets (two BALF, two lung, one lacrimal gland and one lymph node derived dataset) and in no blood-derived dataset. In five of the tissue-specific datasets C-X-C motif chemokine receptor 6 (CXCR6) and syntrophin beta 2 (SNTB2), whereas in four datasets colony stimulating factor 2 (CSF2), fatty acid desaturase 1 (FADS1), interleukin 18 binding protein (IL18BP), acyl-CoA synthetase family member 2 (ACSF2), cystatin B (CSTB), C-C motif chemokine ligand 4 (CCL4), adenosine deaminase (ADA), JAK3, malic enzyme 1 (ME1), muscle RAS Oncogene Homolog (MRAS) and RAS guanyl releasing protein 3 (RASGRP3) were differentially expressed. Most of these genes are involved in the activation of processes such as leukocyte recruitment and migration and form a concise network around PI3K and MAPK/ERK signalling (Figure 4).
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FIGURE 4
 Connectivity network generated on 9 of the 14 genes with high tissue specificity. The PI3K-pathway and MAPK/ERK signalling are centrally positioned in the network. Red and green molecules are up- and downregulated in the genelist respectively, whilst orange and blue are predicted to be up- and downregulated based on the input genelist by the molecule activity predictor (MAP) function within IPA.





Discussion

Using public datasets in the GEO database, we studied 22 sarcoidosis datasets and performed a meta-analysis to identify genes and pathways those are common across these studies and differentiate sarcoidosis patients from healthy controls. We found that there are clear differences in gene expression profiles for GBP1, STAT1 and WARS1 among others between sarcoidosis patients and healthy controls. Furthermore, the integration of datasets provided a comprehensive view for certain genes (STAT1, WARS1, GBP1, VAMP5, and PSTPIP2) being consistently expressed in the majority of datasets advocating for their role in the pathogenesis of sarcoidosis. These genes could potentially be used to develop meaningful genomic-derived biomarkers for sarcoidosis. In analogy to several other transcriptomic studies, we identified both type I and type II IFN signalling as important pathways (42), but in this meta-analysis also poorly studied pathways became apparent in the context of sarcoidosis such as EIF2 signalling and neuro-inflammation. Finally, we explored datasets with samples from sarcoidosis-affected tissues and identified tissue-specific DEGs (MMP12, CXCR6, and SNTB2) those likely to play important respective roles, specifically in granulomatous inflammation. Hence, it can be proposed that these specific genes and their respective translated proteins could be targeted for precise therapy of sarcoidosis lesions.

Whether a gene is considered differentially expressed in transcriptomic studies revolves around the chosen cut-offs in (adjusted) p-value and fold change. The results between transcriptomic studies often differ due to differences in study design, analysis strategies and sample size. Therefore, to circumvent these issues, a meta-analysis on several datasets of particular disease, becomes an important tool for analysis and inferences increasing the strength of such studies to establish true signals (43). We assessed the differential expression pattern by integrating these datasets based on the p-values thus creating a robust analysis to identify consistently DEGs. In this study, to the best of our knowledge, the largest systematic meta-analysis of transcriptomic data in sarcoidosis is being presented.

Sarcoidosis research so far has predominantly focused on the IFN-STAT1 pathway linked to T cells and macrophages. In fact, there have been numerous reports on the development and exacerbation of sarcoidosis after IFN therapy (44, 45). Our study highlights the importance of this pathway as several of the most consistently DEGs are associated with IFN signalling. Furthermore, in IPA analysis JAK1/2 was found in the connectivity network, strongly suggesting the rationale to target the JAK-STAT pathway with JAK inhibitors in sarcoidosis patients. Interestingly, we identified multiple members of GBP gene family to be consistently differentially expressed (GBP1, GBP2, GBP4 and GBP5). These genes are a group of seven IFN-inducible GTPases implicated in the host defence against intracellular pathogens by targeting and inducing lysis of pathogen-containing vacuoles (46). Differential expression of GBPs as found in our study, is not only attributed to the pulmonary sarcoidosis, but aberrant expression of GBP1 has also been demonstrated earlier in acute respiratory distress syndrome (47).

One of the most consistently differentially expressed genes was FCGR1A (CD64), which was differentially expressed in 15 out of 22 datasets. This gene is strongly induced by IFN-γ and plays a central role in antibody-dependent cytotoxicity and FCγ receptor-mediated phagocytosis (48). Phagosome and phagocytosis has been reported to be upregulated in monocytes of sarcoidosis patients (49). In proteomic studies, FCγ receptor-mediated phagocytosis is upregulated in sarcoidosis (50, 51). Several genes including FCGR1A, ubiquitin conjugating enzyme E2 L6 (UBE2L6) and VAMP5, found statistically significant in our meta-analysis have also been described in the context of tuberculosis (TB) (52). In both sarcoidosis and TB, granulomas are the hallmark, but the granulomas in sarcoidosis are non-caseating, whereas the granulomas in TB frequently contain a necrotic core. Most likely these diseases, despite their differences, may share common inflammatory pathways and mechanisms corroborated by overlapping gene expression profiles (25, 31, 33).

Our analysis revealed novel genes, such as WARS1 and VAMP5 those were never implicated in sarcoidosis. WARS1 is an essential enzyme called tryptophayl-tRNA synthetase 1 that charges tryptophane to its cognate tRNA and also plays a role in the innate immune system. WARS1 is upregulated upon infection and can act as a ligand of toll-like receptor (TLR) 2 and TLR4. This leads to secretion of cytokines and activation of various immune pathways (53). VAMP5 is part of the SNARE protein family, which is involved in vesicle fusion and recycling (54). VAMP5 is involved in intracellular transport including exocytosis, endocytosis and recycling of endosomes (55). These processes are closely related to autophagic pathways, which have been implicated in the pathogenesis of sarcoidosis (56). Identification of these genes adds to the knowledge about the genetics and pathogenesis of sarcoidosis and opens avenues for further research into these proteins.

IPA analysis of datasets analysed in this study predicted EIF2 signalling to be downregulated. The EIF2 signalling cascade is involved in autophagy, protein translation and cell survival as well as the mammalian target of rapamycin (mTOR) pathway (57, 58). Recently, the mTOR pathway gained much attention in sarcoidosis (59–61), after the finding that constitutive activity of mTORC1 causes formation of granulomas (62). In this regard, Gupta and colleagues successfully treated a patient with pulmonary sarcoidosis with mTOR inhibitor sirolimus (63). Moreover, our tissue-specific analysis showed PI3K in the connectivity network, suggesting that the PI3K/mTOR pathway is involved only in affected tissues. Another interesting finding in IPA analysis was the upregulation of neuro-inflammation signalling pathway. Small fiber neuropathy is observed in about 30% of patients with systemic sarcoidosis (64), in which circulating inflammatory and neurotoxic cytokines may be involved (65). Recently, the upregulation of the neuro-inflammatory response was found by another group studying the sarcoidosis transcriptome and proteome (66). This interesting study is a meta-analysis as well, however, their strategy differed significantly from ours as they performed meta-analysis on the common pathways rather than DEGs. Moreover, recently two other meta-analyses on the transcriptome of sarcoidosis have been published (67, 68). These studies used only 11 and 13 studies respectively, excluding many relevant studies in their analyses. Therefore, our study is the largest systematic meta-analysis to identify robust DEGs which can be of value as biomarkers for sarcoidosis.

Interestingly, insulin was another hub in the connectivity network generated by IPA. Sarcoidosis patients are at increased risk for developing type 2 diabetes (T2D) (69). Much is unknown about this association, however, chronic inflammation and increased secretion of cytokines might predispose sarcoidosis patients to develop T2D (70). The IFN-γ/STAT1 upregulation, as found in our study, could be linked to insulin resistance in adipocytes through multiple mechanisms, including downregulation of the insulin receptor and glucose transporter type 4 (71). Additionally, STAT1 expression in white adipose tissue is elevated in prediabetic patients and STAT1 levels are positively correlated with plasma glucose (72). Together, these data suggest an important role for IFN-γ/STAT1 signalling in T2D observed in sarcoidosis patients, that is further exacerbated by steroid treatment and warrants attention from clinicians.

Finally, we looked for a tissue-specific gene signature in sarcoidosis and found MMP12 upregulated in most tissue-specific datasets. MMP12 is an elastase enzyme predominately produced by M2 tissue macrophages (73), those aggregate and form the characteristic multinucleated giant cells as seen in granulomas (74). Involvement of MMP12 in sarcoidosis specially in granuloma progression has been reported previously (27, 75). In our study, MMP12 was only differentially expressed at tissue sites, which is highly suggestive for its crucial role in granuloma formation. CXCR6 was also tissue-specific in our analysis, and this gene has been found to be expressed in Th1 cells surrounding the central core of sarcoidosis granulomas (76). Therefore, tissue-specific DEGs like MMP12 and CXCR6, or potentially its ligand CXCL16, could be interesting therapeutic targets for sarcoidosis lesions.


Limitations of the study

Among 22 datasets included in this meta-analysis, we were limited with respect to sample size, variable tissues and cell types as well as different technological platforms. Additionally, sarcoidosis patients can differ substantially in clinical presentation, disease progression and treatment response. Studies have shown distinct gene expression profiles between self-limiting sarcoidosis and progressive sarcoidosis (37, 77). Unfortunately, clinical information such as age, sex, ethnicity, treatment regimen, and disease activity were poorly reported by most studies. To appropriately circumvent these limitations, we opted for an iterative and systematic approach, through which we observed highly consistent DEGs and pathways in sarcoidosis despite this variability among studies. Furthermore, we were not able to adjust for other confounding factors such as lymphopenia, which is often observed in sarcoidosis patients and associated with disease activity (78). Attention should be paid to treatment regime and disease activity. Eleven of the 22 included datasets contained at least one sample that used immunosuppressive therapy, whereas three datasets excluded patients who were on immunosuppression. We did not observe major differences in DEGs between these datasets, but it is known that immunosuppression can alter gene expression in disease (79). Appropriate studies with disease endotyping are needed to study and identify potential biomarkers stratifying sarcoidosis subgroups leading to a precision-medicine approach (80). Finally, only eight of the 22 studies investigated here were derived from target tissues, highlighting the need for more studies investigating tissue-specific signatures to gain more insight in the genes and pathways involved in granuloma formation. Whether the described genes in this study represent activation or perpetuation of the disease needs further exploration.




Conclusion

In this meta-analysis study, 22 sarcoidosis gene expression datasets were systematically and uniformly assessed to identify DEGs and their signalling pathways. Integration of the results from individual datasets revealed a number of novel candidate genes (i.e., GBPs, VAMP5 and WARS1) and pathways in addition to previously described DEGs in sarcoidosis. Meta-analysis identified a robust and compact gene signature that points towards altered IFN-JAK-STAT1 signalling in sarcoidosis. Our findings add to the emerging evidence to employ JAK inhibitors as a targeted treatment in sarcoidosis patients. More strikingly, the DEGs found in our meta-analysis can further be explored to develop genomic-derived biomarkers for sarcoidosis. We found tissue-specific signature of genes like MMP12, CXCR6, and SNTB2 suggesting their pathways are likely to be involved in granuloma formation and progression and could eventually be potential therapeutic targets for sarcoidosis. Clinical manifestation still remains a challenge with respect to disease activity and progression, which warrants the need for further transcriptomic studies with endotyping investigating pulmonary phenotypes and immune responses.
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Background: Although previous clinical studies and animal experiments have demonstrated the efficacy of Gegen Qinlian Decoction (GQD) in treating Type 2 Diabetes Mellitus (T2DM) and Ulcerative Colitis (UC), the underlying mechanisms of its therapeutic effects remain elusive.

Purpose: This study aims to investigate the shared pathogenic mechanisms between T2DM and UC and elucidate the mechanisms through which GQD modulates these diseases using bioinformatics approaches.

Methods: Data for this study were sourced from the Gene Expression Omnibus (GEO) database. Targets of GQD were identified using PharmMapper and SwissTargetPrediction, while targets associated with T2DM and UC were compiled from the DrugBank, GeneCards, Therapeutic Target Database (TTD), DisGeNET databases, and differentially expressed genes (DEGs). Our analysis encompassed six approaches: weighted gene co-expression network analysis (WGCNA), immune infiltration analysis, single-cell sequencing analysis, machine learning, DEG analysis, and network pharmacology.

Results: Through GO and KEGG analysis of weighted gene co-expression network analysis (WGCNA) modular genes and DEGs intersection, we found that the co-morbidity between T2DM and UC is primarily associated with immune-inflammatory pathways, including IL-17, TNF, chemokine, and toll-like receptor signaling pathways. Immune infiltration analysis supported these findings. Three distinct machine learning studies identified IGFBP3 as a biomarker for GQD in treating T2DM, while BACE2, EPHB4, and EPHA2 emerged as biomarkers for GQD in UC treatment. Network pharmacology revealed that GQD treatment for T2DM and UC mainly targets immune-inflammatory pathways like Toll-like receptor, IL-17, TNF, MAPK, and PI3K-Akt signaling pathways.

Conclusion: This study provides insights into the shared pathogenesis of T2DM and UC and clarifies the regulatory mechanisms of GQD on these conditions. It also proposes novel targets and therapeutic strategies for individuals suffering from T2DM and UC.
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1 Introduction

Emerging research posits that chronic tissue inflammation is a central player in the pathogenesis of Type 2 Diabetes Mellitus (T2DM), characterized by a state of low-grade inflammation (1). The disturbance in gut mucosal ecology in individuals with T2DM, combined with the active migration of intestinal flora to mesenteric adipose tissue (MAT) and the bloodstream, results in a continuous influx of inflammatory antigens (2). Ulcerative colitis (UC) is a chronic, nonspecific inflammatory condition characterized by extensive mucosal inflammation in the colon (3), typically arising from an imbalance between the gut flora and the immune system (4). Although T2DM and UC share common features, such as disruptions in gut microbiota and intestinal mucosa inflammation, the precise mechanisms underlying their co-occurrence remain unclear.

Currently, there is no cure for Type 2 diabetes. Despite the recent successful development of numerous antidiabetic drugs, single-target treatments are increasingly seen as inadequate due to individual variations, diverse pathogenesis, and issues related to drug and body resistance (5). Similarly, ulcerative colitis carries a heightened risk of adverse events, treatment resistance, and loss of response over time, highlighting the limitations of current therapies (6). Thus, multi-target drugs offer greater potential advantages over single-target drugs, underscoring the need to continually identify new targets to develop effective and safe therapies. Traditional Chinese medicine formulations are characterized by their multi-component approach, targeting multiple pathways and targets simultaneously.

The venerable Chinese herbal prescription, Gegen Qinlian Decoction (GQD), traces its origins to the era of the Eastern Han Dynasty. This formulation, consisting of four vital herbs—Radix puerariae, Radix scutellariae, Rhizoma coptidis, and Glycyrrhizae Radix, represents a traditional prescription deeply rooted in the principles of Traditional Chinese Medicine (TCM), specifically tailored for addressing intestinal damp-heat syndrome. A large-scale randomized controlled study (RCT) has demonstrated GQD’s efficacy in significantly lowering HbA1c and fasting blood glucose (FBG) levels, offering relief in cases of T2DM (7). Animal experiments suggest that GQD may mitigate systemic and local inflammation by promoting the enrichment of butyrate-producing intestinal flora, thereby ameliorating clinical manifestations associated with T2DM (8). Meta-analyses have shown that GQD effectively alleviates symptoms in individuals with UC, resulting in decreased Ulcerative Colitis Endoscopic Index of Severity (UCEIS) scores and maintaining a low recurrence rate, all while exhibiting minimal adverse events (9). Furthermore, additional animal studies have elucidated the mechanisms underlying GQD’s therapeutic effects in alleviating ulcerative colitis, including the reduction of inflammation and oxidative stress, inhibition of the IL-6/JAK2/STAT3 signaling pathway, restoration of the balance between Treg and Th17 cells in colonic tissues, and enhancement of intestinal barrier function (10, 11).

As bioinformatics advances and the widespread adoption of gene chips continue, their integration into the biomedical domain has become indispensable. The analysis of microarray data emerges as a transformative tool, offering fresh insights into the shared etiological underpinnings of both T2DM and UC. In this investigation, a comprehensive strategy merging bioinformatics and machine learning was employed, drawing upon datasets from the GEO database to unravel the intertwined comorbid mechanisms associated with T2DM and UC. Furthermore, our study delved into network pharmacology, shedding light on the intricate mechanisms governing the utilization of GQD across diverse diseases sharing a common treatment modality (Figure 1).

[image: Figure 1]

FIGURE 1
 Workflow diagram illustrating the research strategy, encompassing five main components: database preparation, exploration of co-morbidity mechanisms in T2DM and UC, biomarker prediction for GQD treatment, and network pharmacology along with molecular docking analyses.




