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Case report: Two unexpected
cases of DGUOK-related
mitochondrial DNA depletion
syndrome presenting with
hyperinsulinemic hypoglycemia

Herodes Guzman1,2*, Sahr Yazdani3, Jennifer L. Harmon4,
Kimberly A. Chapman4, Bernadette Vitola5,6, Louise Pyle4,
Heather McKnight1, Winnie Sigal1,7, Katherine Lord1,7,
Diva D. De Leon1,7, Nadia Merchant4,8† and Rebecca Ganetzky2,7†

1Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA, United States,
2Division of Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States, 3Division of
General Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States, 4Rare
Disease Institute, Children’s National Hospital, Washington, DC, United States, 5Division of
Gastroenterology, Hepatology and Nutrition, Children’s National Hospital, Washington, DC, United
States, 6Transplant Institute, MedStar Georgetown University Hospital, Washington, DC, United
States, 7Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania,
Philadelphia, PA, United States, 8Division of Endocrinology and Diabetes, Children’s National
Hospital, Washington, DC, United States
Timely diagnosis of persistent neonatal hypoglycemia is critical to prevent

neurological sequelae, but diagnosis is complicated by the heterogenicity of

the causes. We discuss two cases at separate institutions in which clinical

management was fundamentally altered by the results of molecular genetic

testing. In both patients, critical samples demonstrated hypoketotic

hypoglycemia and a partial glycemic response to glucagon stimulation,

thereby suggesting hyperinsulinism (HI). However, due to rapid genetic testing,

both patients were found to have deoxyguanosine kinase (DGUOK)-related

mitochondrial DNA depletion syndrome, an unexpected diagnosis. Patients

with this disease typically present with either hepatocerebral disease in the

neonatal period or isolated hepatic failure in infancy. The characteristic

features involved in the hepatocerebral form of the disease include lactic

acidosis, hypoglycemia, cholestasis, progressive liver failure, and increasing

neurologic dysfunction. Those with isolated liver involvement experience

hepatomegaly, cholestasis, and liver failure. Although liver transplantation is

considered, research has demonstrated that for patients with DGUOK-related

mitochondrial DNA depletion syndrome and neurologic symptoms, early demise

occurs. Our report advocates for the prompt initiation of genetic testing in

patients presenting with persistent neonatal hypoglycemia and for the

incorporation of mitochondrial DNA depletion syndromes in the differential

diagnosis of HI.

KEYWORDS

hypoglycemia, exome, mitochondria, DGUOK, hyperinsulinism
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1 Introduction

Timely diagnosis of persistent neonatal hypoglycemia is critical

to prevent neurological sequelae, but diagnosis is complicated by

the heterogenicity of the causes. Deoxyguanosine kinase

(DGUOK)-related mitochondrial DNA depletion syndrome

(OMIM# 251880) or DGUOK deficiency can present with

hypoglycemia but has additional phenotypic manifestations. This

autosomal recessive mitochondrial disorder results from biallelic

pathogenic variants in the DGUOK nuclear gene, which encodes the

deoxyguanosine kinase involved in mitochondrial DNA (mtDNA)

maintenance. Deficiency in DGUOK leads to impaired

mitochondrial deoxynucleotide triphosphate production, resulting

in mtDNA depletion and respiratory chain dysfunction (1, 2).

Patients with DGUOK deficiency typically present in two ways:

multi-systemic disease (hepatocerebral type) in the neonatal period

or isolated hepatic failure in infancy. In the multi-systemic form,

psychomotor delay, rotary nystagmus, and hypotonia can be

observed in addition to severe and progressive liver dysfunction.

Those with isolated liver involvement suffer from hepatomegaly,

cholestasis, and liver failure (2).

Diagnosis is facilitated by molecular genetic testing (3), which is

usually done after finding biochemical derangements including

c on j u g a t e d h yp e r b i l i r u b i n em i a , e l e v a t e d g amma -

glutamyltransferase, hepatitis with associated tyrosinemia,

hypoglycemia, and lactic acidosis. Coagulopathies may also be

observed secondary to liver failure. Despite the significance of

presentation, head imaging is often normal. If tissue is collected,

liver and muscle samples typically show a reduced mtDNA copy

number, combined deficiency of liver respiratory chain complexes I,

III, and IV, and a greater number of mitochondria with abnormal

cristae on liver electron microscopy (2). Most patients with multi-

systemic involvement pass away from liver failure at around 1-2

years of life (2, 4, 5).

In this report, we present two cases of persistent hypoketotic

hypoglycemia initially undergoing work-up for hyperinsulinism

(HI). Rapid genetic testing was critical in facilitating the

unexpected diagnosis of DGUOK deficiency in each patient,

fundamentally altering their clinical management. As HI has been

only rarely reported in DGUOK deficiency (6, 7), our two patients

establish a pattern of hyperinsulinemia in mtDNA depletion

syndromes, warranting consideration of these disorders in the

differential diagnosis of HI.
2 Case reports

Case 1: The first patient was a full-term male born at an outside

hospital via vacuum-assisted delivery following an uncomplicated

pregnancy with APGARS of 8 and 9 at 1 and 5 minutes of life,

respectively, and a birth weight of 2,349 grams (1st percentile). This

was the parents first child. On day of life (DOL) 0, he experienced

hypoglycemia (plasma glucose [PG] 34 mg/dL; reference range: 70-

99 mg/dL) and profound lactic acidosis (lactate 16.2 mmol/L;

reference range: ≤1.5 mmol/L) with pH 7.29 and bicarbonate 10

mmol/L (reference range: 20-26 mmol/L). On physical
Frontiers in Endocrinology 025
examination, he was noted to have penoscrotal hypospadias and

significant tachypnea. He was initiated on high-flow nasal cannula,

ampicillin, gentamicin, and phototherapy given unconjugated

hyperbilirubinemia at birth. He was then transferred to a

quaternary care NICU for further management, including

treatment of developing coagulopathy.

Further evaluation demonstrated persistently elevated plasma

lactate, elevated plasma alanine, proline, and tyrosine, and low

serum beta-hydroxybutyrate. Although the newborn screen was

positive for an abnormally elevated tyrosine, succinylacetone was

not detected in urine organic acids. The infant’s normal

acylcarnitine profile was not suggestive of a fatty acid oxidation

disorder. A metabolic hypoglycemia genetic panel and trio whole

exome sequencing were sent on DOL 4 and DOL 6, respectively.

The family history was negative for acute liver failure,

hypoglycemia, or sudden infant death. The parents were of

Mexican ancestry and nonconsanguineous, though their families

are from the same province in Mexico. To further characterize the

patient’s hypoglycemia, he underwent a diagnostic fast that

demonstrated hypoketotic hypoglycemia and a partial glycemic

response to glucagon stimulation, which was suggestive of HI

although his persistent lactatemia was inconsistent with

this diagnosis.

The infant was transferred to the endocrinology service on DOL

22 for continued hypoglycemia and received dextrose-containing

fluids at a glucose infusion rate (GIR) of 8-10.5 mg/kg/min. On

DOL 25, his metabolic hypoglycemia genetic panel resulted with a

biparentally-inherited homozygous likely pathogenic variant in the

DGUOK gene (c.749T>C, p.Leu250Ser), consistent with DGUOK

deficiency. Notably, whole exome sequencing was not expected to

produce a result for 2 more weeks. In light of this diagnosis,

mitochondrial medicine, transplant hepatology, and palliative care

were consulted. The patient was started on a mitochondrial cocktail

of allopurinol and inosine, and liver transplantation was discussed.

For his persistent hypoglycemia, a gastrostomy tube was placed for

continuous enteral dextrose fluid infusion. With confirmation of

this diagnosis and negative workup for congenital adrenal

insufficiency, further management of his under-virilized genitalia

was deferred. He was discharged home on DOL 49 with close

outpatient follow-up.

At home, the family reported intermittent hypoglycemia

requiring up-titration of the infant’s enteral dextrose. By 4

months of age, he developed nystagmus, rendering a liver

transplant inadmissible. Thereafter, he was admitted multiple

times for worsening abdominal distension, ascites, and

coagulopathy, eventually succumbing to his disease at 5 months

of age.

Case 2: The second patient is a full-term male born at an outside

hospital via precipitous spontaneous vaginal delivery to a mother

with gestational diabetes with APGARS of 8 and 9 at 1 and 5

minutes of life, respectively, and birth weight of 2,680 grams (5th

percentile). To our knowledge, the mother had insulin-dependent

gestational diabetes that arose at 34 weeks gestation. Since the

family had arrived in the United States at 32 weeks gestation,

the mother’s glycemic control was not known. After admission, the

patient’s plasma glucose levels progressively fell from 73 mg/dL to
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50 mg/dL (reference range: 70-99 mg/dL). At 19 hours of life, he

became hypothermic, tachypneic, and increasingly lethargic with

multiple poor feeding attempts. He was transferred to the NICU

where his plasma glucose returned undetectable. He was

subsequently started on dextrose-containing fluids as well as IV

ampicillin and gentamicin for early-onset sepsis.

On DOL 2, the patient was noted to have significant lactic

acidosis (lactate 20 mmol/L; reference range: ≤1.5 mmol/L) with pH

7.13 and bicarbonate <15 mmol/L (reference range: 20-26 mmol/L).

Additionally, he had multiple increased laboratory markers of liver

dysfunction. Due to persistent hypoglycemia, GIR in his total

parenteral nutrition (TPN) was increased to 5.5 mg/kg/min. On

DOL 3, feeding initiation was stopped to limit protein intake given a

developing concern for a metabolic disorder with ongoing lactic

acidosis and hyperammonemia. Shortly after, he became

coagulopathic and was transferred to a quaternary care NICU on

DOL 4 for further management.

On DOL 5, metabolic testing in the setting of hypoglycemia

revealed persistently elevated lactate, elevated plasma alanine,

g lycine , prol ine , and tyrosine , and low serum beta-

hydroxybutyrate. Given the patient’s history of a normal newborn

metabolic screen and the non-diagnostic pattern of these amino

acid elevations in the setting of liver dysfunction, these lab

abnormalities were determined to signal liver failure rather than

evidence of a metabolic disorder. Feeds, including protein, were

slowly reintroduced without a significant increase in ammonia. Due

to ongoing lactic acidosis, liver failure with synthetic dysfunction,

and persistent hypoglycemia, genetic testing with trio whole exome

sequencing was sent. There was no reported family history of acute

liver failure, hypoglycemia, or sudden infant death. The parents

were of Sudanese ethnicity and fifth cousins. Their only other child

is a healthy 8-year-old girl.

Hypoglycemia was noted again with an attempted transition

from parenteral to enteral nutrition, so a critical sample was

obtained on DOL 18 that revealed hypoketotic hypoglycemia with

partial response to glucagon stimulation, suggesting possible HI.

This patient was started on diazoxide and chlorothiazide to wean off

GIR through the TPN and facilitate the transition to full enteral

feeds. However, he demonstrated only a partial response to

diazoxide with a continued need for dextrose support.

Whole exome sequencing was reported on DOL 51 with

biparentally-inherited homozygous likely pathogenic variants in

the DGUOK gene (c.757_759del), revealing DGUOK deficiency.

Following this diagnosis, diazoxide and chlorothiazide were

discontinued. A gastrostomy tube was placed to allow for

background continuous formula feeds to prevent hypoglycemia

with the addition of PO ad libitum feeds on top. Given the

patient’s multisystem disease, hepatology determined him

ineligible for liver transplantation.

After a multidisciplinary discussion, the family decided they

wanted to spend time with their infant at home, so palliative care

was consulted to facilitate the transition to home care. He was

discharged home on DOL 79. At the time of his outpatient follow-

up at 3 months of age, he was stable on his discharge regimen with

no new symptoms. The family subsequently moved with the patient

to be closer to extended family members, and his care was
Frontiers in Endocrinology 036
transitioned to local pediatric subspecialists. A timeline of the

clinical course for each patient is presented in Figure 1.
3 Discussion

Rapid genetic testing fundamentally altered the management of

both patients diagnosed with a rare mitochondrial disorder. While

biochemical studies suggested a diagnosis of congenital HI,

molecular genetic testing confirmed mtDNA depletion syndrome

from DGUOK deficiency. Of the six other documented patients

with the same homozygous variant as our first patient, four of them

passed away from liver failure at a couple of months to 2 years of age

(8, 9). Notably, one of the patients alive at the time of publication

received a liver transplant despite neurologic symptoms and was

reported to continue having severe neurologic dysfunction and

developmental delay afterward (10). It is unclear whether any of

these patients also suffered from hyperinsulinemic hypoglycemia.

Similarly, lactic acidosis with rapidly progressive liver failure and

neurologic dysfunction were observed in two patients with a

heterozygous c.749T>C DGUOK missense variant (9, 11). The

only other reported heterozygous patient was alive at the time of

publication with isolated liver disease (11). Based on this prior

variant evidence, phenotypic overlap in our patient, functional data

showing significantly reduced enzyme activity and the lack of

homozygotes present in the Genome Aggregation Database

(gnomAD) with a minor allele frequency of 0.0032% (8/251,466

alleles); this variant was classified as likely pathogenic (8).

In contrast, the c.757_759del variant identified in our second

patient has only been reported in one other individual in ClinVar as

a variant of uncertain significance. No citations or clinical data are

provided for this case. Moreover, functional data on this variant are

not available in the literature. No homozygotes are present in

gnomAD, and the variant has a minor allele frequency of

0.00040% (1/251,456 alleles). Although specific clinical data were

not available from other patients with this variant, this patient’s

clinical presentation and disease course were consistent with other

cases of DGUOK deficiency.

In both cases, liver transplantation was considered to treat their

fulminant liver failure. As of 2020, a total of 20 patients with

DGUOK deficiency have undergone liver transplantation and half

have died from transplant-related complications (12). Those

without neurologic features prior to transplant may still go on to

develop progressive neurologic dysfunction, complicating the

decision to transplant in any case of DGUOK deficiency (2, 11,

13, 14). In the first patient, his neurologic symptoms precluded this

option. Due to a multisystem disease in the second patient, he was

also determined to be a poor liver transplant candidate.

Various disorders lead to altered glucose homeostasis, including

HI, panhypopituitarism, glycogen storage disorders, fatty acid

oxidation defects, ketogenesis or ketolysis defects, disorders of

gluconeogenesis, galactosemia, hereditary fructose intolerance,

congenital disorders of glycosylation, mitochondrial disease,

syndromic hypoglycemia, and select aminoacidopathies (15).

Diagnosis is often delayed by the overlapping features seen in

these disorders. Biochemical analysis is necessary for phenotyping
frontiersin.org
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and stratifying these patients (i.e., ketotic versus non-ketotic

hypoglycemia), while molecular genetic testing is often required

to confirm a diagnosis (15). Our presented equivocal cases help

illustrate situations in which prompt initiation of genetic testing is

essential to establishing an effective management plan.

For both of our patients, the diagnosis of HI was considered

based on increased glucose requirements, the pattern of hypoketotic

hypoglycemia, and the partial glycemic response to glucagon even

though the elevated lactate was inconsistent with this disorder. HI is

the most common cause of persistent hypoglycemia. It can be

secondary to perinatal factors such as maternal diabetes or perinatal

stress, or it can be genetic. Several genes are implicated in the

development of HI, most commonly pathogenic variants in ABCC8

and KCNJ11 (15). Depending on the affected gene and inheritance

pattern, responsiveness to medical treatment can vary with some

cases requiring pancreatectomy (15, 16). Given these treatment

considerations, genetic testing is considered the standard of care in

suspected persistent HI. A two-tiered approach expedites molecular

diagnosis: diazoxide-unresponsive patients who are more likely to

have focal disease undergo Tier 1 testing that investigates for

ABCC8, KCNJ11, and GCK mutations with a turnaround time of

5–7 days while diazoxide-responsive patients undergo more

comprehensive genetic testing that results in ~4 weeks (16, 17).

As nearly 50% of these patients with HI have non-diagnostic genetic

testing results, expedited comprehensive genetic testing such as

whole exome or genome sequencing may be warranted. This is

especially critical in inconclusive cases like our own, in which the
Frontiers in Endocrinology 047
genetic diagnosis of DGUOK deficiency drastically altered clinical

management and family decision making.

The characteristic features observed in multi-systemic DGUOK

deficiency include lactic acidosis, hypoglycemia, cholestasis,

progressive liver failure, and increasing neurologic dysfunction

(2). However, diagnosis is complicated by phenotypic variability.

Depending on the primary metabolic derangements observed,

patients with DGUOK deficiency have been misclassified as

neonatal hemochromatosis (hyperferritinemia and elevated alpha-

fetoprotein) and tyrosinemia type 1 among other disorders (18).

Most notably, an emerging feature of DGUOK deficiency is

hyperinsulinemic hypoglycemia. In two deceased infants found to

have DGUOK deficiency, autopsy tissue specimens revealed

pancreatic islet cell hyperplasia suggestive of HI as the cause of

their hypoketotic hypoglycemia. When alive, both autopsied

patients had inappropriately high insulin levels and lower free

fatty acids in the setting of hypoglycemia with a positive glycemic

response to glucagon stimulation (6). A recent report of a third

infant with DGUOK deficiency and hyperinsulinemic

hypoglycemia reveals partial responsiveness to diazoxide therapy

at 8 mg/kg/day dosing, which is similar to our second case (7). Our

two cases now support a pattern of hyperinsulinemic hypoglycemia

in DGUOK deficiency, thus warranting consideration of this

mitochondrial disease in the workup of HI. Table 1 provides a

summary of all reported cases of DGUOK deficiency with

hyperinsulinemic hypoglycemia to date. It is important to note

that we cannot rule out the possibility of perinatal stress-induced HI
A

B

FIGURE 1

A timeline of the clinical course for (A) Patient 1 and (B) Patient 2.
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in the pathophysiology of hypoglycemia. Regardless, if there is

evidence of HI, treatment with diazoxide may be of benefit because

recurrent hypoketotic hypoglycemia may be contributing to the

progressive neurologic dysfunction observed in these patients.

Diazoxide-responsiveness has already been demonstrated in

patients with tyrosinemia type 1 and HI, further supporting this

treatment strategy for DGUOK deficiency (19).

Advances in next-generation sequencing have facilitated

similar diagnoses in recent years, particularly in critically ill

infants and children (20, 21). For example, among 354 infants

receiving either early (15 days after study enrollment) or delayed

(60 days after enrollment) whole genome sequencing results, twice

as many participants with early genetic diagnosis had a change in

clinical management, including subspecialty referrals, condition-

specific medications, and surgical interventions (22). The overall

diagnostic yield of genetic screening in this patient population is

37% with management changes reported in 20-100% of diagnosed

patients (23). Not only does genetic testing affect clinical

outcomes, but recent analyses also highlight the economic

benefits of timely genetic diagnosis (20, 21, 24). By reducing the

length of hospital stays, genetic testing can save up to two million

US dollars per 100 patients tested (20). Moreover, one study

demonstrated that both the public and affected families have a

vested interest in rapid genetic testing for critically ill children

despite the cost (25).
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In conclusion, our experiences reinforce the importance of

rapid genetic testing for patients with persistent neonatal

hypoglycemia, particularly when biochemical testing is

inconclusive. With these two new cases, there are now five

patients with DGUOK deficiency and hyperinsulinemic

hypoglycemia, extending the differential diagnosis of HI to

include mtDNA depletion syndromes and giving further credence

to the utility of expedited comprehensive genetic testing in these

scenarios. Most significantly, timely molecular confirmation of

DGUOK deficiency can shorten the diagnostic odyssey for these

patients and allow for the cessation of futile interventions, thus

maximizing the time a family has with their affected child.
4 Patient perspective

Not provided by the parents of Patient 1. We were unable to

reach the parents of Patient 2.
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TABLE 1 All reported cases of deoxyguanosine kinase (DGUOK) deficiency with hyperinsulinemic hypoglycemia to date.

Reference DGUOK
variant

Age of
presentation

Sex
(M/F)

Clinical course Critical sample+ Management

Patient 1 c.749T>C,
p.Leu250Ser
(homozygous)

At birth M Hypoketotic hypoglycemia
with lactic acidosis and
progressive liver failure
resulting in death at 5
months

PG 37 mg/dL, BOHB <0.3 mmol/L,
FFA 0.77 mmol/L, insulin 13.7 mIU/
mL, c-peptide <0.1 ng/mL, lactate 4.2
mmol/L, delta glucose +22 in
response to glucagon

Enteral dextrose
infusion

Patient 2 c.757_759del
(homozygous)

At birth M Hypoketotic hypoglycemia
with lactic acidosis and
transient hyperammonemia.
Progressive liver failure,
currently living

PG 38 mg/dL, BOHB <0.1 mmol/L,
insulin 13.1 mIU/mL, delta glucose
+13 in response to glucagon

Diazoxide,
continuous
formula feeds

Pronicka et al.
(6)

c.766_767insGATT/
c.?, p.Phe256X/p.?
(heterozygous)

At birth F Hypoketotic hypoglycemia
with lactic acidosis and
progressive liver failure
resulting in death at 18
months

PG 22.8 mg/dL, BOHB 0.21 mmol/L,
FFA 0.72 mmol/L, insulin 4.3 mIU/
mL, delta glucose +77 in response to
glucagon

Enteral dextrose
infusion

c.3G>A/
c.813_814insTTT,
p.Met1Ile/
(compound
heterozygous)

At birth F Hypoketotic hypoglycemia
with lactic acidosis and
progressive liver failure
resulting in death at 6.5
months

PG 21.4 mg/dL, BOHB 0.15 mmol/L,
FFA 0.1 mmol/L, insulin 5.7 mIU/mL,
delta glucose +108 in response to
glucagon

Enteral dextrose
infusion

Arya et al. (7) c.763_766dupGATT,
p.Phe256*
(homozygous)

At birth M Hypoketotic hypoglycemia
with lactic acidosis and
progressive liver failure
resulting in death at 8
months

PG 36 mg/dL, BOHB <0.01 mmol/L,
insulin 21.9 mIU/mL, lactate 4.1
mmol/L

Diazoxide,
continuous
formula feeds
*M, male; F, female; PG, plasma glucose; BOHB, beta-hydroxybutyrate; FFA, non-esterified free fatty acids.
+Referenc ranges: PG (70-99 mg/dL), BOHB (≥2.0-5.0 mmol/L), FFA (≥1.5 mmol/L), insulin (≤2 µIU/mL), c-peptide (0.0-3.3 ng/mL), lactate (≤1.5 mmol/L).
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Associations between maternal
urinary kisspeptin in late
pregnancy and decreased fetal
growth: a pregnancy-birth
cohort study
Jiaxian Chen1, Lan Yang1, Yafei Chen1, Wei Yuan2, Yao Chen2,
Hong Liang2, Maohua Miao2, Gengsheng He3*

and Ziliang Wang2*

1Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction
Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Public
Health, Fudan University, Shanghai, China, 2Shanghai-MOST Key Laboratory of Health and Disease
Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and
Pharmaceutical Technologies, Shanghai, China, 3Department of Nutrition and Food Hygiene, School
of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University,
Shanghai, China
Background: Kisspeptin has been indicated to be a biomarker of fetal growth.

Although some evidence suggested that maternal kisspeptin concentrations in

early pregnancy were associated with increased fetal growth, studies are still

limited and the effect of kisspeptin in late pregnancy remains unknown. This

study aimed to investigate the associations between maternal kisspeptin in late

pregnancy and fetal growth.

Methods: Based on the Shanghai-Minhang Birth Cohort study, 724 mother-

neonate pairs were included in this study. We measured maternal kisspeptin

concentrations in the urine samples collected in late pregnancy and neonatal

anthropometric indices at birth. The associations between maternal kisspeptin

and neonatal anthropometry were investigated using multiple linear

regression models.

Results: Higher maternal urinary kisspeptin concentrations were associated with

lower neonatal birth weight, head circumference, upper arm circumference,

abdominal skinfold thickness, triceps skinfold thickness, and back skinfold

thickness. The inverse associations were more pronounced for the highest

kisspeptin levels versus the lowest. These patterns were consistent in analyses

stratified by neonatal sex, with notably stable associations between maternal

kisspeptin concentrations and skinfold thickness.

Conclusion: The present study suggested that maternal kisspeptin

concentrations in late pregnancy might be inversely associated with fetal

growth. The physiological mechanisms of maternal kisspeptin might differ from

those in early pregnancy. Further studies are required to assess associations
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between maternal kisspeptin and energy homeostasis and explore the

physiological roles of kisspeptin in late pregnancy.
KEYWORDS

kisspeptin, neonatal anthropometry, fetal growth, late pregnancy,
skinfold thickness
1 Introduction
Kisspeptin is a family of natural neuropeptides consisting of

kisspeptin-54, 14, 13, and 10, encoded by the gene KiSS-1 (1, 2). It

has been proved that kisspeptin is a key regulator of reproductive

development and functions, as it stimulates the secretion of

Gonadotrophin-Releasing Hormone (GnRH) and activates the

Hypothalamic-Pituitary-Gonadal (HPG) axis by binding to its

natural ligand G Protein-Coupled Receptor 54 (GPR54), which is

encoded by the gene KiSS-1R (2).

Recent studies have suggested additional roles of kisspeptin in

regulating placentation and later pregnancy. KiSS-1 and KiSS-1R are

found highly expressed by trophoblast cells in the placenta during

pregnancy (3). With rapid proliferation and differentiation of

trophoblast cells, maternal circulating kisspeptin levels

continuously increase during pregnancy and peak at delivery (4).

Compared with the nonpregnant, circulating kisspeptin levels of

pregnant women increase 900-fold in the first trimester and 7000-

fold in the third trimester (5). During the initial stages of gestation,

kisspeptin plays a key role in inhibiting angiogenesis, restraining

trophoblast invasion and migration, and regulating implantation

and subsequent placental development (3). Several epidemiological

studies have associated decreased maternal kisspeptin levels in early

pregnancy with unfavorable pregnancy outcomes, such as

spontaneous miscarriage (6), preeclampsia (7), and preterm birth

(8). Further, kisspeptin in early pregnancy may also act as a

biomarker to predict fetal growth. A few case-control studies have

associated maternal kisspeptin levels in the first trimester with

increased neonatal birth weight (9–11).

However, growing evidence supports that besides kisspeptin’s

important role in regulating early pregnancy, it is also involved in

the later fine-tuning of many other key procedures related to fetal

growth (11), including maternal energy homeostasis (12) and

programming of fetal endocrine functions (13). A study has

reported inverse associations between kisspeptin concentrations

in late pregnancy and neonatal birth weight, which is inconsistent

with the findings for early pregnancy (14). However, another study

did not find any associations (15). In general, studies on

associations between maternal kisspeptin and fetal growth are still

scarce and inconsistent, especially in the lack of evidence of

kisspeptin in late pregnancy. Therefore, this study aimed to

investigate associations between maternal kisspeptin levels in late
0212
pregnancy and fetal growth reflected by a range of neonatal

anthropometric indices.
2 Materials and methods

2.1 Study participants and design

We used data from the Shanghai-Minhang Birth Cohort Study

(S-MBCS), which was an ongoing prospective study designed to

examine the effects of environmental exposures on both mothers’

and their children’s health. Between April and December 2012,

pregnant women were recruited when they visited Minhang

Maternal and Child Health Hospital in Shanghai, China for their

first prenatal care visit (12-16 weeks of gestation). Detailed

inclusion and exclusion criteria have been described elsewhere

(16). In total, 1,292 pregnant women were recruited in the study,

and 1,233 delivered live infants in the study hospital (28 delivered in

another hospital, 31 abortions or stillbirths). We further excluded 8

twin pregnancies, leaving 1,225 live singletons. Single-spot urine

samples of pregnant women were collected at 31.6 weeks of

gestation on average for kisspeptin measurement. Neonatal

anthropometry collection was conducted 1 (with an interquartile

range of 1 to 2) day after birth. Due to limited funding, we selected

724 women for urinary kisspeptin measurements, based on criteria

such as sufficient urine volume and availability of follow-up visit

information (17). Thus, a total of 724 mother-neonate pairs with

both maternal kisspeptin concentrations and neonatal

anthropometry records were included in this study (Figure 1).

All women provided informed consent for themselves and their

children at recruitment and each follow-up visit. The study protocol

was approved by the ethical committee of the Shanghai Institute for

Biomedical and Pharmaceutical Technologies (formerly the

Shanghai Institute of Planned Parenthood Research).
2.2 Measurement of maternal
urinary kisspeptin

Urine samples were collected at 31.6 weeks of gestation on

average and frozen at -80°C before being transferred to the

laboratory for measurement. Total kisspeptin concentrations

(kisspeptin-54, kisspeptin-14, kisspeptin-13, and kisspeptin-10)
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were measured using the Human Kisspeptin 1(KiSS1) Enzyme-

Linked Immunosorbent Assay (ELISA) Kit (Blue Gene, Shanghai,

China) according to the manufacturer’s protocol, without any

dilution (18). The assay had high sensitivity and excellent

specificity according to the introduction of the kit, with inter-

assay and intra-assay coefficients of variation<10% and recovery

rates ranging from 94% to 103%. More details of kisspeptin

measurement have been previously described (19).
2.3 Measurement of
neonatal anthropometry

We utilized a range of neonatal anthropometric indices to

evaluate fetal growth, including birth weight, upper arm

circumference, abdominal circumference, head circumference,

triceps skinfold thickness, back skinfold thickness, and abdominal

skinfold thickness. Each index reflects the growth of distinct body

parts. Birth weight, as a comprehensive parameter, is employed to

monitor neonatal growth and nutritional status. Head

circumference is used as a proxy for brain growth. Upper arm

circumference is considered a parameter to reflect the combined

muscle and fat. Abdominal circumference is employed to assess the

size of the abdominal viscera. Skinfold thickness is utilized to

estimate body fat, with upper arm skinfold thickness mainly

reflecting peripheral subcutaneous fat and abdominal skinfold

thickness mainly reflecting central subcutaneous fat (20, 21).

Neonatal anthropometry collection was conducted 1 (with an

interquartile range of 1 to 2) day after birth. The neonate’s birth

weight (scaled with fine 1g graduation) was retrieved from the

medical birth records (22). Head, arm, and abdominal

circumference (scaled with fine 0.1 cm graduation) were

measured by tape. Head circumference was measured with the

tape placed from above the eyebrows to the maximum protrusion of

the occiput. Abdominal circumference was measured with the tape

placed around the abdomen just above the umbilicus and

perpendicular to the long mid-axis of the trunk. Upper arm

circumference was measured with the tape placed through the
Frontiers in Endocrinology 0313
midpoint between the acromion and tip of the olecranon on the

right arm (23). Skinfold thickness (scaled with fine 0.1 mm

graduation) was measured using a skinfold caliper. While the

neonate was lying in a prone position, physicians stood on the

right side of the body and placed the skinfold caliper respectively

over the right triceps, midway between the posterior border of the

tip of the acromion and the olecranon (triceps skinfold thickness),

below the lower angle of the right scapula (back skinfold thickness),

and at the intersection point on the midline of the clavicle and

parallel to the navel (abdominal skinfold thickness) (24). Each

neonate was measured twice by the two proficient physicians who

were blinded to the mothers’ kisspeptin levels at the time of

measurement, and the averages of their measurements were used

for analysis.
2.4 Covariates collection

At enrollment, we used a structured questionnaire to collect

information about demographic characteristics, reproductive

history, health conditions, and lifestyle factors. Maternal pre-

pregnancy body mass index (BMI) was calculated as weight (in

kilograms) divided by height (in meters) squared. Additionally,

maternal urinary creatinine concentration was also measured to

control for urine dilution.
2.5 Statistical analysis

The included and excluded mother-neonate pairs’ demographic

characteristics, pregnancy-related information, and neonatal

anthropometric indices were tabulated. We also described the

distributions of creatinine-adjusted maternal urinary kisspeptin

concentrations among populations with different characteristics.

Those data in different groups were compared using student’s t-tests

and chi-square tests.

Kisspeptin concentrations were first included as continuous

variables in multiple linear regression models to examine the
FIGURE 1

Participant recruitment and flow in the Shanghai-Minhang Birth Cohort Study.
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general pattern of associations between maternal kisspeptin

concentrations and neonatal anthropometric indices. We further

investigated the effects of kisspeptin at different levels by tertiles (the

first tertile group as the reference group) in model 2, since

generalized additive models (GAM) suggested the existence of

nonlinear associations between kisspeptin concentrations and

some specific neonatal anthropometric indices. As previous

studies had reported sex-specific effects of kisspeptin (12), we

further stratified all our analyses by neonatal sex. Covariates were

included based on the evidence of a potential confounder from

previous literature (22). Additional covariates that changed the

estimates by more than 10% were also included. Finally, the

following variables were included in multiple linear regression

models: maternal age (<25, 25-30 or ≥30 years), maternal

education (middle school or below, high school, or college or

above), family income per capita (<4000, 4000-8000, or ≥8000

Chinese Yuan (CNY)/month), maternal pre-pregnancy BMI (<18.5,

18.5-24, or ≥24.0 kg/m2), paternal drinking before conception (yes

or no), maternal weight gain during pregnancy (kg), parity

(nulliparous or multiparous), gestational weeks (<37, 37-42,

or ≥42 weeks), maternal disease status (yes for mothers with

chronic diseases diagnosed before or during pregnancy, such as

diabetes mellitus, hypertension, and hypothyroidism, or no) and

neonatal sex (boys or girls). Urinary creatinine concentrations were

log10-transformed and included as a covariate to control for urine

dilution (25).

We further conducted several sensitivity analyses to test the

robustness of the results. We removed pregnant women with

chronic diseases such as diabetes mellitus, hypertension, and

hypothyroidism to repeat main analyses among the remaining

499 mother-neonate pairs, considering that these diseases may

have effect modifications on the associations between maternal

kisspeptin and neonatal anthropometry (9–11). Similarly, we

restricted the main analyses to 514 pregnant women whose pre-

pregnancy BMI was normal (18.5-24 kg/m2) but still included BMI

as a continuous variable in linear regression models (10, 26).

All analyses were conducted with SAS version 9.4 (SAS Institute

Inc., Cary, NC). A p-value less than 0.05 from two-tailed tests was

considered statistically significant.
3 Results

3.1 General characteristics of
the population

The characteristics of the participants are presented in Table 1.

Among the 724 participating mothers, approximately half were

between 25-30 years old at parturition (55.11%), reported a

monthly family income per capita between 4000-8000 CNY/

month (41.76%), and were exposed to passive smoking before

conception (40.36%). The majority of participants were well-

educated (77.32% graduated from college or above), had a normal

weight before pregnancy (72.39% had a BMI between 18.5 and 24

kg/m2), did not suffer from chronic diseases before or during

pregnancy (68.92%), and reported no alcohol consumption before
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conception for their partners (68.10%). Compared with the

excluded group, pregnant women included were more likely to be

nulliparous (86.91% vs. 81.12%), gain more weight during

pregnancy (16.56 kg vs. 15.79 kg), and have a longer gestational

age (39.61 weeks vs. 39.33 weeks). About 57% of the included

neonates were boys, higher than the proportion of excluded male

neonates (50.2%). The mean ( ± SD) birth weight, head

circumference , upper arm circumference , abdominal

circumference, abdominal skinfold thickness, triceps skinfold

thickness, and back skinfold thickness of the neonates included

were 3442.72 ( ± 432.89) g, 35.16 ( ± 1.18) cm, 11.08 ( ± 1.00) cm,

33.63 ( ± 1.80) cm, 2.63 ( ± 0.76) mm, 4.04 ( ± 1.10) mm, and

3.98 ( ± 1.08) mm, respectively. All anthropometric indices were

normally distributed. No significant differences in anthropometric

indices were observed between the included and the

excluded neonates.
3.2 Distributions of maternal urinary
kisspeptin concentrations

The distributions of maternal urinary kisspeptin concentrations

are shown in Supplementary Table 1. The mean concentration of

creatinine-adjusted urinary kisspeptin was 1335.14 ng/g creatinine.

Women with higher family incomes had higher kisspeptin

concentrations. Additionally, pre-pregnancy BMI was inversely

associated with kisspeptin concentrations.
3.3 Associations between maternal urinary
kisspeptin and neonatal anthropometry

In general, inverse associations between maternal urinary

kisspeptin concentrations in late pregnancy and neonatal

anthropometric indices were observed. In model 1, we used

kisspeptin as a continuous variable and found that higher

maternal kisspeptin concentrations were consistently associated

with lower neonatal anthropometric indices, with statistical

significance reaching for all indices except abdominal

circumference. When the analyses were stratified by neonatal sex,

we found a consistent pattern among both male and female

neonates (Figure 2; Supplementary Table 2).

Further, when kisspeptin was included as a categorical variable

in model 2, the inverse associations were mainly found for the

highest levels of maternal kisspeptin, compared with the lowest

(Table 2). Compared with neonates with the first tertile of maternal

kisspeptin, those with the highest maternal kisspeptin levels had

lower birthweight (b=-88.81, 95% confidence interval (CI): -173.39,

-4.24), upper arm circumference (b=-0.21, 95%CI: -0.41, -0.01),
abdominal skinfold thickness (b=-0.27, 95%CI: -0.42, -0.11), triceps
skinfold thickness (b=-0.25, 95%CI: -0.47, -0.02) and back skinfold

thickness (b=-0.40, 95%CI: -0.62, -0.18). Similar patterns were

observed in analyses stratified by neonatal sex, with the

significance only reached for skinfold thickness. The highest levels

of maternal kisspeptin were associated with lower abdominal

skinfold thickness (b=-0.23, 95%CI: -0.42, -0.03) and back
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TABLE 1 Characteristics of mother-neonate pairs included and not included.

Characteristics Included (n=724) Excluded (n=501) p‡

Maternal age at parturition (years) 0.0837

<25 75 (10.36) 70 (14.62)

25-30 399 (55.11) 249 (51.98)

≥30 250 (34.53) 160 (33.40)

Maternal education 0.3479

Middle school 64 (8.85) 55 (11.00)

High school 100 (13.83) 75 (15.00)

College or above 559 (77.32) 370 (74.00)

Family income per capita (CNY/month) 0.0736

<4000 134 (18.72) 119 (24.14)

4000-8000 299 (41.76) 190 (38.54)

≥8000 283 (39.52) 184 (37.32)

Maternal passive smoking before conception 0.9332

Yes 291 (40.36) 203 (40.60)

No 430 (59.64) 297 (59.40)

Paternal drinking before conception 0.7603

Yes 230 (31.90) 163 (32.73)

No 491 (68.10) 335 (67.27)

Pre-pregnancy BMI (kg/m2) 0.6895

<18.5 138 (19.44) 106 (21.46)

18.5-24 514 (72.39) 348 (70.44)

≥24.0 58 (8.17) 40 (8.10)

Parity 0.0061

Nulliparous 624 (86.91) 404 (81.12)

Multiparous 94 (13.09) 94 (18.88)

Gestational age at parturition (weeks) <0.0001

<37 12 (1.66) 33 (6.60)

37-42 701 (96.82) 457 (91.40)

≥42 11 (1.52) 10 (2.00)

Maternal disease 0.1378

Yes 225 (31.08) 136 (27.15)

No 499 (68.92) 365 (72.85)

Total weight gain during pregnancy (kg) 16.56 ± 4.47 15.79 ± 5.11 0.0109

Gestational age at maternal urine collection (weeks) 31.60 ± 1.60 31.77 ± 1.79 0.2941

Neonatal sex 0.0107

Male 417 (57.60) 250 (50.20)

Female 307 (42.40) 248 (49.80)

Birth weight (g) 3442.72 ± 432.89 3391.02 ± 546.08 0.1179

Head circumference (cm) 35.16 ± 1.18 35.10 ± 1.18 0.3395

(Continued)
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TABLE 1 Continued

Characteristics Included (n=724) Excluded (n=501) p‡

Upper arm circumference (cm) 11.08 ± 1.00 11.17 ± 1.11 0.4789

Abdominal circumference (cm) 33.63 ± 1.80 33.67 ± 1.79 0.7725

Abdominal skinfold thickness (mm) 2.63 ± 0.76 2.62 ± 0.77 0.6157

Triceps skinfold thickness (mm) 4.04 ± 1.10 4.03 ± 1.07 0.9231

Back skinfold thickness (mm) 3.98 ± 1.08 3.88 ± 0.97 0.3075
F
rontiers in Endocrinology
 0616
 front
‡p-value for differences between included and not included mother-neonate pairs. BMI, body mass index; CNY, Chinese Yuan.
FIGURE 2

Regression coefficients (bs) and 95% confidence intervals (CIs) for the associations between maternal kisspeptin levels (continuous) in late pregnancy
and neonatal anthropometry using multiple linear regression models. a Adjusted for log10-transformed maternal creatinine concentrations, family
income, maternal education, paternal drinking before conception, maternal age, maternal pre-pregnancy body mass index, parity, gestational age,
total weight gain, maternal disease, and neonatal sex. b Adjusted for all the variables in Note a except for neonatal sex. Numeric data are available in
Supplementary Table-2. *p< 0.10, **p< 0.05, ***p< 0.01, n(All)=724, n(Boys)=417, n(Girls)=307.
TABLE 2 Regression coefficients (bs) and 95% confidence intervals (CIs) for the associations between maternal kisspeptin levels (categorical) in late
pregnancy and neonatal anthropometry using multiple linear regression modelsa.

