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In the past years there has been considerable effort to move robots from industrial 
environments to our daily lives where they can collaborate and interact with 
humans to improve our life quality. One of the key challenges in this direction is to 
make a suitable robot control system that can adapt to humans and interactively 
learn from humans to facilitate the efficient and safe co-existence of the two. 
The applications of such robotic systems include: service robotics and physical 
human-robot collaboration, assistive and rehabilitation robotics, semi-autonomous 
cars, etc. To achieve the goal of integrating robotic systems into these applications, 
several important research directions must be explored.

One such direction is the study of skill transfer, where a human operator’s skilled 
executions are used to obtain an autonomous controller. Another important direction 
is shared control, where a robotic controller and humans control the same body, 
tool, mechanism, car, etc. Shared control, in turn invokes very rich research questions 
such as co-adaptation between the human and the robot, where the two agents can 
benefit from each other’s skills or must adapt to each other’s behavior to achieve 
effective cooperative task executions.

The aim of this Research Topic is to help bridge the gap between the state-of-the-art 
and above-mentioned goals through novel multidisciplinary approaches in 
human-in-the-loop robot control and learning.

Citation: Peternel, L., Babič, J., Oztop, E., Inamura, T., Zhang, D., eds. (2020). 
Human-in-the-Loop Robot Control and Learning. Lausanne: Frontiers Media SA. 
doi: 10.3389/978-2-88963-312-8

HUMAN-IN-THE-LOOP ROBOT 
CONTROL AND LEARNING

https://www.frontiersin.org/research-topics/5703/human-in-the-loop-robot-control-and-learning
https://www.frontiersin.org/journals/robotics-and-ai
http://doi.org/10.3389/978-2-88963-312-8


Frontiers in Robotics and AI 3 January 2020 | Human-in-the-Loop Robot Control and Learning

05 A User Study on Personalized Stiffness Control and Task Specificity in 
Physical Human–Robot Interaction

Sugeeth Gopinathan, Sonja K. Ötting and Jochen J. Steil

21 A Hybrid Framework for Understanding and Predicting Human Reaching 
Motions

Ozgur S. Oguz, Zhehua Zhou and Dirk Wollherr

42 A Study of the Effects of Electrode Number and Decoding Algorithm on 
Online EEG-Based BCI Behavioral Performance

Jianjun Meng, Bradley J. Edelman, Jaron Olsoe, Gabriel Jacobs, 
Shuying Zhang, Angeliki Beyko and Bin He

56 Discrimination and Recognition of Phantom Finger Sensation Through 
Transcutaneous Electrical Nerve Stimulation

Mengnan Li, Dingguo Zhang, Yao Chen, Xinyu Chai, Longwen He, 
Ying Chen, Jinyao Guo and Xiaohong Sui

71 A User Study on Robot Skill Learning Without a Cost Function: Optimization 
of Dynamic Movement Primitives via Naive User Feedback

Anna-Lisa Vollmer and Nikolas J. Hemion

84 Teaching a Robot Bimanual Hand-Clapping Games via Wrist-Worn IMUs

Naomi T. Fitter and Katherine J. Kuchenbecker

101 Movement-Based Control for Upper-Limb Prosthetics: Is the Regression 
Technique the Key to a Robust and Accurate Control?

Mathilde Legrand, Manelle Merad, Etienne de Montalivet, Agnès Roby-Brami 
and Nathanaël Jarrassé

114 Neural Network-Based Muscle Torque Estimation Using 
Mechanomyography During Electrically-Evoked Knee Extension and 
Standing in Spinal Cord Injury

Muhammad Afiq Dzulkifli, Nur Azah Hamzaid, Glen M. Davis and 
Nazirah Hasnan

125 Rapid Decoding of Hand Gestures in Electrocorticography Using 
Recurrent Neural Networks

Gang Pan, Jia-Jun Li, Yu Qi, Hang Yu, Jun-Ming Zhu, Xiao-Xiang Zheng, 
Yue-Ming Wang and Shao-Min Zhang

138 Muscle Synergy Analysis of a Hand-Grasp Dataset: A Limited Subset of 
Motor Modules May Underlie a Large Variety of Grasps

Alessandro Scano, Andrea Chiavenna, Lorenzo Molinari Tosatti, 
Henning Müller and Manfredo Atzori

152 A Decoding Scheme for Incomplete Motor Imagery EEG With Deep Belief 
Network

Yaqi Chu, Xingang Zhao, Yijun Zou, Weiliang Xu, Jianda Han and Yiwen Zhao

169 An Advanced Adaptive Control of Lower Limb Rehabilitation Robot

Yihao Du, Hao Wang, Shi Qiu, Wenxuan Yao, Ping Xie and Xiaoling Chen

180 Bio-Cooperative Approach for the Human-in-the-Loop Control of an 
End-Effector Rehabilitation Robot

Francesco Scotto di Luzio, Davide Simonetti, Francesca Cordella, 
Sandra Miccinilli, Silvia Sterzi, Francesco Draicchio and Loredana Zollo

Table of Contents

https://www.frontiersin.org/research-topics/5703/human-in-the-loop-robot-control-and-learning
https://www.frontiersin.org/journals/robotics-and-ai


Frontiers in Robotics and AI 4 January 2020 | Human-in-the-Loop Robot Control and Learning

192 An Adaptive and Hybrid End-Point/Joint Impedance Controller for Lower 
Limb Exoskeletons

Serena Maggioni, Nils Reinert, Lars Lünenburger and 
Alejandro Melendez-Calderon

209 Human-In-The-Loop Control and Task Learning for Pneumatically 
Actuated Muscle Based Robots

Tatsuya Teramae, Koji Ishihara, Jan Babič, Jun Morimoto and Erhan Oztop

219 Muscle Synergy Alteration of Human During Walking With Lower Limb 
Exoskeleton

Zhan Li, Huxian Liu, Ziguang Yin and Kejia Chen

https://www.frontiersin.org/research-topics/5703/human-in-the-loop-robot-control-and-learning
https://www.frontiersin.org/journals/robotics-and-ai


November 2017 | Volume 4 | Article 581

Original research
published: 24 November 2017
doi: 10.3389/frobt.2017.00058

Frontiers in Robotics and AI | www.frontiersin.org

Edited by: 
Luka Peternel,  

Fondazione Istituto Italiano di 
Tecnologia, Italy

Reviewed by: 
Tadej Petric,  

Jožef Stefan Institute, Slovenia  
Leonel Rozo,  

Fondazione Istituto Italiano di 
Tecnologia, Italy

*Correspondence:
Sugeeth Gopinathan  

sgopinathan@techfak.uni-bielefeld.de

Specialty section: 
This article was submitted to 

Humanoid Robotics,  
a section of the journal  

Frontiers in Robotics and AI

Received: 30 June 2017
Accepted: 24 October 2017

Published: 24 November 2017

Citation: 
Gopinathan S, Ötting SK and Steil JJ 
(2017) A User Study on Personalized 
Stiffness Control and Task Specificity 

in Physical Human–Robot Interaction.  
Front. Robot. AI 4:58.  

doi: 10.3389/frobt.2017.00058

a User study on Personalized 
stiffness control and Task specificity 
in Physical human–robot interaction
Sugeeth Gopinathan1,2*, Sonja K. Ötting 1,3 and Jochen J. Steil 2

1 CoR-Lab, Bielefeld University, Bielefeld, Germany, 2 Institut für Robotik und Prozessinformatik, Technische Universität 
Braunschweig, Braunschweig, Germany, 3 Work and Organizational Psychology, Department of Psychology, Bielefeld 
University, Bielefeld, Germany

An ideal physical human–robot interaction (pHRI) should offer the users robotic systems 
that are easy to handle, intuitive to use, ergonomic and adaptive to human habits and 
preferences. But the variance in the user behavior is often high and rather unpredictable, 
which hinders the development of such systems. This article introduces a Personalized 
Adaptive Stiffness controller for pHRI that is calibrated for the user’s force profile and 
validates its performance in an extensive user study with 49 participants on two different 
tasks. The user study compares the new scheme to conventional fixed stiffness or gravi
tation compensation controllers on the 7DOF KUKA LWR IVb by employing two typical 
jointmanipulation tasks. The results clearly point out the importance of considering task 
specific parameters and human specific parameters while designing control modes for 
pHRI. The analysis shows that for simpler tasks a standard fixed controller may perform 
sufficiently well and that respective task dependency strongly prevails over individual 
differences. In the more complex task, quantitative and qualitative results reveal differ
ences between the respective control modes, where the Personalized Adaptive Stiffness 
controller excels in terms of both performance gain and user preference. Further analysis 
shows that human and task parameters can be combined and quantified by considering 
the manipulability of a simplified human arm model. The analysis of user’s interaction 
force profiles confirms this finding.

Keywords: assistance systems, personalized controllers, adaptive stiffness mode, physical human–robot 
interaction (phri), manipulability in hri

1. inTrODUcTiOn

As opposed to conventional industrial robotics where the robots are programmed to accomplish a 
fixed and repetitive task, interactive scenarios demand flexible robotic systems where the robot assists 
the human worker by collaborating with them, increasingly often through physical human–robot 
interaction (pHRI). Lightweight robots are replacing the traditional industrial robots in such tasks 
due to their obvious advantages: they are less dangerous, and the added compliance allows the users 
to work in close proximity and thus collaborate with the robot. This collaboration is a major step 
forward in achieving flexibility in industrial tasks, because the implicit technical knowledge that the 
human workers possess about the task can be incorporated directly by collaboration, without added 
effort of modeling or programming.
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Although it is widely assumed that pHRI will improve flexi
bility and productivity by taking advantage of the human’s cogni
tive and perceptual skills, it is unclear how this interaction in 
detail may be made more ergonomical and pleasant for the user. 
For this aim, a few number of novel platforms are commercially 
available that allow the adaptation of the robot controller to make 
the human–robot interaction smoother. The online adaptation 
of impedance characteristics is possible, and such manipulators 
behave like a spring damper system that reacts to external forces 
(Buchli et  al., 2011). However, substantial variation in human 
interaction forces coupled with unpredictable human behavior 
make it difficult to design a suitable pHRI system. Another 
factor, which will substantially affect pHRIs is the task itself. 
Unique task characteristics, such as geometry, difficulty level, and 
requirement of precision, have a sizable effect on how a human 
worker interacts with the robot during task completion. Each task 
is unique, and each individual approaches a task with a unique 
strategy, which might be substantially different among users. This 
variance in interaction is strongly connected to their physical 
limitations as well as to their personal preferences. Hence, not 
only user interaction forces but also the physical characteristics 
of the users such as differences in height, body proportions, left 
or right handedness, the distance the user keeps with the robot, or 
varying cognitive skills can introduce substantial variance. This 
demands personalization of the robots to be capable of accom
modating userspecific dynamics.

In summary, task specific characteristics and human para
meters play an important role in user interaction and the resulting 
variance in user behavior. They therefore should be investigated 
further. Most of the current literature—except a few such as 
Medina et al. (2011) and Rozo et al. (2015)—ignores these aspect 
and focuses entirely on adapting robot controllers to the user 
interaction forces. Rozo et al. (2015) use Gaussian mixture model 
to learn cooperative robot skills in the context of human–robot 
object transportation. This method allows the robot to automati
cally encode the human demonstrations and its relation to the 
task parameters. Medina et  al. (2011) proposed a method for 
gaining knowledge as well as acquiring semantic labels for inter
action experience on joint manipulation without supervision, 
aiming at improving the robots jointmanipulation skills. Various 
schemes based on variable admittance or impedance control have 
been proposed to improve the interaction quality, where the user 
interaction is mapped into robot stiffness, hence trying to reduce 
the effort in pHRI. Dimeas and Aspragathos (2014) implemented 
a variable admittance controller that is based on a Fuzzy infer
ence system and an adaptation algorithm to vary the admittance 
parameters. Here, the Fuzzy inference system relies on the meas
ured velocity and the human force and proposes suitable control
ler gains. In Lecours et al. (2012), a variable admittance control is 
discussed to improve intuitiveness in interaction by adjusting the 
admittance parameters based on the acceleration and velocity of 
the end effector. The parameters are then tuned online by certain 
heuristics. In Khan et al. (2015), a muscle circumference sensor is 
used to estimate the human interactive force, and a Radial Basis 
Function Neural Network is used to predict the desired human 
motion. Li et al. (2015) use game theory and policy iteration to 
analyze the pHRI and subsequently try to estimate the control 

objective of the user. This prediction is thereafter used to adapt the 
robot’s objective to user objective to coordinate the interaction. 
Ranatunga et al. (2015) try to account for the variability in human 
dynamics and propose a controller that can incorporate human 
intent, nominal task models, as well as variations in the robot 
dynamics. The proposed scheme consists of an outerloop model 
tuned using an inverse control technique and an innerloop that 
uses a neuroadaptive controller to linearize the robot dynamics.

These often rather complicated adaptation schemes have 
neither been evaluated nor tested with naive users, that is, with 
nonexperts who have no prior knowledge about the robots and 
their programming. In addition, the implicit assumption that 
such adaptations are beneficial for task performance or user sat
isfaction has not yet been validated on any reasonable tasks. Also 
the importance of task specific parameters and the variance this 
introduces in human–robot interaction has not been discussed. 
We hypothesize that determining these highly variable human 
characteristics and task parameters and analyzing their effects 
on the smoothness and efficiency of the pHRI is a crucial factor 
toward practical applications of pHRI and deserves more atten
tion. Despite these clear indications, apparently no commercially 
available and practically used control scheme embodies such 
adaptivity or personalization and experimental experience is 
shallow.

In Gopinathan et  al. (2017), a user study was conducted, 
and a novel personalized adaptation control was discussed. The 
personalized adaptive control mode used is parametrized based 
on interaction force limits of each individual user. Hence, each 
user will have a unique interaction experience based on their 
corresponding limitations. The Personalized Adaptive Stiffness 
control mode is evaluated with nonexpert users, comparing 
its performance and interaction quality to standard constant 
stiffness or gravity compensation modes that are widely used for 
pHRI. In this article, we elaborate the results of the user study 
and investigate additional characteristics, which may have sig
nificant effects on pHRI. While in principle it would be desirable 
to comparatively evaluate this approach additionally with all the 
methods discussed earlier and add more human factors, this is 
clearly beyond the scope of a single user study. The current contri
bution starts at the even more basic question of whether adaptive 
schemes can actually perform better for nonexpert users than 
simple fixed standard control techniques that are widely applied 
in practice. The evaluation of data from the study will shed 
more light on the significance of considering task specificity 
and importance of human specific parameters while designing 
control strategies for pHRI.

In Section 2, the robotic system, the control scheme, and 
the interaction control modes are described in detail. Section 
3 describes the study design, the tasks users performed in the 
experiment, the questionnaire users had to answer during the 
experiment, and the dependent variables that are considered 
while designing the evaluation regime. Section 4 tabulates the 
detailed results of the conducted experiments and provides a 
statistical comparison of the results from the experiments. In 
Section 5, task specificity is discussed along with the results of 
force analysis and manipulability analysis. Finally, in Section 6, we 
discuss the lessons learned and how future research could unfold.
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FigUre 1 | The robotic system: study participants interacting with the robot and performing the tasks.
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2. The rOBOTic sYsTeM

The robotic system is designed to emulate common industrial 
applications (e.g., welding or gluing) where the robotic arm is used 
as a tool and the user moves it kinesthetically by physically touch
ing the robot’s end effector. The control modes are implemented 
within the Compliant Control Architecture (Nordmann et  al., 
2012), and the program flow of the experiment is implemented 
using a Domain-Specific Language (Nordmann and Wrede, 2015). 
This section describes the robotic system used and elaborates on 
the implementation of the interaction control schemes. Figure 1 
shows the experiment setup.

2.1. compliant robot Platform
The platform for our user study consists of a KUKA Light 
Weight Robot (LWR IV) (Bischoff et al., 2010) equipped with a 
BarrettHand (BH8) (Townsend, 2000). The LWR IV is a redun
dant robot with seven joints equipped with torque sensors in 
each joint. The LWR IV is an actively compliant robot and has an 
impedance based control scheme (AlbuSchäffer et al., 2007). The 
BarrettHand that is attached to the LWR IV is a multifingered 
programmable grasper, equipped with fingertip torque sensors 
and tactile sensors at the palm of the grasper. This grasper is 
used in the experiment to achieve certain interaction tasks as 
explained in Section 3. In addition, a detachable rod is attached 
to the BarrettHand for accomplishing the tasks in the experiment.

2.2. interaction control scheme
The compliant platform allows the users to move the end effector 
kinesthetically within the robot’s workspace. The user interaction 
at the end effector will produce a Cartesian displacement Δx from 
the current endeffector position x, the new desired Cartesian 
equilibrium is as follows:

 x x x∗ = + ∆ . (1)

The analytical controller named CBF controller, proposed in 
Emmerich et  al. (2013) is based on Grupen and Huber (2005) 
and is used here for converting the user input in task space x* 
into joint space q*. A redundancy resolution qc is selected to get 

the best inverse kinematic solution that satisfies the desired task 
criteria. The controller generates nullspace motion to maintain 
the preferred redundancy resolution configuration qc, while 
achieving as primary task the Cartesian target displacement as 
follows:

 

∆ = ∆ + − ∆
∆ = − , ∆ = − ∆

= + ∆

′

′

∗

q J q x I J J q
q q q x x
q q q

c

c c

† †( ) ( )
( )

.

 

 1 α

 (2)

Here J† constitutes the Moore–Penrose Pseudoinverse of the 
task Jacobian. This implementation allows the user to interact 
seamlessly with the robot and move the end effector. A smoothing 
component was used to prevent the robot arm from drifting away 
after the interaction, the smoothing factor α adapts the Cartesian 
displacement and was chosen to be 0.5. Both Δx′ and qc are fed 
simultaneously into the hierarchical controller. The hierarchical 
controller prioritizes the tasks, treating the smoothed displace
ment as the primary task and the redundancy resolution as 
the secondary task. The controller then sends Δq to the robot 
which corresponds to the user given Cartesian displacement 
Δx. Figure 2 shows the control scheme architecture. During the 
experiment, the builtin Joint Impedance mode of KUKA LWR 
is used, the stiffness and damping values are chosen to suit the 
different control modes under consideration, the values for the 
stiffness were selected from a prestudy conducted with 8 par
ticipants. The joint stiffness mode was selected for the tasks for 
allowing the users more freedom in the interaction and give them 
the possibility to reconfigure the robot if necessary.

2.3. interaction control Modes
In this study, four control modes are compared, see Table 1. The 
implementation of the controllers is based on the architecture 
described in Section 2.2. The damping is kept constant during 
the interaction for all control modes, whereas the stiffness values 
are varied accordingly in each mode to attain desired interac
tion strategy. The stiffness values of high and medium stiffness 
modes were set to constant values based on the results from the 
prestudy.
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TaBle 1 | Overview of four control modes that are compared in the study.

control mode Damping 
(nm s/rad)

stiffness 
(nm/rad)

Performance  
expectation

(Assisted) gravity 
compensation

0.7 10 Less accurate but low time of 
completion

High stiffness 0.7 800 Accurate but high time of 
completion

Medium stiffness 0.7 400 Medium accuracy and time of 
completion

Personalized 
adaptive stiffness

0.7 Adapted Best accuracy and time of 
completion

FigUre 2 | Block diagram showing how the Personalized Adaptive Stiffness mode is implemented. An outer control loop is used to vary the stiffness of the Joint 
Impedance Controller.
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The current position of the robot is continuously tracked by 
the control loop and forms the reference for the Joint Impedance 
Controller. The robot can be moved freely by the user but will 
hold its position even when no external force is applied. As 
described in Steil et al. (2014), the native gravity compensation 
mode is reimplemented using the above specified control scheme. 
Hence, switching of control modes in LWR IV controller during 
the experiment was avoided.

In the assisted Gravity Compensation mode, forces applied by 
the users are not resisted by the robot. In this mode, the robot 
is compliant and the user can move the robot through physical 
interaction. The High Stiffness mode offers higher resistance to the 
user when interaction occurs. This might not be ergonomically 
good for the user, since throughout the interaction a high force 
at the end effector needs to be applied. In Medium Stiffness mode, 
the robot offers a slight resistance to user interaction.

The fourth mode is the Personalized Adaptive Stiffness mode. 
This is a personalized mode where a linear heuristic is used to 
adapt the stiffness of the robot online. A similar approach was 
used in Dimeas and Aspragathos (2014) where a heuristic was 
used to vary the impedance parameters based on the change 

in velocity of the robot. In our case, we keep the damping at a 
constant value and vary the stiffness based on the instantane
ous interaction force. The stiffness is linearly proportional to 
the applied force. The individual fmax and fmin are calculated for 
each user during the initial warmup phase of the experiment  
(see Section 3.2.1) and are used to set the limits of control mode. 
The stiffness varies between a maximum and minimum value, 
kmax and kmin as follows:

 
k k k

f f
f kvar

max min

min max
resultant max=

−
−









∗ +

( )
( )

.
 

(3)

From experimental trials conducted in the prestudy, kmax is set 
to 1,000 Nm/rad and kmin is set to 10 Nm/rad. The instantaneous 
resultant force applied at the end effector is measured as fresultant. 
Based on equation (3), a stiffness is calculated (kvar). This stiffness 
is then filtered using a second order lowpass filter and forwarded 
to the controller. This control mode adapts to the forces which 
the user applies and is personalized to work within the user’s 
force range. The integration of the adaptation into the interaction 
control scheme is shown in Figure 2.

3. sTUDY Design

To compare the four interaction control modes, we designed 
a user study as withinsubjects study, where each participant 
experiences all four control modes. This design has been chosen 
because it is economic and eliminates possible influences from 
individualrelated confounding variables (Field, 2013). The inter
action control modes were activated in random order to prevent 
the occurrence of sequencing effects.

3.1. ethic statement
Before starting the user study, we consulted Bielefeld University’s 
ethics committee, which approved of the study as being ethi
cally innocuous. In addition, the study setup was inspected and 
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four times with different control modes.
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approved by the official safety officer. Each of the participants 
was given a short briefing prior to the experiment containing 
information about the study process and data that would be 
assessed. The subjects had also the possibility to ask questions 
before the experiment and were insured that it was possible to 
quit participating at every point in time and that in this case the 
incomplete data would be deleted and not enter the analysis. All 
participants gave their oral informed consent in accordance with 
Declaration of Helsinki. For data protection reasons, no written 
statements were obtained not to store any personal data. This was 
in agreement with usual practice in such studies and in accord
ance with Bielefeld University’s ethic committee guidelines. After 
finishing the experiment, the participants were debriefed and 
given additional information regarding the study.

3.2. study setup
This section describes the experiment phases and procedures that 
employ a twostage model similar to Wrede et al. (2013). The first 
phase is a warm-up where the user interacts with the robot and 
an individual force profile is recorded for subsequent calibration 
of the Personalized Adaptive Stiffness mode. In the second phase, 
the user is asked to complete certain tasks, e.g., moving a tool 
point attached to the robot along a predefined trajectory, using 
different control modes. In addition, each participant has to fill 
in a questionnaire. The flow of the study is shown in Figure 3.

3.2.1. Warm-up Phase
In this first phase, the user plays a pick and place game and 
interacts with the robot by physically moving its end effector. Five 
objects are randomly placed in the workspace and the user moves 
the BarrettHand above the object and presses the palm onto the 
object. This action is sensed by the palm sensor and the fingers of 
the BarrettHand close, and the object is grasped. Then the user is 
asked to move the robot end effector to the target location marked 
in the robot workspace, place the object on target location and 

press it downwards causing the BarrettHand fingers open and 
release the object. After finishing this task, the user proceeds 
to the next object and repeats the game. The robot’s stiffness is 
set to a medium value at this phase. This allows us to record the 
normal working force limits of the user. Figure 1 shows one of the 
participants interacting with the robot in this phase.

Besides providing an opportunity for the users to get used to 
the robot, this warmup phase serves a secondary purpose: while 
the user participates in the pick and place game, a force observer 
program continuously monitors the forces applied by the user 
at the end effector. During each interaction, the maximum and 
minimum forces are stored and finally averaged. The underlying 
assumption is that each user has different physical capabilities 
(some users may be stronger than others) and hence the force 
applied by each user will vary. If we calibrate a Personalized 
Adaptive stiffness controller to work between these force limits, 
each user gets his/her own personalized adaptive controller 
respecting their physical capabilities. Hence, from this phase fmax, 
the maximum interaction force and fmin, the minimum interac
tion force from each user are calculated.

3.2.2. Task Phase
In the second phase, the users perform two tasks of varying 
complexity with different control modes. The tasks are designed 
to emulate common industrial tasks like welding or gluing 
where the user has to move a tool in a predetermined trajectory 
for completing each task. From experimental pretrials, it was 
determined that these tasks should be neither too easy nor too 
complex. The users have to move the tip of the tool/end effector 
along a predetermined trajectory (e.g., a spiral) from a start to 
end position to complete the task. The users have to perform each 
task with four control modes. The control modes are activated in 
random order to eliminate possible sequencing effects, whereas 
the users have no information on the control mode they are using 
in each trial.

9

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


6

Gopinathan et al. Personalized Stiffness Control in pHRI

Frontiers in Robotics and AI | www.frontiersin.org November 2017 | Volume 4 | Article 58

3.2.2.1. Drawing Task
The two tasks vary in difficulty. In the first task, the user is asked 
to draw a predefined figure on the flat surface of a table. During 
this task, the user has to care for task accuracy while maintaining 
contact with the flat surface. As experienced in the prestudy, 
moving the robot tool around curves leads to errors. It is also 
not easy to maintain contact to the surface while following a 
nonstraight contour. For the purpose of standardization of the 
experiment, a spiral image is placed on the workspace, and the 
user has to follow this spiral trajectory starting from the outside 
of the curve and ending at the center point. In Figure 1, a study 
participant can be seen following a spiral with the tool attached 
to the end effector.

3.2.2.2. Contour-Following Task
The second task is simpler than the first task. It is easy but not 
trivial as it involves moving the tool in 3D space. An adapted ver
sion of the wireloop game is constructed in the robot workspace. 
The user has to move the tool along the edge from one end to the 
other to finish the task. This task resembles gluing or welding 
along the edge of a workpiece. In Figure 1, a study participant can 
be seen moving the tool along the edge of the adapted wireloop 
game.

3.2.3. Questionnaire
The data for the qualitative analysis were collected by means of 
questionnaire. Before the first task, the participants answered 
several questions on control variables (e.g., previous experience 
with robots). After each task, the participants rated how they 
perceived the interaction with the robotic arm. After the comple
tion of all tasks, the participants answered additional questions 
on demographic variables.

The questionnaire was adapted to the task and the robotic arm 
used in the experiment. The items concerning the interaction 
quality asked for the rating of how easy it was to use the robotic 
arm (ease of use), how controllable (control) and reliable (reli
ability) the robot was, how enjoyable the interaction was (enjoy
ment), and how satisfied the participants were with the robot (user 
satisfaction). The items used for this were selected items from 
the subscales perceived ease of use, perceived enjoyment, and 
perception of external control from the Technology Acceptance 
Model (Venkatesh, 2000), supplemented with items from the 
subscales reliability and system satisfaction from the Integrated 
Model of user satisfaction and technology acceptance (Wixom 
and Todd, 2005). Sample items are as follows: “Interacting with 
the system did not require a lot of my mental effort” for ease of use,  
“I had control over using the system” for control, “The operation of 
the robot was dependable” for reliability, “I found using the system 
to be enjoyable” for enjoyment, and “All things considered, I was 
very satisfied with the interaction with the robot” for user satisfac
tion. The participants rated their agreement with the presented 
statements on a 5point answer scale (5 = I agree/1 = I do not 
agree).

3.3. Dependent Variables
This section describes the criteria used to compare the interaction 
control modes based on their performance.

3.3.1. Variables for Quantitative Analysis
The following variables are used to analyze the performance of 
the users.

Time of completion: the time required to move the end effector 
from the starting point to the target point.

Procrustes analysis: a rigid shape analysis that uses isomorphic 
scaling, translation, and rotation to find the best fit between two 
or more landmarked shapes (Ross, 2004). Procrustes analysis 
quantifies the similarity between the task trajectory generated 
by the user and the target trajectory. This criterion refers to the 
quality and the effectiveness of each control mode. The goodness
offit criterion used in this analysis is the sum of squared errors. 
It returns a measure of dissimilarity d, the similarity measure is 
calculated as s = (1 − d).

Smoothness: a movement is considered smooth when it hap
pens without interruptions. Smoothness is generally used to  
determine the controllability of a system (Balasubramanian et al., 
2015). Hence, a trajectory with maximum smoothness will result 
in maximal movement efficiency (Burdet et  al., 2013). Also a 
smooth interaction ensures a reduced interaction effort from the 
user side, hence improving the human–robot interface (Olsen and 
Goodrich, 2012). One of the most commonly used smoothness 
measures is the number of peaks (NP). The peaks are identified 
as the number of maxima in a given trajectory, see equation (4). 
This quantifies the smoothness to a measurable quantity (Montes 
et al., 2014). The total number of peaks in each dimension X, Y, 
and Z is calculated from the recorded data and the sum of the 
peaks in X and Y is counted.
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Another method of quantifying smoothness is representing it 
as a function of jerk equation (5), which is the time derivative of 
acceleration (Hogan, 1984). The jerk cost is a scalar, which could 
be used for judging the smoothness of the trajectory (Shadmehr 
and Wise, 2005). The jerk cost of the individual axis is calculated 
for each trajectory, and the sum is then represented as the total 
jerk cost for each user generated trajectory.
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Arc length: the total length traversed while moving along the 
given trajectory. It is related to the accuracy in task completion. 
Larger arc length means more deviation the user had from the 
intended path. The arc length can be calculated as equation (6).
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3.3.2. Variables for Qualitative Analysis
To analyze the interaction quality, the participants rated their  
perception of the interaction quality after each task. Each  
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criterion of interaction quality (ease of use, reliability, external 
control, enjoyment, and user satisfaction) is briefly described 
below. Perceived ease of use is one of the main determinants of 
system use. It is the degree to which a user believes that using a 
system will be free of effort (Davis, 1989). Reliability and control 
are system characteristics, influencing how users experience the 
use of the system. Reliability refers to the degree to which a user 
believes he or she can depend on the system’s operations to be 
reliable and predictable (Wixom and Todd, 2005). The perceived 
control is the degree to which a user believes that he or she 
has control over using the system (Venkatesh and Bala, 2008). 
Enjoyment and user satisfaction capture affective perceptions of 
using the system in question. Enjoyment is the extent to which 
“the activity of using a specific system is perceived to be enjoy
able in its own right, aside from any performance consequences 
resulting from system use” (Venkatesh et al., 2003, p. 351). User 
satisfaction represents the degree of favorableness the user shows 
with respect to the system (Wixom and Todd, 2005).

4. eXPeriMenT resUlTs

In this section, the criteria for performance and interaction 
quality are analyzed to evaluate the four control modes for both 
tasks. A second order lowpass filter was used to eliminate noise 
in the data. To analyze whether there are differences between the 
controllers, we applied the repeated measures analysis of variance 
(ANOVA). This procedure is recommended to compare the mean 
values of experimental groups, where the same participants expe
rience all experimental conditions (in this case, the four control 
modes). The results in this section will be reported with the full test 
statistics (e.g., F(3) = 7.19, p < 0.001). Here, the pvalue indicates 

the significant difference between the compared groups (level of 
significance: 0.05). Subsequently, pairwise comparisons (post hoc 
test: Bonferroni) determine which groups differ significantly from 
each other (level of significance: 0.05). The execution of repeated 
measures ANOVA has several requirements: The most important 
is the absence of sphericity. If sphericity is detected, the usage 
of Greenhouse–Geisser corrected tests is recommended (Field, 
2013). The corresponding results are reported and interpreted in 
the same way as mentioned earlier. Figure 4 shows the perfor
mance of participant 23 while using different control modes for 
completing both mentioned tasks.

4.1. Participants
N = 49 users participated in the experiment, where 74.5% were 
male, M age = 31.67, SD age = 10.46, and 78.7% righthanded. 
The data from two participants were removed because of incon
sistencies in the data, primarily caused by not following the given 
instructions. The participants were mainly fulltime working 
44.7%, 31.9% were students, 10.6% parttime working, and 
4.3% not working. The educational level was high, with 53.2% 
having a university degree, 25.5% having a higher vocational 
education. The participants were recruited through snowball 
sampling, following an initial advertisement. The user study 
titled “Human–Robot Interaction User Study” has been approved 
by Ethics Commission of Bielefeld University.

4.2. hypothesis
Based on the characteristics of the four control modes described 
earlier, we had the following hypotheses on the outcomes of this 
comparison: H1: The gravity compensation mode will be faster 
but less accurate than medium stiffness or high stiffness. H2: The 
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TaBle 2 | ANOVA results for contourfollowing task (C) and drawing task (D), df, F, and p are the ANOVA parameters.

Peaks Proc. Time Jerk arc ease. enjoy. reliab. cntrl satis.

D df 2.54 3.00 2.57 3.00 2.30 3.00 3.00 3.00 2.53 3.00
F 12.38 7.19 13.95 4.40 19.63 9.05 3.40 7.21 9.79 7.86
p <0.001 <0.001 0.001 0.005 <0.001 <0.001 0.020 <0.001 <0.001 <0.001

C df 2.53 3.00 3.00 3.00 3.00 3.00 2.51 2.23 3.00 3.00
F 6.53 1.09 4.17 0.90 0.70 7.72 1.81 2.35 6.03 7.86
p 0.001 0.38 0.007 0.442 0.553 <0.001 0.018 0.001 0.050 <0.001

Significant p-values are highlighted.

FigUre 5 | Error graphs showing means and SDs of each criteria for the four control modes for contourfollowing task (C.F.T.) and drawing task (D.T.). The top 
figure shows the results of the qualitative analysis, and the bottom figures shows the results of the quantitative analysis.
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high stiffness mode will be slower but more accurate than medium 
stiffness or gravity compensation. H3: The medium stiffness 
mode will be in between gravity compensation and high stiffness 
mode in terms of time and accuracy. H4: The adaptive stiffness 
mode excels the other modes in terms of time and accuracy.

4.3. Drawing Task
4.3.1. Quantitative Analysis
Repeated measures ANOVA showed significant differences 
between the controllers for all performance criteria. The detailed 
ANOVA test statistics can be found in Table 2. The means and 
standard deviation of each criteria for the four control modes 
for both the tasks are shown in Figure 5. The post hoc pairwise 

comparisons showed the following results: For time, there is 
a significant difference between Adaptive Stiffness and High 
Stiffness (p < 0.001), while Adaptive Stiffness did not differ sig
nificantly from Gravity Compensation (p = 1.000) and Medium 
Stiffness (p  =  1.000), even though the mean time for Gravity 
Compensation is slightly lower than that of Adaptive Stiffness 
and that of Medium Stiffness. This indicates similar performance 
using Adaptive Stiffness or Gravity Compensation modes.

For procrustes, there is a significant difference between 
Adaptive Stiffness and Medium Stiffness (p  =  0.040) as well 
as between Adaptive Stiffness and Gravity Compensation 
(p = 0.009). High Stiffness and Adaptive Stiffness do not differ 
significantly (p = 1.000), even though the value for High Stiffness 

12

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


9

Gopinathan et al. Personalized Stiffness Control in pHRI

Frontiers in Robotics and AI | www.frontiersin.org November 2017 | Volume 4 | Article 58

is slightly better than that of Adaptive Stiffness. This indicates 
similar performance using Adaptive Stiffness or High Stiffness 
modes, both showing better performance than the other modes.

For the number of peaks, there is a significant difference 
between Adaptive Stiffness and High Stiffness (p  =  0.007), 
Adaptive Stiffness and Medium Stiffness (p  =  0.008), and 
Adaptive Stiffness and Gravity Compensation (p < 0.001). The 
mean number of peaks for Adaptive Stiffness is lower than other 
three control modes. This confirms superior performance of 
Adaptive Stiffness mode compared with the other three modes.

For jerk cost, there is a significant difference between the per
formance of Adaptive Stiffness and Medium Stiffness (p = 0.008). 
The data hint at a difference between Adaptive Stiffness and 
Gravity Compensation (p  =  0.131). The performance of High 
Stiffness and Adaptive Stiffness does not differ significantly 
(p = 1.000), even though the mean jerk for Adaptive Stiffness is 
better than that of High Stiffness.

For arc length, Gravity Compensation differs significantly 
from all other controllers (p < 0.001). Adaptive Stiffness is similar 
to Medium (p = 0.410) and High Stiffness (p = 1.000).

4.3.2. Qualitative Analysis
Repeated measures ANOVA showed significant differences 
between the controllers for all criteria of interaction quality. For 
ease of use, Adaptive Stiffness differs significantly from Gravity 
Compensation (p < 0.001) and marginally significant from High 
Stiffness (p = 0.086). Adaptive Stiffness and Medium Stiffness do 
not differ significantly. Adaptive Stiffness and Medium Stiffness 
have therefore the best mean ratings for ease of use.

For enjoyment, Gravity Compensation differs marginally 
significant from Medium Stiffness (p = 0.082), with a lower mean 
value for Gravity Compensation. The other controllers do not 
differ significantly from each other.

For reliability, Gravity Compensation differs significantly from 
Adaptive Stiffness (p =  0.005), High (p =  0.014), and Medium 
Stiffness (p = 0.009). The results for control are similar: Gravity 
Compensation differs significantly from Adaptive Stiffness 
(p = 0.001), High (p = 0.011), and Medium Stiffness (p = 0.012). 
For both, Gravity Compensation has the lowest mean rating, 
while Adaptive Stiffness and the other controllers do not differ.

For user satisfaction, Adaptive Stiffness differs significantly 
from Gravity Compensation (p  =  0.001) and High Stiffness 
(p  =  0.017). Gravity Compensation differs significantly from 
Medium Stiffness (p  =  0.021). The means show that Adaptive 
Stiffness and Medium Stiffness have the best mean ratings, fol
lowed by High Stiffness and Gravity Compensation.

4.4. contour-Following Task
4.4.1. Quantitative Analysis
Repeated measures ANOVA showed significant differences 
between the controllers for two of the four analyzed performance 
criteria (time and number of peaks). For time, Adaptive Stiffness 
is significantly different from High Stiffness (p = 0.003). Although 
not significantly, the mean time for Adaptive Stiffness is lower 
than all other modes. The results show that with the Adaptive 
Stiffness mode the users are slightly faster.

For number of peaks, there is a significant difference between 
the performance of Adaptive Stiffness and Gravity Compensation 
(p < 0.001). Adaptive Stiffness and High Stiffness (p = 0.07), and 
Adaptive Stiffness and Medium Stiffness (p = 0.087) are also dif
ferent. The mean number of peaks for Adaptive Stiffness is lower 
than other three control modes.

Even though there are no significant differences for procrustes 
and jerk cost, there are some points worth mentioning: For 
procrustes, the mean accuracy of High Stiffness is better than 
other modes. The results are interesting since in a simple task the 
performance in accuracy is not much different. In fact, as expected, 
High Stiffness is slightly better. This is another hint into needs of 
task dependent control modes since the results of procrustes in the 
drawing task data show a vast difference. For jerk cost, there is a 
difference between the performance of the controllers, the Medium 
Stiffness being slightly better than the other modes.

4.4.2. Qualitative Analysis
Repeated measures ANOVA showed significant differences 
between the controllers for all criteria of interaction quality. For 
ease of use, Adaptive Stiffness is similar to Gravity Compensation 
and High Stiffness. Medium Stiffness differs significantly from 
High Stiffness (p  =  0.004), Adaptive Stiffness (p  =  0.025), and 
Gravity Compensation (p = 0.001). Here, Medium Stiffness clearly 
excels over the other controllers. Analysis of the dataset perceived 
enjoyment shows significant difference between the controllers. 
Medium stiffness is slightly better than Gravity Compensation 
and High Stiffness.

For the dataset reliability, there is a significant difference 
between the controllers. Medium Stiffness is slightly better than 
High Stiffness and Gravity Compensation. The dataset external 
control showed a significant difference between the controllers. 
Medium Stiffness differs significantly from Gravity Compensation, 
and High Stiffness is slightly better than Adaptive Stiffness.

For user satisfaction, Adaptive Stiffness differs significantly 
from Gravity Compensation (p  =  0.001) and High Stiffness 
(p  =  0.017). Gravity Compensation differs significantly from 
Medium Stiffness (p = 0.021). Here, High and Medium Stiffness 
have the best ratings, closely followed by Adaptive Stiffness and 
with the lowest mean ratings for Gravity Compensation.

4.5. statistical comparison of results
We conducted factorial repeated measures ANOVAs to find differ
ences between the tasks, the controllers and their interaction. For 
this analysis factors, namely, task (contourfollowing/drawing)  
and controller (Gravity Compensation/Adaptive Stiffness/
Medium Stiffness/High Stiffness) and their interaction term are 
included as independent variables. A statistical interaction occurs 
when the effect of one independent variable on the dependent 
variable changes depending on the level of another independent 
variable. A main effect is the effect of one of the independent 
variables on the dependent variable, ignoring the effects of all 
other independent variables.

The results of the analysis show if the criteria of performance 
and interaction quality differ significantly in these cases,  
(a) between the tasks, when the controllers are not considered, (b) 
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TaBle 3 | Differences of means between the tasks for each control mode.

Proc. Peaks Jerk ease enjoy. reliab. control satis.

MDiff Grav 0.40 −2.53 0.10 0.30 0.26 0.38 0.40 0.35
Adapt 0.32 −5.91 0.19 0.04 0.25 0.04 0.17 −0.09
Med 0.39 −3.42 0.05 0.25 0.26 0.21 0.35 0.23
High 0.33 −6.21 0.14 0.24 0.31 0.16 0.19 0.32

Main effect tasks df 1 1 1 1 1 1 1 1
F 162.64 1.78 43.78 16.32 11.99 10.53 8.78 4.62
p <0.001 0.189 <0.001 <0.001 0.001 0.002 0.005 0.037

Main effect controllers df 3 3 3 3 3 3 2.115 2.499
F 6.19 14.06 0.46 10.93 3.72 6.19 7.32 5.21
p 0.001 <0.001 0.713 <0.001 0.003 0.001 0.001 0.004

Interaction effect df 3 2.576 3 3 3 3 3 2.499
F 3.38 0.58 2.22 2.71 0.50 1.13 2.63 3.72
p 0.020 0.604 0.089 0.048 0.683 0.342 0.053 0.019

Significant p-values are highlighted.
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between the controllers, when the tasks are not considered, and 
(c) between the controllers, dependent on the task that is fulfilled. 
Here, (a) displays the difference in difficulty between the tasks, 
(b) confirms the results from section 4.3 and 4.4, and (c) shows 
whether the controllers might be able to compensate for effects of 
task difficulty. The full ANOVA test statistics and the differences 
of the means (MDiff = Mcontour − Mdrawing) are displayed in Table 3.

We did not run this analysis for the criterion time of comple
tion, because the time of completion is highly task specific and 
its analysis will not give any information about differences in 
performance caused by task difficulty.

4.5.1. Analysis of Quantitative Performance
The results for data of procrustes analysis show significant main 
effects for tasks (Mcontour = 0.94; Mdrawing = 0.58) and for control
lers. In addition, there is a significant interaction effect. Here, 
the difference between the tasks is smaller when the Adaptive 
Stiffness or High Stiffness controllers are used, compared with 
Gravity Compensation and Medium Stiffness. For number of 
peaks, there is only a significant main effect for controllers, but 
neither a main effect for task nor an interaction effect. For jerk 
cost, there is a main effect for task (Mcontour = 1.35; Mdrawing = 1.23), 
but no main effect for controllers. There is a marginally significant 
interaction effect. The difference between the tasks is the smallest 
with Medium Stiffness and the largest with Adaptive Stiffness.

4.5.2. Analysis of Qualitative Performance
For ease of use, there is a significant main effect for task 
(Mcontour = 4.38; Mdrawing = 4.16) and for controllers. The interaction 
effect is significant as well. The difference between the tasks is 
smaller when the Adaptive Stiffness controller is used, compared 
with the other controllers. For enjoyment and reliability, there is a 
main effect for task (enjoyment: Mcontour = 4.14; Mdrawing = 3.89; reli-
ability: Mcontour = 4.29; Mdrawing = 4.03) and for controllers, but there 
is no significant interaction effect. For control, there is a main 
effect for task (Mcontour = 4.55; Mdrawing = 4.35) and for controllers. 
There is a marginally significant interaction effect. The difference 
between the tasks is the smallest when the Adaptive Stiffness 
controller is used, compared with the other controllers. For user 

satisfaction, there is a main effect (Mcontour = 4.38; Mdrawing = 4.17) 
for task and for controllers as well as a significant interaction 
effect. The difference between the tasks is smaller and opposed 
when the Adaptive Stiffness is used, compared with the other 
controllers.

5. TasK sPeciFiciTY

To learn about the effects of task parameters on the task execution 
and the individual interaction, the forces that users exerted on the 
end effector are analyzed in this section. In addition to the forces, 
the manipulability and human specific parameters like arm 
lengths are analyzed for the drawing task. For the latter part, four 
distinct users are selected with different body proportions, and 
their data are analyzed for observing the effects of userspecific 
parameters on task execution. The Figure  6 shows the human 
model used for the analysis. For this particular task, human arm 
is modeled as a 3 DOF articulate arm with two links. The human 
interaction model can be defined as shown in Figure 6, here h 
is the height of the user’s shoulder, d is the distance to the task l1 
and l2 are the arm parameters. This simplified human arm model 
is used for further analysis.

The distance to the task is known from the experiment setup, 
the other human parameters were measured manually. Table 4 
shows the arm parameters of the selected users, the user1 was the 
shortest, the user4 was the tallest, user2 and user3 had medium 
body proportions.

5.1. Force analysis
The forces of one of the study participants while performing the 
drawing task are shown in Figure 7. The green sections in the plot 
correspond to the region of increasing force, and the red sections 
of the plots correspond to the decreasing interaction force. A 
clear pattern is visible: each peak in the force plot corresponds 
to a particular section in the task. This strongly points at the 
correlation between task characteristics and variation of the user 
interaction forces. Further inspection of the data showed that the 
observed pattern is apparent for each user who performed the 
drawing task.

14

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


TaBle 4 | Variation of the arm parameters of four selected users, the predicted manipulability and task accuracy.

Forearm (cm) Upperarm (cm) height (cm) MaxManip (m3) MinManip (m3) avg. proc

User1 25 26 131 0.0242 0.0160 0.72
User2 27 33 144 0.0332 0.0198 0.82
User3 28 34 148 0.0373 0.0224 0.84
User4 29 38 156 0.0239 0.0002 0.40

FigUre 6 | The interaction model of the user while interacting with the robot 
for task execution, the parameters height of the user, distance to the task, 
and arm lengths are used for later analysis.
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5.2. Manipulability
The concept of manipulability was proposed by Yoshikawa (1985) 
as a quantitative measure of the ability in positioning and orienting 
of robotic arms. It is useful for conducting a task space analysis 
of robotic manipulators in terms of their ability to generate the 
velocity, acceleration, and the exerted forces (Chiacchio, 2000). 
This information can be used to determine the best configuration 
for task execution and also for designing experimental setups, 
which are suited for certain tasks (Vahrenkamp et  al., 2012). 
Petrič et al. (2016) studied the manipulability related to human 
arm and proposed a method that allows the user to perform tasks 
in arms configurations which are otherwise unsuitable due to lack 
of manipulability.

The manipulability is given by the following equation:

 w det t t
T= ( )J J , (7)

where Jt is the translational Jacobian.
Based on the discussed human model, the variation of manipu

lability for the drawing task for each human parameter is calculated. 
Figure 8 shows the variation of manipulability when each parameter 
changes. The maximum and minimum manipulability for the task is 
calculated for each parameter variation and is plotted. It is noticeable 

that the manipulability increases initially as the parameters vary and 
suddenly drops after a particular threshold. This points out to a pos
sible singularity and hints at the fact that for a particular task there 
exists a single configuration of human model that gives optimal per
formance, or more realistically: for each user, there exists a particular 
task configuration where the manipulability is maximized.

The manipulability variation for the different users while 
performing the drawing task was calculated. Figure 9 shows the 
results from the analysis of the considered users, it is noticeable 
that there is a clear pattern in the manipulability variation for 
user1, user2, and user3. For these users, the pattern of manipula
bility variation along the task is similar and is a clear repetition, 
while for user4 the manipulability variation is different from 
other users. Another noticeable result is the value of the manipu
lability and its relation to task accuracy. From Table 4, it can be 
seen that the accuracy of the task that is represented as the mean 
procrustes of each user over four task repetition is strongly related 
to the manipulability. Thus, the human parameters, distance to 
task, and height to the task are important factors to be considered 
while designing tasks involving human–robot interaction. The 
scalar manipulability measure we explored here does not give the 
full picture as our aim was to introduce the useful concept of 
humanarm manipulability and discuss the importance of con
sidering the human parameters. Hence, consideration of more 
extensive facets of manipulability like manipulability ellipsoids 
discussed in Rozo et al. (2017) will definitely improve the cur
rent existing systems as it will make it possible to develop control 
strategies, which can take into consideration the intricate task 
characteristics like directional changes that are otherwise hard 
to model.

5.3. Transmission ratio
The concept of velocity and force transmission ratio is mentioned 
in Faroni et al. (2016), where the maximization of manipulability 
in a certain direction was discussed.

For an nDOF manipulator and mdimensional task space, 
Cartesian velocity is given by the following equation:

  x Jq= , (8)

where x m∈  is the task velocity, q n∈  is the joint velocity vector,  
and J is m × n Jacobian matrix. The force transmission ratio α and 
velocity transmission ratio β can be represented as follows:

 
α β

α
= , =J x

x
†
 1 .

 
(9)

These quantities can be used to maximize the manipulability 
of a robot along a desired direction (Faroni et al., 2016). Thus, 
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FigUre 8 | Variation of the manipulability for the considered task when the parameters of the simplified human model are varied, the parameters are varied one at a 
time keeping others constant. The maximum and minimum manipulability are shown in the right and the left vertical axis.

FigUre 7 | The plot shows one of the participants performing the drawing task. The tracked path, the force variation along the task, and the stiffness variation 
along the task trajectory are shown in the plot.
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by analyzing these ratios, we can observe the change in direc
tion of the task and its effect in interaction forces. A higher 
force transmission ratio results in larger forces applied and 
lower error transmission rate. The same effect will result from 

low velocity transmission ratio due to Kinetostatic duality. 
Knowing this information beforehand will facilitate designing 
of kinesthetic teaching and other interaction modes keeping 
in mind the workspace of human and configurations, which 
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permits maximum precision. This will also sets benchmarks 
for training users in industry to accomplish interaction tasks 
efficiently.

Using the simplified human arm model discussed earlier, the 
transmission ratio for the human arm while executing the task 
is calculated. Figure 10 shows the correlation between the force 

transmission ratio and the interaction forces for the four users 
while performing the same task using the same control modes 
under same condition. It is clearly noticeable that the transmis
sion factor and the interaction forces are strongly correlated.

6. DiscUssiOn

From the results discussed in the previous Section 4.3.2 and 
by comparing the mean values from Figure 5, clearly the users 
complete the drawing task faster with the (assisted) Gravity 
Compensation mode, the down side being bad performance in 
terms of both quantitative performance and interaction quality. 
Meanwhile, the High Stiffness mode is accurate but slower and 
the interaction quality is bad. These results verify the hypotheses 
H1 and H2 mentioned in Section 4.2. The Personalized Adaptive 
Stiffness mode has no significant difference in time of comple
tion when compared with Gravity Compensation mode and at 
the same time the smoothness of Adaptive Stiffness mode is even 
superior to High Stiffness, having lower number of peaks. The 
procrustes in the task completion shows no significant difference 
between Adaptive Stiffness and High Stiffness. These both results 
together verify the hypothesis H4.

Looking at the criteria for interaction quality, see 4.3.1, the 
Adaptive Stiffness control is clearly preferred over the Gravity 
Compensation mode concerning ease of use, reliability, control, 
and overall user satisfaction. While compared with the High 
Stiffness mode, the Adaptive Stiffness mode is preferred in 

FigUre 10 | Graph showing predicted transmission ratio along the trajectory and its correlation with user’s interaction forces.

FigUre 9 | Manipulability variation within selected users while performing 
the drawing task.
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terms of ease of use, experience of control, and overall user 
satisfaction.

Figure 11 shows that the Adaptive Stiffness mode ranks high 
in every comparison criterion we have used for the drawing task. 
It has a net rating of 9/10, where it got 9 top ranks in 10 compared 
criteria. Medium Stiffness with 6/10 is the second best mode, and 
Gravity Compensation comes last, although commonly used in 
practice. Hence, the online adaptation of stiffness that is person
alized for each user receives the best outcome in terms of interac
tion quality and performance, although our adaptation scheme 
is rather simple and directly proportional to the measured force. 
Given that the level of accuracy of maximum stiffness is almost 
reached, we hypothesize that a more advanced adaption scheme 
may not achieve much better performance. However, it could 
possibly reduce effort for the user and could be investigated in 
future research.

Interestingly, the analysis of the contourfollowing task in 
Section 4.3.1 and Section 4.3.2 shows that the users prefer the 
Medium Stiffness mode for completing the contourfollowing 

task. It has high user ratings in all the interaction quality criteria. 
The accuracy of all the modes is similar for this task, and time of 
completion for Medium Stiffness and Gravity Compensation is 
not significantly different, see Figure 5.

From Figure 11, we can see that the Medium Stiffness mode 
has the best ranks in criteria of interaction quality, it has an overall 
rank of 6/10. We can conclude that the more complex the task, the 
higher the need of adaptation of the robot parameters. It is clear 
that for the simple task a medium stiffness mode is sufficient and 
will result in good interaction quality. This strong difference in 
the results between the two tasks indicates that task specificity is 
highly relevant when designing interaction strategies for pHRI.

The results from Section 4.5 show that the Adaptive Stiffness 
controller is in most cases able to (at least some degree) compen
sate for the differences of performance and interaction quality 
between tasks of different difficulty. The results are clearer for the 
criteria of interaction quality than for the performance criteria. 
Hence, the Personalized Adaptive Stiffness mode is still perform
ing better. The performance could be augmented by combining 

FigUre 11 | Radar charts showing the ranking of the control modes for each performance criterion for both tasks depending on their statistical significance.
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both these factors, i.e., having personalization and inclusion of 
task specific parameters.

The variation of interaction forces of one participant while 
performing the drawing task is shown in Figure  7, by visual 
inspection it is clear that the pattern observed extends to each user 
who performed the drawing task and this pattern is task depend
ent. This variation of force is a clear task specific parameter, and 
this information could be used constructively to improve the user 
interaction by incorporating this information while designing the 
task. By observing the results discussed in Section 5.3, we can infer 
that this correlation is not only a result of the task specificity but 
also the user kinematics. The manipulability measure discussed 
in Section 5.2 and the transmission ratio results discussed in 5.3 
clearly point out the effects of task dependency and in addition 
to this strongly points out the fact that estimation and inclu
sion of human specific parameters are also important for better 
task design. By including these parameters, the systems can be 
designed in such a way that the users never run into singularities 
of their arm configurations and at the same time the task could 
be preoptimized from an ergonomic perspective.

In addition, from the presented results, we can hypothesize 
that by using the kinematics of the human arm and in turn calcu
lating its manipulability over a given task it is possible to quantify 
and predict the performance of a user for a given task and task 
configuration. Hence, considering the human manipulability will 
help improving the pHRI further, since it is possible to adapt the 
task configuration or the robot parameters to compensate for the 
changes in human manipulability. Hence, if we try to optimize 
the human manipulability online, this will lead to an adapta
tion scheme that will maximize the user performance and user 
comfort. Such an adaptation can be used in parallel with a per
sonalized adaptation mode, which adapts not only to the varying 
user forces. This combination can be used quite conveniently by 
the users to overcome difficulties arising from task configuration 
and physical constraint, since it adapts to both task and physical 
characteristics.

7. cOnclUsiOn

The analysis of the data collected from 49 users from the user 
study clearly supports the hypothesis that Personalized Adaptive 
control takes pHRI to the next level, if the task is sufficiently 
complex. Although the personalization scheme tested here 
is relatively simple and calibrated only for the force limits of 
the users, the experiments clearly show that the Personalized 
Adaptive control was suited for collaborative task execution and 

will result in good performance. In addition, a medium stiffness 
mode will give satisfactory results for a simple task and complex 
adaptations may not guarantee better results in such scenarios. 
The inferences drawn from the second experiment along with 
the inference drawn form the analysis of task specificity support 
that consideration of more human factors could not only further 
improve the system as a whole but also enhance the user’s experi
ence and satisfaction.

Further results show that deploying a human model coupled 
with task parameters may result in efficient physical human–
robot interaction. The human manipulability that we discussed 
combines both the task characteristics and human kinematics in 
a meaningful way and gives us a relative performance measure, 
which can be used for improving the HRI. While we acknowledge 
that these results need further investigations, the observed strong 
correlations suggest promising research ideas for our future works. 
In particular, we would like to perform more comprehensive user 
studies with both expert and inexperienced users. Furthermore, 
the idea of incorporating these results in industrial HRI scenarios 
where humans’ ease and comfort is used to reconfigure the task 
and robot configuration will be investigated.
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Robots collaborating naturally with a human partner in a confined workspace need to
understand and predict human motions. For understanding, a model-based approach
is required as the human motor control system relies on the biomechanical properties
to control and execute actions. The model-based control models explain human motions
descriptively, which in turn enables predicting and analyzing human movement behaviors.
In motor control, reaching motions are framed as an optimization problem. However,
different optimality criteria predict disparate motion behavior. Therefore, the inverse
problem—finding the optimality criterion from a given arm motion trajectory—is not
unique. This paper implements an inverse optimal control (IOC) approach to determine
the combination of cost functions that governs a motion execution. The results indicate
that reaching motions depend on a trade-off between kinematics and dynamics related
cost functions. However, the computational efficiency is not sufficient for online prediction
to be utilized for HRI. In order to predict human reaching motions with high efficiency
and accuracy, we combine the IOC approach with a probabilistic movement primitives
formulation. This hybrid model allows an online-capable prediction while taking into
account motor variability and the interpersonal differences. The proposed framework
affords a descriptive and a generative model of human reaching motions which can be
effectively utilized online for human-in-the-loop robot control and task execution.

Keywords: inverse optimal control, human motion modeling, reaching motion prediction, human-in-the-loop
control, human–robot collaboration, probabilistic movement primitives

1. INTRODUCTION

As robots become more present in our social lives, the necessity for interaction and collaboration
between humans and robots is becoming more apparent. Although there are several major facets of
providing robots with such capability, e.g., motion planning or decision-making, the human aspect
has to be prioritized and integrated into robot interaction skills. Requirements for such a human-
in-the-loop formulation is twofold: describe (understand) how human motions are controlled
and generate (predict) human-like motions. A descriptive model helps us understand how the
biomechanical properties are used by the central nervous system (CNS) for controlling human body
to execute a vast collection of motor behaviors. Such an understanding is useful for a multitude of
problems, e.g., motor performance evaluation for detecting disabilities due to neural disorders by
comparing control models of patients and healthy subjects (Manto et al., 2012); sports performance
evaluation by analyzing the identified control models of athletes (Yarrow et al., 2009); detection
of deviations of personal motion behaviors w.r.t. the previously identified motor control models,

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 27121

https://www.frontiersin.org/Robotics_and_AI
https://www.frontiersin.org/Robotics_and_AI/editorialboard
https://www.frontiersin.org/Robotics_and_AI/editorialboard
https://doi.org/10.3389/frobt.2018.00027
https://creativecommons.org/licenses/by/4.0/
mailto:o.oguz@tum.de
https://doi.org/10.3389/frobt.2018.00027
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2018.00027&domain=pdf&date_stamp=2018-03-27
https://www.frontiersin.org/Journal/10.3389/frobt.2018.00027/full
https://www.frontiersin.org/Journal/10.3389/frobt.2018.00027/full
https://www.frontiersin.org/Journal/10.3389/frobt.2018.00027/full
https://loop.frontiersin.org/people/443335
https://loop.frontiersin.org/people/539705
https://loop.frontiersin.org/people/539617
https://www.frontiersin.org/Robotics_and_AI
https://www.frontiersin.org
https://www.frontiersin.org/Robotics_and_AI/archive


Oguz et al. Hybrid Framework for Human Motion Prediction

e.g., due to exhaustion (Shadmehr et al., 2010). Specifically, for
human–robot interaction (HRI), the robot can plan its motions
in a way to allow the human partner to rely more on energy-
efficient control models. In addition, person-specific control
models enable the robot to detect the underlying cause of behav-
ioral anomalies for providing better assistance and safety.

A generative model allows estimating human-like motion tra-
jectories. In this work, the focus is using such models to predict
humanmotions, rather than transferring them to robots to gener-
ate human-like movement behaviors. For close dyadic collabora-
tion, where the partners share a workspace with the possibility of
overlapping motions, they should be able to predict each other’s
intent and the required motion that can support this intention.
Considering how swiftly two humans work together in a confined
workspace, the challenges for a human–robot team become obvi-
ous; the robot has to take into account human partner’s intention
and movement in order to control its own motion for achieving
effective cooperative task executions. In essence, early prediction
of the humanmotion allows an immediate initiation of the replan-
ning process and an early adaptation of the robot motion (Dinh
et al., 2015; Gabler et al., 2017; Oguz et al., 2017). Therefore, the
ability of understanding andpredicting humanmotions effectively
is the key to achieving swift close human–robot collaboration.

The focus in this work is twofold. First, descriptive models
of human reaching motions are investigated and experimentally
evaluated. Second, a hybrid framework is proposed, which com-
bines those descriptive models with a data-driven probabilistic

approach and realizes online-capable human motion prediction
(Figure 1). Such a framework not only enables effective robot
control for human-in-the-loop scenarios but also they can be
directly used for controlling the robot.

Currently, there is no commonly accepted model that explains
how the human CNS controls human motions and the latent
biomechanical properties of the human motion are not fully
understood. Knowing the underlying principles of humanmotion
execution is essential for reproducing human-like motion behav-
iors accurately in a given setting. However, not every single person
exhibits the same motion patterns. These differences might be
due to their learning experiences and physiological differences
(Rosenbaum, 2009). Moreover, even the motion behaviors of the
same person show variations due to motor noise (Todorov and
Jordan, 2002). Considering all those intricacies, finding motion
behaviormodels, even for simple reaching tasks, poses challenging
research questions.

As the observations of the human motions’ behavioral aspect
suggest an appealing modeling problem, the human body as a
biomechanical system introduces challenges in terms of formulat-
ing methods for finding those models. Motor control redundancy
and the non-linear characteristic of the human arm as a dynamical
system are the most important problems to tackle. A common
feature of motor control is that the task requirements can be
met by infinitely many diverse movements. Thus, stating only the
boundary conditions of the motion for given dynamics leads to
an ill-defined problem. The ambiguity caused by this problem

FIGURE 1 | The overall framework, where the focus is twofold: understanding (upper left) and prediction (upper right) of human motion behaviors. For understanding,
biomechanically inspired cost function distributions are learned from demonstrations by model-based inverse optimal control; and for online prediction, data-driven
probabilistic movement primitives are used. The two approaches are interconnected to each other in order to account for the inter-and intra-personal movement
behavior variations in terms of both motion trajectories and also the cost distributions.
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can be resolved if an optimality principle is applied. Accordingly,
the basis of many scientific theories on human motor control
is formed by optimality principles (Engelbrecht, 2001). A large
number of models of open-loop motor control exist and each
model claims to describe human motion, but several models are
incompatible with others (Todorov, 2004). The characteristics of
the human armmovements and the human as an organism define
the starting point for the derivation of a cost function. Many cost
functions have been proposed tomodel human reachingmotions,
however, all of those methods are only verified for specific set-
tings, mostly in 2D (Flash and Hogan, 1985; Uno et al., 1989;
Harris and Wolpert, 1998). Hence, their generalization capability
to awider range of human reachingmotion behavior in 3D space is
unclear. Moreover, as some recent studies suggest, humans might
be optimizing two classes of cost functions, one for kinematics and
the other for dynamics (Berret et al., 2011; Albrecht et al., 2012).
However, finding the contribution of such multiple cost functions
is also not trivial as it is a non-linear optimization problem.

Building on the results of prior research studies and their
insights, we hypothesize humans utilize multiple models, rather
than a single one, to control their motions. Since kinematics is
essential for producing smooth motions, and the human arm
is a dynamical system, it is reasonable to consider kinematics
and dynamics related costs in combination. Hence, we identify
possible costs from literature to account for both aspects. In
order to find the contribution of each model for the realization
of human motion behaviors, we frame such an inverse optimal
control (IOC) problem as a bi-level optimization formulation.
However, this formulation treats the human motion generation
as a deterministic problem. In essence, it is only suitable for
modeling average behavior over a group of humans. In order
to afford both intra- and interpersonal motion variability, we
propose a hybrid framework by extending the IOC formulation
with a data-driven probabilistic method. Specifically, by utiliz-
ing probabilistic movement primitives (ProMPs), our framework
allows for integrating person-specific variations into the IOC-
based average motion behavior models during online interaction.
Therefore, we can learn a distribution of motion behavior per
person, and rollout predictive trajectories from this distribution
online, while updating at the same time the multiple model
representation to describe the person-specific cost optimization
behavior.

We conducted a comprehensive experiment in 3D (Figure 2)
that covers significantly more cases than prior studies (Albrecht
et al., 2011). This extended experiment provides us with crit-
ical insights on the interplay between the parameters of the
reaching tasks and the contribution of kinematics and dynamics
relatedmodels.We identify a trade-off between thosemodels with
respect to the initial and final joint angle configurations. With the
proposed hybrid framework, we are able to determine personal
preferences as well as the motor variability per person. It also
enables accurate and computationally efficient online prediction
of human motion behaviors, which can be integrated into any
human–robot collaboration scenario.

In this work, we focus on building descriptive as well as genera-
tive models for humanmotion behavior. By utilizing suchmodels,
we aim for efficient and accurate prediction of human motions

during human–robot collaboration to realize a natural interaction
between partners. To that end, the main contributions of this
paper are:

− We propose a hybrid framework, consisting of a model-based
approach and a data-driven probabilistic method, for predict-
ing human motions.

− We identify a trade-off between kinematics and dynamics
related costs depending on the reaching task.

− Our hybrid framework takes into account interpersonal dif-
ferences and person-specific motor variability during online
observations.

2. RELATED WORK

Many experimental studies have revealed that armmotions exhibit
invariant parameters which do not significantly change with
movement speed, load, or direction (Soechting and Lacquaniti,
1981; Lacquaniti and Soechting, 1982; Papaxanthis et al., 2003).
Formotor control, these parameters are utilized to describe point-
to-point reaching motions (Soechting and Flanders, 1991). It is
assumed that the CNS follows some specific principles when
planning the motions (Engelbrecht, 2001). Therefore, optimal
control theory becomes the central mathematical formulation
to model, describe, and understand motor control by the CNS
(Bertsekas et al., 1995; Todorov, 2004), as it emphasizes the opti-
mality of biological movements byminimizing some performance
criteria. In literature, several optimal control models have been
proposed to describe the point-to-point arm movements, e.g.,
the minimum hand jerk (Flash and Hogan, 1985), the minimum
torque change (Uno et al., 1989), and the minimum variance
(Harris and Wolpert, 1998). These models are proven to be effi-
cient in representing the experimental data. However, they are
only verified within specific settings, and exhibit, in some cases,
dissimilar patterns. Hence, the exact variables optimized in the
brain still remain unclear. Later studies suggest that, instead of a
single cost function, the CNS might actually consider a weighted
combination of costs during the optimization (Cruse and Brüwer,
1987; Rosenbaum et al., 1995; Desmurget et al., 1998; Wolpert
and Kawato, 1998; Gielen, 2009). It has already been verified
that the trade-off between the objective (task-related) and the
subjective (subject-related) cost functions exists in the CNS (Liu
and Todorov, 2007), however, there is still no clear explanation
about how the subjective costs are combined in reaching motions.
In Berret et al. (2011), this cost combination hypothesis was tested
in point-to-bar reaching motions on a vertical 2D plane. An
inverse optimal control framework, which was initially proposed
in Mombaur et al. (2010) for locomotion planning, was applied
to identify the contribution of different cost functions. Though
their results support the idea of the combined cost functions,
an in-depth analysis on how this combination is formed in 3D
reaching motions and whether there is a relationship between the
degree of contribution and the reaching task parameters is still
missing.

Inverse reinforcement learning (IRL), also sometimes used syn-
onymously with inverse optimal control (IOC), is another line
of formulation to find control models, or optimal policies given
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FIGURE 2 | Experimental setup. (A) Overview of the experimental setup. T1 to T9 denote the nine target areas. RP means the reference point used to adjust the
sitting position of the subject. S is the center of the shoulder joint and L is the distance between S and RP which is defined as 80% of the subject’s arm length.
(B) Top view of the subject. S, E, and W are the shoulder joint, the elbow joint, and the wrist joint, respectively. As in the arm model defined, q2 and q3 are the yaw
rotation of the shoulder joint and the pitch rotation of the elbow joint. (C) Back view of the subject. q1 is the pitch rotation of the shoulder joint.

some demonstrations or observations. However, most of the state-
of-the-art methods operate on features rather than raw states,
without relying on the dynamical system as a hard constraint on
the optimization problem. In essence, the best combination of
features, which are extracted during an agent interacting with the
environment, is solved forminimizing a pre-defined cost function
(Ziebart et al., 2008; Ratliff et al., 2009; Theodorou et al., 2010;
Levine et al., 2011; Mainprice et al., 2016). A recent approach
by Finn et al. (2016) extends such IRL formulation by tackling
the requirement on defining informative features with using neu-
ral networks to parameterize the cost function. Essentially, this
approach learns non-linear cost functions from user demonstra-
tions, at the same time as learning a policy to perform the task.
This formulation can be applied to complex, non-linear cost func-
tion representations and high-dimensional problems. However,
this is still not directly comparable to solving optimal control
problems where the dynamical system is a constraint at each time
step, and hence the resulting behaviors are not guaranteed to be
generated by the underlying model.

In contrast to creating an optimal control model, another
approach to predict human motions is to use data-driven meth-
ods. These methods focus more on finding a representation
from a given data set (Mainprice and Berenson, 2013; Koppula
and Saxena, 2016). Statistical approaches require training data
to discover patterns for different arm motions. In that sense, a
rigorous and time-consuming data collection process is unavoid-
able. Other data-driven approaches which do not rely on statis-
tical formulations, e.g., dynamic movement primitives (DMPs)
(Ijspeert et al., 2013), require only a minimal set of training
data. In an earlier work, we combined optimal control models
with DMPs to predict human reaching motion behaviors while
avoiding obstacles (Oguz et al., 2016). In that regard, Interaction
Primitives (IPs) were developed based on DMPs as a compact

representation of a dyadic activity to predict and plan interaction
behaviors (Amor et al., 2014). IPs are learned as a distribution
over DMP parameters by training on two interacting partners’
trajectories. These IPs encode reciprocal dependencies of dyad
movements during the execution of a specific task. The robot then
mimics one partner by using the learned model to interact with
a human in a similar task. In essence, the learned distributions
are conditioned on an observed partial trajectory to predict a
human partner’s movement for the rest of the task, which in turn
enables the robot to correlate its own motion w.r.t. the human to
achieve a successful cooperation. Recently, Environment-adaptive
Interaction Primitives (EaIPs) were proposed by extending the IPs
with the integration of environmental parameters of the task (Cui
et al., 2016). Hence, EaIPs enable inferringmovement behavior by
conditioning on not only the partner trajectory but also the task
and environment related features. However, these are pure data-
driven approaches, and thus, they can neither elicit the underlying
principles of human interaction movement control, nor provide
any means to analyze optimality of observed movements. In addi-
tion, our proposed hybrid framework is flexible to integrate such
interaction primitives as the data-driven part of the formulation
to predict human motions, which can further be integrated into
a trajectory optimizer for the robot motion planning in HRI
scenarios (Oguz et al., 2017).

Finally, human motor control by the CNS is recognized as a
stochastic system (Todorov and Jordan, 2002), thus the variance
of the motion should be considered in the trajectory prediction.
In Paraschos et al. (2013), a probabilistic movement primitives
(ProMPs) approach was proposed with the ability to encode the
variance in a general probabilistic framework for representing and
learning movement primitives (Schaal et al., 2005). The ProMPs
has been successfully implemented in human–robot interaction
(Wang et al., 2013) and human–robot collaboration (Maeda et al.,
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2016a,b) scenarios for controlling the robot motion. For a close
cooperation between the robot and human, a precise prediction of
the human behavior is essential (Mainprice and Berenson, 2013).
However, while predicting human motions with the ProMPs, the
integration of the kinematics and dynamics of the human arm
is not straightforward. Our work combines an optimal control
model with the ProMPs, in order to make use of the advantages
from both methods.

3. OPTIMALITY CRITERIA FOR HUMAN
REACHING MOTIONS

In this section, we explain the formulation of finding the opti-
mality criteria for human reaching motions in 3D. Many of the
influential studies in neuroscience have relied on the hypothesis
that the human as a biological entity should minimize a quanti-
tative measure (Engelbrecht, 2001). Based on this, the reaching
motion can be formulated as an optimal control problem (OCP),
where a given cost function is optimized and used to describe the
motion characteristic. Later studies on motor control, learning,
and adaptation suggest that instead of a single cost function, a
composite of different performance criteria can better explain
human behaviors (Berret et al., 2011). In order to identify how
these cost functions are combined, an inverse optimal control
framework is presented in this section. Through this framework,
we attempt to reveal the underlying principles of human reaching
behavior while utilizing those models also for predicting human
motions.

3.1. Model of the Musculoskeletal System
To formulate the reaching motions as an OCP, a representation
of the arm dynamics is required and serves as a constraint during
the optimization. A widely used approximation of the arm model
in 3D is to consider it as articulated rigid bodies. By ignoring the
handmovements, a commonmodel of themusculoskeletal system
for the arm consists of four degree-of-freedoms (DoFs) (Van der
Helm, 1994a,b), where the shoulder joint has three rotations (roll,
yaw, and pitch) and the elbow joint has one rotation (pitch). In our
experiments, the recorded 3D reaching motions merely use the
roll rotation of the shoulder joint, thus it is neglected in ourmodel.
This simplification can highly increase the computational effi-
ciency of the OCP, while still preserving enough accuracy on the
results. From the classical Lagrangian formalism (Murray et al.,
1994), the dynamics of the 3-DoF arm model can be expressed as

τ = M(q)q̈ + C(q, q̇)q̇ + G(q), (1)
where the variable q = (q1, q2, q3)⊤ denotes the joint angles
and τ = (τ1, τ2, τ3)⊤ represents the torques. Time derivatives
of q, i.e., q̇ and q̈, are the joint angle velocities and joint angle
accelerations, respectively.M, C, and G are the inertia matrix, the
Coriolis/centripetal terms, and the gravitational vector, respec-
tively. The viscous frictions and elastic properties of the tissues are
neglected as they are difficult to estimate. A visualization of the
arm model is presented in Figures 2B,C. The upper arm length
and the forearm length, as well as the mass, inertia, and distance
to the center of mass are defined as described in Lemay and Crago
(1996) and Valero-Cuevas et al. (2009). When the arm is in fully
stretched out position, q1, q2, and q3 all have zero rotations.

3.2. Inverse Optimal Control as a Bi-Level
Optimization Problem
The purpose of IOC is to identify the formulation of the OCP,
specifically the cost function it optimizes, which best reproduce
the observations. Anumericalmethod for solving an IOCproblem
is to reformulate it as a bi-level optimization problem (Berret et al.,
2011). This method relies on the assumption that the optimal cost
function is a composite of several plausible basic cost functions.
The contribution of each basic cost function is defined through
a weight vector, and this weight vector is identified by using the
bi-level optimization framework presented in equation (2)

Upper level program : min
α

Φ(x∗
α, xobs),

with
N∑
i=1

αi = 1,

⇕

Lower level program : min
x,u

J(x, u|α) :=
N∑
i=1

αiJi,

s.t. g(x, u) ≤ 0, h(x, u) = 0.

(2)

3.2.1. Lower Level Program
The lower level program of the bi-level optimization is a direct
OCP (Bertsekas et al., 1995) given by

min
x,u

J(x, u|α) :=
N∑
i=1

αiJi, s.t. g(x, u) ≤ 0, h(x, u) = 0.

(3)
The goal of OCP is to find the optimal trajectory which min-

imizes a given cost function J. Here, J is assumed to be a linear
combination of N basic cost functions Ji (i= 1. . .N) which are
weighted by the weight vector α= (α1, α2, . . ., αN). The vari-
ables x and u are the vector of system states and control signals,
respectively. With above explained arm model, the system states
in this work are given as x⊤ = (q⊤, q̇⊤, q̈⊤). Since the joint
torques τ are smoothly generated by muscle contractions (Uno
et al., 1989), the control signals are defined as the time derivative
of torquesu = τ̇ . Thus theOCPof reachingmotions can be stated
mathematically as: find the admissible system state trajectory x∗

α(t)
and control signal trajectory u∗

α(t) in time T, which minimize the
cost function J with respect to a given weight vector α, while sat-
isfying the system dynamics and the task constraints. For reaching
motions, the task constraints contain two parts: the initial condi-
tion x(0)= xs and the final condition x(T)= xe as the boundary
constraints; limitations on joint angles qmin ≤ q(t)≤ qmax as the
inequality constraint. The constraints of joint angle velocities and
joint angle accelerations are set to a large range since during the
preliminary analysis they are identified to be merely active.

One classical method to solve OCP is to first transform it into a
non-linear programming (NLP) problem with constraints, then
solve it by using structure exploiting numerical NLP solution
methods. In our work, we utilize the multiple shooting method
(Diehl, 2011) with ACADO toolkit (Houska et al., 2011) to resolve
OCPs.

3.2.2. Selection of Basic Cost Functions
The core part of the IOC framework is to select a set of reasonable
basic cost functions. For arm movements, several cost functions
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TABLE 1 | Cost functions proposed in literature.

Criterion Equation

Hand jerk JHJ =
∫ T
0

...
x2 +

...
y2 +

...
z 2dt

Joint angle acceleration JJA =
∫ T
0 q̈21 + q̈22 + q̈23dt

Joint angle jerk JJJ =
∫ T
0

...
q2
1 +

...
q2
2 +

...
q2
3dt

Torque change JTC =
∫ T
0 τ̇2

1 + τ̈2
2 + τ̇2

3 dt

Torque JTor =
∫ T
0 τ2

1 + τ2
2 + τ2

3 dt

Absolute work (energy) JEnr =
∫ T
0 (

∑3
i=1 |q̇iτi|)dt

Geodesic JGeo =
∫ T
0 (q̇⊤Mq̇)1/2dt

Variables x, y, z are the hand positions in Cartesian space. M denotes the inertia matrix.
Corresponding references for the proposed criteria are given as: minimum hand jerk
(Flash and Hogan, 1985), minimum joint angle acceleration (Ben-Itzhak and Karniel, 2008),
minimum joint angle jerk (Wada et al., 2001), minimum torque change (Uno et al., 1989),
minimum torque (Nelson, 1983), minimum absolute work (Nishii and Murakami, 2002;
Berret et al., 2008), and minimum geodesic (Biess et al., 2007).

were proposed in the past. These cost functions can be categorized
into subjective and objective cost functions. Subjective cost func-
tions refer to the decision from a subject, such as the minimum
hand jerk (Flash and Hogan, 1985), while objective cost functions
are task related. Since the integration of objective cost functions
into OCP is difficult, only subjective cost functions are considered
in this work. In literature, various subjective cost functions are
proven to be useful in explaining human reaching motions (see
Table 1). Generally, these cost functions can be grouped as two
classes: (a) kinematic cost functions: theminimumhand jerk (Flash
and Hogan, 1985), the minimum joint angle acceleration (Ben-
Itzhak and Karniel, 2008), and the minimum joint angle jerk
(Wada et al., 2001) are typical ones and (b) dynamic cost functions:
the minimum torque change (Uno et al., 1989), the minimum
torque (Nelson, 1983), and the minimum absolute work (Nishii
and Murakami, 2002; Berret et al., 2008) (also referred as mini-
mumenergy throughout this work) belong to this class; and finally
the minimum geodesic criterion (Biess et al., 2007) is a junction of
kinematic and dynamic cost functions, which yields the shortest
path in configuration space while taking the kinetic energy into
consideration. An example of the optimal end-effector trajectories
solved from OCPs with respect to different basic cost functions
is given in Figure 3. Among these proposed cost functions, we
select five of them as the basic cost functions for IOC, which are
the minimum hand jerk JHJ, the minimum joint angle jerk JJJ, the
minimum torque change JTC, the minimum energy JEnr, and the
minimum geodesic JGeo. The minimum joint angle acceleration
is ignored since it gives quite similar solution to the minimum
joint angle jerk, then the identification between these two cost
functions is difficult. In addition, the minimum torque criterion
is also neglected because in our preliminary tests we found it has
the largest error in describing the reaching motions. Thus, the
combined cost function J for the direct OCP is defined as

J = α1JHJ + α2JJJ + α3JTC + α4JGeo + α5JEnr. (4)

One more important issue in combining the basic cost func-
tions, due to the different units, is that the range of the objective
values of different cost functions are usually considerably differ-
ent, thus they cannot directly be equally compared in equation
(4). To overcome this problem, we introduce another scalar factor
vector S, with the purpose to balance the objective values of

selected basic cost functions to the same range. Thus, equation (4)
is transformed into

J =
∑
i

SiαiJi, i ∈ {HJ, JJ,TC,Geo, Enr}. (5)

To obtain the scalar factor vector for a given reaching task, five
optimal trajectories x∗

i with respect to each basic cost function
are first computed by solving the corresponding OCPs. Based on
the results, the range of the objective value of each basic cost
function can be defined through the minimal andmaximal values
asRangei = [Ji,min, Ji,max]. Since all selected basic cost functions are
integral cost terms and always produce positive values during the
optimization, the minimal values are zeros for all cost functions
Ji ,min = 0. Then the scalar factor vector can be generated directly
by comparing the maximal values Ji ,max. In our experimental data,
we found that the minimum joint angle jerk JJJ tends to have the
largest maximal objective value, therefore, we set the scalar factor
of theminimum joint angle jerk to 1, then the ratios between other
basic cost functions and the minimum joint angle jerk are chosen
to be the corresponding scalar factors

Si =
Ji,max

JJJ,max
. (6)

Note that the scalar factor vector varies when at least either the
initial condition xs or the final condition xe changes. Thus before
running the IOC for each given observation, the scalar factor
vector needs to be determined in order to ensure the accuracy of
the result.

3.2.3. Upper Level Program
The purpose of the upper level program is to find the optimal
weight vector α* which minimizes the distance error between
the optimal trajectory x∗

α obtained from the lower level pro-
gram and the observation xobs. This optimization problem can be
represented as

min
α

Φ
(
x∗

α, xobs
)

, with
N∑
i=1

αi = 1, (7)

where Φ is a metric which measures the distance error.
Selecting a goodmetricΦ is crucial in the bi-level optimization

framework since it highly affects the decision on the optimal
weight vector. The recorded observations are usually the position
trajectories in Cartesian space represented by x, y, z coordinates.
These observations cannot be directly compared byΦ because, on
the one hand, the system states x are defined as joint angles, on the
other hand, the position trajectories usually contain uncertainties,
which come from: (1) the error from the torso movement and
(2) the difference between the subject’s actual arm length and the
definedmusculoskeletal system’s arm length. No consistent results
can be derived if a direct comparison to the position trajectories
is implemented in Φ.

To address this problem, we transform the recorded position
trajectories to the relative position trajectories in arm model coor-
dinate system through the following steps:

1. Record the Cartesian position trajectories of the shoulder joint
ts = (ts,x, ts,y, ts,z), the elbow joint te = (te,x, te,y, te,z), and the
wrist joint tw = (tw,x, tw,y, tw,z).
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FIGURE 3 | An example of the optimal end-effector trajectories solved from OCPs with respect to different basic cost functions. The variance in their predictions is
clear. Only exception is the similarity of the predicted trajectories by minimum joint angle acceleration and the minimum joint angle jerk as they overlap in the figure.

2. Derive the observed joint angle trajectory through the arm
geometry as qobs =G(ts, te, tw). Since the roll rotation of the
shoulder joint is neglected in ourwork, the translation function
G can be easily obtained.

3. Compute the relative position trajectory (end-effector trajec-
tory) in arm model coordinate system by using the kinematic
relationship of the proposed armmodel as tobs = δ(qobs), where
δ represents the function of the forward kinematics.

The relative end-effector trajectory tobs eliminates the error
caused by different arm lengths and the torso movements, thus
it can be compared to the solution calculated from the lower level
program.