2 Methods


2.1 Datasets

We queried the GEO database1 to retrieve gene expression profiles of individuals diagnosed with Type 2 Diabetes Mellitus (T2DM) and Ulcerative Colitis (UC), using search terms such as “type 2 diabetes” and “ulcerative colitis.” For the subsequent phase of our investigation, we selected the following GEO datasets: GSE3365, GSE48958, GSE75214, GSE231993, GSE20966, GSE25724, GSE29221, and GSE220939 (Table 1).



TABLE 1 Data sets and their characteristics.
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2.2 Construction of weighted gene co-expression networks

We leveraged Weighted Gene Co-Expression Network Analysis (WGCNA) to pinpoint clusters of closely linked genes. Applying WGCNA, we scrutinized the differential genes within the GEO datasets GSE20966 and GSE75214, unveiling co-expression modules and pivotal genes intricately linked to both T2DM and UC. In the dataset about T2DM, the outlier GSM524165 was omitted, and subsequent parameter selection involved R2 = 0.85 and β = 9. In the case of the UC dataset, parameters R2 = 0.85 and β = 8 were applied. The matrices undergo sequential transformation and derivation, ultimately yielding the Topological Overlap Matrix (TOM). Hierarchical clustering, with a minimum module size set at 30, is employed to identify modules. Subsequently, feature genes are computed, and hierarchical clustering is applied to the modules. Ultimately, we identified the common genes within the top three significantly ranked modules associated with both T2DM and UC. Subsequently, we subjected these intersecting genes to a thorough GO enrichment analysis.



2.3 Acquisition of differentially expressed genes (DEGs)

The study analyzed the DEGs using the GSE25724 and GSE48958 datasets. The initial gene expression data undergoes thorough cleaning, with the Robust Multi-array Average (RMA) method employed to equalize sample differences. Subsequently, gene name normalization is necessary to eliminate empty columns and duplicate values, ensuring the acquisition of normalized expression data. Our analysis utilized the R limma package, employing a filtering criterion for DEGs set at |logFC| ≥ 1 and a p-value threshold of <0.05. We proceeded to identify the common genes between the two sets of DEGs and subjected this intersection to KEGG pathway enrichment analysis.



2.4 Immune infiltration analysis

To precisely evaluate the composition of immune cells in UC compared to T2DM, we conducted calculations utilizing the CIBERSORT algorithm. We utilized the authentic CIBERSORT gene signature file that delineates 22 immune cell subtypes for analyzing the T2DM versus UC dataset. A significance level of p < 0.05 denotes a meaningful difference. The datasets utilized were GSE3365 and GSE29221.



2.5 Network pharmacology analysis


2.5.1 Acquisition of GQD active ingredients and target proteins

UPLC-Q-TOF/MS analysis revealed a comprehensive profile of 130 active chemical components, out of which 37 components met the criteria of Oral Bioavailability (OB) ≥ 30% and Drug-Likeness (DL) ≥ 0.18 (12). Retrieve the 2D structure of the compound from the PubChem database.2 Chemical targets were then predicted using PharmMapper and SwissTargetPrediction (13).



2.5.2 Predictive hub genes for GQD treatment

We employed three machine learning algorithms to systematically screen biomarker targets associated with GQDs for the treatment of T2DM and UC, respectively. LASSO logistic regression selectively assigns coefficients to significant variables by imposing an L1 penalty to remove less relevant ones, thus optimizing the classification model. SVM-RFE analysis, a supervised learning approach, identifies key genes by iteratively eliminating feature vectors derived from SVM. Random forest analysis, rooted in decision trees, evaluates variable importance by scoring each variable (14). The seed was set to 123 for consistency in the analysis. The targets of GQD were compared with the DEGs of T2DM and modules from WGCNA that exhibited a positive correlation with T2DM at p < 0.05. The overlapping elements from these three sets were analyzed, and a parallel approach was applied to UC. To enhance diagnostic accuracy and prediction capabilities, diagnostic nomograms were created utilizing hub genes as the foundation.



2.5.3 Common targets of GQD for the treatment of T2DM and UC

Disease-associated targets were queried in the DrugBank,3 GeneCards,4 TTD,5 and DisGeNET6 databases using the keywords “Type 2 diabetes” and “Ulcerative colitis” (15, 16). Targets occurring in at least two instances across DrugBank, GeneCards, TTD, DisGeNET, and DEGs datasets are identified as disease targets. The ultimate selection comprises overlapping genes from the targets associated with T2DM, UC, and GQD, serving as potential common targets for GQD treatment of both T2DM and UC.



2.5.4 Protein–protein interaction (PPI) network

TSV files of PPI were obtained by uploading potential therapeutic target genes into the STRING database and constructing networks in Cytoscape 3.9.1. We employed the cytoHubba plugin and computed parameters such as Degree Centrality (DC), Betweenness Centrality (BC), Closeness Centrality (CC), and Maximal Clique Centrality (MCC). Central genes were identified through two methods: firstly, by calculating the top ten targets ranked by each of the four parameters and then determining the overlap among them; secondly, by utilizing the MCODE plugin for cluster analysis, generating a highly connected sub-network.



2.5.5 The analysis of GO and KEGG

To comprehend the shared physiological mechanisms of GQD for both T2DM and UC, we conducted GO and KEGG enrichment analyses of therapeutic targets using the R language. Significance thresholds were set at p ≤ 0.05 and q ≤ 0.01, and the outcomes were visually presented for comprehensive understanding.



2.5.6 Molecular docking

Key genes were selected from the PPI sub-network, and core chemicals were screened from the drug target network map for subsequent molecular docking analysis. The structures of the core active ingredients were sourced from online databases. Protein stereo structures were also retrieved from databases and subjected to dehydration, hydrogenation, and removal of impurity ligands using PYMOL software. Following that, molecular docking analysis was conducted using Autodock, and the results were graphically presented.




2.6 Single-cell sequencing analysis

Seurat objects were initialized by loading gene expression data from the GEO database via the read10X function. Cell curation involved preserving those with a gene count between >200 and < 10,000, while filtering out those with mitochondrial and ribosomal gene proportions exceeding 20%. Following this, standardization and normalization procedures were applied for data uniformity. Spatial relationships between clusters were evaluated using the tSNE method, and subsequent cluster annotations were conducted using the celldex package. The reclassification of cell subpopulations was accomplished through the singleR annotation tool, concurrent with referencing the Thermofisher website to identify genes characterizing different immune cell types. Following observation of the expression patterns of these genes within the clustering results, a manual classification of immune cell classes was performed for annotation purposes. Finally, we have successfully visualized the expression patterns of GQD targets at the single-cell level and elucidated the distribution of the seven core targets.



2.7 Statistical analysis

The R packages utilized in this study include WGCNA, GEOquery, reshape2, ggfortify, limma, pheatmap, ggplot2, org.Hs.eg.db, pathview, topGO, and Rgraphviz.




3 Results


3.1 Construction of WGCNA network

WGCNA analysis revealed that in T2DM, higher independence and greater biological significance were observed at β = 9. Similarly, for UC, the optimal fit was achieved at β = 8 (Figures 2A,B). When reaching the optimal fit, a hierarchical clustering dendrogram was generated, allowing the classification of similar gene expressions into distinct modules. The expression profiles within each module were then summarized using modular eigengenes (MEs), and correlations between MEs and clinical features were subsequently calculated. In T2DM, a total of 24 modules were identified, with each color denoting a distinct module. Heat maps illustrating module-trait relationships were constructed based on Spearman correlation coefficients to evaluate the association between each module and the disease (Figures 2C,D, and Supplementary Table S1). In the heat map depicting module-trait relationships, cyan signifies a negative correlation, red indicates a positive correlation, and white denotes no correlation. Six modules, namely pale turquoise, turquoise, white, dark gray, pink, and violet, exhibit substantial positive correlations with T2DM, thus qualifying them as T2DM positively correlated modules (pale turquoise module: r = 0.58, p = 0.009; turquoise module: r = 0.53, p = 0.02; white module: r = 0.59, p = 0.008, dark gray module: r = 0.52, p = 0.02, pink module: r = 0.67, p = 0.002, violet module: r = 0.66, p = 0.002). Likewise, in UC, 22 modules were identified, among which lightsteelblue1, black, mediumpurple3, green, darkolivegreen, orange4, plum1, and thistle1 exhibited positive correlations with UC (lightsteelblue1 module: r = 0.25, p = 0.009; black module: r = 0.40, p = 2e-05; mediumpurple3 module: r = 0.24, p = 0.01, green module: r = 0.24, p = 0.01, darkolivegreen module: r = 0.24, p = 0.01, orange4 module: r = 0.27, p = 0.005, plum1 module: r = 0.46, p = 5e-07, thistle1 module: r = 0.49, p = 7e-08) (Figures 2E,F, and Supplementary Table S2). Biological process analysis indicates that the interacting genes are primarily engaged in regulating the immune system and activating immune cells, among other functions (Figure 2G).
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FIGURE 2
 Weighted gene co-expression networks. (A) Scale independence and average connectivity in GSE20966. (B) Scale independence and average connectivity in GSE75214. (C) Different modules obtained from GSE20966 are displayed in various colors, aggregating genes of high relevance within each module. (D) Correlation analysis between modules and T2DM. (E) Different modules obtained from GSE75214 are displayed in various colors, aggregating genes of high relevance within each module. (F) Correlation analysis between modules and UC. (G) Biological process analysis of T2DM and UC module intercourse genes.




3.2 Identification of DEGs

With the limma package, we identified 70 genes exhibiting high expression levels and 1,171 genes showing low expression levels associated with T2DM. Similarly, in UC, 236 genes were found to be highly expressed, while 168 genes exhibited low expression levels (Figures 3A–D, and Supplementary Tables S3, S4). The KEGG enrichment analysis of overlapping genes predominantly focused on pathways involving IL-17, TNF, Chemokine, and Toll-like receptor signaling pathways, indicating that the shared mechanism between T2DM and UC may be linked to immunity and inflammation (Figures 3E–H).

[image: Figure 3]

FIGURE 3
 Acquisition of DEGs in T2DM and UC and KEGG enrichment analysis of genes intersecting both DEGs. (A) Volcano plot depicting the DEGs associated with T2DM (GSE25724). (B) Heatmap illustrating the DEGs associated with T2DM (GSE25724). (C) Volcano plot showing the DEGs associated with UC (GSE48958). (D) Heatmap displaying the DEGs associated with UC (GSE48958). (E) Chemokine signaling pathway. (F) Toll-like receptor signaling pathway. (G) IL-17 signaling pathway. (H) TNF signaling pathway. DEGs, Differentially Expressed Genes.




3.3 Immune infiltration analysis

The findings indicate a close association between the pathogenesis of T2DM and UC with the immune system (Figures 4A–D). In the T2DM group, there were observed differences in both the T cell population and resting NK cells compared to the normal group (p < 0.05). Compared to the normal group, significant differences (p < 0.05) were observed in Plasma cells, T cells regulatory (Tregs), NK cells resting, Neutrophils, NK cells activated, Monocytes, and Dendritic cells activated in UC.

[image: Figure 4]

FIGURE 4
 Immune infiltration analysis. (A) Boxplots for T2DM immune infiltration analysis. (B) Bar graph for T2DM immune infiltration analysis. (C) Boxplots for UC immune infiltration analysis. (D) Bar graph for UC immune infiltration analysis (*p < 0.05, **p < 0.01, ***p < 0.001).




3.4 Predictive hub genes for GQD treatment

Potential targets for 37 core chemicals were identified through PharmMapper and SwissTargetPrediction. Afterward, the obtained results underwent the removal of identical values, culminating in a total of 444 targets (Supplementary Tables S5, S6). When employing the SVM-RFE method, we conducted 10-fold cross-validation. In the identification of core targets of GQD for treating T2DM, SVM-RFE achieved the highest accuracy of 95% with 73 features. LASSO identified 10 core targets, while RF identified one target. The intersection of core targets identified by the three models resulted in one core therapeutic target, IGFBP3 (Figures 5A–D). Applying a similar approach to identify core targets for GQD treatment of UC, SVM-RFE identified 9 core targets, LASSO also identified 9 core targets, and RF identified 37 core targets. The final intersection yielded 3 core targets: BACE2, EPHB4, and EPHA2 (Figures 5E–H). Nomograms and ROC curves depict the robust diagnostic potential of pivotal genes for both T2DM and UC (Figures 5I–N).
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FIGURE 5
 Predictive Biomarkers for GQD Treatment. (A) SVM-REF analysis of T2DM. (B) LASSO analysis of T2DM. (C,D) Random Forest analysis of T2DM. (E) SVM-REF analysis of UC. (F) LASSO analysis of UC. (G,H) Random Forest analysis of UC. (I) Nomograms of UC marker genes. (J–L) ROC curves for UC marker genes. (M) Nomograms of T2DM marker genes. (N) ROC curves for T2DM marker genes.




3.5 Common targets of GQD for the treatment of T2DM and UC

From the DrugBank database, we retrieved 150 targets associated with T2DM and 66 targets associated with UC. Additionally, GeneCard yielded 17,916 targets for T2DM and 5,282 targets for UC, while DisGeNET provided 2,359 targets for T2DM and 1,458 targets for UC. Furthermore, TTD identified 88 targets for T2DM and 48 targets for UC. After performing the process of removing duplicates, taking targets that appear at least twice in five databases—DrugBank, GeneCards, TTD, DisGeNET, and DEGs—and then intersecting them with the GQD target as a common target for GQD treatment of T2DM and UC. Subsequently, a total of 97 potential common targets were finalized (Supplementary Table S7).



3.6 PPI network

For the identification of common core targets of GQD for the treatment of T2DM and UC, we conducted an in-depth analysis of 97 targets using Cytoscape (Figure 6A). By considering the genes identified in the overlapping sections of the four algorithms, including DC, BC, CC, and NCC, we ultimately identified seven core target proteins of GQD for managing T2DM concomitant with UC (Figures 6B–E). The application of the MCODE plugin in cluster analysis generated highly connected sub-networks. The highest-scoring network comprised a total of 30 targets, among which the seven core targets identified previously were also encompassed (Figure 6F).

[image: Figure 6]

FIGURE 6
 Protein-Protein interaction (PPI) network. (A) Analysis results of PPI network. (B) Betweenness centrality. (C) Closeness centrality. (D) Degree centrality. (E) Neighborhood Component Analysis. (F) MCODE plugin cluster analysis.




3.7 GO, KEGG enrichment analysis

GO enrichment analysis revealed significant enrichment (p-value ≤0.05, q-value <0.01) in 1784 biological processes (BP), 105 molecular functions (MF), and 50 cellular components (CC) (Supplementary Table S8). Among these, BP mainly encompasses immune-inflammatory responses, oxidative stress, etc.; CC mainly involves membrane raft, and MF mainly includes tyrosine kinase activity, insulin receptor substrate binding, phosphatase binding, heme binding, etc. (Figures 7A–C). The KEGG enrichment analysis of potential therapeutic targets for GQD revealed pathways related to immunoinflammation, among others, indicating a broader spectrum of pathways beyond just immunoinflammatory regulation (Supplementary Table S9). We visualize the top 30 results, as well as results specifically related to immunization (Figures 7D,E).
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FIGURE 7
 GO, KEGG enrichment analysis. (A) Biological process. (B) Cellular composition. (C) Molecular function. (D) Bubble plots of the first 30 pathways analyzed by KEGG enrichment. (E) KEGG enrichment analysis of immune-related pathways.




3.8 Molecular docking

To validate our findings, we assessed the interactions between the identified active drugs and targets through molecular docking analysis. Our PPI network analysis revealed 7 core targets (AKT1, BCL2, EGFR, ESR1, PTGS2, STAT3, and TNF). Additionally, through drug-component-target network mapping, we identified 7 core chemical components of GQD: Berlambine, Palmatine, Moslosooflavone, Quercetin, Moupinamide, Panicolin, and Baicalein. Before docking, we transformed the core components and targets into the required format (Figure 8A and Table 2). The outcomes of the 49 docking combinations are represented through heatmaps and tables, highlighting the top 5 combinations exhibiting the strongest binding energy, which are then visualized in greater detail (Figures 8B–G and Table 3). In our molecular docking findings, it’s evident that Berlambine and Palmatine exhibit the strongest binding affinity to the core target.

[image: Figure 8]

FIGURE 8
 Molecular docking results. (A) Drug-constituent-target network diagram (the larger the value of degree in the diagram, the larger the node). (B) Heat map of molecular docking (kcal/mol). Berlambine – TNF (C), Berlambine – BCL2 (D), Berlambine – PTGS2 (E), Palmatine – TNF (F), Berlambine – EGFR (G).