Neonatal anthropometric indices Kisspeptin levels All (n=724)b Boys (n=417)c Girls (n=307)c

Birth weight (g)

1st tertile Ref. Ref. Ref.

2nd tertile 4.98 (-70.43, 80.39) -18.04 (-116.99, 80.92) 14.85 (-102.84, 132.55)

3rd tertile -88.81 (-173.39, -4.24)** -72.70 (-182.71, 37.31) -104.77 (-238.55, 29.02)

Head circumference (cm)

1st tertile Ref. Ref. Ref.

2nd tertile 0.03 (-0.18, 0.23) 0.01 (-0.27, 0.29) 0.00 (-0.31, 0.32)

(Continued)
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skinfold thickness (b=-0.34, 95%CI: -0.62, -0.07) among male

neonates, and lower abdominal skinfold thickness (b=-0.27, 95%
CI: -0.53, -0.01) and back skinfold thickness (b=-0.38, 95%CI: -0.74,
-0.01) among female neonates, respectively.

Exclusion of women with chronic diseases or restricting the

analyses to women with normal pre-pregnancy BMI did not

essentially change the patterns, while several estimates lost

statistical significance due to the reduced sample size.

Nevertheless, the significant associations between maternal

kisspeptin levels in late pregnancy and decreased neonatal fat

mass (abdominal skinfold thickness and back skinfold thickness)

remained stable (Supplementary Tables 3, 4).
4 Discussion

To our knowledge, this is the first study to investigate the

potential role of maternal kisspeptin levels in late pregnancy in fetal

growth reflected by a range of neonatal anthropometric indices,

including birth weight, circumference, and skinfold thickness. We
Frontiers in Endocrinology 0717
observed a consistent pattern of the associations between maternal

urinary kisspeptin concentrations in late pregnancy and decreased

neonatal anthropometry among both sexes, particularly for the

highest kisspeptin levels compared with the lowest. Notably, the

significant associations between maternal kisspeptin levels and

neonatal fat mass were relatively stable.

Consistent with our results, a case-control study reported the

inverse associations between maternal kisspeptin concentrations in

late pregnancy and neonatal birth weight among 40 healthy

mother-neonate pairs (14). Similarly, inverse associations were

also observed in studies on fetal growth and placental expressions

of KISS-1 which are highly correlated with circulating kisspeptin

concentrations in late pregnancy since the placenta is the main

source of maternal circulating kisspeptin during pregnancy (4, 27).

Nevertheless, another case-control study reported no associations

between maternal kisspeptin concentrations in any trimester and

fetal growth among healthy mother-neonate pairs (15), whose

ability to detect statistical significance might be limited by the

relatively small sample size (around 25 participants). Notably, the

inverse associations of kisspeptin in late pregnancy with neonatal
TABLE 2 Continued

Neonatal anthropometric indices Kisspeptin levels All (n=724)b Boys (n=417)c Girls (n=307)c

3rd tertile -0.23 (-0.46, 0.00)* -0.24 (-0.55, 0.07) -0.30 (-0.65, 0.06)

Upper arm circumference (cm)

1st tertile Ref. Ref. Ref.

2nd tertile 0.01 (-0.17, 0.19) 0.01 (-0.22, 0.23) 0.04 (-0.25, 0.34)

3rd tertile -0.21 (-0.41, -0.01)** -0.16 (-0.41, 0.09) -0.24 (-0.57, 0.10)

Abdominal circumference (cm)

1st tertile Ref. Ref. Ref.

2nd tertile 0.12 (-0.21, 0.44) -0.08 (-0.51, 0.34) 0.31 (-0.20, 0.82)

3rd tertile -0.22 (-0.58, 0.15) -0.29 (-0.76, 0.18) -0.15 (-0.72, 0.43)

Abdominal skinfold thickness (mm)

1st tertile Ref. Ref. Ref.

2nd tertile -0.04 (-0.18, 0.10) -0.05 (-0.23, 0.13) -0.01 (-0.24, 0.22)

3rd tertile -0.27 (-0.42, -0.11)*** -0.23 (-0.42, -0.03)** -0.27 (-0.53, -0.01)**

Triceps skinfold thickness (mm)

1st tertile Ref. Ref. Ref.

2nd tertile -0.06 (-0.26, 0.14) -0.03 (-0.30, 0.23) -0.01 (-0.33, 0.31)

3rd tertile -0.25 (-0.47, -0.02)** -0.14 (-0.44, 0.15) -0.29 (-0.65, 0.08)

Back skinfold thickness (mm)

1st tertile Ref. Ref. Ref.

2nd tertile -0.07 (-0.27, 0.12) -0.02 (-0.27, 0.22) -0.08 (-0.40, 0.24)

3rd tertile -0.40 (-0.62, -0.18)*** -0.34 (-0.62, -0.07)** -0.38 (-0.74, -0.01)**
aKisspeptin concentrations were included as a categorical variable by tertiles.
bAdjusted for log10-transformed maternal creatinine concentrations, family income, maternal education, paternal drinking before conception, maternal age, maternal pre-pregnancy body mass
index, parity, gestational age, total weight gain, maternal disease, and neonatal sex.
cAdjusted for all the variables in Note b except for neonatal sex.
*p < 0.10 vs. 1st tertile, **p < 0.05 vs. 1st tertile, ***p < 0.01 vs. 1st tertile.
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anthropometry in our study were different from those in early

pregnancy (9–11, 28).

The different associations between maternal kisspeptin

concentrations and neonatal anthropometry could potentially be

explained by varying physiological roles and regulatory

mechanisms of kisspeptin in different stages of pregnancy. In

early pregnancy, placental kisspeptin has been reported to be

associated with invasive capacity, with evidence showing that the

peak of placental expressions of kisspeptin coincides with

implantation and placentation (29). Decreased maternal

kisspeptin concentrations in early pregnancy have been linked

with impaired fetal growth due to dysfunction of implantation

and placentation while administering kisspeptin in early gestation

could alleviate the adverse consequences and further improve fetal

growth (5, 29–31). Intriguingly, despite the fact that placental

expressions of KISS-1 peak in early pregnancy, circulating

kisspeptin concentrations continuously rise until parturition when

implantation and placentation have already completed, suggesting

that maternal kisspeptin may influence fetal growth through other

regulatory mechanisms in later stages of pregnancy (5, 32).

Kisspeptin has been suggested to be related to energy

homeostasis, with several animal studies showing positive

associations between kisspeptin concentrations and energy-

regulatory hormones like leptin and oxytocin which can reduce

appetite and food intake and increase energy expenditure, especially

among pregnant rats (32–35). Recently, kisspeptin has been found

to exert direct effects on energy homeostasis (12), supported by the

anatomical associations and functional feedback between kisspeptin

and key appetite-regulating neurons found in rodent models (36,

37). Both animal and epidemiological studies have reported that

lack of kisspeptin leads to increased appetite, body weight, and fat

mass (10, 12, 26), which is also in line with the inverse associations

between maternal kisspeptin concentrations and pre-pregnancy

BMI observed in our study.

Although the physiological mechanisms underlying the

interactions between kisspeptin and energy homeostasis are still

unclear, the correlations between kisspeptin and energy-regulatory

hormones, food intake, body weight, and fat mass may offer some

potential explanations for our findings, considering that maternal

energy homeostasis is closely linked with fetal growth (34).

Moreover, since the placenta has also been supposed to be the

main source of neonatal kisspeptin (38), maternal kisspeptin

concentrat ions in late pregnancy may represent the

concentrations of neonates. Given the fact that lack of kisspeptin

leads to increased body fat mass (39), the stable inverse associations

between maternal kisspeptin concentrations and neonatal fat mass

observed in our study seemed explicable. In addition, maternal

kisspeptin may be also positively associated with fetal leptin levels

(13), which provides a further explanation for the inverse

associations described above due to leptin’s critical role in

reducing body fat (34).

Our study has several strengths. This is the first large-scale

prospective study to examine the associations between maternal

kisspeptin concentrations in late pregnancy and a range of

anthropometric indices, suggesting the roles of kisspeptin in

regulating fetal growth in late pregnancy, and thereby offering
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novel insights. Additionally, we collected a broad range of data on

maternal and children’s characteristics, allowing for adjustment for

potential covariates. Last but not least, we considered the potential

modification effects by neonatal sex, maternal diseases, and

maternal pre-pregnancy BMI, and observed similar patterns,

indicating the relative robustness of the associations between

maternal kisspeptin concentrations and fetal growth.

Despite the strengths, we also have some limitations to

acknowledge. Firstly, due to limited funding, our study selected

about 60% of mother-neonate pairs for kisspeptin measurement

from the cohort. The included and excluded participants had

similar characteristics except for the slight differences in

gestational age, parity, and maternal weight gain during

pregnancy. In addition, no significant differences were found in

neonatal characteristics between the included and excluded infants.

Thus, our results were less likely to be attributed to selection bias.

Secondly, we collected a single-spot urine sample, which may not

accurately reflect the kisspeptin concentrations due to the short

biological half-life of this biomarker (40). This may lead to non-

differential misclassification, resulting in the attenuation of the

associations (41). Finally, we did not investigate the interactions

between maternal kisspeptin and energy-regulatory hormones in

this study. It would be valuable to examine hormones like leptin to

explore the mechanisms underlying the associations between

maternal kisspeptin and fetal growth in future studies.

In conclusion, this study found that maternal urinary kisspeptin

concentrations in late pregnancy were inversely associated with

neonatal anthropometry and these associations were mainly found

for the highest kisspeptin levels, compared with the lowest. Our

results suggest that maternal kisspeptin in late pregnancy may be

associated with decreased fetal growth and the related physiological

mechanisms may differ from those in early pregnancy. Considering

the new findings, further studies are required to corroborate our

results. In addition, studies on the potential role of kisspeptin in

regulating energy homeostasis are encouraged to explore the

physiological mechanisms of the associations we observed.
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Reprogramming of the
developing heart by Hif1a-
deficient sympathetic system
and maternal diabetes exposure
Hana Kolesova1,2†, Petra Hrabalova3,4†, Romana Bohuslavova3,
Pavel Abaffy5, Valeria Fabriciova3, David Sedmera1,2‡

and Gabriela Pavlinkova3*‡

1Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czechia, 2Department of
Developmental Cardiology, Institute of Physiology Czech Academy of Sciences (CAS),
Prague, Czechia, 3Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy
of Sciences (CAS), BIOCEV, Vestec, Czechia, 4Faculty of Science, Charles University, Prague, Czechia,
5Laboratory of Gene Expression, Institute of Biotechnology Czech Academy of Sciences (CAS),
BIOCEV, Vestec, Czechia
Introduction: Maternal diabetes is a recognized risk factor for both short-term

and long-term complications in offspring. Beyond the direct teratogenicity of

maternal diabetes, the intrauterine environment can influence the offspring’s

cardiovascular health. Abnormalities in the cardiac sympathetic system are

implicated in conditions such as sudden infant death syndrome, cardiac

arrhythmic death, heart failure, and certain congenital heart defects in children

from diabetic pregnancies. However, the mechanisms by which maternal

diabetes affects the development of the cardiac sympathetic system and,

consequently, heightens health risks and predisposes to cardiovascular disease

remain poorly understood.

Methods and results: In the mouse model, we performed a comprehensive

analysis of the combined impact of a Hif1a-deficient sympathetic system and the

maternal diabetes environment on both heart development and the formation of

the cardiac sympathetic system. The synergic negative effect of exposure to

maternal diabetes andHif1a deficiency resulted in themost pronounced deficit in

cardiac sympathetic innervation and the development of the adrenal medulla.

Abnormalities in the cardiac sympathetic system were accompanied by a smaller

heart, reduced ventricular wall thickness, and dilated subepicardial veins and

coronary arteries in the myocardium, along with anomalies in the branching and

connections of the main coronary arteries. Transcriptional profiling by RNA

sequencing (RNA-seq) revealed significant transcriptome changes in Hif1a-

deficient sympathetic neurons, primarily associated with cell cycle regulation,

proliferation, and mitosis, explaining the shrinkage of the sympathetic

neuron population.

Discussion:Our data demonstrate that a failure to adequately activate the HIF-1a
regulatory pathway, particularly in the context of maternal diabetes, may

contribute to abnormalities in the cardiac sympathetic system. In conclusion,

our findings indicate that the interplay between deficiencies in the cardiac

sympathetic system and subtle structural alternations in the vasculature,
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microvasculature, andmyocardium during heart development not only increases

the risk of cardiovascular disease but also diminishes the adaptability to the stress

associated with the transition to extrauterine life, thus increasing the risk of

neonatal death.
KEYWORDS

mouse model, maternal diabetes, coronary arteries, sympathetic neurons, cardiac
sympathetic system
1 Introduction

The cardiac sympathetic system is a part of the autonomic

nervous system that controls heart performance. This regulation is

dependent on accurate connections between postganglionic

sympathetic neurons and the heart, which is established during

embryonic and postnatal development. Abolishing sympathetic

system function affects survival due to cardiac failure (1–3). Most

sympathetic postganglionic neurons innervating the heart are

located in the stellate ganglion, with a smaller number present in

the middle cervical and upper thoracic sympathetic ganglia of the

sympathetic chains (4). Postganglionic neurons in these ganglia

receive terminals from cardiac sympathetic preganglionic neurons

in the upper thoracic spinal segments. Sympathetic innervation

density is variable between regions both across and within the heart

muscle layers and between the chambers of the heart (5). The

highest density of sympathetic innervation is in the subepicardium

and central conduction system, and it gradually decreases from the

atria to the ventricles and from the base to the apex of the heart (5,

6). The cardiac sympathetic nervous system uses norepinephrine as

a neurotransmitter.

Sympathetic neurons originate from neural crest cells that

migrate near the dorsal aorta and form the primary sympathetic

chain ganglia around embryonic day (E) 10.5 in mice (7, 8). These

cells undergo neuronal and catecholaminergic differentiation,

marked by the initiation of the expression of enzymes involved in

norepinephrine biosynthesis, tyrosine hydroxylase (TH), and

dopamine b-hydroxylase (7, 9). In the subsequent migration

phase, sympathetic progenitors move away from the dorsal aorta

to form secondary sympathetic ganglia at E13.5. Within these

ganglia, sympathetic neuroblasts complete proliferation with a

peak exit from the cell cycle at E14.5 and undergo final

differentiation into sympathetic neurons (8). Proliferating

sympathetic neurons begin to extend first axons as early as E12.5

(10, 11). Axons extend along the arteries attracted by vascular-

derived guidance cues, including neurotrophin 3 (12), artemin (13),

and endothelins (14). Nerve growth factor (NGF) produced by the

heart controls the final stages of cardiac sympathetic innervation

(15). Cardiomyocyte-derived Sema3a, a neural chemorepellent, is

necessary for sympathetic innervation patterning by inhibiting

axonal growth (16). The first axonal projections in the heart are
0222
detected in the dorsal subepicardium of the ventricles around E14

(17), and large coronary veins serve as an intermediate template for

distal sympathetic axon extension (6). Subsequently, in the

myocardial layer, sympathetic axons are guided by arteries toward

the final target cells in the myocardium.

Target cell-derived factors control axon growth, branching,

synaptic and electrophysiological properties, and release of

neurotransmitters during development and in the establishment

of mature properties of the sympathetic system (10, 18). Disrupting

sympathetic innervation reciprocally affects heart development. For

instance, neonatal chemical sympathectomy disrupts the

cardiomyocyte cell cycle, resulting in a reduced heart size (19).

The treatment by b-adrenergic receptor (AR) antagonists, which are
used clinically to treat conditions associated with excessive effects of

norepinephrine, promoted the progression of cytokinesis in

neonatal mice, which reduced adverse remodeling after

myocardial infarction in adults (20). Similarly, infusions of b-AR
blockers induce significant neurite outgrowth in the in vitro assay

system of neonatal sympathetic neurons and myocardial

sympathetic axon density in the rat heart with elevated

ventricular contractility (21). Sympathetic neurons have a

significant role in the regulation of cardiomyocyte maturation, as

shown by in vitro co-cultures of human induced pluripotent stem

cell (hiPSC)-derived cardiomyocytes with sympathetic neurons

(22). Furthermore, sympathetic defects have been associated with

sudden infant death syndrome, cardiac arrhythmic death, and

certain congenital heart defects in children (23, 24).

Changes in cardiac sympathetic innervation and sympathetic

system activity are implicated in many pathologies in adults,

including sudden cardiac death, myocardial ischemia, cardiac

death, hypertension, diabetic heart disease, and heart failure (25,

26). Emerging evidence suggests that many of the sympathetic

dysfunctions in various pathological heart conditions have a

developmental origin (19, 20, 27, 28). Using conditional deletion

of oxygen-sensitive subunit HIF-1a, we previously revealed a key

role for the transcription factor hypoxia-inducible factor 1 (HIF-1)

in the development of sympathetic neurons and sympathetic

innervation of the developing heart and its negative effects on

heart function in adults (29). HIF-1 coordinately regulates

responses to hypoxia and ischemia and plays multifactorial roles

in pathophysiological responses in myocardial ischemia, infarction,
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metabolic and structural remodeling, and heart failure (30–33).

Additionally, HIF-1-regulated pathways direct cardiac development

(34–36). A number of studies highlight the combinatorial effects of

HIF-1 deregulation and environment on heart development,

including fetal hypoxia or maternal diabetes, influencing the

cardiovascular and metabolic health of offspring (37–40). Despite

significant progress in understanding this phenomenon known as

fetal or developmental programming [reviewed in (41–43)],

numerous questions pertaining to its underlying penetrance and

disease predisposition remain unresolved.

In this study, we present a comprehensive analysis of the

combined impact of the Hif1a-deficient cardiac sympathetic

system and the adverse maternal diabetes environment on

embryonal development. Our analysis of Hif1aCKO embryos

revealed a negative synergistic effect of Hif1a deletion and the

diabetic environment on the development of cardiac innervation

and chromaffin cells of the adrenal medulla of the sympathetic

system, affecting heart development. Thus, exposure to maternal

diabetes and Hif1a-deficient cardiac sympathetic system heighten

the risk of cardiovascular disease in the offspring.
2 Materials and methods

2.1 Experimental animal models

This study was approved by the local Animal Care and Use

Committee of the Institute of Molecular Genetics CAS and the

Institute of Anatomy, First Faculty of Medicine, Charles University.

All experiments were performed with embryo littermates (females

and males). Animals were housed in a controlled environment with

12-h light/dark cycles and free access to water and food.

The previously described experimental model of the conditional

deletion of Hif1a (Hif1aCKO) genotype Isl1tm1(cre)Sev/+;Hif1aloxP/loxP

was used (29). Briefly, floxed Hif1atm3Rsjo with exon 2 of the Hif1a

gene flanked by loxP sites (44) on a mixed C57BL/6J;C57BL/6N

genetic background were obtained from Jackson Laboratories (Bar

Harbor, ME, USA; #Strain 007561). Isl1Cre/+ mice were on the FVB

background. Hif1aloxP/+ or Hif1aloxP/loxP mice without the Isl1-Cre

allele individuals were used as the control. For the breeding scheme,

female mice Hif1aloxP/loxP were crossed with Hif1aloxP/+; Isl1Cre/+

males, in which the Isl1-Cre knock-in allele was inherited paternally

to minimize the potential influence of maternal genotype on the

developing embryos.

To visualize sympathetic neurons, we used tdTomatoAi14

reporter mice with Rosa-CAG-LSL-tdTomato allele (Ai14, B6.Cg-

Gt(ROSA)26Sortm14(CAG-tdTomato)Hze, Stock No. 7914 Jackson

Laboratories) to generate the reporter Hif1aCKO-Ai14 (genotype:

Hif1aloxP/loxP;Isl1Cre;tdTomatoAi14) and control-Ai14 mice

(genotype: Hif1aloxP/+;Isl1Cre;TdtomatoAi14). To examine the

formation of the secondary sympathetic chain, we used

peripherin-enhanced green fluorescent protein (Prph-eGFP)

genomic reporter transgenic mice (45, 46) and crossed them with

the Hif1a mutant line.
Frontiers in Endocrinology 0323
To visualize the pattern of the developing coronary arteries,

Hif1aloxP/loxP mice were crossed to Cx40:eGFP strain with eGFP

signal in the coronary arteries, the atria, the atrioventricular node,

and the His–Purkinje system (47). Double homozygote females

(Cx40:eGFP/+;Hif1aloxP/loxP) with background CD1/129SvJxSwiss

were then crossed with Hif1aloxP/+;Isl1Cre males.

The noon of the day on which the vaginal plug was found was

designated E0.5. Animals were euthanized by cervical dislocation in

our study. Embryos were collected for analysis at different ages

(Figure 1A). All comparisons were made between animals with the

same genetic background. Phenotyping and data analysis were

performed blind to the genotype of the mice. Genotyping was

performed by PCR on tail DNA (Supplementary Table 1).
2.2 Diabetes induction

Diabetes was induced in 6-week-old females (Hif1aloxP/loxP)

by two intraperitoneal injections of 100 mg/kg body weight of

streptozotocin (STZ, S0130, Sigma-Aldrich, Dorset, UK) within

a 1-week interval, as described (37, 48). The level of blood

glucose was checked in a drop of blood from the tail vessel

using a glucometer (CONTOUR plus ONE, Ascensia Diabetes

Care, Basel, Switzerland). Mice with a level of glucose

maintained above 13.9 mmol/l in blood were classified as

diabetic. Diabetic females were mated with males, and the next

morning, the vaginal plug was checked. Maternal blood glucose

levels at the time of embryo collection are shown in

Supplementary Figure 1. Embryos collected from diabetic

pregnancies were labeled as "diabetic" or "DIA", and from non-

diabetic pregnancies were labeled as "non-diabetic" or

"non-DIA".
2.3 Immunohistochemistry and
morphological evaluations

Whole-mount immunohistochemical staining of embryonic

hearts (E16.5 and E18.5) was performed on cleared tissue, as

described (49). Embryos were perfused with 0.05% heparin in

pho spha t e - bu ff e r ed s a l i n e ( PBS ) and fix ed in 4%

paraformaldehyde (PFA) for 90 minutes. The heart was cleared

using CUBIC reagent at 37°C with gentle shaking for 1 week

(50). Used primary and secondary antibodies are described in

Supplementary Tables 2 and 3. The nuclei were stained with

Hoechst. The fluorescent signals were detected using LSM 880

NLO (AxioObserver Z1, Carl Zeiss, Oberkochen, Germany) and

AxioZoomV16 (Carl Zeiss, Germany).

Positive areas (TH and TUJ1) were quantified using the

Threshold tool in NIH ImageJ software and expressed as a

percentage of total areas (heart and adrenal gland). The total

number of positive cells (NeuN) in the whole stellate ganglion

(STG) was quantified using a cell counter in NIH ImageJ

software. Microvasculature density was assessed using
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immunohistochemically stained 8-µm paraffin sections labeled

with anti-PECAM-1 (an endothelial marker) and wheat germ

agglutinin (WGA). Sections were imaged on an Olympus

confocal microscope, and positive signals of PECAM-1 and

WGA were combined and thresholded in NIH ImageJ. Then,

the positive area was measured in the region of interest (compact

layer) in the right ventricle. Subsequently, the measured

microvasculature-positive area was normalized to the

background signal (all tissue autofluorescence) and expressed

as a percentage, thus leading to the density of microvasculature

in the right ventricular wall.

To visualize the pattern of the developing coronary arteries

together with TH+ innervation, the hearts were dissected and

immunolabeled with anti-TH and Cy5-conjugated secondary

antibodies. The atria were then carefully cut off to expose the

origin of the coronary arteries at the base of the heart, cleared in

CUBIC for 48 h (51), and visualized with 4× and 10× dry

objectives on an Olympus FluoView 1000 confocal system. For

quantification of TH+ innervation, maximum intensity

projections (MIPs) of confocal series taken with a 4× objective

with 25-mm z-step were used. The image from the far-red (Cy5)

channel containing the signal from the anti-TH antibody was

oriented with the base on the top and the apex at the bottom

(Valentine projection). Two semicircular segmented lines at 25%

and (basal) and 75% (apical) apex–base distance were drawn in

ImageJ, and line profiles were then generated (Supplementary

Figure 2). The peaks in fluorescence intensity, corresponding to

individual nerve bundles, were then easily counted in an

unbiased manner.
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2.4 Light-sheet fluorescence microscopy
and analysis of images

Embryonic hearts were microdissected from non-diabetic and

diabetic control and Hif1aCKO embryos (E16.5 and E18.5). An

advanced CUBIC protocol (49) with some modifications (50) was

used for tissue clearing to enable efficient imaging by light-sheet

microscopy. Whole-mount immunohistochemical staining of

embryonic hearts was performed, and samples were stored before

imaging in Cubic 2 at room temperature. The secondary sympathetic

chain was microdissected from non-diabetic and diabetic control-

Ai14 andHif1aCKO-Ai14 embryos (E14.5) and whole-mount stained

with NeuN. Zeiss Lightsheet Z.1 microscope with illumination

objective Lightsheet Z.1 5×/0.1 and detection objective Dry

objective Lightsheet Z.1 5×/0.16 was used for imaging at the Light

Microscopy Core Facility of the Institute of Molecular Genetics of the

Czech Academy of Sciences. IMARIS software v8.1.1 (Bitplane AG,

CA, San Francisco, USA) was used for image processing.
2.5 RNA sequencing of fluorescence-
activated cell-sorted sympathetic
ganglion neurons

Sympathetic ganglia were dissected from E14.5 embryos

Hif1aCKO-Ai14;Prph-eGFP (n = 3) and Control-Ai14;Prph-eGFP

(n = 2). Sympathetic chains were homogenized, and neuronal cells

were dissociated using 0.1% collagenase (C9263, Sigma-Aldrich,

UK) and 0.05% trypsin in Dulbecco’s PBS for 7 minutes (T4799,
A B

C D

FIGURE 1

Maternal diabetes affects the distribution of genotypes and size of embryos. (A) Experimental design. Diabetes was induced in 6-week-old females
by intraperitoneal injections of streptozotocin (STZ). Diabetic females were mated with males, and embryos were collected for analysis from E14.5 to
E18.5 from diabetic and non-diabetic pregnancies. Created with BioRender.com. (B) The distribution of embryo genotypes collected at E14.5 was
influenced by maternal diabetes. c2 test **p = 0.0012, non-diabetic pregnancies: n = 33 absorbed, n = 260 Hif1aCKO, n = 253 heterozygous
Hif1aCKO, and n = 538 control embryos from 124 litters; diabetic pregnancies: n = 18 absorbed, n = 45 Hif1aCKO, n = 42 heterozygous Hif1aCKO,
and n = 94 control from 22 litters. (C) Representative images of E14.5 embryos. Scale bar, 2 mm. (D) The evaluation of the crown–rump length of
control and mutant embryos from non-diabetic and diabetic pregnancies at E14.5. Data are presented as mean ± SEM, n = 24 non-DIA Control, n =
26 DIA Control, n = 16 non-DIA Hif1aCKO, and n = 13 DIA Hif1aCKO. Two-way ANOVA followed by post hoc Fisher’s multiple comparisons test; *p
< 0.05, **p < 0.01, ****p < 0.0001.
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Sigma-Aldrich, UK). Enzymatic activity was stopped by adding

fluorescence-activated cell sorting (FACS) buffer [2% fetal bovine

serum (FBS) in Dulbecco’s PBS and 10 mM EGTA]. FACS of eGFP

and tdTomato-positive cells was performed at the Imaging Methods

Core Facility at BIOCEV on a BD FACS Aria Fusion flow cytometer

operated using BD FACSDiva™ Software. A total of 100 eGFP+ and

tdTomato+ cells per biological sample were collected into individual

wells of a 96-well plate containing 5 µL of lysis buffer of NEBNext

single-cell low input RNA library prep kit for Illumina (#E6420,

New England Biolabs, Ipswich, MA, USA). Plates were frozen

immediately on dry ice and stored at −80°C. The total time from

euthanasia to cell collection was ∼3 h.

The RNA library preparation, RNA sequencing (RNA-seq), and

data processing were performed as described previously (27).

Briefly, the NEBNext single-cell low-input RNA library prep kit

for Illumina (#E6420, New England Biolabs) was used for library

generation at the Gene Core Facility (Institute of Biotechnology

CAS, Czechia), and the libraries were sequenced on an Illumina

NextSeq 500 next-generation sequencer with NextSeq 500/550 High

Output kit 75 cycles (Illumina #200024906) at the Genomics and

Bioinformatics Core Facility (Institute of Molecular Genetics CAS,

Czechia). RNA-seq reads in FASTQ files were mapped to the mouse

genome GRCm38 primary assembly release M8 using STAR

[version 2.7.0c (52)]. Using cutadapt v1.18 (53), the number of

reads (minimum, 32 million; maximum, 73 million) was trimmed

by Illumina sequencing adaptor and bases with reading quality

lower than 20; subsequently, reads shorter than 20 bp were filtered

out. TrimmomaticPE version 0.36 (54). Ribosomal RNA and reads

mapping to UniVec database were filtered out using bowtie v1.2.2.

with parameters -S -n 1 and SortMeRNA (55). A count table was

generated using the Rsubread v2.0.1 package with default

parameters without counting multi-mapping reads. The raw

RNA-seq data were deposited at NIH GEO under accession

number GSE250606 (https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE250606).

DESeq2 [v1.26.0 (56)] default parameters were used to normalize

data and compare the different groups. Differentially expressed genes

between Hif1aCKO and control sympathetic neurons were identified

based on an adjusted p-value padj < 0.05, log2 fold change (log2FC

>0.3, <−0.3), and a base mean ≥50. The functional annotation of the

differentially expressed genes was performed using g: Profiler

(Raudvere et al., 2019). Complete query details are available in

Query info Tables in Dataset S1. The resulting GEM and combined

GMT files using term size <1,800 were loaded into Cytoscape (57)

plugin “EnrichmentMap” (58) using 0.01 false discovery rate (FDR)

q-value cutoff to generate a network. The edge cutoff was set to 0.35,

and nodes were set to 0.007 Q value.
2.6 Quantitative real-time PCR

RNA was isolated from the microdissected sympathetic chains

of individual embryos from diabetic and non-diabetic litters using

TRIzol (Invitrogen, Carlsbad, CA, USA). The concentration and
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pur i t y were quan t ified us ing NanoDrop (ND-2000

Spectrophotometers, Thermo Fisher Scientific, Waltham, MA,

USA). cDNA samples were prepared using Maxima H Minus

First Strand cDNA Synthesis Kit with dsDNA (#K1682, Thermo

Scientific, USA) from 300 ng isolated RNA/sample. Quantitative

real-time PCR (qRT-PCR) was performed using 10× diluted cDNA

samples. cDNA at a volume of 4 µL was added to 5 µL of SybrGreen

(GrandMaster Mix, TATAA Biocenter, Gothenburg, Sweden) with

0.2 µM reverse and forward primers. Primers were designed using

Primer3 software, and sequences are shown in Supplementary

Table S2. Validation of RNA-seq targets was performed using

Bio-Rad C1000 Thermal Cycler (CFX384 Real-Time System, Bio-

Rad Laboratories, Hercules, CA, USA), and activation was

performed using AmpliTaq at 95°C for 10 minutes, followed by

40 cycles at 95°C for 15 s for denaturation and 60°C for 60 s for

extension. The relative expression levels of mRNA of target genes

were normalized to the reference gene Hprt1. All reactions were

conducted in duplicates, and the data were calculated using the

DDCp method, as previously described (37, 59). Primer sequences

are presented in Supplementary Table 4.
2.7 Statistical analysis

Statistical analyses were performed using two-way ANOVA

(GraphPad Prism 10), testing differences among experimental

groups based on the genotype and experimental condition

(diabetic or non-diabetic pregnancy) followed by multiple Fisher’s

comparisons; results are expressed as mean ± SD or mean ± SEM,

with significance level p < 0.05. A chi-square (c2) test was used to

compare the distribution of genotypes between the non-diabetic

and diabetic groups (GraphPad Prism 10). Sample sizes and

individual statistical results for all analyses are provided in the

figure legends and tables.
3 Results

3.1 Maternal diabetes affects genotype
distribution and the size of embryos

We analyzed the combined impact of the Hif1a-deficient

cardiac sympathetic system and the adverse maternal diabetes

environment on heart development (schematics of experimental

study design in Figure 1A). The observed distribution of embryo

genotypes collected at E14.5 was influenced by maternal diabetes

(**p = 0.0012, c2 test; Figure 1B). We did not observe any

developmental delay or structural abnormalities among embryos

from diabetic and non-diabetic pregnancies. However, we

identified a significant decrease in the average crown–rump

length of both diabetic control and Hif1aCKO embryos

compared to non-diabetic controls at E14.5 (Figures 1C, D).

Furthermore, the length of diabetic Hif1aCKO embryos was

significantly smaller than that of diabetic controls or non-
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diabeticHif1aCKO, indicating a synergistic effect ofHif1a deletion

and the diabetic environment.
3.2 Cardiac sympathetic innervation is
attenuated by Hif1a mutation and
diabetic exposure

To assess the extent of cardiac innervation, we employed

double immunolabeling of TH, a marker of sympathetic

neurons and sympathetic innervation, and class III b-tubulin
(TUJ1), a neuronal marker expressed in all cardiac fibers,

representing sympathetic, parasympathetic, and sensory

innervation. While parasympathetic cardiac innervation

precedes sympathetic innervation, sympathetic fibers move

alongside established vagal nerve tracts to innervate the heart

(60). In the developing mouse heart, autonomic innervation

precedes sensory innervation, with sensory axons becoming

detectable at E18.5 (6, 61). In line with our previous study (29),

the conditional deletion of Hif1a in sympathoadrenal

progenitor lineage led to a profound deficit in cardiac
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sympathetic innervation (Figures 2A–D; Supplementary

Video S1-S4). At E16.5, our immunohistochemical staining

revealed that the majority of TH+ axons in the posterior part

of the ventricles of diabetic Hif1aCKO were lost, with no cardiac

fibers observed in the apex (Figures 2B, D). Maternal diabetes

and Hif1a mutation significantly reduced TH+ and TUJ1+

cardiac innervation when compared to hearts from non-

diabet ic pregnancies and control hearts , respect ively

(Figures 2D, E). Notably, a negative synergistic effect of Hif1a

deletion and the diabetic environment on cardiac innervation

was observed when comparing Hif1aCKO and control hearts

from diabetic pregnancies.

Next, we evaluated the sympathetic innervation of the

posterior and anterior parts of the ventricular wall in detail.

Sympathetic innervation, as marked by anti-TH, was notably

reduced in the Hif1aCKO ventricles, with a loss of both

proximal and distal branches compared to the control hearts

at E17.5, mirroring the observation at E16.5 (Figure 3A). The

difference at the base of the heart, where the thick bundles

dominated, was less affected between genotypes; however, a

clear decrease in the number of (usually thinner) bundles was
A

B

C

D E

FIGURE 2

Reduced innervation in the diabetic Hif1aCKO heart at E16.5. (A) Representative images of immunolabeling of sympathetic innervation using anti-
tyrosine hydroxylase (TH) and anti-class III b-tubulin (TUJ1) in the heart in the posterior view (scale bars, 500 µm). See also Supplementary Videos
S1-S4. (B) The heart apex in detail in the posterior view (scale bar, 300 µm) and (C) the apical view (scale bar, 600 µm). (D) TH+ and (E) TUJ1+ fibers
were quantified using the threshold tool in ImageJ and expressed as a percentage of the measured heart area. Cardiac innervation is reduced in
Hif1aCKO, and the effect is further potentiated by diabetes. Data are presented as the mean ± SD (n = 4–5 samples). Two-way ANOVA followed by
post hoc Fisher’s multiple comparisons test; *p < 0.05, **p < 0.01, ****p < 0.0001.
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evident at the apex, attesting to a deficient innervation. The

maternal diabetes exposure resulted in a significant attenuation

of sympathetic innervation in the control hearts (Figures 3A,

B). However, the synergistic detrimental effects of Hif1a

deletion and diabetic pregnancy were most pronounced in the

diabetic Hif1aCKO hearts. Only a few main branches

innervated the basal area of the myocardial wall in the

anterior view, and all distal ventricular branches were

missing. While the posterior part of the heart contained a

higher number of branches with a more complex plexus, the

combination of Hif1a deletion and maternal diabetes led to a

nearly complete loss of innervation, with only a few remaining

nerves (Figures 3A, B).

At E18.5, the most pronounced deficit in cardiac sympathetic

innervation was detected in Hif1aCKO embryos exposed to

maternal diabetes, indicating a long-lasting synergistic effect of

Hif1a deletion and the diabetic environment (Figures 4A–D).

Conversely, TUJ1+ axons were equally reduced in both non-

diabetic and diabetic Hif1aCKO hearts, highlighting the impact of

Hif1a mutation rather than maternal diabetes (Figure 4E).

Similarly, exposure to maternal diabetes did not significantly

affect TUJ1 innervation in the control heart compared to control
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hearts from non-diabetic embryos. Both sympathetic and TUJ1+

fibers were significantly reduced in non-diabetic Hif1aCKO hearts

when compared to non-diabetic control hearts (Figures 4D, E),

indicating abnormalities in the formation of cardiac innervation of

Hif1aCKO. Consequently, these changes could have significant

implications for heart function and postnatal survival of

Hif1aCKO mutants.
3.3 Myocardial changes induced by
maternal diabetes

Given the implication of the sympathetic nervous system in

heart size regulation and cardiomyocyte proliferation (19, 20),

we conducted an analysis of the wall thickness of both the left

ventricle (LV) and right ventricle (RV) and the thickness of the

interventricular septum, using the sections of the E17.5 heart

(Figure 5A). First, the length of the heart (from apex to base) and

width across the widest part of both ventricles were measured.

Maternal diabetes and Hif1amutation significantly reduced both

measured parameters, although the ratio of length and width was

not altered, indicating that the ventricular proportions were
A

B

FIGURE 3

Sympathetic innervation of the anterior and posterior parts of the ventricles reduced by Hif1a deletion and maternal diabetes at E17.5. (A)
Representative images of immunohistochemical staining of sympathetic innervation in the anterior and posterior parts of the ventricles using
tyrosine hydroxylase (TH) (scale bar, 500 µm). Posterior part of heart ventricles contains more branches, and their plexus is more complex compared
to the anterior part of heart ventricles. The greatest reduction of sympathetic innervation is noticeable in diabetic Hif1aCKO with a few main
branches innervating the anterior part of the ventricular wall, but all distal branches of the ventricles are lost. Similarly, the posterior part of diabetic
Hif1aCKO ventricles has a significant loss of innervation with only few remaining nerves. (B) The fluorescence intensity corresponding to individual
nerve proximal and distal branches in the ventricular wall was quantified using ImageJ at 25% (basal) and 75% (apical) apex–base distance
(Supplementary Figure S2). Data are presented as the mean ± SD (n = 5–6 samples). Two-way ANOVA followed by post hoc Fisher’s multiple
comparisons test; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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s imilar among groups (Figures 5A, B). The compact

myocardium of the LV and RV of the Hif1aCKO heart was

significantly thinner compared to those of their control

littermates from non-diabetic pregnancies (Figures 5A, C).

Additionally, the control embryos from the diabetic pregnancy

exhibited thinner LV and RV walls when compared to control

non-diabetic embryos. Interestingly, the thickness of the

interventricular septum increased in both diabetic and non-

diabetic Hif1aCKO and diabetic control hearts compared to

the control heart of embryos from non-diabetic pregnancies

(Figures 5A, C). However, we did not detect an additive effect

of the combination of Hif1a mutation and the diabetic

environment on these parameters when compared to diabetic

control embryos.
3.4 Diabetes and Hif1a deletion result in
abnormalities in coronary vasculature

Next, we investigated the coronary vascular architecture, as

the development of arterial and sympathetic nerve networks is
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coordinated in terms of both spatial distribution and molecular

signaling. Furthermore, our previous study revealed a higher

neonatal mortality rate among Hif1aCKO mice, which could be

partially linked to major coronary artery anomalies (29).