Based on the feature compared in Φ, two different types of the
distance metric can be formulated: one is the joint angle metric,
where the observed joint angle trajectory qobs is compared to the
optimal system states trajectory x∗

α, which also contains the joint
angle trajectory q∗

α; another is the end-effector trajectory metric,
where at first the optimal end-effector trajectory t∗α is computed
from the optimal joint angle trajectory q∗

α by using the same for-
ward kinematics function δ, then the distance error is calculated
between the relative end-effector observation tobs and t∗α.

In our preliminary tests, we found that the end-effector trajec-
tory metric has a better performance than the joint angle metric.
Possible reason is that the three joint angles actually have differ-
ent degrees of influence on the reaching motions (Nguyen and
Dingwell, 2012). However, it is not straightforward to determine
the contribution of different joint angles, which could introduce
further uncertainties and errors. Similar problem also occurs
when combining the joint angle metric and the end-effector met-
ric, since they have different units and it is difficult to balance
them into the same range. Therefore, in our work, the distance
metric of the upper level program only considers the end-effector
trajectories, which can be treated as comparing two 3-dimensional
signals. The dynamic time warping (DTW) algorithm (Vintsyuk,

1968) is implemented to calculate the distance error. In time series
analysis, DTW is used for measuring the similarity between two
temporal sequences which may vary in speed. The sequences are
first warped in the time dimension and then compared to each
other. With this, equation (7) can be stated as

min
α

Φ
(
x∗
a , x

obs
)

:= min
α

D
(
t∗α, tobs

)
, (8)

where D denotes the DTW calculation.
To solve equation (8), common gradient-based methods and

stochastic optimization algorithms are not applicable because of
two reasons. First, the metric Φ is non-differentiable with respect
to the weight vector α; second, before each calculation of Φ, a
direct OCP must be solved in advance, thus it usually takes a few
minutes for one evaluation. Specifically, the stochastic optimiza-
tion algorithms (e.g., particle swarm optimization (Eberhart and
Kennedy, 1995)) are also not suitable here, since they requiremore
samples which will result in infeasible computation time. Hence,
the upper level program is optimized by a robust derivative-free
optimization (DFO) method. Here, we use the method called
CONDOR (Berghen and Bersini, 2005) for COnstrained, Non-
linear, Direct, parallel optimization, which is a parallel extension
of the Powell’s method (Powell, 2004) based on the trust region
algorithm (Sorensen, 1982). Through a local approximation of Φ,
it can find the optimal solution more efficiently than the common
pattern search and stochastic optimization techniques. To reduce
the computation time, the initial value ofα should be set properly
before the optimization. Since among the five elements of α only
four are actually independent, and OCPs corresponding to the
costs J(α) and J(λα), λ > 0 are identical, a practical strategy is to
fix one element to one and then adjust the remaining components
with respect to it (Mombaur et al., 2010). As all the basic cost func-
tions are scaled into the same range, the value of other components
can be restricted to stay in [0,1]. During the optimization process,
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if any element is found larger than one, the optimization should
be restarted with setting this element to one. In our experimental
data, setting the weight of joint angle jerk to one gives the best
results in most cases. After around 100 iterations, the algorithm
converges to a local minimum. Note that due to the high non-
linearity of the problem formulation, the global minimum is not
available in the bi-level optimization (Albrecht et al., 2012). In
order to get more accurate results while keeping a reasonable
computation time, we set the initial value of α to (0.5, 1, 0.5,
0.5, 0.5) and solve it three times with different initial search radii
(Powell, 2004) as 0.15, 0.3, and 0.45, so that most range is covered
within three IOC calculations. The one results in the minimum
distance error is considered as the final optimal weight vector α*
and is normalized for later analysis.

3.3. Representation of the Reaching
Motions
From the IOC formulation, we acquire a weighted combination
of cost functions, which specifies the contribution of each model
for the realization of a reaching motion. For each specific motion
behavior, one composite model needs to be found. However, we
can only have a limited number of different compositemodels, due
to the computational time limit. To utilize the composite model
in general cases, a mapping from the motion parameters to the
contribution of cost functions is required. According to the results
of the initial experiment we conducted, which is detailed out in
Section 5.1.3, a correlation between the initial and the final joint
angles (qs, qe) and the optimal weight vectorα* is identified.Here,
we use theGaussian Process Regression (GPR)model (Rasmussen
and Williams, 2005) to represent the mapping as

α∗ = GPR
(
qs, qe

)
, (9)

where GPR denotes the GPR model. The optimal weight vector
returned by the GPR model is a distribution with mean and vari-
ance. Note that the GPR model can be replaced by other similar
stochasticmodels, but we find that theGPRmodel ismore suitable
in our case since it requires less data. This GPR model provides a
connection between the IOC formulation and the ProMPs in our
hybrid online prediction framework.

4. HYBRID ONLINE PREDICTION
FRAMEWORK

In literature, many prediction methods for human motion were
proposed. Among them, two classes of the methods are widely
used: (1) model-based methods, where a motion model is created
based on minimizing a criterion, such as the minimum hand jerk
model (Flash and Hogan, 1985), the minimum joint angle jerk
model (Wada et al., 2001), and the minimum variance model
(Harris and Wolpert, 1998). Then the solution to the model is
considered as the prediction; (2) data-driven methods, where a set
of data (observations) should be available before building a gen-
erative model for predicting human motions. The characteristic
of the motion can be learned from the data and then the predic-
tion is generated by reproducing this characteristic and in some
cases with variation. Gaussian Mixture Models (McLachlan and

Basford, 1988; Calinon et al., 2010), dynamic movement primi-
tives (Ijspeert et al., 2013), and probabilistic movement primitives
(Paraschos et al., 2013) are typical data-driven methods. In this
section, we propose a hybrid online prediction framework for
reaching motions by combining a model-based method and a
data-driven method. Instead of using the motion model with
single cost function, a composite model is obtained by the IOC
framework. In order to dealwith themotor variability of the reach-
ing motion (Todorov and Jordan, 2002), this composite model
is combined with the ProMPs. ProMPs are selected due to both
their capability on learning a model with a very small amount
of observations (in our experiments 5–10 samples seem to be
enough), and also their computational efficiency for rolling-out
predictive trajectories online. Especially, it is known that GMMs
tend to perform poorly in high-dimensional spaces when few data
points are available (Calinon, 2016). In the rest of this section, first
a brief explanation of the ProMPs is presented, then a comparison
between the predictions of the composite model and the ProMPs
is discussed. Finally, the hybrid prediction framework is explained
in detail.

4.1. Probabilistic Movement Primitives
The ProMPs is a probabilistic formulation for movement primi-
tives. It is able to capture the variance information of trajectories
and represent the behavior in stochastic systems. Given a discrete
trajectory X= {xt}, t= 0. . .T defined by states xt over time T, a
weight vector ω is used to represent the trajectory as

yt = [xt, ẋt]⊤ = Φ⊤
t ω + ϵy, (10)

where Φt = [ϕt, ϕ̇t] denotes the n× 2 dimensional time-
dependent basis matrix for states xt and the velocities ẋt. n is
the number of basis functions and ϵy ∼ N (0, Σy) is zero-
mean independent and identically distributedGaussian noise. The
mean of the trajectory can be obtained by weighting Φt with ω.
The probability of observing a trajectory X with a given ω is
represented by a linear basis function model as

p(X|ω) =
∏
t

N
(
yt|Φ

⊤
t ω,Σy

)
. (11)

In order to capture the variance, a Gaussian distribution
p (ω; θ) = N (ω|µω,Σω) over the weight vector ω is intro-
duced with parameters θ = {µω , Σω}. Then the distribution of
yt at time t is given by

p(yt; θ) =
∫

N
(
yt|Φ

⊤
t ω,Σy

)
N (ω|µω,Σω) dω

= N
(
yt|Φ

⊤
t µω,Φ⊤

t ΣωΦt + Σy

)
. (12)

With equation (12), the mean and the variance of the states
for any time point t can be derived. If a set of observations is
available, the parameters θ can be learned by using the maxi-
mum likelihood estimation (Lazaric and Ghavamzadeh, 2010). In
reaching motions, the distribution p(ω; θ) can be considered as
a representation of the motor variability. For more details of the
ProMPs please refer to Paraschos et al. (2013).
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TABLE 2 |Different perspectives of the composite model prediction and the ProMPs
prediction.

Perspective Composite model ProMPs

Underlying principle Yes No
Optimality Yes No
Computation time High Low
Motor variability No Yes

4.2. Comparison Between the Composite
Model Prediction and the ProMPs
Prediction
Both the composite model formulation and the ProMPs frame-
work have clear advantages and drawbacks, but they are also
complementary. By combining them into a hybrid prediction
framework, the advantages of both methods can be exploited at
the same time (Table 2).

The composite model represents the underlying principles
of reaching motion control. Several motion models have been
proven to be accurate in describing the movements, such as the
minimum hand jerk model on some tasks, and the minimum
torque change model on others, in 2D reaching motions. The
composite model we proposed inherits those capabilities and
extends it to the 3D reaching motions. It helps us explain how
humans execute and control their reachingmotions, while extract-
ing such information from the data-driven methods is not trivial.
However, the biggest obstacle in implementing the composite
model prediction in online case is the computation time. Before
rolling out the optimal trajectory, an OCP needs to be solved,
which usually takes several minutes, even when the state-of-the-
art solvers are used (Diehl, 2011). However, in real world settings,
the reaching motions take no longer than a few seconds, thus the
data-driven methods are more suitable in the online case, as they
are computationally more efficient.

Another important reason of using the ProMPs as the data-
driven method in the hybrid prediction framework is that it
allows describing the motor variability given sample demon-
strations (Paraschos et al., 2013). As explained in Todorov and
Jordan (2002), human motor control is a stochastic system with
signal-dependent noise (Harris andWolpert, 1998), thus reaching
motions are expected to show variance. Since it is not straight-
forward to consider the variance within an IOC problem, we
formulate our composite model as a deterministic OCP. On the
other hand, as the ProMPs formulation employs a probabilistic
function to represent the motion, the obtained model is not a
single trajectory but a distribution of trajectories. Hence, while
the composite model describes an optimal average behavior as
an initial guess, the ProMPs enables capturing the multiplicative
noise due to motor control. However, to understand the control
model due to such noise, the model-based IOC computation and
a follow-up GPR update is still required.

4.3. Prediction Framework
The idea of the hybrid prediction framework is, for a given reach-
ing task, to use the compositemodel to generate the initial training
data for the ProMPs. Then in the online phase, the ProMPs
can rollout predicted trajectories with high efficiency while also

FIGURE 4 | Overview of the prediction framework (upper right in Figure 1). qs

and qe are the initial and final joint angle configurations. α* is the estimated
optimal weight vector and t∗α is the corresponding optimal solution from OCP.
tm denotes the mean of the converged trajectory distribution extracted from
the ProMPs, αn is the new obtained optimal weight vector, which is used to
update the GPR model.

learning the variance by using each motion observation as new
training data. After several observations, the parameters of the
ProMPs converge (the details is explained in Section 5.2.2), then
the mean of the converged trajectory distribution is calculated
to update the composite model. An overview of the framework
is given in Figure 4, and the details of this hybrid model are
explained next.

4.3.1. Initialization With the Composite Model
Usually for a given reaching task, the starting position and the
target position are known. Through the inverse kinematics, the
initial joint angle configuration qs and the final joint angle config-
uration qe can be approximated. By using the GPR model trained
on the IOC results, a distribution of the estimated optimal weight
vector is available. However, due to the limited amount of data
for training the GPR model, the variance cannot be learned accu-
rately. Thus, only the mean value of the distribution α* is used
here. After solving the OCP with respect to α*, the optimal joint
angle trajectory q∗

α and its corresponding end-effector trajectory
t∗α are obtained. t∗α is considered as the training data for the
ProMPs. As the OCP gives a deterministic solution, no variance
information can be derived. Hence the ProMPs is initialized by
learning the parameters from the optimal trajectory t∗α, while
setting the variance to a large value.

4.3.2. Predicting While Learning
During online prediction, a trajectory along with the variance for
each time point is generated by the ProMPs. This variance infor-
mation is useful for human–robot interaction scenarios where the
robot should also consider the uncertainties of human behaviors.
The observations recorded during the prediction are utilized to
update the ProMPs to get a more accurate representation of the
variance. After each movement, the observation is added to the
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data storage which contains all the previous observations. Sub-
sequently, the ProMPs update their parameters from the new
data storage. With the incorporation of each motion observation,
parameters of the ProMPs as well as the variance information
converge.

4.3.3. GPR Model Updating
Once the ProMPs system becomes stable, the mean of the con-
verged trajectory distribution tm can be extracted. This trajectory
can be considered as the average behavior of the recorded subject
for this reaching task. Then in a separate updating process, tm
is used by the IOC framework to get the corresponding optimal
weight vector. The new optimal weight vectorαn is used to update
the GPR model. Therefore, with more information returned from
the real recordings, the GPR model also becomes more accurate
in describing the mapping from the initial and final joint angles to
the optimal weight vector.

4.4. Motor Variability and Interpersonal
Variance
The motor variability is essential in describing human behaviors
(Todorov and Jordan, 2002), as it can be considered as the uncer-
tainties of human motions (e.g., the noise in motor command). It
represents the fact that for a given reaching task, even the same
subject is expected to execute the motion in slightly different
trajectories. This phenomenon has been reported in sensorimotor
control by demonstrating such variability on observed experimen-
tal data for a multitude of tasks, e.g., locomotion (Winter, 1989),
writing (Bernstein, 1967), pointing (Tseng et al., 2002), reaching
(Haggard et al., 1995), and grasping (Cole and Abbs, 1986). Usu-
ally for simple tasks, this difference is not large and can bemodeled
as a probabilistic distribution (Knill and Pouget, 2004; Koppula
and Saxena, 2013). However, such probabilistic models cannot
explain the underlying cause of observing such motor variability,
which is known to be due to additive and multiplicative noise
in the motor control and is treated as the intra-subject variance
in this work. Apart from the motor variability, there are also
motion behavior differences between subjects (Vu et al., 2016a),
which we call interpersonal variance in this work. The existence of
such a disparity can be verified through the contribution of basic
cost functions, as shown in the next section. The interpersonal
variance suggests that humans plan their motions in a personal
way, which reflects the dissimilarity of the control structure due to
learning and adaptation effects, along with biomechanical differ-
ences. Thus, the updated GPR model from the hybrid prediction
framework is actually a person-specific model.

5. EXPERIMENTS AND RESULTS

In this section, two experiments and their corresponding results
are presented. One is designed for the IOC framework with the
purpose of understanding the characteristics of human reaching
motions, and the other is used to test the performance of the
hybrid online prediction framework.

5.1. Experiment for the IOC Framework
To cover the reaching motions in a relatively large range,
we designed an experiment for point-to-point reaching tasks

consisting of 12 starting postures and 9 target regions. The
recorded trajectories were analyzed through the IOC framework.
Based on the obtained optimal weight vectors, we find that the
contribution of basic cost functions has a relationship with the
initial and final joint angle configurations. Besides, the composite
cost function is proven to have less error in describing the reaching
motions in almost all tasks compared to the single cost models.
This result encourages us to use the composite model in the
prediction rather than a model with single cost function. In the
rest of this subsection, at first the details about the experimental
setup are presented, then the results from the IOC framework are
discussed.

5.1.1. Experimental Setup and Data Collection
A visualization of the experimental setup is presented in
Figure 2A. Participants were required to sit before a board which
was placed vertical to the ground surface. Nine target areas and
one reference point were marked on the board as square regions
with the side length equal to 5 cm. The distances between the
target areas and the reference point are shown inFigure 5B. Before
the experiment, the sitting height of the participant was adjusted
by setting a straight line between the reference point and the
center of the shoulder joint vertical to the board surface. Then the
distance between the center of the shoulder joint and the board
surface was selected as 80% of the arm length. These distances
were chosen to ensure that the participants can reach all nine
targets easily without moving their torso.

Since we want to cover a large range of reaching motions,
every participant was asked to reach the nine targets from 12
different starting arm postures. According to the joint angle limits
we defined in the arm model, these starting postures were chosen
from the combination of three different q1, two different q2, and
two different q3 (3× 2× 2= 12) configurations (see Table 3).
As shown in Figure 5A, the pitch rotation of the shoulder joint
q1 is selected as three configurations: up, middle, and down,
respectively. The yaw rotation of the shoulder joint q2 and the
rotation of the elbow joint q3 are chosen from the stretched to the
side configurations and a configuration in the middle of the joint
angle limits. With nine targets for each starting posture, 108 (12
starting postures× 9 targets) cases of the reaching motions were
considered in the experiment.

Before the recording, the arm posture was determined by mea-
suring all three joint angles to ensure all participants shared the
same starting joint angle configuration. The participants were
given the following instructions. First, in order to discard the
decision-making process of target selection, the subject needs
to reach the nine targets in a fixed order as from target one to
target nine. Second, the participant should strictly put his arm
in the previously set starting posture before executing the follow-
up reaching task. A set of special reference tools were prepared
and put beside the participants. These tools consist of two bars
and their end points indicate the positions of the elbow and wrist
joints for the given starting posture. Reference tools were placed
in appropriate positions so that during the reaching motion they
do not block any potential motion trajectory. Third, in order
to eliminate the effect of locating targets during the movement,
before the execution of the reaching tasks, the participants should
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FIGURE 5 | Experimental setup. (A) Visualization of 12 starting joint angle configurations. P1 to P4 are the postures with q1 in the middle (no rotation), while P5 to P8
are the postures with q1 in the up region and P9 to P12 with q1 in the down region. (B) Target areas on the board surface. RP denotes the reference point.
Observations are the actual positions where the 108 averaged trajectories terminate on the board surface.

TABLE 3 | Actual starting joint angle configurations.

Posture q1,S(
◦) q2,S(

◦) q3,S(
◦)

Mean SD Mean SD Mean SD

P1 10.95 5.01 6.58 4.66 12.72 3.49
P2 11.21 5.73 8.78 9.47 33.39 6.51
P3 11.93 3.70 31.90 5.82 13.15 3.74
P4 13.00 6.37 34.45 6.80 37.92 8.53
P5 −22.29 5.21 12.46 5.18 14.11 3.86
P6 −23.47 5.71 15.82 6.41 37.88 7.51
P7 −22.89 5.33 37.31 7.91 16.10 5.09
P8 −23.64 5.66 41.07 8.42 35.75 7.88
P9 42.15 6.16 6.98 7.43 12.28 4.58
P10 40.22 4.40 7.08 5.28 35.40 5.59
P11 35.36 5.09 36.14 5.61 10.06 5.76
P12 35.14 5.45 36.88 6.85 43.44 6.69

P1 to P12 are the 12 predefined starting postures. q1,S, q2,S, and q3,S are the three starting
joint angles with respect to the stretched out posture. The values are computed by using
all 15 subjects’ data.

look at the targets rather than the reference tool. Fourth, the
participants were told to avoid using the roll rotation of the
shoulder joint, which is ignored in our arm model. In addition,
all participants were trained before the experiments to get familiar
with the setup and the task. If any unintendedmotionwas detected
during the recording, corresponding tasks were executed again.
Between each starting posture, enough rest time was provided for
avoiding fatigue. To reduce the noise, every target in every starting
posture was reached two times, thus a total of 216 (108 cases× 2
times) trajectories were recorded for one participant.

The data were collected from fifteen subjects (11 males, age:
27± 4; weight: 67± 9 kg, height: 172± 5 cm) who all gave written
informed consent for their participation. All the participants were
right-handed with normal vision ability. None of them received

any information about the purpose of the experiment. The study
was approved by the ethics committee of the Technical Univer-
sity of Munich School of Medicine. The reaching motions were
recorded by the multicamera motion capture system Qualisys at a
frequency of 250Hz. With the built-in filter function, the smooth
position trajectories of the shoulder, elbow, and wrist joints can be
directly obtained from the tracking system and used for the IOC
calculations.

5.1.2. Average Motion Behavior
In our IOC framework, we are interested in the control structures
for the human reachingmotion behavior in a general sense, rather
than the individual differences. We also intend to provide a base
model to be extended for person-specificmotion behaviors during
prediction. Hence, we compute the average trajectories from all 15
subjects, and the IOC problems are solved for these trajectories.
Besides, the averaging process also saves a lot of computation
time. Since the IOC calculation for one trajectory roughly takes
4 h, the analysis on all 1,620 (15 subjects× 108 cases) trajectories
would require an immense amount of time. Table 3 gives the
mean values and the SDs of 12 starting joint angles calculated
from all subjects’ data. The SDs indicate that for the same starting
posture, all subjects started their reaching motions with a rela-
tively small joint angle difference, which enables the feasibility of
averaging the trajectories. If not mentioned explicitly, all the IOC
results presented in the following part are based on the averaged
trajectories.

5.1.3. Results for the IOC Framework
After the IOC calculations, we obtained one optimal weight vector
for each reaching task. The contribution of basic cost functions in
108 different cases are analyzed next.
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5.1.3.1. Performance in Describing the Reaching Motions
To verify the performance of the composite model, the optimal
trajectory solved with it is compared to the optimal trajectories
computed for each single basic cost function. The distance error
between each optimal trajectory and the average motion behav-
ior is measured through the DTW-based comparison separately.
The results show that, almost for all cases, the composite model
has a better performance in describing the reaching motions.
Even though the distance metric we used in the upper level
program of the IOC framework only considers the end-effector
trajectory, the composite model still has less errors in the joint
angle trajectories. Figure 6 presents the distance error averaged
from all 108 cases. The p-test results indicate that, there are
significant decreases on the distance error when comparing the
compositemodel to all other five basic cost functions (pi < 0.0001,
i= 1, . . . , 5). In joint angle trajectories, except the minimum
joint angle jerk cost function (p= 0.1813), we still observe sig-
nificant decreases (p< 0.0001). The reason is, in 3D reaching
motions, the observed joint angle trajectories are bell-shaped,
which are quite close to the results derived from the minimum
joint angle jerk cost function, especially when the reachingmotion
enforces approaching the joint angle limits (e.g., reaching tar-
get one). After we removed the cases of reaching target one in
the comparison, there is still a significant decrease (p< 0.05),
now for all the cases, on the distance error in describing the
joint angle trajectories with the composite model. Furthermore,
it should be noted that, optimizing only dynamics related cost

functions leads to inconsistent arm trajectories in terms of joint
and Cartesian displacements (a single case is shown in Figure 3).
By contrast, even though maximizing smoothness in joint space
(angel jerk, i.e., kinematic cost) was efficient to fit the angular
and Cartesian displacements, it is reported by Vu et al. (2016b)
that it fails to describe the movement in torque space accurately.
It appears that the composite optimality criterion comprising
different biomechanical properties is the only model that can
explain both kinematic and dynamic aspects of the reaching
behaviors.

5.1.3.2. Influence of the Initial and Final Conditions
In order to get a deeper understanding of the human reach-
ing motions, an analysis on identifying the possible factors
which influence the contribution of basic cost functions is per-
formed. We conduct the N-way independent analysis of variance
(ANOVA) on our results with four factors, the three starting joint
angles q1,s, q2,s, q3,s and the target index T. As ANOVA checks
the importance of one or more factors by comparing the response
variable means at different factor levels, the results obtained can
be utilized to identify the factors which have statistical signifi-
cant influence on the examined variable. In Table 4, we list the
corresponding results from our ANOVA analysis when select-
ing the response variable as the contribution of five different
basic cost functions as well as the sum of dynamics related cost
functions (the minimum torque change+ the minimum energy),
respectively.
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FIGURE 6 | Average distance error over all reaching tasks. HJ, JJ, TC, Geo, Enr, and Composite are the hand jerk, the joint angle jerk, the torque change, the
geodesic, the energy, and the composite cost function, respectively. Mean values and the SDs of the errors for each cost function are presented. (A) Distance error
measured by comparing the end-effector trajectories. (B,C) Distance error measured by comparing the joint angle trajectories with and without considering target
one.
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TABLE 4 | Results of ANOVA tests.

RV:factor Sum.Sq. Mean.Sq. F p

HJ:q1,S 0.9624 0.4812 19.5487 0.0000
HJ:q2,S 0.1872 0.1872 7.6063 0.0078
HJ:q3,S 0.0068 0.0068 0.2750 0.6020
HJ:T 0.1635 0.0204 0.8303 0.5796
JJ:q1,S 0.4115 0.2058 10.7701 0.0001
JJ:q2,S 0.0150 0.0150 0.7830 0.3799
JJ:q3,S 0.0176 0.0176 0.9223 0.3409
JJ:T 0.2026 0.0253 1.3255 0.2494
TC:q1,S 0.1005 0.0503 12.7500 0.0000
TC:q2,S 0.0081 0.0081 2.0525 0.1573
TC:q3,S 0.0004 0.0004 0.1092 0.7423
TC:T 0.0603 0.0075 1.9122 0.0753
Geo:q1,S 0.1202 0.0601 3.0653 0.0543
Geo:q2,S 0.0056 0.0056 0.2844 0.5959
Geo:q3,S 0.0232 0.0232 1.1812 0.2816
Geo:T 0.0894 0.0112 0.5702 0.7980
Enr:q1,S 0.2760 0.1380 7.7557 0.0010
Enr:q2,S 0.1525 0.1525 8.5667 0.0049
Enr:q3,S 0.0331 0.0331 1.8596 0.1779
Enr:T 0.2721 0.0340 1.9113 0.0755
Dyn:q1,S 0.6702 0.3351 19.3833 0.0000
Dyn:q2,S 0.2308 0.2308 13.3516 0.0006
Dyn:q3,S 0.0411 0.0411 2.3760 0.1287
Dyn:T 0.3356 0.0420 2.4267 0.0246

RV denotes the response variable, selected as the contribution of each basic cost function
(HJ: hand jerk, JJ: joint angle jerk, TC: torque change, Geo: geodesic, Enr: energy) and the
dynamic related cost functions (Dyn: dynamics, which is the sum of the minimum torque
change and the minimum energy). Four variables are considered as the factors, which are
the three starting joint angles q1,S, q2,S, q3,S and the target index T. RV:factor indicates
the ANOVA result of the influence of the factor on the corresponding response variable
(e.g., HJ:q1,S means the influence of q1,S on the contribution of the minimum hand jerk
cost function). Sum.Sq. and Mean.Sq. are the sum of squares due to each source and
the mean squares for each source, respectively. F is the F-statistic, which is the ratio of
the mean squares. p is the p-values, which represents the probability that the F-statistic
can take a value larger than a computed test-statistic value. Other ANOVA results (e.g.,
the degree of freedom) are not listed here.

From ANOVA analysis, it can be concluded that the starting
joint angles of the two shoulder rotations have influences on
the contributions of the cost functions: q1,s has influence on the
contribution of the hand jerk (F(2,58)= 19.5487, p< 0.0001), the
joint angle jerk (F(2,58)= 10.7701, p< 0.001), the torque change
(F(2,58)= 12.7500, p< 0.0001), the energy (F(2,58)= 7.7557,
p< 0.001), and the dynamics (F(2,58)= 19.3833, p< 0.0001);
while q2,s has influence on the hand jerk (F(1,58)= 7.6063,
p< 0.01), the energy (F(1,58)= 8.5667, p< 0.01), and the dynam-
ics (F(1,58)= 13.3516, p< 0.001). For the target position, only
the dynamics is affected (F(8,58)= 2.4267, p< 0.05). Finally, the
starting joint angle of the elbow rotation q3,s has no influence on
the contribution of basic cost functions (all p> 0.05).

In order to identify how the target position, which can be
expressed by the three final joint angles q1,E, q2,E, q3,E, affects the
contribution of the dynamics, an individual analysis is conducted
on the trajectories of each subject with one starting posture (fully
stretched out posture P1) and six targets (top row: T1, T4, and T6,
bottom row:T3, T6, andT9). Thus 90 (15 subjects× 6 trajectories)
IOC calculations are performed. Then p-test is utilized to find if
there is a significant difference between different final joint angles.
The results suggest that only q1,E has influence on the contribution
of the dynamics related cost, which indicates that only the height

of the targets matters. This can be verified in Figure 7, where we
compare the contributions of the dynamics related cost between
two sets of targets (top vs bottom row). From these results, the
interpersonal variance can also be observed, where the changes
are different for each subject, and sometimes this difference can
be considerably large.

5.1.3.3. Transition Between Different Reaching Tasks
According to the previous results, three factors are identified
to be related to the contribution of basic cost functions, which
are the two starting joint angles of the shoulder joint q1,S,
q2,S and the change of the pitch rotation of the shoulder joint
q1,Change = q1,E − q1,S. In order to identify how exactly these fac-
tors affect the contribution, two 3D scatter plots are given in
Figures 8A,B. Considering the musculoskeletal loading as the
criterion to describe the comfortableness of the reaching motions
(Kee and Lee, 2012; Zenk et al., 2012), the fully stretched down
posture can be treated as the most comfortable posture. Then the
more rotations required to execute the reaching tasks from the
fully stretched down posture, the more uncomfortable the motion
is. It can be observed that, for comfortable reaching motions (left-
down region of the figures), the dynamics related cost function
has less contributionwhile the kinematics has higher, compared to
the uncomfortable reaching tasks (right-up region of the figures),
where the opposite trend is observed. Based on this, we propose a
discomfort metric by combining the three factors along with their
corresponding joint angle limits as

Dis =
(
90 − q1,S

180

)
+ β1

q2,S
180

+ β2

(q1,Change
180

)
, (13)

where Dis denotes the discomfort value calculated by a linear
combination of the three factors by using the weights β1 and β2.
Then for a given pair of weights (β1, β2), a set of discomfort values
can be derived for all 108 reaching tasks Disi (i= 1. . .108). Each
discomfort value has its corresponding contribution value of the
dynamics related cost function Ci (i= 1. . .108), hence a simple
linear least square regression model can be created from the data
set (Disi, Ci) (i= 1. . .108) as

y = θ1 + θ2x. (14)

By changing the weights, different linear regression models
yβ1,β2 are obtained. The coefficient of determination (Ross, 2014)
R2 for each model is given by

R2
β1,β2 = 1 −

∑108
i=1 (Ci − yi,β1,β2)

2∑108
i=1 (Ci − C̄)2

, (15)

where Ci is the actual contribution value, yiβ1,β2 represents the
calculated contribution value from the linear regression model
yβ1,β2, C̄ is the mean value of C. R2 measures of how well a
model can represent the data, and falls between 0 and 1. The
higher the value of R2, the better the model is at predicting the
data. Therefore, the optimal pair of the weights is derived by
maximizing R2

(β∗
1 , β∗

2 ) = max
β1,β2

R2
β1,β2 . (16)
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Solving equation (16) with respect to the contribution of the
dynamics yields the optimal weights as β∗

1 = 0.8150 and β∗
2 =

−0.4477. By using the discomfort values derivedwith this optimal
weights, the contribution of the kinematics related cost function
can also be explained. Corresponding results are presented in
Figures 8C,D.

Since humanmotor control is considered as a stochastic system
and we do not know exactly how these factors are combined
(e.g., linear or non-linear), the discomfort metric presented here
is a proof-of-concept of the transition between different reaching
tasks. Due to the absence of the description of the variance, the
results contain noise, but the trade-off between the dynamics and
the kinematics is still observable. This finding supports the idea
to use a GPR model to describe the mapping from the initial and
final joint angle configurations to the optimal weight vector.

5.2. Experiment for Hybrid Prediction
Framework
In this subsection, an experiment designed to test the performance
of the proposed hybrid online prediction framework is presented.
The experiment is based on a simple pick-and-place task with one
picking position and four targets. The accuracy of the ProMPs
predictions as well as the updating process is analyzed here.

5.2.1. Experimental Setup and Data Collection
As shown in Figure 9, the experiment is designed as a pick-and-
place task with LEGO bricks. The picking position is fixed during
the experiment, and four placing regions with different heights are
selected as targets. Each region consists of four possible positions
as four corners of a square for placing the bricks. Experiment
includes 16 pick-and-place movements (4 targets× 4 times) per
subject. Every subject is required to repeat the whole experiment
ten times, thus in total 160 trajectories, 40 for each target, are
recorded for one subject. We collected the data from five subjects

and performed the analysis on those 800 trajectories. We neglect
the hand and finger movements and only predict the position of
the wrist joint.

5.2.2. Results of the Hybrid Prediction Framework
Here, we present the corresponding results from the prediction
experiment. First, the prediction accuracy of ProMPs is tested by
looking into the distance error between the prediction and the
observation. Then, the updating process for the GPR model is
analyzed both to provide the evidence on the interpersonal vari-
ance, and also to demonstrate the ability of our hybrid prediction
framework in describing this variance.

5.2.2.1. Performance of the Predictions by ProMPs
We conduct an offline analysis to investigate the performance of
the ProMPs-based predictions more in depth. After initialization,
the ProMPs are utilized to generate predictions for the observa-
tions. For each observation, we use the first 30% of the observed
points to rollout the prediction, and the distance error between the
prediction and the observation is measured through DTW. After
each prediction, the observation is used to update the ProMPs in
order to learn the variance as well. For the next observation, the
updated ProMPs is then used, and this updating process keeps
running until the last observation.

The distance errors for each subject and each target are pre-
sented inFigures 10A–D. The distance error is calculated between
the prediction and the observation. Note that, this comparison is
performed in Cartesian space, while during the initialization of
the ProMPs, the trajectory generated from the composite model
is a relative end-effector trajectory in arm model coordinate sys-
tem (see Section 3.2.3). Since the relative end-effector trajectory
ignores the shoulder translations and the torsomovements, which
are not avoidable in real reaching motions, and the model’s arm
length is usually different than the actual arm length of the subject,
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Another least-squares ellipse fitting is also presented to demonstrate the trend with variance.

the first prediction has large error. However, this initial error
diminishes by later updates, and after several updates (around 5),
the distance error becomes stable with a small value (around 2–
4 cm for trajectory distance error averaged over the data points).
In the end, as shown in Figure 10F, the predictions get closer to
the observations for each subject.

During the prediction process, the variance is also learned by
updating the ProMPs. We initialized the variance to a large value,
and observe that after several updates the ProMPs converges
to a stable distribution. Figure 10E shows the Kullback–Leibler
(KL) divergence of comparing the updated ProMPs distribution
with the previous one for target one. The results indicate that
after around 10 iterations the distribution converges for each
subject. An example of the learned distribution, which is defined
by the mean values and the corresponding variances for each
point in all dimensions, is presented in Figures 10G–I. Hence, the
motor variability is captured by person-specific distribution in the
ProMPs. Subsequently, the mean trajectory from the distribution
is treated as the average behavior of that specific subject for the
corresponding reaching task.

5.2.2.2. Updating the GPR Model
Due to the limited amount of available training data, the mapping
represented by the GPR model is not accurate enough. Besides,
because of the interpersonal variance, the error between the esti-
mated weight vector and the actual one can be large in some
cases. Thus, we need to update the GPRmodel through a separate
updating process. To do this, we first extract the mean trajectory
from the converged ProMPs learned from 40 observations, and
then apply the same IOC calculation on this trajectory to get a
new weight vector. This new weight vector is used to update the
GPR model. Note that, since we also want to model the interper-
sonal variance, the GPR model is updated separately with respect
to each subjects’ behavior. A comparison of the distance error
between the observation and the optimal trajectories solved with
the previous weight vector and the new weight vector is presented
in Figures 11A–D. As we only want to look into the distance error
caused by the weight vector, the trajectories compared here are
the relative end-effector trajectories, which have less error due to
ignoring the shoulder translations and the torso movements. The
results indicate that the error diminishes after the update. After
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FIGURE 9 | Experiment for the hybrid online prediction framework. S is the
starting position and T1 to T4 are the four target regions. Each region consists
of four possible placing positions as four corners of a square for the LEGO
bricks.

several updates on the GPR model, the interpersonal variance
can be represented in each person-specific GPR model. We also
observe that even for the same tasks the new weight vectors vary
between different subjects (Figures 11E–H). This supports the
existence of the interpersonal variance while emphasizing the
importance of this updating process in our framework.

6. DISCUSSION

Facilitating efficient and safe co-existence of humans and robots
is a multifaceted challenge. In this paper, we focus on developing
a human motion modeling and prediction framework that can be
effectively used for robot control during dyadic interaction.One of
the key insights of this work is that the interpersonal difference is
not negligible regarding the contribution of cost functions. Even
though motor variability was acknowledged in previous studies
and some stochastic optimal control formulations were suggested
as models for the motor control functionality of the CNS, the
interpersonal variance has not been studied in such detail. The
research presented in this work is a first step for combiningmodel-
based and probabilistic data-driven approaches in order to look
into this topic, especially from the perspective of how this can
be used for human-in-the-loop robot control. In essence, the
hybrid framework enables personalized modeling and prediction
of human motion behaviors, which can be integrated into robot
control to provide personalized, safe, and efficient assistance to the
human partner. However, there are still many aspects that need
further investigation both for human motion modeling and its
effective integration on robot control.

6.1. On the Human-in-the-Loop Robot
Control and HRI
As robots have become ubiquitous in our daily lives, the goal
is to provide safe yet natural interaction between human–robot
dyads. To this end, novel robot control architectures which take
into account human motion behavior are required. As robots are

expected to adapt their motion behaviors with respect to their
human counterparts, understanding how humans control and
execute their motions is critical. The outcome of human motion
modeling is twofold: on the one hand, the models learned can
be used to predict human motions during interaction so that
the robot can take proactive actions. On the other hand, such
models enable building robot control architectures for realizing
human-like motions to provide natural interaction. The proposed
hybrid framework focuses on the former, and it also lays out the
underlying control mechanism for human motor control while
demonstrating the trade-off between kinematic and dynamic
properties used for arm reaching control. Even though there were
recent studies on transferring such optimal control formulations
learned from human motion data to robot control (e.g., locomo-
tion (Mombaur et al., 2010), reaching motion (Albrecht et al.,
2011)), our findings would enhance such methods by building
adaptive control methods to achieve a similar trade-off as human
motor control seems to utilize.

The model-based optimal control formulation can further be
utilized for other HRI settings, e.g., in physical HRI to provide
the required assistance by the robot to the human partner in
order to reduce the effort spent by the human which can be
detected from the increase in dynamics related costs contribution.
In addition, the trade-off analysis can be extended to understand
how reciprocal influence of partners’ movement affect the cost
distribution, which in turn help us construct suitable control
and motion planning strategies for the robot to provide optimal
assistance constrained on similar cost distributions.

As humans collaborate with each other naturally and safely in
close proximity, we hypothesized that one crucial requirement
for dyads is to be able to estimate the collaborating partner’s
motions. In that regard, it is also essential for a robot to predict the
motion of human partners. This prediction needs to be efficient
(online-capable) in order to choose actions proactively, and to
(re-)plan the motion in a way to realize a collision-free trajectory
while still achieving the task. The proposed hybrid framework
enables such an efficient prediction as well as an update on the
cost combination per person. The ProMP-based human motion
prediction component of this work has already been integrated
into a stochastic trajectory optimization framework (Oguz et al.,
2017). The efficiency of our motion prediction enables the robot
to re-optimize its motion frequently at short intervals while con-
sidering the predicted human motion distribution as a dynamic
obstacle to avoid. Hence, any changes in the expected move-
ment can still be taken into account to achieve a responsive and
safe interaction. Furthermore, since our hybrid architecture also
updates personal motion models during interaction, the effect of
robot movement on human partner’s motion can still be captured,
which is expected to increase the accuracy of predictions during
the course of the interaction.

In that regard, Interaction Primitives (IPs) (Amor et al., 2014)
and its extension Environment-adaptive IPs (EaIPs) (Cui et al.,
2016) also provide a data-driven approach to predict a human
partner’s movement and then to plan the robot motion accord-
ingly. As ProMP formulation already builds on the idea of learning
a distribution over some demonstrated trajectories, it can also
be extended to account for the coupling between two agents by
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FIGURE 10 | Results of predicting with the ProMPs. (A–D) Distance error between the observations and the ProMPs predictions of five subjects for target one to
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learning a distribution over two persons’ trajectories executed
during a joint interaction task. Similarly, learning a joint dis-
tribution including the environment-related features would be a
feasible improvement. The learned humanmotionmodels can still
be fed to the IOC formulation to extract the optimal cost distri-
butions that best describes those interactive movement behaviors.
The reciprocal influence of partners on their individual cost uti-
lization poses an interesting research question that can be ana-
lyzed from the IOC perspective. Our modular hybrid framework
also allows integration of any movement representation that can
effectively predict humanmovement behaviors. In that regard, the
IOC formulation can easily be integrated with (Ea)IPs to model,
understand, and predict human interaction behaviors.

Finally, one critical issue has to be noted. Since those formu-
lations only rely on data-driven formulations, there is no guar-
antee on a safe and effective motion generation for the robot,
especially in close proximity interaction scenarios. However, our
approach has the potential to utilize underlying cost function

distributions learned from human movement behaviors for robot
motion generation, which can then be combined with a learning
approach to achieve a generalized safe policy. In that regard, we
can combine the reachability analysis (Akametalu et al., 2014)
with our model-based optimal control formulation to ensure the
safety when the robot is planning its interaction movement. In
essence, by the reachability analysis, the states that lead to an
unsafe situation will be eliminated, and the learning process is
performed within the safe region (Fisac et al., 2017). This analysis
and the required computations are based on the dynamical model
of the system and may not be feasible with the purely data-driven
approaches, such as IPs.

6.2. Limitations
The IOC framework enables the identification of combination
of basic cost functions in 3D reaching tasks. The results suggest
a trade-off between the dynamics and kinematics related cost
functions. With a proper definition of the system model and
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FIGURE 11 | Results of the GPR model updating process. (A–D) The distance error between the optimal trajectories solved with respect to the initial weight vector
and the updated weight vector for target one to target four, respectively. (E–H) The contribution of basic cost functions calculated from the mean trajectories of five
subjects for target one to target four, respectively.
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a set of reasonable cost functions, the IOC framework can be
generalized to other problems, e.g., locomotion planning (Mom-
baur et al., 2010), car driving (Kraus et al., 2010). However, there
are several limitations of the IOC framework, one of which is the
complexity of finding the global minimum. Even though we tried
to cover an extensive search range of the weight vector, the result
is arguably still an approximation of the global minimum. Due to
the complex non-linear formulation of the IOC framework, no
efficient method has been proposed on addressing this problem
yet. Second, the lack of the description of variance weakens the
accuracy in terms ofmodeling themotion behavior. Since the IOC
framework results in a deterministic solution, it cannot consider
the interpersonal variance and the motor variability during the
optimization. When we represent the trade-off between kinemat-
ics and dynamics related costs regarding the reaching tasks, the
variance makes it hard to identify a clear relationship. Therefore,
the discomfort metric we proposed is a proof-of-concept, and
a deeper investigation is required to uncover how exactly the
motion parameters affect the contribution of basic cost functions.

In the proposed hybrid prediction framework, we combine a
model-based prediction method with a data-driven method. A
GPR model is used to represent the mapping from the initial and
final conditions to the optimal weight vector. However, due to
the limited amount of data, the GPR model is not sufficient for
representing the variance in motion behavior. It is also found to
be effective only when the reaching motions are in the descrip-
tive range of the training data. For prediction purpose, we use
the trajectory obtained from the composite model to initialize
the ProMPs. The reason we want to include this initialization
phase other than directly using the ProMPs is that the subsequent
updates on the composite models are much faster than solving
the IOC problem from scratch for each person (e.g., 100 upper
level optimization iterations take around 4 h vs. 15 iterations
take around half an hour). It also allows to make the prediction
immediately without extra data collection. Note that, because of
the fact that the arm model ignores the shoulder translation and
the torso movements, which are not avoidable in real reaching
motions, the current initialization process still has some errors. If
a full upper body model is considered in the IOC framework, this
error could be minimized. However, this will immensely increase
the computational load, hence this extension may not be feasible.

7. CONCLUSION

In this work, we investigate the underlying principles of human
reaching motions and propose a hybrid framework to utilize our
findings in motion prediction. To uncover the criteria of the
reachingmotion control, we implement an inverse optimal control
framework to identify the contribution of basic cost functions
which can best represent the human behaviors. The IOC results
indicate a trade-off between the dynamics and kinematics related
cost functions depending on the reaching tasks. Then to apply
the composite cost function for predicting human motions, we
combine the model-based optimal control formulation with the
data-driven probabilistic movement primitives method. With this
hybrid prediction framework, we learn the motor variability as
well as the interpersonal variance at the same time. The demon-
strated high accuracy and efficiency of this hybrid framework
encourages its usage in HRI settings. For human-in-the-loop
robot control, a high-level planner for the robot can exploit such a
hybrid model to choose its next task, plan a collision-free motion
trajectory, and as a result achieve safe, efficient, and natural dyadic
interaction with the human partner.
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Motor imagery–based brain–computer interface (BCI) using electroencephalography

(EEG) has demonstrated promising applications by directly decoding users’ movement

related mental intention. The selection of control signals, e.g., the channel configuration

and decoding algorithm, plays a vital role in the online performance and progressing

of BCI control. While several offline analyses report the effect of these factors on BCI

accuracy for a single session—performance increases asymptotically by increasing the

number of channels, saturates, and then decreases—no online study, to the best of our

knowledge, has yet been performed to compare for a single session or across training.

The purpose of the current study is to assess, in a group of forty-five subjects, the

effect of channel number and decoding method on the progression of BCI performance

across multiple training sessions and the corresponding neurophysiological changes.

The 45 subjects were divided into three groups using Laplacian Filtering (LAP/S) with nine

channels, Common Spatial Pattern (CSP/L) with 40 channels and CSP (CSP/S) with nine

channels for online decoding. At the first training session, subjects using CSP/L displayed

no significant difference compared to CSP/S but a higher average BCI performance over

those using LAP/S. Despite the average performance when using the LAP/Smethod was

initially lower, but LAP/S displayed improvement over first three sessions, whereas the

other two groups did not. Additionally, analysis of the recorded EEG during BCI control

indicates that the LAP/S produces control signals that are more strongly correlated with

the target location and a higher R-square value was shown at the fifth session. In the

present study, we found that subjects’ average online BCI performance using a large

EEGmontage does not show significantly better performance after the first session than a

smaller montage comprised of a common subset of these electrodes. The LAP/Smethod

with a small EEG montage allowed the subjects to improve their skills across sessions,

but no improvement was shown for the CSP method.
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INTRODUCTION

Brain-computer interface (BCI) has attracted considerable
attention during the past few decades and aims to construct a
direct interface between the human brain and peripheral devices
(He et al., 2013). Various signal sources such as endogenous
motor imagery-based sensorimotor rhythms (Wolpaw and
McFarland, 2004) and slow cortical potential (Birbaumer et al.,
2003), and exogenous P300 (Jin et al., 2010, 2011) and steady-
state visual evoked potentials (Chen et al., 2015) could be
used to build the BCI system. Motor imagery-based BCI
using electroencephalography (EEG) has shown promise in the
control of virtual objects, such as computer cursors and virtual
helicopters (Birbaumer et al., 2003; Wolpaw and McFarland,
2004; Royer et al., 2010), and physical devices, such as
wheelchairs, quadcopters and robotic arms (Pfurtscheller et al.,
2003; Carlson and Millan, 2013; LaFleur et al., 2013; Meng et al.,
2016). Human brains display characteristic spatial modulation
of sensorimotor rhythms when a user performs certain types
of motor imagination, e.g., imagining single or bilateral hand
movements, movement of the feet, etc. (Wolpaw et al., 2002;
Pfurtscheller et al., 2006). This modulation of sensorimotor
rhythms can be captured by computer algorithms and translated
into various control commands for output devices. Recently, the
study of non-invasive EEG-based BCI has sparked intensified
interests, spreading to the inclusion of additional complimentary
neurotechnologies such as EEG source imaging (Edelman et al.,
2016), vivid imagination strategy (Qiu et al., 2017), hybrid
modality (Kaiser et al., 2014), non-invasive neuromodulation
(Baxter et al., 2016), and functional magnetic resonance imaging
(Zich et al., 2015) to enhance the usability and performance of
these systems. Additional studies have utilized EEG-based BCIs
to explore neurophysiological foundations of BCI performance
such as predicting user performance (Hammer et al., 2012),
measuring brain plasticity through training (Pichiorri et al.,
2011), the relationship between attempted movement and motor
imagery (Blokland et al., 2015), as well as various clinical
applications such as how BCI training may aid in stroke
rehabilitation (Ramos-Murguialday et al., 2013; Pichiorri et al.,
2015) and in the use of lower limb exoskeletons (King et al.,
2015; Donati et al., 2016) and robotic arms for reach and grasp
(Meng et al., 2016). These studies aim to further improve the
performance of non-invasive BCI from various aspects in order
to bring this technology into everyday life.

There are several factors, e.g., the chosen frequency bands,
the channel configuration, the associated decoding methods,
etc., which are known to affect the performance of BCI system
(Blankertz et al., 2008b; Arvaneh et al., 2011; Ang et al., 2012;
Meng et al., 2013). The selection of channel configuration,
more often entangled with frequency/spectral optimization, and
associated computer algorithms have been studied by various
offline analyses (Lal et al., 2004; Blankertz et al., 2008b; Arvaneh
et al., 2011; Meng et al., 2013). Despite a conflicting consensus
within the field regarding the use of large numbers of EEG
channels (electrodes) on BCI performance, it has been suggested
by offline analyses that the classification accuracy of motor
imagery/BCI tasks can increase as more channels are added (Lal

et al., 2004; Sannelli et al., 2010; Arvaneh et al., 2011; Meng
et al., 2013; Shan et al., 2015; Qiu et al., 2016), but begins to
decrease after a certain number due to the redundant and/or
irrelevant information introduced into the classifier. Usually,
the optimal number of channels depends on the algorithm
used, the subject and the application. One state-of-the-art signal
processing method termed common spatial patterns (CSP) has
gained significant attention due to its efficiency to extract useful
motor imagery-related information from multiple channels
(Blankertz et al., 2008b; Arvaneh et al., 2011; Meng et al., 2013).
Several offline studies have shown that CSP works optimally
when using about 20–50 electrodes, however, the optimal number
varied among subjects and applications (Lal et al., 2004; Sannelli
et al., 2010; Arvaneh et al., 2011; Meng et al., 2013; Shan et al.,
2015; Qiu et al., 2016). Advanced signal processing techniques
utilizing large numbers of EEG channels, such as CSP, may
therefore additionally be able to boost BCI performance. Despite
few online applications (Guger et al., 2000; Blankertz et al.,
2008a), CSP has primarily been used to perform offline analysis
of prerecorded EEG and has been compared to only one or
two competing methods at a time (Guger et al., 2000; Blankertz
et al., 2008a,b; Sannelli et al., 2010; Arvaneh et al., 2011; Lotte
and Guan, 2011; Ang et al., 2012; Meng et al., 2013; Samek
et al., 2014; Shan et al., 2015; Qiu et al., 2016). Furthermore,
these studies often utilize data from one recording session and
do not consider the learning process of subjects that may arise
under longitudinal training paradigms. On the other hand, the
LAP method uses a fixed configuration and a relatively small
number of channels distributed around the sensorimotor area.
There are multiple studies demonstrating online performance
across several training sessions via the LAP method (Wolpaw
andMcFarland, 2004; Royer et al., 2010; Baxter et al., 2016; Meng
et al., 2016), however, most of these studies do not investigate or
report the learning process of subjects in part due to insufficient
number of subjects and low statistical power. Meanwhile, many
recent studies using BCI for stroke recovery, recovery of lower
limb injury or robotic arm control highlight the requirement
of online BCI learning in multiple/long-term sessions (Ramos-
Murguialday et al., 2013; King et al., 2015; Pichiorri et al., 2015;
Donati et al., 2016; Meng et al., 2016). Furthermore, the BCI
learning of subjects in long-term sessions continuously occurs
and interacts with the adaptation of the BCI system. Therefore, it
is necessary to not only evaluate various channel configurations
in an online fashion, but also to investigate how the use of these
approaches affect the learning process involved in BCI control.

It is clear from many offline studies that the modulation
of sensorimotor rhythms can be better captured by advanced
signal processing algorithms (Guger et al., 2000; Lal et al., 2004;
Blankertz et al., 2008a,b; Sannelli et al., 2010; Arvaneh et al.,
2011; Lotte and Guan, 2011; Ang et al., 2012; Meng et al., 2013;
Samek et al., 2014; Shan et al., 2015; Qiu et al., 2016) and may
facilitate the learning process of BCI control. This facilitation
might manifest in the form of higher decoding accuracies and
overall BCI performance, which would possibly encourage the
participants to maintain engagement throughout the training.
However, to the best of our knowledge, it has yet to be tested
whether or not the inclusion of large numbers of electrodes and
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advanced signal processing algorithms lead to more efficient BCI
training and increased performance in an online setting. In the
present study, we attempt to answer this question by investigating
BCI learning over multiple sessions in terms of the performance
of BCI control, a behavioral representation of the users’ ability to
modulate his/her sensorimotor rhythms.

In this study, we used two particular channel configurations,
composed of vastly different numbers of electrodes in order to
explore the learning performance of subjects. For each channel
configuration, decoding algorithms were utilized that have
been shown in literature to optimize the information collected
among the included sensors; Laplacian Filtering (LAP/S) for
the small channel configuration (Hjorth, 1975; McFarland et al.,
1997), CSP/L for the large channel configuration, and CSP/S
for the small channel configuration (Ramoser et al., 2000;
Blankertz et al., 2008b). Forty-five participants were recruited
to participate in this study. To address the question of how the
channel configuration and decoding algorithm affects initial BCI
learning, the subjects were randomly distributed into separate
experimental groups utilizing different channel configurations
and decoding algorithms. Each subject participated in multiple
sessions of BCI experiments using a 1-dimensional (1D) cursor
control paradigm. The group averaged performance across
sessions was compared among the three groups.

METHODS

Experimental Setup
Subjects and Data Acquisition
Forty-five BCI naïve subjects were recruited for this study. The
45 subjects (22 females; mean age, 23.7 ± 7.7; range 18–54;
seven of them are left handed, one ambidextrous) were randomly
assigned to one of three groups (Group one: G1, Group two:

G2, and Group three: G3). For each subject, five sessions of
1D horizontal motor imagery BCI control (Figure 1A) were
performed via either the small channel configuration (Figure 1B)
or multichannel configuration (Figure 1C) and the associated
online decoding algorithms. The average interval between any
two of the five consecutive sessions for all subjects is 7.24 ±

8.85 days and the minimum interval for each subject is 1 day.
The small channel configuration (G1, 15 subjects) employed
the AR spectrum algorithm which extracted the amplitude of
the alpha-beta rhythm (8–26Hz) from channels C3 and C4.
Before extracting the spectrum signals from those two channels,
they were spatially filtered by LAP/S Filter (McFarland et al.,
1997). Whereas, the CSP algorithm was used to adjust the weight
coefficients applied to the multichannel configuration (G2, 15
subjects). Correspondingly, band-pass filtering (8–26Hz) was
employed to themultiple channels before the CSP algorithms was
applied. As a control, the remaining 15 BCI naïve subjects (G3)
were instructed to perform five sessions of the same BCI task
via the small channel configuration and CSP decoding algorithm
(CSP/S, same band-pass filtering). All participants were informed
about the experimental protocol and written informed consent
from all participants was acquired before participating in the
study; the study protocol was approved by the Institutional
Review Board (IRB) of the University of Minnesota.

64-channel EEG was acquired using a Neuroscan EEG
acquisition system. The reference was located on the vertex
and the ground electrode was on the forehead. During EEG
recordings, subjects were seated in a comfortable chair with
their hands on the armrests and faced a computer monitor at a
distance of one meter. All electrode impedances were maintained
below 5 k�. The EEG signals were recorded at a sampling
rate of 1,000Hz and band-pass filtered from 0.5 to 200Hz by
a Neuroscan Synamps RT amplifier (Neuroscan Inc, Charlotte,
NC). A notch filter of 60Hz was applied to the raw EEG
signals.

Study Design
The 45 subjects who were naïve to BCI fell into one of the
three groups randomly. Each subject was instructed to imagine
movement of their left hand or right hand to control the left
or right cursor movement, respectively. Subjects were instructed
to perform kinesthetic motor imagination in the first person
perspective (Neuper et al., 2005). There were 10 runs per session,
each composed of 25 trials per run with left and right targets
presented in block randomized order. Thus, the left and right
targets were roughly equal in each session. In each session, there
was no feedback for the first run of 25 trials and was used as
the training data for CSP/L or CSP/S. There was no feedback
for the first trial in each run as the data from this time period
was used as training data (buffer initiation) for LAP/S. After the
first training run or trial in the respective method, the feedback
was provided to subjects. For each run, the trial started with a
black screen for 3 s during which the subjects were instructed to
relax and try their best to eliminate body movement. A yellow
bar appeared after second 3 on either the left or right side of the
screen and was maintained for 3 s, followed by the appearance
of a pink cursor at second 6 which was allowed to move based
on the subject’s brain rhythms (as shown in Figure 1A). Subjects
were given a maximum of 6 s in each trial to hit the correct target;
thus, each trial could result in a hit, miss, or abort. After a 1 s post-
feedback period a new trial repeated under the same procedure.
The movement of the cursor was presented by BCI2000 (Schalk
et al., 2004).

All of the subjects were blinded to which group they belonged
to. The first group G1 included 15 subjects using the small
channel configuration and LAP/S filtering method for online
decoding during the first three sessions (G1:LAP/S); the last
two sessions were switched to the multichannel configuration
and CSP/L for online decoding (G1:LAP/S->CSP/L). For the
second group, 15 subjects participated in three sessions of BCI
control via the multichannel configuration and CSP/L as the
online decoding method (G2:CSP/L) and then switched to the
small channel configuration and LAP/S method for their last
two sessions (G2:CSP/L->LAP/S, as shown in Figure 1D). The
15 subjects in the third group performed the same BCI task
via the small channel configuration using CSP as the decoding
method throughout the five sessions (CSP/S, G3:CSP/S). The
ability to operate a BCI for participants is expected to be
generalized from one decoding method to another if they are
to use the same underlying neurophysiological mechanism.
Changing the decoding method can act as a perturbation
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FIGURE 1 | Experimental design. (A) Trial structure for cursor movement BCI control using left- and right-hand motor imagery. (B) Small channel configuration for

large Laplacian filtering (LAP/S) method. (C) Multichannel configuration with 40 electrodes decoded by common spatial filter (CSP/L) method. (D) Switch-over design

for the first two groups where participants were randomly distributed into two groups: each group performed three sessions of the original configuration and

associated decoding method and then switched over to the other for the remaining two sessions; the channel configuration for each session is shown accordingly.

Subjects in group three performed five sessions of online decoding by CSP/S but via the small channel configuration indicated in (B).

to a particular subject’s control strategy, however, could also
potentially help make such a control strategy more robust
in the long run. The switch-over design among the first
two groups was aimed to test how changing the decoding
method would affect a subject’s control strategy by means
of behavioral performance. The experimental schedule for
each subject was balanced between each subject’s earliest next
available day and our lab’s availability; Figure 2A displays the
scheme for recruiting and scheduling subjects. The statistics
of inter-session interval for all subjects are displayed in
Figure 2B.

Multichannel (CSP/L) Online Decoding
Forty electrodes were selected and are marked green in
Figure 1C. Channels at the periphery of the cap were ignored
during online processing to avoid large, common artifacts caused
by facial muscle movements. Those 40 channels were band-
pass filtered by an 8–26Hz Butterworth filter and then spatially
filtered by three pairs of the most distinct CSP filters. The power
in a sliding time window of 2 s in each of spatially and spectrally
filtered EEG signals were used to calculate the movement of
the cursor in each time step. CSP aims to maximize one class
covariance while minimizing the other class covariance. The
equivalent optimization problem aims to maximize one specific
class covariance with the normalization constraint of two class
covariance. The solution is given by the generalized eigenvalue

decomposition (Ramoser et al., 2000; Blankertz et al., 2008b).
Linear discriminant analysis (LDA) was used as the classifier. In
the online BCI experiments in the current study, the normalized
value of LDA output was mapped to the cursor velocity in either
the positive (right) or negative (left) directions. For the first run of
each session, the cursor did notmove but the subject was required
to do the same motor imagination as subsequent runs in order to
get the training data to train the CSP and LDA classifier. After the
first run, the spatial filters and LDA classifier were retrained based
on the data of the previous two runs, 50 trials, (for the second
run, only the data of first run were used). A batch mode (Qin
et al., 2007; Meng et al., 2014) was applied to update the classifier
online after each run.

Small Channel (LAP/S) Online Decoding
The signals of channel C3 and C4 were spatially filtered by LAP
filter (Figure 1B) before they were used to calculate the power
spectrum. Spectral power of the alpha-beta rhythm estimated by
the Autoregressive (AR)method for channel C3 andC4was input
to a linear classifier and linearly mapped to the 1D left/right
cursor velocity (LaFleur et al., 2013; Meng et al., 2016). For
the first run of each session, the cursor did not move for the
first trial but the subject was instructed to do the same motor
imagination in order to calibrate a normalizer, after the first
trial the cursor began to move (feedback). The normalizer took
the output of the linear classifier as input and transformed it
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FIGURE 2 | Schematic representation of the experimental schedule. (A) Scheme of subjects’ recruitment and experimental schedule. (B) The statistics of

inter-session interval for all sessions and subjects.

into a zero mean and unit variance control signal for velocity-
based cursor control. The output of linear classifier was updated
online by the normalizer (Schalk et al., 2004; Baxter et al.,
2016).

CSP/S Online Decoding
The signals from the small channel configuration (Figure 1B)
were used for this paradigm and the same procedures of CSP
and LDA were used to extract three pairs of features and
classify the movement of the cursor. Similarly, the spatial filters
and LDA classifier were updated online in a batch mode after
each run.

Group R-Squared Evaluation in Sensor
Space
We used the coefficient of determination, R-squared (r2)value,
to measure how strongly the means of the two distributions
(left and right hand imagination) differ relative to the band
power variance. In an offline analysis, trials contaminated by
artifacts were removed to alleviate the obscurity of cortical
activity caused by any electrical sources unrelated to the task,
e.g., swallowing or head movement. Trials were rejected if the
activity satisfied one of the following criteria: first, the power
spectrum of the trial during the feedback period deviated from
the baseline by±35 dB in the 7–35Hz frequency band (Delorme
and Makeig, 2004); second, the feedback duration was < 2 s. All
of the trials including hit, miss and abort trials are used for the
calculation of R-squared value. Artifactual trials were removed
as described above in order to utilize only clean EEG signals,
which could accurately capture the intention of the subjects.
This procedure left an average of 200 ± 37 trials remaining
for each subject and each session. A large Laplacian filter was
applied to all of the recorded data (Hjorth, 1975; McFarland,
2015). Since a broad frequency band of 8–26Hz was applied
to all of the methods online, it is desirable to see the changes
of R-squared values across sessions in the same frequency band
for offline analysis. R-squared values were first calculated in
each electrode in the frequency band of 8–26Hz from all of
the non-rejected trials for each subject and each session. Then
the R-squared values were averaged over the subjects in each
session.

RESULTS

Online BCI Performance Results
First, the online BCI performance for each method was averaged
over groups of subjects for each session. The group averaged
percent valid correct (PVC) for all of subjects in different groups
across the five sessions is shown in Figure 3. The PVC is defined
as the ratio of the correct target hit trials vs. all of the valid
outcomes. Thus, invalid outcomes corresponding to those trials
when neither a correct nor an incorrect target was hit (abort)
were excluded in the calculation of PVC. The first group is
indicated by the green line, the second group the red line, and the
third group the blue line. Because of the switch-over employed
in sessions four and five for the first two groups, the line color
remains the same for original groups, however, the markers
switch. Thus, a green line with green circles represents the first
group for the first three sessions, whereas a green line with red
stars represents the same group in the final two switch-over
sessions. The same visualization method is applied to the second
group (refer to Figure 1D for details). The light-gray highlighted
region indicates when the switch-over sessions began.

A linear mixed effect model (lme) was employed to evaluate
the statistical significance of group performance over time (across
sessions) with post-hoc Tukey’s tests used to correct for multiple
comparisons. There was a significant difference (p = 0.03) in
PVC between G1 (LAP/S, PVC ± S.E.M was 61.8 ± 4.6%)
and G2 (CSP/L, 76.0 ± 2.6%) and no significant difference
between G1:LAP/S and G3 (CSP/S, 72.7 ± 3.7%), or G2:CSP/L
and G3:CSP/S in the first session. There were no significant
differences among any group pairings in the following sessions.
In the fifth session, we found a significant difference in PVC
between G2 (LAP/S, 83.8 ± 4.7%) and G1 (CSP/L, 73.8 ± 3.7%),
and between G2 (LAP/S, 83.8 ± 4.7%) and G3 (CSP/S, 73.3 ±

3.7%) before correction of multiple comparisons, however, these
effects did not survive the correction. The group averaged PVC
using the CSP decoding method and multichannel configuration
(CSP/L, marked with red stars) showed significantly higher
initial performance than the LAP/S decoding method using the
small channel configuration at the first session. However, the
performance of this group varied across the first three sessions
without a clear trend and the variation (red star) continued after
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FIGURE 3 | Online BCI performance and statistical analysis results. (A) Online group average performance in terms of Percent Valid Correct (PVC) across all five

sessions. The standard errors of the mean (S.E.M) are indicated by the error bars on each point along the three lines. The same group of participants is connected by

the same color lines and the same method is marked by red star and green circle, respectively. The “*” indicates there is a significant difference of performance

between LAP/S and CSP/L at the first session. (B) Change of BCI performance across the first three sessions relative to the first (baseline) session. A significant

difference between the group using CSP/L and the group using LAP/S is apparent in the overall improvement of PVC from the first to third BCI session. (C) Change of

BCI performance compared to the third (baseline) session after switching over methods.

switching over to the LAP/S method as well. A similar high group
average PVC by the small channel configuration (CSP/S, blue
line) was shown at the first session, but no significant difference
was shown compared to LAP/S decoding method. There was
small variation in the performance for group three using the
CSP/S method across the five sessions. The performance via the
LAP/S decoding method using the small channel configuration
(green circle) displayed a significant improvement, which is
further discussed in section Offline BCI Performance Analysis,
from the first to third sessions despite starting from a lower
initial group averaged PVC. The change of BCI performance
between session 4 and session 5 after switching over also shows
greater improvement in group G2:CSP/L->LAP/S compared to
G1:LAP/S->CSP/L (see analysis results in section Offline BCI
Performance Analysis as well). In the following subsections,
whether the randomly assigned subjects in three groups had equal
natural abilities to control a BCI and whether the three methods
produced different longitudinal effects of BCI control across the
first three sessions are evaluated.

Evaluation of BCI Performance Progress
for Different Methods
In order to see the effects of the three different methods (here
denoted as method A-LAP/S; method B-CSP/L and method

C-CSP/S) and time (different sessions), the first three sessions
and the last three sessions were analyzed separately. The
performance of the first session (baseline) was subtracted from
the second and third session to get the change of performance
from baseline for each subject after training. Similarly, the
performance of the third session was subtracted from the
fourth and fifth to obtain the change of performance from
the time point right before switching over methods for each
subject. Although the offline cross validation analysis in section
Offline BCI Performance Analysis showed that there was no
significant difference in discriminative abilities between groups
before the first online session (the offline cross validation in
section Offline BCI Performance Analysis was used to assess
subjects’ discriminative abilities between groups), the difference
in subject ability could be further compensated and evaluated
by comparing their change of performance session by session.
Thus, by baseline correcting the subjects’ performance, the
effect of initial group differences can be minimized. The change
in performance (dependent variable, DV) for three different
subgroups underwent treatment A, B, and C, respectively, for
two different time points (repeated measures). A mixed repeated
measures ANOVA was used to determine whether the three
different methods produced different BCI performance over
time. Prior to switching over methods, the statistics for the
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main effect of method is F(2, 42) = 3.23, p = 0.049, n2 = 0.1
(generalized Eta-Squared measure of effect size); main effect of
time is F(1, 42) = 1.12, p = 0.30, n2 < 0.01; interaction effect
of method and time is F(2, 42) = 0.29, p = 0.75, n2 < 0.01. The
statistics indicate there is a significant difference in the main
effect of method. Post-hoc linear mixed effect models (lme) and
Tukey’s Test were performed between each method for multiple
comparisons of means. The results are summarized in the
Figure 3B. There is a marginally significant difference (p = 0.05)
in change of BCI performance from session 1 to session 3 between
method G1:LAP/S–G2:CSP/L (PVC ± S.E.M, 11.6 ± 5.0%); no
significant difference (p = 0.81) between method G3:CSP/S–
G2:CSP/L (3.0 ± 5.0%); no significant difference (p = 0.20)
between method G3:CSP/S–G1:LAP/S (−8.6 ± 5.0%). There are
no significant differences in the change of BCI performance
from session 1 to session 2 (i.e., Session 2-1) among all of the
three methods. After switching over methods, a similar mixed
repeated measures ANOVA was used to assess the three different
methods. No significant difference in main effects was shown;
the statistics for the main effect of method is F(2, 42) = 0.98,
p = 0.39, n2 = 0.04; main effect of time is F(1, 42) = 0.17,
p = 0.68, n2 < 0.01. There was a significant interaction effect
between method and time, F(2, 42) = 5.35, p = 0.009, n2 = 0.03.
Since a significant interaction was found, we did further post-
hoc analysis on the change of BCI performance between session
4 and session 3, between session 5 and session 4 to find the
reason for such significant interaction. The results are shown in
Figure 4. A significant difference between G2: CSP/L->LAP/S
and G1:LAP/S->CSP/L was shown for the change of BCI
performance between session 4 and session 5 (see Figure 4B).

A linear mixed effect model was applied to test whether the
carry-over effect was significant via the sequence of G1 (LAPS,
session 3) (CSPL, session 4) and the sequence of G2 (CSPL,
session3) (LAPS, session 4) in order to exclude the possibility
of biasing the results for session 4 and session 5 due to the
switch over design (Lawson, 2014). The result showed that there
is no significant carry-over effect (p = 0.67) between the two
sequences.

Offline BCI Performance Analysis
Although the subjects were recruited and randomly assigned to
different groups, it is worth investigating the genuine ability of
each group to produce discriminable brain patterns and ensure
that this ability was roughly equal. Then we can exclude the
possibility that the difference of online performance between
different groups, especially at the first training session, is
caused by subjects’ natural BCI ability. The offline analysis was
performed for all of the subjects on their first session and
subsequent four sessions of BCI data. Since CSP has been used
as a benchmark method for numerous offline analyses (Blankertz
et al., 2008b; Tangermann et al., 2012), CSP/L with the large
channel configuration and a time segment of 2 s right after the
cursor appears (3 s after the target cue was presented) was used
as the method to assess the discriminability of subjects in all
three groups. A 5 × 5 fold cross-validation (CV) was used to
estimate the offline performance accuracy for each subject and
each session. The group average CV accuracy in each group and

session is shown in Figure 5A. Particularly, a one-way analysis
of variance (ANOVA) was used to test whether there were
statistically significant differences between the means of three
groups at the first session. The average CV results and SEM
for each method were G1:LAP/S (PVC ± S.E.M) 70.0 ± 3.6%,
G2:CSP/L 73.0± 2.7% and G3:CSP/S 75.0± 3.7%. The statistical
results of F(2,42) = 0.46, p = 0.63 indicate that there was no
statistically significant differences between the means of the three
groups’ offline performance at the first session. Thus, we can
conclude that the genuine ability to produce discriminable brain
patterns in different groups was roughly equal.

Group Average R-Squared Value in Sensor
Space
The R-squared value shows the difference of means of EEG mu
and beta power between collections of left and right hand motor
imagination relative to their band power variance. Thus, it could
provide information about electrophysiological changes across
training sessions. The group averaged R-squared value over all of
the participants for each decoding method was calculated and is
visualized in Figure 6. In each row, the group average R-squared
value with respect to each method is displayed, and in each
column the group averaged results with respect to each session
is shown. Note that, for the decoding method of G1:LAP/S
and G2:CSP/L, the subjects were switched-over into the other
processing and decoding scheme at the fourth session. The color
scale for each method is globally normalized to indicate the R-
squared values relative to each method. For all of the three rows,
focal distributions around channels C3 and C4 show stronger
R-squared values, which implies sensorimotor areas are actively
modulated by all of the three methods. Specifically, a mixed
repeated measures ANOVA was used to assess whether there is
a difference of R-squared values between the different methods
across sessions in channels C3 and C4. Similar to the online
performance analysis, the first three sessions and the last two
sessions were analyzed separately. There is a significant main
effect of method [F(2, 42) = 5.47, p = 0.008] and interaction
effect [F(2, 42) = 3.25, p = 0.049] for the R-squared values at
channel C3 in the ANOVA accounting for the three groups
and final two sessions. The post-hoc linear mixed effect models
(lme) and Tukey’s Test were performed between each method for
multiple comparisons of means. The results are summarized in
Figure 7. There is a significant difference in R-squared values at
channel C3 between methods G2:CSP/L->LAP/S and G1:LAP/S-
>CSP/L (p = 0.0015), between methods G2:CSP/L->LAP/S and
G3:CSP/S (p = 0.0007) at the fifth session. This indicates that
EEG mu and beta waves are more consistently modulated for the
LAP/S method at the fifth training session on the group level.

Typical Spatial Patterns Derived by the
CSP/L Method
Considering the results of different online BCI performance
shown in the above analysis, feature extraction and classification
were analyzed in the current section to probe the EEG for what
factors might affect the progress of online BCI performance.
Since similar linear classifier and adaptation schemes were
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FIGURE 4 | (A) Statistical significance test of change in performance between session 3 and session 4 for all three methods. (B) Statistical significance test of change

in performance between session 4 and session 5 for all three methods.

FIGURE 5 | Offline cross-validation BCI performance and statistical analysis results. (A) Offline group average BCI performance via CSP/L method and a 5 × 5 fold

CV. (B) One way ANOVA test on the groups’ first session of offline BCI performance for three different groups. No significant difference was found.

used for all of the LAP/S, CSP/L, and CSP/S groups, there
is little chance that the classifiers cause the different online
BCI performance. We therefore focus on the feature extraction
method which is more likely to result in performance differences.
An important reason for incorporating multiple channels is the
expectation of deriving more task-related information through
advanced signal processing algorithms, like spatial filtering. The
scalp topographies of three pairs of the highest ranked spatial
patterns calculated by CSP/L for each subject and each run
during each session were explored with the above question in
mind. A typical example for a particular subject is shown in
Figure 8. In Figure 8A, spatial patterns derived by CSP/L for one
run are shown; the first and second spatial pattern in the first
row together with the second and third to last spatial patterns
in the second row display neurophysiological consistency
with the expected location of event-related (de)synchronization
(ERD/ERS) which is a typical signature of motor imagery tasks.
Contrasting with these four patterns, the third spatial pattern
and last spatial pattern might capture non-sensorimotor related
activities of the EEG, such as frontal and occipital activities
which happen to be extracted by the algorithm. The temporal
dynamics of ERD/ERS filtered by CSP/L, corresponding to

the spatial patterns in Figure 8A, are shown in Figure 8C; in
general, the temporal signals for right-hand imagination (red
line) show larger amplitude oscillations than signals for left-hand
imagination (blue line) in the first row of Figure 8C and vice
versa in the second row. Similar spatial patterns for another
run are shown in Figure 8B; a similar combination that fit with
prior neurophysiological knowledge about sensorimotor related
activities and non-sensorimotor related activities were observed.
The temporal dynamics of ERD/ERS for another two left-hand
and right-hand imagery trials are shown in the Figure 8D with
their spatial patterns of CSP/L corresponds to Figure 8B. In
general, the temporal dynamics of those sensorimotor related
activities and non-sensorimotor related activities show similar
ERD/ERS at the interested frequency band, but the spatial
distributions might vary run by run. An obvious difference
between the multichannel or small channel configuration via
CSP/L or CSP/S decoding and the small channel configuration
via LAP/S decoding was that the weighting coefficient for each
electrode (spatial filtering) via CSP/L or CSP/S was automatically
derived and adapted by the data. On the contrary, the weight
coefficients for the electrodes were fixed throughout the whole
sessions of training via LAP/S decoding. The variation of the
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FIGURE 6 | Topography of group averaged R-squared values for the three online decoding methods across five sessions. Each row shows the group results with

respect to the different methods, and each column shows the results with respect to each session. The color scale for each method and session is globally

normalized. The maximum R-squared value for each condition is marked as a black star and its value is shown rightly above each topography. The group averaged

R-squared values for the LAP/S method displayed the largest R-squared value in the focal area surrounding channels C3 and C4 at the fifth session.

FIGURE 7 | Statistical analysis of group averaged R-squared values, in channels C3 and C4, for the three online decoding methods across five sessions. Group mean

± S.E.M (standard errors of the mean) R-squared values in channels C3 and C4 were shown in the left and right panel, respectively, for the three different methods.

Statistically significant different R-squared values were found between method G2:CSP/L->LAP/S and G1:LAP/S->CSP/L, between method G2:CSP/L->LAP/S and

G3:CSP/S, in channel C3 at the fifth session.
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FIGURE 8 | Topography of spatial patterns calculated by CSP/L and corresponding temporal dynamics for a particular subject in the online BCI control. (A) Three

pairs of spatial patterns corresponding to the three pairs of the highest ranked eigenvalues were used for a particular subject in one run of a session for online BCI

control. The first and second spatial pattern in the first row together with the second and third to last spatial patterns in the second row show neurophysiological

consistency with the event-related (de)synchronization (ERD/ERS) which is a typical signature of motor imagery tasks. The third spatial pattern and last spatial pattern

might capture the non-sensorimotor related activities which happened to be featured by the algorithm. (B) Similar spatial patterns in another run of a session for online

BCI control, indicating variability in such spatial patterns used for online classification. (C) Temporal signals after the spatial filtering from two correct hit trials-left hand

imagination and right hand imagination, respectively. The spatial filters were derived from the same CSP transformation which generated the spatial patterns in (A).

(D) Similar temporal signals after spatial filtering from another two correct hit trials in the run which generate the spatial patterns in (B).

coefficient for each electrode by CSP method for a particular
subject and averaged over subjects is depicted in Figure 9 across
runs within a single session in the online BCI control. The spatial
filter for each subject was normalized in order to make the
average across subjects unbiased. There were clear variations for
each coefficient and each subject across each run in a session.
The change of coefficient optimized by CSP method caused the
change of spatial pattern on a run by run basis which might
disturb subjects’ consistent modulation of sensorimotor rhythms;
this is well reflected as an example in Figure 8 as well.

DISCUSSION

BCI Performance Progress With Respect to
Decoding Method and Number of Channels
The number of channels used in offline analyses has been widely
considered to be a critical factor that affects the performance
of separating and classifying different motor imagery tasks (Lal
et al., 2004; Blankertz et al., 2008b; Sannelli et al., 2010; Arvaneh
et al., 2011; Ang et al., 2012; Meng et al., 2013; Shan et al., 2015;
Qiu et al., 2016). However, in the current online study, changing

the number of channels from 40 electrodes (multichannel CSP/L
configuration) to nine electrodes (CSP/S), while maintaining the
same decoding method, resulted in no significant difference in
group averaged PVC across multiple sessions (refer to Figure 3).
Another observation was that there was no trend of improvement
in performance across the training sessions for the decoding
method of either CSP/L or CSP/S. However, there was a
significant improvement of performance from the first session
to the third session for the G1:LAP/S compared to G2:CSP/L
although a relatively lower initial group averaged performance
was observed at the first session. Note that G2:CSP/L showed
an overall higher average performance over the three sessions,
but there was no significant difference between G1 and G2 from
session 2 to session 3. For the last two sessions after switching-
over methods, interestingly we found that G2:CSP/L->LAP/S
showed significant improvement in change of BCI performance
between session 4 and session 5 compared to G1:LAP/S->CSP/L;
the performance of the CSP/S group without switching-over
presented plateaued performance at the first session and varied
a little bit across five sessions. No significant effects were found
among the three methods at the end of training session five.
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FIGURE 9 | Variation in weighting coefficient for each electrode by the CSP method for a particular subject in blue line and averaged over subjects ± S.E.M in red line,

across runs, in a session of online BCI control. The spatial filter for each subject was normalized and then averaged over all of the subjects in a session. A horizontal

dash line at y = 0 is shown in each panel.

The topographies of the group averaged R-squared values
of all three methods in sensor space (Figure 6) clearly show
that modulation of brain rhythms near the left C3 and right
C4 channels were induced by all methods across the multiple
training sessions. This might imply that subjects successfully
learned to modulate broad band alpha and beta rhythms from
the bilateral motor cortical areas, however, the efficiency of
modulation is different at the end of the last session (session 5).
G2:CSP/L->LAP/S has a significantly higher group averaged R-
squared value compared to the other two groups in channel C3 at
session 5. From the topographies of group averaged R-squared
values via the LAP/S, the regions of noticeable modulation
initially covered a large portion of cortical areas and showed
smaller R-squared values around C3 and C4. In later sessions,
especially at the fifth session, larger R-squared values were
induced in focal regions around the bilateral motor cortical areas.
This concept is in line with the findings of the fMRI studies
which have compared the cortical activation maps of people
deemed to be skilled and unskilled at motor imagination (Guillot
et al., 2008). This research involving both motor execution and
motor imagery has revealed that cortical activation is more
distributed in the unskilled motor imagery group than in the
skilled motor imagery group. In the current study, subjects
using the LAP/S in the first session were considered to be
less skilled than in the later sessions. This could partly explain
why the group averaged R-squared sensor space topography at
the first session was more spread, weaker compared to their
corresponding topography at the latter sessions. However, this
trend did not appear in the two CSP decoding groups using either
the multichannel configuration or small channel configuration.
Contrary to this concept, both of the two CSP decoding groups
show plateaued group performance at the first training session.
This is likely the case because the larger scalp coverage and
optimizing properties of the CSP method allows for a more

distributed brain modulation to control the BCI, increasing the
ease of control at the beginning of training (Figure 5).

This was not too surprising when considering the group
averaged PVC across multiple channels. The performance of
these two groups started at a high performance right away but
fluctuated throughout the sessions and there was no trend of
improvement on performance observed throughout the training
processes (Figure 3). This might imply that subjects could not
consolidate their skills of consistently modulating the alpha
and beta rhythms in the electrodes covering a focal region
of the sensorimotor areas. The typical spatial patterns derived
by CSP/L (Figure 7) and the variation of resulting weighting
coefficients for each electrode (Figure 8), corresponding to the
variation of spatial patterns run by run, could help to explain
this. Based on the CSP algorithm, the spatial patterns are derived
through a data-driven approach and there is no guarantee
that each spatial pattern is electrophysiologically relevant to
motor imagery modulation, which means that non-sensorimotor
related modulation could also contribute to the discrimination
of the different motor imagery tasks. By detecting various
non-sensorimotor related patterns on a run by run or session
by session basis, and when considering the non-stationary
behavior of the EEG signal itself, dramatic fluctuations of the
weighting coefficient for each electrode is a reasonable outcome
even though it is detrimental to inducing stable patterns of
modulation for the subjects. Thus, due to the dynamic montage
weights when using the CSP algorithm, subjects might not
concretely consolidate the skills necessary for controlling a BCI;
although the CSP method might provide optimal session-specific
performance, it could also lead to inconsistent modulation
of subjects’ brain rhythms. The careful scrutiny of removing
those non-sensorimotor related filters might help to alleviate
this problem and needs to be carefully examined by additional
experiments in the future investigation.

Frontiers in Neuroscience | www.frontiersin.org 11 April 2018 | Volume 12 | Article 22752

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Meng et al. Electrode Numbers and Algorithm Affect BCI

Indications From Switch-Over Sessions
The ability of operating a BCI for participants is expected to
be generalized from one decoding method to another if they
are to use the same underlying neurophysiological mechanism.
A better decoding method could potentially help the user be
more robust to perturbations; the switch-over design among the
first two groups was aimed to test this. The group averaged
PVC of the first two groups in the fourth session presented
similar performance, but showed different improvement of
BCI performance in the fifth session. For the participants of
G1:LAP/S->CSP/L, an increased average PVC after switching
followed by a decreased average PVC in the subsequent session
was observed; for the participants in G2:CSP/L->LAP/S, the
average PVC showed a smaller improvement after switching and
a big improvement at the fifth session although none of these
changes is significant. This difference in trends is supported by
the mixed effect ANOVA test results; the results (section Online
BCI Performance Results) on the change of BCI performance
for the last two sessions compared to the third session before
switching methods showed a significant effect of the interaction
between method and time. Further post-hoc analysis shows that
there is a significant difference in change of BCI performance
between G1:LAP/S->CSP/L and G2:CSP/L->LAP/S at session 5
compared to session 4. Although there is a significant difference
in BCI performance between LAP/S and CSP/S at the fifth session
before correcting for multiple comparisons, it is not significant
after the correction. The analysis for the first three sessions
support the idea that LAP/S allows group one to improve on
average during the first three sessions; it seems that LAP/S
might also allow group two which starts out with CSP/L and
switches over to LAP/S for the last two sessions to increase
average BCI performance as well, but more data are needed
to support this. On the other hand, there is no clear trend
shown for either the CSP/L (group one before switching over
and group two after switching over) or CSP/S. Considering these
analyses, the trend and R-squared topography, the collective
results indicate that LAP/S might help the user be more robust
to perturbations. Nevertheless, not only does the method affect
the online BCI performance over the course of multiple sessions
but other factors such as motivation and mental status might
also play a large role (Nijber and Kübler, 2010; Ahn and Jun,
2015). Subjects might lose motivation quickly after multiple
sessions of the same paradigm, causing performance variation,
and must be considered in long-term BCI training (Kübler et al.,
2004).