TABLE 2 Proteins and chemicals information.
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TABLE 3 Binding energy.
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3.9 Single-cell sequencing analysis

The tSNE algorithm was utilized to cluster cells based on the GSE220939 and GSE231993 datasets, and subsequent labeling of each cluster was performed using SingleR. All cells from patients with T2DM were classified into seven groups: Epithelial Cells, Endothelial cells, Hepatocytes, Smooth Muscle Cells, Monocytes, B cells, and Natural Killer (NK) Cells (Figure 9A). Similarly, in UC, all cells were classified into eight classes: B cells, T cells, Epithelial cells, Monocytes, Fibroblasts, Endothelial cells, CMP, and Neurons (Figure 9B). The distribution of drug targets revealed that in T2DM, the primary cellular cluster targeted by GQD was Epithelial Cells, with subsequent impact on Hepatocytes (Figure 9C). In ulcerative colitis, GQD predominantly targets B cells, with subsequent involvement of T cells (Figure 9D). The seven core targets exhibit a broad distribution across various cell clusters (Figures 9E,F).
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FIGURE 9
 Single-cell sequencing analysis. (A) Cellular subtypes of T2DM. (B) Cellular subtypes of UC. (C) GQD expression in various cell clusters of T2DM. (D) GQD expression in various cell clusters of UC. (E,F) Distribution of the seven core targets in cell clusters of T2DM and UC.





4 Discussion

An increasing body of research is corroborating the association between UC and T2DM. It has been demonstrated that diabetes is the most prevalent co-morbidity of UC (17). A population-based cohort study reveals a significantly heightened risk of T2DM among individuals with UC (18). The association between diabetes and UC holds significant implications across epidemiology, etiology, clinical practice, and therapeutic strategies, signaling profound implications for research and patient care alike (19). Hence, investigating the mechanisms underlying the co-occurrence of UC and T2DM holds clinical significance, aiding in early disease detection and timely intervention. In this study, we conducted analyses on four microarray datasets related to UC and T2DM using diverse bioinformatics approaches. Based on our predictions, inflammatory and immune processes, along with Immunoinflammatory signaling pathways such as IL-17, TNF, chemokine, and Toll-like receptor, may represent potential mechanisms underlying the co-morbidity of T2DM with UC. Following subsequent network pharmacological analyses, pivotal targets of GQD for the concurrent treatment of T2DM and UC were identified, including AKT1, BCL2, EGFR, ESR1, PTGS2, STAT3, and TNF. Notably, GQD predominantly acts on immuno-inflammatory pathways, such as Toll-like receptors, IL-17, TNF, MAPK, and the PI3K-Akt signaling pathways, in the simultaneous treatment of T2DM and UC.

In recent years, the roles of intestinal flora, inflammation, and immune regulation in the pathogenesis of T2DM and UC have attracted increasing attention (20, 21). Single-cell sequencing coupled with immune infiltration analysis underscored the pivotal role of immune cells in driving the pathogenesis of both UC and T2DM. The intestinal mucosal immune system, comprising lymph nodes, lamina propria, and epithelial cells, serves as a vital barrier safeguarding intestinal integrity. The symbiotic relationship between the microbiome and the intestinal immune system is crucial for preserving mucosal homeostasis (22). However, deficiencies and dysbiosis in the intestinal flora can result in significant impairments to the intestinal mucosal immune system, precipitating the onset of T2DM alongside UC (23, 24). UC’s development involves various factors within the gut microbiome, immune system dysfunctions, and compromised intestinal barriers, resulting in abnormal immune reactions to typical gut bacteria (25). UC is characterized by an imbalance between intestinal effector T cells and mucosal Treg, with effector T cells being overly active and Treg cells not expanding sufficiently (26). Balancing the population of Th17 and Treg cells in the intestines of mice markedly improves symptoms and reduces pathological damage in ulcerative colitis (27). In T2DM, disruptions in intestinal immunity and barrier function, alongside alterations in gut microbiota, foster heightened intestinal permeability. Consequently, intestinal bacterial components infiltrate circulation, fueling both local and systemic chronic inflammation, ultimately contributing to insulin resistance (28, 29). Dendritic cells, functioning as autocrine or paracrine modulators, synthesize and release classical neurotransmitters crucial for maintaining intestinal immune balance. Their abundance is markedly elevated in the gut of patients with UC and T2DM (30, 31). In ulcerative colitis, the usual equilibrium of intestinal B-cell reactions is disturbed, resulting in a notable decrease in regulatory B cells (32, 33). In parallel, B cells modulate Th17 proliferation and the production of pro-inflammatory factors in the intestines of T2DM patients (34). Research indicates that managing macrophage metabolism and polarization can alleviate symptoms in DSS-induced UC mice, hinting at the potential of targeting macrophage polarization to restore immune balance as a promising UC treatment strategy (35). In individuals with T2DM, there is a reduction in the quantity of anti-inflammatory T-cell subsets, such as regulatory T-cells (Treg), M2-like macrophages, and IgM-producing B-1 cells, alongside an elevation in the number and/or ratio of inflammatory effector T-cells (36). Individuals diagnosed with T2DM often exhibit irregularities in the frequency and functionality of B cells, potentially resulting in heightened inflammatory reactions and reduced insulin sensitivity. Moreover, the antibodies generated by B cells are pivotal in the progression of T2DM, notably contributing to neuroinflammation and cognitive deterioration (37, 38). In individuals with T2DM, dendritic cells are implicated in vascular dysfunction. Research indicates an elevated accumulation of dendritic cells in the perivascular adipose tissue of diabetic mice, which consequently compromises their anticonstrictive and vasodilatory functions (39). Likewise, macrophages emerge as the primary immune cell driving inflammation within pancreatic islets in T2DM, posing a threat to the insulin-secreting function of β-cells through multiple mechanisms (40). In conclusion, the elevated permeability of intestinal mucosa caused by disturbances in intestinal flora and impairment of the intestinal mucosal immune system contributes to the onset of systemic chronic inflammatory responses, a shared mechanism underlying the development of UC and T2DM (41).

Ulcerative colitis manifests as recurring mucosal inflammation with periods of remission, necessitating treatment to induce and sustain remission (42). Concurrently, the incidence of T2DM is on the rise, contributing to escalating rates of disability and mortality, thereby compounding the burden on families (43). Thus, there is an imperative to discover additional routine serum biomarkers for the early diagnosis and treatment of T2DM and UC. Three distinct machine learning studies identified IGFBP3 as a biomarker for GQD in treating T2DM, while BACE2, EPHB4, and EPHA2 emerged as biomarkers for GQD in UC treatment. IGFBP3 interacts with cellular proteins involved in glucose metabolism regulation, consequently inducing insulin resistance and diminishing glucose uptake in adipose tissue (44). For every one-unit rise in genetically determined IGFBP3 levels, there’s a 26 percent higher likelihood of developing T2DM (45). The degradation of pancreatic β-cells is a pivotal aspect of T2DM, and IGFBP3 signaling contributes to this decline in β-cell function and viability. Suppressing IGFBP3 activity can protect β-cells, potentially delaying or preventing the onset of diabetes, making it a promising therapeutic avenue for diabetes treatment (46). BACE2, a protease regulated by the JAK2/STAT5 signaling pathway, emerges as a pivotal contributor to UC development (47). The activity of IL-1R2, linked to ulcerative colitis, is influenced by the BACE2 gene. Therefore, BACE2 assumes a significant role in the pathogenesis of UC (48). The EphB/ephrin-B system has become a promising focus for tackling gut inflammatory diseases. Suppressing this system seems to provide a therapeutic benefit by regulating immune responses (49). Eph/ephrin proteins are implicated in numerous chronic inflammatory conditions. Targeting EPHB4 to disrupt EphB/ephrin B signaling holds potential as a pharmacological strategy for treating UC (50). In summary, the involvement of Eph/ephrin signaling in maintaining intestinal balance, managing inflammation, and regulating neuroimmune interactions offers exciting possibilities for future investigations and therapeutic advancements in gastrointestinal conditions (51).

In China, GQD is extensively employed for the treatment of both T2DM and UC. Through degree-value analysis of the herbal-chemical-target-protein network, we pinpointed seven active ingredients—Berlamine, Palmatine, Moslosooflavone, Quercetin, Moupinamide, Panicolin, and Baicalein—as potential compounds for treating the combined condition of T2DM and UC. Berlambine accomplishes the alleviation of inflammatory response and intestinal epithelial barrier dysfunction by diminishing the protein levels of TLR4 and MyD88, inhibiting the phosphorylation of I-κB α, and obstructing the translocation of NF-κB p65 from the cytoplasm to the nucleus (52). Concurrently, Berlambine notably increased the mRNA expression of the Nrf2 signaling pathway and elevated the activity of the pancreatic PI3K/Akt signaling pathway (53). Palmatine, a naturally occurring compound known for its anti-inflammatory and antioxidant properties, reverses the dysfunction in the insulin signaling pathway by increasing the expression of IRS-1, PI3K, AKT2, and GLUT4 genes while decreasing the expression of PKC (54). Furthermore, Palmatine alleviates ulcerative colitis symptoms by mitigating colon damage, preserving intestinal flora balance, and modulating tryptophan catabolism (55). Moslosooflavone markedly decreased the concentrations of inflammatory mediators like TNF-α, IL-1β, and IL-6 in mice (56). Quercetin’s renowned anti-inflammatory properties position it as a promising natural remedy for various inflammatory conditions (57). Quercetin ameliorates UC by restoring intestinal barrier function via the activation of AHR-mediated enhancement of tight junctions (58). Additionally, quercetin provides therapeutic benefits in T2DM by inhibiting pancreatic iron accumulation and pancreatic β-cell death (59). Panicolin exhibited strong anti-inflammatory properties by significantly suppressing the production of IL-6 induced by LPS (60). Baicalein demonstrates anti-inflammatory properties by inhibiting T cell activation and suppressing the thioredoxin system to restrict NF-κB-dependent inflammatory responses (61). Moreover, baicalein exhibits multifaceted effects on glucose metabolism, enhancing glucose uptake and glycolysis while inhibiting hepatocyte gluconeogenesis through modulation of the InsR/IRS-1/PI3K/AKT pathway (62). Simultaneously, it enhances the integrity of the intestinal epithelial barrier via the AhR/IL-22 pathway in ILC3, thereby ameliorating ulcerative colitis (63). The therapeutic efficacy of the active constituents within the herbal formulation GQD for both T2DM and UC has been substantiated.

Ultimately, the affinity between seven key target proteins and active compounds was assessed through molecular docking techniques. Berlambine and Palmatine exhibited promising binding activity to the target, implying their potential relevance to the therapeutic role of GQD in treating T2DM and UC.

It is worth noting that our study also has some limitations. At the outset, our dataset originates from various public databases, each with its own set of inclusion criteria. These distinctions could potentially impact the precision of our findings. Secondly, the sample size in the GEO database is relatively small, potentially contributing to some degree of error. Additionally, variations in algorithms and parameter selections could yield divergent outcomes and interpretations. Hence, although employing various bioinformatics and machine learning approaches, validating the results through clinical trials and animal studies is imperative.



5 Conclusion

In summary, we delineated potential co-morbid mechanisms between T2DM and UC, primarily implicating pathways such as IL-17, TNF, chemokine, and Toll-like receptor signaling, alongside the involvement of immune-inflammatory pathways and various immune cells like T cells, B cells, and neutrophils. Three distinct machine learning studies identified IGFBP3 as a biomarker for GQD in treating T2DM, while BACE2, EPHB4, and EPHA2 emerged as biomarkers for GQD in UC treatment. Ultimately, our investigation identified Berlambine and Palmatine as key components of GQD, presenting promising therapeutic prospects for managing the concurrent occurrence of T2DM and UC. Additionally, our study clarifies the mechanisms underlying the therapeutic effects of GQD, employing strategies that involve multiple components, targets, and pathways. This highlights its capacity to regulate immune responses and inflammation, with a specific focus on targeting toll-like receptors, IL-17, TNF, MAPK, and PI3K-Akt signaling pathways. The therapeutic strategy involving multiple components, targets, and pathways plays a vital and effective role in enhancing treatment outcomes, mitigating drug resistance, customizing treatment plans, managing complications comprehensively, and minimizing therapeutic side effects. Consequently, this approach significantly benefits patients’ clinical progress and enhances their quality of life.



Data availability statement

The original contributions presented in the study are included in the article/Supplementary material, further inquiries can be directed to the corresponding authors.



Author contributions

FH: Data curation, Formal analysis, Software, Visualization, Writing – original draft. LX: Data curation, Formal analysis, Software, Visualization, Writing – original draft. ZL: Investigation, Validation, Writing – review & editing. LL: Investigation, Validation, Writing – review & editing. LW: Validation, Writing – review & editing. XW: Validation, Writing – review & editing. XZ: Conceptualization, Funding acquisition, Methodology, Project administration, Supervision, Writing – review & editing. YZ: Conceptualization, Funding acquisition, Methodology, Project administration, Supervision, Writing – review & editing.



Funding

The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This work was supported by Key Project of Anhui Provincial Education Department (2022AH050486) and 2021 High-level Talent Introduction Scientific Project of Anhui University of Chinese Medicine (2022rczd005) and Open Subjects of the Key Laboratory of the Ministry of Education of Xin’an Medicine (2022XAYX10).



Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.



Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.



Supplementary material

The Supplementary material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmed.2024.1406149/full#supplementary-material



Footnotes

1   https://www.ncbi.nlm.nih.gov/geo/


2   https://pubchem.ncbi.nlm.nih.gov/


3   https://go.drugbank.com/


4   https://www.genecards.org/


5   https://idrblab.net/ttd/


6   https://www.disgenet.org/




References

 1. Miao, L, Liu, C, Cheong, MS, Zhong, R, Tan, Y, Rengasamy, KRR , et al. Exploration of natural flavones' bioactivity and bioavailability in chronic inflammation induced-type-2 diabetes mellitus. Crit Rev Food Sci Nutr. (2023) 63:11640–67. doi: 10.1080/10408398.2022.2095349 

 2. Amar, J, Chabo, C, Waget, A, Klopp, P, Vachoux, C, Bermúdez-Humarán, LG , et al. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol Med. (2011) 3:559–72. doi: 10.1002/emmm.201100159 

 3. Dubinsky, M, Bleakman, AP, Panaccione, R, Hibi, T, Schreiber, S, Rubin, D , et al. Bowel urgency in ulcerative colitis: current perspectives and future directions. Am J Gastroenterol. (2023) 118:1940–53. doi: 10.14309/ajg.0000000000002404 

 4. Franzosa, EA, Sirota-Madi, A, Avila-Pacheco, J, Fornelos, N, Haiser, HJ, Reinker, S , et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat Microbiol. (2019) 4:293–305. doi: 10.1038/s41564-018-0306-4 

 5. Su, J, Luo, Y, Hu, S, Tang, L, and Ouyang, S. Advances in research on type 2 diabetes mellitus targets and therapeutic agents. Int J Mol Sci. (2023) 24:2–28. doi: 10.3390/ijms241713381 

 6. Paik, J. Ozanimod: a review in ulcerative colitis. Drugs. (2022) 82:1303–13. doi: 10.1007/s40265-022-01762-8 

 7. Tong, XL, Zhao, LH, Lian, FM, Zhou, Q, Xia, L, Zhang, JC , et al. Clinical observations on the dose-effect relationship of gegen qin lian decoction on 54 out-patients with type 2 diabetes. J Tradit Chin Med. (2011) 31:56–9. doi: 10.1016/s0254-6272(11)60013-7 

 8. Xu, X, Gao, Z, Yang, F, Yang, Y, Chen, L, Han, L , et al. Antidiabetic effects of Gegen Qinlian decoction via the gut microbiota are attributable to its key ingredient Berberine. Genomics Proteomics Bioinformatics. (2020) 18:721–36. doi: 10.1016/j.gpb.2019.09.007 

 9. Fan, Y, Yi, W, Huang, H, Mei, Z, and Feng, Z. Efficacy of herbal medicine (Gegen Qinlian decoction) on ulcerative colitis: a systematic review of randomized controlled trials. Medicine (Baltimore). (2019) 98:e18512. doi: 10.1097/md.0000000000018512 

 10. Wang, Y, Zhang, J, Zhang, B, Lu, M, Ma, J, Liu, Z , et al. Modified Gegen Qinlian decoction ameliorated ulcerative colitis by attenuating inflammation and oxidative stress and enhancing intestinal barrier function in vivo and in vitro. J Ethnopharmacol. (2023) 313:116538. doi: 10.1016/j.jep.2023.116538 

 11. Zhao, Y, Luan, H, Jiang, H, Xu, Y, Wu, X, Zhang, Y , et al. Gegen Qinlian decoction relieved DSS-induced ulcerative colitis in mice by modulating Th17/Treg cell homeostasis via suppressing IL-6/JAK2/STAT3 signaling. Phytomedicine. (2021) 84:153519. doi: 10.1016/j.phymed.2021.153519 

 12. Chen, J, Li, M, Chen, R, Xu, Z, Yang, X, Gu, H , et al. Gegen Qinlian standard decoction alleviated irinotecan-induced diarrhea via PI3K/AKT/NF-κB axis by network pharmacology prediction and experimental validation combination. Chin Med. (2023) 18:46. doi: 10.1186/s13020-023-00747-3 