Building upon these findings, our current study expands our

analyses of the formation of coronary artery architecture, using

the Cx40:eGFP knock-in model with eGFP signal in the

coronary arteries (47). The normal pattern of the coronary

arteries together with examples of abnormal findings recorded

from the mutant and diabetic hearts is summarized in Figure 6.

Abnormalities included multiple smaller branches instead of a

single large one, arter ia l “windows” , and anomalous

connections to the aorta (separate orifices of the circumflex

and left anterior descending branches of the left coronary artery

and separate orifice of the septal branch of the right coronary

artery) instead of single opening of the left and right coronary

arteries. These abnormalities alone cannot account for the

approximately 40% perinatal mortality observed in the

Hif1aCKO mice (29). Thus, the prenatal evaluations did not

uncover any new, more severe malformations in the coronary

artery architecture in the Hif1aCKO embryos, in comparison to
A

B

C
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FIGURE 4

Reduced sympathetic innervation in the diabetic Hif1aCKO heart at E18.5. (A) Representative images of immunohistochemical staining of
sympathetic innervation using tyrosine hydroxylase (TH) and class III b-tubulin (TUJ1) in the posterior view of the heart (scale bar, 1,000 µm), (B) in
the apex in detail (scale bar, 500 µm), and (C) in detail the apical view of the heart (scale bar, 1,000 µm). (D) TH+ and (E) TUJ1+ innervations were
quantified using the threshold tool in ImageJ and expressed as a percentage of the measured heart area. The combination of Hif1a deficiency and
exposure to maternal diabetes led to the greatest reduction in sympathetic innervation. Data are presented as the mean ± SD (n = 5). Two-way
ANOVA followed by post hoc Fisher’s multiple comparisons test; *p < 0.05, **p < 0.01, ***p = 0.0002. ns, not significant.
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the ana lyses o f the adul t Hif1aCKO hear t repor ted

previously (29).

We next visualized the microvasculature within the heart.

We used a combination of anti-PECAM-1 antibody (a pan-

endothelial marker) and WGA labeling. Subepicardial veins

were noticeably dilated in both non-diabetic and diabetic

Hif1aCKO in the RV (white arrows in Figures 7C, D) when

compared to the control hearts from diabetic and non-diabetic

embryos (Figures 7A, B). Interestingly, coronary arteries in the
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compact myocardium of the RV appeared dilated in embryos

from diabetic pregnancies (yellow arrows in Figures 7B, D) but

not in non-diabetic Hif1aCKO hearts. Although the relative

vessel density, indicative of myocardial perfusion and

oxygenation in the RV, did not show significant differences

among the groups (Supplementary Figure 3), the thinner

ventricular wall represents a reduction in the absolute amount

of microvascu la ture compared to the contro l s . The

microvasculature of the LV seemed to be less affected,

although subepicardial veins were also dilated in diabetic and

non-diabetic Hif1aCKO and in diabetes-exposed control

embryos compared to the non-diabetic control group

(Figures 7E–H).
3.5 HIF-1a deficiency alters the
development of adrenal chromaffin cells in
diabetic embryos

Sympathetic neurons and neuroendocrine chromaffin cells

i n the ad r ena l medu l l a o r i g ina t e f r om a common

catecholaminerg ic sympathoadrenal progeni tor (62) .

Therefore, we proceeded to examine the development of

chromaffin cells in the adrenal medulla. Consistent with our

earlier findings that HIF-1a deficiency adversely impacted the

development of chromaffin cells in the adrenal medulla (29), we

observed a significant reduction in TH expression in the adrenal

medulla Hif1aCKO embryos as early as E14.5 (Figures 8A, B).

However, the detrimental effect of maternal diabetes on TH-

expressing chromaffin cells became evident at a later stage,

specifically at E18.5. Maternal diabetes exposure led to a

significant reduction in the size of the adrenal medulla of

control embryos, but diabetic Hif1aCKO embryos exhibited

the most substantial reduction when compared to the

other groups.
3.6 Hif1a deletion and maternal diabetes
impair postganglionic neural development

Considering the compromised cardiac sympathetic

innervation resulting from HIF-1a deficiency and exposure to

a maternal diabetic environment, we assessed the development

of postganglionic neurons. The stellate ganglia and thoracic

sympathetic chain were evaluated using light-sheet fluorescence

microscopy and tdTomato and Prph-eGFP reporter expression

at E14.5 (Figures 9A, B). The size of the sympathetic chain was

reduced in response to maternal diabetes and Hif1a deletion

when compared to non-diabetic control sympathetic chains

(Figure 9D). Similarly, the number of neurons expressing

NeuN, a marker of mature neurons, exhibited a decrease in

both maternal diabetes and Hif1a mutation conditions, with no

observed additive combinatorial effect of Hif1amutation within

the diabetic environment (Figures 9C, E).

To analyze the molecular changes resulting from the

elimination of Hif1a in developing sympathetic neurons, we
A

B

C

FIGURE 5

Morphological changes induced by the Hif1a-deficient sympathetic
system and maternal diabetes exposure. (A) Representative images
of histological staining with Alcian Blue/hematoxylin and eosin show
transverse sections of E17.5 hearts; four-chamber view at the level
of the pulmonary valve. RV, right ventricle; LV, left ventricle; IVS,
interventricular septum; RA, right atrium; LA, left atrium. (B) The
length and width of the mutant heart were significantly decreased;
this effect was also induced by exposure to maternal diabetes. The
heart shape, as assessed by the width/length ratio, remained similar
among groups. (C) The ventricular thickness of the compact
myocardium layer (mm) was reduced in the Hif1aCKO and diabetic
hearts compared to controls. In contrast, the interventricular septum
was thickened in the normoglycemic mutants versus controls and in
the control group with diabetes. Data are presented as the mean ±
SD (n = 5). Two-way ANOVA followed by post hoc Fisher’s multiple
comparisons test, *p < 0.05, **p < 0.01, ***p < 0.001, ****p <
0.0001. ns, not significant. Scale bars, 500 µm.
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performed a bulk-cell RNA sequencing (experimental design in

Figure 10A). Each biological replicate for the bulk RNA-seq

analysis contained 100 Prph-eGFP+ and tdTomato+ FACS-

sorted single cells from the E14.5 stellate ganglia and thoracic

sympathetic chain.

Differential expression analysis identified 36 downregulated

and 32 upregulated transcripts of protein-coding genes in

Hif1aCKO neurons (Supplementary Data 1). Functional

enrichment analys is of the set of upregulated genes

demonstrated a significant enrichment of Gene Ontology

(GO) categories associated with proliferation, cell cycle, and

mitosis, likely reflecting the main compensatory mechanisms

for aberrant neuronal development (Figures 10B, C;

Supplementary Data 1). For example, upregulated genes

encoding proteins are involved in cell cycle and mitosis

regulation including Cdc20 , the coactivator of mitotic

progression, which is also required for dendrite development
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(63); the transcription factor E2f1, which is important for cell

cycle progression and apoptosis (64); cyclin B1 (Ccnb1) (65);

Kif23, which is important for cell division and implicated in

neuronal migration (66); Cenpe, Cenpf, and Mki67, which are

important for cell cycle and mitosis (67); and Mcc, which is a

regulator of cell cycle and Wnt/b-catenin signaling pathway

(68). Additionally, we detected an elevated expression of

glutamic acid decarboxylase 2 (Gad2), the enzyme that

catalyzes the formation of g-aminobutyric acid (GABA) from

glutamic acid. GABAergic signaling, the main inhibitory

neurotransmitter system, is important in sympathetic and

cardiovascular regulation (69). Slc38a11, a member of the

SLC38 family of amino acid transporters, was upregulated,

although its function and substrate specificity are unknown

(70). Moreover, elevated levels of Gata2, a key transcription

factor expressed in developing sympathetic neurons (71), were

found in Hif1aCKO neurons.
FIGURE 6

Anomalies of main coronary arteries. (A) Normal branching of the left coronary artery (LCA) in control mouse embryo at E17.5 with anterior
interventricular branch [left anterior descending (LAD); arrows]. (B) Almost normal branching of LCA in embryo of diabetic mother with slightly
twisted branches of the LCA. (C) Multiple branches of the LCA are radiating to the base of the left ventricle in Hif1aCKO embryo. (D) An example of
abnormal branching of the LCA in diabetic Hif1aCKO. Note that the heart is also generally smaller. (E, F) More examples of normal shorter and
convoluted branches of the LCA (arrow indicates LAD). (G, H) Examples of abnormal and doubled branches of the LCA. Arterial windows in
Hif1aCKO embryos (arrow and inset in G). Arrow in panel H shows two parallel branches next to each other with a small anastomosis. (I, J) Normal
single orifice of LCA from the aorta and two separate openings into the aorta of the anterior interventricular and the circumflex branch of the LCA.
The area of the left aortocoronary orifice is outlined by the ovals. (K, L) Double opening of the LCA into the aorta. The ovals outline the
aortocoronary openings, and the respective branches (LCA and the circumflex branch) are indicated by the arrows. (M, N) Normal connection of the
septal branch (arrow) of the right coronary artery (RCA). (O) Abnormal RCA connection shown in the Hif1aCKO heart: the interventricular branch
(arrow) is connected directly to the aorta instead of to the RCA. (P) Abnormally dilated segment of the RCA (arrow) just before its entry to the aorta.
Scale bars, 500 µm (A–D, F, H) and 200 µm (E, G, I–P).
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The GO analysis of downregulated genes revealed a notable

enrichment of biological processes linked to nervous system

development, neuron death, secretion, and synapse function,

indicating significant alternations in neuronal development,

survival, and function. The downregulated set included genes

such as HIF-1, regulated and highly expressed in neurons

glucose transporter (Slc2a3) (72), the neuronal calcium sensor

neurocalcin delta (Ncald) (73), a synaptic organizer and

adhesion molecule neurexin 1 (Nrxn1) (74), and neurotrophic

receptor tyrosine kinase 1, Ntrk1 (also known as TrkA), a

receptor for nerve growth factor with a key role in the

regulation of proliferation, differentiation, and survival of

sympathetic neurons (75, 76).

Using our RNA-seq data, we selected specific genes for qRT-

PCR analysis to examine their expression in the sympathetic chain

ganglia of control and Hif1aCKO embryos from non-diabetic and

diabetic pregnancies at E14.5 (experimental design in Figure 10A).

Consistent with the RNA-seq results, we found significantly

increased expression levels of several selected genes, including

Cdc20, Gad2, Gata2, Kif23, Mki67, and Scl38a11, in Hif1aCKO

compared to the control group (Figure 10D). Additionally, some of

these genes (Gad2, Kif23, and Mki67) were also upregulated in the

sympathetic chain ganglia of control embryos exposed to maternal

diabetes. While there was no additive effect of maternal diabetes in

conjunction with Hif1a deletion on their expression, these results

suggest possible compensatory mechanisms associated with

proliferation, cell cycle, and mitosis in response to the adverse

diabetic environment orHif1a deficiency in developing sympathetic

neurons. Interestingly, genes associated with synapse function, such

as Nrxn1 and Ncald, exhibited reduced expression in both control

and Hif1aCKO embryos from diabetic pregnancies. In contrast,
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Plk1 encoding Polo-like kinase 1, a regulator of mitosis (77), was

upregulated by maternal diabetes but not affected byHif1a deletion.

Overall, these results align with our analyses of cellular changes in

sympathetic chains, with no observed additive combinatorial effect

of Hif1a mutation in the diabetic environment.
4 Discussion

This study investigates the combined impact of the Hif1a-

deficient sympathetic system and maternal diabetes on heart

development, specifically focusing on cardiac innervation,

coronary artery format ion , and the deve lopment of

pos tgang l ion i c sympathe t i c neurons o f the ca rd i ac

sympathetic system. It provides the first comprehensive

analysis of how maternal diabetes exposure affects the

development of the cardiac sympathetic system, highlighting

the combined impact of the Hif1a-deficient sympathetic system

and the maternal diabetes environment on the heart.

Inadequate activation of the HIF-1a regulatory pathway,

particularly in the context of maternal diabetes, may

contribute to abnormalities in the cardiac sympathetic system.

Diabetic pregnancies are associated with an increased

incidence of congenital anomalies (78, 79) and an increased

risk of fetal and infant death (80). The risk of fetal death is over

four times higher, and the risk of infant death is nearly doubled

in diabetic pregnancies (80). Furthermore, both human and

animal studies indicate that exposure to diabetes in utero

increases cardiovascular risk factors in the offspring, with

long-term consequences for cardiovascular and metabolic

health (37, 79, 81–83). Given the known associations between
FIGURE 7

Changes in microvasculature in the embryonal heart induced by maternal diabetes and Hif1a deletion. (A–H) Representative images of visualized
microvasculature using a combination of anti-PECAM-1 (a pan-endothelial marker), and wheat germ agglutinin (WGA) labeling depict changes in the
E17.5 heart. White arrows indicate dilated subepicardial veins, and yellow arrows indicate round and dilated coronary arteries in the myocardium.
Dilated subepicardial veins are observed in the right ventricle (RV) in non-diabetic and diabetic Hif1aCKO compared to the control groups. Round
and dilated coronary arteries in the myocardium are in the RV of diabetic control and diabetic Hif1aCKO. Dilated subepicardial veins in left ventricles
(LVs) are found in diabetic control, diabetic, and non-diabetic Hif1aCKO groups. Microvasculature in the LV is less affected compared to the RV,
although the relative vessel density in the RV is unchanged among the evaluated groups (Supplementary Figure S3). Note the thinner compact
myocardium of the RV specifically in the diabetic control and Hif1aCKO (B, D) compared to non-diabetic hearts (A, C). Scale bars, 100 µm.
frontiersin.org

https://doi.org/10.3389/fendo.2024.1344074
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Kolesova et al. 10.3389/fendo.2024.1344074
sympathetic defects and conditions like sudden infant death

syndrome, cardiac arrhythmic death, and certain congenital

heart defects in children (23, 24), we hypothesize that the

Hif1a deficiency combined with maternal diabetes may further

compromise the development of the cardiac sympathetic system.

This compromise could potentially contribute to cardiac

abnormalities and heightened health risks.

Consistent with our previous research (29), we observed a

significant deficiency in cardiac sympathetic innervation and the

development of neuroendocrine chromaffin cells in Hif1aCKO

mice. Notably, the combination of the Hif1a-deficient

sympathetic system and exposure to maternal diabetes accelerated

the impairment of sympathetic innervation in the developing heart.

Additionally, the negative impact on the size of the adrenal medulla

in Hif1aCKO was further amplified by maternal diabetes, indicating

an additive effect of Hif1a deletion and diabetes exposure.

Chromaffin cells of the adrenal medulla are an important

component of the sympathetic system and modulators of

metabolic stress responses (84).

Previously, we reported a 40% increased neonatal mortality rate

among Hif1aCKO mice (29). A similar reduced survival was also
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reported for mice with germline deletion of Th, although the cause

of death in these mice was undetermined (1). In the current study,

considering the coordinated development of peripheral sympathetic

innervation and the coronary arterial network, we investigated the

presence of anomalies in the coronary vasculature. We used

genetically labeled coronary arteries in the Cx40:eGFP knock-in

model (47) to examine coronary vascular development. While we

observed abnormalities in the architecture of coronary arteries of

Hif1aCKO embryos, they alone cannot account for the 40%

neonatal mortality in Hif1aCKO.

Given the implication of the sympathetic nervous system in

heart size regulation and cardiomyocyte proliferation (19, 20), we

compared the size of the heart and the compact myocardial wall

thickness. Exposure to maternal diabetes and Hif1a mutation had

adverse effects on both heart size and compact myocardium of the

LV and RV. We did not detect an additive effect of the combination

of the Hif1a-deficient sympathetic system and the diabetic

environment on these parameters compared to diabetic control

embryos. The reduction in ventricular wall thickness observed in

mutant and diabetes-exposed embryos, in comparison to non-

diabetic controls, implies a corresponding decrease in the absolute
A

B

FIGURE 8

Reduced size of the adrenal medulla in diabetic Hif1aCKO mice. (A) Representative confocal images of cross-sections through the left adrenal
glands of control and Hif1aCKO, and diabetic and non-diabetic embryos at E14.5 and E18.5, showing the size of the adrenal medulla by
immunolabeled tyrosine hydroxylase (TH), a marker of sympathoadrenal cells. Hoechst-stained cell nuclei (HS). Scale bars, 300 µm. (B) TH+ areas
were quantified using the thresholding tool ImageJ and expressed as a percentage of the total adrenal gland area. The greatest reduction in the size
of the adrenal medulla is observed in E18.5 embryos as the result of the combination of Hif1a deficiency and maternal diabetes exposure. Data are
presented as the mean ± SD (E14.5 n = 12 non-DIA Control, n = 10 DIA Control, n = 12 non-DIA Hif1aCKO, and n = 9 DIA Hif1aCKO; E18.5 n = 7
non-DIA Control, n = 12 DIA Control, n = 15 non-DIA Hif1aCKO, and n = 14 DIA Hif1aCKO). Two-way ANOVA followed by post hoc Fisher’s multiple
comparisons test, **p < 0.01, ***p = 0.001, ****p < 0.0001. ns, not significant.
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amount of microvasculature. Consequently, this reduction is

anticipated to impact myocardial perfusion and oxygenation.

Moreover, dilated subepicardial veins and coronary arteries in the

myocardium in both diabetic and non-diabetic Hif1aCKO, as well

as diabetic control embryos, indicate compromised cardiac

function. Increased thickness of the interventricular septum in

these hearts suggests a compensatory response to failing hearts,

given the smaller heart size and thinner ventricular walls. Whether

this is a secondary effect or a direct result of the deficient adrenergic

innervation remains unclear.

Our assessment of the cellular and molecular changes in

developing postganglionic sympathetic neurons revealed

significant alternations induced by Hif1a deletion or maternal

diabetes at E14.5. However, we did not observe an additive

combinatorial effect of Hif1a mutation in the diabetic

environment. We selected the E14.5 developmental stage of
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sympathetic neurons for two main reasons. First, E14.5 represents

a peak exit from the cell cycle, although ∼25% of neurons are still

cycling at E18.5 (8). Second, the first axons reach the heart ∼E14
(17); therefore, we hypothesize that molecular changes associated

with aberrant axonogenesis of sympathetic neurons might be

detectable by RNA-seq at this stage. We found a significant

enrichment of upregulated genes associated with proliferation, cell

cycle, and mitosis, reflecting the main compensatory mechanisms

for aberrant neuronal development of Hif1aCKO. In contrast,

downregulated genes in Hif1aCKO were associated with nervous

system development, synaptic function, and neuronal death,

indicating altered neuronal development.

It is important to acknowledge the limitations of our study

design. By focusing our molecular analysis (RNA-seq) on a single

time point, we obtained only limited information about the

temporal aspects of these molecular changes in Hif1aCKO
A

B

C

D E

FIGURE 9

An altered development of sympathetic chain ganglia induced by maternal diabetes and Hif1a mutation. (A) Representative images of microdissected
stellate ganglion (STG) of the secondary sympathetic chain of reporter control-Ai14 and Hif1aCKO-Ai14 embryos at E14.5. Samples were cleared
(CUBIC protocol), imaged, and reconstructed using 3D light-sheet fluorescence microscopy showing tdTomato+ and Prph-eGFP+ neurons
immunolabeled by anti-NeuN (a marker of differentiated neurons). Hoechst-stained cell nuclei (HS). Scale bar, 50 µm. (B) Representative images of
the secondary sympathetic chain (SG) from STG to fourth thoracic ganglion at E14.5, reconstructed using 3D light-sheet fluorescence microscopy.
Scale bar, 500 µm. (C) Confocal images of immunostaining for NeuN show neuronal density in the STG ganglion at E14.5. Hoechst-stained cell
nuclei (HS). Scale bars, 50 µm. (D) Quantification of the area of the sympathetic chain (SG) from STG to fourth thoracic ganglion at E14.5. Data are
presented as the mean ± SD (n = 7 non-DIA Control, n = 7 DIA Control, n = 6 non-DIA Hif1aCKO, and n = 7 DIA Hif1aCKO). (E) Density of NeuN+

cells was quantified per area of the STG at E14.5. Data are expressed as mean ± SD (n = 3–4 samples per genotype, 3 areas per sample). Two-way
ANOVA followed by post hoc Fisher’s multiple comparisons test; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. ns, not significant.
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A

B

C

D

FIGURE 10

Hif1a-mediated transcription signature in sympathetic neurons. (A) Workflow depicts microdissection, dissociation, fluorescence-activated cell
sorting (FACS) of single tdTomato+ and Prph-eGFP+ sympathetic neurons from control-Ai14;Prph-eGFP and Hif1aCKO-Ai14;Prph-eGFP non-diabetic
embryos for a bulk of 100 cell RNA-seq analysis. RT-qPCR analyses were performed using RNA isolated from the microdissected sympathetic chain
from E14.5 control and Hif1aCKO embryos from diabetic and non-diabetic pregnancies. Created with BioRender.com. (B) Gene set enrichment map
of downregulated and upregulated differentially expressed genes visualized by the network. The complete list of identified down- and up-
differentially expressed genes (adjusted p-value < 0.05, fold change >0.3, and <−0.3 cutoff values) is in Supplementary Data 1. Each node represents
a Gene Ontology (GO) term; edges are drawn when there are shared genes between two GO terms. Each GO set cluster was assigned
representative keywords; a full list of significant GO terms is available in Supplementary Data 1. (C) The bar graphs demonstrate a significant
enrichment of GO terms, which reflect notable changes in sympathetic neurons. (D) The expression of RNA-seq-identified differentially expressed
genes was analyzed by qRT-PCR. RNA mRNA was isolated from the microdissected secondary sympathetic chain of diabetic and non-diabetic
control-Ai14 and Hif1aCKO-Ai14 embryos. Two-way ANOVA followed by post hoc Fisher’s multiple comparisons test; *p < 0.05, **p < 0.01, ***p <
0.001, ****p < 0.0001, ns, not significant. Abbreviations: Cdc20, cell division cycle 20; Gad2, glutamic acid decarboxylase 2; Gata2, GATA binding
protein 2; Kif23, kinesin family member 23; Mki67, antigen identified by monoclonal antibody Ki 67; Ncald, neurocalcin delta; Ntrk1, neurotrophic
tyrosine kinase receptor, type 1; Nrxn1, neurexin I; Plk1, polo like kinase 1; Slc38a11, solute carrier family 38, member 11.
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sympathetic neurons. Another limitation of this study is that bulk-

cell RNA sequencing approaches provide an average of expressional

differences from multiple neurons, obscuring cell-specific

differences. To address these limitations, future investigations

using single-cell RNA-seq will be needed to fully establish

molecular differences linked to specific cell states, cell-to-cell

variability, to uncover the pathways of cell lineage differentiation

affected in sympathetic neurons.

In summary, our results indicate that the interplay between

deficiencies in the sympathetic system and subtle structural

alternations in the vasculature, microvasculature, myocardium,

and septum during heart development increases the risk of fetal

demise for Hif1aCKO. Furthermore, even normal coronary

vasculature, when experiencing deficient innervation, may not

adequately react to the stress associated with birth and the

subsequent rapid adaptation to oxygen breathing. Specifically,

insufficient vasodilatation via beta-adrenergic receptors could

lead to compromised cardiac function and neonatal death. This

hypothesis is supported by considerable variability in the degree

of sympathetic innervation in Hif1aCKO; it is likely that those

with the most severe deficit are among the 40% of neonatal

deaths. Considering the rapid clearance of dead pups by the

mother, this hypothesis was difficult to validate. Deficient

sympathetic innervation was reported from failing human

hearts (85) or animal models of heart failure (86). Both

deficient sympathetic innervation of the fetal heart along with

the hypoplast ic adrenal medulla affect ing circulat ing

catecholamine levels found in our study can contribute to this

cascade of adverse peripartum events.
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SUPPLEMENTARY VIDEO S1

Non-diabetic control embryonic heart at E16.5. Microdissected embryonic

heart was cleared (CUBIC protocol), imaged, and reconstructed in 3D using

light-sheet fluorescence microscopy (LFSM). Video shows the cardiac
innervation using immunohistochemical staining of the sympathetic neuron

marker, tyrosine hydroxylase (TH), and TUJ1 as a neuron marker.

SUPPLEMENTARY VIDEO S2

Diabetic control embryonic heart at E16.5. Microdissected embryonic heart
was cleared (CUBIC protocol), imaged, and reconstructed in 3D using light-
Frontiers in Endocrinology 1636
sheet fluorescence microscopy (LFSM). Video shows the cardiac innervation
using immunohistochemical staining of the sympathetic neuron marker,

tyrosine hydroxylase (TH), and TUJ1 as a neuron marker.

SUPPLEMENTARY VIDEO S3

Non-diabetic Hif1aCKO embryonic heart at E16.5. Microdissected embryonic
heart was cleared (CUBIC protocol), imaged, and reconstructed in 3D using

light-sheet fluorescence microscopy (LFSM). Video shows the cardiac

innervation using immunohistochemical staining of the sympathetic neuron
marker, tyrosine hydroxylase (TH), and TUJ1 as a neuron marker.

SUPPLEMENTARY VIDEO S4

Diabetic Hif1aCKO embryonic heart at E16.5. Microdissected embryonic heart
was cleared (CUBIC protocol), imaged, and reconstructed in 3D using light-

sheet fluorescence microscopy (LFSM). Video shows the cardiac innervation

using immunohistochemical staining of the sympathetic neuron marker,
tyrosine hydroxylase (TH), and TUJ1 as a neuron marker.
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Effect of maternal serum
albumin level on birthweight and
gestational age: an analysis of
39200 singleton newborns
Jiayi Wu1,2,3†, Xiaorui Liu1,2,3†, Chuanmei Qin1,2,3,
Jinwen Zhang1,2,3, Xueqing Liu1,2,3, Jianing Hu1,2,3, Fan Wu1,2,3,
Cailian Chen4,5 and Yi Lin1,2,3,6*

1The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao
Tong University, Shanghai, China, 2Shanghai Key Laboratory of Embryo Original Diseases, School of
Medicine, Shanghai Jiao Tong University, Shanghai, China, 3Institute of Birth Defects and Rare
Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China, 4Department of
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Background: Serum albumin plays a pivotal role in regulating plasma oncotic

pressure and modulating fluid distribution among various body compartments.

Previous research examining the association between maternal serum albumin

levels and fetal growth yielded limited and inconclusive findings. Therefore, the

specific influence of serum albumin on fetal growth remains poorly understood

and warrants further investigation.

Methods: A retrospective study involved 39200 women who had a singleton live

birth at a tertiary-care academic medical center during the period from January

2017 to December 2020. Women were categorized into four groups according

to the quartile of albumin concentration during early pregnancy: Q1 group, ≤41.0

g/L; Q2 group, 41.1-42.6 g/L; Q3 group, 42.7-44.3 g/L and Q4 group, >44.3 g/L.

The main outcome measures were mid-term estimated fetal weight, birthweight

and gestational age. Multivariate linear and logistic regression analysis were

performed to detect the independent effect of maternal serum albumin level

on fetal growth after adjusting for important confounding variables.

Results: In the crude analysis, a significant inverse correlation was found

between early pregnancy maternal serum albumin levels and fetal growth

status, including mid-term ultrasound measurements, mid-term estimated fetal

weight, birthweight, and gestational age. After adjustment for a number of

confounding factors, mid-term estimated fetal weight, birthweight, and birth

height decreased significantly with increasing albumin levels. Compared to the

Q2 group, the Q4 group had higher rates of preterm birth (aOR, 1.16; 95% CI,

1.01–1.34), small-for-gestational-age (aOR, 1.27; 95% CI, 1.11–1.45) and low

birthweight (aOR, 1.41; 95% CI, 1.18–1.69), and lower rate of large-for-

gestational-age (aOR, 0.85; 95% CI, 0.78–0.94). Moreover, to achieve the

optimal neonatal outcome, women with higher early pregnancy albumin levels

required a greater reduction in albumin levels in later pregnancy stages.
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Conclusions: A higher maternal serum albumin level during early pregnancy was

associated with poor fetal growth, with the detrimental effects becoming

apparent as early as the mid-gestation period. These findings provided vital

information for clinicians to predict fetal growth status and identify cases with a

high risk of adverse neonatal outcomes early on.
KEYWORDS
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Introduction

Optimal fetal growth and development are known to be the

foundation for long-term human health, according to the well-

known developmental origins of health and disease theory (1).

Numerous studies have confirmed that intrauterine growth

restriction or low birthweight can lead to diseases in children and

adults, such as cognitive dysfunction and cardiovascular and

metabolic diseases (2–4). More seriously, it is difficult to reverse

the health status of an individual after birth, and some health

defects may even cross generations (5). Although placental

insufficiency, gestational hypertension, and preeclampsia have

been reported to be risk factors for poor fetal growth (6, 7), its

etiology is still unclear. A better understanding of modifiable factors

associated with fetal growth would be vital to ensuring the

maximum growth potential in early life.

Human serum albumin, an important indicator of nutritional

status and hepatic function, is a widely used clinical marker. A lower

serum albumin level may increase the risk of morbidity and

mortality in both adults and children with various medical

conditions, including stroke, renal disease, and malignancies (8).

Notably, albumin, a major component of plasma proteins, plays a

role in maintaining oncotic pressure and reflects plasma expansion

(9). During pregnancy, inadequate plasma expansion is associated

with the risk of low birthweight (LBW) (10), oligohydramnios (11),

and preeclampsia (12). Growing evidence suggests that serum

albumin levels could serve as an indicator of the risk and severity

of preeclampsia (13, 14). Little is known, however, regarding the

effect of maternal serum albumin on neonatal outcomes such as

birthweight and birth length. Since albumin is a routine component

of antenatal care, if proven to be an independent predictor for fetal

growth, it could be a simple and low-cost method for early diagnosis

of adverse neonatal outcomes.

To date, very few studies have examined the possible impact of

maternal serum albumin on fetal growth (15–18), and their results

are limited and contradictory. The main limitation to drawing

robust and definitive conclusions is the absence of information on

pregnancy complications, specifically gestational hypertension,

preeclampsia, and gestational diabetes. Moreover, existing

research were largely focused on women with term delivery, so
0240
the influence of maternal serum albumin levels on gestational age

remains unknown. Therefore, there is clear need for a

comprehensive investigation on the association between maternal

serum albumin levels and fetal growth outcomes.

In the present study, we aimed to explore the impact of

maternal serum albumin levels in early pregnancy on fetal growth

by examining a large cohort of women with live-born singletons.

Both neonatal outcomes and mid-term fetal growth were analyzed

to predict the trajectory of fetal development throughout the

duration of pregnancy, and the results offer crucial reference data

for early interventions targeting inadequate fetal growth.
Methods

Study design and population

A retrospective study was conducted at the International Peace

Maternity and Child Health Hospital (IPMCH) of Shanghai Jiao

Tong University School of Medicine, a tertiary care hospital in

China. The study protocol was approved by the Institute Medical

Ethics Committee of IPMCH (reference number GKLW2021-17)

and carried out according to the tenets of the Declaration of

Helsinki. All women who had regular antenatal examination

records and had a live birth (≥24 weeks of gestation) at IPMCH

during January 2017 to December 2020 were included.

The exclusion criteria were: (1) multiple pregnancy, (2) in vitro

fertilization, (3) maternal liver dysfunction (19), (4) maternal liver

or renal disease, and (5) loss to follow-up or unavailability of main

hepatic function records in the electronic database, including data

on albumin, AST, and ALT levels.
Data collection

The following demographic characteristics were extracted from

the medical record system: maternal age, pre-pregnancy body mass

index (BMI), gravidity, parity, education level, cigarette or alcohol

consumption before pregnancy, medical history, pregnancy

complications, ultrasound measurements, delivery method,
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gestational age, birthweight, birth length, and newborn sex.

Gestational diabetes mellitus (GDM) was diagnosed based on a 2-

h 75-g oral glucose tolerance test done at 24–28 weeks of gestation

(20). Pregnancy-induced hypertension, including preeclampsia and

gestational hypertension, was diagnosed based on diastolic blood

pressure ≥90 mm Hg or systolic blood pressure ≥140 mm Hg

measured twice after 20 weeks of gestation, with or without

proteinuria. The records of liver biochemistry tests, including

albumin, AST, and ALT levels, during the early pregnancy period

(8–14 weeks of gestation) were measured by professional laboratory

technicians, as previously described (19), and acquired from the

hospital’s laboratory database. The reference normal range for

alanine transaminase [ALT] and aspartate aminotransferase

[AST] in the Chinese population is considered to be not

exceeding 40 U/L for both enzymes (21). The normal local

laboratory serum albumin level range is 35–52 g/L (17). Records

of the maternal serum albumin level during the final antenatal

examination prior to delivery were also obtained, and the change in

albumin level was calculated as the albumin value from the last

assessment minus the albumin value from early pregnancy.

Ultrasound measurements, including biparietal diameter

(BPD), humerus length (HL), femur length (FL), head

circumference (HC), and abdominal circumference (AC), were

performed by highly trained and experienced sonographers using

standard protocols and identical instruments. These biometric

measurements were recorded during 21–23 weeks of gestation.

BPD was defined as the linear distance from the outer edge of the

proximal parietal bone to the inner edge of the distal parietal bone

on a cross-section of the fetal brain. FL and HL were measured as

the linear distance along the long axis of the femur and humerus,

respectively. With the ellipse function of the ultrasonic equipment,

HC was measured at the same level as BPD, while AC was measured

in a plane perpendicular to the level of the fetal umbilical plexus. To

better assess fetal growth during the second trimester, estimated

fetal weight (EFW) was calculated using HC, AC, BPD, and FL,

according to the Hadlock formula (22).

The primary outcomes were mid-term EFW, singleton

birthweight, and gestational age. The secondary endpoints included

birth length, birthweight z-score, rates of preterm birth (PTB), small-

for-gestational-age (SGA), large-for-gestational-age (LGA), LBW,

and macrosomia. Birthweight z-scores were computed based on a

set of general population reference values for Chinese singleton births

to correct for the effect of newborn gender and gestational age on

birthweight (23). Macrosomia and LBW were defined as birth weight

>4000 g and <2500 g, respectively. Very-small-for-gestational-age

(VSGA), SGA, LGA, and very-large-for-gestational-age (VLGA) were

defined as birthweight <3rd, <10th, >90th, and >97th percentiles for

gestational age, respectively. Very preterm birth (VPTB) and PTB

were defined as delivery at <32 gestational weeks and <37 gestational

weeks, respectively.
Statistical analysis

Continuous variables were described as mean values with

standard deviations and compared by one-way analysis of
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variance. Categorical variables were presented as numbers with

corresponding percentages and compared by Fisher’s exact test or

Pearson’s chi-squared test, as appropriate. Following a methodology

similar to previous literature (17), the women were further divided

into four groups based on their albumin concentration: Q1, ≤41.0 g/

L; Q2, 41.1–42.6 g/L; Q3, 42.7–44.3 g/L; and Q4, >44.3 g/L. The Q2

group was used as the reference for all comparisons. This grouping

approach was implemented to facilitate a more comprehensive and

detailed analysis of the influence of varying albumin levels on birth

outcomes. Multivariable linear and logistic regression were

performed to explore the association of maternal serum albumin

level with fetal growth status after adjusting for several potential

confounders, including maternal age, BMI, gravidity, parity,

educational level, alcohol and cigarette consumption before

pregnancy, ALT, AST, gestational age at sampling, pregnancy-

induced hypertension, and GDM. The inclusion of potential

confounders was determined based on the results of univariate

and stepwise regression combined with variables related to serum

albumin and neonatal outcomes indicated in previous studies. To

further explore the dose-response association between serum

albumin level and fetal growth, spline smoothing (24) on the

basis of a generalized additive model were performed after

adjustment for confounding factors. Given that serum albumin

levels may vary as pregnancy progresses, to further minimize biases

that may be caused by measurement of albumin levels at different

gestational weeks, a sensitivity analysis was performed using women

with a sampling time of 12 gestational weeks. Within this study

cohort, the number of measurements conducted at 12 weeks was the

highest, comprising 49% of the total population. All statistical

analyses were performed using SAS software, version 9.4 (SAS

Institute). Two-tailed P values <0.05 were considered to

indicate significance.
Results

A total of 62299 women with a singleton live birth were selected

from our electronic database, of which 39200 women fulfilling the

inclusion criteria of the study were finally included. The details of

the participant selection process are displayed in Supplementary

Figure 1. A comparative analysis of the demographic characteristics

was performed between the excluded and included participants

(Supplementary Table 1).

The baseline demographic and clinical characteristics of the

study population are presented in Table 1. In brief, the mean

maternal age and BMI were 31.11 ± 3.88 years and 21.24 ± 2.82

kg/m2, respectively. Of all the women, 26902 (68.6%) were

primipara, and 22235 (56.7%) underwent vaginal delivery. The

mean albumin level during early pregnancy was 42.68 ± 2.51 g/L,

with the mean ALT level and AST level being 16.03 ± 14.10 U/L and

18.43 ± 7.62 U/L, respectively. Hepatic function measurements were

taken at 11.96 ± 1.10 gestational weeks. The proportions of women

diagnosed with pregnancy-induced hypertension and GDM were

4.8% and 14.3%, respectively.

With regard to the stratification of women into groups

according to the quartiles of albumin concentration, 10269, 9741,
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9707, and 9483 women were assigned to Q1, Q2, Q3, and Q4

groups, respectively. The baseline characteristics across the Q1-Q4

groups were shown in Supplementary Table 2. The associations

between maternal serum albumin level and fetal growth are shown

in Table 2. Women with higher levels of albumin had significantly

lower BPD, HL, FL, HC, AC, and EFW in the second trimester

(P < 0.001 for all). With regard to the neonatal outcomes,

participants in the Q4 group (the highest quartile of albumin

concentration) had significantly lower birthweight, birthweight

z-scores, and birth length (P < 0.001). With increase in albumin

concentrations, that is, from Q1 to Q4, the rates of PTB, LBW, SGA,
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and VSGA significantly increased (P = 0.036 for PTB; P < 0.001 for

the rest), whereas the rates of macrosomia, LGA, and VLGA

decreased (P < 0.001 for all). Stratified analyses of birthweight

and birth length were further conducted based on the newborns’

gender. The results demonstrated that, regardless of gender,

birthweight, birthweight z-score, and birth length decreased with

increasing serum albumin levels (Supplementary Table 3).

Multiple linear regression analyses were run to explore the

relationship between albumin level and fetal growth (Table 3).

According to the results of the fully adjusted analysis, compared

with participants in the second quartile, those in the higher quartiles

of albumin level had significantly lower EFW during the second

trimester (Q3: b = -4.18, 95% CI = -5.97 to -2.39, P < 0.001; Q4:

b = -9.36, 95% CI, -11.23 to -7.49; P < 0.001). Infants with higher

maternal albumin levels had significantly lower birth weights than

those in the second quartile, with the following values of adjusted

regression coefficients: Q3: b = -17.32, 95% CI = -29.23 to -5.41

(P = 0.004); Q4: b = -36.89, 95% CI = -49.32 to -24.45 (P < 0.001). In

addition, elevated albumin levels were associated with a decrease in

gestational age-adjusted birthweight z-score and birth length after

adjustment for confounding factors.

As shown in Table 4, after adjustment for several confounding

variables, the highest quartile of albumin values was associated with

higher risks of PTB (adjusted odds ratio (aOR) = 1.16; 95% CI = 1.01–

1.34; P = 0.038), LBW (aOR = 1.41; 95% CI = 1.18–1.69; P < 0.001)

and SGA (aOR = 1.27; 95% CI = 1.11–1.45; P = 0.001) than the

second quartile. Furthermore, the fourth quartiles were associated

with lower rates of LGA (aOR = 0.85, 95% CI = 0.78–0.94, P = 0.001)

than the second quartile. Given the gradual decline of maternal

albumin levels during pregnancy, we strategically selected women

with a sampling time of 12 weeks for sensitivity analysis to minimize

potential sampling time bias. A total of 19189 women were included

in the sensitivity analysis, and the findings remained consistent with

previous observations, affirming the stability and reliability of the

results (Supplementary Table 4).

The dose–response relationships between maternal albumin

levels and fetal growth are displayed visually in Figure 1. After

adjusting for various confounding factors, there was a notable

decline observed in mid-term HC, BPD, and EFW measurements

in women with elevated maternal albumin levels (Figure 1A).

Furthermore, a significant inverse correlation was found between

maternal serum albumin levels and neonatal growth status,

including birthweight and birthweight z-score (Figure 1B).

Gestational age showed a decrease in correlation with increasing

levels of maternal albumin, albeit of a minor magnitude.