Limitations of the Study and Future Work
There are many more channel configurations and associated
decoding algorithms other than LAP/S, CSP/L and CSP/S
available in the non-invasive EEG based BCI literatures
(Blankertz et al., 2006; Lotte et al., 2007). We cannot compare
all of them through online experimental validation considering
limitation of time and resources. However, the two configurations
and decoding methods selected in this study are commonly
used and consider both the ends of the spectrum in terms
of channel numbers. The small channel configuration includes
nine electrodes, the peripheral electrodes surrounding channel

C3, C4 used to filter out noise and enhance the signal-to-noise
ratio of those two channels. Similar trend to improvement of
BCI performance by using only channels C3, C4 was observed
as well in previous work (Cassady et al., 2014). For the
multichannel configuration, previous offline analyses indicate
that the performance increases from using a few channels,
saturates, and then decrease after an optimal number of channels
(Lal et al., 2004; Sannelli et al., 2010; Arvaneh et al., 2011; Meng
et al., 2013; Shan et al., 2015; Qiu et al., 2016). In this study, we
choose 40 electrodes for the large channel configuration because
most offline analysis shows that performance begins to saturate
or decrease by using more than 30–50 electrodes (Arvaneh et al.,
2011; Shan et al., 2015; Qiu et al., 2016). There are different kinds
of algorithms to extract information from signals of multiple
channels. CSP is one state-of-the-art decoding method that aims
to maximize the difference of class covariance; weight coefficients
for multiple channels are automatically optimized through
generalized eigenvalue decomposition. There are also different
ways to update the classifier for the CSPmethod. In this study, we
chose to update the CSP weight coefficients and classifier using
data collected from a buffering pool of 50 trials after each run,
where a similar approach was applied in a previous study (Yao
et al., 2014). Since the learning process was the major research
question in this study, the CSP weight coefficients and classifier
update method might not have been a major factor affecting
the learning process since the same approach was applied to
all subjects across all of sessions. Other methods adjust the
weight coefficients according to different evaluation criterions.
Those methods could induce similar problems of the frequent
weight variations due to the incorporation of non-sensorimotor
related modulation. Thus, we speculate that improving BCI
performance of motor imagination could be better induced
and consolidated by stable and electrophysiologically meaningful
patterns focusing on sensorimotor areas regardless the number
of channels.

The current design has only three sessions for G1:LAP/S and
G2:CSP/L before switching over and two sessions for G1:LAP/S-
>CSP/L and G2:CSP/L->LAP/S after switching. Since we did
not collect longitudinal data, it is difficult to conclude whether
LAP/S will ultimately outperform CSP/L even though LAP/S
provides more room for learning at the initial session It would be
desirable to have more sessions both before and after switching
over to better highlight performance trends, if there are any.
Also there are variations for inter-session intervals among the
subjects due to practical limitation, even though attempts were
made to schedule as soon as possible the next session. For human
study in a large group (45 subjects) with multiple sessions each,
it is practically impossible to optimize all parameters such as
number of sessions, inter-session intervals, etc. The motivation
for the study and schedule conflicts of subjects might have to
be kept in mind before planning longer sessions. However, the
present results provide data on important issues that may impact
BCI performance. It would also be interesting to see when the
subjects’ performance would plateau for the LAP/S method in a
group level since a significant improvement of BCI performance
was found across the first three sessions; this will be our future
investigation.
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CONCLUSION

In this study, two channel configurations representing a small
number and large number of channels, along with LAP/S
decoding and multichannel decoding algorithm—CSP—were
utilized and compared to study the online learning process
during multiple sessions. Throughout the multiple learning
sessions we found that CSP decoding method, for online BCI
control based on the either multiple channels or a small number
of channels, shows no difference for BCI online performance
but shows high group average performance at the initial sessions
than the LAP/S method. Nevertheless, the high performance
plateaued at the early training phase and may partially be caused
by non-sensorimotor relatedmodulation. Thus, no improvement
during multiple sessions was observed. On the contrary, the
LAP/S decoding method, for online BCI control via a small
numbers of channels, started at a lower group average accuracy,
but a trend of improvement and stable pattern of modulation
over multiple sessions was observed. The results of the switch-
over study imply that LAP/S might help subjects to be resistant
to perturbations to a certain degree. These results altogether
implicate that devising a successful decoding algorithm for online
application specifically requires incorporating consideration of

subjects’ engagement and learning progress in longitudinal BCI
control. With respect to long term BCI use, it appears necessary
to exclude non-sensorimotor related modulation, which could
facilitate higher performance in single individual sessions but
might not be beneficial for skill consolidation in longitudinal
sessions.
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Tactile sensory feedback would make a significant contribution to the state-of-the-art

prosthetic hands for achieving dexterous manipulation over objects. Phantom finger

sensation, also called referred sensation of lost fingers, can be noninvasively evoked

by transcutaneous electrical nerve stimulation (TENS) of the phantom finger territories

(PFTs) near the stump for upper-limb amputees. As such, intuitive sensations pertaining

to lost fingers could be non-invasively generated. However, the encoding of stimulation

parameters into tactile sensations that can be intuitively interpreted by the users remains

a significant challenge. Further, how discriminative such artificial tactile sensation with

TENS of the PFTs is still unknown. In this study, we systematically characterized the tactile

discrimination across different phantom fingers on the stump skin by TENS among six

subjects. Charge-balanced and biphasic stimulating current pulses were adopted. The

pulse amplitude (PA), the pulse frequency (PF) and the pulse width (PW) were modulated

to evaluate the detection threshold, perceived touch intensity, and the just-noticeable

difference (JND) of the phantom finger sensation. Particularly, the recognition of phantom

fingers under simultaneous stimulation was assessed. The psychophysical experiments

revealed that subjects could discern fine variations of stimuli with comfortable sensation

of phantom fingers including D1 (phantom thumb), D2 (phantom index finger), D3

(Phantom middle finger), and D5 (Phantom pinky finger). With respect to PA, PF, and PW

modulations, the detection thresholds across the four phantom fingers were achieved

by the method of constant stimuli based on a two-alternative forced-choice (2AFC)

paradigm. For each modulation, the perceived intensity, which was indexed by skin

indentations on the contralateral intact finger pulp, reinforced gradually with enhancing

stimuli within lower-intensity range. Particularly, the curve of the indentation depth vs.

PF almost reached a plateau with PF more than 200Hz. Moreover, the performance

of phantom finger recognition deteriorated with the increasing number of phantom

fingers under simultaneous TENS. For one, two and four stimulating channels, the
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corresponding recognition rate of an individual PFT were respective 85.83, 67.67, and

46.44%. The results of the present work would provide direct guidelines regarding the

optimization of stimulating strategies to deliver artificial tactile sensation by TENS for

clinical applications.

Keywords: sensory feedback, TENS, just-noticeable difference, upper-limb prosthesis, phantom finger

discrimination

INTRODUCTION

Amputation inevitably brings huge damage to both physical and
mental health for upper-limb amputees (Kejlaa, 1992). Prosthetic
hands, especially myoelectric prostheses, can help the amputees
regain a significant functional improvement, which leads to more
independence and higher quality of daily lives. Typically, the
myoelectric signal is recorded near the residual limb to estimate
the user’s intention, which usually employs an open-loop control
strategy without meaningful information about the manipulation
situation transmitting to the users. However, a bidirectional
communication bridging the amputees and prosthetic hands is
necessary for the dexterous movement execution (Rothwell et al.,
1982). Currently, prosthesis users mainly rely on visual feedback
to gain information on the operational status of the prosthesis,
which leads to a significant mental burden. Sensory feedback is
critical for getting body ownership which can help an amputee
feel that the prosthesis is a part of his body rather than an alien
tool, and its incorporation into the prosthetic hands would be
helpful for better device compliance from the user (Biddiss and
Chau, 2007; Marasco et al., 2011; Saal and Bensmaia, 2015).
Practically, the significance of sensory feedback has been noticed
ever since the 1950s (Clippinger et al., 1974), and has attracted
great interest in recent years (Jiang et al., 2012; Antfolk et al.,
2013b; Delhaye et al., 2016; Svensson et al., 2017).

The sense of touch originated from normal hands carries
complicated and comprehensive information like shape,
temperature, size and texture of objects. Manipulation over
objects by prosthetic hands can be slow, stiff and non-intuitive
without tactile feedback (Delhaye et al., 2016). Besides, absence
of tactile sensation from original hands also contributes to
the emotional disorders involving anxiety, depression for
the upper-limb amputees (Saradjian et al., 2008; Østlie et al.,
2011). Consequently, tactile sensation is also the key for the
maintenance of emotional balance (Hertenstein et al., 2009) and
mental health (Bexton et al., 1954; Gilmartin et al., 2013) after
amputation.

Tactile sensory feedback for prosthetic hands could be
delivered via either invasive or noninvasive methods (Saal and
Bensmaia, 2015; Delhaye et al., 2016; Svensson et al., 2017).
Invasive methods included implantable devices at the central and
peripheral neural pathways through cortical microstimulation
(Chen et al., 2014; Flesher et al., 2016), spinal-cord stimulation
(Schouenborg, 2008), peripheral nerve stimulation (Ortiz-
Catalan et al., 2014; Tan et al., 2014) and target sensory
reinnervation (TSR) (Kuiken et al., 2007). With these invasive
methods, sensations of lost fingers or palms were partly restored
for some amputees (Tan et al., 2014; Graczyk et al., 2016).

However, there are still some big challenges to achieve clinical
viability due to various issues such as the risk of infection
in surgery, biological rejection, chronic validation or electrode
replacements, etc. (Lipschutz, 2017; Svensson et al., 2017).

On the other hand, the non-invasive ways were explored by
using mechanical or electrical stimulation, which resulted in the
corresponding mechanotactile (Ehrsson et al., 2008), vibrotactile
(Antfolk et al., 2012), electrotactile (Clemente et al., 2016; D’Anna
et al., 2017) or combinational feedback schemes (Clemente and
Cipriani, 2014). Previous studies showed that mechanical or
electrical stimulation at the skin of the residual limb evoked the
phantom illusion of the amputees (Mulvey et al., 2009; Antfolk
et al., 2013a; D’Anna et al., 2017), which was stated as referred
sensation of the lost hand after amputation (Ramachandran
and Hirstein, 1998; Louis and York, 2006). Considering its
integration and programmable characteristics, transcutaneous
electrical nerve stimulation (TENS) was employed to elicit
phantom finger sensations, meaning referred sensation of lost
fingers (Chai et al., 2015; D’Anna et al., 2017). TENS of the
median and ulnar nerves by surface electrodes were reported
to produce hand sensations for normal subjects (Forst et al.,
2015), and referred sensations of phantom fingers or palms
for amputated subjects (D’Anna et al., 2017) for a short
period. These referred sensations were most paresthesia-like
(D’Anna et al., 2017), and positions of the referred sensation
were influenced by the electrode location and arm positions
(Forst et al., 2015). In addition, the local skin sensation
under the stimulating electrode could strongly influence the
recognition of phantom fingers (D’Anna et al., 2017). Chai
et al. (2015) characterized the induced sensory modalities by
TENS of the phantom finger maps or territories (PFTs) on
the skin of the residual stump, and indicated the long-term
stability of these PFTs. Chen et al. (2017) further observed the
phantom finger sensation by TENS in the somatosensory cortex
usingmagnetoencephalography (MEG) functional neuroimaging
technique. Therefore, TENS of the phantom finger territories
(PFTs) will be a promising approach that has the advantage
of a somatotopic sensation scheme and avoids necessity of
surgery. However, the critical question that how discriminative
the artificial tactile sensation under TENS of the PFTs remains
unanswered.

Tactile discrimination of phantom finger sensation is
closely associated with stimulating parameters exerted on
the PFTs. In the present study, we carried out classical
psychophysical experiments to systematically characterize the
perceptual properties by varying pulse amplitude (PA), pulse
frequency (PF), and pulse width (PW). To determine the effective
parameter range, we measured the detection thresholds and
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upper limits which would elicit uncomfortable sensations. And
then, within available parameter ranges, we further assessed the
perceived intensities indexed by the indentation depth on the
contralateral intact finger pulps. The just-noticeable difference
(JND), also called the difference threshold, and Weber fractions
were evaluated to estimate the subjects’ capability to distinguish
among different stimuli. Finally, the phantom finger recognition
was characterized under simultaneous stimulation.

MATERIALS AND METHODS

Subjects
Ten volunteers were randomly recruited. Prior to the
psychophysical experiment, an interview was first conducted
to find out each volunteer’s medical history, phantom limb
sensations and whether they experienced phantom limb pain
now or in history. In our psychophysical experiments, the
participants had a unilateral forearm amputation, and remained
psychologically healthy with PFTs near the stump. And then six
adult forearm amputees (subjects 1–6, three males and three
females, average age ± SD: 50 ± 13, years after amputation:
16.7 ± 11.5) were recruited. The other four volunteers were
excluded without phantom finger sensation. One of them was
with congenital forearm deficiency (Subject 7), one as a forearm
amputee (Subject 8), and the other two with shoulder-level
amputation (Subjects 9 and 10). All the ten volunteers were right
handed before amputation, and the general information were
presented in Table 1.

Identification of PFTs
For all the six subjects, phantom finger sensations were evoked
when certain skin regions near the residual stump were touched
by a stylus pen with 4mm in diameter. These regions were
confirmed as PFTs. Subjects 1–3 and 6 possessed five independent
PFTs, which was designated in the experiments as phantom digits
D1–D5. Subject 5 had four independent PFTs without phantom
sensation of the ring finger (D4). Subject 4 also had five PFTs, but
the territories D2 and D3 could not be clearly discriminated. In
order to be consistent for comparing the tactile discrimination
among the six subjects, four PFTs labeled as D1, D2, D3, and
D5 were investigated under TENS to produce phantom finger
sensations corresponding to lost thumb, index, middle and pinky
fingers, respectively.

The detailed procedures for locating PFTs were described as
follows: (1) The subject sat in a wooden chair comfortably with
his/her amputated stump naturally placed on the table, and then
the stump skin was cleaned with alcohol wipes. The subject’s eyes
were covered with an eyeshade. (2) A stylus was used to touch
the volar side of the residual stump skin, and the subject was
required to quickly report if specific phantom finger sensations
were produced or not. Then the stylus was moved to the next
point until the whole volar side was covered. In the end, the sites
corresponding to the same phantom finger were connected to
form a PFT outline. The most sensitive point (MSP) referred to
a finger pulp in each PFT was also clearly identified and marked.
This whole process was repeated twice for each subject to validate

the PFTs. Each process took approximately 35min, and a break of
1–2min was randomly given to allow the subjects to have a relax.

Sometimes in the procedure of identifying the PFTs, a gentle
touch on the stump skin by the stylus pen only produced a local
sensation of the stump skin, and the phantom finger sensations
were evoked with much stronger press. The regions originated
from the phantom finger pulp, back, sides, and root were all
covered inside a PFT. Although skin sites referred to the phantom
palm and opisthenar were also reported, these were not involved
within the PFTs. Two typical PFTs were shown in Figure 1B, and
the MSP was denoted as a sign “×,” which was considered as
the TENS target location to produce the most obvious phantom
finger sensation.

Experimental Devices
The current stimulator (STG 4004 stimulator, MultiChannel
Systems MCS GmbH, Germany) can generate four-channel
independent stimulating current pulses, which are cathodic-first,
biphasic and charge-balanced (Figure 1D). The PA can be finely
modulated from −16 to 16mA with the resolution of 0.2 µA,
and can hold a maximum output compliance voltage of 120V.
The PW ranges from 20 µs to infinite with a minimum interval
of 20 µs. Since the pulse period can be elongated gradually from
40 µs to more than tens of hours, the corresponding PF ranges
from almost zero to 25 kHz. All the stimulating parameters can
be readily programmed by the control software compatible with
the stimulator hardware.

To quantitatively characterize the perceived intensity of
phantom finger sensation under TENS, a compact punching
machine (Figure 1A) was designed to apply indentation to the
contralateral intact finger pulp. The indentation depths were
modulated by moving the indenter, which was a plastic rod with
circular cross section mounted on a moving stage. This stage was
driven by a step motor through a ball screw pair. The laptop
computer was used to program the exact indentation depth, and
the step precision was ±20µm. The exact test configuration and
the layout of the apparatus parts were schematically illustrated in
Figure 1A.

To impose electrical stimuli on the MSP in a PFT, the
flexible electrode array (Customized from Shanghai Benevolence
Electronic Technology Co. Ltd., Shanghai, China) was utilized.
All the electrodes were coated with a thin layer of conductive
hydrogel adhesive. Two adjacent circular electrodes were defined
as the stimulating and reference electrodes, respectively. Each
electrode was 7mm in diameter, and the center-to-center
distance was 12mm. The psychophysical experiments were
carried out in the laboratory at 26◦C.

Experimental Setup
To characterize the phantom finger sensation through
TENS, a set of four experiments (Figure 2) were carried
out including detection threshold determination, perceived
intensity quantification, electrical stimulus discrimination and
phantom finger recognition. Each experiment was divided into
corresponding experimental sessions. Each session included four
stimulating blocks with respect to D1, D2, D3, and D5 regions.
For each block, tens to hundreds of stimulating trials were
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TABLE 1 | General information for the amputated volunteers.

Subjects Cause of amputation Amputation side

and years

Daily prosthesis

usage, type

Forearm stump

length (cm)

Phantom limb senation,

phantom limb paina
Phantom finger

1 Traumatic L, 33 All day, cosmetic 16.5 Yes, 3 1–5

2 Traumatic L, 29 All day, cosmetic 24.5 Yes, 1 1–5

3 Traumatic R, 13 All day, myoelectric 16.5 Yes, 1 1–5

4 Tumor R, 10 All day, cosmetic 24.5 Yes, 2–3 1–3, 5

5 Traumatic R, 5 All day, cosmetic 16 Yes, 3 1, 2/3, 4, 5

6 Traumatic L, 10 All day, cosmetic 23 Yes, 4 1–5

7 Congenital L, 40 All day, cosmetic 6 No None

8 Traumatic R, 36 Half day, cosmetic 37 Yes, 1 None

9 Traumatic R, 40 NONE 0 No None

10 Traumatic L, 15 NONE 0 No NONE

aStrength of phantom limb pain was graded with a visual analog scale (VAS) between 0 and 10.

FIGURE 1 | Illustration of the psychophysical experiment by TENS. (A) Experimental devices. 1: the step motor. 2: the ball screw 3: the moving stage. 4: the indenter;

(B) Typical phantom finger territories near the stump for Subject 1 with D1 to D5 and Subject 4 with D1, D2, D3 and D5; (C) Temporal sequence of stimulating current

pulses in the 2AFC paradigm for threshold determination; (D) Waveform schematic of stimulating current pulses. PA, Pulse Amplitude; PF, Pulse Frequency; PW, Pulse

Width.

implemented. In total, there were approximately 2,200 trials for
each subject. Considering the necessary breaks between trials,
blocks and sessions, the whole experimental process occupied
about 10 h. Thus, every subject was required to participate in
these experiments twice in 2 or 3 days to maintain a relatively
constant mental state.

Detection Thresholds
The detection thresholds under TENS in each PFT were tested
in terms of PA, PW and PF modulations. The procedures
were double-blinded for both the experimenter and subjects.
The PA, PF, and PW were set as the predetermined typical
values of 1.5mA, 50Hz, and 200 µs, respectively. Obvious and
comfortable phantom finger sensations were elicited for all the

six subjects with these typical stimulating parameters. Prior to
finding out the detection thresholds, the upper stimulus limits
leading to an uncomfortable sensation were obtained by the
method of minimal change.

Urban (1910) pointed out when determining the detection
thresholds with the classical method of constant stimuli, a
random stimulating order should be applied. It was also reported
that the stimulus intensity must scale from the sub- and the
supra- threshold values. For these reasons, it was necessary to
determine the rough threshold range including both sub- and
supra- thresholds in stage 1 (here by the method of limit). Based
on that, the test stimuli could be further narrowed down to
determine the detection thresholds with the method of constant
stimuli. So the procedure was detailed into two stages including
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FIGURE 2 | Protocols for four experiments including determination of detection thresholds (A), perceived intensity quantification (B), electrical stimulus discrimination

(C) and phantom finger recognition (D). The former three experiments were carried out under PA, PF, and PW modulations with four blocks corresponding to D1, D2,

D3, and D5. There existed three recognition levels for phantom fingers. The stimulating trials were ordered pseudo-randomly within each block. Short breaks between

trials, blocks, sessions were about 2, 30 s, 5min, respectively.

rough confirmation of threshold ranges and fine determination
of detection thresholds.

In stage 1, the rough thresholds of PA, PW and PF were
measured using the method of minimal change, which provided
a solid basis for the selection of testing values in the fine
determination of detection thresholds in stage 2. During stage
1, the stimulating pulse trains lasted 3 s. With PF at 50Hz and
PW of 200 µs, PA increased from a lower value of 0.4mA by a
step of 0.1mA until the subject reported that the stimuli were
perceived. Similarly, for rough determination of PW, PA and PF
were respectively set as 1.5mA and 50Hz, and PW started from
20 µs with an increasing of 20 µs at each step. Also, for rough
determination of PF, PF increased from 1Hz by 1Hz with PA
and PW set as 1.5mA and 200 µs, respectively. For four PFTs
among six subjects, the rough thresholds of PA ranged from 0.6

to 1.5mA, those of PW from 60 to 120 µs, and those of PF from
1 to 17Hz.

On the basis of the rough threshold ranges and the output
precision of the stimulator, as listed in Figure 2, the testing values
in stage 2 were chosen as 0.5, 0.75, 1, 1.25, 1.5, and 1.75mA for
PA, 20, 40, 80, 120, 160 µs for PW, and 1.5625, 3.125, 6.25, 12.5,
25Hz for PF across these six subjects, where testing values of PF
decreasing from 25Hz by 25/2n.

In stage 2, detection thresholds were finely determined based
on the method of constant stimuli by adopting two-alternative
forced-choice (2AFC) paradigm (Figure 1C), where the subject
reported which of the two intervals contained the stimulus
(Figure 2A). During this task, the subject was instructed to
focus on two gray areas on the computer screen. Two 2-s-long
stimulating intervals (Interval I first and then Interval II) were
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presented with 1-s break in between. Each 2-s-long interval
was initiated by a centered cross in the gray area. The 1-s-long
current stimuli were randomly exerted in one of the second half
periods within Intervals I and II. There were no current stimuli
within the first 1-s period, which helped the subject concentrate
on the moment when the phantom finger sensation generated.
Immediately after the disappearance of the right cross, the subject
was required to report which interval contained the stimulus.

Four stimulating blocks were presented in terms of four PFTs.
Within each block, each trial was repeated 7 times for PA,
PW and PF modulations, respectively, and the stimulus order
within these two intervals in one trial was pseudo-randomized.
Then the responses to every trial in each block were fitted by a
sigmoid function. Within each trial during stage 2, the expected
probability of correct judgment was 50% if the subject did not
detect the stimuli at all, or otherwise the probability would rise
to 100% if the subject readily detected the stimuli. Therefore,
the detection thresholds were defined as the values of PA, PW,
and PF that each subject could correctly identify 75% of the
stimuli (Figure 3). The same criterion was also employed for
intracortical sensory feedback (Flesher et al., 2016), and the
probability of reaching this rate by chance was about 13.7% in
our experiments.

Perceived Intensity Quantification
The PA, PW, and PF are the three common stimulus parameters
which can be independently manipulated to introduce sensory
feedback. In the previous work (Chai et al., 2017), multiple
sensory modalities were produced by varying these three
parameters. And here, we investigated the effects of these three
parameters on the perceived intensities. Charge-balanced and
cathodic-first stimulating current pulses were adopted in our
psychophysical experiments, and variations in both PA and PW
also led to changes of charge per phase. And then the indentation
depth as a function of the charge per phase was further explored.

During the perceived intensity quantification, the finger being
mechanically pressed on the healthy hand matched the phantom
digit being tested. For example, when we applied TENS of D1, the
contralateral thumb was mechanically pressed. The mechanical
apparatus was kept stable on the table. The ball screw transferred
the rotational displacement of the step motor into the linear
displacement of the stage. The indenter protruded from the stage,
and exerted the pressure on the finger pulp. There was enough
space to put any of fingers between the indenter and the baseplate
of the punching machine. The subject put their fingers in the
baseplate axially below the indenter in a relaxed state. At point
zero, there was no gap between fingers and the baseplate. The
subjects could need to adjust the hand gesture to make sure that
the finger pulps were in a relaxed state without introducing pre-
stress in fingers. As such, the subject could readily judge the
pressure intensity.

The perceived intensity of phantom finger sensation during
TENS was quantitatively estimated by comparison with the
indentation depth in the contralateral intact finger pulp. Every
trial consisted of a 3-s-long constant current pulse train
followed by a mechanical indentation. Immediately after a 3-
s-long pulse train was applied into a PFT, the mechanical

pressure was exerted on contralateral intact finger pulp through
the indenter controlled by the punching machine shown in
Figure 1A. The indentation depth was finely modulated until the
perceived intensity matched to that of the electrical stimulation,
and then the indentation depth was recorded. The stronger
the phantom finger sensation, the deeper the indentation
depth in the healthy counterpart finger. Consequently, the
indentation depth was considered to be closely related to
the perceived intensity of phantom finger sensation. The
perceived intensities or the indentation depths were quantified
in correspondence with PA, PF, and PW. Taking account of
the detection thresholds, the testing values during perceived
intensity quantification were listed in Figure 2B with PA,
PF, and PW as typical values. The stimulating trials within
each block were ordered randomly for every stimulating
parameter.

Specifically, the modulation procedure of the indentation
depth was further elaborated here. The position that the subject
first detected the pressure was set as zero position. Then the depth
increased from 0 with a step of 0.2mm until the subject indicated
that the mechanical intensity stronger than that of the electrical
stimulation, and then was reduced by a step size of 0.04mm until
another reversal.

Electrical Stimulus Discrimination
The capability for a subject to discriminate the difference
of stimuli is very important for artificial sensory feedback.
The JNDs, also called difference thresholds, were adopted to
characterize the capability to discriminate PA, PW, and PF based
on the 2AFC paradigm. Similar to the determination of detection
thresholds, two intervals appeared within each trial. Two 1-s-
long current pulse trains, called respectively reference and test
stimuli, were applied within the second half periods of these two
intervals as shown in Figure 2C. The participant was requested
to report the exact interval where a stronger sensation occurred.
Within one trial, the two stimulating pulse trains constituted a
reference/test stimuli pair and only differed in one parameter
among PA, PW, and PF, with the other two fixed at the typical
values.

For PA discrimination, PW and PF were held as 200 µs and
50Hz, respectively. The reference PAs were 1mA and 2mA.
The test PAs were set as 50, 75, 90, 110, 125, 150% of the
corresponding reference values.

For PW discrimination, PA and PF were held as 1.5mA and
50Hz, respectively. The reference PWs were chosen as 80, 200,
and 400 µs. Considering a precision step of 20 µs, the test PWs
for the reference 80 µs were 20, 40, 60, 100, 120, and 140 µs.
For the other two reference PWs, 50, 75, 90, 110, 125, 150%
of the reference values were selected as test stimuli for PW
discrimination.

For PF discrimination, PA and PW were held as 1.5mA
and 200 µs, respectively. The reference PFs were defined as 50,
100, 200, and 400Hz, and the test PFs were approximately 50,
75, 90, 110, 125, 150% of the reference counterparts. Since the
pulse frequency PF was achieved by modulating the pulse period
(1/PF), so the nearest frequencies to achieve these reference
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FIGURE 3 | Detection thresholds under TENS of PFTs. The left three figures exemplified the method to define the detection thresholds in in PA (Subject 1), PF (Subject

2), and PW (Subject 4) modulations. The solid line was a sigmoid function of the raw data (colored dot). For 75% probability, the corresponding detection thresholds

were determined. The other histogram figures in the right column showed the mean detection thresholds across four PFTs among six subjects. The detection

thresholds of PA were 0.99 ± 0.39mA, 0.78 ± 0.28mA, 0.89 ± 0.28mA, 1.26 ± 0.57mA (A). The mean detection thresholds in PF were 2.23 ± 0.75Hz, 2.3 ±

0.62Hz, 2.17 ± 0.71Hz, 3.13 ± 0.81Hz (B). The mean detection thresholds in PW were 114.3 ± 48.75 µs, 98.3 ± 29.30 µs, 109.67 ± 36.61 µs, 131 ±

50.30µs (C).

percentages were used. For example, for the 50Hz reference, the
test values were 25, 40, 45.5, 55.6, 62.5, and 76.9Hz (Figure 2C).

During the electrical stimulus discrimination, each trial
was repeated 7 times within one block. Both the order

of a reference/test stimulus pair and the stimulus order
within the pair were pseudo-randomized and double-
blinded for both the experimenter and the subjects in each
block.
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Phantom Finger Recognition
The experiment of phantom finger recognition was carried out in
three levels with typical stimuli, i.e., PA of 1.5mA, PW of 200 µs
and PF of 50Hz. The participant was required to point out which
phantom finger or fingers were perceived. Figure 2D showed
the stimulating combinations for phantom finger recognition.
For Level 1, only one phantom finger was under TENS with
D1, D2, D3, and D5 as the possible stimulating sites. For Levels
2 and 3, two or four PFTs at most were under simultaneous
electrical stimulation to test the subjects’ recognition ability of
an individual PFT, and there were respectively 10 or 15 possible
PFT grouping combinations. So the chance levels were 25, 10, and
6.7% for Levels 1, 2, and 3, respectively. Each trial repeated five
times, and the stimuli were applied randomly in each block and
double-blinded for both the experimenter and the subjects. Only
a short-time stimulation less than 3min was applied to assist
the subjects’ familiarization with the experiments as to Levels
2 and 3. There was no special training provided for multi-digit
identification.

RESULTS

Detection Thresholds
The rough upper limits to induce uncomfortable sensation were
about 3mA, 400Hz, and 600 µs for PA, PW, and PF, and
the detection thresholds were much lower than these upper
limits. Figure 3 clearly showed the detection thresholds across
six subjects. The PA detection thresholds (with PF and PW as
typical values) across D1, D2, D3, and D5 were 0.99 ± 0.39mA,
0.78 ± 0.28mA, 0.89 ± 0.28mA, 1.26 ± 0.57mA, respectively.
The PF detection thresholds (with PA and PW as typical values)
were 2.23 ± 0.75Hz, 2.3 ± 0.62Hz, 2.17 ± 0.71Hz, and 3.13
± 0.81Hz, respectively. The PW detection thresholds (with PA
and PF as typical values) were 114.3 ± 48.75 µs, 98.3 ± 29.30
µs, 109.67 ± 36.61 µs, and 131 ± 50.30 µs, respectively. Since
200 µs and 1.5mA were assigned to PA and PW modulations,
respectively, the thresholds in terms of charge per phase were
correspondingly calculated as 0.178–0.252 µC for PA and 0.147–
0.195 µC for PW adapted from Figures 3A, 4C. The averaged
charge threshold for PA was 0.215 µC which was moderately
greater than 0.171 µC for PW. The One-way ANOVA analysis
results indicated that the four PFTs had no significant difference
on the detection thresholds (P > 0.05).

Perceived Intensity Quantification
During TENS of the PFTs, the subjects experienced a wide range
of perceived intensities indexed by the indentation depth in the
contralateral intact finger pulps. Figure 4 illustrated that the
indentation depth increased with enhancing electrical stimulus.
The curves of the indentation depths vs. stimuli were basically
in compliance with Steven’s power function about the perceived
intensity (Stevens, 1957). For lower stimuli, the slopes of curves
were much steeper than those of the stronger stimuli. In the
cases of PA and PW modulations, the depth boosted gradually
with the advancing stimulus (Figures 4A,C). By comparison,
the depth advanced much slower with PF of larger than
200Hz (Figure 4B). What’s more, the subject described the

sensation in the low frequency below 10Hz as “clearly but very
slightly” corresponding to a very low indentation depth. When
considering the relationships between the indentation depth and
the charge per phase, Figures 4A,C were replotted in Figure 4D.
The perceived intensity demonstrated a linear correlation with
the enlarging charge in each phase. Especially, for charges from
0.2 to 0.5 µC in Figure 4D, the tendencies associated with PA
and PWmodulations matched well.

In Figure 4, the plots of the indentation depth vs. PA did
not reach zero. The reason was that the lowest amplitude
for PA modulation for this experiment was 0.9mA, and an
obvious perception was produced for the perceived intensity
quantification experiments. So there was no zero for the
indentation depth in terms of PA modulation. While for the
PW modulation, the indentation depth reached zero since no
perception was produced as to 20 and 40 µs, and the perception
appeared under PW of 80 µs as listed in Figure 2. Moreover, at
3.125Hz, there was still some gentle perception induced from the
TENS of PFTs, and thus the indentation depth did not reach zero
either.

In terms of the operational definition about detection
thresholds, the subjects still had a probability of less than
75% to perceive the subthreshold stimulation. Different from
this definition, the subjects definitely knew that there would
be a stimulus applied to the PFTs during the experiments of
perceived intensity quantification. Consequently, the subjects
could perceive the electrical stimulation under small stimulus
intensities. This could be the main reason why there was some
difference between the lowest values in Figure 4 and the detection
thresholds in Figure 3.

The plateau in the plots in Figure 4B indicated that the
perceived intensity would not change much beyond a high
frequency such as 100 or 200Hz. Practically, the perceived
intensity was still advanced for the high frequency. However, the
discrimination deteriorated correspondingly, which was further
observed from the plots in Figure 5C that the Weber fraction
increased gradually beyond 200Hz. As a result, a typical sigmoid
curve appeared for 50Hz in the JND experiment, and the
discrimination data did not fit a sigmoid very well for 400Hz as
shown in Figure 5A.

Electrical Stimulus Discrimination
During this experiment, the subjects were required to judge
whether the test or reference stimulus was stronger within every
trial. Responses by participants were converted into a probability
value based on their accuracy of identifying the correct interval
with the stronger stimulus. A sigmoid was fitted and upper and
lower limits on this probability function were defined as 25% and
75% probability of correctly identifying the stronger stimulus.
For a given reference stimulus, the JND was yielded by averaging
DLu and DLl in Equation (1).

JND =
(DLu + DLl)

2
(1)

As shown in Figure 5A, the DLu and DLl respectively denoted
the differences between the reference stimulus with the upper
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FIGURE 4 | Perceived intensity quantification indexed by the indentation depth in PA, PF and PW modulations across four phantom fingers among six subjects. The

solid lines and shaded regions denoted the mean and standard deviation values. (A) Indentation depth vs. PA; (B) Indentation depth vs. PF; (C) Indentation depth vs.

PW; (D) Indentation depth vs. Charge per phase. Black for PA modulation with constant PW of 200 µs, and Red for PW modulation with constant PA of 1.5mA. The

vertical dotted line at 0.3 µC indicated the same indentation depth with common parameters (1.5mA × 200 µs = 0.3 µC) under PA and PW modulations.
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limit (Lu) and lower limit (Ll) of the discriminated test stimuli.
Figure 5A showed two curves illustrating how to define the JND
for the PFmodulation. To investigate the stimulus discrimination
of detectable and comfortable PA, PF and PW stimuli, the Weber
fraction (Ekman, 1959) was computed as shown in Equation (2).

Weber fraction =
JND

reference stimulus
(2)

In this experiment, the averageWeber fractions ranged from 0.11
to 0.18 for the PAmodulation, 0.14–0.32 for PF, and 0.1–0.265 for
PW. The relationships of Weber fraction with different stimuli
were plotted in Figure 5 across D1, D2, D3, and D5 PFTs for six
subjects. For PA and PW modulations, the Weber fractions were
usually lower than 0.2, and decreased with enhancing stimulus.
For PF modulation, the Weber fractions were a little larger and
slightly increased within available frequency range. According to
Weber’s law, the Weber fraction was approximately considered

as constant (Kandel et al., 2012), but this rule was not applicable
for the low and high intensities with a given stimulus range
(Gescheider, 1997). Here in this experiment, both 1mA in PA
and 100 µs in PW were considered as low intensities and 400Hz
in PF as the high frequency. For low intensities of PA and PW, it
was sometimes very hard for some subjects to judge whether the
test or reference stimulus was stronger.

By ignoring low intensities of 1mA and 100 µs, and
high intensity of 400Hz, the proposed “optimal range” of the
stimuli, which elicited a clearly discriminative sensation without
uncomfortable feeling such as pain, were 1.2–2.8mA in PA, 10–
350Hz in PF and 150–600µs in PW. And then the corresponding
Weber fractions were defined as 0.1 in PA, 0.2 in PF and 0.1 in
PW.

Phantom Finger Recognition
The recognition performance of different PFTs was assessed in
terms of three levels with typical values of PA, PF, and PW.

FIGURE 5 | Electrical stimulus discrimination in PA, PF, and PW modulations across four PFTs involving six subjects. The solid lines and shaded regions indicated the

mean and standard deviations, respectively. (A) Two examples as to getting the just-noticeable difference (JND) in PF (D2 in Subject 1). The reference PFs were 50Hz

(left) and 400Hz (right). A sigmoid curve was fitted and upper and lower limits on the probability function were defined as 25% and 75% probability of correctly

identifying the stronger stimulus. At last, the JND was calculated by averaging the DLl and DLu. (B) The Weber fraction vs. PA; (C) The Weber fractions vs. PF; (D)

The Weber fractions in PW modulation.
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The more the possible number of PFTs under simultaneous
stimulation, the poorer the recognition performance of the
individual PFT. For Levels 1–3, the correct recognition ratios
about individual PFTs were 85.83% (103/120) (chance level:
25%), 67.67% (203/300) (chance level 10%), and 46.44%
(209/450) (chance level 6.7%), respectively. For Level 1
(Figure 6A), the leading incorrect justice was produced due
to the sensation influence from the adjacent phantom fingers
(16/120). In Level 2 (Figure 6B), the misjudgments were
classified into three types. The first type was the incomplete
judgment (41/300). Only one phantom finger was correctly
identified with two PFTs under simultaneous TENS, e.g., D1 and

D2 under TENS were identified as only phantom index finger.
The second was the excessive judgment (12/300). Sensation
of two phantom fingers were reported with only one PFT
under TENS, e.g., phantom thumb and index fingers were
reported with D1 under TENS. The third was mixed with both
incomplete and excessive judgments (43/300). One of two PFTs
under simultaneous TENS was identified correctly but the other
was misjudged as another PFT, e.g., D1 and D3 under TENS
were reported as phantom thumb & index fingers. For Level
3 (Figure 6C), when TENS was applied to four PFTs at most,
there were more misjudgments which were also classified as
incomplete judgment (142/450, excessive judgment (33/450),

FIGURE 6 | Phantom finger recognition corresponding to three levels. The horizontal and vertical axes represented the PFTs under the stimulation and the perceived

phantom fingers, respectively. (A) Level 1 (chance level: 25%): only one PFT at most was under electrical stimulation; (B) Level 2 (chance level: 10%): two PFTs at

most were under simultaneous TENS; (C) Level 3 (chance level: 6.7%): four PFTs at most were under simultaneous TENS.
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and mixed misjudgment with both incomplete and excessive
judgments (62/450). There were very few reports that none of the
phantom fingers was identified correctly in more-than-one PFTs
stimulation (5/510).

DISCUSSION

Our normal hand is so dexterous, with 27 degrees of
freedom. Hand muscles are innervated by thousands of afferent
nerve fibers which convey different (sometimes overlapping)
information about objects under manipulation (Abraira and
Ginty, 2013; Saal and Bensmaia, 2014). For prosthetic hands,
restoring tactile feedback requires multiple stimulating channels
to convey adequate information that causes appropriate tactile
discrimination in association with detection and interpretation
of those stimuli. Kandel et al. (2012) and Saal and Bensmaia
(2015) also denoted that stimulating location and perceived
intensity were critical attributes for encoding the tactile
information for a specific channel and pattern coding of united
activities in several channels. In addition, the existence of referred
sensations near the stump about phantom limb (PL) (Hunter
et al., 2008), phantom hand (PH) (Anani and Körner, 1979), and
phantom finger (PF) (Björkman et al., 2016) provided a good
pathway to realize artificial tactile feedback. Consequently, our
present work characterized the discriminability of the perceived
intensity and phantom fingers under TENS in PA, PF, and
PW modulations. Four experiments were carried out including
detection thresholds, perceived intensity quantification, electrical
stimulus discrimination, and phantom finger recognition.

The purpose of our experiment for the detection threshold
was to determine the range of parameters without causing
uncomfortable sensations. We chose the method of constant
stimuli in a 2AFC paradigm (Kandel et al., 2012) which could
reduce the impact of a subject’s error of habituation and
anticipation compared with the method of minimal change. An
important premise was that the subject knew there was definitely
a stimulus in one of two intervals within a trial, and he/she
was required to choose a preferred one. The detection threshold
charge in our finding was about 0.2 µC (1mA × 0.2ms = 0.2
µC) lower than 0.6 µC or so for TENS of median or ulnar nerves
deep beneath the skin (D’Anna et al., 2017). Under TENS of
PFTs, there were no induced strong local sensation of skin or
muscle movement happening otherwise for TENS of median or
ulnar nerve. By adopting extraneural Cuff or FINE (Flat Interface
Nerve Electrode) electrodes, the charge threshold was as small
as about 0.1 µC for artificial tactile sensation (Graczyk et al.,
2016). Additionally, the maximum charge injected into median
and ulnar nerves were 8 and 24 nC using intraneural TIME
(Transversal Intrafascicular Multichannel Electrode) electrodes
(Raspopovic et al., 2014), and it was also reported that the
injected charge threshold ranged from 4.25 nC to 17.5 nC with
LIFE (Longitudinal Intrafascicular Electrode) electrodes (Dhillon
and Horch, 2005). The detection thresholds in our study were
significantly higher than those under invasive circumstances,
which indicated that more invasiveness would require less
charge to excite the sensory afferents. Since the attention of the

subject was engaged in detecting if there existed a stimulus,
the detection thresholds in this operational definition might
not be detected in other tasks or in daily life, which was
possibly due to sensory inputs selection mechanism of attention
(Hsiao et al., 1993). Consequently, it was difficult for subjects
to describe the perceived intensity near the detection threshold.
This was in accordance with the typical response of stimuli
near the detection threshold (Flesher et al., 2016). Therefore,
the default values of the PA, PW and PF were set a little higher
than the corresponding detection thresholds to make sure that
the subjects had perceptible and comfortable sensations during
experiments of electrical stimulus discrimination and phantom
finger recognition.

During the TENS of PFTs, the elicited artificial sensations
would convey more information than just magnitude in
sensory modalities such as “pressure,” “vibration,” “tingling,”
and a variable sensation area. While, for perceived intensity
quantification under TENS of PFTs, the subject was instructed
to ignore the sensory modality or area changes and only focused
on the perceived intensity which was indexed by mechanical
indentation depth on the contralateral healthy finger pulp. For
participants, the elicited sensations were described as “natural
sensation, but they were still different from the sensations
under mechanical stimuli.” They described that “the sensation
of electrical stimuli is deeper and sharper than feeling under
mechanical pressure.” Especially for PF modulation, they felt a
little confused to match the intensity of a sharp sting elicited
by electrical stimuli with PF above 400Hz to the mechanical
counterparts.

Within the tested stimulus range, the perceived intensities
boosted linearly with the increasing PA, and the changing
tendencies were similar to the PW modulation in Figure 4.
On the other hand, for PF modulation, the intensities were
only enhanced linearly with frequencies from 0 to 200Hz, and
remained almost stable for higher frequencies. This was probably
due to the reason that the charge per phase was changed under
PA and PW stimulation to activate sensory afferents, while the
firing rate of fibers changed for the PFmodulation (Graczyk et al.,
2016). For the PW and lower PF modulations, similar findings
existed for peripheral nerve stimulation using FINE or spiral
Cuff electrodes. The perceived intensities increased linearly with
both PW and PF increasing (Graczyk et al., 2016), where the
frequencies were from 25 to 166Hz. Theoretically, the subjective
experience of the perceived intensity was expressed by a power
function (Stevens, 1957). For some somatosensory experience,
the power function could have a unity exponent which showed
a linear relationship (Kandel et al., 2012).

For determination of JNDs, the Weber fraction (Ekman,
1959) was adopted to represent the subjects’ abilities to
discriminate stimuli. The subjects were required to focus on
the difference of perceived intensities between two stimuli
in each trial while ignoring other modality or area changes,
etc. The smaller the Weber fraction, the better the stimulus
discriminability. For the PF modulation, the corresponding
Weber fractions were larger than those in PA and PW
modulations. Graczyk et al. also denoted that Weber fractions
in the PW modulation was much lower than that in PF
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modulation (Graczyk et al., 2016). The JND for PF was 16.5
± 1.6Hz at 50-Hz reference with the Weber fraction of 0.33.
The JND for PW was 6.7 ± 1.0 µs, yielding a Weber fraction
of 0.05, which was significantly lower than Weber fractions
of PF.

The performance in phantom finger recognition without
additional training on purpose showed that the main
misjudgments were associated with the adjacent PFTs, which
could be due to the crosstalk from the electric field spreading
during TENS for a specific PFT. Much smaller electrode could be
adopted to minimize this kind of misjudgments. There existed
incomplete judgment under TENS of more than one PFT. This
kind of misjudgment might be due to the masking effect, which
meant that the perception of one phantom finger could be also
influenced by sensation from other PFTs (Gescheider et al.,
1970). Besides, the deteriorated phantom finger recognition
could also be resulted from the fact that uniform stimulating
current parameters were adopted for tested PFTs among these
six subjects with different detection thresholds. The artificial
tactile sensation functioned as a process of perception which
included “organization, identification and interpretation of
sensory information in order to present and to understand
the input information, or the environment” (Schacter, 2012).
Although there existed some incorrect justice for phantom finger
recognition, the discrimination ability of different phantom
fingers was empirical, and would be improved through training
as a part of learning process (Delhaye et al., 2016; Chai et al.,
2017). The recognition of simultaneous stimulation was close to
others’ work in intracortical sensory feedback, which was 85%
for one channel and 53% for two channels. This recognition
performance would be advanced by recruiting more and smaller
subsets of fibers individually through high electrode density and
optimizing stimulating parameters and sites.

In the past several years, the implanted Cuff (Ortiz-Catalan
et al., 2014; Tan et al., 2014; Graczyk et al., 2016), USEA (Utah
Slanted Electrode Array) (Warwick et al., 2003; Ledbetter et al.,
2013), LIFE (Dhillon et al., 2004), and TIME (Boretius et al.,
2010; Raspopovic et al., 2014) electrodes were adopted to help
produce natural sensation of lost fingers or palms, which made
it feasible to accomplish closed-loop motor control of objects in
a lab environment (Ortiz-Catalan et al., 2014; Tan et al., 2014;
Graczyk et al., 2016). On the other hand, TENS of PFTs by
surface electrodes also produced sensation of individual fingers
comparable to that for the invasive sensory feedback scheme.
However, due to the relatively large surface electrode size and
limitation of PFT space, usually one stimulating electrode was
located on the MSP within a PFT, and it was hard to stably
discriminate different areas within one phantom finger. While,
for invasive methods, sensation of some localized areas for
a phantom finger could be stably discriminated (Raspopovic
et al., 2014; Tan et al., 2014; Graczyk et al., 2016), which
would be due to the reason that an implantable microelectrode
could supply a more localized stimulation of sensory neurons.
In addition, with the number of stimulating electrodes under
simultaneous stimulation, recognition of different phantom
fingers deteriorated in our study, and the correct ratio decreased
from 85.83% (one-channel stimulation) to 67.67% for two

channels and 46.44% for four channels. Although the correct
ratios were lower for two and four channel stimulation, they
were greatly higher than their corresponding chance level as
10 and 6.7%, respectively. In our opinion, the incomplete or
partial misjudgment of phantom fingers would partly affect
the sensation of object details, but during real-world closed-
loop control of prosthetic hands, there existed timing difference
of activation among different electrodes (Raspopovic et al.,
2014). So more sophisticated encoding approaches introducing
this kind of timing difference could be adopted to improve
the phantom finger recognition for clinical applications. It
was reported that there were roughly 65% of trans-radial
amputees with some form of phantom hand sensation (D’Anna
et al., 2017). For these amputees, TENS of PFTs would
be more appropriate having stable selectivity of individual
fingers. For those with high-level amputation and without
PFTs, the invasive sensory feedback scheme would be more
suitable.

Tactile sensory feedback is undoubtedly essential for the
engagement in manipulation and feeling of body ownership of
the prosthesis. For now, confusion with the meanings of the
resulted artificial sensation and the high cognitive load are still
the key issues for the sensory feedback, which requires a more
intuitive and high discriminative neural interface (Farina and
Amsüss, 2016; Svensson et al., 2017). Others’ studies revealed
that the phantom finger sensations by mechanical stimulation
of the residual stump mapped well to the corresponding
normal fingers in the primary somatosensory cortex using
fMRI (Björkman et al., 2012). Moreover, our previous work
also revealed that the responses related to the phantom finger
sensation under TENS were observed in the somatosensory
cortex by using MEG neuroimaging technique (Chen et al.,
2017). For those reasons, the PFTs under TENS would be
intuitive to be recognized and understood by part of the
upper-limb prosthetic users. This present work would provide
guidelines for strategy selection of artificial tactile feedback in
prosthetic hands with less cognitive load for potential clinical
applications.

CONCLUSION

The discrimination ability of phantom finger sensations elicited
by TENS of the PFTs were characterized. We focused
on the perceived intensity quantification, electrical stimulus
discrimination and phantom finger recognition based on
psychophysical experiments. The participants could discern
small changes of stimuli in PA, PF, and PW modulations.
Although the more number of PFTs under simultaneous
stimulation would convey richer tactile information, the
recognition performance would deteriorate. Our present studies
would shed a light on the optimization of the stimulating strategy
to accomplish the clinical application for the intelligent upper-
limb prosthetics in the near future. In our future work, we
would dig into the objective somatosensory cortical responses
objectively byMEG, and further elucidated the neural basis about
the discrimination and recognition characteristics.
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Enabling users to teach their robots new tasks at home is a major challenge for research

in personal robotics. This work presents a user study in which participants were asked to

teach the robot Pepper a game of skill. The robot was equipped with a state-of-the-art

skill learningmethod, based on dynamic movement primitives (DMPs). The only feedback

participants could give was a discrete rating after each of Pepper’s movement executions

(“very good,” “good,” “average,” “not so good,” “not good at all”). We compare the

learning performance of the robot when applying user-provided feedback with a version

of the learning where an objectively determined cost via hand-coded cost function and

external tracking system is applied. Our findings suggest that (a) an intuitive graphical

user interface for providing discrete feedback can be used for robot learning of complex

movement skills when using DMP-based optimization, making the tedious definition of

a cost function obsolete; and (b) un-experienced users with no knowledge about the

learning algorithm naturally tend to apply a working rating strategy, leading to similar

learning performance as when using the objectively determined cost. We discuss insights

about difficulties when learning from user provided feedback, andmake suggestions how

learning continuous movement skills from non-expert humans could be improved.

Keywords: programming by demonstration, imitation learning, CMA-ES, human-robot interaction, DMP, human

factors, optimization, skill learning

1. INTRODUCTION

Robots are currently making their entrance in our everyday lives. To be able to teach them
novel tasks, learning mechanisms need to be intuitively usable by everyone. The approach of
Programming by Demonstration (Billard et al., 2008) includes users to show their robot how
a task is done (for example via kinesthetic teaching), and the robot will then reproduce the
demonstrated movement. However, not all tasks can be easily demonstrated to a robot this way. For
example some tasks are only solved with very precise movements which are difficult to successfully
demonstrate for the user. Instead, it is often more feasible to let the robot self-improve from an
imperfect demonstration. Most research on robot learning aims primarily at optimizing the final
task performance of the robot, while disregarding the usability of the system by non-expert users.
In particular, Programming by Demonstration studies and, even more so the optimization, are
primarily tested in laboratory environments and rarely evaluated with human users, let alone with
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non-experts. The typical workflow for creating an optimization
system encompasses the definition of a suitable cost function,
which the system can evaluate to improve its performance.
Finding a cost function that will ensure the desired outcome of
the robot learning is far from trivial. In fact, often it is difficult
even for domain experts to define a cost function that does not
lead to unexpected behaviors by the robot. To be usable by non-
expert users, it is unrealistic to expect the user to design a cost
function in order to teach their robot a new skill. To make
things worse, many cost functions require an external sensory
setup (in addition to the robot’s on-board sensors) to measure
relevant features precisely enough for the computation of the
cost function—again, something which is feasible in a laboratory
environment, but not realistic for use at home by non-experts.

The general research topic of this work is thus to investigate,
whether it is possible to employ a state-of-the-art optimization
system in a user-centered setup: one that is intuitively usable by
non-experts, and could easily be operated outside the laboratory
(for example, it does not require expensive or difficult to calibrate
equipment). In particular, we concentrate on robot learning of
complex movement skills with a human teacher. As a method, we
chose optimization of Dynamic Movement Primitives (DMPs)
(see section 2) as a widely used method from the Programming
by Demonstration literature.

It is commonly assumed that the feedback humans provide
is a noisy and unreliable reward signal (e.g., Knox and Stone,
2012; Weng et al., 2013; Daniel et al., 2015): it is assumed that
humans do not provide an optimal teaching signal, and therefore
additional care should be taken when using the human-provided
signal in a robot learning system. In contrast, here we deliberately
chose to use an unaltered optimization system, without any
modifications to the learning algorithm for “dealing with” the
human-provided teaching signal or specific adaptations toward
the human. In doing so, we aim at demonstrating, as a baseline,
the performance of an unaltered, state-of-the-art Programming
by Demonstration setup trained using human feedback alone.
The only modification in our system is to replace the sensory-
based cost evaluation by an intuitive to use graphical user
interface, allowing the user to provide a discrete-valued feedback
to the robot after each movement execution.

1.1. Related Work
The field of Interactive Machine Learning (IML) aims to give
the human an active role in the machine learning process
(Fails and Olsen, 2003). It is a rather vast field including the
human in an interactive loop with the machine learner, ranging
from web applications to dialog systems, but also robots: the
learner shows its output (e.g., performance, predictions) and
the human provides input (e.g., feedback, corrections, examples,
demonstrations, ratings). In robotics, IML combines research on
machine learning (section 1.1.1) and human-robot interaction
(section 1.1.2).

1.1.1. Machine Learning With Human Teachers
Regarding machine learning research, there is a large body of
literature on incorporating human-provided reward signals into
reinforcement learning algorithms. The majority of approaches

focuses on the case where the action space of the robot is
discrete (e.g., Abbeel and Ng, 2004; Thomaz and Breazeal, 2008;
Chernova and Veloso, 2009; Taylor et al., 2011; Cakmak and
Lopes, 2012; Griffith et al., 2013; Cederborg et al., 2015), which
means that the robot already has to know the “steps” (or “basic
actions”) required to solve a task in advance: Related work in this
area includes the work of Thomaz et al., who investigated user
input to a reinforcement learning agent that learns a sequential
task in a virtual environment (Thomaz et al., 2006). They then
altered the learning mechanism according to the results of
their Human-Robot Interaction (HRI) studies. Also Senft et al.
recently presented a study with a virtual reinforcement learning
agent learning sequential tasks with user rewards (Senft et al.,
2017).

Here, in contrast, we are interested in the case of a continuous
action space, which would allow a human user to teach their
robot entirely new actions (which could in principle then also be
used as new “basic actions” in reinforcement learning methods
as the ones just mentioned). There is some existing work on
robot learning from user feedback where the robot’s action
space is continuous. Knox and Stone proposed the “TAMER”
framework, aimed at learning a model of the human-provided
reward, explicitly taking effects such as time-delayed responses
into account (Knox and Stone, 2009). TAMER has mostly been
used for learning in the case of discrete state and action spaces
(Knox and Stone, 2012; Knox et al., 2012a,b), but recently has also
been applied to traditional reinforcement learning benchmark
tasks involving continuous spaces (e.g., Vien and Ertel, 2012).
Similarly, Daniel et al. use Gaussian process regression and
Bayesian optimization in combination with relative entropy
policy search to estimate a reward function from user-provided
feedback. In contrast to these works, we do not estimate a
reward function but directly treat the user responses as teaching
signal to the learning algorithm, to evaluate if an unaltered
optimization algorithm in conjunction with DMPs can operate
on user-provided discrete scores, noisy or not.

Instead of requesting a score or reward value directly from the
user, it has been suggested to employ preference-based learning
(Christiano et al., 2017; Sadigh et al., 2017): the user is repeatedly
presented with two alternative performances by the robot or
agent, and is asked to select one over the other. Sadigh et al. used
such an approach to let users teach a simulated 2-dimensional
autonomous car to drive in a way deemed reasonable by the user
(Sadigh et al., 2017). Their system learned a reward function from
the human provided reward. However, the function estimation
relied on a set of predefined features to succeed in learning
from relatively little data. Like designing a cost function, also the
design of suitable feature representations for the cost function
estimation in itself can be challenging, and certainly is for
non-experts. Christiano et al. successively presented pairs of
short video clips showing the performance of virtual agents
(simulated robots in one task, and agents playing Atari games
in another task) to human participants, who then selected the
performance that they preferred (Christiano et al., 2017). Using
this feedback alone, the virtual agents were able to learn complex
behaviors. Christiano et al. also learn a model of the user-
provided responses. Interestingly, they were able to reduce the
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total amount of time humans had to interact with the learning
system (watch videos, provide feedback) to only about 1 h.
However, their work is based on deep reinforcement learning
methodology and thus requires the agent to train in total for
hundreds of hours, which poses a severe difficulty for application
in real robots on the one hand in terms of time necessary for
training, and on the other hand due to other factors such as
physical wear down. In contrast, we present a system that does
not rely on the definition of suitable feature representations, and
can learn successful movement skills from non-expert users in as
little as 20 min in total.

1.1.2. Human-Robot Interaction With Machine

Learners
Developing machine learning algorithms, we cannot imagine
or model in theory what everyday, non-expert users will do
with the system. For example, studies in imitation learning or
Programming by Demonstration have shown that people will
show completely different movement trajectories depending on
where the robot learner is looking at the time of demonstration
Vollmer et al. (2014). Thus, if we develop systems without
considering human factors and testing it in HRI studies with
everyday people, then our systems in the end might not be usable
at all. Here, we briefly review studies of human-robot-learning
scenarios with real naive human users. Some related HRI studies
test machine learning algorithmswith humans users and examine
how naive users naturally teach robots and how the robot’s
behavior impacts human teaching strategies (see Vollmer and
Schillingmann, 2017, for a review). In the area of concept learning
for example, Cakmak and Thomaz (2010) and Khan et al. (2011)
studied how humans teach a novel concept to a robot. In a task
with simple concept classes where the optimal teaching strategy is
known, Cakmak and Thomaz (2010) found that human teachers’
strategies did not match the optimal strategy. In a follow-up
study, they tried to manipulate the human teacher to employ
the optimal teaching strategy. Khan et al. (2011) provided a
theoretical account for the most common teaching strategy they
observed by analyzing its impact on the machine learner.

Natural human teaching behavior of movement skills is very
complex, highly adaptive and multimodal. Previous HRI studies
have investigated the naive demonstration of continuous robot
movement skills, focusing on the usability of kinesthetic teaching
Weiss et al. (2009), or not applying machine learning algorithms
but studying the influence of designed robot behavior, for
example incorporating findings from adult-infant interactions
(Vollmer et al., 2009, 2010, 2014).

Weiss et al. (2009) have shown that naive users are able
to teach a robot new skills via kinesthetic teaching. Here, we
do not focus on the demonstration part of the skill learning
problem, but the users’ feedback replaces the cost function for
task performance optimization.

1.2. Contribution and Outline
In this work, we investigate whether a completely unmodified
version of a state-of-the-art skill learning algorithm can cope
with naive, natural user feedback. We deliberately restricted
our system to components of low complexity (one of the most

standard movement representations in the robotics literature, a
very simple optimization algorithm, a simplistic user interface),
in order to create a baseline against which more advanced
methods could be compared.

We present a first study with non-expert participants
who teach a full-size humanoid robot a complex movement
skill. Importantly, the movement involves continuous motor
commands and cannot be solved using a discrete set of actions.

We use Dynamic Movement Primitives (DMPs), which are
“the most widely used time-dependent policy representation in
robotics (Ijspeert et al., 2003; Schaal et al., 2005)” (Deisenroth
et al., 2013, p. 9) combined with Covariance Matrix Adaptation
Evolution Strategy (CMA-ES, Hansen, 2006) for optimization.
Stulp and Sigaud (2013) have shown that the backbone of CMA-
ES, “(µW , λ)-ES one of the most basic evolution strategies is able
to outperform state-of-the-art policy improvement algorithms
such as PI2 and PoWER with policy representations typically
considered in the robotics community.”

The task to be learned is the ball-in-cup game as described by
Kober and Peters (2009a). Usually, these state-of-the-art learning
mechanisms are tested in the lab in simulation or with carefully
designed cost functions and external tracking devices. Imagine
robots in private households that should learn novel policies from
their owners. In this case, the use of external tracking devices
is not feasible, as it comes with many important requirements
(e.g., completely stable setup and lighting conditions for color-
based tracking with external cameras). We chose the ball-in-
cup game for our experiment, because it has been studied in
a number of previous works (Miyamoto et al., 1996; Arisumi
et al., 2005; Kober and Peters, 2009b; Nemec et al., 2010, 2011;
Nemec and Ude, 2011) and we can therefore assume that it is
possible to solve the task using DMP-based optimization. Still,
it is not at all trivial to achieve a successful optimization, but a
carefully set up sensory system is required to track the ball and
the cup during the movement, as well as a robustly implemented
cost function (covering all contingencies, see section 2.2). We
therefore believe the task to be a suitable representative for the
study of robot learning of complex movements from naive users,
which would otherwise require substantial design effort by an
expert.

Policy search algorithms with designed cost functions usually
operate on absolute distances obtained via a dedicated sensory
system. However, participants in our study are naive in the sense
that they are not told a cost function and it is difficult for humans
to provide absolute distances (i.e., the cost) as feedback to the
robot. Therefore, we provided participants with a simple user
interface with which they give discrete feedback for each robot
movement on a scale from one to five.

The central question we aim to answer is: can human users
without technical expertise and without manual or specific
instructions teach a robot equipped with a simple, standard
learning algorithm a novel skill in their homes (i.e., without
any external sensor system)? For the evaluation, we focus on
system performance and the user’s teaching behavior. We report
important difficulties of making learning in this setup work with
an external camera setup (section 2.2) and with human users
(section 4.1).
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2. MATERIALS AND METHODS

2.1. System
2.1.1. Robot
Pepper is a 1.2 m tall humanoid robot developed and
sold by SoftBank Robotics. Pepper’s design is intended to
make the interaction with human beings as natural and
intuitive as possible. It is equipped with a tablet as input
device. Pepper is running NAOqi OS. Pepper is currently
welcoming, informing and amusing customers in more
than 140 SoftBank Mobile stores in Japan and it is the
first humanoid robot that can now be found in Japanese
homes.

In our study, Pepper used only its right arm to perform the
movements. The left arm and the body were not moving. For the
described studies, any collision avoidance of the robot has been
disabled. Joint stiffness is set to 70%.

2.1.2. Setup
The setup is shown in Figure 1. Two cameras recorded
the movement at 30 Hz, one from above and another
one from the side. This allowed for tracking of the
ball and cup during the movements. All events,
including touch events on the tablet of the robot were
logged.

2.1.3. Ball and Cup
The bilboquet (or ball and cup) game is a traditional children’s
toy, consisting of a cup and a ball, which is attached to the cup
with a string, and which the player tries to catch with the cup.

Kober et al. have demonstrated that the bilboquet movement can
be learned by a robot arm using DMP-based optimization (Kober
and Peters, 2009a), and we have demonstrated that Pepper is
capable of mastering the game1. In this study, the bilboquet toy
was chosen such that the size of the cup and ball resulted in a level
of difficulty suitable for our purposes (in terms of time needed to
achieve a successful optimization) and feasibility regarding the
trade-off between accuracy (i.e., stiffness value) and mitigating
hardware failure (i.e., overheating). Usually, such a movement
optimization provides a more positive user experience when
learning progress can be recognized. Thus, the initialization and
exploration parameters together should yield an optimization
from movements somewhere rather far from the cup toward
movements near the cup. With a small cup, if the optimization
moves rather quickly to positions near the cup, the “fine-tuning”
of the movement to robustly land the ball in the cup takes
disproportionally long. This is partially due to the variance
introduced by hardware. Therefore, we chose the cup size to
result in an agreeable user experience by minimizing the time
spent on “fine tuning” of the movement near the cup at the end
of the optimization process on the one hand, and on the other
hand by minimizing the teaching time until the skill has been
successfully learned.

2.1.4. Learning Algorithm
We implement the robot’s movement using dynamic movement
primitives (DMPs) (Ijspeert et al., 2013). We define the DMP as

1https://youtu.be/jkaRO8J_1XI

FIGURE 1 | Experimental setup from above. In the studies with optimization via the external camera setup (section 2.2), where the experimenter only returned the ball

to its home position, the seat for the participant remained empty.
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coupled dynamical systems:

1

τ
ÿt = αy(β(yg − yt)− ẏt) + vt(yg − y0) · hθ (xt) (1)

1

τ
v̇t = −αvvt(1−

vt

K
) (2)

The “transformation system,” defined in Equation (1), is
essentially a simple linear spring-damper system, perturbed by
a non-linear forcing term hθ . Without any perturbation, the
transformation system produces a smooth movement from any
position yt toward the goal position yg (both positions defined
in the robot’s joint space). The forcing term hθ is a function
approximator, parametrized by the vector θ . It takes as input a
linear system xt , which starts with value 0 and transitions to 1
with constant velocity (see Stulp, 2014). The introduction of the
forcing term allows us to model any arbitrarily shapedmovement
with a DMP.

As suggested by Kulvicius et al. (2012), a “gating system”
(defined in Equation 2) is used to ensure that the contribution
of the forcing term hθ to the movement disappears after
convergence. It is modeled after a sigmoid function, with starting
state 1 and attractor state 0, where the slope and inflection point
of the sigmoid function are determined by the parameters αv and
K (for details, see Stulp, 2014). This way, stable convergence of
the system can be guaranteed even for strong perturbations, as we
know that the transformation system without any perturbation
by the forcing term is stable, and the multiplication of the forcing
term with the gating variable vt blends out the perturbation once
the gating system has converged.

For learning the ball-in-a-cup skill on Pepper, we adopt Stulp
and Sigaud’s method of optimizing the parameter vector θ using
simple black-box optimization (Stulp, 2014). More specifically,
we use the Covariance Matrix Adaptation Evolution Strategy
(CMA-ES, Hansen, 2006) for optimization, and locally weighted
regression (Atkeson et al., 1997) for the function approximator
hθ . The parameter space is 150 dimensional as we use 5 degrees-
of-freedom (DoF) in the robot arm and 30 local models per
DoF. Following the Programming by Demonstration paradigm,
we initialize the local models via kinesthetic teaching, thus first
recording a trajectory, and subsequently determining model
parameters via regression on the trajectory data points. After this
initialization, we keep all but one parameter of each local model
fixed: in the CMA-ES-based optimization, we only optimize the
offset of the local models, which proves to allow for a change in
the shape of the trajectory that is sufficient for learning.

CMA-ES functions similarly to a gradient descent. After the
cost has been obtained via the defined objective function for each
roll-out in a batch, in each update step, a new mean value for
the distribution is computed by ranking the samples according
to their cost and using reward-weighted averaging. New roll-outs
are sampled according to a multivariate normal distribution in
R
n with here, n = 150. There are several open parameters which

we manually optimized. We aimed at allowing a convergence to
a successful movement within a reasonable amount of time. The
parameters include the initial trajectory given to the system as a
starting point, the number of basis functions the DMP uses to

represent the movement, the initial covariance for exploration
and the decay factor by which the covariance is multiplied after
each update, the batch size as the number of samples (i.e.,
roll-outs) before each update, the stiffness of the joints of the
robot, the number of batches (i.e., updates) for one session in
the described studies. The initial trajectory was recorded via
kinesthetic teaching to the robot. We chose a trajectory with too
much momentum, such that the ball traveled over the cup. All
parameters and their values are listed in Table 1.

2.2. Optimization—External Camera Setup
In order to optimize the movement with external cameras and
to create a base-line corresponding to a state-of-the-art skill
learning system, a carefully designed cost function is defined that
determines the cost as the distance between the ball and the cup
at height of the cup when the ball is traveling downward, similar
as described in Kober and Peters (2009a). As with any sensory
system designed for an automatedmeasurement of a cost or error,
significant care has to be taken to ensure robust and accurate
performance, as already a slightly unreliable sensory system can
prohibit the skill learning. In this case, particular care had to
be taken for example in choosing camera models with high-
enough frame rates, to ensure that the fast traveling ball could
be accurately tracked in the camera image. During a roll-out, the
ball typically (this depends on the chosen initialization, here, it
will) passes the height of the cup and then descends again. From
a webcam recording the side of the movement, we determine the
exact frame when the descending ball passes the vertical position
of the cup. In the corresponding frame from the top view camera
at this moment, we measure the distance between the center of
the ball and the center of the cup in pixels (see Figure 2).

We showed a cyan screen on the robot’s tablet right before the
movement began which could be detected automatically in the
videos of both the side and top camera, to segment the video
streams. The experimenter repositioned the ball in the home
position after each roll-out.

Apart from the usual issues for color-based tracking, as for
instance overall lighting conditions, the above heuristic for cost
determination needed several additional rules to cover exceptions
(for instance, dealing with the ball being occluded in the side
view when it lands in the cup or passes behind the robot’s arm).
More severely, in this particular task the ball occasionally hits the
rim of the cup and bounces off. The camera setup in this case

TABLE 1 | Overview of the open parameters of the system which influence

learning.

Parameter Value

Initialization Same for all studies

Number of basis functions 30

Covariance 80

Decay rate 0.8

Batch size 10

Stiffness 70 %

Number of batches 8
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detects the frame in which the ball passes beside the cup after
having bounced off the rim, and thus assigns a too high cost to
the movement. Although we were aware of this, we refrained
from taking further measures to also cover this particularity of
the task, as we found that the camera-based optimization would
still succeed. In a version of the game with a smaller cup size
however, this proves to be more problematic for the optimization
and needs to be taken into account.

For initial trajectories that do not reach the height of the
cup, additional rules would need to be implemented for low
momentum roll-outs.

2.3. Optimization—Naive Users
In the following, we describe the conducted HRI study with non-
expert users, who are naive to the learning algorithm and have
little to no experience with robots. It was approved by the local
ethics committee and informed consent was obtained from all
participants prior to the experiment.

2.3.1. Participants
Participants were recruited through flyers/adds around the
campus of Bielefeld University, at children’s daycare centers,
and gyms. Twenty-six persons took part in the experiment.
Participants were age- and gender-balanced (14 f, 12 m, age:
M = 39.32, SD = 15.14 with a range from 19 to 70 years).

2.3.2. Experimental Setup
The experiment took place in a laboratory at Bielefeld University.
The participant was sitting in front of Pepper. The experimenter
sat to the left of the participant (see Figure 1). As in the other
condition, two cameras recorded the movement, one from above
and another one from the side, such that a ground truth cost
could be determined. However, the camera input was neither
used for learning, nor was communicated to participants that and
how the cost would be determined from the camera images.

2.3.3. Course of the Experiment
Each participant was first instructed (in German) by the
experimenter. The instructions constitute a very important
part of the described experiment because everything that is
communicated to participants about the robot and how it learns
might influence the participants’ expectations and, in turn, their
actions (i.e., ratings). Therefore, the instructions are described in
full detail. It included the following information: The research
conducted is about robot learning. The current study tests the
learning of the robot Pepper and if humans are able to teach it
a task, especially a game of skill called ball in cup. The goal of
the game is that Pepper gets the ball into the cup with movement.
During the task, Pepper will be blindfolded. The cup is in Pepper’s
hand and in the home position the ball is hanging still from the
cup. The participant was instructed that he/she could rate each
movement via a rating GUI, which was displayed on the robot’s
tablet (see Figure 3). The experimenter showed and explained the
GUI. The participant can enter up to 5 stars for a given roll-out
(as in Figure 1). The stars correspond to the ratings of (common

FIGURE 3 | The rating GUI displayed on the robot’s tablet, showing a

common 5-point Likert-scale, a button to accept the chosen rating, and a

button to repeat the last shown movement.

FIGURE 2 | Detection of ball and cup at the respective frame of interest in side and top view.
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5-point Likert-scales) 1: not good at all, 2: not so good, 3: average,
4: good, 5: very good. A rating is confirmed via the green check
mark button on the right. Another button, the replay button on
the left, permitted the participant to see a movement again, if
needed. When the rating was confirmed, it was transformed into
a cost as cost = 6− rating to invert the scale, and was associated
to the last shown movement for the CMA-ES minimization. A
ready prompt screen was then shown to allow the repositioning
of the ball still in the home position. After another button touch
of confirmation on this screen, the robot directly showed the next
roll-out.

As stated above, the camera-setup remained the same also
in this study, however, the videos were only saved and used
afterwards to compute ground truth. In this study, the cameras
were not part of cost computation or learning. Participants were
also informed of the cameras recording the movements. We told
them that we would use the recordings to later follow up on
what exactly the robot did. We informed participants that each
participant does a fixed number of ratings at the end of which
the tablet will show that the study has ended. At this point,
participants were encouraged to ask any potential questions they
had and informed consent was obtained from all participants
prior to the experiment.

Neither did we tell participants any internals of the learning
algorithm, nor did we mention any rating scheme. We also
did not perform any movement to prevent priming them about
correct task performance.

Then, Pepper introduced itself with its autonomous life
behavior (gestures during speech and using face detection to
follow the participant with its gaze). Pepper said that it wanted
to learn the game blindfoldedly but did not know yet how exactly
it went. It further explained that in the following it would try
multiple times and the participant had to help it by telling it
how good each try was. After the experimenter had blindfolded
Pepper, the robot showed the movement of the initialization (see
section 2.1.4).

After rating the 82 trials (the initialization + 80 generated roll-
outs + the final optimized movement), each participant filled
out a questionnaire on the usability of the system, and the
participant’s experience when teaching Pepper. A short interview
was conducted that targeted participants’ teaching strategies and
feedback meaning.

3. EXPERIMENTAL RESULTS

3.1. System Performance
The system performance in the two studies is shown in Figure 4.
To compare the system performance across the studies, we
defined five different measures of success on the objective cost
only:

• Is the final mean a hit or a miss? (Final.hit)
• The distance of the final mean in pixels (Final.dist)
• The mean distance of all roll-outs in the final batch in pixels

(Batch.dist)
• The total number of hits (#hits)
• The number of roll-outs until the first hit (First.hit)

Based on these success measures, we perform statistical tests with
the aim to determine what is more successful in optimizing this
task, the camera setup or the naive users.

The tests did not reveal any significant differences in
performance between the two. Descriptive statistics can be found
in Table 2. We conducted a CHI-square test for the binary hit or
miss variable of the final roll-out (Final.hit) which did not yield
significant results, χ2

(1,41) = 1.5, p = 0.221. We conducted four

independent samples t-tests for the rest of the measures. For the
distance of the final mean (Final.dist), results are not significant,
t(35.66) = −1.527, p = 0.136. For the mean distance in roll-outs
of the final batch (Batch.dist), results are not significant, t(39) =
−0.594, p = 0.556. For the total number of hits (#hits), results are
not significant, t(39) = 0.66, p = 0.513. For the number of roll-
outs until the first hit (First.hit), the analysis was not significant
either, t((31) = −0.212, p = 0.834.

When looking at the HRI study only, we identify three
main cases of learning performance: (a) successful convergence,
with sub-cases (a.i) early convergence, N = 12 and (a.ii) late
convergence, N = 5; (b) premature convergence, N = 6; and
(c) unsuccessful convergence, N = 3 (see Figure 5). Also in
the camera optimized sessions, two out of 15 sessions showed
unsuccessful convergence, which hints at important difficulties
in both setups.

3.2. User Teaching Behavior
To investigate the teaching behavior of the non-expert users, we
are particularly interested in the strategies that are successful or
unsuccessful for learning.

3.2.1. Questionnaire and Interview
We first report the questionnaire and interview answers relating
to the strategies of the participants in our study. This will give
us a general idea about their (self-reported) teaching behavior
before we analyze the actual scores. The strategies participants
report in questionnaires and interviews can be categorized into
five approaches.

3.2.1.1. Distance from ball to cup
The majority of participants (N = 15) reported to use scores to
rate the distance from the ball to the cup. Interestingly, all of these
participants are part of sessions we identified as (a) successful
convergence. This suggests that this strategy leads to success.

3.2.1.2. Momentum
A few participants (N = 2) reported to rate the momentum of
a movement. Of course at the beginning of the sessions, the
momentum correlates with the distance of the ball and cup. A
movement with less momentummoves the ball closer to the cup.
One of the participants who reported this strategy successfully
trained the robot, for the other participant, the exploration
converged prematurely.

3.2.1.3. Comparative ratings
A few others (N = 4) reported to give ratings comparing each
movement to the previous one: if the movement was better
than before, the rating was better and vice versa. Interestingly,
sessions of participants with this teaching strategy all fall into the
premature convergence category (b) described in section 3.1.
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FIGURE 4 | Ground truth from cameras for the 80 roll-outs in a session. First and last movements (with blue background) are initialization and final mean, respectively.

Gray backgrounds indicate batches (8 in total). The central mark of box plots is the median, the lower edge of a box is the 25th percentile and the upper edge the

75th percentile, the whiskers extend to 1.5 times the interquartile range. Dots with underlying crosses lye outside the whiskers and could be considered as outliers.

Successful movement executions can clearly be distinguished from unsuccessful ones, as they lie in a “band” of distance costs between 0 and around 15,

corresponding to the ball lying inside the cup. The ball passing directly next to the cup resulted in a computed cost larger than 20, resulting in the clear separation that

can be seen.

TABLE 2 | Descriptive Statistics.

Measure Cam HRI

Final.hit 80% hits 61.5% hits

M SD M SD

Final.dist (pixels) 14.39 11.21 21.89 20.15

Batch.dist (pixels) 25.88 16.00 27.82 21.66

#hits 20.27 11.84 17.96 14.97

First.hit (rollout number) 27.15 17.01 28.55 19.41

3.2.1.4. Spontaneous ratings
Two participants claimed to rate the movements spontaneously,
without any clear strategy (N = 2). For one of the two
participants, exploration converged late, but successfully (a) and
for the other the session was unsuccessful (c).

3.2.1.5. Individual strategies
The remaining participants reported individual strategies (N =
3). For instance one participant in this category gave always
the same score (one star) with the intention to let the robot
know that it should try something completely different in order
to change the movement completely. The other two strategies
were not reported clearly. However, the described strategy as
well as another in this category, were not successful (c). One
of the participants used a strategy that lead to premature
convergence (b).

3.2.2. Correlation With Ground Truth
Based on the self-reported user strategies, we expect the
successful sessions to also reflect the ‘Distance from ball to cup’
strategy in the actual scores participants gave. We test this by
calculating the correlation between the participant scores and the
ground truth of the robot movements. In the HRI case in general,
participants received an average correlation coefficient of M =
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0.72, SD = 0.20. The strategy to rate according to the distance
between the ball and the cup should yield a high correlation
value and thus we expect successful sessions to obtain a higher
correlation coefficient than sessions with premature convergence,
which in turn receives a higher correlation coefficient than
unsuccessful convergence (i.e., success category a > b > c).
Because of small sample sizes, we conduct a Kruskal-Wallis H
test. There was a statistically significant difference in correlation
coefficients between the three different success categories, χ2

(2) =

8.751, p = 0.013 < 0.05. An inspection of the mean ranks for
the groups suggest that the successful sessions (a) had the highest
correlation (mean rank = 16.24,M = 0.75, SD = 0.20), with
the unsuccessful group (c) the lowest (mean rank = 2.67,M =

0.58, SD = 0.29), and prematurely converged sessions in between
(mean rank = 11.17,M = 0.045, SD = 0.25). Pairwise post-hoc
comparisons show a significant difference between the successful
(a) and unsuccessful (c) sessions only (p = 0.014 < 0.05,
significance value adjusted by Bonferroni correction for multiple
tests). Thus the results confirm our hypothesis.

3.2.3. Score Data
Prototypical plots for the three success strategies are shown in
Figure 6. They corroborate and illustrate the teaching strategies
we found.

Looking at individual plots of scores, we can draw a number
of additional qualitative observations:

3.2.3.1. Hits receive always 5 stars
We observe that a hit (i.e., the ball lands in the cup) for all
participants always receives a rating of 5 stars. Though some
participants reserve the 5 star rating for hits only, in general, also
misses could receive a rating of 5.

3.2.3.2. Rating on a global scale
One strategy we observe is to give ratings on a global scale,
resulting in scores similar to the ground truth, but discrete.

3.2.3.3. Rating on a local scale
Some people that rate according to the distance between ball
and cup, take advantage of the full range of possible scores
during the whole session and adjust their ratings according to the
performance.

3.2.3.4. Giving the same score multiple times
Some participants gave the same score multiple times in one
batch. This could be due to perceptual difficulties. Participants
often complained during the study that all movements look the
same. Also this behavior could be part of a specific strategy,
for example a behavior emphasizing the incorrect nature of the
current kind of movement in order to get the robot to change
the behavior completely (increase exploration magnitude) or a
strategy that focuses on something else than the distance.

4. DISCUSSION

The results of this work can be summarized with two main
findings.

FIGURE 5 | System performance for all sessions in a success category. Each

line corresponds to camera obtained ground truth (i.e., automatically detected

ball to cup distance in pixels) for one session (80 rollouts). Dots mark hits.

Each plot corresponds to one success category: (A.i) successful early

convergence; (A.ii) successful late convergence; (B) premature convergence;

and (C) unsuccessful convergence.

1. CMA-ES optimization with DMP representation works well
with un-experienced, naive users, who are giving discrete
feedback.

2. The main strategy users naturally apply, namely to rate
according to the distance between the ball and the cup, is most
successful. Relational feedback users provide, which depicts a
binary relation of preference in a pair of consecutive trials, in
this setup leads to premature convergence.

DMPs are an established method for open-loop state-less
optimization of robot skills and have been utilized for robot
learning of diverse tasks, such as for (constrained) reaching tasks
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FIGURE 6 | Individual visualizations for all roll-outs in one prototypical session for (A) successful, (B) premature, and (C) unsuccessful convergence. Colors show

score given (darker shades correspond to higher scores, brighter shades correspond to lower scores). Concentric circles show equidistant positions around the cup,

which is located in the center.

(Guenter et al., 2007; Kormushev et al., 2010; Ude et al., 2010), the
ball-in-the-cup game (Kober and Peters, 2009b), pick-and-place
and pouring tasks (Pastor et al., 2009; Tamosiunaite et al., 2011),
pancake flipping (Kormushev et al., 2010), planar biped walking
(Schaal et al., 2003; Nakanishi et al., 2004), tennis swings to a fixed
end-point (Ijspeert et al., 2002), T-ball batting or hitting a ball
with a table tennis racket (Peters and Schaal, 2006; Calinon et al.,
2010; Kober et al., 2011), pool strokes (Pastor et al., 2011), feeding
a doll (Calinon et al., 2010), bi-manual manipulation of objects
using chopsticks (Pastor et al., 2011), dart throwing (Kober et al.,
2011), Tetherball (Daniel et al., 2012), and one-armed drumming
(Ude et al., 2010).

While we so far only tested the learning in one task (the ball-
in-the-cup game), our results suggest that optimization in all
of these tasks, which usually entails the difficult design of cost
function and sensory system, could be achieved with a simple,
generic user interface even in home settings by non-expert users.
Through their task knowledge, users are able to impart the goal of
the task, which is not implicitly pre-programmed into the robot
beforehand, without explicitly formulating or representing a cost
function. Further studies involving other tasks will be needed to
fully confirm this.

The discrete feedback users provide, seems to work as well as
the camera setup. Even without modifications, the system is able
to solve the task which could attest to (a) the robustness of this
simple base-line system toward unreliable human feedback and
(b) the ability of humans to adapt to the specifics of an unfamiliar
learning system.