 13. Wang, X, Shen, Y, Wang, S, Li, S, Zhang, W, Liu, X , et al. PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res. (2017) 45:W356–w360. doi: 10.1093/nar/gkx374 

 14. Xu, M, Zhou, H, Hu, P, Pan, Y, Wang, S, Liu, L , et al. Identification and validation of immune and oxidative stress-related diagnostic markers for diabetic nephropathy by WGCNA and machine learning. Front Immunol. (2023) 14:2–25. doi: 10.3389/fimmu.2023.1084531 

 15. Stelzer, G, Rosen, N, Plaschkes, I, Zimmerman, S, Twik, M, Fishilevich, S , et al. The GeneCards suite: from gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics. (2016) 54:1.30.1–1.30.33. doi: 10.1002/cpbi.5 

 16. Wishart, DS, Feunang, YD, Guo, AC, Lo, EJ, Marcu, A, Grant, JR , et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. (2018) 46:D1074–d1082. doi: 10.1093/nar/gkx1037 

 17. Lan, YZ, Bai, YL, and Zhu, XD. Integrated traditional Chinese and Western medicine for ulcerative colitis with diabetes: a protocol for systematic review and meta-analysis. Medicine (Baltimore). (2021) 100:e24444. doi: 10.1097/md.0000000000024444 

 18. Jess, T, Jensen, BW, Andersson, M, Villumsen, M, and Allin, KH. Inflammatory bowel diseases increase risk of type 2 diabetes in a Nationwide Cohort Study. Clin Gastroenterol Hepatol. (2020) 18:881–888.e1. doi: 10.1016/j.cgh.2019.07.052 

 19. Maconi, G, Furfaro, F, Sciurti, R, Bezzio, C, Ardizzone, S, and de Franchis, R. Glucose intolerance and diabetes mellitus in ulcerative colitis: pathogenetic and therapeutic implications. World J Gastroenterol. (2014) 20:3507–15. doi: 10.3748/wjg.v20.i13.3507 

 20. Geremia, A, Biancheri, P, Allan, P, Corazza, GR, and Di Sabatino, A. Innate and adaptive immunity in inflammatory bowel disease. Autoimmun Rev. (2014) 13:3–10. doi: 10.1016/j.autrev.2013.06.004

 21. Postler, TS, Peng, V, Bhatt, DM, and Ghosh, S. Metformin selectively dampens the acute inflammatory response through an AMPK-dependent mechanism. Sci Rep. (2021) 11:18721. doi: 10.1038/s41598-021-97441-x 

 22. Shi, N, Li, N, Duan, X, and Niu, H. Interaction between the gut microbiome and mucosal immune system. Mil Med Res. (2017) 4:14. doi: 10.1186/s40779-017-0122-9 

 23. Frank, DN, St Amand, AL, Feldman, RA, Boedeker, EC, Harpaz, N, and Pace, NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA. (2007) 104:13780–5. doi: 10.1073/pnas.0706625104 

 24. Qin, J, Li, Y, Cai, Z, Li, S, Zhu, J, Zhang, F , et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. (2012) 490:55–60. doi: 10.1038/nature11450 

 25. Xavier, RJ, and Podolsky, DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature. (2007) 448:427–34. doi: 10.1038/nature06005

 26. Voskens, C, Stoica, D, Rosenberg, M, Vitali, F, Zundler, S, Ganslmayer, M , et al. Autologous regulatory T-cell transfer in refractory ulcerative colitis with concomitant primary sclerosing cholangitis. Gut. (2023) 72:49–53. doi: 10.1136/gutjnl-2022-327075 

 27. Xu, M, Duan, XY, Chen, QY, Fan, H, Hong, ZC, Deng, SJ , et al. Effect of compound sophorae decoction on dextran sodium sulfate (DSS)-induced colitis in mice by regulating Th17/Treg cell balance. Biomed Pharmacother. (2019) 109:2396–408. doi: 10.1016/j.biopha.2018.11.087 

 28. Tilg, H, Zmora, N, Adolph, TE, and Elinav, E. The intestinal microbiota fuelling metabolic inflammation. Nat Rev Immunol. (2020) 20:40–54. doi: 10.1038/s41577-019-0198-4 

 29. Winer, DA, Luck, H, Tsai, S, and Winer, S. The intestinal immune system in obesity and insulin resistance. Cell Metab. (2016) 23:413–26. doi: 10.1016/j.cmet.2016.01.003

 30. Pergolizzi, S, Rizzo, G, Favaloro, A, Alesci, A, Pallio, S, Melita, G , et al. Expression of VAChT and 5-HT in ulcerative colitis dendritic cells. Acta Histochem. (2021) 123:151715. doi: 10.1016/j.acthis.2021.151715 

 31. Qiao, Z, Wang, X, Zhang, H, Han, J, Feng, H, and Wu, Z. Single-cell Transcriptomics reveals that metabolites produced by Paenibacillus bovis sp. nov. BD3526 ameliorate type 2 diabetes in GK rats by downregulating the inflammatory response. Front Microbiol. (2020) 11:568805. doi: 10.3389/fmicb.2020.568805 

 32. Uzzan, M, Martin, JC, Mesin, L, Livanos, AE, Castro-Dopico, T, Huang, R , et al. Ulcerative colitis is characterized by a plasmablast-skewed humoral response associated with disease activity. Nat Med. (2022) 28:766–79. doi: 10.1038/s41591-022-01680-y 

 33. Wang, X, Zhu, Y, Zhang, M, Wang, H, Jiang, Y, and Gao, P. Ulcerative colitis is characterized by a decrease in regulatory B cells. J Crohns Colitis. (2016) 10:1212–23. doi: 10.1093/ecco-jcc/jjw074 

 34. Zhou, T, Hu, Z, Yang, S, Sun, L, Yu, Z, and Wang, G. Role of adaptive and innate immunity in type 2 diabetes mellitus. J Diabetes Res. (2018) 2018:1–9. doi: 10.1155/2018/7457269 

 35. Wu, MM, Wang, QM, Huang, BY, Mai, CT, Wang, CL, Wang, TT , et al. Dioscin ameliorates murine ulcerative colitis by regulating macrophage polarization. Pharmacol Res. (2021) 172:105796. doi: 10.1016/j.phrs.2021.105796 

 36. SantaCruz-Calvo, S, Bharath, L, Pugh, G, SantaCruz-Calvo, L, Lenin, RR, Lutshumba, J , et al. Adaptive immune cells shape obesity-associated type 2 diabetes mellitus and less prominent comorbidities. Nat Rev Endocrinol. (2022) 18:23–42. doi: 10.1038/s41574-021-00575-1 

 37. Zhai, X, Qian, G, Wang, Y, Chen, X, Lu, J, Zhang, Y , et al. Elevated B cell activation is associated with type 2 diabetes development in obese subjects. Cell Physiol Biochem. (2016) 38:1257–66. doi: 10.1159/000443073 

 38. Zhan, J, Huang, L, Ma, H, Chen, H, Yang, Y, Tan, S , et al. Reduced inflammatory responses of follicular helper T cell promote the development of regulatory B cells after roux-en-Y gastric bypass. Clin Exp Pharmacol Physiol. (2017) 44:556–65. doi: 10.1111/1440-1681.12740 

 39. Qiu, T, Li, M, Tanner, MA, Yang, Y, Sowers, JR, Korthuis, RJ , et al. Depletion of dendritic cells in perivascular adipose tissue improves arterial relaxation responses in type 2 diabetic mice. Metabolism. (2018) 85:76–89. doi: 10.1016/j.metabol.2018.03.002 

 40. Ying, W, Fu, W, Lee, YS, and Olefsky, JM. The role of macrophages in obesity-associated islet inflammation and β-cell abnormalities. Nat Rev Endocrinol. (2020) 16:81–90. doi: 10.1038/s41574-019-0286-3 

 41. Zhang, B, Liu, K, Yang, H, Jin, Z, Ding, Q, and Zhao, L. Gut microbiota: the potential key target of TCM's therapeutic effect of treating different diseases using the same method-UC and T2DM as examples. Front Cell Infect Microbiol. (2022) 12:1–19. doi: 10.3389/fcimb.2022.855075 

 42. Ungaro, R, Mehandru, S, Allen, PB, Peyrin-Biroulet, L, and Colombel, JF. Ulcerative colitis. Lancet. (2017) 389:1756–70. doi: 10.1016/s0140-6736(16)32126-2 

 43. Dugani, SB, Mielke, MM, and Vella, A. Burden and management of type 2 diabetes in rural United States. Diabetes Metab Res Rev. (2021) 37:e3410. doi: 10.1002/dmrr.3410 

 44. Rajpathak, SN, He, M, Sun, Q, Kaplan, RC, Muzumdar, R, Rohan, TE , et al. Insulin-like growth factor axis and risk of type 2 diabetes in women. Diabetes. (2012) 61:2248–54. doi: 10.2337/db11-1488 

 45. Pigeyre, M, Sjaarda, J, Mao, S, Chong, M, Hess, S, Yusuf, S , et al. Identification of novel causal blood biomarkers linking metabolically favorable adiposity with type 2 diabetes risk. Diabetes Care. (2019) 42:1800–8. doi: 10.2337/dc18-2444 

 46. D'Addio, F, Maestroni, A, Assi, E, Ben Nasr, M, Amabile, G, Usuelli, V , et al. The IGFBP3/TMEM219 pathway regulates beta cell homeostasis. Nat Commun. (2022) 13:684. doi: 10.1038/s41467-022-28360-2 

 47. Cardinale, CJ, March, ME, Lin, X, Liu, Y, Spruce, LA, Bradfield, JP , et al. Regulation of Janus kinase 2 by an inflammatory bowel disease causal non-coding single nucleotide polymorphism. J Crohns Colitis. (2020) 14:646–53. doi: 10.1093/ecco-jcc/jjz213 

 48. Madore, AM, Vaillancourt, VT, Bouzigon, E, Sarnowski, C, Monier, F, Dizier, MH , et al. Genes involved in Interleukin-1 receptor type II activities are associated with asthmatic phenotypes. Allergy Asthma Immunol Res. (2016) 8:466–70. doi: 10.4168/aair.2016.8.5.466 

 49. Grandi, A, Zini, I, Palese, S, Giorgio, C, Tognolini, M, Marchesani, F , et al. Targeting the Eph/Ephrin system as anti-inflammatory strategy in IBD. Front Pharmacol. (2019) 10:1–16. doi: 10.3389/fphar.2019.00691 

 50. Qiao, Z, Liao, M, Xiao, M, Luo, S, Wang, K, Niu, M , et al. Ephrin B3 exacerbates colitis and colitis-associated colorectal cancer. Biochem Pharmacol. (2024) 220:116004. doi: 10.1016/j.bcp.2023.116004 

 51. Qiu, P, Li, D, Xiao, C, Xu, F, Chen, X, Chang, Y , et al. The Eph/ephrin system symphony of gut inflammation. Pharmacol Res. (2023) 197:106976. doi: 10.1016/j.phrs.2023.106976 

 52. Li, C, Ai, G, Wang, Y, Lu, Q, Luo, C, Tan, L , et al. Oxyberberine, a novel gut microbiota-mediated metabolite of berberine, possesses superior anti-colitis effect: impact on intestinal epithelial barrier, gut microbiota profile and TLR4-MyD88-NF-κB pathway. Pharmacol Res. (2020) 152:104603. doi: 10.1016/j.phrs.2019.104603 

 53. Dou, Y, Huang, R, Li, Q, Liu, Y, Li, Y, Chen, H , et al. Oxyberberine, an absorbed metabolite of berberine, possess superior hypoglycemic effect via regulating the PI3K/Akt and Nrf2 signaling pathways. Biomed Pharmacother. (2021) 137:111312. doi: 10.1016/j.biopha.2021.111312 

 54. Nwabueze, OP, Sharma, M, Balachandran, A, Gaurav, A, Abdul Rani, AN, Małgorzata, J , et al. Comparative studies of Palmatine with metformin and glimepiride on the modulation of insulin dependent signaling pathway in vitro, in vivo & ex vivo. Pharmaceuticals (Basel). (2022) 15:2–16. doi: 10.3390/ph15111317 

 55. Zhang, XJ, Yuan, ZW, Qu, C, Yu, XT, Huang, T, Chen, PV , et al. Palmatine ameliorated murine colitis by suppressing tryptophan metabolism and regulating gut microbiota. Pharmacol Res. (2018) 137:34–46. doi: 10.1016/j.phrs.2018.09.010 

 56. Zhang, J, Zhao, T, Zhang, P, Shi, Z, Da, Q, Ma, H , et al. Moslosooflavone protects against brain injury induced by hypobaric hypoxic via suppressing oxidative stress, neuroinflammation, energy metabolism disorder, and apoptosis. J Pharm Pharmacol. (2024) 76:44–56. doi: 10.1093/jpp/rgad109 

 57. Rogerio, AP, Dora, CL, Andrade, EL, Chaves, JS, Silva, LF, Lemos-Senna, E , et al. Anti-inflammatory effect of quercetin-loaded microemulsion in the airways allergic inflammatory model in mice. Pharmacol Res. (2010) 61:288–97. doi: 10.1016/j.phrs.2009.10.005

 58. Wang, X, Xie, X, Li, Y, Xie, X, Huang, S, Pan, S , et al. Quercetin ameliorates ulcerative colitis by activating aryl hydrocarbon receptor to improve intestinal barrier integrity. Phytother Res. (2024) 38:253–64. doi: 10.1002/ptr.8027 

 59. Li, D, Jiang, C, Mei, G, Zhao, Y, Chen, L, Liu, J , et al. Quercetin alleviates ferroptosis of pancreatic β cells in type 2 diabetes. Nutrients. (2020) 12:2–15. doi: 10.3390/nu12102954 

 60. Chandrasekaran, CV, Thiyagarajan, P, Deepak, HB, and Agarwal, A. In vitro modulation of LPS/calcimycin induced inflammatory and allergic mediators by pure compounds of Andrographis paniculata (king of bitters) extract. Int Immunopharmacol. (2011) 11:79–84. doi: 10.1016/j.intimp.2010.10.009 

 61. Patwardhan, RS, Sharma, D, Thoh, M, Checker, R, and Sandur, SK. Baicalein exhibits anti-inflammatory effects via inhibition of NF-κB transactivation. Biochem Pharmacol. (2016) 108:75–89. doi: 10.1016/j.bcp.2016.03.013 

 62. Yang, Z, Huang, W, Zhang, J, Xie, M, and Wang, X. Baicalein improves glucose metabolism in insulin resistant HepG2 cells. Eur J Pharmacol. (2019) 854:187–93. doi: 10.1016/j.ejphar.2019.04.005 

 63. Li, YY, Wang, XJ, Su, YL, Wang, Q, Huang, SW, Pan, ZF , et al. Baicalein ameliorates ulcerative colitis by improving intestinal epithelial barrier via AhR/IL-22 pathway in ILC3s. Acta Pharmacol Sin. (2022) 43:1495–507. doi: 10.1038/s41401-021-00781-7 



Glossary

[image: Table4]


Copyright
 © 2024 Hu, Xiong, Li, Li, Wang, Wang, Zhou and Zheng. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.







 


	
	
REVIEW
published: 27 June 2024
doi: 10.3389/fmed.2024.1360966








[image: image2]

Prediction and analysis of components and functions of Ixeris chinensis based on network pharmacology and molecular docking

Ziwei Ni1, Zhe Ma2, Xiaoting Qiao1, Yaqian Guo1, Cailian Ruan1,3*, Yayun Wang4* and Ying Yang5*


1Medical School of Yan’an University, Yan'an, Shaanxi, China

2Ultrasound Room of Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi, China

3Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China

4National Experimental Center of Air Force Medical University, Xi'an, Shaanxi, China

5Xi'an Children's Hospital Research Institute, Xi'an, Shaanxi, China

Edited by
 Hari S. Sharma, Erasmus Medical Center, Netherlands

Reviewed by
 Himansu Kumar, University of Texas Health Science Center at Houston, United States
 Ashraf Hamed, Minia University, Egypt

*Correspondence
 Cailian Ruan, yadxjp20210325@163.com 
 Yayun Wang, wangyayunfmmu@qq.com
 Ying Yang, yying1930@163.com

Received 24 December 2023
 Accepted 29 May 2024
 Published 27 June 2024

Citation
 Ni Z, Ma Z, Qiao X, Guo Y, Ruan C, Wang Y and Yang Y (2024) Prediction and analysis of components and functions of Ixeris chinensis based on network pharmacology and molecular docking. Front. Med. 11:1360966. doi: 10.3389/fmed.2024.1360966
 

Background: It is reported that the Ixeris chinensis has high medicinal value, but there are few reports about its potential molecular mechanism. We used a network pharmacology approach to predict the active ingredients, targets of action and possible interventions in diseases of Ixeris chinensis.