The associations of change in albumin level with birthweight

and birthweight z-score were analyzed. The population were

categorized into four groups based on the quartiles of early

pregnancy albumin concentration (Q1-Q4). The observation

reveals that the Q4 group required a more significant decline in

albumin levels in the later pregnancy stages to achieve the same

birthweight and z-score as the Q1 group. (Figure 2). Additionally,

women in the Q4 group showed lower potential for fetal

development in terms of birthweight compared to women in the

Q1 group. (Figure 2).
TABLE 1 Basic characteristics of study population.

Characteristics Participants, No. (%)

N 39200

Age (years) 31.11 ± 3.88

BMI (kg/m2) 21.24 ± 2.82

Gravidity

0 19037 (48.6)

≥1 20163 (51.4)

Parity

0 26902 (68.6)

≥1 12298 (31.4)

Educational level

Below college degree 10183 (26.0)

Bachelor’s degree 20402 (52.0)

Master’s or PHD degree 8615 (22.0)

Drinking before pregnancy (yes) 581 (1.5)

Smoking before pregnancy (yes) 228 (0.6)

Albumin (g/L) 42.68 ± 2.51

Alanine transaminase (U/L) 16.03 ± 14.10

Aspartate aminotransferase (U/L) 18.43 ± 7.62

Gestational age at sampling (weeks) 11.96 ± 1.10

Change in albumin level (g/L) -6.67 ± 2.80

Delivery method

Vaginal 22235 (56.7)

Cesarean 16965 (43.3)

Hypertension

Pregnancy induced 1845 (4.8)

Preexisting 695 (1.8)

Diabetes

Pregnancy induced 5620 (14.3)

Preexisting 94 (0.2)
Data are presented as mean ± SD for continuous variables and n (%) for dichotomous variables.
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Discussion

In this large cohort study, we investigated the impact of

maternal serum albumin level on fetal growth in 39200 women

with live-born singletons. Our findings indicated that a high

maternal serum albumin level during early pregnancy was

associated with poor fetal growth, with the detrimental effects

becoming apparent as early as mid-gestation. Moreover, women

with elevated albumin levels in early pregnancy required a more

significant reduction in albumin levels during later stages of

gestation to attain the optimal birth outcome. These findings

provide vital information that could help clinicians to predict

fetal growth velocity and identify cases with a high risk of adverse

neonatal outcomes early in pregnancy.

To date, only a few studies have focused on the potential

association between maternal albumin levels and fetal growth,

and two earlier small-scale studies failed to find any correlation

between neonatal outcomes and albumin concentrations (15, 18). In

1996, Hasin and colleagues analyzed 151 pregnant women from
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poor urban communities and found that serum albumin levels were

significantly lower in the women who had low birthweight infants

than in those who had normal weight infants (16). This was

subsequently challenged by a prospective study, which reported

an inverse association between maternal serum albumin level and

birthweight when the measurements were done during the third

trimester (25). However, during early pregnancy, no significant

correlation was observed between maternal albumin levels and

birthweight (25). More recently, a study involving 3065 term-

born singletons revealed a reverse U-shaped relationship between

the mid-trimester albumin level and fetal growth (17). Nevertheless,

as the authors acknowledged, the missing data on pregnancy

complications, such as GDM, limited the accuracy of their

results (16).

Of note, gestation-adjusted z-scores were not calculated in the

aforementioned literatures. Since the mean birthweight varied with

race and region (26, 27), it is difficult to compare these studies.

Moreover, none of these studies considered the possible adverse

effects of pregnancy-induced hypertension, preeclampsia, and
TABLE 2 Main fetal growth parameters of live born singletons stratified by quartiles of maternal albumin.

Total
(n=39200)

Quartiles of albumin level

P valueQ1
(n=10269)

Q2
(n=9741)

Q3
(n=9707)

Q4
(n=9483)

Mid-term fetal growth

Biparietal diameter (mm) 55.81 ± 3.01 55.92 ± 3.00 55.91 ± 3.03 55.79 ± 3.02 55.60 ± 2.96 <0.001

Humerus length (mm) 36.22 ± 2.08 36.37 ± 2.08 36.33 ± 2.09 36.16 ± 2.06 36.01 ± 2.05 <0.001

Femur length (mm) 38.22 ± 2.19 38.38 ± 2.20 38.33 ± 2.21 38.15 ± 2.18 37.99 ± 2.13 <0.001

Head circumference (mm) 198.43 ± 9.57 198.66 ± 9.50 198.68 ± 9.71 198.48 ± 9.48 197.88 ± 9.57 <0.001

Abdominal
circumference (mm)

173.81 ± 10.55 174.77 ± 10.80 174.28 ± 10.50 173.61 ± 10.51 172.50 ± 10.21 <0.001

Estimated fetal weight (g) 494.87 ± 63.78 500.75 ± 65.77 498.2 ± 64.29 493.28 ± 62.96 486.72 ± 60.93 <0.001

Neonatal outcomes

Gestational age (weeks) 38.96 ± 1.36 38.92 ± 1.33 38.97 ± 1.33 39.00 ± 1.37 38.96 ± 1.38 0.001

PTB 1771 (4.5) 432 (4.2) 413 (4.2) 476 (4.9) 450 (4.7) 0.036

VPTB 124 (0.3) 35 (0.3) 30 (0.3) 28 (0.3) 31 (0.3) 0.921

Male sex 20014 (51.1) 4978 (48.5) 5067 (52.0) 4990 (51.4) 4979 (52.5) <0.001

Body length (cm) 49.82 ± 1.36 49.89 ± 1.30 49.83 ± 1.34 49.82 ± 1.37 49.76 ± 1.41 <0.001

Birthweight (g) 3333.91 ± 430.08 3366.77 ± 425.99 3345.25 ± 426.32 3322.94 ± 430.74 3297.88 ± 434.51 <0.001

Birthweight z-score 0.22 ± 0.94 0.31 ± 0.95 0.24 ± 0.94 0.18 ± 0.94 0.12 ± 0.94 <0.001

LBW 1024 (2.6) 211 (2.1) 237 (2.4) 260 (2.7) 316 (3.3) <0.001

Macrosomia 2097 (5.3) 620 (6.0) 530 (5.4) 505 (5.2) 442 (4.7) <0.001

SGA 1899 (4.8) 407 (4.0) 438 (4.5) 485 (5.0) 569 (6.0) <0.001

LGA 4863 (12.4) 1501 (14.6) 1229 (12.6) 1133 (11.7) 1000 (10.5) <0.001

VSGA 458 (1.2) 92 (0.9) 98 (1.0) 118 (1.2) 150 (1.6) <0.001

VLGA 1506 (3.8) 486 (4.7) 376 (3.9) 349 (3.6) 295 (3.1) <0.001
All ultrasound measurements were performed at 21-23 weeks of gestation. Estimated fetal weight was computed from biparietal diameter, femur length, head circumference and abdominal
circumference using a Hadlock formula. Data are presented as mean ± SD for continuous variables and n (%) for dichotomous variables.
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GDM on fetal growth. Thus, the reliability of the studies reported so

far on this topic is limited. Most importantly, while anthropometric

measurements taken at birth can reflect the culminative effect of an

aberrant intrauterine environment on fetal growth, it does not

provide a picture of specific changes in the fetal growth trajectory.
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The present study, aiming to improve on the limitations of the

previous studies described above, examined the precise role of

maternal serum albumin level in fetal growth. Our results, based

on the records of 39200 women with live-born singletons, clearly

demonstrated that a high maternal serum albumin level had an
TABLE 3 Results of multiple linear regression analysis of main fetal growth parameters among live born singletons.

Q1 Q2 Q3 Q4

b (95% CI) P value b (95% CI) P value b (95% CI) P value

Mid-term ultrasound measurements

Biparietal diameter 0.00(-0.01,0.01) 0.364 Reference -0.01(-0.02,-0.00) 0.004 -0.03(-0.04,-0.02) <0.001

Humerus length 0.00(-0.00,0.01) 0.803 Reference -0.02(-0.02,-0.01) <0.001 -0.03(-0.03,-0.02) <0.001

Femur length 0.00(-0.00,0.01) 0.335 Reference -0.02(-0.02,-0.01) <0.001 -0.03(-0.04,-0.02) <0.001

Head circumference -0.00(-0.03,0.02) 0.813 Reference -0.02(-0.05,0.01) 0.140 -0.08(-0.11,-0.05) <0.001

Abdominal circumference 0.03(-0.00,0.06) 0.079 Reference -0.05(-0.08,-0.02) 0.001 -0.14(-0.17,-0.11) <0.001

Estimated fetal weight 1.41(-0.37,3.20) 0.119 Reference -4.18(-5.97,-2.39) <0.001 -9.36(-11.23,-7.49) <0.001

Neonatal outcomes

Gestational age 0.01(-0.03,0.05) 0.592 Reference -0.00(-0.04,0.03) 0.909 -0.03(-0.07,0.00) 0.082

Body length 0.04(0.01,0.08) 0.024 Reference -0.01(-0.05,0.03) 0.630 -0.06(-0.10,-0.02) 0.006

Birthweight 9.12(-2.72,20.96) 0.131 Reference -17.32(-29.23,-5.41) 0.004 -36.89(-49.32,-24.45) <0.001

Birthweight z-score 0.03(0.00,-0.06) 0.023 Reference -0.04(-0.06,-0.01) 0.004 -0.09(-0.11,-0.06) <0.001
fro
Analyses were adjusted for age, BMI, gravidity, parity, educational level, alcohol and cigarette consumption before pregnancy, ALT, AST, gestational age at sampling, pregnancy induced
hypertension and gestational diabetes mellitus.
TABLE 4 Crude and adjusted ORs for adverse neonatal outcomes in singleton births by maternal albumin levels.

Q1 P value Q2 Q3 P value Q4 P value

PTB

OR (95% CI) 0.99 (0.86,1.14) 0.903 Reference 1.17 (1.02,1.33) 0.027 1.13 (0.98,1.29) 0.092

AOR (95% CI) 0.95 (0.83,1.10) 0.502 Reference 1.21 (1.05,1.38) 0.007 1.16 (1.01,1.34) 0.038

LBW

OR (95% CI) 0.84 (0.70,1.01) 0.070 Reference 1.10 (0.92,1.32) 0.279 1.38 (1.17,1.64) <0.001

AOR (95% CI) 0.85 (0.71,1.04) 0.108 Reference 1.14 (0.95,1.36) 0.173 1.41 (1.18,1.69) <0.001

Macrosomia

OR (95% CI) 1.12 (0.99,1.26) 0.062 Reference 0.96 (0.85,1.09) 0.497 0.85 (0.75,0.97) 0.016

AOR (95% CI) 1.03 (0.91,1.17) 0.604 Reference 0.97 (0.86,1.11) 0.670 0.88 (0.77,1.01) 0.072

SGA

OR (95% CI) 0.88 (0.76,1.01) 0.060 Reference 1.12 (0.98,1.28) 0.102 1.36 (1.19,1.54) <0.001

AOR (95% CI) 0.98 (0.85,1.13) 0.755 Reference 1.08 (0.95,1.24) 0.246 1.27 (1.11,1.45) 0.001

LGA

OR (95% CI) 1.19 (1.10,1.29) <0.001 Reference 0.92 (0.84,1.00) 0.048 0.82 (0.75,0.89) <0.001

AOR (95% CI) 1.09 (1.00,1.18) 0.051 Reference 0.94 (0.86,1.02) 0.149 0.85 (0.78,0.94) 0.001
Analyses were adjusted for age, BMI, gravidity, parity, educational level, alcohol and cigarette consumption before pregnancy, ALT, AST, gestational age at sampling, pregnancy induced
hypertension and gestational diabetes mellitus. OR Odd ratio, AOR adjusted odd ratio.
ntiersin.org

https://doi.org/10.3389/fendo.2024.1266669
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Wu et al. 10.3389/fendo.2024.1266669
adverse impact on fetal growth that initiated during the mid-

gestational period and enduring until the late stages of pregnancy.

The reason why a high maternal serum albumin level leads to

poor fetal growth is unclear. It is speculated that the resulting

difference in plasma volume may play a role. Plasma volume

expansion is a central physiological regulatory mechanism in

pregnancy that begins as early as 6 to 8 gestational weeks.

Although the mechanism underlying its role remains unclear, it

has been suggested that reduced blood viscosity may favor blood

flow in the maternal intervillous space (28). In addition,

hemodilution in pregnancy is believed to prevent thrombosis in

the uteroplacental circulation and further promote fetal
Frontiers in Endocrinology 0745
development (29). Thus, plasma volume expansion is important

for fetal growth. In fact, there is growing evidence that inadequate

plasma volume expansion is associated with increased rates of

intrauterine growth restriction and PTB (12, 30). This implies

that the failure of plasma volume expansion in women with high

levels of serum albumin may have implications for fetal growth and

ultimately influence birthweight of infants. In the context of

laboratory preparation for biochemical assays, the introduction of

an anticoagulant, followed by centrifugation, yields a specimen

known as plasma. Conversely, when an anticoagulant is omitted,

blood naturally coagulates, resulting in the formation of serum

upon centrifugation. Plasma typically exhibits a total protein
A

B

FIGURE 1

Maternal serum albumin in relation to mid-term fetal growth (A) and neonatal outcomes (B). Data are presented as estimated mean with 95% CIs
(shaded areas), adjusted for age, body mass index, gravidity, parity, educational level, alcohol and cigarette consumption before pregnancy, alanine
transaminase, aspartate aminotransferase, gestational age at sampling, pregnancy induced hypertension and gestational diabetes mellitus.
A B

FIGURE 2

The associations between change in albumin level and birthweight (A) and birthweight z-score (B) stratified by albumin level in early pregnancy. Data
are presented as estimated mean, adjusted for age, body mass index, gravidity, parity, educational level, alcohol and cigarette consumption before
pregnancy, alanine transaminase, aspartate aminotransferase, gestational age at sampling and pregnancy induced hypertension and gestational
diabetes mellitus. All women were grouped based on the quartile of albumin level during early pregnancy (Q1, Q2, Q3 and Q4).
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concentration that is approximately 0.2-0.5g/dL higher than that of

serum. This distinction primarily arises from fibrinogen, a protein

component that is consumed during the coagulation process.

Despite the minor difference in total protein concentration

between plasma and serum, clinically significant serum albumin

levels provide a direct reflection of changes in plasma albumin

concentration. Consequently, serum albumin levels serve as an

indicator of how pregnant women respond to fluctuations in

plasma volume throughout various stages of pregnancy.

Previous studies on this topic were largely carried out in women

with term delivery, thus the possible influence of maternal albumin

level on gestational age could not be fully explored. Only one study

demonstrated a weak positive correlation between mid-pregnancy

albumin level and birth duration, but it was limited by the absence

of data on confounding factors (25). Contrary to their results, the

current study found that elevated albumin levels were associated

with decreased gestational age after adjusting for potential

confounders. Also, women in the third and fourth quartiles were

associated with a higher PTB rate compared to the lowest quartile.

Detailed information on fetal development across pregnancy

trimesters provides important information for clinical practice.

Ultrasound measurements during mid-pregnancy can reflect fetal

growth and the internal processes during the entire duration of

pregnancy. Hence, it elucidates the underlying biological

mechanisms that contribute to the observed association between

maternal serum albumin levels and fetal growth. Therefore, it is of

vital importance to further explore the fetal growth trajectory with

the use of ultrasound measures during pregnancy. The results of the

current study indicated that albumin levels were inversely related to

BPD, HL, FL, HC, and AC, which may have an influence on the

subsequent health and development of the infant. For instance, BPD

and HC, as indicators of head size, are correlated with cognitive

achievement during childhood (31). Further, AC is a critical

indicator of fetal liver size and subcutaneous fat deposition, and is

also associated with cardiometabolic status later on in life (32), and

FL has been reported to be associated with economic productivity in

adulthood (33). In the present study, impaired fetal development

appeared as early as the second trimester and persisted until

delivery. Thus, to prevent poor fetal growth, it is of vital

importance to monitor serum albumin levels from early

pregnancy and carry out appropriate clinical interventions

simultaneously. Such monitoring can serve as an invaluable tool

for both doctors and pregnant women in identifying pregnancy-

related risks at an early stage, facilitating timely interventions for

enhanced outcomes. For the treatment of hypoproteinemia, if there

are no contraindications related to the primary disease, a high-

protein, high-calorie diet can be administered, ensuring an

appropriate protein intake, providing sufficient calorie supply, and

simultaneously supplementing with an adequate amount

of vitamins.

During pregnancy, there is a normal reduction of serum

albumin concentrations along with the increase of plasma

volume (25). Our study, for the first time, discovered an

inverted U-shaped relationship between change in albumin level

and fetal development. The results demonstrated that both

excessive and inadequate reductions in albumin levels had
Frontiers in Endocrinology 0846
adverse effects on fetal development. For women with higher

albumin levels in early pregnancy, it was necessary for them to

further reduce their albumin levels during subsequent pregnancy

stages in order to reach the highest developmental potential. The

data from this study highlighted the importance of monitoring

maternal serum albumin levels throughout the entire duration

of pregnancy.

The main strength of the current study was the large sample

size. To the best of our knowledge, this is the largest study assessing

the effect of maternal serum albumin level on fetal growth. Another

strength is that a number of relevant confounders that might

otherwise have caused a bias in the results were adjusted for in

this study, especially pregnancy complications. Moreover,

ultrasound measurements during pregnancy combined with birth

weight assessments were used to evaluate the trajectory of fetal

growth, and this provided a better understanding of the underlying

mechanisms that potentially drive the observed associations.

Additionally, the laboratory conditions and clinical procedures

remained unchanged during the study period. For example, the

ultrasound measurements were performed by the same group of

trained sonographers, and this reduced any intra-observer

variability. Despite these advantages, the present study is limited

by its retrospective nature. In our study, we excluded cases with

missing essential data, such as albumin levels, birthweight and

gestational age, which may introduce some degree of bias. To

address this concern, we conducted a comparative analysis of

baseline characteristics between the excluded and included cases.

The results revealed that the excluded group had, on average, a

slightly higher age (0.5 years) and a slightly higher BMI (0.1 kg/m2)

compared to the included group. Furthermore, the excluded group

exhibited a higher proportion of cesarean section deliveries and a

greater incidence of gestational diabetes and pregnancy-induced

hypertension. This may be attributed to a significant portion of the

excluded population undergoing assisted reproductive technology

(9839 individuals), a group characterized by older age and a higher

incidence of pregnancy complications (34, 35). In addition, in an

attempt to overcome any biases associated with the study design, we

carefully reviewed the data according to strict criteria and

conducted sensitivity analysis to reinforce the robustness of

our findings.
Conclusions

In conclusion, the present large retrospective study showed that

a high maternal serum albumin concentration was associated with

impaired fetal growth in singletons. Thus, maternal serum albumin

level may be used as an indicator in the clinic, based on which

maximum fetal growth potential can be maintained in early

pregnancy. Further studies are needed to verify our results.
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Yanwei Ren5* and Shengjun Wu1,2*

1Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of
Medicine, Hangzhou, China, 2Key Laboratory of Precision Medicine in Diagnosis and Monitoring
Research of Zhejiang Province, Hangzhou, China, 3Department of Medical Oncology, Sir Run Run
Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China, 4School of Medical
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Background: Preeclampsia (PE) is one of the most severe pregnancy-related

diseases; however, there is still a lack of reliable biomarkers. In this study, we

aimed to develop models for predicting early-onset PE, severe PE, and the

gestation duration of patients with PE.

Methods: Eligible patients with PE were enrolled and divided into a training (n =

253) and a validation (n = 108) cohort. Multivariate logistic and Cox models were

used to identify factors associated with early-onset PE, severe PE, and the

gestation duration of patients with PE. Based on significant factors,

nomograms were developed and evaluated using the area under the curve

(AUC) and a calibration curve.

Results: In the training cohort, multiple gravidity experience (p = 0.005), lower

albumin (ALB; p < 0.001), and higher lactate dehydrogenase (LDH; p < 0.001)

were significantly associated with early-onset PE. Abortion history (p = 0.017),

prolonged thrombin time (TT; p < 0.001), and higher aspartate aminotransferase

(p = 0.002) and LDH (p = 0.003) were significantly associated with severe PE.

Abortion history (p < 0.001), gemellary pregnancy (p < 0.001), prolonged TT (p <

0.001), higher mean platelet volume (p = 0.014) and LDH (p < 0.001), and lower

ALB (p < 0.001) were significantly associated with shorter gestation duration.

Three nomograms were developed and validated to predict the probability of

early-onset PE, severe PE, and delivery time for each patient with PE. The AUC

showed good predictive performance, and the calibration curve and decision

curve analysis demonstrated clinical practicability.
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Conclusion: Based on the clinical features and peripheral blood laboratory

indicators, we identified significant factors and developed models to predict

early-onset PE, severe PE, and the gestation duration of pregnant women with

PE, which could help clinicians assess the clinical outcomes early and design

appropriate strategies for patients.
KEYWORDS
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1 Introduction

Preeclampsia (PE), which typically occurs after 20 weeks of

gestation, is one of the most severe pregnancy-related diseases. It is

characterized by sudden-onset hypertension and is accompanied by at

least one of the following complications: proteinuria and maternal

organ dysfunction (1). Globally, there are an estimated 4 million

women newly diagnosed with PE each year, resulting in the death of

more than 70,000 women and 500,000 newborns, making it the leading

cause of maternal and perinatal morbidity and mortality (2, 3).

The heterogeneity of PE as clinical presentation and outcome

varies between different subtypes. Patients with early-onset PE

(<34 weeks of gestation) always present more severe clinical

complications and an enrichment of metabolism-related pathways in

the transcriptional profile compared to those with late-onset PE (≥34

weeks of gestation) (4, 5). Patients with PE are also at risk of rapid

deterioration and severe disease, including eclampsia, stroke, HELLP

(hemolysis, elevated liver enzymes, and low platelets) syndrome,

placental abruption, renal function failure, and pulmonary edema,

without receiving timely treatment (6). Themanagement of PE consists

of monitoring perinatal blood pressure and controlling complications

through pharmacological intervention. Currently, timely delivery of the

fetus is the only definitive treatment for PE; however, it may cause the

babies of women with early-onset PE or severe symptoms to have

increased risks of preterm birth, perinatal death, neurodevelopmental

delay, and later cardiovascular and metabolic diseases (2). Therefore,

early identification of the occurrence of PE, especially early-onset PE

and severe PE, and prediction of gestation duration are of utmost

importance to minimize adverse perinatal events both in pregnant

women and in fetuses.

Three checklists from the International Society for the Study of

Hypertension in Pregnancy (ISSHP) (3), the American College of

Obstetricians and Gynecologists (ACOG) (7), and the National

Institute for Health and Care Excellence (NICE) (8) are broadly

used in clinical practice to assess the risk of PE occurrence; however,

all risk factors derived from clinical features and their predictive

power for PE are weak (9). Recently, increased numbers of

biomarkers from peripheral blood have been identified to predict

pregnant women with a high risk of PE at an early stage. Soluble

fms-like tyrosine kinase 1 (sFlt-1) and placental growth factor
0250
(PlGF) are a pair of anti- and pro-angiogenic factors

(respectively) found significantly unbalanced in PE (10). The

PROGNOSIS trial demonstrated that, in women with a sFlt-1/

PlGF ratio lower than 38, the likelihood of developing PE over the

next week could accurately be ruled out, with a 99.3% negative

predictive value (11). In addition, a series of novel placental- and

endothelial-derived nucleic acid (mainly RNA) and proteins were

also discovered for PE, including extravillous trophoblast signature

(MMP11, SLC6A2, and IL18BP) (12), the chromosome 19 miRNA

cluster (combination of miR-517-5p, miR520a-5p, and miR-525-

5p) (13, 14), placental protein 13 (PP13) (15), pregnancy-associated

plasma protein A (PAPP-A) (16), and vascular cell adhesion

molecule-1 (VCAM-1) (17). However, the efficacy of a single

biomarker from peripheral blood in the accurate diagnosis of PE

is inadequate, and the majority of studies lacked validation. Hence,

the development and validation of a predictive model based on

multiple indicators consisting of clinical characteristics and

laboratory parameters could be helpful in clinical practice. In the

recent decade, several predictive models have been developed based

on a series of risk factors. For example, by combining gestational

age, chest pain or dyspnea, oxygen saturation, platelet count, and

the creatinine and aspartate transaminase concentrations, the

fullPIERS model could identify the risk of fatal or life-threatening

complications in women with PE within 48 h of hospital admission

(18). In addition, another study constructed a machine learning

model for the prediction of PE in the first trimester based on the

mean arterial blood pressure, uterine artery pulsatility index, PlGF,

and PAPP-A (19). However, these models could not provide an

exact probability for PE occurrence and the delivery of pregnant

women at a certain time. A nomogram is a predictive tool to

evaluate the clinical outcomes of patients by quantifying the

probability based on easily accessed variables, which is widely

used in patients with cancer and other chronic diseases, even in

patients with coronavirus disease 2019 (20–22).

In this study, based on the clinical characteristics and peripheral

blood laboratory indicators of patients with PE, we aimed to

identify biomarkers for the early diagnosis of PE with early-onset

and severe symptoms, predict the gestation duration, and construct

a model for each clinical outcome, which could help clinicians

recognize and manage patients with PE in the early stage of the
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disease and improve the clinical prognosis for pregnant women

and infants.
2 Methods

2.1 Study population

This study retrospectively enrolled patients from Sir Run Run

Shaw Hospital, Zhejiang University School of Medicine, China, in

January 2017 and December 2022. Eligible populations were

diagnosed with PE according to the “Diagnosis and treatment of

hypertension and preeclampsia in pregnancy: a clinical practice

guideline in China (2020)” (23). The detailed diagnostic criteria for

PE were as follows: pregnant women with a systolic blood pressure

higher than 140 mmHg and/or a diastolic blood pressure higher

than 90 mmHg after 20 weeks of gestation, accompanied by any of

the following symptoms: 1) urine protein ≥0.3 g/24 h or a urine

protein/creatinine ratio ≥0.3 and 2) any dysfunction of important

organs such as the heart, lung, liver, kidney, blood system, digestive

system, and nervous system or involvement of placenta–fetus. The

exclusion criteria were as follows: 1) patients with preexisting

hypertension, immune disorders, and maternal organ dysfunction

(such as hematopoietic, hepatic, and renal dysfunction) and 2)

patients without complete maternal or infant records.

A total of 361 eligible patients were enrolled. This study was

approved by the Ethics Committee of Sir Run Run Shaw Hospital

(approval no. 2023-0248).
2.2 Data collection

Data on the clinical characteristics and laboratory indicators

were collected from the electronic medical record of each patient.

Clinical characteristics included age, history of parity, gravidity and

abortion, multiple pregnancy, and regularity of the menstrual cycle.

Laboratory indicators were collected at 20 weeks of gestation, which

included white blood cell (WBC) count, red blood cell (RBC) count,

hemoglobin (Hb), hematocrit, mean corpuscular volume (MCV),

red blood cell distribution width (RDW), absolute neutrophil count

(ANC), absolute lymphocyte count (ALC), absolute monocyte

count (AMC), absolute eosinophil count (AEC), absolute basophil

count (ABC), platelet count (PC), platelet distribution width

(PDW), mean platelet volume (MPV), thrombocytocrit, thrombin

time (TT), prothrombin time (PT), activated partial thromboplastin

time (APTT), international normalized ratio (INR), fibrinogen,

alanine aminotransferase (ALT), aspartate aminotransferase

(AST), alkaline phosphatase (ALP), albumin (ALB), lactate

dehydrogenase (LDH), serum amyloid A (SAA), total bile acid

(TBA), and C-reactive protein (CRP).
2.3 Clinical outcomes

According to the gestational age at PE diagnosis, the patients

were classified into an early-onset PE (<34 weeks) and a late-onset PE
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(≥34 weeks) group (24). The diagnostic criteria for severe PE were as

follows: 1) continuously increasing blood pressure (systolic pressure

≥160 mmHg and/or diastolic pressure ≥110 mmHg); 2) persistent

headache, visual disturbance, or other central nervous system

abnormalities; 3) persistent upper abdominal pain, subcapsular

hematoma, or liver rupture; 4) abnormal elevation of the AST and

ALT levels; 5) impaired renal function—urinary protein

quantification ≥2 g/24 h, oliguria, or serum creatinine level >106

mmol/L; 6) hypoproteinemia with ascites, pleural effusion, or

pericardial effusion; 7) PC decreasing continuously and lower than

100 × 109/L, microvascular hemolysis, anemia, elevated LDH level, or

jaundice; 8) heart failure; 9) pulmonary edema; and 10) fetal growth

restriction, oligohydramnios, intrauterine fetal death, and placental

abruption. A PE patient with one of the above symptoms was

diagnosed as severe PE (23). The gestation duration was defined as

the period between the last menstrual period and delivery.
2.4 Statistical analysis

Normality of the continuous variables was assessed using the

Shapiro–Wilk test. Normally distributed variables were expressed as

the mean ± standard deviation (SD), with significance analyzed using

Student’s t-test. Non-normally distributed variables were expressed as

the median and interquartile range (IQR), with significance analyzed

using theMann–WhitneyU test. Categorical variables were expressed

as frequency and percentage, with significance analyzed using the chi-

square test.

The whole study population was randomly divided into a

training cohort and a validation cohort at a 7:3 ratio using a

random sampling method (“Caret” R package). In the training

cohort, univariate and multivariate logistic regression models

(forward) were used to identify significant variables related to

early-onset PE and severe PE (p < 0.05), and odds ratios (ORs)

and 95% confidence intervals (CIs) were calculated (“glmnet” R

package). Univariate and multivariate Cox proportional hazard

regression models (forward) were used to identify significant

variables related to gestation duration, and hazard ratios (HRs)

and 95% CIs were calculated (“survival” R package). The results of

the multivariate model were visualized using the “forestplot” R

package. The curve of gestation duration was constructed using the

Kaplan–Meier method and the log-rank test.

Based on the significant variables in the multivariate model,

three nomograms were developed to predict the probability of

early-onset PE, severe PE, and delivery at 26, 28, 30, 32, 34, 36,

and 38 weeks for each patient with PE (“rms” R package). The

predictive performance and the discriminative ability of each

nomogram were assessed using 1,000 bootstrap resamples to

obtain the concordance index (C-index) and the area under the

receiver operating characteristic (ROC) curve (AUC). Calibration

curves were used to evaluate the consistency between the predicted

probabilities of the nomograms and the actual clinical outcomes.

Decision curve analysis (DCA) was performed to evaluate the

clinical utility of the nomograms. The above methods were then

applied to validate the performance of the nomograms in the

validation cohort.
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All statistical analyses were performed using R software version

3.6.0. All tests were two-sided, and a p < 0.05 was considered

statistically significant.
3 Results

3.1 Patient characteristics

The workflow is shown in Figure 1. After random sampling, a

total of 361 patients with PE were allocated to the training cohort

(n = 253) and the validation cohort (n = 108). The clinical

characteristics and laboratory indicators between the two cohorts

were basically balanced (Table 1). In the training cohort, the median

age was 32.0 years (range, 29.0–35.0 years). A total of 135 patients

(53.4%) had multiple gravidity experience, while 188 patients

(74.3%) were primiparas. There were 198 patients (78.3%) who

had a single pregnancy, 116 patients (45.8%) had a history of

abortion, and 221 patients (87.4%) had irregular menstruation.
3.2 Development of a nomogram for
predicting early-onset PE

In the training cohort, 60 patients (23.7%) were diagnosed as

early-onset PE. Univariate logistic analysis showed that patients

with early-onset PE had multiple gravidity experience (p < 0.001);

abortion history (p < 0.001); gemellary pregnancy (p = 0.021);

elevated levels of MPV (p = 0.031), TT (p < 0.001), AST (p < 0.001),

ALP (p < 0.001), LDH (p < 0.001), SAA (p = 0.006), and TBA (p <

0.001); and reduced levels of ALB (p < 0.001) (Supplementary Table

S1). The above variables were incorporated into the multivariate

logistic model and revealed that multiple gravidity experience (OR

= 3.244, 95%CI = 1.420–7.411, p = 0.005), low ALB levels (32.3 vs.

35.7; OR = 0.745, 95%CI = 0.647–0.858, p < 0.001), and high LDH

levels (192 vs. 150; OR = 1.020, 95%CI = 1.010–1.030, p < 0.001)

were significantly associated with early-onset PE (Figures 2A–C).
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Based on these three variables, a nomogram was constructed to

predict the probability of early-onset PE for each individual patient

(Figure 2D). The C-index and AUC of the nomogram were both

0.843 (95%CI = 0.776–0.910), indicating good predictive

performance. In addition, the calibration curve demonstrated

good consistency between the probabilities predicted by the

nomogram and the actual results (Figures 2E, F), and DCA

showed that the nomogram offered a net benefit over the “treat-

all” or “treat-none” strategy (Supplementary Figure S1A).
3.3 Development of a nomogram for
predicting severe PE

In the training cohort, 132 patients (52.2%) were diagnosed as

severe PE. Univariate logistic analysis showed that patients with

early-onset PE had multiple gravidity experience (p < 0.001);

abortion history (p < 0.001); elevated levels of Hb (p = 0.023),

MPV (p = 0.001), TT (p = 0.001), AST (p < 0.001), ALP (p < 0.001),

LDH (p = 0.003), and TBA (p = 0.048); and reduced levels of RDW

(p = 0.030), PT (p = 0.025), and ALB (p < 0.001) (Supplementary

Table S2). The above variables were incorporated into the

multivariate logistic model and revealed that abortion history

(OR = 2.057, 95%CI = 1.136–3.726, p = 0.017) and elevated levels

of TT (15.9 vs. 15.1; OR = 1.934, 95%CI = 1.342–2.785, p < 0.001),

AST (21.5 vs. 14.0; OR = 1.068, 95%CI = 1.024–1.113, p = 0.002),

and LDH (167 vs. 144; OR = 1.017, 95%CI = 1.006–1.028, p = 0.003)

were significantly associated with severe PE (Figures 3A–D). Based

on these four variables, a nomogram was constructed to predict the

probability of severe PE for each individual patient (Figure 3E). The

C-index and AUC of the nomogram were both 0.814 (95%CI =

0.762–0.866), indicating good predictive performance. In addition,

the calibration curve demonstrated good consistency between the

probabilities predicted by the nomogram and the actual results

(Figures 3F, G), and DCA showed that the nomogram offered a net

benefit over the “treat-all” or “treat-none” strategy (Supplementary

Figure S1B).
FIGURE 1

Workflow of the study.
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TABLE 1 Baseline clinical characteristics and laboratory parameters.

Variable Total patients (n=361) Training cohort (n=253) Validation cohort (n=108) P-value

Clinical characteristics

Age, years (IQR) 32.0 (29.0, 36.0) 32.0 (29.0, 35.0) 32.0 (28.0, 37.0) 0.641

Gravidity 　 　 　 1.000

1 168 (46.5%) 118 (46.6%) 50 (46.3%) 　

≥2 193 (53.5%) 135 (53.4%) 58 (53.7%) 　

Parity 　 　 　 0.176

Primipara 260 (72.0%) 188 (74.3%) 72 (66.7%) 　

Multipara 101 (28.0%) 65 (25.7%) 36 (33.3%) 　

Abortion 　 　 　 0.896

No 197 (54.6%) 137 (54.2%) 60 (55.6%) 　

Yes 164 (45.4%) 116 (45.8%) 48 (44.4%) 　

Gemellary pregnancy 　 　 　 1.000

No 283 (78.4%) 198 (78.3%) 85 (78.7%) 　

Yes 78 (21.6%) 55 (21.7%) 23 (21.3%) 　

Menstrual regularity 　 　 　 0.398

No 50 (13.9%) 32 (12.6%) 18 (16.7%) 　

Yes 311 (86.1%) 221 (87.4%) 90 (83.3%) 　

Early-onset PE 　 　 　 0.716

No 278 (77.0%) 193 (76.3%) 85 (78.7%) 　

Yes 83 (23.0%) 60 (23.7%) 23 (21.3%) 　

Severe PE 　 　 　 0.455

No 178 (49.3%) 121 (47.8%) 57 (52.8%) 　

Yes 183 (50.7%) 132 (52.2%) 51 (47.2%) 　

Laboratory parameters

WBC, ×10⁹/L 9.70 (8.50, 11.5) 9.80 (8.50, 11.5) 9.65 (8.65, 11.1) 0.958

RBC, ×1012/L 3.82 (3.55, 4.09) 3.81 (3.58, 4.08) 3.83 (3.55, 4.12) 0.927

Hb, g/L 108 (12.0, 121) 108 (11.9, 121) 108 (12.0, 121) 0.921

Hematocrit, % 35.1 (33.0, 36.9) 35.2 (33.0, 36.9) 34.5 (33.0, 36.7) 0.454

MCV, fL 92.0 (88.7, 94.8) 91.7 (88.7, 94.6) 92.5 (88.7, 95.0) 0.652

PC, ×10⁹/L 215 (178, 256) 212 (176, 253) 228 (185, 261) 0.187

ANC, ×10⁹/L 7.33 (6.20, 8.84) 7.33 (6.20, 9.00) 7.30 (6.18, 8.52) 0.834

ALC, ×10⁹/L 1.70 (1.45, 2.00) 1.70 (1.40, 2.00) 1.71 (1.50, 2.00) 0.343

AMC, ×10⁹/L 0.51 (0.42, 0.65) 0.50 (0.40, 0.63) 0.52 (0.45, 0.66) 0.310

AEC, ×10⁹/L 0.09 (0.04, 0.10) 0.08 (0.04, 0.10) 0.10 (0.06, 0.11) 0.234

ABC, ×10⁹/L 0.02 (0.00, 0.03) 0.02 (0.00, 0.03) 0.02 (0.00, 0.03) 0.842

RDW, % 13.4 (13.0, 14.0) 13.5 (13.0, 14.0) 13.3 (12.9, 13.8) 0.302

PDW, % 16.7 (16.2, 17.3) 16.8 (16.3, 17.3) 16.6 (16.0, 17.2) 0.562

MPV, fL 8.50 (7.80, 9.30) 8.50 (7.80, 9.30) 8.45 (7.77, 9.15) 0.615

Thrombocytocrit, % 0.18 (0.16, 0.22) 0.18 (0.16, 0.21) 0.20 (0.16, 0.22) 0.203

(Continued)
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3.4 Development of a nomogram for
predicting gestation duration

In the training cohort, the median gestation duration was 36.0

weeks (range, 34.0–38.0 weeks). The results of the univariate Cox

analysis showed that higher age (p < 0.001); multiple gravidity

experience (p < 0.001); abortion history (p < 0.001); gemellary

pregnancy (p < 0.001); multipara (p = 0.001); elevated levels of

MPV (p < 0.001), TT (p < 0.001), AST (p = 0.002), ALP (p < 0.001),

LDH (p < 0.001), SAA (p = 0.015), TBA (p = 0.007), and CRP (p =

0.004); and reduced levels of ALB (p < 0.001) were associated with

shorter gestation duration (Supplementary Table S3). The above

variables were incorporated into the multivariate Cox model and

revealed that abortion history (HR = 1.822, 95%CI = 1.398–2.374, p <

0.001); gemellary pregnancy (HR = 2.233, 95%CI = 1.605–3.106, p <

0.001); elevated levels of MPV (HR = 1.134, 95%CI = 1.026–1.253, p =

0.014), TT (HR = 1.351, 95%CI = 1.159–1.574, p < 0.001), and LDH

(HR = 1.009, 95%CI = 1.006–1.013, p < 0.001); and reduced levels of

ALB (HR = 0.912, 95%CI = 0.872–0.955, p < 0.001) were significantly

associated with shorter gestation duration (Figures 4A–G). Based on

these six variables, a nomogram was constructed to predict the

probability of delivery at 26, 28, 30, 32, 34, 36, and 38 gestational

weeks for each individual PE patient (Figure 4H). The C-index of the

nomogram was 0.772 (95%CI = 0.740–0.804). The AUC of each time

point of nomogram prediction demonstrated good performance and

discrimination (26 weeks: 0.852, 95%CI = 0.757–0.914; 28 weeks:

0.892, 95%CI = 0.730–0.942; 30 weeks: 0.929, 95%CI = 0.792–0.981;

32 weeks: 0.900, 95%CI = 0.881–0.955; 34 weeks: 0.831, 95%CI =

0.721–0.916; 36 weeks: 0.854, 95%CI = 0.718–0.935; 38 weeks: 0.815,

95%CI = 0.701–0.924) (Figure 5A). The time-dependent ROC curve

is shown in Supplementary Figure S2A. Furthermore, the calibration

curve demonstrated good consistency between the nomogram’s

predicted probabilities and the actual results (Figures 5B–H), and
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DCA showed that the nomogram offered a net benefit over the “treat-

all” or “treat-none” strategy at each time point (Supplementary

Figures S1C–I).
3.5 Validation of the nomograms

In the validation cohort, the median age was 32.0 years (range,

28.0–37.0 years). There were 58 patients (53.7%) who had multiple

gravidity experience and 72 patients (66.7%) who were primiparas.