We would like to point out that the camera setup was only able
to achieve the reported learning performance because of (a) the
hardware used (i.e., cameras with a specific frame rate) and (b)
because of the careful implementation of the cost function. As
such, naive human teaching was not tested against a naive reward
function but a highly tuned one. As outlined in section 2.2, the
design of a suitable cost function is rarely straight-forward, and in
practice requires significant adjustments to achieve the necessary
precision. We believe that with a few instructions to users,
system performance in this case can even be improved, and failed

sessions can be prevented. We could imagine the naive users
to perform even better than a cost function in some cases. For
instance, toward the end of the optimization, the ball frequently
hits the rim of the cup, especially, when a smaller cup is used.
Because the ball moves very fast, this event is difficult to track
for a vision system even with a high frame rate as it often occurs
between frames. Crucially, when the ball bounces off the rim, it
often travels far away from the cup and is thus assigned a high
cost value by the hand-coded cost function. In contrast, humans
can easily perceive this particular event, especially because it is
marked with a characteristic sound, and tend to rate it with a high
score. Also if the robot performs similarly bad roll-outs for some
time with the ball always at a similar distance from the cup and
then for the next roll-out, the ball lands at the same distance, but
on the other side of the cup, the user might give a high rating
to indicate the correct direction, whereas the camera setup will
measure the same distance.

4.1. Usability of/Difficulties With the
Current System
The optimal teaching strategy is not known for the system in this
task, but it seems that most naive users are able to successfully
train the robot. However, we have observed some difficulties users
had with the current system.

The DMP representation does not seem to be necessarily
intuitive for humans. During the optimization, it appears more
difficult to get out of some regions of the parameter space than
others. This is not apparent in the action space. Additionally, nine
participants reported to have first given scores spontaneously and
later developed a strategy, hinting at difficulties at the beginning
of the sessions, because they did not have any idea how to
judge the first movements as they did not know how much
worse the movements could get and they did not know the
magnitude of differences between movements. Apart from these
initial difficulties, four participants reported to be inconsistent
in their ratings at the beginning or to have started out with a
rating too high. This means that there is a phase of familiarization
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with the system and enhanced performance can be expected for
repeated teaching.

Due to the nature of CMA-ES and the way new samples
are drawn from a normal distribution in the parameter space,
robot performances from one batch did not differ wildly but
appeared rather similar. This was confusing to some participants,
as they were expecting the robot to try out a range of different
movements to achieve the task. In contrast, the CMA-ES
optimization resulted in rather subtle changes to the movement.
As a result, some participants rated all movements from one
batch with exactly the same score. This is of course critical for
the CMA-ES optimization, as it gives absolutely no information
about the gradient direction. This issue could also be mitigated
through repeated teaching interactions and familiarity with the
system.

Furthermore, with the use of CMA-ES, there is no direct
impact of the ratings. Participants expected the ratings to have
a direct effect on the subsequent roll-out. This lead to an
exploration behavior with some participants who tested the effect
of a specific rating or a specific sequence of ratings on the
following roll-out. The participants reacted with surprise to the
fact that after a hit, the robot again performed unsuccessful
movements. The mean of the distribution in the parameter space
could actually be moved directly to a hit movement, if the user
had the possibility to communicate this.

The cases of premature convergence could also be prevented
by, instead of CMA-ES, using an optimization algorithm with
adaptive exploration, like PI2CMA (Stulp and Oudeyer, 2012).
Furthermore, participants were in general content with the
possibility to provide feedback to the robot using a discrete scale.
However, several participants commented that they would have
preferred to also be able to provide verbal feedback of some
form (“try with more momentum,” “try more to the left”). This
supports findings by Thomaz et al. (2006) that human teachers
would like to provide “guidance” signals to the learner that, in
contrast to only giving feedback on the previous action, give
instructions for the subsequent action. How to incorporate such
feedback in the learning is subject of future work.

4.2. Outlook
We considered a learning algorithm without any modification or
adaptation toward the human. In the following, we suggest future
alterations to the system that we hypothesize to be beneficial

for either system performance or usability and which can be
measured systematically against the base-line.

• Giving users more instructions including information about
batches in learning. We have begun to study expert teaching of
this task which even outperforms camera-optimization.

• Include a button for ending optimization with the first hit.
The mean is set to the current roll-out and exploration is
terminated.

• Choosing an optimization algorithm with adaptive covariance
estimation, to mitigate premature convergence.

• Allowing users to do the optimization twice or perform a test-
run in order to alleviate skewed ratings due to wrong user
expectations toward the robot.

• Studying the effect of preference-based learning on system
performance and usability.
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Colleagues often shake hands in greeting, friends connect through high fives, and

children around the world rejoice in hand-clapping games. As robots become more

common in everyday human life, they will have the opportunity to join in these

social-physical interactions, but few current robots are intended to touch people in

friendly ways. This article describes how we enabled a Baxter Research Robot to both

teach and learn bimanual hand-clapping games with a human partner. Our system

monitors the user’s motions via a pair of inertial measurement units (IMUs) worn on the

wrists. We recorded a labeled library of 10 common hand-clapping movements from 10

participants; this dataset was used to train an SVM classifier to automatically identify

hand-clapping motions from previously unseen participants with a test-set classification

accuracy of 97.0%. Baxter uses these sensors and this classifier to quickly identify the

motions of its human gameplay partner, so that it can join in hand-clapping games. This

system was evaluated by N = 24 naïve users in an experiment that involved learning

sequences of eight motions from Baxter, teaching Baxter eight-motion game patterns,

and completing a free interaction period. The motion classification accuracy in this less

structured setting was 85.9%, primarily due to unexpected variations in motion timing.

The quantitative task performance results and qualitative participant survey responses

showed that learning games from Baxter was significantly easier than teaching games

to Baxter, and that the teaching role caused users to consider more teamwork aspects

of the gameplay. Over the course of the experiment, people felt more understood by

Baxter and became more willing to follow the example of the robot. Users felt uniformly

safe interacting with Baxter, and they expressed positive opinions of Baxter and reported

fun interacting with the robot. Taken together, the results indicate that this robot achieved

credible social-physical interaction with humans and that its ability to both lead and follow

systematically changed the human partner’s experience.

Keywords: physical human-robot interaction, social robotics, motion classification, human-robot teaming,

hand-clapping games
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INTRODUCTION

As robot use expands from independent operation in factories to
cooperative responsibilities in environments like hospitals and
schools, social skills become an increasingly important factor
for robot developers to consider. Socially capable robots are
known to be able to deliver better interaction experiences in
everyday human-populated environments (Fong et al., 2003).
Although direct physical contact between humans and robots
introduces new safety requirements, mastering such interactions
could increase a robot’s ability to help people (Ikemoto et al.,
2012) and promote the acceptance of robots by the general
population.

Human children frequently engage in hand-clapping games
(patterns of hand-to-hand contacts carried out by two people)
for entertainment, to learn about others, and to make friends
(Brodsky and Sulkin, 2011). Accordingly, as an initial foray into
equipping robots with social-physical human-robot interaction
(spHRI) skills, we chose to investigate human-robot hand-
to-hand contact during playful hand-clapping games like
“Pat-a-cake” and “Slide.” We prepared to run this study
by connecting our past work on classifying human hand-
clapping motions recorded via inertial sensors (Fitter and
Kuchenbecker, 2016c) with our previously developed methods
for making a robot clap hands in human-like ways (Fitter
and Kuchenbecker, 2016b). The result of this union is sensor-
mediated human-robot interaction (HRI) during which each
participant (the human and the robot) physically mimics the
movements of the other one at different times during the
game.

After section Related Work presents related work, section
Hand Motion Classification describes how we developed a
capable system for repeatedly classifying human hand-clapping
motions. Section Hand-Clapping Study Methods details our
exploration and evaluation of a skilled Baxter robot that
claps hands with people in various game modes. Sections
Results and Discussion outline the results of this user
study and discuss the findings and their implications for
HRI.

RELATED WORK

Our work sits at the intersection of social robotics and physical
HRI (pHRI). The field of social robotics studies robots in social
scenarios, usually without physical contact between the robot
and the interacting humans (Fong et al., 2003). Within this
field, the subtopic of socially assistive robotics leverages unique
robot strengths in areas such as education and healthcare (Feil-
Seifer and Mataric, 2005). In contrast, pHRI focuses more on
interaction safety issues rather than social design (De Santis et al.,
2008). pHRI might also be used to help a robot stay safe while
navigating an unknown environment (Iwata and Sugano, 2005).
Only a handful of pHRI investigations consider the social aspects
of robotic contact. One previous study of how a human feels
when touched by a robot in a medical setting found that people
preferred procedural medical touch to compassionate pats from
a robot (Chen et al., 2011). Experiments at this social-physical

intersection, such as our work and the following related topics,
elucidate how people perceive social-physical robots and how
researchers can appropriately apply spHRI to aid people.

We are energized by prior research that combines social
robotics and pHRI because touch is an essential pathway for
human connection and emotion (Sonneveld and Schifferstein,
2008). In particular, physical interaction with the hands greatly
aids human understanding and serves as a channel for complex
sensation and expression (Klemmer et al., 2006). A few instances
of spHRI appear in previous literature. The Haptic Creature
Project, for example, explores an expressively actuated cat-sized
furry robotic companion that responds to physical contact from
humans (Yohanan andMacLean, 2008). Haptic feedback has also
been leveraged to explore the subjective and objective results of
physical human-robot collaboration in tasks such as joint target
acquisition and object manipulation (Reed and Peshkin, 2008;
Feth et al., 2011). In our spHRI work, the robot has a humanoid
form and directly touches the human, rather than interacting
through an external object.

Our research on bimanual hand-clapping robots additionally
draws on the area of social motor coordination (also known
as joint action). This topic is being actively explored not only
in the HRI community, but also in research on human-human
interaction (Schmidt et al., 2011). For example, one investigation
proposes a video game that uses electrodermal activity-sensing
controllers to detect hand-to-hand contacts between players for
more enjoyable social gameplay (Baba et al., 2007). Similar
research efforts by Kim et al. (2014) outline the design and testing
of an electrodermal activity-sensing wrist-worn watch designed
to increase intimacy in a workplace environment. In the HRI
space, our initial inspiration for a jointly-acting hand-clapping
robot was the popular PR2 demo entitled “Please do not touch
the robot,” during which people can high five, fist bump, and
hug the Willow Garage PR2 robot (Romano and Kuchenbecker,
2011).

Our social-physical Baxter robot is designed to use inertial
measurement units (IMUs) to understand the hand motions of
its human partner. Previous research has shown that motion
classification using IMUs and other inertial sensing systems can
be more efficient and accurate than processing of visual input.
Past studies of body-mounted sensors for action recognition
include motion prediction for full-body ambulatory behaviors
from five IMUs (Altun and Barshan, 2010; Altun et al.,
2010) and motion and gesture recognition from a complex
system of IMUs and accelerometers (Chavarriaga et al., 2013).
Almost all such work hinges on machine learning principles
introduced by early work in this field (Jain et al., 2000).
More recently, researchers used a commercial IMU suit and
a neural network for each robot joint to enable a human to
teleoperate the full body of a Nao humanoid robot (Stanton
et al., 2012). These related pieces of research all demonstrate
that machine learning from IMU data can facilitate reliable
near-real-time interpretation of human movement without
the occlusion and lighting problems that often affect visual
data.

Past work on playful spHRI also shaped our approach.
Investigations of robot play activities like hugging (Kanda et al.,
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2004) and performing magic (Nuñez et al., 2014) inform our
interaction design and analysis strategies. A study of the physical
play activities people exhibit with a small humanoid robot further
parallels our work and similarly performs activity recognition
using IMU data (Cooney et al., 2010). Previous work on dancing
robots additionally blends touch with social interaction, allowing
a human dance partner to guide a robotic dancer (Kosuge et al.,
2003). This play research influenced how we processed data,
designed motion, and selected scenarios to investigate.

HAND MOTION CLASSIFICATION

We previously demonstrated that a machine-learning pipeline
trained on data from hand-worn IMUs can reliably classify hand-
clapping motions (Fitter and Kuchenbecker, 2016c). In this past
work, the two IMUs were attached to the backs of the human
participant’s hands using skin-safe adhesive. This attachment
method did not always succeed in the presence of hair or sweat, it
did not let the participant comfortably contact the robot with the
backs of their hands, and it did not allow for easy removal of the
sensors during breaks in the experiment.

Before building on our hand motion classification work, we
needed a more robust and convenient way to attach the IMUs
to participants’ hands. Once developed, the new attachment
method needed to be validated to confirm that the new form
factor enabled accurate hand motion classification. This section
describes how we achieved these two tasks and compares this
updated approach to our previous work.

Motion Classification Methods
In anticipation of intensive human-robot interactive gameplay
scenarios, we chose to record participant motion via the same
nine-axis Sparkfun MPU9150 IMU breakout boards used in
prior work (Fitter and Kuchenbecker, 2016c). These sensors
were affixed to each participant’s wrists with Velcro straps
that looped through custom 3D-printed housings, as shown in
Figure 1. In addition to increasing the consistency and comfort
of the sensor attachment, this scheme facilitated detaching
and reattaching the sensors as needed during the experiment.
While our sensors communicate via a lightweight cable, future
iterations of this sensor system could be designed to use wireless
communication.

With the sensors in this configuration, we aimed to classify
hand motions using an updated version of the best method from
our past work; it used training and testing data to create a linear
support vector machine (SVM) that classifies individual hand-
clapping motions based on particular features of the recorded
data (Fitter and Kuchenbecker, 2016c). We slightly modified
the set of target motions being learned to increase the diversity
of hand-clapping games that could be constructed from them.
This new set of motions requires wrist and hand movements
that are largely similar to those studied in our prior work.
However, relocating the IMU from the hand to the wrist prevents
the system from observing the motion of the wrist joints and
therefore reduces the expressivity of the captured data; thus it was
possible that the wrist-worn sensors would necessitate a different
type of data analysis.

FIGURE 1 | A plastic housing and integrated strap securely attach each

inertial measurement unit to the user’s wrist. The individual whose hands are

shown in this image provided written consent for this image to be published.

Hand-Clapping Game Selection
This investigation of motion classification accuracy from wrist-
worn IMUs involved 10 motion primitives. Nine of the motions
were the same as primitives studied in our previous work (Fitter
and Kuchenbecker, 2016c), and one motion was new. Our
previous investigations discovered that many participants were
not able to snap their fingers, and also that people tended to pause
at specific parts of various hand-clapping games. Accordingly,
our updated experiment traded the previously used “right snap”
motion for a stationary “stay” motion. Figure 2 shows the set
of primitives used in this investigation: back five (B), clap (C),
double (D), down five (DF), front five (F), lap pat (LP), left five
(L), right five (R), stay (S), and up five (UF).

To investigate the overall performance of prospective
classifiers, we needed to select several hand-clapping games that
use sequences of our chosen motion primitives and offer a range
of classification challenge levels. This data collection considered
the following six hand-clapping games, half of which are different
from the patterns used in our previous work:

• Pat-a-cake: LP-C-R-C-L-C
• Slide junior: C-R-C-L-C-B-F
• Double double: D-D-F-F-D-D-B-B-D-F-D-B-D-D-F-B
• Down up clap: DF-UF-C
• Sailor: C-R-C-L-C-F-F-F
• We will rock you: LP-LP-C-S

In each of these hand-clapping games, pairs of people typically
repeat the listed motions over and over along with a verbal chant.
For the purposes of this investigation, a single person outfitted
with sensors instead pantomimed the motions alone, in the style
of someone who is teaching their partner a new hand-clapping
game. This approach allowed us to first focus on classifying
motions and later add layers of complexity to the interaction.

Human Hand-Clapping Behavior
We conducted an experiment to collect a rich dataset
for automatic classification of hand-clapping motions. Ten
participants enrolled in our data collection, gave informed
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FIGURE 2 | Labeled images of a person performing the studied set of hand-clapping motions. The individual shown in these images provided written consent for

these images to be published.

consent, and successfully completed the experiment. The
University of Pennsylvania Institutional Review Board (IRB)
approved all experimental procedures under protocol 822527.
No formal demographic survey was administered in this data
collection, but experimenter notes show that the participant
population was composed entirely of technically trained students
who all possessed normal motor function in their arms and
hands. Each participant came to the lab for a single session that
lasted about 30minutes. The participant’s wrists were outfitted
with IMUs as shown in Figure 1. The raw x, y, and z-axis
accelerometer, gyroscope, and magnetometer readings from both
wrists were read by an Arduino Teensy and sent to our data
processing program via a USB connection at 200Hz.

We recorded two datasets from each participant: (1) a training
set that contained selected pairs of motions repeated 10 or more
times and (2) a test set with each of the six hand-clapping games
repeated three or more times in sequence. Training data were
used for model training and cross validation, while testing data
were reserved for a separate round of model evaluation. The
training set was designed to include all 17 pairs of sequential
motions that appear in the chosen hand-clapping games. Some
of these pairs consist of the same motion repeated over and
over, while the rest show transitions between two different hand-
clapping motions.

Motion Classification Results
We sought to discover whether our system could classify
all of the recorded hand-clapping motions using sensor data
recorded from the wrist-worn IMUs. In order to classify each
hand-clapping motion, we parsed full IMU recordings into
individual hand-clapping motion data segments by applying a
first-order Butterworth high-pass filter with a cutoff frequency
of 25Hz to the root-mean square (RMS) of the x- and z-axis
accelerations from both IMUs together. Local maxima finding
on the resulting signal proved effective for identifying the center
of each hand clapping motion, assuming consistent participant
clapping tempo and correct execution of hand-clapping motions.

We applied the linear SVM technique that was found to most
accurately classify hand motions in our previous work (Fitter
and Kuchenbecker, 2016c). From each motion recording, we
extracted a feature set composed of basic statistical measures
(maximum, minimum, mean, variance, skewness, and kurtosis)
from each x-, y-, and z-axis channel of the accelerometer and
gyroscope, the RMS acceleration for each hand, and high-
and low-pass filtered data from each of these channels (cutoff
frequency of 25Hz). As in prior work, we did not use the
magnetometer because its readings were found to be unreliable
in the indoor setting of the data collection. We also added a
new set of Boolean features that indicate whether the measured
acceleration range along each axis was greater than a threshold
of 0.8 g. This new set of features was designed to detect changes
in hand orientation that could help distinguish a clap from
a lap pat after systematic errors distinguishing between these
two motions in our previous work. A leave-one-subject-out
cross-validation (LOSOCV) technique during model training let
us compute a generalizable training-set classification accuracy.
We also computed the test-set classification accuracy using the
trained models. All calculations were performed in Python with
the scikit-learn library using the default settings.

We examined the confusion matrices for this model’s
performance on the parsed training feature set and the parsed
test feature set, as seen in Figures 3, 4, respectively. The 97.3%
overall training-set accuracy stems from high values along the
diagonal of the training confusion matrix, indicating excellent
performance. Similarly, the 97.0% overall test-set classification
accuracy stems from the strong diagonal of the test confusion
matrix. Note that the 10 motions are not exactly evenly
represented in either the training or testing set, so the two overall
accuracy values differ slightly from the averages of the diagonal
entries in the two confusion matrices

The overall classification accuracies indicate that the linear
SVM classification strategy that worked best in our previous
work also performs very well on data gathered from wrist-worn
IMUs. The negligible difference between training and testing
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FIGURE 3 | Confusion matrix of linear SVM classifier performance on the training dataset.

FIGURE 4 | Confusion matrix of SVM classifier performance on the test dataset.
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accuracies further shows that this technique generalizes well to
hand-clapping motions performed as part of a longer sequence.
Thus, this is the classifier we employed to enable our robot to
understand motions pantomimed by a human partner.

HAND-CLAPPING STUDY METHODS

We conducted a study to explore how people perceive different
leadership and game generation experiences during bimanual
hand-clapping interactions with a robot. The University of
Pennsylvania IRB approved all experimental procedures under
protocol 825490. Motivated by the desire to understand how
our IMU machine learning pipeline can fit into meaningful
spHRI applications, we were especially curious to discover
what roles people prefer to play in these types of interactions,
how structured or open-ended the interactions should be,
and how users respond to inevitably varied machine learning
performance.

Hardware Systems
This study centered on two MPU9150 9-DOF IMU sensors
strapped to the wrists of a human user. The same 12 channels
of IMU data discussed previously (x, y, and z-axis accelerometer
and gyroscope readings from each hand) were transmitted from
an Arduino Teensy to our data processing program via a USB
connection at 200Hz. The robotic agent for this investigation
was a Rethink Robotics Baxter Research Robot, a sturdy human-
sized platform that can exert human-level forces on the user’s
hands and can bear hand contacts without breaking or falling
over. Our Baxter robot was equipped with two non-articulated
custom hands, as shown in Figure 5. These custom hands are 3D-
printed and covered with flexible silicone rubber, as presented in
our previous work (Fitter and Kuchenbecker, 2016b). A small
rolling table was placed between Baxter and the participant to
both provide a lap-like surface against which Baxter could tap for
the lap pat (LP)motion and to keep the user at a constant distance
away from the robot.

To equip Baxter with knowledge of how to perform each
hand-clapping motion in the bimanual clapping games, we
physically moved Baxter’s arms to preparatory poses and action
poses for each motion, aiming to imitate the poses of a person’s
arms during these actions. Our control strategy used the Baxter
software development kit’s raw position controller and trajectory
planning using cubic interpolation between successive key poses
to allow Baxter to move smoothly and fairly quickly while playing
games with a person.

Experiment Setup
24 participants (14 male and 10 female) enrolled in our study
and gave informed consent. Participants were aged from 18
to 38 years (M = 24.4 years, SD = 5.2 years) and were
mostly technical students (18 technically trained students, 2 non-
technical students, 2 technically trained research assistants, 1
technically trained engineer, and 1 non-technical homemaker).
Sixteen of the robot users originated from the United States,
three from China, two from India, two from South Korea, and
one from Belgium. All participants had full function in their

FIGURE 5 | The experiment setup for the bimanual human-robot

hand-clapping study. The individual shown in this image provided written

consent for this image to be published.

arms and hands. Twenty-two participants were right-handed,
and two were left-handed. We did not exclude left-handed
participants because the experiment activities have balanced right
and left hand roles, and also because some left-handed users
were included in the dataset used to create the classifier. To
help situate our results, we requested information about each
user’s applicable experience using robots. Participant experience
with robotics ranged from 0 to 94 (M = 65.25, SD = 23.11)
out of 100, with 100 being highest, and the group’s experience
with Baxter spanned the full range from 0 to 100 (M = 35.79,
SD= 30.97).

Each participant came to the lab for a single 60-minutes
session. The user stood facing Baxter throughout the experiment
(as illustrated in Figure 5) and played various bimanual hand-
clapping games with the robot, making hand-to-hand contact
with Baxter throughout, as two people would when playing hand-
clapping games. At the beginning of the session, the experimenter
read a script to relay relevant background information on Baxter,
described the experiment interaction, and asked the user to
complete an opening survey about their perceptions of Baxter.
Next, the participant was led through two sample interactions,
one in which Baxter taught the user a simple game (C-R-C-L),
and one in which the user taught the same game to Baxter.

In the main experiment, the user played hand-clapping games
with Baxter in four blocks that each contained three interaction
trials of a particular game. Over these three repetitions, either
Baxter or the user would repeatedly teach the same motion
sequence in order to give their partner a chance to practice it and
improve. The block conditions varied in leadership assignment
and game spontaneity, but every taught or learned game was
eight motions long. After each block, the user completed a survey
about their perception of the interactions within that set of three
repetitions. After the four blocks, the user entered a free-play
mode during which they could teach Baxter additional games
and/or learn more games from Baxter. Finally, the participant
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completed a closing survey followed by a brief demographic
survey.

Data Processing Pipeline
The machine learning pipeline for human-led trials waited for
the user to demonstrate an entire hand-clapping game and then
parsed and classified each demonstrated hand-clapping motion
from the full game recording. To help the pipeline identify
meaningful portions of IMU data, we divided the experiment
into discrete gameplay interactions that were fairly structured.
At the beginning of a human-led trial, the experimenter asked
the human user to be very still. When ready, the user would
demonstrate the hand-clapping game to Baxter at the tempo
of an ambient metronome that was set to 75 BPM. We relied
on the participant pantomiming game motions at close to the
metronome’s tempo to give the motion parser a good guess
of the inter-motion time interval. After the demonstration
was complete, the user would return to being still and the
experimenter would press a key on the Baxter workstation to
relay the information that the demonstration was over.

At this point, the processing algorithm would have all
the data from the human hand-clapping game demonstration.
Thresholding on the gyroscope signal helped to determine
precisely when the game demonstration started and stopped,
which we took to be the transitions from stillness to general
hand motion and general hand motion back to stillness. Within
the portion of data identified to be the hand-clapping game
demonstration, we could again use the first-order Butterworth
high-pass filtered RMS acceleration of the x- and z-axis
accelerations from both IMUs together to parse the motion
recordings. Finding the local maxima of the resulting signal,
combined with the knowledge of the stimulus spacing from the
ambient metronome tempo, had seemed to be a good tool for
identifying the center of each hand clapping motion when we
tested this experiment with pilot participants. As in section Hand
Motion Classification, the midpoints between local maxima were
assumed to be the motion starting points.

Once themotion data was parsed, each section of data believed
to represent a single hand-clapping motion was ready to undergo
the feature extraction and classification processes outlined in
section Hand Motion Classification. After the extraction of the
features mentioned previously, the hand-clapping motion was
classified using the linear SVM model trained in section Hand
Motion Classification. Classified sequences of motions were
reciprocated by the Baxter robot after the data processing step,
for the final result of clapping gameplay with the user.

Conditions
To begin understanding natural-feeling human-robot
hand-clapping gameplay interactions, we needed to create
opportunities for both Baxter and the user to lead complex
interactions. We also aimed to strike a balance between
well-controlled data collection and spontaneous natural play.
Accordingly, we designed the experiment interactions to vary
leadership assignment and spontaneity across trials. All other
aspects of Baxter’s behavior were kept as consistent as possible
from trial to trial.

Leadership Conditions
In each block of hand-clapping game interactions, either Baxter
or the human user was assigned to lead the game. When
Baxter was the leader, it demonstrated eight hand-clapping
motions while displaying a yellow neutral face, and then it
smiled, changed to displaying a purple face, and repeated the
same eight motions, this time making physical contact with the
hands of the user. Within a block, this process was repeated
three times with the same hand-clapping game to promote
human mastery of that particular game. The facial expressions
used in the study were adapted from the Baxter Open-Source
Face Database (Fitter and Kuchenbecker, 2016a) and appear in
Figure 6.

When the participant was leading, they demonstrated a
sequence of eight hand-clapping game motions to a metronome
beat, paused briefly while Baxter “thought” about the motions,
and then played the game with Baxter, making physical contact
with the robot. Again, within a block, this process was repeated
three times with the same hand-clapping game to promote robot
mastery of that particular game. Baxter again showed the yellow
neutral face during the demonstration and the purple happy face
when it was time for interactive play.

Spontaneity Conditions
When people play hand-clapping games with one another, the
interaction often begins with the swapping of known hand-
clapping game activities and then gradually becomes more
complex or inventive. To promote this same type of natural
development over the course of this experiment, we introduced
a second “spontaneity” condition variable.

In the non-spontaneous interactions, the game leader (Baxter
or the human participant) was instructed to teach a specific game
to the other party. For Baxter, this instruction was delivered
in code, and for the human user, it was delivered via verbal
instructions from the experimenter. Two specific games were
used for the non-spontaneous interactions: (1) Game A: LP-C-
R-C-L-C-B-F and (2) Game B: D-F-D-B-D-D-DF-UF. If Baxter
taught the user Game A, the user would teach Baxter Game B,
and vice versa. The games were randomly assigned and balanced
across users to prevent a confound between the conditions and
the game motion sequence itself.

When the person was leading non-spontaneous gameplay,
Baxter did not use the data processing pipeline to attempt to
identify and reciprocate the human motion pattern. Instead,
Baxter performed pre-set routines with two canned mistakes in

FIGURE 6 | The two Baxter facial expressions used in this bimanual clapping

study.
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the first repetition, one canned mistake in the second repetition,
and none in the final repetition. The mistakes were consistent
for each non-spontaneous game and were designed based
on common machine learning classifier errors. This behavior
ensured that even if our IMU system did not work well in
this new application, we would be able to understand how a
consistently improving robot would be received by human users.
Additionally, the human wrist IMU data was recorded during
these trials, which allowed us to include the would-be accuracy
of the data processing pipeline’s classification of these patterns in
our overall machine learning results.

During spontaneous gameplay, games were still required to be
eight motions long and had to begin with either a clap or lap pat
as those two bimanual movements provide a distinct beginning
signal in the recorded data. Otherwise, Baxter and the participant
were free to choose their own sequence of hand-clappingmotions
from the set given in section Hand Motion Classification, minus
“stay,” which was omitted because pilot participants had difficulty
maintaining the rhythmwhen the sequence included this pausing
move. To generate a random new game, Baxter employed a
random number generator and a transition matrix of typical
hand-clapping game motion transitions to create its own pattern.
In human spontaneous lead cases, the user was free to create a
game that followed the few guidelines mentioned above. Across
the three interactions in a spontaneous play block, the robot and
person were expected to repeat the same game to foster mastery
by the team.

Overall Block Flow
To maintain an organic interplay throughout the experiment
and allow the user to master the robotic system in the limited
time available, we used the same block order for all participants.
We present both the disadvantages and the advantages of this
experiment structure in the discussion of this article. The order
of the interaction blocks was always as follows:

1) Baxter-led non-spontaneous
2) Human-led non-spontaneous
3) Baxter-led spontaneous
4) Human-led spontaneous
5) Free play

This order gradually increased the autonomy of each partner
while giving the human user time to become familiar with the
system before leading an interaction. The transfer of leadership
back and forth mimicked the natural tendency of people to take
turns teaching their own clapping games when exchanging oral
cultural traditions.

Data Collection
Our software recorded the IMU data from the human user and
the sequences of motions performed by Baxter. We also asked
participants to complete four surveys: (1) a robot evaluation
after hearing introductory information about Baxter, (2) an
interaction block survey after each trio of hand-clapping game
repetitions, (3) a concluding survey after the final free-play
interaction, and (4) a basic demographic survey after the
concluding survey. The block perception survey used questions

from the pleasure-arousal-dominance (PAD) emotional state
model (also used byAmmi et al., 2015), TheNational Aeronautics
and Space Administration (NASA) task load index (TLX)
(Hart and Staveland, 1988), and an enjoyability survey used
by Heerink et al. (2008), plus a safety rating question, as
displayed in Table 1. Later in this article, we bundle the PAD
and safety questions together under the acronym “PADS.”
Questionnaires (1) and (3) were adapted from the unified theory
of acceptance and use of technology (UTAUT) and other metrics
employed by Weiss et al. (2008) and Heerink et al. (2009); the
questions are shown in the plot titles of Figure 7. The block
survey and concluding survey also included the following free-
response questions to help elicit experiential information from
users:

• What aspects of this activity did you enjoy?
• What aspects of this activity were most challenging?
• Why would or wouldn’t you want to do this activity with a

robot?
• What other activities would you want to do with this robot?

The experiment was additionally videotaped for later analysis of
user and robot behavior.

Hypotheses
This experiment sought to test the four main hypotheses detailed
below:

• H1: Users will enjoy teaching hand-clapping games to Baxter as
much as learning games from Baxter. In human-human game
interactions, some people prefer to lead and others prefer to
follow the lead of others. Some individuals may enjoy both
leading and following depending on the interaction scenario.
Because of this balance of preferences, we believed that people
might rank robot pleasantness and interaction enjoyment the
same regardless of who leads the game.

• H2: Participants will find spontaneous hand-clapping
interactions more fun and engaging than scripted ones.
In this experiment’s prototyping and piloting phases, we
originally considered scripting all of the hand-clapping
actions throughout the experiment blocks, but pilot users
expressed a strong desire to create and teach their own
hand-clapping games. This feedback led us to modify the
experiment protocol into the currently described state.
We additionally wanted to test this hypothesis to ascertain
whether the pilot user preferences generalize to other users.

• H3: Participation in the experiment will alter the way
people perceive the robot. Specifically, we administered a
UTAUT-inspired survey before and after the experiment to
determine whether the interactions caused any changes in user
perception of Baxter. Playing games with Baxter in this study
might be a pleasant or unpleasant social experience that would
alter later user responses.

• H4: Our proposed machine learning pipeline will perform well
at classifying hand-clapping motions in this new use scenario
with a robot in the loop. Our machine learning strategies
performed well on previous test datasets, but we wanted
to test whether the linear SVM classifier would provide
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TABLE 1 | Content of the block questionnaire used in the bimanual clapping study.

Block Evaluation

Please rate the following on the provided sliding scales:

How safe did this robot behavior seem? How engaged did you feel throughout this set of interactions?

How pleasing is this robot behavior? How well did you perform during this set of interactions?

How energetic is this robot behavior? How well did the robot perform during this set of interactions?

How dominant is this robot behavior? How rushed did you feel during this set of interactions?

How much did you enjoy this set of interactions? How calm did you feel during this set of interactions?

Free response section. Please respond briefly to the following questions:

Describe your experience interacting with the robot in this way, including any positive or negative aspects of the experience.

similar motion classification accuracy in a more realistic and
demanding interaction scenario.

These hypotheses helped guide the design of the experiment
blocks and the interactions described previously in this section.

RESULTS

All 24 users who enrolled in the study successfully completed
the experiment. 23 of them were willing to physically contact the
robot to play hand-clapping games. The other one person was
bothered by the sound of Baxter’s motors and only occasionally
clapped hands with the robot; this individual’s data were not
excluded from the analysis because they still took part in the
entire experiment.

This section focuses on statistical analyses of the questionnaire
responses using paired t-tests and repeated measures analysis of
variance (rANOVA). The t-tests enable us to discover whether
the experiment changed user opinions of Baxter. The rANOVAs
(using the R “aov” function and an α = 0.05 significance level)
tell us how different hand-clapping game experiences affected
block survey responses on the PADS, enjoyment, and TLX
questionnaire scales. We also consider overall user comments
and the success of the hand-clapping game motion classifier.

Before/After Survey Results
We gathered matched sets of robot perception survey responses
before and after the experiment. The overall user responses
appear in Figure 7. Paired t-tests reveal that the answers to two
questions significantly changed. Namely, after the experiment
participants reported feeling more understood by the robot
(REC2: p = 0.023, Mbefore = 35.54, Mafter = 52.33) and
also more willing to follow the example of the robot (ATT2:
p = 0.031, Mbefore = 65.29, Mafter = 78.04). Additionally, user
ratings on the overall reciprocity-focused questions were higher
after the experiment than before (REC1 + REC2: p = 0.010,
Mbefore = 45.35,Mafter = 60.52).

Block Survey Results
The within-subjects factor for our rANOVA was game block
condition, giving a design space of four blocks with a cross of
two leadership conditions and two cooperation conditions. We
had initially designed the block differences as a 2 by 2 space, but
after running the experiment, we realized that ordering played
a role in the users’ perceptions and that experiences in the

paired conditions were sometimes quite different. Accordingly,
we concluded that the most appropriate analysis tool was a one-
way rANOVA comparing the four different block conditions
as distinct levels of the factor. When an effect was significant
for a particular outcome measure, post-hoc multiple comparison
tests using the R “multcomp” library revealed which pairs
of conditions had statistically significant differences. We also
calculated the effect size using eta squared.

The rANOVA results for the block survey are summarized in
Table 2, and breakdowns of interaction block effects on different
question groupings appear throughout the following paragraphs.

PADS Results
We were curious to know how each block condition affected user
ratings of safety and affective characteristics of the robot behavior,
so we performed a one-way rANOVA for each of the PADS
survey questions. There were several statistically significant
trends in these block survey question responses, as outlined in
Table 2 and Figure 8.

Block modes significantly affected user ratings of robot
pleasantness [F(3, 69) = 3.88, p = 0.022, η

2
= 0.058] and

dominance [F(3, 69) = 5.94, p = 0.004, η
2
= 0.105]. Post-hoc

multiple comparison tests revealed that Block 4 (human-led
spontaneous) was rated as less pleasant then Block 3 (robot-
led spontaneous). Block 2 (human-led non-spontaneous) made
Baxter appear less dominant than Block 3, while Block 1 (robot-
led non-spontaneous) made Baxter appear more dominant than
Blocks 2 and 4. No significant differences were found for safety or
energeticness, and safety ratings were uniformly high (M= 79.71,
SD= 21.59).

Enjoyment Results
We also wanted to know how game block experiences influenced
user ratings of enjoyment and engagement, so we performed a
one-way rANOVA for each of the related block survey questions.
There were no statistically significant trends in these responses,
as shown in Table 2 and Figure 9. Enjoyment (M = 74.25,
SD= 19.83) and engagement (M = 78.59, SD=16.75) were both
uniformly rather high.

TLX Results
Lastly, we looked to identify how game block experiences
influenced user ratings of various task-load metrics. We
performed a one-way rANOVA for each of the TLX-inspired
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FIGURE 7 | Differences in participant responses before and after the human-robot hand-clapping experiment. In each subplot, the upper box plot represents

pre-experiment responses and the lower box plot represents post-experiment impressions. Filled-in box plots indicate significant differences. The question coding

abbreviations stand for attitude toward technology (ATECH), cultural context (CC), effort expectancy (EE), forms of grouping (GR), performance expectancy (PE),

reciprocity (REC), self-efficacy from UTAUT model (SE), and attachment (ATT).

block survey questions. There was one statistically significant
trend in the responses, as depicted in Table 2 and Figure 10.

Block modes had statistically significant effects on user
ratings of robot performance [F(3, 69) = 18.95, p < 0.001,
η
2
= 0.332]. The difference in the ratings of block interaction

calmness was also close to significant [F(3, 69) = 2.90, p = 0.057,

η
2
= 0.045]. A post-hoc multiple comparison test revealed that

robot performance appeared to be better in both robot-led blocks
(Blocks 1 and 3,M = 80.65, SD= 17.04) than in both human-led
blocks (Blocks 2 and 4, M = 52.71, SD = 23.72). No significant
differences were found for human performance, rushedness, or
calmness.
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TABLE 2 | p-values for the one-way rANOVA run to determine the effects of the block conditions.

Safety Pleasantness Energeticness Dominance Enjoyment Engagement

Block 0.093 0.022 0.500 0.004 0.061 0.146

Human Perf. Robot Perf. Lack of Rush Calmness

Block 0.104 <0.001 0.702 0.057

Gray shading indicates a statistically significant effect.

FIGURE 8 | Differences in responses to the PADS survey questions across

interaction blocks. Shaded boxes are significantly different from at least one

other condition.

Participant Demographic Results
Differences in participant feedback can stem from either
study conditions or characteristics of the users themselves.
To investigate differences due to participant demographics, we
performed a further set of rANOVA tests with survey timing
or block condition as a fixed factor and participant gender and
region of origin as covariates.

Gender had a significant effect on several user ratings.Women
thought people would be more impressed by their ownership of
Baxter than men did [F(1, 23) = 4.60, p = 0.038, η

2
= 0.084].

Female participants also liked the presence of the robot more
[F(1, 23) = 7.69, p = 0.008, η2

= 0.146] and thought they could
do activities with the robot more [F(1, 23) = 7.13, p = 0.011,
η
2
= 0.134] than male users. Women were additionally more

willing to follow the example of the robot [F(1, 23) = 19.75, p
< 0.001, η

2
= 0.279]. Female robot users also found the robot

more pleasant [F(1, 23) = 10.14, p = 0.002, η
2
= 0.095], found

the interaction more enjoyable [F(1, 23) = 11.00, p = 0.001,

FIGURE 9 | Responses to enjoyment-related survey questions across

interaction blocks. No significant differences were found.

η
2
= 0.104], felt more engaged during the study [F(1, 23) = 8.75,

p = 0.004, η
2
= 0.085], and felt more rushed during the

interactions [F(1, 23) = 11.15, p= 0.001, η2
= 0.108].

Since Eastern and Western cultures tend to have different
views of robots and other technologies (Lee et al., 2012), we
were also interested in comparing participant responses across
origin lines. Robot users from Eastern cultures thought others
would bemore impressed by their possession of Baxter than those
from Western cultures [F(1, 23) = 5.68, p = 0.021, η

2
= 0.104].

Individuals from Eastern cultures also found the robot more
dominant than Western participants [F(1, 23) = 6.81, p = 0.011,
η
2
= 0.0626].

User Comments
While analyzing user comments on each interaction block
survey, we noticed the emergence of the following themes:
motion comments (MC), temporal comments (TC), human
performance comments (HPC), robot performance comments
(RPC), teamwork performance comments (TPC), positive
general comments (PGC), haptic commentary (HC), social
performance comments (SPC), cue suggestions (CS),
comparisons to previous experience (CPE), and additional
clarifications about how users were reading survey questions
(AC). Example comments from each topic code appear
in Table 3. This division of comments seemed interesting,
especially because the frequency of comments in each topic
area shifted from block to block, as pictured in Figure 11. Some
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participants wrote multi-part comments that fit into several
categories, as included in the frequency counts.

Overall, the human-led Block 2 and Block 4 experiences
yielded more comments on the performance of the robot and the
human-robot team than other parts of the experiment. Robot-
led Blocks 1 and 3 led to an emphasis on motion and temporal
commentary, as well as cue suggestions, perhaps because users
were not as occupied with thinking about their own motions and
demonstration success. Some comment frequency progressions
may have occurred due to trial ordering effects; for example,

FIGURE 10 | Differences in responses to TLX-related survey questions over

interaction block. Shaded boxes are significantly different from at least one

other condition.

the motion commentary may have decreased over the course
of the experiment because users became accustomed to Baxter’s
movements. Other comments seem related to who was leading
a trial, returning whenever a leadership condition occurs. The
game spontaneity condition did not greatly affect user comments.
Furthermore, the breakdown of comments in the canned “perfect
robot improvement” performance of Block 2 is quite similar to
that of Block 4, during which Baxter often still made mistakes in
the final hand-clapping interaction.

Free Play Results
In the free-play interaction following Block 4, all but two users
identified a favorite interaction mode that they wanted to play
again. The participants who chose not to engage in additional free
play were not afraid of the robot; they simply were not interested
in additional interactions at that time. One of them was the user
who refrained from contacting the robot during the main blocks
due to the robot’s sound, and the other stated that they were more
pedagogically curious about the robot than interested in the social
aspects of play with it. All other participants played at least one
more game repetition with Baxter during the free-play segment
(2.2 game repetitions on average, with a range of 0 to 5 repetitions
across the participant pool).

Participants varied in the types of additional interactions they
wanted to perform with Baxter. Seven users both learned from
and taught Baxter during the free-play time. Eleven users chose
to only teach Baxter, while four opted to only learn from Baxter.

Classifier Results
Another goal of this bimanual hand-clapping study was to
evaluate the performance of the motion classifier described
in section Hand Motion Classification. Data recording errors
occurred during the first four sessions of this experiment,
so our classifier evaluation omits these participants. In the
data recordings of the remaining 20 users, the following pre-
processing steps were applied before evaluating the accuracy of
Baxter’s real-time motion labeling in the bimanual gameplay:

TABLE 3 | Example comments from each interaction block topic code.

Topic Code Example Comment

Motion Comments (MC) “The ‘Up Five’ and ‘Down Five’ were a little low, making those interactions a little more awkward/unsafe feeling. That

also probably has to do with the fact that the motions of the robot is much larger.”

Temporal Comments (TC) “A small delay between Baxter’s demonstration and actual task would have made it easier.”

Human Performance Comments (HPC) “I was pretty bad at first (and at the end too) but improved with each trial.”

Robot Performance Comments (RPC) “Robot made mistakes in the first round just like me! He finally learned it in the end, whew.”

Teamwork Performance Comments (TPC) “The interaction was still fun, but I was confused as to whether or not I had shown Baxter the motions clearly enough

or if Baxter just had trouble replicating that motion at that time.”

Positive General Comments (PGC) “That one was fun!”

Haptic Commentary (HC) “Claps felt a little soft, though not limp.”

Social Performance Comments (SPC) “I am not sure how a robot could be energetic. I did not feel that it was dominant or pleasing.”

Cue Suggestions (CS) “Playing a beat like the metronome from the teaching part would make staying on pace easier.”

Comparisons to Previous Experience (CPE) “Baxter’s motion seems more smooth and safe than last time.”

Additional Clarifications (AC) “Any lack of calm is due to the metronome and my anxiety to remember the patterns.”
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FIGURE 11 | Comparison of frequency of comments pertaining to various

topics during different interaction blocks. The topic codes were: motion

comments (MC), temporal comments (TC), human performance comments

(HPC), robot performance comments (RPC), teamwork performance

comments (TPC), positive general comments (PGC), haptic commentary (HC),

social performance comments (SPC), cue suggestions (CS), comparisons to

previous experience (CPE), and additional clarifications about how users were

reading survey questions (AC).

• Our strategy to detect the overall relevant segment of IMU
data in human-led trials required participants to be very
still before and after their motion pattern demonstration.
Some participants were unable to be still, which resulted
in extra motion classifications at the beginning or end of
their demonstration, due to fidgeting or preparatory motions
before the intended demonstration. These extraneous motions
were identified via video review and omitted while evaluating
classifier accuracy.

• Although human users were not allowed to choose the “stay”
motion when teaching Baxter games, Baxter was permitted
to classify human motions with this label. In piloting, we
found that this class label helped Baxter adapt to minor human
pauses or rhythmic inconsistencies; Baxter could pause during
these incidents rather than performing the next most likely
(incorrect) motion. Before comparing the actual and classified
participant motion identities, we removed all of the “stay”
padding occurrences.

• Another algorithmically problematic behavior occasionally
performed by users was motion demonstrations at half of the
suggested demonstration speed. This type of demonstration
usually produced some intermittent “stay” classifications (as
mentioned above) and some double- or triple-registers of
individual motions. Any duplicate registers of motions caused
by half-time hand-clapping demonstrations were identified by
video review and removed from the classification labels before
computing classifier accuracy.

• Lastly, the human experimenter controlled when the data
recording for each demonstration stopped. She sometimes
stopped recording data too soon, clipping the last handmotion
recording and causing one motion label to be missing from
the resulting motion sequence. In these cases, we evaluated
only the prediction accuracy for the first seven demonstrated
motions.

Generally, we were monitoring for the correct sequence of
motions in the recordings, regardless of what occurred between
consecutive moves.

After these data processing steps, we were able to compare
the data processing pipeline’s linear SVM classifications with
the actual identity of each hand-clapping motion demonstrated
by the human user (taken from the specified game sequence
or the demonstrated sequence visible in the video). The overall
accuracy of this classification was 85.9%, and the breakdown
of correct and incorrect motion labels appears in Figure 12.
Although high, this accuracy is to be taken with the caveat that
even when our analysis interpreted 100% classification accuracy
for a particular game, the user may have seen extra moves before
or after their intended game, extra “stay” motions, duplicate
motions, or missing final motions in Baxter’s reciprocal motion
pattern. Participants reacted to these behaviors and classification
errors in a variety of ways, from adjusting their behavior to match
Baxter’s errors to questioning Baxter’s sobriety. Errors that caused
Baxter to perform worse in the consecutive game repetitions
making up one study block were most frustrating to users.

DISCUSSION

The experimental results enable us to test our hypotheses and
plan how to move forward with this spHRI research.

Hypothesis Testing
The H1 prediction that users would enjoy teaching games to
Baxter as much as learning games from Baxter was partially
supported. There was no statistically significant difference in
user ratings of Block 1 vs. Block 2 interactions on the robot
pleasantness scale, but participants rated robot behavior in Block
3 (robot lead, game spontaneous) as more pleasant than Block
4 (human lead, game spontaneous). Despite this pleasantness
difference, users most frequently chose to continue teaching the
robot during the free-play time, rather than continuing to learn
from Baxter. Interaction enjoyment ratings, on the other hand,
did not differ significantly across any of these conditions. This
finding might indicate that teaching to and learning from a
robot that improves consistently (Blocks 1 and 2) are equally
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FIGURE 12 | Confusion matrix of the linear SVM classifier’s performance in the real experiment setting, after the four mentioned pre-processing steps.

fun and pleasant activities, while a robot that displays different
types of learning patterns is interesting but less pleasant. Another
intuitive difference in robot dominance ratings appeared in the
robot lead vs. human lead trial comparison; participants rated
Baxter as less dominant when the robot was following their game
lead, except in the comparison of Blocks 3 and 4, which did not
yield a significant difference. Robot performance also received
higher ratings for robot-led trials compared to human-led trials.

There was less evidence to support H2’s predicted preference
for spontaneous hand-clapping activities. Overall, no block
survey response difference emerged from the comparison of
scripted and unscripted game experiences. When Baxter taught
games to the user, the person never knew whether Baxter’s
motion sequence was pre-set, so it makes sense that the human
perception of these game activities was fairly uniform. We
thought that users might enjoy creating their own clapping game
in the fourth experiment block, but experimenter notes show
that some people were eager to undertake this task while others
were quite intimidated by having to compose their own pattern.
Participants who liked being able to teach Baxter commented
that “it was fun to watch the robot trying to move in the way
[they] created and taught,” “making up [their] own motion and
seeing [Baxter] learn it made the experience more exciting,” and
“it was more fun leading than learning from the robot.” Less
enthusiastic users noted that they “had trouble teaching Baxter,”
felt “anxiety from [...] memorizing the pattern of clapping,” and
wondered “whether or not [they] had shown Baxter the moves
clearly enough.” These two viewpoints may have contributed
to the lack of overall differences between Block 2 and Block 4
ratings.

Our hypothesis H3 was correct. Users rated their
perception of Baxter differently on the pre- and post-
experiment surveys. Participant felt more understood by
the robot after the experiment, and they also became more
willing to follow Baxter’s example. The overall feelings of
reciprocity between participants and Baxter grew during the
experiment as well, indicating that the robot successfully
achieved at least a rudimentary form of social-physical
interaction.

The final hypothesis H4 predicted that our machine
learning pipeline would perform well and help Baxter to
understand human motion demonstrations throughout human-
led interactions. We especially hoped that the classifier would
work well in Block 4, during which Baxter had no information
about the motion sequence that the human user would
demonstrate. The classifier was able to label human hand-
clapping moves with 85.9% accuracy. This recognition rate is
lower than the 97.0% achieved on the testing set, and it has
some additional caveats. Mainly, the data processing pipeline’s
motion parsing technique required users to demonstrate games
at a specific constant tempo with no errors or hesitations.
We acknowledge the need to improve classifier robustness
and have additional new users test the system to confirm
the redesign’s success. Fortunately, the IMU data recorded
throughout this study gives us a new prospective training set
for improving our classifier’s robustness to pauses and variable
demonstration tempo in future bimanual clapping interactions.
We hope to determine the maximum human motion recognition
accuracy that can be achieved using IMUs in a natural
setting.
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Major Strengths and Limitations
This study represents the most complex and natural-feeling
HRI that we have investigated, and we were pleased with the
promising and informative results. All participants successfully
completed the study, and although one user never contacted
Baxter through an entire cycle of hand-clapping motions, this
individual’s interaction displeasure arose from the timing of the
noises Baxter produced, rather than concerns about the safety
of the robot. This person wrote that “there seemed to be some
feedback missing (for example, a sound to accompany the hands
clapping), which damaged any sense [of] rhythm that might have
driven the pace of the game.” Additionally, all but two of the
users identified a free-play interaction that they wanted to try and
engaged in that activity with Baxter during at least one additional
round of hand-clapping gameplay.

This study interaction led to improved user opinions of the
robot and several reports of fun interacting with Baxter. Notable
positive comments included that one user “was surprised and
impressed at how fast and fluid[ly] the robot was able to move”
and another “liked how [Baxter] appears to get excited to play”
when switching from the yellow neutral face to the purple happy
face. The safety ratings of Baxter were also uniformly high,
despite Baxter’s occasional motion interpretation errors. Other
strengths of this work are findings on the ability to influence
how people think about working with Baxter via different leading
and following roles. Users thought a lot about teamwork with
Baxter during human-lead trials, sharing more comments about
Baxter’s performance, their own performance, and the hand-
clapping teamwork. Experiences varied from easy (“I really liked
how easily he learned my game”) to medium (“I may not have
been the best teacher, but Baxter still learned a lot by round 3”)
and even challenging/adverse situations (“the first time we were
perfect, and that was super exciting. But once we did well, the
mistakes in the next round were that much more devastating”).
Nevertheless, users seemed to want to succeed in teaching Baxter,
and some empathetic users even adjusted their motion sequence
to fit Baxter’s errors during the post-demonstration interactive
play. In the broader social robotics picture, this experiment
also provoked a number of complex emotional responses from
people. Especially in the Block 4 interactions, users expressed joy
at successes, and they also exhibited occasional cheeky responses
to Baxter’s errors. One non-technical user even talked to the
robot, asking “Are you drunk, Baxter?” when the robot did a poor
job reciprocating the demonstrated motion pattern.

The study design also had some shortcomings. Although the
user behavior in this experiment was more naturally situated
than in our previous spHRI work, the interaction could still be
more natural; we required quite a bit of structured behavior from
users to help Baxter interpret their motions. This requirement
was especially problematic for users who were not adept at
keeping a constant tempo. The chosen motion parsing and
classification strategy further leads to a delay between when the
user demonstrates each motion and when each move is classified.
The system transparency could also be better. An additional
robot thinking face while Baxter processes the participant motion
data, for example, would help users understand the robot’s state.
Participants often recommended sound effects and experiment

flow changes in the block surveys. Some wanted “a beat like
the metronome from the teaching part” throughout their entire
clapping experience with Baxter or a “clearer indication of
[when] learning and playing phases start and stop, perhaps via
audio” to help them focus their visual efforts on tracking Baxter’s
movement. Several users also requested a brief pause during
robot-led conditions between Baxter’s demonstration and the
interactive human-robot play, perhaps inspired by the time the
robot took to “think” about the demonstrated movements during
the human-led trials. Furthermore, a few of the hand-clapping
motions, especially DF and UF, were awkward for tall users. Our
future research would benefit from automatically adjusting clap
contact location based on user height.

Other drawbacks arose from the setting and the user
population of the study. The experiment participant pool was
fairly small and consisted mostly of young technical students.
Within this group, we found that female users had amore positive
impression of the robot than male users; this difference could
the fact that most of our non-technical participants were also
female. The study also took place in a lab setting that is different
from future natural environments where humans and robots
might interact. To ensure broader generalizability, we would need
to run the experiment on a more diverse population in a less
controlled everyday environment. The within-subjects design
of the experiment may have exaggerated differences between
conditions due to demand characteristics (Brown et al., 2011).
We also must consider the fixed block ordering of the experiment
when interpreting results and note the possible ordering effects
on any condition differences. For example, participants might be
more interested in the first block due to novelty effects and less
engaged in the final block when the interaction has become more
familiar. Users might also compare each subsequent block related
to the previous experience, which is the same for each person in
this study design. Hence, ratings might be better balanced in an
experimental design with a varied trial ordering. A final challenge
arising from the largely technical, robotics-savvy population of
the experiment was that some people assumed that Baxter was
using a vision algorithm to classify their motions. This belief
is not inherently problematic, but it may have influenced the
way people moved when demonstrating motions to Baxter, thus
affecting Baxter’s motion classification accuracy and attempted
game pattern reciprocation. One user stated their belief in how
the classifier worked explicitly, noting that there were “some
mistakes during the training process, but [that] the accuracy
was pretty good (considering [the algorithm] must differentiate
between different hand poses quickly with the other hands
somewhere in the background).”

Key Contributions and Future Work
Next research steps would involve trying to improve the
robustness of Baxter’s motion classification ability. The machine
learning pipeline could be updated using the study data
recordings of how people move and behave when in front of
an actual robot. There may also be opportunities to improve
user demonstration performance by offering advice on how
to move during motion demonstrations, training additional
bigrams, encouraging games that involve only bigrams of motion
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encapsulated in our original training and test datasets, and/or
giving users a way to provide feedback to Baxter to enable
reinforcement learning. Other improvement steps include adding
more social feedback and auditory cues to the experiment, as
suggested in user comments.

Overall, we are energized by signs of user fun and increasingly
social opinions of Baxter over the course of the study. This
work may be applicable to future HRI efforts on manipulating
what users think about during interactions, considering how
to get a person’s attention, and designing future spHRI with
appropriate cueing. The hand-clapping interaction itself may
be a good way to help people learn how robots move and to
break the ice when forming human-robot teams. Other future
research directions from this bimanual clapping work include
trying the sensing system on populations who are undergoing
physical therapy formotor rehabilitation. Our findings, especially
those on the classifier accuracy and social user responses to
bimanual hand-clapping with a robot, can guide future spHRI
research.
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Due to the limitations of myoelectric control (such as dependence on muscular fatigue

and on electrodes shift, difficulty in decoding complex patterns or in dealing with

simultaneous movements), there is a renewal of interest in the movement-based control

approaches for prosthetics. The latter use residual limb movements rather than muscular

activity as command inputs, in order to develop more natural and intuitive control

techniques. Among those, several research works rely on the interjoint coordinations

that naturally exist in human upper limb movements. These relationships are modeled

to control the distal joints (e.g., elbow) based on the motions of proximal ones (e.g.,

shoulder). The regression techniques, used to model the coordinations, are various

[Artificial Neural Networks, Principal Components Analysis (PCA), etc.] and yet, analysis

of their performance and impact on the prosthesis control is missing in the literature. Is

there one technique really more efficient than the others to model interjoint coordinations?

To answer this question, we conducted an experimental campaign to compare the

performance of three common regression techniques in the control of the elbow joint on

a transhumeral prosthesis. Ten non-disabled subjects performed a reaching task, while

wearing an elbow prosthesis which was driven by several interjoint coordination models

obtained through different regression techniques. The models of the shoulder-elbow

kinematic relationship were built from the recordings of fifteen different non-disabled

subjects that performed a similar reaching task with their healthy arm. Among Radial

Basis Function Networks (RBFN), Locally Weighted Regression (LWR), and PCA, RBFN

was found to be the most robust, based on the analysis of several criteria including

the quality of generated movements but also the compensatory strategies exhibited

by users. Yet, RBFN does not significantly outperform LWR and PCA. The regression

technique seems not to be the most significant factor for improvement of interjoint

coordinations-based control. By characterizing the impact of the modeling techniques

through closed-loop experiments with human users instead of purely offline simulations,

this work could also help in improving movement-based control approaches and in

bringing them closer to a real use by patients.

Keywords: upper-limb prosthetics, movement-based control, shoulder-elbow coordinations, regression

algorithms, motor strategy
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1. INTRODUCTION

Advances in mechatronics and robotics over the last years have
led to the production of more biomimetic active prostheses with
more andmore degrees of freedom (DoFs). Upper limb amputees
can thus be proposed complex active mechatronic devices like
polydigital hands or whole arm prostheses like the Luke Arm by
Deka (Resnik et al., 2013) or the modular arm by the Applied
Physics Laboratory of Johns Hopkins (Johannes et al., 2011),
among other examples. However, while the hardware improved,
there remains a lack of natural, easy and intuitive control of
these artificial limbs with numerous active DoFs (Engdahl et al.,
2012; Cordella et al., 2016). Conventional myoelectric control
commands these multiple DoFs with only one or two muscles,
which leads to complex and sequential control schemes. Indeed,
depending on the amputation level, there can be the hand, the
wrist and the elbow to control at the same time, each with
at least two distinct actions to pilot. To improve myoelectric
control in such a case, solutions like pattern recognition have
been developed for more than 20 years (Saridis and Gootee,
1982; Park and Lee, 1998; Chu et al., 2006). Myoelectric
control via time-invariant muscle synergies is also explored to
allow continuous and simultaneous control of multiple DOFs
(Lunardini et al., 2016). Yet, with all the limitations of the
EMG signals measurement and its decoding [electrode shift,
sensibility to perturbations like sweat or skin impedance, etc.
(Castellini et al., 2014), leading to a robustness issue], there is a
renewal of interest in movements, that humans are more likely to
control than individual muscle contractions (see works by Kaliki
et al., 2008, 2013; Popovic and Popovic, 2001, 2002; Alshammary
and Bennett, 2016 for instance). It is actually easier to master
a sequence of movements than a sequence of contractions/co-
contractions, which is highly unnatural. We indeed receive
numerous sensory feedbacks of our own movements (vision
but also proprioception or tactile), compared to the one of
our muscular activity. Movement-based control approaches aim
to create a more intuitive and natural control by using the
motion of the residual limb to predict the movement of the
prosthesis. Indeed, it has been showed that one way the Central
Nervous System (CNS) deals with the redundancy of the human
body is to control synchronously several muscles or joints, by
grouping them into “synergies” (which exist at the muscle and
at the joint levels). For example, for a given space and task
type, there exist some synergies synchronizing shoulder and
elbow movements (Soechting and Lacquaniti, 1981; Lacquaniti
and Soechting, 1982; Lacquaniti et al., 1982; Cirstea et al.,
2003). These synergies can be modeled to then determine elbow
motions from shoulder motions (Popovic and Popovic, 2001;
Kaliki et al., 2008; Farokhzadi et al., 2016). Exploiting synergies
could especially be useful in prosthetics control since regression
methods could be used to predict motion of a distal prosthetic
joint from motion of residual proximal joints.

Of course, it is important to remind that different tasks and
motion spaces are associated to different synergies. It seems
therefore difficult to use movement-based control to predict
every motion, as each of them requires a different model; some
voluntary control would always be needed. Nonetheless, for some

given generic movements from the Activities of Daily Living,
there could be a functional gain for patient if, for fast motion
like reaching, part of the prosthesis joints was synchronously and
automatically controlled, avoiding a fatiguing and slow sequential
decomposition of joint actions. In this work, we thus focused
on reaching tasks, for which people do not naturally concentrate
on the intermediate joint control, making this motion perfectly
adapted to movement-based control. For now, our approach
is hybrid: movement-based control does not totally replace
myoelectric control but substitutes it only for the elbow even if
synergy-based control could be used for the wrist (Montagnani
et al., 2015). Long-term goal would be to control both elbow and
wrist with joint synergies; we chose to focus first on the elbow.
Joint synergies yet cannot control the hand as it is not part of a
synergistic scheme with more proximal joints.

Some studies have already been conducted on movement-
based control for elbow-shoulder motion. Merad et al. (2016a,b),
for instance, used Radial Basis Function Networks (RBFN),
one of the simplest Artificial Neural Networks (ANNs),
to estimate flexion/extension elbow angular velocity from
shoulder Euler angular velocities, measured with embedded
Inertial Measurement Units. In a wider context, Kaliki et al.
(2013) developed an inferential control scheme to command
elbow flexion/extension, forearm pronation/supination and
opening/closing of the hand at the same time. They combined
three ANNs and proportional control that took shoulder
rotational and/or translational movements as inputs (recorded
with a magnetic tracking system) and predicted the outputs cited
above. In addition to the work of Kaliki et al. and Merad et al.
several other studies on shoulder-elbow coordinations have been
published (Popovic and Popovic, 2002; Iftime et al., 2005; Mijovic
et al., 2008; Farokhzadi et al., 2016). At this time, two points can
be raised:

• There is not one accepted regression method to model
shoulder-elbow synergies, each research group or study uses
a different one, without any clear justification;

• The validation of the models are generally performed offline,
through simulations, or in a virtual reality environment. This
limits the evaluation of the robustness of the model in real case
scenario (i.e., in a closed-loop with a human user adapting in
return to the prosthetic reaction).

This study addresses these two issues. Starting from the fact
that none of the cited studies has used a linear regression
technique, we first wondered whether it was really unsuitable
(whereas it has been showed that shoulder-elbow synergies can
be approximated by a linear relationship; Micera et al., 2005).
Then, we wanted to compare the prediction ability of several
models to objectively and reliably determine the best modeling
tool for the control of a prosthetic elbow. We here focused on
three relatively simple methods: RBFN, the simplest ANN, which
was shown to correctly model shoulder-elbow synergies (Iftime
et al., 2005); Principal Components Analysis (PCA), to test the
prediction ability of a linear regression technique; and Locally
Weighted Regression (LWR), whose complexity is between PCA
and RBFN. We conducted a preliminary experimental session,
with fifteen healthy subjects that performed reachingmovements,
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to gather training data and build the three generic interjoint
coordination models. Once the models were implemented in the
prosthesis, a second experimental session was conducted with
ten other healthy subjects who performed the same tasks as in
the preliminary session but with the prosthesis substituting to
their natural arm. The prosthesis was controlled through the
mobilization of the subjects’ shoulder as the control input. To
determine the best regression methods for prosthetic control, six
metrics, that characterize the task achievement, the joint motions
and the body compensations, were assessed.

In this paper, we thus focus on the elbow-shoulder synergies
to automatize a prosthetic elbow during reaching tasks. Real tests,
in “closed loop” situation, were conducted to compare the three
elbow-shoulder coordination models obtained with RBFN, PCA,
and LWR respectively. During these tests, the participants could
directly react to the system behavior, which is closer to real life
scenario and gives more weight to the reflection on the models
robustness than fixed offline data simulation.

2. MATERIALS AND METHODS

2.1. Preliminary Session: Training Data
Acquisitions
To build and train the coordination models, data of motions
from healthy subjects are required. These training data were
collected from fifteen healthy subjects (different from those who
participated to the second session) who performed pointing
movements with their natural arm. Kinematics was recorded
with motion capture (Figure 1). Ten subjects used their right
arm, ten their left arm (five subjects participated twice). This
work was carried out in accordance with the recommendations
of the Université Paris Descartes ethic committee CERES.
Subjects provided written informed consent to participate in
the study, in accordance with the Declaration of Helsinki. Two
Inertial Measurement Units (x-IMUs from x-io technologies©),
a Codamotion (a camera-based motion capture system from
Charnwoods Dynamics, Leicestershire, UK) and a Nintendo
WiiTM balance board were used to record the movements. IMUs,
one located on the latero-posterior part of the arm, the other on
the trunk, at the sternum level, recorded the arm orientation in
the trunk coordinate system, represented by quaternion values
and then transformed into ZYX Euler angles. Codamotion
markers were placed on the hand, forearm, arm, shoulders and
hips to record elbow flexion/extension angle as well as other
kinematic parameters for further analysis. The balance board
was used to measure the variations of the weight repartition at
the feet level when performing the task. Subjects had to reach
nine targets at two different distances (18 targets in total), whose
height and position were adapted to subjects’ morphology (the
length of the subject’s armminus 10 cm defined the first distance,
the second one was 15 cm closer. Targets 1, 2, and 3 were at the
hip level, targets 7, 8, and 9 were at the shoulder level, targets 4,
5, and 6 were in-between see Figure 2). Each target was reached
three times with pause between each movement. No specific
instruction were given to the participants, to let them move
naturally. Only the initial position was imposed: subjects were

FIGURE 1 | Experimental set-up for training data recordings: participants

performed natural reaching movements toward 18 targets (9*2 distances).

x-IMUs are placed over the arm and the trunk; Coda markers on the arm,

shoulder, and trunk. Written informed consent for publication of images was

obtained from the participants.

asked to start with the humerus along the body and the elbow
flexed at 90◦. Shoulder ZYX Euler angular velocities, computed
in the trunk frame, and elbow flexion/extension angular velocity
(obtained from IMUs and Codamotion markers respectively)
were collected and used to train the three models offline, thanks
to a Matlab (Mathworks Inc.) script. As the aim is to predict
elbow motions from shoulder ones, the inputs of the models
were the shoulder data (ZYX Euler angular velocities in the trunk
frame) and the output was the elbow data (flexion/extension
angular velocity, see Figure 3). We chose to use joint velocities
to avoid any dependence on the initial position. Shoulder Euler
angles were selected as input data since they are commonly
used in shoulder-elbow coordination modeling (Lacquaniti et al.,
1982; Popovic and Popovic, 2001; Wu et al., 2002; Kaliki et al.,
2008). The kinematic data were filtered (low-pass filter with a
cut-off frequency of 5 Hz) and segmented. The start and end
of the movements were automatically determined with a Matlab
script, using a threshold on the hand velocity profile (30% of the
maximum velocity± an offset adapted to each subject). Only the
go were used for training the models.

2.2. Models
Let f be the function that approximates the relationship between
the selected inputs/outputs sets. For PCA, used for regression as
in Vallery and Buss (2006), we have, for a given input vector x
(the three shoulder Euler angular velocities for one time sample
in our case):

f (x) = Ŵ2Ŵ
+

1 x (1)

with Ŵ the matrix of principal components of the training
data, Ŵ1 and Ŵ2 the corresponding sub-matrices. The first two
Principal Components were kept since they were enough to
account for 98% of the total variance. We thus have Ŵ1 ∈ R

3×2
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FIGURE 2 | Localization of targets to reach.

FIGURE 3 | Inputs and output of the models. The inputs are ψ̇ , θ̇ , φ̇, the ZYX

Euler angular velocities of the shoulder, in the trunk frame. The output is β̇, the

elbow flexion/extension angular velocity. Written informed consent for

publication of images was obtained from the participants.

and Ŵ2 ∈ R
1×2. Ŵ+

1 = (ŴT
1 Ŵ1)

−1
Ŵ
T
1 is the left pseudo-inverse

of Ŵ1.
For LWR, the output is defined as:

f (x) =
E∑

e = 1

φ(x, θe) · ae
Tx, (2)

(with E the number of local linear models, φ the weighting
functions of these models -here Gaussian functions-, θe which
accounts for the localization and ae parameters of the linear
models) (Stulp and Sigaud, 2015). The number of local linear
models, which minimized the residual error (between real and
predicted output), was set to 2 after cross-validation.

For RBFN, we have:

f (x) =
E∑

e = 1

we · φ(x, θe), (3)

(with the radial basis functions φ, set as Gaussian functions, and
we the weight for each function, determined with linear least
square method) (Stulp and Sigaud, 2015). The number of basis
functions E, that minimized the residual error, was set to 5 after
cross-validation.

2.3. Experimental Session: Testing the
Models in Closed Loop Situation
Ten different healthy subjects, who did not contribute to
the collection of training data, participated in the second
experimental session. They were equipped with a prosthetic
elbow prototype with one active DoF (flexion/extension of
the elbow). The prototype was attached laterally to an elbow
orthosis worn by the subject (attached to his arm), installed
such that the prosthesis rotation axis was aligned with the
natural elbow flexion/extension axis of the participant. The
elbow orthosis blocked any motion of the natural elbow
(it was fixed at 90◦ during the whole experiment). Five
subjects used the prototype to the right, five to the left. The
control models were trained on the data of the preliminary
experimental session from the right and left arm group
respectively.

2.3.1. Prosthetic Elbow Prototype
The prosthetic elbow is a 1-DoF (flexion/extension) prototype
whose functional characteristics are based on the ones of
commercialized active elbow prostheses (10 N/m of nominal
torque, 80◦/s of nominal speed). The angular velocity is
controlled by a DC motor driver (Ion motor control, Ltd) via
an optical encoder placed on the motor rear shaft (resolution of
2,048 ppr and gear ratio of 1:1,000). The prototype is controlled
by a Raspberry PI, which controls the DC motor driver. It
reads data from two x-IMUs (Xio Technologies, Ltd.) placed
on the subjects arm and trunk, at the same location as for the
preliminary experimental session. The IMUs gave quaternion
values representing the arm orientation, from which ZYX Euler
angular velocities of the shoulder, in the trunk frame (ψ̇ , θ̇ , φ̇)
were computed. IMUs were reset at the beginning of each
experimental session, and their position remains unchanged
during the whole experiment. They are the only devices used
for control. The Codamotion and balance board were used for
analysis purpose only; specific Coda markers were placed on the
arm, the shoulders and the hip (see Figure 4). A prosthetic hand,
blocked in an open posture (forming a u-shape in the horizontal
plane), was placed at the extremity of the prosthetic limb.
The subjects reached the targets by placing this hand around
them.

2.3.2. Experimental Set-Up
Participants were asked to use the prosthesis to reach the same
eighteen targets as for the preliminary experimental session.
We did not ask them to reach new targets because this
study particularly focused on the robustness of the interjoint
coordination models (obtained through RBFN, PCA, and LWR)
to the inter-subject variability. We were interested in the
prosthesis response to different motor behaviors and kinematics.
Elbow angular velocity β̇ was estimated by the different
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FIGURE 4 | Experimental set-up: participants wore the prosthetic elbow as a supernumerary arm thanks to an orthosis. x-IMUs are put on the arm and on the trunk

and Coda markers on the arm, shoulder, and trunk; a balance board is placed under participant’s foot. Task consists in reaching the targets with the prosthesis. Left:

initial position. Right: reaching movement. Written informed consent for publication of images was obtained from the participants.

regression models from ψ̇ , θ̇ , φ̇, the shoulder Euler angular
velocities, computed in the trunk coordinate system, obtained
from the IMUs. The initial position, to which the participants
had to come back after every movement, was defined with the
prosthetic elbow at 90 degrees and subject’s humerus at zero
degrees, along the body. The task was limited to the go (from
initial position to target), the return of the prosthesis (from target
to initial position) was automatic. The end of the movement was
defined by the end of the prosthesis motion toward the target
(elbow velocity set to zero when the shoulder angular velocities
dropped below a chosen threshold). Subjects were asked not to
correct the final reached position with visual feedback, even if
the prediction was bad. Each target was reached 3 times, each
time with a different model. The order of models used for control
was randomized before the experimental session, and subjects
were not aware of this order. Models were implemented in the
Raspberry PI which controls the prosthesis. ψ̇ , θ̇ , φ̇, obtained
from xIMUs, were sent as model inputs. The total experimental
session (placement of the markers and the prosthesis, reaching
tasks and removal of the markers and the prosthesis) lasted
approximatively 2 h.

2.3.3. Performance Quantification
Evaluating whether a movement was correctly performed is a
complex task. Indeed, despite some characteristics shared among
subjects in reaching motions, there is a significant inter-subject
variability that prevents the use of traditional error values.
Figure 5 illustrates the inter-subject variability of β̇ for the ten
subjects that performed reaching motions with their right arm
in the preliminary experimental session (without the prosthesis).

On the box-plot of the maximum of |β̇| (Figure 6), we can
see that the range of variation is large and that there is even
some outliers identified, whereas all the motions were correct.
Considering an average healthy β̇ and compute an error with
respect to it for a given motion is thus not relevant. Moreover,
the targets can be correctly reached but with the help of
compensatorymovements (such as trunk flexion or rotation) that
have to be avoided. Musculoskeletal pain and overuse injuries
are actually a well-known problem for the upper-limb amputee
population (Kontson et al., 2017; Postema, 2017). Error value
of β̇ only concentrates on functional performance and does not
take this point into account. For these reasons, we developped
sixteen features to evaluate the performance of the models used
for prosthetic control. They were defined in order to give a
measure of the achievement of the task, the natural (or unnatural)
aspects of the arm movements and the importance of the body
compensations. Six of the most relevant metrics are presented
here, since the others lead to the same conclusion (see Appendix
for the exhaustive list) :

• The distance between the final position of the index finger and
the target to reach, δ. As the subjects were asked not to correct
the final position of the prosthesis, δ gives a measure of the
good (or bad) achievement of the task;

• The delay 1t introduced by the control schemes before the
activation of the elbow. It is defined by the difference between
the beginning of the shoulder motion (when the first Euler
angular velocity is higher than 5% of its extremum) and the
beginning of the elbow motion (β̇ higher than 5% of its
extremum). It illustrates how fast the model reacts to the
subject’s command;
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FIGURE 5 | Illustration of inter-subject variability in elbow flexion/extension angular velocity. Example of time evolution of β̇ (target 1) for the ten healthy subjects that

performed the preliminary session with their right arm.

FIGURE 6 | Box plot of the maximum of |β̇| for the ten healthy subjects that performed the preliminary session with their right arm, for the nine targets of distance 1.

• The curvature of the trajectory, c, that illustrates the deviation
of the hand from a straight line trajectory toward the target. It
is defined as

c =
max(||

−−−−−→
P(t)H(t)||)

||
−−−−−−−→
P(tfinal)P(t0)||

(4)

with P the end-effector position at each time step and H the
orthogonal projection of P on the straight line (P(t0)P(tfinal)).
It measures the natural aspect of the movement.;

• The smoothness s of the elbow angular velocity (β̇) measured
by its spectral arc length (Balasubramanian et al., 2012).
During the experiment, we observed that, for somemodels, the
extension of the elbow (and so the arm movement) was jerky,
which was very unpleasant for the user. It is thus important

to quantify the smoothness of the movement to select a model
that predicts a natural (i.e., smooth and fluid) motion;

• The final angular posture of the elbow, final β ;
• The amplitude ratio of the force on the ipsilateral feet, a,

F
tf
ips − F

t0
ips

Fmean
ips + Fmean

contra

(5)

(with F
tf
ips and F

t0
ips the force on the ipsilateral feet at the

end and the beginning of the movement respectively, and
Fmean
ips and Fmean

contra, the mean of the force on the ipsilateral and

contralateral feet, respectively). It is given in percentage of total
force applied on both foot. It measures how much the subject
moves its center of mass and thus moves its trunk laterally
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from the start to the end of the reaching. It is a direct measure
of the body compensations.

Values of these metrics for prosthetic motions were compared
with values for motions performed without the prosthesis
(motions performed during the preliminary session, later called
“natural” motions), except for δ that is zero for natural
motions (the target was always perfectly reached without the
prosthesis).

3. COMPARISON OF THE MODELS

3.1. Results
δ and 1t were averaged over subjects and targets to have one
global error value per model. The curvature, c, and the spectral
arc length of β̇ , s, were first averaged over subjects, to have one
value per model and targets, and then over targets to simplify
the analysis. The final extension of the elbow, βfinal, and the
amplitude ratio of the ipsilateral force, a, were only averaged
over subjects (the average over targets does not make any
sense since the two metrics directly depend on target location).
Statistical analysis (Wilcoxon test for difference between models
and ANOVA of Friedman for targets location dependency),
performed on Statistica R©, was conducted for every metrics
except βfinal because of the lack of data for some targets. The final
position error, δ (see Figure 7), is bigger for motions induced
by PCA controller than for motions induced by RBFN or LWR
controllers (+10 and +15 mm respectively, p < 0.05). δ of
motions controlled by LWR is the smallest (53 mm) and its

FIGURE 7 | Distance δ between the end-effector of the prosthetic hand and

the target to reach. Values are averaged over subjects and targets. There is no

value for natural reaching motions without prosthesis as the task was always

perfectly achieved in the preliminary session. *indicates a statistically significant

difference (p < 0.05).

standard deviation is smaller than the one of δ of RBFN- or
PCA-controlled movements.

On Figure 8, we note that there is a natural delay between
shoulder and elbow motions, which is most of the time positive
(the elbow moves after the shoulder). The sign of 1t has no
evident correlation neither with the target location nor with the
subjects. We can still see that, compared to the natural 1t , the
most reactive model is PCA, with 7 ms of delay. RBFN is a bit
slower, with 8 ms. Both stay in the natural baseline. LWR shows
a different behavior since , on average, the elbow starts moving
before the shoulder (1t is -60ms). Very small shoulder angular
velocities are enough to cause elbow motion. 1t of LWR is thus
significantly different from the one of RBFN and PCA but also
from natural1t (p < 0.05).

On Figure 9, we first see that c depends on the target reached
(p<0.05). It is an expected result as the curve described by
the end-effector varies according to the height and the lateral
position of the targets. For most of the targets, movements
estimated by PCA and LWR controllers have a larger curvature
than those estimated by RBFN controller or than natural
motions. This is confirmed by the mean of c , whose values for
PCA and LWR are significantly different from the value of RBFN-
controlledmotions (p < 0.05) or from the one of natural motions
(p < 0.05). Reaching motions performed with PCA and LWR
control have thus a less natural trajectory than those performed
with RBFN control, even though they still stay in the range of
natural motions.

Concerning the smoothness s, the more negative, the less
smooth is the motion. s does not depend on the target location

FIGURE 8 | 1t, delay between the shoulder and the elbow motions, that

illustrates the time of response of the model, mean over subjects and targets.

Straight and dotted red lines are respectively the mean and standard deviation

of the values from natural reaching motions without the prosthesis. *indicates a

statistically significant difference (p < 0.05).
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FIGURE 9 | Curvature c of the movements obtained by the three regression models. Values are averaged over subjects. From left to right: c for targets of distance 1,

c for targets of distance 2 and mean of c over targets. Straight and dotted red lines are respectively the mean and standard deviation of the values from natural

reaching motions without the prosthesis (preliminary experimental session). Numbers correspond to the targets location, see Figure 2. *indicates a statistically

significant difference (p < 0.05).

for PCA-controlled, LWR-controlled and natural motions but
depends on location for RBFN-controlled motions (p < 0.05).
On Figure 10, we can quickly notice that motions made with
LWR control are always less smooth than all other modes of
control (RBFN, PCA and natural). s values of LWR are indeed
significantly different from natural ones (p < 0.05 for 14 targets
out of 18). s values of RBFN are significantly different for 10
targets out of 18 but are still lower than s values of LWR
and the mean value of s for RBFN is in the natural baseline
(i.e., lower than mean+standard deviation of smoothness for
natural movements). PCA provoked significantly less smooth
movements for only 3 targets out of 18 and the mean value of
s for PCA is very close to the one of natural motions (−3.218
and −3.213, respectively). Figure 11 first shows that the elbow is
too extended, in the final posture, with all regression models for
the three higher targets of distance 1 and the six higher targets
of distance 2. The range of βfinal is smaller for motions with the
prosthesis than for natural motions. The natural variations of
βfinal are not fully reproduced with the prosthesis, maybe because
reaching of higher and/or closer targets involve slightly different
joint synergies, as explained in the introduction. βfinal especially
discriminates PCA control since its estimation by this technique
is higher than the normal extension and the one predicted by
RBFN and LWR. This higher extension can explain the bigger
δ of the movements with PCA control, observed Figure 7.

Finally, Figure 12 shows that there are important body
compensations with the prosthesis, whose amplitude depends on
the target side location. These compensations may be mainly due
to the weight repartition of the prosthesis which is different from

the one of a natural arm, to the orthosis discomfort and/or to
the shift of the prosthetic forearm relatively to the humeral axis.
The body motions caused by the three regression models are
significantly different from natural body motions (p < 0.05), but
there is no significant difference between models.

3.2. Discussion
With these six metrics, the robustness (capacity to control the
prosthesis in closed loop situations) of themodels considered, the
delay of their response and their generalization to new subjects
can be analyzed. It can be seen that:

• Control obtained through movement estimation by PCA
creates smoother movements. This seems normal as PCA
is a linear model and thus has an effect similar to a low-
pass filter. The timing of shoulder and elbow motions is
close to the natural one, there is no annoying response
delay. However, the movements created by this control have
a bigger error in final position and do not have a natural
trajectory. They are wider (larger curvature) and, even if β̇ is
smooth, it is overestimated (resulting in too important elbow
extensions);

• Control obtained through movement estimation by LWR
predicts globally correct elbow movements (except for highest
targets of distance 1 and up and middle targets of distance
2, which were more difficult to reach because of their
localization) and leads to the smallest final error in position.
Nevertheless, the movements have a larger curvature, like
the ones created by PCA control, and they are not smooth,
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FIGURE 10 | s, spectral arc length of β̇, for the three regression models. The more negative, the less smooth. Values are averaged over subjects. From left to right: s

for targets of distance 1, s for targets of distance 2 and mean of s over targets. Straight and dotted red lines are respectively the mean and standard deviation of the

values from natural reaching motions without the prosthesis. Numbers correspond to the targets location, see Figure 2. *indicates a statistically significant difference

(p < 0.05).

FIGURE 11 | Final β, elbow final extension, of the movements obtained with the three regression models. Values are averaged over subjects. From left to right: βfinal
for targets of distance 1, βfinal for targets of distance 2. Straight and dotted red lines are respectively the mean and standard deviation of the values from natural

reaching motions without the prosthesis. Numbers correspond to the targets location, see Figure 2.

which is a major limitation since the motion appears non
natural and hardly usable to perform some tasks (like
carrying delicate objects). Moreover, the elbow starts to

move with very small shoulder angular velocities, which
does not make the prosthesis control very confortable nor
robust;
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FIGURE 12 | a, amplitude ratio of the force on the ipsilateral feet, mean over subjects. From left to right : a for targets of distance 1, a for targets of distance 2.

Straight and dotted red lines are respectively the mean and standard deviation of the values from natural reaching motions. Numbers correspond to the targets

location, see Figure 2.

• Control obtained through movement estimation by RBFN is
less smooth than the one through estimation by PCA but
it still remains within the natural baseline. The trajectory of
these movements is close to natural movements (see c) and the
predicted extensions are globally correct, except for the same
targets as for LWR control. The delay between shoulder and
elbow motions is close to the natural one.

RBFN seems thus to be the most suitable algorithm for elbow
prosthetic movement-based control, among the three models
considered in this study. Nonetheless, it cannot be concluded
that RBFN really outperforms PCA and LWR and predicts a
totally natural and accurate elbow motion. In particular, βfinal is
overpredicted for the highest targets, δ is still not close to zero (60
mm), and the body compensations are not smaller than with PCA
and LWR control. Moreover, we can notice that each metric has
an important standard deviation, be it for natural motions or the
ones estimated by PCA, LWR or RBFN control. Indeed, beyond
the common characteristics of reaching, each subject has its
proper joint coordinations. This raises the following points : can
we expect to find amodel of joint coordinations that will perfectly
perform for all subjects? To which extent the optimization of the
regression algorithm used to build the interjoint coordination
model can contribute in improving the control of the prosthesis?
The results of this study show that, even if a global RBFN
model (i.e., trained with data from several healthy subjects) has
a good overall performance, the elbow extension is not correct
enough to satisfy the accuracy required for the use of a prosthesis.
Additional control schemes are needed.