Methods: We employed various databases and software to predict the active ingredients, target genes, protein interactions, signaling pathways, network diagrams, and molecular docking of Ixeris chinensis. Simultaneously, we searched multiple Chinese and English databases and conducted meta-analyses of five randomized controlled trials.

Results: The analysis results revealed 12 effective components, including apigenin β-sitosterol, baicalin, baicalein, and luteolin; and selected 40 key targets, including AKT1, TNF, EGFR, ESR1, SRC, among others. GO analysis generated 225 biological processes, 39 cellular components, and 65 molecular functions; KEGG analysis revealed 103 signaling pathways. Molecular docking results indicated that the main active components of Ixeris chinensis can bind well with key targets. Five randomized controlled trials were included. Meta-analysis showed that Ixeris extract can effectively reduce animal blood lipid levels.

Conclusion: This study revealed the main active ingredients and key targets of Ixeris chinensis, analyzed the signaling pathways of potential targets, conducted disease prediction, and performed molecular docking prediction, providing a basis for research on the pathways of Ixeris treatment for related diseases and subsequent new drug development.
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1 Introduction

Ixeris chinensis (Thunb.) Nakai is the whole herb of Sonchus of the family Asteraceae (1). According to the textual research on the herbal literature, the authentic source of Chinese herbal medicine bitter vegetables should be the main stream of Sonchus oleraceus L, which belongs to Sonchus, Ixeris polycephala Cass of Ixeris Cass, and the dried whole grass of Chinese Ixeris (2). I. chinensis is a traditional medicinal plant, which can be used to treat tumors, inflammation and some infections. I. chinensis contains a variety of flavonoids, which have various pharmacological or health effects such as antioxidant, anti-cancer, antihypertensive, improving cardiovascular diseases, lowering blood lipids, lowering cholesterol, and protecting our liver (3). I. chinensis is one of the traditional Chinese herbs in China, with a wide range of distribution, easy survival and a wide variety of species (4).

In recent years, with the deepening of the research on I. chinensis, the clinical application scope of the herb has been continuously expanded (5). It is often used in combination with other Chinese medicines for treating various inflammatory diseases such as gastritis, enteritis, lung fever and cough, sore throat, etc. (6). The pharmacological effects of I. chinensis have been studied more extensively, but the mechanism of action of the disease is still unknown and needs to be studied thoroughly.

Network pharmacology research uses public databases and literature to screen out the target information of known drug components (7). Then uses network visualization tools to build a multi-dimensional biological network model, through multi-level analysis of specific signal nodes in the network at the cellular, molecular and overall biological levels, to identify key nodes, and from the perspective of the overall biological network balance to discover the target drug’s interference with the “pathogenic network,” and then predicts the pharmacological active ingredients, targets and possible involvement in the regulation of cellular signal transduction pathways, potential pharmacological mechanisms and formulation and combination patterns of known drugs to combat diseases (8). To predict the active ingredients, targets, cellular signal transduction pathways, potential pharmacological mechanisms and prescriptions that may be involved in the regulation of known drugs against diseases (9). Finally, validation at the animal or cellular level, will reveal the modern pharmacological mechanisms of drugs against diseases and explore new indications for drug interventions (10).

This artical adopted the research method of network pharmacology. By screening the active components and key targets of I. chinensis, we systematically analyzed its potential action targets to construct protein interaction networks and the enriched biological processes and pathways, so as to elaborate the pharmacological action mechanism of I. chinensis, which laid a foundation for further in-depth study on the mechanism of action of I. chinensis in the treatment of specific diseases and was of great significance in the field of new drug development.



2 Materials and methods


2.1 Database

Traditional Chinese Medicine Systems Pharmacology (TCMSP1), HERB database2, Pubchem database3, Swiss Target Prediction database4, Uniprot database5, STRING database6, DAVID database7, pubmed8, Web of Science9, China National Knowledge Infrastructure (CNKI10), Wangfang database11.



2.2 Composition software

Cytoscape3.9.1, Rstudio, Microlife Letter, PyMOL, AutoDockTools, RevMan 5.4.1.



2.3 Screening of monomeric active compounds in Chinese medicine

By searching the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. The results were obtained by searching for “Sonchus oleraceus L,” “Ixeris polycephala Cass,” “I. chinensis (Thunb.) Nakai,” “Lactuca tatarica.” The active ingredients were searched in the HERB database by searching for “I. chinensis.”



2.4 Target screening of active compounds

We inputted the active components of I. chinensis into the swiss target prediction to predict the target genes, and used the Uniprot database (see foot note 5) to convert the full name of the target gene to the abbreviation, deleted the target without corresponding gene name, and used Cytoscape 3.9.1 to construct the network diagram of I. chinensis – component-target.



2.5 Critical targets screening

The potential targets were entered into the STRING database for protein interaction analysis, free targets were excluded, and the Protein–protein interaction (PPI) network was constructed using Cytoscape 3.9.1 software to screen for key targets, which could be considered as important proteins for bittercress to exert its medicinal effects.



2.6 Enrichment analysis

We used the DAVID database to perform Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis on key targets, including Biological Process (BP), Cell Component (CC) and Molecular Function (MF). With human gene as the background, set p-value<0.01, we screened the top 10 BP, CC, MF entries and the top 20 KEGG pathway entries, and used the microbiota website to make enrichment histogram and bubble chart.



2.7 Prediction of target diseases

We used the Rstudio software to analyze DO data, and used the microbiota website for visual analysis. According to the p-value, we screened the top 20 target diseases with the highest credibility, so as to achieve the effect of disease prediction.



2.8 Molecular docking technology

According to the PPI analysis results, we selected the top ten key targets AKT1, TNF, EGFR, ESR1, SRC, PTGS2, MAPK1, MMP9, IL2 and AR for docking. Based on the comprehensive analysis of the results of “component-target network” and “component- target-disease network,” the key components in I. chinensis luteolin, apigenin, chinensiolide c, chinensiolide b, chinensiolide a, β-sitosterol, luteolin-7-O-β-D-glucoside played a leading role in the network. We adopted semi flexible docking to find the best binding position and strength of substrate molecules and receptor molecules (11). We searched the 3D structure of key proteins in the PDB protein structure database, and selected the proteins with high resolution and long structure in the human background. PyMOL software was used to remove water and solvent molecules in the protein, and AutoDockTools 1.5.7 software was used to conduct hydrogenation treatment, set as ligand. After downloading the 3D structure of small molecules using Pubchem, swiss target prediction, hydrogenation was performed in AutoDockTools 1.5.7 software to automatically assign charges, set up as ligands and set up torsional bonds. We docked large and small molecules, set docking boxes, docked parameters and arithmetic methods. The screened macromolecules and small molecules from I. chinensis were docked separately, and the binding energy less than 0 indicated that the ligand and the receptor could bind spontaneously, the binding energy ≤ −5. 0 kcal·mol −1 proved that the component was well docked with the target site, and the binding energy ≤ −7. 0 kcal·mol −1 indicated that the component and the binding conformation of the target was strongly active (12). The docking results were thermographed using Rstudio, and those with high binding energy were visualized using PyMOL.



2.9 Meta analysis


2.9.1 Research type

Randomized controlled trial (RCT) of I. chinensis water extract in the treatment of diseases.



2.9.2 Research objects

Mice fed with high-fat diet or injected with ccl4 and successfully modeled.



2.9.3 Intervention measures

Test group treated rats with I. chinensis water extract. The control group used placebo or no special treatment.



2.9.4 Outcome indicators

Total Cholesterol (TC), Triglycerides (TG), High-Density Lipoprotein Cholesterol (HDL-C), Low-Density Lipoprotein Cholesterol (LDL-C), Malondialdehyde (MDA).



2.9.5 Literature retrieval strategy

Subject term retrieval (see footnote 8), Web of Science (see footnote 9), CNKI (see footnote 10), Wanfang database (Wanfang, see footnote 11), to be included in the randomized controlled trial with I. chinensis as the treatment method. Take Pubmed as an example. See the table for its specific retrieval strategy (Table 1).



TABLE 1 Pubmed retrieval strategy.
[image: Table1]



2.9.6 For literature quality evaluation

Cochrane risk bias assessment tool and SYRCLE bias risk assessment tool were used to evaluate the quality of the included studies. The evaluation contents included: ① Random sequence generation (selection bias) ② Allocation consideration (selection bias), ③ Blinding of participants and persons (performance bias), ④ Blinding of outcome assessment (detection bias), ⑤ Incomplete outcome data (attribute bias), ⑥ Selective reporting (reporting bias), ⑦ Other biases.



2.9.7 Statistical analysis

RevMan 5.4.1 software was used for meta analysis. The standardized mean difference (SMD) was used as the effect index for the measurement data. The point estimates and 95% CI were given for each effect. If p ≥ 0.1 and I2 < 50%, it was considered that the heterogeneity between the studies was not significant, and the fixed effect model was selected; If p < 0.1, I2 ≥ 50%, it was considered that there was significant heterogeneity among the studies, and the random effect model was selected (13).





3 Results


3.1 Screening for active compounds of I. chinensis

We searched the HERB database for “I. chinensi” and found that there were 12 active ingredients, namely Apigenin, β-sitosterol, calcium carbonate, chinensiolide a, chinensiolide b, chinensiolide c, ixerisosidea, ixerochinolide, ixerochinoside, Lactucin, Luteolin, luteolin-7-O-β-D-glucoside. The above active ingredients were used as research subjects.



3.2 Analysis of I. chinensis–active compound–target network

Since there was no match between the targets of HERB database and the active ingredients of I. chinensis, so we entered into Pubchem for searching, and the smileIDs of 10 active ingredients were obtained and then entered into Swiss Target Prediction for target gene prediction, among which the remaining two ingredients, “Lactucin” was used for target gene prediction in TCMSP website and “calcium carbonate” was used for target gene prediction in National Library of Medicine website. By screening the target genes with confidence greater than 0.01 or the top 15 target classes, converting the full names of target genes to abbreviations with the help of Uniprot database (see footnote 5) and deleting the targets without corresponding gene names, a total of 238 targets were derived, and using Cytoscape 3.9.1 to construct the I. chinensis–active compound–target network (Figure 1).

[image: Figure 1]

FIGURE 1
 Ixeris chinensis active ingredient-target network diagram. The diamond shape represented the active ingredients of this herb, the oval represented the target site.




3.3 Key targets prediction

After entering 238 potential targets into STRING database for protein interaction analysis and eliminating free targets, we used Cytoscape 3.9.1 software to construct PPI network (Figure 2) and calculated parameter thresholds, screened Degree (node centrality, reflecting the number of other targets that participate in different disease pathological processes together with a certain target) greater than 30, BC (mediator centrality value, the target with high proximity centrality was directly connected to more targets, indicating the importance of the target in different disease pathomechanical processes) was greater than 369, CC (closeness centrality, reflecting the proximity between a node and other nodes in the network) was greater than 0.0017, a total of 40 key targets were screened, which could be regarded as important proteins for I. chinensis to exert their medicinal effects (Table 2).

[image: Figure 2]

FIGURE 2
 PPI network diagram. The larger the node shape in the figure and the closer to the center, the higher the criticality.




TABLE 2 Key targets prediction.
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3.4 GO enrichment analysis of targets

GO-BP analysis showed that 225 biological processes were related to this, and the most significant top 5 were positive regulation of transcription from RNA polymerase II promoter, signal transduction, response to xenobiotic stimulus, positive regulation of gene expression, positive regulation of transcription, DNA-templated (Table 3). GO-CC analysis revealed 39 cellular compositions associated with this, the five most significant being cytoplasm, nucleoplasm, plasma membrane, nucleus, cytosol (Table 4). GO-MF analysis showed that 65 molecular functions were related to this, and the most significant 5 were protein binding, ATP binding, identical protein binding, enzyme binding, protein homodimerization (Table 5). The results suggested that I. chinensis could exert their therapeutic effects by participating in the regulation of various biological processes (Figure 3).



TABLE 3 GO-BP analysis.
[image: Table3]



TABLE 4 GO-CC analysis.
[image: Table4]



TABLE 5 GO-MF analysis.
[image: Table5]

[image: Figure 3]

FIGURE 3
 GO enrichment analysis results of key target proteins. Including biological process, cellular components, molecular functions.




3.5 Analysis of KEGG enrichment pathway

KEGG is the main database for systematic analysis of gene function, genomic and proteomic information, where different proteins exercise their biological behaviors in coordination with each other, and it helps researchers to study protein and expression information as a whole network. Included in the database are illustrated cellular biochemical processes such as metabolism, membrane transport, signaling, cell cycle, and also information on homologous conserved subpathways (14).

KEGG analysis showed that the five most significantly enriched pathways were Pathways in cancer, Human papillomavirus infection, Prostate cancer, Breast cancer, Chemical carcinogenesis-receptor activation (Table 6 and Figure 4). Among the pathways associated with disease classes, the main ones are the Pathways in cancer, Human papillomavirus infection, Prostate cancer, Breast cancer, Chemical carcinogenesis – receptor activation, Human cytomegalovirus infection, Cushing syndrome, Hepatitis C, Hepatitis B, Kaposi sarcoma-associated herpesvirus infection, Viral carcinogenesis, Proteoglycans in cancer, Lipid and atherosclerosis, Human T-cell leukemia virus 1 infection, MicroRNAs in cancer, Alzheimer disease, etc. Among the pathways associated with signaling functions were PI3K-Akt signaling pathway, Estrogen signaling pathway, Prolactin signaling pathway, etc. It was suggested that the potential targets were involved in multiple signaling pathways acting in concert.



TABLE 6 Key target protein KEGG enrichment results.
[image: Table6]
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FIGURE 4
 Enrichment results of key target protein KEGG. The larger the point was, the more relevant target points were; The redder the color, the higher the credibility.




3.6 Analysis of KEGG signaling pathways related to cardiovascular and cerebrovascular

Cardiovascular and cerebrovascular diseases based on atherosclerosis are the main killers threatening human health. Years of research showed that the common pathological basis of cardiovascular and cerebrovascular diseases comes from atherosclerosis, so the key to prevent cardiovascular and cerebrovascular diseases is to prevent atherosclerosis (15).

There are many factors affecting cardiovascular and cerebrovascular diseases, such as vascular endothelial growth factor A (VEGF-A), a dimer glycoprotein encoded by VEGF-A gene, which plays a crucial role in the process of inducing vascular growth (16). Many studies have also confirmed that Akt and downstream molecular activity changes are related to some cardiovascular diseases. Minamino et al. (17) detected a vascular endothelial cell senescence phenotype in atheromatous plaque tissue. The findings suggested that statins improved endothelial function and reduced myocardial remodeling in the early stages of myocardial infarction through activation of Akt. Yang Hui et al. (18) prepared a hyperlipidemia mouse model, treated the water extract of I. chinensis and injected it intraperitoneally. The study showed that I. chinensis has an important contribution to improving the antioxidant capacity of hyperlipidemia mice, and could reduce the level of lipid peroxidation, but the specific deep mechanism needs further study.

Signaling pathways are important for the study of diseases, based on the key targets in I. chinensis and cardiovascular diseases, KEGG enrichment analysis showed that lipids and atherosclerosis was more significant signaling pathways. Therefore, taking this pathway as an example, it is of great significance to explore the role of the key target in the signal pathway of I. chinensis, and to explore the specific mechanism of disease and treat disease.


3.6.1 Lipid and atherosclerosis signal pathway

The elevated level of low density lipoprotein (LDL) cholesterol is a major risk factor for atherosclerosis. LDL can accumulate in the blood vessel wall and be modified by oxidation. Oxidized LDL (oxLDL) leads to endothelial dysfunction, the expression of adhesion molecules and the recruitment of monocytes in the subendothelial space (19). The extracellular oxLDL binds to the membrane receptor Lox-1. LOX-1 mediates the recognition and internalization of oxLDL, activates the substrate ROCK2, which inhibits PI3K, and then generates PIP3, thereby activating AKT, which promotes Bclxl phosphorylation, thus inducing cell apoptosis (20, 21).

Advanced glycosylation end products (AGEs) are harmful compounds formed by the combination of protein or fat in the blood with sugar. They bind with the RAGE receptor on the cell membrane, and then activate and generate ROS (22). ROS indirectly activates Src, which in turn activates Rac1. Rac1 further activates MKK4/7, promotes JNK phosphorylation, and then promotes AP-1 phosphorylation. The phosphorylated AP-1 will enter the nucleus, regulate DNA transcription, and affect the expression of MCP-1, ICAM-1, and IL-8, thus affecting the attachment and activation of downstream monocytes. ERK activated in cytoplasm can indirectly activate NF-κB, NF-κB affects the expression of MMP1,3,9 and TNF-α by promoting DNA transcription, thus affecting damage, cell apoptosis and inflammation (23).