A total of 85 patients (78.7%) had a single pregnancy, 48 patients

(44.4%) had a history of abortion, and 90 patients (83.3%) had

irregular menstruation.

In the validation cohort, there were 23 patients (21.3%) with

early-onset PE and 51 patients (47.2%) with severe PE. The AUCs of

the nomogram predicting early-onset PE and severe PE were 0.828

(95%CI = 0.736–0.919) and 0.823 (95%CI = 0.746–0.901),

respectively (Figures 5I, J). The median gestation duration in the

validation cohort was 37.0 weeks (range, 35.0–38.0 weeks). The C-

index of the nomogram was 0.741 (95%CI = 0.689–0.793). The

AUC of each time point of nomogram prediction demonstrated

good performance and discrimination (26 weeks: 0.935, 95%CI =

0.872–0.977; 28 weeks: 0.800, 95%CI = 0.734–0.901; 30 weeks:

0.866, 95%CI = 0.716–0.923; 32 weeks: 0.857, 95%CI = 0.696–

0.953; 34 weeks: 0.832, 95%CI = 0.724–0.938; 36 weeks: 0.800, 95%

CI = 0.749–0.910; 38 weeks: 0.851, 95%CI = 0.772–0.924)

(Figure 5M). The time-dependent ROC curve in the validation

cohort is shown in Supplementary Figure S2B. The calibration

curves for each nomogram also demonstrated good consistency

between the predicted probabilities and the actual results

(Figures 5K, L, N–T), and DCA showed that the nomogram

offered a net benefit over the “treat-all” or “treat-none” strategy at

each time point (Supplementary Figures S1L–R).
TABLE 1 Continued

Variable Total patients (n=361) Training cohort (n=253) Validation cohort (n=108) P-value

PT, s 12.4 (12.1, 12.8) 12.4 (12.1, 12.8) 12.4 (12.1, 12.9) 0.476

INR 0.93 (0.90, 0.97) 0.93 (0.91, 0.96) 0.94 (0.90, 0.98) 0.428

APTT, s 31.5 (29.9, 33.0) 31.6 (29.9, 33.1) 31.4 (30.1, 32.8) 0.991

TT, s 15.4 (14.8, 16.1) 15.4 (14.8, 16.1) 15.4 (14.8, 15.9) 0.791

Fibrinogen, g/L 4.69 (0.77) 4.69 (0.76) 4.68 (0.79) 0.895

ALT, U/L 13.0 (10.0, 20.0) 13.0 (10.0, 20.0) 12.0 (9.00, 20.2) 0.345

AST, U/L 18.0 (15.0, 24.0) 18.0 (15.0, 25.0) 17.0 (15.0, 21.0) 0.608

ALP, U/L 72.0 (59.0, 89.0) 72.0 (61.0, 91.0) 73.0 (57.0, 87.0) 0.427

Albumin, g/L 34.6 (32.9, 36.5) 34.9 (32.9, 37.0) 34.2 (33.0, 35.7) 0.058

LDH, U/L 152 (137, 175) 154 (138, 178) 148 (134, 165) 0.115

SAA, mg/L 4.80 (3.10, 7.80) 4.80 (3.20, 7.80) 5.15 (3.00, 7.78) 0.852

TBA, mmol/L 2.48 (1.61, 3.68) 2.50 (1.51, 3.68) 2.40 (1.79, 3.65) 0.436

CRP, mg/L 3.00 (1.80, 5.60) 3.00 (1.80, 5.50) 3.10 (1.78, 5.95) 0.539
fro
Data were expressed as n (%), mean (±SD), and median (interquartile range).
The p-values compared between the training and the validation cohort.
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4 Discussion

In this study, based on the clinical characteristics and peripheral

blood laboratory indicators, we identified a series of risk factors

associated with early-onset PE, severe PE, and shorter gestation

duration of patients with PE. In addition, three nomograms were

developed to predict the probability of early-onset PE, severe PE,

and delivery at different gestational weeks for each individual

patient with PE, which could help clinicians manage patients with

PE in the early stage of the disease and improve the clinical

outcomes for pregnant women and infants.

The etiologies and pathogenesis of PE are complex and

multisystemic, which involve placental dysfunction, immune
Frontiers in Endocrinology 0755
system dysfunction, maternal metabolic disorder, and

dysregulated endothelial function due to the release of a series of

circulating factors including angiogenic proteins, pro-inflammatory

cytokines, and small extracellular vesicles (25–30). Several risk

factors of obstetric history have been identified as associated with

PE from clinical guidelines, including previous PE, history of parity,

gravidity, abortion, and multiple pregnancies, which were

considered to lead to a weakened maternal immune tolerance to

the placenta, thus increasing the risk of PE (3, 7, 8). A previous

study found that multiple fetal pregnancies were associated with a

significantly higher rate of PE than singleton pregnancies, with the

rate increasing with the number of fetuses present (31). In this

study, multiple gravidities, previous abortion history, and multiple
A B

D

E F

C

FIGURE 2

Development of a nomogram for predicting early-onset pre-eclampsia (PE). (A) Forest plot showing multiple gravidity experience, lower albumin
(ALB), and higher lactate dehydrogenase (LDH) as significantly associated with early-onset PE in multivariable Cox regression analysis. (B, C) Box plot
showing the distribution of the levels of ALB (B) and LDH (C) between the early-onset and late-onset PE groups (Wilcoxon test). (D) Nomogram for
predicting early-onset PE probability in the training cohort. (E) Receiver operating characteristic (ROC) curve of the nomogram predicting early-
onset PE probability in the training cohort. (F) Calibration curve of the nomogram predicting early-onset PE probability in the training cohort.
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pregnancies were also found to be independent risk factors for

inferior clinical outcomes of patients with PE, which is consistent

with previous results.

Accumulating evidence suggested that impaired maternal

metabolic function is associated with PE, which leads to inadequate

adaptation to the demands of pregnancy. An altered metabolic

function has been proposed to contribute to PE by causing reduced

spiral artery remodeling and altered placental metabolic function

(28). A previous study evaluated the role of LDH isozymes in the

placenta between patients with PE and those with normal pregnancy

and found that, compared to placentas from normal pregnancy, the

mRNA and activity of LDH-A were increased in placentas from

patients with PE, probably as a result of hypoxia (32). In this study,

we found that a higher serum LDH level was related to early-onset
Frontiers in Endocrinology 0856
PE, severe PE, and shorter gestation duration of patients with PE,

indicating that LDH could serve as a marker for PE.

In addition, there was an increase of transaminases and

hypoalbuminemia in PE patients with poor clinical outcomes,

suggesting that an impaired liver function was associated with

severe PE and shorter gestation duration of patients with PE.

Similarly, several researchers also observed impaired liver

function in patients with PE, including elevated AST and ALT

and reduced ALB (33, 34). This elevation may be due to the

systemic inflammatory response caused by placental ischemia,

which then resulted in vasoconstriction and endothelial

dysfunction and eventual liver dysfunctions.

Platelet activation occurred in the early stage of PE, which may

be associated with platelet aggregation and depletion due to injury
A B D

E

F G

C

FIGURE 3

Development of a nomogram for predicting severe pre-eclampsia (PE). (A) Forest plot showing abortion history, prolonged thrombin time (TT), and
higher aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) as significantly associated with severe PE in multivariable Cox regression
analysis. (B–D) Violin box plots showing the distribution of the levels of TT (B), AST (C), and LDH (D) between the severe and non-severe PE groups
(Wilcoxon test). (E) Nomogram for predicting severe PE probability in the training cohort. (F) Receiver operating characteristic (ROC) curve of the
nomogram predicting severe PE probability in the training cohort. (G) Calibration curve of the nomogram predicting severe PE probability in the
training cohort.
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to the vascular endothelium in patients with PE (35). In the present

study, we found that a higher MPV was related to the shorter

gestation duration of patients with PE. High levels of MPV

represented a high platelet consumption status, and this

aggregation and depletion would result in increased blood

viscosity and the potential for microthrombosis, which could also

lead to placental ischemia and hypoxia and further affect both

maternal organ function and fetus growth. Moreover, we found that

a prolonged TT was associated with the shorter gestation duration
Frontiers in Endocrinology 0957
of patients with PE, suggesting that the coagulation function

disorder could affect the severity of PE. Thrombin time refers to

the time it takes for thrombin to convert fibrinogen into fibrin; the

prolonged TT reflected the insufficiency of plasma fibrinogen or

abnormal structure, or excessive anticoagulant substances in the

body. A previous study identified that the levels of fibrinogen were

significantly lower in placentas from women with early-onset PE

compared with control placentas, indicating that a low fibrinogen

level might be involved in the coagulation disorder in PE (36).
A B D
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C

FIGURE 4

Development of a nomogram for predicting the gestation duration of patients with pre-eclampsia (PE). (A) Forest plot showing abortion history,
gemellary pregnancy, prolonged thrombin time (TT), higher mean platelet volume (MPV) and lactate dehydrogenase (LDH), and lower albumin (ALB)
as significantly associated with severe PE in multivariable Cox regression analysis. (B–G) Kaplan–Meier curves of gestation duration according to
abortion history (B), gemellary pregnancy (C), MPV (D), TT (E), ALB (F), and LDH (G) (log-rank test). (H) Nomogram for predicting the delivery
probability of patients with PE in the training cohort.
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Although numerous studies have explored a series of risk

factors related to PE, none have constructed nomograms to

accurately predict the probabilities of early-onset PE, severe PE,

and the gestation duration of patients with PE. Here, based on
Frontiers in Endocrinology 1058
significant clinical features and peripheral blood laboratory

indicators, we constructed three nomograms to predict the

probability of early-onset PE, severe PE, and delivery at 26, 28,

30, 32, 34, 36, and 38 weeks for pregnant women with PE. The AUC
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FIGURE 5

Validation of the nomograms in the validation cohort. (A) Area under the curve (AUC) of the nomogram predicting the delivery probability of patients
with pre-eclampsia (PE) at 26, 28, 30, 32, 34, 36, and 38 weeks in the training cohort. (B–H) Calibration curves of the nomogram predicting the
delivery probability of patients with PE at 26 (B), 28 (C), 30 (D), 32 (E), 34 (F), 36 (G), and 38 weeks (H) in the training cohort. (I, J) Receiver operating
characteristic (ROC) curves of the nomograms predicting early-onset (I) and severe (J) PE probability in the validation cohort. (K, L) Calibration
curves of the nomograms predicting early-onset (K) and severe (L) PE probability in the validation cohort. (M) AUCs of the nomogram predicting the
delivery probability of patients with PE at 26, 28, 30, 32, 34, 36, and 38 weeks in the validation cohort. (N–T) Calibration curves of the nomogram
predicting the delivery probability of patients with PE at 26 (N), 28 (O), 30 (P), 32 (Q), 34 (R), 36 (S), and 38 weeks (T) in the validation cohort.
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of each nomogram presented good discriminative ability, and each

nomogram was validated in the validation cohort. Although there

were several flaws in the calibration curves at 26–30 weeks, we

believe that the main reason was the improvements in medical

condition and early intervention, and thus the delivery events were

relatively low. However, the results of the AUC and C-index, as well

as the DCA, demonstrated that our model still had reliability for

prediction. Compared with other reported biomarkers or risk

scores, the model developed in this study could quantify each

predictive variable and provide a specific probability of the

occurrence of severe and early-onset PE and the delivery time for

each individual pregnant woman. Furthermore, this model could

also help clinicians assess the clinical outcomes early and design an

appropriate strategy for each patient. To our knowledge, this is the

first study to construct three different nomograms to predict early-

onset PE, severe PE, and the gestation duration of patients with PE

based on clinical characteristics and laboratory parameters.

This study has some limitations. Firstly, it is a retrospective

study with a relatively small sample size. Therefore, expanding the

sample size and assessing the predictive performance of the

nomograms in a larger prospective study are needed. Secondly,

this study did not examine the serum sFlt-1, PlGF, PP13, PAPP-A,

and VCAM-1, which are considered as important markers for PE.
5 Conclusion

Based on the clinical features and peripheral blood laboratory

indicators, we identified significant factors and developed models to

predict early-onset PE, severe PE, and the gestation duration of

pregnant women with PE, which could help clinicians assess the

clinical outcomes early and design an appropriate strategy for

each patient.
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SUPPLEMENTARY FIGURE 1

Decision curve analysis of three nomograms. (A, J) Decision curve analysis of

nomogram for predicting early-onset PE in training cohort (A) and validation

cohort (J). (B, K) Decision curve analysis of nomogram for predicting severe
PE in training cohort (B) and validation cohort (K). (C–I, L-R) Decision curve

analysis of nomogram for predicting delivery probability of PE patients at 26-,
28-, 30-, 32-, 34-, 36-, and 38-week in training cohort (C–I) and validation

cohort (L–R). The y-axis indicates the net benefit, which is the sum of the
benefits (true positives) minus harm (false positives). The x-axis indicates the

threshold probability. The red line represents the nomogram net benefit. The

green and black lines represent the hypotheses that all or no patients
occurred end point event, respectively.

SUPPLEMENTARY FIGURE 2

The time-dependent ROC curve of nomogram for predicting delivery
probability of PE patients. (A, B) The time-dependent ROC curve of

nomogram for predicting delivery probability of PE patients at 26-38 week

in training cohort (A) and validation cohort (B).
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Maternal nutrient metabolism in
the liver during pregnancy
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1School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China,
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The liver plays pivotal roles in nutrient metabolism, and correct hepatic

adaptations are required in maternal nutrient metabolism during pregnancy. In

this review, hepatic nutrient metabolism, including glucose metabolism, lipid and

cholesterol metabolism, and protein and amino acid metabolism, is first

addressed. In addition, recent progress on maternal hepatic adaptations in

nutrient metabolism during pregnancy is discussed. Finally, the factors that

regulate hepatic nutrient metabolism during pregnancy are highlighted, and

the factors include follicle-stimulating hormone, estrogen, progesterone,

insulin-like growth factor 1, prostaglandins fibroblast growth factor 21,

serotonin, growth hormone, adrenocorticotropic hormone, prolactin, thyroid

stimulating hormone, melatonin, adrenal hormone, leptin, glucagon-like

peptide-1, insulin glucagon and thyroid hormone. Our vision is that more

attention should be paid to liver nutrient metabolism during pregnancy, which

will be helpful for utilizing nutrient appropriately and efficiently, and avoiding liver

diseases during pregnancy.
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1 Introduction

The liver is the largest gland of the mammalian body, and has thousands of vital

functions, including efficient uptake of amino acids (AAs), carbohydrates, bile acids,

cholesterol, proteins, lipids and vitamins for storage and metabolism (1). During normal

pregnancy, there are essential adaptations in nutrient metabolism, which increase maternal

energy reserves, in the form of glucose and lipids, to meet the maternal-fetal needs for

advanced gestation (2). AA metabolism is downregulated in early and mid-pregnancy, but

upregulated in late pregnancy in mice (3). Mammal nutrient supply is handled primarily by

the gastrointestinal tract and the liver, and as a major metabolic hub, the liver is involved in

nutrient metabolism and the synthesis of essential serum components (4). Moreover, the

maternal liver systematically coordinates adaptations by activating the proneuronal
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transcription factor Ascl1 in the maternal hepatocytes during second

half of gestation, which allows for optimal placental development and

growth, and ensures the health of mother and her infant during

pregnancy in mice (5). The liver controls various pathways of glucose

metabolism, including glycogenesis, glycogenolysis, glycolysis and

gluconeogenesis, to maintain an individual’s health by regulating

several key transcription factors (6).

A successful pregnancy is dependent on correct hepatic

adaptations in maternal nutrition. However, there is no

systematic review that focuses on maternal liver nutrient

metabolism during pregnancy. In this review, the latest

information about hepatic nutrient metabolism, including glucose

metabolism, lipid and cholesterol metabolism, and protein and AA

metabolism, as well as maternal hepatic adaptations in nutrient

metabolism during pregnancy, is discussed. In addition, the factors

that regulate hepatic nutrient metabolism during pregnancy

are reviewed.
2 Hepatic anatomy

Despite obvious differences in hepatic lobation and gallbladder

between rodents and humans, but the microscopic architecture of

the liver is generally similar in all mammals, and has a critical

feature for liver function. The liver is divided into lobes (the

anatomical sections of the liver), and lobe is made up of hepatic

lobules. Furthermore, liver cells are organized around the functional

structural unit of the liver — the lobule (microscopic building

blocks of the liver) (7). Branches of the portal vein and the hepatic

artery merge upon and entry into the liver lobule at the portal field

for blood supply of the liver, and exits at the central vein (8). In

general, a typical hepatic lobule contains the portal vein, hepatic

artery, bile duct and hepatic sinusoid (Figure 1).
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3 Liver nutrient metabolism

3.1 Glucose metabolism

The liver is the major site in the body for carbohydrate

biosynthesis, and plays a central role in regulating systemic

glucose metabolism, and maintaining blood glucose levels within

a narrow range (9). The liver regulates the balance between the

uptake and storage of glucose via glycogenesis and release of glucose

via glycogenolysis and gluconeogenesis to maintain blood glucose

homeostasis (10). Feeding enhances insulin-mediated signaling in

the liver, which shifts from a mode of net output to net uptake of

hepatic glucose. This requires the activation of glycogen synthase

and inhibition of glycogen phosphorylase, as well as a decline in

glucagon and an increase in insulin, which lead to a decrease in

hepatic glucose output from glycogen stores and gluconeogenesis

in hepatocytes (6, 7).
3.2 Lipid and cholesterol metabolism

The liver is involved in the uptake, synthesis, packaging, and

secretion of lipids and lipoproteins. The major sources of hepatic

fatty acids (FAs) are dietary lipids, adipose tissue derived FAs and

de novo-synthesized FAs (11). FA synthesis and lipid circulation

occur through lipoprotein in the liver, and lipid droplets accumulate

in hepatocytes (12). The liver can utilize FAs as an internal energy

source through oxidative pathways, and provide energy to other

organs from ketogenic products (7). Under condition of increased

FA uptake, the liver often produces large amounts of the ketone

bodies, including b-hydroxybutyrate, acetoacetate, and acetone, and
these ketone bodies circulate among extrahepatic tissues and are

metabolized (13).
A B

FIGURE 1

A representative hepatic lobule. (A) Representation of a hepatic lobule. (B) Hepatic tissue stained by hematoxylin and eosin. A portal triad is a
component of the hepatic lobule, consists of proper hepatic artery, hepatic portal vein, small bile duct and hepatic sinusoid. Bar = 50 µm.
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Dietary triglycerides are packaged into chylomicrons within the

intestinal lumen, secreted into the lymphatic system and ultimately

reach the plasma, and much of the chylomicron triglycerides are

taken up by muscle and adipose tissue (11). The remaining

triglycerides within the chylomicron remnants are taken up by

receptor mediated endocytosis to the hepatocytes, and these

particles are processed by lysosomes to release FAs (14).

Triacylglycerols can also be exported as constituents of very low

density lipoproteins (VLDL) that are synthesized and secreted by

the liver, and released into the blood (12).

Dietary cholesterol is absorbed in the intestine, and

incorporated into chylomicrons that are taken up by the liver

through the bloodstream, and the majority of cholesterol

catabolism and excretion is also the responsibility of the liver.

Approximately half of this cholesterol is excreted in the feces, and

the other half is reabsorbed in the large intestine and taken up by

the liver (15). The liver also plays a buffering role in regulating

cholesterol homeostasis of the whole body, both by controlling

several cholesterol input and elimination pathways, and serving as a

storage site for the cholesterol (16).
3.3 Protein and amino acid metabolism

The liver is responsible for 85-90% of circulating protein

synthesis, including albumin, which is essential for the

maintenance of blood volume and transporting a number of

critical molecules (including lipids). In addition, the liver
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synthesizes many AAs, glucose, and glutathione, but is also the

major organ that degrades AAs. The liver breaks down proteins and

metabolizes AAs to provide energy for hepatocytes, and the carbon

skeleton of specific AAs is incorporated into the tricarboxylic acid

cycle (7). However, only a small amount of AAs is degraded in the

liver if humans and animals take up optimal amounts of AAs (17).
4 Maternal hepatic adaptations in
nutrient metabolism during pregnancy

Alterations in maternal metabolism meet the metabolic needs of

the developing fetus, which is initiated very early in pregnancy. There

are significant changes in hepatic nutrient metabolism in pregnant

women compared with nonpregnant women, including increases in

glucose metabolism, and lipid and cholesterol metabolism, protein

synthesis, and a decrease AA catabolism (Figure 2).
4.1 Adaptations in hepatic
glucose metabolism

The appearance rates of total glucose and total gluconeogenesis

are increased, which are essential for the mother to adapt to the

increasing fetal demands for glucose with advancing gestation (18).

In addition, adjustments in glucose production and utilization in

the maternal liver are necessary for the increased glucose

requirements of the gravid uterus, which depends principally on
FIGURE 2

Pregnancy regulates maternal hepatic nutrient metabolism. During pregnancy, placental hormones and other hormones modulate hepatic glucose
metabolism via glucose-6-phosphatase (G6Pase), glucose transporter 2 (GLUT2), glucokinase regulatory protein (GCKR), phosphoenolpyruvate
carboxykinase (PEPCK), forkhead box protein O (FOXO), peroxisome proliferator-activated receptor a (PPARa) and mammalian target of rapamycin
(mTOR), and regulate hepatic lipid metabolism via angiopoietin-like protein 4 (ANGPTL4), PPARa, g, mTOR, adenosine 5’-monophosphate (AMP)-
activated protein kinase a (AMPKa) and tricarboxylic acid cycle (TCA). In addition, hepatic protein metabolism, including protein synthesis and amino
acid (AA) catabolism, is regulated via phosphoinositide 3-kinase (PI3K)/serine threonine kinase (AKT)/mTOR, PPARa and nuclear factor 4a (HNF4a).
Glucose, cholesterol, lipid, proteins and other nutrients, including fatty acids (FAs) and amino acids (AAs), from the intestine enter into the liver, and
pregnancy increases production of hepatic glucose, triglyceride (TG), very low density lipoproteins (VLDL), ketone bodies, proteins and AAs, which
promote fetus growth and maternal nutrient store through the blood circulation. Furthermore, pregnancy enhances the production of hepatic bile
acids, which improve lipid and glucose metabolism in the intestine.
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hepatic gluconeogenesis for the glucose supply, as well as hepatic

glycogen synthesis during late pregnancy in ruminants (19).

Furthermore, pregnancy is characterized by progressive insulin

resistance, and insulin action is lower in normal late pregnancy

than nonpregnant women, which results in an increase in basal

endogenous hepatic glucose production during normal pregnancy

(20). Maternal glucose production is enhanced from early to late

pregnancy by transiently modulating maternal hepatic insulin

resistance to ensure sufficient glucose delivery to the fetus (21).

Pregnancy induces insulin resistance, and improves the production

of glucose through inhibition of glycogen synthesis (Figure 3).
4.2 Adaptations in hepatic lipid metabolism

The mother increases the utilization of lipids as an energy

source with advancing gestation, and the liver plays a central role in

lipid metabolism during pregnancy. There are significant increases

in serum triglycerides and total low-density lipoprotein cholesterol

(LDL-C) during pregnancy in women (22). Adipose tissue, liver and

placenta secrete angiopoietin-like protein 4, which inhibit

lipoprotein lipase activity and are related to placental FA transfer

and fetal fat accumulation during pregnancy (23). It has been

reported that peroxisome proliferator-activated receptor a
(PPARa) and PPARg regulate cellular fatty acid uptake,

esterification and trafficking, as well as lipoprotein metabolism

(24). Pregnancy leads to an increase in the transport of FAs from

plasma and adipose tissue, as well as triglyceride and cholesterol

transported to the liver (Figure 4).
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4.3 Adaptations in hepatic
protein metabolism

Concentrations of most plasma proteins, including clotting

factors, albumin, and hormone binding proteins, are changed

during pregnancy. These proteins are synthesized in the liver, which

are related to the physiological alterations in hepatic metabolism

during pregnancy (25). Albumin synthesis actually increases in the

liver during pregnancy, but lower serum concentrations are the

consequence of plasma volume expansion (26). Furthermore, in

humans, the level of g-glutamyl transferase (GGT), a liver enzyme,

is elevated at 10-13 weeks of pregnancy, and GGT can increase the

availability of AA for intracellular glutathione synthesis and play a

crucial role in defense against oxidative stress (27).

Nuclear factor erythroid 2-related factor 2 is essential for

regulating maternal hepatic adaptations to pregnancy by

mammalian target of rapamycin signaling in mice, and modulates

expression of genes encoding the denoted enzymes related to

glycolysis, the pentose phosphate pathway, one carbon

metabolism, nucleotide biosynthesis, glutaminolysis, fatty acid

synthesis, and glutathione synthesis (28). Moreover, there are

increases in the concentrations of many proteins produced by the

liver, such as fibrinogen and other coagulation factors, including

procoagulant factors, prothrombin fragments 1 + 2, tissue-

plasminogen activator antigen and type 1 plasminogen activator

inhibitor, but anticoagulants are reduced during pregnancy (29).

Pregnancy results in insulin resistance, and increases protein

synthesis from AAs, but a decrease in the production of glucose

and urea from AAs (Figure 5).
FIGURE 3

Hepatic glucose metabolic pathway during pregnancy. Pregnancy induces insulin resistance, and solute carrier family 2 member 2 (SLC2A2)
mediates facilitated bidirectional glucose transport between portal vein and hepatocytes. During pregnancy, the increase in endogenous hepatic
glucose production enhances the production of glucose-6-phosphatase (G6Pase), and 5’-prime-AMP-activated protein kinase (AMPK), angiopoietin
like 4 (ANGPTL4) and glucokinase (GCK), which are involved in glucose homeostasis. In addition, there is an upregulation of cAMP-dependent
protein kinase A (PAK), which inhibits the activity of glycogen synthesis. The glucose level increases in the liver, which reduces the activity of protein
tyrosine kinase (PTK) by downregulating activity of insulin receptor (INSR). Furthermore, the phosphorylation of insulin receptor substrate 1 (IRS1) and
phosphatidylinositol 3-kinase (PI3K) is inhibited, which downregulates the activity of AKT serine/threonine kinase 2 (AKT2), and reduces the ability of
solute carrier family 2 member 4 (SLC2A4) transporter, resulting in a decrease in glycogen synthesis.
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5 Factors that regulate maternal
hepatic nutrient metabolism

Pregnancy induces maternal physiological changes by

endocrine hormones and autocrine factors (30). The factors that

regulate hepatic nutrition include follicle-stimulating hormone
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(FSH), estrogen, progesterone, growth hormone (GH)/insulin-like

growth factor 1 (IGF-1), insulin, prolactin, aldosterone, adrenaline,

thyroid stimulating hormone (TSH), thyroid hormone, melatonin,

serotonin, glucagon and glucagon-like peptide-1 (GLP-1),

leptin, prostaglandins (PGs) and fibroblast growth factor 21

(FGF21) (Figure 6).
FIGURE 4

Hepatic lipid metabolic pathway during pregnancy. Pregnancy leads to insulin resistance and downregulation of insulin receptor (INSR), and
increases in transport of fatty acids (FAs) from plasma and adipose tissue, triglyceride (TG) and cholesterol that are transported by high-density
lipoproteins (HDL) particles to the liver. Carbohydrate-responsive element-binding protein (ChREBP) is involved in triglyceride synthesis from FAs and
glycerol, and peroxisome proliferator activated receptor alpha (PPARa) and PPARg regulate the b-oxidation of FA to release ATP through tricarboxylic
acid cycle. Microsomal triglyceride transfer protein (MTP) and angiopoietin like 4 (ANGPTL4) modulate VLDL assembly by apolipoprotein B (ApoB)
and TG, which result in an increase in VLDL release from the liver. In addition, cytochrome P450 family 7 subfamily A member 1 (CYP7A1) converts
cholesterol to bile acids that are released from the liver to improve the digestion and absorption of lipids. Moreover, some free FAs are oxidized as
ketone bodies that are released from the liver.
FIGURE 5

Hepatic protein and amino acid metabolic pathway during pregnancy. Pregnancy results in insulin resistance that increases protein synthesis from
amino acids (AAs) by mammalian target of rapamycin (mTOR) complex 1 (mTORC1), PI3K phosphoinositide-3-kinase (PI3K) and AKT serine/threonine
kinase 1 (AKT1) signaling, and ribosomal protein S6 kinase B1 (RPS6KB1) responds to mTOR signaling to promote protein synthesis. In addition,
nuclear factor erythroid 2-related factor 2 (NFE2L2) is involved in the regulation of mTOR signaling. Furthermore, g-glutamyl transferase (GGT)
modulates the availability of AAs for intracellular glutathione synthesis. Moreover, the content of hepatic AAs from the small intestine through the
blood circulation alters, which leads to changes in the production of glucose and urea from AAs.
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5.1 FSH

FSH not only exert its effects on gonadal tissues, but FSH

receptors (FSHRs) are also expressed in extragonadal tissues,

including endothelium, monocytes, developing placenta,

endometrium and fat (31). FSH can decrease body weight and

modulate lipid metabolism, which are via downregulation of

triglyceride concentration and PPARg expression in the liver, and

upregulation of PPARa protein level in liver and adipose tissue

(32). FSH increases serum cholesterol level via inducing hepatic

cholesterol biosynthesis, which is via binding to hepatic FSHRs,

activating the Gi2a/b-arrestin-2/serine threonine kinase (AKT)

pathway (33). FSH is related to the dysregulation of hepatic

metabolism, and increased level of FSH has effects on the

development of non-alcoholic fatty liver disease (34). In the

placenta, vascular endothelial FSHR of fetal vessels mediates

angiogenesis, and myometrial FSHR is related to the quieting of

contractile activity required for successful implantation. However,

the temporal upregulation of the FSHR at term pregnancy is

necessary for the appropriate timing of parturition (35).
5.2 Estrogen

Increasing amounts of circulating estrogens suppress hepatic

clearance function, which leads to increases in the levels of plasma

sulfated and glucuronidated lipophilic endo- and xenobiotics.

However, hepatic synthetic functions and cholesterol excretion

into bile are enhanced during pregnancy (36, 37). During late

pregnancy, phospholipids, cholesterol, and triglycerides increase
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in response to estrogen stimulation and insulin resistance, and free

FAs are oxidized as ketone bodies in the maternal liver, which

represent an alternative fuel source for the fetus (38). In addition,

estrogen enhances liver VLDL production and decreases hepatic

lipase activity during gestation in both women and experimental

animals (39). Furthermore, in humans and mice, estrogen

modulates liver gene expression through estrogen receptor a, b,
and G-protein-coupled estrogen receptor, which is related to lipid

metabolism (40).
5.3 Progesterone

There is an upregulation of serum progesterone levels during

normal pregnancy, which suppresses hepatic clearance function,

and increases hepatic synthetic functions (37). In addition,

progesterone receptor is upregulated in the maternal liver during

early pregnancy, which is involved in the regulation of maternal

hepatic functions in an endocrine manner in an animal model (41).

Progesterone reduces expression of phosphoenolpyruvate

carboxykinase (PEPCK) to increase glucose uptake through

transcription factor 7 like 2, a key regulator of glucose

homeostasis, in liver cells (42). In addition, lipids and steroid

hormones are closely linked, and steroid hormones regulate

hepatic lipid production, and progesterone concentrations are

related to cholesterol biosynthesis rates (43). During the latter

half of pregnancy, progesterone improves the elaboration of

ketones more promptly in the liver to meet the demands of

advancing pregnancy (44), and there is also a rapid release

of liver-synthesized triglycerides into the circulation (45).
FIGURE 6

Factors that regulate hepatic adaptations in nutrient metabolism during pregnancy. During pregnancy, hepatic nutrient metabolism is modulated by
factors that include estrogen (E2) and progesterone (P4) mainly produced by ovaries; insulin like growth factor 1 (IGF-1), prostaglandins and
fibroblast growth factor 21 (FGF21) produced by the liver in a paracrine manner; thyroid hormones produced by thyroid; follicle-stimulating
hormone (FSH), growth hormone (GH), prolactin and thyroid stimulating hormone (TSH) produced by pituitary gland; adrenal hormone mainly
produced by adrenal glands; serotonin produced within the central nervous system; melatonin secreted by the pineal gland; leptin mainly
synthesized in adipose tissue; insulin and glucagon secreted by pancreas; and glucagon-like peptide-1 (GLP-1) mainly released from intestinal L-
cells. In addition, pregnancy regulates production of GH, melatonin, prolactin and FSH by the placenta.
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5.4 Growth hormone/insulin-like growth
factor 1

The pituitary gland produces GH, which modulates the

production of IGF-1 via the GH receptor (GHR). GH improves

body composition, fasting blood glucose levels, glucose tolerance and

liver triacylglycerol levels (46), and maintains glucose metabolism

through B-cell translocation gene 2 and the yin yang 1 signaling

pathway in primary mouse hepatocytes and the liver (47). Hepatic

GH signaling is essential for regulating intrahepatic lipid metabolism,

and circulating IGF-1 can amplify the growth-promoting effects, and

dampen the catabolic effects of GH (48). During pregnancy, there is

an upregulation of the placental GH, which gradually replaces

pituitary GH, and increases maternal IGF-1 levels (49).

IGF-1 binds to insulin receptors and stimulates insulin-like

actions to regulate glucose homeostasis in the liver (50). On the

other hand, IGF-1 can increase insulin resistance, and reduce

triglyceride accumulation in hepatocytes (51). In addition, IGF-1

suppresses cholesterol accumulation in the liver by upregulating

expression of ATP-binding cassette transporter A1 via the

phosphoinositide 3-kinase (PI3K)/AKT/forkhead box protein O1

(FOXO1) signaling pathway in mice (52). IGF-1 suppresses the

expression of B class scavenger receptors via PI3K/AKT pathways

to participate in cholesterol metabolism in the liver (53). Moreover,

IGF-1 improves VLDL assembly by upregulating mRNA

abundances of apolipoprotein B (ApoB) 100, ApoE, microsomal

triglyceride transfer protein, and low-density lipoprotein receptor

(LDLR) in bovine hepatocytes (54).
5.5 Insulin

Insulin is produced by the pancreas, and as the master regulator

of glucose, lipid, and protein metabolism, it can suppress hepatic

glucose production and enhance hepatic glucose uptake, which

results in inhibition of lipolysis and a decline in plasma free FA

concentration (55). Insulin inhibits hepatic glucose production by

directly acting on the liver and indirectly through its effects on the

pancreas with a physiologic increase in insulin secretion (56). In

addition, PPARg coactivator 1 binds and coactivates FOXO1 to

activate gluconeogenic gene expression and participate in insulin-

regulated hepatic gluconeogenesis (57). Furthermore, TOX4, an

insulin receptor-independent regulator of hepatic glucose

production, and arrestin domain-containing 3 are involved in the

modulation of insulin action and glucose metabolism in the liver

(58, 59). Moreover, insulin directly controls lipid metabolism

through hepatic insulin receptor and activation of AKT (60).

Insulin activates intracellular transport of lipid droplets into the

smooth endoplasmic reticulum (ER) inside hepatocytes via

phosphatidic acid and recruits kinesin-1, and catabolizes

triglyceride-rich lipid droplets to supply FAs for producing

lipoprotein particles (61). In addition, insulin regulates VLDL

synthesis in hepatocytes and secretion from the liver, and FOXO1

acts on the liver to integrate hepatic insulin action on VLDL
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production (62). However, insulin resistance decreases catabolism

of hepatic branched-chain AAs (63).

There is an increase in glucose-stimulated insulin secretion by

maternal pancreatic b-cells during pregnancy (64). Therefore,

insulin levels are elevated during pregnancy, which plays a vital

role in promoting the uptake of glucose in insulin-sensitive tissues

(the liver, muscle and fat) to ensure the growth and development of

the fetus (65). However, for the obese women with gestational

diabetes mellitus, insulin responses increase, but insulin sensitivity

decreases with advancing gestation, which leads to an increase in

basal glucose production (66).
5.6 Prolactin

Prolactin is primarily synthesized in the anterior pituitary gland

(67), and has effects on liver gluconeogenic gene expression (68). In

addition, prolactin downregulates hepatic triglyceride accumulation

by downregulating stearoyl-coenzyme A desaturase 1, a rate-

limiting enzyme in the biosynthesis of monounsaturated fats in

female mice (69). It has been reported that early pregnancy inhibits

protein expression of prolactin and prolactin receptor (PRLR) in the

maternal liver of an animal model, and PRLR protein is located in

the hepatocytes, endothelial cells of the proper hepatic arteries and

hepatic portal veins (70). Pituitary prolactin cells increase during

pregnancy, which enhance prolactin production in pituitary (71).

Expression of placental lactogen increases with progression of

pregnancy in the bovine placenta (72). Therefore, pregnancy

regulates the expression of prolactin in the maternal liver,

pituitary gland and placenta, and PRLR in the maternal liver,

which has effects on hepatic triglyceride accumulation and

liver gluconeogenesis.
5.7 Aldosterone and adrenaline

Adrenal glands mainly produce corticosteroid, aldosterone,

cortisol and adrenaline type hormones. Aldosterone stimulates

hepatic gluconeogenesis, and blunts the inhibitory effect of

insulin (73). Furthermore, aldosterone improves the gene

expression of hepatic gluconeogenic enzymes to affect the inhibitory

effect of insulin on hepatic gluconeogenesis through the

glucocorticoid receptor (GR) (74). On the other hand, epinephrine

(adrenaline-type hormone) can promptly increase blood glucose

concentration, which is mediated by a transient increase in hepatic

glucose production through stimulating glycogenolysis and

gluconeogenesis, but an inhibition of glucose disposal in insulin-

dependent tissues (75).

In the liver, glucocorticoids (a type of corticosteroid) can inhibit

the insulin receptor pathway and AKT activity, and induce FOXO1

activation via GR, which stimulates PEPCK and glucose-6-

phosphatase (G6Pase) expression, hepatic glucose production and

lipogenesis (76). On the other hand, upregulation of hepatic

corticosterone concentration and nuclear GR activation are
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induced by 5a-dihydrotestosterone treatment in an animal model,

which stimulates triglyceride synthesis in the liver (77).

Furthermore, there is an upregulation of hepatic lipid

accumulation and plasma triglyceride levels during pregnancy in

mice, which occurs via upregulation of hepatic CD36 through

enhancing corticosterone/cortisol levels (78).
5.8 Thyroid stimulating hormone and
thyroid hormone

TSH is produced by the anterior pituitary, and can stimulate

thyroid hormone production by the thyroid gland. TSH stimulates

expression of cAMP-regulated transcriptional coactivator 2, which

leads to upregulation of hepatic gluconeogenic genes and

gluconeogenesis (79). In addition, TSH promotes hepatic glucose

production through upregulation of G6Pase and PEPCK, and

downregulation of hepatic glucokinase in the liver (80).

Furthermore, TSH enhances the expression of proprotein

convertase subtilisin/kexin type 9, which leads to upregulation of

LDL-C and degradation of LDLR (81).

TSH regulates lipid, glucose, and energy metabolism, and

modulates hepatic bile acid homeostasis via a sterol regulatory

element binding protein-1c (SREBP)-2/HNF-4a/cholesterol 7a-
hydroxylase signaling pathway independent of thyroid hormones

(82). Furthermore, thyroxine treatment enhances the relative rate of

triacylglycerol synthesis from glycerol, and downregulates the

accumulation of diacylglycerol in rat liver (83). Moreover, thyroid

hormone plays essential roles in hepatic lipid synthesis and FA

oxidation, which is dependent on the transcription factor

carbohydrate-responsive element-binding protein in hepatocytes

(84). There is a transient increase in free thyroxine levels, but a

decrease in TSH concentrations during the first trimester. However,

free thyroxine concentrations decrease approximately 10 to 15%,

and serum TSH values return to normal after the first trimester (85).
5.9 Melatonin

The pineal gland secretes melatonin that acts directly on the

liver to elevate the plasma glucose level via melatonin receptor 1B in

mouse hepatocytes in a dose-dependent manner (86). Maternal

melatonin and placental melatonin levels increase progressively

until term during normal pregnancy (87). In addition, melatonin

treatment inhibits glucose uptake and ATP production via

downregulation of glucose transporter 3 and Yes-associated

protein that are key regulators of Hippo signaling pathway in

hepatocellular carcinoma cells (86). Furthermore, melatonin

treatment improves hepatic insulin resistance and steatosis (88),

attenuates lipid accumulation, and enhances the activity of AMP-

activated protein kinase (AMPK) mediated by the melatonin

receptor 1A signaling pathway in the liver of rats (89). Moreover,

melatonin affects lipolysis by activating phosphorylation of AMPK,

inactivating acetyl-CoA carboxylase, upregulating PPARa, but
downregulates SREBP-1c, FA synthase, and stearoyl-CoA

desaturase-1 in HepG2 cells (90). It has been reported that
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melatonin receptor 1A is upregulated in the maternal liver, but

melatonin receptor 1B is downregulated during early pregnancy in

an animal model (91), which may affect lipid and glucose

metabolism during pregnancy.
5.10 Serotonin

Serotonin (5-hydroxytryptamine) produced within the central

nervous system promotes energy expenditure via sympathetic drive,

and is also secreted by peripheral tissues. Serotonin enters the

bloodstream to promote the body for energy storage in the liver

(92). In addition, serotonin functions as a hormone in central and

peripheral systems to regulate systemic energy homeostasis, and

participates in hepatic metabolism via its receptors (68).