The experiment performed to test the real-time response
of the regression models also has some limitations, especially
because the subjects wore the prosthesis as a supernumerary
arm. Indeed, the artificial arm is not aligned with the shoulder,
as in the case of amputated patients wearing a prosthesis,
which can disturb the participant and might modify the natural
shoulder/prosthetic elbow coordinations. The weight of the
prosthesis and the weight repartition (different from the natural
one, due to the motors and electronic parts) can destabilize the
participants and partly explains the significant difference between
“without-prosthesis” and “with-prosthesis” values of a. The real
arm of the subjects (blocked in the orthosis) also hid the targets
and reduced the visibility for some movements, especially when
reaching the highest targets, which is one of the explanations of
the bad predictions of elbow extension for these targets.

4. CONCLUSION AND FUTURE WORKS

This paper presents the experimental comparison of three
regression models for movement-based control of a prosthetic
elbow. This was performed through real-time tests, with human
performing a reaching task with an arm prosthesis instead of
their natural arm. Real-time tests are a significant contribution
in movement-based control study since very few have been
done so far (Bennett, 2016; Merad et al., 2016b). It is yet very
important to take the prosthesis user in the loop as he reacts
during the movement of the prosthesis and creates perturbations
that cannot be studied in simulations or even in virtual reality

Frontiers in Neurorobotics | www.frontiersin.org 10 July 2018 | Volume 12 | Article 41110

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Legrand et al. Regression Techniques for Movement-Based Control

environment. The three models were deliberately chosen among
the simplest techniques in order to evaluate to which extent they
can be performant, instead of immediately using more complex
models (e.g., Multi-Layer Perceptron or multi-layer ANNs). We
focused on reaching movements because, due to their high speed
and the absence of concentration on intermediate joint control,
they are absolutely adapted to movement-based control. Elbow
flexion/extension was estimated from shoulder Euler angular
velocities, computed in the trunk frame. The quantification of
the prediction ability was assessed by six metrics (chosen as
the most representative among sixteen), which accounted for
task achievement, joint motion and body compensations. RBFN
showed better performance than PCA and LWR. It predicted
smooth enough movements, with a natural-like trajectory and
correct timing but it does not reduce the body compensations
nor always lead to a correct final elbow angle. An approximate
interjoint coordinations modeling can also be done by PCA
but it seems not performant enough to control a prosthesis,
which requires very good predictions to satisfy the users. LWR
predictions corresponded to the desired elbow extension angles
but the problems of the smoothness of the output and the
too sensitive response yet remain discriminating. Nevertheless,
even if some performance differences exist between the models
considered, none of them outperforms significantly the others.
The regression technique used to model joint synergies may not
be a key factor to improve prosthetic movement-based control.

This paper also highlights interesting elements to justify
the use or the exclusion of some models for elbow/shoulder
movement-based control. A sensible continuation of this study
would first be to expand the comparison to more complex
(multi-layer) ANNs, to evaluate if they are worthy or if the
RBFN’s ability is good enough to control a prosthesis. Moreover,
the experiment conducted in this study remains perfectible.
As said above, wearing the prosthesis as a supernumerary
arm is not natural and raises some problems. Motions of
healthy subjects and amputees are also different (Merad
et al., 2018). It is known that upper limb amputees generally
exhibit particular movement strategies and numerous body

compensation strategies (for example, an overuse of the trunk;
Metzger et al., 2012), because performing a task with a
natural arm or with an artificial one remains a very different
sensorimotor experience. The inter-subjects variability for
amputees may also be higher than for non-amputees (different
amputations, stump morphology, healing, etc.). Therefore, next
experimental tests should be performed in a near future with final
end users.

Finally, according to the results of this study that illustrate the
rather little influence of the regression techniques and interjoint
model on the control performance, we believe that new research
directions should be explored. First, the individualization of the
models could improve the prediction performance by tackling
the issue of inter-subject variability. Future studies aim to directly
build and improve the model on the user, taking into account
his own coordinations, during first uses of the prosthesis with
movement-based control. This is different from building the
model with data from the remaining arm, which is a solution
we do not consider as several studies have shown that joint
coordinations of dominant and non-dominant arms are distinct
(Bagesteiro, 2003; Sainburg et al., 2011; Schaffer and Sainburg,
2017). Second, “shared control paradigm” would offer an ability
to the user to correct instantaneously the movement when
the prediction was wrong or not adapted. This would also
allow for voluntary control for smaller, more precise or slower
movements.
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APPENDIX

Complementary Features for Performance
Quantification of the Regression Models
Task realization

• Distance end-effector ratio
characterizes the trajectory of the end-
effector (the index finger). It is defined by

total distance followed by the end-effector
distance between initial and terminal points of the trajectory . It measures if

the hand shakes during the movement or if there is bumps
due to the regression. If it is the case, it provokes extra traveled
distance. Distance end-effector ratio will also be higher if the
elbow is too extended for the target;

• Smoothness of end-effector velocity
• Time to perform the task

Articulation features

• Smoothness of Euler angular velocities
To know if the difference in smoothness for β̇ comes from the
models or from the inputs (possibility of sub-movements), we

also looked at the smoothness of ψ̇ , θ̇ , φ̇;
• Maximum of humerus aperture angle

an important parameter to characterize and compare shoulder
motions of healthy subjects and of subjects with the
prosthesis;

• Elbow final altitude
demonstrates if the participants did unnatural movements to
compensate for bad β̇ predictions by lifting their elbow;

• PCA distance between β̇ and Euler angular velocities
subspaces
proposed by Bockemühl et al. (Bockemühl et al.,
2010), measures the similarity of synergies between two
movements.

Body compensation

• Amplitude (difference between end and beginning) of body
inclination,

• Amplitude of body rotation,
• PCA distance between shoulder and trunk angles subspaces

(Euler angles for shoulder and inclination/rotation angles for
the trunk).
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This study sought to design and deploy a torque monitoring system using an artificial

neural network (ANN) with mechanomyography (MMG) for situations where muscle

torque cannot be independently quantified. The MMG signals from the quadriceps

were used to derive knee torque during prolonged functional electrical stimulation

(FES)-assisted isometric knee extensions and during standing in spinal cord injured (SCI)

individuals. Three individuals with motor-complete SCI performed FES-evoked isometric

quadriceps contractions on a Biodex dynamometer at 30◦ knee angle and at a fixed

stimulation current, until the torque had declined to a minimum required for ANN model

development. Two ANN models were developed based on different inputs; Root mean

square (RMS) MMG and RMS-Zero crossing (ZC) which were derived from MMG. The

performance of the ANN was evaluated by comparing model predicted torque against

the actual torque derived from the dynamometer. MMG data from 5 other individuals

with SCI who performed FES-evoked standing to fatigue-failure were used to validate

the RMS and RMS-ZC ANN models. RMS and RMS-ZC of the MMG obtained from the

FES standing experiments were then provided as inputs to the developed ANNmodels to

calculate the predicted torque during the FES-evoked standing. The average correlation

between the knee extension-predicted torque and the actual torque outputs were 0.87

± 0.11 for RMS and 0.84 ± 0.13 for RMS-ZC. The average accuracy was 79 ± 14% for

RMS and 86 ± 11% for RMS-ZC. The two models revealed significant trends in torque

decrease, both suggesting a critical point around 50% torque drop where there were

significant changes observed in RMS and RMS-ZC patterns. Based on these findings,

both RMS and RMS-ZC ANN models performed similarly well in predicting FES-evoked

knee extension torques in this population. However, interference was observed in the

RMS-ZC values at a time around knee buckling. The developed ANN models could be

used to estimate muscle torque in real-time, thereby providing safer automated FES

control of standing in persons with motor-complete SCI.

Keywords: functional electrical stimulation, mechanomyography, neural network, spinal cord injuries, torque

estimation

114

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2018.00050
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2018.00050&domain=pdf&date_stamp=2018-08-10
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:azah.hamzaid@um.edu.my
https://doi.org/10.3389/fnbot.2018.00050
https://www.frontiersin.org/articles/10.3389/fnbot.2018.00050/full
http://loop.frontiersin.org/people/398222/overview
http://loop.frontiersin.org/people/285931/overview


Dzulkifli et al. Mechanomyogram Neural Network Torque Monitoring

INTRODUCTION

Individuals with spinal cord injury (SCI) often require
rehabilitation strategies and assistive technologies to facilitate
their daily tasks. Functional electrical stimulation (FES)
enables these individuals with neuromuscular disability to
execute functional activities such as walking, cycling, and
standing up, as well as improving their blood flow and sensory
awareness (Petrofsky, 2004). FES activates the nerves using
small electrical currents, thereby recruiting muscles to produce
non-physiologically evoked contractions and retrain atrophied
muscles, thereby partially or fully regaining lost functions
(Hamid and Hayek, 2008). Electrical stimulation can be applied
through the skin surface or via intramuscular electrodes to
evoke contractions of the non-innervated muscles (Ferrarin and
Pedotti, 2000). The intensity and temporal characteristics of the
stimulation must be regulated to prevent rapid-onset muscle
fatigue that leads to failure to perform the desired movement.

When an able-bodied individual performs exercise, over time
the muscles becomes fatigued due to repetitive muscle activity,
and thus are not be able to reach a set level of maximum voluntary
contraction (MVC) force to maintain the current task (Barry and
Enoka, 2007). The definition of muscle fatigue in an engineering
context is when the muscle’s physiological performance change
before being finally unable to produce any more force (Barry and
Enoka, 2007). This can be used as the basis for determining the
muscle fatigue threshold whereby a certain percentage from the
MVC during an experiment can be used to determine that the
muscle has become fatigued. Another parameter that can be used
to quantify muscle fatigue is a change of joint angle (Barry et al.,
1985; Guo et al., 2008).

Apart from torque and angle measurements, a physical
sensor to measure muscle activity and performance is the
mechanomyogram (MMG). MMG records mechanical changes
of the muscle during its contraction (Weir et al., 2000). Unlike
electromyography, MMG does not have power line interference
and has high signal to noise ratio (Islam et al., 2013). MMG also
provides information such as forces the muscle can produce, the
stiffness and the fluid pressure (Barry et al., 1985). MMG signals
during specific activities such as walking, standing and reaching
are recorded in order to monitor the muscle fatigue by placing
the MMG sensors on the skin surface of the muscle to provide
a measure of the mechanical activity of contracting muscles by
detecting the muscular sound (Islam et al., 2013). The amplitude
of the MMG is related to the force produced by the muscle,
whereby even a small change of force is reflected in the MMG
amplitude (Beck, 2010).

MMG has been used as a development tool to find the
abnormalities from the designated baseline. MMG is useful
in the detection of muscle fatigue during sustained voluntary
contraction (Jensen et al., 1994). Even though MMG has been
commonly used to quantify muscle fatigue during isometric
contractions, the usability of MMG for postural control after
fatigue made it significant in various fields such as occupational
therapy and ergonomics (Beck, 2010).

Researchers have not been able to measure muscle
performance during activities such as standing because

there is no adequate tool to directly quantify knee and hip
extensor torques in stance. With the use of MMG, the muscle
activity can be quantified over time and thus its performance
assessed. Therefore, in this study, the aim was to design an
artificial neural network (ANN) that could predict the torque
exerted around the knee joint by the quadriceps muscle by
taking inputs from certain MMG parameters, namely the root
mean square (RMS) and zero crossings (ZC). The models were
designed to predict the muscle torque during FES isometric
knee extension. Second, we sought to apply the ANN models
to multiple sessions of FES standing challenges. This was done
to determine the accuracy and reliability of the ANN models
based on RMS and RMS-ZC inputs to predict the knee torque
produced by the quadriceps in FES isometric knee extension and
standing. Finally, this study aimed to compare the ANN model’s
performance to determine the input(s) that best predicted
of performance of isometric knee extension and standing.
In other words, the ANN’s accuracy to predict knee torque
produced by the quadriceps was tested during FES isometric
knee extension and the developed model was then deployed
in an FES standing activity. It was hypothesized that the knee
extension torque could be modeled through MMG-derived RMS
and ZC, which would enable the prediction of torque in activities
where torque cannot be physically measured, such as upright
stance.

METHODOLOGY

The study was performed in three phases, the first being
data collection where the SCI participants performed electrical
stimulation-evoked isometric knee extensions to obtain their
muscle MMG signal parameters and torques. The second phase
was ANN model development and signal processing of the
captured previously acquired MMG data from the first phase
to process the signal as input for the ANN model. In the third
phase the ANN models were deployed in FES-evoked standing
performed by the SCI participants. In this study, 3 subjects with
SCI were employed in the ANN design and 5 subjects with
SCI were used for the standing protocol. Subject 1, Subject 2
and Subject 3 test data were used to train and test the ANN
in seated evoked contraction while all 5 subjects were used to
test ANN model to estimate torque in evoked contraction in
standing environment. The study was approved by the University
of Malaya Medical Centre Medical Research Ethics Committee
[Ethics Number: 1003.14 (1)].

Phase 1: Knee Extension Training Data
Collection
This experiment was conducted to obtain the mechanical signal
and torque during isometric FES contractions of the quadriceps
muscle in three SCI individuals. The torque data were recorded
with a dynamometer (System 4; Biodex Medical System, Shirley,
NY, USA) and the MMG data were recorded using MMG sensor
(Sonostics BPS-II VMG transducer, sensitivity 30 V/g). The
subjects were asked to repeat the same isometric knee extension
protocol in two sessions with 48 h between each. The experiment
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was conducted at the Department of Rehabilitation Medicine,
University Malaya Medical Centre.

The data obtained from the experiment were then used as
the foundation to design a neural network system in MATLAB
toolbox to predict torques. The neural networks were tested
on with the MMG data obtained during the FES standing
contraction without torque data in Phase 3. The next phase of
the experiment involved training the system and validating the
system.

Equipment and Materials
The validation of the ANN model was done by comparison
with isometric knee torque data obtained from the commercially
available dynamometer (System 4; Biodex Medical System,
Shirley, NY, USA). The test protocol set on the dynamometer
was Isometric knee extension and 900 seconds recovery between
each trial. Three trials were conducted for each of the left and
right leg. The isometric contraction angle was set at 30◦ from the
straight leg position. The subjects for this experiment were three
individuals with SCI (International Standards for Neurological
Classification of Spinal Cord injury (ISNCSCI) of A and B) who
were trained FES users and non-sensate due to the sensory deficit
of their injury. The subjects were briefed about the research
protocol before providing their informed consent to participate.

FES Evoked Muscle Contractions and Knee Torque

Measurement
The subjects were familiar with the FES activity and therefore
no familiarization session was needed prior to data collection.
The FES stimulation of square-wave pulses was provided at 30Hz
and 200 µs pulse durations with a stimulation current amplitude
of 100mA. The stimulation was provided by a commercial
neurostimulator (RehaStimTM, Hasomed GmbH, Magdeburg,
Germany). Electrodes used in this experiment were 9 × 15 cm2

self-adhesive electrodes.

Data Collection Procedure
The subjects were seated on the dynamometer seat and seatbelts
were strapped around them to prevent movement from muscles
other than the quadriceps interfering the reading of the MMG.
The knee attachment was applied to the right leg to measure
the torque exerted around the right knee. The subject’s ankle
was strapped to a cushion of the knee attachment to hold the
leg at a 30◦ knee angle. Since the armature prevented the leg
from moving, the torque signal obtained from the dynamometer
fully originated from the subject’s muscle and not affected by the
gravity. The maximum andminimum flexion and extension were
set on the Biodex. The Biodex recorded knee torque at a sampling
rate of 500Hz.

The FES electrodes were placed at both ends of quadriceps
muscles but not on the tendon area which was around 5 cm near
the position of the patella and around 8 cm distal to the groin area
(Levin et al., 2000). Figure 1 illustrates the setup for FES induced
isometric knee torque measurement. The subject was seated on
the Biodex seat such that the lateral femoral condyle was parallel
to the dynamometer axle. This body position and the lever arm
of the dynamometer were consistent throughout the study.

FIGURE 1 | FES electrodes and MMG sensor placement on the quadriceps

muscle.

Once the settings were set, the dynamometer guided the
knee attachment to 30◦ knee flexion. The MMG recording
was initiated first while the dynamometer torque recording
and FES stimulation were started simultaneously after. The
recording of the dynamometer, the MMG, and the simulation
was stopped once the torque reading reached well below 50% of
the maximum torque and the recovery period began thereafter.
The same procedure was repeated for the left knee once the third
trials had ended with the same settings for dynamometer and
neurostimulator as well the recovery period. The subject then
repeated the same procedure after 48 h. To ensure high day-
day reproducibility of the protocol, the same researchers and
physiotherapists were involved in the experiment for all subjects.

MMG Acquisition and Processing
Muscle mechanical signals were recorded with the MMG sensor
placed right on the muscle belly and held onto the muscle
belly with a double-sided tape (3M 157 Center St. Paul, MN,
USA). Acqknowledge v4.3 data acquisition and analysis software
(MP150, BIOPAC Systems, Santa Barbara, CA, Inc) were used to
collect the data at 1 k Hz frequency. The signal was then filtered
with a bandpass filter (20Hz lower cutoff frequency and 200Hz
higher cutoff frequency). The MMG amplitude is a recognizable
way to see the relation between MMG and net torque as the
decrease of the net torque correlated to decrease ofMMG (Gobbo
et al., 2006).

The dataset processed from the MMG signal could be in the
time or the frequency domain. In the time domain, the amplitude
was identified as voltage values and the amplitude was used
to calculate RMS. The MMG RMS is reported as a variable in
describing motor unit recruitment during a contraction process
(Orizio et al., 2003).

The RMS was the magnitude of the measurement obtained by
the MMG and the data was in the time domain. Both parameters
(RMS and torque) were then scaled to values in the range of
0–1 to simplify the data for preprocessing step for the ANN.
The MMG RMS were obtained from MATLAB at 1 s epochs.
Normalization of MMG and torque data, as well as the designing
process of the ANN, was done using MATLAB version R2015a
(2015) toolbox.
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FIGURE 2 | Standing Experiment. (A) At the beginning of the experiment the legs were straight due to FES stimulation. (B) The knee approaching 30◦ flexion

“knee-buckle”.

RMS was correlated to load as increasing MVC increased
the RMS value of the MMG (Akataki et al., 2003). RMS value
represents the motor activation (Weir et al., 2000). RMS has also
been reported to be an important parameter to monitor muscle
fatigue due to its association with the force of contraction of the
muscle (Barry et al., 1985). The equation for the RMS processing
was defined as:

RMS =

√
1

N

∑N−1

k=1
x2
k
, for k = 1, . . . ,N (1)

where xk is the raw signal from each segment andN is the number
of samples.

In isometric contractions, an increase of MMG amplitude was
observed when force production was low which was around 10–
40% of the MVC. During high level of muscle torque which
was around 50–80% of MVC, there was no change in MMG
amplitude (Perry et al., 2016). The same observation was reported
by another research group (Rodriguez-Falces and Place, 2013).

A lower level of muscle torque resulted to decrease in MMG
amplitude (Orizio et al., 2003) due to a linear relationship
reported between the contractionmuscle and the RMS amplitude
of theMMG (Oster and Jaffe, 1980). The correlation of amplitude
of MMG signal and motor unit activation was reported during a
voluntary contraction as well as FES contraction (Beck, 2010).

The mean frequency shows the frequency feature of the MMG
(Cescon et al., 2004). Zero crossing (ZC) was used due to the fact
that unlike mean frequency, ZC does not require the use of Fast
Fourier Transform (FFT) to obtain and the calculation used to
obtain ZC is a simple one (Hägg, 1991). ZC has been defined as
the number of times that the MMG signal passed through the

horizontal amplitude axis (Zecca et al., 2002). The Equation (2)
for ZC was as follows:

ZC =

∑N

k=1
sgn

(
−xkxk+1

)
, for k = 1, . . .N

sgn (x) =

{
1 if x > 0
0 otherwise

(2)

where xk is the raw signals of the of the segment and N is the
number of samples.

Both MMG RMS and ZC were taken at the sample rate
of N = 1,000. While the torque data from the Biodex were
averaged to get the mean torque for every 500 torque samples.
This was done to obtain the reading of torque, MMG RMS
and ZC for every second during the stimulated contraction for
synchronization.

Phase 2: Neural Network Development
Training Data Processing and Neural Network

Development
The Neural Network system was designed using MATLAB 2015
using the Neural Network fitting toolbox. The ANN system takes
MMG inputs to predict the onset of muscle fatigue with the
output of normalized torque ranging from 0 to 1. Two types of
ANN models were developed based on the two types of data sets
used to train the model, the first was normalized MMG RMS
only and the second type was normalized MMG RMS together
with normalized MMG ZC; i.e., RMS-ZC. RMS and RMS-ZC
were used as the input for the neural network training and the
normalized torque was used for the target data for the desired
output of the network. The ANN was trained by feeding the
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RMS and RMS-ZC signals along with the desired signal data, i.e.,
the torque output from the Biodex, to the models. The samples
obtained from the first session from the 3 subjects were used as
training samples. Based on a priori correlation test considering
0.91 correlation of probability, alpha error probability of 0.05, 0.2
beta error probability, and 0.84 effect size, at least 6–8 samples
were minimally required statistically thus this study employed
18 training data and 12 testing samples of various sample size
to test the accuracy of the neural network system. The testing
samples were obtained from the second session of the experiment
for two of the subjects. The samples were arranged in matrix
row. A feed-forward network with sigmoid hidden neurons and
linear output neurons was used for the development of the ANN.
Sigmoid transfer function was utilized as a transfer function
due to the transfer function introduced non-linearity to the
network’s calculations as well as it is a simple derivative function
(Calcagno et al., 2010). The type of ANN model developed was
the multi-layer Perceptron which contained multiple layers of
computational units that were interconnected in a feed-forward
manner. The three layers used were the input layer, hidden layer
and the output layer. ANN model training technique involved
the output values of the system to be compared with the correct
values thus producing the error between the output and the
correct answer are computed in an error function (Calcagno
et al., 2010). Adjustments were made to the weights on every
connection to obtain a smaller value of error function. The
percentage of testing data was set at 70% training samples, 15%
validations samples and 15% testing samples. These were the
default settings for ANN. The number of hidden neurons was
set at 10. The number of hidden neuron was chosen based on
the number of hidden neurons that gave the best results of
the training data (r > 0.8) The network was trained with the
Levenberg-Marquardt algorithm (Levenberg, 1944):

w = w+ 1w (3)

w =

[
JTJ + µI

]−1
JTe (4)

e = R− z (5)

where w was the weight vectors, 1w was the differences between
the weight vectors, J was Jacobian matrix that included the first
derivatives of the network errors according to the weight, µ was
a scale parameter, I was the identity matrix, R is the vector of
measured torque, z is the vector of predicted torque, and e is a
vector of the network errors. Post neural training, the network
was deployed with the MATLAB compiler and Builder tools to
generate a MATLAB function. The training and testing data sets
for ANN building can be found at these repositories: figshare |
figshare.

Neural Network Accuracy Test
In order to quantify the performance of the two ANN models,
a correlation between the predicted torque output and the
actual torque output as well as the accuracy of the models were
identified. To achieve the objective, the network was tested with
all the normalized RMS and RMS-ZC from the second session of
the 3 subjects. The output torque was then compared with the

actual torque obtained from the Biodex with the “fitlm” function
on MATLAB to obtain the correlation (r). A critical point of 50%
torque drop was chosen in order to test the accuracy of the ANN
model by comparing the time for the actual torque in each test
data samples to reach 50% torque drop and the time for predicted
torque (RMS and RMS-ZC) to reach 50% drop to determine the
reliability of the models to detect a specific torque value. The
accuracy was obtained from the equation (6). The results from
the Neural Network test with the isometric knee extension was
presented in Table 2.

1−

∣∣predicted torque time − actual torque time
∣∣ × 100

actual torque time
% (6)

Phase 3: Testing the Neural Network Model
in FES Standing
Standing Protocol
A standing protocol was executed in order to validate the
effectiveness of the ANN model to predict the onset of muscle
fatigue by predicting muscle torque during an FES standing
stance in SCI subjects. Five individuals with sensory complete
SCI (ISNCSCI A and B) participated in this study phase. This
protocol has been developed to measure different stimulation
frequency effects during a prolonged FES standing (Ibitoye,
2016, unpublished) and had been approved by the University
of Malaya Medical Centre Medical Research Ethics Committee
(MECID.NO: 20164-2366). All 5 subjects had been familiarized
with the FES training and were able to undergo the stimulation
as intended in the protocol. The FES stimulator that was
used in the standing experiment was a commercially available
neurostimulator (RehaStimTM, Hasomed GmbH, Magdeburg,
Germany). The stimulation was channeled to the targeted muscle
by 9 × 15 cm2 surface adhesive electrodes (RehaStimTM,
Hasomed GmbH, Magdeburg, Germany). This protocol was
adapted from the procedure reported by Braz and colleagues
(Braz et al., 2015). A harness (Biodex Offset Unweighing System)
was used to support the subject’s body and prevent the subject
from swaying and tumbling. Handle bars were available on
the subject’s sides for upper body balancing. This is because
the torque generated by FES was sufficient to maintain the
balance of the lower limbs. However, to stabilize the upper
body trunk the SCI subject had to hold on to the handle
bars to maintain balance due to lack of abdominal and chest
voluntary strength. To ensure that the harness did not influence
the subject’s weight, researchers ensured that both subject’s feet
were flat on the ground and their heels not hanging above
the ground. The muscle mechanical signal during the standing
protocol was recorded with the same MMG accelerometer
used in the knee extension experiments. Data acquisition and
signal processing were done digitally through Acqknowledge v4.3
software (MP150, BIOPAC Systems, Santa Barbara, CA, Inc). FES
standing was achieved by continuous stimulation of both left and
right quadriceps and gluteal muscles. The quadriceps muscles
were stimulated to achieve stabilization in the knee extension
and glutei was stimulated for hip extension and upright posture
stabilization. The subject was stimulated at quadriceps (80mA)
and glutei (64mA) at 200 µs pulse width. The frequency of
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the stimulation was 35Hz on the one trial and 20Hz on the
other trial. During the stimulation, the changes in the knee bend
were observed and verified using a goniometer. The goniometer
was used as to identify the end-point for the experiment as
the stimulation and MMG recorded was then stopped when
the knee reached 30◦ flexion. The subject was then given a 30-
min recovery period between the two trials. The MMG signals
obtained from the standing protocol was processed similarly
to the signal processing in isometric knee extension. Figure 2
illustrates (a) the setup for the experiment and (b) the moment
where the subject was approaching the fatigue point which was
the 30◦ knee bend.

The filteredMMG signal data was then processed to obtain the
normalized RMS and ZC. The time taken for the RMS to drop
to 70, 50, and 30% of the maximum RMS was taken for t-test
comparison with the time taken for the knee bend to reach 30◦.
This was to determine if the RMS alone was sensitive enough to
the changes in torque to maintain the knee angle above the 30◦

mark. The RMS and RMS-ZC data set were then used as inputs
for the ANNmodels respectively to obtain the predicted torque.

A point where changes in the gradient of the predicted
output had been selected as a critical point from both sets of
predicted torque to determine the consistency between both
models to predict the critical point at a similar time and

FIGURE 3 | Normalized MMG RMS and Normalized MMG ZC against time used to be as training data for ANN development from Subject 4 Session 1, Left leg trial 1.

FIGURE 4 | Normalized torque measurement from Biodex dynamometer and the predicted torque from two ANN models from Subject 4 Session 1, Left leg trial 1.
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predicted torque value. The time taken to the critical point
was normalized in the range of 0–100% stimulation time for
all subjects because the overall experiment time differed for
each trial and the torque value at the critical point from each
standing subject were used in t-test to determine its significance.
In order to determine the effectiveness of the ANN to predict
muscle torque and to compare between the two types of input,
few hypotheses had been established to determine the behavior
of ANN in standing protocol was similar to isometric knee
extension.

The hypotheses were (i) the initial torque predicted would be
higher than the final torque predicted, (ii) the predicted torque

TABLE 1 | Average correlation (R) and accuracy test for the two ANN models to

predict torque during FES isometric knee extension.

ANN model input

Model 1: RMS Model 2: RMS-ZC

R 0.87 ± 0.11 0.84 ± 0.13

Accuracy (%) 79 ± 14 86 ± 11

TABLE 2 | T-test significance values for time to reach 30, 50, and 70% of MMG

RMS drop compared to the time to 30◦ knee buckle.

MMG RMS % p-value

30% MMG RMS drop vs. 30◦ knee angle 0.01

50% MMG RMS drop vs. 30◦ knee angle 0.01

70% MMG RMS drop vs. 30◦ knee angle 0.02

output pattern would be reduced throughout the stimulation and
(iii) the pattern of RMS and ZC before and after the 50% torque
drop point would not be the same. To confirm the hypotheses,
t-test was used to identify the P values of the following pairs;
Initial and Final predicted torque, the gradient of MMG RMS
and MMG ZC before and after the point where the ANN
models predicted a 50% torque drop where there should be a
noticeable change to the gradient of MMG RMS and MMG
ZC once the predicted torque from each model had reached
a 50% torque drop from the maximum, and the gradient of
the predicted torque. The statistical analysis was done using
PSPP (1.0.1, GNU operating system, 2017). The results from
the t-test for consistency test for both models are presented in
Table 3 while the hypothesis testing results are summarized in
Table 4.

RESULTS

Testing the ANN Model With Isometric FES
Contraction to Predict Torque
The MMG data were processed into MMG RMS and MMG ZC
and then normalized. The final MMG dataset is presented in
Figure 3 while Figure 4 illustrates the predicted output torque
produced by the neural network model and the actual output
torque measured by the dynamometer during the data collection
part of the research where Model 1 is the ANN model that uses
RMS as input andModel 2 uses RMS-ZC as input. Figure 3 shows
RMS gradually decreased from the maximum as the stimulation
continues and ZC shows a dramatic increase in the frequency of

FIGURE 5 | Normalized predicted torque for a standing protocol for Subject 5 Trial 1.
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muscle contraction after a certain period toward the end of the
session. The gradient of the RMS decrease differed from the start
and toward the end of the contraction.

Actual Torque and Predicted Torque From Isometric

Contraction Testing
The accuracy of the ANN model to predict the measurement
of torque was first tested on isometric knee extension prior to
the standing experiment. The correlation and the accuracy of
the ANN model to predict the torque in both subject 1 and
2 as presented in Table 1 which shows the mean accuracy and
correlation between the two types of inputs.

Testing the ANN Model in FES Standing
Protocol to Predict Torque
A series of 2-tailed t-test was performed to determine whether
the time taken for MMG RMS to drop to a certain level was
significantly different than the time taken for the knee angle to
reach 30◦ at the end of stimulation. The results from the t-test
are presented in Table 2.

Figure 5 shows the predicted torque, which was the output
from the ANN model, where model 1 was based on RMS as
input and model 2 was from the RMS-ZC input. Both torque
series mostly satisfied the set hypotheses where (i) the initial
predicted torque was higher than the final predicted torque,
(ii) the predicted torque output pattern descended throughout
the stimulation in most cases, and (iii) the gradient of RMS
and ZC before and after the 50% torque drop point were
different.

The results from t-test statistical analysis of the standing
protocol based on the said hypotheses are shown in Tables 3, 4.

DISCUSSION

This study sought to investigate the practicality of using ANN
models to predict the knee extension torque during isometric

contraction and standing stance using RMS and RMS-ZC as
inputs to the ANN. The testing on isometric knee extension
revealed that the ANNmodel used to predict muscle torque from

FIGURE 6 | Biomechanics of Standing. Left: non- fatigued, quiet standing

motion. Small knee extension moment. Right: fatigued, 30◦ knee angle bend.

Large knee flexion moment due to gravity.

TABLE 3 | Summary of the t-test done for time to reach a critical point (RMS and RMS-ZC) and the predicted torque at a critical point (RMS and RMS-ZC).

Critical Points at which gradient changes ANN model input p-value

Model 1: RMS Model 2: RMS-ZC

Normalized time (%) 44 ± 21 45 ± 17 0.93

Predicted torque (%) 54 ± 14 58 ± 17 0.33

TABLE 4 | Summary of t-test statistical analysis for standing protocol from devised hypotheses.

Hypothesis Torque initial vs. Torque

final

RMS gradient before and after

50% torque drop

ZC gradient before and after 50%

torque drop

Predicted torque gradient before

and after 50% torque drop

Model Input RMS RMS-ZC RMS RMS-ZC RMS RMS-ZC RMS RMS-ZC

Mean ± SD Initial Torque Pre50% drop

0.95 ± 0.4 0.93 ± 0.1 −0.02 ± 0.1 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.10 0.01 ± 0.00

Final Torque Post50% drop

0.53 ± 0.16 0.51 ± 0.15 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

p-values 0.00 0.00 0.00 0.04 0.18 0.66 0.00 0.01
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the MMG muscle signal of the quadriceps muscle was reliable.
RMS-ZC input ANNmodel revealed a higher accuracy compared
to RMS input ANNmodel which suggested that in isometric knee
extension, RMS-ZC was more suitable than RMS only as input
to the ANN model. This also suggests that ANN is a feasible
strategy to predict torque without the need of dynamometer.
However, when frequency of the stimulation is increased, the
initial frequency of the MMG would also increase. This can be
seen in Figure 3, whereby when the muscle is fatigued there is a
rise in the initial frequency.

The effect of pulse width on the MMG or fatigue was not
studied in this research, however other literature suggested that
the pulse width has no significant effect on the muscle fatigue
but it affects the maximum muscle force production (Jailani and
Tokhi, 2012).

Higher accuracy from RMS-ZC input was due to an increase
of ZC value past ∼50% of maximum knee torque. This was
due to SCI muscle are more fatigable compared to able-bodied
especially during low-frequency FES (Mahoney et al., 2007).
This could be explained by the transformation of slow twitch
muscle fiber to fast twitch muscle fiber (Bickel et al., 2004). The
transformation explains the ZC graph where the increase of the
number of contraction leads to decrease of torque recorded by
the dynamometer.

From Table 3, the t-test results of P = 0.93 indicated no
significant difference between the time taken for the predicted
knee torque output pattern to reach the point where there are
significant changes to the pattern of the actual knee torque
obtained from the Biodex dynamometer. The value of the
predicted torque at the critical time from both models were
not significantly different from the value of the torque obtained
from the dynamometer with a p-value of 0.33. This indicated
that in general both models performed with a consistent level of
prediction.

Individually, for the first hypothesis in the standing protocol
which states that the initially predicted torque was significantly
different than the final predicted torque, both RMS input and
RMS-ZC input ANN model outcome revealed that they are
significantly different (P < 0.01). The difference was due to the
rapid muscle fatigue which lead to decrease of RMS and an
increased frequency of muscle contraction based on the findings
in isometric knee extension (Barry et al., 1985).

The second hypothesis which stated that at the point where
the ANN predicted 50% quadriceps torque or lower, there was
a significant change toward the pattern of RMS where the RMS
decreases at the steeper slope and ended up plateauing (gradient
is near 0). However, t-test for prediction for both RMS input
and RMS-ZC input for the gradient of ZC before and after the
predicted 50% torque drop shows that there is no significant
difference (P-valuerms = 0.18, P-valuerms−zc = 0.66). When
compared to isometric knee extension protocol, the standing
protocol did not stabilize the legs and this caused the legs to move
and this movement had possibly caused the changes in amplitude
in the ZC value.

The third hypothesis was that the gradient of predicted
torque for both models of ANN is decreasing throughout the
experiment. The RMS input showed a slightly more significant
difference compared to RMS-ZC input. Although from Table 3

both models showed the same consistency in predicting
the torque generally, RMS input showed better reliability in
predicting muscle fatigue compared to RMS-ZC input due to less
disturbance to RMS when there is a leg movement. However,
ZC input was able to provide a frequency domain of the muscle
contraction as an increased number of contraction indicated the
recruitment of fast twitch muscle fiber which had less endurance
to fatigue compared to slow twitch fiber (Karlsson et al., 1981).
Additionally, as shown in Table 3 there was significant difference
between the time taken for RMS MMG to record a drop to

FIGURE 7 | Graph of MMG RMS against Knee Bend Angle during FES Standing in SCI subjects (Mohd Rasid, 2017).
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selected level and the time for the muscle to get fatigued and
unable to maintain quiet standing. This assumption enabled
the ANN to be more useful in predicting the torque at higher
accuracy. With both ZC and RMS a better model can be
developed that combines both temporal and spectral domain of
the muscle signal.

At the end of the evoked standing session, the irregular
torque predicted by the models, as illustrated in Figure 5,
could be due to gravity effect acted during standing. The
biomechanics of standing is illustrated in Figure 6. We
hypothesized that the amplified torque due to the gravity and
the increased distance (d) between the knee joint and the
ground reaction force had affected the MMG responses. A
research done with similar protocol and SCI subject supported
this hypothesis whereby when the knee started to buckle,
the MMG amplitude started to increase. The graph from the
experiment is shown in Figure 7 (Mohd Rasid, 2017). However,
a biomechanical study which include the study procedure
involving biomechanical setup such as ground reaction force
plate and a 3D camera system is required to further ascertain
this.

This research was limited as presently the ANN model to
predict the torque was analyzed only during quiet standing
and isometric knee extension. Future studies should include a
wider movement pattern such as sit-to-standmovement, which is
another nonmeasurable knee torque movement. Different types
of inputs such as PTP and ARV in the time domain and MP in
the frequency domain could be investigated as well as different
types of computer software networks such as support vector
machine (SVM). This research also focused on a specific set of

parameters for the FES. To our knowledge, there has not been

any investigation on ANNmodel that is trained to predict torque
in FES standing experiment using MMG. Hence, this study has
demonstrated that an ANNmodel is feasible in predicting torque
during isometric knee extension and FES standing. We hope that
this study will be used as the basis for development of real-time
ANN model to predict torque and thus may contribute to the
improvement of the automated control FES during rehabilitation
in SCI.
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Brain-computer interface (BCI) is a direct communication pathway between brain and

external devices, and BCI-based prosthetic devices are promising to provide new

rehabilitation options for people with motor disabilities. Electrocorticography (ECoG)

signals contain rich information correlated with motor activities, and have great potential

in hand gesture decoding. However, most existing decoders use long time windows,

thus ignore the temporal dynamics within the period. In this study, we propose to use

recurrent neural networks (RNNs) to exploit the temporal information in ECoG signals for

robust hand gesture decoding. With RNN’s high nonlinearity modeling ability, our method

can effectively capture the temporal information in ECoG time series for robust gesture

recognition. In the experiments, we decode three hand gestures using ECoG signals of

two participants, and achieve an accuracy of 90%. Specially, we investigate the possibility

of recognizing the gestures in a time interval as short as possible after motion onsets. Our

method rapidly recognizes gestures within 0.5 s after motion onsets with an accuracy of

about 80%. Experimental results also indicate that the temporal dynamics is especially

informative for effective and rapid decoding of hand gestures.

Keywords: brain-computer interface, electrocorticography, neural prosthetic control, neural decoding, motor

rehabilitation

1. INTRODUCTION

Brain-computer interface (BCI) is a direct communication pathway between brain and external
devices (Wolpaw et al., 2002). BCI systems do not depend on peripheral nerves and muscles, and
thus have great potential to provide new rehabilitation options to patients with motor disabilities
(Daly and Wolpaw, 2008), toward the big vision of cyborg intelligence (Wu et al., 2013, 2016; Yu
et al., 2016). Electrocorticography (ECoG)-based BCI systems, i.e., the semi-invasive BCIs, have
better long-term stability than invasive BCIs (Pilcher and Rusyniak, 1993), although neural spikes
(Qian et al., 2018; Xing et al., 2018) have high temporal resolution, and contains richer information
than traditional non-invasive BCIs, such as EEG (Blankertz et al., 2004; Sun et al., 2016), thus have
been considered as an ideal option for applications such as neural prosthesis control (Leuthardt
et al., 2004; Schalk et al., 2008).

A key problem in BCI-based neural prosthesis control is decoding movement intentions
from brain signals. Hand gestures convey rich information in communication, and hand
gesture decoding has attracted a lot of attention recently. Most existing hand gesture decoding
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approaches fall into two categories: finger movement regression
and hand gesture classification. Some typical studies on hand
gesture decoding are summarized in Table 1. Finger movement
regression approaches aim to predict the flexion trajectories of
individual fingers (Kubánek et al., 2009; Miller et al., 2012, 2014;
Xie et al., 2018). But the flexion trajectories of individual fingers
in those studies were generated by the movement of single finger.
Very few studies tried to decode flexion trajectories of fingers
when multiple fingers move simultaneously (Acharya et al.,
2010). According to several finger movement decoding studies,
the sites of useful signals in ECoG locate separately in space for
different fingers (Miller et al., 2012, 2014). When multiple fingers
move simultaneously, although the mixed signals of multiple
finger movements could be recorded by ECoG electrodes, the
temporal overlapping and spatially sparse sampling makes it
difficult.

Instead of predicting the flexion trajectories of fingers, hand
gesture classification directly regards hand posture decoding
as a classification problem, which is more straightforward for
practical solution of prosthesis control. Yanagisawa et al. (2011)
proposed a real-time decoding system to classify three hand
gestures with a linear classifier. Chestek et al. (2013) proposed to
use naive Bayes decoder to effectively classify five hand postures
from the ECoG signals. These approaches addressed the strength
of ECoG signals in hand gesture classification, however, they
extracted features using statistics over a long time window,
and thus ignored the dynamics in time. Since the performing
of gesture is a process, temporal information in ECoG signals
contains potential information for decoding. To capture the
temporal information, Bleichner et al. (2016) and Branco et al.
(2017) proposed a temporal templatematchingmethod to decode
four gestures from ECoG signals, and Li et al. (2017) proposed
SVM-based short-term window approach to further explore
the information in time. With short-term time windows, the

TABLE 1 | Hand gesture decoding methods using ECoG signals.

Authors Problem Gestures Method Windowa Subject Num Result

Kubánek et al., 2009 Regression 5 - single finger movement Linear multivariate decoder [0, 1.2 s] 5 Average CCc–0.63

Acharya et al., 2010 Regression 2 - slow grasping motions of

the hand

Generalized linear model [0, 2 s] 4 Average CCc–0.48

Miller et al., 2012 Regression 5 - single finger movement Generalized linear model [–1 s, 2 s] 14 Relationship of

cortical population

activity

Xie et al., 2018 Regression 5 - single finger movement CNN+LSTM [0, 1 s] 3 Average CCc–0.49

Yanagisawa et al., 2011 Classification 3 - rock, scissors, paper Linear classifiers [–2 s, 2 s] 1 79.6%

Chestek et al., 2013 Classification 5 - four finger movements,

rest

Naive Bayes [–0.5 s, +1.5 s] 3 P1-68%, P2-84%,

P3-81%

Bleichner et al., 2016 Classification 4 - D, F, V, Yb Template matching [–1 s, 2 s] 2 P1-97%, P2-74%

Branco et al., 2017 Classification 4 - D, F, V, Yb Template matching [–1 s, 2.6 s] 5 85%

Li et al., 2017 Classification 3 - rock, scissors, paper SVM [0, 1.2 s] 3 P1-85.7%,

P2-84.5%,

P3-69.7%

aThe movement onset time is regarded as time 0.
bAmerican Sign Language finger spelling alphabet D, F, V and Y, respectively.
cCC is the abbreviation of correlation coefficients.

temporal patterns of different gestures can be characterized,
which provides useful information to improve the accuracy in
gesture decoding. However, the sequential relationship among
windows was not explicitly modeled for accurate decoding. It is
still a problem to further exploit the underlying temporal patterns
and structures in ECoG signals to improve gesture decoding.

In this study, we propose an RNN-based decoder to accurately
recognize hand gestures in ECoG signals. To capture the
underlying temporal information in ECoG signals, we propose
to use gated RNN models, i.e., long short-term memory (LSTM)
models, to learn the temporal patterns of different gestures. The
LSTM model can sequentially update the gates in memory cells
to determine which features in the preceding windows should
be considered for gesture decoding. To benefit temporal pattern
learning, our method selects the most temporally informative
features to be input to the LSTM decoder. Specially, we evaluate
the features in different channels and frequencies by their
decoding performances in temporal patten representation, and
select the optimal features using a greedy strategy. Experimental
results of two subjects show that our method outperforms other
methods with an accuracy of 90% in three gesture recognition.
Moreover, we investigate the possibility of recognizing the
gestures in a time interval as short as possible after motion onsets.
The motion intents can be rapidly recognized within 0.5 s after
motion onset. Our method achieves high motion recognition
performance with quick response, and is promising for online
BCI control of prosthetic and robotic devices.

2. METHODS

The framework of our method is shown in Figure 1. In our
approach, the ECoG signals are firstly divided into sequential
short-time segments, and power spectrum features are extracted
from each segment. Then we select the most informative signal
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FIGURE 1 | Framework of the proposed method.

TABLE 2 | Information of the participants and electrode locations.

Participants Gender Age Handedness (task hand) Implanted grids* Seizure focus

P1 Female 28 Right (right) LH: temporal, parietal, occipital lobe Temporal lobe

P2 Male 22 Right (left) RH: frontal medial, dorsal surface, parietal lobe Frontal lobe

* LH, Left hemisphere; RH, Right hemisphere.

FIGURE 2 | The spatial position of the subdural ECoG electrodes. (A,B) are the electrode placement for P1 and P2, respectively. The circles are the position of each

electrode, the numbers in the circles present the channels. The blue dash lines mark the central sulcus. The color of the electrodes denote the selection priority in

greedy feature selection.

channels along with the frequency bands using a greedy strategy,
to compose compact features for decoding. Finally, the features
of the segments are sequentially put into a RNN-based decoder
for gesture recognition.

2.1. Experimental Paradigm and Data
Collection
2.1.1. Subjects
The participants in this study were patients with intractable
epilepsy, who had implanted temporary intracranial electrode
arrays for surgical purpose. The configuration and location of
the electrodes were determined by clinical requirements. The
clinical electrodes were platinum electrodes with a diameter

of 4 mm (2.3 mm exposed) spacing at 10 mm and generally
implanted only for a period ranging from several days up to
2 weeks. Table 2 and Figure 2 presents the information and
implantation details of each participant. During the task, the
participants temporarily stopped taking the epilepsy medicine
under the supervision of doctors. All participants went through
the clinical examination routine of the motor, sensory, language
function, and so on through cortical stimulationmapping (CSM),
which helped to further and functionally localize the electrodes.
In addition, combined with preoperative MRI examination, a
computed tomography (CT) scans were used to further confirm
the location of the electrodes after the implantation surgery,
and none of the hand motor areas were in seizure onset zones
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FIGURE 3 | Behavior task paradigm. A trial was initiated by a red cross displayed on the center of the screen along with a verbal cue of “ready”. After a short delay,

the red cross disappeared and a gesture cue appeared on the screen, and the participant should perform the given gesture and hold it on, until the red dot appeared.

FIGURE 4 | Evaluation of the behavior task. (A,B) are the finger trajectories after movement onsets of 3 gestures for participant P1 and P2 (the variance is denoted by

the thickness of each line). (C,D) are the clustering results of the three gestures using the finger trajectories for participant P1 and P2.

for both participants. All procedures were followed from the
guide and approved by the Second Affiliated Hospital of Zhejiang
University, China. Participants gave written informed consent
after detailed explanation of the potential risks of the research
experiment.

2.1.2. Experimental Paradigms
In the experiment, the participants were asked to perform three
kinds of hand gestures (“scissors,” “rock,” and “paper”) guided by
the cues presented on the screen. As shown in Figure 3, a trial
began with a verbal cue of “ready,” and meanwhile a cross sign
displayed at the center of the screen. The cross sign indicates
that the participants should relax the task hands and be prepared.
During the relax stage, the participants were asked to relax their
task hands and flex the fingers slightly with their palms facing up.
The relax stage would last for 2–2.5 s randomly. After the relax
stage, the cross sign would be replaced by a picture of a randomly
selected gesture, and the task stage began. In the task stage, the
participants were asked to perform the given gesture instantly,
and hold the gesture until a red circle (stop cue) appeared. The
task stage would last for 2–3 s randomly. When the stop cue
showed, the participants should release the gesture and relax the

task hands. At the end of each trial, a verbal feedback “correct”
or “wrong” was given by the experimenter to tell the subjects
whether it was an eligible trial or not.

During the experiment, if participants failed to hold the
gestures until the stop cue, or forgot to release the gestures, the
trial was considered to be invalid. The failed trials were then
removed from the dataset. Each session contained three blocks,
and each block was composed of 50 trials. For both participants
P1 and P2, a total of five sessions were involved in the experiment.
The participants would have a short break between the blocks.
In practice, the number of trials and the duration of each
break depended on the medical condition and the willingness
of the participants. Experiments were carried out to evaluate
the behavioral compliance of the participants by analyzing
the finger trajectories after movement onsets. As shown in
Figure 4, the finger movement trajectories are consistent within
the same gestures with small variance (denoted by the thickness
of the line). We further analyze the trajectories by clustering
after t-distributed stochastic neighbor embedding (t-SNE). As
shown in Figure 4, the gestures are discriminative for both
participants. The results verify the compliance of the behavior
task.
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2.1.3. Data Acquisition
The ECoG signals were collected at the Second AffiliatedHospital
of Zhejiang University. The NeuroPort system (128 channels,
Blackrock Microsystems, Salt Lake City, UT) was used to
record clinical ECoG signals from subdural electrode grids. The
recorded signals were stored continuously during the whole task
at the sampling rate of 2 kHz and low-pass filtered with a cutoff
frequency of 500 Hz. The hand movement data were collected
by a 5DT data glove with 14 sensors (5DT Inc., USA) and each
sensor simultaneously recorded the finger flexion values. Since
we need to mark the onset time of each movement, we defined
the onset of a movement as the moment when five first derivative
of the flexion values consecutively exceeded a specific threshold.
In order to synchronize the neural signals and the motor data, we
marked the timestamps of each cue in the ECoG signal recordings
using the event channel of the NeuroPort system.

2.2. Segmentation and Feature Extraction
After data acquisition, both ECoG signals and movement signals
are continuous. According to the event timestamps recorded
synchronously with the signals, the valid trials could be located
and preserved for gesture decoding. Each trial contains three
timestamps of events: gesture cue start, hand motion onset
(indicated by the glove signals), and gesture cue stop.

For each trial, the ECoG signals between “hand motion onset”
and “gesture cue stop” is adopted for gesture decoding. The
raw ECoG signals are firstly processed by a common average
reference spatial filter for noise removal. For each channel, we
calculate the average value of the data of the whole session, then
the average is subtracted from the raw signals. After filtering,
a sliding window is adopted to divide the signals in trials into
small temporal segments. In accordance with previous work (Li
et al., 2017), we use a window with length of 300 ms and stride
of 100 ms. With the temporal segments, the dynamics during the
movement stage could be preserved for further decoding.

Then, the power spectral density (PSD) is estimated for each
temporal segments. The PSD is calculated using the Welch’s
algorithm (Welch, 1967). Since the range of the power in different
frequency bands could be different, normalization is required.
In our method, we adopt the ECoG signals in the relax stage
to provide the baseline for normalization. For each channel, we
firstly calculated average PSD of all the data segments obtained in
relax period:

R̄c,f =
1

N

Nrelax∑

i=1

Rc,f (i), (1)

where Rc,f (i) is the PSD of channel c and frequency f in the
relax segment i, and Nrelax is the total number of segments in the
relax stages. Then PSD of the task signals could be normalized by
dividing the respective PSD value in R̄:

Sc,f (i) =
Sc,f (i)

R̄c,f
, i = 0, 1, 2, . . . ,Ntask, (2)

where Sc,f (i) is the PSD of channel c frequency f in the task
segment i.

After normalization, we aggregate the PSD values in frequency
bands. According to previous studies (Li et al., 2017), a total of
five frequency bands are used: a low-frequency band (4–12 Hz),
beta frequency band (12–40 Hz), low gamma frequency band
(40–70 Hz), high gamma frequency band (70–135 Hz) and a
high frequency band (135–200 Hz). For each frequency band, we
calculated the average PSD for each channel:

S̄c,t,F =
1

F

N∑

f=1

Sc,t(f ), (3)

where S̄c,t,F is the average PSD of tth in band F for channel c, and
F is the total number of frequencies in each band.

At last, we put extracted features from small temporal
segments in a trail into a matrix with t rows and n columns
as a input sequence, where t is the number of windows and n
is the number of features. Each input sequence contains t time
steps, and n features at each time step. This operation let us
able to put features into RNN-based model in a recurrent way,
which better characterized temporal information by preserving
the sequential information in short-term windows. With the
temporal segments, the dynamics during the movement stage
could be preserved for further decoding.

2.3. Gesture Recognition
Since the electrode placement was determined by surgery
requirements, most channels are unrelated to hand motor
activities. The unrelated signals can bring noise in gesture
decoding and cause unnecessary computational costs. Therefore,
effective feature selection strategy is applied to choose the
most informative features for effective and efficient gesture
recognition.

2.3.1. Feature Selection
In feature selection, we adopt a greedy strategy-based method to
select the most informative channels along with the frequency
bands. The greedy strategy performs in an iterative manner.
Firstly, we choose the feature with the highest decoding
performance using an SVM classifier, and put it into the selected
set. Then, at each step, we iteratively choose one candidate
feature that improves accuracy the most when combined with
the selected features, to be added to the selected set. Since the
candidate feature is evaluated together with the selected features,
redundant features are not likely to be selected. The iteration
stops when the request feature number is reached or there is no
improvement of decoding performance after adding the newly
selected feature. The greedy feature selection strategy is presented
in Algorithm 1.

2.3.2. Recurrent Neural Network-Based Gesture

Recognition
After feature selection, the feature representation of a task trial
can be denoted as {x1, x2, . . . , xt}, where xi is the feature vector
at the ith temporal segments. The feature representation takes
rich information in both spectrum and temporal dynamic for
gesture recognition. Since most classifiers require inputs in the
form of vectors, the decoders based on such classifiers need to
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Algorithm 1 Greedy Feature Selection

Input: Input Feature Matrix F containing N samples of feature
vector {fi}

N
i=1

Output: Selected Feature List l

1: Step 0: Initialization
2: Put ith feature with the best accuracy into list l
3: l← argmaxi P(fi)
4: Initialize the best accuracy B← 0
5: Initialize local best accuracy LB← P(fl)
6: Delete fi
7:

8: Step 1: Greedy Feature Selection
9: while LB > B do

10: B← LB
11: l← argmaxi P(< fi, fl >)
12: LB← P(fl)
13: Delete fi
14: return l

concatenate the temporal features into a vector. This procedure
loses the temporal structure of data, thus leads to inaccurate
decoding.

The RNN-based method overcomes this problem by inputting
data in a recurrent way. As shown in Figure 5, the feature vectors
are sequentially put into themodel, and the temporal information
could be well preserved by the temporal connections. In
our method, the LSTM model is adopted (Hochreiter and
Schmidhuber, 1997):

i(t) = σ (Wix(t)+ Uih(t − 1)+ bi),

f (t) = σ (Wf x(t)+ Uf h(t − 1)+ bf ),

o(t) = σ (Wox(t)+ Uoh(t − 1)+ bo),

c(t) = i(t)tanh(Wcx(t)+ Uch(t − 1)+ bc)+ f (t)c(t − 1),

h(t) = o(t)tanh(c(t))

(4)

where x(t) is the feature vector at the t-th time window, o(t)
is the recognition result output from the model after the last
time window, σ (x) is the sigmoid function, c(t) is the memory
cell, h(t) is the hidden layer units, and i(t), f (t), o(t) are the
input gate, forget gate, and output gate respectively. The memory
cell can remember useful information through time, and the
gates control how many time windows should be used for the
current gesture recognition task. Therefore, in the LSTM model,
temporal information can be well preserved for accurate gesture
decoding.

3. RESULTS

In this section, experiments are carried out to evaluate the gesture
decoding performance of our method. Firstly, we examine and
analyze the decoding performance of the features selected by
different kinds of strategies. Secondly, we test the RNN model
with different settings to select the optimal parameters for gesture
decoding. After that, the RNN-based decoder is compared with

four other competitors to demonstrate the advantages of our
method. Finally, we investigate the decoding performance in a
time interval as short as possible after motion onsets for rapid
gesture recognition. The RNN model is implemented with Keras
on the top of TensorFlow.

In the experiment, we have rejected the trials with move
artifacts or electrode failures by visual inspection. After removing
invalid trails, the dataset includes 243 samples for P1, and 394
samples for P2. In our study, there are a total of three classes of
gestures of “rock,” “scissors,” and “paper.”

3.1. Feature Analysis
In this section, we analyze the features extracted from the ECoG
signals. Firstly, we evaluate the feature selection strategy and
assess its influence on the gesture recognition performance.
Then, experiments are designed to find the appropriate number
of features to be applied in gesture recognition. After that,
the channels and frequency bands selected are presented and
analyzed.

The performance of the greedy-based feature selection is
evaluated in comparison with other methods. Firstly, we evaluate
the gesture recognition performance using all the channels and
frequency bands by the SVM classifier to serve as the baseline
in the experiment. Then, an optimal-based feature selection
strategy, which independently selects the top N features with the
best decoding performance, is implemented and compared. The
settings of competitors in this experiment are as follows:

• Baseline: all the channels with all five frequency bands
are used for gesture recognition. The features in temporal
segments are concatenated to a vector and put into the SVM
classifier.
• Optimal-based feature selection: a feature selection strategy

that evaluates each frequency of each channel independently,
and selects the best N features for gesture recognition.
• Greedy-based feature selection: our method. The strategy is

described in the Algorithm 1.

In this experiment, the signals are divided into temporal
segments using a 300 ms sliding window with a stride of 100
ms, and a total of 10 temporal segments following the movement
onsets are used. The performance is presented in the average
accuracy of 3-fold cross-validation. In gesture classification
evaluation, we apply 10-fold cross-validation, for each fold in
cross-validation, we randomly select 20% of the training dataset
as validation dataset to select the hyper-parameters.

As shown in Figure 6, we compare the feature selection
strategies using the accuracy of the gesture recognition
performance. Results show that the baseline method using all
the features obtains high performance. With the feature selection
strategies, performance close to the baseline can be achieved
using only a small set of features. It is because the useless channels
could bring noises in classification. Besides, the large amounts of
features (both P1 and P2 have 32 signal channels, the total feature
number is the product of the number of channel, the number of
frequency, and the number of temporal segment) lead to high
computational costs.
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FIGURE 5 | Architecture of RNN model for gesture classification from ECoG.

FIGURE 6 | Performance of feature selection strategies using different number of features. (A,B) are for participant P1 and P2, respectively. The yellow stars indicate

the points that the greedy algorithm stops, and the performance converges after the points.

We also compare the performance using a different number of
features. Compared with the optimal-based strategy, the greedy
strategy achieves better performance on both of the participants.
In the greedy strategy, since the candidate feature is evaluated
together with the selected features, redundant features are not
likely to be selected, and thus more informative feature sets could
be obtained.

Here, we present the statistical analysis of the channels and the
frequency bands selected by our method. The feature distribution
of frequency bands is shown in Figure 7, which shows that the
most useful bands are 70–135 Hz and 135–200 Hz. The results
indicate that high frequency bands in ECoG are highly correlated
to hand motions, which is in agreement with previous studies
(Bleichner et al., 2016; Branco et al., 2017).

For the number of features, we only used the first six features
selected by the greedy algorithm. It is because, although using
more features can still lead to improvement of performance
as in Figure 6, the later selected electrodes can not bring
much improvement. Besides, since the dataset is small, a slight
improvement can be brought by overfitting instead of useful

information. The channels and their corresponding frequency
bands are shown in Table 3. The corresponding electrodes for the
features are illustrated in Figure 2. Most of the selected electrodes
are close to the central sulcus and within the sensorimotor region,
which is in accordance with existing studies (Li et al., 2017).

3.2. Performance of Gesture Recognition
In this section, we evaluated the decoding performance of our
method. Firstly, in order to maximize the performance of the
classifiers, experiments are carried out on the validation dataset
to select the optimal model settings. Secondly, we compare our
method with other decoders to demonstrate the effectiveness of
temporal information, and the ability of RNN in ECoG time
series decoding.

3.2.1. Model Selection
Experiments are carried out to select the optimal setting for the
LSTM RNN model. For the LSTM model, one important setting
is how many hidden units are used. Models with a small set of
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FIGURE 7 | Distribution of selected frequency bands. (A,B) are for participant P1 and P2. The first nine features are illustrated and analyzed. The vertical axis presents

the number of the selections in each frequency band.

TABLE 3 | The channels and frequency bands selected by the greedy-based

strategy.

Selection order
Participant P1 Participant P2

Channel Frequency

band (Hz)

Channel Frequency

band (Hz)

1 3 70–135 13 70–135

2 11 135–200 13 135–200

3 13 135–200 12 70–135

4 2 135–200 20 12–40

5 30 70–135 20 135–200

6 28 135–200 17 70–135

hidden units may not be useful to encode the information, while
models with large sets of hidden units are prone to overfitting.

In this experiment, we tune the number of hidden units from
8 to 128 to test the performance of the LSTM model. In this
experiment, we use the top six features selected by the greedy
strategy, and the settings of temporal segments are the same
as in section 3.1. As shown in Figure 8, the LSTM model with
32 hidden units got the best performance (90.56% on for P1
and 88.18% for P2) for both participants on validation dataset.
Therefore, we use 32 hidden units for gesture recognition in
our decoder. In model training, we use Adam optimization
algorithm, the learning rate was set to be 0.001 with a decay rate
of 0.0005 for each epoch. An early stop was applied by selecting
the epoch with the best performance on the validation set.

3.2.2. Comparison With Other Methods
In this experiment, comparison is carried out between our
method and other decoders. We firstly compare our method with
decoders using long time windows to evaluate the effectiveness
of temporal information. Then our decoder is compared with
other classifiers to demonstrate the strength of RNN models in
sequential modeling. For the competitors, we carefully select
typical segment-based ECoG/EEG classification approaches from
the existing studies, including linear and nonlinear methods. For
linear method, we choose the widely used logistic regression

method as in Subasi and Erçelebi (2005). For nonlinear method,
we choose the classical SVM classifier with RBF kernel as in
Li et al. (2017) for comparison. We also compare the segment-
based approaches with the method using long time windows
to show the effectiveness of temporal information. In order to
demonstrate the effectiveness of recurrent structure, we compare
our method with an MLP-based approach as in Chatterjee and
Bandyopadhyay (2016), to evaluate advantage of weight sharing
of RNN models. In this experiment, the signals are divided into
temporal segments using a 300 ms sliding window with a stride
of 100 ms. A total of 10 temporal segments are used. Thus, each
input sequence contains 10 time steps, and 6 features at each time
step for our RNN model.

In this experiment, we evaluate our method in comparison
with other methods using a permutation test. In each
permutation trial, we randomly select 10% of the data for test,
and run a total of 500 trials. We also examine the significance of
the results using paired t-test.

The implementation and settings of the competitors in this
experiment are as follows:

• SVM-Global: a SVM-based decoder using features calculated
over long time windows. For fair comparison, the length of
the ECoG signal used is the same as the following competitors.
RBF kernel is used in the SVMmodel, and the parameters of C
and gamma is selected by cross-validation. The parameters C is
selected from 0.1,1,10,100 and 1,000, and gamma was selected
from 0.01, 0.001, and 0.0001.
• SVM-Segments: a SVM-based decoder using features in

temporal segments (Li et al., 2017). The segment settings are
the same as the RNN method. The features in sequence are
reshaped into a single vector to input to the SVM classifier.
RBF kernel is used in the SVMmodel, and the parameters of C
and gamma is selected by cross-validation. The parameters C is
selected from 0.1,1,10,100, and 1,000, and gamma was selected
from 0.01, 0.001 and 0.0001.
• MLP-Segments: a multilayer perception based decoder from

previous work (Chatterjee and Bandyopadhyay, 2016). The
segment settings are the same as the RNN method. The
features in sequence are reshaped into a single vector to input
to the MLP classifier.
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FIGURE 8 | Performance of different number of hidden units in RNN. The LSTM model with 32 hidden units got the best performance (90.56% on for P1 and 88.18%

for P2) for both participants on validation dataset. The black dash line represents the standard deviation.

TABLE 4 | Gesture recognition comparison of different decoders.

Decoder P1 P2

SVM-Global 79.03%± 6.50 78.94%± 7.60

SVM-Segments 86.51%± 5.23 87.66%± 6.19

MLP-Segments 84.35%± 5.76 87.11%± 7.13

LR-Segments 83.82%± 5.69 85.76%± 6.77

RNN (ours) 89.34%± 4.67 90.83%± 5.94

• LR-Segments: a logistic regression based decoder from
previous work (Subasi and Erçelebi, 2005). The segment
settings are the same as the RNN method. The features in
sequence are reshaped into a single vector to input to the LR
classifier.

The results are shown in Table 4. Overall, the RNN-based
decoder obtains the highest accuracies for both participants.
For participant P1 the gesture recognition accuracy is 89.34%,
and for participant P2 the gesture recognition accuracy is
90.83%. Among the competitors, the SVM-Global gives the worst
performance. It is reasonable since it calculates the features
using the whole time window and ignores the information in
time. The SVM-Segments method improves the accuracy by 7.48
and 8.72% for P1 and P2 respectively, by using the temporal
segments. The results demonstrate the importance of considering
the temporal information in ECoG decoding. The significance of
the results are evaluated using paired t-test. Results show that our
method statistical significantly outperforms other approaches
under significance of 0.01 (see Table 5).

3.3. Rapid Recognition
Quick recognition is an important issue in BCI-based prosthetic
control. In this section, we investigate the possibility of

TABLE 5 | P-value of paired t-test in comparison with other methods.

t-test P1 P2

Ours vs. SVM-Global 1.52E-141 6.25E-129

Ours vs. SVM-Segments 3.31E-34 2.37E-25

Ours vs. MLP-Segments 3.08E-66 9.34E-28

Ours vs. LR-Segments 8.58E-86 6.06E-53

recognizing the gestures in a time interval as short as possible
after motion onsets. In the experiments, we tune the time interval
from 100 ms to 1,200 ms after motion onsets. For each time
interval, the ECoG signals are divided using a 300 ms sliding
window with a stride of (t−w)/9 ms, where t is the time interval
and w = 300 ms is the length of the sliding window. If the time
interval is <300 ms, we use a w = t/2 ms sliding window with
a stride of w/9 ms. A total of 10 temporal segments are used.
We evaluate the performance using a permutation test. In each
permutation trial, we randomly select 10% of the data for test,
and run a total of 500 trials.

The results are shown in Figure 9. As the time interval
become longer, better gesture decoding performance could be
obtained. The results of this experiments also demonstrate
the possibility of rapid recognition. As shown in Figure 9,
recognition accuracies of over 75% could be obtained at the 0.3
s interval for both of the participants. If we use a 0.5 s time
interval, the gesture recognition accuracy is over 80%. The results
also indicate that, the temporal dynamic is especially informative
for quick decoding within short time intervals. The significance
of the results is evaluated using paired t-test, and our method
outperforms both SVM-Global and SVM-Segment significantly
with p < 0.01. The details of the t-test results are shown in the
Supplementary Table 1.
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FIGURE 9 | Gesture recognition performance within different time intervals after motion onsets. (A,B) are the decoding performance of different methods on

Participant P1 and P2, respectively. Recognition accuracies of over 75% could be obtained at the 0.3 s interval for both of the participants. If we use a 0.5 s time

interval, the gesture recognition accuracy is over 80%. The results also indicate that, the temporal dynamic is especially informative for quick decoding within short

time intervals.

4. DISCUSSIONS

In this study, we have shown that ECoG signals provide
useful information for effective hand gesture classification, and
demonstrated the importance and effectiveness of temporal in
formation in gesture decoding. Compared with the existing
approaches, our method explore further on the temporal
information in ECoG signals to achieve more accurate hand
gesture decoding. Bleichner and Branco et al. (Bleichner et al.,
2016; Branco et al., 2017) proposed to use temporal template
matching of local motor potential (LMP) for each channel for
gesture decoding. Compared with their approaches, our method
considered temporal information in different frequency bands,
and modeled patterns and underlying relationships using the
RNN decoder. Li et al. (2017) proposed to model temporal
information in the ECoG signals using short-term time windows
and SVM classifier. In their approach, the features in temporal
sequence were reshaped into a vector for classification, which
broke the temporal structure of the features. Different from
their method, our RNN-based decoder input features in a
recurrent way, which better characterized temporal information

by preserving the sequential information in short-term windows.
Elango et al. (2017) proposed to use RNN-based models
to classify individual finger movements. Different from their
approach which manually selected the ECoG channels and
frequencies from empirical observations, our method selected
the optimal channels and frequencies with a greedy strategy
to provide the most useful temporal information for gesture
decoding. Overall, our method further exploited the temporal
information of ECoG signals in both feature selection stage and
gesture decoding stage, and recognized three hand gestures with a
high accuracy of 90%. Besides, our results provided evidence for
the possibility of rapid recognition. As shown in Table 1, most
existing methods require long detection delays (from 1.2 to 2.6 s)
to achieve high performance, which leads to poor user experience
in real-time prosthesis control. In our system, quick response
can be achieved within 0.5 s with an accuracy of 80%, which is
promising for online applications.

Although our model achieved great results on ECoG signals,
the details of temporal information still need a discussion. The
temporal dynamic of different gestures is illustrated in Figure 10.
The color presents the feature values of six features in different
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FIGURE 10 | Temporal dynamic of different gestures. (A,B) are the feature values of 3 gestures averaged from all the samples for participant P1 and P2, respectively.

Each subfigure illustrates the averaged feature values of the six selected features of ten time windows.

FIGURE 11 | The importance of each feature for different gestures. (A,B) are the importance evaluated by mutual information for participant P1 and P2, respectively.

time. The features are ordered by the selection order as inTable 3.
The horizontal axis denotes the time windows, where 0 is the
movement starting point. As described in section 3, the window
length is 300 ms with a stride of 100 ms. It is shown that, the
features contain varying patterns in time. Most of the features
show higher values in the first several time windows and the
values decrease with time. One exception is the fourth feature
for P2, which has small values shortly after movement onset.
It is reasonable because the feature covers low frequency band
(12–40 Hz). The feature might be chosen under overfitting.
We also evaluate the importance of each feature for different
gestures. In Figure 11, we present the mutual information of
each features to the gesture labels. For P1, the most informative
features are the 1st and the 2nd (the corresponding electrodes
are 3 and 11 respectively), for P2, the most informative features
are the 1st, 2nd, and 5th (the corresponding electrodes are
13 and 20 respectively). The most informative electrodes are
close to the central sulcus. For P2, although the 5th feature is

informative, the selection priority is not high. It might because
the feature is correlated to the early selected features. Therefore,
it is not preferable in the greedy algorithm. In addition, the results
in feature selection show that most of the selected electrodes
are distributed along both sides of the postcentral gyrus in
two participants, which is in accordance with existing studies
(Pistohl et al., 2012; Wang et al., 2012; Chestek et al., 2013).
The results suggest that the activation of the postcentral gyrus
play an influential role in hand movement. This phenomenon
is probably due to the motor control copy or the force-related
feedback.

5. CONCLUSION

In this study, we proposed a RNN-based method to exploit
the temporal information in ECoG signals for rapid and
robust gesture recognition. Compared with the existing
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approaches using linear methods or SVM classifiers, the RNN
model better preserved the structure in feature sequence
and was capable of learning from nonlinear relationships.
Our system recognized three hand gestures with a high
accuracy of 90%, and quick response was achieved within
0.5 s with an accuracy of 80%. The results showed that
ECoG signals provide useful information for effective hand
gesture classification, and demonstrated the possibility of
rapid recognition. The results provided further evidence for
the feasibility of robust and practical ECoG-based control of
prosthetic devices.

6. ETHICS STATEMENT

This study was carried out in accordance with the
recommendations of the institutional review board ethical
guidelines of the Second Affiliated Hospital of Zhejiang
University with written informed consent from all subjects.
All subjects gave written informed consent in accordance with
the Declaration of Helsinki. The protocol was approved by the
Medical Ethical Committee of the Second Affiliated Hospital of
Zhejiang University, China.

AUTHOR CONTRIBUTIONS

GP and S-MZ conceived and designed the experiment. S-MZ and
J-MZ collected and preprocessed the clinical data. J-JL and HY
performed the data analysis. GP, YQ, X-XZ, and Y-MW provided
advice on the analysis and interpretation of the final results. YQ,
GP and J-JL wrote the paper.

FUNDING

This work was partly supported by the grants from
National Key Research and Development Program of
China (2017YFB1002503, 2017YFC1308501), Zhejiang
Provincial Natural Science Foundation of China (LR15F020001,
LZ17F030001), and National Natural Science Foundation of
China (No. 61673340, No. 31627802).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2018.00555/full#supplementary-material

REFERENCES

Acharya, S., Fifer, M. S., Benz, H. L., Crone, N. E., and Thakor, N. V.
(2010). Electrocorticographic amplitude predicts finger positions
during slow grasping motions of the hand. J. Neural Eng. 7:046002.
doi: 10.1088/1741-2560/7/4/046002

Blankertz, B., Müller, K. R., Curio, G., Vaughan, T. M., Schalk, G., Wolpaw,
J. R., et al. (2004). The BCI competition 2003: progress and perspectives in
detection and discrimination of EEG single trials. IEEE Trans. Biomed. Eng.

51, 1044–1051. doi: 10.1109/TBME.2004.826692
Bleichner, M. G., Freudenburg, Z. V., Jansma, J. M., Aarnoutse, E. J., Vansteensel,

M. J., and Ramsey, N. F. (2016). Give me a sign: decoding four complex
hand gestures based on high-density ECoG. Brain Struct. Funct. 221, 203–216.
doi: 10.1007/s00429-014-0902-x

Branco, M. P., Freudenburg, Z. V., Aarnoutse, E. J., Bleichner, M. G., Vansteensel,
M. J., and Ramsey, N. F. (2017). Decoding hand gestures from primary
somatosensory cortex using high-density ECoG. NeuroImage 147, 130–142.
doi: 10.1016/j.neuroimage.2016.12.004

Chatterjee, R., and Bandyopadhyay, T. (2016). “EEG based Motor Imagery
Classification using SVM and MLP,” in Computational Intelligence and

Networks (CINE), 2016 2nd International Conference (Bhubaneswar) 84–89.
Chestek, C. A., Gilja, V., Blabe, C. H., Foster, B. L., Shenoy, K. V., Parvizi, J., et

al. (2013). Hand posture classification using electrocorticography signals in the
gamma band over human sensorimotor brain areas. J. Neural Eng. 10:026002.
doi: 10.1088/1741-2560/10/2/026002

Daly, J. J., and Wolpaw, J. R. (2008). Brain–computer interfaces
in neurological rehabilitation. Lancet Neurol. 7, 1032–1043.
doi: 10.1016/S1474-4422(08)70223-0

Elango, V., Patel, A. N., Miller, K. J., and Gilja, V. (2017). Sequence Transfer
Learning for Neural Decoding. bioRxiv 210732 [Preprint]. doi: 10.1101/210732

Hochreiter, S., and Schmidhuber, J. (1997). “LSTM can solve hard long time
lag problems,” in Advances in Neural Information Processing Systems (Denver,
CO), 473–479.

Kubánek, J., Miller, K. J., Ojemann, J. G., Wolpaw, J. R., and Schalk, G.
(2009). Decoding flexion of individual fingers using electrocorticographic
signals in humans. J. Neural Eng. 6:066001. doi: 10.1088/1741-2560/6/6/0
66001

Leuthardt, E. C., Schalk, G., Wolpaw, J. R., Ojemann, J. G., and Moran, D. W.
(2004). A brain–computer interface using electrocorticographic signals in
humans. J. Neural Eng. 1:63. doi: 10.1088/1741-2560/1/2/001

Li, Y., Zhang, S., Jin, Y., Cai, B., Controzzi, M., Zhu, J., et al. (2017). Gesture
Decoding Using ECoG Signals from Human Sensorimotor Cortex: A Pilot
Study. Behav. Neurol. 2017:3435686. doi: 10.1155/2017/3435686

Miller, K. J., Hermes, D., Honey, C. J., Hebb, A. O., Ramsey, N. F.,
Knight, R. T., et al. (2012). Human motor cortical activity is selectively
phase-entrained on underlying rhythms. PLoS Comput. Biol. 8:e1002655.
doi: 10.1371/journal.pcbi.1002655

Miller, K. J., Honey, C. J., Hermes, D., Rao, R. P., denNijs, M., and Ojemann,
J. G. (2014). Broadband changes in the cortical surface potential track
activation of functionally diverse neuronal populations. Neuroimage 85, 711–
720. doi: 10.1016/j.neuroimage.2013.08.070

Pilcher, W. H., and Rusyniak, W. G. (1993). Complications of epilepsy
surgery. Neurosurg. Clin. North Am. 4, 311–325. doi: 10.1016/S1042-3680(18)
30597-7

Pistohl, T., Schulze-Bonhage, A., Aertsen, A., Mehring, C., and Ball, T. (2012).
Decoding natural grasp types from human ECoG. Neuroimage 59, 248–260.
doi: 10.1016/j.neuroimage.2011.06.084

Qian, C., Sun, X., Zhang, S., Xing, D., Li, H., Zheng, X., et al. (2018). Nonlinear
modeling of neural interaction for spike prediction using the staged point
process model. Neural Comput. (In press).

Schalk, G., Miller, K. J., Anderson, N. R., Wilson, J. A., Smyth, M. D.,
Ojemann, J. G., et al. (2008). Two-dimensional movement control
using electrocorticographic signals in humans. J. Neural Eng. 5:75.
doi: 10.1088/1741-2560/5/1/008

Subasi, A., and Erçelebi, E. (2005). Classification of EEG signals using neural
network and logistic regression. Comput. Methods Programs Biomed. 78, 87–99.
doi: 10.1016/j.cmpb.2004.10.009

Sun, X., Qian, C., Chen, Z., Wu, Z., Luo, B., and Pan, G. (2016). Remembered
or forgotten?—An EEG-Based computational prediction approach. PLoS ONE
11:e0167497. doi: 10.1371/journal.pone.0167497

Wang, Z., Gunduz, A., Brunner, P., Ritaccio, A. L., Ji, Q., and Schalk,
G. (2012). Decoding onset and direction of movements using
electrocorticographic (ECoG) signals in humans. Front. Neuroeng. 5:15.
doi: 10.3389/fneng.2012.00015

Frontiers in Neuroscience | www.frontiersin.org 12 August 2018 | Volume 12 | Article 555136

https://www.frontiersin.org/articles/10.3389/fnins.2018.00555/full#supplementary-material
https://doi.org/10.1088/1741-2560/7/4/046002
https://doi.org/10.1109/TBME.2004.826692
https://doi.org/10.1007/s00429-014-0902-x
https://doi.org/10.1016/j.neuroimage.2016.12.004
https://doi.org/10.1088/1741-2560/10/2/026002
https://doi.org/10.1016/S1474-4422(08)70223-0
https://doi.org/10.1101/210732
https://doi.org/10.1088/1741-2560/6/6/066001
https://doi.org/10.1088/1741-2560/1/2/001
https://doi.org/10.1155/2017/3435686
https://doi.org/10.1371/journal.pcbi.1002655
https://doi.org/10.1016/j.neuroimage.2013.08.070
https://doi.org/10.1016/S1042-3680(18)30597-7
https://doi.org/10.1016/j.neuroimage.2011.06.084
https://doi.org/10.1088/1741-2560/5/1/008
https://doi.org/10.1016/j.cmpb.2004.10.009
https://doi.org/10.1371/journal.pone.0167497
https://doi.org/10.3389/fneng.2012.00015
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Pan et al. Rapid Decoding ECoG Using RNNs

Welch, P. (1967). The use of fast fourier transform for the estimation of power
spectra: a method based on time averaging over short, modified periodograms.
IEEE Trans. Audio Electroacoustics 15, 70–73. doi: 10.1109/TAU.1967.11
61901

Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., and
Vaughan, T. M. (2002). Brain–computer interfaces for communication
and control. Clin. Neurophysiol. 113, 767–791. doi: 10.1016/S1388-2457(02)
00057-3

Wu, Z., Pan, G., and Zheng, N. (2013). Cyborg intelligence. IEEE Intell. Syst. 28,
31–33. doi: 10.1109/MIS.2013.137

Wu, Z., Zhou, Y., Shi, Z., Zhang, C., Li, G., Zheng, X., et al. (2016). Cyborg
intelligence: recent progress and future directions. IEEE Intell. Syst. 31, 44–50.
doi: 10.1109/MIS.2016.105

Xie, Z., Schwartz, O., and Prasad, A. (2018). Decoding of finger
trajectory from ECoG using deep learning. J. Neural Eng. 15:036009.
doi: 10.1088/1741-2552/aa9dbe

Xing, D., Qian, C., Li, H., Zhang, S., Zhang, Q., Hao, Y., et al. (2018). Predicting
Spike Trains from PMd to M1 Using Discrete Time Rescaling Targeted
GLM. IEEE Trans. Cogn. Dev. Syst. 10, 194–204. doi: 10.1109/TCDS.2017.
2707466

Yanagisawa, T., Hirata, M., Saitoh, Y., Goto, T., Kishima, H., Fukuma,
R., et al. (2011). Real-time control of a prosthetic hand using
human electrocorticography signals. J. Neurosurgery 114, 1715–1722.
doi: 10.3171/2011.1.JNS101421

Yu, Y., Pan, G., Gong, Y., Xu, K., Zheng, N., Hua, W., et al. (2016).
Intelligence-augmented rat cyborgs in maze solving. PLoS ONE 11:e0147754.
doi: 10.1371/journal.pone.0147754

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

The reviewer XT and handling Editor declared their shared affiliation.

Copyright © 2018 Pan, Li, Qi, Yu, Zhu, Zheng, Wang and Zhang. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Neuroscience | www.frontiersin.org 13 August 2018 | Volume 12 | Article 555137

https://doi.org/10.1109/TAU.1967.1161901
https://doi.org/10.1016/S1388-2457(02)00057-3
https://doi.org/10.1109/MIS.2013.137
https://doi.org/10.1109/MIS.2016.105
https://doi.org/10.1088/1741-2552/aa9dbe
https://doi.org/10.1109/TCDS.2017.2707466
https://doi.org/10.3171/2011.1.JNS101421
https://doi.org/10.1371/journal.pone.0147754
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


ORIGINAL RESEARCH
published: 25 September 2018
doi: 10.3389/fnbot.2018.00057

Frontiers in Neurorobotics | www.frontiersin.org 1 September 2018 | Volume 12 | Article 57

Edited by:

Dingguo Zhang,

Shanghai Jiao Tong University, China

Reviewed by:

Shingo Shimoda,

RIKEN Center for Brain Science

(CBS), Japan

Kazutaka Takahashi,

University of Chicago, United States

*Correspondence:

Alessandro Scano

alessandro.scano@stiima.cnr.it

Received: 02 May 2018

Accepted: 27 August 2018

Published: 25 September 2018

Citation:

Scano A, Chiavenna A, Molinari

Tosatti L, Müller H and Atzori M (2018)

Muscle Synergy Analysis of a

Hand-Grasp Dataset: A Limited

Subset of Motor Modules May

Underlie a Large Variety of Grasps.

Front. Neurorobot. 12:57.

doi: 10.3389/fnbot.2018.00057

Muscle Synergy Analysis of a
Hand-Grasp Dataset: A Limited
Subset of Motor Modules May
Underlie a Large Variety of Grasps

Alessandro Scano 1*, Andrea Chiavenna 1, Lorenzo Molinari Tosatti 1, Henning Müller 2 and

Manfredo Atzori 2

1 Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing (STIIMA), Italian National Research

Council (CNR), Milan, Italy, 2 Information Systems Institute, University of Applied Sciences Western Switzerland (HES-SO),

Sierre, Switzerland

Background: Kinematic and muscle patterns underlying hand grasps have been widely

investigated in the literature. However, the identification of a reduced set of motor

modules, generalizing across subjects and grasps, may be valuable for increasing the

knowledge of hand motor control, and provide methods to be exploited in prosthesis

control and hand rehabilitation.

Methods: Motor muscle synergies were extracted from a publicly available database

including 28 subjects, executing 20 hand grasps selected for daily-life activities. The

spatial synergies and temporal components were analyzed with a clustering algorithm to

characterize the patterns underlying hand-grasps.

Results: Motor synergies were successfully extracted on all 28 subjects. Clustering

orders ranging from 2 to 50 were tested. A subset of ten clusters, each one represented

by a spatial motor module, approximates the original dataset with a mean maximum error

of 5% on reconstructed modules; however, each spatial synergy might be employed with

different timing and recruited at different grasp stages. Two temporal activation patterns

are often recognized, corresponding to the grasp/hold phase, and to the pre-shaping

and release phase.