Minimally modified low density lipoprotein (mmLDL) is LDL in which only the lipid fraction is oxidized and the lysine residue in the Apo B100 structure is not destroyed (24). MmLDL binds with TLR2/4/6 receptor on cell membrane to activate ERK, which in turn indirectly activates rap1, and rap1 activates Rac, which in turn activates NADPH oxidase, promotes the expression of ROS in vivo, and indirectly promotes NF-κB. In addition, mmLDL promotes the separation of intracytoplasmic phosphorylated IκBα from NF-κB through a series of pathways, and the separated NF-κB promotes DNA transcription, thus affecting the expression of MMP1,3,9 and TNF-α, which have effects on monocyte attachment and activation, injury and apoptosis, and inflammatory response.

Tumor necrosis factor (TNF-α) is a cytokine involved in systemic inflammation, and also one of the many cytokines that cause acute response. Extracellular TNF-α binds to the TNF-R1 receptor on the cytomembrane, indirectly activating CASP8, and then activating CASP3, thereby affecting cell apoptosis and plaque instability (25).

Very low density lipoprotein(VLDL)is a kind of lipoprotein which is composed of apolipoprotein synthesized in the liver by using the intermediate metabolites of chyle granules, bile acid, fatty acid, sugar and protein. VLDL binds to VLDLR receptor on the cell membrane, activates substrate PI3K, connects with PI3K-AKT signal, promotes the expression of PIP3, and then activates AKT (26). AKT phosphorylates GSK3β, and the phosphorylated GSK3β phosphorylates NFAT, which promotes DNA transcription and has an effect on cell proliferation (27).

The signal pathways are complex, and the proteins related to the key targets in the I. chinensis were all marked red (Figure 5), such as Src, TNFα, ERK, AKT, CYP, etc. It could be seen from the figure that most of the proteins in this pathway were distributed in the middle reaches, and they had important effects on inflammatory reaction, foam cell formation, cytokines, inflammatory signals, plaque instability, etc. The study of this pathway is helpful for anti atherosclerosis.

[image: Figure 5]

FIGURE 5
 Lipid and atherosclerosis signal pathway. The gene marked red is the key target in I. chinensis.





3.7 Analysis of related diseases enriched by targets

DO data analysis was performed using Rstudio software, setting p-value <0.05 and Q value = 1. Disease enrichment analysis was performed on the key targets of I. chinensis action, removing the same diseases, and then extracting the 20 diseases with the highest number of targets and visualizing them using the Microbiology website (Figure 6 and Table 7). The main diseases included autosomal dominant disease, hereditary breast ovarian cancer, cell type benign neoplasm, female reproductive organ cancer, adenoma, biliary tract cancer, brain disease, diarrhea, renal cell carcinoma, atherosclerosis, arteriosclerotic cardiovascular disease, leiomyoma, osteoporosis, Alzheimer’s disease, tauopathy, bone cancer, connective tissue cancer, lymphoblastic leukemia, obesity, infertility, etc. The key targets proved to be highly relevant to these diseases. In order to explore the association between I. chinensis and diseases, Cytoscape 3.9.1 software was used to construct and visualize the “component-target-disease” network map using collected components, targets and disease data (Figure 7). The network consisted of 12 components, 238 targets and 20 diseases, which visually showed that multiple targets contained in one component could participate in the regulation of multiple diseases at the same time.

[image: Figure 6]

FIGURE 6
 DO enrichment results for key target proteins. The longer the bar graph was, the more relevant targets were; The redder the color, the higher the credibility.




TABLE 7 DO enrichment results of key target protein.
[image: Table7]

[image: Figure 7]

FIGURE 7
 Ixeris chinensis component-disease-target map. In the figure, the left circle represented active chemical components, the middle square matrix represented target genes, and the right circle represented diseases.




3.8 Molecular docking technique to predict the binding ability of the active components and key targets of I. chinensis

Molecular docking technology is of great significance for further research in plant chemistry and biology (28). The current study docked each of the 7 active ingredients in I. chinensis with 10 key targets, yielding 70 docking results (Figure 8). The results revealed that luteolin, apigenin, chinensiolide c, chinensiolide b, chinensiolide a, β-sitosterol, and luteolin-7-O-β-D-glucoside had better docking ability with EGFR, ESR1, PTGS2, MAPK1, MMP9, and AR. The lower the binding energy, the better the molecule’s ability to bind to the protein (Table 8). Among them, MMP9 showed strong docking ability with each active ingredient, and β-sitosterol also showed strong binding ability with each protein. The docking results of the top 8 components with strong binding activity (binding energy ≤ −7 kcal·mol-1) to the targets were visualized and presented using PyMOL software (Figure 9). β-sitosterol forms one hydrogen bond with MMP9 via amino acid residue GLU-111, one hydrogen bond with PTGS2 via amino acid residue ARG-44, two hydrogen bonds with AR via amino acid residues GLN-802 and GLU-687, and one hydrogen bond with EGFR via amino acid residue GLU-758 forming one hydrogen bond; luteolin forming four hydrogen bonds with MMP9 via amino acid residues ALA-189, ALA-417, GLU-402, and LEU-188; apigenin forming three hydrogen bonds with MMP9 via amino acid residues ALA-189, ALA-417, and LEU-188, and three hydrogen bonds with MMP9 via amino acid residues ARG-752, ASN-705, GLN-711, and LEU-873 to form four hydrogen bonds with AR, and chinensiolide b to form three hydrogen bonds with PTGS2 via amino acid residues HIS-388, TRP-387, and TYR-385. The high binding energy between the main active components and key targets in I. chinensis indicated that I. chinensis might play its therapeutic role by regulating the above related targets.

[image: Figure 8]

FIGURE 8
 Docking and binding energy information of active ingredients and key target molecules in Ixeris chinensis. The redder the color, the better the binding ability.




TABLE 8 The binding ability of the active components and key targets of Ixeris chinensis.
[image: Table8]
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FIGURE 9
 Docking analysis of the active components and key targets of I. chinensis. In the figure, the blue macromolecule is the target protein, and the green smaller molecule is the active component. (A) β-sitosterol and MMP9, (B) β-sitosterol and PTGS2, (C) β-sitosterol and AR, (D) β-sitosterol and EGFR, (E) luteolin and MMP9, (F) apigenin and MMP9, (G) apigenin and AR, (H) chinensiolide b and PTGS2.




3.9 Meta analysis results


3.9.1 Literature search and screening results

The document screening process and basic characteristics of included documents are shown in the figure below (Figure 10 and Table 8). A total of five randomized controlled trials (RCTs) were conducted, including studies employing Sprague–Dawley (SD) rats, ICR mice, C57BL/6J mice, Wistar rats, and KM mice. For modeling, one study was fed with high-fat and high-sugar diets, two studies used carbon tetrachloride (CCl4), and two studies were fed with high-fat diets. The interventions were mainly treated with I. chinensis water extract. The diseases included in the studies mainly consisted of two cases of lipid-based diseases and three cases of hepatitis-based diseases. The included outcome indicators contained TC, TG, HDL-C, LDL-C, and MDA.

[image: Figure 10]

FIGURE 10
 (A) Flow chart of document screening. (B,C) Risk assessment of literature bias. Green is low risk bias, yellow is unknown risk bias, and red is high risk bias. The length of the bar indicates the proportion of this bias in the total number of articles.




3.9.2 Document quality evaluation

The five research baselines included were comparable. In the Random sequence generation, four studies described the random allocation method in detail and were rated as low risk bias, while one study only mentioned the word “random” without specifying the specific method and was rated as unknown risk bias. In the Allocation consideration, only one described the allocation concealment scheme, which was rated as low risk bias, and the rest as unknown risk bias. Among Blinding, only one described the allocation concealment scheme, which was rated as low risk bias, and the rest as unknown risk bias. In the Incomplete outcome data, all studies reported complete results and were rated as low risk bias; In selective reporting, none of the five studies reported selectively, which was rated as low risk bias. In Other bias, five studies were unable to judge whether there were other sources of bias, and all were rated as unknown risk bias (Figure 10).



3.9.3 Statistical analysis results

Included in the study, three articles reported four changes in blood lipids (29–31) (Figure 11A). The above three articles were divided into four subgroups according to blood lipid indicators. Heterogeneity between studies (I2 > 50%) was analyzed by random effect model. Meta analysis results showed that I. chinensis could significantly reduce the blood TC level, [SMD = –1.85, 95% CI (−2.87, −0.38), I2 = 53%, p = 0.0004], indicating significant heterogeneity and statistically significant difference. I. chinensis could also significantly reduce the blood TG level, [SMD = –1.95, 95% CI (−3.02, −0.87), I2 = 51%, p = 0.0004], indicating significant heterogeneity and statistically significant difference. I. chinensis showed no statistically significant difference in improving HDL-C [SMD = 1.34, 95% CI (0.26, 2.42), I2 = 65%, p = 0.02]. I. chinensis significantly reduced blood LDL-C levels, [SMD = –2.77, 95% CI (−3.87, −1.66), I2 = 43%, p < 0.00001], suggesting that the difference was statistically significant. The sensitivity analysis of the included literatures was carried out one by one with the method of exclusion. None of the literatures had a great impact on the results of this Meta-analysis, which meant that this study has a good stability.

[image: Figure 11]

FIGURE 11
 The study was grouped according to outcome indicators. The random effect model was used for analysis. Heterogeneity was calculated using I2. The summary estimates of the standard mean difference and 95% confidence zone were calculated using Review Manager 5.4.1. (A) Take the four items of blood lipid as the outcome index. (B) Take MDA as the outcome indicator.


Among the included studies, two articles reported changes in MDA with heterogeneity between studies (I2 > 50%), analyzed using a random-effects model (32, 33) (Figure 11B). The difference in I. chinensis in improving HDL-C was not statistically significant [SMD = −9.76, 95% CI (−26.39, 6.86), I2 = 96%, p = 0.25].



3.9.4 Publication bias analysis

We used the four indicators of blood lipids as an example to create a funnel plot. Funnel diagram showed that the included articles were asymmetric with the symmetry axis as the boundary, indicating that there was publication bias, which might be related to the small sample size of the included articles (Figure 12).
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FIGURE 12
 Funnel chart analysis of publication bias with four blood lipids as outcome indicators.






4 Discussion

As a traditional Chinese herbal medicine, I. chinensis has complex types and various functions. It has been used as a medicinal material for lowering blood glucose, cholesterol, diuresis, bloodpressure, anticoagulation, liver protection, antiinflammatory, antibacterial, anti-tumor and so on (6). The emergence of traditional.

Chinese medicine network pharmacology provides an opportunity to systematically explore the molecular complexity of traditional Chinese medicine prescriptions and the molecular relationship between traditional Chinese medicine ingredients and complex diseases (34). In recent years, the pharmacological effects of I. chinensis have been widely studied, but the specific mechanism of disease action is still unclear and needs to be further studied. Therefore, we should start from the analysis of active components to explore the key role targets of I. chinensis, and carry out GO and KEGG analysis, conduct molecular docking which is of great significance to predict the biological process, cell composition, molecular function and signal pathway of I. chinensis, and has a profound influence on the research of specific disease mechanism and the development of new drugs.

As a traditional Chinese herbal medicine, there are many kinds of I. chinensis. Now we pay more attention to the pharmacodynamic material basis of I. chinensis, that is, the effective components in the curative effect, which requires us to screen and analyze the effective components in it. By searching “I. chinensis “in HERB database, the current study found 12 active ingredients of it, including apigenin, β-sitosterol, luteolin, luteolin-7-O-β-D-glucoside and so on. These active ingredients were used as the basis of the whole analysis of I. chinensis.

The active compounds of I. chinensis have many targets. The active compounds of I. chinensis were input into swiss target prediction for target gene prediction. The targets without corresponding gene names were deleted by Uniprot database, and the related targets were screened out. To explore the relationship between the active compounds of I. chinensis and the target sites, Cytoscape3.9.1 was used to construct the I. chinensis composition-target network diagram. There were 238 targets of I. chinensis. Two hundred and thirty-eight potential targets were input into STRING database for protein interaction analysis, and free targets were eliminated. Cytoscape 3.9.1 software was used to construct PPI network, and 40 key targets were screened out. They were mainly AKT1, TNF, EGFR, ESR1, SRC, PTGS2, MAPK1, which were regarded as important proteins of I. chinensis. It was suggested that it might play a therapeutic role in diseases through the interaction of active compounds with key targets. Most of the key targets were closely related to monocyte attachment and activation, injury and apoptosis, inflammation, matrix digestion, cell migration, differentiation, proliferation and other biological functions. They had similar biological effects and synergistic effects of multiple targets. Akt1 is an important gene regulating cell survival and proliferation, which can regulate tumor proliferation, metastasis and invasion. Transplanting mesenchymal stem cells overexpressing Akt1 into rat myocardium can reduce infarct size and delay cardiac remodeling (35). TNF is a substance that can damage tumor cells and make them necrotic. TNF-α plays a role in inducing cell apoptosis, regulating the immune response of the body, regulating the vascular system of tumor tissue, and inducing programmed cell necrosis. It plays different regulatory roles in many malignant tumors, such as gastric cancer, liver cancer, breast cancer, etc. (36). EGFR belongs to the epidermal growth factor receptor family, which is activated after binding with ligands. It transmits information through Ras/Raf/MEK/ERK/MAPK pathway, PI3K/AKT (PKB) pathway and JAK/STAT pathway, thus affecting tumor cell proliferation, angiogenesis, invasion and metastasis (37). Estrogen Receptor 1 (ESR1) expression is lost or diminished in human Hepatocellular carcinoma (HCC) cells and liver tumors, suggesting a potential protective role of estrogen signaling in HCC and that low ESR1 gene expression plays.

an important role in the development of hepatocellular carcinoma (38). The sparse representation based classifier gene is the earliest proto oncogene discovered by human beings. Its protein product, Src, is the most widely distributed protein kinase in vivo. It participates in a series of physiological activities such as regulating cell proliferation and differentiation by phosphorylating various signal molecules in cells (39). PTGS2 gene is an inducible immediate response gene, and its expression is rapidly upregulated by certain cytokines, growth factors, inflammatory mediators, pro-oncogenic factors and other stimulating factors during the occurrence of pathological responses such as inflammation or tumor, and its main product catalyzed by PG is an important inflammatory mediator in liver injury, which is an important link in inflammation (40). Mitogen-activated protein Kinase (MAPK) signal pathway is an important inflammation related signal pathway. Some studies have shown that MAPK1 has neuroprotective effect after stroke, and some studies have shown that MAPK1 has harmful effects on stroke due to its activation promoting inflammation and oxidative stress and inhibiting and reducing ischemic injury (41).

Comprehensive analysis of the results of “component-target” network and “component-target-disease network,” The key components in I. chinensis were apigenin, chinensiolide c, chinensiolide a, chinensiolide b, luteolin, luteolin-7-O-β-D-glucoside and β-sitosterol, which were dominant in the network. According to relevant literature reports, apigenin, luteolin, luteolin-7-O-β-D-glucoside belong to flavonoids (6, 42–44), chinensiolide c, chinensiolide a and chinensiolide b belong to sesquiterpenes (45)，β-sitosterol belongs to triterpenes and steroids (6). Flavonoids have the advantages of scavenging free radicals, protecting liver, protecting heart and brain, regulating blood lipids and so on (46). Sesquiterpenes have a wide range of biological activities, such as anti-tumor, antibacterial, anti-inflammatory, anti-neurotoxic, antiviral, immunosuppressive, hepatoprotective and heart-strengthening activities (47). Triterpenes and steroids have anti-inflammatory, antibacterial and anti-tumor effects (48). Studies have shown that apigenin can inhibit the proliferation of colorectal cancer CL187 cells and promote apoptosis by inhibiting PI3K/Akt signaling pathway and regulating the expression of MAPK signaling pathway related proteins (49). Apigenin can inhibit the EMT of liver tissue cells by inhibiting PDK1/AKT signal pathway through liver bypass, and play an anti-fibrosis role (50). Luteolin can eliminate free radicals, enhance the activity of antioxidant enzymes, regulate proinflammatory mediators, and inhibit IκB kinase β Phosphorylation of subunits, down regulating TNF-α and the mRNA level of IL-6 (51). Luteolin-7-O-β-D-glucoside has protective effect on myocardial cells cultured under ischemia and hypoxia. Its mechanism may be related to scavenging oxygen free radicals, stabilizing cell membrane and inhibiting apoptosis (52). The water extract of I. chinensis A can effectively inhibit the growth of lung adenocarcinoma A549 cells, liver cancer Blx10-7402 cells and LoVo cells in vitro, and has strong anti-tumor activity (53). The sesquiterpene lactones, chinensiolide A-C, show strong anti-inflammatory and anti-tumor activities (54, 55). The pharmacological studies of the above active ingredients were in accordance with the results of I. chinensis network analysis, which was speculated to be an important component of I. chinensis to exert drug effects, and to a certain extent, it provided the value of medical research for the treatment of diseases.