Furthermore, supplementation with 5-hydroxytryptophan

improves expression of hepatic serotonin receptors, and glycolytic

and gluconeogenic enzymes in dairy calves (93). Moreover,

serotonin injection increases hepatic glycogen synthesis and

concentrations, as well as hepatic cholesterol content, and

stimulates the contraction of the gallbladder and excretion of bile

(94). The concentration of hepatic serotonin, glucose transporters

and expression of serotonin receptor are dynamic in the liver,

suggesting that serotonin is essential for liver glucose homeostasis

via its receptor in the liver during the transition from pregnancy to

lactation in an animal model (95). There is an increase in serotonin

expression in islets during pregnancy, which enhances glucose-

stimulated insulin secretion, and contributes to maintaining glucose

homeostasis and sensitivity in the liver (64).
5.11 Glucagon and glucagon-like peptide-1

Glucagon is a pancreas-derived hormone that exerts its function

by binding to glucagon receptor (GCGR) that is mainly expressed in

the hepatic periportal area (96). Glucagon enhances lipid oxidation

and VLDL assembly via GCGR, and downregulates lipid synthesis in

the hepatocytes, which stimulates the transportation of intracellular

triglycerides, and downregulates liver fat accumulation in an animal

model (97). In addition, glucagon can induce expression of

gluconeogenic genes (G6Pase and PEPCK) through cAMP-

response element-binding protein, and trigger a second delayed

phase of FA oxidation gene expression to improve hepatic lipid

homeostasis in mice (98). Glucagon-induced acetylation of cyclic

AMP-responsive element binding protein, hepatocyte specific

(CREBH) and SREBP-c1 suppresses hepatic lipid synthesis, and

glucagon-induced acetylation of PPAR-a and FOXa2 enhances

hepatic FA oxidation (99). Plasma glucagon level increases

significantly between the 16th and the 28th week of gestation, but

returns to normal at the last trimester of pregnancy in women (100).

GLP-1 is mainly released from intestinal L-cells in response to

meal ingestion, and active GLP-1 can reach the liver through the

circulation (101). GLP-1 receptor is located within the vicinity of the

entrance of the hepatic portal vein, which is critically associated with

portal glucose sensing (102). GLP-1 can directly stimulate insulin

secretion and inhibit glucagon release, and has direct effects on
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increasing the activity of glycogen synthase a, decreasing the activity
of glycogen phosphorylase a to promote the incorporation of glucose

into glycogen in hepatocytes independent of insulin and glucagon

(103). In addition, GLP-1 analogs reduce hepatic endogenous glucose

production, and de novo lipogenesis, but increase hepatic insulin

sensitivity (104). Furthermore, GLP-1 analogs bind to their receptors

to enhance hepatic insulin sensitivity, and modulate gene expression

involved in FA oxidation and de novo lipogenesis in the liver (105).

There is an increase in the production of islet-derived GLP-1 during

pregnancy (106).
5.12 Leptin

Leptin is mainly synthesized in white adipose tissue, and

secreted from the placenta during pregnancy, which plays an

important role in the maintenance of maternal and fetal glucose

metabolism (107). Leptin decreases blood glucose level, and

modulates glucose and lipid metabolism in the liver (108). In

addition, leptin enhances hepatic acetyl-coenzyme A carboxylase

phosphorylation, FA oxidation and ketogenesis (109), and increases

microsomal triglyceride transfer protein expression in hepatic cells

via leptin receptors, which are involved in lipid transportation from

the liver to peripheral tissues (110). Furthermore, hepatic Kupffer

cells facilitate the effects of leptin on upregulation of hepatic FA

oxidation and downregulation of triglycerides dependent on PI3K

activity via leptin receptor in the liver (111).

Maternal obesity during pregnancy increases the risk of

offspring developing obesity, and obesity is characterized by

elevated levels of leptin in pregnant females (112). A state of

leptin resistance in the liver during mid-pregnancy helps

maintaining lipogenic metabolism, but an opposite pattern in late

pregnancy favors catabolic metabolism in the liver, which is

independent of progesterone and prolactin (113). Therefore, the

mechanism by which leptin regulates maternal hepatic lipid

metabolism requires investigation in the future.
5.13 Prostaglandins

PGD2 can regulate glucose homoeostasis and/or other specific

metabolic processes inside parenchymal liver cells (114). In

addition, PGs mediate intercellular communication between liver

cell populations in regulating liver carbohydrate metabolism, and

PGF2a, PGD2 or PGE2 treatment increases glucose output (115).

Furthermore, PGs, mainly PGD2, from Kupffer and endothelial

cells can influence glucose release from hepatic parenchymal cells

(116), and PGE2 can attenuate fat deposition in mouse primary

hepatocytes (117). In addition, cyclooxygenase-2, PGE synthase and

PGF synthase are upregulated in the maternal liver during early

pregnancy, which are related to maternal hepatic function

adjustment during early pregnancy in an animal model (118).
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5.14 Fibroblast growth factor 21

FGF21 is mainly secreted by the liver, and modulated by

glucosamine to improve hepatic glucose metabolism via the

nuclear factor kappa B, p38 and protein kinas pathways (119).

In addition, Th2 cytokines interleukin-4 (IL-4) and IL-13

enhance expression of FGF21 to modulate energy metabolism

via the IL-4/IL-13-signal transducer and activator of

transcription 6 axis in the liver (120). Furthermore, adiponectin

couples FGF21 actions to mediate hepatic glucose homeostasis

and insulin sensitivity, which attenuates hepatic steatosis and

obesity-induced impairment in mice (121). Moreover, exenatide

and liraglutide induce hepatic FGF21 synthesis, which suppresses

the activities of G6Pase and PEPCK induced in a paracrine

manner in hepatocytes, and controls energy homeostasis in an

endocrine manner (122).

Hepatic FGF21 is a critical regulator of lipid homeostasis, which

is modulated by PPARa to change expression of key genes for

governing lipid and ketone metabolism in the liver (123). In

addition, FGF21 can directly regulate lipid metabolism and

reduce lipid accumulation to reverse nonalcoholic fatty liver

disease through an insulin-independent pathway, which is

associated with retinoid-related orphan receptor response

element, PPARg coactivator-1a, and retinoid acid receptor-related

orphan receptor a in hepatocytes (124). Furthermore, expression of

FGF21 gene is increased in the liver of dairy cows during the

transition from pregnancy to lactation (125), and the liver is the

major source of plasma FGF21 in late pregnancy (126). Moreover,

there is increased FGF21 secretion and hepatic triglyceride content

during pregnancy, indicating that FGF21 is involved in balancing

lipid homeostasis and meeting maternal and infant energy

requirements in late pregnancy (127).
6 Conclusions

It is a worldwide problem that half of pregnant women suffer

frommaternal obesity and other pregnancy-associated liver diseases

(128). It is reviewed in this paper that pregnancy induces insulin

resistance, and improves the production of glucose, increases the

transport of FAs, triglyceride and cholesterol, protein synthesis

from AAs, but decreases the production of glucose and urea from

AAs. In addition, some endocrine hormones and autocrine factors

have effects on glucose metabolism, lipid and cholesterol

metabolism, and protein metabolism. Therefore, more studies are

necessary to determine food-based dietary guidelines for the

pregnant women and the regulatory mechanisms of maternal

hepatic nutrition adaptations depending on the pregnancy stages.

Furthermore, success in these areas will bring new hopes for

pregnancy precision nutrition and prevention of pregnancy-

related nutrition diseases.
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Association between maternal
and fetal inflammatory
biomarkers and offspring weight
and BMI during the first year of
life in pregnancies with GDM:
MySweetheart study
Maria-Christina Antoniou1†, Dan Yedu Quansah2†,
Leah Gilbert2,3, Amar Arhab2, Sybille Schenk2, Alain Lacroix2,4,
Bobby Stuijfzand2, Antje Horsch4,5 and Jardena
Jacqueline Puder2* on behalf of MySweetheart Research group
1Unit of Pediatric Endocrinology and Diabetology, Pediatric Service, Woman-Mother-Child
Department, Lausanne University Hospital, Lausanne, Switzerland, 2Obstetric Service, Woman-
Mother-Child Department, Lausanne University Hospital, Lausanne, Switzerland, 3Nepean Clinical
School, Faculty of Medicine and Health, The University of Sydney, Penrith, NSW, Australia, 4Institute of
Higher Education and Research in Healthcare (IUFRS), University of Lausanne, Lausanne, Switzerland,
5Neonatology Service, Woman-Mother-Child Department, Lausanne University Hospital,
Lausanne, Switzerland
Background: Gestational Diabetes Mellitus (GDM) is frequently associated with

chronic, low-grade inflammation. Whether this environment affects offspring

anthropometry during early childhood remains to be elucidated. The aim of this

study was to investigate the associations between maternal and fetal (cord

blood-umbilical artery) inflammatory biomarkers and offspring weight and BMI

up to 1 year in pregnancies with GDM.

Methods: In this prospective secondary analysis of the MySweetheart study, we

included 193 women with GDM and their offspring. Maternal and fetal (N=39)

predictors included serum levels of inflammatory biomarkers including CRP, IL-

6, and TNF-a at 24-32 weeks of gestational age (GA) and in the cord blood.

Offspring outcomes were small and large for gestational age (SGA, LGA), sex- and

age-adjusted weight, and BMI at birth and at 1 year. Univariate and multivariate

regression models were performed. Associations were adjusted for maternal

pre-pregnancy BMI, age, and ethnicity.

Results:Mean maternal age was 33.6 ± 4.8 years, and pre-pregnancy BMI 25.9 ±

5.6 kg/m2. Their mean gestational age at the 1st GDM visit was 29 ± 2.4 weeks.

Gestational age at delivery was 39.7 ± 1.1 weeks, with a mean birthweight of 3.4 ±

0.46 kg; 11.8% of offspring were LGA and 10.8% were SGA. At 1 year of age, mean

offspring weight was 9.8 ± 1.2 kg and BMI z-score 0.23 ± 1.1 kg/m2. In the models

including only maternal predictors, TNF-a at 24-32 weeks of GA was positively

associated with SGA and inversely with offspring weight and BMI at birth and at 1

year (p ≤0.034). In the models including only fetal predictors and the combined

model, CRP was inversely associated with BMI at 1 year (p ≤0.020).
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Conclusions: In women with GDM, maternal and fetal inflammatory biomarkers

distinctively influenced offspring anthropometry during the first year of life,

independent of maternal age, prepregnancy BMI and ethnicity. These results

suggest that low-grade inflammation during pregnancy may affect the

developing offspring by leading to a decrease in weight and BMI and may have

implications for future personalized follow-up of women with GDM and

their offspring.
KEYWORDS

gestational diabetes, offspring anthropometry, perinatal inflammation, cord blood CRP,
maternal pro-inflammatory cytokines
1 Introduction

Inflammation is associated with an increased risk of insulin

resistance, hyperglycemia, metabolic syndrome, and cardiovascular

disease (1–3). Increased inflammation during pregnancy caries an

increased risk for short-term complications in the mother and the

offspring, including miscarriage, gestational diabetes mellitus

(GDM), preeclampsia, preterm birth, intrauterine growth

restriction, and birth defects (4–8). Long-term complications in

the offspring such as specific behavioral complications, and

psychiatric disorders have also been recently evoked (9). Maternal

GDM may be associated with a state of chronic, low-grade

inflammation, which often precedes its diagnosis (10). The

complex relationship between gestational diabetes and

inflammation is underscored by evidence of increased plasma

levels of pro-inflammatory cytokines, including plasma C-reactive

protein (CRP), interleukin-6 (IL-6), tumor necrosis factor alpha

(TNF-a) and/or IL-1a, in women with GDM and their fetuses

(umbilical cord) in some, but not all studies (11–16).

To the best of our knowledge, the association between maternal

inflammatory biomarkers during pregnancy and offspring weight or

BMI during the 1st year of life in pregnancies with GDM has not been

previously investigated. Most of the studies in the general population as

well as a study including a large population with a wide spectrum of

glucose tolerance (Hyperglycemia and Adverse Pregnancy Outcome

(HAPO) study), found an inverse association between pro-

inflammatory biomarkers during pregnancy and weight and
BMI, body mass index;

dard deviation, FMI, fat

abetes mellitus; GWG,

d Adverse Pregnancy

national Association of

, institute of medicine;

l glucose tolerance test;

F-a, tumor necrosis
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adiposity at birth (17–21). In the general pregnant population, this

association was not significant (22). Beyond birth, 2nd trimester plasma

CRP in healthy pregnancies has been associated with a higher

childhood fat mass index (FMI) and trunk FMI in preschoolers (23).

Regarding fetal predictors, existing studies in different populations (the

general pregnant population, and populations with high prevalence of

GDM), found no association between cord blood inflammatory

biomarkers, such as CRP, IL-6 and TNF-a, and offspring weight and

adiposity at birth (18, 24–26). However, the association between both

maternal or fetal (cord blood) inflammatory biomarkers, including

CRP, IL-6, and TNF-a has not been studied in populations with GDM

(18, 21). There is also a lack of data on the impact of inflammatory

biomarkers during the first year of life beyond birth in this population.

Obesity and aging are associated with low-grade inflammation (27–29).

Inflammatory biomarkers vary across different ethnic groups,

underscoring the intricate interplay of genetic, environmental and

social factors in shaping health disparities (30) A recent study in the

general population found that maternal obesity-related inflammation

during pregnancy increased the risk of childhood obesity in an ethnic-

specific manner (31). However, it is unclear if this low-grade

inflammation environment in pregnancies with GDM influences

offspring anthropometry and contributes to the development of

metabolic health disorders in offspring during early childhood as well

as later in life.

The aims of this study were: 1) to investigate the associations

between maternal and fetal inflammatory biomarkers on offspring

anthropometric parameters at birth and at 1 year in a population of

women with GDM; 2) to determine if the proposed associations are

independent of maternal pre-pregnancy BMI, age, and ethnicity.
2 Materials and methods

2.1 Study design and informed consent

The present study is a secondary data analysis of theMySweetheart

trial, a randomized-controlled intervention trial of 211 women ≥18

years with GDM and their offspring (Clinicaltrials.gov NCT02890693)
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(32), followed during pregnancy until one year postpartum in the

Diabetes and Pregnancy Unit in the Lausanne University Hospital,

Switzerland. GDM was diagnosed between 24 and 32 weeks of

gestational age (GA), according to the International Association of

Diabetes and Pregnancy Study Group (IADPSG Criteria) (33). Details

of the study protocol have been previously described (32). Women on

strict bed rest, with a severe mental health disorder, pre-existing

diabetes, and women who did not understand English or French

were excluded from the study. Signed informed consent was

obtained from all participating women. The study was conducted in

accordance with the guidelines of the declaration of Helsinki and good

clinical practice. The Human Research Ethics Committee of the

Canton de Vaud approved the study protocol (study number 2016-

00745). Included women were randomized to the usual care or

intervention group after the baseline visit and signing of an

informed consent.
2.2 Allocation groups

2.2.1 Usual care group
Women randomized to usual care received treatment based on

the American Diabetes Association and on the Endocrine Society

guidelines for the management of GDM (34, 35). They had regular

appointments every 1-3 weeks with a physician or a diabetes-

specialist nurse and a dietician after the GDM diagnosis, and

were encouraged to increase physical activity (34). During the 1st

visit at 24-32 weeks of GA, they were taught how to perform self-

monitoring of blood glucose (4 times during the day-fasting and 2

hours post-prandial). If glucose values remained above targets two

or more times during a 1 to 2-week period (fasting glucose >5.3

mmol/l, 1-h postprandial glucose >8 mmol/l and/or 2-h

postprandial glucose >7 mmol/l) despite lifestyle changes, insulin

treatment or very rarely metformin was introduced depending on

patient’s glucose values and preferences. After delivery, glucose

controls and glucose-lowering treatments were stopped. Women

saw a physician and a dietician at the 6-8 week postpartum visit

after an oGTT test to discuss further management.

2.2.2 Intervention group
Women randomized to the intervention group received a

multidimensional, interdisciplinary lifestyle and psychosocial

intervention on top of usual care, centered on eating behavior, a

balanced food intake, as well as physical activity and breastfeeding. The

intervention also included a psychosocial component, including the

assessment and treatment of depression during and after pregnancy.

During pregnancy and up to 1 year postpartum, patients were

supported by a lifestyle coach [see (32] for more details).
2.3 Follow-up

For the current analysis, we used maternal data from their 1st

GDM visit at 24-32 weeks of GA, and offspring data at birth, and at 1

year. At the 1st GDM visit, information on maternal socio-
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demographic characteristics were collected and maternal

anthropometric parameters and inflammatory biomarkers were

measured in the serum. Immediately after birth, blood was drawn

from the umbilical cord to measure inflammatory biomarkers.

Newborn anthropometric parameters were obtained from the

hospital birth record. At 1 year postpartum, the offspring’s

anthropometric measures including weight and length were collected.
2.4 Maternal, fetal and
offspring parameters

2.4.1 Maternal descriptive and
confounder variables

Maternal socio-demographic parameters, including age,

ethnicity, and parity were collected during the 1st GDM visit.

Ethnicity was classified into Low (Europe, North America) and

High Metabolic Risk (Asia, Central and South America, Africa,

Oceania) ethnic groups (35). Pre-pregnancy BMI was calculated

using weight information from medical charts and height measured

during the 1st visit at the GDM clinic. In rare circumstances when

pre-pregnancy weight was not mentioned in the chart, it was self-

reported during the 1st GDM visit. Height was measured at the 1st

GDM visit to the nearest 0.1 cm with a regularly calibrated Seca®

height scale. GWG was determined as the difference between the

weight at the end of pregnancy and pre-pregnancy weight. Glucose-

lowering maternal medical treatment for GDM was classified into

two categories (no treatment, treatment with insulin and/or very

rarely metformin). HbA1c using a chemical photometric method

(conjugation with boronate; Afinion®).

2.4.2 Maternal and fetal (cord blood)
inflammatory predictor variables

At the 24-32 weeks of GA visit, maternal inflammatory

parameters, including CRP, IL-6, and TNF-a were measured in

maternal serum. At birth, CRP, IL-6, and TNF-a were again

measured in the cord blood (umbilical artery) (36). CRP was

analyzed at the Lausanne University Hospital in serum aliquots

using a latex-enhanced immunoturbidimetric assay on a Cobas

8000 autoanalyzer (Roche Diagnostics, Mannheim, Germany) with

assay characteristics as reported by the manufacturer. We also

measured IL-6 (U-PLEX Human IL-6 Antibody Set) and TNF-a
(U-PLEX Human TNF-a Antibody Set) using ELISA according to

the manufacturer’s instructions.

2.4.3 Offspring descriptive and outcome variables
At birth, weight (g) and length (cm) were documented;

percentiles and z-scores for these parameters were calculated

using the Intergrowth 21st newborn size application tool (37).

BMI was also calculated. LGA was defined as birth weight >90th

percentile and SGA as birth weight <10th percentile for sex and

gestational age. Gestational age was calculated according to the date

of the last menstruation, or as assessed by the fetal ultrasound in the

cases where gestational age was adapted during the early in-utero

ultrasound evaluation. Neonatal antropometric parameters were
frontiersin.org

https://doi.org/10.3389/fendo.2024.1333755
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Antoniou et al. 10.3389/fendo.2024.1333755
obtained from patient medical charts. If the birth took place in

another hospital or clinic, they were provided by the

respective hospital.

At the 1 year visit, offspring weight (kg) and length (cm) were

measured, using standardized methods (38). BMI was calculated. Z-

scores for weight, length and BMI were calculated using the WHO

Anthro Survey Analyser tool -Offline version (39).

2.4.4 Predictors and outcomes
Predictors comprised maternal (1st GDM visit) and fetal (cord

blood), including CRP, IL-6, and TNF-a. Outcomes included

offspring anthropometric parameters at birth and 1 year. More

precisely, birth outcomes included weight, BMI, LGA, and SGA,

and outcomes at 1 year, weight, and BMI.
2.5 Statistical analysis

Data analysis was performed using Stata/SE 16.0 (StataCorp

LLC, TX, USA). The normality of continuous variables were

assessed using histograms and Q-Q plots. Outcomes variables

were normally distributed. Continuous variables were described

as means and standard deviations and binary outcomes as N

(percentages) (Table 1). Comparisons between the intervention

and control group were conducted using the unpaired t-test for

normally distributed continuous variables, the Mann-Whitney test

for continuous variables with non-normal distribution and the

Fisher’s exact test for binary variables. In all analyses, predictors

and outcomes did not differ in the respective allocation groups

(intervention vs usual care) and the effect sizes were similar. Thus,

women from both groups were pooled together and we adjusted for

group allocation in all analyses. Where appropriate, all analyses

were also adjusted for infant age and sex.

We performed a Spearman’s rank correlation coefficient test

to investigate the correlation between maternal and fetal

cord inflammatory parameters and the presence of collinearity

(Supplementary Table 1). No collinearity was found between

predictors (rs < 0.6). We then conducted univariate linear and

logistic regression analyses using offspring outcomes as the

dependent variables (Supplementary Tables 2, 3). Maternal and

fetal predictors with a p-value < 0.05 in univariate analysis were

included in stepwise multiple regression analyses models.

We performed different multivariate models. In terms of

predictors, three multivariate models were used, a first model

including only maternal predictors, a second model including

only fetal predictors and a third model including both maternal

and fetal predictors. Fetal predictors were available for N = 39

participants. In terms of adjustments, the above models were

adjusted for maternal age, pre-pregnancy BMI, and ethnicity in

addition to the already mentioned adjustments (group allocation,

offspring age and sex). The analyses and adjustments were

performed in order to identify the most significant maternal and

fetal predictors of infant anthropometric parameters at birth and 1

year, and to determine the extent of the impact of these predictors

independent of maternal confounder variables, i.e., ethnicity, age,
Frontiers in Endocrinology 0476
and obesity; known to be associated with low-grade inflammation

(27–29) (Table 2). For all analyses, b-coefficients (for continuous
outcomes) and adjusted odds ratios (aORs-for binary outcomes) are

reported along with their 95% confidence intervals (CIs), and

statistical significance was set at p<0.05.
TABLE 1 Maternal and offspring characteristics.

Maternal
Characteristics

Infant
characteristics

Number of patients (N) 193 Birth
anthropometric
parameters

Age (years) 33.6 ± 4.8 Number of patients 190
(Male:52%)

High risk ethnicity (yes;
N(%)

39 (22.7%) Gestational
age (weeks)

39.7 ± 1.1

Pre-pregnancy BMI
(kg/m2)

25.9 ± 5.6 Weight (kg) 3.4 ± 0.46

Gestational weight
gain (kg)

12.6 ± 6.5 Weight z-score
(SD) 1

0.18 ± 1.1

Glucose lowering
medical treatment

85 (46.5%) Length (cm) 49.6 ± 2.4

Gestational age at the at
the 1st GDM
visit (weeks)

29 ± 2.4 Length z-score
(SD) 1

0.10 ± 1.4

HbA1c at the 1st GDM
visit (%)

5.1 ± 0.31 BMI (kg/m2) 13.7 ± 1.7

(mmol/mol) 32.2 ± 2.0 LGA 1,2 22 (11.8%)

Maternal
inflammatory
parameters

SGA 1,3 20 (10.8%)

CRP at the 1st GDM
visit (mg/L)

4.5 ± 3.8 1 year
anthropometric
parameters

IL-6 at the 1st GDM
visit (pg/ml)

1.0 ± 1.3 Number of patients 170
(Male:52%)

TNF-a at the 1st GDM
visit (pg/ml)

0.74 ± 0.76 Age (months) 12.4 ± 1.0

Fetal parameters Weight (kg) 9.8 ± 1.2

Number of patients 39 Weight z-score
(SD) 4

0.32 ± 0.91

Cord blood CRP (mg/L) 0.29 ± 0.51 Length z-score
(SD) 4

0.27 ± 1.2

Cord blood IL-6 (pg/ml) 7.21 ± 7.55 BMI (kg/m2) 16.9 ± 1.6

Cord blood TNF-a
(pg/ml)

1.5 ± 0.46 BMI z-score (SD) 4 0.23 ± 1.1
fro
BMI, body mass index; CRP, C-reactive protein; GDM, gestational diabetes mellitus; HbA1c,
glycated hemoglobin; IL-6, interleukin 6; LGA, large for gestational age; SD, standard
deviation; SGA, small for gestational age; TNF-a, tumor necrosis factor alpha.
1according to the Intergrowth 21st newborn size application tool (37).
2LGA: birth weight >90th percentile for sex and gestational age using the Intergrowth 21st

newborn size application tool (37).
3SGA: birth weight <10th percentile for sex and gestational age using the Intergrowth
newborn size application tool (37).
4according to the WHO Anthro Survey Analyser tool (39).
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3 Results

The initial population included 211 women with GDM. As

previously described (38), one woman was excluded as the

diagnosis of GDM was done too early (< 13 weeks of gestation),

and 17 were excluded due to multiple gestation, and/or because

their offspring were premature (gestational age (GA) < 37 weeks.

Thus, 193 women and their offspring were included in

the analyses.
3.1 Maternal, fetal and
infant characteristics

Table 1 describes the maternal characteristics, fetal

inflammatory parameters, and offspring anthropometry at birth

and 1 year. In summary, mean maternal age was 33.6 ± 4.8 years,

and pre-pregnancy BMI was 25.9 ± 5.6 kg/m2. Their mean

gestational age at the 1st GDM visit at 24 to 32 weeks of GA

was 29 ± 2.4 weeks. Gestational age at delivery was 39.7 ± 1.1

weeks, with a mean birthweight of 3.4 ± 0.46 kg; 11.8% of

offspring were LGA and 10.8% were SGA. At 1 year of age,

mean offspring weight was 9.8 ± 1.2 kg and BMI z-score 0.23 ± 1.1

kg/m2. Maternal and fetal (cord blood) inflammatory biomarkers,

including CRP, IL-6, and TNF-a were not significantly correlated

(Supplementary Table 1).
3.2 Associations between maternal and
fetal predictors and offspring
anthropometry at birth and 1 year in
univariate analyses

3.2.1 Birth
TNF-a at the 1st GDM visit was inversely associated with

offspring weight [b-coefficient= -0.107 (CI: -0.189; -0.026),

p=0.010] and BMI at birth [b-coefficient= -0.501 (CI: -0.816;

-0.186), p=0.002] and positively with SGA [OR= 0.492 (CI: 0.056;

0.927), p=0.027], and cord blood CRP was inversely associated with

offspring weight [b-coefficient= -0.370 (CI: -0.659; -0.081),

p=0.015] and BMI at birth [b-coefficient= -1.052 (CI: -1.900;

-0.205), p=0.017]. No association was found between maternal

and fetal inflammatory biomarkers and LGA (all p ≥0.199,

Supplementary Table 2).
3.2.2 One year
TNF-a at the 1st GDM visit was inversely associated with

offspring weight [b-coefficient= -0.376 (CI: -0.625; -0.128),

p=0.003] and BMI at 1 year pb-coefficient= -0.641 (CI: -1.003;

-0.279), p=0.001], and cord blood CRP and TNF-a were inversely

associated with offspring BMI at 1 year [b-coefficient= -2.566 (CI:

-3.666; -1.465), p=0.000] and [b-coefficient= -2.177 (CI: -3.671;

-0.684), p=0.006], respectively, Supplementary Table 3).
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3.3 Associations between maternal and
fetal predictors and offspring
anthropometry at birth and 1 year in
multivariate analyses

The significant results of all multivariate analyses are shown

in Table 2.

3.3.1 Birth
In the models including only maternal predictors, TNF-a at

the 1st GDM visit was inversely associated with offspring weight

[b-coefficient= -0.090 (CI: -0.170; -0.010), p=0.028] and BMI [b-
coefficient= -0.455 (CI: -0.773; -0.137), p=0.005], and positively
TABLE 2 Maternal serum and fetal cord blood predictors of offspring
anthropometric outcomes in multivariate regression analyses.

Offspring
outcomes

Predictors
OR1/

b-coefficient 95% CI
p-

value

Birth

Maternal

Weight (kg) TNF-a at the
1st GDM visit
(pg/ml) 2

-0.090 -0.170 -0.010 0.028

BMI (kg/m2) TNF-a at the
1st GDM visit
(pg/ml) 2

-0.455 -0.773 -0.137 0.005

SGA 3 TNF-a at the
1st GDM visit
(pg/ml) 2

1.609 1 1.036 2.500 0.034

1 year

Maternal
& Fetal

BMI (kg/m2) Cord blood
CRP (mg/L)

-2.838 -4.029 -1.646 0.001

Maternal

Weight (kg) TNF-a at the
1st GDM visit
(pg/ml) 2

-0.411 -0.659 -0.163 0.001

BMI (kg/m2) TNF-a at the
1st GDM visit
(pg/ml) 2

-0.702 -1.069 -0.335 0.000

Fetal

BMI (kg/m2) Cord blood
CRP (mg/L)

-2.838 -4.029 -1.646 0.001
frontie
BMI, body mass index; CI, Confidence Interval; CRP, C-reactive protein; GDM, gestational
diabetes mellitus; HbA1c, glycated hemoglobin; IL-6, interleukin 6; LGA, large for gestational
age; OR, Odds Ratio; SD, standard deviation; SGA, small for gestational age; TNF-a, tumor
necrosis factor alpha.
1this value corresponds to an OR.
2the mean gestational age at the 1st GDM visit was 29 ± 2.4 weeks.
3SGA: birth weight < 10th percentile for sex and gestational age using the Intergrowth 21st
newborn size application tool (37).
Stepwise multiple logistic regression analyses. All analyses were adjusted for maternal age, pre-
pregnancy BMI, and ethnicity (high/low risk), allocation group (intervention/usual care), and
infant sex and age (where appropriate). Outcomes are only shown if at least one predictor is
found. Only significant results are displayed (defined significance, p-value <0.05, see text).
Three distinct sub-models were performed (combined model, including maternal and fetal
predictors, model including only maternal or only fetal predictors), and results are
displayed separately.
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with SGA [OR= 1.609 (CI: 1.036; 2.500), p=0.034]. No significant

associations were found between maternal and fetal inflammatory

biomarkers and offspring anthropometry in models including

only fetal predictors or in the combined model (p ≥ 0.05).

3.3.2 One year
In models including maternal predictors, TNF-a at the 1st

GDM visit was inversely associated with offspring weight [b-
coefficient= -0.411 (CI: -0.659; -0.163), p=0.001] and BMI at 1

year [b-coefficient= -0.702 (CI: -1.069; -0.335), p=0.000]. In models

including fetal predictors as well as in the combined model, cord

blood CRP showed an inverse association with BMI at 1 year [b-
coefficient= -2.838 (CI: -4.029; -1.646), p=0.001].
4 Discussion

This prospective, secondary analysis of the MySweethheart study,

of women with GDM and their offspring showed that maternal and

fetal inflammatory biomarkers predicted offspring weight and BMI

during the 1st year of life, independent of maternal age, pre-

pregnancy BMI, and ethnicity. In the adjusted analyses, maternal

TNF-a at 24-32 weeks GA was positively associated with SGA and

inversely with offspring weight and BMI at birth and at 1 year,

whereas. CRP was inversely associated with offspring BMI at 1 year

independent of maternal predictors. Thus, while maternal cytokines

predicted lower weight and BMI, both at birth and up to 1 year, the

impact of fetal CRP was observed at 1 year.
4.1 Impact of maternal and fetal
inflammatory parameters on offspring
anthropometry at birth

In our study, maternal serum concentrations of TNF-a at the 1st

GDM visit at 24-32 weeks of GA were negatively associated with

offspring weight and BMI at birth and positively with SGA. This is

consistent with a recent study in a healthy population that found a

negative correlation between inflammatory biomarkers such as CRP,

and IL-6, and birthweight (17). Other studies have evaluated the

impact of maternal inflammatory parameters and offspring birth

outcomes in healthy pregnant women, as well as in populations with

some degree of glucose intolerance (19, 20, 22, 40, 41). Thus, maternal

CRP levels in early pregnancy were associated with higher rates of

SGA in the general population (40), and those during the 3rd

trimester were inversely associated with offspring weight and sum

of skinfolds at birth in the general population and in a subpopulation

of the HAPO Study (19, 20). No correlations between maternal 3rd

trimester TNF-a, and IL-6 values and fetal adiposity or birthweight

were found in a healthy pregnant population of women without

GDM (22), whereas maternal 2nd and 3rd trimester IL-6 values were

inversely associated with weight and sum of skinfolds at birth in a

study including women with GDM and without GDM (41). A study

performed in women with a previous history of having a macrosomic

infant, but without GDM, found no association between maternal IL-

6 and TNF-a and birthweight and adiposity measures in the total or
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male cohort; however, an inverse association was found between

maternal 3rd trimester IL-6 levels and the sum of skinfolds at birth in

the female cohort (18). Thus, most of the previous studies have

shown an inverse association between maternal pro-inflammatory

markers, including CRP, IL-6 and/or TNF-a, and offspring

anthropometry at birth. For the first time, our data extends this

now to a metabolically high-risk population of women with GDM.

Evidence indicates a U-shaped curve relating the size at birth with

long-term cardiometabolic disease, highlighting the significance of

optimal fetal growth for long-term health outcomes (42, 43). The

impact of maternal pro-inflammatory factors on fetal growth may be

mediated by their direct and indirect effects on the placental

development, function and immunomodulatory activity, as well as

on the hormone synthesis and action in the materno-fetal unit (41,

44, 45). The absence of association between IL-6 levels and BMI or

weight in our study may be possibly explained by the fact that IL-6

correlates more closely with visceral adiposity (46), which was not

specifically evaluated.

We found no associations between cord blood inflammatory

biomarkers and offspring anthropometry at birth. Similarly, studies

in the general population as well as in populations with high

prevalence of GDM, and/or pre-existing diabetes, found no

association between cord blood IL-6, CRP or increased CRP

[CRP >0.3 mg/l (2.9 nmol/l)] levels and one or more

anthropometric/adiposity measures at birth (including weight,

weight z-score, LGA, fat mass, % body fat, sum of skinfold

thickness) (21, 24–26).During the process of birth, there is a

physiological increase in the cord blood pro-inflammatory marker

concentration and this increase may be further influenced by other

parameters, including the duration of labor and the mode of

delivery (47, 48).Therefore, cord blood inflammatory biomarkers

may be a complex reflexion of both the prenatal and the perinatal

fetal inflammatory milieu, explaining the correlation between

inflammatory biomarkers in the cord blood and offspring

anthropometry later in life (at 1 year) but not at birth. Yeung

et al, found an association between cord blood CRP levels and DNA

methylation in the cord blood, particularly in gene regions

associated with angiogenic and inflammatory pathways, which in

turn could have an impact on future cardio-metabolic risk (49).

Recent research suggests that methylation in specific inflammation-

related genes in the cord blood is associated with adiposity measures

later in the development, such as in early childhood (50). Additional

investigation is warranted to elucidate the complex mechanisms

that underlie the impact of pro-inflammatory cytokines in the cord

blood on offspring body composition and metabolic profile

during childhood.
4.2 Impact of maternal and fetal
metabolism on infant weight and BMI
during childhood

In our population, maternal serum concentrations of TNF-a
during the 3rd trimester were inversely associated with offspring

weight and BMI at 1 year. Our results are in agreement with a study

in a population of women with a relatively low GDM prevalence
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(4.5%), where higher 2nd trimester CRP levels were associated with a

higher childhood fat mass index (FMI), and trunk FMI, but this

later in the development, i.e. in early (3-5 years) and mid childhood

(7-10 years) (23). Our results are, however, contrary to a study

performed in the general population where 1st trimester IL-6 and

TNF-a were not associated with offspring adiposity measures,

including weight, BMI z-scores at 2-6 years (31). In another

study, 1st trimester IL-6 and TNF-a were not associated with

weight and adiposity measures at 6 months of age in the total

and male cohort, but only with adiposity measures in the female

cohort (18). In a large, Danish general population, CRP, TNF-a, IL-
6, and IL-1b measures in the 3rd trimester was not associated with

offspring BMI, waist circumference, blood pressure, glucose

metabolism measures, or lipid profile at the age of 20 years (51).

Data on the association between fetal (cord blood) inflammatory

parameters and offspring growth during the first years of life are scarce.

The above mentioned study of women with a history of macrosomia in

the absence of GDM, found no association between cord blood IL-6,

and TNF-a and offspring weight or adiposity measures at 6 months in

their cohort (18). Regarding fetal predictors, in a cohort of children

born extremely premature (< 28 weeks gestational age), showed that

elevated IL-6 on day 1 in the newborn was associated with an increased

risk for obesity at 2 years in multivariate models (52).
4.3 Speculations on the mechanisms of
impact of maternal and fetal metabolism
on offspring anthropometry during the first
years of life in women with GDM

In pregnancies with GDM, the impact on offspring

anthropometry is multifaceted, involving intricate mechanisms that

span maternal, placental, and fetal domains (38, 53, 54). These

include various factors such as maternal insulin resistance, elevated

cytokines, and subsequent effects on placental function (41, 44).

Inflammation and hyperglycemia lead to disruptions in insulin-like

growth factors and adiponectin influencing fetal growth patterns and

adipose tissue development (55, 56). Exposure to GDM may induce

epigenetic modifications, affecting gene expression linked to fetal

development and could be a mechanism leading to metabolic

dysfunction later in life (57). Additionally, maternal obesity and

excessive gestational weight gain, prevalent in GDM, independently

contribute to adverse offspring outcomes (58, 59). This collective

interplay underscores the complexity of factors influencing offspring

anthropometry in the context of GDM, emphasizing the need for a

comprehensive understanding of both inflammatory and metabolic

pathways in order to identify potential therapeutic targets.
4.4 Strengths and limitations

To our knowledge, this is the first study assessing the impact of

maternal and fetal inflammatory biomarkers on offspring

anthropometric parameters at birth and up to 1 year of life in a

metabolically high-risk population of women with GDM and their

offspring. Another strength of our study is the prospective design.
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Nevertheless, some limitations ought to be mentioned. Maternal

inflammatory biomarkers were measured only once during gestation.

Moreover, offspring predictors did not include height and head

circumference as we opted to focus on metabolic health-related

anthropometric parameters. As the focus of this study was to

investigate the relationship between biomarkers and offspring

metabolic health-related offspring in a metabolically high-risk

population, we lack a proper control group of healthy participants.

Cord blood (umbilical artery) parameters were only available for 39

patients; which could influence our results, especially the correlations.

Additionally, due to the small sample size of cord blood parameters,

separate analyses for the intervention and usual care group, as well as

infant sex could not be performed. However, maternal and fetal

predictors and infant anthropometry did not differ between both

groups and we always adjusted for group allocation.
4.5 Conclusions

Maternal and fetal inflammatory biomarkers including TNF-a at

24-32 weeks of GA and cord blood CRP distinctively influenced

offspring weight and BMI during the first year of life, and this

independent of maternal age, ethnicity, and pre-pregnancy BMI.