Conclusions: This paper presents one of the biggest analysis of muscle synergies

of hand grasps currently available. The results of 28 subjects performing 20 different

grasps suggest that a limited number of time dependent motor modules (shared among

subjects), correctly elicited by a control activation signal, may underlie the execution of

a large variety of hand grasps. However, spatial synergies are not strongly related to

specific motor functions but may be recruited at different stages, depending on subject

and grasp. This result can lead to applications in rehabilitation and assistive robotics.

Keywords: muscle synergies, centroids, synergies clustering, hand grasps, spatial synergies, temporal

components, NinaPro Database
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INTRODUCTION

The use of the hands is one of the most crucial capabilities
for daily activities. The loss of a hand can substantially reduce
the quality of life of a person, since it strongly affects physical
capabilities in performing activities of daily living (ADL) and
it represents a relevant social problem considering that people
with a major upper limb loss were ∼41,000 in USA in 2005. The
number of amputees is expected to double by 2050 (Atkins et al.,
1996; Ziegler-Graham et al., 2008).

Hand grasps are mainly composed of two main stages: the
reach-to-object and the grasp itself. The first phase is divided
into two sub-phases, consisting of the transport of the hand
done by the arm, whose motion law is characterized by a bell-
shaped velocity (Fan et al., 2006), and the hand pre-shaping,
required for adapting the hand to the object to grasp, which
occurs after ∼60–70% of the reaching phase (Hu et al., 2005).
The grasp phase is determined by several parameters, including
the force closure (force needed to close the hand around the
object and to achieve a stable grasp), grasp stability (the ability
to resist external forces), and grasp security (resistance to
slippery objects, which is depending on the configuration of the
grasp; Cutkosky, 1989; Cipriani et al., 2008). A third phase is
reported in some articles (Liarokapis et al., 2013) and represent
the release of the object; a fourth phase can be considered
too, involving the return of the arm and hand to the rest
position.

Hand grasps have been investigated mainly in the domain
of finger joint kinematics and past studies have developed
qualitative taxonomies to describe and cluster different types of
grasps (Cutkosky, 1989). The main distinction among grasps
was between power grasps and precision grasps but many other
features can be taken into account for grasp characterization,
such as the limb configuration for the task execution or the
geometry of the object to grasp.

Considering the complexity of hand control, involving a
remarkable number of degrees of freedom and redundancy, both
at the muscle and skeletal levels, many studies in the literature
applied feature extraction methods to identify a subset of the
original data for an accurate description of hand functioning,
even if reduced in dimensionality.

A recent study (Jarrassé et al., 2014) investigated a set of hand
grasps by considering a 15-degree-of-freedom (dof) Cyberglove.
The study used a Principal Component Analysis (PCA)-based
technique for the extraction of kinematic motor synergies and
showed that no more than 4 PCs are needed to explain ∼95%
of the total variation. The first and second PCs accounted for
about 90% of data variation, leading the author to suggest that
these two components might be enough to control (or even
mechanically design) an upper-limb prosthesis, even if pattern
refinement can be achieved by adding further PCs. In Patel
et al. (2017), kinematic synergies were extracted by using a
PCA-based algorithm. While the first PC accounts for more
than half of the total variation, the rest is distributed across
many PCs, indicating that a quite large set of motor modules is
needed to reconstruct the original kinematics. Seven synergies
were extracted in Thakur et al. (2008) for the explanation of

>90% of the total variance of a set of hand-grasps and hand
motions. A comprehensive study on hand grasps by Santello et al.
(1998) suggests that the modules that underlie the control of the
hand are basically two. However, the study also remarks that
the remaining variation, accounted for by further synergies, is
not due to noise but to motor control modules needed for fine
tuning.

The fact that a limited number of modules may account for
a large variety of grasps is thus commonly deduced from the
literature. A recent study by Prevete et al. (2018) investigated
the hypothesis of sparsity applied to kinematic synergies during
hand grasps. According to this study, sparsity might be found
both at the spatial synergy level (indicating that spatial modules
may incorporate only some joints or muscles) and in the
coordination of the synergies, in which only a reduced number
of overlapping modules contribute to the execution of an action.
A combination of the two conditions, called double sparsity
hypothesis, can happen as well. This concept fits well with
previous research on dimensionality reduction, with the addition
that sparsity could partially explain the different number of
synergies extracted in different studies (together with varying
study designs).

Despite the kinematic patterns being exploited more often for
hand analysis, some studies have investigated the dimensionality
reduction problem from the point of view of muscle synergies.
The muscle synergy approach is based on decomposition
algorithms that identify groups of co-activating muscles
(synergies) that are coordinated by time-varying activation
commands. The extracted patterns may be influenced by several
factors regarding sEMG, including fatigue, sweating, changes
in electrode or arm positioning (Farina et al., 2014), clinical
parameters of the subjects (e.g., level of the amputation, phantom
limb sensation intensity; Atzori et al., 2016), the BMI (Atzori
et al., 2014b), other anatomical characteristics of the subjects
(Farina et al., 2002) or training in using myoelectric prostheses
(Cipriani et al., 2011). Few studies addressed these effects
until now, and the effect on the resulting muscle synergies.
Considering upper limb synergies, Ortega et al. observed that
synergy structure was conserved with fatigue, but interestingly
synergy activation coefficients decreased on average by 24.5%
with fatigue development (Ortega-Auriol et al., 2018). In
Tagliabue et al. (2015) two-digit grasping is analyzed. A reduced
number of modules (2–3) is needed to explain the largest part
of the variation for each grasp and the correlation between
muscle and kinematic primitives is suggested, justifying synergy-
based analysis in both domains. Considering two arrays of
sEMG-electrodes, positioned distally and proximally on the
forearm, Castellini and van der Smagt (2013) found that the
combination of 3 muscle synergies could account for a set of 5
hand grasps, on both sets of the electrodes. The “main synergy”
represents a “global, indistinct” co-activation pattern, while the
other two synergies account for dorsal and ventral patterns,
respectively.

Overduin et al. (2008) used the time-varying muscle synergy
model to analyze a set of 25 grasps of twomonkeys and found that
three synergies could explain 71% of the total sEMG variation
for proximal muscles, 83% for the wrist and extrinsic hand
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muscles and 81% among intrinsic muscles. The first of the three
synergies was linked to the muscles involved in the reach phase
operated by proximal muscles and distal flexors, the second was
characterized by bimodal activation of distal muscles and the
third, more related to the transport of the object, featured by
proximal muscles and distal extensors.

The main challenge of using muscle synergies to analyze
hand grasps is represented by the impossibility to track all the
muscles involved in the grasps, as hand muscles are hard to
acquire due to their small size, which can easily produce cross-
talk, and due to encumbrance of probes/wires on the palm
of the hand that can prevent a physiological grasp execution.
Nevertheless, the reduction of the dimensionality is still a crucial
process for the comprehension of the patterns underlying hand
use and grasps. In fact, motor modules are considered to be the
basis of motor control organization at the neural level (Schmidt,
1975; d’Avella et al., 2006). Furthermore, once recognized,
the basic modules might be employed as references for the
study of motor control, to evaluate pathological conditions and
to control prosthetic devices. Dexterous, naturally controlled
surface electromyography (sSEMG) prostheses would better
allow amputees to perform personal needs such as eating or using
tools. Prosthetics companies and scientific research are advancing
toward this, but dexterous naturally controlled prosthetic hands
are not yet available, in the market as well as in scientific research
mainly due to control problems (Atzori and Muller, 2015)
related to robustness. Clinical parameters of the amputation
were demonstrated to affect control capabilities (Atzori et al.,
2016). In order to foster the improvement of control systems for
sEMG hand prostheses, a publicly available dataset for robotic
hand prosthesis control (the Ninapro database1) was released in
2014 (Atzori et al., 2014a), and extended with several additional
datasets afterwards (Krasoulis et al., 2017; Pizzolato et al., 2017).
Currently, the database includes over 120 subjects (including
11 trans-radial amputees), repeating as naturally as possible up
to 53 hand movements with several acquisition setups ranging
in price from a few hundred to several thousand dollars. The
aim of Ninapro is to foster the improvement of the field by
allowing the development and test of advanced machine learning
methods. However, the path to natural control of dexterous
prosthetic hands can also be paved by the simplification of the
problem, for instance via the identification of a set of motor
primitives sufficient to control a comprehensive set of hand
grasps.

The application of muscle and postural hand synergies
to myoelectric hand prostheses development and low level
control was recently suggested in literature and tested in
specific settings, while high level control strategies are still not
extensively explored. The application of postural hand synergies
to hand prostheses development is particularly evident in the
development of the PISA/IIT Softhand, a robotic hand actuated
by a single motor (Catalano et al., 2014). The application of
postural hand synergies to low level control approaches can be
defined as controlling a dexterous robotic hand with few (usually
4) independent input signals that modulate some of the first

1Ninapro database: http://ninapro.hevs.ch

synergies (usually the first one-two) in the robotic hand, leading
the robotic hand to reproduce several hand grasps (Matrone et al.,
2010, 2012; Segil and Weir, 2013).

In the literature, there are several open points regarding hand
grasp synergies that can be investigated in more detail. Some
of the more refined studies, providing state-of-the-art methods,
involve a large variety of grasps but a limited number of subjects,
or map a reduced number of grasps compared to the ones that are
needed for daily life activities, lacking generalization of results.
Furthermore, a limited number of studies focuses on muscle
patterns rather than on hand kinematics. Lastly, most studies
focused especially on the spatial organization of motor modules,
while the temporal components were less analyzed.

Following the previous considerations, the aim of this study
is threefold. First, to provide a set of benchmark muscle hand
synergies extracted from the publicly available NinaPro database,
that includes a considerable number of subjects while repeating
a comprehensive number of hand grasps; second, to evaluate the
effects of the reduction of dimensionality of the dataset on the
accurateness in reconstructing the original dataset of synergies;
third, to characterize the spatial and temporal features of the
subjects included in the dataset.

MATERIALS AND METHODS

Acquisition Set-Up
The flow-chart of the study is portrayaed in (Figure 1). The
acquisition setup included 12 surface EMG (sEMG) electrodes
and a data glove. The sSEMG electrodes were a double differential
Delsys Trigno wireless system, measuring the myoelectric
signals at 2 kHz with a baseline noise inferior to 750 nV
RMS. The Trigno integrated a 3-axes accelerometer sampled
at 148Hz. Electrode positioning was performed with the aim
of combining precise anatomical positioning (DeLuca, 1997)
and a dense sampling approach (e.g., Fukuda et al., 2003).
Eight electrodes were equally spaced around the forearm
at the height of the radio-humeral joint. Four electrodes
were placed on the main activity spots, respectively, of the
flexor and the extensor digitorum superficialis, the biceps and
the triceps brachii, which were identified by palpation by
trained researchers by trained researchers (Figure 2). The data
glove (CyberGlove II, CyberGlove Systems LLC 2) allowed
to measure hand kinematics using 22-sensors. Considering
that the primary objective of this study was to characterize
the hand grasps rather than the dynamics of the reaching
phase at proximal level, the choice of the NinaPro database
is reasonable, since it includes recordings from extrinsic hand
muscles.

Participants
The data used in this experiment were from the publicly available
NinaPro database that currently includes 7 datasets of sEMG
and kinematic data from over 120 subjects (including 11 trans-
radial amputees), performing (or imagining to perform) up to 53
different hand movement (Atzori et al., 2016). The datasets used
for this study were from the second dataset (DB2), which includes
40 intact subjects. A 28-subject subset of the original dataset was
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FIGURE 1 | Study flowchart. *Twelve subjects were excluded from analysis because noise was found on at least one of the SEMG channels in some grasps. The

decomposition algorithm applied to extract synergies would be influenced, even in case of removal of the affected channels from the analysis. Consequently, 12

subjects were discarded.

FIGURE 2 | sEMG electrode placement: an array of 8 equally spaced

electrodes was worn at the forearm level (labeled f1-f8), two probes on finger

flexors and extensors, and on biceps caput longus and triceps caput medialis,

according to the protocol introduced in the Ninapro database (Atzori et al.,

2014a).

used for this study. The subjects include 19 males, 9 females;
24 right handed, 4 left handed; average age 29.64 with standard
deviation 3.1 years (data summarized inTable 1). Twelve subjects
were excluded from the analysis because the proper extraction
of synergies was prevented by noise of the sEMG channels. The
decomposition algorithm applied to extract synergies would have
been influenced, even in case of removal of the affected channels
from the analysis.

Experimental Protocol for Acquisition
This section briefly describes the acquisition protocol. For more
details about the protocol, please refer to Atzori et al. (2014a).

TABLE 1 | Summary of the demographic data of the involved subjects.

Subjects Gender Age Laterality

DEMOGRAPHIC DATA

N = 28 19M-9F 29.64 ± 3.1 24R-4L

During the experiment, the subjects were asked to sit at a
desktop with the arms relaxed on the table and to repeat a set
of movements with their right hand as naturally as possible.
The entire experiment included 49 movements plus rest, divided
into three exercises and extracted from the ADL literature, thus
including movements from categories, such as personal needs,
eating or use of tools (Smurr et al., 2008). In this work, we
consider only the set of hand grasps, i.e., the first 20 movements
of the second exercise (Figure 3). The subjects were asked to
repeat the movements represented in short films that were
shown on the screen of a laptop with their right hand and they
were asked to concentrate on mimicking the movements rather
than on exerting high forces. Each movement was repeated 6
times, with each repetition lasting 5 s and separated by the other
movements by 3 s of rest. The experiment was approved by the
Ethics Commission of the CantonValais (Switzerland) and before
data acquisition, the subjects were given a thorough written and
oral explanation of the experiment itself and were asked to sign
an informed consent.

Data Analysis: Synergies Extraction
The Data Analysis was fully performed with Matlab 2014a
with custom-developed software. First, kinematic recordings
(“restimulus” signal of the NinaPro database) were used to
separate movement phases. Data from 12 sEMG channels
were bidirectionally high-pass filtered at 50Hz (Butterworth
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FIGURE 3 | The 20 grasps considered in this study are shown. They provide a comprehensive mapping of the repertoire of hand grasps available to human subjects,

and are stored in the publicly available Ninapro Database.

filter, 7th order) to remove motion artifacts, rectified, Hilbert-
transformed (Matlab hilbert), low-pass filtered with a cut-off
frequency of 10Hz (Butterworth filter, 7th order) to remove
noise with mono-directional filtering. sEMG data from each
subject and each trial were pooled in single aggregated matrices
and synergies were extracted using the non-negative matrix
factorization (NMF) algorithm (Cheung et al., 2005; Tresch
et al., 2006). The NMF decomposes the sEMG matrix into
the product of two matrices, the first one representing time-
invariant, neurally coded synergies (wi), and the second one
representing time-variant activation commands for each synergy
(ci), as in Equation (1):

EMG(t) =
∑N

i=1
ciwi (1)

where, for each of the recorded muscles, sEMG(t) represents the
sEMG data at time t and N is the total number of extracted
synergies.

The order of the factorization r was chosen, increasing from
1 to 50 (to limit the dimensionality for synthesis). For each r, the
NMF algorithm was applied 1,000 times in order to avoid local
minima. The repetition accounting for the highest variance of the
signal was chosen as the representative of order r. The number of
synergies was chosen as the minimum r explaining at least 90%
of the variance of the signal (Clark et al., 2010). Further synergies
were added only if the total amount of variation was increased of
at least 5% for each further synergy.

Synergy Clustering
In the literature of motor synergies, standard analysis methods
may include the definition of clusters to group synergies

according to their spatial composition. The set of extracted
synergies can be clustered to obtain a limited number of spatial
patterns, each one represented by a centroid (mean spatial
synergy).

In this work, the extracted synergies were included into a
single cluster analysis. Grouping all the modules could lead
to complex matching between each spatial component and the
corresponding motor function (Scano et al., 2017). In fact, it
was reported in Roh et al. (2013) that synergies related to the
same motor function may split into two or more clusters. As
a consequence, the correspondence between the phases of the
grasps and the motor synergy recruitment is not always clearly
identifiable. In fact, in the majority of the cases, the synergy
prevailing in terms of magnitude of the temporal components is
the one characterizing the moment of the grasp hold. However, a
relevant number of subjects may show patterns more complex to
identify.

However, performing the clustering procedure on
the whole dataset allowed to provide a comprehensive
overview of all the modules involved in hand grasping
tasks. Furthermore, a comprehensive mapping of hand
grasps is proposed by considering the whole dataset for
analysis.

The cluster analysis was conducted using the k-means
clustering algorithm. The algorithm was applied to an aggregated
matrix containing the whole dataset of muscle synergies extracted
from all subjects. Each clustering order, ranging from 1
(minimum) to 50 (maximum), was tested by repeating the
algorithm 200 times and selecting the best solution for each
order according to the metrics described in the following
section.
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Selection of the Number of Clusters
The selection of the appropriate number of clusters (mean spatial
synergies, each one represented by a cluster centroid) was made
by pondering the following metrics (Bora et al., 2014):

1) The Mean Euclidean Distance (MED) of the population
from the reference centroids, indicating the quality of the
clustering, as a synthetic index for each clustering order. The
lower the Mean Euclidean Distance, the better elements fit
into their cluster.

2) When the k-means clustering procedure is applied, the
number of desired clusters N must be specified. Defining as
M the number of elements to be clustered (in this case, the
number of spatial synergies), N can range between 1 and the
total number of the clustered elements (1<=N<=M).
When N = 1, the clustering procedure classifies a population
within a single group: thus, the cluster solution 1 is (implicitly)
the mean of a population, and corresponds to the lowest
level of precision in approximating a population with a
clustering procedure. Following the previous considerations,
the Normalized Euclidean Distance (NED) was computed by
considering the cluster solution 1 as the source of maximum
clustering error, which was set to 1. Thus, the NED for each
clustering order i was computed as:

NED(i) =
MED(i)

MED(1)
(2)

3) The slope of the Normalized Euclidean Distance (NED’) is
NED derivative. NED indicates how the precision of the
cluster analysis increases when increasing the order of the
clustering.

Each of the previous three metrics can be considered for the
choice of the clustering order, by imposing a threshold on the
reconstruction accuracy.

Whatever metric is selected, the choice is driven by the
principle of using a parsimonious number of clusters for
synthesis power (the lowest possible number of clusters, given a
reasonable descriptive precision). The threshold selected by the
experimenters in this work was 5%. Consequently, the number of
clusters was selected as the minimum number needed to have the
NED < 0.05.

The hypothesis that justifies the use of cluster analysis is
that the dataset can be represented with a chosen number of
cluster centroids depending on the maximum error that the
experimenter is willing to accept. Depending on the application,
the tolerance can be increased or reduced, describing the original
dataset of motor modules with a specific level of precision (and a
choice of dimensionality).

Spatial and Temporal Components
Analysis
The characterization of the obtained mean spatial synergies was
furtherly specified by considering all the pairwise dot products
between their compositions. Each temporal component, initially
associated with its respective spatial synergy, was matched to
its relative centroid after cluster identification. Then, all the

temporal components were averaged to extract a mean temporal
component for each cluster, representing a mean activation of the
spatial synergy in time. Finally, the characterization of temporal
components was concluded by considering the correlations
between the mean temporal components.

Summary of Outcome Measures and
Statistics
Given the aims of the study (see Introduction): “First, to provide
a set of benchmark muscle hand synergies extracted from
publicly available data1 including a considerable number of
subjects that perform a comprehensive number of hand grasps;
second, to evaluate the effects of the reduction of dimensionality
of the dataset on the accurateness in reconstructing the
original dataset of synergies; third, to characterize the spatial
and temporal features of the sample of subjects included
in the dataset,” the following outcome measures were
defined:

Outcome 1: Definition of the complete dataset of extracted
muscle synergies of healthy subjects in freely executed grasps;
methods and statistics: NMF algorithm for factorization; 90%
of the VAF + minimum slope 0.05 for each further extracted
synergy.
Outcome 2:Definition of cluster centroids for muscle synergies
in freely executed grasps; methods and statistics: k-means
clustering; lowest normalized Euclidean distance to define the
number of centroids.
Outcome 3a: Characterization of the spatial composition
of the centroids; methods and statistics: dot products
between pairwise centroids to assess their difference in
composition.
Outcome 3b: Characterization of the temporal features of the
centroids;methods and statistics: Pearson correlations between
temporal components.

RESULTS

Extracted Synergies
The extracted synergy dataset is summarized in Figure 4

by portraying the mean spatial synergy compositions and
cumulated temporal component profiles. Synergies were grouped
within grasps, and matched according to the similarity of
their temporal components, computed with the Pearson’s
correlation coefficient. For compactness of the representation,
only the first two synergies of each extracted dataset were
portrayed (while, three modules were extracted in some
grasps).

K-Means Cluster Order Selection
The whole dataset of spatial synergies, which is composed
of 966 extracted modules, was clustered according to
the k-means algorithm, with a clustering order ranging
from 1 to 50. Figure 5 shows the graphs with the metrics
used for the choice of a reasonable number of clusters
as synthetic representation of the spatial synergies of the
dataset. Increasing the order of the clustering leads to a
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FIGURE 4 | The whole dataset of synergies extracted for each grasp is synthetically reported, coupled with the corresponding cumulated temporal components. For

each grasp (numbered 1–20 as in the order shown in Figure 2), the mean spatial synergies are reported. The mean spatial synergies are computed by averaging the

spatial synergies grouped by matching each subject’s spatial synergies according to the Pearson’s Correlation coefficient computed on the temporal components.

Only the first two modules are reported for each grasp (module 1, reported in blue, exploited during the grasp phase, and module 2, depicted in green, used mainly in

the pre-shaping and release phases). Mean spatial synergies are also coupled with the cumulated mean temporal components that modulate in time the mean spatial

synergies, plotted as percentage of the normalized duration of each movement.
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A

B

C

FIGURE 5 | Metrics for the selection of the correct number of clusters for the description of the dataset. Panel (A) describes the mean Euclidean distance between

the centroids identified with the k-means algorithm and the synergies that belong to that centroids. Increasing the number of clusters, the mean Euclidean error

decreases. Panel (B) reports the normalized error, considering the solution of order 1 as the maximum approximation error (when the dataset of spatial synergies is

approximated with its mean—SSm). Increasing the order of the clustering, the mean error is progressively reduced. Panel (C) shows the derivative of the error (slope),

indicating the entity of the reduction of the error in relation to the increase of the number of clusters. Right panels show a zoomed view of left panels. They show that,

by imposing a threshold of a maximum tolerable mean error, the solution corresponding to a lower number of clusters can be selected. In the present study, the

maximum normalized Euclidean error was reasonably set at 0.05*SSm, corresponding to a 10-cluster solution.

monotonic decrease of the NED. Thresholding the NED
(at 0.05, as explained in the methods), only 10 clusters are
needed to approximate the original dataset. It can also be
observed that a further increase of the order of the clustering
provides only slightly increased precision in describing the
dataset.

Clustering on Spatial Synergies and
Temporal Components Analysis
The results of the clustering procedure are shown in Figure 6.
The 10 identified centroids (mean spatial synergies) are portrayed
(composition coefficients), along with the number of synergies
of the original dataset that are addressed to each centroid,
expressed as percentage of the original dataset. It can be seen
that the extracted synergies are quite uniformly distributed
on the centroids, each one representing between 7 and 15%
of the original dataset of motor modules. Figure 7 depicts
a polar and histogram-based representation of the extracted
mean spatial synergies, along with the associated mean temporal
components. The temporal components are shown for each of
the spatial modules referring to each of the centroids, along
with their mean. Analysis of temporal components shows that
some centroids are found mostly in the central phase of the
grasp (e.g., centroid 3 and centroid 6), while others mainly in
the pre-shaping and release phases (e.g., centroid 1 and centroid

2). Following these results, in order to provide characterization
of the summarized groups of motor modules, the similarity of
mean spatial synergies and temporal components was assessed
as well. Figure 8 shows the similarity, expressed as the dot
product, among all the pairwise mean spatial synergies. It
can be seen that the mean spatial centroids have a pairwise
dot product ranging from 0.65 to 1, indicating that some
muscle groups are shared between several patterns. Similarly,
Figure 9 shows the correlation matrix between each temporal
component, expressing the temporal relation that links each
spatial synergy to the others. In this case, results show high
variability, and indicate that some mean temporal components
are very closely related to others (e.g., temporal components 5
and 6), while others are very different (e.g., temporal components
1 and 6). These results are critically analyzed in the following
paragraphs.

DISCUSSION

On the Extracted Synergies
An interesting result of this study is that, with the used method
for synergy extraction, a number of modules ranging from 1
to 3 is sufficient for reconstructing the majority of the original
sEMG in each grasp. As a consequence, a limited number
of patterns is needed to achieve a grasp, which is a relevant
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FIGURE 6 | The identified centroids (mean spatial synergies). Hypothesizing a desired maximum error of 0.05 (normalized in respect to the solution of order 1), a

solution of 10 clusters is found. Ten motor modules are thus enough to describe with good level of precision the original dataset. The 10 clusters composition are

reported in (A), along with the number of elements belonging to each cluster, expressed as percentage of the original dataset, in (B).

result considering the availability of high redundancy at the
muscle and kinematic level. This is seen in some patterns that
are often repeated and especially in the co-activating group
composed of f1-f8-finger flexors that are very often grouped
together, especially in the hold phase. In most of the cases,
two activation patterns are recognizable: a strong co-activation,
often (but not always) corresponding to the grasp/hold phase,
and two minor co-activating patterns in the pre-shaping and
release phases that are often grouped in a single synergy.
This result is particularly interesting considering that only two
electrodes were not positioned on the forearm (respectively,
biceps and triceps) and comparing the results with the results
obtained by d’Avella et al. (2006) and Liarokapis et al. (2013).
In these studies, the biceps is activated during the reaching
phase in confirming that it is indeed an active reaching
component, being active in the pre-shaping and release phase.
This result suggests that the pre-shaping and release synergies
may represent hand opening, before (pre-shaping) and after
grasping. The number of phases seems to be in accordance
with those proposed by Liarokapis et al. (2013) and seems
to reproduce on the hand part of the results obtained in
previous studies in terms of time varying muscular synergies for
shoulder and arm. Furthermore, it should be remarked that the
movements considered in this study were not performed against
gravity, reducing consistently the involvement of shoulder
muscles.

While not extensively discussed in this paper, the remarkable
repeatability of the temporal components might be a
further motor-control feature aimed at simplifying muscle
coordination, as a strategy exploited by the CNS to perform

hand grasps. These results are in accordance with the previous
findings in the literature, that showed that, in respect to
the original dimensionality of the control, the number of
modules underlying grasps is probably strongly reduced
(Santello et al., 1998; Overduin et al., 2008; Jarrassé et al.,
2014).

Cluster Analysis and Control of Precision
On a comprehensive dataset of 20 grasp types, performed by
28 healthy subjects, 10 spatial motor modules, properly elicited
in time, are enough to describe the whole dataset with good
accuracy, generalizing through subjects. Such results are coherent
with the notion that the central nervous system may embed a
modular structure that relies on a limited number of predefined
co-activation patterns to produce motor outcome at the hand
level. These findings are in accordance with previous results that
demonstrated that a small subset of synergies can generalize
across tasks and suggest that they represent basic building
blocks underlying natural human hand motions (Thakur et al.,
2008).

The main spatial synergies were not directly linkable to
specific grasp types or motor functions, suggesting that the
spatial modules that can be employed for the execution of
different grasp types. Furthermore, each spatial module can be
elicited at different stages. Together with previous findings, these
results suggest that grasp types and muscle synergies may not
be univocally related: some muscle patterns may be used for
different grasp types or, vice versa, the same grasp might be
controlled with slightly different muscle synergies depending on
the subject.
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FIGURE 7 | Summary of the extracted spatial synergies and mean temporal components associated with each spatial synergy. Spatial synergies are represented in a

polar plot (A) and with histograms (B). Temporal components are depicted in (C), and mean temporal components are shown in light gray.
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FIGURE 8 | Mean spatial synergy correlation matrix. The matrix identifies the variability between all the pairs of spatial modules, assessed with the dot product. The

paired similarity is always >0.60, indicating that the some muscle components are shared between centroid pairs.

These results also reflect some intrinsic features of the
human grasping related to proximal forearm and hand muscles
control. This study suggests that a large variety of hand
grasp types can be performed with a limited number of
patterns. However, it should be considered that the proposed
protocol was meant for applications related to control of
prosthesis for trans-radial amputees, measuring the activity of
proximal muscles. Coherently, previous studies sharing proximal
muscle based protocols showed that a few basic patterns
are responsible for a variety of grasp types (Castellini and
van der Smagt, 2013). On the contrary, considering a fine
recording of the muscles of the hand more differentiated
patterns may be observed, even if due to the difficulty of
recording muscle activity directly on the hand the motor
primitives related to the hand are computed and analyzed
in a kinematic domain (Jarrassé et al., 2014; Prevete et al.,
2018).

Temporal Components
The analysis of temporal components underlines that spatial
patterns may be recruited at different stages of a grasp,
with variability related both to the subject who executes
the grasp and the type of grasp. This result is confirmed
by the high correlation of the temporal components of
many clusters. However, mean temporal components suggest
that some patterns are more often used during the grasp
phase with a monophasic, bell-shaped activation profile, while
other patterns are biphasic and usually activate when the
hand opens, so in the approaching/pre-shaping phase and
in the release phase rather than in the middle of the
grasp. Such findings can be taken into account for several
applications related to high level robotic hand and prosthesis

control, as described in section Impact of the Muscle Synergy
Dataset.

Impact of the Muscle Synergy Dataset
A limited number of motor modules (e.g., 10), properly elicited
in time can approximate the entire dataset for all subjects
with high accuracy (5% error in respect to approximating the
dataset with its mean, in the case of 10 motor modules). Ideally,
each movement considered in the experiment can potentially
be reproduced as a combination of spatial synergies, thus
providing prostheses with higher dexterity (a higher number
of movements that can be controlled) starting from a set
of a few robustly controlled modules. Hand muscle synergies
may be applied to high level control approaches, consisting
of training subjects to reproduce and modulate the sEMG
patterns that correspond to the muscular hand synergies (or
combinations of them) and apply pattern recognition algorithms
to recognize the results. This strategy may be an alternative to
the control systems currently described in literature. As said in
the introduction, robotic hands that reproduce hand movements
by modulating the main postural hand synergies have already
been presented in literature (Matrone et al., 2010, 2012; Segil
and Weir, 2013). However, high level control systems have not
been extensively studied. Developing high level control systems
based on time dependent muscle-hand synergies and training
subjects to perform them may link the subjects’ intentions with
the movement of a robotic hand naturally, by exploiting the same
synergies. Such result may lead to natural myoelectric control of
robotic hands, a challenge currently not yet achieved in literature.
If replicated on hand amputees, this result can potentially
have applications in rehabilitation and assistive robotics in
order to improve the control of dexterous prosthetic hands,
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FIGURE 9 | Temporal components correlation matrix. The matrix identifies the variability between all the pairs of temporal components associated to the mean spatial

synergies, assessed with the Pearson’s Correlation coefficient. The paired correlation ranges from 0.30 to 1, indicating that some modules are exploited with very

similar (shared) control signals, while other modules are controlled with different timing.

by joining robotics and neuroscience findings (Santello et al.,
2016).

Usually, in machine learning the training data (used to train a
model) and the test data (used to test it) are taken from the same
distribution. However, this is not always easy, in particular when
using deep learning approaches that require large amounts of
data for training. To overcome distribution mismatches, transfer
learning and domain adaptation approaches have been used
in several domains, including computer vision (Saenko et al.,
2010; Tommasi et al., 2010), and natural language processing
(Ben-David et al., 2010; Daumé et al., 2010). In myoelectric
control, several studies explored the use of previous models
from different subjects to reduce the amount of required
training data (Farina et al., 2002; Tommasi et al., 2013; Patricia
et al., 2014), but performance increase was not confirmed
after proper model optimization (Gregori et al., 2017). The
fact that the motor modules are common to the subjects
can provide physiological foundations to include within the
prosthesis a subject-independent motor memory. Prosthesis
control could then be produced as “plug and play,” improve
control robustness for a specific subject through successive
calibration, and improve its adaptability to other subjects
too. In this context, properly choosing the motor modules
and the movements to be reproduced (in order to maximize
dexterity, robustness and correspondence to ADLs) is potentially
interesting to improve the rehabilitation capabilities of hand
prostheses. However, it is an open question in the field of how
exactly extracted synergies are mapped into motor functions:
previous studies employing clustering procedures or synergy
combination theories (Prevete et al., 2018) showed that the
mapping between “physical space” of the end effector and the

extracted muscle synergies may be due to different exploitation
mechanisms.

In this study, it is proposed that a linear combination of
centroids, properly activated by their temporal components, can
be enough to reconstruct the physical space of the end effector
in a large variety of grasp types with high accuracy. However,
the authors are aware that the noticeable reduction of the
original dataset implies that the original sEMGs are reconstructed
with a pre-determined level of precision. The proper tradeoff
between accuracy and synthesis needs to be tested in future
work where the reduced dataset is integrated into a real control
system.

Despite the potential provided by the muscle synergy analysis,
several limitations and issues related to the method should
be considered. Recent studies reported that pre-processing,
including filtering and normalization techniques, might lead to
different results and interpretation of the data (Shuman et al.,
2017; Kieliba et al., 2018). While it is commonly accepted to
normalize the duration of the tasks to a common phase axis,
as it was done in this study, uniform guidelines for EMG
pre-processing for synergies extraction are still missing in the
literature. Consequently, pre-processing could be a source of data
misinterpretation. Furthermore, the insurgence of fatigue was
not inspected in this study, while it was demonstrated in the
literature that fatigue may influence the recruitment of synergies,
even if their spatial composition is preserved (Ortega-Auriol
et al., 2018). As described in the section Introduction, several
factors may have an effect on sEMG signal and make synergies
tough to be generalized. Those may include fatigue, despite the
acquisition protocol was carefully designed to induce low fatigue
on subjects, even in the case of patients (Atzori et al., 2014a), and
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future developments should also consider these variables for a
complete assessment.

Lastly, the model of human grasps described in this paper
can potentially provide insights for calibrated interventions
of rehabilitation robotics. Several implications can be found
considering neurological or orthopedic rehabilitation of the hand
(Bissolotti et al., 2016; Vanoglio et al., 2017). In recent studies, the
exploitation of devices for hand rehabilitation has shown to lead
to promising, therapeutic results that can be further enhanced by
training muscle synergy-oriented exercises, based on a detailed
knowledge of motor synergies (Scano et al., 2018).

CONCLUSION

In this paper, muscle synergies were extracted from the
recordings of a publicly available dataset. The extracted synergies
were clustered from a cohort of 28 subjects executing a
variety of hand grasps. The synergies are often characterized
by two temporal activation patterns: a strong co-activation
corresponding to the grasp/hold phase, and two minor co-
activating patterns related to hand opening (visible in the pre-
shaping and release phase). The conclusions of this article
suggest that a limited number of time-dependent motor modules,

correctly elicited by a control activation signal, may underlie
the execution of a large variety of hand grasps. However, spatial
synergies are not strongly related to a specific motor functions
but have a sparse recruiting timing.
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High accuracy decoding of electroencephalogram (EEG) signal is still a major challenge

that can hardly be solved in the design of an effective motor imagery-based

brain-computer interface (BCI), especially when the signal contains various extreme

artifacts and outliers arose from data loss. The conventional process to avoid such cases

is to directly reject the entire severely contaminated EEG segments, which leads to a

drawback that the BCI has no decoding results during that certain period. In this study,

a novel decoding scheme based on the combination of Lomb-Scargle periodogram

(LSP) and deep belief network (DBN) was proposed to recognize the incomplete motor

imagery EEG. Particularly, instead of discarding the entire segment, two forms of data

removal were adopted to eliminate the EEG portions with extreme artifacts and data loss.

The LSP was utilized to steadily extract the power spectral density (PSD) features from

the incomplete EEG constructed by the remaining portions. A DBN structure based on

the restricted Boltzmann machine (RBM) was exploited and optimized to perform the

classification task. Various comparative experiments were conducted and evaluated on

simulated signal and real incomplete motor imagery EEG, including the comparison of

three PSD extraction methods (fast Fourier transform, Welch and LSP) and two classifiers

(DBN and support vector machine, SVM). The results demonstrate that the LSP can

estimate relative robust PSD features and the proposed scheme can significantly improve

the decoding performance for the incomplete motor imagery EEG. This scheme can

provide an alternative decoding solution for the motor imagery EEG contaminated by

extreme artifacts and data loss. It can be beneficial to promote the stability, smoothness

and maintain consecutive outputs without interruption for a BCI system that is suitable

for the online and long-term application.

Keywords: brain-computer interface, decoding scheme, incomplete motor imagery EEG, power spectral density,

deep belief network

INTRODUCTION

The emergent brain-computer interface (BCI) technology allows individuals with severe
neuromuscular related locomotive disabilities to directly use their brain to operate or communicate
with external peripherals and environments (Daly and Wolpaw, 2008; McFarland and Wolpaw,
2011). Namely, the BCI system provides an alternative interface bridge which can bypass the
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conventional motor neural pathways and map brain intentions
to relative control commands (Ortiz-Rosario and Adeli, 2013).
Brain activity can be characterized by various signal modalities,
such as invasive ElectroCorticoGraphy (ECoG) (Miller et al.,
2010; Hiremath et al., 2015), non-invasive electroencephalogram
(EEG) (Lazarou et al., 2018), the functional Magnetic Resonance
Imaging (fMRI) (Cohen et al., 2014), and the functional Near-
Infrared Spectroscopy (fNIRS) (Naseer and Hong, 2015). Due
to its manageability, easy capture, high time resolution and
relative cost effectiveness, the EEG signal has beenwidely adopted
for substantial BCI applications, such as remote quadcopter
control (Lin and Jiang, 2015), motion rehabilitation (Xu et al.,
2011; Zhao et al., 2016), biometric authentication (Palaniappan,
2008), and emotions prediction (Padilla-Buritica et al., 2016).
Currently, the electrophysiological brain patterns used in EEG-
based BCI systems are mainly Steady-State Visual Evoked
Potentials (SSVEPs) (Chen et al., 2015; Zhang et al., 2015; Zhao
et al., 2016; Nakanishi et al., 2018), P300 (Cavrini et al., 2016),
sensorimotor rhythms (SMRs) (Yuan and He, 2014; He et al.,
2015), and motion-related cortical potential (MRCP, one kind of
a slow cortical potential) (Karimi et al., 2017). Compared to other
patterns, the SMRs-based BCI is more flexible and suitable for
practical applications due to the spontaneous EEG signals, which
are generated by individuals voluntarily without any external
stimuli.

The SMRs are derived from the motor imagery EEG,
which evoked by mentally imaging the movements of
limbs without actual actions (Yuan and He, 2014). The
underlying neurophysiological phenomena are event-related
synchronization (ERS) and event-related desynchronization
(ERD) in the SMRs, which are induced simultaneously by an
exogenous event. The variability of ERS/ERD intensity or power
in particular frequency bands can be utilized to distinguish the
different motor imagery EEG signals (Pfurtscheller et al., 2006;
Koo et al., 2015). Some remarkable SMRs-based BCI systems for
motor imagery classification have been created and applied in
wheelchair control (Li et al., 2013), objects control in 2D (Ma
et al., 2017) or 3D space (LaFleur et al., 2013), and robotic arm
control (Xu et al., 2011; Meng et al., 2016). However, there are
still various challenges faced in the establishment of efficient
SMRs-based BCI systems, such as fewer recognizable motor
types or states, apparently lower recognition rate, and longer
training time (Yuan and He, 2014; He et al., 2015). In addition,
due to the volume conduction effect of scalp and skull, the
EEG is a non-stationary and non-linear dynamic signal with
low signal-to-noise ratio and vulnerable to be interfered or
submerged by complex background artifacts, which makes it
really challenging to accurately decode various motor imagery
tasks (Blankertz et al., 2011). Consequently, the crucial issue that
needs to be solved is how to improve the decoding performance
of the SMRs-based BCI in the condition of various artifacts.

The artifacts affecting the quality of motor imagery EEG
mainly contain electrooculography (EOG), electromyography
(EMG) and electrical line interference. Traditionally, a variety
of filters can be available to alleviate or even eliminate electrical
line interference and some high frequency noises, like EMG
(35Hz above). In the past researches, many typical attempts

have been proposed to reduce EOG, such as filter-based method
(Shoker et al., 2005), independent component analysis (ICA)
(Lindsen and Bhattacharya, 2010) and discrete wavelet transform
(DWT) (Peng et al., 2013). However, these methods can cause
the loss of some useful EEG components. And the procedures
for manual parameter tuning are needed to obtain optimal
performance of these methods. Moreover, they generally fail in
the case of the EEG contains extreme noises. Otherwise, the
EEG signals could be accidentally overwritten or lost caused by
hardware or system malfunctions during recording periods. For
the above cases, good decoding performance for SMRs-based
BCI systems could still hardly be achieved. One intuitive and
helpless solution to avoid such extreme artifacts and data loss
is usually to reject the entire severely disturbed EEG segments.
Consequently, this raises some defects including no decoding
results during certain period, additional EEG rejection process
and increased BCI training time. Furthermore, from a practical
perspective, consecutive and smooth recognition of SMRs-based
BCI systems is extremely necessary for the online and long-term
application. This requires that the BCI system can continuously
decode brain signals without any interruption. If entire EEG
segments are discarded due to extreme artifacts or data loss,
the BCI system cannot obtain the decoding results during the
corresponding time slice. Hence, it is very important to decode
incomplete motor imagery EEG for SMRs-based BCI systems
in the condition of extreme artifacts and data loss. Currently,
only few studies have been conducted to solve the decoding
performance from the incomplete EEG signals. Zhang et al.
applied a Bayesian tensor factorization based method to find the
underlying low-rank EEG tensor from incomplete EEG signals
and improve the decoding accuracy with robustness after artifacts
and outliers removal (Zhang et al., 2016). Cui et al. used a
fully Bayesian CP factorization for incomplete tensors method
to analyze and classify incomplete EEG signals with different
data missing ratios (Cui et al., 2016). However, such decoding
methods for incomplete EEG need complicated matrix and
tensor computations, which are not efficient for an online BCI
application. Moreover, the classification accuracies obtained by
these methods need further improvement.

In this paper, to improve the decoding performance for
incomplete motor imagery EEG and satisfying the needs of
smooth operation for the BCI system, a novel decoding scheme
composed of Lomb-Scargle periodogram (LSP) for feature
extraction and deep belief network (DBN) for classification was
proposed. Instead of rejecting the entire EEG segment, the
portions that affected by extreme artifacts or data loss were
directly removed and the remaining portions were used to
construct the incomplete motor imagery EEG signals in this
study. Generally, the most robust and representative feature
for the contents of different motor imageries is spectral power
in particular bands of ERS/ERD (Pfurtscheller et al., 2006).
The conventional fast Fourier transform (FFT) or Welch
periodogram can be available to estimate the spectral power
features for the intact motor imagery EEG. Nevertheless,
these spectral analysis methods cannot work well for the
non-uniformly sampled signals (Stoica et al., 2009), such as
incomplete motor imagery EEG signals. The LSP method can
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handle signals that have been sampled non-uniformly or have
missing data points (Stoica et al., 2009; Stankovic et al., 2014)
and is suitable for processing incomplete signals. Hence, the LSP
method was adopted to extract major spectral power features
from the incomplete motor imagery EEG signals in this study.
A DBN structure based on the restricted Boltzmann machines
(RBM) was exploited and optimized to learn different motor
imagery EEG classes. The proposed scheme may offer the
following advantages: (a) It can provide comparable decoding
performance for the incomplete motor imagery EEG with
different proportion of data removal; (b) The extracted spectral
power features are more robust for the representation of the
incomplete motor imagery EEG; (c) It is applicable to consecutive
and smooth operation without any disruption for the online BCI
system.

The remaining parts of this paper are organized as follows.
The overall systematic framework of decoding scheme for
incomplete motor imagery EEG is introduced in section
Overall Decoding Scheme Framework. Accordingly, section EEG
Processing Pipeline describes the EEG signal processing pipeline
in detail, including artifacts and data loss preprocessing, spectral
features extraction and DBN classifier construction. The motor
imagery experiments and datasets are presented in section

Motor Imagery Experimental Paradigm and Datasets. Some
experimental comparison results and discussions are given in
section Experimental Results and Discussions. Finally, section
Conclusions and Future Works gives the conclusions and ideas
for future works.

OVERALL DECODING SCHEME
FRAMEWORK

The objective of our study is to address the issue of improvement
of the recognition accuracy and stability associated with different
motor imagery tasks for the incomplete EEG signals. The
schematic diagram of the overall decoding system is illustrated
in Figure 1, which primarily synergizes three procedures:
preprocessing for raw EEG, spectral power feature extraction,
and motor imagery recognition. Definitely, the raw EEG signals
were captured by the means of non-invasive wet electrodes
arranged on the brain scalp when individuals perform diverse
motor imagery tasks, such as imagining limbs movements. The
preprocess procedure was devoted to constructing incomplete
motor imagery EEG datasets, which covered band-pass filtering,
sliding windows segmentation, and data loss or noise removal.

FIGURE 1 | The overall decoding scheme for incomplete motor imagery EEG signals based on deep belief network (DBN).
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The deep belief network was composed of three layers of
pre-trained stacking RBMs along with an output layer of
softmax regression. The spectral power features within specific
frequency bands extracted through Lomb-Scargle periodogram
were normalized to pre-train each layer of the RBMs and
fine-tune the weights of the DBN. Stochastic binary units
were utilized in the pre-training stage to initialize the deep
neural network. Deterministic real-valued probabilities were also
implemented to adjust the connection weights of each layer by
error backpropagation algorithm. After a fine-tuning stage, the
trained DBN was employed to decode the corresponding classes
of motor imagery from incomplete EEG, such as movement
intention of left hand, right hand, or foot. The structure of each
layer in the DBNwas optimized and determined by various group
experiments. Moreover, simulated and extensive experiments
for multi-subjects, different feature extraction methods (FFT or
Welch) and classifiers (supervised Support Vector Machines,
SVMs) were conducted to verify the viability and effectiveness
of the proposed decoding scheme for incomplete motor imagery
EEG signals.

EEG PROCESSING PIPELINE

Preprocessing
In order to exclude the unwanted components of the interested
EEG segments, the preprocessing procedure was designed to
transform the intact EEG with complex artifacts or data loss
into incomplete EEG segments. Essentially, the preprocessing
pipeline consists of three sub-parts: (a) signal filtering, (b) sliding
windows segmentation, and (c) artifacts or data loss removal.
More explicitly, the signal filtering was dedicated to alleviating
the background noises arose from experimental, instrumental,
and electrical or physiological sources. The sliding windows
were mainly responsible to segment the expected motor imagery
fragments from the continuous EEG signals. For the motor
imagery EEG segments, the portions with extreme artifacts or
data loss were directly discarded and the remaining portions were
utilized to form incomplete signals.

Signal Filtering
Because of the fact that EEG signals contain useful information
below 100Hz, noise elements above this frequency may be
directly excluded through low-pass filters. For motor imagery
EEG, the phenomenon of ERS/ERD obviously appears in
the frequency range of mu (8–12Hz) and beta (18–26Hz)
rhythm band (Pfurtscheller et al., 2006). In other words, the
frequency band of 8–30Hz possesses the most discriminative
information associated with different motor imagery tasks. In
this study, a fifth-order Butterworth band-pass filter with gain
1.5, cutoff frequencies [8, 35] Hz was applied to attenuate
the frequency component of specific noises while amplifying
interested frequency band for motor imagery classification.
After signal filtering, a large part of noise can be removed,
such as EMG (high frequency noise, higher than 35Hz), low
frequency component of EOG (lower than 8Hz) and electrical
line interference (50 or 60Hz). In addition, the baseline drift

caused by head or limb motions can also be alleviated to reduce
the impact on the raw EEG signals.

Sliding Windows Segmentation
For a continuous recorded EEG signal, we just only focus
on the motor imagery segments. Then, the band-filtered and
continuous EEG signals were segmented by a time window,
which corresponding to a trial of motor imagery task. Moreover,
a trial of motor imagery task needs repeatedly imagine limb
movements for a certain time to generate stable and effective
brain activity. In existing motor imagery EEG studies, the
features can be extracted either by using the whole EEG trial
or by dividing the trial into a number of overlapping/non-
overlapping time segments (Asensio-Cubero et al., 2011, 2013;
AYDEMIR, 2016). To improve the temporal resolution of EEG
and obtain better performance of the classifier, a sliding window
was commonly adopted to split the targeted motor imagery trial
into overlapped segmentations which can be used for multiple
classifications by a voting strategy (Herman et al., 2008; Shahid
and Prasad, 2011; Choi, 2012). In this study, instead of using
the whole data length of EEG trial, a four-second EEG trial was
divided into 16 segments of 1 s length with 0.2 s step size by the
1 s sliding window with 80 % overlap.

Artifacts or Data Loss Removal
Even if the filter processing is done, some artifacts may still
exist in the EEG segments. Furthermore, the residual elements
stem from artifacts may overlap the effective frequency band
correlated with motor imagery EEG. For instance, the EOG
artifacts resulted from eye blinks are usually presented in the
frequency band of 0–10Hz. The high frequency elements of
the EOG overlapping with ERS/ERD bands cannot be readily
excluded by band-pass filters. On the other hand, the filters are
in general ineffective in the case of the signal with data loss.
Instead of rejecting the entire motor imagery EEG segments,
an additional preprocessing implementation was proposed to
address artifacts and data loss. For the case of the EEG segment
contaminated by extreme artifacts, the entire EEG segment was
divided into data chunks with different widths. The width which
represents the number of data points in each data chunk can be
generated according to a normal distribution with a mean of 10
and a standard deviation of 2. A form of data chunk removal
was applied to directly discard data chunks which contain severe
artifacts. In addition, for the case of data loss within the EEG
segment, a form of data point removal was employed to eliminate
acquisition outliers. For the two forms of data removal, the EEG
portions contaminated by extreme artifacts or data loss within
an EEG segment were directly discarded by a proportion from
10% to 80% in this study. For example, for the case of 10% data
chunk removal, 10% data chunks in a 1 s EEG segment were
randomly discarded. For the case of 10% data point removal, 10%
data points (100 points in this study) in a 1s EEG segment (1,000
points) were randomly discarded. Subsequently, the remaining
EEG data chunks or data points were combined to construct the
incomplete motor imagery EEG segments.
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Feature Extraction Based on
Lomb-Scargle Periodogram
The crucial step in a BCI system is feature extraction, which
is used to find mental task-related information and most
discriminative representations from the brain activities for
subsequent classification. The quality of extracted features highly
affects the performance of the following recognition process. For
motor imagery EEG signals, we concentrated on the spectral
analysis during certain frequency bands. The non-parametric fast
Fourier transform (FFT) and Welch periodogram methods have
been confirmed to effectively estimate the spectral power features
for the intact motor imagery EEG, such as power spectral density
(PSD) (Herman et al., 2008; Djemal et al., 2016). However, due
to the incomplete motor imagery EEG signals belong to a kind
of non-uniformly sampled sequence, these methods may not
extract stable spectral features. In our research, the Lomb-Scargle
periodogram was adopted to estimate the spectral power features
for incomplete motor imagery EEG segments. An incomplete
EEG segment is denoted by X ∈ RC×N , where C is the number of
channels and N is the length of signal points. For each channel,
the signal series were denoted by eeg(ti), where i = 1, 2, ...,N.

Lomb-Scargle Periodogram
For signal series eeg(ti), the spectral power at frequencyωf should
be estimated by solving the following fitting problem of sum of
squared differences:

min
α≥0

φ∈[0,2π]

N∑

i=1

[eeg(ti)− αcos(ωf ti + φ)]2. (1)

For simplicity, the dependence of α and φ about ωf was replaced
by using

a = α cos(φ) and b = −α sin(φ). (2)

The fitting problem can be reformatted by the term of a and b:

min
a,b

N∑

i=1

[eeg(ti)− acos(ωf ti)− b sin(ωf ti)]
2. (3)

The optimal parameters in the minimizing Equation (3) can be
obtained by solving

[
â

b̂

]
= R

−1
r (4)

where

R =

N∑

i=1

[
cos(ωf ti)
sin(ωf ti)

] [
cos(ωf ti) sin(ωf ti)

]
(5)

and

r =

N∑

i=1

[
cos(ωf ti)
sin(ωf ti)

]
eeg(ti). (6)

The power at specific frequency ωf corresponding to optimal

parameters â and b̂, is given as follows:

1

N

N∑

i=1

(
[â b̂]

[
cos(ωf ti)
sin(ωf ti)

])2

=
1

N
[â b̂]R

[
â

b̂

]
(7)

=
1

N
r
TR−1r.

Accordingly, the powers for each channel signal at all frequency
ω can be obtained by

P(ω) =
1

N
r(ω)TR(ω)−1

r(ω). (8)

Similarly, the estimation step was repeatedly executed for all
channels of the incomplete motor imagery EEG segments to
extract the corresponding spectral features. Previous researches
demonstrated that significant power oscillations in response to
various motor imagery tasks mostly located in 8–30Hz bands
(Pfurtscheller et al., 2006; Shahid and Prasad, 2011). In this
article, the concerned band was divided into four sub-bands
with a bandwidth of 5Hz, including alpha (8–13Hz), sigma
(13–18Hz), low beta (18–23Hz), and high beta (23–28Hz)
rhythms. For each channel, the PSD features of each sub-band
were computed by averaging powers within the frequency range.
Hence, all PSD features for EEG segments were concatenated by
channel arrangement into a feature vector:

V = [p11, p12, p13, p14, p21, p22, p23, p24, · · · , pC1, pC2, pC3, pC4]
(9)

where C is the number of channels.

Feature Normalization
Generally, the original features can be directly fed into a neural
network or an SVM classifier to recognize which motor imagery
class the current EEG signal belongs to. However, the spectral
feature variations caused by various channels or different motor
imagery trials may affect the performance of classifiers. To
eliminate the variation factor of feature scale and accelerate the
convergence of learning algorithm, a min-max normalization
step was utilized in feature vector set V . Refer to (10), the
raw features were divided by the difference of maximum and
minimum to scale all the values between 0 and 1.

F(m)norm =
V(m)− vmin(m)

vmax(m)− vmin(m)
(10)

where, vmax(m) = max{V(m)}, vmin(m) = min{V(m)},m ∈

R4×C.

Deep Belief Network Based on Restricted
Boltzmann Machines
Considering the advantages of high-speed and parallel
computation, a neural network classifier is more suitable
and efficient for the online BCI application and the trained
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parameters can be directly used to distinguish new EEG signals.
Currently, a variety of deep learning architectures based on
neural networks have been constructed and applied in motor
imagery EEG classification (Yang et al., 2015; Kumar et al.,
2016; Tabar and Halici, 2016). In this study, we adopted a deep
belief network (DBN) structure to obtain more robust and
ultimately more notable representation for the incomplete motor
imagery EEG. The DBN structure can be formed by multiple
layers of stacked restricted Boltzmann machines (RBMs) or
auto-encoders.

Restricted Boltzmann Machine (RBM)
Each RBM is composed of a visible layer, a hidden layer, and
connection weights between two layers, which is greedily trained
in an unsupervised mode (Hinton et al., 2006; Tang et al., 2015).
The basic structure of RBM is presented in Figure 2. The neurons
used in the RBM are stochastic binary units. Traditionally,
the visible layer receives the input data and have undirected
connections with the neurons of the hidden layer. Meanwhile, the
neurons from the same layer are disconnected. The hidden layer
is responsible to reconstruct the input data as close as possible by
tuning the connection weights and biases repeatedly. For motor
imagery EEG, each visible neuron represents a spectral feature
with hypothetically Gaussian distribution. The energy function
of joint configuration for the two layers is defined as

E(v, h) = −

m∑

i=1

bivi −

n∑

j=1

ajhj −

m∑

i=1

n∑

j=1

vihjwij (11)

where vi and hj are the binary states at the visible neuron i and
hidden neuron j respectively. bi and aj are the corresponding
biases of neurons, wij is the connection weight between them.
Based on the Boltzmann distribution and energy function, a joint
probability for pair of the visible and hidden layer is determined
by

p(v, h) =
1

Z
e−E(v,h) (12)

where Z =
∑
v,h

e−E(v,h) denotes the partition function or

normalization term.
Considering that the hidden neurons are conditional

independent due to no connections between them, given visible

FIGURE 2 | The basic structure of restricted Boltzmann machine (RBM).

vector v, the conditional probability of neuron hj being 1 can be
obtained as follows:

p(hj = 1|v) = σ (aj +
∑

i

viwij) (13)

Similarly, given hidden vector h, the conditional probability of
the visible neuron vi being 1 can be determined by

p(vi = 1|h) = σ (bi +
∑

j

hjwij) (14)

where σ (•) denotes the logistic sigmoid function.
Given the training dataset S = {s1, s2, ..., sns}, ns is the number

of training samples, the parameters of RBM are trained to fit
the training samples by maximizing a log-likelihood function,
including connection weights w, biases a and b.

LS =

ns∑

i=1

log p(v, h) (15)

Based on gradient ascent and contrastive divergence methods
(Hinton et al., 2006), the derivative of the log-likelihood with
respect to weights w can be formulized by

∂ log p(v, h)

∂wij
= Edata

[
∂E(v, h)

∂wij

]
− Emodel

[
∂E(v, h)

∂wij

]
(16)

where Edata [•] and Emodel [•] are respectively the expectation
under the distribution of the training dataset and the model.
Furtherly, the gradient can be rewritten by

∂ log p(v, h)

∂wij
= Edata

[
vihj

]
− Emodel

[
vihj

]
(17)

The contrastive divergence method can be used to approximately
estimate the expectation Edata

[
vihi

]
. The Gibbs samplingmethod

can be adopted to calculate the expectation Emodel

[
vihi

]
. Hence,

the learning rule of connection weights can be obtained by

1wij = η(Edata
[
vihi

]
− Emodel

[
vihi

]
) (18)

Similarly, the updating rules of the biases are respectively

1bi = ε(Edata [vi]− Emodel [vi]) (19)

and

1aj = ε(Edata
[
hj

]
− Emodel

[
hj

]
) (20)

where η and ε donate the learning rate. According to the updating
rules of parameters, each RBM is trained to reconstruct the input
data in an unsupervised way.
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Deep Belief Network
Three layers of RBM were superposed to construct a deep belief
network with a layer of softmax regression in the study, as
shown in Figure 1. The raw input data was fed to the bottom
layer of RBM, and the output of the hidden layer from the
lower RBM was delivered to the visible layer from the higher
RBM. Compared to logistic regression, the softmax regression
was used to solve multiclass recognition problems by statistically
estimating the maximum probability of the class that a sample
belongs to (Salakhutdinov and Hinton, 2012). The procedures
of the DBN primarily consisted of pre-training stage and fine-
tuning stage. The pre-training stage was conducted in each layer
of RBM to obtain initial parameters of the DBN. The softmax
regression was added to obtain prediction error to optimize
the parameters by backpropagation algorithm in the fine-tuning
stage. Additionally, some constraint terms were incorporated
into the cost function of softmax regression to avoid overfitting,
including weight decay and sparsity constraint (Cho, 2013; Plis
et al., 2014; Jiang et al., 2016). In our research, the weight decay
was set to 0.05 and the sparsity constraint was set to 0.1. The
learning rates for connection weights and biases were set to
0.5 and 0.25 respectively. All these parameters were determined
and optimized by a grid search procedure with 5-fold cross-
validation.

MOTOR IMAGERY EXPERIMENTAL
PARADIGM AND DATASETS

In our study, nine right-handed volunteers (all males, mean
age 26.5 years, ranging from 25 to 28 years, numbered
S01-S09) with thin hair participated in the motor imagery
experiments. All subjects were healthy, without any history
of neurological, psychiatric or cognitive disorders. Specifically,
none of them has any prior experience of the BCI experiment
related to motor imagery. Moreover, details of motor imagery
experimental procedures were explained to all participants and
written informed consents were signed for all subjects before
the experiment. The experimental protocol was reviewed and
approved by the local ethics committee of the University of
Chinese Academy of Sciences.

In an electromagnetic shielding environment, the participants
were seated in a comfortable chair with armrests and watched
an LCD screen from a distance of about 1m, while wearing
an EEG recording cap. Three kinds of motor imagery tasks
were performed including imagining left hand, right hand and
foot movements. Before the experiment, the instructor explained
the meaning of kinesthetic imagery of the limb movements to
the participants. Additionally, all participants performed motor
imagery practice to get familiar with the kinesthetic sensation.
Each participant carried out an experimental block consisted
of 10 sessions, which lasted ∼1.5 h. All sessions were executed
in the same condition and a rest period with several minutes
was given between two consecutive sessions. The experiment
paradigm of each session was devised in Figure 3. For all sessions,
the first 2 s was an idle state with a black screen. Subsequently,
a fixation green cross was emerged at the center of the screen

FIGURE 3 | The motor imagery EEG experimental paradigm.

with a duration of 1 s to indicate the beginning of one trial.
Immediately, a red arrow pointing to the left, right or down
appeared with a duration of 5 s in addition to the fixation
cross. In this specific period, the subjects were instructed to
respectively perform the relevant motor imagery tasks according
to the direction of the arrow, such as imagining repeated finger
flexion and extension with the left or right hand at approximate
1Hz frequency. Meanwhile, the subject must pay attention to
imagine the kinesthetic experience of limb movements as much
as possible. In addition, to minimize the artifacts, the participants
were asked to limit their head movements and try not to blink
or swallow during the motor imagery period. During the inter-
trial interval, the arrow cue and fixation cross were disappeared
with the remaining of a black screen for 2 s, and the subject was
instructed to perform idle state instead of motor imagery. To
avoid the adaptability of brain activity for a given motor imagery
task, each of the 3 cues was presented 10 times by a random
sequence in each session. Hence, there are 30 trials for a session.
For each subject, there are total 300 trials of motor imagery tasks
in an experiment.

During the motor imagery tasks, EEG signals were collected
through a grid cap with 64 Ag/AgCI passive electrodes provided
by Plexon Inc., USA. The multiple electrodes with roughly 3 cm
separation distance were closely arranged on the cap according
to the international 10–20 positioning system. Extra conductive
glues or gels were injected into each electrode for higher
conductivity and better attachment. The left mastoid electrode
was used as the reference channel and the right mastoid electrode
served as the ground. The original EEG data were recorded with
a sampling rate of 1 kHz by OmmiPlex Neural Data Acquisition
System (Plexon Inc., USA), including analog pre-amplification,
analog-to-digital conversion, and a low-pass filter with a cutoff
frequency of∼200–300Hz. An additional notch filter with 50Hz
was applied to eliminate the power line artifacts. Finally, the
recorded motor imagery EEG signals for each subject were saved
in the form of times× channels× trials with 5,000× 64× 300.

To obtain dominant motor imagery EEG, a 4 s segment from
0.5 s after cue to 4.5 s was cut out from each trial. As mentioned in
section EEG Processing Pipeline, the data was further band-pass
filtered and segmented by a sliding window. Hence, the motor
imagery datasets were represented by a three-dimensional array
of size 1,000 × 64 × 4,800 for each subject, where 1000 was
the length of time window (1 s), 4,800 was the number of motor
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imagery segments containing three class, and 64 was the number
of channels. For each channel signal, there were 4 spectral power
features estimated by Lomb-Scargle periodogram method. Then,
the whole sample datasets with features were 4,800× 256 for each
subject, where 256 was the number of features (4× 64 channels).
The datasets were randomly divided into 75% training datasets
(3,600× 256) and 25% testing datasets (1,200× 256).

EXPERIMENTAL RESULTS AND
DISCUSSIONS

Simulation Comparison With Different
Spectral Estimation Methods
To evaluate the effectiveness of the Lomb-Scargle method for
incomplete signals, the simulated signal was devised by mixing
two sinusoidal signals with a dominant frequency of 4Hz and
8Hz, respectively. The amplitude ratio between 4Hz and 8Hz
sinusoidal signal was set to 0.75. For the simulated signal,
data points with a certain proportion were randomly removed
to construct incomplete or irregular signals. In addition, for
comparison with Lomb-Scargle periodogram, traditional Welch
and FFT periodogram methods were also applied to estimate
spectral power for different incomplete signals.

The estimated spectral powers for the intact signal and the
incomplete signal with various degrees of missing data are
given in Figure 4. For the simulated signal, the data points
were eliminated by a proportion from 10 to 80% with a step
of 10%. Meanwhile, the powers were normalized to the same
scale by dividing a factor, which was the proportion value of

remaining data. From Figure 4, we can see that the spectral
components at dominant frequency 4 and 8Hz are more and
more insignificant with the increase of proportional data removal
for all three estimation methods. Especially, the spectral powers
were obviously degraded after 30% data removed. However, the
spectral powers estimated by Lomb-Scargle periodogram were
more notable than those estimated by Welch or FFT method
for various incomplete signals (the p-value from paired t-test
was < 0.05). Indeed, the components at 4Hz and 8Hz were well-
obtained for the incomplete signal even with 80% data removed.
It demonstrated that compared to the traditional spectral analysis
methods like FFT andWelch, the LSP method can estimate more
stable and optimal spectral features from various incomplete or
irregular signals. It proved that the LSP was particularly suited to
estimate rhythm components in non-uniformly sampled signals
(Stoica et al., 2009).

Incomplete Motor Imagery EEG: Point
Removal Form and Chunk Removal Form
To systematically validate the discrimination ability of the PSD
features extracted by the LSP method for the incomplete EEG,
two forms were adopted to randomly remove the portions from
the intact motor imagery segments to construct incomplete
signals. For the condition of data loss, a form of data point
removal was applied to eliminate the EEG outliers, which
caused by high contact impedance between electrodes and scalp.
Figure 5 presents the recognition performance of intact EEG
and incomplete EEG with different proportions of data point
removal for the nine subjects, obtained by the DBN classifier

FIGURE 4 | The comparison results of spectral power estimations for the complete signal and incomplete signal with different proportional removal (from 10 to 80%

with a step of 10%). Three estimation methods were used: Lomb-Scargle, Welch and FFT periodogram.
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FIGURE 5 | The classification results of the intact EEG and incomplete EEG with various ratios of data point removal (from 10 to 80% with a step of 10%), for the nine

subjects (from S01 to S09). Three spectral feature extraction methods were used for comparison: the black lines, red lines and blue lines represent the accuracy of

DBN with FFT, Welch and Lomb-Scargle feature extraction, respectively.

with three feature extraction methods (FFT, Welch, and Lomb-
scargle). For simplify, threemethods were denoted as FFT+DBN,
Welch+DBN, and Lomb-Scargle+DBN, respectively. From
an overall perspective, the recognition accuracy showed a
descending trend gradually along with the increasing proportion
of data point removal for all three methods in Figure 5.
For the intact motor imagery EEG, the average accuracies
(±standard deviation) across the nine subjects were 72.27%
(±1.33%) for FFT+DBN, 73.26% (±1.44%) for Welch+DBN,
74.77% (±0.43%) for Lomb-Scargle+DBN, respectively. There
was no significant difference (p > 0.078, paired t-test) between
the average accuracy of Lomb-Scargle+DBN and those of
the other methods for the intact EEG across all subjects.
This can be inferred that compared to the FFT and Welch
method, the LSP method may not provide high-quality PSD
features for the intact motor imagery EEG. Especially, for the
intact EEG of subject 1 (S01), the accuracy of Welch+DBN
was higher than that of Lomb-Scargle+DBN. Considering the

computational complexity and the efficiency, it is not preferable
to apply the Lomb-Scargle+DBN for the intact motor imagery
EEG classification. However, the accuracy variation of Lomb-
Scargle+DBNwas obviously smaller than those of the FFT+DBN
and Welch+DBN for the incomplete EEG with different point
removal ratios. More specifically, for the incomplete EEG with
point removal in the range from 10 to 80%, the mean difference
of accuracy across the nine subjects was 13.38% (±2.67%)
for FFT+DBN, 13.08% (±3.07%) for Welch+DBN, and 7.45%
(±1.18%) for Lomb-Scargle+DBN, respectively. It demonstrated
that the classification performance of Lomb-Scargle+DBN was
significantly better compared to FFT+DBN (p = 0.012 < 0.05,
paired Student’s t-test) and Welch+DBN (p = 0.008 < 0.01,
paired Student’s t-test) for the incomplete motor imagery EEG.
Implicitly, the spectral power features extracted by Lomb-Scargle
periodogram can significantly improve the classification accuracy
of the DBN for various degrees of incomplete EEG. An acceptable
classification accuracy (above 65%) can be achieved by the

Frontiers in Neuroscience | www.frontiersin.org 9 September 2018 | Volume 12 | Article 680160

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Chu et al. Incomplete Motor Imagery EEG

FIGURE 6 | The classification results of intact EEG and incomplete EEG with various ratios of data chunk removal (from 10 to 80% with a step of 10%), for the nine

subjects (from S01 to S09). Three spectral feature extraction methods were used for comparison: the black lines, red lines and blue lines represent the accuracy of

DBN with FFT, Welch and Lomb-Scargle feature extraction, respectively.

Lomb-Scargle+DBN method even when 80% of points were
eliminated, while the accuracies of FFT+DBN and Welch+DBN
were ∼60% or even lower. Interestingly, from Figure 5, we can
find that the accuracies for the incomplete EEG after 30% data
point removal declined sharply and substantially. Especially in
the case of subject 1 (S01 EEG datasets), the accuracy obtained
by FFT+DBN or Welch+DBN roughly varied from 70 to 53%
for the incomplete EEG between 30 and 80% data point removal.
This finding implied that the performance of spectral power
features deteriorated distinctly for the methods of FFT and
Welch periodogram, which was in accordance with the previous
simulation comparison.

Similarly, to eliminate the effects of extreme artifacts, a
form of data chunk was adopted to remove the EEG portions
contaminated by tremendous electrophysiological artifacts or
complex background noises. The corresponding classification
results for the intact EEG and incomplete EEGwith various ratios

of data chunk removal are presented in Figure 6. Compared
to the data point removal, the accuracies of the incomplete
EEG dramatically and significantly decreased across different
degrees of data chunk removal (p = 0.022 < 0.05, paired
Student’s t-test). Especially, the average accuracies for the
incomplete EEG with 80% data chunk removal were 51.03%
(±2.23%), 51.47% (±1.60%), and 64.17% (±0.63%), significantly
lower than those for the incomplete EEG with 80% data
point removal by 58.13% (±2.52%), 59.15% (±2.87%), and
66.44% (±1.13%) for FFT+DBN, Welch+DBN, and Lomb-
Scargle+DBN respectively. More commonly and exactly, the
mean difference of accuracy for the incomplete EEG with
chunk removal in the range from 10 to 80% across the
nine subjects was 20.51% (±2.39%), 19.68% (±2.21%), and
9.30% (±1.17%) for FFT+DBN, Welch+DBN, and Lomb-
Scargle+DBN respectively. The statistical analysis indicated that
the proposed Lomb-Scargle+DBN method for the incomplete
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TABLE 1 | Statistical classification performance for the incomplete EEG with point and chunk removal.

Incomplete EEG (point form) (%) Incomplete EEG (chunk form) (%)

FFT Welch Lomb-Scargle FFT Welch Lomb-Scargle

S01 63.46 ± 7.64 63.09 ± 7.85 70.38 ± 2.93 60.78 ± 8.50 60.46 ± 7.88 68.54 ± 3.13

S02 65.85 ± 5.10 66.14 ± 4.60 70.34 ± 2.25 62.06 ± 5.86 62.12 ± 5.40 67.82 ± 2.84

S03 64.21 ± 6.24 65.01 ± 6.40 71.20 ± 3.49 63.35 ± 6.67 62.69 ± 7.34 69.30 ± 3.36

S04 65.31 ± 4.62 66.54 ± 4.24 71.24 ± 2.44 62.25 ± 7.17 62.43 ± 6.72 68.30 ± 3.85

S05 65.66 ± 3.41 66.93 ± 3.55 71.21 ± 2.34 62.15 ± 7.80 63.18 ± 7.12 69.20 ± 4.02

S06 65.59 ± 4.32 66.46 ± 4.24 70.52 ± 2.72 63.09 ± 8.73 62.89 ± 8.59 69.36 ± 3.92

S07 65.58 ± 4.46 65.99 ± 4.30 70.79 ± 2.21 62.01 ± 8.46 62.66 ±7.52 69.48 ± 3.53

S08 66.28 ± 4.94 67.44 ± 4.75 70.79 ± 2.99 62.31 ± 8.46 62.55 ± 8.39 69.83 ± 3.56

S09 65.25 ± 5.00 66.83 ± 4.40 70.34 ± 2.75 62.40 ± 8.16 62.82 ± 8.48 67.94 ± 4.02

Mean 65.24 ± 5.08 66.05 ± 4.93 70.72 ± 2.68 62.26 ± 7.70 62.42 ± 7.49 68.86 ± 3.58

The maximum mean of comparative experiments were highlighted in the bold.

EEG was constantly and significantly superior to the other
two methods (p = 0.007 < 0.01 for FFT+DBN and Lomb-
Scargle+DBN, p = 0.007 < 0.01 for Welch+DBN and Lomb-
Scargle+DBN, paired Student’s t-test). Moreover, the accuracies
of the incomplete EEG in the condition of data chunk removal
varied remarkably larger than those in the condition of data
point removal (p < 0.05, paired t-test). It can be attributed to
the fact that except for extreme artifacts, the informative signals
corresponding to motor imagery tasks were also eliminated
by the chunk form within the same contaminated segments.
Thereby, for the incomplete EEG with data chunk removal, the
extracted spectral powers of the mu/beta rhythms related to
motor imagery tasks were relatively inferior to those for the
incomplete EEG with data point removal.

In addition, the overall recognition performance for the
incomplete EEG across various degrees of point and chunk
removal are provided in Table 1. The results (mean ± standard
deviation) were obtained by averaging accuracies for the
incomplete EEG with different ratios of point and chunk removal
in the range from 10 to 80%. It can be observed that the
classification results of Lomb-Scargle+DBN were significantly
higher than those of FFT+DBN and Welch+DBN for both
incomplete EEG with point and chunk removal. The incremental
performances between Lomb-Scargle+DBN and FFT+DBN
were 5.48%, 6.60% for the incomplete EEG with point and chunk
removal, respectively. The p-values computed by the paired
Student’s t-test of this comparison were all < 0.001. Likewise,
the incremental performances between Lomb-Scargle+DBN
and Welch+DBN were 4.67%, 6.44% for the incomplete EEG
with point and chunk removal, respectively. The p-values
computed by the paired Student’s t-test of this comparison were
also < 0.001. Furthermore, from the view of standard deviation,
the Lom-Sacrgle+DBN method (2.68% for point form, 3.58%
for chunk form) performed prominently lower variability than
FFT+DBN (5.08% for point form, 7.70% for chunk form) and
Welch+DBN (4.93% for point form, 7.49% for chunk form).
Therefore, it is evident that the Lomb-Scargle+DBNmethod can
significantly and steadily improve the recognition performance
for the different incomplete motor imagery EEG.

Comparison of DBN With Various
Structures
It should be noted that the structures of DBN adopted in the
incomplete EEG experiments were determined and selected by
an optimization method. As previously mentioned, the DBN was
constructed by three hidden layers of pretrained RBMs and an
output layer of softmax regression. For this study, a number of
256 dimensional vectors were fed to the input layer of the DBN.
Hence, the dimension of the input layer was 256. Furthermore,
three units were utilized in the output layer of softmax regression,
which corresponded to three motor imagery tasks. To obtain the
relevant optimal parameters, various numbers of units were tried
for the three hidden layers. More explicitly, different numbers
of units varied over a range were used in one hidden layer,
while the numbers of units in the remaining two hidden layers
were unchanged. Since optimal parameters selection of the DBN
was a combinatorial process, which yields comparable solutions
rapidly. To evaluate the sensitivity of the hidden layers to the
changes of the unit numbers, 5-fold cross-validation was applied
for the classification of motor imagery EEG. For each subject,
the intact EEG and incomplete EEG with various ratios of data
removal were divided into 5 sections, in which 4 sections were
adopted for training, and the rest section was used for the
test. The average performances were obtained by executing 5
times procedures repeatedly. Additionally, all the evaluations
were conducted in the features extracted by the Lomb-Scargle
periodogram.

For the first hidden layer, the numbers of units varied in a
range of [15 30 45 60 75 90] while the numbers of units in
the other two hidden layers maintained a constant value with
50 and 35 units, respectively. The corresponding comparison of
classification performances for the DBN with different numbers
of units in the first hidden layer is presented in Table 2. The
results showed that the maximum mean accuracy 71% was
obtained in the condition of 60 units of the first hidden layer.
The decoding accuracies were remarkably improved in the 60
units compared to other numbers of units for the first hidden
layer (p < 0.05, paired Student’s t-test). Similarly, Table 3 gives
the performance of the second hidden layer varying in [10 20
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TABLE 2 | Comparison of classification accuracies based on different numbers of

units in the first hidden layer for the nine subjects.

15 units 30 units 45 units 60 units 75 units 90 units

S01 0.62 0.65 0.68 0.68 0.60 0.63

S02 0.71 0.70 0.65 0.70 0.62 0.59

S03 0.60 0.58 0.62 0.73 0.60 0.58

S04 0.59 0.67 0.60 0.72 0.70 0.64

S05 0.61 0.63 0.64 0.71 0.62 0.59

S06 0.64 0.65 0.63 0.71 0.61 0.60

S07 0.63 0.65 0.67 0.69 0.64 0.63

S08 0.63 0.66 0.62 0.70 0.62 0.58

S09 0.62 0.64 0.62 0.71 0.62 0.63

Mean 0.63 0.65 0.64 0.71 0.63 0.61

The maximum mean of comparative experiments were highlighted in the bold.

TABLE 3 | Comparison of classification accuracies based on different numbers of

units in the second hidden layer for the nine subjects.

10 units 20 units 30 units 40 units 50 units 60 units

S01 0.63 0.68 0.65 0.70 0.73 0.67

S02 0.63 0.67 0.65 0.68 0.72 0.66

S03 0.60 0.67 0.67 0.70 0.70 0.62

S04 0.62 0.70 0.70 0.69 0.73 0.67

S05 0.61 0.68 0.66 0.69 0.69 0.65

S06 0.62 0.67 0.69 0.68 0.74 0.67

S07 0.64 0.65 0.66 0.60 0.74 0.68

S08 0.60 0.62 0.70 0.70 0.75 0.65

S09 0.59 0.60 0.62 0.68 0.68 0.64

Mean 0.62 0.66 0.67 0.68 0.72 0.66

The maximum mean of comparative experiments were highlighted in the bold.

30 40 50 60] units with the other two hidden layers of 60 and
35 units respectively. The accuracies of 50 units in the second
hidden layer (about 72%) were significantly higher than those of
other numbers of units (p < 0.05, paired Student’s t-test). Table 4
represents the results of the third hidden layer taking units from
[25 30 35 50 70 85] when the other two hidden layers of 60 and
50 units respectively. It can be observed that the performances
of 35 units in the third hidden layer were significantly different
compared to the other numbers of units (p < 0.01, paired
Student’s t-test). The process of adjusting parameters was very
tedious and tricky for the BDN. Nevertheless, the change of the
classification accuracy was lower than 10% for the motor imagery
tasks with different numbers of units in the three hidden layers.
It suggested that the DBN classifier was robust relative to the
variation of the network structure. In brief, the structure of the
DBN used in this experiment was 256× 60× 50× 35× 3.

Comparison Between DBN and SVM
In this series of experiments, performance comparisons between
DBN and SVM were evaluated, with respect to the recognition
accuracy for the incomplete EEG in the case of point removal and

TABLE 4 | Comparison of classification accuracies based on different numbers of

units in the third hidden layer for the nine subjects.

25 units 30 units 35 units 50 units 70 units 85 units

S01 0.60 0.62 0.72 0.66 0.65 0.70

S02 0.65 0.62 0.69 0.60 0.65 0.66

S03 0.64 0.68 0.70 0.70 0.66 0.65

S04 0.62 0.64 0.70 0.62 0.60 0.62

S05 0.62 0.63 0.71 0.62 0.64 0.63

S06 0.63 0.65 0.68 0.64 0.64 0.62

S07 0.60 0.66 0.68 0.63 0.68 0.64

S08 0.64 0.60 0.71 0.63 0.60 0.65

S09 0.61 0.60 0.70 0.65 0.62 0.65

Mean 0.62 0.63 0.70 0.64 0.64 0.65

The maximum mean of comparative experiments were highlighted in the bold.

chunk removal respectively. As previously described, the Lomb-
Scargle periodogram can extract effective and robust spectral
features for various incomplete EEG to promote the classification
performance. Hence, the DBN and SVM classifiers were executed
on the same feature datasets extracted by the Lomb-Scargle
method. For the three motor imagery tasks, three binary SVMs
with a Radial Basis Function (RBF) kernel were built to obtain
the final accuracy by a majority voting strategy. The relevant
parameters of the binary SVM were optimized using a grid-
search trick (Quitadamo et al., 2017) in a range of [−5 5], such
as regularization parameter C and kernel width σ of the RBF.
In addition, 5-fold cross-validation method was also applied to
avoid overfitting for both classifiers.

Figures 7, 8 present the comparison results between DBN
and SVM for the intact EEG and incomplete EEG in the case
of point removal and chunk removal (ratios from 10 to 80%
with a step of 10%), respectively. For the intact motor imagery
EEG, the performance between DBN and SVM across the nine
subjects was no significantly difference (p = 0.062 > 0.05, paired
Student’s t-test), with mean accuracies of 74.77% (±0.44%),
73.74% (±0.78%) respectively. From Figure 7, the overall
performance of the DBN for the incomplete EEG with different
ratios of point removal was better than that of the SVM.
Especially, for the case of subject 5, 8, and 9 (S05, S08,
and S09 EEG datasets), the accuracies of the DBN for the
incomplete EEG after 30% data point removal were obviously
improved, with an average increment of 2.64%. However, for
the incomplete EEG with different ratios of data chunk removal,
the accuracy improvement of the DBN was not significant
compared with the SVM. For some subjects, such as subject
2, 3, 4, and 9, the SVM can outperform the DBN for the
incomplete EEG with chunk removal in some degree (seen in
Figure 8).

For further clarification, the average accuracies (± standard
deviation) of the DBN and SVM across the incomplete EEG with
various ratios of data removal (from 10 to 80%with a step of 10%)
were presented in Table 5, including the case of point removal
and chunk removal respectively. As shown, for the incomplete
EEG with point removal method, the average classification
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FIGURE 7 | The comparative performances between DBN and SVM classifiers for the intact EEG and incomplete EEG with various ratios of data point removal (from

10 to 80% with a step of 10%), for the nine subjects (from S01 to S09).

performance of the DBN (70.72 ± 2.65%) was higher than
that of the SVM (69.89 ± 3.08%) across the nine subjects.
For the case of point removal, the p-value computing from
the Student’s t-test between DBN and SVM was 0.021 < 0.05.
Moreover, the DBN led to relatively lower variability compared
to the SVM, with a mean standard deviation of 2.65% and
3.08% respectively. These results indicated that the DBN was
superior to the SVM for the incomplete EEG classification in
terms of point removal. Whereas, in the case of chunk removal,
the increase of accuracy between DBN (68.86 ± 3.58%) and
SVM (68.74 ± 3.53%) was lower than that in the case of point
removal. And there was no statistical difference between DBN
and SVM (p = 0.79 > 0.50, paired Student’s t-test) for the
incomplete EEG with chunk removal. This may be due to the
reason that compared to the incomplete EEGwith point removal,
the extracted features from the incomplete EEG with chunk
removal were relatively poor and weaken the performance of the
DBN and SVM. However, it is likely that the DBN can perform

better than the SVM for the motor imagery classification of the
incomplete EEG when parameters are subtly tuned and extra
layers are added.

CONCLUSIONS AND FUTURE WORKS

In this study, a decoding scheme based on the combination
of LSP and DBN was proposed to recognize incomplete motor
imagery EEG segments. To construct incomplete EEG segments,
point and chunk removal form were respectively utilized to
randomly and proportionally eliminate the uninteresting EEG
point or portion. The point removal form was mainly used to
eliminate outliers within the EEG segments due to data loss. And
the chunk removal form was used to eliminate portions within
the EEG segments due to extreme artifacts. The LSP method was
carried out to extract robust spectral power features of mu/beta
rhythms related to motor imagery tasks for the incomplete
EEG. The DBN consisted of three layers of stacking restricted
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FIGURE 8 | The comparative performances between DBN and SVM classifiers for the intact EEG and incomplete EEG with various ratios of data chunk removal (from

10 to 80% with a step of 10%), for the nine subjects (from S01 to S09).

Boltzmann machines (RBMs) and a softmax regression layer was
devised to perform motor imagery classification. Since this was
a preliminary study, the chunk and point removal was processed
in a random manner. However, for the real application, a more
specific search process was needed to determine which chunks or
points should be removed.