Molecular docking technology can analyze the optimal binding sites between active components and targets, providing valuable insights into the mechanisms of drug action in treating diseases. Lin Shenghua and others (56) conducted molecular docking on the top 6 targets and the top 3 active components of Xuefu Zhuyu oral liquid for anti-thrombotic activity. The binding energies were between −5 and − 9.5KJ/mol, indicating that the active components of Xuefu Zhuyu oral liquid effectively bind with disease-related targets. Through molecular docking technology, the docking results between the main active components of 7 kinds of I. chinensis found in this study and key targets were pretty good, with binding energies concentrated between −7 and -9KJ/mol, indicating that the main active components of I. chinensis and key targets have good affinity, providing a basis for future drug design.

GO and KEGG analysis revealed that the biological processes of I. chinensis were mainly enriched in positive regulation of transcription from RNA polymerase II promoter, signal transduction, response to xenobiotic stimulus, positive regulation of gene expression, positive regulation of transcription, DNA-templated, response to drug, negative regulation of transcription from RNA polymerase II promoter, protein phosphorylation, negative regulation of apoptotic process, peptidyl-serine phosphorylation, etc. The potential action pathways of I. chinensis included 103 pathways of Pathways in cancer, Chemical carcinogenesis-receptor activation, PI3K-Akt signaling pathway, Hepatitis B, Proteoglycans in cancer, Lipid and atherosclerosis, etc. AKT1, TNF, EGFR and other proteins that regulated tumor cell proliferation, migration, apoptosis, inflammatory expression, immune response, MAPK1, MMP9, ESR1 and other proteins participated in nerve cell regulation, brain tissue repair, and regulation of vascular function were also at the center of the PPI network, indicating that I. chinensis may play a role in promoting tumor cell death, regulating blood lipids, and protecting the heart and brain by regulating these targets. In addition, the active compounds of I. chinensis could regulate inflammatory pathways, and the pathways with a high degree of significance include TNF signaling pathway, PI3K/AKT signaling pathway, and Estrogen signaling pathway, and the inflammatory response was related to the occurrence and development of diseases. Tumor necrosis factor-α (TNF-α) is a cytokine involved in systemic inflammation and is also among the many cytokines that cause acute phase responses. Extracellular TNF- α bound to the TNF-R1 receptor on the cytosolic membrane and indirectly activates CASP8, which in turn activated CASP3, and thus had an impact on apoptosis and plaque instability (57, 58). In addition, lignans and lignans 7-O-β-D-glucoside scavenged free radicals and enhanced antioxidant enzyme activity. It was evident that the active compounds of I. chinensis cought have myocardial protective and antiatherosclerotic effects by modulating the above-mentioned inflammatory pathways (59).

The DO analysis found that, I. chinensis could be applied to tumors such as hereditary breast, ovarian cancer, cell type benign neoplasm, female reproductive organ cancer, adenoma, biliary tract cancer, renal cell carcinoma, bone cancer, connective tissue cancer. It could also be applied to diseases such as autosomal dominant disease, brain disease, diarrhea, atherosclerosis, arteriosclerotic cardiovascular disease, leiomyoma, osteoporosis, Alzheimer’s, tauopathy, lymphoblastic leukemia, obesity, infertility, etc. It could be seen that the I. chinensis could be mainly used to treat cancer related diseases, visceral system diseases, reproductive system diseases, nervous system diseases, musculoskeletal system diseases, lymphatic system diseases, etc.

In conclusion, network pharmacology research can shorten the research process of molecular targets (60). Researchers can use network pharmacology studies to help discover effective and specific compounds for treating diseases (61). Based on meta analysis, network pharmacology and molecular docking methods, this study preliminarily explored the active components, key targets, docking binding energy, signal pathways and disease prediction of I. chinensis. It further verified the feasibility of I. chinensis as a drug to treat many diseases, and provided a basis for exploring the specific mechanism in treating diseases and developing new drugs. At the same time, current study found that in the five articles included, the extract of I. chinensis had a good effect on the improvement of blood lipid indicators. However, due to the small sample size, general literature quality, and fewer types of diseases studied, the reliability of outcomes had been affected to some extent, so more in vitro and in vivo experiments are needed to verify in the future.
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Whole exome sequencing identifies a novel mutation in Annexin A4 that is associated with recurrent spontaneous abortion
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Background: Recurrent spontaneous abortion (RSA) is a multifactorial disease, the exact causes of which are still unknown. Environmental, maternal, and genetic factors have been shown to contribute to this condition. The aim of this study was to investigate the presence of mutations in the ANXA4 gene in patients with RSA.

Methods: Genomic DNA was extracted from 325 patients with RSA and 941 control women with a normal reproductive history for whole-exome sequencing (WES). The detected variants were annotated and filtered, and the pathogenicity of the variants was predicted through the SIFT online tool, functional enrichment analyses, Sanger sequencing validation, prediction of changes in protein structure, and evolutionary conservation analysis. Furthermore, plasmid construction, Western blotting, RT–qPCR, and cell migration, invasion and adhesion assays were used to detect the effects of ANXA4 mutations on protein function.

Results: An ANXA4 mutation (p.G8D) in 1 of the 325 samples from patients with RSA (RSA-219) was identified through WES. This mutation was not detected in 941 controls or included in public databases. Evolutionary conservation analysis revealed that the amino acid residue affected by the mutation (p.G8D) was highly conserved among 13 vertebrate species, and the SIFT program and structural modeling analysis predicted that this mutation was harmful. Furthermore, functional assays revealed that this mutation could inhibit cell migration, invasion and adhesion.

Conclusion: Our study suggests that an unreported novel ANXA4 mutation (p.G8D) plays an important role in the pathogenesis of RSA and may contribute to the genetic diagnosis of RSA.
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 ANXA4 mutation; recurrent spontaneous abortion; cell invasion; migration; adhesion


1 Introduction

Recurrent spontaneous abortion (RSA) is a common complication in women of childbearing age during pregnancy, with an incidence rate ranging from 1 to 5% (1).

The number of miscarriages required for a diagnosis of RSA is controversial because the risk of another miscarriage after two consecutive miscarriages is similar to that after three consecutive miscarriages, and recent studies have suggested that predicting pregnancy loss after two consecutive miscarriages is more reasonable (2, 3). The American Reproductive Association defines recurrent spontaneous abortion as two or more consecutive miscarriages (4). Obviously, the pathogenesis of RSA is complex. To date, the potential risk factors for RSA reported include genetic, immunologic, anatomic, and infectious anomalies (5–10). However, approximately 50% of RSAs are unexplained or poorly understood (11).

For almost all human diseases, individual susceptibility is influenced by genetic variations to some degree (12). In recent years, whole-genome sequencing (WGS) and whole-exome sequencing (WES) have proven to be powerful new approaches for identifying disease-associated variants across the full minor allele frequency (MAF) spectrum in animals and humans (13–15). Genome-wide screening has shown that siblings of patients with RSA have a greater risk of miscarriage (16), Variants associated with RSA have been detected in genes involved in the immune response (IFNG, IL10, KIR2DS2, KIR2DS3, KIR2DS4, MBL, and TNF), coagulation (F2, F5, PAI-1, and PROZ), metabolism (GSTT1 and MTHFR), hormonal regulation (ESR1 and ADRB2), angiogenesis (NOS3 and VEGFA), and endometrial and placental function (ENOS and ACE) (17–19). Moreover, several studies have shown that rare variants play crucial roles in multiple human diseases, including RSA (20–22). However, few studies have confirmed that rare variants may play certain roles in the pathogenesis of RSA at the whole-exome/genome scale.

Annexin A4 (ANXA4) is a cytosolic calcium-binding protein with four repeat domains, each containing one calcium-binding site (CBS), and belongs to a ubiquitous family of Ca2+-dependent membrane-binding proteins thought to be involved in membrane trafficking and membrane organization within cells (23). Previous studies have shown that ANXA4 modulates membrane permeability and membrane trafficking, participates in cellular growth and apoptosis, and enhances tumor invasion (24). ANXA4 has been shown to be upregulated in various clinical epithelial tumors, including colorectal, pancreatic, ovarian, breast, and prostate cancers (24). Furthermore, a previous study revealed that the ANXA4 protein is localized to the glandular and luminal epithelium of the human endometrium and is present at high levels throughout the menstrual cycle, except during the early secretory (ES) phase (25).

In this study, we used WES to explore the potential involvement of rare variants in RSA risk in 325 patients with RSA. Among these rare variants, a novel missense mutation in the ANXA4 gene (c.23G > A, p.G8D) was detected in 1 patient with RSA (RSA-219). This variant was not found in either 941 controls or public databases. Functional assays revealed that this novel mutation could influence cell migration, invasion and adhesion, indicating that the ANXA4 mutation p.G8D contributes to the pathogenesis of RSA in women of Chinese ethnicity.



2 Materials and methods


2.1 Clinical samples

A total of 325 Han Chinese RSA patients and 941 control individuals at the Maternal and Child Health Hospital of Jiangxi Province between August 2018 and October 2019 were enrolled in this study. The RSA patients had experienced more than 2 unexplained and consecutive spontaneous abortions at less than 10 weeks of gestation. Patients who had genital abnormalities; chronic hypertension; diabetes; liver, kidney, cardiovascular, and thyroid diseases; autoimmune diseases; or infectious diseases were excluded. The control group was composed of women who underwent induced abortions of a normal pregnancy at a gestational age matched to that of the RSA group. The individuals in the control group were not treated with any drugs and had no pregnancy risk. The basic information of our study population is summarized in Table 1.



TABLE 1 The basic clinical features of RSA patients and controls.
[image: Table1]

All patients signed an informed consent form before being enrolled in the study, and this study was approved by the Ethics Committee of Jiangxi Provincial Maternal and Child Health Hospital (EC-KY-202149).



2.2 Exome sequencing and data analysis

Genomic DNA was extracted from the peripheral blood of each sample with the AxyPrep Blood Genomic DNA Miniprep Kit (Axygen Scientific, Inc., 33,210 Central Avenue, Union City, CA 94587, United States) according to the instructions provided by the manufacturer. DNA quality and concentration were determined with a NanoDrop-1000 spectrophotometer (Thermo Fisher, United States) and gel electrophoresis, respectively. Exome capture was performed with a BGI Exome V4 (59 Mb) Kit (BGI, China) according to the manufacturer’s protocols. DNA sequencing was performed on BGISEQ-500 sequencers (BGI, China) in high-output mode with 100 bp paired-end reads. Exome data were mapped to the human reference genome GRCh37 using the Burrows–Wheeler Aligner (BWA-MEM, version 0.6.2) (26). The credibility and quality of single-nucleotide polymorphisms (SNPs) and small insertions/deletions (InDels) were detected with the Genome Analysis Tool Kit (GATK, version 3.7) (27). ANNOVAR was used for the annotation and classification of SNPs and InDels, respectively (28). Variants with a read depth > 20 were extracted for further analysis. Finally, the variants identified through the above pipeline were filtered to eliminate benign variants with minor allele frequency (MAF) ≥1% in the dbSNP database,1 1,000 Genomes database,2 Exome Aggregation Consortium (ExAC, http://exac.broadinstitute.org/) and BGI’s in-house databases containing exome data from >100,000 subjects (29, 30). We ranked the genes and their potential for damage using the online prediction program SIFT to analyze whether these variants were potentially pathogenic. Variants that received lower SIFT scores (typically ≤0.05), indicating a greater likelihood of affecting protein function, were predicted to be damaging.



2.3 Validation by Sanger sequencing

Sanger sequencing was used to verify the mutation in the gene of interest in RSA patients. The polymerase chain reaction (PCR) primer was designed according to the mutation site in the ANXA4 gene with Primer 3 (F: 5’-GGCCTCGAAGAACTTCTGCT-3′, R: 5’-TGGGCATCTTCCATGGCATT-3′). PCR amplification was performed using the rTaq enzyme (Takara Biotechnology, Dalian, China) with 50 ng of genomic DNA as a template. PCR was performed with an ABI 2720 thermocycler (Applied Biosystems, Waltham, MA), and the reaction conditions were as follows: the first step was 94°C for 5 min, followed by 30 cycles of denaturation at 94°C for 30 s, annealing at 52°C for 30 s, and extension at 72°C for 30 s and a final extension at 72°C for 10 min. The amplified PCR products were subjected to 1% agarose gel electrophoresis and then purified from the gel with a DNA purification kit (Tiangen, Beijing, China). The purified PCR products were sequenced with an ABI 3730 Automatic Capillary DNA Sequencer (Applied Biosystems, Waltham, MA). The obtained DNA sequences were analyzed using DNASTAR Lasergene version 7.2 software (DNASTAR, Inc., Madison, WI, United States) with the reference sequence from the NCBI database.



2.4 Evolutionary conservation analysis of the rare ANXA4 variant (p.G8D)

To predict the potential pathogenicity of the mutation, evolutionary conservation analysis was performed by aligning the amino acid sequences of ANXA4 proteins from 13 species obtained from the GenBank database,3 including Human (NP_001144.1), Chimpanzee (XP_016804171.1), Pongo abelii (XP_002811982.2), Green monkey (XP_007968539.1), Nomascus leucogenys (XP_030683909.1), Mouse (NP_001318049.1), Rat (NP_077069.3), Cattle (NP_001001440.2), Pig (NP_001161111.1), Dog (NP_001003039.2), Horse (XP_023474726.1), Rabbit (XP_017196184.1) and Goat (XP_017910949.1). Evolutionary conservation analysis was performed using MEGA4 software.



2.5 Protein structural modeling

The modeling of the protein template between the reference and the modified (p.G8D) mutation of the ANXA4 gene was conducted using the SWISS-MODEL repository database.4 Then, we employed the Chimera 1.14rc package to concurrently compare the protein models.



2.6 Plasmid construction

Wild-type and mutant ANXA4 (NM_001153.5) were obtained from GeneCreate Biological Engineering Co., Ltd. (Wuhan, China). Human ANXA4 cDNA was inserted into the pcDNA3.1 vector to generate the wild-type plasmid. The mutant plasmid was generated with the wild-type plasmid as the template using a KOD-Plus-Mutagenesis Kit (Toyobo, Osaka, Japan). All the plasmids were confirmed by Sanger sequencing.



2.7 Cell culture and transfection

The THESCs cell line (human endometrial stromal cell line) was obtained from ATCC (Manassas, VA, http://www.lgcstandards-atcc.org). The cells were cultured in DMEM/F12 medium (HyClone, GE, United States) supplemented with 10% fetal bovine serum (FBS) (SA211.02, Minhai Bioengineering Co., Ltd., Lanzhou, China) and 1% penicillin–streptomycin (PS) (P1400, Beijing Solarbio Science & Technology Co., Ltd., Beijing, China) in an incubator at 37°C with a humidified atmosphere of 5% CO2.

The wild-type or mutant ANXA4 plasmids were transfected into THESCs with FuGENE HD transfection reagent (Promega, E2311) according to the manufacturer’s instructions. Briefly, 1 × 105 THESCs were seeded in 6-well plates and cultured for 24 h. The medium in the 6-well plate was subsequently discarded, and 800 μL of DMEM (without FBS or antibiotics) was added to each well. A total of 100 μL of DMEM (without FBS or antibiotics), 2 μg of plasmid and 5 μL of FuGENE HD transfection reagent were mixed together, and the mixture was incubated for 10 min at room temperature. Finally, the transfection mixture was added to the cells gently and incubated in an incubator with 5% CO2 at 37°C for 2 h. Then, 1 mL of DMEM with 10% FBS was added to each well, and the cells were cultured in an incubator with 5% CO2 at 37°C.



2.8 Western blotting

Protein expression was detected by Western blotting analysis. Forty-eight hours after transfection, the cells were treated with cell lysis buffer (Applygen Technologies Co., Ltd., Beijing). The protein concentration was determined by using a bicinchoninic acid (BCA) protein analysis kit (Thermo Fisher Biochemical, Beijing). The protein samples (20–30 μg) were separated by 10% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE), transferred to polyvinylidene difluoride (PVDF) membranes (Merck KGaA, United States), and blocked in 5% skim milk for 1 h at room temperature. The membranes were subsequently incubated with the following primary antibodies at 4°C overnight: anti-ANXA4 (1:1000, TA803051; Origene, China) and anti-β-actin (1,2000, sc-47778; Santa Cruz). After being washed with 1× TBST three times, the membranes were incubated with the corresponding secondary antibodies for 2 h at room temperature. Protein bands were visualized using luminol reagent (sc-2048; Santa Cruz Biotechnology Company, United States) or enhanced chemiluminescence reagent (Santa Cruz Biotechnology Company, United States) with a ChemiDoc XRS instrument (Bio-Rad Laboratories, CA, United States). Relative protein expression levels were measured using ImageJ software (NIH).