The impact of fetal inflammatory biomarkers was not apparent at

birth but was observed at 1 year. Further research is warranted to

elucidate how the inflammatory milieu before and during birth might

impact the developing offspring, and may in turn have implications

for designing intervention strategies based on maternal and cord

blood inflammatory biomarkers in order to decrease the risk of

offspring metabolic dysfunction in the medium and long-term.
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17. Kırıcı P, Çağıran FT, Kalı Z, Tanrıverdi ES, Mavral N, Ecin SM. Determination
of maternal serum pro-inflammatory cytokine changes in intrauterine growth
restriction. Eur Rev Med Pharmacol Sci. (2023) 27(5):1996–2001. doi: 10.26355/
eurrev_202303_31565

18. Donnelly JM, Lindsay K, Walsh JM, Horan MK, O’Shea D, Molloy EJ, et al.
Perinatal inflammation and childhood adiposity – a gender effect? J Maternal-Fetal
Neonatal Med. (2020) 33:1203–10. doi: 10.1080/14767058.2018.1517315

19. Kuzawa CW, Fried RL, Borja JB, McDade TW. Maternal pregnancy C-reactive
protein predicts offspring birth size and body composition in metropolitan Cebu,
Philippines. J Dev Orig Health Dis. (2017) 8:674–81. doi: 10.1017/S2040174417000502

20. Lowe LP, Metzger BE, Lowe WL Jr., Dyer AR, McDade TW, McIntyre HD.
Inflammatory mediators and glucose in pregnancy: Results from a subset of the
hyperglycemia and adverse pregnancy outcome (HAPO) study. J Clin Endocrinol
Metab. (2010) 95:5427–34. doi: 10.1210/jc.2010-1662

21. Radaelli T, Uvena-Celebrezze J, Minium J, Huston-Presley L, Catalano P,
Hauguel-de Mouzon S. Maternal interleukin-6: marker of fetal growth and adiposity.
J Soc Gynecol Investig. (2006) 13:53–7. doi: 10.1016/j.jsgi.2005.10.003

22. Farah N, Hogan AE, O'Connor N, Kennelly MM, O'Shea D, Turner MJ.
Correlation between maternal inflammatory markers and fetomaternal adiposity.
Cytokine. (2012) 60:96–9. doi: 10.1016/j.cyto.2012.05.024

23. Gaillard R, Rifas-Shiman SL, Perng W, Oken E, Gillman MW. Maternal
inflammation during pregnancy and childhood adiposity. Obes (Silver Spring). (2016)
24:1320–7. doi: 10.1002/oby.21484

24. Lee IL, Barr ELM, Longmore D, Barzi F, Brown ADH, Connors C, et al. Cord
blood metabolic markers are strong mediators of the effect of maternal adiposity on
fetal growth in pregnancies across the glucose tolerance spectrum: the PANDORA
study. Diabetologia. (2020) 63:497–507. doi: 10.1007/s00125-019-05079-2

25. Vasilakos LK, Steinbrekera B, Santillan DA, Santillan MK, Brandt DS, Dagle D,
et al. Umbilical cord blood leptin and IL-6 in the presence of maternal diabetes or
chorioamnionitis. Front Endocrinol (Lausanne). (2022) 13:836541. doi: 10.3389/
fendo.2022.836541

26. Aramesh MR, Dehdashtian M, Malekian A, ShahAli S, Shojaei K. Relation
between fetal anthropometric parameters and cord blood adiponectin and high-
sensitivity C-reactive protein in gestational diabetes mellitus. Arch Endocrinol Metab.
(2017) 61:228–32. doi: 10.1590/2359-3997000000235

27. Rea IM, Gibson DS, McGilligan V, McNerlan SE, Alexander HD, Ross OA. Age
and age-related diseases: Role of inflammation triggers and cytokines. Front Immunol.
(2018) 9. doi: 10.3389/fimmu.2018.00586

28. Cox AJ, West NP, Cripps AW. Obesity, inflammation, and the gut microbiota.
Lancet Diabetes Endocrinol. (2015) 3:207–15. doi: 10.1016/S2213-8587(14)70134-2

29. Fernández-Sánchez A, Madrigal-Santillán E, Bautista M, Esquivel-Soto J,
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Iodine and other factors
associated with fertility outcome
following oil-soluble contrast
medium hysterosalpingography:
a prospective cohort study
Divya M. Mathews1,2, Jane M. Peart3, Robert G. Sim3,
Neil P. Johnson4,5,6, Susannah O’Sullivan7, José G B Derraik8,9,10

and Paul L. Hofman1,2*

1Liggins Institute, University of Auckland, Auckland, New Zealand, 2Starship Children’s Hospital, Health
New Zealand | Te Whatu Ora, Auckland, New Zealand, 3Auckland Radiology Group, Auckland, New
Zealand, 4Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia, 5Department of
Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland,
Auckland, New Zealand, 6Repromed Auckland, Auckland, New Zealand, 7Endocrinology, Greenlane
Clinical Centre, Auckland District Health Board, Auckland, New Zealand, 8Department of Paediatrics:
Child & Youth Health, Faculty of Medicine and Health Sciences, University of Auckland,
Auckland, New Zealand, 9Environmental–Occupational Health Sciences and Non-Communicable
Diseases Research Group, Research Institute for Health Sciences, Chiang Mai University, Chiang
Mai, Thailand, 10Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
Objective: To examine factors associated with ferti l i ty following

hysterosalpingography (HSG) using an oil-soluble contrast medium (OSCM).

Design: In a prospective cohort study on 196 women undergoing OSCM HSG,

we showed that iodine excess was almost universal (98%) and mild subclinical

hypothyroidism was frequent (38%). Here, we report the analyses of secondary

outcomes examining factors associated with the likelihood of pregnancy

following the HSG.

Setting: Auckland, New Zealand (2019–2021).

Sample: 196 women with primary or secondary infertility who underwent

OSCM HSG.

Methods: Baseline and serial urine iodine concentrations (UIC) and thyroid

function tests were measured over six months following the HSG. Pregnancy

and treatment with levothyroxine during the study period were documented.

Results: Following OSCM HSG, pregnancy rates were 49% in women aged <40

years (77/158) but considerably lower (16%) among those ≥40 years (6/38).

Similarly, live birth rates were markedly lower in women ≥40 years (17%; 1/6)

versus <40 years (73%; 56/77). 29% of participants were iodine deficient at baseline

despite advice recommending iodine fortification. Following HSG, the likelihood of

pregnancy in women with moderate iodine deficiency was 64% higher than in

women with normal iodine levels (p=0.048). Among women aged <40 years who

had subclinical hypothyroidism (n=75), levothyroxine treatment was associated
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with higher pregnancy rates compared to untreated women [63% (26/48) vs 37%

(10/27), respectively; p=0.047].

Conclusion: OSCM HSG was associated with higher pregnancy rates in women

≤40 than in those aged >40 years. Iodine deficiency was relatively common in

this cohort, and increased iodine levels from OSCM exposure may contribute to

the improved fertility observed with this procedure.

Trial registration: This study is registered with the Australian New Zealand

Clinical Trials Registry (ANZCTR: 12620000738921) https://anzctr.org.au/Trial/

Registration/TrialReview.aspx?ACTRN=12620000738921.
KEYWORDS

fertility, hysterosalpingography, iodine, oil-soluble contrast medium, pregnancy, age,
tubal patency, hypothyroidism
Introduction

Hysterosalpingography (HSG) with oil-soluble contrast

medium (OSCM) is known to improve pregnancy rates in women

with infertility (1–3). Pregnancy rates of 39.7% and live birth rates

of 38.8% were reported in the H2Oil study, the large multicentre

trial that confirmed the fertility enhancement with OSCM HSG (3).

Although the improvement in pregnancy rates was reported within

the initial six months of the procedure (3–5), little is known about

the characteristics of those women who achieved the greatest

fertility benefit. A secondary outcome analysis of the H2Oil study

could not identify any characteristics of women who would benefit

from OSCM HSG (6). The paucity of data in this area partially

reflects our lack of understanding of the mechanism(s) underlying

the improved fertility observed with OSCM HSG.

Nonetheless, several mechanisms have been proposed, including

a mechanical flushing effect (7), an immune-biological peritoneal

bathing effect (8), and an immune-biological uterine bathing effect

(9). The other hypothesis is that iodine in OSCM could contribute to

this fertility improvement (10). The reasons behind this postulation

are the association between iodine deficiency and infertility and the

iodine excess state produced by OSCM exposure. OSCM, such as

Lipiodol, contains approximately 480 mg/ml of iodine (11) and has a

reported half-life of approximately 50 days (12), creating severe and

prolonged iodine excess for six months post-procedure. Recently

published research from our group suggested almost universal (98%)

iodine excess following an OSCM HSG, leading to the frequent

occurrence of subclinical hypothyroidism (38%; 71/188) and an

occasional occurrence of late-onset hyperthyroidism (5%; 9/196)

(Supplementary Table 1) (13).

While iodine uptake via sodium-iodide symporters occurs

mainly in the thyroid, other tissues also actively take up iodine

from circulation. Two such examples are ovaries and endometrium,
0283
which have relatively high levels of sodium-iodide symporters (14,

15). The effect of iodine on the function of the ovaries and

endometrium remains unclear. Still, it seems likely to have an

important role, as iodine deficiency and insufficiency are well-

established causes of subfertility (16). This study aimed to

examine factors associated with increased fertility and live births

following OSCM HSG, particularly the potential effects of iodine

status on pregnancy rates before and after the HSG.
Methods

The SELFI (Safety and Efficacy of Lipiodol in Fertility

Investigations) Study was a prospective cohort study conducted in

the Auckland region, New Zealand (2019–2021) (17). 196

consecutively consenting women who underwent OSCM HSG

were followed for 6 months. The study’s primary outcome was

the development of subclinical hypothyroidism, and our findings on

iodine excess and thyroid dysfunction following OSCM HSG have

been published (13). Secondary outcomes related to fertility are

discussed in this article.

The inclusion and exclusion criteria are listed in Supplementary

Table 2. Details of the HSG protocol and investigations are available

in the published protocol (17). Clinical parameters assessed at

baseline (before the HSG) included urine iodine concentration

(UIC), and serum concentrations of thyroid stimulating hormone

(TSH), free thyroxine (FT4), free triiodothyronine (FT3), and anti-

mullerian hormone (AMH). The OSCM used in the HSG procedure

was Lipiodol Ultrafluide (Guerbet, Aulnay-Sous-Bois, France).

Following the HSG, participants had UIC measured at weeks 1, 4,

12, and 24, and thyroid function tests (TSH, Free T4 and Free T3)

done at weeks 1, 4, 8, 12, 16, 20, and 24 (Supplementary Figure 1).

Biochemical pregnancy was defined as a positive beta human
frontiersin.org
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chorionic gonadotropin (b-hCG) test. Live births were recorded,

and any thyroxine treatment initiated by their primary clinician

during the study period was documented.

The associations between clinical parameters and the likelihood

of biochemical pregnancy were assessed with generalised linear

models using a modified Poisson procedure with robust error

variances (18). Model outcomes were reported as the unadjusted

relative risk (RR) or the adjusted relative risk (aRR) and their

respective 95% confidence intervals (CI). Models were adjusted for

TSH levels and UIC at baseline, woman’s age (<35 years/35–39.9

years/≥40 years), and the instilled OSCM volume. UIC AUC

calculations and data analyses were performed using SAS v9.4 (SAS

Institute, Cary, NC, USA). Figures were created in GraphPad Prism

v8.2.1 (GraphPad Software Inc., San Diego, CA, USA). All statistical

tests were two-tailed, with statistical significance maintained at the

5% level, with no adjustments for multiple comparisons (19). There

was no imputation of missing values.
Results

Study population

Table 1 describes the demographic characteristics of the study

population at baseline (n=196). Participants had a median age of

36.2 years (range 26 to 49 years), with 38 (19%) women

aged ≥40 years.

Based on WHO definitions of iodine status (21), 55% of

participants were iodine sufficient, 29% were deficient, and 16%

had iodine excess (Table 1). Among those who were iodine

deficient, most (77%) had mild deficiency, and the rest (23%) had

moderate deficiency (Table 1).
Pregnancy rates following OSCM HSG

Overall, 83 participants (42%) had a biochemical pregnancy

(i.e., a positive serum b-hCG result), while 57 (29%) had an ongoing

pregnancy that progressed to a live birth. The other 26 participants

(13%) had a miscarriage, usually in the first trimester. When only

women aged 40 years or below were considered, 49% (77/158)

conceived and 73% of them had a live birth (56/77), which equated

to 37% of women in this age group (56/158).

The timing of conception and subsequent miscarriages in

association with the OSCM HSG procedure are itemised in

Figure 1. Nearly half of all conceptions (45%; 37/83) were

recorded within 8 weeks of the HSG, and more than three

quarters (77%; 64/83) had occurred by week 16 (Figure 1).

Notably, the vast majority of ongoing pregnancies (88%; 50/57)

were recorded by week 16 (Figure 1).

An exploratory analysis showed no association between infertility

cause and biochemical pregnancy rates following OSCM HSG

(Supplementary Table 3). In addition, baseline iodine status did not

differ between women with different infertility causes (Supplementary

Table 4), and there was no evidence that iodine status differentially
Frontiers in Endocrinology 0384
affected pregnancy rates in these groups (Supplementary Table 5).

Similarly, there was no evidence that BMI (Supplementary

Table 6) or assisted reproductive technologies (i.e., intrauterine

insemination or in vitro fertilisation) (Supplementary Table 7)

affected pregnancy rates.
Woman’s age at baseline

Pregnancy rates were similar among women aged <35 and 35–

39.9 years, but there was a marked decline in fertility rates among

participants aged ≥40 (Figure 2; Supplementary Table 8). Only 16%

(6/38) of the latter became pregnant compared to 51% (40/79) and

47% (37/79) of women aged <35 years and 35–39.9 years,

respectively (p<0.001) (Figure 2; Supplementary Table 8). Thus,

in comparison to the women aged ≥40 years, those aged <35 years

were 3 times more likely to become pregnant [aRR=3.03 (95% CI

1.43, 6.45); p=0.004] and women aged 35–39.9 years 2.9 times more

likely [aRR=2.92 (95% CI 1.37, 6.25); p=0.009]. The rate of

miscarriage was 30% (25/83), and this rate progressively increased

with the woman’s age, so that 83% of those aged ≥40 years (5/6)

experienced pregnancy loss (Figure 2; Supplementary Table 8).
Iodine status

Overall, lower iodine levels at baseline were associated with a

greater likelihood of pregnancy. Women who became pregnant had

baseline UIC 21% lower than those who did not become pregnant

(95% CI -38%, -1%; p=0.042) (Supplementary Table 9), with an

adjusted mean difference slightly greater [-23% (95% CI -40%, -2%);

p=0.033]. As a result, a 10-fold lower UIC at baseline was associated

with a 77% increase in the likelihood of pregnancy [aRR 1.77 (95%

CI 1.11, 2.81); p=0.017].

Reflecting the above-described associations, pregnancy rates

progressively decreased from the group of women with moderate

iodine deficiency at baseline (58%) to those with excess iodine

(31%) (Figure 3). Thus, the likelihood of pregnancy in women with

moderate deficiency at baseline was 64% higher than in women with

normal iodine levels [aRR 1.64 (95% CI 1.01, 2.67); p=0.048] and

more than 2-fold higher than those with iodine excess [aRR 2.13

(95% CI 1.09, 4.14); p=0.026]. These data indicate that women with

iodine deficiency treated by iodine exposure from OSCM HSG had

improved pregnancy rates compared to those who were iodine-

sufficient or had excess iodine. Interestingly, we also noted a higher

pregnancy rate (43%) in the iodine-sufficient group compared to

women with iodine excess (Figure 3).
Iodine levels after the HSG

Iodine excess (UIC ≥300 mg/L) after the OSCMHSG was almost

universal among our participants (98%) and was often marked

(90% had UIC ≥1000 mg/L and 17% had UIC >10,000 mg/L) and
prolonged (67% had UIC ≥1000 mg/L lasting at least three months)
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(13). However, in contrast to baseline iodine status, UIC after HSG

did not seem to influence the likelihood of conception, with the UIC

time-weighted area under the curve similar in women who did and

did not conceive [45.4 mg/L/week (95% CI 35.2, 58.4) vs 42.5 mg/L/

week (95% CI 34.9, 51.8); p=0.69].
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AMH levels at baseline

AMH concentrations (reflecting ovarian reserve) were

correlated with the women’s age (r=-0.39; p<0.0001). Thus, AMH

steadily declined with increasing age (Supplementary Figure 2).
TABLE 1 Demographic and clinical characteristics of the SELFI Study participants at baseline prior to hysterosalpingography.

Characteristic Parameter Level

n 196

Demography Age (years) 36.2 [32.8, 39.3]

Ethnicity
NZ
European/European

118 (60.2%)

Indian 37 (18.9%)

Other Asian 32 (16.3%)

Māori 5 (2.6%)

Pacific 4 (2.0%)

Clinical BMI (kg/m2) 1 23.9 [21.9, 27.2]

BMI status 1,2 Normal weight 95 (62.5%)

Overweight 12 (7.9%)

Obesity 45 (29.6%)

TSH (mIU/L) 1.8 [1.3, 2.5]

Urine iodine (mg/L) 3 152 [89, 228]

Infertility cause Idiopathic 130 (66.3%)

Endometriosis 37 (18.9%)

PCOS 15 (7.7%)

Other 14 (7.1%)

Infertility type 4 Primary 147 (75.0%)

Secondary 49 (25.0%)

Fertility treatment 5 None 141 (71.9%)

IVF 31 (15.8%)

IUI 19 (9.7%)

Unknown 5 (2.6%)

Iodine status 3,6 Deficiency 52 (29.2%)

Severe nil

Moderate 12 (23.1%)

Mild 40 (76.9%)

Normal 98 (55.1%)

Excessive 28 (15.7%)
Data are n (%) or median [Q1, Q3]. BMI, body mass index; IUI, intra-uterine insemination; IVF, in vitro fertilisation; OSCM, oil-soluble contrast medium; PCOS, polycystic ovarian syndrome;
TSH, thyroid-stimulating hormone.
1n=152.
2Normal weight was defined as a BMI ≥18.5 to <25 kg/m2; overweight as ≥25 to <30 kg/m2; and obesity as ≥30 kg/m2.
3n=183.
4Primary and secondary infertility were defined as at least 12 months of unsuccessfully attempting pregnancy with no previous live births and with a previous live birth, respectively (20).
5Treatment (if any) was undertaken after OSCM HSG.
6Iodine status was defined as per WHO criteria (21) using urine iodine concentrations: deficiency (<100 mg/L), severe deficiency (<20 mg/L), moderate deficiency (≥20 to <50 mg/L), mild
deficiency (≥50 to <100 mg/L), normal (≥100 to <300 mg/L), and excessive (≥300 mg/L).
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Women who became pregnant during the study had higher AMH

levels compared to those who did not (22.4 vs 17 mg/L, respectively;
p=0.021) and were nearly 2 years younger on average (p=0.003).

There was no observed effect of the HSG on AMH levels.
Treatment of subclinical hypothyroidism

Mild subclinical hypothyroidism (TSH 4-10 mIU/L with

normal FT4) was the most common thyroid dysfunction in the

SELFI cohort. The treatment of mild subclinical hypothyroidism

with thyroxine is controversial (22), and during the SELFI Study, an

individualised treatment decision was made by the participant’s

primary clinician. There was a trend suggesting that women treated

with levothyroxine were more likely to conceive compared to

untreated women [54% vs 35%, respectively (Table 2); aRR 1.66

(95% CI 0.97, 2.84); p=0.063]. Notably, when only women aged <40

years at baseline were considered, the pregnancy rate after

levothyroxine treatment was higher than that of untreated women

(63% vs 37%; p=0.047; Table 2), with a 75% increase in the

likelihood of pregnancy [aRR 1.75 (95% CI 1.01, 3.02); p=0.046].
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Tubal patency

The data on tubal patency status for our study participants

are provided in Supplementary Table 10. Notably, 3 out of 16

women (19%) with radiological evidence of bilateral tubal

obstructions had spontaneous pregnancy (Supplementary

Table 10). Thus, the findings of no patency did not exclude the

chance of pregnancy.

Discussion

Main findings and interpretation

Our study confirms that OSCM HSG is followed by high

pregnancy rates in women under 40 years. The proportion of

women (40 years and below) who conceived within 6 months of

OSCM HSG and successfully progressed to a live birth in our study

was similar to that of the H2Oil trial, which used this age limit

(36.6% vs 38.8%) (3). Similarly, the timing of pregnancy following

the HSG was also consistent with previous studies (23, 24).
FIGURE 1

Flow diagram showing the numbers and cumulative rates of conception (black), pregnancy loss (red), and ongoing pregnancies (blue) among
women who underwent hysterosalpingography (HSG) with an oil-soluble contrast medium (OSCM) in the SELFI Study. Values within boxes with
dashed lines are the numbers and rates of new conceptions, pregnancy losses, and ongoing pregnancies at a given time point since HSG. Values
within boxes with solid lines are the cumulative numbers and rates of conceptions, pregnancy losses, and ongoing pregnancies at a given time point
since HSG. The number in bold font (n=196) indicates the number of participants who underwent OSCM HSG and completed study (i.e., there were
no participants lost to follow-up).
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Interestingly, almost 30% of our cohort had iodine deficiency or

insufficiency. The New Zealand soil is deficient in iodine (25), and

fortification of bread with iodized salt is mandatory (26). However,

mild iodine deficiency persists in the New Zealand population,

especially women (27, 28), and iodine supplementation is

recommended for women trying to conceive (29). In our study,

we allowed the women to continue the iodine supplements (150 mg
iodine/tablet) or multivitamin supplements (220 mg iodine/tablet)

as advised by their respective fertility specialists. Our observations

of baseline iodine status in this cohort suggest that despite the

iodine fortification programmes in New Zealand (30) and the

recommendations for iodine supplementation in women planning

pregnancy (29), this issue remains an aspect of antenatal care that

needs to be addressed. The pivotal role of iodine in conception and

successful pregnancy progression, and the importance of achieving

at least normal iodine levels has been demonstrated in other studies

(16, 31, 32). It seems possible that iodine deficiency was one of the

factors contributing to idiopathic infertility in this cohort of

women. Thus, additional approaches to improve iodine status

should be considered, including prescribing oral iodine

supplements to women who are trying to conceive and adopting

methods that can improve adherence, such as the use of one-dose or

long-acting iodine replacements [e.g., oral OSCM (11)].

Not only were there persistent and high iodine levels following

OSCM HSG, but those women with lower iodine levels at baseline

were more likely to conceive following the procedure, indicating

that treating iodine insufficiency/deficiency via the OSCM HSG’s

iodine load improved fertility. Of note, the magnitude of iodine

excess post-HSG did not correlate with pregnancy success, and we

hypothesize that the correction of this iodine deficiency is more

important than the extremely high levels subsequently achieved

following the OSCM HSG. The reduced pregnancy rate in women

with iodine excess at baseline was interesting and may reflect a

cohort in whom other pathologies unaffected by iodine status are

the cause of infertility. However, a better pregnancy rate in those

who were iodine-sufficient (compared to the iodine-excess group)

does raise the possibility that fertility can be enhanced with higher

(supraphysiologic, yet not extreme) iodine levels in women with

infertility. This question needs further exploration in future studies.

We also observed that women treated for mild SCH with

levothyroxine during the six-month study period had higher

pregnancy rates than those who were untreated. The treatment of
TABLE 2 Rates of biochemical pregnancy based on beta human chorionic gonadotropin (b-hCG) positivity according to the diagnosis of subclinical
hypothyroidism (SCH), the timing of its onset, and any subsequent thyroxine treatment.

Subclinical hypothyroidism Thyroxine Thyroxine (aged <40 years)

No SCH SCH at baseline SCH after HSG Not treated Treated Not treated Treated

n 117 (59.7%)1 8 (4.1%)1 71 (36.2%)1 31 (39.2%)2 48 (60.8%)2 27 (41.5%)2 38 (58.5%)2

b-hCG negative 71 (60.7%) 2 (25.0%) 40 (56.3%) 20 (64.5%) 22 (45.8%) 17 (63.0%) 14 (36.8%)

b-hCG positive 46 (39.3%) 6 (75.0%) 31 (43.7%) 11 (35.5%) 26 (54.2%) 10 (37.0%) 24 (63.2%) *
HSG, hysterosalpingography.
Unless otherwise stated, data are n and percentage within a given column.
1Percentages from all study participants.
2Percentages from participants who had SCH at some point during the study.
*p=0.047 from a Fisher's exact test.
FIGURE 2

Biochemical pregnancy (based on beta human chorionic gonadotropin
positivity) according to the woman’s age at baseline: <35 years (n=40),
35–39.9 years (n=37), and ≥40 years (n=6). The bands in each bar
represent the percentage of women who conceived and either had a
miscarriage (grey) or delivered a live baby (black).
FIGURE 3

Frequencies and rates of biochemical pregnancy [based on beta
human chorionic gonadotropin (b-hCG) positivity] according to the
women's urine iodine status at baseline (n=183). Iodine status was
classified according to WHO criteria: moderate deficiency (≥20
to <50 mg/L), mild deficiency (≥50 to <100 mg/L), normal (≥100 to
<300 mg/L), and excess (≥300 mg/L) (21). No woman in the study had
severe iodine deficiency (<20 mg/L).
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mild SCH remains controversial (22). However, some studies

suggest that SCH reduces fertility and that treatment improves

pregnancy rates (33, 34). In this context, our findings suggest that

women with mild SCH post-HSG who are attempting pregnancy

may benefit from replacement therapy with levothyroxine.

This study demonstrates the limited fertility benefit of OSCMHSG

in women aged 40 years or above, with only 16% conceiving and only

one live birth recorded. This result is not surprising, reflecting the

impact of aging and reduced follicular number. Indeed, age was the

single most important factor in predicting pregnancy. The high

miscarriage rates in this study should be interpreted in the context of

an infertile cohort, which included women of older age, who had

endometriosis, and/or experienced recurrent miscarriages. A previous

large prospective Australian cohort study (5806 women, 31-36 years)

had reported that the miscarriage rates varied highly between different

groups of women, with a calculable rate of miscarriage ranging from

11.3 to 86.5 miscarriages per 100 live births (35). One study in younger

women (18–33-year-olds) reported a lower miscarriage rate of 16%

(36), whereas another earlier study including older women (aged 16–59

years) reported miscarriage rates of 33.4% (37). As expected, younger

age was associated with higher AMH levels (38–40), a marker of

follicular number, and predicted improved pregnancy rates following

OSCM HSG. Thus, whilst OSCM HSG is a very good modality for

augmenting fertility, the efficacy in those over 40 years appears limited.
Limitations

Potentially important factors such as BMI and infertility aetiology

could not be obtained for all participants, as these data were extracted

retrospectively from clinical charts. BMI in particular, is known to

adversely affect both female (41, 42) and male (43) fertility. While we

had no data on the male partner’s BMI, among the 78% of study

participants with BMI data, there was no evidence to suggest a BMI

effect on fertility. Also, since 72% of study participants did not undergo

any fertility treatment, it was not possible to carry out any robust

analyses looking at the potential associations between assisted

reproductive technologies and pregnancy rates. In addition, as most

of our participants were recruited from private fertility clinics,

disadvantaged groups were underrepresented, particularly women

from Māori and Pacific communities. Thus, it is not possible to

generalize our findings on iodine status to the entire female

population of New Zealand or all women with infertility. Lastly, it is

unknown if any of our study participants underwent transvaginal

ultrasound or hysteroscopy before the OSCMHSG procedure to detect

uterine or endometrial pathology. However, most study participants

underwent transvaginal ultrasound following the OSCM HSG, and all

of these were normal. Moreover, no uterine pathology was observed on

fluoroscopy during the OSCM HSG.
Strengths

To our knowledge, this is the only study that has examined the

associations between HSG and fertility accounting for the women’s
Frontiers in Endocrinology 0788
iodine levels before and after the procedure. This study highlights the

caveats in iodine supplementation and the importance of ensuring

prescription and compliance in women planning pregnancy. Our

data suggest that iodine deficiency could contribute to some cases of

unexplained infertility, and correction of iodine deficiency following

OSCM exposure seems to be a contributing factor to improved

fertility. Moreover, we show that fertility rates were markedly lower

in women aged ≥40 years compared to younger women. These data

provide additional evidence to fertility specialists and infertile couples

for their decision-making process on whether to offer or undergo

OSCM HSG, respectively.
Conclusions

This study confirmed that while pregnancy rates were similar to

other recent studies using OSCM HSG, women over 40 years of age

have poor fertility outcomes. Iodine deficiency was relatively

common despite government-instituted iodine fortification

programmes and recommendations for iodine supplements by the

fertility specialists. Interestingly, the fertility improvement with

OSCM HSG was greater in those who were iodine deficient. We

hypothesise that increased iodine levels may contribute to this

procedure’s improved fertility. Treatment of the subclinical

hypothyroidism that can occur following the OSCM HSG may

also improve fertility rates further. Further studies are required to

examine the potential effects of iodine deficiency on infertility,

particularly the fertility improvement with OSCM HSG in iodine-

deficient women. It would be interesting to determine if one oral or

IM dose of OSCM is a suitable alternative to improve iodine levels

and, subsequently, fertility. The benefit of OSCM HSG as a

standalone fertility treatment and as an adjunct before

intrauterine insemination or in vitro fertilization also needs to be

explored further.
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Causal relationships exist
between polycystic ovary
syndrome and adverse
pregnancy and perinatal
outcomes: a Mendelian
randomization study
Yuanlin Ma1,2,3†, Jiahao Cai4†, Lok-Wan Liu1,2,3†, Tianrui Wen1,2,3,
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Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China, 3Guangdong Provincial
Clinical Research Center for obstetrical and gynecological diseases, The First Affiliated Hospital of Sun
Yat-sen University, Guangzhou, Guangdong, China, 4Department of Neurology, Guangzhou Women
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Introduction: Previous observational studies have shown that polycystic ovary

syndrome (PCOS) was associated with adverse pregnancy and perinatal outcomes.

However, it remains controversial whether PCOS is an essential risk factor for these

adverse pregnancy and perinatal outcomes. We aimed to use instrumental

variables in a two-sample Mendelian randomization (MR) study to determine

causality between PCOS and adverse pregnancy and perinatal outcomes.

Materials and methods: Summary statistics were extracted from a recent

genome-wide association study (GWAS) meta-analysis conducted in PCOS,

which included 10,074 cases and 103,164 controls of European ancestry. Data

on Adverse pregnancy and perinatal outcomes were summarized from the

FinnGen database of European ancestry, which included more than 180,000

samples. The inverse variance weighted (IVW) method of MR was applied for the

main outcome. To assess heterogeneity and pleiotropy, we conducted sensitivity

analyses, including leave-one-out analysis, weighted median, MR-PRESSO

(Mendelian Randomization Pleiotropy RESidual Sum and Outlier), and MR-

Egger regression.

Results: Two-sample MR analysis with the IVW method suggested that PCOS

exerted causal effects on the risk of hypertensive disorders of pregnancy [odds

ratio (OR) 1.170, 95% confidence interval (CI) 1.051–1.302, p = 0.004], in

particular gestational hypertension (OR 1.083, 95% CI 1.007–1.164, p = 0.031),

but not other pregnancy and perinatal diseases (all p > 0.05). Sensitivity analyses

demonstrated pleiotropy only in pre-eclampsia or eclampsia (p = 0.0004), but

not in other pregnancy and perinatal diseases (all p > 0.05). The results remained

consistent after excluding two outliers (all p > 0.05).
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Conclusions: We confirmed a causal relationship between PCOS and

hypertensive disorders of pregnancy, in particular gestational hypertension, but

no association with any other adverse pregnancy or perinatal outcome.

Therefore, we suggest that women with PCOS who are pregnant should have

their blood pressure closely monitored.
KEYWORDS

polycystic ovary syndrome, adverse pregnancy and perinatal outcomes, genetic role,
Mendelian randomization, hypertensive disorders of pregnancy, gestational hypertension
1 Introduction

Polycystic ovary syndrome (PCOS) affects 10%–13% of

reproductive-age women. It is characterized by anovulation,

amenorrhea, hyperandrogenism, and polycystic ovary morphology

(PCOM) (1). The pathophysiology of PCOS was associated with

metabolic disorders, such as insulin resistance (IR), and endocrine-

reproductive comorbidities (2), such as infertility, obesity, hirsutism,

and cardiovascular problems (3). Women with PCOS often

experience hyperandrogenism and IR, which have been associated

with an increased risk of sporadic miscarriage and unfavorable

obstetric outcomes during pregnancy (4). It has been well

understood that the etiology of PCOS is the complex interplay of

polygenetic and environmental elements (5). Previous reports have

suggested that women with PCOS have an increased risk of maternal

and fetal complications during pregnancy (4, 6–8).

Women with PCOS have reduced fertility potential, such as

altered oocyte and endometrial competence and impaired

endometrial–embryo cross-talk (9). In recent years, the

reproductive outcomes of PCOS have become a research hotspot.

Observational studies and meta-analyses have reported the

relationship between PCOS and adverse pregnancy and perinatal

outcomes (4, 6–8). It has been suggested that women with PCOS

were at increased risk for miscarriage, gestational diabetes mellitus

(GDM), gestational hypertension, and pre-eclampsia (4). A

retrospective cohort study discovered that women with PCOS

were more likely to experience preterm premature rupture of

membrane (PPROM), preterm delivery, and placental abruption

(8). However, the consensus on these effects is lacking. Cofactors

related to PCOS, such as obesity, IR, glucose metabolism
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impairment, and metabolic syndrome, could influence

endometrial competence, trophoblast invasion, placentation,

pregnancy outcome, and even obstetric complications (9). Thus,

the relationship between PCOS and pregnancy outcomes remains

controversial because of confounding bias and methodological flaws

in previous studies.

A Mendelian randomization (MR) study can estimate the causality

between the exposure and outcome using instrumental variables (IVs)

for the exposure and outcome. This method offers the advantage of

reducing reverse causality and eliminating confounder bias (10, 11). In

our MR study, the two‐sample MR approach can be more efficient and

powerful for exploring the “gene‐risk factor” and “gene‐outcome”

relationship from two independent groups in the same ancestry

compared to the one‐sample MR approach (12). It was, therefore,

useful to explain the relationship between PCOS and adverse

pregnancy and perinatal outcomes in the genetic role (13).

The purpose of our study was to systematically investigate the

causal effect of PCOS on adverse pregnancy and perinatal outcomes

by conducting a two-sample MR analysis.
2 Material and methods

To evaluate the causative influence of PCOS on adverse

pregnancy and perinatal outcomes, we conducted a two-sample

MR study. Published genome-wide association study (GWAS)

meta-analyses (14–16) provided the pooled data. Figure 1

illustrates the overview of the research design.
2.1 GWAS data for PCOS

Day et al. (14, 15) performed the biggest GWAS meta-analysis

of PCOS in European ancestry, with 10,074 cases and 103,164

controls (Supplementary Table S1). The diagnosis of PCOS was

according to the Rotterdam criteria (17), National Institutes of

Health criteria (NIH/NICHD) (18), or self-report questionnaire

(19). NIH/NICHD criteria were satisfied by the presentation of both

hyperandrogenism, such as hirsutism or acne, and ovulatory
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dysfunction, such as oligomenorrhea or amenorrhea, whereas the

Rotterdam criteria required two out of three major features to be

presented and the existence of PCOM. In the 23andMe (Mountain

View, CA, USA) cohort, the self-reported diagnosis was employed;

however, summary-level data from 4,890 cases and 20,405 controls

included in this cohort were not available because of the data

sharing policy. The GWAS meta-analysis elucidated shared genetic

structure across the three diagnostic criteria (14).
2.2 IV selection

The instruments chosen for exposure (PCOS) had to satisfy the

following criteria to ensure the validity of the IVs included in our

MR study: single-nucleotide polymorphisms (SNPs) were

associated with exposure at the threshold of genome-wide

significance (p < 5 × 10−8) (20), all SNPs should follow the

linkage equilibrium (pairwise r2 ≤ 0.01 in the current study), and

F statistic above 10 was required for sufficient strength to limit the

bias from weak IVs (21). We used R2 × (N − k − 1)/[(1 − R2) × k] to

calculate the F statistic, where N means the sample size of GWAS, k

refers to the number of SNPs, and R2 is the ratio of the variability of

PCOS explained by each SNP. Specifically, R2 is calculated using the

formula [2 × b2 × (1 − EAF) × EAF]/[2 × b2 × (1 − EAF) × EAF + 2

× N × SE2 × (1 − EAF) × EAF], where EAF is the effect allele

frequency, b is the estimate of the genetic effect of each SNP on

PCOS, and SE is the standard error of beta (21). Supplementary

Table S2 shows detailed genetic information on selected SNPs.

SNPs linked to exposure were retrieved from outcome data (adverse

pregnancy and perinatal outcomes). To reduce the possible bias

from population heterogeneity, all the GWAS consortia employed

in our MR study were restricted to those of European ancestry.
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2.3 GWAS data for adverse pregnancy and
perinatal outcomes

We examined associations with 14 outcomes: sporadic

miscarriage, GDM, hypertensive disorders of pregnancy,

gestational hypertension, pre-eclampsia or eclampsia,

polyhydramnios, intrahepatic cholestasis of pregnancy (ICP),

placenta disorder, placental abruption, placenta previa, premature

rupture of membranes (PROM), postpartum hemorrhage,

postpartum depression, and poor fetal growth. The definitions of

these outcomes in FinnGen (16) are provided in Supplementary

Table S1. The FinnGen study is a countrywide Finnish GWAS

meta-analysis that includes nine biobanks and has minimal overlap

with the PCOS GWAS, thereby reducing the potential bias arising

from overlapping samples (22). FinnGen includes sporadic

miscarriage (N = 15073 cases/135,962 controls), GDM (N =

11,279 cases/179,600 controls), hypertensive disorder of

pregnancy (N = 13,071 cases/177,808 controls), gestational

hypertension (N = 7,503 cases/176,113 controls), pre-eclampsia or

eclampsia (N = 6,436 cases/176,113 controls), polyhydramnios (N =

1,049 cases/154,102 controls), ICP (N = 2,196 cases/188,683

controls), placenta disorder (N = 193 cases/154,102 controls),

placenta previa (N = 1,076 cases/154,102 controls), placental

abruption (N = 546 cases/154,102 controls), PROM (N = 6,129

cases/154,102 controls), postpartum hemorrhage (N = 7,221 cases/

148,153 controls), postpartum depression (N = 13,657 cases/

236,178 controls), and poor fetal growth (N = 3,056 cases/187,823

controls), and those outcomes were defined based on International

Classification of Diseases (ICD) codes (16). In addition,

hypertensive disorders of pregnancy encompass gestational

hypertension, pre-eclampsia or eclampsia, chronic hypertension,

and chronic hypertension with superimposed pre-eclampsia.
2.4 MR estimates

From the GWAS meta-analysis of the outcome, we retrieved

and extracted IVs for PCOS. We ruled out SNPs linked to outcome

(adverse pregnancy and perinatal outcomes) (p < 5 × 10−8) or

absent in the outcome data pool. We harmonized the effect alleles

across the GWASs of PCOS and pregnancy outcomes and then

excluded those that were palindromic based on the information of

EAF (default EAF > 0.42 of the “harmonisation” function in the

“Two-Sample MR” package). We employed the inverse variance

weighted (IVW) method as the major of MR estimation to examine

the causality of PCOS on the risk of pregnancy outcomes. Based on

the MR assumptions, this method supposed that all IVs were

effective and combined the Wald ratio estimates of the causal

effect by different SNPs to offer an identical assessment of the

causal effect of PCOS on the pregnancy outcomes (12). Then, we

obtained a post-hoc power calculation through the IVW model

(https://shiny.cnsgenomics.com/mRnd/) (23).
FIGURE 1

Workflow of MR study revealing causality from PCOS on adverse
pregnancy and perinatal outcomes. PCOS, polycystic ovary
syndrome; IVW, inverse variance weighted; MR, Mendelian
randomization; MR-PRESSO, MR-pleiotropy residual sum and
outlier; SNPs, single-nucleotide polymorphisms.
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2.5 Sensitivity analyses

In MR studies, sensitivity analysis has been proven crucial in

detecting the pleiotropy and heterogeneity for MR estimations that

may significantly violate the MR assumptions. We used Cochran’s Q

test to characterize potential heterogeneity derived from the IVW

approach. The directional pleiotropy was shown by the intercept

achieved from MR-Egger regression (p < 0.05 referred to as the

existence of directional pleiotropy) (24). In addition, it is universal to

employ MR-pleiotropy residual sum and outlier (MR-PRESSO)

methods to evaluate and correct horizontal pleiotropy (25). MR-

PRESSO included the following three contents: a) testing of

significant results in the causal estimates before and after correction

for outliers, b) correction for horizontal pleiotropy through outlier

removal, and c) detection of horizontal pleiotropy. When the

condition of parallel pleiotropy variants’ percentage is <10%, it

minimizes bias and has greater precision than IVW and MR-Egger

(25). Moreover, we performed leave-one-out analyses to assess

whether a single SNP could drive and influence the MR estimate.