To validate the effectiveness of the proposed decoding scheme
for the incomplete EEG, various comparative experiments were
conducted and evaluated on simulated signal and real motor
imagery EEG, including the comparison of different spectral
power estimation methods (FFT, Welch and Lomb-Scargle)
and different classifiers (DBN and SVM). For the simulation
comparison with three spectral estimation methods, the results
show that the Lomb-Scargle method can extract more stable
and remarkable spectral power for the incomplete or irregular
signals. Furthermore, the PSD features extracted by the three
estimation methods were recognized using a DBN classifier,
and the classification accuracy of the Lomb-Scargle+DBN

was not dramatically declined compared to FFT+DBN and
Welch+DBN for the incomplete motor imagery EEG with
increasing proportion of point removal or chunk removal (from
10% to 80% with a step of 10%). These results suggest that
the Lomb-Scargle+DBN can lead to significantly and steadily
improve the recognition performance for the incomplete motor
imagery EEG. The significance statistical analysis between Lomb-
Scargle+DBN and FFT+DBN or Welch+DBN was less than
0.05 for the incomplete EEG in the case of point removal and
chunk removal. After three groups of experimental tests and
comparisons, the structure of the DBN was determined to be 256
× 60 × 50 × 35 × 3 to improve the learning performance of the
DBN. Extended comparison between DBN and SVM indicated
that the DBN was superior to the SVM for the incomplete EEG
in terms of point removal. Moreover, for the classification of the
intact motor imagery EEG, there was no significant difference
for the average accuracy (p > 0.078, paired t-test) between
the Lomb-Scargle+DBN and the other methods (FFT+DBN
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TABLE 5 | Statistical classification performance of the DBN and SVM for the

incomplete EEG with point and chunk removal.

Incomplete EEG (point form) (%) Incomplete EEG (chunk form) (%)

DBN SVM DBN SVM

S01 70.38 ± 2.93 69.68 ± 3.26 68.54 ± 3.13 68.68 ± 3.75

S02 70.34 ± 2.25 69.56 ± 3.17 67.82 ± 2.84 68.25 ± 3.35

S03 71.20 ± 3.49 70.64 ± 3.70 69.30 ± 3.36 69.82 ± 2.31

S04 71.24 ± 2.44 71.24 ± 2.44 68.30 ± 3.85 68.20 ± 3.90

S05 71.21 ± 2.34 69.51 ± 3.04 69.20 ± 4.02 68.34 ± 3.87

S06 70.52 ± 2.72 69.93 ± 2.94 69.36 ± 3.92 68.75 ± 3.84

S07 70.79 ± 2.21 70.23 ± 2.68 69.48 ± 3.53 69.04 ± 3.30

S08 70.49 ± 2.99 69.12 ± 3.39 69.83 ± 3.56 69.27 ± 3.97

S09 70.32 ± 2.45 69.08 ± 3.11 67.94 ± 4.02 68.35 ± 3.47

Mean 70.72 ± 2.65 69.89 ± 3.08 68.86 ± 3.58 68.74 ± 3.53

The maximum mean of comparative experiments were highlighted in the bold.

and Welch+DBN). Considering the computational complexity
and the efficiency, it is not preferable to apply the Lomb-
Scargle+DBN for the intact motor imagery EEG classification.
Therefore, the proposed decoding scheme is suitable to improve
the classification performance for the incomplete motor imagery
EEG. It means that instead of rejecting the entire segment, the
motor imagery EEG segment with data loss or extreme artifacts
can still be used to generate comparable classification results
when the affected portions are eliminated.

Thanks to decoding the incomplete EEG, the proposed
schemewill be beneficial to improve the stability, smoothness and
maintain continuous outputs for a BCI system. Especially, for
online BCI systems, the intentions of subjects are continuously
decoded from the EEG signals with no interruption. In the
future work, the online test based on motor imagery EEG will
be carried out to evaluate the validity of the proposed decoding
scheme for the incomplete signals. Additionally, because of the
Lomb-Scargle periodogram was particularly suited to estimate
rhythm components in non-uniformly sampled signals (Stoica
et al., 2009), it may be applicable to other modalities of the EEG
signal related to spectral analysis. For example, the proposed
method can be applied to decode the incomplete SSVEP EEG.
For the structure of the DBN, more dedicated procedures can be
implemented to further boost the decoding performance, such
as adding layers of the RBMs and utilizing search algorithms to
optimize the hyper-parameters of the DBN. Additionally, optimal
frequency bands associated with relevant motor imagery tasks

can be further investigated to promote the overall performance
of the proposed method. For the segmentation processing of the
sliding window with 80% overlapping, there was a correlation
between the 16 samples from the same EEG trial. This factor
may influence the performance of the proposed method for the
incomplete EEG classification. In the next work, similar to the
study of Asensio-Cubero et al., a comparative research should be
conducted by applying the proposed method to three different
segmentation strategies: (1) no segmentation, by applying the
proposed method directly to the whole EEG trial, (2) uniform
segmentation without overlapping, and 3) segmentation with
different overlapping (sliding window method) (Asensio-Cubero
et al., 2011). In this study, the BCI system based on motor
imagery EEG works in a synchronous way. And an asynchronous
BCI system needs to be further investigated in the future work.
In conclusion, the introduced decoding scheme provides an
effective solution for the incomplete motor imagery EEG in the
BCI system.
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Rehabilitation robots play an important role in the rehabilitation field, and effective

human-robot interaction contributes to promoting the development of the rehabilitation

robots. Though many studies about the human-robot interaction have been carried

out, there are still several limitations in the flexibility and stability of the control

system. Therefore, we proposed an advanced adaptive control method for lower limb

rehabilitation robot. The method was devised with a dual closed loop control strategy

based on the surface electromyography (sEMG) and plantar pressure to improve the

robustness of the adaptive control for the rehabilitation robots. First, in the outer

loop control, an advanced variable impedance controller based on the sEMG and

plantar pressure was designed to correct robot’s reference trajectory. Then, in the

inner loop control, a sliding mode iterative learning controller (SMILC) based on the

variable boundary saturation function was designed to achieve the tracking of the

reference trajectory. The experiment results showed that, in the designed dual closed

loop control strategy, a variable impedance controller can effectively reduce trajectory

tracking errors and adaptively modify the reference trajectory synchronizing with the

motion intention of patients; the designed sliding mode iterative learning controller can

effectively reduce chattering in slidingmode control and excellently achieve the tracking of

rehabilitation robot’s reference trajectory. This study can improve the performance of the

human-robot interaction of the rehabilitation robot system, and expand the application

to the rehabilitation field.

Keywords: lower limb rehabilitation robot, motion analysis, dual closed loop control, advanced variable impedance

control, sliding mode iterative learning control

INTRODUCTION

Recently, the rehabilitation robots have shown great advantages and have attracted more attention
in rehabilitation field, which can assist patients in rehabilitation training and effectively alleviate
the work pressure of the therapist (Lo et al., 2010). Currently, according to the training mode
in the rehabilitation process, the rehabilitation robots are mainly divided into two types: passive
training and active training. The former has been widely applied in clinic, and has brought some
effects for patients, but it lacks active participation of patients and may leads to unreasonable and
insufficient recovery. The latter can provide appropriate assistance according to patients’ active
motion intention and state, which contributes to the recovery of motor nerves and accelerate
the rebuilding of motor function. Evidence-based medicine also shows that active rehabilitation
training has better recovery effects on patients (Costandi, 2014). In the active rehabilitation training
process, the control strategy can be adjusted adaptively according to motion state of the patient.
Many studies on this have been done as following:
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In order to realize the active control of rehabilitation robot,
effective motion intention recognition and motion state analysis
is very important. Surface electromyography (sEMG), as an
information which can reflect the muscle status (Wu et al., 2010),
has been used in motion intention recognition (Amsüss et al.,
2014; He et al., 2015) and interaction control of human-robot
system (Meng et al., 2014). Human motion intention recognition
methods are mainly divided into discrete action classification
and continuous motion analysis (Kawase et al., 2014; Hou et al.,
2016). The discrete action classification method can be used in
the rehabilitation robot control system of early rehabilitation
training for patients, but the human-robot interaction level is
low, while the continuous motion analysis method can be used
in adjusting the rehabilitation robots’ degree of assistance in real-
time according to the patients’ motion intention and motion
ability. For example, the skeletal muscle model is used to predict
the multi-joint angle, but it is not suitable for interaction control
of the human-robot system since the model has many unknown
parameters and low accuracy (Buchanan et al., 2004; Meng
et al., 2015). The musculoskeletal model is simplified in some
researches, for example, joint-angle model was established by
introducing the muscle activity and time domain features (Koo
and Mak, 2005); the k-order dynamic model was designed by
using the LS-SVR method to predict the joint angle (Tang et al.,
2016). By establishing the regression model between sEMG and
joint angles, the prediction accuracy is significantly improved,
but the modeling takes long time, which may cause patient
muscle tired. Relevant studies have shown that the prediction
errors may significantly increase under the condition of muscle
fatigue, and it is difficult to guarantee the interaction control
security of the human-robot system (Li Z. et al., 2015). In
addition, in some studies, the sEMG signal was applied to predict
the muscle strength of the limb in order to realize the active
control of the rehabilitation robot (Duschau-Wicke et al., 2010),
but the prediction accuracy of muscle strength still need to be
improved. Therefore, it is necessary to comprehensively consider
the sEMG, joint angle and human-robot interaction force to
realize an accurate motion state analysis.

Furthermore, many studies concentrates on how to design
the adaptive control strategy of rehabilitation robot in the
active training process. The impedance control method, as a
commonly intelligent control method for rehabilitation robot,
have been introduced into rehabilitation robot control (Jezernik
et al., 2004; Xie et al., 2016), which can improve the interaction
performance of the human-robot system by adjust the assistance
level according to patients’ motion intention and motion state.
However, there are some limitations on the traditional constant
coefficient impedance control method because the parameters
of the human-robot system are preset and cannot be adjusted
according to the changes of the patient’s motion state in real time.
Therefore, the variable impedance control method was proposed
to adjust the gait training speed within the virtual channel
according to the plantar pressure (Kiguchi and Hayashi, 2012),
but the virtual channel varies from person to person. Because the
sEMG signals can describe the motion state and reflect changes
of human damping and stiffness in the human-robot system
(Rahman et al., 2014), it has been introduced to the impedance

control model in some researches. For example, muscle activity
information has been used in the rehabilitation robot control
system to adjust the control speed (Rahman et al., 2013), but
the performance of control method still need to be improved
when patient’s motion intention and human-robot interaction
force are variable. Therefore, it will be helpful to improve the
adaptive ability of rehabilitation robot control if the impedance
parameters of the control system are adjusted considering the
sEMG, joint angle and human-robot interaction force together.

In this paper, we proposed an advanced adaptive control
method for lower limb rehabilitation robot, which was designed
with a dual closed loop control strategy based on the sEMG
and plantar pressure. Firstly, we carried out motion analysis of
human lower limbs with least squares extreme learning machine
(LS-ELM) algorithm to obtain the desired trajectory of patients.
Then, the designed variable impedance control was used to
adaptively correct the desired trajectory according to patients’
active motion intention and obtained the reference trajectory of
the rehabilitation robot. Finally, the designed SMILC was used to
track the reference trajectory and realize the adaptive control of
rehabilitation robot, which can enhance the compliance and the
robustness of the lower limb rehabilitation robot control system
in training. This study can effectively improve the performance
of the human-robot interaction and the robustness of control in
the rehabilitation robot system.

HUMAN-ROBOT SYSTEM MODELING

To verify the adaptive control method of the lower limb
rehabilitation robot proposed in this study, we first established
a human-robot system model as the control object for further
study.

In this study, we chose the lower limb rehabilitation robot with
one degree of freedom as the object, which could complete the
horizontal extension and flexion movement through the rod and
the pedal, Figure 1 showed the model and simplified diagram of
the lower limb rehabilitation. In order to reduce the modeling
complexity, the rehabilitation robot and human lower limb are
considered to be a single unit and simplified as a two-link series
mechanism.

The Cartesian coordinate system is established with the hip
joint as the origin, as shown in (Figure 1B). The coordinate of
robot’s end point B is calculated through kinematics:

X =

[
L1 cos q1 + L2 cos(q1 + q2)
L1 sin q1 + L2 sin(q1 + q2)

]
(1)

where Li is the length and qi is the deflection angle of the i-th bar.
The deflection angle of the joint can be solved through inverse
kinematics:

q =





arcsin(
−L2s2√
x2B + y2B

)+ arctan(
yB

xB
)

arcos(
L21 + L22 − x2B − y2B

2L1L2
)



 (2)

Considering the influence of human movement on the human-
robot system, the mapping torque of the human active power in
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FIGURE 1 | Lower limb rehabilitation robot. (A) Lower limb rehabilitation robot model. (B) Diagram of lower limb rehabilitation robot.

FIGURE 2 | Adaptive control principle of the human-robot system.

robot space is used as part of the drive torque of the human-robot
system, and the dynamic model of the human-robot system can
be described as:

τ r + τ h
hr = M(q)q̈ + H (q, q̇) + G(q) (3)

where q =
[
q1 q2

]T
is the angle of hip joint and knee joint,M(q)

is the positive definite inertia matrix of the human-robot system,
H(q, q̇) is the Coriolis force and the centrifugal correlation
matrix, G(q) is the gravity matrix, τ h

hr
is the equivalent torque of

human active moment in robot space, and τr is the driving torque
provided by the robot.

The human active force and gravity are both considered in the
process of human-robot systemmodeling, which can improve the
accuracy of the human-robot system modeling and interaction
performance for the human-robot system. In this paper, a dual
closed loop control strategy based on the sEMG signals and
plantar pressure was proposed to realize the adaptive control of
the human-robot system.

ADAPTIVE CONTROL OF HUMAN-ROBOT
SYSTEM

Control Strategy of Human-Robot System
To improve the performance of human-robot interaction and
compliance control of rehabilitation robot, a dual closed loop
control strategy based on sEMG signals and the human-robot
interaction force (plantar pressure) is designed for the human-
robot system, which is consist of the variable impedance control
in the outer loop and the position control in the inner loop.
The variable impedance control model based on sEMG and the

plantar pressure is designed to obtain the reference trajectory
that reflects the patient’s motion intention and motion ability by
correcting the patient’s desired trajectory. Then, the sliding mode
iterative learning control algorithm based on a variable boundary
saturation function is designed to track the reference trajectory,
which performs steady trajectory tracking and improves the
robustness of the control system, as shown in Figure 2.

Desired Trajectory Generation Based on
Human Motion Intention
To obtain the desired trajectory of rehabilitation robot
synchronizing with the human motion intention, we established
a nonlinear motion analysis model between sEMG and the joint
angle. In order to ensure the real-time performance, the desired
trajectory was generated by using the least squares extreme
learning machine (LS-ELM) algorithm (Li Q. L. et al., 2015), as
shown in Figure 3.

The WL (Wave Length) is extracted as the sEMG feature:

WL =

N−1∑

i=1

|ξi+1 − ξi| (4)

where ξi is the pretreated sEMG signal and N is the number of
sampling point over a period. The signals were filtered with a 1Hz
low-pass Butterworth filter, and then were normalized.

Taking the lower limb hip joint angle as an example. The
inputs of LS-ELM network are the sEMG features xj of the tibialis
anterior muscle and vastus rectus muscle, and the outputs are the
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hip joint angle θh◦

{
θh = [θ1, · · · , θi, · · · , θn]
xj =

[
xj,1, · · · , xj,i, · · · , xj,n

]
, j = 1, · · · , k

(5)

where n is the number of training sample and the k is the number
of input channels.

The hidden layer excitation function is sigmode function:

G(z) =
1

1+ e−z
(6)

FIGURE 3 | Principle of the desired trajectory generation of the human-robot

system.

The desired output model is:

θh =

L∑

i=1

βiGi(αi × xi + bi) (7)

where L is the number of hidden layer nodes, ai =

[αi1,αi2, · · · ,αin]
T is the weight between the i-th hidden layer

node and input node, bi is the threshold of the i-th hidden
layer node, and βi = [βi1,βi2, · · · ,βiL]

T is the connection
weight between the output layer node and i-th hidden layer node.
Deforming the formula (7) with the existing methods (Huynh
et al., 2008; Xie et al., 2016; Du et al., 2017; Li et al., 2017) as:

θh = (x · a) · β (8)

According to the generalized inverse matrix theory of Moore-
Penrose: x×α = θhθh

+G−1(θhβ
+), set that Z = θh

+G−1(θhβ
+),

and we can obtain that:

x · α = θhZ (9)

According to the least squares principle, when Z is randomly
generated, the input weight α, offset b and output weight β are
obtained.

We conducted lower limb motion analysis by using the
LS-ELM (Least squares extreme learning machine) algorithm,
and obtained the desired trajectory of rehabilitation robot
synchronizing with the patient’s motion intention. The desired
trajectory was then used in the variable impedance control of
human-robot system to generate the reference trajectory.

Adaptive Compliance Control of the
Human-Robot System
To realize human-robot interaction and compliance control of
rehabilitation robot control system, we proposed an advanced

FIGURE 4 | Principle of variable impedance control.
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adaptive control method for lower limb rehabilitation robot.
The method was a dual closed loop structure with variable
impedance control in the outer loop and position control based
on SMILC in the inner loop, as shown in Figure 4. In the
outer loop, the variable impedance controller was designed with
impedance coefficients corrected in real-time by the lower limb
sEMG activity and muscle contribution rate, which can realize
the adaptive adjustment of reference trajectory of the robot
according to human stiffness and damping. In other words,
the desired rehabilitation robot trajectory was corrected by the
lower limb sEMG and human-robot interaction force, and the
reference trajectory was obtained synchronizing with patient’s
motion intention and ability. In the inner loop, a sliding mode
iterative learning control algorithm based on variable boundary
saturation function is designed for position controller to realize
the tracking of reference trajectory. The design of the algorithm
could reduce the sliding mode chattering effectively and improve
the robustness of the control system.

The Variable Impedance Control
The impedance control is a second order model that can
denote the ideal dynamic relationship between the robot terminal
position and human-robot interaction force. In other words, the
desired trajectory of rehabilitation robot is adjusted according to
the changes of the plantar pressure, and the reference trajectory
is generated according to patients’ motion ability. The specific
model is designed as follows:

Fint − Fd = Md(ẍd − ẍr)+ Bd(ẋd − ẋr)+ Kd(xd − xr) (10)

τ h
hr = JTFint (11)

whereMd, Bd, andKd are the inertia matrix, dampingmatrix and
stiffness matrix respectively; xd and xr are the terminal position
desired trajectory and reference trajectory of the rehabilitation
robot respectively; J is the Jacobian matrix; Fd is the ideal static
balance force of human-robot; Fint is human-robot interaction
force.

Since the lower limb active force of patient was small, the
effect of acceleration was neglected, and by only considering the
damping and stiffness coefficients, we could get that:

Fd − Fint = Bd(ẋd − ẋr)+ Kd(xd − xr) (12)

Formula (13) was obtained by the s transforming:

xe =
Fd − Fint

Bd·s+ Kd
(13)

where xe = xd − xr is the desired trajectory correction of the
rehabilitation robot. Therefore, the reference trajectory in joint
space xr = xd − xe was obtained by inverse kinematics as qr .

In rehabilitation training, the damping and stiffness of the
lower limb changes with human active movement, showing that
the change of muscle activity makes the traditional impedance
control model unable to meet the requirement of the active
compliance control of human-robot system. Therefore, muscle
activity was introduced to establish the nonlinear mapping

function and adjust the impedance parameters according to
human motion (Lloyd and Besier, 2003), making the reference
trajectory of rehabilitation robot more in line with the patient’s
movement ability.

The muscle activity is expressed as:

aj =
eAj

uj(t)
− 1

eAj − 1
(14)

where uj(t) is the sEMG signals after preprocessing and
normalization, and Aj is the nonlinear coefficient of the model
between sEMG and muscle activity, whose scope is−3 ∼ 0.

Lower limb activity η is defined as:

η =

N∑

j=1

ωj·aj (15)

ωj =
RMSi(j)
N∑
j=1

RMSi(j)

(16)

where ωj is the contribution rate of the j-th muscle, and RMSi(j)
is the mean square root of the sEMG signals.

The damping and stiffness coefficients of the impedance
equation can be adjusted:

Bd = sig(λB·η)·B0 (17)

Kd = sig(λK·η)·K0 (18)

where λB and λK are the damping coefficient and stiffness gain
coefficient respectively; B0 and K0 are the initial impedance
coefficients; Bd and Kd are the modified impedance coefficients;
and sig(∗) is the sigmoid function that limits Bd and Kd in the
scope of B0

2 ∼B0 and
K0
2 ∼K0.

The variable impedance control model, established based on
human lower limb sEMG, can adaptively adjust the impedance
parameter according to the changes of lower limb activity, and
correct the desired trajectory of the rehabilitation robot and
generate a reference trajectory, which is in greater agreement with
patients’ motion ability. Then, adaptive control of the human-
robot system is performed according to reference trajectory
tracking.

The Position Control Based on SMILC
Involuntary tremble of lower limb and periodic interference
caused by repetitive training may induce some unknown
uncertainties in the human-robot system model, which affect
the accuracy and stability of reference trajectory tracking of
the rehabilitation robot. Therefore, the sliding mode iterative
learning control algorithm based on the variable boundary
saturation function is proposed in position control. This
algorithm combines iterative learning control and sliding mode
variable structure control to suppress the inhibitory periodic and
non-periodic disturbances, and replaces the symbol function in
iterative learning control algorithm with a variable boundary
saturation function to improve the performance of rapidity and
robustness of the control system, as shown in Figure 5.
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Considering factors such as the modeling errors and
parameters variation of the human-robot system, the dynamic
model is corrected as:

M(q)q̈ + N(q, q̇) = u + τ h
hr +τd (19)

where N(q, q̇) = H (q, q̇) + G(q), u is the robot control torque,
and τ d is the repetitive and non-repetitive disturbance caused by
rehabilitation robot vibration and human tremble.

The overall control law of the k-th iteration is:

u(k) = u(k− 1)+ 1u(k) (20)

where 1u(k) is the sliding mode controller output in the k-th
iteration, u(k− 1) is the control variable of the (k-1)-th iteration,
and u(k) will be stored in memory as the input for the next
iteration.

The k-th error and error ratio of the control system are set as:

e =
[
qr1 − q1 qr2 − q2

]
T
=

[
e1 e2

]
T (21)

ė(t) =
e(t)− e(t − 1)

1t
(22)

FIGURE 5 | Principle of inner loop position control.

where 1t is the time interval between two sampling points, and
the sliding mode function is designed as:

s = Ce+ ė =

[
c1e1 + ė1
c2e2 + ė2

]
(23)

where c1 and c2 are the sliding mode coefficients.

ṡ =

[
c1ė1 + ë1

c2ė2 + ë2

]
=

[
c1ė1

c2ė2

]
+

[
q̈r1
q̈r2

]

−M−1(u + τ h
hr + τ d − N) (24)

To reduce the chattering in sliding mode control, saturation
function based on nonlinear feedback is used to replace the
function based on linear feedback in the boundary layer, which
can enable the system state to reach the sliding surface in limited
time and improve the system robustness. Therefore, we defined
the exponential approach law with the saturation function based
on the nonlinear feedback:

ṡ = −εsat(s)− ks =

[
−ε1sat(s1)− ks1
−ε2sat(s2)− ks2

]
(25)

where ε1 and ε2 are strictly positive real numbers.

sat(s) =

{
sgn(s) |s| > Φ(

s
Φ(s)

)α

|s| ≤ Φ
(26)

whereΦ is the boundary layer thickness,Φ > 0, 0 < α =
p
q < 1,

p and q are positive odd numbers. We combined formula (24)
with (25) and designed the control law:

u = M

([
c1ė1
c2ė2

]
+

[
q̈d1
q̈d2

]
+ εsat(s)+ ks

)
+ N − τ h

hr − τd (27)

Setting τ dc as the estimated value to replace τ d, whose upper and
lower bounds to τU and τL, and then put them into the formula
(25), we could get:

ṡ = −ε · sat(s)− ks− (τ̄d − τ̄dc) (28)

FIGURE 6 | Experimental paradigm and collection points.
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sṡ = −εs · sat(s)− ks− s(τ̄d − τ̄dc) (29)

where τ̄ d = M−1τ d and τ̄ dc = M−1τ dc. The Lyapunov function
was set:

V =
1

2
s2 (30)

For the stabilization of sliding mode control system, lim
t→0

sṡ < 0,

that is:

τ̄ dc =

{
τ̄L, s > 0
τ̄U , s < 0

(31)

Setting τ̄m =
τ̄U−τ̄L

2 , τ̄ p =
τ̄U+τ̄L

2 , and the sliding mode control
law is that:

u
(
k
)
= u

(
k− 1

)
+M

([
c1ė1

c2ė2

]
+

[
q̈r1
q̈r2

]
+ εsat(s)+ ks

)

+N − τ h
hr −M(τ̄ p − τ̄msgn(s)) (32)

The sliding mode iterative learning control algorithm, based on
the variable boundary saturation function, was used in tracking
the reference trajectory of the rehabilitation robot. By sensing
the human-robot interaction force and suppressing periodic
and non-periodic disturbances, we can quickly complete the
tracking of reference trajectory and improve system control
robustness, realizing adaptive compliance control of the human-
robot system.

RESULTS AND DISCUSSION

Subjects
Seven healthy subjects (aged 25 ± 2 years old) without any
previous history of neural or physiological disorders participated
in this experiment. Before the experiments, each subject provided
informed consent and was informed of the experimental
requirements. The experiment was approved by the ethical
review board of Yanshan University. To avoid the influence of
fatigue, all subjects were in a good state of mind and had not
undergone strenuous exercise with lower limb recently.

Experimental Protocol
In order to verify the effectiveness of the proposed method,
the horizontal extension and flexion movement of the lower
limb was chosen as the experimental paradigm. And seven
healthy subjects (S1∼S7, five males, two females, 25 ± 2 years
old) were selected for analysis to avoid secondary injuries in
patients by accident. The extension period was set to 5 s, and
the American Delsys company TrignoTM Wireless EMG system
was used to synchronously capture the subject’s right leg muscle
sEMG signals and joint angles, as shown in Figure 6. We chose
the Vastus Rectus Muscle (VR), Vastus Lateralis Muscle (VL),
Vastus Medialis Muscle (VM), Semitendinosus Muscle (SM),
Biceps Muscle (BM), and Tibialis Anterior Muscle (TA) as data
collection points. The researched method was conducted to
analyze the adaptive compliance control of the human-robot
system for all the subjects.

FIGURE 7 | Results of the joint angle and motion analysis based on sEMG.

Experimental Results
The Prediction of Joint Angles Based on sEMG
The joint angle in lower limb extension motion of the 7 subjects
was predicted by sEMG signals with the LS-ELM algorithm to
realize the continuous motion analysis. The sEMG signal and
the predicted joint angle of subject S2 in one training process
was shown in Figure 7. The sEMG signals of the VR and TA
showed obvious periodicity, and the predicted joint angle were
consistent with the actual joint angle. Table 1 shows the results
of predicted joint angles of the seven subjects, including the
training time, testing time and analysis errors. The average
training time of seven subjects’ motion is 6.9ms, the time for
motion recognization is 2.9ms, and the RMSE of hip joint and
knee joint angle are respectively 7.55◦ and 7.26◦, which meet the
requirement of the desired trajectory generation in real-time and
accuracy performance.

The Adjustment of Lower Limb Activity and

Impedance Coefficients
The curves of the lower limb activity and impedance coefficients
was computed according to formulas (15), (17), and (18)
separately, as shown in Figure 8. The curve of lower limb activity
indicated the motion state of the subject, and the tendency of
the impedance coefficients Bd and Kd were in similar with that
of the lower limb activity. For example, the value of lower limb
activity decreased in the duration of 1.8∼4 s, and the value of
the impedance coefficients Bd and Kd decreased also. Therefore,
the impedance coefficients can be adjusted according to human
motion activity and then can be used to correct the desired
trajectory. In this paper, the initial impedance coefficients were
set as B0 = 20 and K0 = 270, the gain coefficients were λB = 5
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TABLE 1 | The average time and RMSE results of motion analysis.

Subjects The average time (s) The RMSE of joint angle (deg)

Training time Analysis time The RMSE of hip joint angle The RMSE of knee joint angle

S1 0.0032 0.0022 7.59 8.01

S2 0.0114 0.0067 7.94 8.12

S3 0.0108 0.0039 6.56 6.64

S4 0.0106 0.0031 6.85 6.23

S5 0.0046 0.0015 8.66 8.34

S6 0.0012 0.0005 8.15 8.16

S7 0.0062 0.0026 7.12 7.45

Average 0.0069 0.0029 7.55 7.26

FIGURE 8 | Lower limb activity and impedance coefficients.

and λK = 10, and the impedance coefficients Bd and Kd were set
in (10, 20) and (134, 235) respectively.

The Correction of Desired Trajectory Based on

Impedance Controller
In this simulation experiment, the plantar pressure was set as
Fint = 9 ∗ sin(2π f · t) + 13, where f = 1.26, and the static
balance force is 10N. As shown in Figure 9, the plantar pressure
is less than the static balance force over 0∼2 s and the plantar
pressure is greater than the static balance force over 2∼5 s.
To verify the validity of the reference trajectory corrected by
variable impedance controller and compare it with the constant
impedance controller, the impedance coefficients were set as K
= 220, B = 14, as shown in Figure 10. From 0.8 to 2.5 s, the
subject’s lower limb is in the transition state from extension
to flexion, the plantar pressure is less than the static balance
force, and the value of reference trajectory is less than the
desired trajectory. From 3.5 to 4.5 s, the subject’s lower limb
is in the transition state from flexion to extension, the plantar
pressure is more than the static balance force, and the value
of the reference trajectory is higher than the desired trajectory.
Combining Figures 8, 10, we can find that from 1.5 to 2.5 s,
the lower limb activity is significantly enhanced, the stiffness

FIGURE 9 | Plantar pressure and static balance force.

coefficient is more than 220, the damping coefficient is more than
14, and the reference trajectory modified by variable impedance
controller is more closer to the desired trajectory compared with
that of the constant coefficients impedance control. In other
words, subjects are encouraged to perform a flex movement.
From 2.5 to 5 s, the subject’s lower limb activity decreased
and the stiffness and damping coefficients became smaller. The
deviation of trajectory correction is increased, which indicates
the compliance performance of the rehabilitation robot system,
and provides rehabilitation assistance that matches the subject’s
motion ability.

The Reference Trajectory Tracking of Rehabilitation

Robot
To verify the effectiveness of the sliding mode iterative learning
control based on the variable boundary saturation function, we
designed a controller to realize the terminal trajectory tracking
of the lower limb rehabilitation robot and compared it with
the PD iterative learning control algorithm (PDILC). In this
paper, the SMILC algorithm parameters are set as c1 = c2 = 50,

τ̄U =
[
2 2

]T
, τ̄L =

[
−2 −2

]T
, p = 1, q = 3, ε =

[
0.5 0.5

]T
,

and k = 10 and the number of iterations is i =15; the PDILC
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algorithm parameters are respectively set as kp =

[
50 0
0 50

]T
,

kp =

[
50 0
0 50

]T
, and the number of iterations is set as 15. The

tracking trajectory obtained by SMILC and PDILC algorithms are
shown in Figure 11 and the tracking errors of the algorithms are
shown in Figure 12.

FIGURE 10 | Trajectory of the rehabilitation robot.

FIGURE 11 | Tracking trajectory of the rehabilitation robot.

FIGURE 12 | Tracking errors of the rehabilitation robot.

As shown in Figure 11, with the change of the plantar pressure
and impedance coefficients, the controller can adaptively correct
the desired trajectory to obtain the reference trajectory, and
both the SMILC and PDILC algorithms can achieve stable
terminal trajectory tracking of the lower limb rehabilitation
robot. However, the SMILC algorithm tracking error is kept
within ±0.013m and the convergence time is 0.33 s, while
the tracking error of PDILC algorithm is ±0.025m and its
convergence time is 0.52 s, as shown in Figure 12, which indicate
that the SMILC algorithm proposed in this paper can track
the terminal trajectory with less time and smaller errors. Three
abnormal jitters can be seen in the trajectory tracking process,
which are related to the lower limb transition state from flexion
to extension.

The Statistical Analysis of the Trajectory Tracking

Error
To further validate the feasibility and effectiveness of SMILC,
we made a statistical analysis of the trajectory tracking error of
PDILC and SMILC. The statistic result of tracking errors were
shown in Figure 13. In Figure 13A, the statistic of tracking error
of SMILC was performed, which came from the 7 subjects’ lower
limb training with rehabilitation robot. Each subject’s tracking
trajectory was repeated 10 times with SMILC. As it can be seen,
all of 7 subject’s tracking errors [F(6, 3) = 1.49, p= 0.191] vary up

FIGURE 13 | The statistic result of tracking errors for PDILC and SMILC.

(A) The tracking error of 7 subjects for SMILC. (B) Comparison of tracking

error between PDILC and SMILC.
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or down at zero and have little significant difference each other,
which means that based on the proposed SMILC algorithms, the
terminal trajectory tracking can be realized with little error for
different subjects. In Figure 13B, taking subject S2 as an example,
the mean and variance of the absolute value of the tracking errors
were calculated separately for PDILC and SMILC. As it can be
seen, there is significant difference between PDILC and SMILC
[F(1, 18) = 13.71, p= 0.000], which is represented by “∗”, as shown
in Figure 13B, and the mean and variance of the absolute value
of the tracking errors for PDILC are obviously bigger than that
for SMILC, which means that more stable trajectory tracking is
realized based on the SMILC.

CONCLUSION

In this paper, we proposed an advanced adaptive control method,
which was devised with a dual closed loop control strategy based
on the sEMG and plantar pressure. The variable impedance
controller was designed to obtain the reference trajectory of
the rehabilitation robot, making the reference trajectory more
closer to the desired trajectory of patients. And the sliding
model iterative learning control was designed with the variable
boundary saturation function to track the terminal trajectory
of rehabilitation robot. The results showed that the proposed
control strategy could adjust the reference trajectory according
to the motion intention of subject and realize the trajectory
tracking more effectively. The advanced adaptive control method

can improve the performance of the human-robot interaction
and the robustness of the control system for lower limb
rehabilitation robot. In addition, the proposed strategy could
also be applied in the upper limb rehabilitation robots and
others. Our future work will focus on the application of the
proposed adaptive control method to the rehabilitation robot for
patients.
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The design of patient-tailored rehabilitative protocols represents one of the crucial factors

that influence motor recovery mechanisms, such as neuroplasticity. This approach,

including the patient in the control loop and characterized by a control strategy adaptable

to the user’s requirements, is expected to significantly improve functional recovery in

robot-aided rehabilitation. In this paper, a novel 3D bio-cooperative robotic platform is

developed. A new arm-weight support system is included into an operational robotic

platform for 3D upper limb robot-aided rehabilitation. The robotic platform is capable

of adapting therapy characteristics to specific patient needs, thanks to biomechanical

and physiological measurements, and thus closing the subject in the control loop.

The level of arm-weight support and the level of the assistance provided by the

end-effector robot are varied on the basis of muscular fatigue and biomechanical

indicators. An assistance-as-needed approach is applied to provide the appropriate

amount of assistance. The proposed platform has been experimentally validated on 10

healthy subjects; they performed 3D point-to-point tasks in two different conditions, i.e.,

with and without assistance-as-needed. The results have demonstrated the capability

of the proposed system to properly adapt to real needs of the patients. Moreover,

the provided assistance was shown to reduce the muscular fatigue without negatively

influencing motion execution.

Keywords: upper limb robot-aided rehabilitation, arm-gravity support, human-in-the-loop, biocooperative control,

muscle activation

1. INTRODUCTION

Stroke survivors are often left with severe impairments and huge limitations in arm motor abilities
that may compromise many common activities.

In such a context, robot-aided neuro-rehabilitation has been globally acknowledged as an
effective therapeutic approach for motor recovery after stroke, especially for the upper extremities.
Rehabilitation robots are used for improving the therapy outcome and measure the improvements
with objective indicators.

While, in the past, emphasis has been put mostly on planar exercises (Kwakkel et al.,
2008), recently the importance of performing activities in the 3D space has been pointed out
(Klamroth-Marganska et al., 2014). Thanks to rehabilitation exercises in the 3D space, the impaired
subjects can regain functional abilities to perform activities of daily living (ADL).
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In the field of rehabilitation robotics, bio-cooperative systems
represent a novel generation of robotic platforms that promote a
mutual human-robot interaction based on multimodal interfaces
(Simonetti et al., 2017). Data coming from biomechanical,
physiological, and psychological measurements, as well as data
related to the user’s intention and the environmental factors
may contribute to provide a continuous feedback on patients’
global conditions (Riener and Munih, 2010), and therefore to
realize a personalized therapy. To provide the correct level
of assistance, tuned on the patient’s needs and performance,
it is paramount to encourage subject’s voluntary participation,
promote neural plasticity, increase the potential for recovery
of motor coordination, and realize a more effective training
(Pehlivan et al., 2016) based on the patient’s needs. A human-in-
the-loop approach represents a winning strategy to try reaching
this goal, being based on the inclusion of the human being in
the robot control loop. This tight interaction between humans
and robots is based on the adaptation of the robot behavior to
the subject needs, thanks to the continuous monitoring of the
patient’s state and the active inclusion of the patient in the robot
control loop by means of different types of feedback (i.e., visual,
audio, haptic, etc.).

As a result, robotic assistance can be dynamically changed
on the basis of the subject’s needs measured by multisensory
monitoring systems (Mihelj et al., 2007). This approach
is called “assistance-as-needed.” In Riener et al. (2009),
biomechanical and psychophysiological measurements are used
for including the human in the loop; in Guerrero et al. (2010),
psychophysiological feedback is used to develop a human-
centered approach method aimed to customize therapy on
patient requirements and state, without affecting stress level and
health. In Rodriguez-Guerrero et al. (2017), psychophysiological
measurements are used for improving the challenge/skill ratio
experienced by the user during the interaction with a multimodal
interface in a cooperative scenario. Position error is used in Krebs
et al. (2003) to measure motion accuracy and adjust the level of
robot assistance accordingly.

Robot-aided rehabilitation systems often
adoptelectromyographic (sEMG) signals. This type of data
represents the most simple and intuitive way to trigger the
support provided by the robot. EMG-based robot adaptation is
adopted if the subject is able to contract the muscles, but is not
able to perform a complete movement (Simonetti et al., 2017).
In this case sEMG signals can be used to trigger the movement
performed by the robot, to control robot movements through
muscles contraction, or to vary the value of the assistance
provided by the robot, as in Song et al. (2013). Other online
approaches vary the level of assistance based on the obtained
performance (Marchal-Crespo and Reinkensmeyer, 2009) or the
application scenario (Zollo et al., 2001; Formica et al., 2005).

One of the main drawbacks of these systems is that the gravity
effect due to the weight of the upper limb is often not considered.

Supporting the weight of the patient’s arm is a key point in
post-stroke rehabilitation, since it limits the unhealthy effects
of abnormal muscular patterns (Johnson, 2006; Prange et al.,
2015). In Amirabdollahian et al. (2007) it was demonstrated that a
gravity compensation strategy based on sling suspension led to an

improvement of arm function of stroke patients after 9 weeks of
training. Therefore, the sole application of gravity compensation
might be a valuable strategy to foster functional improvement in
post stroke subjects.

Exoskeleton robots can provide compensation of the arm
weight and apply forces to several segments of the arm to
help the subject performing the desired task (Lauretti et al.,
2018). The main drawbacks of these systems are the reduced
adaptability to subject’s different anthropometry, the passive
gravity compensation, the significant amount of time needed for
setting-up the device for a particular patient and therefore the
complexity of the control algorithms (Maciejasz et al., 2014).

End-effector-based devices can overcome the limitations of
exoskeleton robots related to anthropometry adaptability, facility
in setting-up and control algorithm complexity.

The main drawback of these systems is that the provided arm
support depends only on spatial limb configuration, since gravity
torque is highly coupled with limb dynamics. Therefore, subjects
voluntary participation and their muscular activation patterns
might be affected.

Ideally, arm gravity compensation should guarantee the
required assistance without altering users’ physiological muscular
activation patterns and their voluntary participation.
This paper aims at proposing a novel bio-cooperative platform
for robot-aided 3D upper-limb rehabilitation. It is composed
of an end-effector robot and an arm-weight support able
to overcome the limitations pointed out in the literature.
The patient is included in the control loop by continuously
monitoring his/her state, extracting objective biomechanical
and electromyographic indicators and, consequently, adapting
the level of assistance provided by the robotic platform. In
the last few years, researchers developed innovative methods
to detect the level of muscular fatigue of the subject via
sEMG signals (González-Izal et al., 2012). In particular, in
Dimitrov et al. (2006), a simple and efficient algorithm to
extract fatigue level during dynamic contractions is presented.
Muscular fatigue represents an important parameter to assess
patient state and adapt the level of support provided by a
robotic platform in order to ensure the correct level of assistance.
Therefore, user performance and muscular fatigue are taken
into account to fit the level of assistance on the patient specific
characteristics guaranteeing a patient-tailored therapy together
with an assistance-as-needed approach.

During 3D rehabilitation with an end-effector robot, the
user can assume incorrect postures during the execution of the
task if he/she cannot autonomously support the arm weight,
as in the case of impaired people. The introduction of the
arm-weight support wants to face this issue by sustaining the
patient’s limb, according to his/her muscular fatigue level. The
complete platform composed of the robotic arm and the arm-
weight support is designed for achieving a two-fold purpose:
to properly adapt the level of assistance to the patient’s specific
needs (through the end-effector robot), and to online assess the
patient’s muscular fatigue and avoid incorrect posture (through
the arm-weight support).

A preliminary evaluation of the effects of the proposed
platform on healthy subjects is performed in order to (i) give
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a complete picture of the subject’s state and ensure his/her
complete integration inside the control loop, (ii) demonstrate
that the proposed platform does not negatively affect motor
execution and muscular activation patterns. Therefore, muscular
activity of the anti-gravity muscles and biomechanical indicators
were extracted from 10 healthy subjects during the execution of
state-of-the-art 3D point-to-point movements in two different
conditions, i.e., with and without assistance provided by the end-
effector robot and by the arm-gravity support. The execution of
the task without assistance (i.e., in a condition where the healthy
subject is not “constrained” by the assistance) represents the best
ground truth for evaluating possible effects of the platform on the
subject’s motor execution and muscular activation patterns.

A comparative analysis between the two different
conditions was performed by means of biomechanical and
electromyographic indicators to evaluate effects on movement
kinematics and muscular activation patterns. The same
indicators were also used to develop a bio-cooperative control
strategy in order to adjust robotic assistance on the basis of
the patient’s state. Furthermore, the kinematics of the arm
movement is preserved in all arm-weight support conditions
while, as suggested by previous studies (Prange et al., 2009),
other weight compensation strategies may affect the muscular
activation patterns of the upper-limb muscles used for 3D arm
reaching movements.

The paper is organized as follows. In section 2 the bio-
cooperative robotic platform, the experimental setup and
protocol are presented. Experimental results are illustrated and
discussed in sections 3 and 4, respectively. Finally, conclusions
and future work are reported in section 5.

2. MATERIALS AND METHODS

The components of the proposed bio-cooperative system for
robot-aided 3D upper limb rehabilitation are described in the
following.

2.1. An Overview of the Proposed Robotic
Platform
The proposed robotic platform is composed of a 7-DoFs
anthropomorphic robot arm (i.e., the Kuka Light Weight Robot
4+ Bischoff et al., 2010), a purposely developed motorized arm-
weight support system and a multimodal interface. It includes an
adaptive interaction control for the on-line evaluation of patient
performance. The level of assistance is modified by adaptively
and dynamically adjusting stiffness and arm-gravity support.

The overall system, presented in Figure 1, is devised as an
end-effector machine that, interacting with the patient at the end-
effector, offers assistance during point-to-point movements both
in 2D and 3D space, as well as in activities of daily living (ADLs).
Moreover, an additional mechatronic arm-weight support system
has been developed. To this purpose, an adaptive level of support
is provided by compensating the gravity force acting on the
arm depending on both the subject’s performance and the arm
configuration in the space. In Figure 1 the arm-weight support
is shown together with the whole platform that records hand

FIGURE 1 | Mechanical structure of the adaptive arm-gravity support system:

1 Frame, 2 Support bar, 3 Pulleys, 4 Cable, 5 7-DoF robot arm Kuka LWR4+,

6 Maxon EC-max 40 motor, 7 Encoder, 8 Ergonomic backing for the arm.

Cartesian position and provides the elbow Cartesian position to
be tracked during the execution of the task. The pullies are used
only for the arm-gravity support. The structure around the robot
arm makes the system modular and the arm-weight support
easily usable with other systems for upper-limb rehabilitation.

The overall robotic platform is based on an adaptive
strategy that allows personalizing the therapy including the
human-in-the-loop, and assisting the patient as needed in
performing rehabilitation treatment. For further promoting
patient motivation and engagement, the selected task is
reproduced and updated according to the patient behavior in
a virtual reality environment (VR) developed in Matlab. VR is
composed of a virtual limb that is able to move along 3D selected
directions (as described in section 2.3), in order to reach the
assigned targets, based on robot end-effector (i.e., subject hand)
position.

During the exercise execution, the subject’s wrist is attached
to the robot arm end-effector that provides the subject with
assistance-as-needed during the execution of a predefined
trajectory. The encoders at the joint and the robot forward
kinematics provide hand 3D trajectory. The robotic platform is
composed of two independent modules (i.e., end-effector robot
and arm-weight support) that communicate through USB and
UDP protocols (Figure 2).

The proposed platform is able to provide the correct level of
assistance thanks to the close interaction between end-effector
robot and arm-weight support, as shown in Figure 2. More in
detail, the correct level of assistance is assured through:

• the arm-weight support, by increasing or decreasing the
weight of the arm felt by the subject. The level of
the arm-weight support is evaluated through the level
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FIGURE 2 | Block scheme of the proposed closed-loop architecture.

of muscular fatigue, measured by sEMG, as described in
section 2.2.1

• the robotic arm, by helping the subject to complete
the required task. This level of assistance depends on
biomechanical indicators, as described in section 2.2.3.

The multimodal interface is characterized by the following
sources of information, suitably merged together to provide
a picture of the patient condition: (i) robot sensors for
determining hand pose, (ii) a magneto-inertial unit (M-IMU)
for reconstructing the user upper-extremity joint motion,
and (iii) electromyographic (EMG) electrodes for recording
muscular activity and selecting the correct amount of arm-gravity
compensation. M-IMU is positioned on subject upper arm, while
EMG signals are recorded from the upper trapezius (UT, shoulder
elevator), the posterior deltoid (PD, shoulder extensor), the
lateral deltoid (LA, shoulder abduction), the anterior deltoid (AD,
shoulder flexor), the pectoralis major (PM, arm adduction), the
biceps brachii (BB, elbow flexor) and the lateral triceps (LT, elbow
extensor). These muscles are chosen because they are surface
muscles and their activation describes most of the upper-limb
activity for a desired task. Electrodes for each muscle are placed
according to SENIAM guidelines (Hermens et al., 1999).

The level of assistance (Kp) provided by the robotic arm
and the time (t) given to the subject for executing the task are
computed in the end-effector robot block shown in Figure 2.

On the other hand, the amount of support to be provided to
the subject elbow is computed in the arm-weight support block
(Figure 2).

The patient biomechanical data acquired through theM-IMU,
i.e. the orientation of the hand and the upper-limb acceleration,
provided by robot, and the muscular signals, recorded by
means of the sEMG sensors are used for (i) reconstructing
the kinematics of the subject upper-limb, by means of the
Augmented Inverse Kinematics (AIK) (Papaleo et al., 2015), (ii)
computing performance indicators, (iii) evaluating the level of
muscular fatigue. The obtained data are then used to update
robot control parameters (i.e., robot stiffness and the execution
time) and the amount of arm support (computed on the basis of
the muscular fatigue) for accordingly shaping level of assistance
and task complexity in the 3D workspace. Moreover, the elbow
Cartesian position provided by the AIK is used in the control
of the arm-weight support to track the subject’s limb during task
execution without interfering with its motion.

2.2. Closed-Loop Control of the
Bio-Cooperative Robotic Platform
2.2.1. Evaluation of the Patient’s Status
The subjects are constantly monitored during the execution of
the task and their status is evaluated through the multimodal
interface described in section 2.1. In particular, sEMG, M-IMU,
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and robot position/force data are acquired to constantly describe
the subject’s state and to guarantee a strong and safe human-robot
interaction.

sEMG signals are used to compute Dimitrov’s Spectral Fatigue
Index (DI), defined as

DI =

∫ f2
f1
f−1

∗ PS(f ) ∗ df
∫ f2
f1
f 5 ∗ PS(f ) ∗ df

(1)

where PS(f ) is the signal power spectrum and f1 and f2 are the
lowest and the highest frequency of the bandwidth. The DI index
is computed only during the contraction phase of each muscle.
The DI index has been chosen since the literature shows that it
is an effective indicator of muscular fatigue and increases with
the muscular fatigue (Dimitrov et al., 2006; González-Izal et al.,
2012). This parameter, normalized with respect to its maximum
value, is estimated for each muscle and then weighted as follows

Cm =
1

4
(
1

4
DIBB +

1

4
DILT +

3

4
DIAD +

3

4
DILA +

1

2
DIPD + DIPM

+
1

2
DIUT) (2)

Weights were selected through a “trial and error” approach,
depending on the contributes of each muscle to the chosen 3D
movement. The Cm parameter continuously varies in the range
[0, 1]; a threshold strategy is used to evaluate the fatigue level and
correspondingly adapt the arm-gravity support level (Ls) as

Ls =






0 if Cm < 0.20,
1 if 0.20 ≤ Cm < 0.40,
2 if 0.40 ≤ Cm < 0.60,
3 if 0.60 ≤ Cm < 0.80,
4 if 0.80 ≤ Cm < 1.

(3)

The so-obtained Ls values correspond to the following values of
K (Equation 8): 0, 0.25, 0.50, 0.75, 1.

M-IMU and position/force data are acquired at 100Hz and
use to reconstruct the subject’s arm movement and evaluate
biomechanical indicators in order to adapt robot stiffness,
as described in section 2.2.3. More in detail, biomechanical
indicators, used to describe subject limb movements are (Papaleo
et al., 2013):

• Aiming angle (α) : angle between the desired direction Etgdir and
the real direction of the task from the starting point up to peak
speed point Emdir

α =
acos( Etgdir ∗ Emdir)

(
∥∥ Etgdir

∥∥ ∗ ‖ Emdir‖)
(4)

• Mean − Arrest − Period − Ratio (MAPR): it represents the
ratio between the number of samples (tperc) in which the joint
velocity is more than 10% of the peak velocity and the whole
task duration (ttot)

MAPR =
tperc

ttot
(5)

• Inter− joint coordination (qcorri,j): it represents a coordination
index beetween two upper-limb joint angles qi and qj

qcorri,j =
R(qi, qj)√

Rqi(qi) ∗ Rqj(qj)
, (6)

where R(qi, qj),Rqi(qi) and Rqj(qj) are covariance and
autocovariance matrices

• Useful − Mean − Force UMF: it is the mean force along the
desired direction Etgdir

• Useful−Peak−Force UPF: it is the peak force along the desired
direction.

2.2.2. Control of the Arm-Weight Support
In the proposed robotic platform, as shown in Figure 2, arm-
weight support allows supporting subject limb based on his/her
muscular fatigue. To this purpose, a proportional-derivative (PD)
torque control with gravity compensation has been developed in
C++ (by usingMicrosoft Visual Studio Community 2017 R©). The
appropriate torque, to be supplied to the subject for supporting
the arm in the correct position, is defined at each iteration as

τ (q) = τPD(q)+ τg(q) (7)

where τPD(q) is the PD output torque and τg(q) is the necessary
gravitational torque. The τg(q) is computed as

τg(q) = Kτmax cos(qd − q) = Kτmax cos(e) (8)

where K is a constant which ranges between [0, 1], determined
according to the patient muscular fatigue (as detailed in section
2.2.1), τmax is the maximum torque needed to sustain the subject
arm measured through the motor at the beginning of the task, qd
and q are crankshaft desired and real position and e is crankshaft
position error (qd − q), respectively. The desired position for the
motor (qd) is based on elbow position and is computed as

qd(t) =
gratioδcable(t)

πσd
(9)

where gratio is the gear ratio of the motor, σ is the encoder
dimensionless resolution and d is the diameter of the driven
pulley linked to motor. In our case, gratio = 74, σ = 5 ∗ 10−4

and d = 0.14m. Let us define the difference between the new
cable length and the reference position as

δcable(t) = Ee(t)− Ep. (10)

where Ee(t) is the 3D elbow position provided by AIK and Ep is
the 3D pulley position in the robot frame. The AIK algorithm is
applied to the hand position provided by the robot sensors and
to the M-IMU data in order to solve human arm redundancy and
compute upper limb joint angles. In particular, the reconstructed
elbow position permits to decide if the cable needs to be reeled
in or else unrolled according to the patient limb configuration. In
brief, the elbow joint Cartesian coordinates are reconstructed as

Ee =




lu sin q1 cos q2
−lu cos q1 cos q2

−lu sin q2



 (11)
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where lu is the upper-arm length, q1 and q2 are the reconstructed
shoulder flexion-extension and intra-extra rotation angles. The
M-IMU positioned on the subject upper-arm allows determining
the y elbow component as

ey =
−äylu

g
= −lu cos q1 cos q2 (12)

where g is the gravity acceleration and äy is the acceleration
component along y-axis read by M-IMU sensor.

2.2.3. Control of the End-Effector Robot
As described in section 2.1, the subject wrist is attached to the
robot arm end-effector that provides the user with assistance-
as-needed during the execution of a predefined task. The end-
effector robot performs a minimum-jerk trajectory with different
task durations t (i.e., 5, 7.5, 10s), defined as follows

s =
∥∥pf − pi

∥∥ [10(
tj

t
)3 − 15(

tj

t
)4 + 6((

tj

t
)5] (13)

where pi is the initial position, pf is the final position, tj is the
current time value and t is the task duration tuned according
to Equations (21, 22, and 23). The robot is controlled with an
impedance control with a variable stiffness Kr in order to provide
three levels of assistance, that correspond to three values of
stiffness Kr (i.e., 0.1, 300, 1,000 N/m), and it is able to change task
duration (Papaleo et al., 2013), according to

Eτcmd = JT( EFTc)+ Efdynamics (14)

where Eτcmd is the vector of the command torque, JT is the
transposed Jacobian matrix, EFTc is the vector of Cartesian force,
along axes x, y, z, and torques, about axes z, y, x, (i.e. EFTc =

[Fc,x Fc,y Fc,z Tc,z Tc,y Tc,x]) while Efdynamics is the dynamic model of

the robotic arm. EFTc is computed as

Fc,x =






−k(x− xm,j)− dẋ, x < xm,j

0, xm,j ≤ x < xf and x ≥ xprev

−k(x− xprev)− dẋ, xm,j ≤ x < xf and x < xprev

−k(x− xf )− dẋ, x > xf
(15)

Fc,y =






−k(y− ym,j)− dẏ, y < ym,j

0, ym,j ≤ y < yf and y ≥ yprev

−k(y− yprev)− dẏ, ym,j ≤ y < yf and y < yprev

−k(y− yf )− dẏ, y > yf
(16)

Fc,z =






−k(z − zm,j)− dż, z < zm,j

0, zm,j ≤ z < zf and z ≥ zprev

−k(z − zprev)− dż, zm,j ≤ z < zf and z < zprev

−k(z − zf )− dż, z > zf

(17)

Tc,z = −k0(ϕ − ϕm)− dϕ̇ (18)

Tc,y = −k0(θ − θm)− dθ̇ (19)

Tc,x = −k0(ψ − ψm)− dψ̇ (20)

where Kr is the robot stiffness, xm,j, ym,j, and zm,j are the desired
positions, computed as reported in Equation (13), xprev, yprev and
zprev are the previous positions at time tj, k0 is the Cartesian
stiffness for the orientation, d is the controller Cartesian damping
(constant), ϕ, θ and ψ are the RPY (Roll-Pitch-Yaw) angles
representing the orientation of the end-effector.

The robot stiffness Kr and the task duration t are modified
according to a threshold strategy based on two parameters,
Ckr and Ct , evaluated on the basis of the previously described
biomechanical indicators as

Ckr =
1

2
α +

1

8
qcorr1,4 +

1

8
qcorr2,4 +

1

8
UMF +

1

8
UPF (21)

Ct =
1

2
MAPR+

1

8
qcorr1,4 +

1

8
qcorr2,4 +

1

8
UMF +

1

8
UPF (22)

The correct level of assistance provided by the robot is estimated
as

Li =






1, if 0 ≤ Ci < 0.5

2, if 0.5 ≤ Ci < 0.75

3, if 0.75 ≤ Ci < 1

(23)

where i = Kr , t. Values of Li and Lt are used to select the
corresponding robot stiffness (0.1, 300, 1,000 N/m) and task
duration (5, 7.5, 10s).

2.3. Experimental Setup and Protocol
The proposed robotic platform, shown in Figure 3, is composed
of the anthropomorphic robotic arm and the actuated arm-
weight support. The robotic arm is the Kuka Light Weight
Robot 4+. It is characterized by 7 active Degrees of Freedom
(DoFs) and embeds position and torque sensors at joints. The
communication between the robot and a remote PC is guaranteed
by the Fast Research Interface (FRI) Library. The arm-weight
support actuation system is composed of: EC-max 40 brushless
Maxon Motor, planetary gearhead Maxon GP 42-C 74:1, Maxon
HEDL-5540 encoder and Maxon EPOS2 50/5 control unit. An
aluminum pulley, for enveloping the steel rope, (diameter d =
0.14 m) is built-in with motor shaft. Finally, an ergonomic brace
for arm support enables to set the correct fitting depending on
patients requirements.

Subject upper limb kinematics is reconstructed by means of a
Xsens MTw M-IMU sensor.The M-IMU and robot sensors data
are acquired at 100 Hz and sent to the AIK algorithm via UDP
communication.

sEMG data are collected at 1 kHz, digitized and then filtered
by using a sixth-order Butterworth bandpass filter with cutoff
frequencies (30,450) Hz and a second-order Butterworth notch
filter (50 Hz) to remove noise from power lines. The filtered
sEMG signal is normalized with respect to the Maximum
Voluntary Contraction (MVC).
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FIGURE 3 | The proposed 3D bio-cooperative robotic platform. (A) Detail of M-IMU and sEMG sensors used with arm-weight support; (B) Arm-weight support with

the whole platform: subject interacts with robotic arm and arm-gravity support.

Ten right-handed healthy subjects (mean age: 27.9 ± 2.0)
have been recruited to participate in this study. All the subjects
were able to lift their right arm against gravity, and presented
no musculoskeletal or neurological disorders. They provided
written informed consent prior to participating in this study.
Each subject seated on a chair in front of a screen projecting the
virtual reality, as shown in Figure 3. The sensors embedded in the
robot arm reconstruct the subject hand position which is used to
move the subject hand avatar reproduced in the virtual reality.
The virtual reality reproduces the task to be performed and gives
the user a continuous feedback on him/her motion performance
(in terms of error between the avatar position and the target).

The proposed bio-cooperative system for 3D upper limb
rehabilitation allows performing the tasks in two different
conditions: (1) without assistance provided by the end-effector
robot and by the arm-gravity support and (2) with assistance-
as-needed. In condition (2), the level of assistance is tuned on
the subject muscular fatigue and on the biomechanical indicators
computed during the trials executed without assistance.

The subjects were asked to perform two consecutive sessions
in the two conditions. Condition 1 was always executed before
condition 2 in order to evaluate all the indicators introduced in
section 2.2.1 and correspondingly adapt the robot arm and the
arm-weight support behavior. Before each rehabilitation session,
an evaluation session is envisaged. When the approach will be
tested on patients with severe upper-limb disabilities who are
not able to perform the evaluation session without assistance, the
computed parameters will suggest to provide the maximum level
of assistance.

Each session was composed of two phases of 56 point-to-point
movements. Eachmovement consisted in reaching a target on the
screen and then return to the starting point. Targets were placed
in 8 different positions, spaced π/4 rad apart from North to
North-West direction. The transition from one target to another
is performed either when the maximum value of the execution
time t (established by Equation 22) is reached or when position
error between the target and the end-effector position is less than
a predefined threshold.

During the whole task execution, data from M-IMU, robot
sensors and sEMG activities of 7 shoulder and upper-arm
muscles were collected.

2.4. Statistical Analysis
A statistical analysis based on the Wilcoxon paired-sample
test was performed for the comparative analysis between the
two considered operative conditions (i.e., with and without
assistance-as-needed), after verifying that the data did not belong
to a Gaussian distribution. In particular, the statistical analysis
was performed for comparing (i) the time taken by the subjects
for accomplishing the task, (ii) the biomechanical indicators, and
(iii) the muscular fatigue in the two conditions. The significance
was achieved for p < 0.05.

3. EXPERIMENTAL RESULTS

Each of the ten healthy subjects involved in this study performed
the assigned task in the two different conditions previously
described.

The time needed by the subjects for accomplishing the task is
reported in the box plots in Figure 4 for both conditions 1 and
2. The subjects performed the assigned task without assistance-
as-needed in (283 ± 28)s and with assistance-as-needed in (290
± 40)s (average times). It was verified that the use of the support
does not significantly alter the execution time of the assigned task
(Wilcoxon test, p = 0.08).

Robot sensors provided position and force data for
customizing the exercises on the basis of subject motor
performance. As expected, the computation of the biomechanical
indicators for the involved healthy subjects did not show a
significant change between the first and the second condition,
since they were able to perform the task without any assistance.
This is confirmed by the values of the robot stiffness Kr and task
duration t. The corresponding level of assistance in terms of
robot stiffness (i.e., Lkr) and time to accomplish the task (i.e., Lt)
are shown in Figure 5. Indeed, it was demonstrated that, with
the proposed system, the biomechanical indicators do not show
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FIGURE 4 | Task duration without and with assistance-as-needed.

FIGURE 5 | Lkr and Lt without and with assistance-as-needed.

significant variations due to the introduction of the support
(p = 0.28 with Wilcoxon test for all the biomechanical indicators
evaluated with and without arm-weight support). In Figures 6, 7,
the mean EMG activity and its standard deviation, computed on
10 subjects, are reported in both operative conditions, i.e., with
and without assistance-as-needed. The 7 sEMG values range
between [0, 1] since each of them is normalized with respect
to the corresponding MVC. Note that apparently there are not
appreciable changes between BB and LT signals, but this is due to
normalization with respect to their MVC, so they were activated
but their variations are not perceivable.

The EMG signals are used to estimate the level of physical
fatigue of the subjects. The corresponding level of arm-weight
support is shown in Figure 8 without and with assistance-as-
needed. These results show an increase in muscular fatigue

emerged during the execution of the task without assistance-
as-needed for all the subjects, confirmed by the statistically
significant difference in the decrease of fatigue between the two
conditions (p = 0.03 with Wilcoxon test). The level of support
to be applied in Condition 2 is selected on the basis of the fatigue
level evaluated during Condition 1, as reported in section 2.2.1.
In this way, the support assistance level can be adapted to patient
fatigue performance allowing to follow subject arm movements
as reported in section 2.2.2.

Results about desired crankshaft position (qd) and desired
torque (τd) are shown in Figure 9 for a sample subject. During
the task execution in Condition 1, the level of assistance to be
given to the arm support for this subject has been estimated to
be equal to the 50% of the τd necessary to completely support
subject arm (i.e., τmax = 35mNm, as evaluated at the beginning
of the experimental session).

4. DISCUSSIONS

The movements of the robot end-effector (i.e., subject hand) and
elbow position, reconstructed by AIK algorithm, demonstrate
that the proposed approach allows executing 3D tasks without
interfering with the natural motion pattern and therefore not
negatively affecting the motion execution. This is demonstrated
by the results of the statistical analysis performed on the
biomechanical indicators: their values do not change in a
statistically significant manner between the two operative
conditions (p = 0.45). The reason is that the subjects did not
present musculoskeletal or neurological disorders and therefore
they were able to perform the assigned task without any
assistance. For the same reason, the mean values of task duration
confirmed that there is not statistically significant difference
between the time obtained without assistance-as-needed and
with assistance-as-needed. In fact, the p = 0.34 obtained with
the Wilcoxon test.

The use of the arm-weight support reduces muscular activity,
as evident from Figures 6, 7, also confirmed through Wilcoxon
test applied for each muscle (p = 0.03). The subjects referred
to perceive a reduced muscular fatigue after the introduction
of the arm-weight support. This finding could certainly have a
huge impact on neuro-rehabilitation. In fact, a reduced muscular
fatigue could lead to an increase in therapy session duration
and a decrease in wrong arm configurations that may result for
compensating for the fatigue of some muscles.

As shown in Figure 9, the control algorithm for arm-weight
support allows following subject arm movements and produces
a desired torque τd, with a profile similar to qd, that is able to
both compensate gravity component of the arm andmove his/her
limb in the 3D space. The proposed strategy, differently from
the state-of-the-art, takes into account the relationship between
gravity torque of the limb, its dynamics and its dependence on the
postures and positions of moving limbs. This platform offers the
main advantage, with respect to other platforms in the literature,
to provide an adaptable level of both robotic assistance and arm-
weight support, thanks to the online computed biomechanical
indicators and muscular fatigue, with an expected significant
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FIGURE 6 | Mean sEMG activity (normalized) and standard deviation during the execution of task without assistance-as-needed.

FIGURE 7 | Mean sEMG activity (normalized) and standard deviation during the execution of task with assistance-as-needed.

impact on the personalization and optimization of the treatment.
Future studies will be conducted to rigorously assess pros and
cons of the proposed platform on patient treatment.

The support level applied on the subject arm by the arm-
weight support was varied in accordance to the fatigue level
estimated for each subject on the basis of Equation (3).

From these results, it is clear that the proposed bio-
cooperative robotic platform is based on a closed-loop control
that includes the subject, with the aim of executing 3D
point-to-point movements adapting to the state of the subject

from both biomechanical and muscular fatigue point of
views.

5. CONCLUSIONS

In this paper, a novel 3D bio-cooperative robotic platform
based on subject status was presented. Aim of the research was
defining and implementing a robot-aided neuro-rehabilitation
strategy which includes the patient in the control loop by
providing him/her the correct amount of assistance on the
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FIGURE 8 | Ls without and with assistance-as-needed.

FIGURE 9 | Desired crankshaft position qd and desired torque τd of the arm-gravity support for a sample subject with a compensation of 50% of the τmax necessary

to completely support subject arm.

basis of biomechanical performance and muscular fatigue
indicators. In particular, the interaction between the subject
and the proposed platform was constantly monitored to
extract biomechanical and muscular indicators and consequently
modify the level of assistance and the difficulty of the
exercise, in order to demonstrate that the proposed platform
does not negatively affect motor execution of the task
and muscular activation patterns. The platform was tested
on 10 healthy subjects performing a 3D point-to-point
movements with and without assistance-as-needed. The obtained
results demonstrated that the proposed system reduces the
muscular fatigue without negatively influencing correct motor
patterns.

Future work will be devoted to extend the study to a higher
number of tasks, to test the proposed robotic platform on post-
stroke patients, with an ad hoc experimental protocol, to establish
the effects on patients with motor disabilities.
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Assist-as-needed (AAN) algorithms for the control of lower extremity rehabilitation

robots can promote active participation of patients during training while adapting to

their individual performances and impairments. The implementation of such controllers

requires the adaptation of a control parameter (often the robot impedance) based

on a performance (or error) metric. The choice of how an adaptive impedance

controller is formulated implies different challenges and possibilities for controlling the

patient’s leg movement. In this paper, we analyze the characteristics and limitations

of controllers defined in two commonly used formulations: joint and end-point space,

exploring especially the implementation of an AAN algorithm. We propose then, as a

proof-of-concept, an AAN impedance controller that combines the strengths of working

in both spaces: a hybrid joint/end-point impedance controller. This approach gives the

possibility to adapt the end-point stiffness in magnitude and direction in order to provide

a support that targets the kinematic deviations of the end-point with the appropriate

force vector. This controller was implemented on a two-link rehabilitation robot for gait

training—the Lokomat®Pro V5 (Hocoma AG, Switzerland) and tested on 5 able-bodied

subjects and 1 subject with Spinal Cord Injury. Our experiments show that the hybrid

controller is a feasible approach for exoskeleton devices and that it could exploit the

benefits of the end-point controller in shaping a desired end-point stiffness and those

of the joint controller to promote the correct angular changes in the trajectories of

the joints. The adaptation algorithm is able to adapt the end-point stiffness based on

the subject’s performance in different gait phases, i.e., the robot can render a higher

stiffness selectively in the direction and gait phases where the subjects perform with

larger kinematic errors. The proposed approach can potentially be generalized to other

robotic applications for rehabilitation or assistive purposes.

Keywords: assist-as-needed, impedance, gait trainer, exoskeleton, stiffness, rehabilitation, Lokomat, adaptive

control
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INTRODUCTION

Exoskeletons for gait rehabilitation or walking assistance in
subjects with neurological injuries have flourished in the last
decades (Esquenazi et al., 2017). These devices seek to control
the leg segments of the user and try to restore a gait pattern
that is both physiological (i.e., following kinematic characteristics
observed in non-impaired individuals) and safe. An effective
rehabilitation device should not only control the movements of
a patient’s legs, but should also challenge the patient and promote
his active participation (Lotze et al., 2003; Hogan et al., 2006).
One way to achieve the latter is through adaptation of the robotic
support based on the user’s capabilities (Cai et al., 2006; Marchal-
Crespo and Reinkensmeyer, 2009). This concept is known as
Assist-As-Needed (AAN) (Emken et al., 2005).

The simplest and most common method of modifying
the level of robotic support is with impedance controllers,
where impedance is defined as any dynamic operator that
outputs a force (or a torque) from a kinematic input
(e.g., displacement, velocity) (Hogan, 1985). In most available
exoskeletons, the impedance parameters must be manually
adapted by therapists based on their experience [e.g., Lokomat R©

(Hocoma AG, Switzerland) (Colombo et al., 2000), LOPES II
(University of Twente, The Netherlands) (Meuleman et al.,
2016), HAL (Cyberdyne Inc., Japan) (Nilsson et al., 2014)].
New controllers that automatically adapt the impedance
of the joints based on the user’s performance have been
proposed (Emken et al., 2008; Koopman et al., 2013; Maggioni
et al., 2015), but not extensively implemented due to safety
requirements. The use of adaptive control algorithms increases
the compliance of the exoskeleton to the user’s movements.
Too much compliance (i.e., a low mechanical impedance)
can lead to unsafe conditions because support may not be
provided against users’ errors, which may lead to tripping and
injuries. The challenge in implementing adaptive controllers
in lower limb exoskeletons is to find an appropriate trade-
off between compliance (i.e., freedom of movement) and
safety.

The choice of how an adaptive impedance controller is
formulated inevitably determines how complex it is to address
any potential hazard situation arising from reduced impedance.
Here, we analyze the characteristics and limitations of controllers
defined in two commonly used formulations: joint and end-
point space, exploring especially the implementation of AAN
controllers in these two spaces. A comparative analysis of these
two approaches has been reported for industrial manipulators
(Smith et al., 2014, 2015) but, to the best of our knowledge,
such comparison has not been extensively examined within the
context of rehabilitation robotics and even less in lower limb
applications.

After analyzing the properties of these two approaches for
the control of lower limb exoskeletons, we propose an AAN
impedance controller that combines the strengths of working

Abbreviations: AAN, Assist-as-needed; PD, Proportional Derivative control;
CNS, Central Nervous System; CoR, Center of Rotation; ROM, Range of Motion;
SCI, Spinal Cord Injury.

in both spaces: a hybrid joint/end-point impedance controller.
This controller gives the possibility to adapt the end-point
stiffness in magnitude and direction, to provide a support that
targets end-point deviations with the appropriate force vector.
This controller was implemented and tested on a two-link
rehabilitation robot for gait training with actuated hip and knee
joints—the Lokomat R©Pro v5 (Hocoma AG, Switzerland). We
present the proof-of-concept for this hybrid controller based on
simulations and tests conducted with five able-bodied subjects
and one subject with walking impairment due to a complete
spinal cord injury. The proposed approach can potentially be
generalized to other robotic applications for rehabilitation or
assistive purposes.

JOINT VS. END-POINT SPACE
FORMULATIONS

Background Concepts
In this paper we analyze the implications of using joint
or end-point space formulation for the control of lower
limb exoskeletons. We model these systems as two-segment
exoskeletons with a shank and a thigh segment. In the swing
phase, the system can be modeled as a two-segment pendulum:
the upper segment is fixed to the hip center of rotation (CoR)
and the end-point corresponds to the ankle position (Kuo and
Donelan, 2010). In the stance phase, the model is an inverse
two-segment pendulum: after heel contact, the foot can only
be moved backwards by the treadmill, hence the end-point of
the kinematic chain is the hip CoR and not the ankle joint
(Figure 1).

To analyze the impedance properties of the joint and
end-point control approaches for the control of lower limb
exoskeletons, we present the impact that these two formulations
have on the end-point stiffness. The stiffness can be visualized
as an ellipse, whose major axis indicates the direction of
maximum stiffness (Mussa-Ivaldi et al., 1985; Shadmehr, 1993).
The stiffness ellipse captures the geometrical features of the
force field around a reference position of the end-point. In the
force field representation, we can visualize the direction and
magnitude of the restoring forces for displacements around the
reference trajectory. For further details on the calculation of
stiffness ellipses and force field, see the Appendix 1.

Impedance Control Based on Joint Space
Formulation
In most exoskeleton devices, the actuators control the flexion
and extension of the robotic joints, which roughly align to the
human joints. Therefore, it is common to implement impedance
controllers that compute the actuators’ torques in order to follow
reference trajectories defined in joint space (e.g., hip and knee
angles). Furthermore, instrumented gait analysis increased our
familiarity with angular kinematics and kinetics of the human
joints.

A joint controller can be applied both in the stance and
the swing phase of gait, because the actual joint trajectory
qact and the reference trajectory qref are defined continuously
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FIGURE 1 | Comparison between the swing (Left) and stance (Right)

models. During the swing phase, the ankle constitutes the end-point of the

kinematic chain. During the stance phase, the end-point is the hip CoR. The

force generated by the treadmill acts at the ankle, whose position is

constrained in the vertical direction by the treadmill.

during the whole gait cycle and do not depend on the kinematic
configuration (e.g., open chain in swing phase or closed chain
in double-support phase). A joint space formulation avoids
problems that might arise from inverse kinematics/dynamics
calculations, especially in kinematic configurations (specific
combinations of hip/knee angles) where the Jacobian matrix is
singular.

For a two-link exoskeleton robot, the joint reference trajectory
can be expressed as qref =

[
qhip, qknee

]
, while qact refers to

the measured angles while the subject is walking. The torques
τq to control the robotic actuators are provided by a motion
controller with stiffness Kq =

[
Khip 0; 0 Kknee

]
and damping

Bq =
[
Bhip 0; 0 Bknee

]
(Equation 1).

τq = Kq

(
qref − qact

)
+ Bq(q̇ref − q̇act) (1)

Generally, in addition to the control torques τq, robotic
exoskeletons have a separate component τcomp, which
compensates the inherent robot dynamics such as gravity,
friction or inertia (e.g., Riener et al., 2005; Vallery et al., 2009).

Selection of Joint Reference Trajectories
Joint reference trajectories qref can be taken from literature
(e.g., Winter, 1991; Perry, 1992; Stoquart et al., 2008), or from
recordings of able-bodied subjects walking “freely” (i.e., in
“transparent mode,” where only τcomp, but not τq, is applied) in
the same device to be controlled (Colombo et al., 2000). When
determining qref , attention must be paid to avoid unwanted

contact between the end-point (e.g., the heel or the tip of the foot)
and the ground. For example, a small angular deviation at the
knee joint may result in a considerable change in foot clearance
(Winter, 1992).

One challenge in joint space formulation comes with the
high inter-subject variability in angular patterns, which makes it
difficult to define joint reference trajectories that fit all subjects.
In some exoskeletons, qref can be changed manually by the user
within some limits (Riener et al., 2010; Meuleman et al., 2016).
However, it is difficult to predict whether the subject will have
adequate foot clearance and step length, since these also depend
on the length of the thigh and shank segments.

Another challenge comes in applications where the users
are required to perform a task following visual feedback,
e.g., to follow a reference trajectory displayed on the screen.
Simultaneous feedback from two or more joint space variables
(e.g., hip and knee) is usually quite complex to process (Maggioni
et al., 2015).

Impact of Joint Space Formulation on End-Point

Stiffness
Potential hazards during walking can come from unwanted
interactions between the foot and the floor (or treadmill).
Therefore, we examined the forces at the ankle level that may
result in such unwanted interactions. These forces were generated
by a controller defined in joint space, given foot displacements of
different amplitude and directions throughout the swing phase.
We obtained the resulting end-point forces (force field) using the
Jacobian matrix of the two-links robot (see Appendix 1.2).

In Figure 2, we show the force field for different points during
the pre-swing and swing phase. In this case, hip and knee stiffness
are constant throughout the gait cycle, but the resulting end-
point stiffness varies depending on the angular configuration of
the joints. The magnitude and direction of joint torques and end-
point forces applied by a joint controller on a real trajectory are
presented in Figure 3. Two main requirements for functional
walking are adequate foot clearance and foot placement at the
end of swing (Gage, 1991; Baker, 2013). Therefore, we examined
these two phases in detail. As the reader can appreciate, the
restoring forces around the foot are not always directed toward
the reference trajectory (note that the reference trajectory is
defined in joint space, but it is transformed to end-point space for
visualization purposes). Consider the situation where a subject
is not able to sufficiently lift the foot from the ground at the
beginning of swing phase: as we can see in Figures 2A, 3B, the
joint controller is able to provide forces that are directed toward
an adequate foot clearance position. On the other hand, if the
subject is not able to perform a sufficiently long step (e.g., due
to insufficient hip flexion or reduced knee extension at the end
of swing), or if his foot is lagging behind the reference position,
the actual position of his ankle can fall in an area where the
forces rendered by the controller direct the foot toward the
ground, instead of lifting it to guarantee a sufficient step length.
It is interesting to compare how the same controller acts in
the two different spaces; we can obtain insights that are not
possible by studying the joint torques and end-point forces in
isolation.
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FIGURE 2 | The force field resulting from a joint space impedance controller is shown at some selected points along the ankle trajectory. The restoring forces do not

always point toward the reference position. Two critical points are magnified. (A) Point of maximum foot clearance: the vectors show that enough support is

guaranteed if the ankle is below the reference trajectory. The ellipse in black represents the end-point stiffness resulting from the joint stiffness. (B) At the end of the

swing phase, if the subject is late with respect to the reference point, it can experience forces directed downwards instead of forward.

FIGURE 3 | In correspondence of a real trajectory (blue line) deviating from the reference trajectory (red line), the joint controller generates the torques shown in (A).

The same torques can be visualized in end-point space (B) as equivalent end-point forces [see Appendix 1.4]. Refer to the scale for information on the magnitude of

the torques and forces. The beginning of the stance phase is marked with a gray circle, while the beginning of the swing phase is marked with a gray square.
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Impedance Control Based on End-Point
Space Formulation
An alternative option to a joint space formulation is an
end-point space formulation (sometimes referred to as task
space formulation), in which the reference trajectory is defined
according to an anatomical landmark around an end-point. In
walking, the definition of end-point depends on the kinematic
configuration, e.g., lateral malleolus or foot metatarsal during
swing phase; or trochanter during stance phase, as the foot is
already placed on the ground. Thus, formulating the problem
in end-point space for lower limb exoskeletons may require two
different control approaches: one for stance and another one
for swing. While the implementation of this approach may be
cumbersome in practice, a controller during swing that relies on
an end-point space formulation may provide additional benefits
compared to a joint space approach. In this paper, we are
interested in studying the control of the end-point impedance
only in the swing phase of gait.

In an end-point space formulation, the torque applied to
the exoskeleton actuators is derived from an end-point force Fx
(Equation 2). This force depends on a set of stiffness, Kx = [Kxx,
Kxy; Kyx, Kyy], and damping,Bx = [Bxx, Bxy; Byx, Byy], parameters
and a kinematic error between a measured end-point trajectory,
xact =

[
xact yact

]
, and a reference trajectory, xref =

[
xref yref

]
.

Note that xref and xact can be calculated in real-time by using
forward kinematic equations that depend on the measured joint
angles qref and qact and known limb segment lengths of the user
(see Appendix 1.1). The accuracy of this calculation, however,
depends on the correct measurement of the segments’ lengths
and on the alignment between the robotic joints and the human
joints.

Fx = Kx

(
xref − xact

)
+ Bx

(
ẋref − ẋact

)
(2)

Using the Jacobian matrix J
(
qact

)
, we obtain through inverse

dynamics the torque that the joint actuators need to render the
force Fx:

τx = J
[
qact

]T
Fx (3)

Selection of End-Point Reference Trajectories
In contrast to joint reference trajectories, end-point trajectories
are not widely available in the literature. One could take joint
reference trajectories and apply forward kinematics, or obtain
such trajectories experimentally. Another approach is to take a
few features that ensure that the position of the foot guarantees
a safe interaction with the environment, e.g., foot clearance and
step length. These features can be easily visualized and adapted in
end-point space. The manual adaptation of xref is more intuitive
for therapists if they reason in end-point space (Emken et al.,
2008) and focus on specific gait subtasks (Meuleman et al., 2016),
rather than setting hip and knee angular reference trajectories
simultaneously.

The subject can be provided with visual feedback regarding
the position of his foot and asked to control its trajectory, in a
similar way he is required to do in real environments—e.g., by
lifting a foot over an obstacle. In gait trainer device literature,
similar approaches have been followed when the focus was on

ankle height to guarantee appropriate foot clearance in stiff-
knee gait (Koopman et al., 2013). Additionally, visual feedback
containing information about the end-point is much easier to
process (Banala et al., 2009; Koopman et al., 2013; Krishnan
et al., 2013) for subjects, whereas it is extremely difficult to adapt
behavior based on feedback about hip and knee movements
(Maggioni et al., 2015).

Impact of End-Point Space Formulation on End-Point

Stiffness
Similar to section Impact of Joint Space Formulation on End-
Point Stiffness, we would like now to examine the forces acting
at the level of the foot when end-point control is used. By design
(Equation 2), at each point of the swing phase, the restoring
force for every deviation in Cartesian space is directed toward the
reference end-point position (Figure 4), which is the point that
could have potentially critical collisions with the environment
(e.g., stumbling). The axes of the stiffness ellipse can be modified
in magnitude and direction as desired. For example, a higher
stiffness in the direction of gravity can be designed. However,
singularities exist which prevent the end-point controller from
generating joint torques in correspondence of those points (i.e.,
when the knee is completely extended at the end of swing).

Now consider the end-point forces generated when an end-
point controller is used with a real trajectory. The force field
set as shown in Figure 4 leads, in the case of the real trajectory
presented in Figure 5B, to forces directed toward the reference
trajectory in end-point space. Figure 5A shows the same forces
transformed to torques Equation (3). As visible in the graph,
the joint torques in this case do not always point toward the
joint reference trajectory, especially at initial swing, the phase
that is crucial for determining a safe foot clearance through an
appropriate knee flexion. When the foot is lagging behind the
reference trajectory in end-point space, the end-point controller
tries to push the foot forward by increasing the hip flexion, while
not acting on the knee. This is evident in Figure 5A where, at
the point of maximum knee flexion, the torques have an almost
null component acting on the knee. This problem might cause
insufficient foot clearance and potential undesired foot contact
with the treadmill.

Assist-As-Needed Controllers
General Formulation
“Assist-As-Needed” (AAN) refers to a control strategy based on
assisting the patient/user only as much as needed to successfully
perform a predefined task (Emken et al., 2005). One way to
modulate the assistance provided by the robotic device is to
modify the mechanical impedance rendered by the exoskeleton.
A common AAN algorithm for an impedance controller typically
updates a normalized impedance parameter P (P∈ R| 0 ≤ P ≤

1), e.g., stiffness or damping, at every gait step s:

Ps+1 = γ Ps + f (es) g (4)

A forgetting factor, γ (γ ∈ R| 0 < γ < 1),
limits the excessive reliance on the robotic assistance
provided by the motion controller (the “slacking” effect;
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FIGURE 4 | The desired force field in task-space is shown at some selected points along the end-point trajectory. The force field always points toward the reference

position. Two critical areas are magnified. (A) Point of maximum foot clearance: the circle in black represents the desired end-point stiffness. The arrows show that

regardless of the deviation from the reference point, the restoring force results always in a force directed to the reference point. (B) At the end of the swing phase, the

desired characteristics of the force field are the same as in (A).