2.9 RNA isolation and real-time quantitative PCR

RT–qPCR was used to assess the mRNA expression of ANXA4. The quality and concentration of total RNA were confirmed with a Nanodrop 2000 instrument (Thermo Scientific, United States), followed by extraction from treated cells using TRIzol reagent (Invitrogen, United States). Five hundred nanograms of RNA was reverse transcribed to synthesize cDNA (20 μL) using a PrimeScript 1st Strand cDNA Synthesis Kit (TaKaRa, Japan) according to the manufacturer’s protocol. Then, qPCR was performed with SYBR Green PCR Master Mix (TaKaRa, Japan) on an ABI 7500 thermocycler (Applied Biosystems, Waltham, MA). ANXA4 was used as the target gene, and GAPDH was used as an internal reference. The primer sequences for both genes were designed and validated for specificity. The primer sequences used for RT–qPCR were as follows: ANXA4-F (5’-TGCCCTGCTGAGCTGGACTT-3′) and ANXA4-R (5’-AAAGCTGCTCAGGACCATGT-3′); GAPDH-F (5’-GGAGCGAGATCCCTCCAAAAT-3′) and GAPDH-R (5′- GGCTGTTGTCATACTTCTCATGG-3′). The following qPCR conditions were used: initial denaturation at 95°C for 2 min, followed by 30 cycles of denaturation at 95°C for 15 s, annealing at 60°C for 10 s, and extension at 72°C for 15 s and a final extension at 72°C for 10 min. The 2−ΔΔCt method was used to calculate and normalize the relative expression of ANXA4 to that of GAPDH.



2.10 Cell migration and invasion assays

The migration and invasion capabilities of THESCs transfected with wild-type or mutant ANXA4 plasmids were assessed with Transwell assays (Corning, Toledo, OH, United States).

For the migration analysis, after 48 h of transfection, the cells (3 × 105/ml) were collected, resuspended in DMEM/F12 without FBS, and then inoculated into the upper Transwell chamber, while the lower chamber was filled with 500 μL of DMEM/F12 supplemented with 20% FBS. After incubation for 24 h, the upper chambers were washed, fixed with methanol for 20 min, stained with 1% crystal violet dye solution for 30 min at room temperature, and washed with phosphate-buffered saline (PBS) several times. The chamber membranes were then photographed via light microscopy (IX71, OLYMPUS, Japan), and the number of migratory cells on the lower surface was counted in five random fields to assess the migration capability.

For invasion analysis, a total of 4 × 105 cells were seeded into the upper Transwell chamber, after which the upper chamber was precoated with Matrigel matrix (3.5 mg/mL) (BD Biosciences, United States). After 48 h, the same protocol as in the migration analysis was performed.



2.11 Cell adhesion assay

Briefly, after 48 h of transfection, a total of 4 × 103 cells/well were seeded in a 96-well plate, which was pretreated with 50 μL/well of Matrigel matrix (BD Biosciences, United States) and incubated at 37°C for 30 min to allow polymerization. Then, the 96-well plates were incubated in an incubator with 5% CO2 at 37°C for 20 min, 40 min or 60 min. The plates were washed with PBS three times to remove nonadherent cells, and the adherent cells were fixed with methanol for 15 min and stained with 1% crystal violet dye solution for 30 min at room temperature. The numbers of adherent cells were counted using light microscopy (IX71, OLYMPUS, Japan).



2.12 Statistical analyses

All the statistical analyses were performed using the statistical analysis software SPSS 21.0. Data are expressed as the mean ± standard error of the mean (S.E.M.). An unpaired Student’s t test was used to evaluate the significant differences among the groups. Statistical significance was established at a p value of less than 0.05.




3 Results


3.1 Identification of one novel rare variant in ANXA4 in one patient with RSA using WES

In total, 325 patients with RSA and 941 local women without RSA as controls underwent WES. WES performed on BGISEQ-500 sequencers achieved, on average, 21,266.42 Mb of raw bases. After removing low-quality reads, we obtained an average of 212,622,806 clean reads (21,255.71 Mb). The clean reads of each sample had high Q20 and Q30 values, indicating high sequencing quality. The average GC content was 52.14%. The chromosomal positions of the SNPs were based on the UCSC GRCh37/hg19 genome.

We obtained a total of 79,534 variants, including synonymous, missense, stop-loss, stop-gain, start-loss and splicing variants. The SnpEff tool5 was used to perform variant annotation and prediction. After excluding variants with MAFs greater than or equal to 1% in publicly available databases, e.g., dbSNP, 1,000 Genomes Project, ExAC and BGI’s in-house databases, 262 variants were retained. Using the in silico prediction algorithm SIFT, we selected candidate variants with potentially damaging impacts. The results showed that the ANXA4 gene was prominent on the basis of its functional annotation related to cell migration and invasion and the pathogenicity predictions of its mutations.

A novel mutation (c.23G > A, p.G8D) in the ANXA4 gene (NM_001153.5) was detected in 1 of the 325 patients with RSA (RSA-219) but was not detected in either the 941 controls or public databases (dbSNP, 1,000 Genomes Project, ExAC and BGI in-house databases). Primers were designed for PCR to amplify the ANXA4 fragment containing the rare variant, and Sanger sequencing was performed to validate this mutation (Figure 1A). The patient (RSA-219) was confirmed to harbor this mutation by Sanger sequencing. The ANXA4 gene is located on chromosome 2p13.3 and consists of 22 exons. The mutation is positioned in the first exon.
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FIGURE 1
 Representative sequencing electropherogram of the ANXA4 variant (p.G8D). The arrow indicates the location of the mutation, and patient “RSA-219” harbored the ANXA4 p.G8D variant (A). Evolutionary conservation analysis of ANXA4 p.G8D in vertebrate species (B).




3.2 Evolutionary conservation analysis and protein structural modeling

Evolutionary conservation analysis revealed that the amino acid residue affected by the p.G8D mutation was highly conserved among 13 vertebrate species (Figure 1B). Furthermore, we analyzed the changes in the 3D structure of ANXA4 between the wild-type and mutant proteins using SWISS-MODEL. Protein structural modeling revealed that the p.G8D ANXA4 mutation caused structural changes in the ANXA4 protein (Figure 2).

[image: Figure 2]

FIGURE 2
 Structural differences between wild-type ANXA4 (p.G8) and mutated ANXA4 (p.D8) proteins. The protein structures of the wild-type and mutated ANXA4 proteins were modeled based on the crystal model of the human ANXA4 protein.




3.3 A novel mutation in ANXA4 (p.G8D) inhibits the migration, invasion and adhesion of THESCs

Annexins have been suggested to promote cellular migration, invasion and adhesion, and adhesion is an essential step required for blastocysts to adhere to the endometrium (31). Next, we examined whether the p.G8D mutation in ANXA4 affects protein function.

THESCs were cultured and transfected with ANXA4 wild-type (WT) or mutant-type (MT) plasmids, and pcDNA3.1 was used as a control plasmid (Con). Twenty-four hours after transfection, G418 was used to screen stably transfected cells, and one individual clone was separated by dilution. The expression of ANXA4 in stably transfected cells was confirmed by RT–qPCR and WB (Figures 3A–C).

[image: Figure 3]

FIGURE 3
 The ANXA4 p.G8D mutation inhibited cell migration, invasion and adhesion in stably transfected THESCs. THESCs were cultured and transfected with ANXA4 wild-type (WT) or mutant-type (MT) plasmids, while pcDNA3.1 was used as a control plasmid (Con). Twenty-four hours after transfection, G418 was used to screen stably transfected cells, and one individual clone was separated by dilution. ANXA4 expression in stably transfected cells was confirmed by WB (A,B) and RT–qPCR (C). The effects of ANXA4 mutation on cell migration (D,F) and invasion (E,G) were determined by Transwell assays, and cell adhesion (H,I) was determined by Matrigel adhesion assays. These assays revealed that ANXA4 p.G8D mutation inhibited cell migration, invasion and adhesion in stably transfected cells compared with ANXA4 WT. Scale bars, 100 μm. The data are shown as the means ± SDs. p < 0.05 was considered to indicate a significant difference.


Transwell assays were used to detect the effects of ANXA4 WT/MT on migration and invasion. The results showed that MT ANXA4 could inhibit both cell migration (p = 0.0018) (Figures 3D,F) and invasion (p = 0.0148) (Figures 3E,G) of stable transfected cells, compared to WT ANXA4.

We examined the effect of the ANXA4 mutation on cell adhesion with a Matrigel adhesion assay. Compared with WT ANXA4, MT ANXA4 inhibited cell adhesion, especially at 40 min (p = 0.0147) and 60 min (p = 0.0137) (Figures 3H,I).

These results indicated that the novel ANXA4 mutation inhibited cell migration, invasion and adhesion.




4 Discussion

The main cause of abortion is implantation failure. Embryo implantation is a dynamic development process that requires a series of interactions between the blastocyst and the endometrium. The three prerequisites for successful implantation are an embryo with implantation ability, a receptive endometrium and simultaneous development of the embryo-endometrium. Many existing animal studies have confirmed that the uterus can keep the embryo in a viable but dormant state until the uterus is in an acceptable state for implantation, indicating that the proper regulation of the uterus by ovarian hormones mainly determines the success of implantation (32). Decidualization of the endometrium leads to corresponding vascular changes preparing for the invasion of human endometrial trophoblasts and the formation of a functional blood placenta; in other words, decidualization contributes to the functional transition of the endometrium from a nonreceptive state to a receptive state (33). An increasing amount of experimental and clinical data indicates that impaired or disrupted decidualization plays a role in the development of an unsuitable maternal–fetal interface. This situation has important clinical implications, including repeated implantation failures and recurrent pregnancy losses in the early stages of pregnancy, as well as several serious complications during late gestation (34). Studies have shown that in the presence of trophoblasts, the motility and invasive ability of decidualized endometrial stromal cells are enhanced (35), and trophoblast cell-derived CXCL12 has been shown to promote the expression and invasiveness of CXCR4 (the receptor of CXCL12) in decidual stromal cells isolated from early pregnancy (36). Many studies have shown that the coordinated migration and invasion of decidualized endometrial stromal cells in response to signals from embryo and trophoblast cells is the key to successful implantation. The ability of mature endometrial stromal cells to migrate and invade is increasingly recognized as the basis of intense tissue remodeling associated with endometrial regeneration, decidualization, embryo implantation, and trophoblast invasion (37, 38).

The annexin family is a class of proteins that are widely present in cell membranes and intracellular organs and are known mainly for their ability to bind phospholipids and their dependence on calcium ions. Given that the annexin family is highly expressed at the maternal–fetal interface and that both the endometrium and blastocyst undergo swift growth and differentiation throughout pregnancy, annexin is believed to perform various functions in both the placental tissues originating from the fetus and the decidual cells derived from the mother (39). Defective expression of endometrial ANXA2 may impair decidualization of endometrial stromal cells in vitro and in vivo, leading to the development of preeclampsia (40). Previous studies have demonstrated that the binding of antibodies and the apoptosis of syncytiotrophoblasts, can hinder the secretion of trophoblast gonadotropin. These factors may be crucial mechanisms through which anti-annexin V antibodies influence embryo implantation upon binding and the results of pregnancy (41). Annexin A4 (ANXA4) is a member of the annexin family that belongs to the multigene family of calcium ion (Ca2+) and phospholipid-binding proteins. The gene encoding human ANXA4 is located on chromosome 2q13.3. The C-terminal conserved domain contains four annexin repeats, each of which has a Ca2+-binding site and five α-helical structures, which can bind phospholipids in a calcium-dependent manner. The N-terminal domain is 12 amino acids long and determines the function of ANXA4 in vivo. ANXA4 can regulate membrane permeability and membrane transport, participate in cell growth and apoptosis, increase tumor invasion and promote antitumor drug resistance (24). An increasing number of studies have shown that ANXA4 is highly expressed in various clinical tumors and is an indicator of tumor development, invasion, chemoresistance, and poor outcomes in cancer patients (42–45). For example, ANXA4 is upregulated and translocated to the nucleus in ovarian clear cell carcinoma and colorectal cancer (44, 45), and the knockdown of ANXA4 weakens the migration and invasion of ovarian cancer and breast cancer cells (43, 46). In addition, several studies have shown that ANXA4 expression is significantly increased in the oviductal fluid of pregnant mares and bovines, and in the uterine endometrium during early pregnancy in pigs, ANXA4 has been identified as an embryo-interacting protein originating from oviductal fluid (47–49). Additionally, the ANXA4 transcript in the human endometrium is significantly upregulated during the menstrual secretory phase compared with the proliferative phase (50). Previous studies reported that elevated ANXA4 mRNA levels are correlated with an increasing level of progesterone (51), and might play a crucial role in the receptive process (52). Proportionately, proteomic PLCD4 (p.L696P) analyses of human placental tissues have shown that ANXA4 expression is downregulated in preeclampsia (PE) placentas and PE placenta-derived extravillous cytotrophoblasts compared with the expression in normal placentas (53). Additionally, ANXA4 overexpression alleviated rat PE progression, accompanied by increases in the expression of PI3K, p-Akt, and p-eNOS in rat placentas, which indicated that ANXA4 may promote trophoblast invasion through the PI3K/Akt/eNOS pathway (53). Furthermore, the ANXA4 gene may play an important role in pregnancy, but there are currently no reports on whether it is involved in the occurrence of miscarriage.

RSA is a multifactorial disease, the exact causes of which are still unknown. Environmental, maternal, and genetic factors have been shown to contribute to this condition (54). WES is widely used to detect genetic variations associated with human diseases, including RSA. In recent years, using WES, studies in families with inherited recurrent pregnancy loss (RPL) confirmed the associations of a number of gene variations with RPL, including IFT122 (p.V553G, p.S373F, p.W7C, p.G546R), ASIC5 (p.R227I), DYNC2H1 (p.Y2016C, p.D2184V), ALOX15 (p.Y139C, p.T560M), FKBP4 (p.A16E, p.N125S, p.Q381L, p.R399Q), PLCD4 (p.L696P) and OSBPL5 (p.G385R) (55–59). The compromised expression of FKBP4, resulting from the increased expression of miR-29c, leads to impaired progesterone signaling and defects in decidualization (60). This may contribute to the development of endometriosis and infertility. In addition, studies in unrelated RSA patients and controls revealed potentially harmful gene variants, including APP (p.K510N), FN1 (p.M1874T), KDR (p.D814N), POLR2B (p.G136C), ITGB1 (p.Y219H), PLK1 (p.A404S), COL4A2 (p.H1603P), LAMA4 (p.D1053G), FOXA2 (p.Y420X), FGA (p.A762V), F13A1 (p.Q401X, p.R612C), KHDC3L (p.146_156del), ANXA5 (p.G317R), DNMT1 (p.G876R), THBS1 (p.N700S), and MSH2 (p.L390F) (11, 61). Earlier research has offered significant understanding regarding the function of human KHDC3L in the modulation of homologous recombination (HR) repair, the activation of PARP1, and the maintenance of genome stability, while also recognizing human KHDC3L as an emerging risk gene associated with RPL (62). Previous studies have demonstrated that reduced expression of ANXA5, associated with the M2 haplotype, increases the risk of vascular thrombosis during pregnancy, thereby increasing the occurrence of RPL, primary maternal peripheral complications (PMPC), and recurrent implantation failure (RIF) (63). In the present study, a total of 325 patients with RSA and 941 local women without RSA as controls were included, and we identified specific gene variants that are pathogenic or possibly pathogenic through WES analysis. Among those variants, a novel ANXA4 mutation (p.G8D) in 1 of the 325 patients with RSA (RSA-219) was detected. This mutation was not detected in either the 941 controls or public databases (dbSNP, 1,000 Genomes Project, ExAC and BGI in-house databases). The SIFT program prediction and structural modeling analysis show that this mutation is harmful. Furthermore, functional analyses revealed that this mutation could inhibit cell migration, invasion and adhesion. Moreover, despite appropriate fertility preservation treatment, the patient experienced another recurrent miscarriage in 2020 during the follow-up period. These results indicate that the ANXA4 mutation p.G8D plays an important role in the pathogenesis of RSA. To the best of our knowledge, this is the first report revealing a novel ANXA4 mutation that may be associated with RSA. Insights from these studies can help us better identify recurrent miscarriages. By discovering new mutations in the ANXA4 gene that are associated with recurrent miscarriage, geneticists can work with clinicians to identify patients with deleterious variants in orthologous genes, thereby playing an active role in personalized medicine. However, the underlying mechanisms by which this mutation affects RSA need further investigation.



5 Conclusion

In conclusion, for the first time, we detected a novel ANXA4 mutation (p.G8D) in 325 samples from women with RSA using WES analysis, this mutation was not detected in either 941 local control women or public databases. Furthermore, functional analyses revealed that this mutation could inhibit cell migration, invasion and adhesion. Taken together, our findings suggest that the ANXA4 mutation p.G8D plays an important role in the pathogenesis of RSA and may contribute to its genetic diagnosis.
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