The “Two-Sample MR” package (version 0.5.6) and “MR-

PRESSO” package (version 1.0) were used to conduct all of the

analyses in the R program (version 3.6.1). Results with p-value <0.05

were considered to be significant.
3 Results

The study includes 14 PCOS-related SNPs that met the

threshold of genome-wide significance with LD r2 ≤ 0.01.

However, two SNPs (rs11225154 and rs853854) were not directly

matched in the outcome data and were therefore not used in further

analysis. After ruling out SNPs significantly linked to adverse

pregnancy and perinatal outcomes (p < 5 × 10−8), the remaining

SNPs were used for analysis in our study. Only one excluded SNP

(rs7563201) was strongly linked to gestational hypertension.

We discovered no relationships between the causal effect of PCOS

and sporadic miscarriage [odds ratio (OR) 1.059, 95% CI 0.978–1.146,

p = 0.156], GDM (OR 0.976, 95% CI 0.904–1.053, p = 0.529), pre-

eclampsia or eclampsia (OR 1.137, 95% CI 0.961–1.346, p = 0.134),

polyhydramnios (OR 1.075, 95% CI 0.849–1.360, p = 0.548), ICP (OR

0.848, 95% CI 0.696–1.034, p = 0.104), placenta disorder (OR 0.839,

95% CI 0.454–1.548, p = 0.573), placenta previa (OR 0.882, 95% CI

0.674–1.154, p = 0.361), placenta abruption (OR 1.092, 95% CI 0.761–

1.567, p = 0.631), PROM (OR 0.974, 95% CI 0.865–1.097, p = 0.668),

postpartum hemorrhage (OR 0.998, 95% CI 0.907–1.099, p = 0.968),

postpartum depression (OR 1.034, 95% CI 0.963–1.110, p = 0.354), and

poor fetal growth (OR 1.026, 95% CI 0.893–1.180, p = 0.713) by the

IVW method (as shown in Figure 2). Post-hoc analyses revealed a

power of 0.009–0.700 for the IVW model (Table 1).

We found a causal relationship between PCOS and hypertensive

disorders of pregnancy (OR 1.170, 95% CI 1.051–1.302, p = 0.004)

by the IVW method (as shown in Figure 2). As hypertensive

disorders of pregnancy have several subtypes, further analyses

revealed only causal effects of PCOS and gestational hypertension

(OR 1.083, 95% CI 1.007–1.164, p = 0.031), but not pre-eclampsia

or eclampsia (OR 1.137, 95% CI 0.961–1.346, p = 0.134) (Figure 2).
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Post-hoc analyses revealed power of 0.990 and 0.370 for the IVW

model (Table 1).

We performed a sensitivity analysis using MR-Egger regression

and weighted mean approaches. For most outcomes, consistent

magnitude and direction of MR estimates were obtained (Figure 2).

Further, no significant heterogeneity was observed with p-value >0.05

of IVW by Cochran’s Q test, except for pre-eclampsia or eclampsia

(p = 0.0004). The same conclusion was also gained using MR-

PRESSO, with p-value >0.05, except for pre-eclampsia or eclampsia

(p = 0.001) (Table 1). In addition, no evidence showed a significant

intercept (p > 0.05), suggesting that no directional pleiotropy was

observed. Some single SNPs affected the overall effect of PCOS on

adverse pregnancy and perinatal outcomes in the leave-one-out

sensitivity analysis (Supplementary Figure S1).

For pre-eclampsia or eclampsia, heterogeneity was also investigated

using a standard Cochran’s Q test, which derived a p-value <0.001 of

IVW.MR-PRESSO also presented a similar result (global heterogeneity

test p = 0.001). After weeding out two outliers (rs2271194 and

rs7563201), the same MR approach followed by the IVW method

was conducted again. As expected, further results demonstrated that

the result was consistent with the previous (before correction, OR

1.137, 95% CI 0.961–1.346, p = 0.134 vs. after correction, OR 1.122,

95% CI 0.982–1.281, p = 0.090) (Figure 2).
4 Discussion

4.1 Principal findings

In the present study, a two-sample MR method was applied to

assess whether PCOS adversely influenced pregnancy and perinatal

outcomes in a causal effect. Our results showed that PCOS played a

confirmative genetic role in the risk of hypertensive disorders of

pregnancy, in particular gestational hypertension, but not pre-

eclampsia or eclampsia.
4.2 Results in the context of what is known

PCOS has multiple etiologies associated with various genetic

and environmental factors (1). It has many metabolic symptoms,

such as central obesity, hyperandrogenism, elevated fasting blood

glucose, and IR. PCOS and its comorbidities are linked to altered

endometrial competence, oocyte quality, and impaired

endometrial–embryo cross-talk, which increase the risk of

infertility and early or late obstetric complications through

abnormal trophoblast invasion and placentation (9). In addition,

maternal exposure to 5a-dihydrotestosterone (DHT) and IR in a

PCOS rat model changed the ferroptosis pathway in the gestational

uterus and placenta, which was associated with increased

necroptosis in the placenta and reduced the activation of

apoptosis in the uterus, leading to miscarriage (26).

Reproductive outcome is one of the most essential concerns for

women with PCOS in childbearing age. Therefore, in clinical

studies, investigating the relationship between PCOS and adverse

pregnancy and perinatal outcomes is necessary, but up to now, it
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has remained unclear (4, 6–8). The previous observational studies

had the limitation of possible bias from confounding factors.

However, adequately powered and well-designed cohort studies or

prospective trials with long-term follow-up would be very costly in

terms of time, money, labor, and material resources. Moreover,

findings from observational studies have not been sufficient to draw

conclusions on cause–effect relationships. Compared with previous

methods, MR is more effective and practical to comprehensively

reveal these causalities.
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We discovered a higher risk of hypertensive disorders of

pregnancy, consistent with previous results (27). Hypertensive

disorders of pregnancy encompass four subtypes. We tried to

clarify which subtype was most likely to be affected. We discovered

that PCOS only exerted causal effects on the risk of gestational

hypertension (Figure 2), but not pre-eclampsia or eclampsia

(Figure 2), chronic hypertension (Supplementary Table S3), and

chronic hypertension with superimposed pre-eclampsia

(Supplementary Table S3). Possibly, it was that just gestational
FIGURE 2

Odds ratio plot for PCOS and adverse pregnancy and perinatal outcomes. OR, odds ratio; PCOS, polycystic ovary syndrome. *Two outliers
(rs11225154 and rs853854) were weeded out.
frontiersin.org

https://doi.org/10.3389/fendo.2024.1327849
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Ma et al. 10.3389/fendo.2024.1327849
hypertension derived the causal relationship between PCOS and

hypertensive disorders of pregnancy.

Several systematic reviews have summarized previous studies

and come to different conclusions; nonetheless, the results of those

pooled analyses suggested that women with PCOS were at increased

risk of hypertensive disorders of pregnancy and pre-eclampsia (4,

6–8). Hyperinsulinemia and IR exacerbated endothelial injury and

interfered with endothelium-dependent vasodilation, resulting in

dyslipidemia and muscular hypertrophy of the vascular wall. High

levels of free testosterone induced sympathetic and vascular hyper-

responsiveness, both of which in PCOS were important for the

occurrence and development of hypertensive disorders of

pregnancy (28). Rs7563201, as one of the IVs of PCOS in our MR

study, was associated with the expression of THADA (https://

www.ncbi.nlm.nih.gov/snp/rs7563201). THADA was shown to

have metabolic contributions to the pathophysiology of PCOS,

such as disorders of glucose metabolism, hyperandrogenism, and

dyslipidemia (29), which could also contribute to hypertensive

disorders of pregnancy (28).

Possible factors were considered regarding our negative

findings. First, the effect of PCOS on adverse pregnancy and

perinatal outcomes was slightly lower than expected. In

conventional regression analysis, we may ignore the bias from

reverse causation or common risk factors. Second, vertical

pleiotropy may exert efforts. Hyperandrogenism level and IR,

which were genetically related, could lead to a more susceptible

status in the evolution of PCOS. Thus, the detailed mechanisms
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underlying PCOS and pregnancy and perinatal outcomes were

complicated and deserving of further investigation. Especially, as

PCOS is a widely varying disease, the criteria for PCOS diagnosis

should be restricted in future research.
4.3 Clinical implications

These findings suggested that PCOS was causally associated

with hypertensive disorders of pregnancy, in particular gestational

hypertension, which were among the idiopathic diseases of

pregnancy, posing serious threats to the health of mothers and

infants. It was suggested that the blood pressure of all pregnant

women with PCOS should be closely monitored.
4.4 Strengths and limitations

Our study had several strengths. First, we effectively reduced the

occurrence probability of reverse causality and confounding bias

using the MR method, which genetically predicted phenotype as the

exposure of interest. Second, the data we recruited were GWAS

summary data, which came from the largest scale of recent meta-

studies, which may, to a large extent, reduce the bias related to

population heterogeneity in European people.

However, the study also had some limitations. First, GWAS data

utilized in our study came from a European population. For this
TABLE 1 MR results of heterogeneity and directional pleiotropy.

Item Power Heterogene-
ity

Global het-
erogeneity

test

Directional pleiotropy

p-Value p-Value Intercept SE p-Value

Sporadic miscarriage 0.380 0.138 0.155 0.006 0.026 0.810

GDM 0.090 0.416 0.416 −0.014 0.025 0.582

Hypertensive disorders of pregnancy 0.990 0.157 0.179 0.025 0.035 0.485

Gestational hypertension 0.370 0.468 0.477 −0.017 0.023 0.472

Pre-eclampsia or eclampsia 0.700 0.0004 0.001 −0.002 0.056 0.975

Pre-eclampsia or eclampsia* / 0.107 0.112 0.007 0.048 0.894

Polyhydramnios 0.009 0.587 0.616 −0.022 0.748 0.775

ICP 0.380 0.135 0.144 −0.039 0.065 0.562

Placenta disorder 0.080 0.243 0.256 0.186 0.196 0.365

Placenta previa 0.150 0.199 0.224 0.012 0.089 0.892

Placenta abruption 0.080 0.260 0.281 −0.036 0.120 0.771

PROM 0.080 0.163 0.167 −0.029 0.039 0.475

Postpartum hemorrhage 0.050 0.358 0.363 0.019 0.031 0.557

Postpartum depression 0.140 0.741 0.759 0.038 0.022 0.121

Poor fetal growth 0.060 0.453 0.457 0.014 0.046 0.758
GDM, gestational diabetes mellitus; ICP, intrahepatic cholestasis of pregnancy; PROM, premature rupture of membranes; MR, Mendelian randomization. Bold text indicates statistical
significance (p<0.05). "/" indicates that it is not calculated.
*Two outliers (rs11225154 and rs853854) were weeded out.
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reason, this kind of relationship needs to be confirmed in

demographically different populations such as Asian individuals.

Second, because there were three main diagnostic criteria of PCOS

set by the NIH/NICHD (18), Rotterdam criteria (17), and the

Androgen Excess and PCOS Society (30), we could not distinguish

what kind of phenotypes were more influential. The Rotterdam criteria

described four symptoms of PCOS, and there were differences in

hormones and metabolism between these groups (11). Furthermore,

since the associations between PCOS phenotype and adverse

pregnancy and perinatal outcomes were untested, the manifestations

of PCOS may present with variety, indicating that the effects from

specific characteristics of PCOS subgroups may be ignored or

defaulted. A third limitation was that we analyzed PCOS as a binary

risk factor. However, the development of PCOS was progressive and

successive. The post-hoc powers were low in many outcomes.

Therefore, it was difficult to interpret our obtained effect estimate, as

our included genetic variants did not represent all risks of different

subtypes of PCOS. TheMR study for a relationship between PCOS and

adverse pregnancy and perinatal outcomes was still valid (31).
5 Conclusion

In this study, using MR analysis, we demonstrated a significant

effect between PCOS and hypertensive disorders of pregnancy, in

particular gestational hypertension, but found no association with

any other adverse pregnancy or perinatal outcome. Therefore, we

suggest that women with PCOS who are pregnant should have their

blood pressure closely monitored.
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Association between maternal
lipid profiles and vitamin D
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and risk of LGA or SGA:
a retrospective study
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Xiaodan Zhang, Weixiang Wu, Mingyong Luo
and Chunming Gu*

Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou, China
Background: Accumulating evidence has linked dyslipidemia during pregnancy

to the risk of delivering infants born either large for gestational age (LGA) or small

for gestational age (SGA). However, the effects of the vitamin D status on these

relationships require further investigation. This study investigated whether the

relationship between lipid profiles and the risk of LGA or SGA was influenced by

vitamin D levels during the second trimester.

Methods:Maternal lipid profile levels, including total cholesterol (TC), triglyceride

(TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein

cholesterol (HDL-C), and vitamin D levels, were measured in a cohort of 6,499

pregnant women during the second trimester. Multivariate regression models

and subgroup analyses were employed to evaluate the potential associations

between maternal lipid profiles, vitamin D levels, and the risk of LGA or SGA.

Results: The prevalence of SGA infants was 9.8% (n=635), whereas that of LGA

infants was 6.9% (n=447). Maternal TG levels were found to be positively

associated with the risk of LGA (odds ratio [OR] = 1.41, 95% confidence interval

[CI]:1.17–1.70), whereas a negative association was observed between maternal

TG, TC, LDL-C levels, and risk of SGA. Additionally, mothers with higher HDL-C

levels were less likely to give birth to an LGA infant (OR=0.58, 95% CI:0.39–0.85).

Importantly, associations between TG, TC, LDL-c, and SGA as well as between

TG and LGA were primarily observed among pregnant women with insufficient

vitamin D levels. As for HDL-C, the risk of LGA was lower in mothers with

sufficient vitamin D (OR = 0.42, 95% CI:0.18–0.98) compared to those with

insufficient vitamin D (OR = 0.65, 95% CI:0.42–0.99).

Conclusion: Vitamin D status during the second trimester exerts a modifying

effect on the association between lipid profiles and the risk of LGA and

SGA infants.
KEYWORDS

pregnancy, lipid profile, vitamin D, large for gestational age, small for gestational age
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1 Introduction

Adverse birth outcomes, including preterm birth (PTB), low

birth weight (LBW), macrosomia, large for gestational age (LGA),

and small for gestational age (SGA), have been identified as

predictors of morbidity and mortality, as well as long-term health

risks, such as metabolic syndrome, type II diabetes, and asthma (1–

3). Numerous maternal factors, including gestational weight gain,

pre-pregnancy body mass index (pre-BMI), and nutritional status

during pregnancy, have been shown to be associated with adverse

birth outcomes (4–6). Therefore, investigating the regulatory

mechanisms underlying these outcomes during pregnancy is

crucial for identifying potential preventive strategies.

During pregnancy, women undergo unique physiological

changes and require increased nutrition and energy to support

maternal metabolism and fetal growth. Maternal lipid profiles,

including total cholesterol (TC), triglyceride (TG), low-density

lipoprotein cholesterol (LDL-C), and high-density lipoprotein

cholesterol (HDL-C), play crucial roles in providing energy for

placental development (7). However, studies on the relationship

between maternal dyslipidemia and adverse birth outcomes have

yielded inconsistent results. For instance, a prospective study

found a positive association between maternal TG levels and the

risk of LGA infants, independent of maternal pre-BMI (8).

Conversely, a cross-sectional analysis conducted in Brazil did

not find a significant association between lipid intake and LGA

newborns (9).

Vitamin D deficiency is a global public health problem

affecting various age groups, particularly in pregnant women.

Emerging evidence on the physiological activities of vitamin D

has highlighted its role in reducing hepatic TG synthesis,

cholesterol conversion, and the promotion of fatty acid (FA)

oxidation (10, 11). The expression of coenzyme A reductase

(HMG CoA reductase), sterol regulatory element binding

proteins (SREBPs), and peroxisome proliferators activated

receptor (PPAR) regulated by vitamin D might account for the

improvements of lipid profile in vivo and in vitro (12). The

optimal level of vitamin D for pregnancy health was unclear,

but a higher risk of adverse pregnancy outcomes is more likely to

be related to vitamin D deficiency. The serum vitamin D levels

have been found to correlate with profile levels, which are

attributed to the increased metabolic demands of pregnancy

(13). Furthermore, high vitamin D levels in the second trimester

may improve the lipid profile and mitigate the elevation of C-

reactive protein induced by hyperlipidemia (14). A meta-analysis

suggested an inverse association between maternal vitamin D

levels and the risk of LBW, PTB, and SGA (15). The adequate

vitamin D status during pregnancy has been considered a

protective factor against SGA and is associated with improved

infant growth (16).

Abnormal lipid profiles in pregnant women are considered as

risk factors for LGA or SGA infants, but the effects of vitamin D

status on these relationships remain unclear. Therefore, this study

was performed to investigate the association between vitamin D

status, lipid profile during the second mid-pregnancy, and the risk

of LGA or SGA infants in Chinese women.
Frontiers in Endocrinology 02100
2 Materials and methods

2.1 Study population

This retrospective study included pregnant Chinese women who

received prenatal care and intended to give birth at the Guangdong

Women and Children’s Hospital (Guangzhou, China) between January

2020 and December 2021. This study was approved by the Ethics

Committee of the Guangdong Women and Children’s Hospital

(reference number 202301269). All participants were provided

detailed information about the study and provided written informed

consent. Women who met any of the following criteria were excluded

from the study: (1) multiple pregnancies or stillbirths (n = 2765), (2)

preexisting diabetes (n = 327), (3) preexisting hypertension (n = 94), (4)

in vitro fertilization (n = 2513), or (5) incomplete data on basic

information or testing (n = 1651) (Figure 1). Ultimately, 6499

mother-fetus pairs were included in this study.
2.2 Measurement for lipid profiles and
vitamin D in mid-pregnancy

Non-fasting plasma samples were obtained during mid-

pregnancy by a trained nurse (median 17.43 weeks of gestation,

90% range [14.14 to 24.86]). The concentrations of serum total

cholesterol (TC), triglycerides (TG), low-density lipoprotein

cholesterol (LDL-C), and high-density lipoprotein cholesterol

(HDL-C) were analyzed using an automatic analyzer (Beckman

Coulter, Brea, CA, USA) and a commercial kit (Leadman, Beijing,

China). The vitamin D concentration was determined using an

electrochemiluminescence immunoassay (Abbott Laboratories, IL,

USA). Internal quality and quality control measurements were

performed for each batch of analyses, with inter- and intra-assay

coefficients of variation (CVs) below 10%.
2.3 Birth outcome and covariates

Anthropometric data on infants and basic information on

mothers were obtained from the medical records of the study

hospital. Immediately after birth, obstetric nurses recorded the

birth weight, length, and head circumference of newborns. Data

on maternal age, gravidity, parity, education level, smoking and

drinking status, pregnancy complications (gestational diabetes

mellitus [GDM] and hypertensive disorders in pregnancy [HDP]),

gestational age at lipid profile testing, and the season of vitamin D

measurement were extracted from medical records as potential

covariates. Seasons of vitamin D measurement were defined as

winter (December, January, February), spring (March, April, May),

summer (June, July, August) and fall (September, October,

November). We adjusted for potential covariates in the regression

models based on previous reports. The maternal vitamin D status

was defined according to the Endocrine Society’s Clinical

Guidelines, with 25(OH)D levels below 75 nmol/L classified as

non-sufficiency and levels equal to or above 75 nmol/L classified as

sufficiency (17).
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Newborns were classified as appropriate for gestational age

(AGA), small for gestational age (SGA), or large for gestational

age (LGA) based on Neonatal Birth Weight for Gestational Age and

Percentile in 23 Cities of China. LGA was defined as birth weight

above the 90th percentile, SGA as birth weight below the 10th

percentile, and AGA as birth weight between the 10th and 90th

percentiles (18).
2.4 Statistical analyses

Descriptive statistics were used to summarize the baseline data

of the study participants. Continuous variables are reported as

mean (standard deviation, SD) or median (interquartile range,

IQR), while categorical variables are expressed as percentages.

Non-parametric tests were used to compare continuous variables,

and chi-square tests were used to compare categorical variables.

The Shapiro Wilk normality test was performed to verify the

distribution of vitamin D and lipid profiles, which were right-

skewed. To achieve a normal distribution, the raw values were log2-

transformed. Spearman’s correlation coefficients (rs) were

calculated to analyze the correlations between the log2-

transformed concentrations of vitamin D and lipids.

Multivariate linear and logistic regression analyses were

conducted to evaluate the association between serum lipid profiles

and vitamin D concentration or status during mid-pregnancy. For

LGA and SGA infants, multiple logistic regression analyses were

performed to estimate the odds ratios (ORs) and 95% confidence

intervals (CIs) based on TC, TG, HDL-C, LDL-C, and vitamin D

concentrations. Pregnant women of normal weight served as the

reference group. Regression models included potential covariates
Frontiers in Endocrinology 03101
based on relevant reports. Subgroup analyses were conducted

according to the maternal vitamin D status. Furthermore, the

combined effects of vitamin D status and lipid concentration (TC,

TG, HDL-C, and LDL-C) in the second trimester on LGA and SGA

infants were investigated by adding the product interaction term of

vitamin D status × lipid concentration to the models. A p-value for

interaction less than 0.15 was used as a cutoff to explore the

potential effect modification through stratification (19, 20).

All statistical analyses were performed using SPSS (version 26.0;

SPSS, Chicago, IL, USA) and R version 3.3.3 (R Foundation for

Statistical Computing). Statistical significance was defined as p

< 0.05.
3 Results

A total of 6499 mother-infant pairs were included in this study,

and their detailed demographic characteristics are presented in

Table 1. Of the participants, the average age was 30.15 ± 4.30

years, 2947 (45.3%) were nulliparous, and 2345 (36.1%) underwent

cesarean section. Only one woman had a history of smoking, and

none of them smoked during pregnancy. Moreover, 4376 (67.3%)

had a college degree or higher. The mean gestational age at lipids

testing were 18.56 ± 3.82. Additionally, 5.3% (n = 342) of mothers

experienced hypertensive disorders of pregnancy, and 17.9% (n =

1163) were diagnosed with gestational diabetes mellitus. The

seasonal distribution of vitamin D testing in the second trimester

was nearly equal between Fall and Winter, whereas spring had the

highest percentage (34.8%). Additionally, there was seasonal

variation in serum 25(OH)D concentration in this study.
FIGURE 1

Flow chart for screening eligible participants.
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Maternal 25(OH)D was highest in summer (62.12 ± 22.81 nmol/L,

n = 1604) followed by autumn (60.15 ± 21.23 nmol/L, n = 1243),

winter (54.17 ± 21.78 nmol/L, n = 1390) and spring (54.04 ± 21.54

nmol/L, n = 2262), respectively (Supplementary Figure S1). Among

the infants, 52.8% (n = 3429) were male. The mean birth weight,
Frontiers in Endocrinology 04102
length, and gestational age at birth for the infants were 3.19 ± 0.43

kg, 49.46 ± 1.93 cm, and 39.23 ± 1.42 weeks, respectively.

The median (25th–75th) values of the four lipid parameters in

the second trimester were as follows: 1.83 (1.32–2.15) mmol/L for

TG, 5.61 (4.85–6.24) mmol/L for TC, 1.89 (1.65–2.10) mmol/L for

HDL-C, and 3.09 (2.56–3.56) mmol/L for LDL-C (Table 2). The

overall range of vitamin D concentrations was 10.5–159.2 nmol/L,

with a mean ± SD of 57.23 ± 22.14 nmol/L. 20.7% of the patients

(n=1350) were classified into the sufficient vitamin D group.

Women with sufficient vitamin D in mid pregnancy have higher

cholesterol levels than those with non-sufficient vitamin D

(Supplementary Table S1). Similar findings were also observed in

Spearman correlation analysis, it is suggested that vitamin D

concentrations was correlated with cholesterol levels except for

TG (Supplementary Table S2).

The prevalence of LGA and SGA infants was 6.9% (n = 447) and

9.8% (n = 635), respectively. Figure 2 presents the lipid profiles and

vitamin D concentrations in the AGA, SGA, and LGA groups.

Women with infants born LGA exhibited higher levels of TG and

LDL-C compared to women with infants born AGA. Conversely,

the TG, TC, and LDL-C levels were significantly lower compared

than in the control group (p < 0.05) in the SGA group. In addition,

women with a LGA newborn had lower levels of HDL-C. Table 3

presents the association between maternal lipid parameters in the

second trimester and the risk of LGA or SGA. TG levels were

positively associated with the risk of LGA (OR=1.41, 95% CI 1.17–

1.70, p < 0.001), while maternal TG, TC, and LDL-C were negatively

associated with the risk of SGA. Additionally, higher HDL-C levels

in mothers were associated with a lower likelihood of delivering an

LGA infant (OR = 0.58, 95% CI 0.39–0.85). No significant

association was found between the vitamin D status and the risk

of LGA or SGA infants (all p > 0.05).

The effect of vitamin D on the association between lipid profiles

and risk of LGA or SGA was explored by dividing the study

population into two different vitamin D categories. Although no

interaction effect was observed among these birth outcomes (p for

interaction > 0.15), the effect of the lipid profile differed because of

the vitamin D status (Table 4). For TG, mothers in the vitamin D

non-sufficiency group with higher TG level was related to an

increased risk (OR=1.40, 95% CI:1.13–1.74) for LGA. Regarding
TABLE 1 Clinical data of the study population.

Characteristics Mean ± SD or n (%)

Maternal age (years) 30.15 ± 4.30

parity

Multiparous 3552 (54.7%)

Nulliparous 2947 (45.3%)

Education level

College 4376 (67.3%)

High School 1019 (15.7%)

< High School 1104 (17%)

Cesarean section 2345 (36.1%)

Pre-pregnancy BMI (kg/m2) 21.04 ± 4.83

BMI status

Underweight 4348 (66.9%)

Normalweight 1262 (19.4%)

Overweight 717 (11%)

Obesity 172 (2.6%)

GWG 13.74 ± 4.56

GDM 1163 (17.9%)

HDP 342 (5.3%)

PTB 310 (4.8%)

Season at Vitamin D testing

Spring 2262 (34.8%)

Summer 1604 (24.7%)

Autumn 1243 (19.1%)

Winter 1390 (21.4%)

Gestational age at lipid testing 18.56 ± 3.82

Neonatal characteristics

Boys 3429 (52.8%)

SGA 635 (9.8%)

LGA 447 (6.9%)

Birth weight (kg) 3.19 ± 0.43

Length (cm) 33.52 ± 1.35

Head (cm) 49.46 ± 1.93

Gestational age (weeks) 39.23 ± 1.42
SD, standard deviation; BMI, body mass index; GWG, Gestational weight gain; HDP,
hypertensive disorders of pregnancy; GDM, gestational diabetes mellitus; SGA, small for
gestational age; LGA, large for gestational age.
TABLE 2 Distributions of maternal vitamin D and lipid profiles in the
second trimester.

Analytes Mean GM
Percentiles

25 50 75

TG 1.83 1.69 1.32 1.67 2.15

TC 5.61 5.51 4.85 5.50 6.24

HDL-C 1.89 1.86 1.65 1.87 2.10

LDL-C 3.09 2.99 2.56 3.04 3.56

vitamin D 57.23 52.83 40.3 55.4 71.9
fr
ontiers
TC, total cholesterol; TG, triglycerides; LDL-C, low-density lipoprotein cholesterol; HDL-C,
high-density lipoprotein cholesterol; GM, Geometric Mean.
in.org

https://doi.org/10.3389/fendo.2024.1297373
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zheng et al. 10.3389/fendo.2024.1297373
cholesterol, no associations were found between the HDL-C and

SGA levels in this subgroup analysis. Nonetheless, HDL-C levels

were negatively associated with the risk of LGA infants regardless of

the vitamin D status (OR=0.65 in pregnant women with insufficient

vitamin D; OR=0.42 in the sufficient vitamin D group).
Frontiers in Endocrinology 05103
Furthermore, when the population was stratified by vitamin D

categories, higher levels of TC and LDL-C were associated with a

decreased risk of SGA (TC: OR=0.65, 95% CI: 0.46–0.94; LDL-C:

OR=0.74, 95% CI: 0.57–0.95) among pregnant women in the non-

sufficient vitamin D group.
TABLE 3 The association of maternal lipid profile concentrations and vitamin D categories with LGA or SGA in early pregnancy in the
second trimester.

AGA (n=5417)
SGA (n=635)
OR (95% CI)

p
LGA (n=447)
OR (95% CI)

p

Lipidsa

TG reference 0.74 (0.62–0.88) 0.001 1.41 (1.17–1.70) 0.000

TC reference 0.65 (0.46–0.90) 0.01 0.95 (0.65–1.39) 0.786

HDL-C reference 1.10 (0.79–1.54) 0.563 0.58 (0.39–0.85) 0.005

LDL-C reference 0.75(0.59–0.94) 0.013 0.98 (0.75–1.30) 0.905

Vitamin D Binary b

Sufficient group reference reference

Non-Sufficient group 1.20 (0.96–1.49) 0.107 1.02 (0.80–1.31) 0.847

Vitamin D b

(10.9–159.2nmol/L)
reference 0.92 (0.80–1.07) 0.274 0.98 (0.83–1.17) 0.850
Maternal Vitamin D and lipid profiles were log2-transformed in the model
aThe models were adjusted for education, maternal age, parity, delivery mode, infant sex, HDP, GDM, pre-BMI, and gestational age at lipid testing.
bThe models were adjusted for education, maternal age, parity, delivery mode, infant sex, HDP, GDM, pre-BMI, and season of vitamin D testing.
A B

DC

FIGURE 2

Maternal lipid profile in mid-pregnancy and fetal growth. (A) TG; (B) TC; (C) LDL-C; (D) HDL-C. Error bars are presented as mean (SD) for continuous
variables with a normal distribution, or as median (90% range) for continuous variables with a skewed distribution. **P < 0.01; ***P < 0.001.
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4 Discussion

In this retrospective study, the prevalence rates of SGA and

LGA in pregnant Chinese women were 9.8% and 6.9%, respectively.

Only 20.5% of the participants (n=1350) demonstrated sufficient

vitamin D levels during their second trimester. The TG levels

during mid-pregnancy were positively associated with an

increased risk of LGA infants, whereas HDL-C levels were

negatively correlated with LGA risk. Maternal TG, TC, and LDL-

C levels were associated with a decreased risk of being SGA;

however, no significant association was observed for HDL-C.

Although no significant interaction effects were identified, notable

differences were observed in the subgroup analysis. Our findings

suggest that TG, TC, and LDL-C levels are positively correlated with

decreased odds of being SGA among pregnant women with

insufficient vitamin D levels. Notably, mothers with sufficient

vitamin D levels had a significantly lower risk of LGA infants

than those with insufficient vitamin D levels.

Risk of LGA or SGA are associated with maternal conditions,

such as maternal dietary intake, obesity, metabolic changes, genetic

polymorphisms, environmental factors, and gestational weight gain.

For example, we have reported that pregnant women with lower

gestational weight gain and MTHFR A1298C AA genotype were
Frontiers in Endocrinology 06104
more likely to experience SGA (21). A prospective multi-racial/

ethnic cohort study suggested that pregnant women with poorer

maternal diet in early pregnancy were more likely to have an LGA

infant, even after adjustment for maternal obesity (22). As an

important indicator for lipid metabolism, maternal lipid profiles

are related to overnutrition and increased throughout pregnancy.

This suggests that lipid profiles have play an important role in fetal

growth. It was reported that higher TG levels in early pregnancy are

associated with increased embryonic size, fetal head circumference,

and overall growth rates (8). The pathway of TG from maternal

circulation into the placenta to support fetal growth is complex

because it cannot cross the placenta. Fatty acid hydrolyzed from TG

can enter fetal circulation through placental trophoblasts and

provided energy for the growth of fetus (23). However,

hyperlipidemia can lead to adverse pregnancy complications and

perinatal outcomes, potentially affecting offspring development (24,

25). In this study, we suggested a positive association between the

maternal TG levels in the second trimester and the risk of LGA

(OR=1.41, 95% CI=1.17–1.70), as well as a negative association

between maternal TG levels and the risk of SGA (OR=0.74, 95%

CI=0.62–0.88). The differential TG levels observed in our study may

explain these results, as TG levels were higher in mothers of LGA

infants and lower in mothers of SGA infants. Compared with

normal-weight controls, we found that TG concentrations were

higher in women born to LGA infants and lower in mothers with

SGA infants. Maternal cholesterol is important for membrane

function and development of the fetus. Recent studies have

suggested that maternal TC and LDL-C levels are valuable

markers of abnormal fetal development. Serizawa et al.

demonstrated that lower maternal LDL-C levels in the second

trimester were associated with an increased risk of delivering an

SGA infant at term (26). Chen et al. reported a negative association

between second trimester TC and LDL-C levels and SGA (27).

Consistent with these results, our analysis showed a negative

association between TC or LDL-C concentrations and the risk of

SGA infants (OR=0.65 TC, OR=0.75 LDL-C). HDL-C plays an

important role in cholesterol homeostasis by maintaining a

favorable sterol balance in extraembryonic fetal tissues to support

fetal growth and development (28). For instance, an increase of 10

mg/dL in HDL-C from preconception to 28 weeks was associated

with decreased odds of LGA (OR = 0.63, 95% CI: 0.46–0.86), with a

stronger association observed in women with a pre-pregnancy BMI

over 25 (29). In our study, pregnant women who delivered LGA

newborns had lower HDL-C levels than those who delivered AGA

newborns, which is consistent with the findings of a study involving

549 pregnant Chinese women (30). Furthermore, our results

indicated that higher HDL-C levels in mothers were associated

with a reduced risk of LGA infants (OR=0.58), even after adjusting

for pre-BMI and GDM. However, a prospective study proposed a

negative association between HDL-C levels in early pregnancy and

LGA, and these effects may become non-significant after adjusting

for pre-pregnancy BMI and early pregnancy maternal glucose levels

(8). The inconsistent results observed across studies may be

attributed to differences in population settings, confounding

variables, and timing of measurements. In addition, the ethnic

differences and genetic factors might also modify the associations
TABLE 4 Associations between maternal lipid levels in second trimester
and risk of LGA or SGA in multinomial logistic regression models,
stratified by vitamin D level.

Vitamin D status p
for
interaction

Non-
Sufficient group

Sufficient
group

TG

AGA reference reference

SGA 0.77 (0.63–0.93)** 0.66 (0.43–1.02) 0.821

LGA 1.40 (1.13–1.74)** 1.31 (0.85–2.03) 0.416

TC

AGA reference reference

SGA 0.65 (0.46–0.94)* 0.65 (0.29–1.43) 0.859

LGA 0.96 (0.62–1.48) 0.96 (0.40–2.30) 0.487

HDL-C

AGA reference reference

SGA 1.16 (0.81–1.68) 0.82 (0.37–1.80) 0.228

LGA 0.65 (0.42–0.99)* 0.42 (0.18–0.98)* 0.300

LDL-C

AGA reference reference

SGA 0.74 (0.57–0.95)* 0.82 (0.47–1.44) 0.749

LGA 0.92 (0.68–1.25) 1.36 (0.71–2.61) 0.726
Maternal Vitamin D and lipid profiles were log2-transformed in the model
The models were adjusted for education, maternal age, parity, delivery mode, infant sex, HDP,
GDM, pre-BMI, Season at vitamin D testing, and gestational age at lipid testing.
P for interaction was assessed by likelihood ratio test.
*P < 0.05; **P < 0.01.
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between maternal cholesterol and birth weight (31, 32). Future

multiple-ethnic studies must investigate the effect of genetic

differences on the relationship between maternal lipid metabolism

and fetal development.

Vitamin D, a fat-soluble vitamin biosynthesized via an ultraviolet

radiation-mediated process or absorbed from dietary sources, plays a

crucial role in the calcium phosphate metabolism and bone

construction. In this analysis, we found that the maternal 25(OH)D

concentration in second trimester were highest in summer (62.12 ±

22.81 nmol/L) and lowest in spring (54.04 ± 21.78 nmol/L). During

pregnancy, low vitamin D concentrations are commonly observed in

pregnant women due to the increased physiological demand for

vitamin D. In this study, the mean vitamin D concentration was 57.23

nmol/L, which is similar with a retrospective cohort study conducted

in Guangzhou. They reported that pregnant women exhibited an

average vitamin D level of 59.3 nmol/L (33). The prevalence of

insufficient vitamin D (< 75 nmol/L) was 79.2% (n = 5149), which

was nearly four times higher than that in the sufficient vitamin D

group. These findings are consistent with a prospective observational

study conducted in Guangzhou, which reported a 67.5% prevalence

of insufficient vitamin D among pregnant women (34). Similar results

were observed in pregnant women from Brazil (69%), Kenya (74.4%),

and rural Bangladesh (64.5%) (35–37). Although increased studies

have shown that vitamin D deficiency in serum during pregnancy is

closely related to a series of adverse pregnancy outcomes (38, 39), our

study suggests that the vitamin D status at mid-pregnancy, even in

the vitamin D-deficient group, was not associated with LGA or SGA.

Several studies have shown that the vitamin D status may be

related to improvements in lipid profiles. For example, a prospective

birth cohort study of 6714 pregnant women in Hefei (another city in

China) suggested that increased serum vitamin D levels were

significantly associated with decreased maternal TC, TG, HDL-C,

and LDL-C levels in the second trimester (14). Sharif-Askari et al.

found that vitamin D deficiency was associated with HDL-C

dyslipidemia in insulin-resistant individuals (40). Pregnant women

with sufficient vitamin D have higher cholesterol levels (TC, HDL-C,

and LDL-C) than those with non-sufficient vitamin D in our study

population. This may be because vitamin D and cholesterol

metabolism share a similar biosynthetic pathway. Additionally,

vitamin D exerts a potent anti-lipolytic action, increases the

intracellular calcium levels, regulates the renin-angiotensin system,

and suppresses lipolysis in human adipocytes (41). Vitamin D can

directly and indirectly influence lipid levels through its effects on

serum parathyroid hormone (PTH) and calcium balance, thereby

regulating lipid metabolism (42). However, there is no consensus on

the association between vitamin D and lipid metabolism. In zebrafish

model, vitamin D was reported to reduce the deposition of lipid via

regulation of mitochondrial biogenesis (11). Considering the effect of

vitamin D on fat storage and lipid metabolism, we hypothesized that

vitamin D may have a modifying effect on the association between

lipid levels and LGA and SGA. In the subgroup analysis, the effects of

TG, TC, and LDL-C on LGA or SGA risks were only observed in the

vitamin D insufficient group. Furthermore, a higher HDL-C level was
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associated with a lower likelihood of giving birth to an LGA infant

among pregnant women with sufficient vitamin D levels in the

second trimester (OR = 0.42) than among those with insufficient

vitamin D levels (OR = 0.65). The vitamin D status in a sufficient

status appears to have a beneficial effect in reducing the serum TC,

LDL-C, and TG levels (43). Although the effect of dietary intake did

not evaluate on the level of vitamin D and lipid profile in the present

study, our results suggest that the vitamin D status at mid-pregnancy

may modify the association between the lipid profile and risk of LGA

or SGA.

In this study, we conducted a comprehensive investigation

involving 6499 mother-infant pairs to assess the association

between vitamin D levels, lipid profiles in the second trimester,

and the occurrence of SGA or LGA. Additionally, we explored the

potential effect of vitamin D status on the association between

maternal lipid metabolism and risk of SGA or LGA. Our findings

suggest that pregnant women with abnormal lipid profiles should be

monitored for their vitamin D status to mitigate the risk of SGA or

LGA. However, it is important to acknowledge the limitations of

this study. First, we collected serum samples during the second

trimester, although it is recommended to collect maternal lipid

concentrations throughout pregnancy and before conception.

Second, our analysis did not account for various potential

confounding factors, such as eating patterns, vitamin D

supplementary, physical activity, and other environmental

exposures, which may have influenced the reliability of our

results. Further investigations with larger sample sizes, diverse

populations, and prospective study designs are necessary to

validate the association between maternal vitamin D levels and

subsequent delivery outcomes.
5 Conclusion

In summary, our retrospective study, based on a Chinese

population encompassing 6499 mother-infant pairs, examined the

relationship between vitamin D levels, lipid profiles, and the risk of

SGA or LGA. We observed a significant association between

vitamin D and cholesterol levels during mid-pregnancy.

Moreover, our findings provide evidence that the vitamin D

status may modify the association between HDL-C levels and the

risk of LGA. These results could serve as guidelines for managing

lipid profiles and nutritional interventions during pregnancy to

improve birth outcomes in Chinese populations. However, further

investigations with larger sample sizes, diverse populations, and

prospective or multicenter designs are warranted to confirm and

expand upon our findings.
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