FIGURE 5 | In correspondence of a real trajectory (blue line) deviating from the reference trajectory (red line), the end-point controller generates the forces shown in

(B). The same forces can be visualized in joint space (A) as equivalent joint torques [see Equation (3)]. Refer to the scale for information on the magnitude of the

torques and forces. The beginning of the stance phase is marked with a gray circle, while the beginning of the swing phase is marked with a gray square.

Marchal-Crespo and Reinkensmeyer, 2009). A gain g
(g∈ R| g > 0) adjusts the control parameter according to
an error function f (es), f (f : es → [0, 1]), where es can be,

for example, the kinematic deviation between the reference
and actual trajectory of an exoskeleton. The function f may
account for physiological kinematic variability (e.g., by defining
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a “deadband” around the reference trajectory; Banala et al.,
2007; Emken et al., 2007). Note that domain of the parameters
P, γ and f (es) can be different, depending on the behavior one
would like to achieve with the AAN algorithm (Marchal-Crespo
and Reinkensmeyer, 2009), however, for the examples discussed
further in this paper we have selected the ones above.

Joint Space Formulation of an AAN Controller
There are several examples of controllers that adapt the robotic
joint impedance of an exoskeleton to the subject’s ability to
walk - for a review see: (Marchal-Crespo and Reinkensmeyer,
2009; Hussain et al., 2011; Cao et al., 2014). For example,
to create a patient-cooperative strategy for the Lokomat, hip
and knee impedances were adapted according to the patient’s
effort (as estimated by the robot force sensors) (Riener
et al., 2005). Based on a similar estimation of the subject’s
active contribution, Hussain adapted the joint impedance
of a pneumatic-actuated exoskeleton robot (Hussain et al.,
2013). However, both works were based on forces exerted
by a limited group of able-bodied subjects, which could
heavily compromise their applicability in patients exhibiting
clonus or spasticity. In the Lokomat, this dependence on the
interaction forces was overcome by implementing an approach
called “Path control,” which allows freedom of movement
around predefined joint trajectories, while a virtual tunnel
of adjustable width guarantees safety (Duschau-Wicke et al.,
2010).

InMaggioni et al. (2015), we presented an AAN algorithm that
automatically adapts the Lokomat actuators’ impedance based on
the ability of the subject to follow a reference gait trajectory. In
this work, the algorithm described by Equation (4) was applied.
The control parameters P were the stiffness K and the damping
B of the hip and knee in an impedance joint controller. The
estimator of the subject’s performance relied on the kinematic
deviation between the actual trajectory and the reference. The
gait cycle was divided in 30 windows. For each window w and
for each step s the joint impedance was defined by one set of
parameters, Ks,w and Bs,w, which was adapted according to the
weighted kinematic error performed in each window and every
step.

Ks+1,w = γ1Ks,w + g1f1 [es]w (5)

Bs+1,w = γ2Bs,w + g2f2 [ės]w (6)

A set of gains γ 1, γ2, g1, g2 were defined in order to have
the impedance decrease slowly in the presence of physiological
deviations and to react fast enough in case of large errors. The
error weighting function f [es]w consisted of a hyperbolic tangent
function of the kinematic error es defined for each window
w, which allowed physiological deviations from the reference
trajectories of the hip and knee joint, while ensuring safety. This
means that for each time point of the gait cycle, the subject’s hip
and knee was allowed to deviate from the reference trajectory
within the deadbands defined for each joint, independently from
each other and irrespective of the position of the end-point.
Suitable deadbands in joint-space can be defined based on normal
ranges for hip and knee joint angles (e.g., taking normative

data from Winter, 1991; Perry, 1992; Stoquart et al., 2008 or
from able-bodied people walking in the device). To study how
these angular boundaries result in end-point space, we applied
forward kinematics (see Appendix 1.1) to render the resulting
boundaries around the end-point (i.e., at the ankle), as illustrated
in Figure 6.

Due to the non-linearity of the kinematic transformation
and its dependency on the joint configuration, the shape of
the boundaries resulting at the end-point is hardly predictable
from what can be seen in joint space. During the push-
off phase and at the beginning of swing, the boundaries are
extremely narrow along the direction of the foot motion. This
results in a very strict timing requirement for the subject
walking in the robot (i.e., the subject must closely follow the
desired ankle position at any time). Even small deviations
along the directions of motion can result in a high error,
which causes the algorithm to increase the impedance in this
specific gait phase. However, in the direction perpendicular
to the reference trajectory, higher deviations are allowed, and
they could potentially result in insufficient foot clearance.
Conversely, during mid-swing, the resulting shape of the joint
space deadbands is less conservative along the direction of the
trajectory, allowing increased leading or lagging of the foot with
respect to a reference position. At the end of swing, again the
shape of the boundaries in end-point space changes: here the
boundaries allow the subject to perform longer or shorter steps
than desired.

End-Point Space Formulation of an AAN Controller
In this type of controller, the parameters P adapted based
on Equation (4) are the end-point stiffness and damping (Kx

and Bx). In literature, there are several examples of end-point
impedance adaptation implemented in exoskeleton and end-
effector devices. Among the latter, Emken et al. adapted the
end-point impedance of a robot guiding the ankle of the
subject (ARTHuR) based on the position and velocity error
between the reference and actual ankle trajectories (Emken
et al., 2008). Hussein et al. implemented an algorithm for
adapting the width of a deadband for velocity deviations in
the footplate-based Gait Trainer GT-I (Reha-Stim, Germany):
based on the error between actual and desired end-effector
velocity; the deadband width was either increased to allow
more freedom or decreased to provide more guidance to the
subject (Hussein et al., 2009). Other works instead, despite using
exoskeleton devices, developed an algorithm that adapted the
end-effector impedance or force field and calculated the required
joint torques based on end-point information. For example,
Koopman et al. developed an adaptive vertical force acting on
the ankle to support foot clearance (LOPES, Koopman et al.,
2013); Banala et al. designed a force field acting on the ankle to
guide the end-point along a virtual tunnel (ALEX, Banala et al.,
2007).

Having control over the task space impedance allows
the implementation of AAN controllers that provide optimal
assistance to the end-point. Indeed, the task space force field can
be shaped in order to support the foot only in the directions that
are needed. Furthermore, designing the deadbands in end-point
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FIGURE 6 | In the joint controller hip and knee deadbands are defined independently from each other, as shown in the (A) (hip angle) and (B) (knee angle). The

reference trajectory (red) is taken from Colombo et al. (2000). The deadbands (black lines) are calculated from the standard deviation of the trajectories of 10

able-bodied subjects walking in the Lokomat with impedance set to 5% of the maximum, which allows freedom of movement. In the AAN algorithm, deviations

occurring within the deadbands lead to a null error. The gait cycle is divided in 30 windows (gray lines show the windows’ limits). In (C), the resulting reference

trajectory (red) and the corresponding deadbands in end-point space are shown. For each window along the swing phase (only 15 are shown for clarity of

representation), the gray rhomboid shows the area including all the possible combinations of hip and knee angles within the deadbands shown in (A,B).

TABLE 1 | Summary of the performances of joint and end-point formulations for

the control of a two-link exoskeleton.

Features Joint space

formulation

End-point space

formulation

Application in stance and swing phase + –

Intuitive definition of foot clearance and

foot placement as safety parameters

– +

Intuitive definition of deadbands for an

ANN controller

– +

Directional adaptation of end-point

stiffness to provide adequate foot

guidance

– +

Intuitive control of robot (e.g., no need

of inverse kinematic calculations)

+ –

Easiness of dealing with singular

kinematic configurations

+ –

space allows requirements such as minimum foot clearance or
minimum step length to be set directly.

Summary of Working in Different Spaces
The two controllers show very different features when applied
to a two-link exoskeleton and it is not possible to prefer one
over the other independently of the application. In Table 1, we
summarized the strengths and weaknesses of the two control
formulations. The symbols “+” and “–” indicate whether the
formulation can adequately address the specific features listed.
These aspects have also been nicely addressed in Smith et al.
(2015), where the performance of joint and end-point controllers
is compared in an industrial manipulator.

HYBRID JOINT/END-POINT SPACE
CONTROLLER WITH ASSIST-AS-NEEDED

In section Joint vs. End-Point Space Formulations, we
highlighted strengths and weaknesses of the two formulations:
joint and end-point space. Here, we propose an adaptive
controller that is formulated in both spaces (“hybrid”
formulation) and aims to combine the strengths of both
approaches. An end-point space component aims at adapting the
end-point stiffness in both magnitude and direction to provide
a guided foot placement; while a joint space component aims
at providing appropriate temporal coordination between hip
and knee angles, especially when the kinematic configuration of
the exoskeleton is close to a singularity. This hybrid approach
also gives the possibility of defining deadbands more intuitively
(based on foot position), which gives more control over the
interactions with the environment.

The torques applied during the swing phase of gait, τswing ,
are the sum of torques generated by a PD controller based on
the end-point position and end-point velocity error (Equation 8),
torques generated by a D controller based on the angular velocity
error in joint space (Equation 9), and compensation, as illustrated
in Figure 7:

τswing = τxPD + τqD + τcomp (7)

τxPD = J[qact]
TKx

(
xref − xact

)
+ J[qact]

TBx

(
ẋref − ẋact

)
(8)

τqD = Bq(q̇ref − q̇act) (9)

The end-point controller is designed to control the magnitude
and direction of the forces required in task-space. Since the
reference trajectories in joint space are derived from trajectories
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in task space, one can express the controller terms as:

τxPD + τqD = Ktot

(
qref − qact

)
+ Btot(q̇ref − q̇act) (10)

Ktot = J
[
qact

]T
Kx J

[
qact

]
(11)

Btot = J
[
qact

]T
Bx J

[
qact

]
+ Bq (12)

Note that the stiffness and damping matrices must fulfill the
necessary conditions for stability defined in Appendix 2.

AAN Algorithm
The actual stiffness and damping in end-point space, Kx[N/m]
and Bx[Ns/m], are obtained from a normalized stiffness and
damping Kx and Bx matrices, which are then scaled according
to the specific characteristics of the robot. The normalized joint
damping term Bq can be adapted according to Equation (6) in

section Joint Space Formulation of an AAN Controller. Bx can
be adapted either with a similar algorithm or coupled to Kx.

For the term Kx we would like an AAN algorithm that adapts
both the magnitude and direction of the equivalent stiffness
ellipse based on the kinematic errors performed throughout the
swing phase.

To achieve this the swing phase is divided into equally sized
windows. For each window w and for each step s, we adapt the
stiffness based on the weighted error at the previous step, both in
magnitude and in direction, as:

Kxs+1,w = γxKxs,w + fKx

[
exs,w

]
R

[
αs,w

]
GK R

[
αs,w

]T
(13)

exs,w =

[
xrefs,w − xacts,w
yrefs,w − yacts,w

]
(14)

αs,w = arctan
(
exs,w

)
(15)

R
[
αs,w

]
=

[
cosαs,w −sinαs,w

sinαs,w cosαs,w

]
(16)

The first term, γxKxs,w , reduces the stiffness ellipse in all directions
given a constant forgetting factor, γx = 0.9. The second term
increases the stiffness in the direction of the kinematic error.
The magnitude of this change is controlled by a gain matrix
GK = [0.1 0; 0 0.01], which can be seen as a predefined
ellipse with axes of fixed length. This ellipse GK is (i) rotated
along the direction of the error, (ii) scaled according to the
magnitude of the weighted error fKx

[
exs,w

]
and (iii) summed to

the stiffness ellipse γxKxs,w . The error function fKx (fKx
: exs,w →

[0, 1]) is defined for each window w with different shape
characteristics (Figure 8). The error functions fKx

[
exs,w

]
can

be defined with deadbands designed in end-point space. In
this way, it is possible to identify requirements for the foot
trajectory that ensure a safe interaction between the foot and
the treadmill, for example, minimum foot clearance (Begg et al.,
2007) and minimum step length (Sekiya et al., 1996). One way
of defining the error weighting functions fKx

[
exs,w

]
is by using

Asymmetric Generalized Gaussian functions (AGGF) (Elguebaly
and Bouguila, 2013) which can be designed to have a different
variance depending on the gait cycle window. The AGGF allows
the width of tolerated kinematic deviations to be defined in all
directions independently. An example is presented in Figure 8.

By design,Kxs,w and fKx

[
exs,w

]
are bounded above by 1, therefore,

even in presence of high errors, the eigenvalues of the stiffness
matrix will never increase above the initial values. The change
in the stiffness matrix between consecutive time steps can be
bounded by the necessary stability conditions defined in the
Appendix 2.

Due to the non-linear and adaptive nature of the controller
(and the human) and to the variable impedance profile, it is a
daunting task to derive the analytical necessary and sufficient
conditions for stability. However, we believe that with the
necessary (although not sufficient) conditions defined in the
Appendix 2, in combination with a series of safety measures to
prevent undesired robot behaviors, the safety of the user can be
guaranteed. First and foremost, we made sure that the controller
was stable with constant stiffness and damping values throughout
the task space. Second, software mechanisms were in place to
constrain the stiffness and damping values to the necessary
boundaries defined in Appendix 2. The damping was tied to the
stiffness to guarantee a critically damped (or overdamped) system
throughout the different kinematic configurations. The rate of
change of stiffness and damping parameters was constrained.
Finally, the safety hardware and software mechanisms of the
Lokomat prevented to reach singular configurations and shut
down the motors whenever an excessive force or an excessive
deviation from the reference trajectory was detected. Before the
tests in humans, the controller was tested in real-life simulations
on a test-bench as described in section Simulation Results.

SIMULATION RESULTS

Before testing the AAN hybrid joint/end-point controller in
human subjects, we performed simulations of the expected
behavior using Matlab (v2013b, Mathworks).

We started from the simple case of a point along the
reference trajectory and simulated different types of kinematic
error. We wanted to test whether the AAN algorithm in the
hybrid controller ensures an adaptation of the stiffness matrix
to the direction and magnitude of the error. We simulated two
cases: (i) error of unitary magnitude and constant direction
(angle α between the error vector and the x axis equals 0) and
(ii) error of unitary magnitude but variable direction (with α

varying randomly at each step in the interval [0, π /2]). The
resulting stiffness ellipses are described in terms of size, shape,
and orientation (Mussa-Ivaldi et al., 1985), whereby size indicates
the length of the major axis of the ellipse, shape the ratio between
the major and minor axis of the ellipse, and orientation the angle
between the major axis and the x axis.

In the first simulation (Figure 9—first line), the size along
the error direction (length of the ellipse major axis) does not
decrease since the error function fKx

[
exs,w

]
gives a constant

unitary result (Equation 13). The orientation of the ellipse’s major
axis aligns with the error direction, inducing a force field with
maximal restoring forces along the direction of the error and
very low forces in every other direction, guaranteeing a compliant
behavior of the controller against disturbances in directions other
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FIGURE 7 | Control diagram of the adaptive hybrid joint/end-point controller during the swing phase of gait. The transparency of the exoskeleton is obtained through

a torque feedback loop (torque controller). The torque controller provides a torque proportional to the error between the desired torque τswing and the measured

torque τint, in order to minimize this same error. Transparency is improved through the optimization of passive dynamics with a method called Generalized Elasticities

(Vallery et al., 2009). Detailed information on the low-level control architecture can be found in Riener et al. (2005) and Vallery et al. (2009).

FIGURE 8 | In end-point space the deadbands have been designed as

asymmetric Generalized Gaussian functions (AGGF). The weighting functions

are shaped differently in different points of the swing phase to prevent

kinematic deviations that could result in unsafe interactions with the treadmill

(e.g., reduced foot clearance and step length). For each window during the

swing phase an AGGF is defined (for clarity of representation, only half of the

windows are displayed). Kinematic errors falling within the borders of the

respective AGGF result in a null weighted error. Otherwise, the weighted error

saturates to 1.

than the error. In the second simulation, as shown in Figure 9—
second line, the ellipse orientation follows the error direction and
so does the relative force field. The shape of the ellipse depends on
how variable the direction of the error was in the previous steps
(Equation 13).

In a second phase, we used a robotic test bench to simulate
neurological impairments such as spasticity. The test bench uses
a bio-inspired model of a human leg implemented on the leg
orthosis of a robotic gait trainer (the Lokomat, in this case). In
this setup, one leg orthosis is controlled to simulate a human leg

(simulated human leg), while the second orthosis (test orthosis)
is controlled by the hybrid end-point/joint controller with AAN.
The two orthoses are then rigidly connected using two aluminum
bars, simulating a physical attachment of the robot to the user’s
leg. A spastic-like behavior was implemented on the simulated
human leg by adding a velocity-dependent torque at the level
of the knee joint, which was applied when the knee angular
velocity exceeded a certain threshold. A detailed description of
the test bench and of the impairment simulation can be found
in Maggioni et al. (2016). The physical connection between the
two orthoses allowed the hybrid controller implemented on the
test orthosis to control the simulated human leg by shaping
the stiffness ellipses to the simulated impairment. As expected,
the test orthosis with the hybrid joint/end-point controller
adapted the end-point stiffness to counteract the deviations of
the simulated human leg caused by the spastic-like simulated
impairment (Figure 10).

EXPERIMENTAL RESULTS

The adaptive hybrid joint/end-point controller and the adaptive
joint controller were tested with five able-bodied subjects (1
female, age = 27 ± 4.7 years) and one subject with a chronic
motor complete Spinal Cord Injury (male, age = 37 years, ASIA
B, level of injury = T4, WISCI II = 0/20). The Kantonale
Ethikkommission Zürich and Swissmedic approved the study.
The aim of this test was first to determine the feasibility and
safety of the novel hybrid controller, and subsequently compare
the performances of the adaptive hybrid controller to the existing
joint adaptive controller (Maggioni et al., 2015). In particular, we
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FIGURE 9 | First line: simulation of an error with constant magnitude and direction (black vector) around a reference point (in red). The stiffness ellipse initial

configuration is a circle which adapts step by step to the error. The central force field visible at step 1 consequently changes its characteristics. At step 50, the force

field is directed mainly along the direction of the error. This implies that the stiffness is high only in directions parallel to the error. Second line: simulation of an error with

constant magnitude and variable direction. The error angle variates randomly between 0 and 90◦. The error of the current step is shown in bold black, while the

previous vectors are shown in gray. The stiffness ellipse adapts its orientation based on the error direction. The force field represented by the blue vectors adapts

accordingly.

FIGURE 10 | Adaptation of the end-point stiffness of the test orthosis during the simulation of a spastic-like behavior in the simulated human leg of the test bench.

The initial stiffness ellipses are shown in the first box. The simulated velocity-dependent torque caused deviations of the foot trajectory at mid-swing and at the end of

the swing phase. The hybrid controller adapted the stiffness ellipses magnitude and direction to provide targeted support to these deviations.

hypothesized (i) that this novel controller adapts the magnitude
of the stiffness to the subject’s ability to follow the reference
trajectory and, at the same time, (ii) that the orientation of the
stiffness ellipses aligns to end-point deviations. We decided not
to test the pure end-point controller on human subjects, due to
safety concerns that emerged while doing preliminary tests with
a dummy. As foreseen in section Impact of End-Point Space
Formulation on End-Point Stiffness, the end-point controller
alone was not able to guarantee sufficient foot clearance and avoid
potential undesired foot contact with the treadmill.

Methods
Subjects were instructed to follow a given foot trajectory in time
and space, which was projected on a screen positioned in front

of the Lokomat. The actual and reference ankle trajectories were
displayed in different colors and two dots indicated the reference
and actual position at every time point. After being set up in
the Lokomat, the subjects were allowed to familiarize themselves
with walking in the device with the standard impedance
controller (impedance was set at the maximum available value).
The visual feedback was constantly presented to the subject. In
this familiarization phase, the Lokomat gait pattern was adjusted
to the subject’s gait pattern by tuning the ROM and the offset
of the hip and knee angular trajectories. These settings were
then kept constant during the subsequent experiment. Once
comfortable and accustomed to walking inside the robot, the
subject was presented with a familiarization round with the
novel AAN hybrid controller as described in section Hybrid
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FIGURE 11 | In this figure, the normalized adaptive stiffness of the two types of controller (AAN hybrid controller and AAN joint controller) is shown over 50 steps.

Each data point represents the mean value over the swing phase of one step. In (A), the adaptive stiffness of the hybrid controller (i.e., the maximum eigenvalue of the

ellipse) is displayed. In (B), the adaptive stiffness of the joint controller (i.e., the mean of the normalized hip and knee stiffness) is shown. The data of the patient are

visualized in red.

Joint/End-Point Space Controller With Assist-as-Needed. The
subject was instructed to follow the reference trajectory as
closely as possible while the adaptation algorithm adapted the
impedance based on the kinematic error of the ankle trajectory.
After the familiarization phase, the AAN control was active
on the leg under test for 50 steps, while the impedance of
the other leg was kept at the maximum available value. To
ensure a safe foot clearance during swing, the stiffness in the
vertical direction was made 5 times higher than the stiffness
in the horizontal direction. While this is not a problem in the
case of high impedance, it might become apparent when the
adaptation algorithm reduces the impedance below a certain
level, especially in patients with walking impairments. The
implemented stiffness K̃x and damping B̃x in the Lokomat
were:

Kx = MKKx (17)

MK = [1500 0; 0 7500]
N

m
(18)

K̃x =

(
Kx + Kx

T
)

2
(19)

B̃x = MBBx (20)

MB = [40 0; 0 40]
Ns

m
(21)

The transformation in Equation (19) guarantees that stiffness
matrix is symmetric. In addition, to guarantee the stiffness matrix
to remain positive definite after this transformation the following
constraint was implemented:

(
−

√
K11K22 + ρ

)
< Kij <

(√
K11K22 − ρ

)
(22)

For i 6= j;i,j = 1,2, where

ρ = 0.1
√
K11K22 (23)

The performance of the AAN hybrid controller was then
compared with that of the AAN joint controller (see section Joint
Space Formulation of an AAN Controller and Maggioni et al.,
2015). For this comparison, subjects were tested in a separate
session (scheduled within 4 weeks), while performing the same
task using the AAN joint controller.

In the AAN hybrid controller, the magnitude of the end-
point stiffness was calculated as the maximum eigenvalue of the
stiffness matrix (i.e., the length of the major axis of the stiffness
ellipse), averaged over all the windows during the swing phase
of each step. The major axis of the stiffness ellipse indicates the
direction where the end-point stiffness is maximal. To obtain a
measure of the alignment between the direction of maximum
stiffness and the position error at the ankle, we calculated the
angle between the major axis of the stiffness ellipse and the
vector of the end-point error. Only the swing phase of the gait
is considered, since the hybrid controller is active only during
swing. The weighted kinematic error fKx

[
exs,w

]
equals zero when

the actual deviation is within the defined deadbands. In this case,
the adaptation algorithm (Equation 13) decreases the size of the
stiffness ellipse but does not change its orientation. Therefore,
we only calculated the alignment in those windows where the
weighted error fKx

[
exs,w

]
was greater than 0.1. The data of the

last 5 steps of the adaptive task were used for the analysis of the
final stiffness alignment determined by the algorithm. An average
value over all subjects was calculated.

In the joint controller, the magnitude of the stiffness was
calculated as the mean of the hip and knee joint stiffness during
the swing phase. We then obtained the equivalent end-point
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FIGURE 12 | Adaptation of the end-point stiffness during the experiment for three different subjects. The initial stiffness ellipses are shown in the first column. To

ensure a safe foot clearance during swing, the vertical stiffness maximum value was set higher than the horizontal stiffness. After 25 steps (2nd column) the stiffness

ellipses are adapting to the error size and direction. At the last step of the adaptation (3rd column), the ellipses reached their final configuration. On the 1st line, data

from the subject with SCI are shown: as expected, the final stiffness ellipses have a bigger size than those achieved by the able-bodied subjects in the 2nd and 3rd line.

stiffness resulting from the joint stiffness matrix (Equation A.10
inAppendix 1). The angle between themajor axis of the resulting
stiffness ellipse and the direction of the error in end-point
space was calculated to estimate the alignment of the force field
perceived at the ankle with the error.

Results
All subjects were able to perform the experiment with the
adaptive hybrid controller; the subject with SCI required a fixed
body weight support equal to 70% of his body weight to use the
adaptive hybrid controller.

The overall end-point stiffness decreased over time and
converged to a specific value for each subject. The patient
reached, as expected, a higher final value than the able-bodied
subjects did.

Results (Figure 11) confirmed that the stiffness ellipses start
from an initial size and shape (ratio major/minor axis = 5) and,
based on Equation (13), subsequently adapt in shape, orientation
and size to the errors at the ankle (Figure 12). During adaptation,
the size of the stiffness ellipses adapts gradually to the kinematic
error occurring in that gait phase. At every step, the orientation
of the stiffness ellipses tends to align to the direction of the error
in that gait window (Equation 13, second term).

In contrast, Figure 13 shows the results for the joint controller,
whereby hip and knee joint stiffness adapt separately (section
Joint Space Formulation of an AAN Controller) and no coupling

terms are present. Hence, the size, shape and orientation of
the resulting end-point stiffness depend not only on the actual
joint stiffness but also on the configuration of the leg segments
(therefore, on the gait phase). It is clear that there is little or no
correspondence between the errors performed in task space and
the resulting end-point stiffness.

The alignment between the major axes of the ellipses and the
error in the respective time window in the last 5 steps is greater
(i.e., the angle is minimum) in the ideal hybrid controller (for
Kxx = Kyy) (Figure 14). The joint controller showed the worst
performance in terms of alignment.

If we examine one of the critical points of the late swing
phase, i.e., right before heel strike, in further detail (Figure 12),
it becomes apparent that, especially in the subject with SCI, the
hybrid controller generates an end-point stiffness ellipse rotated
in the direction of the error (i.e., the stiffness is higher in the
direction along which the error occurred). The adaptive joint
controller (Figure 13) instead shows a very small stiffness value
in that direction, but a high stiffness in a direction that does not
apparently require any support.

DISCUSSION

The aim of our work was to develop an AAN controller for a
lower limb exoskeleton which could optimally adapt the support
based on the patient’s ability to follow a reference trajectory.
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FIGURE 13 | Resulting end-point stiffness ellipses caused by the joint

controller in the subject with SCI. The resulting end-point stiffness is calculated

from the hip and knee stiffness during the last step (50th) of the adaptation.

The ellipses appear in the figure as lines since the minor axis is close to a null

length. The kinematic error between the reference trajectory (red) and the

actual trajectory (blue) of the ankle joint during swing phase is shown by the

black vectors.

FIGURE 14 | Average alignment (angle) between the major axis of the

end-point stiffness ellipses and the direction of the error in the same gait

window. First boxplot: alignment of the end-point stiffness ellipses resulting

from the joint controller. Second boxplot: alignment of the end-point stiffness

ellipses obtained in the experiments with the hybrid controller. Third boxplot:

alignment of the end-point stiffness ellipses in the ideal case where the initial

vertical stiffness of the hybrid control was set equal to the horizontal stiffness.

To achieve this, we examined and discussed the features
and disadvantages of joint and end-point space formulation
to control exoskeleton robots for the lower limbs. Then, we
developed a proof-of-concept novel controller that combines
the benefits of joint and end-point formulations: an adaptive
hybrid joint/end-point space controller. We presented the results
of a software simulation and, finally, the results of the tests on
able-bodied subjects and one subject with SCI.

When developing a controller for gait exoskeletons, the choice
of the formulation (joint or end-point) highly influences the
apparent stiffness and damping rendered by the robot and it
has an impact on how the reference trajectories (and safety
features around them) are designed. While gait trajectories
defined in joint space are closer to the hardware structure of
the exoskeleton and similar to what gait analysis presents us, the
trajectory of the foot during gait is a precise end-point control
task (Winter, 1992). The human achieves certain trajectories
in task-space thanks to the fact that the internal models take
care of the proper muscle activations that guarantee the correct
joint movements (Shadmehr and Mussa-Ivaldi, 1994). In both
healthy and pathological conditions, different joint kinematic
solutions are adopted to control the position and orientation of
the end-point and, in particular, to achieve a safe trajectory of
the foot during the swing phase (Winter, 1992). It has thus been
hypothesized that the control of the foot trajectory during swing
is a major focus of our central nervous system (CNS) during
human locomotion (Ivanenko et al., 2003), as also supported by
animal studies (Georgopoulos and Grillner, 1989). In contrast to
trajectories defined in joint space, end-point trajectories of able-
bodied subjects during swing show very little variability during
walking on firm level ground and on the treadmill (Winter, 1992;
Ivanenko et al., 2002; Awai and Curt, 2014). Instead, during
stance phase the main task is not control of the foot trajectory,
but rather the support and balance of the body weight. These
functional tasks are accomplished by the control of hip, knee and
ankle angles in a so called “support synergy” (Winter, 1995). The
different tasks performed during swing and stance phase and the
different models used for these two phases, support the use of the
end-point formulation only during the swing phase of gait.

Depending on the formulation used in the controller,
the resulting stiffness properties of the exoskeleton can vary
significantly. This results in different magnitudes and directions
of supportive torques. Considering the strengths and weaknesses
of the joint and end-point formulation for impedance controllers,
we proposed a hybrid joint/end-point controller in order to
exploit the benefits of the end-point controller in shaping
a desired end-point stiffness, while using an additional joint
component to guarantee the correct angular trajectories of
the joints. In previous research, the concept of a hybrid
controller was introduced for an industrial manipulator that
was programmed to follow a given end-point trajectory in the
presence of external disturbances (both at the end-effector and
at the joint level) (Smith et al., 2015). The torques calculated by
the end-point controller were complemented with the torques
obtained from a joint impedance controller only at those joints
that were affected by large disturbance forces. This approach was
provenmore effective than either end-point or joint control alone
to reduce the tracking error in the presence of perturbations at
the end-effector and at the joint level.

The control over the end-point stiffness also opens new
possibilities when developing a controller with assist-as-needed
characteristics. The AAN implemented in end-point space can be
directly programmed to adapt the magnitude and the direction of
the stiffness based on the error of the subject in task space. Our
experiments showed that the controller was capable of adapting
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the end-point stiffness based on the deviation of the subject from
the foot reference trajectory. As expected, the application with a
subject with SCI resulted in a higher final end-point stiffness than
the able-bodied subjects. When comparing the alignment of the
end-point stiffness ellipses generated by the different controllers,
we saw that in the hybrid joint/end-point controller the stiffness
was better aligned with the error direction. In this way, the
controller directs the restoring forces in the direction where they
are needed, thus providing a more “specific” support.

Emken et al. (2008) employed a similar approach on the end-
effector robotic gait trainer ARTHuR. The end-point stiffness of
the robot was adapted with an AAN algorithm that separately
adapted horizontal and vertical stiffness. Our approach differs in
that the end-point stiffness ellipses align to the direction where
themaximum stiffness is required (i.e., the direction of the error).
Interestingly, this behavior is close to the way humans adapt their
stiffness in response to external disturbances: as shown in Burdet
et al. (2001), the CNS can voluntarily control the magnitude,
shape and orientation of the end-point stiffness in the upper limb.
Moreover, several studies have found that the control of the foot
trajectory is the major focus of our CNS during locomotion, both
in the unimpaired (Winter, 1992; Ivanenko et al., 2002) and in
the impaired spinal cord (Ivanenko et al., 2003; Awai and Curt,
2014). Therefore, a controller for robotic exoskeletons that is
shaping the end-point position and the end-point stiffness can be
considered as a “bioinspired” solution for the control of robotic
devices for human interaction.

A further advantage of the adaptive end-point controller
is that the error metric for the algorithm can be defined in
task space. This allows us to consider explicitly the interaction
between the foot and the environment and the spatio-temporal
features of the foot trajectory. As Winter (1992) showed, foot
clearance is sensitive to very small angular deviations in any
of the joints of the lower limb kinematic chain. This means
that, in order to guarantee a safe minimum toe clearance, one
would have to design very restrictive deadbands in joint space,
which would have a negative impact on freedom of movement
for physiological deviations. In contrast, deadbands in task space
can be designed to be restrictive only in the directions that
are needed for safety, determining how much deviation can be
tolerated in the vertical direction (crucial for avoiding stumbling)
and in the horizontal direction, which corresponds to leading or
lagging with respect to the reference trajectory. Moreover, with
the end-point controller, it is possible to present the subjects with
visual feedback on the errors in end-point space, which is much
easier to process than feedback on joint position (Banala et al.,
2009; Koopman et al., 2013; Krishnan et al., 2013), and use the
same representation within the error metric of the adaptation
algorithm. When used in the experiments with subjects, the
adaptive hybrid joint/end-point controller required the use of an
additional term to support against gravity: the vertical stiffness
was set 5 times higher than the horizontal stiffness. Alternatively,
an additional feed-forward term for compensating the effect of
gravity could be added. Furthermore, lighter robots (e.g., LOPES;
Veneman et al., 2007) would reduce the role of gravity and
inertia of the system and thus the need to counteract them. The
accuracy of the end-point position can be increased by adding a
position sensor which measures directly the x coordinates of the

ankle, instead of estimating them from the joint angles. While we
derived necessary conditions for stability based on the approach
proposed by Kronander and Billard (2016) and we took several
precautions to guarantee safety, the stability of the AAN hybrid
controller is something that requires further investigation.

The single subject with SCI with whom we tested the adaptive
and hybrid end-point/joint controller did not show abnormal
muscle activation synergies. Extra care should be taken when
using the hybrid control with patients that present abnormal
synergies or other strong compensatory movements. There
might be cases where, despite an almost physiological end-
point trajectory, hip and knee angles remain anomalous (Awai
and Curt, 2014). In such cases the hybrid control should be
extended by a term that counteracts joint position deviations,
as in the approach proposed by Smith et al. (2015), where a
joint impedance term was added only when large disturbances
at the joint level were detected. Before drawing any conclusions
on the benefits of this novel controller in treating subjects with
gait disabilities, more tests are needed to study how the controller
would react to different impairments such as spasticity.

As a future step, the application of our adaptive hybrid
joint/end-point controller concept to other rehabilitation robots,
e.g., upper limb exoskeletons [such as the ARMin (Nef et al.,
2007), Armeo R©Power (Hocoma AG) or ALEx (Pirondini et al.,
2014)] would be of great interest, because a vast body of literature
has investigated how humans adapt their upper-limb stiffness
based on the task and on external disturbances (Shadmehr, 1993;
Burdet et al., 2001) and it would be instructive to use an adaptive
controller similar to the one presented in this work to test its
interaction with the human arm.

CONCLUSION

The adaptive controller presented in this paper implements our
ideas of a safe controller combining an end-point impedance
controller with a joint damping controller into a “hybrid”
joint/end-point controller. The controller was tested successfully
with able-bodied human subjects and one subject with spinal
cord injury. With this approach, it was possible to implement an
adaptive controller that shapes the end-point stiffness according
to the direction and the magnitude of the error performed
at the ankle. In contrast to other applications, the hybrid
controller adapts the end-point stiffness to selectively counteract
certain errors while leaving the robot compliant in other
directions. The adaptive controller proposed in this paper is
a patient-cooperative, bio-inspired solution for more human-
oriented rehabilitation robots, which fulfills the requirement
of “adaptability” identified by many studies in the field of
rehabilitation robotics (Iosa et al., 2016) and may be used on
other devices, including upper extremity rehabilitation robots.
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Pneumatically actuated muscles (PAMs) provide a low cost, lightweight, and high

power-to-weight ratio solution for many robotic applications. In addition, the antagonist

pair configuration for robotic arms make it open to biologically inspired control

approaches. In spite of these advantages, they have not been widely adopted in

human-in-the-loop control and learning applications. In this study, we propose a

biologically inspired multimodal human-in-the-loop control system for driving a one

degree-of-freedom robot, and realize the task of hammering a nail into a wood block

under human control. We analyze the human sensorimotor learning in this system

through a set of experiments, and show that effective autonomous hammering skill can

be readily obtained through the developed human-robot interface. The results indicate

that a human-in-the-loop learning setup with anthropomorphically valid multi-modal

human-robot interface leads to fast learning, thus can be used to effectively derive

autonomous robot skills for ballistic motor tasks that require modulation of impedance.

Keywords: human in the loop control, pneumatically actuated muscle, biologically inspired multimodal control,

human motor learning, electromyography

INTRODUCTION

Human-in-the-loop control systems provide an effective way of obtaining robot skills that can
eliminate the need for time consuming controller design (Peternel et al., 2016). Robot self-learning
(i.e., reinforcement learning) is another powerful approach for obtaining robot skills; but it usually
requires long training unless initialized by a human demonstration (which can be provided easily
by human-in-the-loop systems). Conventional controller design is especially problematic for robots
with Pneumatically Actuated Muscles (PAMs) due to their intrinsic high non-linearity. Therefore,
obtaining controllers by using human-in-the-loop control seems to be a good choice to overcome
the modeling difficulties faced in PAM modeling and control. However, how the human in the
loop would adapt and learn to control the PAM based robots has not been investigated earlier.
With this study, to our knowledge, we make the first attempt toward obtaining of a non-trivial
skill for a PAM based robot through human-in-the-loop robot control. The motto we adopt in
human-in-the-loop robot control is “let us utilize human brain to do the learning and optimization
for control.” Note that we make a distinction between human-in-the-loop control and kinesthetic
teaching based studies (Hersch et al., 2008; Kronander and Billard, 2014; Tykal et al., 2016), as in
the former human is the learning controller generating motor commands in real-time as opposed
to being an active scaffold or a guide to the robot. After skilled operation is achieved by the
human, autonomous controller synthesis boils down to mimicking human behavior by the help
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of a computer as a function of state and/or time and
sometimes context. To ensure a smooth integration of the
human into the control loop, the interface between the
robot and the human operator is critical. The interface
often necessitates anthropomorphic human-robot mapping with
intuitive mechanisms to engage the sensorimotor system -as
opposed to the cognitive system- of the human operator. Such an
interface makes it possible for the human to learn to control the
robot and do useful tasks with it as a tool in short timescales. In
recent years, there has been a growing interest in human-in-the-
loop robotic systems for robot skill synthesis (e.g., Walker et al.,
2010; Babic et al., 2011; Ajoudani et al., 2012; Moore and Oztop,
2012; Peternel et al., 2014). However, with a few exceptions
[e.g., Ajoudani et al. (2012) who used human muscular activity
from antagonistic pairs for end-point impedance estimation in
teleoperation, and Walker et al. (2010) who proposed a system
utilizing a hand grip force sensor to modulate the impedance of
the robot during the teleoperation], the majority of the existing
studies are targeted for position control based tasks. In Peternel
et al. (2014), the authors have shown that human sensorimotor
system could drive a robot using multimodal control. In this
work, in addition to the usual position based teleoperation,
hand flexion was measured by muscle electromyography (EMG)
and used to set the compliance property of the robot in
real-time. Although the interface was intuitive, the human
operator had to perform an additional task of squeezing a
sponge ball to create muscle contraction to deliver the required
EMG signals to regulate the stiffness of the robot. A more
direct control system can be envisioned for those robots that
have antagonistically organized muscle actuation system akin
to biological systems. Such robot architectures can be built by
using so-called artificial muscles, e.g., by Pneumatically Actuated
Muscles (PAMs). In such a case, the human muscle activities can
be measured in real-time and channeled to the corresponding
artificial muscles of the robot in an anthropomorphically valid
way (i.e., biceps to “robot biceps;” triceps to “robot triceps”).
However, driving a robot with control signals based purely
on muscle activities is not trivial if not impossible due to
factors such as noise in acquisition, motion artifacts, and
the differences in the muscle organization of the robot and
the human.

With this mindset, we propose a multimodal approach to
control a Pneumatically Actuated Muscle (PAM) based robot
where EMG signals and the elbow angle of the human arm are
anthropomorphically mapped to the robot creating an intuitive
control scheme. The proposed approach is realized on a simple
single joint robot, and autonomous behavior of hammering a nail
into a wood block is synthesized through human sensorimotor
learning. Subsequently, a set of experiments is conducted for
analyzing human adaptation to the developed human-in-the-
loop control setup. The results indicate that such a system can be
adopted to effectively derive autonomous controllers for ballistic
motor tasks (Brooks, 1983). In addition, to show the usefulness
of our approach to design controllers for a non-linear robot
system that is difficult to model, we compared the autonomous
controller acquired through our human-in-the-loop system and
the controller derived by a model-based optimal control method.

METHODS

One of the factors driving this study is to investigate how
human-in-the-loop robot learning can be naturally generalized
to tasks that go beyond position control. In particular, we aim
at generating autonomous skills based on force based policies.
To realize this as a proof of concept we start from a simple one
joint two degrees-of-freedom Pneumatically Actuated Muscle
(PAM) based robot that has an antagonistic actuation design
allowing the stiffness of the robot to be controlled through co-
activation. The general framework realizes an anthropomorphic
mapping for human to control the robot in real-time by using
arm movements and muscle electromyography (EMG) signals
from the arm so that the position and stiffness control can be
achieved simultaneously. Once this is achieved then various tasks
where the robot must change its stiffness for successful execution
can be given to the control of human operators for shared
control (Dragan and Srinivasa, 2013; Amirshirzad et al., 2016)
or autonomous skill synthesis (Babic et al., 2011; Moore and
Oztop, 2012; Peternel et al., 2014) purposes. The framework is
illustrated in Figure 3 in the special case of nail hammering task.
How the EMG signals and the human movements are converted
to PAM pressures is left for the designer. In a classical setting,
it may include torque-to-pressure feedforward model as part of
the human-robot interface; but, we favor a more direct approach
to offload this mapping to human sensorimotor system to be
learned as the part of task execution.

Hardware Setup
The one joint robot is composed of an antagonistically organized
Festo MAS-40 pneumatic artificial muscle (PAM) pair (see
Figure 1) (Noda et al., 2013; Teramae et al., 2013). Each
PAM is connected to a rotational disk/pulley system by string
tendons housing an arm of 35 cm. Pressurizing the PAMs creates
opposing torques on the disk, therefore it is possible the control
both the motion and stiffness of the arm through pressure
control. The hardware consists of load cells between the tendon
and muscle-ends that can be used for control. A feed-forward

FIGURE 1 | One joint robot is composed of antagonistically organized Festo

MAS-40 pneumatic artificial muscle (PAM) pair. Each PAM is connected to

rotational disk/pulley system by string tendons housing arm of 35 cm.

Pressurizing PAMs creates opposing torques on disk, therefore it is possible

control both the motion and stiffness of arm through pressure control.

Hardware consists of load cells between tendon and muscle-ends that can be

used for control.
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model representing the relation between air pressure and the
resulting muscle/torque can be learned or derived (Ching-Ping
and Hannaford, 1996) to control the muscles and the robotic
system that it belongs. Due to highly non-linear relations between
system parameters it is considered difficult to control such
systems. In the current study, as human was placed in the control
loop, we eliminated the torque-pressure modeling and leave it
for human operator to learn it as a part of task execution. As
described below, human was given a simple interface to directly
control the pressures in the PAMs to achieve the task at hand.

A digital goniometer (Goniometer SG150, Biometrics Ltd.)
was used to measure the human elbow angle, and surface EMG
was used to measure muscle activities (see Figure 2). The EMG
signals were used in real-time to generate desired pressure values
(u) for the PAM of the robot at 250Hz. The desired pressure
values were realized by a proportional valve controller (provided
by NORGREN). The EMG electrodes were attached to the skin
over the triceps muscles. EMG signals were passed through
rectification and low pass filtering.

Human-Robot Interface
A generic interface to output the desired pressure values to
the PAMs can be given with u = W[1 ϕ e] T where u is
the vector of desired pressures for the PAMs; ϕ is the elbow
angle of the human, and e indicates the muscle activity levels.
The constant 1, enables a pressure bias to be given to PAMs.
In short, W is a linear coefficient matrix that maps EMG
and joint movement data of the human directly to PAM
(desired) pressures and is composed of bias terms (BU , BL),
positional factor (Kϕ) and EMG factor (Ke). A non-linear
mapping could have been used; but, as we would like to
rely on human ability to learn to generate appropriate control
signals, simplest possible mapping, i.e., linear, was deemed
appropriate.

To allow ballistic explosive movements that are necessary
for hammering, we designed the W matrix by inspiring from
biology: we created reciprocal inhibition mechanism between the
human arm and the robot. To be concrete, the human triceps
EMG signal was channeled to the upper PAM (akin to biceps)
as an inhibitory signal. The neural control of movement in the
human follows a similar design: when the triceps are activated
for arm extension, an inhibition signal is sent to the biceps for
reducing the effective stiffness of the arm which enables high
velocity movements (Ching-Ping and Hannaford, 1996). Since
the hammering task relied on extension of the arm for impact, we
did not use EMGs from the biceps in this task for experimental
convenience. The lower PAM on the other hand was controlled
by the human arm angle measured via a goniometer. Overall, the
explained feedforward interface was specified with

W =

[
BU 0 Ke

BL Kϕ 0

]
. (1)

The parameters that linearly map the goniometer read angles to
lower PAM pressure was obtained for each participant through
a simple calibration procedure to cover the allowed range of
pressure. The parameters for mapping the EMG signals to upper

PAM was obtained in a similar fashion. These parameters were
kept fixed through the nailing experiments reported in this
article. In sum, after the calibration we ended up with formulae
weightmatrix tomap human actions to desired pressures for each
participant. Concretely, each participant was asked to conduct
hammering movements as depicted in Figure 4. We measured
the elbow joint angle and triceps EMG during the movements.
From the measured data, maximum (ϕmax), minimum (ϕmin)
joint angles and the maximum triceps EMG amplitude (emax)
were identified for each participant. These variables were utilized
to derive the interface parameters in Eq. (1) so that minimum
and maximum joint angles were mapped to maximum (Pmax =

0.8 [MPa]) and minimum (Pmin = 0 [MPa]) desired pressure for
lower PAM as depicted in Figure 5A:

Kϕ
= −

Pmax

ϕmax − ϕmin
,

BL =

(
1+

ϕmin

ϕmax − ϕmin

)
P
max

. (2)

Similarly, the maximum EMG amplitude of each participant
during the real hammering movement was mapped to the
maximum (Pmax = 0.8 [MPa]) desired pressure of upper PAM
as depicted in Figure 5B:

Ke
= −

Pmax

emax
,

BU = Pmax. (3)

It is worth underlining that the goal of human movement-to-
robot control input mapping is not to make the robot imitate the
human exactly; the critical requirement is to obtain an intuitive
control by having users see a consistent near real-time response
from the robot.

EXPERIMENTS

Experimental Design
For the hammering task the robot tip was attached a hard
plastic to serve as the hammer head. A compressed wood was
used as the material the nail needed to be driven in. Figure 3
illustrates the hammering set up schematically. The wood block
was vertically placed, and had 9 cm thickness. We used a nail
of 5 and 0.23 cm thickness. The hammering task was initialized
by inserting the nail into the wood by ∼0.4 cm and placing
the nail under the center of the plastic end-effector attachment
that served as the hammer head. Experimenter detect the task
termination when the nail could be completely driven into the
wood.

The experiments were designed as a series of sessions in which
several trials of human-in-the-loop robot control for driving the
nail into the wood was run. Each trial consisted of 15 s of robot
teleoperation in which the participants executed hammering
movements in real-time via the robot. Participants were shown
that their armmovement was imitated by the robot, and a muscle
contraction caused movement on the robot even though their
arm was still. Furthermore, participants were given the freedom
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FIGURE 2 | Surface EMG was used to measure muscle activities and digital goniometer (Goniometer SG150, Biometrics Ltd.) was used to measure human elbow

angle. Interface program we developed used these signals in real-time to generate desired pressure values for PAM of robot at 250Hz. EMG electrodes was attached

to skin over triceps muscle for hammering task.

FIGURE 3 | Hammering setup. Wood block was vertically placed, and had 9 cm thickness. We used nail of 5 and 0.23 cm thickness. Hammering task was initialized

by inserting nail into wood by ∼0.4 cm and placing nail under center of plastic end-effector attachment that served as hammer head.

FIGURE 4 | Calibration phase for human-robot interface: We measure minimum and maximum angle and maximum EMG signals while actual hammering task with

real hammer and fit the parameters of (1) based on measured data. We obtained informed consent for the publication of this figure from the participant.
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FIGURE 5 | Our control interface for each participant: (A) shows relationship of lower PAM pressure controlled and elbow joint angle. (B) shows relationship of upper

PAM pressure and EMG of triceps.

to hammer the nail as they like so the frequency of the strikes
(hammering motion) and the amplitude of the robot motion
varied from participant to participant. Each session deemed to
be complete when the nail could be completely driven into the
wood. Then the nail was reset to its default position (care was
taken to place the nail in a fresh new location on the wood block).
As a measure of performance, we took the number of trials, i.e.,
the number of 15 s blocks that it took the participant to drive the
nail into the wood. We allowed a maximum of 5 trials for each
session. The experimental data showed that this was sufficient for
driving the nail into the wood for even novice participants.

To summarize, in the experiments, each participant went
through 4 sessions. Each session took a maximum of 5
trials, where each trial was a fixed 15 s robot teleoperation.
The number of strikes that a trial contained was up to
the participant. Likewise, the number of trials that a session
included was dependent on how successfully the participant
could hammer the nail, thus varied among participants and
sessions.

Skill Transfer With Direct Imitation (Policy
Copying)
Once a participant learns to drive the nail into the wood, his/her
task execution data can be used to construct an autonomous
controller. One of the good performing participants was selected
for autonomous skill generation. Furthermore, we selected the
desired pressure sequences for the lower and the upper PAM
control that generated the highest impact among the hammering
movements of the selected participant. Since the velocity is
proportional to the impact force, we estimated the impact force
from the tip velocity of the robot. The human generated pressure
trajectories were segmented by taking the moment of upper
PAM pressure rise as the start, and by taking the moment of
collision with the nail as the end. For autonomous execution,
the obtained pressure trajectories were then reproduced on
the robot in a cyclic manner during an execution session
(e.g., 15 s).

Optimal Control Solution
To compare our model-free human-in-the-loop approach with a
model-based controller, we design a policy based on an optimal
control method as explained below.

LetU1 ≡ {u1, u2, · · · , uN−1} be a sequence of control variables
u ∈ R and denote state variables x ∈ R, optimal state and control
trajectories are derived by solving an optimal control problem
under non-linear system dynamics:

min
U1

J (x1,U1),

s.t. xt+1 = f (xt ,ut) . (4)

where the objective function of the total cost J (x1,U1) is defined
as being composed of the terminal cost function lf (x) alone:

J (x1,U1)=lf (xN) . (5)

The state and control variables consisted of x =
[
θ, θ̇, PU, PL

]⊤

and u = [τu, τl]
⊤, respectively. PU and PL are air pressures of the

upper and lower PAMs. In this case, we considered a cost function
model,

lf = w1
(
θ(T)− θref(T)

)2
+ w2

( .
θ(T)−

.
θref(T)

)2
, (6)

where θref(T) and θ̇ ref(T) are a target terminal joint angle and
target terminal angular velocity obtained from the strongest
hammering trajectory of the selected participant. Weights of
w1 and w2 were optimized by Inverse optimal control (IOC)
framework with the learned hammering data of one participant
(see Appendix).

To solve the optimal control problem, we derived dynamics
model of the 1-DoF robot,

Iθ̈ + h
(
θ̇
)
+ g (θ) = τ

u
+ τ

l, (7)

where the inertial parameter is represented as I. The term h
(
θ̇
)

stands for the friction model:

h
(
θ̇
)
= Dθ̇ + Ŵ1 tanh

(
Ŵ2θ̇

)
, (8)
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FIGURE 6 | Learning performances of “hammering with robot” experiments.

After first session most participants were able to generate occasional high

impact strikes; however it took more time for hammering behavior to stabilize

into a regular pattern. Hammering performance were much improved after four

training sessions (*p < 0.01).

which is composed of viscous and static friction models. D is the
parameter of the viscous friction. Ŵ1and Ŵ2 are the static friction
parameters, and g (θ) represents the gravity term. τ

u and τ
lare

torques generated by the upper and lower PAMs, respectively.
The torque was calculated with a model of a PAM actuator as
in Teramae et al. (2013). We convert the continuous time robot
dynamics Equation (7) to a discrete time model to formulate the
optimal control problem described in Equation (4). We applied
an optimal control method, namely iterative Linear Quadratic
Gaussian (iLQG) (Todorov and Li, 2005) to obtain the control
inputs for executing the nailing task with the robot.

RESULTS

Human Control Adaptation and Learning
Six participants participated in “hammering with robot”
experiments. All the participants showed clear learning effects.
After the first session most participants were able to generate
occasional high impact strikes; however it took more time
for hammering behavior to stabilize into a regular pattern.
As presented in Figure 6, the hammering performances of
the participants improved, i.e., they could drive the nail with
less number of strikes as they become more experienced with
the system. A t-test comparing the first and last session
performances showed that there was a significant improvement
in the performance of the participants from the first session to
the last (p < 0.01), indicating significant human learning.

Autonomous Hammering With Direct
Imitation (Policy Copying)
We selected strongest hammering data from high performance
participant. In this case, strongest hammering means hammering
with the fastest swing down speed, since the impact force is

proportional to the swing down speed. We allowed 15 s of
autonomous execution. Figure 1 shows sample frames from an
autonomous hammering with direct imitation. The obtained
controller could nail with only 3 strikes (Figure 7A). Also, direct
imitation of other participants can achieve the nailing (Table 1).
As a stress test, we switched to a larger nail of 6.5 cm length
and 0.34 cm thickness, and applied the autonomous controller
obtained with the original nail (0.23 cm thick and 5 cm long) to
the larger nail. The robot could also completely drive this nail,
albeit now with 5 strikes.

Comparison With the Policy Derived by an
Optimal Control Method
To optimize the trajectory and pressure input by using optimal
control method, we set the terminal angle and angular velocity
based on the selected high impact hammering trajectory. We
derived weights of objective function by IOC: we extracted
6 strikes form the final session data of the high performing
participant to form the learning data for IOC. As a result,
the weights of w1 = 72.45 and w2 = 0.033 were obtained.
The optimal input and trajectory to be used in execution were
then obtained by an optimal control method with the obtained
objective function. We allowed 15 s × 5 trials of autonomous
execution. Figure 7B shows some sample frames from an
autonomous hammering session that employed the trajectories
obtained by the optimal control method. The obtained controller
could not completely nail within 5 trials (i.e., 40 strikes). These
results clearly show the advantage of using our human-in-the-
loop approach to derive controllers for non-linear robot systems
that is difficult to be identified.

DISCUSSION

One of the bottlenecks for the introduction of multipurpose
robots to human life is the necessity of programming them. It
is not feasible to preprogram them for all possible task scenarios.
Many methods such as visual demonstration (Pillai et al., 2015),
haptic guidance (Power et al., 2015), motor primitive (Peter
and Schaal, 2008), and optimization control based (Zhang et al.,
2015) methods have been proposed for acquiring robot skills.
However, most methods are geared toward systems in which
position and force can be reliably controlled. For such systems,
conventional methods may deliver suitable solutions for skilled
robot behaviors. However, for those systems where position and
force control is problematics as in PAMs, it is not effective to use
model-based optimization and/or skill transfer methods based
on kinematics and force. Needless to say, some studies do exist
addressing the precise control of position and force in PAMs
(Ching-Ping and Hannaford, 1996; Ugurlu et al., 2015), which
nevertheless, have some drawbacks due to the need for complex
calibration.

Teaching by demonstration framework is an effective way
to rapidly synthesize skills on a robot, when the interface
and modality of control is natural for the demonstrator.
There are several variants as to how teaching is done from
visual demonstration (Dillmann, 2004) to kinesthetic guidance
(Calinon et al., 2001; Kushida et al., 2001). In the latter case,
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FIGURE 7 | Several video frames illustrating autonomous nail hammering. (A) shows autonomous hammering with direct imitation. (B) shows autonomous

hammering with optimal control.

TABLE 1 | Number of strikes required to accomplish the hammering task by autonomous hammering with direct imitation from 6 participants.

Participant Participant 1 Participant 2 Participant 3 Participant 4 Participant 5 Participant 6

Strike count 3 20 25 17 6 8

the actions are already realized on the robot so no complex
processing is needed to reproduce it on the robot. In the
former case, even special tracking sensors are used, significant
effort may be needed to map the demonstrated movement
into robot actions (Ude et al., 2010). These methods, however,
may not be always suitable when the targeted task involves
non-negligible dynamics and/or fast actions are required. Of
course, it is possible and thus often the case that these methods
are used to generate initial robot policies that are subject to
optimization or improvement via reinforcement learning (Kober
et al., 2012). In what we call robot skill synthesis through
human-in-the-loop control and learning, we aim to engage the
human sensorimotor system to do the learning and optimization.
Therefore, we seek interfaces and adaptive mechanism for the
robot to speed up human learning and minimize the mental
and physical effort of the human. In particular, exploiting
anthropomorphic similarity of the robot and human (Moore
and Oztop, 2012; Oztop et al., 2015), simultaneous human-
robot learning (Peternel and Babic, 2013;Mohammad andOztop,
2015), control mixing and intention understanding (Dragan and
Srinivasa, 2013; Amirshirzad et al., 2016) seem to be promising
directions to pursue for highly effective human-in-the-loop
control systems. As a final note, PAM based robots can be suitable
for exploiting human sensorimotor learning effectively as there

are parallels with human skeleto-motor system and those robots
that employ PAMs with antagonistic setups. Therefore, it seems
reasonable to target more complex tasks on higher degrees of
freedom robots with PAMs.

CONCLUSION

In this study, we proposed and realized a biologically valid
multimodal human-in-the-loop system on an antagonistically
designed pneumatically actuated one link, two artificial muscled
robot.We focused on the ballistic movement of hammering a nail
into a wood block, and ran experiments to assess the learning
progress of humans to use the robot for driving a nail into a
wood block. The rapid human adaption and learning observed,
suggest that the developed system engages human sensorimotor
learning and does not incur much burden for the cognitive
system. In addition to the human experiments, we used one of
the high performing participant’s skilled execution of the task
to synthesize an autonomous controller. The experiments with
the controller showed that a significantly larger nail (0.34 cm
thick, 6.5 cm long) compared the original one (0.23 cm thick,
5 cm long) used in the skill transfer can be handled with a
fixed set of parameters over the conditions. Overall, the current
study suggests that adoption of human-in-the-loop approaches
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for PAM based robots is a fruitful research direction, in which
easy and intuitive human learning facilitate effective skill transfer
for tasks that require continuous modulation of impedance.
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APPENDIX

Optimization of Objective Function With
IOC
To determine the weights of objective function for the optimal
control method, we used an inverse optimal control (IOC)
method. IOC can estimate the reasonable weights to match
the optimal states to the demonstrated behaviors. Then we
adopted a probabilistic local IOC approach (Levine and Koltun,
2012), in which the probability of the actions is approximated
locally around expert’s demonstrations (Park and Levine, 2013).
In the local IOC approach, given example trajectories D =

{X1,X2, · · · }, the expert’s behaviors are represented with a
probabilistic model:

p
(
D

∣∣l
)
=

∏
i
p
(
Xi

∣∣l (w)
)
. (A1)

After applying Laplace approximation to the model, the weights
w are learned by maximizing its likelihood. We used the
six hammering behaviors of the selected good performing
participant to find the parameters of the objective function w1

and w2 in Eq. (6).
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Muscle Synergy Alteration of Human
During Walking With Lower Limb
Exoskeleton
Zhan Li*, Huxian Liu, Ziguang Yin and Kejia Chen

School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China

Muscle synergy reflects inherent coordination patterns of muscle groups as the human

body finishes required movements. It may be still unknown whether the original muscle

synergy of subjects may alter or not when exoskeletons are put on during their normal

walking activities. This paper reports experimental results and presents analysis on

muscle synergy from 17 able-bodied subjects with and without lower-limb exoskeletons

when they performed normal walking tasks. The electromyography (EMG) signals of the

tibialis anterior (TA), soleus (SOL), lateral gastrocnemius (GAS), vastus medialis oblique

(VMO), vastus lateralis oblique (VLO), biceps femoris (BICE), semitendinosus (SEMI),

and rectus femoris (RECT) muscles were extracted to obtain the muscle synergy. The

quantitative results show that, when the subjects wore exoskeletons to walk normally,

their mean muscle synergy changed from when they walked without exoskeletons. When

the subjects walked with and without exoskeletons, statistically significant differences on

sub-patterns of the muscles’ synergies between the corresponding two groups could be

found.

Keywords: muscle, synergy, walking, exoskeleton, human

1. INTRODUCTION

Combinational movements of multiple joints essentially result in human body motion. Joints are
actuated by associated muscle groups which are synergistically manipulated by the neural signals
from the central nervous system (CNS). As we may know, muscle groups possess high redundancy
to achieve potential flexibility for joints, but they still follow limited coordination manners to finish
various motor tasks. Such inherent coordination manners of muscles (i.e., muscle synergy) can
be perceived as natural and optimal in CNS level. In the past decades, many researchers mainly
focused on analyzing muscle synergy of people doing motor learning and locomotion tasks without
using wearable assistive robots. In a pioneering work, d’Avella et al. pointed out that a set of
muscle synergies basically constructs motor behaviors and that they are highly related to kinematics
(d’Avella et al., 2003; Tresch et al., 2006). Chvatal et al. analyzed common muscle synergies for
control of center of mass (CoM) for stepping and non-stepping postural responses, revealing that
for some similar motor tasks the subject may share commonmuscle synergies (Chvatal et al., 2011).
Zwaan et al. applied muscle synergies to investigate selective motor control in cerebral palsy in
gait, supporting the sensitive nature of EMG to represent an aberrant motor control (Zwaan et al.,
2012). Fautrelle et al. investigated the latencies of muscular activities and the way they are correlated
between certain muscles to stress the muscular synergies involved in movement and, in their study,
they suggested the CNS reprograms a new synergy after the target jumps in order to correct
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the ongoing reaching movement (Fautrelle et al., 2010).
Wojtara et al. proposed a synergy-based stability index during
maintaining lateral balance, and this work considers the
temporary muscle synergies in postural reflex and automatic
response (Wojtara et al., 2014). Wang et al. analyzed muscle
synergies facing a step made with obstacles in elderly people
and revealed a decreased ability to use multiple-mode synergies
following a predictable perturbation (Wang et al., 2015). Li et al.
analyzed muscle synergy in the crus for examining its correlation
with plantar/dorsiflexion in the ankle joint (Li et al., 2015).

The exoskeleton system is one kind of rehabilitation
robots which enables the human knee joint to do daily
movement training (Gui et al., 2017), such as being an active
orthoses for injured pilots to correct abnormal gait. To assess
wearing/training effects on subjects who use rehabilitation
robots for daily movement (Zhang et al., 2017a), measurement
and evaluation of their muscle activities is important in
addition to analysis of kinematics/kinetics. Moreover, inducting
muscle coordination information into exoskeletons for assistance
of normal walking may be beneficial to human-in-the-loop
optimization of energy flows (Zhang et al., 2017b). For instance,
Alibeji et al. integrated muscle synergy into the control of
hybrid walking neuroprosthesis (Alibeji et al., 2015). Estimating
lower leg muscle activity can be achieved from distal bio-signals
around the ankles (Isezaki et al., 2017). Upper limb exoskeletons
have taken the muscle synergy effect into account in their
design process (Burns et al., 2017), and muscle recruitment and
coordination information is utilized to optimize the control of
ankle exoskeletons (Steele et al., 2017). However, there is still
a lack of research on investigation and evaluation of muscle
synergy for subjects who perform normal walking while wearing
lower-limb exoskeletons. It is important to observe how their
muscle synergies would alter when equipping such wearable
robots to assist walking. Such muscle co-contraction alteration is
worthy of investigation to assess potential side effects for muscles
from exoskeletons, especially for subjects with long-term use
of exoskeletons, and their muscle synergies might be gradually
transformed due to plasticity. Thus, analysis of muscle synergies
with lower-limb exoskeletons may be important and beneficial to
the design of novel exoskeleton systems toward achieving more
natural muscle co-contraction patterns for locomotion and in
daily life.

This paper aims to investigate such potential alteration effects
of muscle synergies in able-bodied subjects when wearing lower
limb exoskeleton systems in performing normal walking tasks,
continuing our preliminary work on muscle synergy analysis
for quiet standing in healthy subjects (Li et al., 2016). This
work tries to investigate how muscle synergy patterns can be
affected by lower-limb exoskeleton systems to assist normal
dynamic walking. To the best of our knowledge, there is little
work focusing specifically on this topic. We would like to
present the muscle synergy alteration details with contrasted co-
contraction sub-patterns of muscle groups among able-bodied
people before and after equipping lower-limb exoskeletons to
walk. EMG signals of eight muscles in the lower extremities of
both legs of 17 healthy subjects were acquired and processed
during the subjects’ normal walking with and without wearing

lower-limb exoskeletons, and the muscle synergy on a single
leg is extracted to present the muscle coordination patterns in
different reduced dimensions. In the following statistical results
on the muscle synergy of the 17 subjects, it can be observed
that the average muscle synergy of the subjects changed when
the subjects wear exoskeletons to do normal walking. Statistical
results indicate the level of significant difference that muscle
synergy alteration phenomena can be reached before and after
wearing exoskeletons.

2. MATERIALS AND METHODS

In this section, EMG signals of eight muscles of 17 subjects
are acquired and analyzed to examine muscle synergies
during walking in case of wearing exoskeletons and without
exoskeletons.

2.1. Experiment Setup
Seventeen able-bodied subjects (16 male and 1 female,
22.88± 1.32 years old, 173.65± 5.22 cm height, and 54.59± 5.21
kg weight) participated in this study upon their consent. The
experiments were exempted from IRB approval and followed the
institutional guidelines of the University of Electronic Science
and Technology of China, and all the experiment operations
were in accordance with the Declaration of Helsinki. None
of them had ever suffered neuromuscular disorders in their
lower limbs. They were all instructed to utilize the lower limb
exoskeletons to perform normal walking tasks. The lower limb
exoskeleton system used in the experiment was developed by
the University of Electronic Science and Technology of China.
The lower limb exoskeleton system has four active degrees of
freedom (flexion/extension) of motion in hip and knee joints,
and its ankle joints have two passive degrees of freedom of
motion (dorsi- and plantar flexion). The subjects are required to
use crutches to maintain balance during locomotion for safety.

Surface EMG signals were acquired by a commercial EMG
acquisition system (TeleMyo DTS System, Noraxon Ltd.,
Scottsdale, Arizona, United States). The placement of the EMG
acquisition pods/electrodes on anterior and posterior sides of
lower limbs is shown in Figure 1. Eight muscles around the
knee, ankle, and hip joints were selected to be tested: the tibialis
anterior (TA), soleus (SOL), lateral gastrocnemius (GAS), vastus
medialis oblique (VMO), vastus lateralis oblique (VLO), biceps
femoris (BICE), semitendinosus (SEMI), and rectus femoris
(RECT) muscles in the lower limbs. Eight channels of bipolar
differential amplifier were carefully placed on these muscles on
each leg according to both the anatomy and joint flexion/rotation
experience. The EMG electrodes of each channel were positioned
at the muscle belly along the muscle fiber direction with the
reference electrode orthogonal to the midline of the active
electrodes according to the recommendation of Noraxon. The
skin underneath the electrodes was cleaned to reduce the
resistance between the skin and the electrodes. The EMG signals
were amplified and sampled at 1,500 Hz. The acquired raw
EMG signals were rectified and low-pass filtered with a 4th-order
Butterworth filter under a 15 Hz cutoff frequency.
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FIGURE 1 | EMG electrode locations on the lower limb of one able-bodied

subject.

2.2. Experimental Protocol
In the experiment, all 17 subjects were individually instructed
to perform two types of normal walking tasks, i.e., the first test
session for each subject was to let him/her wear the exoskeleton
to walk, and the second test session for each subject was to
let him/her walk without wearing the exoskeleton. These two
sessions are independent and separate. In the first session for
normal walking, every subject was told to walk 10 m at a
rate of 1 step per second. They stopped for a short time and
repeated the same walking rhythm as they had just finished. All
the subjects repeated this normal walking trial 4 times. After
they completed the first session, they rested for a while and
then wore the exoskeletons. In the second session for walking
with exoskeletons, each subject was told to walk 5 m without
speed restriction, and they repeated the walking tasks with the
exoskeletons 4 times. Figure 2 shows one subject wearing the
exoskeleton and walking in the experiment.

2.3. Muscle Synergy Extraction
After all the EMG signals of all eight channels on the 17 subjects
were acquired and filtered, we extracted the muscle synergies in
their right legs as the following procedures. First, we construct
the following multiple-channel EMG signal matrix U acquired
for each individual

U =





UTA

USOL

UGAS

UVMO

UVLO

UBICE

USEMI

URECT





=





UTA(1) UTA(2) · · · UTA(N)
USOL(1) USOL(2) · · · USOL(N)
UGAS(1) UGAS(2) · · · UGAS(N)
UVMO(1) UVMO(2) · · · UVMO(N)
UVLO(1) UVLO(2) · · · UVLO(N)
UBICE(1) UBICE(2) · · · UBICE(N)
USEMI(1) USEMI(2) · · · USEMI(N)
URECT(1) URECT(2) · · · URECT(N)





(1)

where Uj (j ∈ {TA, SOL,GAS, VMO,VLO, BICE, SEMI, RECT})
denotes the EMG time sequence of each type of muscle in
the right leg with total N samplings. The non-negative matrix

FIGURE 2 | One subject is wearing the lower-limb exoskeleton system and

doing a normal walking task. (Consent was obtained from the individual for the

publication of this image).

factorization (NMF) method is applied (Tresch et al., 2006) to
decompose U ∈ R8×N as

U =WH

where W ∈ R8×k denotes the muscle synergy ratio matrix
and H ∈ Rk×N denotes the extracted synergy intensity matrix
(neural commands). The decomposition for updating entries hkl
and wjk of H and W is conducted with the following iterative
algorithm

hkl ← hkl
[WTU]kl
[WTWH]kl

wjk ← wjk

[UHT]jk

[WHHT]jk

The algorithm is performed by calling the “nnmf” function built
in MATLAB R2016a, by minimizing the cost function (residual
error) ‖U −WH‖F , where ‖ · ‖F denotes Frobenius norm. The
iterative method starts with random initial values for W and H.
The entries of synergy matrix W in each of its columns come
into being as the muscle co-contraction patterns with different
choices of reduced dimension k, i.e., the vector combined by
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entries w1k,w2k, · · · ,w8k denotes Synergy k. For example, in
case of k = 3, there are three total types of synergy, i.e., the
vector combined by entries w11,w21, · · · ,w81 represents Synergy
1, the vector combined by entries w12,w22, · · · ,w82 represents
Synergy 2, and the vector combined by entries w13,w23, · · · ,w83

represents Synergy 3.

3. RESULTS AND DISCUSSIONS

In this section, muscle synergies of the 17 able-bodied subjects
were extracted by NMF with dimension k being reduced to
3, 4, and 6 from the acquired EMG signals, respectively. The
muscle synergies of subjects who wear lower-limb exoskeletons
for subjects are compared with those of subjects without wearing
lower-limb exoskeletons. Analysis of variance (ANOVA) was
used to evaluate the statistical significance between muscle
synergies with an exoskeleton (i.e., Wwith) and those without an
exoskeleton (i.e.,Wwithout). The p-value matrices were calculated.
If p ≤ 0.05 holds between each synergy value Wwith and
Wwithout correspondingly, then the statistical significance of
muscle synergy alteration can be seen.

3.1. Muscle Synergy With Extraction
Dimension k = 3
In this case, the reduced dimension in NMF is k = 3 for muscle
synergy extraction frommultiple-channel EMG signals, i.e., there
are three synergy patterns: Synergy 1, Synergy 2, and Synergy 3.
Figure 3 comparatively shows the averagemuscle synergies of the
17 subjects during their normal walking tasks with and without
wearing lower limb exoskeletons. More specifically, to further
show the statistical significance for the muscle synergy alteration
effect, the p-values are shown in Table 1. From Figure 3, we
can observe that the average muscle synergy patterns of the
17 subjects who wear lower-limb exoskeletons during normal
walking are altered from those of the subjects who perform
normal walking without exoskeletons. As seen from Synergy 1 in
Figure 3A, we find that, when the subjects wear an exoskeleton
for walking, their TA muscles exhibit a dominant role with
little co-contraction effects from other muscles. For comparison,

when the subjects walk without an exoskeleton, their TA muscles
still keep the main contributed role, but different co-contraction
patterns appear. As shown in Table 1, the differences between
Synergy 1 with and without an exoskeleton mainly focus on
TA and VMO muscles’ contraction patterns are statistically
significantly different, since their corresponding p-values are
both<0.05. For Synergy 2 shown in Figure 3B, we can see the co-
contraction patterns are quite different as well. When the subjects
walk with and without exoskeletons, SOL and GAS muscles are
always the main contributed ones. However, the p values for TA,
SOL, BICE, and SEMI muscles are<0.05, which may indicate the
co-contraction patterns from the two muscles are significantly
altered. We observe Synergy 3 in Figure 3C and can find that
BICE and SEMImuscles are themain contributions. The p-values
for TA, SOL, VMO, VLO, SEMI, and RECT muscles are <0.05,
and it indicates that wearing exoskeletons might change muscle
co-contraction patterns.

3.2. Muscle Synergy With Extraction
Dimension k = 4
In this part of the results, muscle synergies were extracted by
NMF with reduced dimension being k = 4, i.e., Synergies
1∼4 are produced. Figure 4 shows the average muscle synergy
of the 17 subjects with and without lower-limb exoskeletons
to perform normal walking. Table 2 shows the statistical
significance results for muscle synergy with and without an
exoskeleton. From Figure 4 we can observe that, when the
subjects wear exoskeletons to walk, the TA muscle is still the
main contributing muscle and other muscles’ co-contractions
are almost non-existent for Synergy 1, BICE and SEMI muscles
are the main contributing muscles for Synergy 2, the GAS
muscle can be seen as the main contributor for Synergy 3, and
BICE and RECT muscles play the dominant roles for Synergy
4. For comparison, Figure 4 also presents the mean average
muscle synergy of the 17 subjects who do the same normal
walking tasks without wearing lower-limb exoskeletons. From
the synergy results without exoskeletons in Figure 4 we can
see that, for Synergy 1, the TA muscle is the main contributor
with co-contractions from VLO and RECT muscles; for Synergy

FIGURE 3 | Average muscle synergies of the 17 subjects who walk with and without lower-limb exoskeletons. NMF is used to exact the muscle synergy with reduced

dimension being k = 3. (A) Synergy 1, (B) Synergy 2, and (C) Synergy 3.
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TABLE 1 | The p-values between muscle synergy Wwith ∈ R
3×8 and Wwithout ∈ R

3×8, p ≤ 0.05 indicates significant difference in statistics.

Synergy #

Muscle TA SOL GAS VMO VLO BICE SEMI RECT

Synergy 1 0.0000 0.5986 0.9642 0.0000 0.3005 0.9916 0.2723 0.0587

Synergy 2 0.0019 0.0157 0.2615 0.5089 0.3696 0.0003 0.0084 0.9070

Synergy 3 0.0199 0.0077 0.6192 0.0136 0.0001 0.5407 0.0015 0.0000

The bold value is < 0.05.

FIGURE 4 | Average muscle synergies of the 17 subjects who walk with and without lower-limb exoskeletons. NMF is used to exact the muscle synergy, with the

reduced dimension being k = 4. (A) Synergy 1, (B) Synergy 2, (C) Synergy 3, and (D) Synergy 4.

2, BICE and SEMI muscles are the main contributors; for
Synergy 3, SOL and GAS are the main contributors to the
movement; for Synergy 4, VMO becomes the main contributor.
As reflected from the p-values in Table 2, we could conclude
that the TA, VLO, and RECT muscles’ synergies are changed
in Synergy 1, the TA, VLO, BICE SEMI, and RECT muscles’

synergies are changed in Synergy 2, SOL and GAS muscles’
synergies are changed in Synergy 3, and SOL, GAS, VMO, BICE,
SEMI, and RECT muscles’ synergy are changed in Synergy 4.
When examining muscle synergy extraction with dimension
k = 4, muscle synergy alteration seems to occur more
frequently.
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3.3. Muscle Synergy With Extraction
Dimension k = 6
NMF was applied with reduced dimension k = 6 for muscle
synergy extraction in the subsection. Figure 5 shows the average
muscle synergy of the 17 subjects who were with and without
exoskeletons for their normal walking tasks. For comparison,
Figure 5 shows the average muscle synergy pattern of the 17
subjects who finished the same normal walking tasks without
lower limb exoskeletons. Table 3 shows the p-values which
represent statistical significance results for muscle synergy with
and without exoskeleton. From Figure 5, we can observe that,
when the subjects wear the exoskeleton for walking, the synergies
seem altered as compared with those in case of walking without
wearing exoskeletons. When the subjects walk with exoskeletons,
for Synergy 1, TA muscle still keeps the role of the dominant

contributor to the movement with less co-contractions from
other muscles, and such similar phenomenon also appears when
the reduced dimension becomes k = 3 or k = 4; for Synergy
2, SOL muscle is the main contributor muscle; for Synergy 3,
GAS muscle acts as the main contributed muscle more distinctly;
for Synergy 4, BICE muscle is still the main contributor; for
Synergy 5, SEMI is still the main contributor; for Synergy 6,
RECT seems to be the main contributor muscle instead of VLO
muscle. From the statistical significance results in Table 3, the
muscle synergy alteration effect also appears in all 6 synergy
patterns. In Synergy 1, the SOL and VLO muscles’ synergies are
significantly different; in Synergy 2, the SOL, GAS, VLO, and
BICE muscles’ synergies are significantly different; in Synergy
3, the GAS, BICE, SEMI, and RECT muscles’ synergies are
significantly different; and in Synergy 4, only the VMO muscle’s

TABLE 2 | The p-values between muscle synergy Wwith ∈ R
4×8 and Wwithout ∈ R

4×8, p ≤ 0.05 indicates significant difference in statistics.

Synergy #

Muscle TA SOL GAS VMO VLO BICE SEMI RECT

Synergy 1 0.0001 0.1714 0.0905 0.8523 0.0028 0.2488 0.2485 0.0001

Synergy 2 0.0475 0.6851 0.1254 0.0012 0.0001 0.0000 0.0000 0.0001

Synergy 3 0.0687 0.0135 0.0000 0.0069 0.1049 0.6015 0.5270 0.7691

Synergy 4 0.7463 0.0187 0.0001 0.0000 0.6708 0.0000 0.0011 0.0000

The bold value is < 0.05.

FIGURE 5 | Average muscle synergy of the 17 subjects who walked with and without lower-limb exoskeletons. NMF was used to exact the muscle synergy with

reduced dimension being k = 6. (A) Synergy 1, (B) Synergy 2, (C) Synergy 3, (D) Synergy 4, (E) Synergy 5, and (F) Synergy 6.
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TABLE 3 | The p-values between muscle synergy Wwith ∈ R
6×8 and Wwithout ∈ R

6×8, p ≤ 0.05 indicates significant difference in statistics.

Synergy #

Muscle TA SOL GAS VMO VLO BICE SEMI RECT

Synergy 1 0.0673 0.0187 0.9204 0.3339 0.0014 0.5970 0.2218 0.3327

Synergy 2 0.4091 0.0002 0.0000 0.3087 0.0131 0.1011 0.3680 0.0587

Synergy 3 0.5264 0.1450 0.0000 0.3174 0.4987 0.0017 0.0002 0.0000

Synergy 4 0.0754 0.3029 0.1710 0.0094 0.0519 0.8273 0.5002 0.4074

Synergy 5 0.0722 0.1115 0.1294 0.8333 0.1352 0.5765 0.1682 0.0094

Synergy 6 0.0002 0.2191 0.4610 0.0000 0.9300 0.2477 0.1770 0.0000

The bold value is < 0.05.

synergy is significantly different; in Synergy 5, only the RECT
muscle’s synergy is significantly different and in Synergy 6,
the TA, VMO, and RECT muscles’ synergies are significant
different.

3.4. Discussion
From the aforementioned muscle synergy results with and
without exoskeletons in different extraction dimensions k =
3, 4, and 6, we find that, when the subjects wore exoskeleton
for normal walking, the corresponding muscle co-contraction
patterns could be altered. Statistically significant results further
demonstrate that such alteration effects may concentrate on
some muscles. As seen from the p value results in Tables 1–3,
two groups of muscle synergies of the eight present significant
statistical difference (i.e., p ≤ 0.05) in different levels of
extent, and all the sub-patterns from these muscle synergies
show at least one muscle’s contribution is significantly different.
When the extraction dimension is chosen as k = 3, the
TA muscle’s synergies with and without exoskeletons show
significant difference as the p-values in the three synergy patterns
are <0.05. The SOL, VMO, and SEMI muscles’ synergies with
and without exoskeletons show significant difference as well.
Wearing an exoskeleton while walking does not affect only the
GAS muscle’s contribution. When the extraction dimension is
set as k = 4, all eight muscles’ synergies with and without
an exoskeleton present significant difference, with p ≤ 0.05
appearing twice or more in Table 2. When we extract muscle
synergy with dimension k = 6, all of the eight muscles’
synergies with and without exoskeleton have chances to show
significant difference. According to our previous work (Li
et al., 2015), we can observe that some sub-patterns of muscle
synergy have high correlations with joint movement (e.g., flexion
or extension). This muscle synergy alteration indicates that
human joint torque may be changed due to the involvement
of exoskeleton joint torque. Thus, accurate measurement of
the participation of assisted robots (e.g., robot torque) and
human spontaneously-generated motion (e.g., human torque),
together with clear distinction between them, can provide
more insightful investigations on the cause of such significant
differences.

From another point of view, utilizing lower-limb exoskeletons
may change original patterns of muscle co-contractions in
subjects during their normal walking activities. This may be
not beneficial to the exercise of muscles of subjects who
use exoskeletons frequently, since the natural and comfortable

muscle synergy can be broken. In order to improve the
co-contraction situations when the subjects wear exoskeletons
to walk, it is necessary to design a muscle-contraction-primitive
controller for exoskeletons instead of purely providing motion
compensation by actuators. The users usually give feedback
that they may feel uncomfortable and unnatural when they
wear exoskeletons for walking. Based on observations of muscle
synergy results, one can conclude the reason may lie in the
fact that the original natural muscle synergies are altered
to artificial ones when subjects use the exoskeletons, and
the natural muscle’s coordination patterns may be changed
manually and compulsively during the process of subjects
adapting themselves to exoskeletons. In order to make subjects’
muscle synergies with assisted exoskeletons more similar to
those without exoskeleton equipped, the following generalized
procedure can help to improve the design of exoskeletons
toward more natural motion assistance. First, through the
aforementioned statistical significance results we can observe
which specific muscle’s contribution to movement is changed;
secondly, by utilizing correlations between muscle synergy
patterns and human joint torques in different degrees of freedom,
we could improve the design to make the corresponding degree
of freedom of the exoskeleton joint possess actuation; next,
the level of actuation is adjusted according to exoskeleton
dynamics with feedback from kinematics and EMG. Some
works try to use EMG signals to control the exoskeleton by
considering EMG as some sort of interpretation from human
intentions (Kinnaird and Ferris, 2009; Kiguchi and Hayashi,
2012; Lenzi et al., 2012). In this case, the subjects’ motion
intention explicitly drives the contraction of one or more
muscle groups to change EMG signals instead of subconsciously
invoking inherent muscle coordination patterns. Involvement
of synergistic information may be propitious to produce more
natural motion for wearable exoskeleton devices (Hassan et al.,
2018; Liu et al., 2018).

In the walking tasks not assisted by exoskeletons, the
subjects perform their movement without crutches, as they
can keep balance naturally as their daily walking movement.
When the subjects wear exoskeletons to move, the crutches
are used to maintain balance for safety reasons, with the hip
and knee motion assisted by exoskeletons. The actuation of
the human-exoskeleton hybrid system is composed of human
muscle groups and robot motors. It is still a challenge to
measure separately the torque from subjects and the torque
from exoskeletons and how these torque values distribute and
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combine to cooperatively fulfill optimized motion in walking.
This work presents that muscle synergy alteration effects appear
when able-bodied subjects wear exoskeletons to walk rather
than at the actuation level. Future development of advanced
measurement technology on the torques of the ankle, knee, and
hip joints synchronously together with EMG signals on their
associated muscles may promote physiological interpretations of
the reduced dimension number k for muscle synergy pattern
extraction, as following the way of our previous work (Li
et al., 2015). In case torque measurement of multiple joints
in the lower extremities is lacking, utilization of EMG signals
to analyze the muscle synergy might be a feasible manner to
investigate the subjects’ muscles’ adaption effects to wearable
robots.

4. CONCLUSIONS

This paper aims to investigate potential alteration effects of
muscle synergies of able-bodied subjects after wearing lower
limb exoskeleton systems when performing normal walking
tasks. EMG signals from eight muscles in the lower extremities
of one leg on 17 healthy subjects are used and processed to
extract muscle synergies for these subjects to perform normal
walking with and without wearing exoskeletons. According to the

muscle synergy results of the 17 subjects, we see that patterns of
average muscle synergy are changed obviously after the subjects
wear exoskeletons. Statistical analysis further shows significant
differences among sub-patterns in muscle synergies with and
without exoskeletons, indicating that such alteration phenomena
evidently exist.
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